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Abstract 

Macrophage activation is essential for macrophage function; however, the phenotypic profile of 

macrophages can become dysregulated during pulmonary disease. Two major causes of lower 

respiratory tract infections are Streptococcus pneumoniae (S. pneumoniae) and Non-Typeable 

Haemophilus influenzae (NTHi). These are problematic as current preventative treatments 

against these opportunistic pathogens are ineffective for those most vulnerable to infection. 

Macrophages can undergo apoptosis when infected with S. pneumoniae as part of the innate 

immune response. This apoptosis-associated bacterial clearance is reduced in alveolar 

macrophages (AMs) from COPD and HIV patient associated with increased expression of the 

anti-apoptotic protein Mcl-1.  

I hypothesized that macrophages from Mcl-1 over-expressing transgenic mice would display an 

altered macrophage activation profile which would affect macrophage effector functions after 

bacterial challenge. Given the prominence of NTHi infection in diseases with defective 

macrophage function I also predicted NTHi challenge would cause macrophage apoptosis 

associated killing, which is inhibited by over expression of Mcl-1, similar to previous observations 

for S. pneumoniae.  

Induction of classical and alternative macrophage activation was analysed between wild-type 

and transgenic Bone Marrow Derived Macrophages (BMDM) and determined in human 

Monocyte Derived Macrophages (MDM). The effect of macrophage activation on killing of S. 

pneumoniae, microbicidal production and apoptotic activity was then assessed in both BMDM 

and MDM models. A transcriptomics study was conducted to understand changes in gene 

expression between wild-type and transgenic AMs at 16 hours, a critical time point of S. 

pneumoniae challenge, at the onset of macrophage apoptosis associated killing. Macrophage 

killing and microbicidal production in MDMs after NTHi challenge were observed and apoptosis 

and Mcl-1 protein levels were assessed over a 72-hour time course. The effects of macrophage 

activation on NTHi challenge was also measured.  

I found that Mcl-1 did not alter macrophage activation but activation of BMDM and MDM with 

IFN-γ (M(IFN-γ)) caused enhanced clearance of intracellular bacteria at early and late time points 

of S. pneumoniae challenge. Furthermore, levels of apoptosis were increased in M(IFN-γ) at 16 

hours of S. pneumoniae challenge. Transcriptomic analysis of wild-type and transgenic AMs after 

16 hours of challenge revealed induction of a T-cell signature in transgenic samples. Challenge 

of MDMs with NTHi caused low levels of macrophage apoptosis at 20 hours of challenge which 



14 
 

increased at 48 and 72 hours. Levels of Mcl-1 remained high at 16-20 hours then decreased from 

peak at 20 hours onwards with increasing levels of macrophage apoptosis.  

These results demonstrate the importance of IFN-γ production during S. pneumoniae challenge. 

They also highlight a potential role for T-cell involvement in transgenic macrophages when the 

apoptotic response is compromised. Finally, they give insights into an unexplored aspect of 

macrophage immunology after NTHi challenge, showing increased apoptosis at later timepoints 

of infection. These findings offer useful insights into host innate immunology and may provide 

groundwork for future therapeutic development.  
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1. Introduction  

1.1. The Immune System 

Lower respiratory infections, excluding tuberculosis, account for over 3 million deaths 

worldwide per annum and are now ranked 3rd most common cause of death globally (WHO, 

2015). Aside from the barriers our bodies present to external world, such as our skin, mucous 

membranes and the acidic environment of the stomach, more complex mechanisms are 

required for protection against and eradication of pathogens and toxins. The immune system is 

divided into categories of highly specialised cells which are responsible for an abundance of 

multifaceted actives extending much further than just host defence. Here I will describe the 

importance of our immune system in bacterial infection with specific insight on the position of 

the macrophage in response to the respiratory pathogens Streptococcus pneumoniae (S. 

pneumoniae) and Non-Typeable Haemophilus influenzae (NTHi). 

1.1.1. Division and Components 

Multipotent haematopoietic stem cells which reside in the bone marrow give rise to all cells of 

the immune system. The two main lineages which mature here are known as Common Lymphoid 

Progenitors (CLPs), which give rise to the lymphoid lineage, encompassing B-cells, T-cells and 

Natural Killer (NK) cells and Common Myeloid Progenitors (CMPs) which account for the majority 

of the cellular components of blood, including megakaryocytes and erythrocytes. CMPs also give 

rise to polymorphonuclear leukocytes, circulating granulocytes; neutrophils, basophils and 

eosinophils. Mononuclear mast cells are derived from bone marrow progenitors but 

differentiate in the tissue. Mononuclear leukocytes, monocytes circulate the body and are 

precursors to macrophages, which differentiate in the tissue and are the professional 

phagocytes of the innate immune system. Alternatively, development of specific niches of tissue 

macrophages are being increasingly recognised as deriving from embryonic lineages such as the 

foetal liver or yolk sac (van de Laar et al., 2016). These macrophage populations have been 

shown to exist into adulthood and in many scenarios are capable of self-replenishment. Mast 

cells also differentiate in the tissues along with Dendritic Cells (DCs) which are also professional 

phagocytes and are an exception in that they can be derived from either CLPs or CMPs. 

Collectively the two distinct lineages of the immune system give rise to two different arms of 

immunity, the ancient, evolutionarily conserved innate immune response, crudely referred to 

as “non-specific” immunity and the “specific” adaptive immune response which is a more 

recently developed addition to our immune system, emerging in our jawed vertebrate ancestors 

(Cooper and Alder, 2006), primarily concerned with providing us with immunological memory. 
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However, increasingly we recognise that while CMP derived cells are all innate immune cells 

CLPs make major contributions to innate immunity with the identification of Innate Lymphoid 

Cell (ILC) populations (Artis and Spits, 2015). 

1.1.2. Adaptive and Innate Immunity 

Pathogen recognition occurs by employment of pattern recognition receptors (PRRs) located on 

the cell membrane which are highly responsive to Pathogen Associated Molecular Patterns 

(PAMPs), evolutionarily conserved sequences located on the pathogen surface which help 

phagocytes to identify molecules as “non-self”. Several studies identified innate immune 

pathogen recognition in more detail. PRRs such as membrane bound toll-like-receptors (TLRs), 

C-type-lectin receptors and cytoplasmic PRRs such as Nucleotide Oligomerisation Domain 

(Nod)-Like-Receptors (NLRs) or RIG-1-like-receptors were shown to recognise PAMPs which 

include bacterial components such as Lipopolysaccharide (LPS), peptidoglycan, teichoic acid and 

bacterial DNA. Once triggered, PRRs initiate signalling cascades within innate immune cells to 

aid internalisation of pathogens and intracellular killing, (Doyle et al., 2004; Medzhitov et al., 

1997). Furthermore, PRR activation triggers downstream upregulation of transcription factors 

such as Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) which is a crucial 

immunomodulator in effective escalation of the immune response (Lawrence, 2009). As well as 

providing an initial effector response to infection, many phagocytes of the innate immune 

system also act as Antigen Presenting Cells (APCs) whose role is to present molecular 

components of digested bacteria on their cell membrane, by association with Major-

Histocompatibility-Complex (MHC) class II expression. This in turn activates cells of the adaptive 

immune response. The requirement for immune sensing cells as the activators of adaptive 

immunity was first postulated by Charles Janeway (Janeway, 1989).  

1.1.2.1. Activation of lymphocytes by APCs 

The role of the APC is to encounter B and T-cells and activate them according to the specific 

threat. B and T-cell development includes the recombination of DNA which encodes the variable 

portions of their membrane bound B-cell receptor antibody and T-cell receptor (TCR) antigen 

receptors, therefore the diverse population of B and T-cells in the body possess the capability of 

recognising an innumerate amount of pathogen epitopes. B and T-cells can also initially 

recognise self-antigens, however auto-reactive B and T-cells are negatively selected and silenced 

through mechanisms collectively known as central tolerance (Pelanda and Torres, 2012). Upon 

encounter of microbial sequences presented by APCs, the population of B and T cells which 

recognise the characteristic epitope of  the specific pathogen are then capable of replicating 
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through a process known as ‘clonal expansion’ (Burnet, 1976). Clonal expansion results in 

‘effector’ and ‘memory’ populations which either orchestrate the specific pathogen induced 

immune response or remain in the circulation until required to bring about a rapid immune 

response later due to a repeat infection with the same pathogen. Two main categories of T-cells 

exist; either ‘helper’ (CD4+) or ‘cytotoxic’ (CD8+). Cytotoxic T-cells recognise antigens from 

damaged, infected or abnormal cells such as tumour cells, presented by MHC class I expression, 

present on all nucleated cells. They also recognise antigens presented by MHC class I on the 

surface of APCs such as DCs which can endocytose antigens and subsequently present them 

(cross-presentation) (Heath and Carbone, 2001). Antigen recognition is then followed by 

cytotoxic T-cell maturation which results in elimination of target cells by induction of 

programmed cell death  or cell lysis (Andersen, 2006; Janeway et al., 2001). T-helper cells on the 

other hand are activated by MHC class II antigen presentation and are instrumental in further 

activation of innate immune cells to bring about pathogen specific responses.  

1.1.2.2. Professional Antigen Presenting Cells 

DCs, macrophages and B-cells are all examples of ‘professional’ APCs, however antigen 

presentation is the primary role of the DC and mice depleted of DCs fail to stimulate lymphocytes 

demonstrating this cell type is crucial to the primary immune response (Steinman and Witmer, 

1978). There are two main populations of DCs in the lung, CD103+ which have superior MHC I 

loading machinery and cross presentation ability and are therefore mainly involved in antigen 

presentation to cytotoxic T cells and CD11b+ DCs, primarily concerned with T helper cell antigen 

presentation (del Rio et al., 2007). Macrophages whist fulfilling the requirements of a 

professional APC, such as MHC class II expression, T-cell co-stimulatory molecule expression and 

cytokine release, are more-so involved in phagocytosis and microbicidal activity and they 

possess more acidified phagosomes than DCs (Delamarre et al., 2005; Nagl et al., 2002). 

Furthermore, DCs have been shown to localise to lymphoid organs where naïve lymphocytes 

reside, whereas the majority of macrophages remain in non-lymphoid tissues, supporting their 

role as important mediators of the secondary immune response (Itano and Jenkins, 2003). 

Interestingly, identification of the capacity for other haematopoietic cells to act as APCs is also 

emerging, including basophils, eosinophils, neutrophils, ILCs and CD4+ T-cells and this role 

extends to non-haematopoietic cells such as endothelial and epithelial cells (reviewed in 

(Kambayashi and Laufer, 2014)).  

1.1.2.3. T-helper cell polarisation 

T-helper cells are naïve until activated by specific stimuli, which determines the type of T-helper 

cell they will become (Pennock et al., 2013). For example, signalling through the TCR induces a 
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transcriptional pattern which determines how the T-cell will be polarised. Furthermore, 

engagement of APC costimulatory (and co-inhibitory) molecules with T-cell costimulatory 

receptors (i.e. ligand B7-1 with CD28) is required as a second signal to direct T-cell proliferation 

and activation (Chen and Flies, 2013; Mueller et al., 1989). The ‘second touch hypothesis’ 

describes T-cells as only partially activated before migrating to the tissues where they become 

fully polarised by the specific cytokine environment of the inflamed tissues (Ley, 2014). 

Experiments with macrophage and T-cell co-cultures have shown differentially activated 

macrophages can then direct CD4+ T-cell proliferation and phenotype depending on their 

proficiency as antigen presentors and their specific repertoire of cytokine release (Arnold et al., 

2015). This polarisation state is then effective at inducing the correct mediators which modulate 

a specific immune response.  Traditionally, T-helper cells have been categorised as Th1 or Th2 

(Mosmann and Coffman, 1989). The former requires strong signalling through the T-cell receptor 

for activation and orchestrates responses which necessitate a pro-inflammatory element such 

as those stimulated towards bacterial or viral infections. Th1 cells execute a specific immune 

response through activation of their master-regulator transcription factor T-box transcription 

factor (T-bet) which controls production of the Th1 distinguishing marker, Interferon-γ (IFN-γ) a 

pro-inflammatory cytokine which subsequently activates further signalling and specific pro-

inflammatory macrophage effector functions (macrophage classical activation) (Yamane and 

Paul, 2013).  Weak signalling through TCR causes generation of Th2 cells which are responsive 

to parasitic infections and are regulated by the trans-acting T-cell-specific transcription factor 3 

(GATA3) / signal transducer and activator of transcription 5 (STAT5) axis, inducing interleukin-4 

(IL-4) production and causing macrophage alternative activation (Nakayama et al., 2017). Th17 

cells were later described and have now been defined in detail (Harrington et al., 2005; Korn et 

al., 2009). They are effective in responding to bacterial infection and are activated by 

transforming growth factor beta (TGF-β) and IL-6 which activate master-regulator transcription 

factor RAR-related orphan receptor gamma (RORγt), causing production of the cytokine, IL-17 

(Yamane and Paul, 2013). There are recent descriptions of emerging T-cell subsets, such as Th9 

and Th22, which demonstrate the potential range of specific T-cell responses (Kara et al., 2014). 

These likely induce specific activation states in the innate effector cells, such as macrophages, 

to fine tune the immune response.  

1.1.3. The Macrophage 

Macrophages were first described as phagocytic cells by the Russian zoologist Elie Metchnikoff 

(Mechnikov, 1988), who observed their positive chemotaxis toward foreign bodies followed by 

engulfment and intracellular destruction. The name “macrophage” is derived from the Greek for 
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“big eater” due to their inherent propensity to efficiently recognise and devour pathogens, cell 

debris and toxic material. Although often referred to as “professional phagocytes” (Rabinovitch, 

1995) macrophages possess diverse roles in tissue homeostasis, wound healing, tissue 

regeneration as well as the orchestration of the adaptive immune response (Wynn et al., 2013).  

There is vast heterogeneity among myeloid cell types and various monocyte subsets have been 

identified (Geissmann et al., 2003).  However, of all myeloid cells macrophages are possibly the 

most diverse. Many highly specialised groups patrol their anatomical departments, including 

Kuppffer cells (liver), osteoblasts (bone), histocytes (interstitial tissue) and of emphasis here, 

AMs which are present in the lung. Developmentally, macrophages have long been known to be 

able to be derived from blood monocytes, mononuclear leukocytes, which mature from a 

universal myeloid progenitor cell in the bone marrow, also known as the mononuclear 

phagocyte system hypothesis (van Furth et al., 1972). Once in the circulation, monocytes 

respond to environmental cues which direct their journey into the tissue where final 

differentiation takes place (Fogg et al., 2006). As well as Monocyte Derived Macrophages 

(MDM), we now understand that there are additional sources of macrophage precursors 

including yolk sac derived and foetal liver derived precursors which appear in waves earlier 

during development and exist through to adulthood in self-replicating niches (van de Laar et al., 

2016). Furthermore, yolk-sac erythro-myeloid progenitors rather than hematopoietic stem cells 

have been identified as the common progenitor for most tissue resident macrophages (Gomez 

Perdiguero et al., 2015). The resident macrophages of the nervous system, microglia, derive 

from primitive macrophages which differentiate in the yolk sac and are maintained into 

adulthood independently of the circulation (Ginhoux et al., 2010). Foetal monocytes are the 

precursors for AMs which seed the lungs in the embryo and differentiate by exposure to 

granulocyte macrophage colony stimulating factor after birth (Guilliams et al., 2013). On the 

other hand, intestinal macrophages are distinct in that they are replenished by Lymphocyte 

antigen 6C (Ly6C)hi circulating monocytes (Bogunovic et al., 2009), demonstrating circulating 

monocytes are still important for some niches, particularly those with shorter lifespans. 

Macrophages possess various activation states which can be triggered by the chemical or 

physiological environment. This phenomenon is referred to as macrophage activation. 

Classically Activated Macrophages (CAM) and Alternatively Activated Macrophages (AAM) 

represent opposite extremities of the activation spectrum and exhibit pro-inflammatory and 

anti-inflammatory cytokine expression profiles respectively (Mills et al., 2000b).  Although it is 

widely accepted that macrophages can exhibit specific activation profiles, the spectrum is a vast 
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continuum and categorising phenotypes is challenging and often inaccurate as macrophages are 

highly plastic cells with the ability to quickly shift activation profile when faced with altered 

external cues, a phenomenon referred to as functional adaptivity (Davis et al., 2013; Guiducci et 

al., 2005; Porcheray et al., 2005; Stout and Suttles, 2004).  

Macrophages can shift their phenotype in response to pathogen recognition and subsequent 

innate immune responses are specifically tailored to the type of pathogen detected (Mosser, 

1994). Macrophages express several families of PRRs on their cell surface and after pathogen 

recognition, macrophages engage in phagocytosis, a dynamic process which involves binding of 

the ligand coated pathogen to host cell surface receptors, followed by remodelling of the actin 

cytoskeleton to aid entry. Once engulfed, pathogens are contained within vesicles called 

phagosomes. Through a process of fusion and fission events, the phagosome evolves into a 

phagolysome, a competent intracellular killing compartment (Desjardins et al., 1994a). As the 

phagosome matures, the conditions within the pathogen containing vesicle become more 

hostile due to an increasingly acidic environment coupled with production of oxidative 

molecules e.g. reactive oxygen species (ROS) and acid hydrolases e.g. lysozyme, leading to the 

eventual break down and destruction of the organism (Flannagan et al., 2009). This is discussed 

in more detail later (section 1.3.3). In recent years shifts in macrophage activation have become 

an emerging theme in many diseases including chronic inflammatory diseases, cardiovascular 

diseases, auto-immune disorders, neurodegeneration and cancer (Wynn et al., 2013). It is 

therefore imperative that we continue to explore the mechanisms and consequences of skewed 

macrophage phenotypes in order to better understand pathophysiology and to guide 

development of more effective therapeutics. 

1.2. Macrophage Activation  

1.2.1. Discovery   

Although significant advances have been made in recent decades, it is likely we have only just 

scratched the surface in our understanding of macrophage activation. Early findings discovered 

mononuclear phagocytes could become ‘activated’ enabling an increased ability to phagocytose 

microbial organisms and subsequently destroy them (Mackaness, 1962), utilising ROS and Nitric 

Oxide (NO) (Nathan et al., 1983). The unearthing of AAMs came about in the late 1980’s and 

early 90’s by groups who recognised a distinct expression profile could antagonise the pro-

inflammatory effects of ‘activated’ macrophages (Stein et al., 1992). Mills suggested that the 

terms ‘M1’ and ‘M2’ be used to refer to CAM and AAM respectively, mimicking the T-helper cell 

nomenclature of Th1/Th2 cell activation (Mills et al., 2000a). However, owing to the plastic 
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nature of macrophages and the fact that the M1/M2 paradigm is a very broad concept and 

largely unrepresentative of the vast spectrum of macrophage activation, it was more recently 

suggested by a consortium of macrophage biologists that macrophage phenotypes be referred 

to by their activation stimuli to avoid confusion (Murray et al., 2014). Therefore, in this thesis 

macrophages will be referred to as either CAM or AAM when speaking in broader phenotypic 

terms or labelled as ‘M(IFN-γ)’, ‘M(IL-4)’ or ‘M(IL-10)’ when referring to activation states induced 

by a specific cytokine stimulus. It is important to note, most of the work published on 

macrophage activation has been conducted using murine macrophages, however, many 

activation markers are species specific and great differences in the degree of heterogeneity 

exists between the profile and functionality of human and murine models (Mestas and Hughes, 

2004).  

1.2.2. Macrophage Metabolism 

1.2.2.1. Arginine Metabolism 

Perhaps the most well-defined marker of macrophage activation in mice is the differential 

metabolism of L-Arginine. In 1988, Hibbs and colleagues showed that CAM synthesise NO from 

L-Arginine via inducible Nitric Oxide Synthase (iNOS) (Hibbs et al., 1988). Conversely, Corraliza 

demonstrated that Arginase-1 expression can be triggered by inhibition of iNOS by IL-4, IL-10 

and prostaglandin E2 exposure (Corraliza et al., 1994). Furthermore, Gordon and colleagues 

discovered that upon exposure to IL-4, murine L-Arginine was metabolised by an opposite 

pathway to CAM, (Hesse et al., 2001; Mills et al., 2000b), and, Arginase-1 was found to be 

decreased upon addition of IL-4, IL-10 and IL-13 inhibitors (Munder et al., 1998a).  

As suggested by Mills, it is widely believed that differential arginine metabolism is related to 

macrophage function (Shearer et al., 1997). Production of NO by iNOS allows generation of 

nitrogen species which aid rapid pathogen elimination. Shifting to the opposite Arginase-1 

metabolic pathway allows polyamine production from urea and ornithine which can contribute 

to various functions characteristic of AAM, including wound healing and cell proliferation (Mills 

et al., 2000b), (Modolell et al., 1995). It is important to note however, although an effective 

marker of macrophage activation in mice, Arginine metabolism has limitations as a marker in 

human models (Geelhaar-Karsch et al., 2013). 

Recent data shows the signalling pathways which instigate Arginase-1 expression in 

macrophages appear more complex than first thought. Murray and colleagues showed that 

Arginase-1 can be induced by Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection 

which signals through a TLR - Myeloid Differentiation primary response gene 88 (MyD88) 
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pathway to induce STAT3 rather than STAT6 (involved in Arginase -1 expression through IL-4 

receptor engagement), which works to increase amounts of IL-10 and supress microbicidal 

macrophage activity, creating an environment which favours pathogen survival (El Kasmi et al., 

2008), (Qualls et al., 2010). Furthermore, Arginase-1 expressing macrophages were found to 

supress Th2 cell proliferation and cytokine responses and depletion of Arginase-1 was shown to 

enhance fibrosis, challenging the supposed role for Arginase-1 mediated production of ornithine 

and polyamines in fibrotic disease (Pesce et al., 2009). These results indicate that in some 

instances the phenotypic profile of activated macrophages does not always relate to their 

specific function (Murray, 2017). 

1.2.2.2. Mitochondrial Metabolism 

Macrophages at the extremities of the activation spectrum possess alternative pathways of 

glucose metabolism closely related to their distinct functions. CAM prefer anaerobic glycolysis 

which favours their rapid energy requirements during infection and allows enhanced ROS 

production for increased microbicidal activity (Rodriguez-Prados et al., 2010). In contrast, 

oxidative glucose metabolism (fatty acid oxidation) and mitochondrial biogenesis, regulated by 

Peroxisome proliferator-activated receptor (PPAR) - co activator 1β, predominates in AAM  (Vats 

et al., 2006). This slower, more consistent energy source is ideal for AMM when combatting 

chronic parasitic infection and implementing tissue repair and wound healing (Odegaard and 

Chawla, 2011). 

1.2.3. Classically Activated Macrophages 

CAM have popularly been described as pro-inflammatory cells which arise following priming by 

IFN-γ which is released by a host of haematopoietic cells involved in the immune response (Bach 

et al., 1997). The IFN-γ receptor located on the cell surface is activated upon binding and initiates 

the kinase activity of Janus Kinase and subsequently phosphorylation of STAT1. Activation of 

STAT1 causes transcriptional upregulation of several pro-inflammatory mediators such as IL-12 

and IL-18, which induce autocrine IFN-γ production (Munder et al., 1998b). Along with STAT1, 

Interferon Regulatory Factor (IRF) 5 is also indispensable for IFN-γ stimulated classical activation 

and drives expression of classical activation markers such as tumour necrosis factor α (TNFα), IL-

1β and IL-12 (Krausgruber et al., 2011). Furthermore, IRF5 expressing macrophages are capable 

of inducing upregulation of T-bet and RORγt in T cells and subsequently IFN-γ and IL-17 cytokine 

release (Krausgruber et al., 2011). 

For complete classical activation, a second signal; TNFα or microbial products which provide a 

stimulus for TNFα are required in synergy with priming by IFN-γ (Mosser, 2003). TNFα is 
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produced by ligation of several TLRs e.g., TLR2 and TLR4 (Ozinsky et al., 2000). For example, TLR4 

recognises LPS  (Hoshino et al., 1999) which is released by several types of Gram-negative 

bacteria. TLR ligation yields intracellular production of TNFα, a response which is prevented in 

TRL4 -/- knock-out mice (Gallego et al., 2011). The signalling cascade initiated by TLR4 activation 

leads to  the release of the transcription factor, NFκB which translocates to the nucleus and 

induces upregulation of pro-inflammatory genes (Cairo et al., 2011). Other PRRs which 

contribute to macrophage activation include NLRs which detect intra-cytoplasmic PAMPs and 

are involved in inflammasome formation. Activation of macrophages with IFN-γ has been shown 

to increase expression of Nod2 and inflammasome related genes including members of the IL-1 

cytokine family and CASP1, encoding the gene for caspase-1 (Awad et al., 2017). 

The bactericidal activities of CAM have been well documented. Upon microbial ingestion, 

significant increases in reactive oxygen intermediates, superoxide (O2
-) and hydrogen peroxide 

(H2O2) contribute to an “oxidative burst” which is important for microbial killing (Murray et al., 

1979). Increased enzymatic production of NO from L-Arginine also contributes to pathogen 

degradation (Pacelli et al., 1995). Enhanced phagocytosis by CAM is more controversial, several 

sources have reported complement and Fc gamma (Fcγ) mediated phagocytosis is abrogated 

upon macrophage activation with IFN-γ (Schlesinger and Horwitz, 1991a), (Frausto-Del-Río et 

al., 2012b). Others, however have demonstrated that complement-mediated-phagocytosis of C. 

neoformans is dependent upon inflammatory mediators associated with classical activation 

(Collins and Bancroft, 1992) and Fcγ receptors are also increased in response to IFN-γ (Beyer et 

al., 2012).  

During pulmonary infection, recruitment of activated macrophages by specific chemokines is 

instigated by TNFα and believed to be involved in the containment and resolution of infection 

(Roach et al., 2002). However, in disease states where inflammation is unresolved, the 

continuous production of inflammatory mediators can cause permanent tissue damage which 

further potentiates the symptoms of chronic inflammatory diseases (Martinez et al., 2008). AAM 

macrophages were first described as mediators of the anti-inflammatory response. Induction of 

the AAM phenotype has been shown to counteract excessive inflammatory exposure and 

resolve inflammation (Geng and Hansson, 1992; Stein et al., 1992).  

1.2.4. Alternatively Activated Macrophages 

The concept of ‘alternative’ macrophage activation arose three decades ago when initial 

experiments suggested alterations in the cell surface expression of macrophage mannose 

receptor (CD206) in response to stimulation with macrophage activator, IFN-γ (Alan et al., 1984). 
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Later it was discovered that the Th2 cytokine, IL-4, operates antagonistically to IFN-γ, enhancing 

expression of CD206 (Stein et al., 1992) and in the same vein, members of the scavenger 

receptor families appeared to be more numerous after IL-4 treatment (Geng and Hansson, 1992; 

Högger et al., 1998). IL-13 is another Th2 associated cytokine which shares the same receptor as 

IL-4 and was also found to initiate the alternatively activated phenotype (Doyle et al., 1994; 

MacKenzie et al., 1998). Surface markers, cytokine and chemokine signatures can be used to 

distinguish AAM from CAM and altered transcriptional regulation has been defined for 

alternative activation (Lawrence and Natoli, 2011). Much like CAM, AAM, stimulated with IL-4 

also require STAT activation, in this case, the phenotype is regulated by STAT6 (Gordon, 2003). 

Jumonji domain containing-3, a histone 3 Lys27 demethylase (Jmjd3), is also essential for 

alternative activation and has been shown to act in combination with IRF4 to co-ordinate 

alternative activation responses such as those involved in parasitic infection (Satoh et al., 2010). 

This study also opened up the potential role of epigenetics in macrophage activation which has 

since been further investigated and reviewed (Ivashkiv, 2013). 

As mentioned above, Mills and colleagues, who first coined the terms ‘M1, M2’ due to parallels 

with the T helper cell Th1/Th2 paradigm, suggested that the shift in L-Arginine metabolism aids 

polyamine production which has implicated AAM in wound healing, (Shearer et al., 1997), (Mills 

et al., 2000a). Other genes which are upregulated during alternative activation give clues for 

AAM functionality. For example; increased mannose and scavenger receptor surface expression 

indicate enhanced endocytic activity (Mantovani et al., 2002). In mice, upregulation of Found in 

Inflammatory Zone 1 (FIZZ-1) participates in resolution of inflammation and protection against 

Helminth infection and increased expression of chi-lectins Ym1 and Ym2 play a role in resolution 

of parasitic infection and allergic reaction (Raes et al., 2002). However, contribution to fibrosis 

and epithelial thickening by FIZZ-1 in response to the fungal allergen Alternaria, has been 

recorded; suggesting AAM may also contribute to airway pathology (Doherty et al., 2012). Other 

markers of AAM are chemokines, such as thymus and activation regulated chemokine (TARC) 

which has been shown to prevent generation of CAM from unstimulated macrophages exposed 

to a pro-inflammatory stimulus (Katakura et al., 2004) and also CCL22 and CCL24 (Mantovani et 

al., 2004). 

1.2.5. Other Macrophage Activation States 

David Mosser and colleagues unearthed a macrophage subset distinct from AAM as they had 

been originally described but which still drew some parallels with the alternative phenotype. He 

named this subset ‘type II activated macrophages’ or M2b macrophages (Anderson and Mosser, 
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2002a). The M2b phenotype is instigated by Fcγ receptor ligation and TLR receptor activation 

and shares some traits with CAM. Although both CAM and M2b are activated by immunogenic 

substances, distinct categorisation closer to an alternative phenotype is necessary due to M2b 

amplified anti-inflammatory IL-10 and decreased pro-inflammatory IL-12 production (Gerber 

and Mosser, 2001). Furthermore, M2b macrophages induce IL-4 production which facilitates the 

Th2 response (Anderson and Mosser, 2002b). However, in contrast to M2a, AAM stimulated by 

IL-4/IL-13, M2b macrophages fail to upregulate Arginase-1 expression (Mosser, 2003) suggesting 

they do not play a role in wound healing and regeneration processes but rather take part in 

immunoregulation as suggested by Mantovani (Mantovani et al., 2004). M2b macrophages are 

therefore distinct from M2a in terms of functionality as well as activation and expression profile.  

M2c or M(IL-10) macrophages are a third sibling of the alternatively activated subset. They are 

induced by IL-10, TGFβ, glucocorticoids and like IL-4/IL-13 stimulated macrophages, they use the 

Arginase-1 pathway of L-Arginine metabolism (Corraliza et al., 1995) and upregulate IL-4 

receptor α which further increases Arginase-1 expression upon IL-4 binding (Gordon, 2003). Due 

to stimulation by and high output of anti-inflammatory IL-10, M(IL-10) are implicated in immune 

regulation and suppression of inflammation (Mantovani et al., 2004). Murray and colleagues, 

demonstrated that IL-10 blocks transcription of pro-inflammatory cytokines indirectly via 

activation of STAT3 (Murray, 2005) in agreement with earlier publications which report TNFα 

and oxidative intermediate blockade by IL-10 (Bogdan et al., 1991). Bogdan et al illustrated the 

ability of M(IL-10) macrophages to down regulate the pro-inflammatory response on two levels, 

firstly; degradation of TNFα and IL-1 mRNA by IL-10 release 3 hours after macrophage activation, 

coupled with delayed inhibition of pro-inflammatory cytokine expression at 12-16 hours by 

TGFβ, operating at the level of translation (Bogdan et al., 1992).  These findings cement a role 

for M(IL-10) in inflammation resolution as a protective mechanism to prevent local tissue 

damage. 

1.2.6. Emerging Activation States 

Demonstrative of the diversity of macrophage activation –several less well-defined macrophage 

subsets have been recorded. Tumour associated macrophages (TAM) are identified as a unique 

subset, which share characteristics with both CAM and AAM. They have been shown to be 

instrumental in angiogenesis, tissue remodelling and immune cell infiltration of the tumour site 

(Sica et al., 2006). Another subset has been coined “M2d” and appears to be functionally similar 

to TAM in the ability to suppress certain immune responses such as inhibition of T cell 

proliferation (Duluc et al., 2007). Additional documentation includes in vitro mesenchymal stem 
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cell activated macrophages which have a suggested role in tissue repair (Kim and Hematti, 2009) 

and a macrophage subset which participates in suppression of T-cell mitogenesis as well as 

promoting the Th17 immune response, preliminarily coined “M17” macrophages (Tatano et al., 

2014). More obscure subsets include CD169+ macrophages located in the spleen which activate 

invariant natural killer T (iNKT) cells and are important in the adaptive immune response against 

viral pathogens (Chávez-Galán et al., 2015). TCR+ macrophages display high levels of 

phagocytosis and have proposed roles in atherosclerosis and bacterial challenge (Chávez-Galán 

et al., 2015). These emerging macrophage activation states represent a shift in the dogma from 

the historical, linear model of macrophage activation where classical and alternative 

macrophages reside at the polar ends, to a spherical model which is multi-dimensional in that 

activation can be both extrinsic and intrinsic, potent and mild and that in each tissue setting and 

scenario it is likely that the specific macrophage activation profile will be unique  (Sudan et al., 

2015),  (Murray, 2017). Established and emerging macrophage phenotypes are outlined in Figure 

1-1. 

1.2.7. Macrophage Activation in Disease 

As mentioned, macrophage activation is involved in a multitude of disease states and 

dysregulation of macrophage phenotype has been identified in atherosclerosis, cancer, 

metabolic disorders and pulmonary diseases to name just a few. In some cancers, TAM are 

recruited to the tumour site and activated into a specific polarisation state by IL-4, IL-10 and 

immunoglobulin, produced by local immune cells, which encourages further proliferation, 

tumour angiogenesis and metastasis (Yang and Zhang, 2017). In atherosclerosis, which has been 

associated with Th1 type responses, macrophage phenotypes extend beyond classically and 

alternatively activated and new phenotypes such as Mox which are activated by oxidised 

phospholipids, M(Hb) activated by haemoglobin / haptoglobin complexes and Mhem, polarised 

by haem, have emerged, all which serve different functions in plaque formation and stability 

(Chinetti-Gbaguidi et al., 2015). In obese individuals, CAM are predominant in adipose tissue and 

pro-inflammatory cytokine release contributes to insulin resistance whereas AMM are 

associated with insulin sensitivity and predominate in lean, healthy individuals (Castoldi et al., 

2015). Th2-type responses of both T-cells and macrophages have been shown to be protective 

against helminth infection in both removal of the pathogen and in control of Th1 induced 

inflammation (Anthony et al., 2007). Therefore, furthering our understanding of macrophage 

activation and the switches which control macrophage phenotype is crucial to multiple areas of 

medical research. Dysregulation of AM activation has also been implicated in many pulmonary 
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diseases which has ramifications for both lung tissue integrity and the handling of respiratory 

pathogens.  

 

 

Figure 1-1: Defined subsets of macrophage polarisation in response to differential external stimuli  

Macrophages can be activated into specific activation states in vitro which theoretically mimic those 

induced by Th1 / Th2 T-cell subsets or other external stimuli in vivo. While it is now recognised that this 

method of analysing macrophage activation is limited as it does not consider the myriad of activating 

stimuli macrophages are physiologically exposed to, it is in many ways the best methodology we have for 

gaining insight of macrophage activation in health and disease. Activation stimuli and upregulation of 

phenotype specific markers are included in this diagram. (A) The phenotypes depicted in this figure are 

the archetypal murine CAM, AAM and IL-10 stimulated macrophages M(IL-10) which are of importance to 

this thesis. Note: this diagram includes markers of activation expressed in murine models which differ to 

human activation markers (B) Other defined and emerging subsets of macrophage activation which have 

been shown to play a role in immunoregulation or are perturbed during certain diseases.  

1.2.7.1. Dysregulation of macrophage activation in pulmonary diseases 

Asthma is chronic inflammation of the airways associated with bronchial hyper-responsiveness, 

airflow obstruction and inflammation. Symptoms recur and are often reversible, occurring 
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towards a wide range of stimulants such as allergens, environmental toxins, viruses and bacteria 

(Program, 2007). A plethora of immune cells are thought to be involved in the pathogenesis of 

asthma, including myeloid cells and lymphocytes and Th2 responses have long been thought to 

be critical in disease development. Indeed many of the symptoms of the asthmatic lung can be 

linked to Th2 cell responses, such as tissue remodelling and collagen deposition (Elias et al., 

1999). In 2003, Rothenberg and colleagues demonstrated that Arginase-1 and 2 are highly 

expressed in two murine models of experimental asthma induced by IL-4 and IL-13 production 

which is increased in the asthmatic lung. This paper also showed that Arginase expression is 

induced in human asthma, implicating a possible role for AAM in disease propagation 

(Zimmermann et al., 2003). In keeping with an alternatively activated profile, asthmatics are also 

seen to produce greater levels of immunosuppressive IL-10 (Balhara and Gounni, 2012). 

Furthermore, data suggests asthmatics are more susceptible to invasive pneumococcal disease 

amongst other microbial infections, indicating perturbed or supressed functions of CAM (Hansel 

et al., 2013). On the other hand, macrophages which produce pro-inflammatory IL-17, have been 

implicated in causation of severe inflammation seen in allergic asthma and IFN-γ has been 

suggested to have a role in development of inflammation in the asthmatic lung, (Hayashi et al., 

2007; Song et al., 2008). Therefore, the skewed phenotypes of both CAM and AMM appear to 

be crucial to the pathophysiology of asthma. 

Chronic Obstructive Pulmonary Disease (COPD) is widely accepted as a disease caused by the 

inhalation of harmful substances such as those present in cigarette smoke or biomass fuels 

(Coggon and Taylor, 1998). As a result, patients are subject to lung inflammation and increasing 

airflow limitation resulting in chronic bronchitis and emphysema (Boorsma et al., 2013). Due to 

the complex and shifting micro-environment in the lung and given macrophages are highly 

plastic cells, it is likely heterogeneous subsets of AMs play various roles in the pathophysiology 

of obstructive lung diseases.  It is believed alveolar destruction or emphysema in COPD may be 

attributable to the migration of inflammatory cells into the airways, instructed by chemo-

attractants such as Macrophage Inflammatory Protein 1 beta (MIP1β) (Bless et al., 2000; 

Demedts et al., 2007; Song et al., 2008). Chemokines which influence cell migration are likely to 

be produced in response to tissue injury caused by noxious substances (Boorsma et al., 2013). 

Therefore, the type of immune cell present in the lung and the secretory products of these cells 

are of paramount importance in the aetiology of COPD. 

Although numerous publications have speculated in recent years, the exact contribution of 

distinct AM subsets to COPD is controversial and largely unknown. CAM have been implicated 
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to play a significant part in generating severe lung inflammation as cigarette smoke contains 

several activators of CAM cell surface receptors, including the bacterial endotoxin, LPS (Hasday 

et al., 1999; Stedman, 1968). In addition, various markers of CAM activation have been found in 

AMs from COPD patients, including iNOS (Maestrelli et al., 2003), and TNFα (Demirjian et al., 

2006). However, the COPD lung is subject to acute exacerbations caused by bacteria, primarily; 

NTHi and S. pneumoniae (Murphy et al., 2004; Sethi et al., 2002), and increased bacterial 

colonisation suggests defective macrophage phagocytosis and microbial killing possibly due to 

dysregulated classical activation (Berenson et al., 2006a; Taylor et al., 2010).  

In the same vein, others have described a down regulation of CAM markers in AMs from COPD 

patients and healthy smokers (Shaykhiev et al., 2009a). Shaykheiv and colleagues demonstrated 

AAM genes involved in tissue remodelling and immunoregulation were increased with 

progression of the disease whilst expression of CAM genes was suppressed. A recent study 

discovered that alternative activation markers, CD163, CD204 (macrophage scavenger receptor 

I) and CD206 are over expressed on cells from ex-smokers with severe to very severe COPD (Kaku 

et al., 2014). Furthermore, reports have found TLR signalling (an archetypal CAM characteristic) 

is impeded by upregulation of CD204 (Ohnishi et al., 2011) in line with previous findings 

demonstrating downregulation of TLR2 and TLR4 receptors in smokers and COPD patients 

(Droemann et al., 2005). 

Taken together these contrasting reports on the activation of AMs might indicate that 

macrophages exhibit various activation states at different stages during the development of 

disease or, given their plastic behaviour, are capable of rapidly reprogramming their activation 

state in response to the altered lung milieu. Evidence favouring the latter has recently emerged 

in a series of non-invasive experiments which demonstrate CAM and AAM AMs co-existing as a 

mixed population in the COPD lung (Al Faraj et al., 2014). 

1.3. Macrophage Response to Bacterial Infection 

1.3.1. Pathogen recognition  

As mentioned earlier, macrophages recognise invading pathogens by recognition of 

evolutionarily conserved bacterial PAMPs which bind to PRRs expressed on the cell surface. PRRs 

are highly expressed on macrophages, given their role as innate immune sensors, however, they 

are also abundant on other APCs of the immune system including DCs and B-cells and are 

expressed less abundantly on other cells involved in innate immunity such as epithelial cells. Of 

the four main classes of PRRs, TLRs were the first class to be discovered and have been most 

extensively studied.  
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1.3.1.1. Toll like Receptors 

Out of the total of 10 TLRs, TLR2 and TLR4 are most commonly associated with bacterial 

infection, given their necessity for detection of Gram-positive cell wall products such as 

lipoproteins and lipopeptides (TLR2) and Gram-negative LPS (TLR4) (Takeuchi et al., 1999).   

TLR9 is located on intracellular vacuoles such as phagosomes and lysosomes. It is specialised to 

recognise unmethylated CpG DNA repeats which are released upon bacterial digestion inside 

phagosomes (Wolf et al., 2011). A study by Albiger et al., highlights the importance of TLR9 in 

pneumococcal infection as TLR9 knockout mice are unable to clear invasive disease as efficiently 

as other TLR family mutants. Furthermore, although removal of TLR9 does not affect 

nasopharyngeal colonisation, it does result in decreased survival of animals and increased levels 

of bacteraemia (Albiger et al., 2007). These results demonstrate the importance of receptor 

location; cell surface TLRs are key in the initial recognition and control of bacterial species, 

however a more specialised immune response for a more dangerous intracellular location is 

reliant on further microbial sensing which can only transpire after initial processing. 

Once bound, TLRs can heterodimerise with other TLRs or homodimerize (Ozinsky et al., 2000) to 

allow the propagation of a specialised signal in response to specific ligands. TLRs contain 

Toll/Interleukin-1 receptor (TIR) domains which interact with adaptor proteins also containing 

TIR domains. TLR signalling is dependent on either TIR domain containing MyD88 or TIR-domain-

containing adaptor protein inducing IFN-β (TRIF) (De Nardo, 2015). There are a total of 5 TIR 

adaptor protein family members (reviewed in (O'Neill and Bowie, 2007)). MyD88 is the most 

critical adaptor protein in TLR signalling as downstream TLR2, TLR4, TLR5, TLR7 and TLR9 

signalling is lost in MyD88 deficient mice (Kawai et al., 1999; Takeuchi et al., 2000). In the place 

of MyD88, TRIF is required for TLR3 signalling and is also required for TLR4 signalling along with 

the bridging protein TRIF-related adaptor molecule (TRAM), which promotes TRIF recruitment 

to TLR4 (Yamamoto et al., 2003a), (Yamamoto et al., 2003b) and TRIF deficient mice are 

incapable of type 1 Interferon transcription by TLR3 and TLR4 ligation, whereas TLR4 mediated 

NFκB signalling remains intact through the MyD88 pathway. MyD88-adaptor-like (MAL) is 

instrumental in recruiting MyD88 during TLR2 and TLR4 signalling and functions a similar role as 

a bridging adaptor protein (Fitzgerald et al., 2001). The final TIR domain adaptor protein; sterile 

α-armadillo motif works as an inhibitor, causing blockade of TIRF-dependant Toll signalling 

(Carty et al., 2006) by negative regulation of NFκB. TLR signalling is also negatively regulated by 

IRAK-M (IL-1 Receptor Associated Kinase) which prevents phosphorylation of MyD88 

downstream effectors, c-Jun N-terminal Kinase, p38 mitogen-activated protein kinases (p38) 

and Extracellular Signal-Related Kinases 1/2 (Kobayashi et al., 2002). 
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After TLR binding, MyD88 forms a complex termed the “Myddosome” which requires the 

recruitment of IRAKs, firstly IRAK4 followed by IRAK1, to the MyD88 death domain (Motshwene 

et al., 2009). The subsequent signalling cascade ends with the release of the NF-κB dimer from 

inhibitor of κB (IκB) and pro-inflammatory gene transcription. 

1.3.1.2. Nod Like Receptors  

Another class of intracellular PRRs are the NLRs which are located in the host cytosol. Nod1 and 

Nod2 are effective in recognising components of both Gram-negative and Gram-positive 

bacteria (Girardin et al., 2003a; Girardin et al., 2003b), including peptidoglycan fragments. Upon 

activation, they result in NFκB activation and Mitogen-Activated Protein Kinases (MAPK) 

signalling, similar to TLR activation and can therefore initiate cytokine and chemokine 

production as well as microbicidal gene upregulation (Caruso et al., 2014). This shows us NLRs 

are essential for amplification of the innate immune response after TLR activation. Furthermore, 

in a TLR tolerance model, NLRs were shown to be key in responding to intracellular bacterial 

infection, demonstrating their importance in areas of the body where TLR receptors are likely to 

be tolerised such as the gut and the colonised nasopharynx (Kim et al., 2008). NLRs also play a 

key role in inflammasome formation. The inflammasome is a protein complex composed of a 

NLR protein, adaptor proteins and caspase-1 which upon cleavage, activates pro-inflammatory 

cytokines from the IL-1β family and induces pyroptosis, a pro-inflammatory form of cell death 

(Fink and Cookson, 2005). Unlike apoptosis, pyroptosis is a more rapid process, causing the 

leakage of cytosolic contents, however despite the chaotic nature, pyroptosis serves an 

important purpose in eradication of intracellular pathogens (Bergsbaken and Cookson, 2009; 

Fink and Cookson, 2007). 

1.3.1.3. Scavenger Receptors 

As well as PRRs, scavenger receptors such as CD163 have also been shown to bind Gram-positive 

and Gram-negative bacteria and upon ligand binding, they too are capable of triggering a 

downstream cytokine response (Fabriek et al., 2009). Macrophage Receptor with Collagenous 

Structure (MARCO) is a class A scavenger receptor with variable tissue expression. It’s 

expression is induced in response to microbial stimuli on highly phagocytic macrophages (van 

der Laan et al., 1997). Another scavenger receptor important in pathogen recognition is CD36 

and CD36 deficient mice show impaired S. pneumoniae phagocytosis and bacterial clearance 

(Sharif et al., 2013). These reports demonstrate the importance of scavenger receptors as 

immune sensors and phagocytic receptors. 
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1.3.1.4. Opsonisation 

As well as direct receptor interaction with pathogens, macrophages can also recognise targets 

which have been tagged by complement proteins and Immunoglobulin G (IgG) antibodies. 

Recognition by complement deposition is initiated by soluble proteins released from 

hepatocytes in response to pro-inflammatory cytokines. These proteins initiate a signalling 

cascade once bound to the pathogen surface via three different complement pathways, the 

classical, alternative and lectin pathway, which each culminate with cleavage of complement 

Component 3 (C3) to C3b by C3 convertase at the pathogen surface and subsequent coating of 

the target cell in C3b molecules resulting in opsonisation. C3b can then be further cleaved to 

inhibitory iC3b, C3c or C3dg which reveal different receptor binding sites for recognition by 

different complement receptors, allowing for a pathogen specific response (van Lookeren 

Campagne et al., 2007). Complement receptors present on the phagocyte surface can then bind 

to complement deposits which triggers phagocytosis. These receptors include Complement 

Receptor 1 (CR1), CR3 (CD11b/CD18) and CR4 (CD11c/CD18) which recognise targets coated 

with various complement opsonins including C3b and also C1q and mannose binding lectin. 

Similarly, immunoglobulins can act as opsonins by coating pathogens via epitope recognition 

involving the Fab localised antigen binding site and their Fc region which tags the pathogen for 

recognition by specific Fc receptors present on phagocytes (Daëron, 1997). Macrophages 

possess a range of receptors which identify various immunoglobulin isotypes and bind with 

different affinities thereby providing another mechanism of infection specific response (Bruhns 

et al., 2009). Fcγ receptors either contain Immunoreceptor Tyrosine Based Activation Motifs 

(ITAM) or Immunoreceptor Tyrosine Based Inhibitory Motifs (ITIM) which activate or inhibit 

phagocytosis respectively (Barrow and Trowsdale, 2006). Furthermore, cross talk between Fc 

and complement mediated phagocytic signalling has been shown to enhance pathogen 

internalisation, emphasising the requirement for receptor collaboration in pathogen clearance 

(Underhill and Ozinsky, 2002). 

1.3.2. Phagocytosis 

Numerous receptors are involved in phagocytosis and often completion of internalisation 

requires crosstalk between different receptor families for activation of the appropriate 

phagocytic response. The most well described model of phagocytosis is Fc mediated, so I will 

focus on describing this pathway in more detail, however complement receptors, scavenger 

receptors and lectin receptors are also known to be ‘phagocytic entry receptors’ and Toll-like 

receptors, although not directly phagocytic, can contribute to induction by co-operating with 

phagocytic receptors (Gordon, 2016). Different characteristics in the engulfment of particles 
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have been described for each of these pathways (Kaplan, 1977). It is important to note however, 

that there is not one overarching model of phagocytosis even within receptor families and 

internalisation appears to be tailored, to some extent, to the specific particulate in the specific 

situation. 

Pathogens opsonised with immunoglobulins bind to Fc receptors on the cell surface as described 

above. Once bound to Fc receptors, phagocytosis has been described to proceed in a ‘zipper’ 

like fashion whereby the plasma membrane is shaped around the pathogen surface by 

engagement of multiple Fc receptors with opsonins at multiple sites (Griffin et al., 1975). 

Formation of the phagocytic cup has been shown to be driven by phosphorylation of tyrosinse 

residues on the ITAM of Fc receptors by the Src family of tyrosine kinases. This event occurs 

upon engagement of Fc receptors and initiates further recruitment of Fc receptors to the plasma 

membrane for receptor clustering and efficient binding to immunoglobulins (Sobota et al., 

2005). Zippering is also guided by actin polymerisation which drives the formation of the 

phagocytic cup up until closure. The microtubule associated GTPase, Dynamin-2 has been shown 

to be recruited to early phagosomes and is involved in pseudopod extension and scission of the 

advancing phagosome at the membrane edge (Gold et al., 1999; Marie-Anaïs et al., 2016). Other 

important modulators include Phosphoinositide 3 Kinase (PI3K), phospholipase C and members 

of the Ras superfamily of small GTPases, blockade of which terminates phagocytosis at various 

steps (Swanson, 2008).  

The process of internalisation allows the macrophage to sample the molecule which it is 

engulfing. Underhill and Goodridge suggest we can think about this process as the cell first 

‘tasting’ its target, to understand the chemical composition which initiates the right kind of 

phagocytosis. It then moves on to ‘feeling’ how large the molecule is and exploring the cell 

surface which provides information on how it should be processed once it has been ‘swallowed’. 

This model highlights the key role of ‘tasting’ and ‘feeling’ in initiating the correct cytokine 

response and pro-inflammatory gene transcription (Rettig et al., 2010; Underhill and Goodridge, 

2012).  

Once fully ingested, the ‘nascent’ phagosome membrane is mostly composed of the elements 

of the plasma membrane and the phagosomal environment is similar to that of the extracellular 

milieu (Canton, 2014). The phagosome must then acquire the materials it needs to correctly 

handle the ingested material, this occurs through a process of phagosomal maturation which is, 

in brief, a sequence of fission and fusion events with other intracellular vacuolar compartments 

(Desjardins et al., 1994b; Flannagan et al., 2009). The first stage, the formation of the early 
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phagosome, is thought to be similar to that of early endosome formation which is mediated by 

the GTPase Rab5, activated by its nucleotide-exchange factor (GEF) Rabex-5 and the effector 

Rabaptin-5 which increases Rabex-5 activity, providing continuous activation of Rab5 (Horiuchi 

et al., 1997; Lippé et al., 2001). Rab5 recruits human vacuolar sorting protein 34, a class III 

phosphatidylinositol 3-kinase, which generates phosphatidylinositol 3 phosphate and together 

with Rab5 recruits and retains Early Endosome Antigen-1 (EEA-1), an important marker of early 

phagosomes and a key player in docking and fusion of compartments (Christoforidis et al., 1999). 

Late phagosomes are identified by inactivation of Rab5 and Rab7 recruitment (Vieira et al., 2003) 

which is required for fusion with lysosomal compartments. The tethering of late phagosomes to 

lysosomes involves SNAP (Soluble NSF Attachment Protein) receptors (SNAREs), such as vesicle 

associated membrane protein (VAMP) 7 and 8. In addition to vesicle associated VAMP 7 and 8 

(Antonin et al., 2000), late phagosomes also contain Lysosomal Associated Membrane Protein-

1 (LAMP1) and LAMP2 (Desjardins et al., 1994b). Subsequent fusion with lysosomes results in 

recruitment of Lysosomal Integral Membrane Protein-II (LIMPII), cathepsin content and low 

luminal pH, (Harrison et al., 2003; Jović et al., 2012).  

 Interestingly, macrophage phagocyte maturation has been shown to vary amongst macrophage 

activation phenotypes and the kinetics of maturation vary within a macrophage population 

(Canton, 2014; Podinovskaia et al., 2013). This is likely reflective of the different functions 

certain populations of macrophages are required for, for example, classical activation provides 

a slower maturation, likely to benefit the processes of antigen presentation and 

intrerphagosomal killing by ROS whereas phagosomes in AAM progress much quicker through 

the endosomal pathway for rapid clearance of apoptotic bodies (Canton, 2014). It is the 

phagolysosomal phase when the majority target degradation occurs, the mechanisms of 

macrophage killing will be discussed next. 

1.3.3. Microbicidal Mechanisms 

1.3.3.1.  Acidification of the vacuole 

Phagocytic maturation is associated with increasing acidity of the phagosome lumen to pH 4.5-

5.5 and this acidification is achieved by employment of V-type H+-ATPases which pump protons 

into the phagosomal compartment and by direct delivery of H+ from lysosomes (Futai et al., 

2000). Increases in H+ are key to pathogen degradation as they create a hostile environment for 

microbe survival and activate enzymes such as hydrolases which work at optimum in low pH 

environments and indirectly play key roles in bacterial killing by enhancing the release of 

microbial components that stimulate microbicidals via PRR or induce apoptosis associated killing 

https://en.wikipedia.org/wiki/N-ethylmaleimide_Sensitive_Factor_or_fusion_protein
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respectively (Bewley et al., 2011a; Ip et al., 2010). H+ availability also encourages formation of 

various ROS species in the presence of oxygen generated by Nicotinamide Adenine Dinucleotide 

Phosphate (NADPH) (Flannagan et al., 2009; Vatansever et al., 2013). Certain intracellular 

bacteria species have evolved ways to inhibit phagosomal acidification by preventing 

recruitment of v-ATPases, as evidenced by Mycobacterium avium-intercellulare (Sturgill-

Koszycki et al., 1994). 

1.3.3.2. Reactive Oxygen Species (ROS) 

ROS are key effectors in phagocytic control of bacterial infection. In phagocytes, ROS is 

generated by NOX2, NADPH oxidase system which is comprised of two membrane subunits: β 

subunit: gp91phox and α subunit: gp22phox which together form “flavocytochrome b” (Segal and 

Jones, 1978) and three cytoplasmic subunits: p47phox, p40phox and p67phox which upon 

phosphorylation associate with NOX2 (Panday et al., 2015). To generate ROS, electrons are 

passed from NADPH to Flavin Adenine Dinucleotide (FAD) which are then be passed to heme 

molecules and finally to oxygen which becomes reduced to O2
.- (Bedard and Krause, 2007). O2

.- 

is then capable of forming several species of ROS including H2O2 mediated by superoxide 

dismutase (Bray et al., 1974), hydroxyl radicals and singlet oxygen (Hoidal et al., 1979). The 

methods by which ROS causes bacterial damage have not been well described however 

documented methods of microbicidal activity include damage to bacterial DNA, lipids and 

proteins (Imlay and Linn, 1988; Kohanski et al., 2007). 

1.3.3.3. Reactive Nitrogen Species (RNS) 

In phagocytes, RNS are generated by inducible nitric oxide synthase (NOS2 or iNOS). Unlike 

endothelial NOS (eNOS) or neuronal NOS (nNOS) which are constitutively active and require 

calcium for activation, iNOS is inducible and controlled by increases in transcription of iNOS 

enzyme induced by pro-inflammatory cytokine production (Stuehr et al., 1991). The NOS enzyme 

exists as a dimer, containing an oxygenase domain with heme and L-arginine binding regions 

and a reductase domain containing Flavin Mononucleotide (FMN), FAD and NADPH binding sites. 

Electrons are transferred from NADPH to FAD to FMN to heme which produces NO and citrulline 

from L-Arginine and oxygen (Feng et al., 2014; Stuehr, 1999). Once produced, NO forms 

intermediates including; nitrogen dioxide (NO2), peroxynitrite (ONOO-) by reaction with O2
.-,  and 

dinitrogen trioxide (N2O3) all which can damage bacterial membranes, enzymes and DNA (Darrah 

et al., 2000; Hurst and Lymar, 1997). These include inhibition of bacterial respiration, oxidative 

injury and damage to iron clusters, used by bacteria for electron transport and are potentiated 

when combined with H2O2 (Pacelli et al., 1995; Stevanin et al., 2000). 
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1.3.3.4. Antimicrobial molecules 

Phagosomal antimicrobial proteins and peptides are alternative, non-oxidative forms of host 

defence which are effective in limiting bacterial nutrients, inducing bactericidal activity and 

hydrolysis of key bacterial lipids, proteins and carbohydrates (reviewed in (Flannagan et al., 

2009)). In macrophages, Natural Resistance-Associated Macrophage Protein (NRAMP) 1 has 

been shown to cause metal efflux from the phagosome, restricting the key bacterial nutrients, 

iron, manganese and cobalt, the presence of NRAMP1 is therefore thought to be particularly 

damaging to intracellular pathogens (Cellier et al., 2007). Other antimicrobial molecules include 

β-defensins which are small cationic polypeptides that can lyse bacterial cell walls, resulting in 

the release of bacterial DNA, and subsequent DNA damage by oxidative stress (McGlasson et al., 

2017). Defensins have also been shown to prevent intracellular pathogen replication by blocking 

phagosomal escape of Listeria monocytogenes (Arnett et al., 2011). Calthelicidins are another 

family of small proteins which are mostly abundant in neutrophil granules however calthelicidin 

(LL-37) is also active in AMs and is induced by TLR2, TLR4 and TLR9 activity in response to 

Mycobacterium tuberculosis (Rivas-Santiago et al., 2008) this protein is also implicated in 

eradication of Salmonella typhimurium and has a role in promoting bacterial phagocytosis 

(Rosenberger et al., 2004; Wan et al., 2014). Cathepsins are associated with the acidic 

environment of the phagolysosome, they are proteases which can contribute to bacterial 

hydrolysis and degradation of some bacterial species. Protective roles for a variety of cathepsins 

including, cathepsin E, cathepsin B, cathepsin L and cathepsin D against Gram-positive and 

Gram-negative bacteria have all previously been described (Bewley et al., 2011a; Qi et al., 2016; 

Tsukuba et al., 2006; Xu et al., 2013). These actions may, however, be indirect rather than 

directly microbicidal. Of particular interest to this report is cathepsin D which plays a key role in 

macrophage control of S. pneumoniae infection by modulation of apoptosis associated killing, 

described in more detail later. As well as cathepsins, other macrophage antimicrobial 

endopeptidases exisit including asparagine endopeptidase which is activated by phagosome 

acidification and helps to kill the bacteria Pseudomonas aeruginosa (Descamps et al., 2012). 
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Figure 1-2 Overview of the components involved in the macrophage response to bacterial infection 

Signalling pathways in the response of macrophages to S. pneumoniae infection are depicted, however 

many of these responses are common for the handling of numerous bacterial pathogens. Virulence 

components of S. pneumoniae such as pneumolysin (PLY) and pneumococcal lipoproteins are capable of 

activating Toll-Like Receptors (TLRs), primarily TLR2 and TLR4. Activation of TLRs leads to MyD88 signalling 

and myddosome formation causing release of Inhibitor of kappa B (IκB) and translocation of the Nuclear 

Factor Kappa B (NF-κB) dimer to the nucleus for initiation of pro-inflammatory gene transcription. PLY has 

also been shown to activate apoptosis associated speck like protein containing a CARD (ASC) domain 

containing inflammasomes including NLR Family Pyrin Domain Containing 3 (NLRP3) and Absent In 

FcγR 
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Melanoma (AIM2), activation which leads to cleavage of pro-caspase-1 and activation of Interleukin-1β 

(IL-1β). AIM2 has also been found to be activated by cytosolic double stranded DNA which can be sensed 

by DNA dependant activator of IRFs (DAI) leading to signalling via Stimulator of Interferon Genes (STING), 

Tank Binding Kinase 1 (TBK1) and Interferon Regulatory Factor 3 (IRF3) and transcription of type I 

Interferons (IFNs). Internalisation of S. pneumoniae can occur by a variety of cell surface receptors 

including opsonic uptake by Fc gamma receptors (Fcγ) and complement receptors (CR1) and non-opsonic 

uptake by Macrophage Receptor with Collagenous Structure (MARCO). Once phagocytosed, bacteria are 

contained within the intracellular vacuole; the phagosome, which matures through the endosomal 

pathway and acquires various associated proteins which contribute to the development of an increasingly 

hostile intraphagosomal environment. Early phagosomes are associated with Rab5 which is required in 

the recruitment of the V-ATPase, Vsp34 instrumental in lowering the pH of the phagosome. TLR9 is 

another member of the Toll family which associates with phagosomes and recognises CpG DNA repeats, 

a common component of microbial DNA. As the phagosome matures, Rab 5 is exchanged for Rab 7 and 

phagosomes acquire Soluble NSF Attachment Protein (SNARE)s such as Vesicle Membrane Associated 

Protein (VAMP) 7 which is needed for lysosome fusion. With lysosome fusion, intracellular bacterial killing 

intensifies with the employment of Nicotinamide Adenosine Dinucleotide Phosphate (NADPH) derived 

Reactive Oxygen Species (ROS) and Nitric Oxide (NO) produced by inducible Nitric Oxide Synthase (iNOS) 

which can combine to form damaging Reactive Nitrogen Species (RNS). Macrophages also utilise Lysozyme 

M (Lys M) which degrades bacterial peptidoglycan (PGN) to muramyldipeptide (MDP) which is then 

recognised by the cytosolic Pattern Recognition Receptor (PRR) Nucleotide-binding oligomerization 

domain-containing protein 2 (NOD-2). As the phagosome matures to become a phagolysosome, it 

acquires expression of Lysosomal Associated Membrane (LAMP) 1 and 2 and Cathepsins, including 

Cathepsin D (Cat D) of significance in pneumococcal infection and other Anti-Microbial Peptides (AMPs) 

which are optimally active at a low pH are therefore employed in the final stages of intraphagasomal 

bacterial killing. 

 

1.4. Streptococcus pneumoniae  

1.4.1. Pathogenesis 

The Gram-positive, alpha haemolytic bacteria, S. pneumoniae, was first identified in 

independent studies by pioneering bacteriologists, Louis Pasteur (Pasteur, 1881) and George 

Sternberg  (Sternberg, 1881) during the late 19th century. Referred to at first as the diplococcus 

due to its rounded shape and tendency to form pairs, it was later established as the 

pneumococcus, descriptive of its prominent involvement in pulmonary disease (Frankel, 1886). 

Today, S. pneumoniae is the most common cause of Community Acquired Pneumonia (CAP). 

Infection is most frequent in children under 5 years of age, causing clinical syndromes in the 

upper respiratory tract such as otitis media, sinusitis and bronchitis in addition to pneumonia 
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(WHO, 2017).  The elderly (>65 years) and patients who are immunocompromised or exhibit co-

morbidities (van der Poll and Opal, 2009) such as COPD are at increased susceptibility. 

Furthermore, invasive pneumococcal infection is responsible for a significant number of 

bacterial meningitis and septicaemia cases per annum (Kadioglu and Andrew, 2004). At the turn 

of the century, almost 1 million deaths in children under 5 years old were estimated to be 

attributable to pneumococcal infection (O'Brien et al., 2009). Although use of antibiotics and 

more recently vaccinations, have proven effective in resolution and prevention of infection 

(Musher et al., 1993), there are now over 90 serotypes of S. pneumoniae (Weinberger et al., 

2010) and environmental pressures are aiding the evolution of drug resistant strains (Campbell 

and Silberman, 1998), particularly in the post vaccine era (Miller et al., 2011). In this section, I 

will discuss the factors which make S. pneumoniae such a successful pathogen and how our 

immune systems are equipped to combat pneumococci. 

1.4.2. Virulence Factors 

S. pneumoniae is capable of colonising the human nasopharynx using several virulence factors 

which have evolved to facilitate colonisation and tissue invasion. The transformable nature of 

the pneumococcus (Johnsborg and Havarstein, 2009) aids its ability to incorporate new methods 

of host evasion and drug resistance. Many microbial characteristics of S. pneumoniae are 

immunogenic, including the pneumococcal cell wall which causes activation of immune cells and 

release of inflammatory mediators such as cytokines, chemokines and the intracellular 

production of NO (Orman et al., 1998). The most important virulence factor for invasion of S. 

pneumoniae is the polysaccharide capsule as without it virulence is significantly reduced 

(Morona et al., 2004). 

1.4.2.1. Capsule  

The polysaccharide capsule forms the outermost layer of the bacterium and is genetically 

distinct in each serotype, this variation renders some strains more virulent than others (Briles et 

al., 1992). The capsule functions protectively by concealing the cell surface and preventing 

complement mediated phagocytosis (Jonsson et al., 1985b). Through use of un-encapsulated 

mutants, Hyams et al., found that the pneumococcal capsule functions to evade aspects of both 

the classical and alternative complement pathways. The group then went on to determine that 

some capsular serotypes of S. pneumoniae are more susceptible to complement–mediated 

phagocytosis than others which may influence the potential invasiveness of pneumococcal 

strains (Hyams et al., 2010). The capsule has also been suggested to aid colonisation of the 

human nasopharynx by avoiding mucosal transport out of the respiratory tract, mutants which 
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lack a polysaccharide capsule are less able to colonise epithelia due to an increased tendency to 

adhere to luminal mucous (Nelson et al., 2007). 

1.4.2.2. Pneumolysin 

The cholesterol dependent cytolysin, Pneumolysin (PLY), is a pneumococcal toxin which upon 

release is capable of creating large holes in cholesterol containing cell walls which compromises 

the integrity of host cells and worsens tissue injury. The presence of PLY is also instrumental in 

activating  aspects of the host inflammatory response including the complement cascade, 

(Rubins et al., 1996), enhanced activation of pro-inflammatory cytokines; TNFα, IL-1β, IL-6, 

bactericidal molecules such as ROS and NO that can further enhance tissue injury (Braun et al., 

1999; Shoma et al., 2008) and inflammasome formation, which contributes to host protection 

against S. pneumoniae (McNeela et al., 2010). Although PLY is a prominent virulence factor for 

S. pneumoniae (Berry et al., 1989; Kadioglu et al., 2000), studies have noted that PLY is not 

essential for successful colonisation (Rubins et al., 1998). Furthermore, PLY mutants which do 

not have either complement activating or haemolytic function display increased virulence 

compared to PLY negative strains, however, this result is only modest, implying other factors 

account for the effect of PLY on virulence (Benton et al., 1997). The presence of PLY however, 

has been shown to trigger T-cell responses and promote clearance of pneumococci, suggesting 

the host response may require the presence of  PLY for effective pneumococcal recognition and 

clearance (van Rossum et al., 2005). 

Early reports suggested recognition of PLY is mediated by TLR4 (Malley et al., 2003). Evidence 

suggested activation of TLR4 signalling by PLY may play a role in host mediated macrophage 

apoptosis (Srivastava et al., 2005), a mechanism implemented by the host for effective infection 

resolution. Additionally, infection with PLY deficient mutants is associated with less macrophage 

apoptosis in the respiratory tract (Marriott et al., 2004) providing further evidence that the 

presence of PLY may actually facilitate host defence. On the other hand, as noted by Marriott, 

2008, PLY induced macrophage apoptosis could potentially cause unnecessary cell death and 

become detrimental to the host (Marriott et al., 2008). More recently NLRs such as NLR family 

pyrin domain containing 3 and Absent in Melanoma 2 (AIM2) have emerged as the major PRR 

involved in PLY recognition and some authorities now question the role of TLR4 and speculate 

whether these results might reflect contamination of PLY with LPS or other TLR4 ligands (Fang 

et al., 2011; McNeela et al., 2010; Witzenrath et al., 2011). 
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1.4.2.3. Other Virulence Factors  

Other defined virulence factors of S. pneumoniae include pneumococcal surface protein A 

(PspA) and C (PspC) which are located on the pneumococcal cell wall (McDaniel et al., 1984). 

PspA and C enhance pneumococcal survival by interference with the complement cascade 

(Cheng et al., 2000; Tu et al., 1999). A number of pneumococcal serotypes also express pili, which 

aid pneumococcal colonisation of the respiratory tract by promoting adherence to epithelial 

cells (Barocchi et al., 2006). In addition, LPTXG-anchored surface proteins such as neuraminidase 

and hyluronidase are involved in adherence and enhancement of the inflammatory response 

(Brittan et al., 2012). Although it has been recorded that pneumococcal virulence is reduced 

without the autolysin, LytA, (Hirst et al., 2008) a role in virulence for cell wall hydrolases is less 

well defined, one review suggests autolysis of pneumococci might enable release of intracellular 

toxins such as PLY but PLY is also capable of release independent of autolysis (Balachandran et 

al., 2001; Mitchell et al., 1997).  

1.4.3. Macrophage Response to S. pneumoniae 

1.4.3.1. Macrophage Recognition of S. pneumoniae 

As part of the innate immune response, well equipped to recognise and kill pathogens even 

before the evolution of adaptive immunity, macrophages are capable of effective recognition of 

S. pneumoniae via TLRs. TLR2, TLR4 and TLR9 have well defined roles in recognition of S. 

pneumoniae (Figure 1-2). TLR2 has been shown to recognise components of the pneumococcal 

cell wall, including lipoteichoic acid and lipopetides (Schwandner et al., 1999). TLR4 knockout 

mice display increased vulnerability to lethal doses of S. pneumoniae due to lack of interaction 

with PLY (Malley et al., 2003).  TLR9 is an endosomal PRR which is capable of recognising 

pneumococcal DNA (Albiger et al., 2007). In a study by Lee and colleagues, mice lacking either 

TLR2 and TLR4 or TLR2 and TLR9, demonstrated decreased secretion of pro-inflammatory 

cytokines and chemokines compared to controls, suggesting these receptors work synergistically 

to activate downstream effectors in response to detection of S. pneumoniae (Hemmi et al., 

2000). Other PRRs known to be involved in pneumococcal recognition include Nod2 which 

recognises pneumococcal peptidoglycan (Opitz et al., 2004),  NLRs (including NLRP3 and AIM2 

which recognise PLY (Fang et al., 2011; McNeela et al., 2010; Witzenrath et al., 2011) and DNA 

recognition receptors such as DNA-dependent activator of IFN-regulatory factors (Parker et al., 

2011). Deposition of complement components on the bacterial cell surface also play a key role 

in host recognition and mediation of the immune response to S. pneumoniae (Winkelstein, 

1981). 
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1.4.3.2. Macrophage intracellular trafficking and killing of S. pneumoniae 

Macrophages interact,  bind and phagocytose S. pneumoniae forming an intracellular membrane 

bound vesicle in the cytoplasm known as a phagosome. As described in section 1.3, the S. 

pneumoniae containing phagosome matures to a highly acidic killing compartment co-localising 

with lysosomes and containing a range of late phagosoamal membrane markers, including 

LAMP-1, and and lysosomal markers, including cathepsin D (Bewley et al., 2011a; Gordon and 

Read, 2002; Huynh et al., 2007), where early killing of pneumocci occurs by employment of ROS 

and RNS. Pneumococcal cell wall and PLY release from intact bacteria stimulate NO production 

(Braun et al., 1999; Orman et al., 1998), which decreases viability of S. pneumoniae in the 

airways. When iNOS was depleted in mice, viable pneumococci recovered from Bronchoalveolar 

Lavage (BAL) fluid 24 – 36 hours post infection were significantly increased compared to control 

mice (Kerr et al., 2004).  

Non-oxidative mechanisms of bacterial killing are also employed by macrophages. Activation of  

the defensins Microbicidal Cationic Peptides (MCP-1 and MCP-2) by AMs has been shown to 

permeabilise the outer cell membrane of Gram-positive bacteria causing leakage of intracellular 

contents and access of macrophage microbiocidal molecules to the cell interior, possibly causing 

DNA damage (Lehrer et al., 1993). In addition, matrix metalloprotease has also been shown to 

disrupt cell membrane integrity of ingested bacteria (Houghton et al., 2009). Weiser and 

collagues showed that phagosomal lysozyme digests S. pneumoniae peptidyglycan which is then 

sensed by Nod2, which activates mediators of the pro-inflammatory response (Davis et al., 

2011). Furthemore, the host utilises the iron sequestering molecule lactoferrin to restrict the 

growth of S. pneumoniae and one report demonstrates concominant expression of lysozyme 

and lactoferrin contributes to pneumococcal clearance (André et al., 2015). 

However, evidence suggets that canonical microbiocidal killing mechanisms employed inside the 

phagosome are less important for AMs than they are for other phagocytic cells such as 

neutrophils and intraphagosomal killing of pneumococci can become exhausted (reviewed by 

(Aberdein et al., 2013)). However, apoptosis associated killing, regulated by the anti-apoptotic 

protein, Mcl-1 (induced myeloid leukaemia cell differentiation protein-1), has been shown to 

enable re-engagement of pneumococcal killing in AMs. It is a defect in this pathway which is 

thought to cause failure of AMs from COPD patients to clear pneumococcal infection effectively 

(Bewley et al., 2017), (discussed in section 1.5.2).  
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1.4.4. T-cell Response to S. pneumoniae 

T-cell mediated immunity is key to host defence against S. pneumoniae infection (Chen and Kolls, 

2013). MHC class II deficient mice, which lack CD4+ T-cell populations, have impaired bacterial 

clearance from lung and blood and have a lower survival rate than wild-type mice (Kadioglu et 

al., 2004). This study showed firstly that CD4+ T-cells were important in the early phases of 

pneumococcal infection, secondly, migration of T-cells towards pneumococci is reliant on PLY 

expression and finally, that CD4+ T-cells were activated (Kadioglu et al., 2004). Th1 cells which 

release IFN-γ have been shown to be involved in pneumococcal host defence, however, many 

reports also suggest the involvement of Th17 cells (Olliver et al., 2011; Zhang et al., 2009). Infant 

mice which are more susceptible to pneumococcal infection than adult mice show delayed 

production of IL-17A in response to pneumococci (Bogaert et al., 2009). Furthermore, Th17 cells 

were demonstrated to be the most abundant type of activated T-cell in the lung following 

pneumococcal challenge and showed even greater levels of recruitment in mice with 

pneumococcal immune memory, indicating Th17 cell responses are key to initial pneumococcal 

infection and confer significant protection against reinfection (Wang et al., 2017). It is however 

important to note that in this study Th1 cell populations were also present, albeit in low 

numbers, demonstrating the requirement for a range of T-cell populations in protection against 

pneumococcal infection. IFN-γ producing NK cells also have a clear role in pneumococcal 

clearance at early stages of infection, as do CD8+ regulatory T-cells which repress CD4+ T-cell 

responses. Whether the role of all T-cells is beneficial for pneumococcal clearance, since roles 

in clearance may be associated with increased production of pro-inflammatory factors that 

might promote tissue injury, is yet to be determined (Mertens et al., 2009) however the 

immunomodulatory role of regulatory T-cells has been shown to be essential for balancing 

pathogen clearance with pro-inflammatory responses (Neill et al., 2012). In the same vein, T-cell 

responses can be dampened by monocyte induced apoptosis in response to S. pneumoniae as 

opposed to T-cell necrosis which occurs in the absence of monocytes, highlighting the 

importance for regulation of the immune response and in the cross talk between cell types 

during pneumococcal infection (Daigneault et al., 2012). 
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Figure 1-3 S. pneumoniae structure and virulence factors 

The structure of S. pneumoniae includes an outer polysaccharide capsule which is unique to each 

serotype. The cell wall sits below the capsule and is composed of both inner and outer membranes and a 

peptidoglycan layer situated in between. Several varieties of immunogenic proteins are located on the 

outer membrane of the pneumococcal cell wall including Choline Binding Proteins (CBP), Pneumococcal 

surface protein A (PspA) and C (PspC) and also included in this category is LytA, a major pneumococcal 

autolysin. The second class of cell surface proteins are those anchored by the LPxTG motif and this group 

includes the neuraminidase (NanA) and pili proteins, present on some pneumococcal serotypes. The final 

class of cell wall proteins is the pneumococcal lipoproteins (LP) which are anchored by a lipoprotein 

domain. Other virulence components of S. pneumoniae which enable host recognition of the bacteria are 

Pneumolysin (PLY) the choline-dependant cytolysin, which is released upon lysis of the pneumococcal cell 

wall, the pneumococcal DNA which contains recognisable CpG methylated domains and Lipoteichoic Acid 

a cell wall glycolipid.  
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1.5. Apoptosis 

Apoptosis, a type of regulated cell death is, in general, a compacted, neat form of cell deletion 

which occurs rapidly and causes little impact on close by cells and tissues. It is biochemically 

distinct from other forms of cell death such as necrosis, autophagy and necroptosis (reviewed 

by (Galluzzi et al., 2015)). Apoptosis is an essential process in many different aspects of biology, 

it has a prominent role during development in that it is required for the sculpting of organs and 

anatomical structures and the refinement of cell numbers. It is also important for the discrete 

removal of  damaged cells and for maintaining the correct balance of cell numbers throughout 

life (reviewed by (Alberts, 2002)). Apoptosis is associated with distinct morphological features 

including nuclear and cytoplasmic condensation and fragmentation which forms apoptotic 

bodies of various sizes, containing nuclear chromatin and cytoplasmic contents (Kerr et al., 

1972). Changes to the cell surface during apoptosis allow for rapid ingestion of apoptotic bodies 

by phagocytes (efferocytosis) and intracellular processing which results in degradation or 

recycling of phagosomal contents (Kerr et al., 1972). There are two main pathways of apoptosis, 

the extrinsic and intrinsic pathway both executed by the family of cysteine-aspartic proteases 

known as caspases. Briefly, the extrinsic pathway is initiated by extracellular signalling and 

involves the binding of a death ligands such as Fas Ligand to its cell surface receptor, e.g. death 

receptor Fas, which recruits Fas-associated death domain (FADD) protein and cleaves initiator 

caspases 8/10 which subsequently cleave effector caspases 3/7 (reviewed in (Fulda and Debatin, 

2006)). The intrinsic pathway converges with the extrinsic pathway at the point of caspase 3/7 

cleavage, however the prior events are centered around the mitochondria and the release of 

mitochondrial proteins after Mitochondrial Outer Membrane Permebalisation (MOMP), the 

reason why this pathway is also referred to as the mitochondrial pathway. I have described this 

pathway in more detail below and it is further reviewed in (Tait and Green, 2010)). 

1.5.1. The Mitochondrial Pathway of Apoptosis 

The mitochondrial pathway of apoptosis is primarily modulated by the B cell lymphoma 2 (Bcl-2) 

family of mitochondrial proteins. This family is comprised of members which share the Bcl-2 

Homology (BH) domains. Anti-apoptotic members including Bcl-2, Mcl-1, Bcl-extra-large and A1 

share BH domains 1-4 and resist apoptosis by maintaining mitochondrial membrane integrity 

(Vaux et al., 1988; Youle and Strasser, 2008). The pro-apoptotic members Bcl-2 associated X 

protein (Bax) (mostly cytosolic) and Bcl-2 homologous antagonist killer (Bak) (tethered to the 

mitochondria outer membrane) contain BH domains 1-3 and the presence of either is essential 

for the execution of apoptosis (Wei et al., 2001). Upon commitment to apoptosis, Bax and Bak 

translocate from the cytosol to the mitochondria and form homodimers to trigger apoptosis 
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(Dewson et al., 2008; Hsu et al., 1997). The second group of Bcl-2 pro-apoptotic proteins contain 

only BH3 domains (BH3 only proteins) and act as ‘sensitisers’ to apoptosis by inhibiting anti-

apoptotic proteins or stimulating pro-apoptotic family members (Youle and Strasser, 2008). 

The mitochondrial pathway of apoptosis can be triggered in response to DNA damage, cytokine 

deprivation, oncogene activation and growth cycle abnormalities via activation of tumour 

suppressor gene p53 which can then initiate the transcription of BH3 only proteins and also 

directly interact with Bax and Bak to promote apoptosis or supress anti-apoptotic Bcl-2 family 

members (Elkholi et al., 2014). Bax and Bak form pores in the mitochondrial outer membrane 

leading to MOMP (Peixoto et al., 2009). Subsequently, MOMP allows for the release of 

mitochondrial proteins from the mitochondrial intermembrane space such as cytochrome c 

which then can bind to Apoptotic Protease Activating Factor 1 leading to apoptosome formation 

and activation of initiator caspase-9  (Sanchis et al., 2003). The apoptosome is then capable of 

cleaving executioner caspases 3/7 (Srinivasula et al., 1998). Caspases 3/7 induce cell death by 

proteolysis of hundreds of proteins key to cellular integrity, including cytoskeletal components, 

the destruction of which contribute to rounding of the cell and membrane blebbing, hallmark 

characteristics of apoptosis (Lüthi and Martin, 2007). The mitochondrial pathway of cell death 

is the pathway used by macrophages when undergoing apoptosis associated killing of S. 

pneumoniae (Bewley et al., 2011a; Marriott et al., 2005). 

1.5.2. Macrophage Apoptosis Associated Killing  

It is well documented that many pathogens have evolved mechanisms of evading the host 

response by interfering with apoptosis. In some cases, cell death is induced by the pathogen to 

prevent phagocytosis and bacterial killing, in others the cell cycle is prolonged to aid intracellular 

microbial replication (DeLeo, 2004). However, in recent years, a role for host mediated apoptosis 

as a mechanism for bacterial clearance has emerged. Firstly, phagocyte apoptosis was shown to 

be beneficial to the host during Bacillus Calmette-Guérin infection by causing a reduction in the 

number of viable bacteria (Molloy et al., 1994). In the early 2000’s, Dockrell and colleagues 

discovered that during pneumococcal infection AMs are capable of undergoing apoptosis during 

the resolution stages of infection (Dockrell et al., 2001a; Dockrell et al., 2003). Infection 

resolution was abrogated upon depletion of AMs and prevention of apoptosis by caspase 

inhibition, indicating a novel role for AM induced apoptosis in bacterial clearance. At the same 

time, the group observed that opsonisation increases S. pneumoniae induced apoptosis and that 

it is the intracellular burden of pneumococci which dictates the induction of apoptosis rather 

than cell surface receptor interactions (Ali et al., 2003). This study also noted the potential role 
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of the PI3K pathway in macrophage survival as blockade of PI3K activation partially inhibited 

pneumococcal associated apoptosis. This finding is in line with earlier work which highlighted a 

role Mcl-1, which belongs to the Bcl-2 family, in macrophage survival. Liu and colleagues 

discovered that upon inhibition of PI3K, ras-related C3 botulinum toxin substrate (RAC)-alpha 

serine threonine-protein kinase (Akt1) is no longer able to promote Mcl-1 upregulation, 

resulting in cell death (Liu et al., 2001). During pneumococcal infection enhanced iNOS levels 

were observed leading to an increased yield of NO, contributing to bactericidal activity (Marriott 

et al., 2004). Interestingly, higher levels of NO lead to MOMP, an important marker of apoptosis. 

Inhibition of iNOS was found to upregulate Mcl-1 levels and inhibit apoptosis, but instead of cell 

survival macrophages underwent necrosis. This evidence again supports a role for Mcl-1 (and 

NO) in the instigation of pneumococcal associated cell death.  

1.5.2.1. Mcl-1 

Mcl-1 was originally identified by Craig and colleagues as an early induction, pro-survival gene, 

responsible for maturation of the ML-1 human myeloid leukaemia cell line which under certain 

conditions can differentiate along the monocyte/macrophage pathway (Kozopas et al., 1993). 

This report also found Mcl-1 to have high sequence similarity to Bcl-2 and suggested the 

emergence of a Bcl-2 family of apoptosis regulating proteins. Later findings by the Craig 

laboratory demonstrated that Mcl-1 is capable of delaying cell death after exposure to a range 

of apoptosis inducing stimuli including growth factor deprivation and UV radiation and it is also 

able to interact with the pro-apoptotic proteins Bax and Bak through which it can block 

apoptosis (Thomas et al., 2010; Zhou et al., 1997). However, unlike Bcl-2 which is a stable protein 

with prolonged survival effect, Mcl-1 is subject to rapid turnover due to additional PEST (Prolene, 

Glutamic acid, Serine and Threonine) sequences in its n-terminus which make it an ideal 

candidate for responses requiring swift generation and degradation, for example, in promoting 

the short-term viability of the cell (Thomas et al., 2010; Yang et al., 1995). As well as offering 

protection from cytotoxic agents, Craig and colleagues went on to discover Mcl-1 mRNA is 

increased during differentiation of monocytes and macrophages (Yang et al., 1996) and it was 

later shown by Opferman and colleagues that Mcl-1 is required for the survival of 

haematopoietic stem cells (Opferman et al., 2005) and development of T and B lymphocytes 

(Opferman et al., 2003). Furthermore, mice, heterozygous for Mcl-1 deletion were unable to 

produce Mcl-1 homozygous null pups as full deletion of Mcl-1 results in peri-implantation and 

embryonic lethality (Rinkenberger et al., 2000) demonstrating its absolute requirement in 

development. 
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Supporting its role as a rapid response gene with multiple functions (Craig, 2002), Mcl-1 is 

subject to multiple post-transcriptional modifications, one of which is alternative splicing. A 

naturally occurring isoform of Mcl-1 was found, Mcl-1 short (Mcl-1s) which is a BH3-only splice 

variant and therefore has pro-apoptotic, rather than anti-apoptotic functionality (Bae et al., 

2000). Furthermore, another splice variant, Mcl-1 extra short (Mcl-1es) was shown to localise to 

the mitochondria and is capable of associating with full length Mcl-1 and promoting cell death 

by the mitochondrial pathway, terminating in cytochrome c release (Kim et al., 2009). Further 

exploration into three mitochondrial isoforms of Mcl-1 showed differential mitochondrial 

location, while anti-apoptotic 40kDa and 38kDa isoforms locate to the mitochondrial outer 

membrane and sequester pro-apoptotic Bcl-2 family members, 36kDa Mcl-1 localises to the 

mitochondrial matrix and is involved in the maintenance of mitochondrial structure and fusion 

and normal mitochondrial bioenergetics (Perciavalle et al., 2012). More recently, it was shown 

that the ratio of full-length Mcl-1 and Mcl-1s is important for maintenance of mitochondrial 

physiology, with a higher ratio of Mcl-1s resulting in mitochondrial hyper-fusion which is thought 

to support cell death (Morciano et al., 2016). These studies show the importance of Mcl-1 as an 

apoptotic switch and as a constituent of the mitochondria where it exerts its role as both a 

modulator of cell death and a modulator of mitochondrial respiration. 

1.5.2.2. Mcl-1 acts as the switch for apoptosis associated killing 

The Bcl-2 family of pro-apoptotic and anti-apoptotic proteins regulate cell death by preserving 

mitochondrial integrity until induction of MOMP which leads to cytochrome c release and 

subsequent caspase activation, reviewed by Corey et al (Cory and Adams, 2002). As discussed, 

Mcl-1 has a short half-life in comparison to other Bcl-2 proteins therefore its high turnover 

renders it an ideal candidate for an apoptotic switch. Marriott and colleagues conducted a series 

of experiments which lead to confirmation that Mcl-1 is a key regulator of delayed apoptosis in 

pneumococcal infection. Firstly, they found that Mcl-1 protein levels remained elevated up to 

14 hours after infection, after which there is a gradual decline in expression (Marriott et al., 

2005). By using transgenic mice which over expresses Mcl-1 and therefore significantly delays 

the onset of pneumococcal associated apoptosis, the group were able to determine that the 

inhibition of apoptosis extended the survival of intracellular pneumococci, which caused 

bacteraemia at a lower dose than is required in wild type mice. Additionally, the group 

discovered the expression of an alternative Mcl-1 isoform which appeared 12 hours after 

infection and exhibited pro-apoptotic activity, furthering the notion of Mcl-1 as the apoptotic 

switch. Furthermore, this study revealed that upon proteasome inhibition levels of Mcl-1 

increased at 20 hours post infection, indicating proteasomal degradation plays a role in Mcl-1 
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turnover. Doug Green and colleagues have since established MOMP can be induced by glycogen 

synthase kinase 3 β  which is negatively regulated by Akt and phosphorylates Mcl-1 causing 

ubiquitination by Mcl-1 ubiquitin ligase E3 (MULE) leading to subsequent degradation via the 

proteasome (Maurer et al., 2006b). More recently, cathepsin D, a protein known to be involved 

in the initiation of apoptosis through cleavage of Bcl-2 family members (Blomgran et al., 2007), 

has been shown to enhance interaction of Mcl-1 with MULE (Bewley et al., 2011a). The ability 

of cathepsin D to downregulate Mcl-1 is set in place after lysosomal membrane permeabilisation 

has been triggered by the internalisation of pneumococci. The regulation of Mcl-1 in apoptosis 

associated killing is summarised in Figure 1-2. 

1.5.2.3. The CD68 Mcl-1 transgenic mouse 

The Craig laboratory constructed a transgenic mouse which over expressed Mcl-1 in all tissues 

studied (Zhou et al., 1998). This mouse showed enhanced viability of lymphoid and myeloid cells 

and when transgenic cells were explanted into tissue culture, they were capable of inducing an 

immortalised myeloid cell line (Zhou et al., 1998). With the Mcl-1 transgenic mouse, the Dockrell 

group were able to determine the importance of Mcl-1 as the switch for apoptosis associated 

killing, described above (Marriott et al., 2005). To ensure that the effects of Mcl-1 were 

macrophage specific, the group in collaboration with Steve Schapiro, University of Pittsburgh, 

Ruth Craig Dartmouth Medical School and David Greaves, University of Oxford, expressed a 

construct containing the human Mcl-1 cDNA used by Zhou and colleagues in the Craig 

laboratory, on a CD68 promoter, using a method previously described by Greaves and colleagues 

(Gough et al., 2001). The CD68 Mcl-1 mouse lacks transgenic expression of human Mcl-1 in 

neutrophils and lymphocytes, mice exhibit normal survival and lack any gross developmental 

phenotype (Preston et al., unpublished data), therefore, with this model, the group was able to 

determine the role of Mcl-1 in resolution of infection in a macrophage specific context. CD68 

Mcl-1 transgenic mice displayed decreased macrophage apoptosis after pneumococcal infection 

and failed to clear bacteria as effectively as wild-type mice at late time points (Bewley et al., 

2017, Preston et al., unpublished data). Furthermore, it was shown that generation of 

mitochondrial ROS is required for apoptosis associated killing and that Mcl-1 transgenic mice 

display increased oxygen consumption rates and increased levels of mitochondrial ROS at 

baseline, however, the clearance defect in these cells is thought to be due to an inability of 

transgenic macrophages to increase caspase dependant mitochondrial ROS after S. pneumoniae 

challenge, mimicking a defect which is also seen in AMs from COPD patients (Bewley et al., 

2017). In vivo, CD68 Mcl-1 transgenic mice fail to clear low dose pneumococcal infection (104 

cfu/ml) and bacteraemia ensues, in contrast to wild-type mice which are capable of clearance 
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without neutrophil recruitment. With an intermediate dose of 105 cfu/ml transgenic mice were 

found to have increased cfu in the blood compared to wild-type macrophages and at a high dose 

of 107 cfu/ml both wild-type and transgenic mice became overwhelmed. This data indicates the 

deficit which transgenic mice exhibit is most important when AM are the major cell type involved 

in bacterial clearance. The potential of restoring apoptotic responses in this model is currently 

being explored with the use of BH3 mimetics and lysomotrophic agents which are inductive of 

lysosomal membrane permebalisation leading to activation of the apoptotic cascade (Preston et 

al., unpublished data).  

1.5.3. Significance in Disease 

Previously, it has been recorded that patients with COPD exhibit decreased neutrophil apoptosis 

coupled with decreased mRNA levels of the pro-apoptotic protein, Bak and increased levels of 

Mcl-1 mRNA (Zhang et al., 2012). In the same vein, AMs from patients with COPD display less 

nuclear fragmentation (an indicator of apoptosis) and enhanced bacterial survival (Bewley et al., 

2017). Furthermore, higher expression of Mcl-1 is apparent in in both uninfected and S. 

pneumoniae exposed AMs from COPD patients, which correlates with a decrease in apoptosis 

after pneumococcal challenge. Likewise, COPD AMs display higher levels of baseline 

mitochondrial ROS which fails to increase upon challenge with S. pneumoniae in line with 

decreased bacterial killing. This observation is also associated with a reduced ratio of 

mitochondrial ROS to superoxide dismutase (SOD), an antioxidant which is responsible for the 

dismutation of O2
.-. These observations indicate that Mcl-1 upregulation is a key event in the 

pathogenesis of COPD and contributes to S. pneumoniae induced acute exacerbations.  

HIV patients have increased susceptibility to invasive pneumococcal disease and macrophage 

apoptosis associated killing in response to S. pneumoniae infection has also been shown to be 

perturbed in HIV positive individuals on fully suppressive anti-retroviral therapy. AMs from these 

patients show increased levels of Mcl-1, altered mitochondrial ROS generation and decreased 

levels of apoptosis. These effects can be stimulated with the HIV envelope glycoprotein gp120 

(Collini et.al, in submission). These results indicate defective apoptosis associated killing in HIV 

positive individuals may cause an increased risk to invasive pneumococcal disease, a phenotype 

which is again modulated by increased levels of Mcl-1. 
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Figure 1-4: Overview of macrophage apoptosis associated killing 

S. pneumoniae (Spn) is internalised by the macrophage into the phagosome which undergoes phagosomal 

maturation until it becomes an effective phagolysosomal killing compartment. Early phase killing of S. 

pneumoniae then ensues by the employment of ROS and NO which is eventually overwhelmed by S. 

pneumoniae resistance mechanisms. Late phase killing is triggered by phagolysosomal membrane 

permeabilisation and the lysosomal protease cathepsin D (Cat D), activation of which triggers MULE 

activity. MULE tags Mcl-1 for proteasomal degradation which is followed by activation of Bax and Bak 

which activate MOMP and cytochrome C release leading to caspase 3/7 activation and apoptosis. 

Apoptosis is associated with increased release of mitochondrial ROS and late phase killing of S. 

pneumoniae. 

1.6. Non-Typeable Haemophilus Influenzae  

1.6.1. Pathogenesis 

Non-typeable Haemophilus influenzae is an un-encapsulated, small, Gram-negative bacterium. 

It is a facultative anaerobe and a common coloniser of the nasopharynx, existing in around 75% 

of the population at any one time, however upon invasion of the lower respiratory tract and 

other sterile sites, NTHi is a common cause of infection, particularly in the immunocompromised 

such as those at the extremities of age and those with lung disease (Bandi et al., 2001; Murphy, 

2003; Sethi and Murphy, 2008). Furthermore, 90% of Haemophilus strains isolated from the 

middle ear during otitis media are attributable to NTHi and NTHi accounts for 50% of all COPD 
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exacerbations (Murphy and Apicella, 1987). The success of this pathogen is likely attributable to 

its affinity for phase variation and high strain turnover allowing for effective evasion of the 

immune response. Additionally, NTHi has been shown capable of intracellular persistence 

despite its identification as an extracellular pathogen, which could lead to dysregulation of 

immune responses and enhanced tissue damage by sustained activation of the inflammatory 

response (Craig et al., 2001; Craig et al., 2002; Morey et al., 2011). Although primarily interacting 

with and stimulating bronchiole epithelial cells residing on the surface of lung tissue epithelial 

cells are quick to recruit macrophages and other leukocytes to execute an effective immune 

response which is severely impaired during lung diseases such as emphysema and COPD 

(Clementi and Murphy, 2011). 

1.6.2. Virulence Factors 

1.6.2.1. Outer Membrane Proteins and Outer Membrane Vesicles 

There are around 36 Outer Membrane Proteins (OMPs) expressed on the surface of H. 

influenzae either categorised as major or minor based on their relative expression (Foxwell et 

al., 1998c). Major OMPs include Proteins P1, P2, P4, P5 and P6 and high molecular weight (HMW) 

proteins 1 and 2 which are conserved across almost all H. influenzae strains. OMP expression 

contributes to the high amount of strain to strain variation seen between NTHi subtypes which 

likely participates in evasion of the host immune response (Foxwell et al., 1998c). P2 (porin), P5 

(Protein D) and HMW proteins have documented importance in bacterial adhesion to mucin and 

epithelial cells (Reddy et al., 1996; St Geme et al., 1993) and the presence of P5 has been linked 

to decreased complement deposition via binding of the negative regulator of alternative 

pathway complement deposition, factor H, and decreased Immunoglobulin M (IgM) binding, 

two important mechanisms for host internalisation of invading NTHi (Rosadini et al., 2014). 

However, protein D (P5) is required for effective NTHi adherence and internalisation to 

monocytic cells via macrophage β-Glucan receptors (Ahrén et al., 2001). Furthermore, OMP are 

potent inducers of the host pro-inflammatory response; P6 has been shown to enhance TNFα 

and IL-8 cytokine release from human macrophages (Berenson et al., 2005). Although this 

provides protective functions in healthy subjects, it likely contributes to tissue damage and 

propagation of infection through development of excessive inflammatory responses, as seen in 

immunocompromised individuals such as those with COPD.   

An emerging role for Outer Membrane Vesicles (OMVs), suggested to be regulated by OMPs, in 

the virulence of H. influenzae species is being increasingly documented. OMVs are transporters 

of bacterial DNA, virulence factors and signalling molecules with indicated roles for biofilm 
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formation (Kaparakis-Liaskos and Ferrero, 2015). They are released from all Gram-negative 

bacteria and contribute to activation of the immune response in epithelial cells and 

macrophages. OMVs are enriched in certain OMPs from the outer membrane of NTHi strains 

including P2, P5 and P6 and less frequently P1 and P4, therefore making OMVs a valid contender 

for vaccine development  (Roier et al., 2015). Certain strains of NTHi have also been shown to 

release more OMVs than others which might confer increased virulence of selected NTHi isolates 

(Roier et al., 2015; Roier et al., 2016).  

1.6.2.2. Lipooligosaccharide  

The lipooligosaccharide (LOS) located on the outer membrane of H. influenzae shares many 

similarities to LPS of other Gram-negative bacteria but has a lower molecular weight as it lacks 

O-polysaccharide side chains (Murphy and Apicella, 1987). The LOS is composed of 3 parts; a 

membrane anchored portion, Lipid A, an inner core and an outer core. Lipid A is also accountable 

for most of endotoxicity of LOS and mutants which lack the htrB gene, responsible for Lipid A 

acylation reactions, show attenuated pro-inflammatory responses, less effective airway cell 

activation and airway colonisation compared to parent strains (Nichols et al., 1997; Swords et 

al., 2002).  

Phosphorylcholine (ChoP) is a host derived epitope found on the cell surface components of 

respiratory bacteria including H. influenzae and S. pneumoniae. ChoP expression on the LOS is 

controlled by NTHi phosphocholine kinase encoded by the lic-1 locus and the first gene in the 

lic-1 locus, lic-A, allows for phase variation of ChoP expression (Weiser et al., 1989; Weiser et al., 

1997). Lic-1 together with three other chromosomal loci induce phase variation of ChoP and 

other LOS structures which allows NTHi to adapt to alternative host environments, persist in 

colonisation of the airways and evade host immune responses leading to development of 

disease (Tong et al., 2000; Weiser et al., 1998). 

Conversely, ChoP can be bound by C-Reactive Protein which subsequently activates the 

complement system it is therefore potentially beneficial for NTHi pathogenicity if the amount of 

ChoP expression can be decreased by phase variation (Weiser and Pan, 1998; Weiser et al., 

1998). Conversely, presence of igtC, lex2 and losA genes, encoding structures which decorate 

the LOS all confer complement resistance and when removed, complement deposition is 

increased (Hallström and Riesbeck, 2010). More recently, variation in NTHi VacJ and Yrb 

transporter genes, also contributing to OMV production, have been shown to alter IgM antibody 

binding to the LOS (Roier et al., 2016). Strains with increased VacJ / Yrb expression, have been 

shown to have enhanced serum resistance, in isolates collected from the lower respiratory tract 
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of patients with COPD (Nakamura et al., 2011).  Modifications in LOS structure have also been 

shown to protect NTHi against host IgM in otitis media models (Langereis et al., 2012). It is 

therefore clear that the phase variation of the LOS on NTHi is essential to colonisation of the 

airways and propagation of disease.  

1.6.2.3. IgA Proteases 

IgA proteases are highly conserved across all strains of NTHi and were originally implicated in 

cleavage of human immunoglobulin A, subclass 1 (IgA1) Fab domains from Fc domains, which 

are then expressed on the bacterial cell surface, preventing the function of IgA1 antibody in 

promoting opsonophagocytosis and masking the bacteria by expression of host molecules 

(Mistry and Stockley, 2006; Murphy et al., 2015). They have suggested roles in NTHi colonisation 

of the airways (Poole et al., 2013) and are also implicated in propagation of the inflammatory 

response as they have been shown to increase levels of pro-inflammatory cytokines including 

TNF-α and IL-6 (Mistry and Stockley, 2006). More recently an alternative IgA protease gene, 

known as IgaB was discovered in around 40% of NTHi strains and shown to be more frequently 

expressed in clinical isolates (Fernaays et al., 2006a; Fernaays et al., 2006b). Further 

investigation of the IgaB protease interestingly revealed a role in cleavage of LAMP-1 which 

helps the bacterium withstand lysosome mediated killing and aids persistence of NTHi in host 

immune cells (Clementi et al., 2014). 

1.6.2.4. SapA 

The SapA transporter protein is conserved across Gram-negative bacteria and involved in the 

transport of heme and other essential nutrients across the bacterial inner membrane (Mason et 

al., 2011). SapA has been shown to modulate NTHi resistance against host derived antimicrobial 

peptides by binding and subsequently targeting these for intracellular degradation (Shelton et 

al., 2011). Mason and colleagues showed that SapA was also essential for heme transport, a 

compound which NTHi are incapable of producing and therefore must acquire from their local 

environment. Furthermore, they revealed that that antimicrobial peptides compete with heme 

for SapA binding, providing evidence of multiple roles for SapA in influencing NTHi survival 

(Mason et al., 2011; Stojiljkovic and Perkins-Balding, 2002).  

1.6.3. The Macrophage Response to non-typeable Haemophilus Influenzae 

AM are essential for the ingestion and clearance of NTHi from the respiratory tract and are 

supplemented in the airway by recruited macrophages in response to acute airway challenge 

(Foxwell et al., 1998a). As the resident immune cells of the lung which respond to NTHi 

colonisation and infection, AMs are responsible for recognition, ingestion and killing of NTHi 
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following phagolysosomal trafficking and these functions can be complemented by similar 

activities in recruited inflammatory airway macrophages (Clementi and Murphy, 2011; Foxwell 

et al., 1998a; Martí-Lliteras et al., 2009). Macrophages are also critical for neutrophil recruitment 

and subsequent T-cell activation to bring about the second phase of bacterial killing (Foxwell et 

al, 2008).   

NTHi is readily ingested by macrophages perhaps owing to its lack of capsule (Noel et al., 1992). 

Several pathways of NTHi uptake have been suggested including opsonic phagocytosis by 

complement deposition, which can be activated by several NTHi virulence factors, and non-

opsonic uptake by the β-Glucan receptor and scavenger receptors (Ahrén et al., 2001; Hallström 

and Riesbeck, 2010; Provost et al., 2015). The transcription factor nuclear erythroid–related 

factor 2 increases NTHi phagocytosis and clearance by upregulation of the scavenger receptor 

MARCO (Harvey et al., 2011). Studies have also shown that lipid rafts are important for effective 

NTHi internalisation in both macrophages and bronchiole epithelial cells, as cholesterol 

depletion impairs phagocytosis (Martí-Lliteras et al., 2009; Morey et al., 2011). Furthermore, 

cytochalasin D treatment of AMs reduces NTHi uptake indicating F-actin dependent cytoskeletal 

rearrangement also contributes to effective internalisation.  

Internalisation of NTHi and signalling by PRRs such as TLR2 (involved in recognition of OMP P6) 

and TLR4 (involved in recognition of LOS) induces PI3K and Akt signalling which has many 

downstream effects on phagocytosis, cytoskeleton rearrangement and endosomal maturation 

and trafficking (Berenson et al., 2014; Gillooly et al., 2001; Tamura et al., 2009; Wieland et al., 

2005). Signalling via TLRs is also effective in generating pro-inflammatory responses through 

activation of NFκB. NTHi in conjunction with TNFα can activate NFκB via the p38/MAPK and 

PI3K/Akt signalling pathways to promote the inflammatory response by release of cytokines 

such as TNFα, IL-1β, IL-6 and IL-8 (Watanabe et al., 2004). TLR2 and 4 mediated cytokine 

responses are diminished in COPD AMs leading to impaired NTHi clearance (Berenson et al., 

2014).  This does not necessarily result in diminuation of the overall inflammatory response 

though. Interestingly, activation of the NLRP3 inflammasome by NLRs and subsequent activation 

of caspase-1 and production of IL-1β has been implicated as a source of enhanced acute 

inflammatory responses in the NTHi infected lung, which  may also contribute to the potent 

inflammatory nature of NTHi infection (Rotta Detto Loria et al., 2013). 

Once internalised, phagosomes containing NTHi have been shown to undergo phagosomal 

maturation, first co-localising with markers of early phagosomes such as EEA-1 then acquiring 

late phagosomal markers such as LAMP-1 and LAMP-2 which is also associated with subsequent 
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recruitment of lysosomes and development of  low pH (Martí-Lliteras et al., 2009). In bronchiole 

epithelial cells, NTHi have been shown to utilise phagosomes as protected intracellular niches 

where they can reside without proliferation for extended periods. These phagosomes do not 

fuse with lysosomes and only very low numbers associate with cathepsin D, which compromises 

intracellular killing (Morey et al., 2011). As discussed earlier, the NTHi IgaB protease may play 

an essential role in bacterial survival inside the phagosome by cleavage of late phagosomal 

markers, however, this protease does not appear to inhibit phagosomal acidification and 

functions more effectively at a neutral pH so the exact role of LAMP1 cleavage in this model on 

intracellular killing is incompletely defined (Clementi et al., 2014). It is therefore conceivable 

that other virulence factors may be employed in conjunction with the IgaB protease to aid NTHi 

survival at a lower pH. However, it is not known if similar effects occur in macrophages since 

these observations are all in epithelial cells. In view of the importance of these pathways in 

macrophages it is theoretically possible that in macrophages, that if they occur, the reduction in 

lysosomal fusion and cathepsin D activation could prevent the onset of macrophage apoptosis 

associated killing as a host mechanism of NTHi clearance.  

Recent studies have opened the door for micro RNA signalling in macrophages and neutrophils 

in airway disease. Antagonism of miR-328 was recently found to increase NTHi phagocytosis, 

cathepsin D phagosome co-localisation, ROS production and ultimately bacterial clearance (Tay 

et al., 2015). Macrophages are known to increase ROS production in order to kill NTHi (Jyotika   

Prasad   2013). NTHi have also shown susceptibility to anti-microbial peptides such β-defensins 

(Starner et al., 2002). The presence of the SapA transporter defence mechanism, by which NTHi 

degrade anti-microbial peptides released from immune cells, further implicates these molecules 

as effective mediators of NTHi killing (Shelton et al., 2011). Macrophage production of the 

antimicrobial peptide LL-37 has however been positively correlated with COPD patients 

colonised with NTHi and with markers of inflammation  (Persson et al., 2017), raising questions 

about how effective this response is in clearing the bacteria. Other studies have reported low 

levels of lactoferrin and lysozyme in response to NTHi infection (Parameswaran et al., 2011). 

1.6.3.1. NTHi in COPD Exacerbation 

During COPD, damage to the lung prevents normal ingestion and clearance of NTHi by 

macrophages (Berenson et al., 2006b; Martí-Lliteras et al., 2009). This creates a lung milieu 

where bacteria can thrive and evade the usual immune response. Evidence suggests the altered 

macrophage response in COPD pathogenesis might be due to dysregulated macrophage 

activation which contributes to an ever-more damaging lung environment (Kunz et al., 2011; 

Shaykhiev et al., 2009b), and promotes the “vicious circle” of events central to disease 



67 
 

progression, characterised by persistent bacterial colonisation and inflammatory tissue injury 

(Murphy and Sethi, 1992). 

1.7. Aims of the thesis 

Macrophage activation is important in both health and disease however the role macrophage 

activation in S. pneumoniae infection and more specifically the effect of macrophage activation 

on apoptosis associated killing, has not been explored in detail before. Further, a role for 

macrophage apoptosis associated killing has previously been outlined in response to S. 

pneumoniae and Escherichia coli and shown to be evaded by Staphylococcus aureus and 

Neisseria meningitidis yet it has not been established whether apoptosis associated killing is 

activated in response to NTHi infection.  

Broadly, I hypothesise that since apoptosis associated killing is critical to pathogen clearance, 

when host or pathogen factors alter it there will be consequence to the clearance of bacteria. 

More specifically, I hypothesise that: 

1. Mcl-1 over-expression alters macrophage activation which in turn alters macrophage 

response to S. pneumoniae challenge  

2. When capacity for apoptosis associated bacterial clearance is overwhelmed additional layers of 

the host response must be activated   

3. Macrophage apoptosis associated killing is activated in response to NTHi challenge 

The main aims of my thesis are: 

1. Analyse if there is any difference in macrophage activation between wild-type and CD68 

Mcl-1 transgenic Bone Marrow Derived Macrophages (BMDMs) and characterise 

activation in BMDMs and MDMs. 

2. Determine the effect of macrophage activation on wild-type and transgenic BMDM and 

MDM macrophage effector functions after S. pneumoniae challenge 

3. Understand how the CD68 Mcl-1 transgene alters the transcriptional response of AMs 

to S. pneumoniae at 16 hours of challenge and validate these findings using multi-colour 

flow cytometry 

4. Analyse macrophage effector functions including macrophage apoptosis and bacterial 

killing in response to NTHi challenge 
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2. Materials and Methods  

2.1. Cell culture and differentiation 

2.1.1. Human monocyte-derived macrophages 

Blood isolation was carried out in the OPHAT room, E floor, Royal Hallamshire Hospital. 300ml 

of blood was collected in blood bags (Fresenius Kabi Ltd) with the anticoagulant, Citrate 

Phosphate Dextrose Adenine (CPDA) solution, from consenting donors by a trained member of 

staff. All donors were given an information sheet and signed both a consent and a screening 

form which were checked and filed in the Infectious Diseases Department (E floor). Monocyte 

isolation from human blood was conducted by a member of the departmental technical team 

with ethical approval from South Sheffield Regional Ethics Committee (07-Q2305/7). Blood was 

decanted into T75ml tissue culture flasks and 25ml of blood from each donor was layered onto 

12.5ml Ficoll-Paque (GE Healthcare) in 50ml Falcon tubes (Starstedt). Blood was then 

centrifuged at 1500 rpm for 23 minutes with the brake off. Cell layers were isolated and added 

to fresh 50ml tubes and centrifuged at 1000 rpm for 13 minutes. Supernatants were discarded 

and pellets resuspended in 10ml macrophage media (RPMI (Lonza), 10% Heat Inactivated Foetal 

Bovine Serum (HIFBS) with low LPS (Gibco), 1% L-Glutamine (Lonza)). Peripheral blood 

mononuclear cells were then counted using the haemocytometer method and further diluted in 

macrophage media to a concentration of 2 x 106 /ml and plated out. 

2.1.2. Murine Bone Marrow Derived Macrophages 

Mice were culled by cervical dislocation. Legs were removed and placed in Dulbecco’s Modified 

Eagle Medium (DMEM), (Lonza). Bones were cleaned of remaining tissue and bone marrow cells  

isolated from mouse femurs and tibias. Cells were flushed from bones using a 0.5x16mm needle 

and 1ml syringe. Cells were counted using a haemocytometer and resuspended in medium 

(DMEM plus 10% HIFBS and 10% L929 conditioned medium plus antibiotics; 100µg/ml 

Streptomycin with 100U/ml penicillin) at a concentration of 2x105 cells/ml. Cells were incubated 

in medium at 37oC for 5 days after which non-adherent cells were removed and fresh media 

added. Medium was then replaced every other day with DMEM plus 10% HIFCS and 10% L929 

conditioned medium until complete macrophage differentiation at 14 days. Antibiotics were 

excluded from the medium after 7 days of culture. As BMDMs proliferate in cell culture, a cell 

count was performed on day 14. Cells were washed in 1ml of Phosphate Buffered Saline (PBS) 

and incubated with 200μl Accutase® (Biolegend) for 15 minutes. They were then gently scraped 

and counted using a haemocytometer (Section 2.1.3). For extended storage of BMDMs, cells 

were flushed and centrifuged at 200 x g for 10 minutes. Cells were then resuspended in HIFBS + 
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10% DMSO and added to cryovials. To achieve a slow rate of cooling which is essential for cell 

preservation, BMDMs were transferred to a Mr. Frosty™ freezing container (Thermo Scientific) 

containing isopropyl alcohol. They were first cooled to -80oC before transfer to the biorepository 

liquid nitrogen storage (C floor, Royal Hallamshire Hospital). To thaw, cells were kept on dry ice 

until transfer to a water bath set to 37oC. Once defrosted, cells were quickly diluted in 50ml of 

media to avoid the toxic effects of DMSO. 

2.1.3. Quantifying the number of cells 

Bone marrow cells were diluted in 50ml complete medium and 10μl of the suspension was 

added to the haemocytometer by capillary action. Cells were counted on the Olympus CK2 

microscope, 10x objective. A cell count was obtained from all four 4 x 4 grids and divided by 4 

to give the average cell count per grid. The average cell number was then multiplied by the 

10,000 to give cells/ml. The calculated number of cells /ml was divided by the desired number 

of cells/ml to give the dilution factor. The dilution factor was multiplied by total volume of the 

cell suspension (50ml) to estimate the total volume needed to achieve the desired number of 

cells/ml.  

2.1.4. Macrophage activation 

Macrophages were activated with either human or murine IL-4, IL-10, IFN-γ or IFN-γ + ultra-pure 

LPS (Enzo). All cytokines were purchased from PreproTech. Upon arrival cytokines were 

reconstituted first in distilled H2O then further diluted in PBS containing 0.1% bovine serum 

albumin (Sigma Aldrich) to a concentration of 20μg/ml. To avoid freeze – thaw cycles, vials were 

aliquoted and stored at -20oC until use. At 14 days of culture, macrophages were stimulated with 

20ng/ml cytokine and 100ng/ml LPS for a duration of 24 hours unless otherwise stated. 

2.1.5. Macrophage viability test 

TRIVIGEN® TACS MTT Cell Proliferation Assay Kit was purchased from R&D Systems. A volume 

of the tetrazolium salt 3- [4, 5-dimethylthiazol-2yl]-2, 5-diphenyl-tetrazolium bromide (MTT) 

was added to each well. After 4 hours of incubation at 37oC, an equal volume of detergent 

reagent containing Sodium dodecyl sulfate (SDS) was added to the cells and 37oC incubation was 

resumed for a further 4 hours. The plate was read at a wavelength of 562nm (Labsystems 

Multiscan Ascent). Wells containing media alone (without cells) were used as a blank. To create 

a standard curve, cells were seeded at increasing densities in a 96-well plate. To analyse the 

effect of macrophage activation on cell viability, cells cultured for 14 days were seeded at 2x105 

cells/ml and left to adhere to the plate overnight. Cells were then activated with cytokines or 

left unstimulated. Viability was assessed at either 24 or 48 hours’ post activation.    
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2.2. Bacterial culture 

2.2.1. Streptococcus pneumoniae  

2.2.1.1. Stock preparation 

Experiments were carried out using serotype 1 S. pneumoniae WHO reference laboratory strain 

SSISP; (Statens Serum Institut). S. pneumoniae were plated on Columbia Blood Agar (CBA) plates 

and incubated overnight at 37oC, 5% CO2. Colonies were collected and grown in growth media 

(25ml Brain and Heart Infusion (BHI) broth (Oxoid) supplemented with 20% HIFBS) incubated at 

37oC + 5% CO2 with agitation. The Optical Density (O.D.) was measured at hourly time points at 

a wavelength of 600nm by spectrophotometry (Jenway). Once the O.D. reached 0.6 (mid-log) 

the broth was aliquoted and stored at -80oC. At each time point colony forming units were 

calculated using the Miles Misra technique (section 2.2.3.). S. pneumoniae colonies were 

identified by α-hemolysis of blood agar and optochin sensitivity. 

2.2.1.2. Opsonisation and Macrophage infection 

Human serum was obtained from healthy volunteers previously vaccinated with the 23-valent 

polysaccharide pneumococcal vaccine (Pneumovax®23). Effectiveness of opsonisation 

treatment was assessed by flow cytometry. Binding of fluorescein isothiocyanate (FITC) 

conjugated goat human IgG Fc (Dako) to immune serum treated and untreated S. pneumoniae 

was compared. Opsonisation with human immune serum caused a positive shift in FITC 

expression compared to untreated bacteria. 

Murine serum was pooled from mice vaccinated with Pneumovax®23. Serum samples were 

collected initially from a tail vein bleed and antibody levels checked by Enzyme Linked 

Immunosorbant Assay (ELISA).  6 weeks post-vaccination was sufficient for animals to raise an 

antibody response.  

S. pneumoniae serotype 1 from frozen stock was thawed, pelleted (9000xg, 3 minutes) and 

washed 3 times in 1ml sterile PBS. For opsonisation, the pellet was then re-suspended in serum 

free DMEM + 10% mouse immune serum for infection of murine BMDMs or RPMI + 10% human 

immune serum for infection of human MDMs and incubated for 30 minutes at 37oC with 

agitation. Post incubation, bacteria were pelleted (3400xg, 3 minutes) and washed twice with 

1ml sterile PBS. The pellet was then re-suspended in 950µl of appropriate media + 10% HIFBS 

and added to cells at the correct Multiplicity Of Infection (MOI). Miles Misra surface viability 

counts were conducted on the re-suspended bacteria grown overnight on CBA plates to confirm 

the concentration of S. pneumoniae per aliquot. 
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2.2.2. Non-Typeable Haemophilus influenza 

2.2.2.1. Stock preparation 

NTHi requires agar plates which have been “chocolated” (heated) to break up erythrocytes 

enabling release of Hemin destruction of NADases which cause digestion of Nicotinamide 

Adenine Dinucleotide (NAD) released by red blood cells (Krumwiede and Kuttner, 1938), 

(Musher, 1996). Freeze-dried NTHi (strain number: ATCC49247) was reconstituted in BHI broth 

supplemented with factors required for Haemophilus influenza growth; 2µg/ml NAD (Sigma 

Aldrich) + 10µg/ml Hemin (Sigma Aldrich) dissolved in 20mM NaOH, bead stocks were created 

and stored at -80oC. Individual beads were collected from the stock and plated on chocolate 

blood agar (EO Labs). After overnight incubation, colonies were collected and added to 25ml 

growth media which was incubated at 37oC plus 5% CO2 with agitation and measured hourly by 

spectrophotometry at a wavelength of 600nm until the O.D. reached 0.6. 20% HIFBS was then 

added and the volume divided into 1ml working aliquots (Kirkham et al., 2013). Aliquots were 

stored at -80oC. Glycerol stocks of the clinical isolate obtained from GSK (NTHi strain number 

1479) was also grown and stored using the same method. 

2.2.2.2. Macrophage infection with NTHi 

NTHi, stored at -80oC, was thawed and pelleted (9000xg, 3 minutes) and washed 3 times in 1ml 

sterile PBS. The pellet was then re-suspended in 950µl of media + 10% HIFBS and added to cells 

at the correct MOI. 10-fold serial dilutions were conducted on the re-suspended bacteria and 

grown overnight on chocolate agar plates to confirm the concentration of NTHi per 1ml aliquot.  

2.2.3. Miles Misra viable bacterial count 

In order to quantify the amount of bacteria in a suspension, the Miles Misra technique for 

estimating concentration of viable bacteria was used (Miles et al., 1938). Bacteria was re-

suspended in infection media and vortexed. 6 x 10-fold serial dilutions were performed in sterile 

PBS and plated in 3 x 10μl drops per quadrant on blood agar plates. Plates were incubated 

overnight at 37oC with 5% CO2. The following day colonies were counted on the first quadrant 

which displayed visible individual colony forming units. The number of colonies was then 

multiplied by the dilution factor, divided by 30 to give cfu/μl and multiplied by 1000 to give 

cfu/ml. 

2.2.4. Preparation of cells for infection 

Before infection, cell number was quantified using a hemocytometer for accurate calculation of 

the MOI. Media was discarded and replaced with fresh media containing only 10% HIFBS 
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(500µl/well). If appropriate, macrophages were activated with cytokines 24 hours prior to 

infection and washed once in PBS before addition of fresh media. 

2.3. Measurement of protein Expression by Western Blot 

2.3.1. Protein Extraction 

Cells were lysed at room temperature by the trichloro-acetic acid (TCA) protein extraction 

method (Wang et al., 1996). Non-adherent cells were first removed by washing in PBS. Cells 

were then washed in Tris buffered saline -Ethylenediaminetetraacetic acid (TBS-EDTA) (2% 1M 

Tris pH7.4, 15% 1M NaCl, 1% 0.5M EDTA, 1% 0.5M egtazic acid (EGTA), H2O) for removal of metal 

ions and other unwanted media constituents. Cells were lysed using TBS-EDTA-SDS lysis buffer 

(0.8% 1M Tris pH7.4, 6% 1M NaCl, 1% 0.5M EDTA, 1% 0.5M EGTA, 2% SDS (20%) H2O), containing 

complete protease inhibitor (Sigma) at a ratio of 1:25. DNA was then aggregated and proteins 

precipitated using 100% TCA (Sigma). Protein pellets were washed once in 1ml 2.5% TCA and 

dissolved in ~40μl 3M Tris base (Severn Biotech Ltd.) which was diluted to 1.5M Tris base with 

distilled H2O after solubilisation. All protein samples were stored at -20oC.  

2.3.2. Protein quantification 

Protein content was quantified using the colorimetric DC Protein Assay kit (Biorad). BSA protein 

standards dissolved in lysis buffer at concentrations ranging from 10mg – 0.5mg/ml were used 

to construct a standard curve. 5μl of protein standards and samples were added to a 96-well 

plate with kit reagents: alkaline copper tartrate solution and dilute Folin. The plate was 

incubated for 15 minutes which is the time taken for maximal colour change reaction (proteins 

react with the copper and Folin is reduced by the copper treated proteins). The plate was then 

read at a wavelength of 630nm (Labsystems Multiscan Ascent). Protein concentrations were 

calculated from interpolation of the standard curve using GraphPad Prism v7.02.   

2.3.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

Proteins were separated by Sodium Dodecyl Sulphate Poly Acrylamide Gel Electrophoresis (SDS-

PAGE). To denature, equal amounts of protein were added to Lammeli buffer (4% SDS, 20% 

Glycerol, 0.004% Bromophenol Blue, 10% 2-mercaptoethanol, 0.125M Tris HCl) at a ratio of 1:1 

and boiled at 95oC for 5 minutes. Proteins were then loaded into lanes of a 1.5mm thick 12% or 

10% polyacrylamide gel (Table 2-1) in running buffer (0.025M Tris-Base, 0.19M glycine and 0.1% 

SDS). The electric current was then applied at 100 V as proteins travel through the stacking gel 

and 140 V through the resolving gel. Molecular weight of the protein was determined by 

addition of 5μl Blue Wide Range Protein ladder 10 – 245 KDa (Geneflow).  
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Table 2-1: Resolving and Stacking Gel Ingredients 

 Resolving Gel (µl) Stacking Gel (µl) 

12% 10% 

H2O 6400 7150 3000 

40% 29:1 Acrylamide 4500 3750 620 

1.5M Tris, pH 8.8 3800  

0.6M Tris, pH 0.8  1260 

20% SDS 75 

150 

6 

25 

20% Ammonium Persulphate 50 

T-Med 5 

 

2.3.4. Semi-dry transfer 

The resolving gel was then separated from the stacking gel and placed on top of nitrocellulose 

paper membrane (GE Healthcare) with filter paper on either side, soaked in transfer buffer 

(0.047M Tris-Base, 0.038 Glycine, 0.04% SDS, 10% Methanol, H2O). The gel sandwich was then 

transferred to the semi-dry transfer blotter (Trans-Blot SD transfer cell, BioRad) and rolled flat 

to prevent bubbles on the membrane. Electric current was passed through the blotter at 15 V 

for 45 minutes. 

2.3.5. Chemiluminescence  

After transfer, the nitrocellulose membrane was washed in H2O and transfer of protein was 

determined by Poncheau S staining. Poncheau S (Sigma) was made up 0.1% weight:volume in 

5% Acetic Acid (Fisher Bioreagents). Membranes were incubated in Poncheau S for 2 minutes 

then staining was removed by washing in TBS (0.1M Tris-HCl, 0.16M NaCl, H2O) with agitation. 

The membrane was then blocked for 1 hour in blocking buffer (TBS + 5% skimmed milk powder). 

Membranes were incubated overnight at 4oC or for 1 hour at room temperature in TBS-Tween 

(Fisher Bioreagents) (TBS + 0.05% Tween-20) containing 5% skim milk powder (Sigma) + 1:1000 

dilution of the primary antibody. The following antibodies were used: 

Table 2-2: Primary Antibody List 

Antibody Clone Company Concentration 

Murine Mcl-1 Anti-rabbit Rockland 1:1000 

Human Mcl-1 Anti-rabbit Santa Cruz 1:1000 
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Murine iNOS Anti-mouse BD Pharmingen 1:1000 

Murine Arginase-1 Anti-mouse BD Pharmingen 1:1000 

Poly-clonal pSTAT1 (Tyr701) Anti-rabbit Thermofisher 1:1000 

Poly-clonal pSTAT6 (Tyr641) Anti-rabbit Cell Signaling (CST) 1:1000 

Poly-clonal pSTAT3 (Tyr705) Anti-rabbit Cell Signaling (CST) 1:1000 

Poly-clonal SOCS3 Anti-rabbit Cell Signaling (CST) 1:1000 

Poly-clonal α-tubulin Anti-mouse Sigma 1:2000 

Following primary incubation, membranes were washed 3 x 10 minutes in TBS-Tween then 

incubated with Horse-Radish-Peroxidase (HRP) conjugated polyclonal Goat anti-Mouse or anti-

Rabbit secondary antibody (Dako) for 1 hour at room temperature. Membranes were washed 3 

x 10 minutes in TBS-Tween and incubated in Bio-Rad Clarity™ ECL substrate for 5 minutes at 

room temperature. Membranes were then sealed with film and analysed using ChemiDoc™ XRS+ 

System (BioRad). Membranes were then stripped with 0.2M NaOH and H2O and reprobed with 

α-tubulin antibody as a loading control.  

2.3.6. Densitometry 

Chemiluminescent images generated using the ChemiDoc™ system were merged with 

colorimetric image or the ladder and converted to TIFF files. The optical density of the protein 

band was then analysed using Fiji biological image processing software (Schindelin et al., 2012). 

The optical density of each antibody band was compared to that of the loading control – α-

tubulin to correct for differential protein loading. When comparing infection conditions, fold 

change from the control condition (mock infected) was calculated. 

2.4. Measurement of gene expression by qPCR 

2.4.1. Sample preparation 

Macrophages were activated with cytokines or left unstimulated for 24 hours. RNA was isolated 

based on a protocol by Chomczynski and colleagues (Chomczynski and Sacchi, 1987). The 

monolayer culture was washed once in sterile PBS before addition of 200μl of TRI reagent 

(guanidine thiocyanate and phenol solution) (Sigma) per 2x105 cells. Lysates were homogenised 

by gentle pipetting, then transferred to 1.5ml eppendorfs and stored at -80oC.  

2.4.2. RNA isolation 

For phase separation, samples were thawed on ice and 200μl of chloroform (BHR 

Pharmaceuticals Ltd.) per 1ml of TRI reagent was added to each sample. Samples were then 

incubated at room temperature for 15 minutes followed by centrifugation for 15 minutes at 
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12,000xg, 4oC. The aqueous phase was removed from the sample and added to a fresh tube. 

Samples were incubated at room temperature for 10 minutes with 500μl of 2-Propanol (Fisher 

Bioreagents) per 1ml of TRI reagent, followed by centrifugation at 12,000xg, 4oC, for a duration 

of 10 minutes. The supernatants were discarded and 1ml of 75% ethanol (Fisher Bioreagents) 

per 1ml of TRI reagent was added to each sample before further centrifugation at 7,500xg, 4oC 

for 5 minutes. Supernatants were then discarded and pellets air-dried before resuspension in 

35μl of sterile water. RNA samples were stored at -80oC. 

2.4.3. Genomic DNA removal 

DNA-free™ kit (Ambion, Life Technologies) was used per the manufacturer’s instructions for 

digestion of contaminating DNA and removal of DNase and divalent cations. All samples were 

incubated with DNase digestion reagents (3.5μl DNase I Buffer + 1μl rDNase I) for 30 minutes at 

37oC. For the removal of divalent cations, which can catalyse RNA degradation, samples were 

incubated with 3.5μl DNase Inactivation reagent for 2 minutes at room temperature. Samples 

were then centrifuged at 10,000xg for 1.5 minutes to pellet the DNA and RNA was transferred 

to a fresh tube. 

2.4.4. Quantification of total RNA 

Total RNA content was quantified by nanodrop spectrophotometry model no. ND-1000 (LABtech 

international) using ND1000 v.3.2.1. software.  

2.4.5. cDNA generation 

cDNA was generated using the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). 2x Master Mix (10x RT buffer, 25x dNTP Mix, 10x RT Random Primers, Multiscribe™ 

Reverse transcriptase, RNase Inhibitor and Nuclease free H2O) was prepared as per the 

manufacturer’s instructions. 10μl of RNA sample was added to an equal volume of 2x Master 

Mix in 0.5ml Eppendorf tubes and mixed by gentle pipetting. Tubes were then sealed, 

centrifuged and placed in the thermal cycler (MJ research PTC-200) programmed to the 

following conditions: 

Table 2-3: Thermal cycler settings for cDNA generation 

 Step 1 Step 2 Step 3 Step 4  

Temperature 25oC 37oC 85oC 4oC 

Time 10 min 120 min  5 min Hold 
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2.4.6. Real time Quantitative PCR (qPCR) 

Real-time PCR was performed using specific primers for iNOS, Arginase-1 and β-actin and 

Taqman Gene expression probes (Invitrogen) (see below). Per well: 600mM of forward / reverse 

primer and 350mM of probe, 5μl PrecisionPLUS master mix and 3μl H2O were loaded to a PCR 

plate (Bio-Rad) along with 400ng cDNA. Plates were centrifuged at 1500rpm for 10 minutes 

before running on a Bio-Rad i-Cycler PCR machine (CFX384 Real Time System), conditions (Table 

2-4) Steps 2-4 were repeated x40. All assays were performed in triplicate and are normalised to 

levels of β-Actin housekeeping gene. Fold changes were calculated compared to the 

unstimulated control using the δδCt method. 

iNOS: Forward:5’AAGAGGCAAAAATAGAGGA, Reverse:5’TGGTAGGTTCCTGTTGTTTC, 

Probe:CTGTCAGTGTGAGCATC 

Arginase-1: Forward:5’CGGAGACCACCACAGTTTGGC, Reverse:5’TGGTTGTCAGTGGAGTGTTG, 

Probe:TCCTTTGTTACAGCTTC 

β-actin: Forward: 5'-GGATGCAGAAGGAGATCACTG, Reverse: 5'-CGATCCACACGGAGTACTTG, 

Probe 5'-CCCTGGCACCCAGCACAATG 

Table 2-4: Temperatures for qPCR reaction 

 Step 1 Step 2 Step 3 Step 4  

Temperature 95oC 95oC 60oC 60oC 

Time 2 min 15 seconds 1 min 5s 

2.5. Measurement of cytokine content 

2.5.1. ELISA 

Supernatants were collected from unstimulated controls and cells stimulated with cytokines for 

24 hours or 48 hours or as otherwise stated. Supernatants were also collected from mock 

infected cells and cells infected with S. pneumoniae serotype 1 or NTHi for 4 – 24 hours or as 

otherwise stated. Ready-Set-Go!® IL-6 and TNFα ELISA kits were purchased from eBioscience. 

MIP-2 ELISA kit was purchased from R and D Systems. Assays were performed per the 

manufacturer’s instructions. High binding plates were coated in 100µl capture antibody (pre-

titrated purified antibody) diluted in coating buffer and incubated at 4oC overnight. Plates were 

then washed in sterile PBS containing 0.05% Tween and blocked for 1 hour in 200µl 1x Assay 
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Diluent (PBS with HIFBS) (eBioscience) at room temperature. Standards and samples were 

defrosted and diluted in 1x Assay Diluent and added to the plate in duplicate in a volume of 

100µl/well. Top standards (Recombinant cytokine or chemokine) were diluted in 1x Assay 

Diluent and 1:2 serial dilutions conducted for construction of the standard curve. Plates 

incubated at 4oC overnight then washed and detection antibody added for 1 hour at room 

temperature. Plates were washed again and Avidin-HRP added for 30 minutes at room 

temperature. Plates were washed and substrate solution 1xTMB added for up to 15 minutes at 

room temperature. Reaction was then stopped with 2M Sulphuric Acid and plate read at 450nm 

(Thermo Multiscan Ex). Data was analysed using GraphPad Prism software. Unknowns were 

interpolated from the standard curve using a non-linear regression sigmoidal dose-response 

equation. 

2.5.2. MesoScale Discovery Analysis 

All MesoScale Discovery (MSD) analysis was conducted at Glaxo Smith Kline (GSK), Bioscience 

Hub, Stevenage. Supernatants were collected from unstimulated controls and cells stimulated 

with cytokines for 24 hours. Reagents were prepared as per the manufacturers guidelines and 

samples diluted 5 or 10-fold with diluent provided. 50μl of each sample was added to the MSD 

plate, sealed and incubated for 2 hours room temperature with agitation. Plate was washed 3x 

in 150μl of wash buffer and 25μl of 1X detection antibody solution was added to each well. 

Incubation was resumed for a further 2 hours at room temperature with agitation. Plates were 

then washed 3x in wash buffer and 150μl 2x Read Buffer T added to each well. The plate was 

then immediately read on an MSD instrument (Model 1201, Meso Sector S 600). Lyophilised 

calibrator for construction of the standard curve was reconstituted in 1000μl of Diluent 41 and 

7 x 4-fold serial dilutions were performed. Diluent 41 was used as the zero calibrator. For 

analysis, the MSD WORKBENCH® analysis software was used. Standard curves were constructed 

from the calibrators using a sigmoidal dose-response curve. Sample concentrations were then 

back-fitted from the standard curve. 

Table 2-5: MSD Sensitivity Ranges: 

Pro-

inflammatory 

Panel 1 (mouse) 

Range 

(pg/ml) 

Pro-

inflammatory 

Panel 1 

(human) 

Range 

(pg/ml) 

Chemokine 

Panel 1 

(human) 

Range 

(pg/ml) 

IFN-γ 0.40 – 570 IFN-γ 7.47 - 938 Eotaxin 0.36-1500 

IL-1β 0.72 – 1030 IL-1β 2.14 – 375 MIP-1β 0.24-1010 
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IL-2 1.03 - 1570 IL-2 0.89 – 938 Eotaxin-3 1.21-4970 

IL-4 2.58 - 1060 IL-4 0.45 – 158 TARC 0.36-1500 

IL-5 1.60 – 590 IL-5 1.58 – 488 IP-10 0.58-2400 

IL-6 7.61 – 3140 IL-6 1.13 – 375 MIP-1α 0.23-942 

KC/GRO 3.29 - 1230 KC/GRO 0.68 – 233 IL-8 18.5-75900 

IL-10 19.8 - 2030 IL-10 1.22 – 315 MCP-1 0.10-448 

IL-12p70 179 – 20600 IL-12p70 4.21 – 353 MDC 2.59-10600 

TNF-α 0.97 - 403 TNF-α 0.69 - 248 MCP-4 0.16-602 

2.6. Macrophage functional assays  

2.6.1. Macrophage phagocytosis assay  

Latex beads (2µm) carboxylate-modified polystyrene, fluorescent yellow-green (Excitation: 

~470 nm; Emission: ~505 nm) were purchased from Sigma. Beads were diluted in sterile PBS 

(1:1000) and centrifuged at 9000xg for 3 minutes. Supernatant was discarded and beads were 

resuspended in RPMI containing 10% immune serum and then incubated at 37oC for 30 minutes 

to opsonise beads (see section 2.2.1.2). Beads were then centrifuged at 3400xg for 3 minutes, 

supernatant discarded and beads resuspended in PBS to wash. A 100µl solution of beads, diluted 

to ensure an MOI of 10, was added to macrophages previously activated for 24 hours with 

cytokines. Macrophages were left on ice for 1 hour then incubated for 3 hours at 37oC. Cells 

were then washed 3x with 1ml PBS and fixed with 2% paraformaldehyde. Coverslips were 

mounted on slides with VECTASHEILD™ containing 4',6-diamidino-2-phenylindole (DAPI) and 

sealed. 

2.6.2. Gentamicin protection assay 

2.6.2.1. Internalisation of bacteria 

To determine the number of intracellular bacteria, macrophages were infected with S. 

pneumoniae or NTHi until the desired time point. At the time point, Miles Misra dilutions were 

performed on the supernatant of each well to assess the number of bacteria in the extracellular 

medium. To eliminate extracellular bacteria, cells were washed 3 times in sterile PBS ahead of a 

30 minute incubation at 37oC with 1ml medium containing antibiotics (20μg/ml Gentamicin 

(Sigma) and 40uM Penicillin (Sigma)). Wells were washed 3 times with 2ml sterile PBS, on the 

final wash supernatants were collected and 5-fold Miles-Misra dilutions plated out to determine 

complete removal of extracellular bacteria. To lyse, cells were incubated at 37oC for 15 minutes 

with 250μl of 0.02% Saponin (Sigma) dissolved in H2O. 750μl of PBS was then added to wells to 

make the total volume up to 1ml. Cells were scraped and vigorously pipetted to ensure lysis. 
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Supernatant samples were taken from each well and 5-fold Miles-Misra dilutions plated. 

Colonies of S. pneumoniae or NTHi were counted the following day and cfu/ml calculated.  

2.6.2.2. Killing assay 

If intracellular killing of bacteria between time points was to be determined, infected wells were 

maintained in low dose antibiotics, after the initial pulse of antibiotic treatment to prevent 

regrowth of extracellular bacteria. 0.75μg/ml vancomycin (S. pneumoniae) or 2µg/ml 

gentamicin (NTHi) was added until the desired time point. At each time point, cells were washed 

3 times in 2ml sterile PBS and lysed as described above. 5-fold Miles Misra dilutions were plated 

and grown on blood agar overnight. Colonies were counted the next day and cfu/ml calculated.  

2.6.3. Detection of Nitric Oxide 

Diaminofluoresceins are cell permeable due to their diacetate (DA) group and non-fluorescent. 

They produce fluorescent triazole derivatives (Benzotriazoles) upon interaction with NO (Kojima 

and Ikeda, 1998). This reaction is NO specific and does not occur in the presence of other 

reactive nitrogen species (RNS) or reactive oxygen species (ROS). 4-Amino-5-methylamino-2',7'-

difluorofluorescein (DAF-FM), originally described by Kojima and colleagues, is an improvement 

on a previous Diaminofluorescein used for the live detection of NO, DAF-2, which could only be 

applied in a limited pH range (Itoh et al., 2000).  

MDMs and BMDMs were infected with S. pneumoniae at an MOI of 10. Cells washed at 4 hours 

post infection in PBS, media was replaced and incubation resumed until desired time point. At 

time point, cells were washed 3 times in PBS and media replaced with fresh media containing 

5μM of DAF-FM DA (Sigma) (Excitation: ~495 nm; Emission: ~515 nm) in phenol-red free RPMI, 

cells were incubated at 37oC / 5% CO2 for 30 minutes. Macrophages were then washed 3 times 

in sterile PBS to remove excess dye and then incubated for a further 30 minutes in fresh phenol-

red free medium without dye. Macrophages were again washed 3 times in PBS and scraped in 

300μl of PBS before analysis on the FACs Calibur flow cytometer (BD Biosciences) using the FL-1 

channel. 

2.6.4. Detection of cellular ROS 

As with DAF-FM, Dichlorofluorescin diacetate (DCF-DA) is a compound capable of passive 

diffusion across the cell membrane. Upon entry to the cell, DCF-DA is hydrolysed by esterases 

to a non-fluorescent compound and upon oxidisation by certain species of ROS it becomes highly 

fluorescent. DCF-DA was originally described as a method of measuring H2O2 (Brandt & Keston, 

1965) however it has since been described as successfully detecting a variety of ROS and RNS. 
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The complex interactions between ROS and RNS mean there is a variety of reactions which can 

lead to the oxidation of DCF-DA therefore it is difficult to determine the exact species which are 

being quantified in each experiment. Furthermore, there are conflicting reports on the ability of 

some species to generate a signal via DCF meaning this dye may not be a reliable method of 

quantifying ROS in general (Myhre et al., 2003). To this end, it is important to also target specific 

ROS species to gain a more accurate understanding of their contribution to the oxidative state 

of the cell. 

2′,7′- (DCF-DA) (Excitation: ~504 nm; Emission: ~524 nm) was purchased from Sigma. Culture 

media was replaced with fresh media (RPMI / DMEM + HIFBS) containing 20μM of DCF-DA, cells 

were incubated at 37oC / 5% CO2 for 45 minutes. MDMs and BMDMs were then washed 3x PBS 

and infected with S. pneumoniae or NTHi. At desired time point, cells were washed 3 times in 

PBS and scraped in 300μl of PBS before analysis on the FACs Calibur flow cytometer (BD 

Biosciences), channel: FL-1. 

2.6.5. Measurement of mitochondrial membrane potential 

Impaired mitochondrial function and loss of mitochondrial transmembrane potential is one of 

the early indicators of apoptosis induction (Zamzami et al., 1995). The fluorescent cyanine dye 

JC-1 (5, 5’, 6, 6’-tetrachloro-1, 1’, 3, 3’-tetraethylbenzimidazolocarbocyanine iodide) enters the 

mitochondria and forms either monomers or at higher mitochondrial membrane potentials, J-

aggregates. The formation of J-aggregates causes a bathochromic shift (a shift in the absorbance 

maxima to a higher wavelength) from an emission wavelength of 520nm for green fluorescing 

monomers to 585nm emission of red fluorescence (Smiley et al., 1991). To identify apoptosis in 

macrophages, the loss of red fluorescence and/or the gain of green fluorescence can be 

quantified.   

One vial of JC-1 (Excitation: ~520 nm; Emission: ~596 nm) lyophilized powder (Sigma) was 

dissolved in DSMO for a final concentration of 10mM. JC-1 solution was stored in working 

aliquots at -20oC. JC-1 stock solution was diluted 1:1000, in media without serum, to give a 

concentration of 10µM. 300µl of staining solution was added to adherent cells seeded at 

2x105/ml. Macrophages were incubated with JC-1 for 30 minutes at 37oC / 5% CO2. They were 

then washed 3x and scraped in 300µl of sterile PBS. Healthy samples from mock infected 

controls were first analysed on the FACs Calibur flow cytometer (FL2 Channel). Voltages were 

selected which ensured the fluorescent spectra were towards the right of the histogram display 

so shifts to the left indicating loss of fluorescence could be observed when S. pneumoniae 

exposed samples were analysed.  
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2.7. Measurement of Cell Death 

2.7.1. DAPI Staining  

Macrophages seeded on coverslips were challenged with S. pneumoniae following 

pneumococcal infection. At 4 hours, all cells were washed 3 times with 1ml sterile PBS. At the 

desired time point, macrophages were washed again 3 times with 1ml sterile PBS and fixed in 

500μl 2% paraformaldehyde and stored at 4oC. Upon staining, macrophages were washed 3 

times in 1ml sterile PBS and coverslips were carefully removed and mounted on slides in DAPI 

containing mounting medium (Vectorshield®) purchased from Vector Laboratories. Coverslips 

were sealed using nail varnish and cell density and percentage of apoptotic cells was quantified 

by fluorescent microscopy.  

2.7.2. NucView Staining 

‘Effector’ caspases 3 and 7 recognise and cleave substrates containing the DEVD amino acid 

sequences to mediate the execution phase of apoptosis. The mitochondrial events which occur 

during apoptosis are regulated by caspases 3 and 7 and MOMP, a cellular event associated with 

apoptosis, is prevented in caspase 3 and 7 double knock-out transgenic mice (Lakhani et al., 

2006). NucView™ comprises a DEVD motif containing substrate conjugated to a DNA binding 

fluorogenic dye. This construct can pass through the cell membrane and locate in the cytoplasm 

in live cells. Upon caspase 3/7 activity, the DEVD motif is recognised and the substrate cleaved 

which releases the fluorogenic dye allowing binding to DNA, resulting in nuclear fluorescence in 

apoptotic cells (Biotium).  

NucView™ 530 (Excitation: ~528 nm; Emission: ~563 nm) Caspase-3 Substrate, 1mM in DMSO 

was purchased from Biotium. Macrophages were challenged with S. pneumoniae serotype 1 

until desired time point. Media was removed and replaced with NucView 530 substrate in 

infection media at a concentration of 1µM. 200µl of solution was added to each well and 

incubated at 37oC for 30 minutes. Macrophages were then washed twice in sterile PBS, fixed in 

2% paraformaldehyde and stored at 4oC. Macrophages were incubated for 4 hours with 

250ng/ml of Staurosporine (Sigma) per 1ml of cells (2x105) as a positive control. Cells were 

mounted in Vectorsheild™ mounting medium containing DAPI, used as a counterstain. Slides 

were then analysed by fluorescent microscopy. 
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2.8. Transcriptomics Study  

2.8.1. Mice 

Generation of the CD68 Mcl-1 transgenic mouse was carried out by previous group member Julie 

Preston in collaboration with Steven Shapiro, University of Pittsburgh, USA. The 1.5 kb cDNA 

sequence for human Mcl-1 was cloned into a 2.9 kb plasmid containing the CD68 promoter, a 

gene which encodes a glycoprotein  specific to monocytes and macrophages, with the first intron 

being IVS-1 which acts as a macrophage specific enhancer (Gough et al., 2001). After restriction 

enzyme digestion and gel purification, the transgene was microinjected into C57Bl/6J oocytes 

(Washington University School of Medicine, St Louis, USA). Founder and progeny genotype was 

identified by tail or ear biopsy and subsequent PCR amplification using the forward: 5’-

ACCATCTCCTCTCTGCCAAA-3’ and reverse: 5’-GGGCTTCCATCTCCTCAA-3’ primers. The CD68 Mcl-

1 transgene was found to be present only in cells of the macrophage lineage and absent from 

neutrophils and lymphocytes. Transgenic mice were not associated with any developmental 

phenotype nor did the transgene effect fertility, survival, leukocyte subset cell count or show 

any abnormalities in the lungs or lymphoidal tissue after histological analysis, (Preston et al, 

unpublished data), (Bewley et al., 2017). 

2.8.2. Ethics 

All animal experiments were conducted in accordance with the Home Office Animals (Scientific 

Procedures) Act of 1986, authorized under a UK Home Office License 40/3726 with approval of 

the Sheffield Ethical Review Committee, Sheffield, United Kingdom. 

2.8.3. In vivo infection and tissue collection 

CD68 – human Mcl-1 and wild-type littermate mice were anaesthetized with Ketamine and ACP 

and instilled with 20μl of PBS or 20μl of 1x104 cfu/ml serotype 1 S. pneumoniae, via 

tracheostomy, for mock infected and infected conditions respectively. Mice were culled by 

overdose with sodium pentobarbitone at 16 hours of infection. Blood was immediately collected 

into a heparinized syringe by exsanguination via the inferior vena cava and stored on ice. Lungs 

were then exposed and lavaged with ice cold saline via a cannula inserted into the trachea. Lungs 

were removed and kept on ice with BAL until processing. Mice were age and sex matched. 

2.8.4. Collection of RNA 

The volume of BAL collected from each mouse was measured and cells counted using a 

hemocytometer. 150μl of BAL was used for bacterial counts using the Miles Misra technique. 

The remainder of the BAL was centrifuged at 1000 x g, 4oC and supernatants stored at -80oC for 

later analysis of cytokine content. Half of each cell pellet was lysed in TRI Reagent; 1ml TRI 
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Reagent was used per 5x106 cells and samples stored at -80oC. The residual pellet was re-

suspended in 50μl of PBS, 40μl of which was used to conduct cytospins. Samples containing 

more than 10% neutrophils were excluded from the study.  

2.8.5. Analysis of viable bacteria in cell pellets, lungs, blood and BAL 

10μl of the remaining cell suspension was pooled and lysed in 2% saponin, incubated at 37oC for 

12 minutes. Samples were then diluted in PBS and vigorously pipetted to ensure lysis. The lysate 

was then diluted for Miles Misra surface viable counting and plated on CBA plates. Lungs were 

added to 1.5ml screw top micro-centrifuge tubes with 6x3.2mm stainless steel beads and 300μl 

sterile PBS and homogenized for a duration of 5 minutes using a Bullet Blender (Next Advance). 

200μl was then added, samples were vortexed and viable bacteria determined using the Miles 

Misra technique. Colony forming units contained in both the BAL and the blood were also 

calculated using the same technique. 

2.8.6. Microarray 

Cell pellets in TRI Reagent were sent to GSK Stevenage and RNA was isolated, quantified and 

analysed on Affymetrix GeneChip Mouse Genome 430 2.0 Array. Data was normalised with the 

Robust Multiarray Averaging (RMA) method and raw p-values calculated with Array server.  

2.8.7. Analysis 

Data was compared as 4 separate experiments: - 

Experiment 1: non-infected transgenic → non-infected wild-type  

Experiment 2: S. pneumoniae transgenic → S. pneumoniae wild-type  

Experiment 3: S. pneumoniae wild-type → non-infected wild-type 

Experiment 4: S. pneumoniae transgenic → non-infected transgenic 

Data was analysed using Array Studio (Omicsoft, QIAGEN). The 45,100 probes probes with an 

absolute fold change of >1.5 were considered potentially interesting. False discovery rate (FDR) 

values were then calculated for these probes and p-values with <5% significance selected. Probe 

sets were then loaded into NextBio online database (illumina), Metabase and SPIA 

(Bioconductor) for further pathway analysis.  
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Figure 2-1: Bacterial counts and neutrophil percentages in samples  

Wild-type and transgenic mice were challenged with S. pneumoniae serotype 1 for a duration of 16 hours. 

At the timepoint, broncho alveolar lavage (BAL) and blood were collected and lungs extracted and 

homogenised (A-C) Bacterial cfu/ml determined my Miles Misra counts in BAL fluid, blood and lungs 

(n=15), mean ± SEM. (D) Percentage neutrophils in BAL were confirmed by cytospin, samples containing 

more than 10% were discarded (red), transgenic S. pneumoniae (n=12), transgenic PBS (n=13), wild-type 

S. pneumoniae (n=14), wild-type PBS (n=11).  Missing values are due to insufficient cells on cytospins for 

accurate differentials. Experiments conducted by Dr Helen Marriott. 

 

2.9. Flow Cytometry 

2.9.1. Flow Cytometry 

All flow cytometry experiments were completed in the University of Sheffield Medical School 

Core Flow Cytometry Facility using a 4 laser 13 colour LSRII™ (BD Biosciences) and BD FACSDiva 

version (?) software. Results were analysed using FlowJo™ software version 10.3 (Tree Star Inc.) 
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2.9.2. In vivo infection 

CD68-human Mcl-1 and wild-type littermate mice were anaesthetized with isoflurane and 

instilled with 50μl of PBS or 50μl of 1x104 cfu/ml serotype 1 S. pneumoniae, via intranasal 

installation. Mice were culled by overdose with sodium pentobarbitone at 16 hours after 

infection. Blood lung and BAL were collected as in section 2.8.3. 

2.9.3. Bronchiole Alveolar Lavage preparation 

BAL volumes were measured, and centrifuged at 1500xg for 5 minutes. Supernatants were 

stored at -80oC for future analysis. The pellets were resuspended in PBS, cell count was obtained 

before proceeding. 

2.9.4. Lung preparation 

Lungs were harvested, rinsed in saline and kept at 4oC until use. They were then digested using 

GentleMACS lung dissociation kit and MACS tissue dissociator (Miltenyi Biotec). Lungs were 

added to gentleMACs C tubes and dissociated using the provided enzyme mix, using the 

gentleMACs dissociator program: m_lung_01. Suspensions were then incubated with agitation 

for 30 minutes at 37oC before further dissociation using program: m_lung_02. Sample was then 

centrifuged and resuspended and material strained using a 70μm cell strainer and rinsing with 

provided buffer. Samples were then centrifuged at 300xg for 10 minutes, washed twice and 

resuspended in PEB buffer (PBS, 0.5% BSA, 2mM EDTA). A cell count was then obtained before 

samples were stained.  

2.9.5. Spleen Preparation 

Spleens were isolated from the animal and stored on ice until use. Spleens were placed in 

gentleMACs C Tubes containing 3ml (1-2 Spleens) of PEB Buffer. Spleens were then dissociated 

using the gentleMACS Dissociator program: m_spleen_01. Dissociated spleens were then 

applied to a 30μm cell strainer placed over a 50ml centrifuge tube and washed through with 5ml 

of PEB Buffer. Cell suspension was then centrifuged at room temperature for 10 minutes at 300g. 

The supernatant was discarded and pellet re-suspended. 

2.9.6. Antibody Staining 

BAL and Lung tissue were lysed using Iotest 3 (Beckman Coulter). Samples were then centrifuged 

at 1500g for 5 minutes and washed twice in FACS Buffer (PBS containing 1% HIFBS). CD16/CD32 

Mouse FC Block (BD Pharmingen) was added to all samples except the unstained control which 

was resuspended in FACs Buffer. Fluorescence Minus One (FMO) controls were set up for 

successful gating of each fluorophore in each panel. Single stained samples and compensation 
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beads (invitrogen) were also used to compensate for each fluorophore. All control samples used 

cells from lung tissue due to higher abundance than BAL fluid. Antibodies for staining samples 

were diluted to the correct concentration in FACS Buffer and a cocktail containing all antibodies, 

was added to each BAL and lung experimental sample. FMOs were stained with every antibody 

except the one of interest and single stained samples were stained with just the antibody of 

interest. All samples and controls were mixed and incubated for 30 minutes at 4oC protected 

from light. Samples were then centrifuged at 1500xg and washed 3 times in FACs Buffer then 

resuspended in 200µl of FACs Buffer. 1 drop of negative and 1 drop of positive compensation 

beads were added to tubes containing the antibody cocktail, tubes were vortexed and incubated 

in the dark at 4oC for 10 minutes.  Beads were washed and resuspended in 200µl of FACs Buffer. 

Below are the details of the antibody panels used in this experiment.  

Table 2-6: Myeloid Panel 

 

Table 2-7: Th1 Th17 and NK + B cell Panel 

Marker Fluorochrome Order Details Host Species and Isotype 

CD45 BV510 BD Biosciences (563891) Rat IgG2b k 

CD4 APC/FIRE™ Biolegend (100460) Rat IgG2b k 

TCRβ VioBlue Miltenyi (130-104-815) Recombinant human IgG 

CD49b (DX5) PE-Cy7 BioLegend (108922) Rat IgM k 

CCR6 (CD196) ALEXA-647 BD Biosciences (557976) Rat IgG2a k 

Marker Fluorochrome Company Details Host Species and Isotype 

CD45 BV510 BD Biosciences (563891) Rat IgG2b K 

CD11b FITC Biolegend (101206) Rat IgG2b k 

CD64 PE-Cy7 Biolegend (139314) Mouse IgG1, κ 

CD24 APC-Cy7 EBioScience (47-0242) Rat IgG2b  κ 

MHC class II PerCp-Cy5.5 (Biolegend) 107626 Rat IgG2b, κ 

CD11c APC (Biolegend) 117310 AR Hamster IgG 

LY6g BV421 (pacific blue) (Biolegend) 127628 Rat IgG2a k 

Siglec F PE (Miltenyi biotech) 130-102-274 Rat IgG1 
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CXCR3 (CD183) PE BD Biosciences (562152) Hamster IgG1 k 

CD19 PerCPCy 5.5 Biolegend (115534) Rat IgG2a, κ 

 

2.10. Statistics 

All statistical analysis was performed using GraphPad Prism v.7.02 (GraphPad Inc.). All data 

represented as Mean ± Standard Error of the Mean (SEM) unless otherwise indicated. For 

comparison between two unmatched groups, an unpaired t-test was used (parametric data) or 

a Mann-Whitney test (non-parametric data). For comparison of more than two groups a one-

way ANOVA (parametric) with Tukey’s post- test was used, non-parametric data was analysed 

using Kruskal-Wallis test with Dunn’s post-test. Grouped data (two or more variables) was 

analysed using two-way ANOVA with Sidak’s post-test. For flow cytometry analysis median 

fluorescence intensity and geometric mean flourescence intensity was genetated using Flowjo 

software version 10.3. D'Agostino & Pearson normality test was used to decide on use of 

parametric or non-parametric statistical tests. Group sizes were determined based on previous 

publications by our group, where possible, in vitro data is based on 3 separate experiments from 

3 individual donors. In vivo data is based on at least 3 donors from 3 independent experiments, 

unless otherwise stated (Bewley et al., 2017; Marriott et al., 2005). Where n numbers are stated, 

n refers to the number of individual human or murine donors. 
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3. Characterisation of macrophage activation in wild-

type and CD68 Mcl-1 transgenic macrophages 

3.1. Introduction  

Macrophage activation is essential for macrophage function in both health and disease. 

Macrophage activation profile has also been shown to be reversible which allows macrophages 

to quickly adapt to changes in the microenvironment (Porcheray et al., 2005). This same 

plasticity can lead to the skewing of macrophage subsets by diseases which manipulate the local 

milieu (Ruffell et al., 2012; Shaykhiev et al., 2009b). For example, during bacterial infection 

macrophages typically switch to classical activation to resolve infection however if the increasing 

pool of CAM is not tightly regulated, CAMs can trigger lasting tissue damage through excessive 

inflammation (Benoit et al., 2008b).  

In response to S. pneumoniae infection, macrophages avoid harmful inflammation by 

undergoing apoptosis as a mechanism of pathogen clearance (Dockrell et al., 2001a). This 

phenomenon is associated with the mitochondria and mediated by the anti-apoptotic protein 

Mcl-1 (Marriott et al., 2005) which is tightly linked to mitochondrial activity and integrity 

(Perciavalle et al., 2012). Reports highlight the importance of metabolism and therefore, by 

implication, mitochondrial activity in orchestrating macrophage phenotype by switching 

between either glycolysis (classical activation) or oxidative phosphorylation (alternative 

activation), reviewed by (Galván-Peña and O'Neill, 2014). However, the relationship between 

over-expression of Mcl-1 and macrophage activation has not yet been explored. Thus, the main 

aim of this chapter was to determine if Mcl-1 has any effect on macrophage activation. The CD68 

Mcl-1 transgenic mouse which over-expresses human Mcl-1 on a macrophage specific promoter 

is defective in apoptosis associated killing and therefore pneumococcal clearance, modelling the 

apoptosis defect seen in COPD (Bewley et al., 2011a; Bewley et al., 2017). I hypothesised that 

CD68 Mcl-1 BMDMs would have a skewed macrophage activation profile compared to wild-type 

cells. This hypothesis was based on the importance of Mcl-1 to macrophage mitochondrial 

function and the observation that COPD AMs show Mcl-1 upregulation with consequences to 

macrophage immune effector phenotypes. 

To fulfil the first aim, wild-type and transgenic BMDMs were analysed for skewed macrophage 

activation marker expression before and after stimulation with activating cytokines. The 

secondary aims of this chapter were to firstly delineate the optimum culture conditions for 

murine macrophage activation in our laboratory conditions, including, peak cell culture day for 
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activation after seeding, optimum concentration of cytokine stimulants and ideal length of the 

stimulation period. Secondly, I wanted to ensure that human MDMs could be successfully 

activated following protocols previously described by others (Cassol et al., 2009; Sudan et al., 

2015). Fulfilment of these aims feed directly into chapter 4 of my PhD project. 

Initially, the stimulants which I chose to use to induce macrophage activation were IFN-γ + LPS 

for a CAM phenotype, IL-4 for an ‘alternatively activated’ (AAM) phenotype and IL-10 to induce 

an ‘immune-regulatory’ phenotype (Mosser and Zhang, 2008; Murray et al., 2014). Since 

classical and alternative activation can be induced using a variety of stimulants, to avoid 

confusion conditions are hereafter referred to as M(IFN-γ+LPS), M(IL-4), M(IL-10) following the 

nomenclature suggested by Murray and colleagues (Murray et al., 2014). To examine marker 

expression, I analysed enzymes involved in Arginine metabolism at both transcription and 

translation, cytokine and chemokine release and phosphorylation of the STAT family of 

transcription factors (Mills et al., 2000b; Mosser and Zhang, 2008; Murray et al., 2014). 

3.2. Results  

3.2.1. Optimisation of cell culture conditions for macrophage activation 

Cytokine concentration for activation of macrophages has been optimised in many different 

immortal and primary cell lines, including murine BMDMs (Edwards et al., 2006; Genin et al., 

2015; Mulder et al., 2014). In the literature, a range of concentrations over a series of incubation 

periods have been suggested for induction of macrophage effector phenotypes (Mosser and 

Zhang, 2008). Before continuing, it was important to determine the optimum conditions for 

BMDM activation in our laboratory conditions. Primary murine BMDMs were stimulated with 

various concentrations of IFN-γ supplemented with LPS for different incubation periods. For 

dose optimisation, concentrations of 10, 20 or 50 ng/ml of IFN-γ were tested, all concentrations 

were within the ranges previously described by others, IFN-γ stimulation was supplemented 

with 100ng/ml LPS (Davis et al., 2013; Mosser and Zhang, 2008; Stein et al., 1992). TNFα and IL-

6 levels in supernatants from IFN-γ + LPS stimulated cells were tested by ELISA at 24 and 48 

hours of activation (Figure 3-1). All IFN-γ concentrations with LPS induced TNFα and IL-6 cytokine 

expression. iNOS protein expression was observed in IFN-γ + LPS stimulated cells at 6, 12, 24 and 

48 hours of activation, however 24 hours yielded the highest density of iNOS protein (Figure 3-

2). Furthermore, 24 hours of activation is sufficient for study of macrophage effector functions 

in response to bacterial challenge (Mosser and Zhang, 2008). For activation of M(IL-4) 

macrophages, a concentration of 20ng/ml was selected as this is commonly used by others (Cho 

et al., 2014; Jiménez-Garcia et al., 2015). Figure 3-2, shows 20ng/ml IL-4 was enough to stimulate 
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Arginase-1 expression after 6, 12, 24 and 48 hours of activation however 24 hours was selected 

as the most practical stimulation time to match the optimised conditions for M(IFN-γ+LPS). The 

data presented in Figure 3-2 was confirmation that 24 hours was a suitable timepoint for both 

classical and alternative macrophage stimulation going forward. Macrophages were activated 

on days 7, 10 and 14 of culture to determine which day would be optimum for macrophage 

activation. ELISA data showed 14 days of culture was optimum based on cytokine expression 

(Figure 3-1 A-C). TNFα and IL-6 were used as a measurement of M(IFN-γ+LPS) activation and IL-

10 was used as a measurement of M(IL-4) activation (Gordon and Martinez, 2010) (Figure 3-1 

D). It is noteworthy that BMDM optimisation data does not include IL-10 as the decision to also 

include M(IL-10) condition was made later during the project. 20ng/ml IL-10 was used 

throughout experiments in keeping with reports by others (Liu et al., 2008).  

3.2.2. Transcription of macrophage markers of activation is not influenced 

by the CD68-Mcl-1 transgene 

A fundamental method of distinguishing classical and alternative activation is analysis of L-

Arginine metabolism (Mills et al., 2000b). CAMs preferentially metabolise Arginine to NO and 

citrulline by upregulation of the enzyme iNOS. The counterpart of this reaction, used by AAMs, 

is catalysed by the enzyme Arginase-1 which hydrolyses Arginine to ornithine and polyamines. 

To understand whether the CD68 Mcl-1 transgene might alter transcription of iNOS or Arginase-

1 in activated and unstimulated BMDMs, we conducted qPCR for analysis of mRNA levels. Having 

previously optimised activation doses (section 3.2.1) macrophages were stimulated for a 

duration of 12 hours which is considered sufficient to induce gene change (Mosser and Zhang, 

2008). Fold change for each gene was calculated and compared to the unstimulated control 

(Figure 3-3). Results demonstrated that after 12 hours IFN-γ + LPS and IL-4 stimulation 

successfully increased gene transcription of iNOS and Arginase-1 respectively. There was no 

influence of the CD68 Mcl-1 transgene on gene expression of iNOS or Arginase-1, nor was there 

a preference for iNOS or Arginase-1 expression in the CD68 Mcl-1 unstimulated control. This 

data suggests that the CD68 Mcl-1 transgene has no effect on macrophage transcriptional 

regulation of Arginine metabolism at 12-hours activation.  
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Figure 3-1: Optimisation of conditions for cytokine stimulation.  

BMDM were stimulated with concentrations of 10, 20 or 50 ng/ml IFN-γ supplemented with 100ng/ml 

LPS for a duration of 24 or 48 hours on day (A) 7, (B) 10, (C) 14 of cell culture. TNF-α and IL-6 production 

were quantified by ELISA. Data analysed by two-way ANOVA with Sidak’s post-test, *=p<0.05, **=p<0.01, 

***=p<0.001, ****=p<0.0001. Data is represented as Mean ± SEM (n=4) (D) BMDM were stimulated with 

20ng/ml IL-4 for 24 hours on day 7, 10 and 14 of culture and IL-10 release was quantified by ELISA. No 

significance was determined by one-way ANOVA with Tukey’s post-test, data represented as mean ±SEM 

(n=3).  

 

 

Figure 3-2: Macrophage cytokine stimulation induces protein expression of iNOS and Arginase-1 at 6, 

12, 24 and 48 hours of stimulation. 

Wild-type BMDMs were stimulated with (A) 20ng/ml IFN-γ + 100ng/ml LPS or (B) 20ng/ml IL-4 for a 

duration of 6, 12, 24 or 48 hours. BMDM were then lysed for protein and western blotted. Membranes 

were probed for (A) iNOS (131 kDa) or (B) Arginase-1 (35 kDa), α-tubulin (55 kDa) was used as a loading 

control, lysates from 2 replicate donors, 1 (mouse 1) or 2 (mouse 2) were ran side by side (n=2).  
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Figure 3 3: Macrophage cytokine stimulation causes increases in iNOS and Arginase-1 mRNA  

Wild-type and transgenic BMDMs were unstimulated or activated with (A) 20ng/ml IFNγ + 100ng/ml LPS 

or (B) 20ng/ml IL-4 for a duration of 12 hours. At the time point cells were lysed and RNA isolated. qPCR 

was conducted using primer/probe sets for (A) iNOS and (B) Arginase-1. β-actin was used as a 

housekeeping control. iNOS expression is represented as fold change compared to unstimulated 

macrophages. Arginase-1 levels are represented as δCt due to the presence of Arginase-1 in the 

unstimulated control being beneath the level of detection, therefore it was not possible to calculate δδCt. 

No significance between wild-type and transgenic cells was confirmed using a two-tailed unpaired t-test, 

(n=3) data is represented as Mean ± SEM. 

 

3.2.3. Protein expression Arginase-1 and iNOS is not effected by the CD68 

Mcl-1 transgene 

Since gene expression data does not always correlate with protein abundance (Vogel and 

Marcotte, 2012) I was also interested in comparing protein levels of iNOS and Arginase-1 in wild-

type and transgenic BMDMs. Cells were incubated with cytokines for a duration of 24 hours to 

ensure protein induction (Mosser and Zhang, 2008). Protein was western blotted for iNOS or 

Arginase-1. Both wild-type and transgenic BMDMs showed induction of iNOS or Arginase with 

either IFN-γ + LPS or IL-4 stimulation respectively (Figure 3-4). These results were in keeping with 

the qPCR data in that there was no baseline difference in expression of iNOS and Arginase in the 
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unstimulated control nor a difference in induction of iNOS and Arginase-1 levels after 

macrophage activation induction. These results indicate that over-expression of human Mcl-1 

does not affect protein production of iNOS or Arginase-1 after macrophage stimulation. Further 

it suggests that without prior stimulation (unstimulated), CD68 Mcl-1 macrophages display no 

strong preference for either the iNOS or Arginine metabolic pathway. 

3.2.4. Pro-inflammatory cytokine release is not altered by the CD68-Mcl-1 

Transgene 

IFN-γ + LPS stimulation induces a complex network of signalling pathways and transcription 

factors which orchestrate the release of various effector molecules to mediate the M(IFN-γ+LPS) 

response. Transcriptional regulation of macrophage activation is vast and complex (Lawrence 

and Natoli, 2011) and therefore the signalling pathways which orchestrate L-Arginine 

metabolism are not always concurrent with those which stimulate cytokine release. I decided to 

now analyse the effect of the CD68 Mcl-1 transgene on pro-inflammatory cytokine release. I 

chose to measure IL-6, TNFα and MIP-2 which are all markers of M(IFN-γ+LPS) activation (Murray 

et al., 2014). BMDMs were stimulated over a time course and pro-inflammatory mediator 

release was quantified by ELISAs (Figure 3-5). Results demonstrated that IFN-γ + LPS treatment 

generated production of all three pro-inflammatory mediators at all time points tested, as 

expected (Mosser and Zhang, 2008) however this result was more marked at 24 and 48 hours. 

Levels of TNFα and IL-6 in other activation conditions remained low in comparison or beneath 

the limit of detection. In agreement with qPCR and western blot data, the presence of the 

CD68Mcl-1 transgene showed no effect on pro-inflammatory marker activation at any of the 

time points tested. These results indicate that the CD68 Mcl-1 transgene does not influence 

induction pro-inflammatory cytokine production.  

3.2.5. Macrophage Activation does not change mMcl-1 protein levels 

Data collection thus far indicates over-expression of Mcl-1 has no effect on macrophage 

activation type. To conclude this finding, I wanted to check stimuli did not affect endogenous 

levels of Mcl-1. BMDMs were activated for 24 hours and western blotted for murine Mcl-1. Mcl-

1 protein density was then quantified using Fiji image analysis software. The ratio of Mcl-1 to α-

tubulin was calculated and data plotted as fold change of each activation condition compared 

to the unstimulated control (Figure 3-6). Murine Mcl-1 has three isoforms, full length Mcl-1 

(40KDa), Mcl-1 truncated at Isoleucine-10 (38KDa) and Mcl-1 truncated at leuceine-33 (36KDa). 

The full-length and the 38KDa forms of Mcl-1 are located on the outer mitochondrial membrane 

and are involved in the anti-apoptotic function of Mcl-1. The 36KDa form is located in the 
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mitochondrial matrix and is essential for normal mitochondrial bioenergetic function 

(Perciavalle et al., 2012). All three forms were detected by western blot in each activation 

condition. There was no significant effect of macrophage activation on any form of Mcl-1 

expression although there was a visible increase in the IL-4 stimulated condition. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Differential macrophage cytokine stimulation causes expression of either iNOS or Arginase-

1 protein  

(A-B) Wild-type and transgenic BMDMs were stimulated with 20ng/ml IL-4 or 20ng/ml IFNγ + 100ng/ml 

LPS for a duration of 24 hours. Macrophages were then lysed for protein and western blotted. Membranes 

were probed for iNOS or Arginase-1, α-tubulin was used as a loading control. (A) representative blot 

pictured (B) Density of each antibody was quantified relative to α-tubulin intensity and expression 

compared between genotypes. Homogenised mouse liver from wild-type mice was used as a positive 

control for Arginase-1 detection. No significance was determined by unpaired Mann-Whitney test (n=3) 

data is represented as mean ± SEM. 

w t tg

0

1

2

3

4

IL -4

A
r
g

in
a

s
e

-1
:

-t
u

b
u

li
n

w t tg

0

1

2

3

4

IF N   +  L P S

iN
O

S
:

-t
u

b
u

li
n

A) 

B) 



97 
 

 

1 2 2 4 2 8

0

1 0

2 0

3 0

4 0

5 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

U n s tim u la te d

T im e  (h o u rs )

T
N

F
-

 p
g

/m
l

1 2 2 4 4 8

0

5

1 0

1 5

2 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

U n s tim u la te d

T im e  (h o u rs )

IL
-6

 p
g

/m
l

W ild - ty p e

T ra n s g e n ic

1 2 2 4 4 8

0

2 5

5 0

5 0

1 0 0

1 5 0

1 0 0 0

2 0 0 0

3 0 0 0

U n s tim u la te d

T im e  (h o u rs )

M
IP

-2
 p

g
/m

l

1 2 2 4 4 8

0

1 0

2 0

3 0

4 0

5 0

1 0 0 0

2 0 0 0

3 0 0 0

IL -4

T im e  (h o u rs )

M
IP

-2
 p

g
/m

l

1 2 2 4 4 8

0

1 0

2 0

3 0

4 0

5 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

IL -4

T im e  (h o u rs )

T
N

F
-

 p
g

/m
l

1 2 2 4 4 8

0

5

1 0

1 5

2 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

IL -4

T im e  (h o u rs )

IL
-6

 p
g

/m
l

W ild - ty p e

T ra n s g e n ic

1 2 2 4 4 8

0

1 0

2 0

3 0

4 0

5 0

1 0 0 0

2 0 0 0

3 0 0 0

IL -1 0

T im e  (h o u rs )

M
IP

-2
 p

g
/m

l

1 2 2 4 4 8

0

5

1 0

1 5

2 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

IL -1 0

T im e  (h o u rs )

IL
-6

 p
g

/m
l

W ild - ty p e

T ra n s g e n ic

1 2 2 4 4 8

0

1 0

2 0

3 0

4 0

5 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

IL -1 0

T im e  (h o u rs )

T
N

F
-

 p
g

/m
l

1 2 2 4 4 8

0

1 0

2 0

3 0

4 0

5 0

1 0 0 0

2 0 0 0

3 0 0 0

IF N -

T im e  (h o u rs )

M
IP

-2
 p

g
/m

l

1 2 2 4 4 8

0

1 0

2 0

3 0

4 0

5 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

IF N -

T im e  (h o u rs )

T
N

F
-

 p
g

/m
l

1 2 2 4 4 8

0

5

1 0

1 5

2 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

IF N -

T im e  (h o u rs )

IL
-6

 p
g

/m
l

W ild - ty p e

T ra n s g e n ic

*

*

A )

B )

C )

D )

 

 

Figure 3-4: IFN-γ + LPS activation stimulates pro-inflammatory cytokine and chemokine release 

Wild-type and transgenic BMDMs were left (A) unstimulated or stimulated with 20ng/ml (B) IL-4, (C) IL-

10 or (D) IFN-γ + 100ng/ml LPS for a duration of 12, 24 or 48 hours. At the time point cell supernatants 

were collected and analysed by ELISA for MIP-2, TNFα or IL-6. Dotted line is representative of the 

sensitivity of the ELISA kit, MIP-2 (1.5pg/ml), TNF-α (8pg/ml), IL-6 (4pg/ml). Wild-type and transgenic 

responses were compared and no significant differences determined using two-way ANOVA with Sidak’s 

multiple comparisons test at each timepoint (n=3) data is represented as mean ± SEM. 
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Figure 3-5: Macrophage activation has no effect on protein levels of Mcl-1.  

Wild-type BMDMs were unstimulated or stimulated with 20ng/ml IL-4, IL-10 or IFN-γ for a duration of 24 

hours. At the time point, macrophages were lysed and protein western blotted (A) Representative 

western blot pictured. Membranes were probed for mMcl-1 (35 kDa) and α-tubulin (55 kDa) was used as 

a loading control. B) Ratio of mMcl-1:α-tubulin was quantified by densitometry, no significance was 

determined by one-way ANOVA with Dunnett’s multiple comparisons test. (n=4) data is represented as 

mean ± SEM. 

 

3.2.6. Cell viability is affected by treatment with IFN-γ+LPS 

IFN-γ  + LPS are the standard stimulants used to produce a CAM phenotype (Mantovani et al., 

2004), however, I found that stimulation with IFN-γ + LPS was affecting cell density (Figure 3-7) 

compared to all other conditions.  In line with this observation, other studies state IFN-γ + LPS 

treatment in combination and independently can trigger cell loss (He et al., 2008; Xaus et al., 

2000). To test the effect of macrophage activation on the amount of cell metabolic activity, I 

A) 
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decided to carry out an MTT assay which under certain circumstances can also indicate the 

number of viable cells. 24 hours of LPS treatment with and without IFN-γ caused a significant 

decrease in metabolic activity compared to the other activation conditions. IFN-γ stimulation 

alone showed a significant decrease although not as marked as IFN-γ + LPS. At 24 hours, results 

have the same level of significance for both wild-type and transgenic BMDMs, after 48 hours of 

stimulation, there was more variation within groups. Metabolic activity of unstimulated cells 

was decreased with the extended incubation time and IL-4 stimulation showed increased 

metabolic activity which suggests higher levels of metabolic activity, a survival advantage or 

proliferative capacity as demonstrated by others (Jenkins et al., 2013). In conclusion, 

M(IFN-γ+LPS) and M(LPS) macrophages showed reduced metabolic activity with no major 

differences in genotype.  

3.2.7. Re-optimisation of using IFN-γ alone  

Due to the effect of LPS on cell number and metabolic activity, I decided to re-optimise the 

stimulation of CAM to limit the variation in cell density and potential cytotoxicity caused by LPS. 

The main factor which I thought might be causative of the effects seen in Figure 3-7 was the 

concentration of stimulant. I therefore tested a range of different concentrations of IFN-γ + LPS 

on BMDM using the MTT assay. I did not see any difference in metabolic activity between these 

altered conditions and I concluded the presence of LPS too harsh for BMDMs in our culture 

conditions (Figure 3-8A). Furthermore, I reasoned after priming with IFN-γ, “triggering” with LPS 

and then further challenge with bacteria, as a second ‘trigger’ event (Adams and Hamilton, 

1984), BMDMs might undergo apoptosis or some other form of cell death which is simply a 

consequence of being overwhelmed rather than being in association with macrophage 

apoptosis associated killing. Based on this I decided it would be beneficial for future work 

involving infection to prime macrophages with IFN-γ alone before addition of bacteria which will 

provide a sufficient ‘trigger’ event to induce the full classical phenotype but not too harsh to 

cause cell death. To ensure BMDMs could be successfully primed by IFN-γ alone and 

subsequently triggered with addition of Gram-positive and Gram-negative bacteria I first looked 

at the presence of iNOS mRNA after IFN-γ activation. Treatment with 20ng/ml IFN-γ for 24 hours 

successfully induced iNOS mRNA amplification compared to unstimulated cells (Figure 3-8B) in 

keeping with published reports (Murray et al., 2014). I then tested for pro-inflammatory 

cytokine release by priming BMDMs with IFN-γ and subsequently infecting with S. pneumoniae 

or NTHi. IFN-γ activation alone was not sufficient to stimulate pro-inflammatory cytokine release 

however addition of S. pneumoniae and NTHi showed enhanced pro-inflammatory cytokine 
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release with TNFα and an increase in IL-6 with NTHi challenge within 4 hours of infection 

comparable to the IFN-γ + LPS condition (Figure 3-8C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Cytokine stimulation affects macrophage viability at 24 and 48 hours.  

 (A) Wild-type BMDMs were stimulated were left unstimulated or stimulated with 20ng/ml IL-4, IFN-γ + 

100ng/ml LPS for 24 hours and cell counts conducted. No significant difference was found between groups 

by Kruskal-Wallis test with Dunn’s post-test, data represented as mean ± SEM (n=7). (B-C) Wild-type and 

transgenic BMDMs were seeded in a 96 well plate at a density of 1x105 cells / well. Cells were stimulated 

with 20ng/ml IL-4, IL-10 or IFN-γ, 20ng/ml IFN-γ + 100ng/ml LPS, 100ng/ml LPS or left unstimulated for a 

duration of (B) 24 or (C) 48 hours. TRIVIGEN MTT assay was conducted at each timepoint. Cellular 

metabolic activity was determined by reading absorbance of the purple formazan product at a wavelength 

of 600nm. Activation conditions were compared within each genotype using a two-way ANOVA with 

Sidak’s multiple comparisons test. *p=0.05, **p=0.01, ***p=0.001, n=4. Data is represented as mean ± 

SEM (n=4).  
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Figure 3-7: IFN-γ stimulation induces a classically activated phenotype  

(A) BMDMs were activated with varying concentrations of IFN-γ + LPS for 24 hours and cell counts 

conducted to assess cell density (n=3-7) significance determined by Kruskal-Wallis test with Dunn’s post-

test *=p<0.05 (B) BMDMs were activated with IFN-γ, IFN-γ + LPS or unstimulated for 12 hours, mRNA 

levels of iNOS and were detected by qPCR. β-actin was used as a housekeeping control (n=3) (C) BMDMs 

were activated with IFN-γ, IFN-γ + LPS for a duration of 24 hours and either mock challenged or challenged 

with S. pneumoniae serotype 1 or NTHi (MOI 10) for a duration of 4 hours. Supernatants were collected 

and TNFα and IL-6 levels assessed by ELISA, significance was determined by two-way ANOVA with Sidak’s 

post-test, *=p<0.05, **=p<0.01, ***=p<0.001 (n=3) data represented as mean ± SEM.  
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3.2.8. Human MDMs can be induced to express markers of macrophage 

activation  

To ensure successful activation of human MDMs, defined activation markers were identified 

using western blotting and MSD analysis. MDMs were cultured to day 14 and activated with 

20ng/ml IL-4, 20g/ml IL-10, 20ng/ml IFN-γ + 100ng/ml LPS or 20ng/ml IFN-γ alone for a duration 

of 24 hours as described by others (Cassol et al., 2009) (Sudan et al., 2015). Supernatants were 

collected and cells lysed for protein. Phosphorylation of the STAT family of transcription factors 

was analysed by western blotting (Murray et al., 2014). MDMs stimulated with IFN-γ showed 

activation of pSTAT1 at tyrosine residue 701. Stimulation with IL-4 displayed phosphorylation of 

STAT6, Tyr641. To demonstrate IL-10 activation a positive result was seen by detection of 

pSTAT3 Tyr705. pSTAT3 Tyr705 was also detectable in IFN-γ + LPS stimulated MDMs (Figure 3-

9). Chemokine activation markers were studied by MSD Analysis. IFN-γ+LPS stimulation 

significantly enhanced release of Eotaxin, Eotaxin-3 and IL-8.  Although the spread was more 

variable, IFN-γ+LPS also stimulated increased release of MIP1-α, IP-10, MCP-1 and MCP-4 in 

some donors.  IFN-γ activation alone did not significantly enhance any pro-inflammatory 

chemokine release (Figure 3.10). MDMs activated with IL-4 showed anti-inflammatory 

chemokine release typical of AAM (Murray et al., 2014) including, TARC, MIP-1β and MDC 

(Figure 3.11). No activation of anti-inflammatory cytokine was seen in IL-10 stimulated cells. In 

summary, these experiments indicate human macrophage activation can influence transcription 

factor activity and chemokine release as described by others and reassures us that the 

stimulation conditions are suitable for inducing shifts in human MDM phenotype (Mantovani et 

al., 2004), (Murray et al., 2014).  
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Figure 3-8: Activation marker expression in Human Monocyte Derived Macrophages 

Human MDMs were stimulated with 20ng/ml IL-4, IL-10 or IFN-γ for a duration of 24 hours. Protein was 

collected and western blotted for markers of macrophage activation. Phosphorylated STAT-6 Tyr641 as a 

marker for IL-4 activation, phosphorylated STAT-3 Tyr705 as a marker for IL-10 activation and 

phosphorylated STAT-1 Tyr701 as a marker for IFN-γ stimulation. Representative blots are shown from 

two different donors, molecular weight of each antibody and phosphorylation sites are indicated. α-

tubulin was used as a loading control.  
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Figure 3-9: MDM IL-4 activation stimulates M(IL-4) chemokine marker production 

Human MDMs were stimulated with 20ng/ml IL-4, IL-10, IFN-γ or 20ng/ml IFN-γ + LPS or left unstimulated 

in triplicate repeats for each donor for a duration of 24 hours. At 24 hours cell supernatants were collected 

and MSD Multi-spot Analysis conducted using Human Chemokine Panel 1 V-Plex™ Plate. Chemokine 

concentration of each sample was determined by MSD DISCOVERY WORKBENCH® analysis Software. 

Significant changes in chemokine concentration compared to the unstimulated control were determined 

by one-way ANOVA’s with Dunnett’s post-test. *p=0.05, **p=0.01 (n=5 donors), data is represented as 

mean ± SEM. Sensitivity of each analyte: TARC: 0.36 pg/ml, MIP1-β: 0.24 pg/ml, MDC: 2.59 pg/ml. 
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Figure 3-10: MDM IFN-γ+LPS activation causes pro-inflammatory chemokine production 

Human MDMs were stimulated with 20ng/ml IL-4, IL-10, IFN-γ or 20ng/ml IFN-γ + LPS or left unstimulated 

in triplicate repeats for each donor for a duration of 24 hours. At 24 hours cell supernatants were collected 

and MSD Multi-spot Analysis conducted using Human Chemokine Panel 1 V-Plex™ Plate. Chemokine 

concentration of each sample was determined by MSD DISCOVERY WORKBENCH® analysis Software. 

Significant changes in chemokine concentration compared to the unstimulated control were determined 

by one-way ANOVA’s with Dunnett’s post-test. *p=0.05, ****p=0.0001, n=5, data is represented as Mean 

± SEM. (n=5 donors), data is represented as mean ± SEM. Sensitivity of each analyte: Eotaxin: 0.36 pg/ml, 

Eotaxin-3: 1.21 pg/ml, IP-10: 0.58 pg/ml, MIP-1α: 0.23 pg/ml, IL-8: 18.5 pg/ml, MCP-1: 0.10 pg/ml, MCP-

4: 0.16 pg/ml.  

 

3.3. Discussion 

In this chapter, I have demonstrated that wild-type and CD68 Mcl-1 BMDMs can be activated by 

cytokines to express markers of activation as recommended by others (Murray et al., 2014). 

iNOS and Arginase-1, the opposing enzymes which catalyse L-Arginine metabolism, are 



105 
 

considered the key markers in defining murine macrophage activation (Mills et al., 2000b). L-

Arginine is either metabolised by iNOS to produce NO and Citrulline or hydrolysed by Arginase 

to generate Ornithine and polyamines. The end-products of these reactions hint at the function 

of the cell, for example, NO is a free radical with microbicidal associations, Ornithine is a pre-

cursor of molecules involved in wound healing (Albina et al., 1990). I have confirmed that 

activation of BMDMs by IFN-γ + LPS can induce iNOS and IL-4 stimulate Arginase-1 protein 

expression by western blotting. I have also demonstrated that iNOS and Arginase-1 mRNA is 

detectable by qPCR at 12 hours post activation. Pro-inflammatory cytokine and stimulation by 

IFN-γ + LPS at 12, 24 and 48 hours was also confirmed by ELISA in wild-type and transgenic 

BMDMs. This work reassures us that wild-type and transgenic BMDMs are successfully activated 

by cytokine stimulation protocols.  

For protocol development, a range of cytokine concentrations were tested to determine the 

optimum activation conditions for our BMDMs. Concentrations of IFN-γ were evaluated by iNOS 

expression and cytokine production. All concentrations tested initiated a response and it was 

decided that 20ng/ml be routinely used as this yielded consistent results and is routinely used 

by others (Jablonski et al., 2015). As well as concentration, duration of stimulation was also 

optimised. Protein and supernatants were collected from M(IFN-γ + LPS) and M(IL-4) stimulated 

cells over a time course and western blots and ELISAs conducted. iNOS and Arginase-1 protein 

expression and pro-inflammatory cytokine stimulation was seen at all time points tested. 24 

hours of activation was chosen as an appropriate and practical incubation period for 

experiments requiring further incubation periods, i.e. infection time courses. Furthermore 

Reports state that 24 hours of activation is enough for full macrophage activation (Mosser and 

Zhang, 2008). 48 hours of stimulation showed successful induction of iNOS and Arginase-1 

protein and pro-inflammatory cytokine expression however later experiments showed cell 

metabolic activity and therefore potentially cell viability was more variable than at 24 hours, by 

MTT assay. The optimal duration of cell culture for macrophage activation was also analysed. 

Macrophages were activated and markers of activation profile were investigated on day 7, 10 

and 14 of culture. 14 days was seen to generate the highest marker expression, potentially as it 

is the time needed for BMDMs to reach maturity using our culture methods. 

An MTT test was conducted on activated wild-type and transgenic macrophages. This test 

determines viability based on metabolic activity. Cells which were stimulated with IFN-γ + LPS 

and LPS alone showed a significant decrease in metabolic activity when compared to the 

unstimulated control. A decrease was also seen in IFN-γ activated macrophages however this 
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was not as marked. Reduced metabolic activity with LPS stimulation also coincides with a decline 

in cell number observed by cell counts before macrophage infection. Significant decreases in 

metabolic activity and induction of apoptosis in response to IFN-γ + LPS has also been shown by 

others (He et al., 2008). LPS causes induction of apoptosis at early time points due to autocrine 

production of TNFα and at later time points by endogenous NO production through iNOS 

expression (Xaus et al., 2000). IFN-γ has been shown to induce apoptosis through STAT1 

activation however IFN-γ activation can also have proliferative effects depending on which IFN-

γ receptor is activated (Bernabei et al., 2001). Although commonly used as a read out of cell 

viability (He et al., 2008) the MTT assay measures NADPH oxidase activity of the cell and is 

therefore a way of measuring metabolic activity. My data showed a decrease in metabolic 

activity in cells treated with IFN-γ and LPS.  IFN-γ and LPS treatment are known to reduce cell 

viability in some scenarios, however it is also possible that in this case, the metabolic activities 

of IFN-γ and LPS treated cells have become saturated or that these stimuli cause cells to become 

less metabolically active or arrest proliferation (Xaus et al., 1999). IFN-γ and LPS stimulated cells 

were not found to cause cell death without additional bacterial stimuli after 24 hours of 

activation by analysis of nuclear morphology by DAPI staining. However, since a central part of 

my PhD project is based on apoptosis caused by bacterial challenge, I wanted to limit any 

additional cell death stimuli which might be attributable to macrophage activation conditions. 

Furthermore, IFN-γ + LPS was also shown to decrease cell density. Murray and colleagues 

describe IFN-γ stimulation alone as a more polarised state of classical activation than M(IFN-γ + 

LPS) (Murray et al., 2014), however others describe IFN-γ stimulation as a ‘mild’ stimuli, 

influencing gene regulation much less than ‘potent’ M(LPS) activation (Sudan et al., 2015). I 

decided to alter my CAM activation protocol to include just 20ng/ml IFN-γ and tested if 

stimulation would be successful in priming BMDMs to generate a heightened pro-inflammatory 

response conditions with Gram-positive and Gram-negative bacterial challenge (Tötemeyer et 

al., 2006). Although IFN-γ activation alone was not sufficient to stimulate pro-inflammatory 

cytokine release, IFN-γ activation did amplify iNOS mRNA 100-fold compared to unstimulated 

samples suggesting BMDMs were primed for pro-inflammatory responses. After bacterial 

infection, IFN-γ activated BMDMs showed a heightened response comparable to IFN-y + LPS 

condition. This suggested M(IFN-γ) cells were primed for activation and subsequently triggered 

by microbial stimuli. 

Both wild-type and transgenic BMDMs were used throughout optimisation experiments to 

assess if there are any baseline differences in macrophage activation between the two 

genotypes. The evidence presented in this chapter suggests there is no effect of the CD68 Mcl-
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1 transgene on macrophage activation. Further to this, macrophage activation by IFN-γ + LPS, IL-

4 and IL-10 appear to have no significant effect on Mcl-1 levels. This is however not to say that 

CD68 Mcl-1 macrophages might express a profile that differs from archetypal CAM and AAM 

subsets, in certain respects, involving specific differences which have not been explored here. 

To delineate the specific macrophage activation profiles of wild-type and transgenic BMDMs in 

this context it would be necessary to conduct a transcriptomic analysis. Further, to make this 

analysis more clinically relevant to lung disease, it would be interesting if we based our analysis 

on AMs, bearing in mind the heterogenous activation profiles which exist within and between 

tissue compartments (Davies et al., 2013; Gordon et al., 2014). 

Markers of human macrophage activation are less well defined than murine models. Generation 

of NO by iNOS in human macrophages has long been a topic of debate (Schneemann and 

Schoedon, 2002). Other reports stipulate that Arginase-1 expression is restricted to neutrophils 

among circulating human leukocytes (Munder, 2009). To ensure that human MDMs could be 

successfully stimulated for future experiments, I analysed expression of the phosphorylated 

forms of the STAT family of transcription factors as recommended by others (Murray et al., 

2014). As expected, pSTAT1 Tyr701 and pSTAT6 Tyr641 were present in IFN-γ and IL-4 stimulated 

macrophages respectively. pSTAT3 was expressed in IL-10 stimulated macrophages, however 

only due to phosphorylation at the tyrosine 705 residue. LPS activation also induced pSTAT3 

Tyr705 activation. It has previously been shown that LPS can cause production of IL-10 which 

phosphorylates STAT3 (Carl et al., 2004) this was further explored by Murray and colleagues in 

an infection model which showed Mycobacterium tuberculosis caused TLR signalling via MyD88 

to produce IL-10 and subsequently phosphorylation of STAT3 (Qualls et al., 2010). Chemokine 

marker expression was also analysed by MSD. Pro-inflammatory chemokine release was evident 

from activation with IFN-γ + LPS activation. IL-4 stimulation also caused generation of anti-

inflammatory cytokines, in line with previous reports (Mantovani et al., 2004; Murray et al., 

2014). However, MCP-4 (CCL13) was expected to increase with IL-4 stimulation but rather it was 

increased upon IFN-γ+ LPS stimulation. A recent study warns that chemokine expression is 

transient after activation and expression of MCP-4 and MDC can also be induced by PAMPs and 

interferons at earlier time points meaning they are not consistently effective markers of IL-4 

activation (Sudan et al., 2015). The latter paper suggests MCP-4 is only a useful marker of IL-4 

activation at 24 hours and although supernatants were collected at 24 hours, transiency is likely 

to be donor specific and since Sudan and colleagues only conducted analysis on one donor it is 

hard to say how variable expression patterns are between subjects. The straying in marker 

expression in my data set compared to other reports on macrophage activation and the large 
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spread of data for some of the chemokines tested is most likely attributable to the high donor 

to donor variability when using human MDMs. 

In conclusion, CD68 Mcl-1 transgenic macrophages are neither biased to “M1”, “M2a” or “M2c” 

activation states. Further to this, the CD68 Mcl-1 transgene causes no variation in activation 

marker expression after cytokine stimulation, at least with the small number of responses 

measured here. This evidence suggests that the CD68 Mcl-1 transgene has no effect on 

macrophage phenotype however a more thorough analysis would be needed to confirm this 

finding. The experimental conditions for activation of BMDMs have been optimised and I have 

provided evidence that our MDMs are successfully activated in vitro along different activation 

pathways.  
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4. The effect of macrophage activation and apoptosis 

associated killing on S. pneumoniae challenge 

4.1. Introduction 

As discussed, S. pneumoniae is the leading cause of CAP however, the pathogenesis is 

incompletely defined. AMs, the resident phagocytes of the lung, are the body’s first line of 

defence against pneumococcal infection. Opsonised pneumococci are readily ingested by AMs 

into intracellular compartments known as phagosomes. Maturation of the phagosome is 

associated with a loss of pneumococcal viability  (Gordon et al., 2000) through employment of 

ROS and other mechanisms including NO mediated killing, antimicrobial peptides and proteases 

(Aberdein et al., 2013). At low doses, early killing mechanisms are sufficient to resolve infection, 

however, the pneumococcus has evolved many ways to subvert host defence and therefore 

killing by AMs is finite (Dockrell et al., 2003). When ROS and NO killing mechanisms become 

overwhelmed, macrophages require additional means to control infection, we have previously 

shown macrophages do this by undergoing apoptosis (Dockrell et al., 2001b).  

Initiation of macrophage apoptosis occurs at later time points of infection (16-20 hours) and 

onset is proportional to the intracellular burden of bacteria (Ali et al., 2003). Therefore, it is likely 

that this phenomenon transpires when conventional early killing mechanisms are exhausted. 

Our previous work has showed that macrophage apoptosis associated killing is regulated by the 

Bcl-2 family member Mcl-1 (Bewley et al., 2011a; Marriott et al., 2005). The contribution of Mcl-

1 and apoptosis to host defence has been further explored using a transgenic mouse over-

expressing human Mcl-1 on a macrophage specific promoter (Bewley et al., 2017). Although the 

molecular regulation of the apoptotic program has been partially deciphered (Bewley et al., 

2011a) the widespread transcriptomic changes associated with the early stages of apoptosis 

associated bacterial killing  and Mcl-1 over-expression remain largely unexplored.  

In addition, we have not yet attempted to characterise the activation phenotype of 

macrophages after S. pneumoniae infection, nor do we understand how differential macrophage 

activation might affect apoptosis associated killing. Conventionally, macrophages become 

classically activated by bacterial components which aids pathogen clearance through 

transcription of genes involved in phagocytosis, bacterial killing and neutrophil recruitment (Nau 

et al., 2002). Furthermore, the effect of S. pneumoniae infection on macrophage activation has 

not been extensively explored in the literature, particularly at late time points when apoptosis 

associated killing is required. As the lung environment contains a mixture of macrophage 
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phenotypes which are often skewed by underlying clinical disease (Byrne et al., 2015), it is 

important to understand the responses of differentially activated macrophages to 

pneumococcal infection and whether altered activation might cause ameliorated or attenuated 

macrophage effector functions. S. pneumoniae is an important pathogen in COPD where 

canonical macrophage activation is perturbed (Shaykhiev et al., 2009b). Although earlier in this 

thesis I concluded overexpression of Mcl-1 has no effect on baseline macrophage activation 

within the subsets explored, given the importance of the Mcl-1 regulated apoptosis defect in 

COPD (Bewley et al., 2017), it is interesting to consider whether the Mcl-1 transgene might effect 

macrophage phenotype after pneumococcal infection. 

The aims of this chapter were to therefore understand how macrophage activation affects early 

macrophage responses to S. pneumoniae infection including, phagocytosis, microbicidal 

production and killing activity. Effects of macrophage activation at later time points of infection 

were also explored to delineate any relationships between macrophage phenotype and 

apoptosis associated killing. Macrophage effector functions were analysed in human MDMs and 

BMDMs. Since the CD68 Mcl-1 transgenic mouse is a model for a defect in apoptosis-associated 

killing, experiments were conducted in both CD68 Mcl-1 and wild-type BMDMs. To better 

understand how the transcriptomic landscape is altered in the CD68 Mcl-1 model during the 

initiation stage of apoptosis and before apoptosis is advanced, a microarray study was 

performed on AMs from transgenic mice at the ‘tipping point’ of pneumococcal infection when 

the ability of AMs to contain infection is becoming overwhelmed (Dockrell et al., 2003).  I then 

attempted to validate the results of the transcriptomics study by multi-colour flow cytometry 

experiments which defined recruitment of specific cell subsets in vivo in both transgenic and 

wild-type mice after S. pneumoniae infection. S. pneumoniae serotype 1 was used in all of the 

experiments presented in this chapter as it is controlled by AMs at a low dose and a tipping point 

for this serotype has been well defined (Dockrell et al., 2003). Furthermore, serotype 1 is 

clinically relevant as it is an important cause of pneumococcal invasive disease (Harboe et al., 

2010; Hausdorff et al., 2000). 

4.2. Results 

4.2.1. Classically activated macrophages show increased clearance of 

pneumococci  

To understand how macrophage activation affects initial pneumococcal killing, I analysed killing 

ability of MDMs and BMDMs at early timepoints of infection. Although macrophage activation 

has not been previously explored in a S. pneumoniae infection model, classical activation is the 
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macrophage phenotype most commonly associated with bacterial infection (Nau et al., 2002). 

Therefore, I predicted that S. pneumoniae infection would be more effectively cleared in 

macrophages which had been pre-stimulated with classical activation stimuli compared to 

alternative activation stimuli or unstimulated macrophages. Macrophages were pre-stimulated 

with the optimised cytokine doses described in chapter 3. As early work which was done in 

parallel to optimisation of activation conditions included an IFN-γ + LPS condition, despite later 

omission, this condition has been incorporated into the figures to give a complete picture of the 

activation conditions explored in this thesis. Although Mcl-1 levels only become decreased at 

later time points of infection, CD68 Mcl-1 transgenic macrophages were also compared to wild-

type BMDMs to ensure there were no early effects of Mcl-1 over-expression on macrophage 

killing in activated cells. Using the killing assay, both human (Figure 4-1) and murine (Figure 4-2) 

macrophages showed significantly increased clearance of pneumococci between 2 and 4 hours 

when stimulated with classical activation stimuli (IFN-γ or IFN-γ+LPS) in line with other reports 

detailing the importance of IFN-γ to pathogen clearance (Shaughnessy and Swanson, 2007). 

There was a trend towards decreased intracellular bacteria at 2 hours in both M(IFN-γ) and 

M(IFN-γ+LPS). This may be due to accelerated clearance of bacteria and therefore a lower 

intracellular burden, however, classical activation has been shown to decrease phagocytic 

uptake by decreasing the scavenger receptor MARCO (Metzger, 2009) and also Fcγ and 

complement mediated opsonic uptake (Frausto-Del-Río et al., 2012a; Schlesinger and Horwitz, 

1991b), therefore I conducted a latex bead experiment on activated MDMs exposed to 

opsonised beads to ensure increased clearance wasn’t a consequence of decreased 

internalisation (Figure 4-3). There was no significant difference between any activation 

conditions but a trend towards decreased uptake in IFN-γ + LPS stimulated macrophages was 

observed. This implies increased clearance of pneumococci in CAM is not due to decreased 

uptake in M(IFN-γ), however more experiments are needed to confirm the effect of LPS on 

opsonic uptake. Although no difference was found between conditions with opsonised bacteria, 

before a conclusion is drawn it would also be important to also test non-opsonic uptake which 

is an additional route for S. pneumoniae internalisation (Arredouani et al., 2004; Arredouani et 

al., 2006), though not as important for clearance as opsonic uptake in AM (Gordon et al., 2000). 
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Figure 4-1: Pro-inflammatory macrophage activation enhances Killing of S. pneumoniae at early time 

points.  

MDMs were activated with 20ng/ml IL-4, IL-10, IFN-γ or 20ng/ml IFN-γ + 100ng/ml LPS for 24 hours. Cells 

were washed and challenged with S. pneumoniae serotype 1 (MOI 10) for a duration of 2 hours. (A) At the 

2-hour time point a gentamicin protection assay was performed, cells were lysed and supernatants serially 

diluted and plated to determine cfu. (B) The remaining cells were incubated in a low dose of vancomycin 

until the 4-hour time point and lysed to assess the killing of intracellular bacteria. (C) A representative plot 

of the macrophage killing activity between 2 and 4-hour time points. Data is represented as median ± 

range. Data was transformed to logarithmic and analysed by Kruskal-Wallis test with Dunn’s post-test 

compared to the unstimulated condition (n= 4-11) *=p<0.05, **=p<0.01. 
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Figure 4-2: Classical macrophage activation enhances killing of S. pneumoniae at early time points Wild-type and transgenic BMDMs were activated with 20ng/ml IL-

4, IL-10, IFN-γ or 20ng/ml IFN-γ + 100ng/ml LPS for 24 hours. Cells were washed and challenged with S. pneumoniae serotype 1 (MOI 10) for a duration of 2 hours. (A-B) 

At the 2-hour time point a gentamicin protection assay was performed, cells were lysed and supernatants serially diluted and plated to determine cfu (C-D) The remaining 

cells were incubated in a low dose of vancomycin until the 4-hour time point and lysed to assess the killing of intracellular bacteria. Data was transformed to logarithmic 

and analysed by Kruskal-Wallis test with Dunn’s post-test (E) A representative plot of the macrophage killing activity between 2 and 4-hour time points. The dotted-line 

represents the transgenic mouse. Data was transformed to logarithmic and analysed by two-way ANOVA with Sidak’s post-test, no significance was found between willd-

type and transgenic macrophages at each timepoint *=p<0.05, **=p<0.01, ***=p<0.001(n=3-9) data is represented as median ± range. 
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Figure 4-3: Macrophage activation does not significantly affect phagocytosis of latex beads  

MDMs were activated with 20ng/ml IL-4, IL-10, IFN-γ or 20ng/ml IFN-γ + 100ng/ml LPS for 24 hours. 

Macrophages were washed before challenge with fluorescent latex beads (MOI 10). Beads were 

opsonized before challenge and cells were incubated with beads for a duration of 4 hours. At this time 

point macrophages were washed to remove extracellular beads and fixed with 2% paraformaldehyde. 

Coverslips were mounted in DAPI containing mounting medium and analysed by fluorescent microscopy. 

Cell density per field and number of beads per cell was quantified. No significance was determined by 

one-way ANOVA with Dunnett’s post-test compared to the unstimulated condition (n=3) data is presented 

as mean ± SEM.    

4.2.2. Macrophage activation has minimal effect on microbicidal production  

Early macrophage killing of pneumococci takes place in the maturing phagosome and can be 

attributed to several different phagocyte microbicidal mechanisms including ROS, NO and RNS 

generation (Aberdein et al., 2013). Since CAM up-regulate genes involved in ROS and NO 

production (Mantovani et al., 2004) and as demonstrated in section 4.2.1 M(IFN-γ) are more 

effective at clearing infection, I predicted macrophages stimulated with IFN-γ would show 

increased ROS and NO production. MDMs were stained with DCF-DA (ROS) or DAF-FM (NO) and 

analysed by flow cytometry. Although macrophage exposure to bacteria caused generation of 

ROS in all conditions, IFN-γ activation was not found to affect levels of ROS production in MDMs 

(Figure 4-4). Macrophage activation also had no significant effect on NO generation after 4 hours 

of S. pneumoniae challenge but the NO signal remained low in comparison to ROS generation 

(Figure 4-5). Lack of significance between activation conditions was surprising as there is a 

marked increase in pneumococcal killing by M(IFN-γ) and the mechanism cannot be explained 

as due to significant changes in ROS or NO after 4 hours of challenge on the basis of these results. 

Wild-type and transgenic BMDMs were also analysed for ROS production (Figure 4-6). IFN-γ 
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activation did show enhanced ROS production and this result reached significance compared to 

all other activation states. 
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Figure 4-4: Macrophage activation does not affect intracellular ROS production after S. pneumoniae 

infection 

MDMs were activated with 20ng/ml IL-4, IL-10, IFN-γ or left unstimulated for 24 hours. Cells were washed 

and mock challenged or challenged with S. pneumoniae serotype 1 (MOI 10) for a duration of 4 hours. At 

the time point cells were washed and stained with 10μM DCF-DA. After staining macrophages were 

scraped and resuspended in PBS and placed on ice protected from light until analysis by flow cytometry. 

Unstained data values were subtracted from stained values to account for autofluorescence. (A) 

representative flow plots pictured (B) Data was transformed to logarithmic and analysed by repeated 

measures two-way ANOVA with Sidak’s post-test *=p<0.05, ****=p<0.0001, data represented as mean ± 

SEM (n=4). 

A) 
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Figure 4-5: Macrophage activation does not affect NO production after S. pneumoniae infection  

MDMs were activated with 20ng/ml IL-4, IL-10, IFN-γ or left unstimulated for 24 hours. Cells were washed 

and mock challenged or challenged with S. pneumoniae serotype 1 (MOI 10) for a duration of 4 hours. At 

time point cells were washed and stained with 5μM DAF-FM. After staining macrophages were scraped 

and resuspended in PBS and placed on ice protected from light until analysis by flow cytometry. Unstained 

data values were subtracted from stained values to account for autofluorescence. (A) representative flow 

plots pictured (B) Data was transformed to logarithmic and analysed by repeated measures two-way 

ANOVA with Sidak’s post-test. No significance was found between activation conditions, data represented 

as mean ± SEM (n=6). 

  

A) 
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Figure 4-6: Macrophage activation does not affect intracellular ROS production after S. pneumoniae 

infection  

BMDMs were activated with 20ng/ml IL-4, IL-10, IFN-γ or left unstimulated for 24 hours. Cells were 

washed and mock challenged or challenged with S. pneumoniae serotype 1 (MOI 10) for a duration of 4 

hours. At time point cells were washed and stained with 10μM DCF-DA and analysed by flow cytometry. 

Unstained data values were subtracted from stained values to account for autofluorescence. 

Representative flow plots are pictured (A) Mock challenged and S. pneumoniae challenged samples are 

compared by repeated measured two-way ANOVA with Sidak’s post-test. Stars directly above the bars 

indicate significance compared to the mock infected. (B) Wild-type and transgenic BMDMs are compared 

in mock infected and S. pneumoniae infected cells. Significance determined with repeated measures two-

way ANOVA and Sidak’s post-test (n=4) *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001, data 

represented at mean ± SEM. 
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4.2.3. CAM show enhanced apoptosis at late time points of S. pneumoniae 

challenge 

I next turned my attention to analysing late time points of S. pneumoniae infection when early 

killing mechanisms have become exhausted and apoptosis associated killing occurs (Ali et al., 

2003; Dockrell et al., 2001a). Mcl-1 is a mitochondrial protein which not only regulates apoptosis 

but can also influence mitochondrial metabolic function and ATP generation (Perciavalle et al., 

2012). As discussed elsewhere in this thesis, macrophage activation is also tightly linked to the 

mitochondria. Bacterial products and intracellular pathogens cause macrophages to switch from 

oxidative phosphorylation to  metabolic pathways which favour production of NADPH derived 

ROS such as those associated with glycolysis or the pentose phosphate pathway (Ghesquière et 

al., 2014; Haschemi et al., 2012). I hypothesised macrophage activation could influence 

apoptosis associated killing since published work by our group shows nitrosative stress helps 

sensitise apoptosis via the mitochondrion (Marriott et al., 2004) and this is known to be 

regulated by activation phenotype (Rath M, 2014). Since activation state is linked to metabolism 

(Galván-Peña and O'Neill, 2014) and Mcl-1 can influence mitochondrial metabolism (Perciavalle 

et al., 2012) and my group has also some data that the Mcl-1 transgene can regulate oxidative 

phosphorylation (Bewley et al., 2017), I also explored if the transgene might modify the effects 

of activation state on apoptosis-associated killing. Therefore, I reasoned decreasing levels of 

Mcl-1 during apoptosis might also encourage switching to an alternative form of energy 

production such as glycolysis. A decrease in Mcl-1 protein levels typically occurs at 16 hours and 

continues to decrease thereafter (Marriott et al., 2005) so I decided to analyse apoptosis from 

16 – 24 hours in MDMs and as macrophage apoptosis occurred slightly earlier in my experiments 

with BMDMs I began analysis in murine cells at 14 hours. I first examined the effects of 

macrophage activation on apoptosis at an early time point of 4 hours (Figure 4-7) which showed 

as expected negligible levels of apoptosis as confirmed by nuclear fragmentation analysis and 

no alteration with activation. Initial analysis included M(IFN-γ+LPS) conditions. Results show that 

activation of both MDMs (Figure 4-8) and BMDMs (Figure 4-9) with IFN-γ+LPS results in higher 

levels of apoptosis at 16, 20 and 24 hours post S. pneumoniae challenge. In BMDMs, significant 

differences are only seen in wild-type macrophages as the level of apoptosis remains low in 

transgenic macrophages across all activation conditions until 24 hours when apoptosis levels 

begin to increase in the transgenic mouse, albiet not significantly. Key time points were repeated 

with M(IFN-γ) stimulation and using caspase 3/7 activation as a secondary determinant of 

apoptosis (Figure 4-10). Analysis of nuclear fragmentation at 16 hours in MDMs showed a 

significant increase in M(IFN-γ) apoptosis compared to all other activation states. M(IFN-γ) 
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caspase 3/7 activation was significantly increased compared to M(IL-10) macrophages. At 20 

hours post S. pneumoniae challenge, other activation states seem to have caught up with M(IFN-

γ) apoptosis levels except M(IL-4) which still showed significantly lower levels of caspase 3/7 

activation, indicating stimulation with IL-4 might delay onset of apoptosis. Variability in levels of 

apoptosis with BMDM and some higher data points in some of the unstimulated BMDM 

condition prevented detection of significant differences however there were again lower levels 

of apoptosis in the transgenic BMDM and there appeared to be higher levels of apoptosis in 

M(IFN-γ) than in M(IL-4) or M(IL-10) conditions.  
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Figure 4-7: Macrophage activation does not affect apoptosis at early time points  

Wild-type and transgenic BMDMs were activated with 20ng/ml IL-4, IL-10, 20ng/ml IFN-γ + 100ng/ml LPS 

or left unstimulated for 24 hours. Cells were washed and challenged with serotype 1, S. pneumoniae (MOI 

10) for a duration of 4 hours and analysed by microscopy. (A) Cell Density per field was quantified by DAPI 

staining. (B) Nuclear fragmentation and condensation by DAPI staining was used to quantify apoptosis. 

No significance was determined using a two-way ANOVA with Sidak’s post-test, data is represented as 

mean ± SEM (n=3). 
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Figure 4-8: IFN-γ + LPS treatment enhances apoptosis at late time points of S. pneumoniae infection in 

MDMs 

MDMs were activated with 20ng/ml IL-4, IL-10 or 20ng/ml IFN-γ + 100ng/ml LPS for 24 hours. Cells were 

washed and challenged with S. pneumoniae serotype 1 (MOI 10) or mock infected for a duration of (A) 16 

(B) 20 or (C) 24 hours and analysed by microscopy. Cell Density per field was quantified and nuclear 

fragmentation and condensation by DAPI staining. Data is presented as mean ± SEM. No significance was 

determined between activation conditions using Kruskal-Wallis with Dunn’s post-test (n=3).  
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Figure 4-9: IFN-γ + LPS treatment enhances apoptosis at late time points of S. pneumoniae infection in 

BMDMs 

Wild-type and transgenic BMDMs were activated with 20ng/ml IL-4, IL-10 or 20ng/ml IFN-γ + 100ng/ml 

LPS for 24 hours. Cells were washed and challenged with serotype 1, S. pneumoniae (MOI 10) for a 

duration of (A) 14, (B) 16, (C) 20 or (D) 24 hours and analysed by microscopy. Cell Density per field was 

quantified by DAPI staining. Nuclear fragmentation and condensation by DAPI staining was used to 

quantify apoptosis. Significance was determined using two-way ANOVA with Sidak’s post-test, *=p<0.05, 

**=p<0.01 (n=2-4). 
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Figure 4-10: IFN-γ activation is associated with increased nuclear fragmentation and caspase 3/7 

activation 

Human MDMs and murine wild-type and transgenic BMDMs were unstimulated or activated with 20ng/ml 

IL-4, IL-10 or IFN-γ for 24 hours. (A-B) MDMs were washed and challenged with serotype 1, S. pneumoniae 

(MOI 10) for a duration of 16 or 20 hours, and analysed by microscopy for cell density and nuclear 

fragmentation (DAPI) and caspase 3/7 activation (NucView), data analysed by Kruskal-Wallis with Dunn’s 

post-test (n=6) (C) BMDMs were challenged for 16 hours and analysed as above, significance was 

determined using a two-way ANOVA with Sidak’s post-test comparing wild-type and transgenic BMDMs 

and activation conditions (n=4) *=p<0.05, **=p<0.01, ***=p<0.001, data is presented as mean ± SEM. 

 

4.2.4. CAM show increased killing of pneumococci at late time points 

Previously published work has shown increases in macrophage apoptosis at late time points 

correlate with increases in pneumococcal killing (Dockrell et al., 2001a) through re-engagement 

of mitochondrial microbicidal mechanisms (Bewley et al., 2017). To understand killing capacity 
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of activated macrophages at late time points of infection, gentamicin protection assays were 

conducted on and BMDMs (Figure 4-11) from 16 – 20 hours post infection. I hypothesised that 

M(IFN-γ) activation would show increases in killing capacity in both wild-type and transgenic 

BMDMs since apoptosis was increased in both. Results showed an increased trend in killing 

capacity for IFN-γ stimulated macrophages and this result reached significance in the wild-type 

BMDMs compared to IL-4 and the transgenic BMDMs compared to all other activation 

conditions. The increase in killing capacity of M(IFN-γ) transgenic macrophages was not fully 

consistent with the apoptosis data (Figure 4-10). This unexpected result could be due to 

insufficient replicates and time points analysed. However, it could also reflect enhanced 

engagement of canonical killing mechanisms independent of apoptosis (as shown to be 

increased in Figure 4-1 and Figure 4-2).   
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Figure 4-11: Pro-inflammatory macrophage activation enhances Killing of S. pneumoniae at late time points Wild-type and transgenic BMDMs were activated with 20ng/ml 

IL-4, IL-10 or IFN-γ for 24 hours. Cells were washed and challenged with serotype 1, S. pneumoniae (MOI 10) for a duration of 16 hours. (A) At the 16 hour time point cfu in 

the cell supernatant was determined by Miles-Misra. (B) a gentamicin protection assay was performed, cells were lysed and supernatants serially diluted and plated to 

determine cfu. (C) The remaining cells were incubated in a low dose of vancomycin until the 18 hour time point and lysed to assess the killing of intracellular bacteria. (D) A 

representative plot of the macrophage killing activity between 16 and 18hour time points. The dotted-line represents the transgenic mouse. Data was transformed to 

logarithmic and no significance determined by repeated measures two-way ANOVA with Sidak’s post-test (n=5) *=p<0.05, **=p<0.01.



 
 

4.2.5. Transcriptomic analysis reveals T-cell signatures in CD68 Mcl-1 

transgenic AMs after 16 hours of S. pneumoniae challenge 

Some detail of the pathway of apoptosis associated killing has been previously delineated and 

published (Bewley et al., 2011a; Marriott et al., 2005), however, our group was yet to explore 

the wider genomic changes associated with apoptosis associated killing in AMs and the 

differences between wild-type and CD68 Mcl-1 transgenic mice at both baseline and after 

infection. To further understand the regulation of apoptosis associated killing and the effects of 

the CD68 Mcl-1 transgene on down-stream signalling, we conducted a transcriptomic analysis 

in collaboration with GlaxoSmithKline (GSK). RNA was isolated from AMs at 16 hours post intra-

tracheal infection with S. pneumoniae serotype 1. BAL was initially collected from 3 individual 

experiments (see detail below), samples were analysed for neutrophil content and mice with 

>10% were excluded.  

 

The remaining samples were then pooled according to experiment, sex genotype and infection, 

for example:  

Experiment  Sex Genotype Infection 

1 Male WT PBS 

1 Male WT SPN 

1 Male TG PBS 

1 Male TG SPN 
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This gave a total of 8 samples for experiment 1, 8 samples for experiment 2 and 4 samples for 

experiment 3, leading to a total of 20 samples from which RNA was then extracted and ran on 

individual Affymetrix GeneChip Mouse Genome 430 2.0 Array chips and analysed as 20 

individual observations. 

Background noise was corrected for by robust multi-array average (RMA) correction and probe-

sets cut down to give a total of 16,375 variables (Irizarry et al., 2003). Initial analysis was carried 

out by the bioinformatics department at GSK, including normalisation of data, determination of 

significant probe sets and pathway analysis. Crucially, the principal component analysis (PCA) 

revealed that component one accounted for the largest variable in the data-set (27.3%). This 

variable represents the difference between independent experiments rather than genotype or 

challenge (Figure 4-12). Contrary to experiment 1 and 2, the outlier, experiment 3, included only 

female mice. Previous studies have highlighted the importance of sexual dimorphism in immune 

cell recruitment (Kay et al., 2015), so it is perhaps not surprising to see a large variation in this 

experiment. When hierarchical clustering was conducted, on all 16,375 probes, observations 

clustered into individual experiments rather than infection or strain (Figure 4-12). Despite 

variance, only one sample from experiment 3 did not pass correlation quality control and given 

the small sample size, it was deemed appropriate to still include this experiment in the initial 

analysis. Data was fitted to linear regression and the following model used: 

Model ~ strain + infection + strain: infection 

Factor 1: Strain - wild-type or transgenic 

Factor 2: Infection - PBS or S. pneumoniae 

Factor 1 and 2 were crossed and a type 3 ANOVA was conducted on the data followed by 

individual t-tests on each of the following experiments: 

1. PBS => Wild-type vs Transgenic 

2. S. pneumoniae => Wild-type vs Transgenic 

3. Wild-type => S. pneumoniae vs PBS 

4. Transgenic => S. pneumoniae vs PBS 

P-value data to the level of 5% significance was computed and a false discovery rate (FDR)1 

correction using the Bonferroni – Holm method was also used with a cut-off level of 5% as a 

method of multiple test correction, however, FDR analysis returned only one or two significantly 

                                                           
1 GSK analysis initially returned FDR significant gene statistics, which were then used for pathway analysis, however 
the complete list of significant genes was not recieved and findings could not be exactly replicated at Sheffield.  
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changed genes (Table 4-1) so this cut-off was not applied to this dataset and significantly 

changed genes were interpreted by p<0.05 with a total fold change of > +/- 1.5 visualised by 

volcano plots in Figure 4-13.  

Table 4-1: Significantly altered genes 

 FC>1.5_ 
p<0.05 

 

FC<-1.5_ 
p<0.05 

FC>1.5_ 
FDR<0.05 

FC<-1.5_ 
FDR<0.05 

PBS -> WT vs TG 16 79 0 0 

SPN -> WT vs TG 7 38 0 1 

TG -> SPN vs PBS 24 24 1 0 

 WT -> SPN vs PBS 19 14 0 0 

 

Significantly altered genes from each experiment were then further analysed using pathway 

analysis software (KEGG, Metabase, NextBio). It was expected that significant hits would include 

genes involved in the macrophage immune response pathways, however results showed 

surprisingly that the most significantly altered genes in S. pneumoniae challenged wild-type vs 

transgenic macrophages were indicative of a T-cell signature in transgenic S. pneumoniae 

challenged samples (Figure 4-14). This result was unanticipated as cytospin analysis of BAL 

samples revealed no evidence of infiltrating lymphocytes. Significantly altered genes included 

key components of T-cell signalling pathways; CD278 – inducible T-cell co-stimulator (ICOS), 

CD90 - (Thy1) a pan murine T-cell marker, lymphocyte-specific protein tyrosine kinase (Lck) 

involved in T-cell receptor signalling, Signalling lymphocytic activation molecule 1 (Slamf-1) a T-

cell surface glycoprotein, T-cell receptor β chain (TCR-β) and CD247 – T-cell receptor T3 zeta 

chain. It is important to note that most of these genes have also been observed in myeloid cell 

signalling so it is also a possibility that the T-cell signature might be attributable to macrophages 

expressing T-cell associated genes.  There were no significant levels of T-cells present in the BAL 

when analysed by cytospin which supports T-cell signature gene expression by macrophages 

however further analysis of cell populations is needed to understand the presence and 

contributions of each cell type to the infection site.   
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Figure 4-12: Principal component analysis (PCA) and hierarchical clustering 

PCA was carried out on the complete list of experiments (20 observations) using Array Studio software. 

The blue box highlights experiment 3 as an outlier. Complete-linkage hierarchical clustering was observed 

on the RMA corrected list (16375 variables, 20 observations) using Pearson-correlation co-efficient on 

both the observation and variable tree. Dendrograms indicate clustering.  

-4.00 4.00 

B) 



130 
 

 

 

Figure 4-13: Visualisations of significantly altered genes in experiments 1-4 

Data was firstly cut down from 41.5K to 16K probes and then the RMA correction method used to 

eliminate background noise. The data set was then analysed for significantly changed probes of p<0.05 

and +/- 1.5-fold change. (A) volcano plots of 16K probe sets included in the report, red lines indicate 

p<0.05 and +/- 1.5-fold change cut offs. (B) Positively altered gene changes (C) negatively altered gene 

changes from each of the four experiments based on a p value of <0.05 and +/- 1.5-fold change. All data 

analysed using Array Studio software. Venn diagram data represented using Venny 2.1.  

A) 

B) C) 
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Figure 4-14: Heat map and KEGG pathway visualisation of significantly altered genes in S. pneumoniae 

=> wild-type vs transgenic experiment.  

(A) Significantly altered genes at the cut off level of p<0.05, fold change +/-1.5 indicate up-regulation of 

T-cell signalling pathways in transgenic samples. T-cell genes are highlighted in red. Samples are ordered 

by infection, genotype (strain) and individual experiment. (B) KEGG pathway analysis reveals genes 

involved in T-cell signalling pathways (red) – obtained from the original GSK report.  

B
) 
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4.2.6. Multi-colour flow cytometry analysis does not identify a difference in 

specific cell populations between wild-type and transgenic AMs at 16 

hours of S. pneumoniae challenge 

To validate if the T-cell signal was associated with T-cell recruitment to the mouse lungs of 

transgenic mice, I conducted multi-colour flow cytometry analysis of myeloid and T-cell subsets 

in BAL fluid and lung tissue from S. pneumoniae challenged animals at 16 hours post inoculation. 

Myeloid flow cytometry analysis was based on a published panel created by Misharin and 

colleagues (Misharin et al., 2013), the T-cell panel was adapted from a protocol developed by 

our collaborators at GSK. Gating strategies for the myeloid and T-cell panel can be seen in Figure 

4.15 and Figure 4.16 respectively. I hypothesised that if T-cell recruitment were present it was 

most likely to be Th1 or Th17 helper cells given the important role these T-cell subsets play in 

the resolution of pneumococcal infection and colonisation (Kemp et al., 2002; Olliver et al., 2011; 

Zhang et al., 2009). Furthermore, work presented earlier in this chapter indicates IFN-γ plays a 

central role in killing of intracellular bacteria at both early and late time points of pneumococcal 

infection and that IFN-γ could potentially help to restore the killing defect in the presence of the 

Mcl-1 transgene. It was therefore interesting to speculate whether transgenic macrophages 

required pro-inflammatory T-cell subsets producing pro-inflammatory agents such as IFN-γ to 

prime the AMs into an optimal activation state which might encourage increased killing to tackle 

pneumococcal infection. This hypothesis was based on the fact that bacterial clearance is 

impaired in transgenic AMs compared to wild-type macrophages (Bewley et al., 2017). The 

image below demonstrates this hypothetical model. There was not expected to be any change 

in myeloid recruitment between PBS treated wild-type and transgenic mice as Mcl-1 over 

expression is macrophage specific, however the transcriptomic study showed parts of the T-cell 

signature up-regulated in the PBS treated transgenic mouse (experiment 1) as well as the S. 

pneumoniae infection condition. While the presence of the CD68 Mcl-1 transgene showed no 

difference in any cell populations in the digested lung or the BAL fluid in either panel (Figure 

4.17, 4.18), there was a high presence of neutrophils in the BAL fluid of both wild-type and 

transgenic infected mice. This is unusual as the low dose of infection used should not induce 

recruitment of neutrophils in the wild-type mouse as the presence of AMs should be sufficient 

to clear infection without polymorphonuclear (PMN) cell recruitment, (Dockrell et al., 2003). It 

is possible that recruitment of PMN indicates that a higher dose of pneumococci reached the 

lungs, or that the mice were more susceptible or the bacterial strain more virulent than intended 

and this recruitment prevented the need of a T-cell intervention to resolve the infection in 

transgenic macrophages. However, cfu calculations from terminal bleeds showed no evidence 
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of bacteraemia which is characteristic of a high dose of infection (Figure 4-19) (Dockrell et al., 

2003). It is noteworthy that these experiments required use of a new stock of bacteria after 

failure of both the primary freezer and liquid nitrogen stores in rapid succession wiped out the 

original stock and a licencing change prevented use of the original strain from Statens Serum 

Institut. So, it is likely that this infection resulted in slightly greater stimulus for myeloid cell 

recruitment than intended and had exceeded the tipping point being modelled in the 

transcriptomic experiment, masking the ability to detect the lymphocyte recruitment. 

Figure 4-15: Myeloid panel gating strategy  
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Cells were isolated from enzymatically digested mouse lungs. Debris events were first separated using 

side-scatter – area (SSC-A) and forward scatter – area (FSC-A) characteristics. Single cells were then gated 

using SSC-A and side scatter – width (SSC-W) characteristics. Immune cells were selected using CD45 

staining. AM (Mφ) and CD103+ DCs were then identified by isolating a CD11chi population and separating 

based on CD64 or CD24 positive staining respectively. The CD11bhi population was then selected from 

CD11clo and then the CD24hi population stained for Siglec F (eosinophils) or Ly6G (neutrophils). MHC class 

II positive cells were identified from the remaining CD24lo population and separated based on CD64 

positivity (Interstitial macrophages) or CD24 positivity (CD11b+ DCs).  
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Figure 4-16: T-cell flow panel gating strategy  

Cells were isolated from enzymatically digested mouse lungs. Debris events were first separated using 

side-scatter – area (SSC-A) and forward scatter – area (FSC-A) characteristics. Single cells were then gated 

using SSC-A and side scatter – width (SSC-W) characteristics. Immune cells were selected using CD45 

staining. NK cells and B-cells were then identified by CD49 and CD19 staining respectively. The gating 

strategy to identify differential T-cell populations is as follows: T-cells were gated from CD45+ cells using 

TCR-β as a marker of the T-cell receptor. From the T-cell population, CD4+ T-cells were gated to identify 

the T-helper cell population. Cells were then separated as CD183+ (Th1 cell marker) or CD196+ (Th17 cell 

marker).  
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Figure 4-17: Percentage populations of T-cells and myeloid cells in enzymatically digested mouse lung.  

Wild-type and transgenic mice were challenged with S. pneumoniae serotype 1, MOI 10, for a duration of 

16 hours or mock challenged with PBS. At the time point, lungs were extracted and digested cells were 

extracted and stained with fluorescent antibodies and analysed on the LSRII flow cytometer. Total cell 

percentages from the CD45 positive population were calculated for (A) myeloid subsets using the myeloid 

gating strategy described in Figure 4-15 and (B) T-cell populations using the T-cell getting strategy 

described in Figure 4-16. Data analysed using repeated measures two-way ANOVA with Sidak’s multiple 

comparison test, data is represented as mean ± SD (n=3) *=p<0.05. 
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Figure 4-18: Percentage populations of T-cells and myeloid cells in murine BAL  

Wild-type and transgenic mice were challenged with S. pneumoniae serotype 1, MOI 10, for a duration of 

16 hours or mock challenged with PBS. At the time point, broncho alveolar lavage (BAL) fluid was 

collected. Cells were extracted and stained with fluorescent antibodies and analysed on the LSRII flow 

cytometer. Total cell percentages from the CD45 positive population were calculated for (A) myeloid 

subsets using the myeloid gating strategy described in Figure 4-15 and (B) T-cell populations using the T-

cell getting strategy described in Figure 4-16. Data analysed using repeated measures two-way ANOVA 

with Sidak’s multiple comparison test, data is represented as mean ± SD (n=3) *=p<0.05. 
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Figure 4-19: Infection does not cause bacteraemia in the wild-type or transgenic mouse.  

Wild-type and transgenic mice were infected with 104 S. pneumoniae serotype 1, MOI 10, for a duration 

of 16 hours. At the point mice were culled and blood samples collected to assess presence of bacteria in 

the blood. Blood was then diluted and plated using the Miles-Misra technique. No bacterial growth was 

observed after overnight incubation. 

 

4.3. Discussion 

The key finding of this chapter is the demonstration of the role of IFN-γ in the innate immune 

response to pneumococcal challenge. Classical activation programs which are stimulated by 

infection with Gram positive, Gram negative and mycobacteria are considered to occur in 

response to bacterial infection (Nau et al., 2002). Nau and colleagues demonstrate bacterial 

products which are shared with S. pneumoniae such as lipoteichoic acid, can induce pro-

inflammatory signalling pathways through TLR2 activation. S. pneumoniae also express 

peptidoglycan and lipoprotein components which are other known activators of Nod2 and TLR2 

signalling (Davis et al., 2011; Koppe et al., 2012; Opitz et al., 2004). Therefore, it is reasonable to 

assume that S. pneumoniae challenge would stimulate a CAM response. However, the chemical 

structure of lipoteichoic acid can vary largely between bacterial species and indeed between 

serotypes of S. pneumoniae (Draing et al., 2006). Also, others have shown association of some 

bacterial species with alternative activation programs (Goldmann et al., 2007) either as a 

mechanism of host survival (Newton et al., 2000) or as a method of microbial interference to 

promote bacterial persistence (Benoit et al., 2008a). Regardless of the overall activation state 

induced by S. pneumoniae it is also important to determine the potential effect of differing 
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activation states on pneumococcal clearance, particularly as the activation state could be altered 

by co-infections such as parasitic infection or by diseases such as asthma, both which are 

associated with alternative activation, (Girodet et al., 2016; Noël et al., 2004). Therefore, I was 

interested in analysing how macrophage activation states would affect the host response to 

pneumococcal infection. As discussed elsewhere in this thesis, macrophage activation is an 

important contributor to host health and disease, using an in vitro infection model where 

macrophages are first activated before inoculation, which reflects the in vivo scenario where 

resident tissue macrophages are polarised to extreme phenotypes by the presence of disease 

and are then tasked with handling bacterial challenge. Furthermore, the presence of the CD68 

Mcl-1 transgene puts this model into the context of a COPD and HIV-1 infection where there is 

an apoptosis defect in AM (Bewley et al., 2017). As hypothesised, evidence presented in the first 

section of this chapter suggests macrophages appear to clear pneumococci more effectively, at 

early time points, when pre-stimulated into a classical phenotype. There is no difference in 

clearance between wild-type and transgenic macrophages as expected as at these early time 

points macrophages will not be undergoing apoptosis associated killing and therefore the effect 

of Mcl-1 over-expression will be negligible.  

There is conflicting evidence for the effect of macrophage activation on phagocytosis, owing in 

part to the complexity of this macrophage effector function. S. pneumoniae is internalised by a 

variety of mechanisms including Fcγ, complement and scavenger receptors (Gordon et al., 

2000). IL-4 activation increases CD206 expression (Stein et al., 1992) yet some suggest IL-4 

activation decreases  macrophage internalisation (Martinez and Gordon, 2014; Varin et al., 

2010). Other alternative stimuli such as IL-10 increase Fcγ receptor mediated uptake while IFN-

γ activation has been shown to inhibit it (Frausto-Del-Río et al., 2012a). Furthermore, IFN-γ 

activation has been shown to decrease complement mediated and scavenger receptor mediated 

internalisation (Metzger, 2009; Schlesinger and Horwitz, 1991b), albeit it is important to 

consider that the latter study was conducted in the context of viral infection which has been 

shown to cause defective bacterial phagocytosis in macrophages (Cooper et al., 2016). 

Alternatively, there is evidence that Fc receptor expression for the ingestion of IgG opsonised 

particles is increased in CAM (Beyer et al., 2012). In addition, MDMs primed with recombinant 

IFN-γ display increased association and internalisation of Salmonella enterica serovar 

Typhimurium in the absence of opsonisation indicating IFN-γ might enhance bacterial 

internalisation by promoting direct interaction with non-opsonic phagocytic receptors (Gordon 

et al., 2005). Latex bead experiments showed no difference in phagocytosis between all 

activation conditions. This suggests the reason for lower recovery of pneumococci from CAM is 
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due to increased trafficking and killing of bacteria in the first hour of internalisation 

(macrophages are placed on ice for 1 hour immediately prior to inoculation to allow for bacterial 

adhesion, during which time no internalisation takes place), this increased killing activity is in 

line with other reports (Gordon et al., 2005; Mosser and Edwards, 2008). However phagocytosis 

was only examined in human macrophages and since there are discrepancies between human 

and murine phagocytic receptor expression and immunology in general, it would be beneficial 

to check the effects of activation on phagocytosis of S. pneumoniae in BMDMs also (Mestas and 

Hughes, 2004). 

Despite increased killing, M(IFN-γ) showed no significant increase in ROS or NO levels at 4 hours 

after pneumococcal challenge which was unexpected given the relationship between classical 

activation and up-regulation of genes involved in microbicidal activity (Mantovani et al., 2004). 

Human macrophages have been suggested to be incapable of producing as large amounts of NO 

as murine macrophages do (Gordon et al., 2005; Jesch et al., 1997), and NADPH-derived ROS is 

not necessary for pneumococcal killing (Biggar et al., 1976; Marriott et al., 2007). Further, NO 

utilisation as a macrophage killing mechanism is thought to be limited until later during infection 

(Marriott et al., 2004) therefore we might not expect to see a significant signal at this early time 

point. Interestingly, members of our group have highlighted that it is not the amount of ROS 

generated in the cell which is key to pneumococcal killing, rather it is localisation of ROS adjacent 

to the phagolysosome (Bewley et al., 2017). Therefore, it is possible that classical activation by 

IFN-γ stimulation can induce more efficient bacterial killing by localising ROS production to the 

phagosome without significantly increasing overall abundance. Alternatively, my results could 

reflect increased production of other anti-bacterial factors such as anti-microbial peptides or 

proteases such as lysozyme M which has been shown to be critical for digestion of S. 

pneumoniae peptidyglycan and to subsequent stimulation of Nod2 and pathogen clearance 

(Davis et al., 2011). Furthermore, S. pneumoniae has been shown to induce release of the 

antimicrobial peptides, β-defensins which have been shown to be up-regulated in response to 

IFN-γ (Fabri et al., 2011; Scharf et al., 2012).  

As described, at late time points during pneumococcal challenge macrophages utilise apoptosis 

associated killing as a mechanism of host defence (Dockrell et al., 2001a). Since macrophage 

activation is an integral part of macrophage function, I hypothesised macrophage activation 

might have some impact on macrophage apoptosis associated killing. IFN-γ showed increased 

apoptosis following pneumococcal challenge in both the presence and the absence of LPS 

indicating classical activation enhances apoptosis associated killing. IFN-γ and LPS have both 



142 
 

been shown to reduce cell viability individually and in combination in my own data (chapter 3) 

and in reports by others (He et al., 2008). These observations raise the question of whether IFN-

γ stimulated apoptosis is linked to the apoptosis cascade we see at late time points of bacterial 

infection, which is triggered in response to intracellular bacteria described previously (Marriott 

et al., 2005), or occurs by a separate manner, which is an important consideration since there 

were some suggestions of increased cell death in transgenic cells after pneumococcal challenge. 

However, I have observed no evidence of apoptosis associated killing at early time points of 

mock infection in MDMs and BMDMs or challenge at 4 hours (BMDMs), indicating M(IFN-γ) is 

not sufficient to induce the apoptosis cascade without prolonged challenge with bacteria. 

Furthermore, my late time point data shows that M(IFN-γ) challenged macrophages display 

nuclear fragmentation with increased levels of caspase 3/7 activation which are core features of 

the apoptotic program associated with the apoptosis associated killing. Since IFN-γ is an inducer 

of microbicidal activity, stimulation may accelerate standard killing mechanisms and therefore 

apoptosis associated killing is not required. Further, it might be possible that the accelerated 

apoptosis we see in M(IFN-γ) wild-type cells which looks to also increase pneumococcal killing, 

begins to occur in transgenic M(IFN-γ) cells by IFN-γ related mechanisms overwhelming the 

inhibition of apoptosis by the transgene. In keeping with this view there was some evidence of 

increased apoptosis in some data points in Figure 4-9 and Figure 4-10. It would be beneficial to 

analyse the kinetics of killing and apoptosis over an extended time course to gain a more 

comprehensive idea of the exact tipping point towards apoptosis associated killing in M(IFN-γ) 

cells and also to include some analysis of earlier features of apoptosis such as some of the 

upstream mitochondrial events that could influence bacterial killing such as mROS generation 

(Bewley 2017). 

 Previously, we have shown the mechanism by which apoptosis triggered in response to 

intracellular bacteria re-engages the cell in bactericidal activity is by release of mitochondrial 

ROS (Bewley et al., 2017). The mechanism for increased killing by M(IFN-γ) is yet to be elucidated 

in this project however since I observe core features in common with the pathway triggered by 

intracellular bacteria and in particular since I observe caspase activation, which is known to 

trigger mROS (Ricci et al., 2003), I speculate a link to increases in mitochondrial ROS release. It 

is also noteworthy that IFN-γ has been shown to induce mitochondrial ROS production in other 

cell types (Rakshit et al., 2014; Yang et al., 2007). If this is indeed the case, it would then be 

interesting to discover whether IFN-γ stimulation increases bactericidal activity and cell death 

independently of the bacterial triggered apoptosis associated killing program or if it is at some 

point enhancing the cascade. One hypothesis was that stimulation with IFN-γ might cause 
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decreased Mcl-1 levels, however experiments conducted in the previous chapter confirmed no 

significant change in the baseline levels of Mcl-1 after macrophage activation. Another scenario 

might be that CAM downregulate Mcl-1 earlier in the infection time course, leading to earlier 

increases in apoptosis and killing than unstimulated macrophages. It would therefore be 

interesting to analyse this over a complete time course. Finally, it is possible that IFN-γ activation 

contributes to the apoptotic programme at some alternative stage such as increasing MOMP or 

caspase 3/7 activation through an alternative mechanism, such as NO sensitising the cell to 

apoptosis, as demonstrated in mycobacterial infection (Herbst et al., 2011). NO is known to 

enhance loss of mitochondrial inner transmebrane potential (m) and MOMP during 

pneumococcal infection (Marriott et al., 2004). In this regard, it was noteworthy that killing was 

restored by IFN-γ in Mcl-1 transgenic BMDMs which while this might have reflected apoptosis-

independent mechanisms could also have been due to increased apoptosis mechanisms that 

overwhelmed the control regulated by Mcl-1, acting on mitochondria or caspases downstream 

of MOMP. 

One way in which I hoped to shed more light on the specific molecular interactions during the 

time at which macrophages are undergoing apoptosis associated killing was by conducting a 

transcriptomic analysis by microarray of wild-type and transgenic macrophages with either PBS 

or S. pneumoniae challenge. I also hoped that this analysis might produce some hits involved in 

macrophage activation or macrophage metabolism to identify a mechanism for the effects of 

macrophage activation described earlier in this chapter. While the transcriptomic analysis 

returned few genes involved in macrophage activation, metabolism or effector functions 

differentially regulated by the transgene in response to bacterial challenge, it identified the 

presence of multiple signals associated with T-cell proliferation and recruitment. While the 

difference between individual experiments was the largest variable in the data set, the 

transcriptomics section of this thesis is viewed as a screen which requires further validation. My 

findings could not be validated by initial multi-colour flow cytometry after analysing myeloid and 

T-cell panels however, experiments were conducted using a different strain of S. pneumoniae 

serotype 1 obtained from the SHEILD consortium rather than Statens Serum Institut. This 

occurred due to loss of bacterial stocks when both the -80 and liquid nitrogen stores were 

compromised and obtaining new stocks from the Statens Serum Institut was not possible due to 

changes in this institute’s arrangements for sharing the strain, which would have resulted in 

signing over any intellectual property to the institute, which was not acceptable to the 

University. This variation in strain could lead to changes in the low dose infection model which 

was optimised using the previous strain. Furthermore, the mice were infected using the 
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intranasal technique rather than intratracheal infection as done in the transcriptomics study due 

to changes required in the Home Office Licence to make it compatible with all SHIELD partners. 

Variations in the infection technique can lead to differential amounts of inoculant reaching the 

lungs (Morales-Nebreda et al., 2014). The flow experiments should therefore be repeated after 

optimisation of infection using the new strain by the intratracheal method to ensure the correct 

inoculation dose is being used to achieve low dose infection and the tipping point originally 

studied was replicated. Furthermore, it would be ideal to rearrange the T-cell panel so we can 

also include antibodies for CD44 and CD62L to identify activated CD4+ T-cells (CD44hi CD62Llo). 

By first gating activated T-cells, I can say with more certainty that Th1 and Th17 populations are 

present and those cells which are CD183 and CD196 low can then be identified as Th2 cells. It 

also remains possible that components of the signal are also derived from cells other than 

lymphocytes for example, CD4, TCR (CD3) and ICOS have all been reported to show expression 

on macrophages and other myeloid subsets (Aicher et al., 2000; Baba et al., 2006; Fuchs et al., 

2017), CD90 has also been shown to be expressed on haematopoietic stem cells (Craig et al., 

1993) and CD247 in NK cell maturation (Beecher et al., 1994). 

Perhaps of more concern, the T-cell signature is stronger in experiment 1 than experiment 2 and 

3 and there is a possibility that the signature is an effect of a defect in the immunity of the mice 

used in this experiment, or an unrecognised minor viral illness, given that parts of the T-cell 

signature are also present in PBS treated mice. However, some T-cell markers are present 

throughout all three experiments. 

In conclusion, this chapter demonstrates the various effects of macrophage activation on 

effector functions after pneumococcal challenge, highlighting an important role for classical 

macrophage activation in clearing infection and in the enhancement of apoptosis in response to 

pneumococcal infection. Transcriptomics data has revealed an interesting T-cell signature which 

is yet to be fully validated by use of multi-colour flow cytometry. The results also suggest that 

situations in which apoptosis associated killing is compromised by high levels of Mcl-1 could be 

potentially overcome by IFN-γ, which might represent a useful strategy when this mechanism is 

altered in conditions such as COPD and HIV (Bewley et al., 2017). 
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5. Analysis of macrophage effector functions in response 

to NTHi challenge 

5.1. Introduction 

Carriage of NTHi is common and most often asymptomatic, existing in around 75% of the 

population at any one time without causing infection (Murphy and Apicella, 1987; Turk, 1982). 

Despite its relative innocuousness, NTHi is an opportunistic pathogen associated with disease in 

the vulnerable such as those at the extremes of age; as a cause of otitis media in children and 

respiratory tract infections in elderly adults (van Wessel et al., 2011). Additionally, NTHi invasive 

infections including pneumonia, meningitis and bacteraemia can occur alongside co-morbidities 

such as COPD and HIV-1 infection (Van Wessel et al, 2011).  

Research into NTHi infection has been somewhat neglected after introduction of the H. 

influenzae type B (Hib) vaccine in the 1990’s which was successful in largely reducing the number 

of infections caused by H. influenzae across European countries (Van Eldere et al., 2014). 

However, recent surveillance studies suggest that the prevalence of invasive infection caused by 

non-type b encapsulated and unencapsulated H. Influenzae is rising in the post-vaccine era 

(Ladhani et al., 2010; Van Eldere et al., 2014; van Wessel et al., 2011). NTHi is now the most 

common cause of invasive H. influenzae infections previously associated with Hib (van Wessel 

et al., 2011). It is therefore valuable to further explore the host-pathogen interactions of NTHi 

with the innate immune system and uncover new mechanisms of resolving infection which can 

potentially avoid the use of antibiotics given the growing resistance of NTHi to β-lactams (Van 

Eldere et al., 2014).   

Macrophages are essential for clearance of NTHi from the respiratory tract (Foxwell et al., 

1998a). As the resident immune cells of the lung, macrophages are responsible for recognition, 

ingestion and killing of NTHi by phagolysosomal trafficking (Martí-Lliteras et al., 2009). They are 

also critical for neutrophil recruitment and subsequent T-cell activation to bring about the 

second phase of bacterial killing (Foxwell et al., 1998c) 

As described earlier in this thesis, in response to S. pneumoniae challenge, macrophages 

undergo apoptosis as a mechanism of host defence. This so-called “apoptosis-associated killing” 

allows reengagement of macrophage microbiocidal killing mechanisms after the initial phase of 

bacterial killing has been exhausted (Bewley et al., 2011a; Dockrell et al., 2001b; Marriott et al., 

2005). This phenomenon has also been described in the macrophage response to E.Coli and Hib 

(Webster et al., 2010). Apoptosis in this situation occurs by the mitochondrial pathway: MOMP 
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followed cytochrome c release and caspase 3/7 activation which ultimately results in cell death 

(Bewley et al., 2011a). The key mediator in this apoptotic cascade is the anti-apoptotic protein 

Mcl-1 (Marriott et al., 2005).  

Given the rising importance of antibiotic resistance and the need for further insight into the 

interactions of NTHi with the innate immune system, I decided to explore the possible apoptotic 

responses of macrophages to NTHi infection. As NTHi is a human pathogen, the main model for 

this work has been human MDMs. When necessary, I have also assessed macrophage responses 

to NTHi in wild-type and transgenic Mcl-1 BMDMs which over express human Mcl-1 on a CD68 

(macrophage specific) promoter. Where applicable I have compared these responses to those 

of S. pneumoniae infection, a bacterium for which apoptosis associated killing has been fully 

characterised. In attempt to better understand the role of macrophage activation in NTHi 

infection, I have tested the effects of cytokine stimulation on phagocytosis and clearance of NTHi 

in both human and murine primary cells. Finally, I have repeated my key findings using an 

alternative NTHi lab strain considering the high levels variability seen between H. influenzae 

strains (Craig et al., 2001). 

5.2. Results 

5.2.1. Optimisation of NTHi challenge   

Since NTHi challenge had not already been optimised in our laboratory is was firstly important 

to determine the correct antibiotic concentrations for killing assays which require pulse 

antimicrobials (killing of extracellular bacteria) and maintenance antimicrobials (prevention of 

extracellular regrowth and subsequent re-internalisation of bacteria). Gentamicin was selected 

as an appropriate antimicrobial as it has previously been shown to be effective in killing 

extracellular NTHi (Ahrén et al., 2001; Kratzer et al., 2007). A concentration of 40µg/ml 

gentamicin was used as a pulse dose as this was the concentration found to largely eradicate 

extracellular NTHi (Figure 5-1A). Although 40µg/ml was not completely sufficient to kill all 

extracellular bacteria at the 4 hour time point, it did significantly reduce extracellular bacteria 

from 108 to 102 which is the equivalent of only one or two CFU per plate. Half of the cells were 

lysed at 4 hours and NTHi internalisation increased marginally with an increasing MOI. To the 

remaining cells which had received the pulse antibiotic treatment but had not been lysed, a 

chase dose of 2µg/ml gentamicin was applied for the remaining 16 hours of challenge to prevent 

any extracellular regrowth. After pulse/chase treatment, wild-type and transgenic macrophages 

fully cleared the 104 - 105 bacteria internalised at 4 hours by the second timepoint, lysis at 20 

hours, at all MOIs tested. Overnight incubation with a 2µg/ml gentamicin chase killed all 
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extracellular bacteria and no cfu, extracellular or intracellular were recovered at 20 hours (Figure 

5-1B). Complete clearance was unexpected – particularly in the transgenic mouse which, 

assuming NTHi activates macrophage apoptosis associated killing, I hypothesised would not fully 

clear such a large intracellular burden overnight. Furthermore, it was necessary to optimise a 

condition in which intracellular bacteria survived until a late time point as intracellular bacteria 

is necessary to drive macrophage apoptosis associated killing (Ali et al., 2003). Gentamicin has 

previously been shown to permeabilise the cell membrane and exhibit intracellular bactericidal 

activity at 50μg/ml over a time course of 2 hours although thorough washing with sterile PBS 

after short incubations was found to be sufficient to prevent the effect of gentamicin on 

intracellular bacterial killing (Drevets et al., 1994). However, since in the current model 

gentamicin was being applied to cells for a long incubation period over which it could potentially 

accumulate I attempted to identify the minimum concentration capable of preventing 

extracellular regrowth in order to minimise gentamicin interference with intracellular bacteria. 

I first tested a low dose of 0.075µg/ml gentamicin. Doses as low as 0.01μg/ml gentamicin have 

previously been shown to increase bacterial killing (Drevets et al., 1994) however 0.075μg/ml 

resulted in the regrowth of bacteria in the extracellular media at 20 hours (Figure 5-1C). I next 

tried an intermediate dose of 0.5µg/ml (Figure 5-1D) however, again, all bacteria were cleared 

by the 20-hour time point. To avoid potential problems which overnight incubation with 

gentamicin might cause, including entry to the cell, I decided to test a different experimental 

design. Since the aim of this optimisation experiment was to retain intracellular bacteria, MOIs 

of 10, 50 and 100 were tested in two different experimental designs, one in which cells were 

washed 3 times in 1ml sterile PBS at 4 hours to reduce the extracellular burden (Figure 5-1E) and 

another where cells were left post challenge until the 20 hour time point without any washing 

or antimicrobial treatment (Figure 5-1F). Both conditions involved no antimicrobial exposure 

until the 20 hour time point where a higher dose of 60µg/ml Gentamicin was used in the 30 

minute pulse step to ensure removal of all extracellular NTHi. Both the designs in Figure 5-1E 

and Figure 5-1F resulted in the survival of equal amounts of intracellular bacteria, so I decided 

to maintain the protocol presented in Figure 5-1F due to practicality. BMDMs were initially used 

for optimisation with the view to explore the effect of the CD68 Mcl-1 transgene and the 

increased availability of this cell type compared to human MDMs. Later, the same time course 

was conducted in MDMs. 
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Figure 5-1: Optimising NTHi challenge to ensure intracellular stress at later time points of 

exposure 

(A-D) Wild-type and transgenic BMDMs were challenged with NTHi at a MOI of 10, 50 or 100 for a duration 

of 4 hours (A) cfu counts from supernatants at 4 hours of challenge before and after being washed and 

incubated with ‘pulse’ antimicrobial (40µg/ml gentamicin) for a duration of 30 minutes. (B-D) After pulse 

antimicrobial treatment, half the cells were lysed and supernatants plated to determine intracellular 

bacterial content. Macrophages were then maintained in low doses of gentamicin ‘chase’ until the 20 

hour time point. (B) BMDMs were incubated with a dose of 2µg/ml C) 0.075µg/ml and D) 0.5µg/ml 

gentamicin during the chase period. (E) Washing BMDMs at 4 hours in sterile PBS to reduce the number 

of extracellular bacteria and pulsing with a higher dose of 60µg/ml gentamicin was also tested or (F) 

BMDMs were incubated without washing until 20 hours and intracellular cfu estimated. Schematic 

diagrams illustrate the experimental design, representative of at least 3 independent experiments. 

 

5.2.2. Prior activation does not alter macrophage response to NTHi 

Previous studies show that classical activation of macrophages by IFN-γ treatment can enhance 

microbicidal activity and pathogen clearance (MACKANESS, 1964; Murray et al., 2014). To 

understand whether clearance of NTHi can be accelerated in this manner, macrophages were 

activated with cytokines, IL-4, IL-10 and IFN-γ (as previously defined in chapter 3). I hypothesised 

that stimulating macrophages with IFN-γ would enhance pathogen clearance through 

upregulation of genes enhancing microbicidal responses (Benoit et al., 2008b) and as shown in 

chapter 4 with S. pneumoniae challenge. After 24 hours of activation, macrophages were 

challenged with NTHi and killing assays conducted at the 2 – 4 hour time point (Figure 5-2). After 

2 hours of bacterial challenge culture supernatants were collected and cfu estimated to assess 

for differences in bacterial load between conditions (Figure 5-2A). At this early time point, 

activation of MDMs showed no effect on internalisation and killing of NTHi (Figure 5-2B). The 

microbicidal response was also assessed at the 4 hour time point using DCF-DA and DA-FM to 

assess intracellular ROS and NO levels respectively (Figure 5-3). In general, NTHi infection caused 

a large increase in ROS production (2-3 log decades) (Figure 5-3A) compared to the mock 

infected control (Figure 5-3B) however prior macrophage activation had no effect on 

intracellular ROS generation, suggesting it was well induced and not influenced by the activation 

status of the macrophage. NO production was more modest, a higher response was seen in IFN-

γ stimulated cells, although this result was not significant (Figure 5-3C). IFN-γ activation is known 

to increase amounts of iNOS which is the enzyme responsible for the shift from L-Arginine 

metabolism to nitric oxide production (Mills et al., 2000b). However, mock infected IFN-γ 
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stimulated macrophages did not show heightened levels of NO. This may be because IFN-γ only 

works to prime the macrophage and a further stimulus such as TNFα or bacterial products (LPS) 

are needed to generate a detectable response (as described in chapter 3). In addition NO 

production is often a more delayed response to intracellular bacteria and significant production 

at this timepoint is often not observed (Marriott et al., 2004). Also it has been debated how 

much of human macrophage NO production is through iNOS as opposed to other sources such 

as endothelial nitric oxide synthase (eNOS) (MacKenzie and Wadsworth, 2003; Schneemann and 

Schoedon, 2002). Further, human MDM donor variability may have contributed to the large 

amount of variability in the results and limited the power to detect significance.  
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Figure 5-2: Macrophage activation has no effect on macrophage internalization and killing of 

NTHi at early time points.  

MDMs were activated for 24 hours with 20ng/ml IL-4, IL-10 IFN-γ or unstimulated. MDMs were challenged 

with NTHi at an MOI of 10 for 2 hours. (A) The extracellular cfu from each condition was estimated, no 

significance was determined by one-way ANOVA with Tukey’s post-test (n=3) (B) At 2 hours, intracellular 

killing of NTHi was assessed by gentamicin protection assay no significant difference was determined 

with two-way ANOVA and Sidak’s post-test (n=4) data is represented as median ± range.  
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Figure 5-3: Macrophage activation has no effect on microbicidal generation in response to NTHi 

Representative flow histograms show unstimulated (red), IL-4 (orange), IL-10 (blue) and IFN-γ (green). 

MDMs, activated with 20ng/ml IL-4, IL-10, IFN-γ or unstimulated, were challenged with NTHi or mock 

infected for a duration of 4 hours, flow cytometry analysis recorded the median fluorescence intensity 

(MFI) of (A-B) reactive oxygen species (ROS) production by DCF-DA staining, no significance was observed 

by one-way ANOVA with Tukey’s post-test (n=7) and (C-D) nitric oxide (NO) production by DAF-FM staining 

no significance was observed by one-way ANOVA with Tukey’s post-test (n=7). Data is represented as 

median ± range in all graphs. The value of the unstained control was subtracted from each condition to 

account for auto-fluorescence.   
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5.2.3.  The Mcl-1 transgenic macrophages display significantly less apoptosis 

at high MOIs and apoptosis increases with increasing MOI in BMDMs and 

MDMs 

As apoptosis associated killing occurs at around 20 hours with S. pneumoniae infection (Dockrell 

et al, 2001) and macrophage apoptosis is proportional to the intracellular burden, (Ali et al., 

2003), I hypothesised that the residual intracellular burden could drive apoptosis and transgenic 

macrophages would have decreased apoptosis. Furthermore, I thought that an increasing MOI 

might affect the level of apoptosis, as shown previously in S. pneumoniae infection (Ali et al., 

2003). Significant cell loss was apparent compared to the mock infected control, for all 

conditions, but no difference in cell density was seen with increasing MOI (Figure 5-4A). After 

20 hours of challenge with NTHi I observed low levels of apoptosis in BMDMs. At an MOI of 10 

apoptosis was seen in approximately 5% of cells confirmed by nuclear fragmentation analysis 

and caspase 3/7 activation demonstrated in Figure 5-4B and Figure 5-4C respectively and the 

result was significant for the nuclear morphology analysis. A rise in nuclear changes indicative 

of apoptosis was seen with increasing MOI in wild-type BMDMs, which reached significance at 

MOI of 100 versus MOI of 10. Whilst apoptosis in the transgenic mouse remained constant even 

with higher MOIs (Figure 5-4B). The increase in apoptosis did not reach significance when 

analysed by caspase activation, although there was a trend towards increased levels at higher 

MOI, however the number of repeat experiments was much lower and therefore further repeats 

are needed to determine significance. These results indicate that as the severity of the bacterial 

insult increases, macrophages increase their apoptotic response and this response is not 

reproduced to the same level in the transgenic macrophages. Cell density between the two 

genotypes and bacterial doses remained constant, perhaps owing to the modest levels of 

apoptosis and the fact that cells were only starting to become apoptotic at the time analysed 

(Figure 5-4A).  

Apoptosis was also examined in human MDMs. Macrophages were again challenged with NTHi 

for a duration of 20 hours before analysis of apoptosis measured by nuclear morphology or 

caspase activation. As the MOI increased, MDMs showed a significant decrease in cell density, 

which became significant at an MOI of 100 indicating cell loss (Figure 5-5A). MDMs 

demonstrated similar levels of apoptosis as BMDMs and showed increasing apoptosis with 

increasing MOI (Figure 5-5B-C).  

Levels of apoptosis in our lab strain (ATCC 49247) challenged MDMs were compared to cells 

challenged with S. pneumoniae serotype 1, Hib (Eagan strain: H636) and an alternative NTHi 
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strain (ATCC 53600 – referred to here as NTHi 1479) a clinical isolate from the sputum of a 

patient with chronic bronchitis. Both S. pneumoniae (Dockrell et al., 2001a) and Hib have been 

previously described as inducers of macrophage apoptosis associated killing (Marriott, H.M., 

unpublished data). The aim of this experiment was to directly compare levels of macrophage 

apoptosis induced by two different NTHi strains to bacteria which are known stimulators of this 

phenomenon. Since both S. pneumoniae and Hib possess a polysaccharide capsule, they were 

treated with human immune serum before infection to aid internalisation. All bacteria were 

added for a duration of 20 hours which is the time point at which we begin to see significant 

levels of apoptosis in S. pneumoniae and Hib challenged cells. MDMs challenged with S. 

pneumoniae demonstrated around 30% apoptosis as previously described (Dockrell et al., 

2001a) (Figure 5-6B-C) however an increase in apoptosis was not associated with an increase in 

cell loss (Figure 5-6A), if macrophages are in the early stages of apoptosis, there may not yet be 

a significant reduction in cell density. MDMs challenged with NTHi 49247, showed significantly 

less apoptosis than S. pneumoniae (around 10%), however the level of nuclear fragmentation 

was significantly elevated compared to the mock infected control, and caspase 3/7 positivity 

almost reached the level of significance (p=0.08). Levels of apoptosis induced by Hib and NTHi 

1479, although clearly evident (around 5%), were lower than those induced by NTHi 49247 and 

not significant compared to the mock infected control. NTHi strains have previously been 

described as very variable in their ability to persist within macrophages for extended infection 

periods (up to 72 hours) (Craig et al., 2001). Overall, this suggested that the levels of apoptosis 

induced by the NTHi strains are lower than those induced by S. pneumoniae and there may be 

variability in the level of apoptosis with NTHi strains. 
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Figure 5-4: NTHi induce low levels of apoptosis after 20 hours of challenge  

BMDMs were mock infected or challenged with NTHi for 20 hours at an MOI of 10, 50 or 100. (A) Average 

cell density / field of view at x100 magnification of each well was quantified by DAPI staining and (B) 

apoptotic cells were then quantified by change in nuclear morphology (n=12) significance determined by 

two-way ANOVA with Sidak’s post-test compared to the mock infected for each genotype and between 

genotypes in each condition (C) Caspase 3/7 positive cells determined by NucView staining (n=3) 

significance determined by two-way ANOVA with Sidak’s post-test as above. Data represented as mean ± 

SEM. *p=<0.05 **p=<0.01 ***p=<0.001 ****p=<0.0001. 
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Figure 5-5: NTHi challenge causes modest cell loss and apoptosis with increasing MOI 

MDMs were mock infected or challenged with NTHi for 20 hours at an MOI of 10, 50 or 100 (A) 

Representative images were captured using Leica AF6000 fluorescent microscope (x100 objective lens). 

Scale bar measures 20μM and white arrows indicate apoptotic cells (B) cell number / field counted by 

DAPI staining, significance determined by one-way ANOVA with Tukey’s post-test, *=p<0.05 (n=7) (C) 

Quantification of number of cells with caspase 3/7 positivity by NucView staining, significance determined 

with one-way ANOVA and Tukey’s post-test *=p<0.05 (n=4) (D) Quantification of number of cells with 

nuclear fragmentation and condensation by DAPI staining, significance determined by one-way ANOVA 

with Tukey’s post-test (n=7) *=p<0.05, **=p<0.01, ***=p<0.001 compared to mock challenged. Data 

represented as mean ± SEM. 
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Figure 5-6: Macrophages undergo only low levels of apoptosis after 20 hours of exposure to NTHi. 

Human monocyte derived macrophages (MDM) were mock challenged or challenged with S. pneumoniae 

serotype 1 (Spn), H. influenzae type B (Hib), NTHi (laboratory isolate - 49247) or an alternative clinical 

strain of NTHi (NTHi 1479) at an MOI of 10 for a duration of 20 hours. (A-B) Macrophages were stained 

with DAPI and (A) cell density estimated per field at 100x microscope objective, no significance was 

determined by one-way ANOVA and Tukey’s post-test (B) number of cells with nuclear fragmentation and 

condensation counted, significance was determined by one-way ANOVA and Tukey’s post-test (C) 

quantification of the number of cells with caspase 3/7 positivity by NucView staining. Significance was 

determined with Friedman test and Dunn’s post-test, *=p<0.05, **=p<0.01 All data is represented as 

mean ± SEM (n=5). 

 

5.2.4. Apoptosis makes a limited contribution to clearance of intracellular 

NTHi at the 20 hour time-point. 

Having established some evidence for increased apoptosis following NTHi challenge using the 

infection model described above (Figure 5-1F) I next addressed whether the Mcl-1 transgenic 

macrophages showed any evidence of increased intracellular burden, indicative of reduced 

killing associated with lower levels of apoptosis-associated killing for which there was some 

evidence in Figure 5-4. Increasing MOI caused no significant difference in the number of viable 

intracellular bacteria in wild-type BMDMs, however, at MOIs of 50 – 100 the transgenic mouse 

showed up to half a log increase in viable intracellular NTHi suggesting the inability to undergo 

apoptosis may be preventing bacterial clearance, although with the small series studied this 

difference was not statistically significant (Figure 5-7A). Human MDMs internalised a similar 

amount of NTHi as BMDMs and the MOI showed no effect on the level of intracellular bacteria, 

suggesting that killing ability of macrophages at this time point may be saturated (Cannon and 

Swanson, 1992) and therefore increased apoptosis makes no effect on the microbicidal activity 

of the cell, although I cannot exclude the possibility that the increased apoptosis might be 
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helping to stop further increases in intracellular burden (Figure 5-7B). However, levels of 

apoptosis are much lower than those seen with S. pneumoniae infection (Dockrell et al., 2001a) 

suggesting either that at the 20 hour time-point at an MOI of 100, NTHi are not inducing enough 

of a challenge for the cell to trigger high levels of apoptosis, or alternatively NTHi may be better 

able to prevent induction of apoptosis unlike the host response to S. pneumoniae infection.  
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Figure 5-6: Limited impact of apoptosis on intracellular bacterial killing at 20 hours 

Macrophages were challenged with NTHi for a duration of 20 hours at a MOI of either 10, 50 or 100. At 

the time point, internalisation of NTHi was assessed by gentamicin protection assay in (A) wild-type and 

transgenic BMDMs (n=7) two-way ANOVA with Sidak’s post-test determined significance between 

transgenic MOI 10 vs MOI 100 **=p<0.01 and no significance was determined between wild-type and 

transgenic genotypes at each MOI (B) MDMs, no significance determined by one-way ANOVA with Tukey’s 

post-test (n=6). Results are represented on a logarithmic axis as median ± range.  

 

5.2.5. Macrophage activation has no effect on NTHi clearance at late time 

points 

Next, I examined whether macrophage activation might influence the delayed bacterial killing 

occurring at 20 hours after bacterial challenge. Since apoptosis associated killing is associated 

with later time points of infection, clearance of NTHi was previously assessed at these later time 

points. In Figure 5-7 I determined intracellular bacterial viability at 20 hours, in a model without 

antimicrobial treatment, and under conditions which were associated with low levels of 

apoptosis, as shown in Figure 5-4 to Figure 5-6. However, at this time-point I saw little effect of 

increasing the MOI on killing ability, suggesting bacterial internalisation was saturated. I 
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therefore selected an earlier time point at which Mcl-1 would typically begin to decrease in other 

infections (Marriott et al., 2005) but at which the bacterial burden wasn’t so high as to 

potentially mask an effect of macrophage activation on killing. To understand the kinetics of 

killing and to help select the most appropriate time to analyse whether activation could alter 

bacterial killing I assessed killing activity of activated macrophages at 4 time points over a 4 hour 

period between 14 and 18 hours in MDMs (Figure 5-8) and wild-type and transgenic BMDMs 

(Figure 5-9). IFN-γ activated macrophages were expected to show increased clearance of NTHi 

compared to other activation conditions, as seen with S. pneumoniae infection (chapter 4), 

assuming the clearance capacity had not become saturated. Furthermore if killing was not 

saturated I predicted wild-type macrophages would clear internalised bacteria more efficiently 

than transgenic macrophages (Bewley et al., 2017). Contrary to my hypothesis, following MDM 

NTHi challenge (Figure 5-8) there was no significant difference in the extracellular supernatant 

and intracellular bacteria between activation conditions, despite evidence macrophages were 

still clearing intracellular bacteria and killing capacity was not exhausted. Although not 

significant, IFN-γ stimulated BMDMs showed enhanced clearance compared to other activation 

conditions, in most experiments all bacteria were cleared between 16 – 18 hours, however, 

there was no significant effect of the Mcl-1 transgene on bacterial clearance. Again, the small 

numbers limited statistical analysis, even though there was a trend towards a greater effect in 

the wild-type BMDM, but at least for the BMDM there was some evidence of enhancement of 

clearance with IFN-γ. Critically, however, for both MDM and BMDM there was evidence of 

continued reduction in intracellular viability which showed that intracellular killing capacity was 

not exhausted. This contrasts with what my host group has previously found for S. pneumoniae 

at comparable times and intracellular bacterial loads (Preston et al, in submission) or for S. 

aureus  (Jubrail et al., 2016). This suggests that macrophages retain an extended period over 

which intracellular killing is achieved with relatively modest impact of IFN-γ and that since killing 

is not exhausted there may be less stimulus to initiate alternative processes such as apoptosis-

associated killing. 
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Figure 5-7: Macrophage activation has no effect on macrophage internalization and killing of NTHi 

MDMs were unstimulated or activated with 20ng/ml IL-4, IL-10 or IFN-γ for a duration of 24 hours. 

Macrophages were challenged with NTHi at an MOI of 10 for a duration of 14 hours. (A) extracellular cfu 

were estimated at the 14 hour time point (n=3) No significance observed by one-way ANOVA with Tukey’s 

post-test. (B) Intracellular killing of NTHi was estimated between 14 and 18 hours by gentamicin 

protection assay (n=3). No significance observed by one-way ANOVA with Tukey’s post-test. Data is 

represented on logarithmic axis as median ± range. 
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Figure 5-8: BMDM activation in the wild-type and transgenic BMDM does not affect survival of NTHi 

BMDMs were activated for 24 hours with IL-4, IL-10, IFN-γ or unstimulated before challenge with NTHi at 

an MOI of 10 for 14 hours. At the time point (A) cfu in the cell supernatant were estimated for each 

condition (n=4) significance determined compared to the mock infected control by two-way ANOVA with 

Sidak’s post-test and (B) Intracellular killing of NTHi was estimated between 14 and 18 hours by 

gentamicin protection assay (n=4) no significance between activation conditions at each time point 

determined by two-way ANOVA with Sidak’s post-test. Data represented as median ± range. 

  

5.2.6. NTHi stimulate prominent pro-inflammatory cytokine release from 

macrophages 

Another potential reason for the lack of significant variation between activation conditions 

might be that NTHi stimulates a strong pro-inflammatory macrophage profile which overrides 

prior cytokine stimulation and causes all macrophages to switch to a classically activated 

phenotype. Pro-inflammatory cytokine stimulation was analysed in human MDMs challenged 

with NTHi or S. pneumoniae over a time course of 4 – 24 hours by ELISA (Figure 5-10). MDMs 

challenged with NTHi produced higher levels of TNFα than S. pneumoniae challenged cells at all 

time points tested. NTHi also induced higher levels of IL-6 than S. pneumoniae although the 

results were not as marked. This is line with previous studies which demonstrate the strong pro-

inflammatory response of the innate immune system to H. Influenzae, potentially due to the 

specific profile of the outer membrane (Berenson et al., 2005). Since apoptosis associated killing 
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is associated with resolution of inflammation as well as infection, it is also possible that the 

limited levels of apoptosis I observed following NTHi challenge also resulted in higher cytokine 

levels with this bacterium than occur with S. pneumoniae. My results demonstrated significantly 

higher levels of TNF-α at 4, 16, 20 and 24 hours of NTHi challenge (Figure 5-10A). IL-6 levels also 

appeared increased however this result did not reach significance (Figure 5-10B) 

 

 

 

Figure 5-9: NTHi induces a larger pro-inflammatory cytokine response than S. pneumoniae 

MDMs were challenged with NTHi or opsonized S. pneumoniae for a duration of 4 – 24 hours at an MOI 

of 10. Supernatants were collected from mock infected and NTHi challenged cells at each time point and 

diluted 1:10 A) TNFα, (limit of detection 4pg/ml), and B) IL-6, (limit of detection 2pg/ml), cytokine 

concentration was determined by ELISA (n=4), data is represented as mean ± SEM. Significant data 

determined by two-way ANOVA with Sidak’s post-test, **p<0.01, ***p<0.001. Dotted line is 

representative of the mock infected control. 

 

5.2.7.  Cell loss increases after 48 - 72 hours exposure to NTHi. 

Since the macrophage response to NTHi challenge had only been measured up to the 20 hour 

time point, and apoptosis appeared not to have been optimally engaged I reasoned that 

macrophage killing mechanisms through ROS and RNS had not yet become exhausted. In 

keeping with this was the evidence for continued killing of NTHi by apoptosis-independent 

mechanisms shown in Figure 5-8 for MDM and Figure 5-9 for BMDM 14-18 hours after bacterial 

challenge. I therefore, next questioned whether macrophage apoptosis was engaged at later 
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time points and sought evidence for apoptosis over a longer period, until 72 hours. This is a 

relevant time frame since it is a time frame for which NTHi has been shown to survive in the 

intracellular environment (Craig et al., 2001). Macrophages were challenged with NTHi at an 

MOI of 10, 50 or 100 for a duration 48 or 72 hour (Figure 5-11). At each time point, cells were 

assessed for caspase activation and for nuclear morphology to detect features of apoptosis and 

to allow estimation of cell density as quantified by microscopy. At 48 hours post infection over 

50% of cells were lost across all conditions following bacterial exposure compared to a loss of 5-

10% at the 20 hour time point. At 72 hours post infection, cell number did not decrease much 

more than that seen at 48 hours, however levels of apoptosis were increased. Quantification of 

caspase positive and nuclear morphological features at 48 and 72 hours showed high levels of 

apoptosis defined by morphology and evidence of increased and cytoplasmic NucView staining, 

potentially as the nuclear membrane lost integrity. 

 

5.2.8. Mcl-1 protein levels remain high in response to NTHi challenge 

A decrease in Mcl-1 expression is required to allow execution of the apoptotic programme 

associated with macrophage apoptosis during the response to pneumococcal challenge 

(Marriott et al., 2005). To assess if apoptosis after NTHi challenge is also associated in reduction 

in Mcl-1 level, protein was analysed from human MDMs challenged with NTHi (strain 49247) 

(Figure 5-12A) or NTHi strain 1479 (Figure 5-12B). MDMs were assessed over a 16 – 72-hour time 

course, since the data in Figure 5-11 suggested apoptosis might be delayed till the 48-72 hour 

time point. Protein was analysed by western blotting and Mcl-1 levels were normalised to α-

tubulin level and fold change at each time point was compared to the mock infected level. In 

both NTHi 49247 and NTHi 1479 exposed cells, protein levels for Mcl-1 remained high from 16 

hours to 20 hours. NTHi 1479 challenge saw a decrease in levels at 48 hours, slightly than NTHi 

49247 which peaked at 20 hours and then began to decrease towards 72 hours. However, in 

both instances, levels of Mcl-1 were still increased or equal compared to the mock infected 

control for each time point.  Changes at each time point did not reach statistical significance, 

despite clear increases – perhaps due to high donor variability, however for NTHi 48247 levels 

of Mcl-1 were significantly increased compared to the 72 hour timepoint and the mock infected 

control. A similar pattern was also seen in wild-type BMDMs challenged with NTHi 49247 over 

the same time course of 72 hours (Figure 5-13). In this case levels of Mcl-1 whilst always equal 

or higher than the mock challenged control, increased and peaked at 48h. Levels then proceeded 

to decrease closer to the level of the mock infected control by 72 hours. This data suggests that 
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NTHi infection causes an initial increase in Mcl-1 protein which is extended for sustained time 

period. This increase is significant versus mock-infected for 20 hours with NTHi 49247 in MDM 

and 48 hours in BMDM, after which when it begins to decrease to baseline levels but does not 

fall below mock-infected levels.  
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Figure 5-10: NTHi challenge causes apoptosis at later time points  

MDMs were challenged with NTHi for 48 (n=5) or 72 hours (n=4) at an MOI of 10, 50 or 100 or mock 

infected. (A) Average cell density / field of view at x100 magnification of each well was quantified by DAPI 

staining and (B) apoptotic cells were then counted by change in nuclear morphology, analysed by DAPI 

staining and (C) caspase 3/7 activation by NucView staining. Significance was determined by one-way 

ANOVA with Tukey’s multiple comparisons test, stars indicate significance compared to the mock 

challenged *=p<0.05, **=p<0.01, ***=p<0.001, data represented as mean ± SEM. 

A) 
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Figure 5-11: Mcl-1 levels remain high in MDMs challenged with NTHi 

MDMs were challenged with A) NTHi 49247 (n=10), data represented as mean ± SEM, or B) NTHi 1479 

(n=2), data represented as mean ± SD, at an MOI of 10 for a time course of 0 – 72 hours. Protein was 

collected from mock infected and NTHi challenged macrophages at 16, 20, 24, 48 and 72 hours post 

infection. Cells were lysed for protein and Mcl-1 expression measured by western blot. Membranes were 

stripped and re-probed for α-tubulin as a loading control. Data is represented as fold-change compared 

to the mock infected. A representative blot and densitometry bar chart is shown. NTHi 49247 (n=4) NTHi 

1479 (n=2). Significance was determined using a two-way ANOVA with Sidak’s post-test, *p=0.05, 

**p=<0.01 stars above bars indicate significance compared to the mock challenged control.  
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Figure 5-12: Mcl-1 levels remain high in BMDMs challenged with NTHi 

BMDMs were challenged with NTHi 49247, data represented as mean ± SEM, at an MOI of 10 for a time 

course of 0 – 72 hours. Protein was collected from mock infected and NTHi challenged macrophages at 

16, 20, 24, 48 and 72 hours post infection. Cells were lysed for protein and Mcl-1 expression measured by 

western blot. Membranes were stripped and re-probed for α-tubulin as a loading control. Data is 

represented as fold-change compared to the mock infected. A representative blot and densitometry bar 

chart is shown, significance was determined using a two-way ANOVA with Sidak’s post-test (n=9) stars 

above bars indicate significance compared to the mock challenged control.  
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5.2.9. NTHi infection causes increased levels of Nitric Oxide at 24 hours of 

challenge 

Data so far indicates macrophages undergo low levels of apoptosis in response to NTHi challenge 

until very delayed time points and this is associated with Mcl-1 upregulation for prolonged 

periods (16-72 hours) following challenge. There was no evidence of Mcl-1 protein decline, that 

normally acts as a switch to initiate apoptosis following pneumococcal challenge (Marriott et al., 

2005) but rather, Mcl-1 protein levels are maintained at early time points with a decrease in 

levels post 20-48 hours (strain 49247) or 24 hours (strain 1479). However, large increases in cell 

loss occur at 48 hours of NTHi challenge. NO is produced by macrophages in response to 

bacterial infection as a mechanism of microbicidal activity. Furthermore, NO is required during 

apoptosis associated killing for MOMP and inhibition of NO shifts apoptosis to necrosis (Marriott 

et al., 2004). I therefore wanted to analyse NO production at 24 and 48 hours of NTHi challenge 

to see if increasing NO levels co-inside with decreasing levels of Mcl-1 protein at 20-48 hours 

onwards (Figure 5-12 and Figure 5-13). NO was measured by flow cytometry using DAF-FM 

(Figure 5-14). Both MDMs (Figure 5-14A) and BMDMs (Figure 5-14B) showed 5-fold and 2-fold 

shifts in response to NTHi challenge at 24 hours respectively, however increasing MOI had no 

effect on overall NO production. NO levels dropped at 48 hours to baseline indicating 

macrophages were no longer producing as much NO at these later time points. Interestingly, 

there seemed to be an overall shift in the whole population at 24 hours of challenge in MDM 

compared to the mock infected condition and a population of NO “high producers” was 

apparent for both MDM and BMDM. It would be interesting to further explore this population 

to see if they are also highly active at bacterial killing or undergoing apoptosis or the two in 

combination. 
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Figure 5-13: NTHi challenge increases NO generation at 24 hours.  

Representative flow cytometry plots of 24 hour challenge data, Un (unstained) MI (mock infected) are 

pictured (A) MDM (n=6) and (B) Wild-type BMDM (n=4) (A-B) Cells were challenged with increasing MOIs 

(10, 50, 100) of NTHi for 24 or 48 hours and macrophages were stained with DAF-FM for nitric oxide 

production and analysed by flow cytometry. Unstained values were subtracted from all stained data to 

account for auto-fluorescence. Median fluorescence intensity (MFI) values are plotted as mean ± SEM on 

a logarithmic axis and fold-change also calculated for each timepoint in the adjacent graph. Significant 

results were determined using Friedman test with Dunn’s post-test. *=p<0.01. 

5.2.10. Loss of inner mitochondrial transmembrane potential occurs at 48 

and 72 hours  

Since the above data shows levels of Mcl-1 decrease overtime and there is evidence of both NO 

production and features of late apoptosis I next addressed whether there was evidence of 

mitochondrial events linked to apoptosis (Figure 5-15). NO and reduction in levels of Mcl-1 lead 
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to a mitochondrial mediated pathway of apoptosis involving MOMP, which is associated with 

loss of mitochondrial inner transmembrane potential (m) (Marriott et al., 2004; Maurer et al., 

2006a). I decided to assess m after 24, 48 or 72 hours of NTHi challenge. Macrophages were 

challenged with NTHi 49247 for 24, 48 or 72 hours and assessed for m. Loss of red 

fluorescence was used as a read-out for loss of m indicating a decrease in J-aggregate 

formation which occurs as the mitochondrial inner transmembrane potential falls. Mock 

infected samples were used as a negative control, macrophages were challenged with S. 

pneumoniae serotype 1 and analysed at the 24 hour time point as a positive control. Bacterial 

challenge with NTHi for 24 hours did not cause any loss of m in comparison to the mock 

infected control however at 48 hours there was significant loss of m comparable to that 

following S. pneumoniae challenge for 20 hours and an even larger loss in m at 72 hours, 

indicative of cell death and consistent with a delayed pathway of apoptosis. 

 

 

 

Figure 5-14: Macrophages experience loss of 

mitochondrial inner transmembrane potential (m) after 48 and 72 hours of NTHi challenge 

MDMs were challenged with NTHi for a duration of 24, 48 or 72 hours. At each time point, mock infected 

(MI) and macrophages exposed to bacteria were analysed by flow cytometry for loss of m. Opsonized 

S. pneumoniae (Spn) was used as a positive control for loss of m. % loss of red fluorescence was deemed 

as a loss of m. (A) Representative flow plot pictured. (B) Data is plotted as mean ± SEM. A one-way 

ANOVA with Tukey’s multiple comparisons test was used to determine statistical significance compared 

to MI. n=7, **=p<0.01, ***p<0.001, ****=p<0.0001. 
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5.3. Discussion 

NTHi is readily internalised by macrophages due to it being an un-encapsulated bacterium 

(Clementi and Murphy, 2011). Phagocytosis of NTHi by AMs typically occurs by cytoskeleton 

rearrangement involving F-actin, the PI3K – Akt pathway and lipid raft generation (Clementi and 

Murphy, 2011; Martí-Lliteras et al., 2009). Furthermore, NTHi can form biofilms which aggregate 

on the surface of cells and become internalised by micropinocytosis (Clementi and Murphy, 

2011). After internalisation, macrophages then proceed to  traffic NTHi by phagosomal 

maturation terminating in the acidic phagolysosome where NTHi have been shown to localise 

until clearance (Martí-Lliteras et al., 2009). However, there is a fixed capacity to how many 

particles can be phagocytosed by macrophages, the limiting factor being the availability of cell 

surface area (Cannon and Swanson, 1992). The results presented in this chapter demonstrate 

that there is no significant alteration of internalised NTHi at 20 hours with increasing MOI of 10 

– 100. This could be due to the upper limit of phagocytosis being reached with only an MOI of 

10 but more likely the extracellular burden of NTHi has increased with bacterial replication to 

an overwhelming level over the 20 hour incubation period, meaning internalisation capacity is 

at its maximum by the time the cells are lysed. 

If macrophages utilised apoptosis associated killing as a mechanism to clear NTHi challenge, at 

the time period of 16 – 24 hours observed for pneumococci (Marriott et al., 2005), I would 

expect to see a decrease in the number of intracellular bacteria in the wild-type mouse 

compared to the Mcl-1 transgenic mouse. Theoretically apoptosis could have proceeded by a 

pathway not regulated by the Mcl-1 transgene, or to such a great extent that the effect of the 

transgene was overwhelmed, however I did not observe significant cell death at this time point 

after challenge with NTHi. Moreover, as there was no significant difference in bacterial clearance 

between wild-type and transgenic macrophages, this suggests macrophages are not utilising 

apoptosis associated killing as a significant mechanism of pathogen clearance at this time point. 

However, at high MOIs, there is a significantly lower level of apoptosis in transgenic 

macrophages compared to wild-type macrophages and an increase in MDM apoptosis with 

increasing MOI, indicating MOI is having some effect on levels of apoptosis, potentially as a 

stress response due to the increased extracellular burden. This also indicates that the apoptosis 

associated killing pathway is engaged to a limited extent, albeit at levels lower than seen with S. 

pneumoniae. 

There are many possibilities for why NTHi does not appear to engage a host response involving 

apoptosis associated bacterial killing with comparable kinetics to that observed with S. 
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pneumoniae. It might be that the low levels of apoptosis that are occurring (~10%) result due to 

cellular stress and involve pathways less dependent on Mcl-1 regulation or overwhelm its subtle 

regulation. This could result in the apoptosis that is observed not being linked to apoptosis 

associated killing as a mechanism of host defence, unlike the apoptosis observed when 

challenge with S. pneumoniae occurs. Another possibility could be that macrophages have not 

yet exhausted their early killing mechanisms therefore they do not need to induce an apoptotic 

pathway to clear infection, and in keeping with this view there was sustained bacterial killing 

observed at 14-18 hours. Although the lack of difference in intracellular bacterial colony counts 

between MOI suggests macrophages could be becoming overwhelmed at 20 hours of challenge 

the experimental design without antimicrobial treatment and the prolonged incubation means 

it is likely cells ended up with a comparable MOI later during the experiment. The fact that my 

extracellular cfu appeared to vary little between 4 and 20 hours and plateaued at a level of 

approximately 108 cfu/ml would support the latter view. Recent publications suggest adding 

antimicrobials to prevent the growth of extracellular bacteria (Clementi and Murphy, 2011), 

however as highlighted in the optimisation stages of this project, I was unable to find a ‘tipping 

point’ at which apoptosis could be induced with the addition of antimicrobials.  

NTHi has also been described as an intracellular as well as an extracellular pathogen and certain 

strains have been shown to be able to persist inside the macrophage up to 72 hours of infection 

(Craig et al., 2001). Therefore, it is reasonable to speculate that NTHi might have a mechanism 

for preventing high levels of apoptosis. Mycobacterium tuberculosis has recently been shown to 

down-regulate EBP50 (NHERF-1).  When EBP50 is over expressed in macrophages it significantly 

increases expression of iNOS and NO dependant apoptosis, involving increased expression of 

Bax and caspase-3 which engages cell apoptosis and intracellular bacterial killing (Guo et al., 

2016). Therefore, it is possible the low levels of apoptosis I see at 24 hours are due to signalling 

cascades orchestrated by the bacterium. Furthermore, NTHi is a very pro-inflammatory 

pathogen (Berenson et al., 2005) and has been shown to potentiate TNFα mediated apoptosis 

in human bronchiole epithelial cells as a mechanism for evading the host response (Gallelli et 

al., 2010).  

Direct comparison of NTHi apoptosis levels to S. pneumoniae and an alternative H. influenzae 

serotype; Hib showed a marked reduction of apoptosis in both NTHi and Hib compared to S. 

pneumoniae challenge. These results are in line with previous data which shows 5-10% apoptosis 

after macrophage challenge with Hib at the 20 hour time point (Marriott, H.M., unpublished 

data). The NTHi 1479 strain showed a more marked reduction than our NTHi laboratory strain 
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(49247) (2-4% apoptosis compared to 8-10%). Strain 1479 is a clinical isolate from the sputum 

of a patient with COPD whereas strain 49247 is a laboratory quality control strain which 

overtime are known to lose some of their pathological relevance (Fux et al., 2005). Others have 

reported a high degree of variability between NTHi strains (Craig et al., 2001) it is therefore 

perhaps not surprising to see differences in induction of macrophage effector functions by 

different strains and the lower levels of apoptosis with the clinical strain NTHi 1479 were in 

keeping with a role for pathogen factors inhibiting apoptosis. Interestingly, NTHi strain 1479 has 

been shown to have increased production of OMV, which contribute to propagation of infection 

in a number of ways, compared to other strains (Roier et al., 2016), further demonstrating the 

increased virulence of this strain and providing another factor for the variability seen between 

strains in induction of host responses. 

Analysis of Mcl-1 levels over a 16 – 72 hour time course reveal that after challenge with both 

strains of NTHi, Mcl-1 protein levels remain high until 20 hours post inoculation (NTHi 49247) or 

24 hours (NTHi 1497) MDM or 48 hours in NTHi 49247 challenged BMDM after which levels fall 

from peak. This implies that the apoptosis observed at 20 hours, as seen with NTHi 49247 is not 

dependent on Mcl-1 degradation but rather cells are sensitised by an alternative pathway or to 

an extent which cannot be inhibited by Mcl-1, which results in caspase 3/7 mediated apoptosis, 

since activation of caspase 3/7 was determined by NucView positive nuceli. It is also possible 

that both strains cause upregulation of Mcl-1 levels to prevent apoptosis so macrophages cannot 

effectively engage microbicidal activities triggered by apoptosis. Since NTHi are capable of 

persisting intercellulary up to 72 hours post infection, increases in Mcl-1 could be due to a 

pathogen mediated invasion mechanism which persists until induction of apoptosis at later 

time-points. Interestingly, Morey et al showed in bronchiole epithelial cells, that although NTHi 

associate with late endosomes which become acidified, there is a lack of lysosomal fusion and 

less than 10% of NTHi containing compartments associate with cathepsin D after 8 hours of 

bacterial exposure (Morey et al., 2011). As lysosomal fusion and cathepsin D activation provide 

the trigger for apoptosis associated killing (Bewley et al., 2011a), this could be a conceivable 

mechanism by which NTHi prevent apoptosis associated killing. It would therefore be interesting 

to analyse cathepsin D activation and lysosomal membrane permeabilisation, another factor 

required for induction of apoptosis-associated killing of S. pneumoniae (Bewley et al., 2011a) 

over the extended time course of 24 – 72 hours and interpret whether there are any variations 

in cathespin D activation and lysosomal membrane permeabilisation between our laboratory 

and clinical isolate. Other bacteria, such as the Gram-negative intracellular pathogen Ehrlichia 

chaffeensis, have been shown to upregulate anti-apoptotic proteins including Mcl-1 and other 



172 
 

Bcl-2 family members in THP-1 cells to aid formation of a protected intracellular niche (Faherty 

and Maurelli, 2008; Zhang et al., 2004). Other pathogens such as several Chlamydia species; 

Chlamydia muridarum, Chlamydia caviae and Chlamydia psttaci do this by preventing MOMP 

and cytochrome c release by inhibition of the pro-apoptotic proteins Bax and Bak (Zhong et al., 

2006), (Häcker et al., 2006). Although NTHi is not capable of intracellular replication, it is capable 

of persisting inside cellular compartments in both epithelial cells and macrophages (Craig et al., 

2001; Morey et al., 2011). A more recent study demonstrates increasing levels of airway 

epithelial cell apoptosis up to 24 hours of NTHi infection, arguing that this process is a bacterial 

mechanism used for induction of cytotoxicity and NTHi endosomal escape (Goyal et al., 2015). 

Contrastingly, David Singh and colleagues recently showed COPD patient AMs demonstrate low 

basal levels of apoptosis in AMs with no significant induction of apoptosis after NTHi infection 

with MOIs of 10 up to 4000 (Khalaf et al., 2017), however, results were only recorded at 24 hours 

which may not be a sufficient time course. Further, our group have previously shown COPD AMs 

have decreased capabilities of undergoing apoptosis in response to pneumococcal infection 

(Bewley et al., 2017), this apoptosis defect may be the reason there is no positive apoptosis data 

from NTHi challenged COPD AMs in the Khalaf study, but it would therefore be interesting to 

see inclusion of apoptosis data in NTHi challenged AMs from healthy subjects at 24 hours and 

later time points.  

NO is an established modulator of apoptosis in immune cells (Brüne et al., 1999; Chung et al., 

2001). NO detection by DAF-FM shows increases in NO at 24 hours after NTHi challenge with 

MOIs of 10 – 100. It is therefore possible that the 10% apoptosis at 24 hours of challenge is 

linked to NO release. As has been previously shown NO is an essential component of apoptosis 

associated killing activated by pneumococci (Marriott et al., 2004). While I observed NO release 

at 24 hours, it is not directly comparable to that in the pathway described for S. pneumoniae 

clearance as Mcl-1 protein levels remain high. It is noteworthy however that my host group have 

previously suggested that is the fall from peak rather than downregulation compared with 

baseline which triggers apoptosis (Marriott et al., 2005). Mcl-1 levels decrease from peak from 

24-48 hours after NTHi challenge, my data shows NO levels are falling from peak levels by 24 

hours. The fact that peak cell death as analysed by DAPI doesn’t coincide with peak NO at 24 

hours might be indicative of an alternative form of cell death.  My demonstration, however, of 

m and more specifically caspase 3/7 activation and nuclear features of apoptosis is more 

consistent with apoptosis as the cause of late cell death at 48 – 72 hours after bacterial 

challenge, even though m can occur with other forms of cell death (Yu et al., 2014). So, it 

remains possible that NO still contributes to the cell death but that all the conditions required 
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to induce apoptosis are not in place during peak NO production and the induction of apoptosis 

is delayed. In part, this may reflect the competing anti-apoptotic stimuli being induced by the 

bacteria, as discussed above. Conversely, NO has also been shown to have anti-apoptotic effects 

under certain circumstances at low-doses through NFκB activation and subsequent 

cyclooxygenase 2 (COX-2) expression (von Knethen et al., 1999). NFκB activation has been shown 

to enhance levels of pro-survival Bcl-2 family members, including Mcl-1 in immune tissue (Chen 

et al., 2000). The opposite scenario is therefore also possible; a delay of apoptosis until later 

timepoints (i.e. 48 hours) might be mediated by low levels of NO production, which have been 

shown to be triggered by classical activation stimuli such as LPS and IFN-γ activation (von 

Knethen et al., 1999) In this regard this might be a host adaptation allowing a sustained period 

of bacterial killing since intracellular microbicidal mechanisms did not appear to be exhausted. 

Interestingly, analysis of DAF-FM by flow cytometry reveals a population of NO “high” producing 

cells at baseline (mock infected) and with bacterial challenge. Following bacterial exposure, the 

whole population shifts in fluorescence intensity, including the NO high population, by around 

0.5 – 1 log decade. To understand the potential importance of the NO high population, it would 

be interesting to conduct DAF-FM microscopy to see whether the NO high population is localised 

within cells with a high amount of intracellular NTHi and, whether NO high cells are undergoing 

more apoptosis or microbicidal killing than the rest of the population.  

In keeping with low levels of apoptosis at 20 hours and maintenance of Mcl-1 protein levels, 

NTHi challenge did not reveal a significant loss of m until 48 hours. This finding is in line with 

increased cell loss at 48 and 72 hours in comparison to earlier time points and the decrease in 

Mcl-1 levels from 24-48 hours onwards. Loss of m occurs in several different kinds of cell 

death, as well as apoptosis. It is a possibility that macrophages are undergoing a more pro-

inflammatory form of cell death such as pyroptosis and this form of cell death shares many 

features with apoptosis (Vande Walle and Lamkanfi, 2016) but the caspase 3/7 activation and 

nuclear morphology would be less consistent with this. Although pyroptosis also involves DNA 

damage and can alter nuclear morphology it is primarily reliant on caspase 1 activation and 

results in membrane leakage and IL-1 family cytokine production (Fink and Cookson, 2005). It 

would however be of interest to check for evidence of caspase 1 activation, mature IL-1β release 

and membrane permebalisation in my macrophages to more fully exclude this death process as 

a contributory factor during exposure to NTHi. To determine the cause of loss of m and cell 

loss at later time points, my current work is focused on defining cell death by flow cytometry 

analysis of caspase 3/7 activation and cell permeabilization using DRAQ7 dye, indicators of cell 
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apoptosis or general cell death respectively, over a time course of 16 – 72 hours of NTHi 

challenge. I am also currently determining whether NTHi infection causes cytochrome c release 

from the mitochondria, a marker of MOMP and an indicator of induction of the apoptosis 

cascade (Bewley et al., 2011b; Cai et al., 1998) to further validate apoptosis as the cell death 

mechanism responsible for cell loss at 48 – 72 hours. 

The work presented in chapter 4 of this thesis demonstrates a role for IFN-γ in enhanced 

clearance of S. pneumoniae infection. I also wanted to determine whether CAM were capable 

of enhanced clearance of NTHi bacteria compared to other activation phenotypes. Surprisingly, 

my results revealed no differences in the clearance NTHi from challenged cells at early time 

points (2-4 hours) or over a late time course (14 – 18 hours), with the exception of late killing in 

M(IFN-γ) BMDMs which mostly cleared bacteria by 16 hours. Likewise, there were no significant 

differences in NO or ROS levels with IFN-γ stimulation. This result was initially unexpected since 

challenge with NTHi stimulates the release of several pro-inflammatory cytokines and 

chemokines such as TNFα, IL-1β, IL-6, CXCL8 (Khalaf et al., 2017; Leichtle et al., 2010) and 

microbicidals such as NO (Lin et al., 2014) through activation of NFκB (Watanabe et al., 2004) 

and I had predicted this would be further enhanced by IFN-γ stimulation. Furthermore, 

reduction of classical activation mediators such as TNFα and iNOS attenuates killing of NTHi in 

murine peritoneal macrophages (Leichtle et al., 2010; Lin et al., 2014). NTHi has previously been 

shown to create a large pro-inflammatory response from human macrophages (Berenson et al., 

2005). The data presented in this chapter shows NTHi instigates a potent pro-inflammatory 

response within the first few hours of challenge in agreement with other reports (Foxwell et al., 

1998b; Khalaf et al., 2017) and in comparison to S. pneumoniae. Since macrophages are known 

to be highly plastic to their local microenvironment, it is reasonable to suggest that the strong 

inflammatory signatures produced by NTHi challenge override prior macrophage activation 

forcing the population into a classically activated phenotype. In order to confirm switching of 

macrophage phenotypes in response to NTHi infection it would be interesting to undertake 

ELISA analysis of some key pro-inflammatory cytokines and chemokines and mRNA analysis of 

pro-inflammatory modulators such as those involved in NF-κB pathway to check for production 

of key classical activation markers in 24 hour activated macrophages after short term exposure 

to NTHi. It is also noteworthy that apoptosis induction is associated with downregulation of pro-

inflammatory cytokine production and effectively reduces its production in pneumococcal 

infection, (Kobayashi et al., 2003; Marriott et al., 2006). The higher levels of cytokines I detected, 

and others have described in macrophages exposed to NTHi (Berenson et al., 2005), will I predict 
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in part be due to failure to engage apoptosis to comparable levels to S. pneumoniae at 16-24 

hours. 

To conclude, the work presented in this chapter delineates novel innate immune responses of 

human and murine macrophages in response to NTHi infection. Firstly, this work demonstrates 

low levels of apoptosis at 20 hours post NTHi challenge - in association with sustained 

upregulation of the anti-apoptotic protein Mcl-1. Secondly, I provide evidence for a later 

induction of cell death process which occurs after peak NO production and coincides with the 

fall from peak Mcl-1 production. Although this is not associated with Mcl-1 down-regulation the 

cell death process has many typical features of apoptosis such as loss of m, caspase 3/7 

activation and nuclear morphology. Finally, this work tests the effects of NTHi on differentially 

activated human macrophages and indicates that irrespective of macrophage baseline 

phenotype macrophages are rapidly responsive to NTHi and maintain a marked production of 

pro-inflammatory cytokines which may in part be accentuated by the low levels of apoptosis. 

This explains the marked pro-inflammatory response associated with NTHi infections at sites 

such as the airway (Clemans et al., 2000).  
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6. Discussion  

6.1. M(IFN-γ) show enhanced S. pneumoniae clearance and apoptotic 

responses  

The first aim of my thesis was to understand the effect of macrophage activation on macrophage 

effector functions during S. pneumoniae challenge, with special attention to macrophage 

apoptosis associated killing. I used two models to explore my question; wild-type and CD68 Mcl-

1 transgenic BMDMs and human MDMs from healthy donors. I have shown that M(IFN-γ) 

macrophages in both wild-type and transgenic BMDMs display enhanced clearance of S. 

pneumoniae at early and late time points after bacterial challenge. Furthermore, my results 

show an enhancement of M(IFN-γ) apoptosis at timepoints key to the late clearance of 

intracellular pneumococci in both BMDMs and MDMs.  

The relationship between macrophage activation and macrophage apoptosis associated killing 

has not been explored in detail, nor has the possibility of Mcl-1 modulation of macrophage 

activation. While other members of Mcl-1 signalling pathways, such as Akt and Mammalian 

Target of Rapamycin (mTOR) have been shown to play key roles in macrophage commitment to 

classical or alternative activation (Arranz et al., 2012; Byles et al., 2013; Vergadi et al., 2017), my 

results did not demonstrate any effect of Mcl-1 overexpression on macrophage activation or any 

effect of macrophage activation on endogenous levels of murine Mcl-1. Furthermore, pathways 

known to regulate macrophage activation were not altered by the presence of the Mcl-1 

transgene following transcriptomic analysis. Therefore, it appears the effect of M(IFN-γ) on late 

pneumococcal clearance and macrophage apoptosis overwhelms the relatively subtle level of 

apoptosis inhibition provided by the Mcl-1 transgene (Zhou et al., 1998).  

6.1.1. Transcriptomic T-cell signatures are observed following infection in 

Mcl-1 transgenic mice 

My host group has previously described a role for Mcl-1 downregulation and apoptosis in S. 

pneumoniae clearance at 16 hours of challenge and this phenomenon is inhibited in Mcl-1 

overexpressing transgenic macrophages (Bewley et al., 2017). Transcriptomic analysis of 16 hour 

BAL fluid from an in vivo model of resolving infection revealed the presence of a T-cell signature 

in transgenic samples. This finding lead to a hypothesis that, one possible source for IFN-γ during 

pneumococcal infection in vivo is from Th1 cell activation and the production of T-cell IFN-γ aids 

pro-inflammatory effector functions in transgenic macrophages which are unable to clear 

infection at late timepoints due to reduction of apoptosis.  
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Disappointingly, the large inter-experimental variability likely masked many of the significant 

gene changes in the transcriptomics study which might have given clues to the specific nature 

of the T-cell response, meaning verification by other methods is now essential to confirm and 

further investigate this finding. Despite the limitations of the transcriptomics study, which I 

outline in chapter 4, several reports have revealed the importance of T-cell responses in the 

resolution of pneumococcal infection, in particular the role of Th1 and Th-17 cells (Olliver et al., 

2011; Wang et al., 2017). Interestingly there are also reports of Th17 subsets that can produce 

IFN-γ (Boniface et al., 2010). 

Initial analysis of T-cell populations by flow cytometry are inconclusive due to excessive 

neutrophil recruitment which demonstrates the inoculation dose was too high for induction of 

a low dose resolving infection which AMs have sufficient ability to handle alone (Dockrell et al., 

2003). However, there are also several other potential cellular sources of IFN-γ which should be 

considered in future experiments. These include ILC subtypes; NK cells, previously shown to be 

essential for the resolution of S. pneumoniae infection and also non-cytotoxic group 1 ILCs and 

CCR6- T-bet+ group 3 ILCs which do not currently have a defined role in the resolution of 

pneumococcal infection, but should not be ruled out as contributors (Artis and Spits, 2015; 

Baranek et al., 2017). My data has shown IFN-γ is helpful to clearance of S. pneumoniae in an in 

vitro setting, however, in vivo the T-cell signature might not be attributable to just IFN-γ 

producing cells, for example, the literature suggests IL-17 producing cells are more effective in 

the clearance of S. pneumoniae infection and Th17 cells and IL-17/IL-22 producing group 3 ILCs 

have been implicated in the immune response against S. pneumoniae  (Olliver et al., 2011; Van 

Maele et al., 2014). The role of IL-17 on macrophage effector functions was not explored here 

but would be interesting to study. One final speculation is that rather than, or in addition to, 

working to reprogram AMs, a small T-cell presence might be responsible for the observed 

signature and instrumental in controlling recruitment of phagocytes from the blood to aid the 

transgenic response, for example; IFN-γ and IL-22 producing Th1 cells have been shown to be 

essential for recruitment of neutrophils in the resolution of S. pneumoniae infection (Yamamoto 

et al., 2004). 

6.1.2. IFN-γ enhance macrophage killing of S. pneumoniae and macrophage 

apoptosis  

The second major question still to be answered in this body of work is the mechanism by which 

macrophages stimulated with IFN-γ are capable of enhanced killing and apoptosis of S. 

pneumoniae. I would like to know whether apoptosis is directly linked to killing activity or 
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whether macrophages are more susceptible to apoptosis whilst also acting as effective 

pneumococcal killers. I would hypothesise that IFN-γ stimulation generates the release of 

mitochondrial ROS in concert with apoptosis as my host group has previously described (Bewley 

et al., 2017) but overwhelms the subtle capacity of Mcl-1 to prevent apoptosis (Zhou et al., 

1998), as outlined above. Previously, it has been shown that IFN-γ can induce apoptosis by Bcl-2 

downregulation and increased Bak expression (Zhou et al., 2008) and, IFN-γ mediated 

production of NO has been shown to increase ROS levels which leads to the production of 

peroxynitrite, shown to induce cell death in tumour cells (Rakshit et al., 2014). IFN-γ has been 

used as a therapeutic in chronic granulomatous disease where it has been shown to restore 

microbicidal activity (Errante et al., 2008) and its use has also been evaluated for other clinical 

conditions such as atypical mycobacterial infections (Milanés-Virelles et al., 2008). If future 

exploration continues to reveal a role for IFN-γ in overcoming the apoptosis associated killing 

defect, treatment with this cytokine could be therapeutic in conditions where apoptosis 

associated signaling is impaired such as COPD and HIV (Bewley et al., 2017).  

6.1.3. Future work 

There are several experiments which are currently in progress to directly address some of the 

open questions remaining in this thesis. The most obvious questions which I have already 

acknowledged are clarification of the T-cell signature, including the cellular source, and 

identification of the specific modulators which lead to IFN-γ associated apoptosis and enhanced 

pneumococcal clearance.  

It is firstly essential to re-optimise the S. pneumoniae low dose infection model, using a newly 

obtained serotype 1 strain from Professor Tim Mitchell, which has similar characteristics of the 

original Statens Serum Instiut (SSI) strain which is no longer available because of changes to the 

Materials and Transfer Agreement, to mimic the same infection conditions which were used for 

the transcriptomic analysis. Once completed, the myeloid and T-cell flow experiments can then 

be repeated for verification of T-cell contribution and exploration of the T-cell phenotype. It 

would then be necessary to conduct T-cell and macrophage co-culture experiments to 

determine if specific T cell phenotypes are capable of reprogramming macrophage responses to 

aid clearance of S. pneumoniae. To further our understanding of AM activation phenotypes 

during S. pneumoniae challenge in wild-type and transgenic BMDMs, it might also be useful to 

include an additional panel for analysis of AM subsets.  

To unravel the molecular details of IFN-γ induced apoptosis and enhanced clearance of S. 

pneumoniae, it will be important to determine how apoptosis is initiated. NO is an important 
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product of IFN-γ activated macrophages and has roles in both induction of apoptosis and 

bacterial killing (Marriott et al., 2004; Rakshit et al., 2014). It would therefore be interesting to 

measure levels of NO production and co-localisation of NO with S. pneumoniae in intracellular 

compartments. Although I did not find a role for IFN-γ as a direct modulator of Mcl-1 and it is 

therefore unlikely IFN-γ modulates apoptosis by Mcl-1 downregulation, it is possible other Bcl-2 

family members are involved (Zhou et al., 2008). It would therefore be interesting to look at 

modulation of other Bcl-2 family members which have been previously implicated in IFN-γ 

induced cell death.  

6.2. NTHi challenge induces different kinetics of apoptosis compared to 

previous studies with S. pneumoniae 

Previously, my host group has demonstrated that apoptosis associated killing is induced in 

response to E. coli and H. influenzae challenge (Webster et al., 2010). On the other hand, we 

have also described the activity of pathogens which escape apoptosis associated killing such as 

Staphylococcus aureus and Neisseria meningitidis (Jubrail et al., 2016; Tunbridge et al., 2006). 

Given recent recognition of the apoptosis defect in COPD (Bewley et al., 2017), it is interesting 

to speculate if part of the success of NTHi as a pathogen in COPD exacerbations is due to its 

ability to thrive in a host with defective macrophage apoptosis associated killing. My results 

demonstrate macrophages do undergo apoptosis in response to NTHi challenge, however, 

whilst sharing some similarities, this process does not directly mimic macrophage apoptosis 

associated killing described with S. pneumoniae challenge.  

Firstly, at crucial timepoints when S. pneumoniae causes around 30% apoptosis NTHi caused 

only low levels of 10% and under and this was not associated with decreased Mcl-1 levels. When 

NTHi challenge was continued to late time points (48 – 72 hours), higher levels of apoptosis and 

a decrease in Mcl-1 from peak levels with levels approaching close to baseline were observed. 

The delay of apoptosis is likely due to the fact that NTHi are easily internalised and killed, despite 

presence of genes that help promote anti-oxidant defence, by comparison to S. pneumoniae 

(Brockman et al., 2017; Jonsson et al., 1985a) and macrophages therefore may not become 

overwhelmed until much later. The fact that Mcl-1 remains high supports the idea that it is 

advantageous for macrophages to remain alive and continue canonical (e.g. NOX2 mediated) 

phagolysosomal killing at earlier time points. In addition they traffic appropriately to 

phagolysosomes furthermore NTHi (Martí-Lliteras et al., 2009), which will allow both early 

canonical killing mechanisms but also potentially allow later apoptosis associated killing, which 

requires phagolysosomal bacteria to trigger it (Ali et al., 2003). Eventually, macrophage 
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apoptosis is associated with nuclear fragmentation, caspase 3/7 positivity and loss of ΔΨ, these 

features fulfil the requirements for apoptosis associated killing. 

Levels of apoptosis are lower with the clinical isolate 1479 which also shows increased levels of 

Mcl-1 protein earlier after challenge (i.e. at 16 – 24 hours). Levels of Mcl-1 peak at 24 hours and 

later decrease whereas with the laboratory reference strain NTHi 49247 levels peak at 20 hours 

and decrease thereafter. Therefore, it is conceivable that a more virulent clinical strain might be 

a stimulus stressful enough to cause host upregulation of Mcl-1 levels which prolongs 

macrophage lifespan to ensure bacteria are properly killed by canonical phagolysosomal killing 

mechanisms. Mcl-1 may then be downregulated when cells become overwhelmed and 

apoptosis associated killing ensues to clear bacteria slightly later. Another perspective is that 

NTHi may benefit from an increase in host Mcl-1 levels for the utilization of macrophages as a 

protective niche. Although reports have speculated that NTHi has the ability to persist inside 

macrophages (Craig et al., 2001) and bronchiole epithelial cells (Morey et al., 2011), it is not 

usually regarded as an intracellular pathogen. To explore this idea, it would be interesting to 

look at co-localisation of NTHi with markers of acidified lysosomes and mediators of bacterial 

killing such as ROS and NO to determine if NTHi is associated with microbicidals or resides in a 

less hostile environment. 

My results demonstrate increased early pro-inflammatory cytokine responses induced by NTHi 

in comparison to S. pneumoniae but no significant differences in early killing between 

macrophage activation conditions. This observation indicates the pro-inflammatory nature of 

NTHi challenge can override prior macrophage activation stimuli, in keeping with the plastic 

nature of macrophage activation (Sica and Mantovani, 2012). Furthermore, retainment of 

inflammatory cytokine production at later time points of NTHi challenge, might be attributable 

to the delay in macrophage apoptosis, since apoptosis and the efferocytosis of apoptotic cells 

downregulates pro-inflammatory cytokine production in response to respiratory bacteria 

(Marriott et al., 2006). Previously published work suggests macrophage apoptosis in response 

to S. pneumoniae challenge is beneficial to resolution of the inflammatory response (Dockrell et 

al., 2003). Prolonged presence of NTHi in the COPD lung and its potentiation of pro-

inflammatory cytokine production are consequences of the reduced macrophage apoptosis and 

subsequent impairment of bacterial killing (Bewley et al., 2017) and may be one cause of the 

increased inflammation seen in COPD (Tuder and Petrache, 2012). The pro-inflammatory 

consequences of impaired NTHi clearance may contribute to the apparent contradictions in 

observations relating to macrophage polarisation in COPD where some studies suggest 
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macrophages show predominant alternative activation (Kaku et al., 2014; Shaykhiev et al., 

2009b). But other studies suggest classical and alternative activation features may both be 

observed in the lung and often in the same cells (Hodge et al., 2011). It remains possible that an 

NTHi stimulus might modify an intrinsic alternative activation stimulus in COPD to produce this 

mixed phenotype. Certainly, in murine models, NTHi exposure has been shown to contribute to 

certain aspects of COPD, such as continued pro-inflammatory cytokine production and 

inflammatory cell infiltration (Moghaddam et al., 2008).  It would therefore be interesting from 

a therapeutic perspective to induce apoptosis at earlier timepoints and see if this leads to 

enhanced bacterial clearance and resolution of the pro-inflammatory response. 

6.2.1. Future work 

To round off my current findings there are several remaining experiments which are key to 

completion of this story. My current work is focused on understanding if the apoptosis cascade 

also involves release of cytochrome c from the mitochondria by measurement of cytochrome c 

protein levels from mitochondrial and cytosolic fractions at key timepoints of NTHi challenge.  

Although I have analysed the kinetics of NTHi killing from 14 – 18 hours, I did not continue this 

time course until complete bacterial clearance. It would be interesting to extend this analysis to 

examine whether macrophages can clear all bacteria or if killing becomes exhausted and a 

population of NTHi are capable of intracellular survival. This would in part address the 

alternative hypothesis that NTHi are capable of up-regulating cell survival programs in order to 

persist inside macrophages.  

I have used human MDMs from healthy donors as a model of host response to bacterial 

challenge, however NTHi infection is most frequent in those who are vulnerable due to 

insufficient ability to mount an effective immune response (van Wessel et al., 2011). Therefore, 

it would be beneficial to repeat aspects of my analysis in a more physiologically relevant model, 

such as human AMs ideally from patients with diseases associated with NTHi such as COPD. 

Murine models which involve LPS and elastase exposure for 4 weeks prior to infection induce 

characteristics of the COPD lung (Sajjan et al., 2009). Use of this model in our CD68 Mcl-1 

transgenic macrophages would provide an experimental system which includes the apoptosis 

defect in vivo and allows for genetic manipulation of a regulatory factor, to check if it enhances 

the defect, albeit in a murine not a human disease model, which therefore has drawbacks.  
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6.3. General limitations  

Although useful for analysis of the Mcl-1 apoptosis defect, and appropriate when availability of 

clinical samples is scarce, it is important to acknowledge that macrophages derived from the 

CD68 Mcl-1 transgenic mouse are a crude representation of a clinical defect which likely doesn’t 

exist in singularity. In addition, healthy MDMs are not representative of the AM population 

(Guilliams et al., 2013; van de Laar et al., 2016). A physiological disease setting would allow 

analysis of macrophages, which are likely impaired in other effector functions, and are subject 

to the input of and crosstalk with several other cell types, which may also be functionally 

defective. Furthermore, most of the experiments conducted in this thesis use only blood derived 

macrophages. It is now widely acknowledged that resident AMs in the steady state are derived 

from the foetal liver which affects their phenotype and function (Guilliams et al., 2013; van de 

Laar et al., 2016). Furthermore, this thesis has only fully explored the effects of three 

macrophage phenotypes and in a physiological setting the macrophage activation profiles would 

be more specific to the local tissue environment than the in vitro models used here. Since COPD 

AM phenotypes have been shown to be dysregulated (Kaku et al., 2014; Shaykhiev et al., 2009b), 

and consist of phenotypes which extend beyond classical and alternative macrophage activation 

(Xue et al., 2014), it would be interesting to sort COPD AMs based on their cell surface expression 

markers and then extend the killing and apoptosis experiments conducted in this thesis into 

specific in vivo COPD AM phenotypes. A recent report highlights how AMs can be sorted based 

on their size which is also indicative of macrophage activation state, the group then go on to 

analyse phagocytotic capacity of healthy and COPD AMs (Dewhurst et al., 2017). 

6.4. Concluding remarks  

In summary, the data presented in this thesis demonstrates a role for classical macrophage 

activation in the modulation of the innate immunity of S. pneumoniae challenge and a potential 

role for T-cells in the orchestration of this response. I show increased apoptosis and 

pneumococcal killing in M(IFN-γ) stimulated murine BMDMs and MDMs from healthy donors. 

From my analysis, it appears IFN-γ stimulated increases in apoptosis are not associated with 

alterations in Mcl-1 degradation and further work is needed to delineate the specific signalling 

pathways involved in this response. I also show NTHi macrophage challenge results in an 

apoptotic response which is delayed in comparison to that previously described for S. 

pneumoniae infection and the nature of this response varies between NTHi strains. 

Furthermore, I show this response is associated with enhanced pro-inflammatory cytokine 

responses to NTHi in comparison to S. pneumoniae responses. These findings highlight the 

important roles of macrophage activation in fine tuning the innate response to pathogenic 
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bacteria and the potential for altered pathogenicity when consequences of this activation are 

altered in response to specific pathogens. 
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