
University of Sheffield

Department of Computer Science

The Integration of Software Specification,
Verification, and Testing Techniques with

Software Requirements and Design Processes

Wachara Chantatub

Submitted towards the degree of
Doctor of Philosophy

March 1995

To my dear grandmother

The Integration of Software Specification,
Verification, and Testing Techniques with

Software Requirements and Design Processes

Wachara Chantatub

Abstract

Specifying, verifying, and testing software requirements and design are very important tasks in
the software development process and must be taken seriously. By investing more up-front
effort in these tasks, software projects will gain the benefits of reduced maintenance costs,
higher software reliability, and more user-responsive software. However, many individuals
involved in these tasks still find that the techniques available for the tasks are either too
difficult and far from practical or if not difficult, inadequate for the tasks.

This thesis proposes practical and capable techniques for specifying and verifying
software requirements and design and for generating test requirements for acceptance and
system testing.

The proposed software requirements and design specification techniques emerge from
integrating three categories of software specification languages, namely an infonnal
specification language (e.g. English), semiformal specification languages (Entity-Relationship
Diagrams, Data Flow Diagrams, and Data Structure Diagrams), and a formal specification
language (Z with an extended subset). The four specification languages mentioned above are
used to specify both software requirements and design. Both software requirements and design
of a system are defined graphically in Entity-Relationship Diagrams, Data Flow Diagrams, and
Data Structure Diagrams, and defined formally in Z specifications.

The proposed software requirements and design verification techniques are a
combination of informal and formal proofs. The informal proofs are applied to check the
consistency of the semiformal specification and to check the consistency, correctness, and
completeness of the formal specification against the semiformal specification. The fonnal
proofs are applied to mathematically prove the consistency of the formal specification.

Finally, the proposed technique for generating test requirements for acceptance and
system testing from the formal requirements specification is presented. Two sets of test
requirements are generated: test requirements for testing the critical requirements, and test
requirements for testing the operations of the system.

Acknowledgements

I would like to express my sincere thanks to my supervisor, Professor Mike Holcombe, who
suggested the idea underlining this thesis. I am also grateful for his help, encouragement, and
excellent guidance throughout my doctoral programme.

Special thanks are due to Dr. Gilbert Laycock, Dr. Colin Smythe, Dr. Matt Fairtlough, Dr.
Paul McKevitt, and all members of the FormSoft, the Formal Methods and Software
Engineering Group of the Computer Science Department.

I am indebted to Mr. Hugh Lafferty, Dr. Phil Green, Dr. Martin Cooke, Dr. Peter Croll, and
Mr. Mark Dunn for allowing me to attend their classes.

I am grateful also to my first year examiners, Dr. Tony Cowling and Dr. John Kerridge, for
their evaluation of my first year report.

Thanks to Jean Brackenbury, Karen Baker, and Gillian Callaghan, the secretarial staff at the
Computer Science Department, for all their help.

This work would never been possible without the scholarship from Chulalongkorn University. I
would like to express my gratitude to Professor Dr. Narasri Vivanijkul and Associate Professor
Dr. Sorachai Bhisalbutra for their support. I am particularly indebted to Associate Professor
Dr. Suchada Kiranandana for her endless support and encouragement.

I will not forget the kindness and hospitality of Professor Keith and Mrs. Nong Branigan and
their three children, Alan, Holly, and Tanya. Thank you so much for sharing your family with
me.

My thanks should also go to Mr. H. Strachey-Hawdon and Mr. and Mrs. Gittins for their
kindness.

I should also thank my wonderful English teacher, Mrs. Mary Magil, for her excellent lessons
and for her endless effort.

Thank you to all of my Thai friends in Sheffield for everything.

Thanks to my parents, my sister (Dr. Wacharee Attathiphaholkhun) and brothers (Mr. Wirat,
Dr. Chairat, and Dr. Somrat Hirunyawasit) for their endless love and support.

My final thanks go to my husband, Thealaphan, for his patience, love, and hundreds of letters.

The Integration of Software Specification, Verification, and Testing Techniques with Software Requiremenis and Design Processes

Contents

Chapter1 Introduction •....e... 1
1.1 Overview ...1
1.2 Software engineering..1
1.3 Software development process...2

1.3.1 Software life cycle model...2
1.3.2 Software life cycle phases and products.....................................4

1.4 Why are software requirements and design important?................................5
1.5 A classification of applications..6
1.6 Software specifications...7

1.6.1 Software requirements specification vs software design
specification..7

1.6.2 Software requirements specification (SRS)8
1.6.2.1 What should and should not be included in an

SRS ...8
1.6.2.2 Characteristics of a good SRS9

1.6.3 Software design specification (SDS)..9
1.6.3.1 What should and should not be included in an

SDS..9
1.6.3.2 Characteristics of a good SDS.......................................10

1.6.4 Software specification languages ...10
1.6.4.1 A category of software specification languages..............10
1.6.4.2 On the integration of software specification

languages...12
1.7 A classification of software errors...13
1.8 Requirements and design verification..15
1.9 Acceptance, system, integration, and unit test planning...............................15
1.10 An example system...16
1.11 Overview of the thesis..16

Chapter2 Software specification languages ...18
2.1 Overview ...18
2.2 Entity-relationship diagrams...18

2.2.1 Notations...18
2.2.1.1 Entity..19
2.2.1.2 Relationship ..19
2.2.1.3 Cardinality...19
2.2.1.4 Instance participation...20
2.2.1.5 Relationship types ...20

2.2.2 Example..22

Contents

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

2.3 Data flow diagrams ..23
2.3.1 Notations...23

2.3.1.1 External entity...23
2.3.1.2 Process..24
2.3.1.3 Data flow..24
2.3.1.4 Data store ...24
2.3.1.5 Data interface..25
2.3.1.6 Data store access...25

2.3.2 Example..25
2.4 Data structure diagrams..26

2.4.1 Notations...27
2.4.1.1 Data item ..27
2.4.1.2 Data interface..27
2.4.1.3 Optional..27

2.4.2 Example..28
2.5Z..28

2.5.1 The extended Z subset...29
2.5.1.1 Relationship ..29
2.5.1.2 Relationship maplet...31
2.5.1.3 Data interface..31
2.5.1.4 Optional..32
2.5.1.5 Inputloutput data flow relation......................................32
2.5.1.6 Data flow passing..33

2.6 Roles of software specification languages in software specifications............33

Chapter 3 Software requirements specification technique.....................35

3.1 Overview ...35
3.2 Overview of the proposed SRS technique...35

3.2.1 The static and dynamic aspects of a system................................ 35
3.2.1.1 The static aspects of a system..36
3.2.1.2 The dynamic aspects of a system36

3.2.2 Steps of the proposed SRS technique...36
3.3 Step 1: drawRERDsandRDSDs...37

3.3.1 Step 1.1: identify all entities and their relationships37
3.3.2 Step 1.2: draw RER.Ds ..38
3.3.3 Step 1.3: draw RDSDs..38

3.4 Step 2: draw RDFDs and RDSDs...39
3.4.1 Step 2.1: draw the context RDFD and RDSDs...........................39

3.4.1.1 Step 2.1.1: identify all external entities and input
andoutput data flows.. 39

3.4.1.2 Step 2.1.2: draw the context RDFD...............................39
3.4.1.3 Step 2.1.3: identify the data components of each

inputand output data flow... 40
3.4.1.4 Step 2.1.4: draw RDSDs...41

3.4.2 Step 2.2: draw the next level RDFDs and RDSDs47
3.4.2.1 Step 2.2.1: identify sub-processes..................................47
3.4.2.2 Step 2.2.2: identify input and output data flows

ofeach sub-process ...48

Contents	 ii

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3.4.2.3 Step 2.2.3: draw the next level RDFD48
3.4.2.4 Step 2.2.4: identify the data components of each

newinternal data flow..48
3.4.2.5 Step 2.2.5: draw RDSDs...49

3.5 Step 3: writeRZs...61
3.5.1 Step 3.1: define the state of the system61
3.5.2 Step 3.2: define the initial state of the system.............................63
3.5.3 Step 3.3: define the operations of the system..............................63

Chapter 4 Software requirements verification technique..........

4.1 Overview ...78
4.2 Overview of the proposed software requirements verification

technique...78
4.3 Step 2.2: informally prove the semiformal requirements

specification..80
4.3.1 Check the RERDs ...81
4.3.2 Check the RDFDs..81
4.3.3 ChecktheRDSDs ...81
4.3.4 Check the RERDs against the RDSDs82
4.3.5 Check the RDFDs against the RDSDs82
4.3.6 Check the RDFDs against the RERDs82

4.4 Step 3.1: informally prove the formal requirements specification
against the semiformal requirements specification......................................82

4.4.1 Check the RZ state specifications against the RERDs and
RDSDs ...82

4.4.2 Check the RZ operation specifications against the
RDFDsand RDSDs ..83

4.5 Step 3.3: formally prove the formal requirements specification....................83
4.5.1 Inconsistent critical requirements...83
4.5.2 Inconsistency between the state specification and the

initialstate specification ..84
4.5.3 Inconsistent interface specifications ...85
4.5.4 Inconsistency between the outputs specified in the

interface specification and the outputs specified in the
processspecification ...95

4.5.5 Inconsistency between the process and the critical
requirements...97

Chapter 5 Software design specification technique

5.1 Overview..99
5.2 Overview of the proposed SDS technique...99

5.2.1 From requirements to designs..99
5.2.2 Steps of the proposed SDS technique..100

5.3 Step 1: drawDERDsandDDSDs ..101
5.3.1 Step 1.1: identify all entities and their relationships101
5.3.2 Step 1.2: draw DERDs..102
5.3.3 Step 1.3: draw DDSDs..103

5.4 Step 2: draw DDFDs and DDSDs...105

Contents	 iii

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

5.4.1 Step 2.1: draw the context DDFD and DDSDs..........................105
5.4.1.1 Step 2.1.1: identify all external entities and input

andoutput data flows..105
5.4.1.2 Step 2.1.2: draw the context DDFD105
5.4.1.3 Step 2.1.3: identify the data components of each

inputand output data flow...106
5.4.1.4 Step 2.1.4: draw DDSDs...106

5.4.2 Step 2.2: draw the next level DDFDs and DDSDs107
5.4.2.1 Step 2.2.1: identify sub-processes..................................107
5.4.2.2 Step 2.2.2: identify input and output data flows

ofeach sub-process ...107
5.4.2.3 Step 2.2.3: draw the next level DDFD107
5.4.2.4 Step 2.2.4: identify the data components of each

newinternal data flow..108
5.4.2.5 Step 2.2.5: draw DDSDs...108

5.5 Step 3: write DZs...110
5.5.1 Step 3.1: define the state of the system110
5.5.2 Step 3.2: define the initial state of the system.............................112
5.5.3 Step 3.3: define the operations of the system..............................113

Chapter 6 Software design verification technique....................

6.1 Overview..117
6.2 Overview of the proposed software design verification technique................117
6.3 Mapping between the abstract state space and the concrete state

space...119
6.4 Proving that the initial concrete state satisfies the initial abstract

state..122
6.5 Proving that the concrete operations implement the abstract

operations...123

Chapter 7 Requirements specification based software testing...............125

7.1 Overview..125
7.2 Software testing...125
7.3 Formal specifications and software testing..126
7.4 Overview of the proposed technique...126
7.5 Deriving test requirements for testing the critical requirements of

thesystem...127
7.6 Deriving test requirements for testing the operations of the system128

Chapter8 Conclusion.. ...•..... S..•....S•IS•S 139

8.1 Overview..139
8.2 Summary of the proposed techniques..139

8.2.1 Novelty of the proposed techniques...140
8.2.2 Limitations of the proposed techniques......................................141

8.3 A comparison with related works ...142
8.4 Further development of the proposed techniques ..144

Contents	 iv

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Chapter 1	 Introduction

1.1 Overview

The objective of this chapter is to provide an overview of this thesis. This thesis proposes new
techniques for specifying and verifying software requirements and design, and for generating
test requirements for acceptance and system testing. Therefore, this chapter explains where
these new techniques fit into the software life cycle model, why are they important, and what
classes of applications will benefit from them. This chapter also lays the foundations for the
rest of the thesis.

The layout of this chapter is as follows. In section 1.2, a definition of software
engineering is given. Section 1.3 examines five different software life cycle models, and
presents a new software life cycle model which will be followed by this thesis. It then describes
phases and products within the new software life cycle model. Section 1.4 illustrates some
figures to show why software requirements and design are important. Section 1.5 discusses a
classification of applications and then states what classes of applications we believe will benefit
from the new techniques. Section 1.6 defines and compares software requirements and design
specifications. It then describes a categoly of software specification languages and identifies
software specification languages which will be employed by the new techniques. In section 1.7,
various schemes of software errors classifications are discussed and a new scheme is presented.
The notions of software requirements and design verification are briefly mentioned in section
1.8. Then, in section 1.9, the notions of acceptance, system, integration, and unit test planning
are briefly explained. In section 1.10, an example system, which will be used throughout this
thesis, is given. Finally, in section 1.11, an overview of the rest of this thesis is noted.

1.2 Software engineering

For many years, a lot of effort has been spent in trying to find a solution to the so-called
software crisis - software projects were being delivered far behind schedule, quality was poor,
and maintenance was expensive [75]. Now the software crisis is still with us [25, 85].
Fundamentally, the software crisis is associated with the complexity of software systems
coupled with the inability of techniques to deal with this complexity [21].

Software engineering is an attempt to solve the software crisis. The term software
includes not only computer programs but also associated documentation pertaining to develop,
operate, and maintain a computer system [42]. Software engineering is, then, defined as the
application of scientific principles to the development, operation, and maintenance of computer
programs and the associated documentation [7, 19, 42, 85]. Software engineering is applied in
an attempt to produce well engineered software - software which is suitable, efficient, reliable,
and maintainable, with low cost and on schedule [85].

Although there have been a lot of improvements in software engineering, various
techniques and tools have been developed, the results are still far from satisfactory. Much more
effort is still needed to find better solutions, better techniques and tools, to tackle the problem.

1. Introduction

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

1.3 Software development process

1.3.1 Software life cycle model

In a broad sense, the software development process entails the translation of requirements into
a working system which meets such requirements [92]. In order to make the software
development process more manageable and more visible, the concept of the software life cycle
model has come into prominence. The life cycle of a software system begins when the need for
the software product is identified and ends when it is no longer used [46]. The software life
cycle model comprises phases and products of those phases. A number of different software
life cycle models have been proposed; some of these models can be identified as pointed out by
Davis et. all [18] and Sommerville [85] and are summarized here as follows.

1) Waterfall model

This model views the software development process as being made up of a
number of phases such as requirements analysis, design, programming, testing,
operation, and maintenance. Each phase is carried out one after another, from
requirements to design, from design to programming, and so on.

2) Incremental development model

This model views the software development process as the process of
constructing a partial implementation of a total system and then later on
adding increased functionality or performance until the total system is fully
implemented. By following this approach, the part of the system which is
already implemented can be put into operation.

3) Prototyping model

This model views the software development process as the process of
constructing a quick partial implementation of a total system with an aim to
establish the real requirements. The end-users then utilize this prototype for a
period of time and supply feedback to the developers. This feedback is then
used to establish the real requirements specification, which may differ from the
initial requirements, then follows a re-implementation of the total system. This
will ensure that the software product really meets the real requirements.

4) Reusable model

This model views the software development process as the process of
constructing a new software system by incorporating or using components,
designs, and/or programs which already exist.

5) Automated software synthesis model

This model views the software development process as the process of
developing a formal requirements specification of a software system and
transforming this specification into operational code by using correctness-
preserving transformations.

The waterfall model is the most widespread model and has been used by most
commercial corporations, government contractors, and governmental entities [18, 68]. Also, the
waterfall model is appropriate to the software development techniques and tools available and
can be adapted to specific projects [68].

1. Introduction	 2

remects

irnents)t

Requirements
verification

r Softwere
Requirements

SpecihicaJ

3
Acceptance

Test
Planning

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

In this thesis, a slight variation of the waterfall model is proposed as shown in Figure
1-1 (shaded regions represent areas of application of the techniques proposed in this thesis) and
will be employed throughout this thesis. It is aimed at making explicit all important phases,
products of each phase, links between phases, and links between phases and products.

QPhase

Product

Link between
phases

Link between
phase and
product, etc.

4
System

Document

	

Test	

5	 \.	 Design

Design

	

fl cat	 (Sysem,
	 verification /

rl Test I Integration,
& Un it T eat

Planning

Software
Design

Specification

8

Program
Testing

	

9\\	 (10

	

Operation)	 Maintenar

Figure 1-1: The software life cycle model (shaded regions represent areas of application of the
techniques proposed in this thesis)

1. Introduction	 3

The Inlegration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

1.3.2 Software life cycle phases and products

According to the software life cycle model shown in Figure 1-1, there are ten phases, shown as
circles, and seven products, shown as rectangles.

The ten phases are:

1)Requirements analysis

This phase includes analyzing the end-users' requirements and producing a
software requirements specification (SRS).

2) Requirements verification

This phase includes verifying the consistency within the SRS itself and
verifying the consistency of the SRS against the end-users' real requirements.

3) Acceptance test planning

This phase includes producing a test plan and test specification for acceptance
testing from the SRS.

4) Design

This phase includes studying the SRS, designing a software design model, and
producing a software design specification (SDS).

5) Design verification

This phase includes verifying the consistency within the SDS itself, and
verifying the consistency of the SDS against the SRS.

6) System, Integration, and unit test planning

This phase includes producing test plans and test specifications for system
testing, integration testing, and unit testing from the SRS and SDS.

7) Programming

This phase includes transforming what has been specified in the SDS into a set
of computer programs.

8) Program testing

This phase includes testing computer programs by following the unit,
integration, system, and acceptance test plans and test specifications specified
in the test documents.

9) Operation

This phase includes using the programs in the real practice.

10)Maintenance

This phase includes correcting errors, improving the efficiency, and adding
new functions into the programs. The maintenance phase actually covers the
nine phases above.

1. Introduction	 4

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The seven products are:

1) Software requirements specfication (SRS)

An SRS is a document containing a complete description of what the software
will do in order to achieve what the end-users want without describing how it
will do it [19].

2) Acceptance test document

An acceptance test document covers a test plan, test specification, and test
report [43] for acceptance testing which is the process of testing conducted to
determine whether or not a system satisfies its acceptance criteria and to
enable the customer to determine whether or not to accept the system [37].

3) Software design specification (SDS)

An SDS is a document which records the translation of the software
requirements specification into a description of the software structure,
software components, interfaces, and data necessary for the programming
phase [46].

4) System test document

A system test document covers a test plan, test specification, and test report
[43] for system testing which is the process of testing an integrated hardware
and software system to verify that the programs meet the specified
requirements [42].

5) Integration test document

An integration test document covers a test plan, test specification, and test
report [43] for integration testing which is the process of testing interfhces to
ensure that program units are communicating as expected [37].

6) Unit test document

A unit test document covers a test plan, test specification, and test report [43]
for unit testing which is the process of testing individual program units to
ensure that the unit satisfies its functional specification [5].

7) Programs

Programs are computer programs produced which will be used in the
operation.

This thesis concerns six phases and four products as shown with shaded regions in
Figure 1-1. To be more specific, this thesis concerns: producing software requirements
specifications; verifying software requirements specifications; producing software design
specifications; verifying software design specifications; and generating test requirements for
acceptance and system testing.

1.4 Why are software requirements and design important?

At the present, the total cost of a computer system, the cost of hardware plus the cost of
software, is dominated by the cost of software. In the 1950s, approximately the cost of
hardware was more than 80 percent of the total cost of a computer system, whereas the cost of
software was less than 20 percent [7]. In the 1990s, the numbers are inverted; the cost of
hardware is less than 20 percent of the total cost of a computer system, whereas the cost of
software is more than 80 percent [84].

1. Introduction

The Integration of Software Specification, Verification, and Testing Techniques with Software Requiremenis and Design Processes

The cost of testing is enormous, around 50 percent of the software cost [6]. The
maintenance cost is 2-4 times greater than the predelivery cost and about two-thirds of the
maintenance cost can be contributed to software errors made during two early phases of
software development namely the requirements analysis and design phases [55, 75]. As pointed
out by Boehm [81, in large projects failure to find and correct software errors early in the life
cycle can increase the cost of software by 100 times; in small projects, the number is more like
4-6 times.

In general, the later in the software life cycle that a software error is detected, the more
expensive it will be to repair [19].

By studying these numbers, we then realize how important are software requirements
and design. More effort needs to be spent in requirements analysis and design [93]. In other
words, it is indeed very important to have correct software requirements and design
specifications. Martin mentioned in [61] that "Program testing produces a crop of surprises.
Integration testing produces worse surprises. Development can be even worse if the users do
not like what they get. It is very expensive to deal with surprises which occur late in the cycle
and which cause earlier parts of the cycle to be redone".

1.5 A classification of applications

It is necessary for developers of new techniques or tools to state explicitly what class or classes
of applications will benefit from those new techniques or tools. Since this thesis proposes some
new techniques, it is my obligation to state, in advance, what classes of applications would
benefit from the new techniques.

There are various criteria for classifying applications, however a classification offered
by Davis in [19] seems to be the most useful one and will be adapted for use in this thesis.

Applications can be classified by five important characteristics of applications as
follows:

1) Difficulty ofproblem

Applications may be classified by considering the difficulty of how to solve the
problem: hard (HA) or not hard (NH). An HA application is an application
whose solution is unknown and it seems that it would be hard to find the
solution whereas an NH application is an application whose solution is known
to be applicable.

2) Temporal relationship between input data and processes

Applications may be classified by considering the temporal relationship
between input data and processes: batch (BA) or interactive (IN). A BA
application is an application whose all input data is available before the
processing of the data whereas an iN application is an application whose input
data is entered interactively during the processing of the data.

3) Number of taskr performed at the same time

Applications may be classified by considering the number of tasks to be
performed at the same time: single-tasking (ST) or multi-tasking (MT). An
ST application is an application which performs only one task at a time
whereas an MT application is an application which is able to perform multiple
tasks simultaneously.

1.	 6

The integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4) Relative difficulty of data and algorithmic aspects

Applications may be classified by considering the complexity of data and
algorithms used in solving the problem: data (DA) or algorithm (AL). A DA
application is an application whose data is complex and the success of the
application depends on how well the data is organized and manipulated
whereas an AL application is an application in which the most difficult part of
a system is how to transform the system's input into the system's output.

5) Predictability of system output

Applications may be classified by considering the predictability of system's
outputs from a known set of inputs: deterministic (DE) or nondeterministic
(ND). A DE application is an application whose outputs can be predicted in
advance and the same outputs are produced, given the same inputs, whereas an
ND application is an application whose outputs cannot be predicted in
advance.

The techniques proposed in this thesis would be found useful in these classes of
applications: NH, BA and IN, ST and MT, DA, and DE. In general, the proposed techniques
can be applied to any typical business information system.

1.6 Software specifications

1.6.1 Software requirements specification vs software design
specification

As shown in Figure 1-1, there are two specifications produced as the results of the
requirements analysis and design phases; the two specifications are the software requirement
specification (SRS) and software design specification (SDS).

As emphasized by Ward and Mellor in [92] that it is necessaly to separate the SRS
from the SDS and there are many benefits to be gained from the separation. Due to the fact that
in practice software requirements and design processes are often not done separately and also
the lack of clear agreement over whether some detail should relate to the SRS or to the SDS,
the SRS and SDS sometimes do get mixed up [921. Therefore, we often find SRSs which
include design decisions. Such poorly written SRSs might limit efficient designs. The same
problem is also found in SDSs; we often find SDSs which include implementation decisions.
Such poorly written SDSs also might limit efficient implementations. The difficulty in
distinguishing between the SRS and SDS has also been raised for example in [7, 19, 20, 85,
89].

In this section, definitions of the SRS and SDS are given, and then the benefits to be
gained from the separation of the SRS from the SDS are discussed.

A software requirements specification (SRS) is a document containing a complete
description of what the software will do without describing how it will do it [19]. In other
words, an SRS should specify the results that must be achieved by the software, not the means
of obtaining those results [44]. An SRS must correctly define all of the software requirements,
but no more; in other words, it shall not describe any project management, design,
implementation, or testing [44]. An SRS should be jointly prepared by both the end-user and
the analyst because neither of them is qualified to prepare the SRS alone.

A software design specfIcation (SDS) is a document which records the translation of
the software requirements specification into a description of the software structure, software
components, interfaces, and data necessary for the programming phase [46]. It records the

1. Introduction	 7

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

results of the design processes that are carried out during the design phase and it will be used
as the medium for communicating software design infonnation [46]. An SDS is prepared by
the designer.

There are many benefits to be gained from the separation of the SRS from the SDS.
First, it allows the system to be described into two different views: the SRS describes the
system in tenns of the subject-mattered vocabulary of the system, rather than in terms of
computer hardware or software technology, so that the SRS is true regardless of the technology
used to implement the system; the SDS then describes the system as actually realized by a
particular technology [92]. Second, by separating the SRS from the SDS, the long-process
task concerned can be broken down into two separated, but related, smaller tasks: one concerns
analyzing and defining the software requirements; the other concerns designing the software
and defining the software design. Finally, it permits the SRS and the SDS to be compaied for
consistency [92].

1.6.2 Software requirements specification (SRS)

1.6.2.1 What should and should not be included in an SRS

Concerning what should or should not be included in an SRS, some guidelines have been
suggested in [19, 44] and are summarized as follows:

An SRS should include these basic issues:

1)Functional requirements

Functional requirements define what the software system is supposed to do;
these includes the descriptions of all inputs and outputs to and from the
system, the criteria for judging the validity and invalidity of all inputs and
outputs, and the effects of inputs to the software system, etc.

2) Performance requirements

Performance requirements include the speed, response time, recovery time, etc.

3) Attribute requirements

Attribute requirements include portability, maintainability, security, capacity,
standards compliance, etc.

4) External interface requirements

External interface requirements include interactions with people, hardware,
other software, and other hardware, etc.

An SRS should not include these issues:

1)Designs

An SRS should not specify what are supposed to be design decisions such as
data design and process/algorithm design.

2) Product assurance plans

Product assurance plans include test plans, quality assurance plans,
configuration management plans, etc.

3) Project requirements

Project requirements include staffing, schedules, costs, milestones, activities,
phases, reporting schedules, etc.

I. Introduction

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

1.6.2.2 Characteristics of a good SRS

A good SRS should have the following characteristics [4, 16, 19, 44, 68]:

1) Understandable

An SRS is understandable if and only if everyone who uses the SRS can
understand what is stated in the SRS.

2) Unambiguous

An SRS is unambiguous if and only if every requirement stated therein has
only one interpretation.

3) Consistent

An SRS is consistent if and only if no subset of individual requirements stated
therein conflict.

4) Correct

An SRS is correct if and only if every requirement stated therein represents
something required of the system to be built.

5) Complete

An SRS is complete if and only if all requirements are stated.

6) Verifiable

An SRS is verifiable if and only if there exists some finite cost-effective
process with which a person or machine can check that the SRS stated therein
meets the real requirements.

7) Mod/Iable

An SRS is modifiable if changes to the SRS can be made easily.

8) Traceable

An SRS is traceable if the origin of each of its requirements is clear.

1.6.3 Software design specification (SDS)

1.6.3.1 What should and should not be included in an SDS

An SDS should include descriptions of the individual design components (design entities) and
relationships among those design components [46].

The description of the individual design components, as suggested in [46], can be
summarized as follows:

1)Purpose

Purpose is a description of why this design component exists.

2) Function

Function is a description of what this design component does. Function
describes how this design component transforms the inputs into the desired
outputs but in terms of design, not in terms of implementation.

1. introduction	 9

The Integration of Software Specification. Verification. and Testing Techniques with Software Requirements and Design Processes

3) Interface

Interface is a description of how this design component communicates with
other design components.

4) Rationale

Rationale is a description of the factors on which the design of this component
is based that are not in the SRS.

An SOS, siniilarly to the SRS, should not include the product assurance plans and
project requirements, in addition the SDS should not include the implementations or how to
implement the software system.

1.6.3.2 Characteristics of a good SDS

The characteristics of a good SDS are very similar to of a good SRS mentioned earlier. A good
SDS should have the following characteristics [68, 99J:

1) Understandable

An SDS is understandable if and only if everyone who uses the SDS can
understand what is stated in the SDS.

2) Unambiguous

An SDS is unambiguous if and only if every design stated therein has only one
interpretation.

3) Consistent

An SDS is consistent if and only if no subset of individual designs stated
therein conflict.

4) Correct

An SDS is correct if and only if every design stated therein correctly
represents something stated in the SRS.

5) Complete

An SDS is complete if and only if the SRS is fully developed in the SDS.

6) Verifiable

An SDS is verifiable if and only if there exists some finite cost-effective
process with which a person or machine can check that the SDS meets the
SRS.

7) Modifiable

An SOS is modifiable if changes to the SDS can be made easily.

8) Traceable

An SDS is traceable if terms in the SDS have antecedents in the SRS.

1.6.4 Software specification languages

1.6.4.1 A category of software specification languages

A software specification language is the medium for communicating software requirements and
design information. A variety of software specification languages is available, see [19, 69, 83,

1. Introduction	 10

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

99] for the discussion. Most of specification languages are applying to both software
requirements and design specifications. Even though there are various techniques for specifying
software requirements and design, the specification languages employed by those techniques
are quite common.

The software specification languages may be classified into three major categories as
follows:

1) Informal specification languages

An infonnal specification language is a specification language which is based
on natural languages (e.g. English). Even though natural languages are
considered to be user-friendly and provide more freedom of expression, they
tend to be ambiguous and imprecise [91].

2) Semiformal specification languages

A semiformal specification language is a specification language which uses
diagram (graphic) and/or semiformal textual grammar. It is generally agreed
that graphical representation as well as the "English-like 9 nature of the
semiformal specification language is much more comprehensible than just its
textual counterpart [91]. Furthermore, the semiformal specification language
is considered to be more precise than the informal specification language.
However, the semiformal specification language is still not precise enough.

Some well-known semiformal specification languages are:

(1) Entity-relationship diagrams [14]

(2) Data flow diagrams [20, 33]

(3) Data structure diagrams [20, 411

(4) Program design language [10]

(5) Decision table and decision tree [64]

(6) Structure chart [100]

(7) HIPO chart [87]

(8) Petri nets [70]

3) Formal spectI cation languages

A formal specification language is a specification language which must have a
well-defined mathematical basis; and as the result, the formal specification
language is considered to be precise, can be analyzed, and mathematical proofs
can be used to prove the consistency, correctness, as well as syntactic
correctness of the specification [30, 97].

Some well-known formal specification languages are:

(1)Z[86]

(2) VDM[49]

(3) OB.J[32]

(4) CSP [38]

So far the SRSs and SDSs produced by particular orgmi7ations can be anything from
a broad outline statement in natural language to the other extreme of a mathematically formal
specification [85].

1. Introduction	 11

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

1.6.4.2 On the integration of software specification Languages

Before the techniques proposed in this thesis were developed, some semiformal and formal
specification languages had been explored and experimented.

The first attempt was to try to use only one particular specification language, for
example Z, VDM, and OBJ, by trying to extend the language to make it more efficient for
specifying software requirements and design. However, it was found that extending the formal
specification language alone does not give a satisfactory result. By integrating some semifonnal
specification languages with a formal specification language however the required result can be
obtained.

The next step was to try to integrate different diagram techniques, for example ERDs,
DFDs, DSDs, Structure chart, F11PO chart, and Petri nets, with various formal specification
languages, for example Z, VDM, and OBJ. Eventually, it was found that the semiformal
specification languages ERDs, DFDs, and DSDs could be integrated nicely with Z, and so it is
this combination of languages that has been developed in detail in this thesis.

It is probably impractical to define a software specification by using only a single
language or single category of the languages. On the other hand, it is likely that there is more to
be gained by using more than one language and even more by using more than one category of
the languages [3, 30, 56, 62, 88, 97]. Informal specification languages, such as English,
provide more freedom of expression as well as verbal reasoning. Semiformal specification
languages, such as entity-relationship diagrams, data flow diagrams, or data structure
diagrams, provide for visual, reasoning, as well as having manipulation capabilities. Formal
specification languages, such as Z, are precise, can be analyzed, and mathematical proofs can
be used to prove the consistency, correctness, as well as syntactic correctness of the
specification. However, the languages to be integrated must support each other. In addition, as
pointed out by Tse in [91], the language must be convertible from one form to another so that
the end-users, analysts, designers, and programmers would be able to communicate effectively.

In this thesis, new techniques for defining software requirements and design
specifications are proposed. The techniques emerge from integrating the above mentioned three
categories of software specification languages.

Even though the informal specification language is taking part in the new techniques, it
is not discussed any further in this thesis.

Concerning the semiformal specification languages, three well-known semiformal
specification languages are selected to be used in the new techniques; they are entity-
relationship diagrams, data flow diagrams, and data structure diagrams. These three diagrams
support one another nicely. Entity-relationship diagrams are used to model the static aspects
(or state space) of the systems whereas the data flow diagrams are used to model the dynamic
aspects (operations) of the systems [53]. Data structure diagrams are used to model the data
structures of entities as well as the data structures of the data flows. Therefore, all aspects,
except some critical requirements (data invariants) and detailed processes, of the system are
captured nicely within these three diagrams.

Concerning the formal specification languages, the Z specification language [86] is
selected. Z is selected because it has the facilities for separately specif'ing state space and
operations and it also has the structuring mechanism known as schema [98].

1.	 12

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

1.7 A classification of software errors

A classification of software errors can be used in verifying, proving, or testing specifications
and programs, and can be used for evaluating tools, techniques, or methodologies [15].
Software errors may be classified by symptom, by cause, by the similarity of the errors, by the
software development phase in which an error was introduced, or by severity, or by some
combination of these.

Various schemes of software errors classifications have been proposed, for example in
[5, 15, 24, 50, 66]. In [5], software errors are classified by their siniilarity into the following
major categories: requirements, features and functionality, structure, data, implementation and
coding, integration, system and architecture, and testing. In [15], software errors are classified
by a two-dimensional scheme accounting for both the software life cycle phase during which
the error originated (namely requirements specifications, high level design, detailed design and
coding, and additional errors incurred by altering existing products) and the behaviour or
condition that caused the error (namely communicational, conceptual, and clerical). In [24],
software errors are classified by the software life cycle phase during which the error originated
namely requirements defects, design defects, and code defects. In [50] software errors are
classified by the similarity of the errors into 13 major categories namely user interice errors,
error handling, boundary-related errors, calculation errors, initial and later states, control flow
errors, errors in handling or interpreting data, race conditions, load conditions, hardware,
source and version control, documentation, and testing errors. In [66], software errors are
classified by their cause-effect relationships.

To gain more benefit from the software errors classification, the classification should
bring into attention the software development techniques being used, these include software
requirements and design specification techniques, programming languages, database
management system, and so on. In this thesis, a new classification of software errors is
presented in which software errors are classified by the products within the software life cycle
model (namely software requirements specification and software design specification) and the
causes of the errors. The new classification is formulated by also bringing into attention the
software requirements and design specification techniques proposed in this thesis. Since this
thesis deals only with finding errors in software requirements and design specifications, the
proposed classification covers only these two products as follows.

Software requirements specification

1) Missing feature

A feature required by the end-users but not specified in the SRS.

(1)Missing entity or attribute

(2)Missing relationship

(3)Missing critical requirement

(4)Missing process

2) Undesirable feature

A feature specified in the SRS but not required by the end-users.

(1) Undesirable entity or attribute

(2) Undesirable relationship

(3) Undesirable critical requirement

1. Introduction	 13

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

(4) Undesirable process

3) Duplicate features

A feature specified more than once in the SRS.

(1) Duplicate entities or attributes

(2) Duplicate relationships

(3) Duplicate critical requirements

(4) Duplicate processes

4) Inconsistent features

Features specified in the SRS are in conflict or inconsistent.

(1) Inconsistent critical requirements

(2) Inconsistency between the state specfi cation and the initial state
specification

(3) Inconsistent interface specifications

(4) Inconsistency between the outputs specfled in the interface specfi cation
and the outputs specf1ed in the process specfl cation

(5) Inconsistency between the process specification and the critical
requirements spec/l cation

Software design specification

Similarly to the case for the SRS, the causes of errors in the SDS are classified as
follows.

1) Missing feature

A feature specified in the SRS but not specified in the SDS.

(1)Missing entity or attribute

(2)Missing relationship

(3) Missing critical requirement

(4)Missing process

2) Undesirable feature

A feature specified in the SDS but not specified in the SRS.

(1) Undesirable entity or attribute

(2) Undesirable relationship

(3) Undesirable critical requirement

(4) Undesirable process

3) Duplicate features

A feature specified more than once in the SDS.

(1) Duplicate entities or attributes

(2) Duplicate relationships

(3) Duplicate critical requirements

1. Introduction	 14

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

(4) Duplicate processes

4) Inconsistent features

Features specified in the SDS are in conflict or inconsistent.

(1) Inconsistent critical requirements

(2) Inconsistency between the state specy'1 cation and the initial state
specfl cation

(3) Inconsistent interface spec y'lcations

(4) Inconsistency between the outputs specified in the interface specification
and the outputs specified in the process specfl cation

(5) Inconsistency between the process specification and the critical
requirements specification

1.8 Requirements and design verification

It has been discovered that errors that are introduced during software requirements analysis and
design phases have a major impact on the total cost of software [75]. Requirements verification
and design verification are activities introduced into the software development process with an
aim of finding errors introduced during the requirements analysis phase and design phase
accordingly.

As shown in Figure 1-1, the requirements verification phase (generally) follows the
requirements analysis phase, and the design verification phase (generally) follows the design
phase. The requirements verification includes verifying the consistency within the SRS itself;
and of the SRS against the end-users' requirements. The design verification includes verifying
the consistency within the SDS itself and of the SDS against the SRS.

The tasks of both requirements verification and design verification have already been
studied and some general guidelines for the tasks have been presented for example in [9, 37,
45, 50, 681. Also, many techniques have been developed in order to tackle the tasks for
example [12, 39, 47, 51, 53].

1.9 Acceptance, system, integration, and unit test planning

Testing effort starts when you begin test planning. Test planning can be identified into
acceptance, system, integration, and unit test planning. Each test planning is aimed to produce
different test plan and test specification.

According to the ANSIIIEEE Std 829-1983 for Software Test Documentation [43],
test documents cover test plans, test specifications, and test reports. Test documents may be
classified into an acceptance, system, integration, and unit test document. The test plan
prescribes the scope, approach, resources, and schedule or the testing activities; and it also
identifies the items to be tested, the features to be tested, the testing task to be performed, the
personnel responsible for each task, and the risk associated with the plan. The test specification
is covered by three documents: a test-design document, test-case specification, and test
procedure specification. The test report is covered by four documents: a test item transmittal,
test log, test incidental, and test sunimaiy report.

There are four testing activities which are related with the four test documents
mentioned above. The four testing activities are unit testing, integration testing, system testing,
and acceptance testing. Unit testing is aimed to reveal that the unit does not satisfy its

1. Introduction	 15

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

functional specification. Integration testing is aimed to reveal inconsistencies among the units.
System testing is aimed to reveal that the system does not satisfy the requirements. Acceptance
testing is aimed to reveal that the system does not satisfy its acceptance criteria.

1.10 An example system

An example system used throughout this thesis is the library system as stated in the Fourth
International Workshop on Software Specifications and Design [1] as follows.

Consider a small library database system with the following transactions:

1) Check out a copy of a book / Return a copy of a book;

2) Add a copy of a book to! Remove a copy of a book from the library;

3) Get the list of books by a particular author or in a particular subject area;

4) Find out the list of copies currently checked out by a particular borrower;

5) Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1, 2, 4,
and 5 are restricted to staff users, except that ordinary borrowers can perform transaction 4 to
find out the list of copies currently borrowed by themselves. The database must also satisfy the
following constraints:

1) All copies in the library must be available for check out or be checked out.

2) No copy of the book may be both available and checked out at the same time.

3) A borrower may not have more than a predefined number of books checked out at
one time.

This example system has been used by many authors which makes the example more
interesting since it allows new authors to compare the results of the new ideas with what have
already been done. l'his example system can be found in for example [22, 23, 27, 51, 52, 54,
57, 59, 67, 76, 77, 78, 80, 81, 82, 90, 95, 96, 102]

1.11 Overview of the thesis

The aim of this thesis is to present new techniques for specifying and verifying software
requirements and design specifications, and for generating test requirements for acceptance and
system testing.

In this chapter, an overview of the thesis is given.

In chapter 2, the specification languages used by the proposed software requirements
and design specification techniques are discussed. Since the same set of languages are used in
both specification techniques, it is appropriate to discuss them together in this chapter. The
specification languages discussed are entity-relationship diagrams, data flow diagrams, data
structure diagrams, and Z.

Chapter 3 presents the proposed software requirements specification technique. This
chapter describes how to formulate a software requirements specification by using the
specification languages explained in chapter 2.

Chapter 4 is devoted to requirements verification. This chapter explains the technique
for verifying the software requirements specification produced by following the technique
described in chapter 3.

1. introduction	 16

The Integration of Software Specification. Verification. and Testing Techniques with Software Requirements and Design Processes

Chapter 5 presents the proposed software design specification technique. This chapter
describes how to develop a software design specification from the software requirements
specification.

Chapter 6 is devoted to design verification. This chapter explains the technique for
verifying the software design specification produced by following the technique described in
chapter 5.

Chapter 7 described how to generate test requirements for acceptance and system
testing from the software requirements specification.

Chapter 8 summarizes the techniques proposed in this thesis, compares them with
some related works, and fmally expresses the future development which may be carried out of
the proposed techniques.

1. Introduction	 17

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Chapter 2	 Software specification languages

2.1 Overview

The aim of this chapter is to explain four software specification languages used in the proposed
software requirements and design specification techniques: entity-relationship diagrams, data
flow diagrams, data structure diagrams, and Z. These four specification languages are modified
and extended and as a result they are slightly different from the ones offered by other authors.
Therefore, this chapter explains their notations and briefly discusses their applications in
general.

Section 2.2 describes how to draw entity-relationship diagrams (ERDs). Section 2.3
describes how to draw data flow diagrams (DFDs). Section 2.4 describes how to draw data
structure diagrams (DSDs). Section 2.5 describes the extended Z subset. Finally, in section 2.6,
roles of the four software specification languages in software specifications are pointed out.

2.2 Entity-relationship diagrams

An entity-relationship diagram (ERD) is a graphical representation of data entities (things of
importance to a system about which data needs to be stored) and how they are related to one
another [34]. The ERD was originally proposed by Chen [13, 14] and subsequently has been
extended by many others, for example Ross [79], Flavin [29], Martin [60], and Date [17]. The
ERD is used to depict the static aspects of a system. The ERD is often considered to be the
most appropriate data model because it captures most of the important phenomena of the real
world (entities and their relationships) and expresses them in a natural and easily
understandable way [35].

There are variations of how to draw ERDs as well as the concepts captured in each
variation. The way ERDs are drawn in this thesis as well as the concepts captured by them are
slightly different from the others. The next section explains the notations for drawing ERDs as
proposed in this thesis.

2.2.1 Notations

The notations for drawing ERDs as proposed in this thesis are:

1) Entity

2) Relationship

3) Cardinality

4) Instance participation

5) Relationship types

2. Software specification languages 	 18

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

2.2.1.1 Entity

An entity is something of importance to a system about which data needs to be stored. An
entity is represented by a rectangle with the name and data type of that entity inside (see
Figure 2-1). In this thesis, a plural noun is used to name an entity instead of a singular noun as
generally recommended. The reason for using a plural noun is that we treat an entity as a set of
instances rather than an entity type. For entity types, Z data types are used.

Users

P PERSON

Figure 2-1: Entity

2.2.1.2 Relationship

A relationship is an association or link which shows how one entity or a group of entities
relates to another entity or another group of entities [28]. A relationship is represented by a line
connecting two entities with the name of that relationship at one end of the line. The entity
which is close to the relationship name is said to be the domain of that relationship while the
opposite entity is said to be the range of that relationship. We suggest using a present verb for
the third singular person to name a relationship (see Figure 2-2).

Wres

Figure 2-2: Relationship

2.2.1.3 Cardinality

In a relationship, a single instance of the entity, which shares that relationship, may participate
in that relationship one or many times. The maximum number of times an instance of an entity
can participate in a relationship is its cardinalily.

The cardinality of a relationship can be either one of these:

1) One-to-one

A relationship whose cardinality is one-to-one relates a single instance of one
entity to only a single instance of another entity. One-to-one cardinality is
represented by a single-headed arrow at both ends of the relationship line (see
Figure 2-3(a)).

2) One-to-many

A relationship whose cardinality is one-to-many relates a single instance of one
entity to several instances of another entity. One-to-many cardinality is
represented by a single-headed and a double-headed arrows at the ends of the
relationship line accordingly (see Figure 2-3(b)).

2. Software specification languages 	 19

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3) Many-to-one

A relationship whose cardinality is many-to-one relates several instances of
one entity to a single instance of another entity. Many-to-one cardinality is
represented by a double-headed and single-headed arrows at the ends of the
relationship line accordingly (see Figure 2-3(c)).

4) Many-to-many

A relationship whose cardinality is many-to-many relates several instances of
one entity to several instances of another entity. Many-to-many cardinality is
represented by double-headed arrows at both ends of the relationship line (see
Figure 2-3(d)).

(a) One-to-one reatbns1iip

(b) One-to-many retattonship

II

(c) Many-to-one relationship

41

(d) Many-to-many relaUonshp

Figure 2-3: Cardinality

2.2.1.4 Instance participation

In a relationship, if every instance of the entity, which shares that relationship, must participate
in that relationship, the instance participation of that entity is said to be mandatory; otherwise
it is said to be optionai. A mandatory instance participation is represented by a small solid
circle (attached to the periphery of the entity box) as shown in Figure 2-4(a), and an optional
instance participation is represented by a small void circle as shown in Figure 2-4(b).

(a) Mandato,y

0
(b) Optbnal

Figure 2-4: Instance participation

2.2.1.5 Relationship types

Relationships can be classified into two types: subset relationships and interrogative
relationships:

2. Sofiw.rc pecificaüon tanguagca 	 20

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

1) Subset relationships

An entity E is a superset of entities E 1 , E2, ..., E, if each instance of E is also
an instance of either one of the entities E 1 , E2, ..., E. An entity E1 is a subset
of an entity E if eveiy instance of E1 is also an instance of E. Then, a subset
relationship is a relationship between the superset and its subsets. A subset
relationship is a one-to-one relationship between the superset and its subsets
individually and for clarity a relationship name of subset relationship is always
'is_a". Subset relationships can be further classified into:

(1) Exclusive subset relationships

In an exclusive subset relationship, all subsets must be mutually
exclusive. The exclusive subset notation (a small circle with the letter

1E" inside) as shown in Figure 2-5(a) is used to depict an exclusive
subset relationship.

(2) Inclusive subset relationships

In an inclusive subset relationship, all subsets are not necessarily
mutually exclusive. The inclusive subset notation (a small circle with
the letter "I" inside) as shown in Figure 2-5(b) is used to depict an
inclusive subset relationship.

(a) xcIus p e subset retantostlip

Supers

Is_a +	 + Is_a

Subs	 I	 I	 SuI

(b) IncIus subset reIatimsh

Figure 2-5: Subset relationships

2) Interrogative relationships

An interrogative relationship is a relationship (apart from a subset
relationship) that needs to be kept in order to provide information required. An

2. Software specification languages 	 21

Is a

Available
coses

P COPY

The Integration of Software Specification, Verification, and Testing Techniques with Software Requiremenis and Design Processes

interrogative relationship is drawn as shown in Figure 2-6. The relationship
"Writes" in Figure 2-6 is an interrogative relationship.

Ubrasy_bcnk	 Ubrary_bk3
authors • 14	 S-	 6' AUTHOR

I Wr	 P BOOK

Figure 2-6: Interrogative relationship

2.2.2 Example

An example of ERDs is shown in Figure 2-7. It is the ERD of the library system (see section
1.10 for the outline of the library system). The diagram is drawn to capture the static aspects of
the library system as required by the end-users and can be described as follows.

Libry_tok
	 Libraok

authors	 suects
P AUTHOR
	

P SUBJECT

Wres
	 ls_a_subjectfl

Users	 I
	

Ubror

	

P PERSON	 P BOOK

Is_a j	 -	 Is_a
	 Is_a..copy_c

BonTrs	 I	 Librwy_copies

P PERSON	 LPERSON I	
P COPY

Chec	 out
copie

P COPY

Figure 2-7: An example of ERDs

The entity "Users" is comprised of two mutually exclusive subsets "Borrowers" and
"Staff' (a person cannot be both a borrower and a staff at the same time). The entity
"Library_copies" is comprised of two mutually exclusive subsets "Checked_out_copies" and
"Available_copies" (a library copy cannot be both a checked out copy and an available copy at
the same time). As mentioned in section 2.2.1.5, the relationship name of any subset
relationship is always "Is_a" and its cardinality is always one-to-one.

2. Software specification languages 	 22

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

There is the many-to-many relationship "Writes" from the entity
"Libraty_book_authors" to the entity "Library_books" (an author may write one or many
books and a book may be written by one or many authors). The cardinality of the relationship
"Writes" is mandatory-mandatory (all instances in the entities "Library_book_authors" and
"Library_books" must participate in the relationship).

Also, there are the many-to-many and mandatory-mandatory relationship
"Is_a_subject_of' from the entity "Library_book_subjects" to the entity "Library_books", the
many-to-one and mandatory-mandatoty relationship "Is_a_copy_of' from the entity
"Library_copies" to the entity "Library_books", and finally the one-to-many and optional-
mandatory relationship "Currently_checks_out" from the entity "Borrowers" to the entity
"Checked_out_copies".

2.3 Data flow diagrams

A data flow diagram is a diagram used for specifying the movement of data through a system
[83]. A DFD shows where the data flows come from, where they go to, when they leave the
system, where they are stored, what processes transfonn them, and the interactions between
data stores and the processes [34]. DFDs are used to depict the dynamic aspects of a system.

Two principal variations of how to draw DFDs are widely used: that associated with
Gane and Sarson [33], and that associated with Yourdon and DeMarco [101]. However, in
practice each organization normally has its own standard of how to draw DFDs. The way
DFDs are drawn in this thesis is slightly different from the others, this will be explained in the
next section.

2.3.1 Notations

The notations for drawing the DFDs as proposed in this thesis are:

1) External entity

2) Process

3) Data flow

4) Data store

5) Data interface

6) Data store access

2.3.1.1 External entity

External entities are sources and/or destinations of data flows. They are outside the system
being developed. Data flows flow into the system only from external entities and flow out of the
system only to external entities. An external entity is represented as a square with the name of
that external entity inside as shown in Figure 2-8.

Borrowers
est

Figure 2-8: External entity

2. Software specification languages	 23

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

2.3.1.2 Process

Processes transform input data flows into output data flows. A process is represented as a
circle with the name of that process inside. If a process is a bottom level process (no
decomposition), it is represented by a thick peripheral circle (see Figure 2-9(b)), otherwise it is
represented by a thin peripheral circle (see Figure 2-9(a)).

Check
	

Recad
copy check
	

copy_check
out	 out

(a) Not the bottom level process
	

(b) The bottom level process

Figure 2-9: Process

2.3.1.3 Data flow

A data flow is a data item that is received or transmitted by a process. A data flow is
represented as a labelled vector into or out of a process as shown in Figure 2-10. A data flow
can flow between an external entity and a process, two processes, or a process and a data store.
However, a data flow cannot flow between two external entities, an external entity and a data
store, or two data stores. If a data flow flows between a process and a data store, a data flow
label is not shown; otherwise a data flow label must be shown. A data flow can be split or
decomposed into two or more data flows and a data structure diagram (DSD) is used to depict
the decomposition of the data flow (see section 2.4).

Copy_check_out

Figure 2-10: Data flow

2.3.1.4 Data store

A data store is where data is kept in order to be used by the processes. A data store is
represented as a rounded rectangle with the name of that data store inside as shown in Figure 2-
11. In order to keep the DFDs less messy, we recommend showing data stores only with the
bottom level processes. The entities and interrogative relationships on the ERDs are the data
stores on the DFDs.

[
Library_copies

Figure 2-11: Data store

2. Software specification languages 	 24

The Integration of Software Specilicalion, Verification, and Testing Techniques with Software Requirements and Design Processes

2.3.1.5 Data interface

Data interface notations are used for modelling the interfaces of input or output data flows of a
process. The idea of using data interface notations are adopted from Kung in [53], but the
notations and the way of drawing them as proposed in this thesis are slightly different from the
one suggested in [53]. There are three data interface notations as shown in Figure 2-12. The
data interface notations described in this section are closely related (in fact they capture the
same concepts) to the ones described in section 2.4.1.2 and 2.5.1.3.

The three data interface notations are:

1) Conjunction

If two or more data flows are connected by a conjunction data interface, it
means that all of them are required (if they are input data flows) or produced
(if they are output data flows) by the process.

2) Disjunction

If two or more data flows are connected by a disjunction data interface, it
means that either one or all of them are required (if they are input data flows)
or produced (if they are output data flows) by the process.

3) Exclusive disjunction

If two or more data flows are connected by an exclusive disjunction data
interface, it means that one and only one of them is required (if they are input
data flows) or produced (if they are output data flows) by the process.

0 0 0
Ctscbn	 DisJctbn	 ExckJs dsictiai

Figure 2-12: Data interface

2.3.1.6 Data store access

A data store access notation is drawn in connection with a data store notation to show what
access type the process performs to the data store. There are four data store access notations as
shown in Figure 2-13. If a process reads data from a data store, the read data store access
notation is used and the data must flow from the data store to the process. For the remaining
data store access notations, the data must flow from the process to the data store.

0	 00
Create	 Read	 I.,date	 Dete

Figure 2-13: Data store access

2.3.2 Example

An example of DFDs is shown in Figure 2-14 and can be explained as follows.

2. Software specification languages	 25

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

There is one input data flow "Copy_check_out" flows into the process 1.1 which
produces two output data flows "Invalid_copy_check_out" and
"Valid_copy_check_out_check". The two output data flows are connected via the exclusive
disjunction data interface notation which means that the process produces either one of the two
data flows but not both.

The data flow "Valid_copy_check_out_check" along with the data flows "Borrower"
and "Copy" are all required (since they are connected via the conjunction data interface
notation) by the process 1.2 which produces one output data flow "Valid_copy_check_out".

The process 1.2 is the bottom level process (no decomposition), therefore it is
represented by a thick peripheral circle; whereas the process 1.1 is not the bottom level process,
therefore it is represented by a thin peripheral circle.

Since the process 1.2 is already the bottom level process, the data stores accessed by
the process must be shown. The process 1.2 accesses three data stores: deletes an instance from
the data store "Available_copies", creates an instance into the data store
"Checked_out_copies", and also creates an instance into the data store "Currently_checks_out".

Co\e&o

\	 in

/

Bor,6Copy
copytheckX	

/

f 1.2
Record

copy_check
h. out

	

Checked out I	 I	 CurrenttyA'siIabIe_copes	
I	 -	 Icopies	 J	 checI_out

Figure 2-14: An example of DFDs

2.4 Data structure diagrams

A data structure diagram (DSD) is a graphical representation of the hierarchical structure of
data. A data item may comprise other data items which can be depicted by a DSD. A DSD is
used to show the attributes of the entity (the entity is shown in ERDs); and a DSD is also used
to show the decomposition of input or output data flow (the input and output data flows are
shown in DFDs).

Concerning ERDs, a DSD is drawn to show the attributes of an entity. For example,
an entity "E" which comprises five attributes namely "a", "b", "c", "d", and "e". The attribute

2. Software specification languages 	 26

The integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

"a" and "b" must always exist, "c" may or may not exist, and either "d" or "e" but not both
must exist. A DSD can be drawn to capture the details mentioned above.

Concerning DFDs, a DSD is drawn to show the decomposition of an input or output
data flow into two or more data flows. For example, a data flow "a" is decomposed into three
data flows namely "b", "c", and "d", and either one or all of them may exist. A DSD can be
drawn to capture these details. Since a process in DFD can be decomposed into sub-processes,
a data flow can also be decomposed along with the process. Therefore, DSDs help to ensure the
consistency of the data flows of the parent process and its sub-processes.

The way DSDs are drawn as proposed in this thesis is similar to the Jackson data
structure diagram [20, 41]. Both capture the same concepts, but their notations are different.
The notations for drawing the DSDs as proposed in this thesis are explained in the following
section.

2.4.1 Notations

The notations for drawing the DSDs as proposed in this thesis are:

1) Data item

2) Data interface

3) Optional

2.4.1.1 Data item

A data item can be either an entity type, an atthbute of an entity, or a data flow. A data item is
represented as a rectangle with the name of that data item inside the rectangle; and if that data
item is an elementaiy data item, its data type is shown inside the rectangle as well. Z data types
are used to define the data types of data items. A data item notation is shown in Figure 2-15(a).

2.4.1.2 Data interface

There are three data interface notations as shown in Figure 2-15(b), (c), and (d). The data
interface notations mentioned in this section have the same concepts as the ones described in
section 2.3.1.5 and section 2.5.1.3.

2.4.1.3 Optional

If a data item may or may not exist as the component of the DSD, this can be shown by using
the optional notation shown in Figure 2-15(e).

Data_item	 (a) Data Item

Q) Coninctesi

(c) Dlsjuncliai

(d)ExcIus,ved,sinctsx1

(j	 (e) Optional

Figure 2-15: Notations for DSDs

2. Software specification languages 	 27

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

2.4.2 Example

An example of DSDs is shown in Figure 2-16 and can be described as follows.

Figure 2-16 shows the data structure of the data item "Data_i" which is composed of
the data item "Data_2", either the data item "Data_3" or the data item "Data-4" (but not both),
and possibly the data item "Data_5" (since it is optional).

The data type of the data item "Data_S" is defined as a power set of the data type
"TYPE5" which means that the data item "Data_5" may consist of more than one element
whose type is "TYPE5", or in other words "Data_5" is a set whose element's type is "TYPE5".

If the data item "Data_i" is an entity type, this DSD shows the attributes of this entity
type. If the data item "Data_i" is a data flow, this DSD shows the decomposition of this data
flow.

Figure 2-16: An example of the DSDs

2.5Z

Z is a fonnal specification language which is based on first-order logic and set theory [22]. It is
a model-based specification technique. In model-based specification techniques, the
specifications of the systems that were developed modelled aspects of the system, such as its
state and operations, by appropriate construction of sets, relations, fimctions, etc. [98]. Z was
developed at Oxford University's Programming Research Group in the late seventies and early
eighties. For a full account of Z the reader is referred to [86]. Currently, Z is considered as one
of the most popular formal specification languages [26].

The use of Z in this thesis follows the standard given in [86]. However, some new
symbols (features) for Z are necessary for the following reasons: to provide new symbols for
defining important concepts which otherwise would be impossible or inappropriate if the
standard Z is used; to improve the readability of Z specifications; and to provide easier and
more suitable way to write Z specifications.

The extended Z subset proposed in this thesis is discussed in the following section.

2. Software specification languages	 28

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

2.5.1 The extended Z subset

2.5.1.1 Relationship

Relationship-dec! :: Identi : Ident2 Re! Ident3

O<< >OS-<< >OIo	 >.<<)ep-u((>)O*(< >-)-OIO(())t t <())s]

We introduce sixteen new relationship symbols as shown in Table 2-1. The new
relationship symbols are used for defining not only the relation between two entities (sets) but
also the cardinality and instance participation. These relationship symbols provide a more
comfortable and very straight forward way for defining a relationship between two entities.
They allow for a more direct connection to the ERDs described in section 2.2.

Table 2-1: Relationship symbols

A relationship is a relation, the same way as a function is a relation. A function is a
special case of a relation in which there is at most one instance in its range related to each
instance in its domain [59]. Obviously, one-to-one and many-to-one relationships are functions.
All concepts which pertain to relations are also applicable to relationships; and also all concept
which pertain to functions are also applicable to one-to-one and many-to-one relationships.

The relation symbol "-° in the standard Z and the relationship symbol "oz< >>o"
in the extended Z subset are syntactically equivalent. Both represent a many-to-many and
optional-optional relationship.

The partial function symbol "+." and the relationship symbol "oiztz >o" are
syntactically equivalent. Both represent a many-to-one and optional-optional relationship.

The total function symbol "-+" and the relationship symbol".<< >o" are syntactically
equivalent. Both represent a many-to-one and mandatory-optional relationship.

2. Software specificatiofi languages 	 29

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The partial injection symbol " -t+" and the relationship symbol "o-+o" are
syntactically equivalent. Both represent a one-to-one and optional-optional relationship.

The total injection symbol ">—+" and the relationship symbol ". (_)o" are syntactically
equivalent. Both represent a one-to-one and mandatory-optional relationship.

The partial surjection symbol "-'* If and the relationship symbol "o< 'z >s" are
syntactically equivalent. Both represent a many-to-one and optional-mandatory relationship.

The total surjection symbol 	 " and the relationship symbol ". *z Ez)•" are
syntactically equivalent. Both represent a many-to-one and mandatory-mandatory relationship.

The bijection symbol ">4" and the relationship symbol ".< >." are syntactically
equivalent. Both represent a one-to-one and mandatory-mandatoiy relationship.

There are sixteen relationship symbols and eight of them can be matched with the
standard Z symbols as pointed out above. There are another eight relationship symbols which
do not have the matching standard Z symbols; these eight relationship symbols are:

"0<)." "o-(- >>o"; "->)o"; "0-c >>."; "*< >>.";

".<< >>o"; "oz<))."; ".ec ,--."

The relationship symbols can be defined in terms of the standard Z as follows.

1) Xo—'oY == X >fY

2) X.+-oY	 X >-+ Y

3) Xo+-.Y == {f:X >4*YIranf::Y}

4) Xs< .Y	 X >4Y

5) Xo< >>oY	 {f:X4)YKVx1,x2:X;y:Y.

(X1i-^y)efA (x2I-+y)Ef=x1=x2)}

6) X.< >>p Y	 {f:Xf-*Y(Vx1,x2:X;y:Y.

(x1 t— y) f A (x2 '-+ y) e f= x1 x2) A dom f= X }

7) Xo- >>.Y = {f:X(-)YI(Vxi,x2X;y:Y.

(x1 '.- y) € f A (x2 -+ y) € f> x1 x2) A ran f= Y }

8) X.-<->,-.Y	 {f:X++YI(VX1,X2X;y:Y.

(x1 i.- y) e f A (x2-^ y) € fz> x 1 = x2) A dom f= X A ran f= Y}

9) Xo'z<—>oY	 X-t- Y

10)X.<z)pY	 X—*Y

11) Xo< >sY	 X 4 Y

12) X.<<)sY == X-4 Y

13) Xo	 >oY	 X44Y

2. Software specification languages 	 30

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

14) X.<z >oY == {f:Xf^Yldomf=X)

15) Xo<)r)r	 == (f:X4-Y1ranfY}

16) X.<iz >.Y == {f:XYIdomf=XAranf=Y}

Example: The relationship "Writes" (see Figure 2-7) shown in the ERD as a many-to-many and
mandatoiy-mandatory relationship from the entity "Library_book_authors" to the entity
"Library_books".

The data types of the entity "Library book authors" and the entity "Library_books"
are defined as follows.

Library_book_authors: P AUTHOR
Library_books: P BOOK

The relationship "Writes" can be defined by using the relationship symbol, provided in
the extended Z subset, as

Writes : Library_book_authors .<<)). Library_books

The relationship "Writes" can also be defined in the standard Z as

Writes : AUTHOR BOOK

dom Writes = Library_book_authors

ran Writes = Libraiy_books

The two sets of specifications are equivalent. However, the one which uses the
relationship symbol in the extended Z subset seems to be more natural, shorter, and easier to
understand than the one which uses the relation symbol in the standard Z.

2.5.1.2 Relationship maplet

F—I	 -	 Relationship maplet

Given Set_x: P X, and Set_y: P Y, the relationship maplet notation

Set_x i—i Set_y

is a graphical way of expressing the set of order pair (x, y) for V x: Set_x; y: Set_y.

Example: Given Set_x = {1, 2, 3} and Set_y = {a, b}, then

Set_x i—i Set_y = ((1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

2.5.1.3 Data interface

Dt-interfhce : := Ident Interface Ident [Interface Ident ..

Interface::= [® I

2. Software specification languages	 31

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The data interface symbols described here are closely related with the ones described in
section 2.3.1.5 and section 2.4.1.2. The data interface symbols are introduced in order to
provide a means to write Z specifications for defining data interfaces as shown in DFDs and
DSDs. The same data interface notations are used as follows.

®	 conjunction

®	 disjunction

®	 exclusive disjunction

Example: The entity type "BOOK" has four attributes namely "Id" whose type is "ID", "Isbn"
whose type is "ISBN", "Issn" whose type is "ISSN", and "Title" whose type is "TITLE". The
attribute "Id" and "Title" must always exist; either attribute "Isbn" or "Issn", but not both, must
exist. This can be defined as a schema type as follow.

Id: ID ® (Isbn: ISBN ® Issn : ISSN) ® Title : TITLE

Example: The data flow "Copy_check_out" comprises three data flows namely "Requestor"
whose type is "PERSON", "Borrower" whose type is "PERSON", and "Copy" whose type is
"COPY"; and these three data flows must always exist. This can be defined as follow.

Copy_check_out?: (Requestor: PERSON ® Borrower: PERSON () Copy: COPY)

25.1.4 Optional

[Ident]	 Optional

The optional symbol has the same meaning as the one described in section 2.4.1.3.

Example: The data flow "Copy_add" comprises five data flows namely "Requestor" whose type
is "PERSON", "Copy" whose type is "COPY", "Book" whose type is "BOOK", "Authors"
whose type is "P AUTHOR", and "Subjects" whose type is "P SUBJECT'. All of the
component data flows except "Authors" and "Subjects" must exist. Therefore the component
data flows "Authors" and "Subjects" are optional (they may or may not exist). This can be
defined as follow.

Copy_add?: (Requestor: PERSON® Copy: COPY ® Book : BOOK ®
[Authors: P AUTHOR] Q) [Subjects: P SUBJECT])

2.5.1.5 Inputioutput data flow relation

Df-relationship : := Ident 	 Ident

The notion that the process P produces the output data flow "0" when given the input data flow
"I" is denoted by "I 0", where "I" and "0" may be an elementary data flow or a data
structure.

Example: If the process "R1_1_3_Check_max_copy" requires two input data flows,
"Borrower" and "Valid_borrower_copy_check_out", in order to produce either the output data
flow "Within_limit" or "Over_limit" but not both. This can be defined as follow.

2. Software specification languages	 32

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Borrower? ® Valid_borrower_copy_check_out? Within_limit! ® Over_linilt!

2.5.1.6 Data flow passing

External-passing ::= 4 Identi (Ident,..., Ident)

Parent-passing ::= Identi (Ident,..., Ident)

Sibling-passing ::= > Identi (Ident,..., Ident)

A data flow can be passed between: 1) an external entity and a process; 2) a parent
process and its sub-processes; 3) two sibling processes or in other words between two
processes within the same level.

Identi is the schema name which the Ident belongs to. Ident is the variable defined (as
either an input or output variable) in the schema Identi.

Example: In the Z schema "R1_2_Record_copy_check_out", there are two declaration
statements as follows.

1 Ri_Check_out_copy (Borrower?, Copy?, Valid_copy_check_out!)

Ri_i_Check_copy_check_out (Valid_copy_check_out_check?)

The first statement states that its parent schema, the schema "Ri_Check_out_copy",
passes two input data flows "Borrower" and "Copy" and will receive one output data flow
"Valid_copy_check_out" from the schema being defined, the schema
"R1_2_Record_copy_check_out".

The second statement states that its sibling schema, the schema
"Rl_l_Check_copy_check_out", passes one input data flow "Valid_copy_check_out" and will
not receive any output data flow from the schema being defined.

2.6 Roles of software specification languages in software
specifications

The four specification languages described above, ERDs, DFDs, DSDs, and Z with the
extended subset, will be used for defining both software requirements and design specifications.

According to the software requirements and design specification techniques proposed
in this thesis, software requirements specifications and software design specifications are
composed of infonnal text, ERDs, DFDs, DSDs, and Z specifications. These specification
languages are integrated in order to produce a software requirements specification or software
design specification as a whole.

Even though, I strongly recommend including informal text in both SRSs and SDSs, it
is beyond the scope of this thesis.

When the four specification languages are used for defining software requirements
specifications, they are drawn or written to capture the requirements as required by the end-
users: and we will call the diagrams and Z specifications produced as follows: Required Entity-
Relationship Diagrams (RERDs); Required Data Flow Diagrams (RDFDs); Required Data
Structure Diagrams (RDSDs); and Required Z specifications (RZs). Chapter 3 shows how to
define software requirements specifications by using these four specification languages.

2. Software specification languages 	 33

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

When they are used for defining software design specifications, they are drawn or
written to capture the designer's design decisions; and we Will call the diagrams and Z
specifications produced as follows: Designed Entity-Relationship Diagrams (DERDs);
Designed Data Flow Diagrams (DDFDs); Designed Data Structure Diagrams (DDSDs); and
Designed Z specifications (DZs). Chapter 5 shows how to define software design specifications
by using these four specification languages.

2. Software specification languages	 34

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Chapter 3	 Software requirements specification
technique

3.1 Overview

The objective of this chapter is to describe the software requirements specification technique
proposed in this thesis. The proposed SRS technique will be explained step by step and the
technique is illustrated using the example system given in section 1.10, the library system.

Section 3.2 gives an overview of the proposed SRS technique: the static and dynamic
aspects of a software system is discussed, and the steps of the proposed SRS technique are
given. Section 3.3 describes how to draw ERDs and DSDs to define the static aspects of a
system as required by the end-users. Section 3.4 describes how to draw DFDs and DSDs to
define the dynamic aspects of a system as required by the end-users. Finally, section 3.5
describes how to write Z specifications to define formally both the static and dynamic aspects
of a system.

3.2 Overview of the proposed SRS technique

As shown in the software development life cycle model given in Figure 1-1 (section 1.3.1), a
software requirements specification (SRS) is a product of the requirements analysis phase.
There are two distinct tasks in the requirements analysis phase: problem analysis and product
description. The problem analysis is the task of studying end-users' needs and finding all the
constraints on those requirements. The product description is the task of producing the software
requirements specification.

The proposed SRS technique uses four specification languages: ERDs, DFDs, DSDs,
and Z. These four specification languages are modified and extended (as explained in chapter
2) so that they can support each other nicely and are capable of producing good SRSs (as
described in section 1.6.2).

As mentioned in section 2.6, we call the ERDs, DFDs, DSDs, and Z specifications
which are produced to specify software requirements the RERDs (Required Entity-Relationship
Diagrams), RDFDs (Required Data Flow Diagrams), RDSDs (Required Data Structure
Diagrams), and RZs (Required Z specifications) accordingly.

3.2.1 The static and dynamic aspects of a system

One way to describe a software system is to describe it in terms of both static and dynamic
aspects of that system. The static aspects of a system include: the state the system can occupy;
and the critical requirements or data invariants that must hold in every state. The dynamic
aspects of a system include the processes or operations that change the state and that produce
the required information from the state.

3. Software requirements specification technique	 35

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3.2.1.1 The static aspects of a system

Following the proposed SRS technique, the static aspects of a system are specified graphically
by using entity-relationship diagrams (ERDs) and, possibly, by using data structure diagrams
(DSDs); and they are also specified formally by using Z specifications.

RERDs are drawn to depict entities and their relationships which are important to the
system. In other words, RERDs are drawn to depict the state the system can occupy and also
the critical requirements that must hold. However, there might be some critical requirements
which cannot be shown on the RERDs.

RDSDs are drawn to describe the attributes of the entities. RDSDs may not be drawn
if the specifiers decide not to describe the attributes of the entities in the SRS.

The static aspects of a system are also specified formally in RZs. The RZs define both
the state and the critical requirements of the system. Some critical requirements which cannot
be shown on RERDs must be fully specified in the RZs.

Therefore, by using the RERDs, RDSDs and RZs to define the static aspects of a
system, we achieve the specifications of the static aspects of a system which, we believe, are
both easy to understand and precise.

3.2.1.2 The dynamic aspects of a system

Following the proposed SRS technique, the dynamic aspects of a system are specified
graphically by using data flow diagrams (DFDs) and data structure diagrams (DSDs); and they
are also specified formally by using Z specifications.

RDFDs are drawn to describe processes (operations) that change the state of the
system and that acquire information from the state. However, the RDFDs can only define the
decomposition of the processes and the relationship among the inputs or outputs of each
process, but cannot define the detailed operations of the processes.

RDSDs are drawn to define the data components or the decomposition of the input or
output data flows. An input or output data flow may comprise other data components (other
data flows), and an RDSD is drawn to depict its data structure. Since data flows can be
decomposed along with the processes, RDSDs are used to ensure the consistency of the input
and output data flows of the parent and its sub-processes.

The dynamic aspects of a system are also specified formally in RZs. The RZs define
the complete dynamic aspects of a system: the decomposition of the processes, the relationship
among the inputs or outputs of each process, and the detailed operations of the processes.

Therefore, by using the RDFDs, RDSDs, and RZs to define the dynamic aspects of a
system, we achieve the specifications of the dynamic aspects of a system which, we believe, are
both easy to understand and precise.

3.2.2 Steps of the proposed SRS technique

The proposed SRS technique is applied using the following steps:

1) Draw RERDs and RDSDs
1.1) Identif' all entities and their relationships
1.2) Draw RERDs
1.3) Draw RDSDs

3. Software requirements specification technique 	 36

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

2) Draw RDFDs and RDSDs
2.1) Draw the context RDFD and RDSDs

2.1.1) Identify all external entities and input and output data flows
2.1.2) Draw the context RDFD
2.1.3) Identify the data components of each input and output data

flow
2.1.4) Draw RDSDs

2.2) Draw the next level RDFDs and RDSDs
2.2.1) Identify sub-processes
2.2.2) Identify input and output data flows of each sub-process
2.3.3) Draw the next level RDFDs
2.2.4) Identify the data components of each new internal data flow
2.3.5) Draw RDSDs

3) Write RZs
3.1) Define the state of the system
3.2) Define the initial state of the system
3.3) Define the operations of the system

In the following sections, each step given above will be described in detail and the
libraiy system will be used as an example system to illustrate the technique.

3.3 Step 1: draw RERDs and RDSDs

3.3.1 Step 1.1: identify all entities and their relationships

To draw RERDs, first all entities as well as their relationships must be identified (see [101} for
a guideline of how to identify entities and their relationships). Then, each entity is assigned a
data type. Finally, the relationships among those entities are identified.

According to the library system described in section 1.10, the following entities are
identified: "Users" (all users of the libraiy), "Borrowers" (all borrowers of the librazy), "Staff"
(all staff of the library), "Library_book_authors" (authors of all library books),
"Library_book_subjects" (subjects of all library books), "Library_books" (all books in the
library), "Library_copies" (copies of all books in the library), "Checked_out_copies" (all
checked out copies), and "Available_copies" (all copies available to be checked out).

Next, each entity is assigned a data type. The Z data types are used. The entities
"Users", "Borrowers", and "Staff" are assigned the same data type as "P PERSON". The entity
"Library_book_authors" is assigned the data type as "P AUTHOR". The entity
"Library_book_subjects" is assigned the data type as "P SUBJECT". The entity
"Library_books" is assigned the data type as "P BOOK". The entities "Library_copies",
"Checked_out_copies", and "Available_copies" are assigned the same data type as "P COPY".

Then the relationships of those entities are identified as follows. The entities
"Borrowers" and "Staff' are subsets of the entity "Users", and the instances
(members/elements) of the two subsets are mutually exclusive. Siniilarly, the entities
"Checked_out_copies" and "Available_copies" are mutually exclusive subsets of the entity
"Library_copies". There are four interrogative relationships: "Writes", "Is_a_subject_of',
"Is_a_copy_of', and "Currently_checks_out". "Writes" is a many-to-many and mandatory-
mandatory relationship from "Library_book_authors" to "Library_books". "Is_a_subject_of' is
a many-to-many and mandatory-mandatory relationship from Library_book_subjects" to
"Library_books". "Is_a_copy_of' is a one-to-many and mandatory-mandatory relationship

3. Software requirements specification technique 	 37

Is a

Available
copes

P COPY

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

from "Libraiy_books" to "Library_copies". Finally, "Currently_checks_out" is a one-to-many
and optional-mandatory relationship from "Borrowers" to "Checked_out_copies".

3.3.2 Step 1.2: draw RERDs

From the entities and their relationships identified in step 1.1, RERDs of the system can be
drawn. The RERDs are drawn by following the notations given in section 2.2.1.

The RERD of the library system is shown in Figure 3-1.

library_book
	 Library_book

authors	 sutects
P AUThOR
	 P SUBJECT

Writes
	 Is_a_sut_ct

Users	 Ubr&yboo

P BOOK

Is_a	 Is_a
	 Is_a_copy_ct

stait

P PERSON	 P PERSON	
P COPY

Currently_checks_out

B

Is_a

Checksd_out
copes

P COPY

Figure 3-1: The RERD of the library system

3.3.3 Step 1.3: draw RDSDs

If the specifiers decide to define the attributes of some or all entity types identified in the step
1.1, the attributes of those entity types must be identified. Then, each attribute is assigned a
data type.

If the attributes of the entity types were identified, RDSDs are drawn, by following the
notations given in section 2.4.1, to depict the data structure of those entity types.

However, for the library system, we assume that the specifiers have decided not to
define the attributes of the entity types. Therefore, no RDSDs are drawn.

3. Software requirements specification technique 	 38

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3.4 Step 2: draw RDFDs and RDSDs

3.4.1 Step 2.1: draw the context RDFD and RDSDs

3.4.1.1 Step 2.1.1: identify all external entities and input and output data flows

To draw the context RDFD, first all external entities and input and output data flows from/to
those entities must be identified. Then, the interfaces of the input as well as output data flows
must be identified.

Concerning the library system, there are two external entities: "Borrowers_ext" (all
borrowers of the library) and "Staff_ext (all staff of the library).

The input data flows from the "Borrowers_ext" can be identified as follows:
"Copy_check_out", "Copy_return", "By_author_enquiry", "By_subject_enquiry", and
"By_borrower_enquiry".

The output data flows to the external entity "Borrowers_ext" are as follows:
"Valid_copy_check_out", 	 "Invalid_copy_check_out",	 "Valid_copy_return",
"Invalid_copy_return", "List_of_books_by_author", "Invalid_by_author_enquiry",
"List_of_books_by_subject", "Invalid_by_subject_enquiry", "List_of_copies_by_borrower",
"Invalid_by_borrower_enquiry".

Similarly, the input and output data flows from/to the external entity "Staff_ext" can
also be identified.

Then, the interfaces of the input and the output data flows must be identified. For
example, the system either produces the output data flow "Valid_copy_check_out" or
"Invalid_copy_check_out" but not both. Therefore, these two output data flows are interfaced
via an exclusive disjunction notation.

3.4.1.2 Step 2.1.2: draw the context RDFD

Then, the context RDFD of the system is drawn.

The context RDFD of the library system is shown in Figure 3-2.

3. Software requirements specification technique 	 39

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Copy_add,

Copy_check_out,	 Copy_rernova.

Copy_return,	 By_author_enquiry,

By_author_enquiry,	 By_Subject_eriqUily,

By_subject_enguiry,	 By_borrovr_enquiry,

By_borrosrr_enquiry	 Last_borrovar_enqui,y

Valid_copy_check_out ® Irnaild_copy_check_out,
Valid_copy_return ® Invalid_copy_return,

List_of_books_by_author® Inialkl_by_author_enquUy.

t.ist_of_books_by_subject ® Invaiid_by_subject_enqUuy.
Ust_ot_copies_by_borrovr ® InvaIid_by_borrovr_enqulry

Valid_copy_add ® Invalid_copy_add,
VaIkJ_copy_recnove ® lnvalid_copy_remoe,

List_of_books_by_author® lnvalid_by_author_enqui,y,

List_of_books_by_subject ® lnvalid_by_subject_enqui,y,
Ust_of_copies_by_borror ® hivalkI_by_bormvar_enquiry,

LasLbonowerJnb ® Jrnalid_Iast_borrer_enquiry

Figure 3-2: The context RDFD of the library system

3.4.1.3 Step 2.1.3: identify the data components of each input and output data
flow

Next, the data components of each input and output data flow must be identified as well as the
interfaces of those data components. Then each data component is assigned a data type.

The input data flow "Copy_check_out" comprises three data components (data flows):
"Requestor", "Borrower", and "Copy". In addlition, these three data components must be exist,
therefore "Copy_check_out" is a conjunction of these three data components.

The output data flow "Valid_copy_check_out" has no data component.

The output data flow "Invalid_copy_check_out" comprises four data components (data
flows): "Invalid_requestor", "Invalid_borrower", "Over_limit", and "Invalid_copy". In addition,
either one of these output data flows or a combination of them can be produced:
"Invalid_requestor", either "Invalid_borrower" or "Over_limit" but not both, or "Invalid_copy".
Therefore the data components "Invalid borrower" and "Over_limit" are in exclusive
disjunction, and these two data components are combined with the data components
"Invalid_requestor" and "Invalid_copy" using disjunction.

The data components of other input and output data flows can be identified in a similar
way.

Then each data component is assigned a data type.

3. Software requirements specification technique	 40

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3.4.1.4 Step 2.1.4: draw RDSDs

Next, a RDSD is drawn to depict the data structure of each input and output data flow.

The RDSDs of the input and output data flows on the context RDFD are shown in
Figures 3-3 to 3-26.

Some of the RDSDs will be explained as follows; other RDSDs can be explained in a
similar way.

From Figure 3-3, the data flow "Copy_check_out" is defined as the conjunction of
three data flows namely "Requestor", "Borrower", and "Copy". Therefore, the three data flows
must exist. This can be explained as follows. When a borrower wants to borrow a copy of a
book from the libraiy, the input data flow "Check_out_copy" is sent into the system. The data
that are required in order that the system would be able to process the transaction are
"Requestor" (who operates the transaction), "Borrower" (who borrows the copy) and "Copy"
(which copy is to be borrowed).

From Figure 3-5, the data components "Authors" and "Subjects" are optional (they
may or may not exist). If a copy is a copy of a new book, the two data components are
required, otherwise they are not required. The data type of the data component "Authors" is "P
AUTHOR" because a book may be written by one or many authors. The data type of the data
component "Subjects" is "P SUBJECT" because a book may be classified into one or many
subjects.

From Figure 3-11, the data flow "Valid_copy_check_out" has no data components
because only one message is produced to inform the operator that the copy is successfully
checked out.

From Figure 3-12, the data flow "Invalid_copy_check_out" has four data components:
"Invalid_requestor", "Invalid_borrower", "Over_limit", and "Invalid_copy". The data
components are in disjunction and exclusive disjunction. This can be interpreted as follow. The
copy cannot be checked out if either one or the combination of these cases happened: the
requestor is invalid, the borrower is invalid, or the borrower is valid but the borrower has
borrowed the maximum number of copies already, or the copy is invalid.

Copy
chect(_o.g

Requeor	 Borroet	 Copy

PERSON	 PERSON	 COPY

Figure 3-3: The RDSD of the data flow "Copy_check_out"

UNh1

OF
LtBRARY

3. Software requirements specification technique	 41

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Copy
return

Request	 Copy

PERSON	 COPY

Figure 3-4: The RDSD of the data flow "Copy_return"

Figure 3-5: The RDSD of the data flow "Copy_add"

Copy
rerne

Requestor	 Copy

PERSON	 COPY

Figure 3-6: The RDSD of the data flow "Copy_remove"

By_author
iquwy

Reques	 Author

PERSON I	 I AUTHOR

Figure 3-7: The RDSD of the data flow "By_author_enquiry"

3. Software requirements specification technique 	 42

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

By_subiect
enquiry

Requestor	 I	 Subject

PERSON I	 I SUBJECT

Figure 3-8: The RDSD of the data flow "By_subject_enquiiy"

By_borrower
enquiry

Requestor I	 Borrower

PERSON I	 I PERSON

Figure 3-9: The RDSD of the data flow "By_borrower_enquiiy"

Last borrower
enquly

Requestor I	 I	 Copy

PERSON I	 I	 COPY

Figure 3-10: The RDSD of the data flow "Last_borrower_enquiry"

Valid_copy

check_ota

MSG

Figure 3-11: The RDSD of the data flow "Valid_copy_check_out"

3 Software requirements specification technique	 43

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Invacopy
chk_oUt

Invalid
	

Invadcopy
request

MSG
	

MSG

lnva	 OJimt

MSG	 MSG

Figure 3-12: The RDSD of the data flow "Invalid_copy_check_out"

Valid_copy
return
MSG

Figure 3-13: The RDSD of the data flow "Valid_copy_return"

Invad_copy
return

Invad	 Invand
requestor	 copy

MSG	 MSG

Figure 3-14: The RDSD of the data flow "Invalid_copy_return"

Valid_copy
I	 add
LMSc3

Figure 3-15: The RDSD of the data flow "Valid_copy_add"

3. Software requirements specification technique 	 44

The Integration of Software Specificaiion, Verification, and Testing Techniques with Software Requirements and Design Processes

Irwatd_copy
add

Invand	 Invalid
requestor	 copy

MSG	 MSG

Figure 3-16: The RDSD of the data flow "lnvalid_copy_add"

Vald_copy
remove
MSG

Figure 3-17: The RDSD of the data flow "Valid copy remove"

Invalid_copy
remove

Invalid	 Irrlid
requestor	 copy

MSG	 MSG

Figure 3-18: The RDSD of the data flow "Invalid_copy_remove"

Lat_of_books
by_author
P BOOK

Figure 3-19: The RDSD of the data flow "List_of_books_by_author"

3. Software rcquiremaits specification technique 	 45

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Invalid
by_author

enquiry

Invalid	 Invalid
requestor	 author

MSG	 MSG

Figure 3-20: The RDSD of the data flow "Invalid_by_author_enquiry"

List_of_books
by subject
P BOOK

Figure 3-2 1: The RDSD of the data flow "List_of_books_by_subject"

Invalid
by.stA,ject

enqury

Invalid	 Invalid
requestor	 subject

MSG	 MSG

Figure 3-22: The RDSD of the data flow "Invalid_by_subject_enquiry"

List_of_copies
by_bonower

PcoPy

Figure 3-23: The RDSD of the data flow "List_of_copies_by_borrower"

3. Software requirements specification technique 	 46

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Invalid
by_borrower

enquly

Invalid
borrower

MSG

I Ikiauthorized
Invalid_user	 I

MSG	
I requeslor
I	 MSG

Figure 3-24: The RDSD of the data flow "Invalid_by_borrower_enquiiy"

Last
borrower_info

PERSON

Figure 3-25: The RDSD of the data flow "Last_borrower_info"

Irwalid
laSt_boiTOwer

enqtay

lnaIid	 Irwatd
requestor	 copy

MSG

Figure 3-26: The RDSD of the data flow "Invalid_last_borrower_enquiry"

3.4.2 Step 2.2: draw the next level RDFDs and RDSDs

Steps 2.2.1 to 2.2.5 are repeated for each next level RDFD and RDSDs.

3.4.2.1 Step 2.2.1: identify sub-processes

The process on an RDFD can be decomposed into two or more sub-processes. If the process is
decomposed, sub-processes must be identified.

The process 0 "Library" is decomposed into five sub-processes: "Check_out_copy",
"Return_copy", "Add_copy", "Remove_copy", and "Enquiry".

3. Software requirements specification technique	 47

Check_ott
copy

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3.4.2.2 Step 2.2.2: identify input and output data flows of each sub-process

First, the input and output data flows of the parent process must be assigned to each sub-
process. In addition, the sub-processes might produce new internal data flows which are passed
to other sub-processes on the same RDFD.

For example, these input and output data flows are assigned to the sub-process
"Check_out_copy": "Copy_check_out", "Valid_copy_check_out", and
"Invalid_copy_check_out".

There is no new data flow produced by five sub-processes mentioned above.

3.4.2.3 Step 2.2.3: draw the next level RDFD

Then, draw the next level RDFD.

Fig 3-27 shows the decomposition of the process 0 "Library" into five sub-processes.

5	 By_auther_enqihy,

Enquiry
Last_borrower_enquiry

List_of_books_by_at*hor ® Im.abd_by_author_enquiry,
List_of_books_by_subject ® Invand_by_subject_eriquiry,

List_of_copies_by_borrower ® Invalid_by_borrower_enquiry.
Last borrower info ® Invalid_last_borrower_enquiry

Figure 3-27: The decomposition of the process 0 RDFD

3.4.2.4 Step 2.2.4: identify the data components of each new internal data flow

When a process is decomposed into sub-processes, the sub-processes might produce internal
data flows which are passed to other sub-processes on the same RDFD. These new internal
data flows must be identified and data types are assigned.

3. Software requirements specification technique 	 48

The Integration of Software Specification, Verification, and Testing Techniques with Sofiware Requirements and Design Processes

The RDFD shown in Figure 3-27 has no internal data flow. However, in Figure 3-28,
the process 1_i "Check_copy_check_out" produces one internal data flow
"Valid_copy_check_out_check". Then a data type is assigned to this internal data flow.

3.4.2.5 Step 2.2.5: draw RDSDs

Then, draw RDSDs of the new internal data flows identified in step 2.2.4.

Steps 2.2.1 to 2.2.5 are repeated until the details desired are obtained.

The remaining RDFDs and RDSDs of the library system are shown as follows.

A. Check out a copy of a book

Figure 3-28 shows the decomposition of the process 1 "Check_out_copy" into two sub-
processes: the process 1.1 "Check_copy_check_out" and the process 1.2
"Record_copy_check_out". The process 1.1 receives the input data flow "Copy_check_out"
from the process 1; it then produces either the output data flow "Invalid_copy_check_out" or
"Valid_copy_check_out_check" but not both. The output data flow "Invalid_copy_check_out"
is sent back to the process 1 whereas the output data flow "Valid_copy_check_out_check" is
sent to the process 1.2.

The process 1.2 receives the input data flow "Valid_copy_check_out_check" from the
process 1.1 and also receives two input data flows "Borrower" and "Copy" from the process 1.
These three input data flows are all required (they are in conjunction). The process 1.2 then
produces the output data flow "Valid_copy_check_out" which is sent back to the process 1.
The process 1.2 deletes the checked out copy from the data store "Available_copies", creates
(adds) the checked out copy into the data store "Checked_out_copies", and creates (adds) a
relation into the data store "Currently_checks_out".

BaTaweCy
(Chak
\ copy.cbeck

f 1.2
Recerd

copy_check
h. 01*

I Checked out	 I	 CurrentlyAabIe_copies J	 i

Figure 3-28: The decomposition of the process 1 RDFD

3. Software requirements specification technique	 49

R7L

1.1.1

Check
reauestcr

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Since the data flow "Valid_copy_check_out_check" (see Figure 2-28) is a new internal
data flow, an RDSD of this data flow is drawn as shown in Figure 3-29.

Valid_copy

checkout
check

Valid	 Withm	 Valid

requestor	 copy
B	 B	 B

Figure 3-29: The RDSD of the data flow "Valid_check_copy_check_out"

Figure 3-30 shows the decomposition of the process 1.1. The process 1.1.1 checks
whether the requestor is a valid requestor (the requestor is a member of staff). The process
1.1.2 checks whether the borrower is a valid borrower. If the borrower is a valid borrower, we
need to further check that the borrower does not borrow more than the maximum number of
copies allowed. The process 1.1.4 checks whether the copy is a valid copy (the copy is
available to be borrowed).

Figure 3-3 0: The decomposition of process 1.1 RDFD

Figure 3-31 shows the RDSD of the new internal data flow
"Valid_borrower_copy_check_out" produced by the process 1.1.2.

3. Software requirements specification tecimique	 50

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Valid_borrower
copy_check_oti

IS

Figure 3-31: The RDSD of the data flow "Valid_borrower_copy_check_out"

B. Return a copy of a book

The decomposition of the process 2 is shown in Figure 3-32. The data structures of two new
internal data flows produced by the processes 2.1 and 2.2 (see Figure 3-32) are shown in
Figures 3-33 and 3-34.

Figure 3-32: The decomposition of the process 2 RDFD

Valid_requestor
copy_return

S

Figure 3-33: The RDSD of the data flow "Valid_requestor_copy_return"

3. Software requirements specification technique	 51

The Integration of Software Specification, Verification, and Testing Techniques with Sofiware Requirements and Design Processes

VaIC_copy
copy_return

3

Figure 3-34: The RDSD of the data flow "Valid_copy_copy_return't

C. Add a copy of a book to the library

The decomposition of the process 3 is shown in Figure 3-35. The data structures of five new
internal data flows (see Figure 3-35) are shown in Figures 3-36 to 3-40.

"3.1\
I	

\f3.2'

Check T)	 6;f Check
requeaforJ\	 copy

Staff	 \	 I	 L,ry_copses

, 3.3 ,%

Check
ne*_book

Library_booI
	 Copy

Copy®

/•• 3.5\ /
Recor	 ok 1 Record VRecord

neN copynew book

ary book	 [J [Fboo	
authore J [__subjects__J

Figure 3-35: The decomposition of the process 3 RDFD

3. Software requirements specification technique 	 52

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Valid_reguestor
copy_add

S

Figure 3-36: The RDSD of the data flow "Valid_requestor_copy_add"

Valid_copy
copy_add

B

Figure 3-37: The RDSD of the data flow "Valid_copy_copy_add"

New_book

B

Figure 3-3 8: The RDSD of the data flow "New_book"

Not_new_book

B

Figure 3-39: The RDSD of the data flow "Not_new_book"

Record
new_book_ok

3

Figure 3-40: The RDSD of the data flow "Record_new_book_ok"

D. Remove a copy of a book from the library

The decomposition of the process 4 is shown in Figure 3-41. The data structures of five new
internal data flows (see Figure 3-41) are shown in Figures 3-42 to 3-46.

3. Software requirements specification technique 	 53

The Inlegration of Software Specification, Verification, and Testing Techniques with Software Requirements and Desi Processes

Figure 3-41: The decomposition of the process 4 RDFD

Valid_requestor
copy_remove

3

Figure 3-42: The RDSD of the data flow "Validjequestor_copy_remove"

VaIid_py
copy_rmove

B

Figure 3-43: The RDSD of the data flow t1Valid_copy_copy_remove"

3. Software requirements specification technique 	 54

5.4

Enquiry
last

borrow

jnf 0

ilie Integration of Software Specification, Vetification, and Testing Techniques with Software Requirements and Design Processes

Last_copy

3

Figure 3-44: The RDSD of the data flow "Last_copy"

NctJast_copy

B

Figure 3-45: The RDSD of the data flow "Not_last_copy"

Remove_book
Ok

B

Figure 3-46: The RDSD of the data flow "Remove_book_ok"

E. Enquiry

The decomposition of the process 5 is shown in Figure 3-47.

By_a

Ust_d_boolby_auth ® *Tow.®
_enquiry

y 5.3'

Enquiry	 (Enquiry
by	 I	

I	 by
auth I	 \bce

Figure 3-47: The decomposition of the process 5 RDFD

3. Software requirements specification technique 	 55

The Jntcgraflon of Software Specification, Verification, and Testing Techniques with Software Requiremenis and Design Processes

E.1 Enquire the list of books by a particular borrower

The decomposition of the process 5.1 is shown in Figure 3-48. The data structures of two new
internal data flows (see Figure 3-48) are shown in Figures 3-49 and 3-50.

Figure 3-48: The decomposition of the process 5.1 RDFD

Valid_requestor
by_author_enquuy

3

Figure 3-49: The RDSD of the data flow Valid_requestor_by_author_enquiry"

Valid_author

3

Figure 3-50: The RDSD of the data flow "Valid_author"

3. Software requirements specification technique	 56

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

E.2 Enquire the list of books by a particular subject

The decomposition of the process 5.2 is shown in Figure 3-51. The data structures of two new
internal data flows (see Figure 3-51) are shown in Figures 3-52 and 3-53.

Figure 3-5 1: The decomposition of the process 5.2 RDFD

Valid_requestor
by_subject_enqury

3

Figure 3-52: The RDSD of the data flow "Valid_requestor_by_subject_enquiry"

Valid_subject

3

Figure 3-53: The RDSD of the data flow "Valid_subject"

3. Software requirements specification technique 	 57

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

E.3 Enquire the list of copies checked out by a particular borrower

The decomposition of the process 5.3 is shown in Figure 3-54. The data structures of five new
internal data flows (see Figure 3-54) are shown in Figures 3-55 to 3-59.

Figure 3-54: The decomposition of the process 5.3 RDFD

VaIid_us

B

Figure 3-55: The RDSD of the data flow "Valid_user0

3. Software requirements specification technique	 58

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Valid_staff

B

Figure 3-56: The RDSD of the data flow "Valid_staff'

Not a staff

B

Figure 3-57: The RDSD of the data flow "Not_a_user"

Autorized
requestor

B

Figure 3-5 8: The RDSD of the data flow "Authorized_requestor"

Valid_borrower
by_borrower

enquiry
B

Figure 3-59: The RDSD of the data flow "Valid_borrower_by_borrower_enquiiy"

3. Software requirements specification technique	 59

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

E.4 Enquire what borrower last checked out a particular copy of a book

The decomposition of the process 5.4 is shown in Figure 3-60. The data structures of two new
internal data flows (see Figure 3-60) are shown in Figures 3-61 and 3-62.

Figure 3-60: The decomposition of the process 5.4 RDFD

Valki_requestor
last_borrower

enquiry

Figure 3-6 1: The RDSD of the data flow uValid_requestor_1ast_borrower_enquiiyI

Valid_copy
last_borrower

enquiry
B

Figure 3-62: The RDSD of the data flow "Valid_copy_last_borrower_enquiiy"

3. Software requirements specification technique	 60

The Integration of Software Specificazion, Verification, and Testing Techniques with Software Requirements and Design Processes

3.5 Step 3: write RZs

In this step, the software requirements are formally specified by writing Z specifications to
capture both the static and dynamic aspects of a system as required by the end-users. The
specifications are written in the standard Z (as defined in [86]) and the extended Z subset (as
described in section 2.5.1).

The Z specifications are developed from the RERDs, RDFDs, and RDSDs produced
earlier (as described in sections 3.2, 3.3, and 3.4). However, there are some requirements which
cannot be captured by those three diagrams but must be specified in the Z specifications,
therefore the informal requirements specification needs to be consulted also.

The Z specifications are developed by using the following steps.

3.5.1 Step 3.1: define the state of the system

As described in section 3.2.1 the static aspects of a system include the state the system can
occupy and the critical requirements that must hold in evely state. Section 3.3 discusses how to
draw RERDs and RDSDs to depict the static aspects of a system. This section will describe
how to write Z specifications to define the static aspects of a system, or in other words to
define the state of the system. The Z specifications are developed from the RERDs and RDSDs
produced earlier.

A. Define all data types

First, data types of all entities must be specified in Z specifications. These data types are the
entity types shown in the RERDs. Some of these entity types may be further defined on the
RDSDs. If the entity type is further defined on the RDSD, it is translated into a schema type;
otherwise it is just simply translated into a basic type.

From the RERD of the libraiy system (see Figure 3-1), there are five data types shown
on the diagram. The five data types are "PERSON", "AUThOR", "SUBJECT", "BOOK", and
"COPY". Since these data types are not further defined on the RDSDs, they are translated into
basic types in Z as follows.

[PERSON, AUThOR, SUBJECT, BOOK, COPY]

B. For entities which have the same type, write a schema to define the state of those
entities.

From the RERDs, we can easily identify the entities which have the same type. Then, we write
a schema to define the state of those entities.

From the RERD of the library system (see Figure 3-1), we then write five schemas as
follows.

Users: P PERSON
Borrowers: P PERSON
Staff: ?PERSON

(Borrowers, Staff) partition Users

3. Software requirements specification technique 	 61

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Library_book_authors: P AUTHOR

Subject state

Libraiy_book_subjects: P SUBJECT

Book_state

Libraiy_books: l BOOK

copy_state

Library_copies: P COPY
Checked_out_copies: P COPY
Available_copies: P COPY

<Checked_out_copies, Available_copies) partition Library_copies

C. Write a schema to define the state of the system

Then we write a schema to define the total state of the system by following these steps.

1) Include all schema names developed in the previous step.

2) Define the relationships of the entities by using the relationship symbols (as
described in section 2.5.1.1). The relationships are shown on the RERDs produced
instep 1.2.

3) Define other state variables.

4) Define the remaining critical requirements (these critical requirements can be
extracted from the informal requirements specification; they are not shown in the
RERDs).

The schema which defines the state of the library system can be written as follows.

state

Person_state
Author_state
Subject_state
Book_state
Copy_state
Writes : Library_book_authors .-<< >> Library_books
Is_a_subject_of: Libraiy_book_subjects. *x >>s Library_books
Is_a_copy_of: Library_copies.<< >. Library_books
Currently_checks_out : Borrowers o- >>. Checked_out_copies
Max_copy:

Vb : dom Currently_checks_out . # Currently_checks_out (I {b} I) ^ Max_copy

3. Software requirements specification technique 	 62

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The five schemas produced in the previous step are included. Then, the relationships of
the entities as shown on the RERD (Figure 3-1) are defined. Next, the state variable
"Max copy" is defined. The state variable "Max_copy" is not shown on the RERD; it is stated
in the informal requirements specification. Finally, in the predicate part, we define the
remaining critical requirement, "a borrower may not have more than a predefined number of
copies checked out at one time". Again this step uses information that is only stated in the
informal requirements specification.

3.5.2 Step 3.2: define the initial state of the system

The initial state of the system, or the state the system is in when it is first started, can be
defined as follows.

state

Libraiy_state

Users =0
Borrowers = 0
Staff=ø
Libraiyjook_authors =0
Libraiy_book_subjects 0
Library books =0
Library_copies =0
Checked_out_copies = 0
Available_copies =0
Writes =0
Is_a_subject_of = 0
Is_a_copy_of = 0
Currently_checks_out =0
Max_copy = 10

Assuming that a borrower is not allowed to borrow more than 10 copies at one time,
therefore "Max_copy" is defined to 10.

3.5.3 Step 3.3: define the operations of the system

The operations of the system or in other words the dynamic aspects of the system are specified
graphically by using RDFDs and RDSDs as already discussed in section 3.4. The operations of
the system are also specified formally in Z specifications.

The Z specifications for defining the operations of the system are developed from the
RDFDs and RDSDs produced in step 3.4. The RDFDs and RDSDs help ease the task of
writing Z specifications since they provide a basis for structuring the Z specifications as well
as providing information which can be translated easily into Z specifications. However, they
cannot depict the detailed operations, therefore the informal requirements specification needs to
be consulted as well.

For each process on the RDFDs, we write a schema to define that process. First, we
write a schema to define the only process (the process 0) on the context diagram. However,
before the process 0 is defined, some data types must be defined first. Then we write a schema
to define each process on the next level RDFDs.

3. Software requirements specification technique 	 63

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Concerning the library system, before the schema for defining the process 0 is written,
the data type "MSG" needs to be defmed as follows.

MSG : := Copy_check_out_ok
I Copy_check out invalid requestor
I Copy_check out invalid borrower
I Copy_check out over limit
I Copy_check_out_invalid_copy
Copy_returnok

I Copy_retum_invalid_requestor
Copy_retui-n invalid copy

I Copy_addok
I Copy_add_invalid_requestor
I Copy_add_invalid_copy
I Copy_remove_ok
I Copy emove invalid requestor
I Copy_remove_invalid_copy
I By_author_enquiry_invalid_requestor
By_author_enquiry_invalid_author

I By_subject_enquiry_invalid_iequestor
I By_subject_enquiry_invalid_subject
I By_borrower_enquiry_invalid_user
I By_borrower_enquny_unauthorized_requestor
By_borrower_enquiry_invalid_borrower

I Last_borrower_enquiry_invalid_requestor
I Last_borrower_enquuy_invalid_copy

Concerning the RDSDs drawn in the previous steps, there is the data type "MSG" and
this data type is not shown on the RERD. Therefore, it must be defined. It is defined as a free
type as shown above.

Next, we write a schema to define the process 0 (Figure 3-2).

In the declaration part of this schema, first all input and output data flows are defined.
The RDSDs (Figures 3-3 to 3-26) provide the details of the structure of these data flows, and
these RDSDs can be translated easily into Z specifications. Then we define the external entities
and the inputs and/or outputs from/to each external entity.

In the predicate part of this schema, we write a predicate to state the relationship of the
input and output data flows.

The schema to define the process 0 of the libraiy system can be written as follows. The
RDFD shown in Figure 3-2 and the RDSDs shown in Figures 3-3 to 3-26 provide the details
for writing this schema.

For example:

"Copy_check_out?: (Requestor : PERSON®Borrower : PERSON(XJCopy: COPY)H

comes directly from Figure 3-3 and so on.

RO_Library

Copy_check_out?: (Requestor : PERSON ® Borrower: PERSON ®
Copy: COPY)

Copy_return? : (Requestor: PERSON ® Copy: COPY)
Copy_add?: (Requestor : PERSON ® Copy: COPY ® Book : BOOK ()

[Authors: P AUTHOR] ® [Subjects: P SUBJECT])

3. Software requirements specification technique 	 64

((Invalid user : MSG ®
r: MSG) 0 Invalid_borrower : MSG)

(Invalid_requestor: MSG ®

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Copy_remove?: (Requestor : PERSON NJ Copy: COPY)
By_author_enquiry?: (Requestor : PERSON ® Author: AUTHOR)
By_subject_enquiry?: (Requestor : PERSON ® Subject: SUBJECT)
By_borrower_enquiry?: (Requestor : PERSON (NJ Borrower : PERSON)
Last borrower enquiry? : (Requestor : PERSON (NJ Copy: COPY)
Valid_copy_check_out! : MSG
Invalid_COPY_check_out! : (Invalid_requestor: MSG (VJ

(Invalid_borrower: MSG ® Over_limit : MSG) (NJ Invalid_copy : MSG)
Valid_copy_return! : MSG
Invalid_copy_return! : (Invalid_requestor : MSG 0 Invalid_copy : MSG)
Valid_copy_add! : MSG
Invalid_cOPY_add! : (Invalid_requestor: MSG ® Invalid_copy : MSG)
Valid_copy_remove! : MSG
Invalid_copy_remove! : (Invalid_requestor: MSG ® Invalid_copy : MSG)
List_of_books_by_author!: P BOOK
Invalid_by_author_enquiry! : (Invalid_requestor : MSG ® Invalid_author: MSG)
List_of_books_by_subject! : P BOOK
Invalid_by_subject_enquiry! : (Invalid_requestor : MSG (J Invalid_subject : MSG)
List_of_copies_by_borrower! : P COPY
Invalid_by_borrower_enquiry!:

Unauthorized_requestoi
Last_borrower_info! : PERSON
Invalid_last_borrower_enquiry!

Invalid_copy : MSG)
Borrowers_ext (Copy_check_out?, Copy_return?,

By_author_enquiry?, By_subject_enquiry?, By_borrower_enquiry?,
Valid_copy_check_out!, Invalid_copy_check_out!,
Valid_copy_return!, Invalid_copy_return!,
List_of_books_by_author!, Invalid_by_author_enquiry!,
List_of_books_by_subject!, Invalid_by_subject_enquiry!,
List_of_Copies_by_borrower!, Invalid_by_borrower_enquuy!)

<= Staff_ext (Copy_add?, Copy_remove?,
By_author_enquiry?, By_subject_enquiry?, By_borrower_enquiry?,
Last borrOwer_enquiiy?,
Valid_copy_add!, Invalid_copy_add!,
Valid_copy_remove!, Invalid_copy_remove!,
List_of_books_by_author!, Invalid_by_author_enquiry!,
List_of_books_by_subject!, Invalid_by_subject_enquiry!,
List_of_copies_by_borrower!, Invalid_by_borrower_enquijy!,
Last_borrower_info!, Invalid_last_borrower_enquiry!)

Copy_check_out?, Copy_return?, Copy_add?,Copy_remove'?,
By_author_enquiry?, By_subject_enquiry?, By_borrower_enquiry?,
Last borrower enquity?

Valid_copy_check_out! ®Invalid_copy_check_out!,
Valid_copy_return! ® Invalid_copy_return!,
Valid_copy_add! ® Invalid_copy_add!,
Valid_copy_remove! ® Invalid_copy_remove!,
List_of books_by_author! ® Invalid_by_author_enquiry!,
List_of_books_by_subject! ® Invalid_by_subject_enquiry!,
List_of_copies_by_borrower! ® Invalid_by_borrower_enquiry!,
Last_borrower_info! ® Invalid_last_borrower_enquiry!

3. Software requirements specification technique 	 65

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Next, the processes 1 to 5 (Figure 3-27) can be translated into Z specifications as
follows.

Check_out_copy.

RO_Library (Copy_check_out?. Valid_copy_check_out!,
Invalid_copy_check_out!)

Copy_check_out? Valid_copy_check_out! ® Invalid_copy_check_out!

R2_Return_copy

RO_Libraiy (Copy_return?, Valid_copy_return!, Invalid_copy_return!)

Copy_return? Valid_copy_return! ® Invalid_copy_return!

_Add_copy

1 RO_Libraiy (Copy_add?, Valid_copy_add!, Invalid_copy_add!)

Copy_add? Valid_copy_add! ® Invalid_copy_add!

R4_Remove_copy

fr RO_Library (Copy_remove?, Valid_copy_remove!, Invalid_copy_remove!)

Copy_remove? Valid_copy_remove! ® Invalid_copy_remove!

R5_Enquiry

RO_Library (By_author_enquiry?, By_subject_enquiry?,
By_borrower_enquiry?, Last_borrower_enquiry?,
List_of_books_by_author!, Invalid_by_author_enquiiy!,
List_of_books_by_subject!, Invalid_by_subject_enquiry!,
List_of_copies_by_borrower!, Invalid_by_borrower_enquiry!,
Last_borrower_info!, Invalid_last_borrower_enquiry!)

By_author_enquiry?, By_subject_enquiry?, By_borrower_enquiry?,
Last_borrower_enquiry?
List_of_books_by_author? ® Invalid_by_author_enquiry!,
List_of_books_by_subject? ® Invalid_by_subject_enquiry?,
List_of_copies_by_borrower! ® Invalid_by_borrower_enquiry!,
Last_borrower_info! ® Invalid_last_borrower_enquiry!

The schema "Ri_Check_out_copy" can be described as follows. In its declaration part,
we define where the inputs and outputs of the schema are from. As defined in this schema, the
input "Copy_check_out?" is from the schema "RO_Library" and the outputs
"Valid_copy_check_out!" and "Invalid_copy_check_out!" are passed to the schema
"RO_libraly". In its predicate part, we define the relationship between the input and outputs. It
defines that from the input "Copy_check_out?", the process will produce either
"Valid_copy_check_out!" or "Invalid_copy_check_out!" but not both.

3. Software requirements specification technique	 66

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

A. Check out a copy of a book

Next, the processes 1.1 and 1.2 (Figure 3-28), all sub-processes of the process 1.1 (Figure 3-
30) and the related RDSDs (Figures 3-29 and 3-31) can be translated into Z specifications as
follows.

Ri_i_Check_copy_check_out

O Ri_Check_out_copy (Copy_check_out?, Invalid_copy_check_out!)
Valid_copy_check_out_check! : (Valid requestor: lB ® Within_limit: lB ()

Valid_copy: IB)

Copy_check_out? Valid_copy_check_out_check! ® Invalid_copy_check_out!

R1_2_Record_copy_check_out___

0 Ri_Check_out_copy (Borrower?, Copy?, Valid_copy_check_out!)
> Ri_i_Check_copy_check_out (Valid_copy_check_out_check?)

Library_state (z Available_copies, i Checked_out_copies, Currently_checks_out)

Borrower? © Copy? Qj) Valid_copy_check_out_check? Valid_copy_check_out!
Available_copies ' = Available_copies \ {Copy?)
Checked_out_copies' = Checked_out_copies U {Copy?)
Currently _checks_out' = Currently_checks_out U {Borrower? i-3 Copy?)
Valid_copy_check_out! = Copy_check_out_ok

Ri_1_1_Check_requestor___

0 Ri_i_Check_copy_check_out (Requestor?, Valid_requestor!, Invalid_requestor!)
Library_state (E Staff)

Requestor? Valid_requestor! ® Invalid_requestorl
(Requestor? E Staff A Valid_requestor! = True)

V (Requestor? Staff A Invalid_requestor! = Copy_check_out_invalid_requestor)

check_borrower

O Ri_i_Check_copy_check_out (Borrower?, Invalid_borrower!)
Library_state (Borrowers)
Valid_borrower_copy_check_out! : lB

Borrower? Valid_borrower_copy_check_out! ® Invalid_borrower!
(Borrower? € Borrowers A Valid_borrower_copy_check_out! = True)

V (Borrower? Borrowers A Invalid_borrower! = Copy_check_out_invalid_borrower)

3. Software requirements specification technique	 67

1flkISdtware Specification, Vefification, and Testing Techniques with So4twaie Requirements and Design Processes

_Check_inax_copy

Ri_i_Check_copy_check_out (Borrower?, Within_limit!, Over_limit!)
Ri_l_2_Cbeck_borrower (Valid_borrower_copy_check_out?)

Libraiy_slate (Currently_checks_out, Max_copies)

Borrower? ® Va1id_borrower_copycheck_out? Within_limit! ® Over limit!
((# Currently_checks_out (1 (Borrower?) I) < Max_copy) A Within_limit! = True)

V ((# Currently_checks_out ((Borrower?) j) ^ Max copy) A
Over_limit! = Copy_check_out_over_limit)

Rl_1_4_Check_copy___________________________

ü Ri_i_Check_copy_check_out (Copy?, Valid_copy!, Invalid_copy!)
Libraty_state (Available copies)

Copy? Valid copy! ® Invalid copy!
(Copy? e Available_copies A Valid_copy! = True)

V (Copy? Available_copies A Invalid_copy! = Copy_check_out_invalid_copy)

The schema "Ri_i_Check_copy_check_out" receives one input "Copy_check_out?"
from the schema "Ri_Check_out_copy" and returns one output "Invalid_copy_check_out!" to
the same schema. However, there are two outputs that can be produced by this schema as
defined in the predicate. The other output is "Valid_copy_check_out_check1 ". This output is
not defined by the parent schema (the schema "Ri_Check_out_copy"), therefore it must be
defined (by translating the RDSD of this output, shown in Figure 3-29, into a Z statement).

Since the schema "Ri_2_Record_copy_check_out" defines the bottom level process,
the detailed operations must be defined. This schema receives two inputs from and sends one
output to the schema "Ri_Check_out_copy". Also, this schema receives one input from and
sends no output to the schema "Ri_i_Check_copy_check_out".

This schema also states that it changes only "Available_copies",
"Checked_out_copies", and "Currently_checks_out", but not other state variables of the
"Libraiy state". The way the A and are used in this thesis is quite different from the general
practice. We believe that it is more convenient and more suitable to use these two symbols this
way.

In standard practice, the A notation as well as notation is followed by a schema
name. For example, AState ("State" is the state space of a data type) is implicitly defined as
the combination of State and State':

A State

State
State'

Like AState, the EState is implicitly define whenever a schema "State" is introduced as
the state space of a data type:

3. Software requirements specification technique	 68

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

State
State'

0 State = 0 State'

In this thesis, the and conventions can be used in the standard way as mentioned
above. However, they can also be used in a more specific way; either one of them can be used
in front of a state variable (the state space of a data type may contain more than one state
variable) to define specifically the effect to that state variable.

For example, from the schema "R1_2_Record_copy_check_out", the declaration
statement

Library_state (A Available_copies, A Checked_out_copies, A Currently_checks_out)

defines that only these three state variables in the state space "Library_state" may be changed
as the result of the operations defined in this schema but not other state variables.

For example, from the schema "Rl_l_l_Check_requestor", the declaration statement

Library_state (Stafi)

defines that this schema concerns only the state variable "Staff' in the state space
"Library_state", it does not concern other state variables in the "Library_state". In addition, the
before and after state of the state variable "Staff' are the same; in other words the operations of
this schema do not change the state of the state variable "Staff'.

In this thesis, we introduce the data type boolean "(8" as a built-in type. (8is the set of
boolean values {True, False).

In the schema "Ri_i_Check_copy_check_out", the data flow "Valid_requestor" is
assigned the data type "(B". In the schema "Rl_l_i_Check_requestor", the data flow
"Valid_requestor" is assigned to "True" if the requestor is a staff In fact, the data flow
"Valid_requestor" is a control flow generated by one process and then sent to another process
to signal particular status or condition; the data value assigned to this control flow is not at all
important. However, in this thesis, all control flows will be assigned the data type "(B".

In fact, the process of developing Z specifications to define the operations of the
system can be done mechanically until the bottom-level processes are reached. The Z
specifications for the higher-level processes can be automatically generated from the RDFDs
and the related RDSDs. However, for the bottom-level processes only part of the Z
specifications can be automatically generated; the specifiers are required to write detailed
operations of the bottom-level processes themselves since the detailed operations are not
captured by the RDFDs and RDSDs

B. Return a copy of a book

Next, the processes 2.1 to 2.3 (Figure 3-32) and the related RDSDs (Figures 3-33 to 3-34) can
be translated into Z specifications as follows.

3. Software requirements specification technique 	 69

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

R2_1_Check_requestor

R2_Return_copy (Requestor?, Invalid_requestor!)
Libraiy_state (3 Staff)
Valid_requestor_copy_return! : 11l

Requestor? Valid_requestor_copy_return! ® Invalid_requestor!
(Requestor? n Staff A Valid_requestor_copy_return! = True)

V (Requestor? Staff A Invalid_requestor! Copy_return_invalid_requestor)

R2_2_Check_copy,

1 R2_Return_copy (Copy?, Invalid_copy!)
Libraiy_state (3 Checked_out_copies)
Valid_copy_copy_return! : Il

Copy? Valid_copy_copy_returnt ® Invalid_copy!
(Copy? E Checked_out_copies A Valid_copy_copy_return! = True)

v (Copy? Checked_out_copies A Invalid copy! = Copy_return_invalid_copy)

R2_3_Record_copy_return__

i} R2_Return_copy (Copy?, Valid_copy_return!)
R2_1_Check_requestor (Valid_requestor_copy_return?)

' R2_2_Check_copy (Valid_copy_copy_return?)
Library_state (A Checked_out_copies, A Available copies, A Currently_checks_out)

Copy?® Valid_requestor_copy_return? ® Valid_copy_copy_retrun?
Valid_copy_return!

Checked_out_copies' = Checked_out_copies \ {Copy?}
Available_copies ' = Available_copies U {Copy?}
Currently_checks_out' = Currently_checks_out {Copy?}
Valid_copy_return! = Copy_return_ok

C. Add a copy of a book to the library

The processes 3.1 to 3.5 (Figure 3-35) and the related RDSDs (Figures 3-36 to 3-40) can be
translated into Z specifications as follows.

R3_1_Check_requestor

1] R3_Add_copy (Requestor?, Invalid_requestor!)
Library_state (3 Staff)
Valid_requestor_copy_add!: lB

Requestor? Valid_requestor_copy_add! ® Invalid_requestor!
(Requestor? E Staff A Valid_requestor_copy_add! = True)

V (Requestor? Staff A Invalid_requestor! Copy_add_invalid_requestor)

3. Software requirements specification technique 	 70

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

_2_Clieck_copy,

R3_Add_copy (Copy?, Invalid_copy')
Library_state (Library_copies)
Valid_copy_copy_add!: EIl

Copy? Valid_copy_copy_add! ® Invalid_copy!
(Copy? Library_copies A Valid_copy_copy_add! = True)

V (Copy? € Library_copies A Invalid_copy! = Copy_add_invalid_copy)

I3_3_Check_new_book_______________________________________

R3_Add_copy (Book?)
' R3_1_Check_requestor (Valid_requestor_copy_add?)
'> R3_2_Check_copy (Valid_copy_copy_add?)
Library_state (Library_books)
New_book! :
Not_new_book!: LII

Book? ® Valid_requestor_copy_add? ® Valid_copy_copy_add?
New_book! ® Not_new_book!

(Book Library_books A New_book! = True)
V (Book E Library_books A Not_new_book! = True)

R3_4_Record_new_book___

lU_Add_copy (Copy?, Book?, Authors?, Subjects?)
> R3_3_Check_new_book (New_book?)

Library_state (A Library_books, A Library_book_authors, A Library_book_subjects,
A Writes, AIs_a_subject_of)

Record_new_book_ok! : lB

Copy? ® Book () Authors ® Subjects ® New_book? Record_new_book_ok!
Library_books' = Library_books U {Book?}
Library_book_authors ' = Library_book_authors U Authors?
Library_book_subjects' = Library_book_subjects U Subjects?
Writes' = Writes U Authors? H {Book?)
Is_a_subject_of' = Is_a_subject_of U Subjects? 1-1 {Book'?}
Record_new_book_ok! = True

3. Software requirements specification technique	 71

1flb i	 áo,i	 pci&ñL Vil1cau, 1 Tcti Telá	 ih SolIw Rapiiraniiind Design Pmccs

_copy

R3 Md copy (Copy?, Book?, Valid_copy_add!)
R33 Check new book (Not_new_book?)
R3_4_Record_new_book (Record new book ok?)

Llbraiy_state (A Available copies, A Is_a_copy_of)

Copy?®Book? ® (Not_new_book? ® Record new book ok?)
Valid copy add!

Available_copies' = Available copies U (Copy?)
Is_a_copy_of' = Is_a_copy_of U (Copy? i —+ Book?)
Valid_copy_add! = Copy_add_ok

D. Remove a copy of a book from the library

Theprocesses4.1 to4.5 (Figure3-41)andtherelatedRDSDs Figures 3-42 to 3-46) canbe
translated into Z specifications as follows.

_l_Check_requestor______________________________________

1 R4_Remove_copy (Requestor?, Invalid requestor!)
Libraiy_state (Stall)
Valid_requestor_copy_remove! 8

Requestor? Valid_requestor_copy_remove! ® Invalid_requestor!
(Requestor? E Staff A Valid_requestor_copy_remove! = True)

V (Requestor? Staff A Invalid_requestor! Copy_remove_invalid_requestor)

R4_2_Check_copy

ft R4_Remove_copy (Copy?, Invalid_copy!)
Library_state (Available copies)
Valid_copy_copy_remove! 8

Copy? Valid_copy_copy_remove! ® Invalid_copy!
(Copy? € Available_copies A Valid_copy_copy_remove! = True)

V (Copy? Available_copies A Invalid_copy! Copy_removejnvalid_copy)

_3_Check_last_copy_______________________________________

R4_Remove_copy (Copy?)
c> R4_l_Check_requestor (Valid_requestor_copy_remove?)

> R4_2_Check_copy (Valid_copy_copy_remove?)
Library_state (Is_a_copy_of)
Last_copy! 8
Not_last_copy! : 8

Copy? ® Valid_requestor_copy_remove? ® Valid_copy_copy_remove?
Last_copy! ® Not_last_copy!

((# Is_a_copy_of 1 (I Is_a_copy_of (I { Copy?) 1)1) = 1) A Last_copy! = True)
V ((# Is_a_copy_of (I Is_a_copy_of ({ Copy?) 1)1) > 1) A Not_last_copy! = True)

3. Software requirements specification technique 	 72

The II ibonSoftwaze Specificatioii. Vaification, and Testing Techniques with Software Requirements and Design Processes

4_Recordjookjemove.

R'_Remove_copy (Copy?)
R4_3_Check_last_copy (Last copy?)

Libraiy_state (A Library_books. A Libraiy_book_authors, A Library_book_subjects,
A Writes, A Is_a_subject_of)

Remove_book_ok! = B

Copy? ® Last_copy? Remove book ok!
Books = = Is_a_copy_of (I {Copy?} I)
Libraiy_books' = Library_books Books
Library_book_authors' = Libraiy_book_authors

(a: Writes4 (l Books l)I Write (j(a}I) =1}
Library_book_subjects' = Libraiy_book_subjects

{ s: Is_a_subject_of (Books 1)1 Is_a_subject_of(j (s} t) = I }
Writes' = Writes Books
Is_a_subject_of' = Is_a_subject_of Books
Remove_book_ok! = True

Record_copy_remove

i R4_Remove_copy (Copy?)
R4_3_Check_last_copy (Not_last_copy?)

> R4_4_Record_book_remove (Remove book Ok?)
Library_state (A Available_copies, A Is_a_copy_of)

Copy? ® (Not_last_copy? ® Remove book ok?) Valid_copy_remove!
Available_copies 'Available_copies \ {Copy?}
Is_a_copy_of' = {Copy?} Is_a_copy_of
Valid_copy_remove! = Copy_remove_ok

E. Enquiry

The processes 5.1 to 5.4 (Figure 3-47) can be translated into Z specifications as follows.

R5_1_Enquuy_by_author______________________________

1 R5_Enquiry (By_author_enquiry?, List_of_books_by_author I,
Invalid_by_author_enquiry!)

By_author_enquiry? List_of_books_by_author! ® Invalid_by_author_enquiry!

_2_Enquiry_by_subject

i R5_Enquuy (By_subject_enquiry?, List_of_books_by_subject!,
Invalid_by_subject_enquiry!)

By_subject_enquiry? List_of_books_by_subject! ® Invalid_by_subject_enquiry!

3. Software requirements specification technique	 73

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

R5_3_Enquiryj,y_borrower________________________

R5 Enquiry (By_borrower_enquiry?, List_of_copies_by_borrower!,
Invalid_by_borrower_enquiry!)

By_borrower_enquiry? List_of_copies_by_borrower! ®
Invalid_by_borrower_enquiiy!

_4_Enquiry_last_borrower

R5_Enquiry (Last borrower enquiry?, Last_borrower_info!,
Invalid_last_borrower_enquiry!)

Last_borrower_enquiry? Last_borrower_info! ® Invalid_last_borrower_enquiry!

E.1 Enquire the list of books by a particular borrower

The processes 5.1.1 to 5.1.3 (Figure 3-48) and the related RDSDs (Figures 3-49 to 3-50) can
be translated into Z specifications as follows.

R5_1_1_Check_requestor____________________________

0 R5_l_Enquiiy_by_author (Requestor?, Invalid_requestor!)
Library_state (Users)
Valid_requestor_by_author_enquiry! : II

Requestor? Valid_requestor_by_author_enquiry! ® Invalid_requestor!
(Requestor? e Users A Valid_requestor_by_author_enquiry! = True)

V (Requestor? Users A Invalid_requestor! = By_author_enquiry_invalid_requestor)

R5_l_2_Check_author

O R.5_1_Enquiry_by_author (Author?, Invalid_author!)
Library_state (Library_book_authors)
Valid_author!: lB

By_author_enquiry? Valid_author! ® Invalid_author!
(Author? E Library_book_authors A Valid_author! = True)

V (Author? e Library_book_authors A
Invalid_author! = By_author_enquiry_invalid_author)

R.5_l_3_Produce_books_by_author

0 R5_ 1_Enquiry_by_author (Author?, List_of_books_by_author!)
> R5_l_l_Check_requestor (Valid_requestor_by_author_enquiry?)

'> R5_l_2_Check_author (Valid_author?)
Library_state (E Writes)

Author? ® Valid_requestor_by_author_enquuy? ® Valid_author?
List_of_books_by_author!

List_of_books_by_author! Writes (I {Author?} I)

3. Software requirements specification teelmique	 74

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

E.2 Enquire the list of books by a particular subject

The processes 5.2.1 to 5.2.3 (Figure 3-5 1) and the related RDSDs (Figures 3-52 to 3-53) can
be translated into Z specifications as follows.

2_1_Check_requestor

R5_ 1_Enquiry_by_subject (Requestor?, Invalid_requestor!)
Library_state (E Users)
Valid_requestor_by_subject_enquiiy!: 13

By_subject_enquiry? Valid_requestor_by_subject_enquiry! ® Invalid_requestor!
(Requestor? E Users A Valid_requestor_by_subject_enquiry! = True)

V (Requestor? Users A Invalid_requestor! = By_subject_enquiry_invalid_requestor)

R5_2_2_Check_subject___

R5_2_Enquiry_by_subject (Subject?, Invalid_subject!)
Library_state (Library_book_subjects)
Valid_subject! : 13

Subject? Valid subject! ® Invalid subject!
(Subject? E Library_book_subjects A Valid_subject! = True)

V (Subject? Library_book_subjects A
Invalid_subject! By_subject_enquiry_invalid_subject)

R5_2_3_Produce_books_by_subject__________________________________

I R5_2_Enquny_by_subject (Subject?, List_of_books_by_subject!)
R5_2_1_Check_requestor (Valid_requestor_by_subject_enquny?)
R5_2_2_Check_subject (Valid_subject?)

Library_state (Is_a_subject_of)

Subject? ® Valid_requestor_by_subject_enquiry? ® Valid_subject?
List_of_books_by_suject!

List_of_books_by_subject! = Is_a_subject_of (I {Subject?} I)

E.3 Enquire the list of copies checked out by a particular borrower

The processes 5.3.1 to 5.3.5 (Figure 3-54) and the related RDSDs (Figures 3-55 to 3-59) can
be translated into Z specifications as follows.

3. Software requirements specification technique 	 75

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3 1 Check user

R5_3_Enquiiy_by_borrower (Requestor?, Invalid_user!)
Libraiy_state (Users)
Valid_user! : B

Requestor? Valid_user! ® Invalid_user!
(Requestor? E Users A Valid_user! = True)

V (Requestor? Users A Invalid_user! = By_borrower_enquiry_invalid_user)

3 2 Check staff

1 R5_3_Enquiry_by_borrower (Requestor?)
> R5_3_ 1_Check_user (Valid_user?)

Library_state (Staff)
Valid staffi: II
Not_a_stafll : B

Requestor? ® Valid user Valid staffi ® Notastaffi
(Requestor? E Staff A Valid_stafil = True)

V (Requestor? Staff A Not_a_staffl = True)

_3_3_Check_authorized_requestor_____________________________________

R5_3_Enquiry_by_borrower (Requestor?, Borrower?, 'Unauthorized requestor!)
R5_3_2_Check_staff (Not a staff'?)

Authorized_requestor! : LB

Requestor? ® Borrower? ® Not_a_staff?
Authorized_requestor! &J Unauthorized_requestor!

(Requestor? = Borrower? A Authorized requestorl = True)
V (Requestor? ^ Borrower? A

Unauthorized_requestor! = By_borrower_enquiry_unauthorized_requestor)

R5_3_4_Check_borrower

{ R5_3_Enquiry_by_borrower (Borrower?, Invalid_borrower!)
Library_state (Borrowers)
Valid_borrower_by_borrower_enquiry! : LB

Borrower? Valid_borrower_by_borrower_enquiry! ® Invalid_borrower!
(Borrower? E Borrowers A Valid_borrower_by_borrower_enquiry! = True)

V (Borrower? Borrowers A
Invalid_borrower! = By_borrower_enquiry_invalid_borrower)

3. Software requirements specification technique	 76

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

R5_3_5_Produce_copies_by_borrower

R5_3_Enquiry_by_borrower (Borrower?, List_of_copies_by_borrower!)
R5_3_2_Check_staff (Valid staff)
R5_3_3_Check_authorized_requestor (Authorized_requestor?)

c R5_3_4_Check_borrower (Valid_borrower_by_borrower_enquiry?)
Library_state (Currently_checks_out)

Borrower? ® (Valid_staff ® Authonzedrequestor?) ®
Valid_borrower_by_borrower_enquiiy? List_of_copies_by_borrower!

List_of_copiess_by_borrower! = Currently_checks_out (I {Borrower?} I)

E.4 Enquire what borrower last checked out a particular copy a book

The processes 5.4.1 to 5.4.3 (Figure 3-60) and the related RDSDs (Figures 3-61 to 3-62) can
be translated into Z specifications as follows.

_4_1_Check_requestor___

R5_4_Enquiry_last_borrower (Requestor?, Invalid_requestor!)
Library_state (Staff)
Valid_requestor_last_borrower_enquiryl

Requestor? Valid_requestor_last_borrower_enquiry! ® Invalid_requestort
(Requestor? E Staff A Valid_requestor_last_borrower_enquiry! = True)

V (Requestor? Staff A
Invalid_requestor! = Last_borrower_enquiry_invalid_requestor)

R5_4_2_Check_copy

1 R5_4_Enquiry_last_borrower (Copy?, Invalid_copy!)
Library_state (E Checked_out_copies)
Valid_copy_last_borrower_enquiry! iI

Copy? Valid_copy_last_borrower_enquiry! ® Invalid_copy!
(Copy? e Checked_out_copies A Valid_copy_last_borrower_enquiry! = True)

V (Copy? Checked_out_copies A
Invalid_copy! = Last_borrower_enquiiy_invalid_copy)

_4_3_Produce_last_borrower_info

O R5_4_Enquiry_last_borrower (Copy?, Last_borrower_info!)
R5_4_1_Check_requestor (Valid_requestor_last_borrower_enquiry?)
R5_4_2_Check_copy (Valid_copy_last_borrower_enquiry?)

Library_state (Currently_checks_out)

Copy? (Valid_requestor_last_borrower_enquiry? ®
Valid_copy_last_borrower_enquiry? Last_borrower_info!

Last_borrower_info! = Currently_checks_out -1 (Copy?)

3. Software requirements specification technique 	 77

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Chapter 4	 Software requirements verification
technique

4.1 Overview

In this chapter, a technique for verifying software reo.pirements is pro,oseiI A soThvare
requirements specification produced must be verified (informally and formally proved) against
the end-users' actual requirements and also it must be verified that it is internally consistent.

In section 4.2, the overview of the proposed software requirements verification
technique is given. This includes the steps to be carried out. Then the details of each step are
described in sections 4.3, 4.4, and 4.5. Both semiformal and formal requirements specifications
must be verified. Section 4.3 explains how to check (informally proved) the consistency within
the semiformal requirements specification itself. Section 4.4 discusses how to check (informally
prove) the consistency of the formal requirements specification against the semiformal
requirements specification. Finally, section 4.5 demonstrates how to apply formal proofs to
verify that the formal requirements specification is internally consistent.

4.2 Overview of the proposed software requirements
verification technique

Software requirements verification is the process of evaluating that the software requirements
specification satisfies the end-users' actual requirements. This includes:

1) Proving that the software requirements specification is a complete and correct
expression of the end-users' requirements.

2) Proving that the software requirements specification is internally consistent.

Software errors categories, for example those given in section 1.7, are very useful in
verifying software requirements.

There are various techniques that contribute to software requirements verification. The
techniques range from informal proof techniques to the other end of fonnal proof techniques.
The informal proof techniques include for example informal checking, reviews, walkthrough,
and inspection [31, 941, and also animation or prototyping. Formal proof techniques include all
techniques that are based on mathematical proofs, and also symbolic execution techniques. All
of them are aimed at finding errors in software requirements specifications.

The software requirements verification technique proposed in this thesis uses both
informal and formal proof techniques.

Figure 4-1 shows the scope of the proposed technique (bold lines represent the areas of
application of the proposed technique).

4. Software requirements verificalion technique 	 78

3.2
IrdOITfl prod

Seniformel
requremeris
speicatxn

(RERD8, RDFDS, RDSDs)

The Integration of Software Specilication, Verification, and Testing Techniques with Software Requirements and Design Processes

P	 1.1
IrorrTnt prod

1.2
Inform prod

Irorm
>	 reurneis

Specdcation
(eg.Erishstnteme1s)

2.1

1	 trtormprod
2.2

Irormatproct	 Y	 Y

at
lrtorm prod

3.3
Formal prod

Famal
requreme,1s
spodicatKin

(RZs)

Figure 4-1: Software requirements verification (bold lines represent areas of application of the
proposed technique)

The infonnal and formal proofs shown in Figure 4-1 are briefly explained as follows:

Step 1.1

Informal proof is applied to check the consistency, correctness, and
completeness of the informal requirements specification against the end-users'
requirements.

Step 1.2

Informal proof is applied to check the consistency within the informal
requirements specification itself.

Step 2.1

Informal proof is applied to check the consistency, correctness, and
completeness of the semiformal requirements specification (RERDs, RDFDs,
and RDSDs) against the informal requirements specification.

Step 2.2

Informal proof is applied to check the consistency within the semiformal
requirements specification (RERDs, RDFDs, and RDSDs).

4. Software requirements verification technique 	 79

1e5th	 i TT L-_---. w Se RUua	 4 D Pc

Step3J

infonnal picof is applied to check the consistency,, conectness, ar4
completeness of the formal requirements specification (RZs) ainst the
semgjnai requires' .s specification (RERDs, RDFDs, and RDSDs).

- Slep3.2

Informal proof is applied to check the consistency, correctness, and
completeness of the fi)rmal requirements specification (RZs) against the
informal ieqwrements specification.

Step 33

Formal proof is applied to mathematically prove the consistency within the
formal requirements specification (RZs).

The informal requirements specification must be verified against the end-users'
requirements (step Li) as well as it must be verified that the statements stated therein do not
conflict or axe not inconsistent (step 1.2).

According to chapter 2, the semiformal requirements specification is developed from
the informal requirements specification, therefore the former is verified against the latter (step
2.1). In addition, the former must be verified that it contains no conflicts or any inconsistency
(step 21).

Similarly, the formal requirements specification is developed from both the semiformal
requirements specification and the informal requirements specification, therefore informal and
formal proofs are required as stated in steps 3.1, 3.2, and 3.3 above.

The proposed software requirements verification technique covers only steps 22, 3.1,
and 3.3. The proposed technique can be applied by using the following steps.

4.3 Step 2.2: informally prove the semiformal requirements
specification

Step 2.2 is concerned with informally proving (or checking) the consistency within the
semiformal requirements specification itself This includes checking the consistency within each
of the three diagrams, the RERDs, RDFDs, and RDSDs, and checking the consistency of the
three diagrams against each other.

The tasks instep 2.2 are:

1) Check the RERDs

2) Check the RDFDs

3) Check the RDSDs

4) Check the RERDs against the RDSDs

5) Check the RDFDs against the RDSDs

6) Check the RDFDs against the RERDs

4. Software requirements verification technique 	 80

The bbiu Spa&xei. Vi&aiom, a dTeslingTe iniquiiih So4Lwae Rieçii,an 	 Di Pncis

4.3.1 Check the RERDs

The RERDs drawn must satisfy these smtax and semantics:

• Eachevboxmusthavflynaineandanentitvtype,andtheentitvname
must be unique.

• The entity must participate in at least one relationship.

• Each relationship must be given a name and if a relationship is an interrogative
relationship, the name must be unique.

• For the subset relationship ("Is_aTM relationship)1 the cardinality must be one-to-one,
and the subsets must be conjoined via either an exclusive or inclusive conjunction
notation.

4.3.2 Check the RDFDs

The RDFDs drawn must satisfy these syntax and semantics:

• All external entities, processes, data flows (except data flows from/to data stores),
and data stores must be labelled.

External entities must be present only on the context diagram.

• The context diagram must contain only one process and at least one external entity.

• A data flow can flow between an external entit y and a process, two processes, or a
process and a data store. In other words, a data flow cannot flow between two
external entities, two data stores, or an external entity and a data store.

• Each process must have at least one input data flow and one output data flow.

• Each data store must have at least one input or one output data flow from or to a
process. If a data flow flows from a data store to a process, the data store access
must be ®; otherwise it may be either ©, ®, or

• Input and output data flows of the parent and its sub-processes must be consistent.

4.3.3 Check the RDSDs

The RDSDs drawn must satisfy these syntax and semantics:

• Each box must have a data item name.

• Data item names on the same RDSD must be unique.

• Each primitive data item must be given a data type.

• If an RDSD contains more than one data components, they must be connected via
one or more data interface notations: conjunction, disjunction, and exclusive
disjunction.

• Data components of an RDSD may be defined on other RDSDs, but the definition
must not be recursive.

4. Software requirements verification technique 	 81

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4.3.4 Check the RERDs against the RDSDs

The rule for balancing the RERDs against the RDSDs is as follow:

• Each entity on the RERDs may or may not have a corresponding RD SD. An RDSD
is drawn only if the specifier decided to define the attributes of the entity type.

4.3.5 Check the RDFDs against the RDSDs

The rule for balancing the RDFDs against the RDSDs is as follow:

• Each data flow on the RDFD must appear on the RDSD.

4.3.6 Check the RDFDs against the RERDs

The rule for balancing the RDFDs against the RERDs is as follow:

• The data stores on the RDFDs are the entities and interrogative relationships on the
RERDs.

4.4 Step 3.1: informally prove the formal requirements
specification against the semiformal requirements
specification

Step 3.1 is concerned with informally proving (or checking) the consistency of the fonnal
requirements specification against the semiformal requirements specification. In other words,
step 3.1 is concerned with checking the consistency of the RZs against the RERDs, RDFDs,
and RDSDs.

Thetasks in step 3.1 are:

1) Check the RZ state specifications against the RERDs and RDSDs

2) Check the RZ operation specifications against the RDFDs and RDSDs

4.4.1 Check the RZ state specifications against the RERDs and
RDSDs

The rules for balancing the RZ state specifications against the RERDs and RDSDs are as
follows:

• If the data type of the entity on the RERDs is further defined on the RDSD, that
data type must be defined as a schema type in the RZ state specifications, otherwise
it must be defined as a basic type or free type.

• Each entity on the RERDs must be defined in the RZ state specifications.

• Each interrogative relationships on the RERDs must be defined as a relationship
(see section 2.5.1.1) in the RZ state specifications.

• The constraints among subsets of the same superset as shown on the RERDs must
correspond with the predicate(s) in the RZ state specifications.

4. Software requirements verification technique 	 82

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4.4.2 Check the RZ operation specifications against the RDFDs and
RDSDs

The rule for balancing the RZ operation specifications against the RDFDs and RDSDs is as
follow:

Each process on the RDFDs must have a corresponding schema in the RZ
operation specifications.

4.5 Step 3.3: formally prove the formal requirements
specification

Step 3.3 is concerned with formally proving the consistency within the formal requirements
specification (RZs). The classification of software errors given in section 1.7 is used as a
guideline for the proofs described here. The rest of this chapter describes how to apply formal
proofs to verify that the formal requirements specification is internally consistent. The proofs
are carried out to find out whether there is any inconsistency (as stated in section 1.7) in the
formal requirements specification; or in other words to prove that there is no inconsistency in
the formal requirements specification.

4.5.1 Inconsistent critical requirements

Critical requirements or invariant requirements of a system are requirements that must hold in
every state. The critical requirements may be thought of as preconditions to the entire
specification, rather than as being specific to any particular operation; they are preconditions of
every operation defined on the system.

The critical requirements are defined in one or more state schemas. The critical
requirements defined in the RZ state specifications may be in conflict or inconsistent, therefore
formal proofs are required in order to make sure that there is no inconsistency among those
critical requirements. Formal proofs of the consistency of the critical requirements can be
carried out independently for each state schema.

According to the RZ state specifications of the library system, the proofs can be
carried out in five sub-proofs, one for each state schema namely "Person state",
"Author_state", "Subject_state", Copy_state", and "Library_state".

If there is only one critical requirement defined in that schema, there shall be no
inconsistency. If there is more than one critical requirement, formal proof is required.

To prove that there is no inconsistent critical requirements, these steps are suggested:

1) First, for each state schema, the critical requirements are extracted from that state
schema. All predicates in the state schema are critical requirements. Critical
requirements are also sometimes expressed in the declaration part of the schema as
well [86].

The schema "Person_state" has only one critical requirement as follow:

<Borrowers, Staff> partition Users

The schemas "Author_state", "Subject_state", and "Book_state" have no critical
requirement.

4. Software requirements verification technique 	 83

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The schema "Copy state" has only one critical requirement as follow:

<Checked_out_copies, Available_copies> partition Library copies

The schema "Library_state" has twelve critical requirements (even though the
schema "Library_state" includes the four schemas above, they are not considered
because they are proved separately). The critical requirements of the schema
"Library_state" are:

dom Writes = Library_book_authors
ran Writes Library_books
dom Is_a_subject_of = Library_book_subjects
ran Is_a_subject_of = Library_books
dom Is_a_copy_of = Library_copies
ran Is_a_copy_of= Library_books
Vc : Library_copies • # Is_a_copy_of (I {c} I) = 1
dom Currently_checks_out Borrowers
ran Currently_checks_out = Checked_out_copies
Vc: Checked_out_copies . # Currently_checks_out -1 (I {c} I) = 1
Max_copy> 0
Vb: dom Currently_checks_out . # Currently_checks_out ({b} I) ^ Max_copy

2) Then, formal proofs are carried out for each schema. The critical requirements of
the library system must be consistent.

However, in case that the critical requirements are inconsistent, formal proofs can
reveal them as shown as follows.

Assume that the critical requirements of the system are defined as follows:

BnC = ø A

B U CAA
D U C=B A
C^ø

From the critical requirements above, we then can derive:

1.B nC=O
	

premise
2.D U C=B
	

premise
3. (D U C) n C = 0	 1,2 substitution
4.C=0
	

3

Therefore, the proof shows that there is inconsistency (C ^ 0 and C = 0 which is
impossible) within those critical requirements.

4.5.2 Inconsistency between the state specification and the initial state
specification

Both the state space specification and the initial state specification are defined. However, there
must be at least one initial state that satisfies the state space specification. Formal proof of the
consistency between the state specification and the initial state can be carried out, see[86] for
more details.

4. Software requirements verification technique	 84

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4.5.3 Inconsistent interface specifications

According to the concept of the data flow diagrams, the process can be decomposed into a
network of sub-processes and the input and output data flows of the parent and its sub-
processes must be consistent [53].

The interface specifications are specified in RZ operation specifications by using the
data interface symbols (see section 2.5.1.3) and the input/output data flow relation symbol (see
section 2.5.1.5).

In this section, the proof concerning the consistency of the interface specifications (the
consistency of the process decomposition) is given.

The proof method is suggested by Kung in [53]. However, the proof offered in this
thesis is quite different from the one given in [531. The proof offered in this thesis is a lot more
complete than the one in [53].

The proof proposed in this thesis is explained as follows.

From the Z specifications of the library system, which are given in section 3.5, the
interface specifications of the process 1 "Ri_Check_out_copy" and its sub-processes are as
follows.

From the schema "Ri_Check_out_copy", the interface specification is defined as:

Copy_check_out? Valid_copy_check_out! ® Invalid_copy_check_out!

The process "R_i_Check_out_copy" is decomposed into two sub-processes namely
"Ri_i_Check_copy_check_out" and "Ri_2_Record_copy_check_out".

The interface specification of the process "Ri_i_Check_copy_check_out" is:

Copy_check_out? Valid_copy_check_out_check! ® Invalid_copy_check_out! 	 (i)

The interface specification of the process "Ri_2_Record_copy_check_out" is:

Borrower? ® Copy? ® Valid_copy_check_out_check? Valid_copy_check_out! 	 (2)

The proof is required to prove that given the input data flow of the parent process
("Ri_Check_out_copy"), its sub-processes ("Ri_i_Check_copy_check_out" and
"R1_2_Record_copy_check_out") must produce the same output data flows as the parent
process. In other words, given the input data flow "Copy_check_out", the proof must show that
the processes "Ri_i_Check_copy_check_out" and "R1_2_Record_copy_check_out" produce
the output data flows "Valid_copy_check_out" and "Invalid_copy_check_out" and the proof
must also show that either of the two output data flows is produced but not both.

The proof is carried out by using non-logical rules and logical rules.

The non-logical rules are the application dependent rules. The statements (1) and (2)
above are non-logical rules.

The logical rules are logically valid and can be applied to all applications. There are 20
logical rules, Li to L20, as proposed in this thesis. The logical rules are derived by considering
the different basic elements that can occur in combination in DFDs. The first three rules, Li to
L3, show how individual inputs and outputs can be related. The next 13 rules, L4 to L16,
illustrate the behaviour of different possible DFD fragments. The last four rules, L17 to L20,
correspond to the basic associative properties.

4. Software requirements verification technique	 85

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Li.	 a?®b?=a?,a?®b?=b?

Li states that for any process P, if a? and b? are inputs of P. then only a? or
only b? can be introduced as the input of the sub-process.

In other words, all inputs of the parent process are entitled to be the inputs of
its sub-processes; however each sub-process may not require all the inputs
provided by the parent process. Therefore, this rule allows only some inp'uls to
be extracted from all inputs provided.

L2.	 a?,b!=a?®b!

L2 states that if a? is the input of the parent process and b! is the output
derived from the proof, then a? can be introduced and combined with the
output b!.

L3.	 a?®b!='a?®b?

L3 states that the output of one sub-process can be passed as the input to
another sub-process on the same DFD.

L4.	 bi! ® b2!, ci! ® c2f	 cU	 (b2? (j3) c2?)

L4 states that for any processes P anã Q, f P proàuces 'DV 3 D2\. an c^
produces ci! ® c2!, then we can derive bli ® c1 ® (o2? ® c2?).

This rule can be shown by the DFD as follows.

Given the process P which produces the outputs bi! ® b2! and the process Q
which produces the outputs ci! 0 c2!, if the outputs b2! and c2! are passed
as the inputs to the process R and the two outputs are in conjunction, we then
can derive bi! ® ci! ® (b2? ® c2?). This is true because from the diagram
above, it shows that all of these three outputs bi!, ci!, and d! are produced
(bi! () ci! ® d!). Therefore bi! ® ci! (j) (b2? (NJ c2?) is a valid
consequence because whatever output(s) produced by the inputs (b2? (NJ c2?)
they must be in conjunction with the outputs bi! and ci!.

Rules L5 to Li 6 can be reasoned in a similar way.

L5.	 bfl®b2!,cl! ®c2!=b1!®cfl®(b2?®c2?)

L5 states that for any processes P and Q, if P can produce bi! ® b2! and Q
can produce ci! ® c2!, then we can derive bi! ® ci! 0 (b2? (NJ c2?).

This rule can be shown by the DFD as follows.

4. Software requirements verification technique	 86

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

L6.	 bi! Øb2!,ci! Øc2! =(b1! ®cl!)®(b2?0c2?)®

((bi! ® ci!) ® (b2? ® c2?))

L6 states that for any processes P and Q, if P produces bi! 0 b2! and Q
produces ci! ® c2!, then we can derive (bi! ® ci!) ® (b2? 0 c2?)® ((bi!
®ci!)®(b2?®c2?)).

This rule can be shown by the DFD as follows.

L7.	 bi! ® b2!, ci! ® c2! (bi! ® ci!) ® (b2? ® c2?)

L7 states that for any processes P and Q, if P produces bi! ® b2! and Q
producesci! ® c2!,thenwecanderive(bi! ® ci!) ® (b2? ® c2?).

This rule can be shown by the DFD as follows.

4. Software requirements verification technique	 87

'¼

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

L8.	 bl!®b2!,cl! ®c2!='(bi! ®ci!)®(b2?®c2?)®

((bi! ® ci!) 0 (b2? ® c2?))

L8 states that for any processes P and Q, if P produces bi! ® b2! and Q
produces ci! ® c2!, then we can derive (bi! 0 ci!) 0 (b2? 0 c2?)® ((bi!
® ci!) ® (b2? ® c2?)).

This rule can be shown by the DFD as follows.

L9.	 bi! ®b2!,ci! ®c2!=>bl! ®(cl! ®(b2?®c2?))

L9 states that for any processes P and Q, if P produces bi! ® b2! and Q
produces ci! ® c2!, then we can derive bi! ® (ci! ® (b2? ® c2?)).

This rule can be shown by the DFD as follows.

LiO. bi! ®b2!,el! ®c2!=(b1! ®(b2?®c2?))®

(bi!	 ci! ® (b2? ® c2?))

Li 0 states that for any processes P and Q, if P produces b 1! ® b2! and Q
produces ci! ® c2!, then we can derive (bi! (?) (b2? ® c2?)) ® (bi! ® ci!
® (b2? ® c2?)).

This rule can be shown by the DFD as follows.

4. Software requirements verification technique 	 88

The Integration of Software Specification, Verification, and Testing Tecluiiques with Software Requirements and Design Processes

Lii.	 bi!®b2!,cl!®c2!b1!®(bfl®cl!)®

(b 1! ® ci! ® (b2? ® c2?))

Lii states that for any processes P and Q, if P produces bi! () b2! and Q
produces ci! () c2!, then we can derive bi! ® (bi! ® ci!) ® (bi! ® ci!
© (b2? ® c2?)).

This rule can be shown by the DFD as follows.

L12.	 bi! ® b2!, ci! ® c2! bi! ® (ci! ® (b2? ® c2?))

Li2 states that for any processes P and Q, if P produces bi! ® b2! and Q
produces ci! ® c2!, then we can derive b 1! ® (ci! ® (b2? ® c2?)).

This rule can be shown by the DFD as follows.

4. Software requirements verification technique 	 89

The Integration of Software Specification, Verilication, and Testing Techniques with Software Requirements and Design Processes

L13.	 b1!®b2!,cl!®c2!='(b1!®(b2?Øc2?))®

(b 1! ci! ® (b2? ® c2?))

L13 states that for any processes P and Q, if P produces bi! () b2! and Q
produces ci! ® c2!, then we can derive (bi! () (b2? ® c2?)) ® (bl!® ci!
®(b2?®c2?)).

This rule can be shown by the DFD as follows.

L14. bI!®b2!,c1!®c2!=bl!®(b1!®c1!®(b2?®c2?))

L14 states that for any processes P and Q, if P produces bi! ® b2! and Q
produces ci! ® c2!, then we can derive bi! ® (bi!® ci! ® (b2? ® c2?)).

This rule can be shown by the DFD as follows.

L15. bi! ® b2!, ci! ® c2! = (bl!O ci!) ® (b2? ® c2?) ®

(bi! ® (b2? ® c2?))

L14 states that for any processes P and Q, if P produces bi! ® b2! and Q
produces ci! ® c2!,thenwecanderive(bl!® ci!) ® (b2? ® c2?) ® (bi!
® (b2? ® c2?)).

This rule can be shown by the DFD as follows.

4. Software requirements verdication teclmique 	 90

The Inlegration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

L16. b1!®b2!,c1!Øc2!(b1!®c1!)®(b2?®c2?)®

((bi! ® cl!)® (b2? ® c2?))

L16 states that for any processes P and Q, if P produces bi! ® b2! and Q
produces ci! ® c2!, then we can derive 	 (bl!® ci!) ® (b2? ® c2?) ()
((bi! ® cl!)® (b2? 0 c2?)).
This rule can be shown by the DFD as follows.

L17. a! ® (b! ® c!) <:> (a! ® b!)® c!

Lu states that if a! ® (b! ® c!) can be produced, then (a! ® b!)® c! can
also be produced and vice versa.

L18. a! 0 (b! ® c!)	 (a! ® b!)® c!

L18 states that if a! ® (b! ® c!) can be produced, then (a! ® b!)() c! can
also be produced and vice versa.

L19. a! ® (b! ® c!)	 (a! ® b!)® c!

L19 states that if a! ® (b! ® c!) can be produced, then (a! ® b!)® c! can
also be produced and vice versa.

L20. a?®(b! ®c!)(a?®b!)®c!

L20 states that if a? ® (b! ® c!) can be produced, then (a? ® b!)® c! can
also be produced and vice versa.

4. Software requirements verification technique 	 91

The Integration of Software Specification. Verification, and Testing Techniques with Software Requiremenis and Desi Processes

The proof starts with the input data flows of the parent process. Then nonlogical and
logical rules are applied until the result (the output data flows of the parent process) is
obtained. In other words, given the input data flows of the parent process, we must prove that
its sub-processes produce the same output data flows as the parent process.

- From the libraiy system, we will show how to prove the consistency in process
decomposition of the process 1 "Check_out_copy". The RDFD of the process 1 is shown in
Figure 4-2 and the RDFD of its sub-processes is shown in Figure 4-3.

Figure 4-2: The RDFD of the process 1 "Copy_check_out"

Borrow/© Copy
Check

copy_check
\ out

1.2
Recd

copy_check
h	 Out .4

I Checked_out	 I	 CurrentlyAvailable copies	 I	 I	 I
copies	 i	 i	 checks_out

Figure 4-3: The decomposition of the process 1 RDFD

There are two nonlogical rules (which are defined in the Z specifications in the
schemas "Ri_i_Check_copy_check_out" and "R1_2_Record_copy_check_out") as follows:

NL1	 Copy_check_out? Valid_copy_check_out_check! ® Invalid_copy_check_out!
NL2 Borrower? ® Copy? ® Valid_copy_check_out_check? Valid_copy_check_out!

4. Software requirements verification technique 	 92

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

We must prove that given the input data flow "Copy_check_out?" (which is the input
data flow of the parent process "R1_Check_out_copy), the output data flows
"Valid_copy_check_out! ® Invalid_copy_check_out!" can be produced.

Copy_check_out? Valid_copy_check_out I ® Invalid_copy_check_out!

The proof is shown as follows.

1) Copy_check_out?
2) Valid_copy_check_out_check I ® Invalid_copy_check_out!
3) Borrower? ® Copy?
4) (Borrower? ® Copy?) ®

(Valid_copy_check_out_check! ® Invalid_copy_check_out!)
5) (Borrower? ® Copy? () Valid_copy_check_out_check!) ®

Invalid_copy_check_out!
6) (Borrower? ® Copy? ® Valid_copy_check_out_check?) ®

Invalid_copy_check_out!
7) Valid_copy_check_out! ® Invalid_copy_check_out!

Given input
NL1, 1)
Li, 1)

L2,2),3)

L20, 4)

L3, 5)
NL2,6)

The rules L4 to Li6 above are derived from 13 data flow diagrams which have valid
data interfaces. There are other 5 data flow diagrams which can be drawn to depict all the
combinations of the data interface notations. However, such 5 data flow diagrams are invalid.
This is why there are no logical rules for these 5 invalid data flow diagrams.

The 5 invalid data flow diagrams mentioned above are:

1)

This data flow diagram is invalid because the data flows b2 and c2 must be in
conjunction when they are passed as the input data flows into the process R. If
the process P always produces the output data flow b2 (as shown on the
diagram above, the process P always produces both the output data flows bi
and b2) and the process Q always produces the output data flow c2 (as shown
on the diagram above, the process Q always produces both the output data
flows ci and c2), there will be no case that either one of them will be produced
and then sent as the input data flow into the process R; therefore the data flows
b2 and c2 must be in conjunction when they are sent as the input data flows
into the process R. However, as shown on the diagram above, the data flows
b2 and c2 are in disjunction when they are passed as the input data flows into
the process R, therefore this data flow diagram is invalid.

4. Software requirements verification technique 	 93

The Integration of Software Specification, Veiification, and Testing Techniques with Software Requirements and Design Processes

2)

3)

As already discussed in 1), the data flows b2 and c2 must be in conjunction
when they are passed as the input data flows into the process R. As shown on
the diagram above, the data flows b2 and c2 are in exclusive disjunction when
they are passed as the input data flows into the process R, therefore this data
flow diagram is invalid.

This data flow diagram is invalid becase it contains a case in which no non-
internal output data flow is produced, which is not a correct way of drawing
DFDs. From the diagram above, if the process P produces only the output data
flow b2 and the process Q produces only the output data flow c2, the output
data flow d cannot be produced (according to the diagram above, the output
data flow d is produced if and only if either the input data flow b2 or c2 but
not both flows into the process R). Therefore, in this case no non-internal
output data flow is produced.

4. Software requirements verification technique 	 94

The Inlegration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4)

Similar to 3), if the process P produces only the output data flow b2 and the
process Q produces only the output data flow c2, the output data flow d
cannot be produced.

5)

Similar to 3), if the process P produces only the output data flow b2 and the
process Q produces only the output data flow c2, the output data flow d
cannot be produced.

4.5.4 Inconsistency between the outputs specified in the interface
specification and the outputs specified in the process
specification

In each bottom level operation schema (the schema which defines the bottom level process on
the RDFD), the outputs specified in the interface specification must be consistent with the
detailed specifications defined in that schema. Therefore, fonnâl proofs should be applied in
order to detect this error.

For example, from the library system, the schema "Rl_l_l_Checkjequestor" is given
as follow.

4. Software requirements verification technique 	 95

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Ri_i_l_Check_requestor

Ri_i_Check_copy_check_out (Requestor?, Valid_requestor!, Invalid_requestor!)
Libraiy_state (E Stall)

Requestor? Valid_requestor! ® Invalid_requestor!
(Requestor? Staff A Valid_requestor! = True)

V (Requestor? Staff A Invalid_requestor! = Copy_check_out_invalid_requestor)

The interface specification is

Requestor? Valid_requestor! ® Invalid_requestor!

and the detailed operations are

(Requestor? E Staff A Valid_requestor! = True)
V (Requestor? Staff A Invalid_requestor! = Copy_check_out_invalid_requestor)

Therefore we must prove that either "Valid_requestori" or "invalid_requestor" but not
both of them is produced as the output. In fact, the values of the outputs are unimportant for
this type of proof - it is only whether or not they are produced that matters. This means that
control flows, such as "Valid_requestor!", and data flows, such as "Invalid_requestor!", can be
treated uniformly.

From the specifications given above, this can be proved correct. In order to prove this,
first the precondition of each output is calculated. Then from the preconditions, the proof can
be shown.

The precondition of the output "Valid_requestor!" is

Requestor? € Staff

The precondition of the output "Invalid_requestor!" is

Requestor? E Staff

Since these two predicates cannot be both true at the same time, it confirms that only
one of the two outputs is produced but not both.

However, if the detailed operations are defined as

Requestor? E Staff
Valid_requestor! = True
Invalid_requestor! = Copy_check_out_invalid_requestor

In this case, the two outputs have the same precondition which is

Requestor? E Staff

Therefore, both outputs are produced which contradicts with the interface
specification. So, the two specifications are inconsistent.

4. Software requirements verification technique 	 96

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4.5.5 Inconsistency between the process and the critical requirements

The critical requirements of a system are requirements that must hold throughout the system
time and the processes defmed must not effect the validation of the critical requirements. In
other words, the critical requirements must always be valid regardless of all the operations
performed.

However, the operation specifications defined in the operation schemas may not be
consistent with the critical requirements defined. Therefore, this kind of inconsistency must be
detected.

It is shown in section 4.5.1 how the critical requirements can be extracted from the
state schemas. For example, from the library system, the critical requirements are:

<Borrowers, Staff> partition Users
<Checked_out_copies, Available_copies> partition Library_copies
dom writes = Library_book_authors
ran writes Library_books
dom Is_a_subject_of = Library_book_subjects
ran Is_a_subject_of = Library_books
dom Is_a_copy_of = Library_copies
ran Is_a_copy_of= Library_books
Vc : Library_copies • # Is_a_copy_of (I {c} I) = 1
dom Currently_checks_out ç Borrowers
ran Currently_checks_out = Checked_out_copies
Vc : Checked_out_copies • # Currently_checks_out -1 c} I) = 1
Max_copy> 0
Vb : dom Currently_checks_out • # Currently_checks_out (I {b} I) s Max_copy

For every operation schema that causes some changes on the state space of the system,
it must be proved that the after state of the state space is consistent with the critical
requirements.

For example, from the library system the schema "R1_2_Record_copy_check_out"
causes some changes on the state space of the system as defined in that schema as follows.

Available_copies' = Available_copies \ {Copy?}
Checked_out_copies ' = Checked_out_copies U {Copy'?}
Currently_checks_out ' = Currently_checks_out U {Borrower? i- Copy?}

Therefore, the proofs are required to show that these operations preserve the critical
requirements.

The operations above may effect the following critical requirements:

<Checked_out_copies, Available_copies> partition Library_copies
dom Currently_checks_out ç Borrowers
ran Currently_checks_out = Checked_out_copies
Vc: Checked_out_copies • # Currently_checks_out -1 (I {c} I) = 1
Vb: dom Currently_checks_out • # Currently_checks_out (I {b} I) ^ Max_copy

Therefore, fonnal proofs are required to show that the operations do not cause any
inconsistency in the critical requirements.

For example, we must prove that

4. Software requirements verification technique 	 97

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

<Checked_out_copies', Available_copies'> partition Library_copies'

or in fact we must prove that

Checked_out_copies' n Available_copies' = 0

The proofs can be shown as follows.

1.Checked_out_copies' r Available_copies'
2. (Available_copies \ {Copy?}) n (Checked_out_copies U {Copy?})
3. Available_copies n Checked_out_copies
4.0

4. Software requirements verification technique 	 98

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Chapter 5	 Software design specification technique

5.1 Overview

This chapter presents a technique for specifying software design. The proposed software design
specification technique uses the same specification languages as the proposed software
requirements specification technique described in chapter 3.

Section 5.2 gives an overview of the proposed software design specification technique.
First, it discusses two sorts of design decisions usually taken when a software design
specification is developed from a software requirements specification: data refinement (data
design) and process refinement (process design). Then, the steps of the proposed SDS
technique are given. Section 5.3 describes how to draw DERDs and DDSDs to define the static
aspects of the system as designed by the designers. Section 5.4 describes how to draw DDFDs
and DDSDs to define the dynamic aspects of the system as designed by the designers. Finally,
section 5.5 describes how to write DZs to define formally both the static and dynamic aspects
of the system designed.

5.2 Overview of the proposed SDS technique

5.2.1 From requirements to designs

In an SRS, a software system is specified by describing what the software will do to achieve
the end-users' requirements without describing any design decision. The main objective of an
SRS is to specify a complete definition of the necessaly capabilities of the system from the end-
users' point of view. It specifies the data and processes to be supported by the system from the
end-users' perspective. In an SRS, the data are specified using abstract data types and
processes are specified with an aim to convey end-users' requirements not designs. The abstract
data types are used because of their expressive clarity rather than their ability to be directly
represented in a computer. At this stage, we shall not use concrete data types (data types which
can be directly represented in a computer); or in other words we shall not consider how the data
will be efficiently represented in a computer, this will be dealt with later on in the design stage.
Similarly, the required processes are specified with an aim to convey the required operations of
a system; what sort of processes will result in the most efficient system is not yet brought into
our attention at this stage.

In an SDS, the software system is specified by describing how the software will do in
order to satisfy the requirements stated in the SRS. The main objective of an SDS is to record
the result of the design processes (data refinement and process refinement) or in other words to
record the transformation of the abstract data structures and required processes specified in the
SRS into a set of concrete data structures and designed processes.

To develop an SDS from an SRS, two sorts of design decisions are usually taken: data
refinement (data design) and process refinement (process design) [2, 48, 86]. For a simple
system, it is possible that the refinement of an SRS to a final SDS can be done in one step,

5. Software design specification technique 	 99

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

which is called direct refinement [861. For a complex system, it is likely that the refmement of
an SRS to a final SDS must be done in more than one step, which is called deferred refinement
[861, to allow the design decisions to be recorded, clearly, step by step.

5.2.2 Steps of the proposed SDS technique

The proposed software design specification technique, which will be described in this chapter,
is similar to the proposed software requirements specification technique described in chapter 3.
The same specification languages are used in both an SRS and SDS. Therefore, the steps for
producing an SDS is quite similar to those of an SRS.

It is more suitable, if it is possible, to use the same specification languages to describe
both an SRS and SDS. This is because an SDS can be viewed as a refinement of an SRS and
by using the same specification languages it is more convenient in producing an SDS and also
it is easier to reason about the relationships between the SRS and the corresponding SDS.
However, to be able to use the same specification languages, the specification languages being
used must have the ability to record both requirements and designs; otherwise it would not be
possible.

As mentioned earlier the proposed SDS technique uses the same four specification
languages as the proposed SRS technique. The four specification languages are: ERDs, DFDs,
DSDs, and Z. In both an SRS and SDS, a system is specified in tenns of the static and
dynamic aspects of that system. As already shown in chapter 3, the static aspects of a system
are specified graphically by using ERDs and DSDs, and formally by using Z specifications; the
dynamic aspects of a system are specified graphically by using DFDs and DSDs, and formally
by using Z specifications. As mentioned in section 2.6, we call the ERDs, DFDs, DSDs, and Z
specifications which are produced to specify software designs the DERDs, DDFDs, DDSDs,
and DZs accordingly.

The steps of the proposed SRS and SDS technique are veiy similar. The proposed
SDS technique is applied using the following steps:

1) Draw DERDs and DDSDs
1.1) Identify all entities and their relationships
1.2) Draw DERDs
1.3) Draw DDSDs

2) Draw DDFDs and DDSDs
2.1) Draw the context DDFD and DDSDs

2.1.1) Identify all external entities and input and output data flows

2.1.2) Draw the context DDFD

2.1.3) Identify the data components of each input and output data
flow

2.1.4) Draw DDSDs
2.2) Draw the next level DDFDs and DDSDs

2.2.1) Identify sub-processes

2.2.2) Identify input and output data flows of each sub-process

2.3.3) Draw the next level DDFDs

2.2.4) Identify the data components of each new internal data flow

2.3.5) Draw DDSDs

5. Software design specification technique	 100

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

3) Write DZs
3.1) Define the state of the system
3.2) Define the initial state of the system
3.3) Define the operations of the system

In the following sections, each step given above will be demonstrated, and the SRS of
the library system as produced in chapter 3 will be used to show how an SDS can be developed
from the SRS. To keep the example system simple, only the data refinement (data design)
process is done to refine the SRS into the SDS; the processes of the required system are not
directly refined. However, in real practice the processes of the required system may also be
refined (designed).

5.3 Step 1: draw DERDs and DDSDs

5.3.1 Step 1.1: identify all entities and their relationships

During the data design process, the concrete data types are selected to implement the abstract
data types in the SRS. For example, the concrete data type "array" may be selected to
implement the abstract data type "set". In general, it is possible that an abstract data type can
be implemented by various concrete data types. It is the task of the designers to analyze and,
then, make the decision. Such a task is beyond the scope of this thesis.

Relational data analysis or normalization is one of the most widely used data design
techniques and several modern system development methodologies use this technique [2]. The
proposed SDS technique is developed specifically to support this technique.

Relational data analysis or normalization is a fonnal method of converting data
structures into a set of well-designed relations [63]. The relations derived from applying the
relational data analysis technique will be depicted on DERDs.

Concerning the library system, let us assume that the designers have made the design
decisions about the entities and relationships of the system as follows:

1) The abstract entity "Users" in the SRS will not be implemented, however the
abstract entities "Borrowers" and "Staff' will be implemented by two concrete
entities (relations/databases) "D_borrowers" and "D_staff'. The data type of the
concrete entity "D_borrowers" is "P D_BORROWER". The data type
"D_BORROWER" has 3 attributes: "Did" whose type is "D_PERSON_ID;
"D_name" whose type is "D_NAME"; "D_reg_dt" whose type is "D_DATE". The
primary key of this concrete entity is "Did". The data type of the concrete entity
"D_staff' is "P D_STAFF". The data type "D_STAFF" has 3 attributes: "D_id"
whose type is "D_PERSON_ID"; "D_name" whose type is "D_NAME";
"D_salary" whose type is "N". The primary key of this concrete entity is "D_id".

2) The abstract entity "Library_book_authors" will be implemented by the concrete
entity "D_library_book_authors". The data type of the concrete entity
"D_library_book_authors" is "P D_AUTHOR". The data type "D_AUTHOR" has
2 attributes: "D_id" whose type is "D_AUTHOR_ID"; "D_name" whose type is
"D_AUTHOR_NAME". The primary key of this concrete entity is "D_id".

3) The abstract entity "Library_book_subjects" will be implemented by the concrete
entity "Djibrary_book_subjects". The data type of the concrete entity
"D_library_book_subjects" is "P D_SUBJECT". The data type "D_SUBJECT"
has 2 attributes: "D_id" whose type is "D_SUBJECT_ID"; "D_name" whose type
is "D_SUBJECT_NAME". The primary key of this concrete entity is "D_id".

5. Software design specification technique 	 101

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4) The abstract entity "Library_books" will be implemented by the concrete entity
"D_library_books". The data type of the concrete entity "D_libraiy_books" is "D
D_BOOK". The data type "D_BOOK" has 4 attributes: "D_id" whose type is
"D_BOOK_ID"; "D_isbn" whose type is "D_ISBN"; "D_issn" whose type is
"D_ISSN"; "D_title" whose type is "D_TITLE". The attributes "D_isbn" and
"D_issn" are in exclusive disjunction which means that only one of them will exist
but not both. The primary key of this concrete entity is "D_id".

5) The abstract entities "Checked_out_copies" and "Available_copies" will not be
directly implemented, but the abstract entity "Libraiy_copies° will be implemented
by the concrete entity "D library copies". The data type of the concrete entity
"D_libraiy_copies" is "O D_COPY". The data type "D_COPY" has 2 attributes:
"D_id" whose type is "D_COPY_ID"; "D_status" whose type is 'D_STATUS".
The primary key of this concrete entity is "D_id".

6) The abstract relationship "Writes" will be implemented by the concrete relationship
(will be implemented as a relation) "D_writes". The concrete relationship
"D_writes" has 2 attributes: the first attribute whose type is "D_AUTHOR_ID";
the second attribute whose type is "D_BOOK_ID".

7) The abstract relationship "Is_a_subject_of' will be implemented by the concrete
relationship "D_is_a_subject_of'. The concrete relationship "D_is_a_subject_of'
has 2 attributes: the first attribute whose type is "D_SUBJECT_ID"; the secomi
attribute whose type is "D_BOOK_ID".

8) The abstract relationship "Is_a_copy_of" will not be implemented by a relation, but
it will be implemented by including primary keys of the relation "D_library_books"
in the concrete entity "D_library_copies".

9) The abstract relationship "Currently_checks_out" will be implemented by the
concrete relationship "D_currently_checks_out". The concrete relationship
"D_currently_checks_out" has 2 attributes: the first attribute whose type is
"D_PERSON_ID"; the second attribute whose type is "D_COPY_ID".

5.3.2 Step 1.2: draw DERDs

Next, DERDs are drawn to capture the entities and relationships as designed in the previous
step. The DERDs are drawn by following the notations given in section 2.2.1.

The DERD of the library system is drawn as shown in Figure 5-1.

5. Software design specification technique 	 102

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

0Jibrary_bk
	

DJibrary_book
authors	 subjects

P 0_AUTHOR
	

P D_SUBJECT

0borrors

P D_BORROWER

0 us id ci author

0_staff	 D_I5,nay_book

	

I	 authords

	

P D_STJ	 P D_AUTHORJO

7D

D_is_ki_ct_subject

Djibraiy_bnak
subject_ida

P 0_9JBJECTJD

0_us_a_subject_cf _

D id ci baTanr

D_borroer_ids

P D_PERSONJD

D_crry_theidcs_ou

0_us_id_ct_staff

0 staffjds

P 0_PERSONJD

D Al d bccdr

D_Ilbnay_book_ids	 Djlbrwy_boolus

P 0_SOOKJD	 P D_BOOK

D_us_a_copy_c*

D_hbnay_copy_ids D_is_id_&_copy	 0_tbrary_mpues

•4
P D_COPYJD	 I P D_COF'

Figure 5-1: The DERD of the library system

5.3.3 Step 1.3: draw DDSDs

Then a DDSD is drawn to show the attributes of each data type as designed in step 1.1.

The DDSDs of the data types as designed in step 1.1 are shown in Figures 5-2 to 5-7.

D_BORROWER

Did
	 0_name	 D_reg_dt

D_PERSONJD
	

0_NAME	 D_I)ATE

Figure 5-2: The DDSD of the data type "D_BORROWER"

5. Software design specification technique 	 103

The Integration of Software Specification. Verification, and Testing Techniques with Software Requirements and Design Processes

D_STNF

D_sJ	 I	 Qname I	 I
Dsay

QPERSONJD!	 D_MME

Figure 5-3: The DDSD of the data type "D_STAFF"

Figure 5-4: The DDSD of the data type "D_AUTHOR"

Figure 5-5: The DDSD of the data type "D_SUBJECT"

. Soltwarc	 104

The integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

D_BOOK

D_id	 I	 I	 DJsbn	 I	 Djssn	 I	 DJitte

D_BOOKJD I	 I DJSBN I	 I DJSSN I	 I D_11TLE

Figure 5-6: The DDSD of the data type "D_BOOK"

0—copy

D_td	 0_statu.

D_COPYJD	 D_STATUS

Figure 5-7: The DDSD of the data type "D_BORROWER"

5.4 Step 2: draw DDFDs and DDSDs

5.4.1 Step 2.1: draw the context DDFD and DDSDs

5.4.1.1 Step 2.1.1: identify all external entities and input and output data flows

In this step, some input and output data flows as shown on the RDFDs may be implemented by
the concrete data flows. However, some input and output data flows on the RDFDs may
remain the same since the designers have decided that it is not necessary to refine them.

Concerning the library system, for example, the input data flow "Copy_check_out" on
the RDFDs will be implemented by the concrete data flow "D_copy_check_out". However, the
output data flow "Valid_copy_check_out" on the RDFDs is not refined, therefore the same
name is used.

5.4.1.2 Step 2.1.2: draw the context DDFD

Then, the context DDFD of the system is drawn.

The context DDFD of the library system is shown in Figure 5-8.

5. Software design specification technique 	 105

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

0_copy_add,
ID_copy_check_out,	 D_copy_remo,

0_copy_return,	 0_by_author_enquiry,
D_by_author_enquny,	 0_by_subject_enquiry.
D_by_subject_enguiry,	 0_by_borrower_enquiry.
D_by_bormwer_enquiry 	 0_last_borrower_enquiry

Vabd_copy_check_out ® Invalid_copy_check_out.
Valid_copy_return ® lmelid_copy_retum,

D_list_oLbooks_by_author ® IãaIid_by_author_enqu1ry,
D_Ust_oI_books_by_subject ® lnIid_by_subjecl_enquiry,

Djsocopies_by_bomwer ® lrnehd_by_borrow&_enquuy

Valid_copy_add ® lnlid_coçiy_add,

VaId_ccpy_revrx'ie Imntid_cop,_rernore

D_list_ot_bos_by_author ® 'nvâjry_aorenquiry.
0_list_ct_books_by_subject ® Imalid_by_subject_enquiry.

Djist_ot_copies_by_borrower ® lnlid_by_borro_enquuy,

D_kst_borrover_ln10 ® lnvalidJast_bomw.'er_enqurry

Figure 5-8: The context DDFD of the library system

5.4.1.3 Step 2.1.3: identify the data components of each input and output data
flow

Next, the data components of each input and output data flow must be identified as well as the
interfaces of those data components. Then each data component is assigned a data type.

Concerning the library system, for example, the input data flow °D_copy_çheck_out"
is defined as having three attributes: 'D,_requestor_id", D_borrower_idu, and "D_copy_id".
Then the data type is assigned to each attribute.

The data components of other input and output data flows can be identified in a similar
way.

5.4.1.4 Step 2.1.4: draw DDSDs

Next, a DDSD is drawn to depict the data structure of each data flow.

The DDSD of the input data flow 1)_copy_check_out" is shown in Figure 5-9. The
DDSDs of other input and output data flows can be drawn in a similar way.

S. Software design specthcation technique	 106

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

D_copy
check_out

D_requeator_Id	 0_borrower_id	 (C_copy_id

0_PERSONJO I I 0_PERSONJO I I D_COPYJD

Figure 5-9: The DDSD of the data flow D_,copy_check_out

5.4.2 Step 2.2: draw the next level DDFDs and DDSDs

Steps 2.2.1 to 2.2.5 are repeated for each next level DDFD and DDSDs.

5.4.2.1 Step 2.2.1: identify sub-processes

Since only data refinement is considered, sub-processes of the DDFDs are the same as the
RDFDs.

5.4.2.2 Step 2.2.2: identify input and output data flows of each sub-process

The input and output data flows of each sub-process on the DDFDs are the same as the
RDFDs, except that the abstract data flows are replaced by the concrete data flows and the
abstract entities are replaced by the concrete entities.

5.4.2.3 Step 2.2.3: draw the next level DDFD

Then, the next level DDFD is drawn.

Fig 5-10 shows the decomposition of the process 0 "Library" into five sub-processes.

. Software design specification technique 	 107

The Integration of Software Specification, Verification, and Testing Techniques with Software Requiremenis and Design Processes

Check_o
copy

Inva

3

Add
copy

Valid_copy_add ®
lrwabd_càpy.add

copy
D_c - ov

Vad_copy remove
IrYvad_co y_remove

D_by_aI.thor_erPLirY,

Enqisry
O_lastjorrower_enqury

DJist_of_books_by_au.thor ® Inlid_by_a1r_enqtIry,
D_tet_oLbooks_by_sLtject ® lrwalid_by_secenqury,

DJlst_ocoprns_by_borrower ® Irwalid_by_borrower_enqLlry,
D_iasLbonower_E,lo ® lrwalid_last_borrower_enqiry

Figure 5-10: The decomposition of the process 0 DDFD

5.4.2.4 Step 2.2.4: identify the data components of each new internal data flow

The data components of each new internal data flow are identified.

5.4.2.5 Step 2.2.5: draw DDSDs

Then, DDSDs of the new internal data flows are drawn.

Steps 2.2.1 to 2.2.5 are repeated until the details desired are obtained.

The DDFDs and DDSDs of the process 1 "Check_out_copy" is shown as follows. The
DDFDs and DDSDs of other processes can be derived in a similar way.

A. Check out a copy of a book

Figure 5-11 shows the decomposition of the process 1 "Check_out_copy".

5. Software design specification technique 	 108

Check
rrcwer

borrower J	 X	 Check
mac_copy

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

D\

7 1.1 \ /1Cck\D_borraw/® D_copy_id

copy_check

Vaid_c4,vcheck_ou

f 1.2 "
Reccwd

copy_check
at .4

D_currertty
DJ8_ki_c(_copy	 Djibary_copes

Figure 5-11 The decomposition of the process 1 DDFD

Figure 5-12 shows the decomposition of the process 1.1 DDFD.

D_currentty
checks_out

Figure 5-12: The decomposition of process 1.1 DDFD

5. Software design specification technique	 109

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

5.5 Step 3: write DZs

5.5.1 Step 3.1: define the state of the system

From the DERDs and DDSDs drawn in the previous steps, if the data type has data
components (as shown on the DDSD), that data type will be defined as a schema type in Z;
otherwise it may be defmed either as a basic type or free type.

Concerning the library system, the following basic data types are defined.

[D PERSON ID, D_NAIvIE, D_DATE, D_AUTHOR_ID, D_AUTHOR_NAME,
D_SUBJECT_ID, D_SUBJECT_NAME, D_BOOK_ID, D ISBN, D ISSN, D_TITLE,
D_COPY_JDI

There is one free type defined as follow.

D_STATUS Available Checked_out

There are six schema types defined as follows.

BORROWER

D_id : D_PERSON_ID ®
D_name : D_NAME ®
Dregdt D_DATE

D_STAFF

Did : D_PERSON_ID ®
Dnaine : D NAME ®
D_salary: N

P AUThOR

Did : D_AUTHOR_ID ®
D_name D_AUTHOR_NAME

P SUBJECT

D_id : D_SUBJECT_ID ®
D_naine D_SUBJECT_NAME

P BOOK

Did : D_BOOK_ID ®
(D_isbn : D_ISBN ®
Dissn : D_ISSN) ®
D_title : D_TITLE

D_COPY_________

D_id : D_COPY_ID ®
Dstatus : D_STATUS

Then, the state of the system is defined.

The state of the library system can be defined in Z as follows.

5. Software design specification technique	 110

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

_person_state

Dborrowers: IF D_BORROWER
D_borrower_ids: P D_PERSON_ID
D_staff: P D_STAFF
D_staff_ids: IF DPERSONID
D_is_id_of_borrower: D_borrower_ids .-<->. D_borrowers
D_is_id_of_staff: D_staff_idss< >-. D_staff

V Borrower_id : D_borrower_ids.
Borrower_id = (D_is_id_of_borrower (Borrower_id)).D_id

V Staff_id : D_staff_ids.
Staff_id = (D_is_id_of_staff (Staff_id)).D_id

disjoint (D_borrower_ids, D_staff_ids)

The concrete entities "D_borrowers" and "D_staff' are defined. The relationship
"1)_is_id_of_borrower" allows each instance of the entity "D_borrowers" to be retrieved by the
attribute "D_id". Similarly, the relationship "D_is_id_of_staff' allows each instance of the
entity "1)_borrowers" to be retrieved by the attribute "D_id".

_author_state

D_library_book_authors: P 1)_AUTHOR
D_libraiy_book_author_ids: P D_AUTHOR_ID
D_is_id_of_author: D_library_book_author_ids ._- e D_libraiy_book_authors

V Author_id: D_library_book_author_ids.
Author_id = (1)_is_id_of_author (Author_id)).D_id

_subject_state•

1)_library_book_subjects: IF D_SUBJECT
D_library_book_subject_ids: P 1)_SUBJECT_ID
1)_is_id_of_subject : D_library_book_subject_ids .z >. 1)_library_book_subjects

V Subject_id : D_library_book_subject_ids.
Subject_id = (1)_is_id_of_subject (Subject_id)).D_id

book state

D_library_books: P D_BOOK
D_libraiy_book_ids: P 1)_BOOK_ID
D_is_id_of_book: D_libraiy_book_ids sr u D_library_books

V Book_id : D_library_book_ids.
Book_id = (D_is_id_of_book (Book_id)).D_id

5. Software design specification technique	 111

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

•D_copy_state

D_library_copies: P D_COPY
D_library_copy_ids: P D_COPY_ID
D_is_id_of_copy: D_library_copy_ids sz s D_library_copies

V Copy_id : D_library_copy_ids.
Copy_id = (D_is_id_of_copy (Copy_id)).D_id

Then we write a schema to define the total state of the system.

•D_libraiy_state

D_person_state
D_author_state
D_subject_state
D_book_state
D_copy_state
D_writes : D_libraiy_book_author_ids.r< >>. D_library_book_ids
D_is_a_subject_of: D_library_book_subject_ids.rtz >>e D_libraiy_book_ids
D_is_a_copy_of: D_library_copy_ids 'zr . D_library_book_ids
D_currently_checks_out : D_borrower_ids p 'z)) o Djibrary_copyjds
Max_copy: N1

V Copy_id: ran D_currently_checks_out.
(D_is_id_of_copy (Copy_id)).D_status = Checked_out

V Borrower_id: dom D_currently_checks_out.
D_currently_checks_out (j {Borrower_id} J) ^ Max_copy

5.5.2 Step 3.2: define the initial state of the system

The initial state of the system can be defined as follows.

•D_init_library_state

D_libraiy_state

D_borrowers 0
D_borrower_ids = 0
D_staff 0
D_staffids =0
D_libraiy_book_authors 0
D_library_book_author_ids =0
D_library_book_subjects =0
D_library_book_subject_ids = 0
DJibrarybooks =0
D_library_book_ids =0
D_libraiy_copies = 0
D_library_copy_ids = 0
D_is_id_of_borrower =0
D is id of staff=0
D_is_id_of_author = 0

5. Software design specification technique	 112

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

D_is_id_of_subject = 0
fl_is_id_of_book =0
D_is_id_of_copy = 0
D_writes =0
fl_is_a_subject_of = 0
fl_is_a_copy_of = 0
D_currently_checks_out =0
Max copy = 10

5.5.3 Step 3.3: define the operafions of the system

Then, each process in the DDFDs will be translated into a schema in Z.

There is no refinement for the data type "MSG".

Then, the process 0 DDFD is translated into a schema as follows.

Library

fl_copy_check_out?: (D_requestor_id : D_PERSON_J]) ®
D_borrower_id : D_PERSON_ID ® D_copy_id : D_COPY_ID)

fl_copy_return?: (D_requestor_id : D_PERSON_ID ® D_copy_id : D_COPY_JD)
D_copy_add?: (D_requestor_id : D_PERSON_ID ® D_copy_id : D_COPY_II) ()

fl_Book: D BOOK () (D authors: P D_AUThORJ ()
[fl_subjects: P D_SUBJECTJ)

fl_copy_remove?: (D_requestor_id : D_PERSON_ID ®
D_copy_id : fl_COPY_ID)

D_by_author_enquuy?: (D_requestor_id : D_PERSON_D ®
D_auhtor_id : D_AUTHOR_ID)

D_by_subject_enquiiy?: (D_requestor_id : fl_PERSON_ID ®
D_subjectid : D_SUBJECT_ID)

D_by_borrower_enquny?: (D_requestorjd : fl_PERSON_ID ®
fl_borrower_id : D_PERSON_ID)

fi_last_borrower_enquny? : (D_requestor_id : fl_PERSON_ID ®
D_copyid : D_COPY_ID)

Valid_copy_check_out I : MSG
Invalid_copy_check_out! : (Invalid_requestor: MSG ®

(Invalid_borrower: MSG (J Over_limit : MSG) ® Invalid_copy: MSG)
Valid_copy_return! : MSG
Invalid_copy_return! : (Invalid_requestor : MSG ® Invalid_copy : MSG)
Valid_copy_add! : MSG
Invalid_Copy_add! : (Invalid_requestor : MSG ® Invalid_copy : MSG)
Valid_copy_remove! : MSG
Invalid_coPy_remove! : (Invalid_requestor: MSG ® Invalid_copy : MSG)
D_list_of_bOoks_by_author!: P D_BOOK
Invalid_by_author_enquiiy! : (Invalid_requestor : MSG ® Invalid_author : MSG)
fl_list_of_books_by_subject! : P fl_BOOK
Invalid_by_subject_enquiiy! : (Invalid_requestor: MSG ® Invalid_subject : MSG)
fl_list_of_copies_by_borrower! : P fl_COPY_ID
Invalid_by_borrower_enquiiy! : ((Invalid_user: MSG ®

Unauthonzed_requestor: MSG) ® Invalid_borrower : MSG)
D last borrower info! : D_PERSON
Invalid_last_borrower_enquiry! : (Invalid_requestor : MSG 0

Invalid_copy : MSG)
<= Borrowers_ext (fl_copy_check_out?, D_copy_return?,

fl_by_author_enquiry?, fl_by_subject_enquiry?,
fl_by_borrower_enquiry?,

5. Software design specification technique	 113

The Inlegration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Valid_copy. check_out!, Invalid_copy_check_out!,
Valid_copy_return!, Invalid_copy_return!,
Djist_of_bOoks_by_author!, Invalid_by_author_enquny!,
D_list_Of_bOoks_by_subjeCt!, Invalid_by_subject_enquiiy!,
D_list_Of_COpies_by_borrower!, Invalid_by_borrower_enquiry!)

Staff_ext (D_copyadd?, D_copy_remove?,
D_by_author_enquiry?, D_by_subject_enquny?,
D_by_borrower_enquiry?, D_last_borrower_enquiry?,
Valid copy_add!, Invalid_copy_add!,
Valid_copy_remove!, Invalid_copy_remove!,
D_list_of_books_by_author!, Invalid_by_author_enquiry!,
D_list_of_books_by_subject!, Invalid_by_subject_enquiry!,
D_list_of_copies_by_borrower!, Invalid by borrower enquiry',
D_last_borrower_info!, Invalid_last_borrower_enquiry!)

D_copy_Check_out?, D_copy_return?, D_copy_add?, D_copy_remove?,
D_by_authOr_enquiry?, D_by_subject_enquizy?, D_by_borrower_enquiry?,
D_last_borrower_enquny?

Valid_copy_check_out! ®Invalid_copy_check_out!,
Valid_copy_return! ® Invalid_copy_return!,
Valid_copy_add! ® Invalid_copy_add!,
Valid_copy_remove! ® Invalid_copy_remove!,
D_list_of books_by_author! ® Invalid_by_author_enquiry!,
D_list_of_books_by_subject! ® Invalid_by_subject_enquiry!,
D_list_of_copis_by_borrower! ® Invalid_by_borrower_enquuy!,
D_last_borrower_info!	 Invalid_last_borrower_enquiry!

Next, the processes 1 to 5 along with the related DDSDs can be translated into Z
specifications as follows.

P 1_Check_out_copy

1] DO_Library (D_copy_check_out?, Valid_copy_check_out!,
Invalid_copy_check_outt)

D_copy_check_out? Valid_copy_check_out! ® Invalid_copy_check_out!

p2_Return_copy

DO_Library (D_copy_return?, Valid_copy_return!, Invalid_copy_return!)

D_copy_return? Valid_copy_return! ® Invalid_copy_return!

D3_Add_copy

DO_Library (D_copy_add?, Valid_copy_add!, Invalid_copy_add!)

D_copy_add? Valid_copy_add! ® Invalid_copy_add!

5. Software design specification technique 	 114

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

_Remove_copy

DO_Library (D_copy_remove?, Valid_copy_remove!, Invalid_copy_remove!)

D_copy_remove? Valid_copy_remove! ® Invalid_copy_remove!

D5Enquiry

DO_Library (D_by_author_enquny?, D_by_subject_enquiiy?,
D_by_borrower_enquny?, D_last_borrower_enquiiy?,
D_list_of_books_by_author!, Invalid_by_author_enquiry!,
D_list_of_books_by_subject!, Invalid_by_subject_enquiry1,
D_list_of_copies_by_borrower!, Invalid_by_borrower_enquiry!,
DJast_borrower_info!, Invalid_last_borrower_enquiry!)

D_by_author_enquizy?, D_by_subject_enquuy?, D_by_borrower_enquiiy,
D_last_borrower_enquixy?
D_list_of_books_by_author! ® Invalid_by_author_enquiry!,
D_list_of_books_by_subject! ® Invalid_by_subject_enquiry!,
D_list_of_copies_by_borrowerl ® Invalid_by_borrower_enquiry!,
D_last_borrower_info! ® Invalid_last_borrower_enquiry!

Next, the processes 1.1 and 1.2 and all sub-processes of the process 1.1 can be
translated into Z specifications as follows.

1_1_Check_copy_check_

D 1_Check_out_copy (D_copy_check_out?, Invalid_copy_check_out!)
Valid_copy_check_out_check! : (Valid_requestor: III ® Within_limit: Ill ®

Valid_copy:

D_copy_check_out? Valid_copy_check_out_check! ®
Invalid_copy_check_out!

D 1_2_Record_copy_check_out

DI_Check_out_copy (D_borrower_id?, D_copy_id?, Valid_copy_check_out!)
> D 1_i_Check_copy_check_out (Valid_copy_check_out_check?)

Library_state (i D_is_id_of_copy, D_libraiy_copies, D_currently_checks_out)

D_borrower_id? ® D_copy_id? (5) Valid_copy_check_out_check?
Valid_copy_check_out!

D_is_id_of_copy' = D_is_id_of_copy
{D_copy_id? i—* <D_copy_id?, Checked_out >}

D_libraiy_copies I = D_library_copies \ {D_is_a_copy_of (D_copy_id?)} U
{<D_copy_id?, Checked_out>)

D_currently _checks_out ' = D_currently_checks_out U

{D_borrower_id? i.— D_copy_id?}
Valid_copy_check_out! Copy_check_out_ok

5. Software design specification technique 	 115

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

p 1_1_1_Check_requestor

D I_i_Check_copy_check_out (D_requestor_id?, Valid_requestorl,
Invalid_requestor!)

D_library_state (D_is_id_of_staff)

D_requestor_id? Valid_requestor! ® Invalid_requestor!
(D_requestor_id? e dom D_lsJd_of_staff A Valid_requestor! True)

V (D_requestor_id? dom D_is_id_of_staff A
Invalid requestor! = Copy_check_out_invalid_requestor)

D 1_1_2_Check_borrower

D 1_i_Check_copy_check_out (1)_borrower_id?, Invalid_borrower!)
D_library_state (1)_is_id_of_borrower)
Valid_borrower_copy_check_out!: Ill

D_borrower_id? Valid_borrower_copy_check_out! ® Invalid borrower!
(D_borrower_id? E dom 1)_is_id_of_borrower A

Valid_borrower_copy_check_out! = True)
V (1)_borrower_id? dom D_is_id_of_borrower A

Invalid_borrower! = Copy_check_out_invalid_borrower)

P i_i_3_Check_niax_copy

D 1_I_Check_copy_check_out (1)_borrower_id?, Within_limit!, Over_limit!)
D 1_1_2_Check_borrower (Valid_borrower_copy_check_out?)

D_libraiy_state (1)_currently_checks_out, Max_copy)

D_borrower_id? ® Valid_borrower_copy_check_out?
Within_limit! ® Over_limit!

((# 1)_currently_checks_out (I {D_borrower_id?} I) < Max_copy) A
Within_limit! = True)

V ((# D_currently_checks_out (I {D_borrower_id?} I) ^ Max_copy) A
Over_limit! = Copy_check_out_over_limit)

i_i_4_Check_copy

1 D 1_i_Check_copy_check_out (D_copy_id?, Valid_copy!, Invalid_copy!)
D_libraiy_state (1)_is_id_of_copy)

D_copy_id? Valid_copy! ® Invalid_copy!
(((1)_is_id_of_copy (D_copy_id?)).D_status = Available) A (Valid_copy! = True))

V (((D_is_id_of_copy (D_copy_id?)).D_status Available) A
(Invalid_copy! = Copy_check_out_invalid_copy))

5. Software design specification technique	 116

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Chapter 6	 Software design verification technique

6.1 Overview

This chapter presents a technique for verifying software design specifications. The software
design specification produced must be verified (informally and formally proved) against both
the designers' design decisions and software requirements specification, and also it must be
verified that it is internally consistent.

Section 6.2 gives the overview of the proposed software design verification technique.
Section 6.3 describes how to write a schema to define the relationships between the abstract
state space and the concrete state space. Section 6.4 demonstrates how to formally prove that
the initial concrete state satisfies the initial abstract state. Finally, section 6.5 describes how to
formally prove that the concrete operations implement the abstract operations.

6.2 Overview of the proposed software design verification
technique

Software design verification is the process of evaluating that the software design specification
satisfies the software requirements specification. The proposed software design specification
technique, which will be described in the present chapter, is similar to the proposed software
requirements specification technique already described in chapter 4. The verification technique
for proving the consistency within an SRS, which is described in chapter 4, can also be applied
for proving the consistency within the SDS. Therefore, we will take it for granted by not
showing the above mentioned proofs for the SDS. However, we need to verify that the SDS
produced satisfies the corresponding SRS. In this chapter, this proof will be discussed.

The overview of the proposed software design verification technique is shown in Figure
6-1 (bold lines represent the areas of applications of the technique). Therefore, the technique
covers the following steps: 2.3, 3.1, 3.2, and 3.4. In this chapter, only step 3.2 will be
explained; steps 2.3, 3.1, and 3.4 are similar to steps 2.2, 3.1, and 3.3 of the software
requirements verification technique accordingly. However, the complete software design
verification requires all the steps shown in Figure 6-1.

The steps shown in Figure 6-1 are explained as follows:

Step 1.1

Informal proof is applied to check the informal design specification against the
designers' design decisions.

Step 1.2

Informal proof is applied to check the informal design specification against the
informal requirement specification.

6. Software design verification technique 	 117

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Design
decIons

lnfornl proof

Informal rzoc

V..................

Informal
reqtirein	 L
specftatlon

(e.g. Engbfl statements)

Informal proof

1.1
Informal proof

1.3
1.2	 .1...... . I	 Informal proof

Informal proof	 Informal
requremerte
epectaIlon

(e.g. Engh Staten!)

A................
21

Informal proof

I	 I	 22
Seinkimal	 Informal proof

Informal Froof	 requremente
scftatlon

(RERDa, RDFDs, RDSDa)

Informal proof

a2
Fonr	 ForTratprn.d

re
sprcftatlon

(RZ3)

w	 "$'	 I	 2.3
Informalproof

SemcrmaI	 LeJ
deSign	 3.3

sectallon	 Informal proof
(DERD., DDFDS, DDSDS)

3.1	 ___________

Infornproof

I	 3.4

I	 I
Fonnal

specftatboo
(DZs)

Figure 6-1: Software design verification (bold lines represent areas of application of the
proposed technique)

Step 1.3

Informal proof is applied to check the consistency within the informal design
specification itself

Step 2.1

Informal proof is applied to check the semiformal design specification against
the informal design specification.

Step 2.2

Infonnal proof is applied to check the semiformal design specification against
the semiformal requirements specification.

Step 2.3

Informal proof is applied to check the consistency within the semiformal
design specification itself.

Step 3.1

Informal proof is applied to check the formal design specification against the
semiformal design specification.

Step 3.2

Formal proof is applied to check the formal design specification against the
formal requirements specification.

6. Software design verification technique 	 118

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Step 3.3

Informal proof is applied to check the formal design specification against the
informal design specification.

Step 3.4

Formal proof is applied to mathematically prove the consistency within the
formal design specification itself.

6.3 Mapping between the abstract state space and the
concrete state space

To prove that the formal design specification satisfies the formal requirements specification,
first of all the relationships between the abstract state space and the concrete state space must
be identified. In other words, it must be possible to define each abstract data structure in terms
of the concrete data structure(s).

Jones [48] uses retrieving functions to document the relationships between the abstract
state space and the concrete state space. The retrieving functions are used because it is likely
that the relationships between the concrete state space and the abstract state space are many-to-
one relationships. This idea is also shared by many others, for example Potter et. all [74],
Diller [22]. The retrieving functions map the concrete state space into the abstract state space.

In this thesis, we follow what seems to be normal practice for Z practitioners by
recording the relationships between the abstract state space and the concrete state space in a
schema. Concerning the library system, we write a schema "Retrieve" to document the
relationships between the abstract state space "Library_state" and the concrete state space
"D_libraiy_state". Each abstract data structure defined in the abstract state space must be
mapped into the concrete data structure(s) defined in the concrete state space; and these
relationships are documented in the schema "Retrieve".

In this thesis, the symbol is used for defining the mapping between the abstract data
structure and its implementation. An abstract data structure is defined on the left hand side of
the symbol and its implementation is defined on the right hand side.

For example, the abstract data structure "Borrowers" is implemented by the concrete
data structure "D_borrowers" can be written as

Borrowers D_borrowers.

The abstract data structure "Borrowers" is defined, in chapter 3, as

Borrowers: ? PERSON

and the abstract data type "PERSON" is defined as a basic type.

The concrete data structure "D_borrowers" is defined, in chapter 5, as

D_borrowers: P D_BORROWER

and the concrete data type "D_BORROWER" is defined as a schema type.

The data type "D_BORROWER" is more concrete than the data type "PERSON"; the
data type "PERSON" has no details whereas the data type "D_BORROWER" gives more
details.

6. Software design verification technique 	 119

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

It is implicit in this use of that the mapping from the right hand side to the left hand
side is a mapping between two sets, and is intended to be well defined, e.g. every element of the
set "Borrowers" can be mapped into a corresponding element of the set "D_borrowers".

From chapter 3, the abstract state space "Library state" is defined as follows.

Library_state.

Person_state
Author_state
Subject_state
Book state
Copy state
Writes : Library_book_authors . iz< a>. Library_books
Is_a_subject_of: Library_book_subjects.<< '. Library_books
Is_a_copy_of: Library copies s < s Library_books
Currently_checks_out : Borrowers 0< a-. Checked_out_copies
Max copy: N1

Vb: dom Currently_checks_out . # Currently_checks_out (I {b} I) ^ Max_copy

From chapter 5, the concrete state space "D_library_state" is defined as follows.

p_library_state

D_person_state
D_author_state
D_subject_state
D_book_state
D_copy_state
D_writes : D_libraiy_book_author_ids . < z >. D_library_book_ids
D_is_a_subject_of: D_libraiy_book_subject_ids..z< i > . D_libraiy_book_ids
D_is_a_copy_of: D_library_copy_ids a .< s' D_library_book_ids
D_currently_checks_out: D_borrower_ids o (_> o D_library_copy_ids
Max_copy: N1

V Copy_id: ran D_currently_checks_out.
D_is_id_of_copy (Copy_id) = Checked_out

V Borrower_id : dam D_currently_checks_out.
D_currently_checks_out (I {Borrower_id} I) ^ Max_copy

Now, we define the schema "Retrieve" as follows.

Library_state
D_library_state

Borrowers D_borrowers
Staff D_Staff
Users D_borrowers U D_staff
Library_book_authors D_library_book_authors
Library_book_subjects D_library_book_subjects

6. Software design verification technique	 120

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Library_books D_library_books
Library_copies D_library_copies
Available_copies { Copy : D_libraiy_copies I Copy.D_status = Available }
Check_out_copies (Copy : D_library_copies I Copy.D_status = Checked_out }
Writes U { Author_id : dom D_wntes.

{D_isidof_author (Author_id)) H
(Book_id D_writes (I {Author_id} I) • D_is_id_of_book (Book_id)))

Is_a_subject_of U (Subject_id: dom D_is_a_subject_of.
{D_is_id_of_subject (Subject_id)) H
(Book_id : D_is_a_subject_of (I (Book_id) I).
D is id of book (Book_id)))

Is_a_copy_of (Copy_id : dom D_is_a_copy_of.
(D_is_id_of_copy (Copy_id),
D_is_id_of_book (D_is_a_copy_of (Copy_id))))

Currently_checks_out (Copy_id: ran D_currently_checks_out.
(D_is_id_of_borrower (D_currently_checks_out -1 (Copy_id),
D_is_id_of_copy (Copy_id))))

The abstract data structure "Borrowers" is implemented as the concrete data structure
"D_borrowers". The abstract data structure "Staff' is implemented as the concrete data
structure "D_stafl". The abstract data structure "Users" is not directly implemented in the
concrete state space, however the abstract data structure "Users" can be indirectly derived as
"D_borrowers U D_staff'.

The abstract data structure "Library_book_authors" is implemented as the concrete
data structure "D_libraiy_book_authors".

The abstract data structure "Library_book_subjects" is implemented as the concrete
data structure "D_library_book_subjects".

The abstract data structure "Library_books" is implemented as the concrete data
structure "D_library_books".

The abstract data structure "Library_copies" is implemented as the concrete data
structure "D_library_copies". The abstract data structures "Checked_out_copies" and
"Available_copies" are not directly implemented. However the abstract data structure
"Checked_out_copies" can be indirectly derived as

"{ Copy : D_libraiy_copies I Copy.D_status = Available)";

and the abstract data structure "Available_copies" can be indirectly derived as

"{ Copy : D_libraiy_copies J Copy.D_status = Checked_out }".

The abstract data structure "Writes" is defined in the abstract state space as a many-to-
many and mandatory-mandatoiy relationship from "Library_book_authors" to Library_books";
the concrete data structure "D_writes" is defined in the concrete state space as a many-to-many
and mandatory-mandatory relationship from "D_library_author_ids" to "D_libraiy_book_ids".
Therefore, "Writes" is not directly implemented as "D_wntes" but it can be indirectly derived
as

"U (Author_id : dom D_writes • {D_is_id_of_author (Author_id)) H
(Book_id : D_writes (I (Author_id) I) • D_is_id_of_book (Book_id)))".

6. Software design verification technique 	 121

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The abstract data structure "Is_a_subject_of' is not directly implemented in the
concrete state space, but it can be indirectly derived as

"U (Subject_id : dom DJs_asubject_of • {D_is_id_of_subject (Subject_id)) H
(Book_id : D_isa_subject_of (I {Sook_idj I) • DJs_id_of_book (Book_id)))".

The abstract data structure "Isacopy._of' is not directly implemented in the concrete
state space, but it can be indirectly derived as

"(Copy_id : dom D_is_a_copy_of.
(D_is_id_of_copy (Copy_id), D_is_id_of_book (D_is_a_copy_of (Copy_id))))".

The abstract data structure "Currently_checks_out" is not directly implemented in the
concrete state space, but it can be indirectly derived as

"(Copy_id: ran D_currently_checks_out.
(D_is_id_of_borrower (D_currently_checks_out -1 (Copy_id),
D_is_id_of_copy (Copy_id)))}".

Therefore, we have shown that every abstract data structure defined in the abstract
state space "Library_state" can be mapped into the concrete data structure(s) defined in the
concrete state space "D_library_state".

6.4 Proving that the initial concrete state satisfies the initial
abstract state

The next thing that needs to be proved is proving that, given the schema "Retrieve", the initial
concrete state is the implementation of the initial abstract state.

For example, in the initial abstract state "mit_library_state", the abstract data structure
"Borrowers" is defined as an empty set. According to the schema "Retrieve", "Borrowers" is
implemented as "D_borrowers", therefore "D_borrowers" must be defined as an empty set. As
defined in the initial concrete state, "D_borrowers" is defined as an empty set, therefore the
initial concrete state "D_borrowers" satisfies its initial abstract state. This proof can be shown
as follows.

Borrowers	 D_borrowers	 [from "Retrieve"l

0	 [from "D_Init_library_state"].

In the initial abstract state, the abstract data structure "Writes" is defined to be empty.
Therefore, the proof is required to show that

U (Author_id: dom D_writes • (D_is_id_of_author (Author_id)) H
{Book_id : D_writes (I (Author_id) I) • D_is_id_of_book (Book_id)))

is also empty. Since the concrete data structure "D_writes" is defined to be empty in the initial
concrete state space, so is the set above.

6. Software design verification technique	 122

ilie Integration of Software Specification. Verification, and Testing Techniques with Software Requirements and Design Processes

6.5 Proving that the concrete operations implement the
abstract operations

To show that the concrete operations correctly implement the abstract operations, we need to
prove that each concrete operation and its corresponding abstract operation perform the same
operation(s) and produce the same result(s).

For example, we need to prove that the concrete operation "D 1_i j_Check_requestor"
and the abstract operation "R_l_l_l_Check_requestor" perform the same operations and
produce the same results.

As defined in the abstract operation °R_1_1_l_Check_requestor", the output
"Valid_requestor!" is produced if

Requestor? E Staff

According to the concrete operation "Dl_l_l_Check_requestor", the output
"Valid_requestor!" is produced if

D_requestor_id? € D_staif_ids

Therefore, we must prove that the latter condition and the former condition are in fact
state the same thing. From the latter predicate

D_requestorjd? E D_staffjds

we can derive that

D_this_staff E D_staff

where D_this_stai D_is_id_of_staff (D_requestorjd?).

Since

Requeswr? D_is_id_of_staff (D_requestor_id?)

and

Staff Dstaff

Therefore, we can conclude that

Requestor? 6 Staff

As defined in the abstract operation "R_l_l_l_Check_requestor", the output
"Invalid requestor l " is produced if

Requestor? Staff

6. Software design verification technique	 123

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

According to the concrete operation "D 1_1_1_Check_requestor", the output
"Invalid requestor!" is produced if

D_requestor_id? D_staff_ids

- Therefore, we must prove that the latter condition and the former condition are in fact
state the same thing. From the latter predicate

D_requestorjd? D_staff_ids

we can derive that

D_this_staff E D_staff

where D_this_staff = D_isjd_of_staff (D_requestor_id?).

Since

Requestor? D_is_id_of_staff (D_requestor_id?)

and

Staff D_staff

Therefore, we can conclude that

Requestor? Staff

6. Software design verification technique 	 124

The Integration of Software Specification, Verification, and Testing Techniques with Software Requiremenis and Design Processes

Chapter 7	 Requirements specification based
software testing

7.1 Overview

This chapter describes a technique for generating test requirements for acceptance an systenz

testing from the formal requirements specification.

Section 7.2 gives a brief overview of software testing. n section 7.3, the benefits that
formal specifications and software testing bring to one another are pointed out. Section 7.4
gives an overview of the proposed requirements specification based software testing technique.
Then, the techniques for deriving test requirements for testing the critical requirements and for
testing the operations of the system are explained in section 7.5 and 7.6 accordingly.

7.2 Software testing

Myers [65] defines testing as the process of executing a program or system with the intent of
finding errors. Hetzel [37] defines testing as any activity aimed at evaluating an attribute or
capability of a program or system and determining that it meets its required results. In the
IEEE standard glossary of software engineering terminology [42], testing is defined as the
process of exercising or evaluating a system or system component by manual or automated
means to verify that it satisfies specified requirements and actual results.

Software testing can be classified into four levels as follows:

1) Unit testing

A unit is the smallest testable piece of software. Unit testing is conducted to show
that the unit does not satisfy its functional specification [5].

2) Integration testing

Integration testing is an orderly progression of testing in which software elements,
hardware elements, or both are combined and tested until the entire system has been
integrated [42]. Integration testing is carried out to test interthces and ensure that
units are communicating as expected. It is done to reveal the incorrectness or
inconsistency of the integrated units.

3) System testing

System testing is the process of testing an integrated hardware and software system
to verify that the system meets its specified requirements [42]. System testing
concerns issues or behaviour that can be exposed by only testing the entire system
or amajor part of it [5].

7. Requirements specification based software testing 	 125

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4) Acceptance testing

Acceptance testing is conducted to detennine whether or not a system satisfies its
acceptance criteria and to enable the customer to determine whether or not to accept
the system [42].

7.3 Formal specifications and software testing

Specifications of both software requirements and design must be used as the basis of quality
assurance in some form [11]. Specifications can be used for establishing test requirements
(conditions for which we must test [78]), selecting test cases, and evaluation of test results
[40].

Formal specifications and formal method have been introduced into the software
development process to increase confidence in the software produced. The use of formal
specifications and formal method allows early detection of errors and inconsistencies during
requirements analysis and design phases rather than late detection during the program testing
phase. Theoretically, given a formal specification and a rigorous program development method
it is possible to prove that the program produced meets its specification. However, with the
current state of art this still can not be guarantee. If the proof is done by hand, there is still
room for error [36]. Hence software testing is still necessary.

There are a lot of benefits that formal specifications and software testing bring to one
another [11], for example:

1) A formal specification is a valuable source for the systematic derivation of test
requirements and test cases. Formal specifications have the ability to precisely
describe test requirements and test cases. Fomial specification can also be used to
validate the test results against the specification.

2) The process of generating test requirements and test cases from a formal
specification in turn can assist validation of the formal specification.

7.4 Overview of the proposed technique

This chapter presents a technique for generating test requirements from the formal requirements
specification developed as described in chapter 3. The technique concentrates on defining test
requirements for acceptance and system testing.

Test requirements can be derived from the fonnal requirements specification. Test
requirements produced can be classified into two sets:

1) Test requirements for testing the critical requirements of the system

Test requirements for testing the critical requirements of the system are derived
from the state space schemas of the formal requirements specification.

2) Test requirements for testing the operations of a system

Test requirements for testing the operations of the system are derived from the
operation schemas of the fonnal requirements specification.

Once test requirements have been defined, each test requirement has to be instantiated
by a collection of test cases which satisfy the preconditions belonging to that test requirement.

7. Requirements speciiicalion based soitware testing 	 126

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Desi Processes

7.5 Deriving test requirements for testing the critical
requirements of the system

As mentioned in chapter 3 the critical requirements of the system are the requirements that
must hold in every state. The critical requirements are very cmcial for the system to be valid
and they must be tested thoroughly. It is suggested by Hayes in [36] that critical requirements
test will be used to check the critical requirements initially and then after eveiy operation
performed on the system during testing. To test the critical requirements of the system, one or a
set of programs is written to check whether these critical requirements hold.

Test requirements for testing the critical requirements of the system are derived from
the state schema(s) of the formal requirements specification of the system.

Concerning the library system, the critical requirements of the system are defined in
these state schemas: "Person_state", "Copy_state", and "Library_state". The other three state
schemas, "Author_state", "Subject_state", and "Book state", don't contain any critical
requirements.

The critical requirements of the system derived from the three state schemas mentioned
above are:

(1) <Borrowers, Staff> partition Users
(2) <Checked_out_copies, Available_copies> partition Librarypopies
(3) dom Writes = Library_book_authors
(4) ran Writes = Library_books
(5) dom Is_a_subject_of = Library_book_subjects
(6) ran Is_a_subject_of = Library_books
(7) dom Is_a_copy_of = Library_copies
(8) ran Is_a_copy_of = Library_books
(9) Vc : Library_copies . # Is_a_copy_of (I {c} I) 1
(10)dom Currently_checks_out Borrowers
(11)ran Currently_checks_out = Checked_out_copies
(12) Vc: Checked_out_copies . # Currently_checks_out -1 (I {c} I) = 1
(13)Max_copy> 0
(14) Vb : dom Currently_checks_out • # Currently_checks_out (I {b} I) ^ Max_copy

The test requirement (1) is derived from the state schema "Person_state". It states that
we must test that: the entities "Borrowers" and "Staff' are disjoint (a person cannot be a
borrower and staff at the same time); and the entity "Users" is a union of the entities
"Borrowers" and "Staff'. Therefore, the test requirement (1) can be split into two test
requirements as follows.

(1.1) Borrowers fl Staff= 0

(1.2) Users = Borrowers U Staff

Even though according to the formal requirements specification of the library system
both test requirements (1.1) and (1.2) are required to be tested, only test requirement (1.1) can
be carried out during the program testing. The test requirements (1.2) cannot be tested by
program testing. According to the formal design specification of the library system, each
borrower as well as each staff is assigned an id and the same id cannot appear in both relations
(databases) "D_borrowers" and "D_staff'. Therefore, to test the test requirement (1.1) we need
to write a program to check that the same id cannot be in both relations (databases).

7. Requirements specification based software testing	 127

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The test requirement (2) is derived from the state schema "Copy_state". It is similar to
the test requirement (1) above.

The test requirements (3) and (4) are derived from the state schema "Library_state".
The relationship "Writes" is defmed in the schema "Library_state" as a many-to-many and
mandatory-mandatory relationship from the entity "Library_book_authors" to the entity
"Library_books". Therefore there are two test requirements that must be tested: all authors of
the library books must participate in the relationship "Writes" (dom Writes =
Library_book_authors); all books in the library must participate in the relationship "Writes"
(ran Writes = Library_books).

According to the formal design specification, the relationship "Writes" is implemented
by the relation (database) "D_writes" which has two attributes author id and book id. The
entity "Library_book_authors" is implemented by the relation "D_library_book_authors" and
the entity "Library_books" is implemented by the relation "D_library_books". Therefore we
need to write a program to check that all author ids of the relation "D_library_book_authors"
and the relation "D_writes" are exactly the same and also all book ids of the relation
"D_library_books" and the relation "D_wntes" are exactly the same.

The test requirements (5) - (8) are derived from the state schema "Library_state" and
are simi)ar to the test requirements (3) - (4) just mentioned.

The test requirement (9) is derived from the state schema "Library_state". It states that
each copy of the library can participate only once in the relationship "Is_a_copy_of'; or in
other words, a copy is belong to one an only one particular book.

The test requirements (10) - (12) are derived from the state schema "Library_state"
and are similar to the test requirements (7) - (9).

The test requirement (13) is derived from the state schema "Library_state" and can be
easily checked.

The test requirement (14) is derived from the state schema "Library_state". We need to
write a program to check that the number of copies borrowed by each borrower is less than or
equal to the predefined number of copies allowed (Max_copy).

7.6 Deriving test requirements for testing the operations of
the system

Test requirements for testing the operations of the system are derived from the operation
schemas of the formal requirements specification. The cause-effect method is used to partition
the input space based on equivalence classes of the output space [11, 651.

The schema which defines the context RDFD is used as the starting point. All inputs
and outputs of the system are explicitly defined in this schema. Therefore the test requirement
for each distinct output can be easily identified.

Concerning the library system, the schema "RO_Library" is used as the starting point
to derive test requirements for testing the operations of the system. From the schema
¶0_Library", all test requirements can be identified from the output declaration statements in
the declaration part of the schema.

The total nwnber of test requirements as identified from the schema "RO_Library" are
42 test requirements. The nwnber of test requirements for each output are shown in Table 7-1.

7. Requirements specification based software testing	 128

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Output	 Number of test requirements

1.Valid_copy_check_out! 	 1

2. Invalid_copy_check_out!	 11

3.Valid_copy_return!	 1

4. Invalid_copy_return!	 3

5.Valid_copy_add!	 1

6. Invalid_copy_add!	 3

7. Valid_copy_removet 	 1

8.Invalid_copy_remove!	 3

9.List_of_books_by_author!	 1

10.Invalid_by_author_enquiry!	 3

11.List_of_books_by_subject! 	 1

12.Invalid_by_subject_enquiry	 3

13.List_of_copies_by_borrower! 	 1

14.Invalidj,y_borrower_enquiry	 5

15.Last_borrower_info!	 1

16.Invalid_last_borrower_enquiry!	 3

Total	 42

Table 7-1: Number of test requirements of each output

The output "Valid_copy_check_out!" as declared in the specification contains no
condition, therefore only one test requirement is derived.

The output "Invalid_copy_check_out!" is defined in the schema "RO_libraiy" as

Invalid_copy_check_out!: (Invalid_requestor : MSG ®

(Invalid_borrower : MSG ® Over_limit : MSG) 0 Invalid_copy : MSG

The output "Invalid_copy_check_out!" as declared in the specification contains
disjunction and exclusive disjunction notations, therefore in fact there are 11 combinations for
this output as follows.

1) Invalid_requestor!

2) Invalid borrower!

3) Over_limit!

7. Requirements specification based software testing 	 129

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

4) Invalid_copy!

5) Invalid_requestor! 0 Invalid_borrower!

6) Invalid_requestor! ® Over_limit!

7) Invalid_requestor! ® Invalid_copy!

8) Invalid_borrower! ® Invalid_copy!

9) Over_limit! ® Invalid_copy!

10) Invalid_requestor! ® Invalid_borrower! ® Invalid_copy!

11) Invalid_requestor! ® Over_limit! ® Invalid_copy!

Even though there are four errors concerning the output "Invalid_copy_check_out", all
four errors cannot happen in the same case. This is because the error "Invalid_borrower!" and
the error "Over_limit!" cannot happen together.

The number of test requirements for other outputs can be formulated in a similar way.

Then, test requirement specifications for each test requirement can be derived from the
operation schemas by following these steps.

1) Find the operation schema which generates that output.

2) From that schema, identify the inputs and postconditions. The inputs are defined on
the left hand side of the input/output data flow relation statement. The
postconditions are derived from the predicates of that schema. The inputs identified
may be either the inputs from the external entities or the internal inputs generated
within the system. The preconditions are derived from the preconditions of the
processes that produce those internal inputs and from the predicates of that schema.
The inputs required in order to produce the required output are the inputs passed
from the external entities.

3) Write test requirements specification of that output using the format shown in Table
7-2.

Test requirement n
Inputs
Preconditions
Postconditions
Outputs

Table 7-2: Test requirement specification format

A. Test requirement 1

The test requirement specification of the output "Valid_co py_check_out!" can be derived by
following the steps given above and will be explained as follows.

1) The	 operation	 schema	 which	 generates	 that	 output	 is
"R1_2_Record_copy_check_out".

2) The input/output data flow relation statement defined in that schema is

Borrower? ® Copy? () Valid_copy_check_out_check? Valid_copy_check_out!

7. Requirements specification based software testing	 130

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The inputs are:

"Borrower?"

"Copy?"

"Valid_copy_check_out_check?"

The inputs "Borrower?" and "Copy?" are the inputs passed from the external entity;
whereas the input "Valid_copy_check_out_check?" is the internal data flow.
Therefore the preconditions as well as the remaining inputs will be derived from the
input "Valid_copy_check_out_check?" as follows.

The input "Valid_copy_check_out_check?" is passed from the schema
"Ri_i_Check_copy_check_out" and it is declared in that schema as

Valid_copy_Check_out_check! : (Valid requestor: lB ® Within_limit: lB ®
Valid_copy: (B)

Therefore, we need in turn to find out the inputs and preconditions of the outputs
"Valid_requestor! ", "Wihtin_limit!", and "Valid_copy! ".

The input of the output "Vd_rueor" is "Requestor?" and the precondition is
defined in the schema "Rl_l_l_Check_requestor" as

RtquestOT? € Staff

The input of the output "Within_limit!" is "Borrower?" and the preconditions are
defined in the scliemas "Ri_i 2_Check_borrower" and
"R1_1_3_Check_max_copy" as

(Borrower? E Borrowers) A
(# Currently_checks_out (I {Borrower?} I) < Max_copy)

The input of the output "Valid_copy!" is "Copy?" and the precondition is defined in
the schema "R1_1_4_Check_copy" as

Copy? E Available_copies

Therefore, the inputs of the output "Valid_copy_check_out!" are:

Requestor?
Borrower?
Copy?

and the preconditions of the output "Valid_co pYcheck_out!" are the conjunction of
the preconditions above:

(Requestor? e Staff) A
(Borrower? E Borrowers) A
(# Currently_checks_out (I {Borrower?} I) < Max_copy) A
(Copy? e Available_copies)

The postconditions of the output are the predicates of the schema
"R1_2_Record_copy_check_out" as follows.

Available_copies ' = Available_copies \ {Copy?}

7. Requirements specification based software testing 	 131

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Checked_out_copies '= Checked_out_copies U {Copy?}
Currently_checks_out ' = Currently_checks_out U {Borrower? i—+ Copy?}
Valid_copy_check_out! = Copy_check_out_ok

3) Then the test requirement specification of the output "Valid_copy_check_out!" can
be written as follows.

Test requirement 1

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? Staff
Borrower? € Borrowers
Currently_checks_out (I {Borrower?} I) < Max_copy
Copy? e Available_copies

Postconditions	 Available_copies ' = Available_copies \ (Copy?)
Checked_out_copies ' = Checked_out_copies Li (Copy?)
Currently_checks_out '= Currently_checks_out U (Borrower?	 Copy?)
Valid_copy_check_out! = Copy_check_out_ok

Outputs	 Valid_copy_check_out!

Each test requirement leads to a number of test cases. For example, from the test
requirement 1 given above, a number of test cases can be produced. However, all test cases
which belong to a particular test requirement must satisfy the specification of that test
requirement. Various testing techniques such as boundary-value analysis, category-partition,
and/or branch coverage can be applied to generate test cases from a test requirement.
However, the detailed consideration of how the different test cases can be derived from the test
requirment is beyond the scope of this thesis.

B. Test requirement 2

The test requirement specification of the output "Copy_check_out! .Invalid_requestor" can be
derived by following the steps given above. The result is shown in the following table.

7. Requirements specification based software testing 	 132

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Test requirement 2

Inputs	 Requestor?
Borrower?

-	 Copy?

Preconditions	 Requestor? Staff
Borrower? Borrowers
Currently_checks_out (I {Borrower?} I) < Max copy
Copy? e Available_copies

Postconditions	 Invalid_requestor! = Copy_check_out_invalid_borrower

Outputs	 Copy_check_out! .Invalid_requestor

C. Test requirement 3

The test requirement specification of the output "Copy_check_out! .Invalid_borrower" is
shown in the following table.

Test requirement 3

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? u Staff
Borrower? Borrowers
Currently_checks_out (I {Borrower?} I) < Max_copy
Copy? e Available_copies

Postconditions	 Invalid_requestor! = Copy_check_out_invalid_borrower

Outputs	 Copy_check_out! .Invalid_borrower

7. Requirements specification based software testing	 133

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements aixi Design Processes

D. Test requirement 4

The test requirement specification of the output "Copy_check_out! .Over_limit" is shown in the
following table.

Test requirement 4

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? E Staff
Borrower? € Borrowers
Currently_checks_out (I {Borrower?} j) ^ Max copy
Copy? E Available_copies

Postconditions	 Invalid_requestor! = Copy_check_out_over_limit

Outputs	 Copy_check_out! .Over limit

E. Test requirement 5

The test requirement specification of the output "Copy_check_out!.Invalid_copy" is shown in
the following table.

Test requirement 5

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? e Staff
Borrower? € Borrowers
Currently_checks_out ({Borrower?} I) <Max_copy
Copy? Available_copies

Postconditions	 Invalid_requestor! = Copy_check_out_invalid_copy

Outputs	 Copy_check_out! .Invalid_copy

7. Requirements specification based software testing 	 134

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

F. Test requirement 6

The test requirement specification of the combined output "Copy_check_out! .Invalid_requestor

® Copy_check_out! .Invalid_borrower" is shown in the following table.

Test reQuirement 6

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? Staff
Borrower? Borrowers
Currently_checks_out (I {Borrower?} I) <Max_copy
Copy? E Available_copies

Postconditions	 Invalid_requestor! = Copy_check_out_invalid_requestor
Invalid borrower! = Copy_check_out_invalid_borrower

Outputs	 Copy_check_out! .Invalid_requestor ® Copy_check_out! .Invalid_borrower

G. Test requirement 7

The test requirement specification of the combined output "Copy_check_out! .Invalid_requestor
() Copy_check_out! .Over_limit" is shown in the following table.

Test requirement 7

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? Staff
Borrower? E Borrowers
Currently_checks_out (I {Borrower?} I) ^ Max_copy
Copy? E Available_copies

Postconditions	 Invalid_requestor! Copy_check_out_invalid_requestor
Invalid_borrower! Copy_check_out_over_limit

Outputs	 Copy_check_out! .Invalid_requestor ® Copy_check_out! .Over_limit

7. Requirements specification based software testing 	 135

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

H. Test requirement 8

The test requirement specification of the combined output "Copy_check_out! .Invalid_requestor
® Copy_check_out! .Invalid_copy" is shown in the following table.

Test requirement 8

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? Staff
Borrower? Borrowers
Currently_checks_out (I {Borrower?} I) <Max_copy
Copy? Available_copies

Postconditions	 Invalid_requestor! = Copy_check_out_invalid_requestor
Invalid_borrower! = Copy_check_out_invalid_copy

Outputs	 Copy_check_out! .Invalid_requestor ® Copy_check_out! .Invalid_copy

I. Test requirement 9

The test requirement specification of the combined output "Copy_check_out! .Invalid_borrower
® Copy_check_out! .Invalid_copy" is shown in the following table.

Test requirement 9

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? E Staff
Borrower? Borrowers
Currently_checks_out (I {Borrower?} I) <Max_copy
Copy? Available_copies

Postconditions	 Invalid_requestor! = Copy_check_out_invalid_borrower
Invalid_borrower! = Copy_check_out_invalid_copy

Outputs	 Copy_check_out! .Invand_borrower ® Copy_check_out! .Invalid_copy

7. Requirements specification based software testing	 136

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

J. Test requirement 10

The test requirement specification of the combined output "Copy_check_out! .Over_limit ®
Copy_check_out! .Invalid copy" is shown in the following table.

Test requirement 10

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? E Staff
Borrower? E Borrowers
Currently_checks_out (I {Borrower?}) ^ Max_copy
Copy? Available_copies

Postconditions	 Invalid requestor! = Copy_check_out_over_limit
Invalid_borrower! = Copy_check_out_invalid_copy

Outputs	 Copy_check_out! .Over_limit ® Copy_check_out! .Invalid_copy

K. Test requirement 11

The test requirement specification of the combined output "Copy_check_out!.Invalid_requestor
(.) Copy_check_out!.Invalid_borrower ® Copy_check_out!.Invalid_copy" is shown in the
following table.

Test requirement 11

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? Staff
Borrower? Borrowers
Currently_checks_out (I {Borrower?} I) <Max_copy
Copy? Available_copies

Postconditions Invalid_requestor! = Copy_check_out_invalid_requestor
Invalid_borrower! = Copy_check_out_invalid_borrower
Invalid_borrower! = Copy_check_out_invalid_copy

Outputs	 Copy_check_out! .Invalid_requestor ® Copy_check_out! .Invalid_borrower ®
Copy_check_out.Invalid_copy

7. Requirements specification based software testing	 137

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

L. Test requirement 12

The test requirement specification of the combined output "Copy_check_out! .Invalid_requestor

® Copy_check_out! .Over_limit ® Copy_check_out! .Invalid_copy" is shown in the following
table.

Test requirement 12

Inputs Requestor?
Borrower?
Copy?

Preconditions	 Requestor? Staff
Borrower? E Borrowers
Currently_checks_out (I {Borrower?} I) ^ Max_copy
Copy? Available copies

Postconditions	 Invalid_requestor! = Copy_check_out_invalid_requestor
Invalid_borrower! = Copy_check_out_over_limit
Invalid borrower! = Copy_check_out_invalid_copy

Outputs	 Copy_check_outLlnvalid_requestor (3) Copy_check_out!.Over_limit (3)
Copy_check_out!. Invalid_copy

7. Requirements specification based software testing	 138

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Chapter 8	 Conclusion

8.1 Overview

In this final chapter, we hope to round off the proceedings by summarizing the proposed
techniques, comparing the proposed techniques with related works, and suggesting potential
further development.

Section 8.2 summarizes the techniques and points out their novelty as well as their
limitations. In section 8.3, we compare the proposed techniques with five prominent related
works. Finally, in section 8.4, further development are suggested.

8.2 Summary of the proposed techniques

Specifying, verifying, and testing software requirements and design are very important tasks in
the software development process and must be taken seriously. By investing more up-front
effort in these tasks, projects will gain the benefits of reduced maintenance costs, higher
software reliability, and more user-responsive software [9].

In this thesis, we have proposed very practical and efficient techniques for specifying
and verifying software requirements and design and for generating test requirements for
acceptance and system testing. The proposed techniques are designed to be applied to any
typical business information system (in other words to NH, BA and IN, ST and MT, DA and
DE applications, see section 1.5). To demonstrate the practicality of the proposed techniques,
the techniques have been thoroughly demonstrated through a simplified library system (an
overview of the library system is given in section 1.10).

Good software specifications should have these characteristics: understandable,
unambiguous, consistent, correct, complete, verifiable, modifiable, and traceable (see section
1.6). One of the best solutions to achieve such good software specifications is by integrating
three categories of software specification languages, namely informal specification languages
(e.g. English language), semiformal specification languages (e.g. entity-relationship diagrams,
data flow diagrams, and data structure diagrams), and formal specification languages (e.g. Z).

Both the proposed software requirements and design specification techniques emerge
from integrating the above mentioned three categories of software specification languages.
Even though we suggest using an informal specification language, it has not been discussed in
this thesis. For semiformal and formal specification languages (ERDs, DFDs, DSDs, and Z),
we adapt and extend them (as explained in chapter 2) so that they are nicely integrated and are
capable of producing good software specifications of the type we aim for. Both software
requirements and software design are specified in terms of the static and dynamic aspects of a
system. The static aspects of a system are specified by using ERDs, DSDs, and Z state
specifications whereas the dynamic aspects of a system are specified by using DFDs, DSDs,
and Z operation specifications. Even though the same specification languages are used for
specifying both software requirements and design, the contents of the two specifications are
different. We have demonstrated step by step how to produce software requirements

8. Conclusion	 139

The Integration of Software Specification. Verification, and Testing Techniques with Software Requirements and Design Processes

specifications (in chapter 3) and how to produce software design specifications (in chapter 5).
We have also discussed (in section 1.6) and shown (in chapter 3 and 5) the differences between
software requirements specifications and software design specifications.

The proposed software requirements verification technique is a combination of
informal and formal proofs (explained in chapter 4). We have explained thoroughly showing:
1) how to apply informal proofs (informal checking) to check the consistency within the
semiformal requirements specification (RERDs, RDFDs, and RDSDs); 2) how to apply
informal proofs to check the consistency, correctness, and completeness of the formal
requirements specification (RZs) against the semiformal requirements specification (RERDs,
RDFDs, and RDSDs); 3) how to apply formal proofs to mathematically prove the consistency
of the formal requirements specification (RZs).

The proposed software design verification technique (described in chapter 5) is similar
to the proposed software requirements verification technique mentioned above. The same
verification technique as the software requirements verification technique is also applied to: 1)
informaliy prove (informally check) the consistency within the semiformal design specification
(DERDs, DDFDs, and DDSDs); 2) informally prove the consistency, correctness, and
completeness of the formal design specification (DZs) against the semiformal design
specification (DERDs, DDFDs, and DDSDs); 3) formally prove the consistency within the
formal design specification (DZs). Therefore, we take it for granted by not demonstrating the
above mentioned proofs in this thesis. We have, however, explained how to apply fonnal
proof to mathematically prove that the formal design specification (DZs) satisfies the formal
requirements specification (RZs).

Finally, we have demonstrated how to generate test requirements for acceptance and
system testing (explained in chapter 7). Such test requirements are generated from the formal
requirements specification (RZs). Two sets of test requirements are produced: 1) test
requirements for testing the critical requirements of a system; and 2) test requirements for
testing the operations of a system.

Although no detailed trials have been carried out to establish if the techniques proposed
are effective and useful, a number of correspondents have received the ideas very favourably.

8.2.1 Novelty of the proposed techniques

The proposed techniques, we believe, have many distinctive features as follows.

They cover a wide range of the earlier tasks of the software development process (see
Figure 1-1): producing software requirements specifications, verifying software requirements
specifications, producing software design specifications, verifying software design
specifications, and generating test requirements for acceptance and system testing. The tasks
mentioned above are closely related and therefore the techniques for handling those tasks
should support one another. The proposed techniques have been carefully developed so that
they are fully integrated and support one another nicel y. In addition, we have also provided the
procedures for managing the proposed techniques. Therefore, as a result we do believe that the
practitioners will find the proposed techniques useful, not too difficult, and can be applied in
real practices.

Software requirements specifications as well as sofhvare design specifications
produced by following the proposed techniques have many good characteristics as follows.
They are easy to understand; the specifications are specified in a natural language (e.g. English
statements) as well as by using graphical models (ERDs, DFDs, and DSDs) which are easy to
understand, especially by the end-users. They are unambiguous and verifiable; the
specifications are also formally specified in the Z specification language therefore they are
precise (unambiguous) and can be proved formally.

2. Conclusion	 140

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

The proposed software requirements and design specification techniques integrate one
of the most popular formal specification languages, Z, with three of the most well-known
semiformal specification languages, ERDs, DFDs, and DSDs. The three diagrams above are
used by most of the structured software development methods. Therefore, the proposed
techniques, which integrate these four popular specification languages, permit users to continue
using available popular specification languages and therefore the users will find that it is easy
to learn and use them.

The semifonnal specification and the corresponding formal specification can be easily
converted from one form to another. Hence, those who produce these specifications will find
that the tasks are straight forward and can be easily accomplished. Furthermore, this also
allows the parties to communicate effectively, for example the end-users can learn what have
been stated in the specifications from the informal and semiformal specifications, while the
system analysts can get more details about the specifications from the formal specifications. If
the semifonnal specification and the corresponding formal specification cannot be easily
mapped, it would be difficult producing the specifications as well as communicating their
meaning.

The verification techniques proposed in this thesis cover both software requirements
and design specifications. In addition, not only the informal proofs are given, but also the
formal proofs. Therefore, the practitioners will feel more confident about the software
requirements and design specifications produced.

The proposed technique of generating test requirements from the formal requirements
specification produces test requirements for acceptance and system testing in which the test
requirements are formally specified using the Z specification language. This results in the test
requirements specifications which are precise.

8.2.2 Limitations of the proposed techniques

Unfortunately, the proposed techniques also have some drawbacks as follows.

The proposed techniques are only suitable for typical business information systems
(NH, BA and IN, ST and MT, DA, and DE applications, see section 1.5). They are not
suitable for more complicated systems (HA, AL, ND applications, see section 1.5), such as
real-time systems.

To produce a software requirements specification as well as a software design
specification by following the proposed techniques, three sets of specifications (an informal,
semiformal, and formal specifications) must be produced. Therefore the amount of work that
has to be done is approximately triple the minimum amount of work normally done.

Although the four specification languages used by the proposed techniques are all well-
known, they have been adapted and extended. Even though we tried to keep the changes as
minimum as possible, some effort is still required to master them.

Due to the difficulty in specifying ternary relationships (relationships which involving
three entities) in formal specifications, the proposed techniques do not suggest how to specify
ternary relationships. Therefore, to use the proposed techniques, a ternary relationship must be
converted into two or more binary relationships.

In this thesis, some formal proofs have been proposed. Even though the fonnal proofs
proposed have been thoroughly outlined, the proof processes have not yet been fully defined.
More rigorous proof processes are still required.

8. Conclusion	 141

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

8.3 A comparison with related works

In recent years, the idea of integrating formal specifications with informal and semiformal
specifications has become more and more popular. Many ideas (approaches, methods,
techniques) for the above subject have already been proposed. In this section, we will compare
our techniques with some other notable techniques as follows.

Kung

Kung [53] proposed the conceptual model approach. This approach has the following features:
1) it uses entity-relationship diagrams to depict the static aspects of a system, data flow
diagrams to depict dynamic aspects of a system, and a combination of entity-relationship
diagrams, data flow diagrams, Petri nets, and relational calculus to describe the process
behaviors of a system; 2) it describes how to formally prove the consistency of the process
decomposition of DFDs; 3) it briefly discusses on correctness checking of behaviour
specifIcations; 4) it produces an executable specification which can be translated into a Prolog
program to simulate the system being modelled.

This approach and our approach are siniilar in the following aspects. We borrow from
this approach the concept of using the data interface operators (see section 2.3.1.5) for
describing the relationship among input or output data flows. However, we have modified them
(changed the notation and changed the way of drawing it) to gain a better result.

We also adapted an idea of how to apply formal proofs to prove the consistency of the
process decomposition (see section 4.5.3). However, our proof method is more rigorous and
more complete than the one offered in this approach. Kung has given 4 logical rules whereas
we have given 24 logical rules. The main problem of the proof method given in Kung's
approach is that his proof does not distinguish between input and output data flows. Therefore,
the logical rule 13 given in his approach is incorrect if the data flows are considered to be
output data flows; but this logical rule is correct if the data flows are correctly identified, i.e.
which one is an input data flow and which one is an output data flow. Unfortunately, the exact
interpretation of this rule has not been stated in [53]. This point needs to be explained in more
details as follows.

In Kung's paper [53], the logical rule 13 is given as follow.

13. =A.(BDC)=(A.B)EBC

where • is a conjunction;

• is an exclusive disjunction

If data flows A, B, and C are all thought to be output data flows, this rule is false. This
is because the left hand side of the rule is then interpreted as A and either B or C, but not both
B and C, are produced, whereas the right hand side of the rule is interpreted as either A and B
or C, but not both, are produced. In other words, the left hand side of the rule states that two
combinations of output data flows can be produced: 1) A • B; 2) A • C. The right hand side of
the rule states that two combinations of output data flows can be produced: 1) A • B; 2) C.
Therefore the right hand side cannot be inferred from the left hand side, and hence the rule is
incorrect.

However, the logical rule 13 is correct if it is given as follow.

13. =A?.(B! • C!) =(A?.B!) C!

8. Conclusion	 142

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

where ? is used to identilr that a data flow is an input data flow;

is used to identify that a data flow is an output data flow.

This logical rule states that given an input data flow A?, output data flows B! and C!,
and A? is in conjunction with the exclusive disjunction of B! and C!, we then can derive either
A? and B! or C!, but not both. In other words, the input data flow A? can be combined with the
output data flow B! (B! is an output data flow from one process and is passed as an input data
flow to another process) and whatever output data flow(s) produced, this output data flow must
be in exclusive disjunction with the output data flow C!. This is correct.

This approach and our approach are different in the following major aspects. Some of
the diagrams used in both approaches are different. Our approach uses data structure diagrams
which is not used in this approach. Kung's approach uses Petri nets which is not used in our
approach. This approach concerns only specifying software requirements specifications
whereas our approach concerns both software requirements and design specifications.

Fraser et. all

Fraser et. all [30] proposed two approaches for integrating Structured Analysis (SA) with the
Vienna Development Method (VDM). The first approach proposes generating the VDM
specifications by using Structured Analysis specifications as cognitive guides to develop VDM
specifications. The second approach proposes generating the VDM specifications by using a
rule-based method. The SA specifications are in forms of data flow diagrams, data dictionary,
and the transform descriptions associated with the bottom-level processes which are given as
decision tables.

In their first approach, the derivation of VDM specifications from the SA
specifications is done by an analyst (in other words is done by a human). In their second
approach, the VDM specifications are partially automatically generated. In the second
approach, the VDM specifications are derived by mapping decision table process-descriptions
into VDM specifications using the decision table conversion rule and the sequence composition
rule.

There is one similarity between their approach and our approach: both produce formal
specifications for all processes on DFDs.

Their approach and our approach are different in many aspects as follows. Their
approach uses two semiformal specification languages, DFDs and decision tables, and data
dictionary; whereas our approach uses DFDs, ERDs, and DSDs. The formal specification
languages used by the two approaches are different, VDM vs Z. This approach concerns only
specifying software requirements specifications whereas our approach concerns both software
requirements and design specifications.

Polack et. all

Polack et. all [71, 72, 73] proposed the SAZ method which is a method for integrating SSADM
with Z. In the SAZ method, the following Z specifications are generated: the specification of
the system state; the specification of critical processing; the specification of selected enquiries.
The Z specifications are derived from the products of the SSADM Requirements Analysis and
Specification modules, specifically, the logical data model, function definitions, entity life
histories, effect correspondence diagrams, enquiry access paths, and I/O structures.

The SAZ method and our method are quite different. Even though both methods derive
the Z state specifications from ERDs, the Z state specifications produced from the two methods

8. Conclusion	 143

The Integration of Software Specification. Verification, and Testing Techniques with Software Requirements and Design Processes

are different, for example each relationship shown in the ERD is defined twice (the relationship
is defined both ways) in the SAZ method whereas in our method it is defined just once, to
defme a relationship, in the SAZ method the standard Z relation and function notations are used
whereas in our method a relationship is defined by using new proposed relationship notations
(see section 2.5.1.1). In the SAZ method only critical functions and selected enquiries are
defined in Z specifications whereas in our method all functions are defined in Z specifications.
In our method, the Z operation specifications are derived from DFDs; whereas in the SAZ
method, the Z operation specifications are derived mainly from ELH diagrams.

Semmens et. all

Semmens et. all [82] proposed a method of using the Z notation together with Yourdon
Structured Analysis to produce a requirements specification. In this approach, the formal
specifications of the system state are derived from entity-relationship diagrams and the formal
specifications of the system operations are derived from data flow diagrams.

This approach and our approach use the two same diagrams, ERDs and DFDs, and the
same formal specification language, Z. However, the diagram techniques as well as the Z
specification language used by the two approaches are slightly different; in our approach we
have modified and extended them whereas this approach uses the standard notations. n our
approach, we also use DSDs which is not used in this approach.

Both approaches specify a system in terms of the static and dynamic aspects of a
system. However, in this approach, only bottom-level processes on DFDs are given formal
specifications. In our approach, all processes on DFDs are given formal specifications.

This approach covers only specifying software requirements specifications whereas our
approach covers both software requirements and design specifications.

Randell

Randell [76] proposed an approach for translating a data flow diagram into an outline Z
specification and also an approach for generating a data flow diagram from a Z specification.

This approach concerns only combining data flow diagrams and Z. The Z
specifications of the state space and operations of a system are derived from the DFDs.
However, only bottom-level processes on DFDs are given the Z specifications; there is no Z
specifications for higher-level processes.

l'his approach and our approach are similar in that both of them use DFDs and Z.

However, the concepts of DFDs and the methods for generating Z specifications in both
approaches are different.

8.4 Further development of the proposed techniques

The proposed techniques have been carefully planned so that they can be extended later on.
Some of the potential and useful extensions that can be added to the proposed techniques are as
follows.

The proposed techniques should be extended so that they can be applied to real-time
systems. Since more and more systems being developed are real-time systems, it is important
that the techniques should be able to handle such systems.

A lot of improvements concerning formal proofs are required. One of the most
potential benefits of formal proofs which is worth including is symbolic execution.

The following automated tools can be developed and added to the proposed techniques:

8. Conclusion	 144

The Integration of Software Specification, Verification, and Testing Techniques with Software Requireinenis and Design Processes

1) Automated tools for drawing the modified versions of ERDs, DFDs, and DSDs and
also for adding Z specifications can be developed. Even though there are many
CASE (Computer Aided Software Engineering) tools available which supports
those diagrams, none of them offers exactly the same notations as required.
However, it is possible to modify the available CASE tools so that they would be
able to support the notations required. It is also possible to extend the available
CASE tools to accept Z specifications. These extended CASE tools will help to
reduce the amount of time and effort required for the tasks.

2) Automated tools for generating formal specifications from semiformal
specifications and vice versa can be developed. Based on the software requirements
and design specification techniques proposed, around 60 percent of the formal
specifications can be automatically generated from the corresponding semifonnal
specification,, and a complete (100 percent) semiformal specification can be
automatically generated from the formal specification.

3) An automated theorem proving tool is required. Theoretically, the formal proofs as
suggested in the proposed techniques can be carried out mechanically by an
automated theorem proving tool. However, with the current state of the art it would
be very expensive and take quite a long time to produce such a tool. However, a
symbolic execution tool is more likely (possible) to be produced, and such a tool
will be found very useful in verify formal specifications.

4) A rapid prototyping tool, which is an automated tool for translating the formal
specification into executable programs to simulate the system being model, can be
developed. This tool will provide users with a prototype which they can exercise to
see if it meets their functional requirements.

8. Conclusion	 145

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

Bibliography

[1] 'Problem Set for the Fourth International Workshop on Software Specification and
Design," Proc. 4th International Workshop on Software Spec/Ica1ion and Design, pp.
ix-x, April 1986

[2] C. Ashworth and M. Goodland, SSADM: A Practical Approach, McGraw-Hill, 1990

[3] G. Babin, F. Lustman, and P. Shoval, "Specification and Design of Transactions in
Information Systems: A Formal Approach," IEEE Transactions on Software
Engineering, vol. 17, no. 8, August 1991

[4] R. Balzer and N. Goldman, "Principles of Good Software Specification and their
Implications for Specification Languages," Proc. IEEE Conference on Specifications of
Reliable Software, pp. 58-67, 1979

[5] B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, 1990

[6] D. Bell, I. Money, and J. Pugh, Software Engineering: A Programming Approach,
Prentice-Hall, 1987

[7] B. W. Boehm, "Software Engineering," IEEE Transactions on Computers, vol. C-25,
no. 12, pp. 35-50, December 1976.

[8] B. W. Boehm, Software Engineering Economics, Prentice-Hall, 1981

[9] B. W. Boehm, "Verifying and Validating Software Requirements and Design
Specifications," IEEE Software, vol. 1, no. 1, pp. 75-88, January 1984

[10] S. H. Caine and K. Gordon, "PDL - A Tool for software Design," Proc. National
Computer Conference, 1975

[11] D. Carrington and P. Stocks, "A Tale of Two Paradigms: Formal Methods and Software
Testing," Proc. 8th Annual Z User Meeting, Cambridge, June 1994, Springer-Verlag,
1994

[12] W. Chantatub and M. Holcombe, "Software Testing Strategies for Software
Requirements and Design," Proc. 2st European International Conference on Software
Testing Analysis & Review, Brussels, October 1994

[13] p . P. Chen, "The Entity-Relationship Model - Towards a Unified View of Data," ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, March 1976

[14] P. P. Chen (Ed.), Proc. 1st mt. Conference on Entity-Relationship Approach to
Systems Analysis and Design, 1979, North Holland, 1980

[15] J. S. Collofello and L. B. Balcom, "A Proposed Causative Software Error Classification
Scheme," Proc. National Computer Conference, 1985

[16] A. Coombes and J. McDermid, "A Tool for Defining the Architecture of Z
Specifications," Proc. 5th Annual Z User Meeting, Oxford, December 1990, Springer-
Verlag, 1991

[17] C. J. Date, An Introduction to Database Systems, 4th ed., Addison-Wesley, 1986

Bibliography	 .	 146

The Integration of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

[18] A. M. Davis, E. H. Bersoff, and E. R. Corner, "A Strategy for Comparing Alternative
Software Development Life Cycle Models," IEEE Transactions on Software
Engineering, vol. 14, no. 10, pp. 1453-1461, October 1988

[19] A. M. Davis, Software Requirements: Analysis & Specfl cation, Prentice-Hall, 1990

[20]. T. Demacro, Structured Analysis and System Specfi cation, Yourdon Press, 1978

[21] M. S. Deutsch, Software Verification and Validation: Realistic Project Approaches,
Prentice-Hall, 1982

[22] A. Diler, Z: An Introduction to Formal Methods, John Wiley & Sons, 1991

[23] E. Dubois and A. Lamsweerde, "Making Specification Processes Explicit," Proc. 4th
International Workshop on Software Spécj1 cation and Design, pp. 169-177, CS Press,
1987

[24] R. H. Dunn, Software Defect Removal, McGraw-Hill, 1984

[25] N. Fenton, "Software Measurement: Why a Formal Approach?," Proc. BCS-FACS
Workshop on Formal Aspects ofMeasurement, South Bank University, London, May
1991, pp. 3-27, Springer Verlag, 1992

[26] N. Fenton and 0. Hill, Systems Construction and Analysis: A Mathematical and
Logical Framework, McGraw-Hill, 1993

[27] S. Fickas, "Automating the Analysis Process: An Example," Proc. 4th International
Workshop on Software SpecJI cation and Design, pp. 58-67, CS Press, 1987

[28] A. S. Fisher, CASE: Using Software Development Tools, John Wiley & Sons, 1988

[29] M. Flavin, Fundamental Concepts ofInformation Modeling, Yourdon Press, 1981

[30] M. D. Fraser, K. Kumar, and V. K. Vaishnavi, "Informal and Formal Requirements
Specification Languages: Bridging the Gap," IEEE Transactions on Software
Engineering, vol. 17, no. 5, pp. 454-466, May 1991

[31] D. P. Freedman and G. M. Weinberg, Handbook of Walkthroughs, Inspections, and
Technical Reviews: Evaluation Programs, Projects, and Products, 3rd ed., Little,
Brown and Company, 1982

[32] K Futatsugi, J. A. Goguen, J. P. Jouannaud, and J. Meseguer, "Principles of OBJ2,"
Proc. 12th ACM Symp. on Principles ofProgramming Languages, New Orleans, pp.
52-66, 1985

[33 1 C. Gane and T. Sarson, Structured System Analysis: Tools and Techniques, Prentice-
Hall, 1979

[34] C. Gane, Computer-Aided Software Engineering: The Methodologies, the Products,
and the Future, Prentice-Hall, 1990

[35] M. Gogolla, An Extended Entity-Relationship Model, Lecture Notes in Computer
Science 767, Springer-Verlag, 1994

[36] I. J. Hayes, "Specification Directed Module Testing, "IEEE Transactions on Software
Engineering, vol. SE-42, no. 1, January 1986

[37] B. Hetzel, The Complete Guide to Software Testing, 2nd ed., A Wiley-QED
Publication, 1988

[38] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985

[39] M. Holcombe, "An Integrated methodology for the specification, verification and Testing
of Systems," Proc. 1st European International Conference on Software Testing
Analysis & Review, London, October 1993

Bibliography	 147

The Integration of Software Specification. Verification. and Testing Techniques with Software Requirements and Design Processes

[40] H. M. Horcher, "The Role of Formal Specifications in Software Test," Proc. 2nd
European International Conference on Software Testing Analysis & Review, Brussels,
October 1994

[411 L. Ingevaldsson, JSP - A Practical Method ofProgram Design, Studenthtteratur and
Chartwell-Brett Ltd., 1986

[42] Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of Software
Engineering Terminology, ANSI/IEEE Std 729-1983, 1983

[43] Institute of Electrical and Electronics Engineers, IEEE Standard for Software Test
Documentation, ANSI/IEEE Std 829-1983, 1983

[44] Institute of Electrical and Electronics Engineers, IEEE Guide to Software Requirements
Spec y'Ications, ANSI/IEEE Std 830-1984, 1984

[45] Institute of Electrical and Electronics Engineers, IEEE Standardfor Software
Verification and Validation Plans, ANSI/IEEE Std 1012-1986, 1986

[46] Institute of Electrical and Electronics Engineers, IEEE Recommended Practice for
Software Design Descriptions, IEEE Std 1016-1987, 1987

[47] P. Jalote, "Testing the Completeness of Specifications," IEEE Transactions on Software
Engineering, vol. 15, no. 5, pp. 526-531, May 1989

[48] C. B. Jones, Software Development: A Rigorous Approach, Prentice-Hall, 1980

[49] C. B. Jones, Systematic Software Development Using VDM, Prentice-Hall, 1986

[50] C. Kaner, J. Fallc, and H. Q. Nguyen, Testing Computer Software, 2nd ed., Van
Nostrand Reinhold, 1993

[511 It. A. Kemmerer, "Testing Formal Specifications to Detect Design Errors," IEEE
Transactions on Software Engineering, vol. SE-il, no. 1, pp. 32-43, January 1985

[52] N. L. Kerth, "The Use of Multiple Specification Methodologies on a Single System,"
Proc. 4th International Workrhop on Software Specfl cation and Design, pp. 183-189,
CS Press, 1987

[53] C. H. Kung, "Conceptual Modeling in the Context of Software Development," IEEE
Transactions on Software Engineering, vol. 15, no. 10, pp. 1176-1187, October 1989

[54] S. Lee and S. Sluizer, "SXL: An Executable Specification Language," Proc. 4th
International Workshop on Software Specy'I cation and Design, pp. 231-235, CS Press,
1987

[55] B. P. Leintz and E. B. Swanson, Software Maintenance Management, Addison-Wesley,
1980

[56] N. G. Leveson, "Guest Editor's Introduction Formal Methods in Software Engineering,"
IEEE Transactions on Software Engineering, vol. 16, no. 9, September 1990

[571 N. Levy, A. Piganiol, and J. Souquieres, "Specifying with SACSO," Proc. 4th
International Workshop on Software Specfl cation and Design, pp. 236-24 1, CS Press,
1987

[58] D. Lightfoot, Formal Specification Using Z, Macmillan, 1991

[59] M. D. Lubars, "Schematic Techniques for High Level Support of Software Specification
and Design," Proc. 4th International Workshop on Software Specification and Design,

pp. 68-75, CS Press, 1987

[60] J. Martin, Computer Database Organization, Prentice-Hall, 1982

[61] J. Martin, System Design From Provably Correct Constructs, Prentice-Hall, 1985

Bibliography	 148

The Integration of Software Specification, Verification, and Testing Techniques with Software Requiremenls and Desi Processes

[62] J. D. Moffett and M. S. Sloman, "A Case Study in Representing a Model: to Z or not to
Z," Proc. 5th Annual Z User Meeting, Oxford, December 1990, Springer-Verlag, 1991

1631 S. L. Montgomery, Relational Database Design and Implementation Using DB2, Van
Nostrand Reinhold, 1990

[64] B. Moret, "Decision Trees and Diagrams," ACM Computing Survey, vol. 14, no. 4, pp.
593-623, September 1977

165] G. J. Myers, The Art of Software Testing, John Wiley & Sons, 1979

[661 Takeshi Nakajo and Hitosbi Kume, "A Case History Analysis of Software Error Cause-
Effect Relationships," IEEE Transactions on Software Engineering, vo[. 17, no. 8, pp.
830-838, August 1991

[67] D. Neilson, "Machine Support for Z: The zedB Tool," Proc. 5th Annual Z User
Meeting, Oxford, December 1990, Springer-Verlag, 1991

[681 M. A. Ould and C. Unwin (Eds.), Testing in Software Development, Cambridge
University Press, 1989

[69] L. J. Peters and L. L. Tripp, "Comparing Software Design Methodologies,"
Datamation, pp. 3 16-321, November 1977

[70] J. Peterson, "Petri Nets," ACM Computing Survey, vol. 9, no. 3, pp. 223-252,
September 1977

[71] F. Polack, M. Whiston, and P. Hitchcock, "Structured Analysis - A Draft Method for
Writing Z Specifications," Proc. 6th Annual Z User Meeting, Cambridge, December
1994, Springer-Verlag, 1992

[72] F. Polack, M. Whiston, and K. C. Mander, "The SAZ Project: Integrating SSADM and
Z," Proc. 1st International Symposium ofFormal Methods Europe, Denmark, April
1993, Lecture Notes in Computer Science 670, Springer Verlag, 1993

[73] F. Polack and K. C. Mander, "Software Quality Assurance Using the SAZ Method,"
Proc. 8th Annual Z User Meeting, Cambridge, June 1994, Springer-Verlag, 1994

[74] B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Spectflcalion andZ,
Prentice-Hall, 1991

[75] C. V. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda, "Software Engineering:
Problems and Perspectives," Computer, vol. 17, no. 10, pp. 191-209, October 1984

[76] G. Randell, "Data Flow Diagram and Z," Proc. 5thAnnualZ UserMeeling, Oxford,
December 1990, pp. 216-227, Springer-Verlag, 1991

[77] C. Rich, R. C. Waters, and H. B. Reubenstein, "Toward a Requirements Apprentice,"
Proc. 4th International Workshop on Software Specfication and Design, pp. 79-86,
CS Press, 1987

[78] M. Roper and A. Rahim, "Software Testing Using Design-Based Techniques," Proc. 1st
European International Conference on Software Testing Analysis & Review, London,
October 1993

[79] R. G. Ross, Entity Modeling: Techniques and Application, Database Research Group,
1987

[80] P. Rudnicki, "What Should be Proved and Tested Symbolically in Formal
Specifications," Proc. 4th International Workshop on Software Specification and
Design, pp. 190-195, CS Press, 1987

Bibliography	 149

The Inlegratioo of Software Specification, Verification, and Testing Techniques with Software Requirements and Design Processes

[811 M. Rueher, "From Specification to Design: An Approach Based on Rapid Prototyping,"
Proc. 4th International Workshop on Software Specfl cation and Design, pp. 126-133,
CS Press, 1987

[82] L. Semmens and P. Allen, "Using Yourdon and Z: an Approach to Formal
Specification," Proc. 5th Annual Z User Meeting, Oxford, December 1990, pp. 228-253,

- Springer-Verlag, 1991

[83] J. A. Semi, Analysis & Design ofInformation System, McGraw-Hill, 1989

[84] I. Shemer, "Systems Analysis: A Systemic Analysis of a Conceptual Model,"
Computing Practices, vol. 30, pp. 506-512, June 1987

[85] I. Sommerville, Software Engineering, Addison-Wesley, 1989

[86] J. M. Spivey, The Z Notation: A Reference Manual, Prentice-Hall, 1992

[87] J. F. Stay, "HIPO and Integrated Program Design," IBM System Journal, 1976

[88] P. A. Swatman, D. Fowler, and C. Y. M. Gan, "Extending the Useful Application
Domain for Formal Methods," Proc. 6th Annual Z User Meeting, York, December
1991, Springer-Verlag, 1992

[89] W. Swatout and R. Balzer, "On the Inevitable Intertwining of Specification and
Implementation," Communications of the ACM, vol. 25, no. 7, pp. 438-440, July 1982

[90] R. B. Terwilliger and R. H. Campbell, "PLEASE: A Language for Incremental Software
Development," Proc. 4th International Workshop on Software Specification and
Design, pp. 249-256, CS Press, 1987

[911 T. H. Tse, A Unifying Frameworkfor Structured Analysis and Design Models,
Cambridge University Press, 1991

[92] P. T. Ward and S. J. Mellor, Structure Development for Real-Time System (Volume 1:
Introduction & Tools), Yourdon Press, 1985

[93] A. I. Wasserman and S. Gutz, "The Future of Programming," Communications of the
ACM, vol. 25, no. 3, pp. 196-206, March 1982

[94] G. M Weinberg and D. P. Freeman, "Reviews, Walkthroughs, and Inspections," IEEE
Transactions on Software Engineering, vol. SE-b, no. 1, January 1984

[95] J. M. Wing, "A Larch Specification of the Library System," Proc. 4th International
Workshop on Software Specfl cation and Design, pp. 34-41, CS Press, 1987

[96] J. M. Wing, "A Study of 12 Specifications of the Library Problem," IEEE Software, pp.
66-76, 1988

[97] J. M. Wing, "A Specifier's Introduction to Formal Methods," vol. 23, no. 9, pp. 8-24,
Computer, September 1990

[98] J. Woodcock and M. Loomes, Software Engineering Mathematics, Pitman, 1989

[99] S. S. Yau and J. J. -P. Tsai, "A Survey of Software Design Techniques," IEEE
Transactions on Software Engineering, vol. SE-12, no. 6, pp. 713-721, June 1986

[100] E. Yourdon and L. L. Constantine, Structu red Design, Yourdon Press, 1979

[101] E. Yourdon, Modern StructuredAnalysis, Prentice-Hall, 1989

[102] K. Yue, "What Does It Mean To Say That A Specification is Complete," Proc. 4th
International Workshop on Software Specification and Design, pp. 42-49, CS Press,
1987

Bibliography	 150

	DX194494_1_0001.tif
	DX194494_1_0003.tif
	DX194494_1_0005.tif
	DX194494_1_0007.tif
	DX194494_1_0009.tif
	DX194494_1_0011.tif
	DX194494_1_0013.tif
	DX194494_1_0015.tif
	DX194494_1_0017.tif
	DX194494_1_0019.tif
	DX194494_1_0021.tif
	DX194494_1_0023.tif
	DX194494_1_0025.tif
	DX194494_1_0027.tif
	DX194494_1_0029.tif
	DX194494_1_0031.tif
	DX194494_1_0033.tif
	DX194494_1_0035.tif
	DX194494_1_0037.tif
	DX194494_1_0039.tif
	DX194494_1_0041.tif
	DX194494_1_0043.tif
	DX194494_1_0045.tif
	DX194494_1_0047.tif
	DX194494_1_0049.tif
	DX194494_1_0051.tif
	DX194494_1_0053.tif
	DX194494_1_0055.tif
	DX194494_1_0057.tif
	DX194494_1_0059.tif
	DX194494_1_0061.tif
	DX194494_1_0063.tif
	DX194494_1_0065.tif
	DX194494_1_0067.tif
	DX194494_1_0069.tif
	DX194494_1_0071.tif
	DX194494_1_0073.tif
	DX194494_1_0075.tif
	DX194494_1_0077.tif
	DX194494_1_0079.tif
	DX194494_1_0081.tif
	DX194494_1_0083.tif
	DX194494_1_0085.tif
	DX194494_1_0087.tif
	DX194494_1_0089.tif
	DX194494_1_0091.tif
	DX194494_1_0093.tif
	DX194494_1_0095.tif
	DX194494_1_0097.tif
	DX194494_1_0099.tif
	DX194494_1_0101.tif
	DX194494_1_0103.tif
	DX194494_1_0105.tif
	DX194494_1_0107.tif
	DX194494_1_0109.tif
	DX194494_1_0111.tif
	DX194494_1_0113.tif
	DX194494_1_0115.tif
	DX194494_1_0117.tif
	DX194494_1_0119.tif
	DX194494_1_0121.tif
	DX194494_1_0123.tif
	DX194494_1_0125.tif
	DX194494_1_0127.tif
	DX194494_1_0129.tif
	DX194494_1_0131.tif
	DX194494_1_0133.tif
	DX194494_1_0135.tif
	DX194494_1_0137.tif
	DX194494_1_0139.tif
	DX194494_1_0141.tif
	DX194494_1_0143.tif
	DX194494_1_0145.tif
	DX194494_1_0147.tif
	DX194494_1_0149.tif
	DX194494_1_0151.tif
	DX194494_1_0153.tif
	DX194494_1_0155.tif
	DX194494_1_0157.tif
	DX194494_1_0159.tif
	DX194494_1_0161.tif
	DX194494_1_0163.tif
	DX194494_1_0165.tif
	DX194494_1_0167.tif
	DX194494_1_0169.tif
	DX194494_1_0171.tif
	DX194494_1_0173.tif
	DX194494_1_0175.tif
	DX194494_1_0177.tif
	DX194494_1_0179.tif
	DX194494_1_0181.tif
	DX194494_1_0183.tif
	DX194494_1_0185.tif
	DX194494_1_0187.tif
	DX194494_1_0189.tif
	DX194494_1_0191.tif
	DX194494_1_0193.tif
	DX194494_1_0195.tif
	DX194494_1_0197.tif
	DX194494_1_0199.tif
	DX194494_1_0201.tif
	DX194494_1_0203.tif
	DX194494_1_0205.tif
	DX194494_1_0207.tif
	DX194494_1_0209.tif
	DX194494_1_0211.tif
	DX194494_1_0213.tif
	DX194494_1_0215.tif
	DX194494_1_0217.tif
	DX194494_1_0219.tif
	DX194494_1_0221.tif
	DX194494_1_0223.tif
	DX194494_1_0225.tif
	DX194494_1_0227.tif
	DX194494_1_0229.tif
	DX194494_1_0231.tif
	DX194494_1_0233.tif
	DX194494_1_0235.tif
	DX194494_1_0237.tif
	DX194494_1_0239.tif
	DX194494_1_0241.tif
	DX194494_1_0243.tif
	DX194494_1_0245.tif
	DX194494_1_0247.tif
	DX194494_1_0249.tif
	DX194494_1_0251.tif
	DX194494_1_0253.tif
	DX194494_1_0255.tif
	DX194494_1_0257.tif
	DX194494_1_0259.tif
	DX194494_1_0261.tif
	DX194494_1_0263.tif
	DX194494_1_0265.tif
	DX194494_1_0267.tif
	DX194494_1_0269.tif
	DX194494_1_0271.tif
	DX194494_1_0273.tif
	DX194494_1_0275.tif
	DX194494_1_0277.tif
	DX194494_1_0279.tif
	DX194494_1_0281.tif
	DX194494_1_0283.tif
	DX194494_1_0285.tif
	DX194494_1_0287.tif
	DX194494_1_0289.tif
	DX194494_1_0291.tif
	DX194494_1_0293.tif
	DX194494_1_0295.tif
	DX194494_1_0297.tif
	DX194494_1_0299.tif
	DX194494_1_0301.tif
	DX194494_1_0303.tif
	DX194494_1_0305.tif
	DX194494_1_0307.tif
	DX194494_1_0309.tif
	DX194494_1_0311.tif
	DX194494_1_0313.tif
	DX194494_1_0315.tif

