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Abstract 

Global energy consumption is projected to increase the world over from 546 EJ in 2010 

to an estimated 879 EJ in 2050 (Frei et al., 2013). Several factors contribute to this 

projected increase including growing global population, better quality of life globally, and 

continued electrification of services and products. Three serious issues arise from the 

increase in consumption and production, that is, fuel supply, and availability and 

increased anthropogenic emissions. To meet demand, developing countries, such as 

Pakistan, are investing in power generation research and technologies. Whilst a number 

of technologies are available, fluidised bed combustion (FBC) is an attractive 

technological option because of its ability to handle fuels with variable calorific content, 

moisture content, mineral content and high alkaline content. FBC offers reliable thermal 

output because of the large thermal mass (fluidised bed) associated with the method. This 

thesis set out to explore the possibility of using low grade fuels in FBC and investigate 

the impact the fuels have on agglomerate formation rates and combustion efficiencies. 

To explore the potential of FBC in the first experimental investigation presented in this 

thesis, a 350KW pilot scale FBC rig was used to perform a series of combustion 

experiments on ten Pakistani coal blends from the Northern Punjab salt rage coal seams. 

The coals had high sulphur and alkaline content and presented challenges in both 

combustion and emissions control. Operational variables including bed temperature, bed 

additives (limestone), sulphur: calcium fuel ratio, additive particle size and co-firing with 

wood biomass were employed to evaluate the effect of fuel blending, combustion and 

emissions optimisation. This thesis argues high SO2 emissions resulting from the 

combustion of high sulphur coals can be reduced in emission concentration when 

optimising operational variables. The high alkaline content, because of pyrite (FeS) 

concentrations in the fuel caused bed agglomeration and slagging in the beds. The 

investigation analyses the agglomerates and defines the mechanisms involved. This 

research allows for remedies and implementation choices when considering the coals 

application in full scale systems. 

It is not only coal which can be utilised. Further work investigated the effects of five 

different biomass fuels in FBC. Biomass can be classified as a CO2 neutral fuel as the 

CO2 released during combustion is relatively equal to the CO2 absorbed in the growth of 

the original plant. However, biomass is known to contain high concentrations of alkaline 

species such as potassium (K) and sodium (Na) which were shown in the literature to 

cause agglomeration. The biomasses were combusted in the FBC rig to evaluate the 
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combustion, emissions, agglomerates, temperatures and pressure outputs associated with 

each fuel. Following tests the air distribution plate was modified to simulate both a 

uniform air distribution system and a non-uniform air distribution system. This allowed 

for comparisons of the fuels in a system with uniform air flows and non-uniform 

airflows/distribution which would be experienced in damaged systems. Thus, this thesis 

argues biomass is significant and relevant to industrial application and allowed for 

identification of significant chemical components in the agglomeration mechanisms of 

each fuel as well as establishing the performance of each fuel in variable systems. 

In order to understand the fundamental chemical and physiological makeup of the low-

grade fuels it was necessary to conduct an extensive series of fuel characterisation. The 

fuel characterisation research undertaken yielded information as to the fuels energy 

content, chemical makeup, combustion characteristic and identify key components such 

as alkaline species associated with the negative mechanisms seen in pilot scale testing. In 

order to analyse the fuels x-ray fluorescence (XRF) was used. This technique identifies 

major and minor oxides in coal samples. However, as demonstrated in the fuel 

characterisation work, there were limitations, inaccuracies and repeatability issues when 

analysing low grade fuels with XRF. Thus, a significant effort was made to improve the 

sampling, ashing, XRF medium and normalisation process. The results of this research 

led to a more reliable XRF method for analysing low grade fuels and their bi-product of 

combustion which is applicable for any industry utilising these types of fuels and 

techniques. 

The final part of the investigations focused on the prediction of agglomeration and 

slagging tendencies of the fuels. This was done by applying the results seen in the pilot 

scale tests and the results of the fuel characterisation work with slagging indices and the 

application of a thermodynamic model (FACTSAGE). FACTSAGE can be used to 

predict slagging tendencies of the fuels by modelling chemical species released over 

temperature ranges. The results showed correlation between the theoretical results and the 

experimental results 

Together this research demonstrates the implications of using low-grade fuels in small 

scale FBC. This thesis explores how this research can then be used in full scale FBC 

operations. This thesis not only highlights the problems with using low grade fuels in 

FBC but suggests remedies and potential solutions to the problems based on the results 

from experimental data and FACTSAGE modelling. It also presents suggestions on how 

to continue development of the technology to reduce or avoid some of the difficulties in 

combusting low grade fuels. 
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Nomenclature 

ΔP = pressure drop (N/m2) 

λ= friction factor 

L= distance (m) 

D= Tube diameter (m) 

v= velocity of gas (m/s) 

ρf=fluid gas density (kg/m3) 

Umf= minimum fluidisation velocity (m/s) 

Vmf¸Q =volumetric flow rate (m3/s) 

A=cross sectional area (m2) 

Dp=particle diameter (mm) 

ρs=solid density (kg/m3) 

ρg= gas density (kg/m3) 

g and gc = gravity (9.81 m/s2) 

Dp=average particle size (mm2) 

dsph=diameter of sphere (m) 

deff=effective particle diameter (m2) 

Δpfr=frictional pressure drop (Pa) 

Lm=height of bed (m) 

ɛm, ɛ=void fraction 

μ=viscosity of gas (kg/ms-1) 

μo=superficial gas velocity (m/s) 

φs=Spherity of a particle 

ū=interstitial velocity (m/s) 

u= carrier gas 

j=pressure gradient factor  

ρp=particle density including pores (kg/m3) 

Vb=bed volume (m3) 

Ρb=bulk density (kg/m3) 

mb= mass of bed (kg) 

vP= volume of the particle (m3) 

vb=bed volume (m3) 

H= Bed height (m) 

Hmf= minimum fluidisation bed height (m) 

δb=pressure change across bed (kPa) 

ɛmf= volume of void fraction at minimum fluidisation (mm3) 

ut=terminal velocity (m/s) 

Db=bubble diameter (m) 

Dt= bed diameter (m) 

ubr= bubble rise velocity (m/s) 

N= number of holes 

dh=grid hole diameter (m) 

Cd= discharge coefficient 

Nj= hole density (m2) 

Nd= number of holes’ density (holes/m2) 
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1 Introduction 

In the UK ,power generation companies are shifting from large centralised facilities such 

as those brought online up to the early 1980’s, plants such as; Ratcliffe (2GW), 

Ferrybridge (1GW), Eggbrough (2GW) and Drax (4.4GW), to medium and small scale 

localised facilities(Breeze, 2014). 

Centralised power generation facilities were chosen as a result of political, social and 

environmental climates at the time. Coal was cheaper and secure with national and 

international fuel stocks plentiful and accessible. However, global politics, public 

opinions, anthropogenic emission impacts, fuel security, developing countries and 

advances in technology have moved the UK from larger facilities to small-medium scale 

more localised facilities fuelled by alternative fuels.  

Power generation industry has continued to evolve and adapt to the changes in production 

choices. Figure 1-1 show how the fuel types for generation has changed since 1980. As 

the figure shows, coal use has reduced since 1985 with discoveries in the North Sea 

leading to large construction of gas plants across the UK, and then drive to implement 

sustainable fuel sources. 

The UK government is a member of directives such as; directive 2009/28/EC, 

2001/77/EC and 2003/30/EC (Renewable Energy Directive 2009) which promotes the use 

of renewables in the power generation sector to achieve a target of 15% of the UK’s power 

fuelled by renewables by 2020 (Glachant, 2001). Legislation and directives such as these 

Figure 1-1 Electricity generation by fuels 1980-2011 (DECC, 2012) 
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are a response to the growing concern over emissions from anthropogenic sources and the 

potential consequences forecasted to impact the atmosphere and environment in the future 

(Hassan, 2014). 

The power sector has responded to the need for renewable power by constructing wind 

farms, solar arrays, installing biomass fired facilities and modifying coal fired units. This 

is demonstrated by the changes seen in Figure 1-2 which shows the overall increase in 

renewable generation. 

Examples of the increase in biomass use include Drax power station which has converted 

from pulverised fuel (PF) (coal units) to biomass fired units, the construction of Steven’s 

Croft virgin wood fluidised bed, Blackburn Meadows recycled wood fluidised bed, 

Wilton 10 virgin/recycled wood fluidised bed and Aberthaw virgin wood PF units 

(Breeze, 2014). 

With the renewable power sector commissioning, more and more biomass fired stations 

across the UK, the focus of this thesis will be towards the application of low grade fuels 

such as biomass in full scale technologies. As fluidised bed combustion is being utilised 

to combust low grade and renewable fuels, this thesis will investigate problems with their 

use in fluidised bed combustion and propose remedies based in critical evaluation of the 

results. 

1.1 Global Energy 

Power generation technologies vary from country to country and between local 

requirements. Many factors dictate the choice of power generation including technology 

type, economics, power requirement and most significantly fuel sources. 

Figure 1-2 UK renewable electricity generation, 2009-2015 (Evans, 2016) 

http://www.carbonbrief.org/wp-content/uploads/2016/03/UK-renewable-electricity-generation-by-source-2009-2015.png
http://www.carbonbrief.org/wp-content/uploads/2016/03/UK-renewable-electricity-generation-by-source-2009-2015.png
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Energy sources can be divided into two categories, namely non-renewable and renewable 

sources. Non-renewable sources are made up primarily of fossil fuels. These are the 

remnants of ancient plants and animals which have been exposed to pressure and heat 

over millennia e.g. coal, natural gas and crude oil. Non-renewable fuels also include 

nuclear because of its depleting finite fuel source. Renewable energy sources include 

solar, onshore/offshore wind, tidal and biomass. Renewable energy utilisation has 

increased as a result of global emissions and public awareness towards the environmental 

impacts of conventional power generation methods. Whilst the work in this thesis will 

evaluate the potential for environmental impact of using both renewable and non-

renewable fuels, the focus is drawn to engineering problems and limitations of utilising 

low grade fuels and thus how to remedy the issues. 

1.1.1  Global Energy Consumption 

Global energy consumption is projected to continue increase over the next century. In 

projections modelled by the world energy council it was suggested that world energy 

consumption will increase from 546 EJ in 2010 to 879 EJ by 2050 (Frei et al., 2013). In 

another independent study the international energy agency projects that by 2050, the 

world energy consumption will have reached 22 Gtoe (gigatons of oil equivalent) 

compared to the current 10 Gtoe a year (EIA, 2016). 

There are a number of key global factors which will cause an increase in the global energy 

consumption increase to 2050 and beyond:  

 Global population is predicted to increase to between 9 and 12.1 billion people before 

2100. There is a large margin of error associated with this type of study because of 

global economies, social dynamics, and technological innovation. However, the 

population is expected to peak and then reduce to a balanced value of approximately 

9 billion people as we approach the year 2100 (Lutz et al., 2001; Cohen, 2003). The 

global cap is estimated by taking into account global resource availability and free 

space, without consequence to environmental damage. The distribution of the global 

population will increase in continents such as Asia and significantly in Africa. A 

decrease is expected in developed countries such as Europe (Cohen, 2001). Each of 

the 9 billion people will create an increasing demand on energy production as 

individual demand on electrically driven appliances and lifestyles increase. This is 

until the efficiencies of power rise in the devices is optimised along with technological 

innovation. 
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 Quality of life can be correlated with the units of energy per capita head a person 

consumes annually. In countries with sufficient energy reserves/production, there is 

an ability to provide services and products which improve the quality of life; medical 

and health facilities for instance (Hoogwijk, 2004). Studies have indicated that when 

the energy consumption per capita head for a state reaches 2.6 Gtoe/yr, there is no 

further improvement without industrialisation Growing globalisation and economic 

growth is most prevalent in developing countries creating a deficit in energy 

production as the populations of those states come to expect the same amenities as 

citizens in developed countries. This brings with it a significant increase in energy 

demand and consumption. 

 Other factors are predicted to increase the global energy consumption such as 

increasing wealth in emerging markets e.g. China and industrialisation in these 

markets accompanied with globalisation. However, these factors will fluctuate 

whereas population growth and the demand of each individual is highly probable. 

1.1.2 Global Energy Production 

In order to meet the demand for electrical production it will be necessary to create more 

efficient systems whilst producing more power generation facilities, of a larger energy 

producing capacity, using the available energy resources available in the future. The type 

of energy resource is expected to also change in the future as fuel reserves are depleted 

and discovered, as different technologies become more efficient and as individual states 

alter their policies and address national pressures such as producing less CO2 intensive 

electricity. 

1.1.3 Energy in the Future 

When considering the potential sources of energy in the future there are two leading 

factors which affect the decision process; land availability/required for that fuel source 

and the respective yield achievable. This is especially true when considering renewables; 

solar, PV, wind turbines, wave, hydro and biomass. An example being a study by Berndes 

et al. (2003), who reviewed 17 studies on the potential for biomass power generation for 

future global energy deficit. The conclusions of this studies illustrated that depending on 

the land availability and yield achieved by that land, the energy produced by the biomass 

could vary between 100 and 400 EJ/yr by 2050 (Sieminski, 2014). This type of difference 

is shared with global energy associations such as IEA which predicted a 56% global 

energy consumption increase from 2010 to 2040 equating to an increase from 524 

quadrillion btu to 820 quadrillion btu (Birol, 2010). 
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As Figure 1-3 shows developing countries will be a large proportion of future increased 

power demand. These types of country will initially utilise their indigenous fuel stocks 

and import cheap alternatives. In order to address energy consumption, these countries 

will change and utilise the most economic option available to them. Figure 1-3 illustrates 

how the trend of energy sources is likely to alter by 2030. Note should be taken to the 

dependence of fossil fuels such as coal in the developing countries. So, the question is to 

what fuel stocks are to be utilised and thus what technologies, for future energy use will 

likely to be adopted. 

1.1.4 Fuel Stocks 

In the past, fuel availability and stockpiles have been governed by two key factors; 

political ramification and economic feasibility. Political ramifications have been 

drastically steered by global political peer pressure and local social trends for climate 

change and the effect energy producers are having on anthropogenic environmental issues 

(Verrastro and Ladislaw, 2007). This is then combined with the cost of fuels as 

technologies fall in and out of fashion, nuclear energy disasters such as Chernobyl being 

a key example, means that energy generation has changed over the last 50 years (Van der 

Pligt, 1992). As a direct result, the need for the energy sector to continue sourcing new 

fuel reserves to match these trends and pressures alongside the continuing depletion has 

an effect on fuel prices which influences energy producers decisions with regards to fuel 

choice for generation (Perlack et al., 2005; Rogner, 1997). 

Figure 1-3 Primary energy use profiles for  countries within different forums 

(Kaygusuz, 2012) 
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1.1.4.1 Low Grade Coal 

Coal is a combination of carbon, hydrogen, oxygen, nitrogen, sulphur and low 

concentrations of mineral/inorganic impurities. The high carbon content makes this fuel 

ideal for combustion and power generation. Different ranks of coals exists due to the 

variance in the content of carbon, moisture, mineral matter, ash and inherent impurities 

(Volborth, 1987). 

The price of higher ranks coal such as anthracite ($80-$90/tonne) and bituminous coal 

($57-$60/tonne) is more than three times the cost of sub bituminous coals ($12-$14/tonne) 

and lignite’s ($19-$20/tonne) (EIA, 2013)(Hecking, 2016). This has fluctuated more 

recently with North America investing in indigenous fracking and tar sands thus resulting 

in an excess in coal production and exports. For developing countries, the variability of 

the cost is forcing governments such as Pakistan, India, and China etc. to look at utilising 

indigenous fuel stocks.  

Figure 1-4 shows how the proven world coal reserves are found more in developing, non 

OECD countries (Petroleum, 2015). Within non-OECD countries there is currently a 

proven total proven reserve of 891531 Mtoe of coal. However, more than half, 57%, of 

these reserves are sub bituminous or lignite ranks(Ishiguro and Akiyama, 1995; Husain, 

2010). 

The available data illustrates a trend for developing countries to utilise their indigenous 

low grade coals in the future. Alternative fuels in developing countries include biomasses 

(wastes, virgin materials and recycling) which have the added potential for CO2 emissions 

reductions. 

Figure 1-4 Distribution of coal reserves globally and the trend for developing countries 

(Petroleum, 2015) 
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1.1.4.2 Biomass 

Biomass is organic materials such as wood, farming residues, municipal solid wastes 

(MSW) etc. which contain high concentrations of hydrocarbons and thus have high 

calorific potential. 

The potential for biomass fuels to meet power production globally is dependent on land 

availability and the yield achieved. Studies suggest that biomass could supply between 

100 and 600 EJ of electricity depending on growth variables and the local strategies 

adopted in producing the power (Slade et al., 2011). It is difficult to quantify the actual 

global availability of biomass for generation when there are so many different types and 

applications.  

The International Renewable energy agency, IRENA (2012), quantified the investment 

cost required to utilise biomass in different technologies, as shown in Table 1-1. This 

indicates that technologies such as stoker boilers and fluidised beds could potentially 

produce the cheapest electricity using biomass; 1880-4260 $/kW and 2170-4500 $/kW 

respectively.  

1.2 Fluidised Bed Combustion (FBC) 

Cheaper initial capital investment and high potential electrical output means fluidised bed 

combustion (FBC) adopted heavily in non-OECD countries. Malaysia uses FBC for 

agricultural and forestry residues (Shafie et al., 2012), Brazil for high moisture sugar cane 

residues and MSW (Hoffmann et al., 2012), China for MSW also for power (Cheng and 

Hu, 2010) and Thailand to combust residues from the fruit farming industry (Nagle et al., 

2011). 

Table 1-1 Typical capital costs and the levelised cost of electricity using different 

biomass power generation technologies (IRENA, 2012) 
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Fluidised beds are also being used to combust the lower ranked coals (previously 

described), examples including; Pakistan (Shah et al., 1994), Australia (Vuthaluru et al., 

2000), Greece (Koukouzas et al., 2009) and Africa (Papo, 2015). 

FBC is different from conventional combustion methods such as PF combustion. In FBC 

a continuous stream of air is used to lift and suspend a bed of inert bed material, such as 

silica sand. Within the turbulent bed, solid fuel enters and combusts, resulting in rapid 

heat transfer and high combustion efficiencies. FBC is particularly useful for the 

combustion of biomass and low ranks coals. The use of a bed results in a high thermal 

reservoir/mass. Therefore, any fluctuation in fuel quality (calorific value, moisture 

content etc.) is absorbed whilst a constant thermal and hence electrical output can be 

achieved. Additionally,  FBC is capable of handling high ash, high mineral impurities, 

high alkali concentration by having constant bottom and fly ash removal techniques (Wu, 

2003a). 

1.2.1 Fluidised Bed Combustion Problems 

As with any combustion technology, there are bi-products this includes the residues in the 

form of bottom ash, fly ash and fine particulate matter and ashes from the complete 

combustion of the fuels. Depending on the type of fuel and its relative quality/ranking, 

the fuel can contain elevated concentrations of inorganic elements, heavy metals and other 

chemical impurities resulting from the fuels chemical and physical structure (Khan et al., 

2009).  

Low rank coals and biomass contain elevated concentrations of inorganic elements such 

as alkali species; sodium (Na) and potassium (K). These species have melting 

temperatures (≥764°C for Na and ≥790°C for K) (Bartels et al., 2008g) lower than the 

temperature of the combustion environment (800-900°C) (Kunii et al., 2013). The alkali 

species and ash enter a liquid melt/gas phase which coats the bed material creating a sticky 

surface. Collisions of these particles results in adhesion and growth to larger particles. 

The agglomerates grow in size and structural rigidity. The presence of agglomerates 

within the bed interferes with the hydrodynamics of the bed and turbulence. Hence 

combustion efficiency and system performance reduces. If agglomeration is not addressed 

upon detection of a system change, a bed can eventually defluidise which will result in a 

furnace outage (Öhman et al., 2000; Elled et al., 2013b; Duan et al., 2015).  
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1.3 Synopsis of Research 

The rationale of the research for this thesis was to undertake an investigation in the use 

of low rank coals and biomass fuels in pilot scale FBC and evaluate the application to full 

scale. This was to be done by completing a literature review to encompass all necessary 

theory and current research, extensive experimental testing of fuels in a pilot scale test rig 

and by conducting thorough analytical analysis of results. The literature review allowed 

for the identification and outlining of gaps in the current available research. Experiments 

and methodology were proposed and designed in order to address the outlined research 

gaps. By consulting the literature and evident theory, it was possible to approach the 

research in such a way as to evaluate the effect that the fuels had upon the fluidised bed 

system. Further work was conducted in order to assess the impact of operational changes 

such as the use of additives, bed temperatures, particle size etc. on the fluidised. 

Further analysis and characterisation of the fuels was necessary to understand the 

underpinning fundamentals and thus the effect the fuels had upon the technology. Further 

gaps in analytical techniques, such as XRF, for measuring elemental content of ashes were 

identified to develop the technique to improve accuracy and reliability in results. 

The research also involved the use of theoretical thermodynamic modelling for the use of 

predicting agglomeration and slag based mechanisms in FBC. The results will be used to 

validate the results of experimental data. The result of this work included validation of 

the software package itself and use of the technique in predicting FBC agglomeration 

likelihood when using the fuels included in the investigations of later Chapters 

1.4 Aims and Objectives 

The key aims which defined the core research objectives are as the following points 

indicate: 

 Investigate the effect that combusting industrially relevant biomasses and 

economically viable sub-bituminous coals have on the formation of agglomerates 

within the bed of an FBC. The aim of this is to quantify the mechanism of the 

agglomerate formation and to compare the fuels applicability in the technology. 

 Evaluate the affect operational variables have on the formation of agglomerates, 

emissions, combustion performances, temperature distribution and system pressures. 

By varying operational parameters conclusions will be drawn as to the flexibility and 

applicability of the fuels in FBC systems. 
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 Using the information of the previous objectives, a series of engineering remedies 

will be presented including operational parameter choice/optimisation and the 

alternative methods that the results indicate could be beneficial in FBC. 

 Investigate the application of indices, fuel characterisation and thermodynamic 

modelling in the prediction of slag and agglomeration formation in FBC. In doing so 

conclude on the use of different techniques and the use for predicting FBC issues. 

 Investigate the effect of damaged air distribution systems in FBC. Evaluate the impact 

on agglomeration, air distribution etc. and conclude as to the impact on industrial 

scale systems. 

 The overall objective is to define the applicability of the fuels in these investigations, 

the effect of operational variables, use of modelling and remedies for full scale power 

generation FBC facilities.  

Each Chapter addresses different aspects of low grade fuels for FBC. However, the focus 

is to evaluate the implications that the low-grade fuel would have if employed on full 

scale FBC technology. The following sections describe the aims of the Chapter and their 

significance. 

The is a comprehensive literature review which overviews important theory and 

previously undertaken research. This is fundamental for an understanding in the 

techniques and technology used throughout the investigations. The research is used to 

identify areas which haven’t previously considered or a need for further investigation or 

more rigorous validation is needed. Throughout this Chapter the aim is to identify gaps 

in the research and explain where the research in the subsequent investigations fit in the 

bigger picture. 

Chapter 3 is a detailed description into the methodology applied and experimental choices 

made in order to rigorously and accurately test the applicability of the fuels in FBC 

systems. Developments of the testing equipment, plans of tests and validation of 

operational choices for investigation are explained. By doing so this Chapter aims to 

indicate the logical and systematic approach taken to thoroughly test key operational 

parameters within the research in order to achieve representative and reliable results to be 

used to compare the fuels, techniques and scale of operation.  

Chapter 4 is aimed towards producing an understanding of the fundamental physical and 

chemical make-up of the fuels. The objective of this is to produce a series of data sets that 

will be used to draw links to the agglomerates and combustion mechanisms seen in later 

Chapters. This Chapter also aims to develop XRF as a more accurate and applicable 
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technique for measuring low grade fuel ashes and combustion bi-products. This data will 

also be critical for identifying key components within the combustion mechanisms and 

devising conclusions as to their importance to the research. 

Chapter 5 applies theoretical approaches including indices, predictions based on the fuel 

characterisation studies and a thermodynamic model (FACTSAGE) for the determination 

of slagging and agglomeration issues with low grade fuels in FBC. The aim is to evaluate 

the accuracy and applicability of these techniques for predicting bed issues by validating 

the results in experimental chapters. The overall objective is to identify the strengths and 

weaknesses of the methods and to suggest how the techniques could be used to predict 

bed issues in full scale operations. 

Chapter 6 aims to investigate the effect sub-bituminous coals have on a FBC bed and the 

impact the fuel has on agglomerates. The objective of this Chapter is to evaluate the 

opportunity to improve the fuel with the addition of bed additives and operational 

changes. By doing so, the work allows for conclusions to be drawn between operational 

variables whilst linking phenomena seen in the bed to the fuel characterisation work of 

Chapter 4. The overall aim of the Chapter is to conclude as to the applicability of the fuels 

in full scale operations and to offer methods for improving the fuels as a result of the data 

gathered during experimental testing. 

Chapter 7 aims to evaluate the effect combusting different biomass fuels in FBC has on 

the rates of agglomeration and the impact of operational variables on the ability to achieve 

stable combustion. The air distribution plate will be modified in order to understand the 

effect poor air flow and restriction has on the bed and combustion. The overall aim of this 

Chapter is to evaluate the biomasses and to evaluate the application of the fuels in full 

scale operations and recommend techniques that should be employed in order to mitigate 

the engineering challenges highlighted by the experimental results. 

1.5 Outline of Thesis 

This thesis contains 8 Chapters. Chapter 1 introduces the problem and rationale for the 

research undertaken in the following document. Chapter 2 develops an understanding of 

the theory and explains research in the literature. In doing so highlighting the gaps in the 

available research and the need for the research. Chapter 3 describes the experimental 

methodology, equipment and testing plan designed to vigorously the theories and 

variables defined. Chapter 4 is focused on fuel and material characterisation and the lab 

analysis techniques/methodologies development. Chapter 5 through 7 are results Chapters 
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specifically looking at areas in which the literature review has highlighted. Chapter 6 

investigates low rank Pakistani coals in FBC, Chapter 7 investigates the impact of 

biomass in FBC and the effect of a damaged air distribution system on agglomeration, 

and Chapter 5 demonstrates work conducted in the modelling package “FACTSAGE”. 

Chapter 8 outlines the conclusions and the future work required to further develop ideas 

and theories founded in this thesis. The research shows how the fuels can be employed in 

full scale utilities and the remedies which should be considered on their application. 
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2 Literature Review 

2.1 Introduction 

An ongoing area of research is the application of biomass fuels and sub bituminous coals 

due to the economic and technological implication in the power generation industry. In 

order to understand what research has been undertaken beforehand and identify where the 

research gaps are a thorough literature review was conducted. The following Chapter is a 

comprehensive cross section of technical, chemical and physical areas which needed 

consideration when addressing potential operational issues for the combustion of low 

grade fuels in FBC technologies. 

2.2 Coal Utilisation 

Coal in its many variations, can be found in a number of geologically significant locations 

around the world, especially in large quantities in countries such as North America, 

Russia, Australia, South Africa, Columbia and China (Speight, 2012). Coal is the result 

of dead plant life from the carboniferous period (300 million years ago) which has been 

subjected to great pressure and heat. The first formations of coal come in the form of soft 

peats, but with longer periods of heat and pressure, give rise to bituminous and less 

abundant anthracites (Stone, 2004).  Due to the plant life origins of the coal, the elemental 

make up of coal consists mainly of carbon, hydrogen, oxygen, nitrogen and sulphur. Coal 

also contains small amounts of a number of major and minor groups varying from alkaline 

species such as sodium and potassium to heavy metals such as cadmium and mercury. 

These components would normally be found in small concentrations in plant life but due 

to the compaction process and leaching from local land formations, high concentrations 

of these elemental groups can build up in the coal (Wiser, 1999).  

The price of Coal has continued to increase overall since the 1950’s with economic 

changes and increasing consumption globally, as indicated by Figure 2-1. An example of 

change would altering coal utilisation is the collapse of the world market in the mid 2000’s 

followed by record coal production in the USA in 2006-2008 resulting in a fluctuation in 

global coal prices from $97.68 per short tonne exported to $39.31 per short tonne exported 

respectively (Freme, 2009). This then led to increased use of coal for power generation, 

domestic heating etc. in developing countries such as China which increased its 
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consumption to 2580 Mt in 2008 which was 41% of the global consumption (Lin and Liu, 

2010). However, with the re-stabilisation of world markets by 2010. The increase in coal 

prices has left countries such as Japan unable to fund coal power generation after their 

nuclear power plant fleet was shut down amid fears post Fukushima tsunami nuclear 

disaster, 2011 (Kim et al., 2013). It is for reasons such as these that research and 

investments are being made towards the exploitation of abundant lower grade coal 

sources. 

Barnes (2015) defines low grade fuels as followed: 

“materials that have an energy content that may be recovered by direct (e.g. combustion) 

or indirect (e.g. gasification) processes, but where that energy content is significantly 

lower than the range expressed in normal fossil fuels (oil, gas and coal)”. 

The lower energy content in low grade fuels can be due to higher mineral matter and 

moisture content, thus diluting the hydrocarbon content and also negatively effecting the 

combustion properties of the fuel (Barnes, 2015). 

A review of the available literature finds significant investigative works in numerous 

research institutes for low grade fuel-electrical power utilisation globally. Li (2004) 

reviewed research and exploratory work in Australia aimed towards the liberation and 

application of Victorian brown coals and lignite’s. There are numerous reserves of low 

grade coals including Murray Basin Mt, 19600, Gippsland Basin, 395000 Mt and Otway 

Basin, 15500 Mt. The conclusions of fuel availability, ease of extraction and its critical 

Figure 2-1 Estimated coal market prices, 1949-2011 (Dollars per short Ton) (Paduano, 

2016) 
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role in the future of Australia’s energy production and economic exports indicate the vast 

potential and need for technological applications. Numerous other studies including; 

(Ward and Christie, 1994; Dunne and Agnew, 1992; Karthikeyan et al., 2009; Barton et 

al., 1993) have been conducted on Australian coals because of their fuel supply potential. 

This is an example of the growing desire to use these types of fuels and thus the effect 

and application in combustion systems needs evaluation. 

2.3 Biomass 

Biomass is defined by the international energy association as: 

“Organic, i.e. decomposable, matter derived from plants or animals available on a 

renewable basis. Biomass includes wood and agricultural crops, herbaceous and woody 

energy crops, municipal organic wastes as well as manure (D’Apote, 1998)” 

Whilst the utilisation of low grade coals could potentially alleviate some of the growing 

global electrical demand resulting from the projected population growth of 18.6% (8.5 

billion by 2030) (Davis et al., 2014), concerns towards anthropogenic climate change has 

refocused research and development to less CO2 intensive methods of electrical 

generation. CO2 measurements over the last 60 years have seen average atmospheric 

concentrations increase from measurements over the last 60 years have seen average 

atmospheric CO2 concentrations increase from 316 ppm to 400 ppm (Davis et al., 2014). 

One method to reduce this is to replace CO2 intensive fossil fuels with biomass fuels such 

as those previously described as these types of fuels have potential to be carbon neutral 

or negative if combined with carbon capture method (Mathews, 2008). 

In order to utilise biomass, it is impotent to understand the difference biomass has to coal 

both chemically and physically. Biomass, like coal, contains mainly carbon, hydrogen, 

nitrogen and oxygen. Biomass contains very little sulphur and is of a varied concentration 

to the impurities such as alkaline earth groups (Quaak et al., 1999). The difference in 

biomass composition poses challenges in its application; from harvesting and logistical 

issues (McKendry, 2002; De Wit and Faaij, 2010; Thorsell et al., 2004; Sokhansanj et al., 

2009; Ekşioğlu et al., 2009; Lewandowski and Heinz, 2003; Spinelli et al., 2005), 

processing of the fuel damaging traditional grinders and cutting equipment (Nunes et al., 

2016; CHEN et al., 2005; Xutao and Bailiang, 2008; SUI et al., 2012; Yonglong and 

HouShulin, 2013), to physical and chemical reactions causing abrasion, agglomeration, 

corrosion, slagging and fouling in furnaces (Qing-tao, 2009; Wang et al., 2009; Bartels et 

al., 2008a; Basu and Sarka, 1983; Chaivatamaset et al., 2013). 
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As part of this study, biomass will be assessed in its application in FBC. This is a 

technology suited to low grade fuels such as biomass and the following sections will 

elaborate. 

2.4 Fluidised Bed Combustion (FBC) 

In order to combust biomass and other low grade fuels it is necessary to utilise a 

technology which has combustion flexibility that can adapt to the variable mineral, 

calorific and moisture content alongside other varying impurities. Fluidisation refers to 

the flow of gases through a bed of solid particles suspended on a bed of gas, usually air. 

When gases (air) with sufficient velocity enters under a bed via a distribution method, the 

bed expands and lifts as the voids between particles increase. Once combustion takes 

place in the bed either through solid fuel combustion or, usually oil or gas, pre-heat 

system. With increased air flow and heat the bed material flows and reacts more like a 

fluid and thus “fluidisation” has begun (Cotton et al., 2013). Figure 2-2 illustrates 

different stages of fluidisation a bed will undergo with increased airflow. As the airflow 

is increased the bed void increase as they are filled with the fluidisation medium. The bed 

will begin to bubble, with bubbles erupting on the surface. 

The following sections describe technological considerations and design choices for FBC 

systems which will be applied in later Chapters and experimental design. The reviewed 

literature has been used to devise the method for investigations and the need for research 

in specific areas of FBC utilisation for low grade fuels. 

Figure 2-2 Different fluidisation modes a bed can experience depending on air flow, 

fluidisation medium and bed material choice.(Kunii et al., 2013) 
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2.5 Fluidisation Theory and Fundamentals  

Operating and monitoring a FBC requires understanding and application of fundamental 

rules and mechanisms including; minimum fluidisation velocity, combustion 

optimisation, pressure drop and bed hydrodynamics. As such it is necessary to review the 

literature on the effect operational variables have on them to better understand and operate 

the experimental rig during testing and conception of tests. 

2.5.1 Minimum & Maximum Fluidisation Velocity  

Possibly the most important factor affecting the operation of a fluidised bed is the 

fluidisation velocity. That is, the velocity of the gas or liquid flowing through a packed 

bed in order to commence fluidisation. The following sections describe the fundamental 

properties and theory required for both understanding how a bed fluidises and how to 

modify and operate a bed successfully. The following sections are of particular 

importance to the air distribution, efficiencies and state of turbulence underpinning the 

rates and type of agglomeration that can occur in a bed. The theory described are a 

justification for picking operational variables to tests in later investigations including, use 

of additive, modification of air flows, particle sizes, combustion temperatures and co-

firing of different fuel ratios. 

The variables affecting minimum fluidisation are summarised by Figure 2-3, and indicate 

how fluidisation cannot occur until the forces acting down upon the bed are counteracted 

by the forces being applied to the bed from the inlet air etc. 

(
pressure drop 

across bed
) + (

cross section 

area of 

combustion 

chamber

) = (
volume 

of bed
) + (

fraction 

consisting

of solids

) + (
specific weight

 of solids
) 

Figure 2-3 (Kunii and Levenspiel, 1991) 

When air is introduced to the system the bed will undergo a number of stages as 

fluidisation occurs; 1) initially the bed will be packed; 2) the initial development of 

fluidisation and raising of the whole bed; 3) bubbling bed starts and intensifies; 4) 

slugging of the bed occurs 5) entrainment of the bed. Initially low air velocities present 

no change in the bed due to the frictional forces between particles etc. overcoming the 

opposing forces against the bed. However, there is a pressure drop across the bed which 

is a result of a loss of mechanical energy caused by the beds particle friction (ΔP). The 

pressure drop across the bed which is influenced by the properties of the particles is 

calculated using Equation 2-1(Anthony, 2003). 
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Where ∆P is pressure drop, λ is friction factor, L is distance across the bed, v is velocity 

of the gas and ρf is the fluid/gas density. 

Whilst Equation 2-1 calculates the pressure drop across a bed with a good level of 

accuracy with particles above 150μm in diameter, Equation 2-1 requires modification to 

retain accuracy when considering different particle sizes. With larger bed particles, the 

bed voidage between irregular shaped particles will also increase thus influencing the 

displacement properties of the fluidising air. The increase in voidage also has an effect on 

the particle wall effect of the particles. Therefore, taking these parameters into 

consideration Equation 2-2 develops Equation 2-1 (Kunii and Levenspiel, 1991; Anthony, 

2003).  
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Equation 

2-2 

(Anthony, 

2003) 

Where ∆p
fr

 is frictional pressure drop, Lm is the height of the bed, gc gravity constant, εm 

is the void fraction, μ is the viscosity of the gas, uo is the superficial gas velocity, dp 

particle diameter, ρ
g
is gas density and φs is the spherity of a particle. 

With an increase of fluidisation air the fluidisation of the bed will begin. The initial 

incipient fluidisation of the bed can be calculated and is referred to as the minimum 

fluidisation velocity (Umf). Equation 2-3 illustrates the relationship with the minimum 

fluidisation to inlet velocity air and the cross-sectional area of the bed. The flow rate of 

inlet air is in reality greater than that of the calculated minimum fluidisation air value. 

This is due to frictional forces in the inlet pipes, the irregularity of bed materials such as 

sand which will not be perfectly spherical, the variable weight of the individual particles 

and the physical dimensions which will contribute to aerodynamic factors and buoyancy 

influence (Howard, 1989). Equation 2-4 develops on Equation 2-3 and gives a more 

realistic minimum fluidisation value when the average bed particles are less than 40μm 

whilst Equation 2-5 is more applicable for bed particles averaging > 1000μm. Whilst there 

are variations of these equations between authors, Equation 2-3, Equation 2-4 and 

Equation 2-5 are widely accepted for materials such as silica sand for bed materials 

(Howard, 1989; Kunii and Levenspiel, 1991) and will be applied during air distributor 

and experimental rig design. 

∆𝑃 = 𝜆 ×
𝐿

𝐷
×

𝑣2

2
𝜌𝑓 Equation 2-1 

(Anthony, 

2003) 
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Where Umf is the minimum fluidisation velocity, Vmf is the volumetric flow rate, A is the 

cross-sectional area of the bed, dp is the particle diameter, ρs is the solid density, ρg is the 

gas density, μ viscosity of the gas, 𝜀𝑚𝑓is the volume of void fraction at minimum 

fluidisation, g is gravity constant and φs is the spherity of the bed particles. 

With the onset of incipient fluidisation, the pressure drop across the bed will remain 

stationary, however, the particles in the bed will increase in voidage until a state of 

equilibrium has been achieved. At this point bubbles, will form and collapse throughout  

the bed. The bed will sustain its level of buoyancy as long as no other variables are 

introduced or altered (Anthony, 2003). 

With further increases in the fluidisation inlet velocity the bed will move to a third stage 

and the bubbling will intensify. At this point the fuel particles and temperature will 

distribute within the bed resulting in a near homogenous bed with continued mixing. The 

bubbles at this point will be small and irregular and variant. As the fluidisation velocity 

continues to increase the bed enters stage 4 resulting in slugging of the bed. At this stage, 

smaller particles become entrained within the bed i.e. they are no longer mixing but 

become trapped within the bed which is stage 5. The entrainment of particles will result 

in changes of pressure drop across the bed. If these are too great the bed risks slumping 

or inefficient mixing throughout the bed (Howard, 1989; Kunii and Levenspiel, 1991; 

Anthony, 2003). These factors need consideration when analysing shape and spread 

formation of agglomerates in the bed to understand fuel distribution and the effect of 

operational parameters influencing bed turbulence. 

2.5.2 Pressure Drop vs. Velocity 

Pressure drop and the inlet fluidisation velocity is a common method for monitoring a bed 

condition because of its more simplistic representation of the bed air movement and 

particle mixing. 

𝑈𝑚𝑓 =
𝑉𝑚𝑓

𝐴
 Equation 2-3 (Howard, 1989) 

𝑈𝑚𝑓 =
𝑑𝑝

2(𝜌𝑠−𝜌𝑔)𝑔

150𝜇
×

𝜀𝑚𝑓
3 𝜑𝑠

2
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As the pressure drop remains constant post fluidisation of the bed, the increasing inlet 

fluidisation velocity causes some fundamental changes as shown in Figure 2-4. These can 

be used to determine the status of a FBC in operation. The changes of increasing inlet 

velocity are as follows; (a) the increasing inlet air is approaching fluidisation. When the 

onset of fluidisation occurs the hump as shown by (b) will present followed by a 

stabilisation (this stable line is an average value as the values will oscillate around this 

value with the bubbling occurring within the bed) (Anthony, 2003). (Kunii and 

Levenspiel, 1991). 

The region shown as (c) above the line represented as (d) is a buffer zone which can occur 

with smaller average particle diameters. The smaller particles are effected by buoyancy 

forces differently to that of larger particles and as a result of when minimum fluidisation 

occurs the pressure drop diminishes until a further increase in fluidisation velocity re-

establishes fluidisation. The line at which (e) occurs indicates the entrainment of material 

with the bed resulting in a decrease in pressure drop across the bed (Howard, 1989). 

Overall the theory covered will be used to evaluate the bed conditions, operational choices 

and start-up procedure. 

2.5.3 Theoretical Properties of Fluidising Particles 

Different particles interact with the bed in different ways and based on their particle 

classification this can be used to predict the particles interactions with the bed. Another 

purpose for a particle classification is that not all particles can be fluidised and therefore, 

it is important that proper classification gives an operator the information needed to run 

an FBC correctly.  

Figure 2-4 Characteristic curves of bed pressure drop and its dependence on fluidisation 

velocity (Anthony, 2003) 
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The literature shows different approaches used to try and classify the interactions of the 

particles within a FBC bed, the mode of fluidisation and the criteria for transition from 

one mode to another. Initially Wilhelm and Kwauk (1948) proposed a criteria system 

based on inter particle forces between bubbles using the Froude number. This was then 

developed by Romero (1962) which included dimensionless groups such as Reynolds 

number and Froude number. Additional approaches and takes on the classification were 

attempted and developed however,  it was Geldart (1973) who approached the issue in 

terms of particle characteristics and the way they fluidise as illustrated in Figure 2-5. 

The Geldart diagram compromises of four categories and are as follows: 

 Group A-consists of particles which have a small mean size and low bulk density 

(ρρ<1400kg/m3). These particles can be fluidised easily with smooth fluidisation 

being observed at low inlet velocities. Due to the large buoyancy effect on the small 

particles, the fluidisation of these materials results in large bed expansions and a 

homogeneous fluidisation. The bubble rising velocity will exceed the interstitial gas 

velocity during the emulsion phase resulting in a maximum bubble size achievable 

(Geldart, 1973; Kunii and Levenspiel, 1991). The interstitial gas velocity is defined 

as the velocity of the gases moving in an opposing direction to a particle in the bed 

and is summarised by Equation 2-6 (where �̅�.is interstitial velocity, u is the carrier 

gas and j is a pressure gradient factor). 

Figure 2-5 Geldarts approach to particle classification in fluidisation (Geldart, 1973) 
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 Group B-particles are of a medium size (40μm<Dp<500μm) and medium density 

(1400<ρs<4000kg/m3) and therefore,  covers a large variety of different materials 

(Kunii and Levenspiel, 1991). Most particles of this group are described as “sand” 

like and bubbles occur immediately after minimum fluidisation has been achieved. 

There is no maximum bubble size associated with this group which allows slugging 

etc. of beds made of this particle category (Anthony, 2003). This is a visual indicator 

for poor fluidisation brought on by operational changes. 

 Group C-is made up of fine particles (Dp<30μm) with extremely low density which 

can be described as cohesive. The fluidisation of these particles is difficult due to the 

inter particle forces being very strong. The velocity of the inlet gases required are too 

large for fluidisation but instead blow away bed material. These types of particles 

form channels and irregular slug patterns and thus the pressure drop seen in fluidised 

beds is not achieved. For this reason, the bed will remain fairly static hence poor 

mixing and no fluidisation is achieved (Geldart, 1973; Kunii and Levenspiel, 1991; 

Anthony, 2003; Jones and Williams, 2008). 

 Group D-is made up of larger (Dp>600μm) and more dense particles which 

commonly have coarse shapes which will influence fluidisation greatly. Because of 

the larger physical weight etc. of the particles, deeper beds are difficult to fluidise. 

However, once fluidisation has been achieved bubbles will rise slowly through the 

bed, specifically slower than the interstitial gas velocity. The slow bubble formation 

develops explosive bubbles on the surface of a bed and can lead to channelling or 

spouting through the bed (Howard, 1989; Kunii and Levenspiel, 1991). 

The Geldart diagram will be referred to in later results to correlate average bed particle 

size change to agglomeration formation and fluidisation. 

2.6 Physical Properties of Fluidising Particles 

There are a number of physical properties which affect the hydrodynamics of bed particles 

and hence the ability to fluidise that bed. The different physical properties such as particle 

size, density, size distribution, particle voidage, physical shape and how coarse the 

particles are etc. will contribute to the particles classification in the Geldart diagram and 

therefore, the requirements for fluidisation. Understanding these values is important for 

operators to determine what mechanisms are taking place in the bed and why. 

�̅� = 𝑢𝑗 Equation 2-6 (Subramanian, 2004) 
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The following sections and theory are fundamental for the understanding of bed 

interactions that occur between gases, gas-solids and solids. The bulk density for instance 

will influence how the bed will fluidise, how the gases will move throughout the bed, 

bubble formation and consequently this impacts in the physical mechanisms associated 

with agglomeration. Furthermore, these physical properties will alter the impact that test 

variables can pose on the outcome of agglomerate formation, defluidisation times and the 

resulting flame from bed/above bed combustion. 

2.6.1 Spherity 

Each particle will interact differently within a bed due to its shape and size and therefore, 

influence the fluidisation and voidage of a packed bed. Average particle sizes are used to 

encompass variance in size and shape of particles within a bed and the large number of 

individual particles present. The term deff is the effective diameter of each particle within 

the bed. Whilst particles over 1mm2 can be measured manually by either sieve or callipers, 

particles ≤1mm2 are calculated from available data. The first method is to average 

particles by giving an equivalent spherical diameter for volume, thus mitigating the shape 

of each individual particle and is defined as Equation 2-7 (Kunii and Levenspiel, 1991). 

𝑑𝑠𝑝ℎ = (
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑎 𝑠𝑝ℎ𝑒𝑟𝑒 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑟𝑡𝑖𝑣𝑐𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
) Equation 2-7 

(Kunii and 

Levenspiel, 

1991) 

Due to the irregularity in particle shape, voidage, non-spherical nature and the non-

uniform particles it is more common for the Spherity to be calculated using the method 

in Equation 2-8. 

𝜑𝑠 =
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑠𝑝ℎ𝑒𝑟𝑒 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 Equation 2-8 

(Kunii and 

Levenspiel, 

1991) 

φs=1 is the definition for a spherical particle, therefore,  for irregularly shaped particles 

the value will be ≤1 (Kunii and Levenspiel, 1991). During combustion and the fluidisation 

of a bed, the particles will move against each other creating abrasion and erosion. This 

results in the coarser particles becoming more spherical and smooth therefore, increasing 

the φs value. A standard value for a granular particle such as that found in silica sand 

based beds is 0.6 (Howard, 1989). 
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The deff can represent a bed of non-spherical particles in terms of spherical particles by 

using the developed Equation 2-9 which takes two theoretical beds of the same particles 

including the same total surface area and the total voidage fraction. 

The spherity of particles is significant when introducing fuels such as biomass which has 

large irregularity and variance thus altering the flow through a bed and thus potentially 

effecting mixing of the bed. 

2.6.2 Terminal Velocity  

Terminal velocity is the velocity of particle falling through a gas with external forces 

acting upon the particle whilst the particle achieves a maximum falling speed which will 

max at 9.8m/s (gravity). Figure 2-6 illustrates a particle which is falling within a gas 

stream. The forces exerted on the particle include gravity, drag and buoyancy.  

When the forces acting upon the particle come to equilibrium i.e. the particle is moving 

towards the earth at the same magnitude as the particle is accelerating away from it, then 

the particle is at terminal velocity (Gupta and Sathiyamoorthy, 1998). 

When the force generated by velocity exceeds free fall forces of the particle it will travel 

in the gas stream. This would be an indication that the fluidisation inlet air velocity is to 

excessive. The terminal velocity of a particle can be calculated using Equation 2-10 and 

Equation 2-11 (Basu, 2006). 

 

𝑑𝑒𝑓𝑓 = 𝜑𝑠𝑑𝑠𝑝ℎ Equation 2-9 (Kunii and Levenspiel, 1991) 

Figure 2-6 Forces exerted on a particle moving upward in a gas stream. The net forces 

acting on the particle come to equilibrium as terminal velocity is achieved. (Basu, 2006) 
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Where ut is the terminal velocity, 𝜌𝑝 is gas density,  𝜇 viscocity of gas, 𝑔 is the gravity 

constant,  𝜌𝑔is gas density and  𝑑𝑝is particle diameter. 

The terminal velocity should be calculated for the smallest particle in the bed as a velocity 

in excess to this value will result in the eluration of particles as they become entrained in 

the gases potentially forcing particles to exit with flue gases (Gupta and Sathiyamoorthy, 

1998). Because of the loss of material from a bed, cyclones and recycle circuits are built 

in to capture and replace bed materials. 

2.6.3 Bulk Density 

The bulk density of the bed refers to the mass of particulates per unit within the bed 

volume. This value is calculated using Equation 2-12 which will give a smaller value than 

the true density of the particles as the bulk/bed density includes the voidage between each 

particle. The bulk density is determined by the size and shape of the particles which in 

turns alters the voidage between particles (Howard, 1989).  

Where Pb is bulk density, mb is mass of bed and Vb is bed volume. 

The bulk density is an often overlooked value when considering the interactions occurring 

within a fluidised bed. The bulk density is a function of the voidage which directly alters 

the pressure drop across the fluidised bed and hence the interactions between solids and 

gases within an FBC system (Ergun and Orning, 1949).  

Therefore, in a batch bed system such as that in the experiments chapters, the constant 

input of fuel and lack of removal indicates there will be a change in bulk density. 

Therefore, a consideration will be needed for material build up in terms of fuel ash and 

mineral content in fluidisation. 

2.6.4 Bed Voidage 

As previously described, the bed voidage is the space which occurs between particles 

within a bed. The size of the voids will change with particle shape, air ingress and size. 

𝑢𝑡 =
𝜌𝑝𝑑𝑝

2𝑔

18𝜇
 (𝑅𝑒 < 0.4) 

Equation 

2-10 

(Davidson and 

Harrison, 1987a) 
𝑢𝑡 = (

1.78 × 10−2 × 𝜌𝑝
2

𝜌𝑔𝜇
)

1
3

× 𝑑𝑝 (0.4 < 𝑅𝑒 < 500) 

Equation 

2-11 

𝑃𝑏 =
𝑚𝑏

𝑉𝑏
= 𝜌𝑝(1 − 𝜀)  Equation 2-12 (Howard, 1989) 
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Irregular particles produce more voids compared to regular particles as they fit together 

better resulting in smaller void space. On average a fixed bed will have a voidage value 

between 0.4-0.45 (Howard, 1989). The bed voidage is calculated using Equation 2-13. 

𝜀 =
𝑉𝑏 − Σ𝑉𝑝

𝑉𝑝

= 1 −
𝜌𝑏

𝜌𝑝

 Equation 2-13 (Howard, 1989) 

Where ε is void fraction, Vp volume of particle, Vb is bed volume, 𝜌𝑏 bed density and 

𝜌𝑝particle density. 

The voidage is a fundamental property when considering fluidised bed combustion as the 

combustion can be directly influenced by bed voidage in terms of both mixing solids and 

gases as well as the development of combusting fuel particles. It has been shown in studies 

such as Kuo et al. (1997), that larger void fractions in a bed can lead to lower bed 

temperatures. This is due to the distribution of oxygen and combustion gases throughout 

the bed and depletion of oxygen resulting in inefficient fuel burnout. An increase in 

voidage has also been shown to decrease the average combustion rate, once again due to 

the reduced mixing regime within the bed. Other possible reasons stem from the formation 

of slugging when the larger voids join adjacent bubbles. 

2.6.5 Bed Height 

Bed height is a parameter which describes a macroscopic behaviour of a fluidised bed and 

the consequent bubbling regime. Whilst the surface of a bed will constantly vary with the 

rising and collapsing of bubbles, there is a clear relationship with bed height and the 

fluidisation velocity. However, based on the “Davidson two phase model” then the bed 

particles are outside rising bubbles and therefore, in a state of minimum fluidisation 

(Davidson and Harrison, 1987c). When the fluidisation velocity is increased beyond 

minimum fluidisation, the voids voidage and porosity of the bed will increase resulting in 

an increased bed height. Hence the critical value is the void space which is occupied by 

bubbles throughout the bed (Hetsroni, 1982; Davidson and Harrison, 1987a; Yang, 2003). 

The relationship for bed height, particle voidage and space occupied by bubbles has not 

been validated in the literature but can be summarised by Equation 2-14. Constants are 

required for subsequent calculations which are unique to each fluidised scenario and 

system variables. 

𝐻

𝐻𝑚𝑓

=
1

1 − 𝛿𝑏

=
1 − 𝜀𝑚𝑓

1 − 𝜀
 Equation 2-14 (Hetsroni, 1982) 
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Where H is bed height, Hmf is minimum fluidisation bed height, 𝛿𝑏 is pressure change 

across the bed, ε is void fraction and εmf is volume of void fraction at minimum 

fluidisation. 

Whilst increasing the fluidisation air velocity increases the bed height, there is a limit to 

the bed height. For each specific fluidised bed and operational conditions to the maximum 

bed height will be a result of the free fall velocity of fuel particles inlet gas velocity. This 

is termed as the transport disengagement height (TDH) and can be summarised using the 

Geldart equation in Equation 2-15 (Hetsroni, 1982). 

𝑇𝐷𝐻 = 1200 × 𝐻𝑚𝑓 × 𝑅𝑒𝑝
1.55 × 𝐴𝑟

−1.1 Equation 2-15 (Hetsroni, 1982) 

However, instead of determining a bed by its initial height a more suitable parameter to 

incorporate is the bed weight. Whilst an increasing bed height can be influenced directly 

by the fluidisation air velocity, the beds weight remains constant (excluding transport and 

loss of bed material). An increase in bed weight will require a higher minimum 

fluidisation velocity but will also decrease the voidage between particles as bubbles will 

be smaller and occupying less space (Yang, 2003). Therefore, varying bed weight for a 

constant fluidisation velocity will directly impact the hydrodynamic performance of the 

bed and rising bubbles and hence an effect macroscopic interactions which influence 

agglomeration and combustion.  

Bed height has been studied throughout the literature looking at the influence of 

fluidisation velocities on bed height utilising different materials for the bed. Zhong et al. 

(2008) investigated the effect of bed height with a number of biomass fuels and the 

influence of different bed materials. As the different fuels were introduced to the bed it 

was found that the density of the bed would alter resulting in a change in the minimum 

fluidisation velocity. The different beds and fuels also directly influenced the height of 

the bed by varying inlet air velocity. 

Further studies have been conducted on the influence of bed height with different 

mediums, bed shapes, height, fuel inlets etc. in (Escudero and Heindel, 2011; Sau et al., 

2007; Ramos Caicedo et al., 2002; Geldart, 1968; Cranfield and Geldart, 1974; Zhong et 

al., 2006). These studies highlight the potential variance which is to be expected when 

operating a FBC. When conducting tests with varying bed weights/height it is prudent to 

consider the alteration the different fuels will have upon the bed. 
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2.7 Fluidised Bed Combustion (FBC) 

In order to combust biomass and other low grade fuels it is necessary to utilise a 

technology which has combustion flexibility that can adapt to the variable mineral, 

calorific and moisture content alongside other varying impurities. Fluidisation refers to 

the flow of gases through a bed of solid particles suspended on a bed of gas, usually air. 

When gases (air) with sufficient velocity enters under a bed via a distribution method, the 

bed expands and lifts as the voids between particles increase. Once combustion takes 

place in the bed either through solid fuel combustion or, usually oil or gas, pre-heat 

system. With increased air flow and heat the bed material flows and reacts more like a 

fluid and thus “fluidisation” has begun (Cotton et al., 2013). Figure 2-7 illustrates 

different stages of fluidisation a bed will undergo with increased airflow. As the airflow 

is increased the bed void increase as they are filled with the fluidisation medium. The bed 

will begin to bubble, with bubbles erupting on the surface. 

The following sections describe technological considerations and design choices for FBC 

systems which will be applied in later Chapters and experimental design. The reviewed 

literature has been used to devise the method for investigations and the need for research 

in specific areas of FBC utilisation for low grade fuels. 

2.8 FBC Technologies 

FBC units are commonly made up of a number of key components. The bed is placed on 

a distributor plate which contains holes, caps, flanges etc. The primary air is fed beneath 

Figure 2-7 Different fluidisation modes a bed can experience depending on air flow, 

fluidisation medium and bed material choice.(Kunii et al., 2013) 
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the bed and through this plate with the initial ignition system (gas/oil burners) which 

lifts/fluidises the bed whilst heating it. Above the bed is normally a secondary air input 

area as well as a fuel feeder system in which fuels are fed into the combustion chamber 

and bed. The fuel will become mixed within the bed material as the turbulent bed moves 

like a liquid. Fuel will combust above the bed as well as the collapsing air bubbles entering 

fuel particles to combust within the body of the bed. This form of combustion is very 

thermally efficient as fuel particles move against other particles and gases, maximising 

thermal transmission and accomplishing complete utilisation of combustible material. 

Post combustion flue gases move through a freeboard space above the bed that is tall 

enough for entrained particles to disengage. This combined with flue gas clean up systems 

such as bag filters or electrostatic precipitators remove particulates and degraded bed 

material before emitting gases through an exit flue stack (Kunii and Levenspiel, 1991; 

Wu, 2003a).  

When considering which method of FBC is most advantageous for a given application 

there are a number of pros and cons that need be considered for each method. This 

includes electrical or thermal output, the ability to combust specific fuels, scale of 

operation intended or economic limitations (Ltd and Ltd) (Koornneef et al., 2007). 

2.8.1 Atmospheric Fluidised Bed Combustion (AFBC) 

Figure 2-8 is a schematic of a typical AFBC system. In this design the bed material is 

fluidised from primary air which is fed from below the bed. The air flow is enough to 

fluidise the bed but not significant enough to carry over the material through the freeboard 

and into the downstream ducting. In AFBC the fuel is fed from above, and gravity drops 

the fuel onto the top of the bed. The turbulent mixing entrains the fuel and in doing so 

heating the fuel and causing it to combust. The bed and fuel will then move around the 

submerged tubes within the bed and in doing so create a high rate of heat transfer to the 

pipes and fluids. Alternatively the hot gases and radiant heat can be captured using super 

heater tubes above the bed and downstream economiser (Merrick, 1984). This is more 

common in medium to large scale operations. 
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AFBC systems are designed to operate at lower combustion temperatures of 800-950°C. 

This is achieved by having a uniform distribution of primary and excess air across the bed 

combined with secondary over bed air which results in a cooler flame (Wu, 2003a). The 

use of secondary over bed air in the freeboard ensures complete combustion and 

conversion of volatiles or gaseous species. This is especially important for biomass fuels 

which have high volatile matter which can be released above the bed, requiring 

modification of the flame location to ensure complete combustion (Quaak et al., 1999). 

The advantages of AFBC compared to conventional or similar technologies is the lower 

flame temperatures which will decrease NO formation, decrease higher temperatures 

alkaline species in slag formation, good heat transfer rates, high thermal retention within 

the bed for more efficient fuel conversion and easily applied emissions control 

technologies such as SO2 capture options. AFBC suffers primarily in two ways; firstly, 

the bed accumulates combustion bi products such as bottom ash, degraded bed materials 

and agglomerates which require an identification/removal and secondly, these types of 

systems have scale up limitations to 100-150 MWelectrical (Anthony et al., 2003; McIlveen‐

Wright et al., 1999). Scale up is limited due to economic balance i.e. the cost of generating 

further under-bed air to suspend an increasing bed size vs. the energy output of such a 

system. 

2.8.2 Circulating Fluidised Bed Combustion (CFBC) 

CFBC systems share similarities with AFBC systems. CFBC systems operate at much 

higher fluidising air velocities and with a slightly lower range of combustion temperatures 

Figure 2-8 Atmospheric bubbling fluidised bed combustor design (Merrick, 1984) 
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(800-900°C). This is due to the increased system air flow rate. Figure 2-9 illustrates a 

schematic for an CFBC system (Kunii and Levenspiel, 1991).  

In a CFBC the high primary air velocities entrain the bed particles which results in them 

being transported through the freeboard with flue gases. For this reason a heavy duty 

cyclone is employed to remove bed particles from the flue stream and return them to the 

main combustion chamber (Gayan et al., 2004). In more efficient CFBC setups a 

secondary combustion chamber/bed (number 8 on Figure 2-9) can be implemented. This 

is charged with low velocity secondary air producing a second, smaller fluidise bed for 

combustion of residual materials which is then employed to preheat the input airs of the 

primary furnace and thus improve net energy efficiency (Wu, 2003a; Van de Velden et 

al., 2008). 

In CFBC the main chamber is host to the majority of combustion and heat transfer to 

water tubes. Heat recovery occurs downstream, commonly after the heavy-duty cyclone 

in an economiser. The CFBC systems have a number of advantages over the conventional 

AFBC systems; higher SO2 capture potential due to particle interactions and high 

turbulence resulting in better solid gas mixing, smaller bed area required, fewer fuel 

injection points required with high turbulence, erosion and corrosion propensity is much 

less as all tubes are submerged in material and the heat transfer coefficients are potentially 

the highest for all conventional combustion power generation techniques (Davidson, 

2000; Kunii and Levenspiel, 1991). However, these advantages can be offset by the 

requirements for larger more powerful fans for the higher air flow demand of the system. 

Higher pressure drop is generated across a less resistant/less densely packed bed requiring 

further fan air demand. The high particle recycle rates require very efficient flue gas clean 

Figure 2-9 Circulating fluidised bed combustor design (Gayan et al., 2004; Kunii and 

Levenspiel, 1991) 
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up to capture large quantities of coarse and fine particles, which will become subject to 

erosion with high flow velocities and high particle loading (Chen et al., 2004; Wu, 2003a). 

2.8.3 Pressurised Fluidised Bed Combustion (PFBC) 

A PFBC unit is in essence an AFBC unit within a pressurised vessel. Typically, these 

pressures range between 1-1.5MPa. The unit operates under these pressures at combustion 

temperatures between 800-900°C (K.Gounder, 1995). 

Figure 2-10 illustrates a typical design for a PFBC unit and illustrates how the combustion 

zone is encapsulated within a pressurised vessel. The pressurised system results in a more, 

even and frequent production of bubbles throughout the bed (Bonn and Richter, 1990). 

The increase in particle distribution results in a higher overall thermal and combustion 

efficiency from the unit. 

The fuel feed, bed replacement and ash removal systems are difficult to manage in order 

to maintain system pressure. Each of these sub systems will have to be opened to 

atmosphere and thus requiring a charging and sealing stage to bring them to system 

pressure. If pressure is lost in any of the feeders etc. the gases and material could 

potentially leak. As they would be at operating temperatures this poses a serious safety 

and fire risk (Wu, 2003a; Cuenca and Anthony, 2012). The primary method for limiting 

this is to incorporate “lock hoppers”. These are devises which use pneumatic transport 

lines to transport and contain fuel in batch feed flows in to the main combustion chamber. 

Figure 2-10 Pressurised bubbling fluidised bed combustor design (Makansi, 2005) 
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This would also be adapted to add bed material, sorbents, additives and to remove ashes 

(Cuenca and Anthony, 2012).  

If the system is pressurised sufficiently, then the flue gases can be used as part of a 

combined cycle system by physically driving a turbine thus generating higher overall 

efficiencies which is an advantage over other fluidised bed technologies. 

The disadvantages of this technology however, the high level of erosion to which 

equipment experiences and higher particulate content in the flue gases. This requires 

expensive materials to coat and protect the blades and surfaces etc. The energy required 

to maintain a pressurised system will be parasitic on the units energy production as well 

as the safety implications of operating a pressurised system rather than atmospheric  

(Bonn and Richter, 1990). 

2.8.4 Oxyfuel Fluidised Bed Combustion 

Oxyfuel combustion uses O2 instead of air as oxidant. By using O2 instead of air 

combustion produces a flue gas which is high in CO2 concertation and reduced NOx etc. 

Combining Oxyfuel combustion with scrubbing systems and CO2 capture/sequestration 

technologies it is theoretically possible to mitigate the release of greenhouse gases and 

thus reduce the anthropogenic impact of power generation from hydrocarbon fuels. 

In order to introduce O2, the fuel line would be doped with high concentration O2 and fed 

into the primary air. A disadvantage of using O2 instead of air as an oxidant is the higher 

flame temperatures that result from O2 combustion. Higher temperatures can impact 

material costs and integrity, emission impacts such as the formation of NOx from 

organically bound nitrogen and high temperature corrosion mechanisms. To control this 

the O2 inlet has additional recirculated CO2 from the flue to dilute the O2 and allow 

reductions in flame temperature and size which will reduce equipment damage (Czakiert 

et al., 2010). This type of technology is still in early development stages and no large 

scale industrial data has been published on the technology (Seddighi K et al., 2013). 

Laboratory scale tests shave controlled flame temperatures from 900-1200°C to 950-

1000°C by doping the O2 feed with flue gases and inert gases such as N2 (García-Labiano 

et al., 2011; de Diego, 2013). Oxyfuel systems could theoretically achieve high 

combustion efficiencies as it combines technologies previously explained as well as 

offering a carbon neutral end use for the offset of CO2 related climate change. However,  

the key limitation thus far is the technology has yet to be proved at full industrial scale 

(Bolea et al., 2014). 
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Whilst there are a number of technological differences between fluidised beds variations, 

for the purpose of the work conducted in the following investigations a BFBC will be 

used for experimental work. This type of design offers the simplest mode of operation 

whilst giving flexibility to operators to alter operational variables. 

2.9 Combustion Mechanism of Coal & Biomass 

In order to understand the formation of agglomerates it is necessary to review the 

fundamental mechanisms of combustion that fuel particles will undergo once introduced 

into the heated bed. Moreover, coal and biomass are fundamentally different in their 

chemical and physical makeup and thus the mechanism of combustion will vary.  

When coal particles are fed into a FBC it undergoes a number of stages before complete 

combustion has occurred. Figure 2-11 illustrates these stages; the initial drying of the 

particle and moisture driven from the coal, devolitisation of the coal particle which can 

occur with or without fragmentation of the particle, combustion of the gaseous volatile 

matter and then the combustion of the coal char particle which will reduce the char to its 

final ash content (Wu, 2003a). The biomass drying mechanism is slightly different, a 

biomass particle will undergo drying, devolitisation, gasification and then complete 

combustion of the char. These stages are similar to the stages coal undergoes but the 

significance of the differences will be discussed in the following sections. 

2.9.1 Drying 

The first stage for coal combustion is the initial drying as the coal particles enter the 

fluidised bed. Moisture is driven off from the particle causing inflammation for high 

moisture coals. Coal can contain a wide range of moistures from 2-70% in extreme 

Figure 2-11 Coal combustion process (Wu, 2003a) 
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circumstances (Baxter, 1993). The moisture content will alter the time of drying and 

subsequent steps, therefore, alter combustion efficiency and particle resident times within 

the bed. This is an important factor when considering the use of low rank coals which can 

contain 40%+ moisture (Wu, 2003a). The water content which evaporates from the coal 

particle is reported to play little if any part in reactions for the following combustion 

mechanisms (Agarwal and La Nauze, 1989). 

In biomass combustion, the drying stage is similar to low grade coal because of its 

moisture content. Moisture is driven off at low temperatures ≤100°C however, higher 

moisture contents lowers the system temperature which slows the combustion process. It 

should be noted also that evaporation is an endothermic process and thus requires energy 

(latent heat loss) (Koppejan and van Loo, 2012). 

2.9.2 Devolitisation Mechanism in Fluidised Bed 

As the heat exerted upon the fuel particles continues to increases the particle begins to 

devolatise. When the coal particles land on/in the bed, a plume shaped flame will form 

around the particle, as the bed will be at a temperature in excess to the requirements of 

ignition for the gases being released from the particle.  Significant devolitisation will 

begin to occur at ≥300°C (Wu, 2003a). At lower temperatures, weaker chemical bonds 

break down resulting in an initial softening of the coal particle and the formation of a 

metaplastic. As well as the initial moisture lost from the coal particles, there will also be 

the onset of gas release as lighter components such as methane (Borah et al., 2011). Figure 

2-12 illustrates the change particles undergo during the devolitisation stage with 

increasing temperature. The next stage of devolitisation takes place at approx. 400°C and 

results in the stronger aromatic, carboxyl, aliphatic and hydroxyl group bonds breaking, 

leading to the formation of heavy tars and liquids. The larger volatiles produced with 

increased temperature will also decompose into secondary volatile components (Wu, 

2003a; Strezov et al., 2000). At >600°C, condensation of the aromatics to char takes place. 

At this point the char is primarily a carbon-based char (typically ≥98% Carbon). The 

release of volatiles has an expansion effect of the fuel particle depending on the rank of 

the fuel (referred to as the swelling index). The expansion is stated in the literature (Urkan 

and Arikol, 1994; Oka, 2003) to be around 3 times the original particle volume but authors 

such as Anthony and Preto (1995e) have noted for a more bituminous coal this expansion 

factor can be of a magnitude of 5 due to different distributions of tar and liquid 

components in this particular type of coal. For biomass, the mechanisms described and in 

Figure 2-12 applies but with different rates of emission and combustion. Biomass has 
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higher volatile content than coal and as a result a larger percentage of the energy produced 

from the combustion of biomass comes from volatile combustion rather than char 

combustion. This also moves the flame from the bed to above the bed as gases moving 

away from the fuel ignite rather than combusting in the bed where the majority of char 

loading is found (Biagini et al., 2002). 

The available heat, size of particles, chemical makeup of the fuel, localised diffusion 

gradient, oxygen concentrations, type of fuel and moisture content will affect the rate, 

extent and time of devolitisation of any coal. This is due to three main mechanisms; 

chemical reactions kinetics, heat transfer to and within the coal particle and physical mass 

transfer of a coal particle being directly affected. All of these factors will affect the extent 

the devolitisation step plays in a combustion system and therefore,  effect the following 

steps and overall combustion of any coal particle (Borghi et al., 1985; Agarwal et al., 

1986). 

2.9.3 Combustion of Volatiles 

Coals and biomasses are made up primarily of C, H, N, O and S. During combustion the 

volatile components containing these elements evaporate and oxidise (Koppejan and van 

Loo, 2012). There are a number of reactions which take place during the combustion of 

coal volatile species in a fluidised bed. The reactions in Table 2-1 lists significant 

reactions for volatile combustion. As most of the reactions involve hydrocarbon 

combustion, the significant reactions are summarised by Reaction 2-1 to Reaction 2-15. 

Oxygen is assumed to be available in each reaction as fluidised bed combustion usually 

 

Figure 2-12 The primary reaction mechanisms for the pyrolysis and devolitisation of 

coal as proposed by the Van Heek and Hodek team (van Heek and Hodek, 1994) 
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operates with high excess air. Reactions concerning emissions such as the formation of 

SO2, NOx etc. are defined and explained in the later emission sections. 

The way in which volatiles combust has been reviewed in Srinivasan et al. (1998) and 

found that at low bed temperatures of 700-750°C the volatiles can instead of burning in 

the bed move into the freeboard; at mid-range bed temperatures of 830-900°C the 

Table 2-1 Fundamental volatile combustion reactions for FBC 

Description Reaction Label Source 

Partial 

oxidation 
𝐶 +

1

2
𝑂2 ⇄ 𝐶𝑂 

Reaction 

2-1 

(Merrick, 1984; 

Wu, 2003ae) 

Boudouard 

reaction 
𝐶 + 𝐶𝑂2 ⇄ 2𝐶𝑂 

Reaction 

2-2 

(Merrick, 1984; 

Wu, 2003ae) 

Hydro-

gasification 
𝐶 + 2𝐻2 ⇄ 𝐶𝐻4 

Reaction 

2-3 

(Merrick, 1984; 

Wu, 2003ae) 

Carbon 

monoxide 

combustion 
𝐶𝑂 +

1

2
𝑂2 → 𝐶𝑂2 

Reaction 

2-4 

(Wu, 2003a; 

Kulasekaran et 

al., 1999; Howard 

and Elliott, 1983) 

Hydrogen 

combustion 
2𝐻2 + 𝑂2 → 2𝐻2𝑂 

Reaction 

2-5 

(Wu, 2003a; 

Kulasekaran et 

al., 1999) 

Methane 

combustion 
𝐶𝐻4 +

3

2
𝑂2 → 𝐶𝑂 + 𝐻2𝑂 

Reaction 

2-6 

(Wu, 2003a; 

Kulasekaran et 

al., 1999; Eslami 

et al., 2012) 

Ethane 

combustion 𝐶2𝐻6 +
5

2
𝑂2 → 2𝐶𝑂 + 3𝐻2𝑂 

Reaction 

2-7 

(Eslami et al., 

2012; 

Kulasekaran et 

al., 1999; Wu, 

2003a) 

Propane 

combustion 

(stepwise 

oxidation) 

𝐶3𝐻8 →
3

2
𝐶2𝐻4 + 𝐻2 

𝐶2𝐻4 + 𝑂2 → 2𝐶𝑂 + 2𝐻2 

𝐶𝑂 +
1

2
𝑂2 → 2𝐶𝑂2 

𝐻2 +
1

2
𝑂2 → 𝐻2𝑂 

Reaction 

2-8 
(Solomon and 

Colket, 1979; 

Kabe, 2004; 

Howard, 1987; 

Kulasekaran et 

al., 1999; Wu, 

2003a; Eslami et 

al., 2012) 

Reaction 

2-9 

Reaction 

2-10 

Reaction 

2-11 

Devolitisation 

of Carboxyl 

group 

𝑧 − 𝐶𝑂𝑂𝐻 → 𝑧 − 𝐻 + 𝐶𝑂2 

𝑧 − 𝑂𝐻 + 𝑧 − 𝐻 → 𝑧 − 𝑧 + 𝐻2𝑂 

𝑧 − 𝑂𝐻 + 𝑧 − 𝑂𝐻 → 𝑧 − 𝑂 − 𝑧 + 𝐻2𝑂 

Reaction 

2-12 

(Solomon and 

Colket, 1979; 

Wilson, 1972) 

Reaction 

2-13 

Reaction 

2-14 

Hydrocarbon 

combustion 

equation 
𝐶𝑛𝐻𝑚 +

1

2
𝑛𝑂2 → 𝑛𝐶𝑂2 +

1

2
𝑚𝐻2𝑂 

Reaction 

2-15 

(Fu et al., 1989; 

Solomon and 

Colket, 1979; 

Kabe, 2004; 

Baxter et al., 

1995) 
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volatiles are only likely to combust within bubble formations within the bed; and at high 

bed temperatures >900°C combustion will occur within bubbles and between the 

particles. These mechanisms are subject to particle size and combustion regimes but 

fundamentally describe the internal modes of the combustion process. The fraction of 

volatiles burning in, on and above the bed are determined by the available oxygen and 

volatile content in the fuel (Zhou et al., 2011). Table 2-1 shows the fundamental reactions 

which occur during the combustion of volatile species. Whilst Reaction 2-1 to Reaction 

2-15 can be found in combustion of coal or biomass fuels, Reaction 2-12 to Reaction 2-15 

are biomass focused. This is because of the species in Reaction 2-12 etc. containing 

oxygen rich species associated with plant life etc. 

The mechanisms for volatile combustion is significant when combusting different fuels 

or co-firing fuels such as coal and biomass as the flame temperature and placement will 

change. Different biomass and coals will release localised gases with slight variations in 

pressure and intensity which will fundamentally influence localised combustion, and the 

entrainment of volatile gases into the freeboard. This will affect the overall combustion 

process and thus influence the location of a flame in and above the bed, distribution of 

gaseous alkali species and therefore, the formation of agglomerates and slags. 

As the fuel particle combusts, there is a volatile gas release which contains high 

concentrations of inorganic alkali species Thus, the gas emitted around the particle 

contains high concentrations of components fundamental to agglomerate and slag 

formation as described in later sections. The rate of release of the volatiles, volume and 

location in the FBC i.e. higher in the freeboard for biomass than coal, will alter the 

location of combustion zones and the severity of impact that temperature and chemical 

composition has on the formation of slags and agglomerates.  

As the fuel particle undergoes pyrolysis there are a release of volatile gases from the 

surface of the particles. The release of gaseous volatiles directly impacts the fluid 

mechanics around the particle. Furthermore, the release of gaseous and partially melted 

inorganics will impact the formation of eutectics, agglomerates and slagging mechanisms. 

The release of volatile species will also impact the localised combustion both in the bed 

and within the freeboard. Considering the previous section, the difference in volatile 

flame and volatile release seen between coal and biomass particles could significantly 

influence agglomerate formation and must be considered in later Chapters along with 

other such mechanisms experienced with the flame and combustion. 



 

39 

 

2.9.4 Char Combustion 

Char combustion is the burning of the remaining material which is left once volatiles have 

been lost from the fuel particle. The combustion of the char particle produces a slower 

burning flame which emits less heat energy than that found in volatile flame. 

Once volatile species have been driven off the fuel particle, the solid char will undergo a 

depolymerisation, re-polymerisation, pore opening/closing and gaseous transport 

throughout the particle. The resulting char produced is relatively consistent for the same 

sample under different mechanisms. Different coal and biomass types will however, 

produce different char weights compared to the initial sample weight (Borah et al., 2011; 

Ross et al., 2000; Strezov et al., 2000). 

Char is of significance more so for the combustion of coal as the bed can contain between 

1% and 5% char depending on the particle sizes of the coal. Whereas, for biomass the 

char content can be <1 wt. % as a result of the low fixed carbon and high rate of carbon 

oxidation during combustion. Biomass fuels will result in less combustion occurring in 

the bed via char combustion and therefore,  the primary energy is in the volatile flame 

above the bed and in the freeboard (Wu, 2003ae).  

Char is made up of ash, nitrogen, sulphur, fixed carbon and any mineral impurities in the 

fuel. At temperatures ≥750°C oxygen reacts on the surface as well as penetrating the 

surface of the char particle, producing gaseous species such as CO, CO2, and NO. The 

reaction mechanisms can be seen in Figure 2-13. 

Figure 2-13 Char combustion mechanisms (Wu, 2003) 
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The main reactions in forming gaseous species from char are shown in Reaction 2-1, 

Reaction 2-2 and Reaction 2-3. 

There are three mechanism suggested in the literature for char burnout (Wu, 2003ae; 

Desroches-Ducarne et al., 1998; Basu, 1999; Kulasekaran et al., 1999), these models 

shown in Figure 2-13 and express the findings of the authors in terms of available oxygen 

penetration in the fuel particle. 

The char combustion is of significant importance for the combustion process as well as 

the formation of agglomerates. The localised combustion of char particles will influence 

temperature gradients within the proximity of the bed in which alkali specie availability 

will form agglomerates. 

2.10 Agglomeration 

Any combustion technology will suffer deposition, corrosion, fouling, slagging or 

agglomeration as a direct result of changes in operational variables, mechanical design, 

oxidation conditions and inorganic chemical presence from the fuel and other materials 

found in combustor units. 

In particular, FBC, because of its bed and applications with low grade fuels suffers from 

agglomeration. Agglomeration is the clumping and adhesion of particles in the bed, 

molten ash coats the particles with a sticky layer, as a result of alkaline species melting. 

If these clustered particles are allowed to propagate in size, then the hydrodynamics of 

the bed and the fluidisation can be negatively affected. Thus, if allowed to build up, 

eventually defluidisation of the bed can occur and the furnace will be forced offline. This 

is both costly in terms of shutdown time and boiler damage (Thy et al., 2010a). 

The following sections will discuss the mechanisms of agglomeration and the influence 

that using low-grade, high inorganic content fuels has upon the rates of agglomerate 

formation and counter measures to the issue. 

2.10.1 Mechanisms of Agglomeration 

In a FBC system the gas moving between solids creates a turbulent mixing movement. In 

doing so particles will interact with neighbouring particles through physical 

contact/collisions and attractive forces between interacting particles (Kunii and 

Levenspiel, 2013). 

FBC, in particular atmospheric FBC’s suffer from the process of agglomeration. 

Agglomeration is the result of bed material becoming coated and sticky as a result of 
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alkaline species present. Coated refers to particles becoming coated in alkali slag melt 

phase (such as K and Na) from the fuel. The chemical matrix of the sticky coating will be 

directly affected by operational variables such as bed temperature due to the influence on 

melt temperatures for individual alkali groups; 764°C for Na rich melt phases compared 

to 790-874°C for K rich melts (Tangsathitkulchai and Tangsathitkulchai, 2001). 

Attractiveness of particles to one another refers to inter-particle forces such as 

electrostatic and van der Waals (Bartels et al., 2008a). The formation of the initial sticky 

particles leads to a build-up of adhering particles which can lead to other mechanisms 

associated with agglomeration such as sintering. 

A significant focus of research in the field of agglomeration is the effect of alkali groups 

and the effect they have on forming eutectics within FBC. Low grade fuels in particular 

have a large literature base because of the variance in ash content; sub-bituminous coals 

3-12 wt.% (Pahari and Chauhan, 2006) and biomasses 1-5 wt.% (Koppejan and van Loo, 

2012). When such melt phases occur in the bed, they coat the bed material, usually silica 

sand, forming low melting temperature eutectics, which are a complex of the more 

reactive species. Typically, agglomerates will be found to contain complexes containing 

lower melting phase species such as K, P, Si and Na as these will be the first to coat the 

particles. Further heating caused by poor mixing, the formation of hot spots and localised 

combustion lead to higher temperature melting groups being liberated into the gas phase 

thus propagating the agglomerates(Natarajan et al., 1998). 

2.10.2 Physical Agglomeration Mechanisms 

Agglomeration mechanisms are still being researched as the difference in fuels creates 

unique complexes and eutectics forming mechanisms. Bartels et al. (2008a) discusses by 

means of experimental validation, that agglomeration should be categorised to 

hydrodynamics, chemical reactions, particle interactions and molecular cramming. 

However, this doesn’t consider the overlapping effect of one mechanism to another or the 

impact. A better approach is defined by Visser et al. (2008) for melt induced and coating 

induced agglomeration mechanisms. This approach allows consideration on how the 

movement of particles (hydrodynamics) directly influences the bridging of coated 

particles for instance, as higher velocities will decrease agglomeration formation. 

Figure 2-14 illustrates these two mechanisms; 1) the coating mechanism is a result of ash 

melts, condensation or alkalis in gas phase from alkali compounds in the fuel, reacting 

with the surface of bed particles, 2) the melting mechanism is the result of molten ash 
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from alkali compounds, creating sticky areas on bed particles. This then creates a “bridge” 

as particles move over each other (Visser et al., 2008). 

The two mechanisms illustrated by Figure 2-14 underpin the mechanism by which 

agglomeration occurs. Agglomeration growth and the process in formation are broken 

down into three routes (Pietsch, 2008a; Skrifvars et al., 1994):- 

1) Tumble or growth agglomeration is the process in which bed particles with adhere to 

one another depending on volume related separation and the adhesive forces of each 

particle surface. In order for the formation of agglomerates to occur by this process 

and to adhere permanently, the sum of all the forces acting against the adhesion must 

be overcome i.e. gravity, momentum, drag etc. This type of process is commonly 

experienced in FBC agglomerate formation but complements other processes which 

contribute together to cause agglomeration. 

2) Pressure agglomeration or molecular cramming, whilst less common in FBC systems 

is a physical mechanism for agglomeration in a bed. It can occur if there are barriers, 

baffles, areas in which particles are squashed together, and in doing so reduce 

friability and break up of agglomerates. This can occur within tumble agglomeration 

when agglomerated material obstructs particle movement and thus, localised pressure 

between particles accelerates agglomerate propagation. 

3) Sintering is common and occurs at elevated temperatures seen with the onset of 

agglomerates and when inorganics are allowed to build up in the bed. Sintering is the 

interface between particles changes as surface matter diffuses between the particles 

to form bridges. These solidify on cooling but also promote liquid phase movement 

between particles with localised heat elevation, thus causing further structural 

2) 

Gas 

p1)hase 

Ash 

Sand 

particle

Sand 

particle

Sintering of coating layers 

Agglomeration due to ash melt formation 

Figure 2-14 Agglomeration mechanism of bed material; 1) coating induced, 2) melt 

formation with ash components (Visser et al., 2008) 

1) 
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stability in the localised matrix. This leads to further propagation of the agglomerate 

structure and compliments tumble agglomeration and in doing so agglomerates 

develop, in three dimensions, usually to the detriment of the fluidity of the bed and 

combustion operations. 

Whilst the mechanisms and processes for agglomeration have been described, with 

respect to low grade fuels and biomasses in FBC, tumble growth is the most significant 

agglomeration method. At elevated temperatures, however, sintering becomes more 

significant as sticky alkali groups from the fuel, create a liquid/gas phases creating the 

sticky surface on bed particles, causing agglomeration. Further to this, sintering with more 

elevated temperatures leads to localised defluidisation and hotspot formation. 

Consequently, the rate and strength of the agglomerates in these areas increases leading 

to the onset of more severe localised or complete defluidisation (Skrifvars et al., 1992; 

Knutsson et al., 2014; Tangsathitkulchai and Tangsathitkulchai, 2001; Skrifvars et al., 

1994). Once the agglomerates have become significant enough in volume and/or mass the 

bed will defluidise. This is a consequence of the hydrodynamics of the bed material being 

altered and the distribution of fluidisation air throughout the bed becoming non-uniform. 

Defluidisation will result in less than favourable operating conditions i.e. temperature 

spikes and poor combustion thus leading to furnace down time. 

2.10.3 Operational Variables Effects on Agglomeration 

Operational variables and their effect on agglomerates have been researched and can be 

found in abundance in the literature as the following passages will demonstrate; Öhman 

et al. (2000) outlined the possible effects of 300 fuels in which the fuels were rated in 

terms of their inorganic concentration and the links that this presented to agglomeration 

and other negative combustion effects. The study demonstrated the significance of 

particular species such as K and Si by linking them to agglomeration and how common 

they are in biomass fuels. As later sections will describe, these chemicals species play a 

major role in the formation of slags and agglomerates and how there is a commonality 

between the fuels and how the biomasses will generally present challenges in combustion. 

Within this review styled investigation, Öhman et al. (2000) showed the significance in 

the concentration of specific alkali components such as K2O and Na2O and their 

relationship to agglomeration. 

This type of work laid foundation for authors such as Brus et al. (2005) and Duan et al. 

(2015) who investigated additives and operational variables respectively. However, 

because of the high potassium concentrations in fuels they used (straw and grasses), both 
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sets of authors concluding remarks were dominated by potassium melt phase and coating 

mechanisms. Duan et al. (2015) went on to described the significance of the low melting 

(≤955°C), eutectic formation and offered a series of reactions; Reaction 2-16 to Reaction 

2-18.  

These investigations highlight the impact of multiple factors effecting the formation of 

eutectics high in alkali concentrations. Other authors such as Latva-Somppi (1998); 

Grubor et al. (1995) both conducted extensive experimental work with focus on the alkali 

content of biomasses and the direct influence excessive bed temperatures etc. have on the 

movement of alkali liquid phases.  Seville and Clift (1984) showed experimentally, that 

a small amount of volatile alkali liquid when added to a fluidised bed will increase the 

inter-particle adhesion forces significantly between particles in the bed. The presence of 

increased alkali liquid melt phases was seen to correlate with increased localised bed 

temperatures and incomplete combustion. These studies showed that a small disruption 

in the bed through agglomeration formation when burning low grade fuels could quickly 

escalate to defluidisation. Therefore, based on this type of evidence it can be theorised 

that a damaged air distribution system could quickly lead to bed agglomerations. 

Numerous authors have evaluated different aspects of low grade coals (Basu and Sarka, 

1983; Siegell, 1984a; Skrifvars et al., 1994; Lin and Dam-Johansen, 1999) and biomasses 

(Brus et al., 2005; Chirone et al., 2006; Bartels et al., 2008g; Lin et al., 2003; Olofsson et 

al., 2002; Öhman et al., 2000; Scala and Chirone, 2006; Thy et al., 2010b) in respect to 

operational conditions and the subsequent effect the fuels have on agglomerate formation 

due to alkali content.  Whilst each investigation critiques the effect on agglomeration and 

in many cases, specify chemical reactions and eutectic formation mechanisms, little is 

stated to a system that is less than isothermal or ideal. There is little, if any consideration 

to the effect caused by a damaged air distribution system or to physical aspects of the bed. 

What is the consequence of a broken bubble cap? How does this affect fluidisation? Is 

there a remedy that doesn’t involve taking the furnace offline? What effect does this have 

on agglomerate formation? What are the implications of using these fuels in a full-scale 

operation. 

𝐾2𝑂 ∙ 𝑛𝑆𝑖𝑂2 + 𝐹𝑒2𝑂3 → 𝐾2𝑂 ∙ 𝐹𝑒2𝑂3 ∙ 𝑛𝑆𝑖𝑂2 
(Duan 

et al., 

2015) 

Reaction 2-16 

𝐾2𝑂 ∙ 𝑛𝑆𝑖𝑂2 + 𝐴𝑙2𝑂3 → 𝐾2𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 𝑛𝑆𝑖𝑂2 Reaction 2-17 

𝐾2𝑂 ∙ 𝑛𝑆𝑖𝑂2 + 𝐴𝑙2𝑂3 → 𝐾2𝑂 ∙ 𝐴𝑙2𝑂3 ∙ (𝑛 − 1)𝑆𝑖𝑂2 + 𝑆𝑖𝑂2 Reaction 2-18 
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Oka (2003) explains theoretically that if a system were to suffer an issue with the air 

distribution system, then the thermal diffusivity within the bed would decrease. Air 

pressure would play a key role in the change in air velocity experienced across the bed. 

A broken bubble cap for instance will have a larger opening than that of an intact bubble 

cap and thus, the hydrodynamics of the bed would alter. Regions of high and low 

turbulence would occur with the redistribution of air throughout the air distributor. 

Consequently, the decrease in thermal distribution and increase of localised hotspot would 

be expected to increase the formation of agglomerates. 

Kuo et al. (1997) investigated the effect of different air distribution options and the 

association of varying combustion operations by altering inlet air velocity. The work 

presented has the most relevance to this investigation in respect to a non-uniform air 

distribution system. The results presented and critique of flame distribution and 

combustion rates, and the effect on emissions. The author found changing the air 

distributor didn’t necessarily impact the combustion as predicted however, more 

significantly limited the spreading of the flame. This coupled with varying air flows 

created cooler regions. Therefore, it could be theoretically possible that in a system in 

which the air distribution plate is damaged the combination of high/low flows could create 

heating/cooling zones that could influence the rate of agglomerate formation. More so 

this type of system would encounter a variety of agglomeration mechanisms in which 

higher temperature sintering could be taking place alongside lower temperature eutectic 

formation. Lin et al. (2011) found that if there was an extreme increase in inlet air velocity, 

regardless of fuel alkaline content, there was a decrease in the formation of agglomerates. 

The increasingly turbulent bed acted to break up agglomerates. Instead a larger overall 

particle size of the bed occurred eventually leading to defluidisation as displayed in Figure 

2-5, but this took longer than in a more typical fluidisation regime. Hence there could be 

a benefit of a highly turbulent region within the bed to break apart freshly formed and still 

fragile agglomerates within the bed. The question persists, to what extent the positive 

effects outweigh if at all the negative effects. This is a factor that none of the available 

literature has elaborated on but should still be considered. 

2.10.4 Agglomeration Summary 

From the work presented in the literature it is possible to draw some conclusions on the 

effect of non-ideal air distribution and operation variables on the combustion of low grade 

fuels: 
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 Low grade fuels have been shown/found to contain higher concentrations of 

agglomeration causing alkali inorganic species such as K, Fe and Na. The eutectic 

matrices these species form lead to the onset of agglomerates by coating and bonding 

to ash particles and bed materials. This leads to the propagation of rigid structures 

resulting from sticky particles colliding and forming bridges between the formed 

materials. Particularly it was seen that the lower melting temperature species such as 

K and Na would react with compounds such as Si and Fe resulting in lowered 

temperature melts in silicates. The silicates are much stronger and rigid which lead to 

the growth of more structurally formidable agglomerates in fluidised beds. 

 Air distribution is a fundamental factor in the turbulence, distribution and fluidity of 

bed material and entrainment of fuel particles. If the air flow is disrupted by the onset 

of agglomerates, localised poor mixing and combustion will lead to the formation of 

higher melt eutectics. Therefore, a lower melting temperature eutectic causing initial 

agglomeration can lead to the onset of alternative mechanisms involving higher melt 

species resulting in more structurally hardened complexes. 

 Further to the previous point, if the air distribution technique employed to fluidise the 

bed is damaged or obstructed in any way, then there is the potential to increase the 

onset of agglomeration, reduce efficient combustion and reduce the performance of 

the bed. A damaged air distributor could see increased agglomeration rates as areas 

of poor mixing and turbulence allow for adhesion and cooling of molten ashes and 

slags which aren’t being agitated through the bed. 

 The literature reviewed indicates numerous mechanisms associated with the high 

inorganic content fuels such as biomass and agglomeration. The literature also shows 

how air flow could theoretically impact the rates of these formations. Therefore, the 

literature shows that these areas could radically impact the application of low grade 

fuels in full scale operations and present a series of engineering problems in altering 

operational variables. Thus, further research is needed for the larger scale 

applications.  

In summary, the introduction of a damaged air distributor could potentially agglomerate 

the bed faster and in a specific manner. However, it is not known what factor on time this 

has and to what extent the bed and agglomerate morphology will alter. This will be 

investigated further in later Chapter of this thesis. 
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2.11 Agglomeration Prediction 

There are a variety of ash behaviour prediction techniques described in standards and 

literature. On reviewing the available information, it is clear that the focus of the literature 

was to predict fouling and slagging of more conventional PF coal firing technology. This 

raises two issues; 1) Do the techniques apply for low grade fuels of a different chemical 

and physical type compared to the coals used to construct the standards in the literature 

(anthracite) and, 2) do these methods translate well for the mechanisms of agglomeration 

in FBC. The way in which alkali groups etc. will react are very different for a fouling 

mechanism to agglomeration.  

2.11.1 Experimental Methods 

Experimental methods approach the problem by assessing the fuels capacity to produce a 

melt phase or slag phase. This utilises fuel characterisation techniques such as thermos 

gravimetric analysis (TGA), ash X-ray fluorescence (XRF), thermal mechanical analysis 

(TMA) or ash fusion testing. The most widely adopted method is ash fusion testing, in 

which a sized particle of ash/fuel is heated and observed both visually and with a mass 

spectrometer. This method has ASTM accreditation and has been used to evaluate many 

fuels (Bartels et al., 2008a; Stallmann and Neavel, 1980; Skrifvars et al., 1999; Paulrud 

et al., 2001; Öhman et al., 2004). However, whist these techniques give reliably accurate 

results, they do not simulate the turbulent mixing of a FBC. For this reason studies such 

as Paulrud et al. (2001) have found that the melting temperature within a test bed is lower 

than that in a fusion furnace, usually as a result of localised heating or forced chemical 

mixing by the turbulent bed. 

The only conclusive method of testing a fuel is to tests it under lab or pilot scale or ideally 

full scale operation. This isn’t always feasible as this could both be costly and damaging 

to a test operation. However,  Visser et al. (2008) noted on how during comparative work 

in scale up operation to lab scale tests; the agglomeration mechanisms shifted from a 

melting mechanism as shown in Figure 2-14 for industrial operation to coating 

mechanisms of agglomeration for lab scale tests. The conclusion of these findings 

indicates tendencies and trends, but variance between setups and there is no definitive 

answer. 

2.11.2 Theoretical Methods (FACTSAGE) 

An alternative approach is to use computational predictions and modelling software to 

predict outcomes of a system based on its thermodynamic and chemical properties. This 
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could be used alongside experimental data to construct a more informed picture for better 

decision making. 

An example of such software is “FACTSAGE”. FACTSAGE uses Gibbs energy 

minimisation algorithm and thermochemical functions to calculate the outcome of 

systems described by a user. This includes reactant details and system variables to 

produce two-dimensional single phase mappings with phase transition and 

multicomponent mixtures.  

Li et al. (2010) used various modules of the FACTSAGE software to determine slag phase 

melting, viscosity properties of slags and to analyse the effect of blending multi-fuel ashes 

together in a FBC.  The results helped to approximate trends of the fuels and their relative 

potential influence on adhesive particle build up in the bed. However, criticisms of this 

approach included data gaps, misalignment of data between modules and the variance on 

results with small changes in system inputs. The same experience has been found by 

authors using this type of software for fouling and slag based deposition work (Van Dyk 

et al., 2009; Elled et al., 2013a; Fryda et al., 2008). 

2.11.3 Indices 

An alternative method for predicting agglomeration tendencies is through agglomeration 

indices. These are equations that have been derived from fuel composition data and 

process results for validation. The equations include critical reaction groups and 

mathematically equate them against other groups which have been seen in experimental 

work to cause a counter effect which has a measurable value tied to it. 

Gatternig (2015) summarised key agglomeration indices Table 2-2. These have been 

developed with data for coals, however, in later Chapters the application to biomass was 

evaluated. The conclusions drawn addressed the limited application of the indices for 

biomass or co fired fuelled systems. These will reflect the work done by Barroso et al. 

(2006), who systematically compared the rates of deposition and agglomeration from 

fuels against the expected outcomes drawn from the indices. It was found that for biomass 

etc. that there was very little correlation, bringing to question the validity of these types 

of indices for predicting biomass fuelled systems.  

Predictive method should be taken as an indication of how a system might react but the 

work in the literature shows there are limitations to each method. It is better to use a 

combination of approaches to form more informed conclusions before proceeding in 

application of a fuel or operational choice. 
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Table 2-2 Indices for the description of ash behaviour.(Gatternig, 2015) 

Index name Definition Agglomeration/ 

fouling risk 

 

Coal   

Silica ratio 𝑆𝑅 =
𝑆𝑖𝑂2

𝑆𝑖𝑂2 + 𝐹𝑒2𝑂3 + 𝐶𝑎𝑂 + 𝑀𝑔𝑂
 

0.8-0.72 low 

0.72-0.65 medium 

0.65-0.5 high 

Equation 

2-16 

Base-to-acid 

ratio 
𝑅𝑏/𝑎 =

𝐹𝑒2𝑂3 + 𝐶𝑎𝑂 + 𝑀𝑔𝑂 + 𝑁𝑎2𝑂 + 𝐾2𝑂

𝑆𝑖𝑂2 + 𝐴𝑙2𝑂3 + 𝑇𝑖𝑂2
 [

𝑚𝑜𝑙

𝑚𝑜𝑙
] 

<0.2 low 

0.2-0.4 medium 

0.4-0.55 high 

Equation 

2-17 

Slagging 

number 
𝑅𝑆 = 𝑅𝑏/𝑎 ∙ 𝑆 [

𝑚𝑜𝑙

𝑚𝑜𝑙
] 

RS<0.6 low 

0.6-2.0 medium 

2.0-2.6 high 

>2.6 severe 

Equation 

2-18 

Iron-to-calcium 

ratio 

𝐹𝑒

𝐶𝑎
=

𝐹𝑒2𝑂3

𝐶𝑎𝑂
 <0.3 and >3 

Equation 

2-19 

Fouling factor 𝐹𝑢 = 𝑅𝑏/𝑎 ∙ (𝑁𝑎2𝑂 + 𝐾2𝑂) [
𝑚𝑜𝑙

𝑚𝑜𝑙
] 

Fu<0.6 low 

0.6-40 medium 

>40 high 

Equation 

2-20 

Silica-to-

alumina ratio 

𝑆𝑖

𝐴𝑙
=

𝑆𝑖𝑂2

𝐴𝑙2𝑂3
 

<1.4 low 

1.4-2.8 medium 

>2.8 high 

Equation 

2-21 

CCSEM index ∑ [𝐶𝑎𝑂 + 𝐹𝑒2𝑂3 (
𝐹𝑒2𝑂3

𝐹𝑒2𝑂3+𝐴𝑙2𝑂3 + 𝑆𝑖𝑂2
)] 

<15.3 low 

15.3-30.6 medium 

>30.6 high 

Equation 

2-22 

Biomass    

Alkali index 𝐴𝐼 =
𝛼 ∙ (𝐾2𝑂 + 𝑁𝑎2𝑂)

𝐻𝑁
 

Al>0.34 fouling 

probable 

0.17<Al<0.34 

fouling possible 

Equation 

2-23 

Bed 

agglomeration 

index 

𝐵𝐴𝐼 =
𝐹𝑒2𝑂3

𝐾2𝑂 + 𝑁𝑎2𝑂
 

Higher value = 

increased risk 

Equation 

2-24 

Agglomeration 

index 1 
𝐼1 =

𝑁𝑎 + 𝐾

2𝑆 + 𝐶𝑙
 

l1>1 fouling 

l1>1 agglomeration 

Equation 

2-25 

Agglomeration 

index 2 
𝐼2 =

𝑁𝑎 + 𝐾 + 𝑆𝑖

𝐶𝑎 + 𝑃 + 𝑀𝑔
 l2<1 

Equation 

2-26 

Note: Ash components are entered as wt. %; S is Sulphur as fuel ash (wt. %) if not stated as molar. 

 

2.11.4 Agglomeration Monitoring 

Agglomeration is one of the most important problems which a FBC can experience during 

normal operational conditions. For this reason, early warning and detection of 

agglomeration and the mechanisms contributing to the formation of agglomerates is 

paramount. If a monitoring system is unable to accurately and reliably identify potential 

agglomerate formations, then the bed can degrade to the point of defluidisation. 

Monitoring methods used in industrial scale plants include; pressure, electrostatic, 

temperature, radiation and optical measurements to detect agglomeration. The ideal 

monitoring system should be sensitive enough to detect changes in a bed and detect 
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agglomerate sources before defluidisation has occurred, rather than simply identifying 

when the bed is defluidised (Wang et al., 2009). 

Different approaches to agglomeration detection have limitations and specific 

applications. The following points consider systems currently used in agglomeration 

detection for FBC plants and the limitations experienced 

2.11.4.1 Pressure Drop  

The most common type of monitoring system used for FBC agglomerate detection is 

pressure drop. This is done by having a probe in/below the bed and one above the bed. 

The pressure difference generated gives the overall pressure drop (ΔP) across the bed. 

Linear and non-linear recognition algorithms are used to analyse any fluctuations and are 

compared against a baseline case value. Pressure readings give the operators information 

on bed hydrodynamics and averaged pressure drop gives real time feedback in terms of 

bed density and height (Bartels et al., 2008a; Wang et al., 2009). However, pressure drop 

monitoring is inhibited by probe blockages and its limited accuracy to identify local bed 

changes and only view the bed as a single entity. This means the formation of hotspots 

and sintering material can be averaged into the overall system rather than specific 

localised changes. Research in this field is focused towards the application of statistical 

analysis and various algorithmic approaches to better differentiate between pressure 

changes (Bartels et al., 2008g). Kai and Furusaki (1987) used standard deviance and 

variance in pressure, Davies and Fenton (1997) used windowed standard deviation and 

Chirone et al. (2006) used variance in high frequency pressure fluctuations. Each author 

investigated alternative approaches to the same problem and concluded on how to better 

the monitoring system under specific conditions. However, each bed has to be considered 

individually based on their operational variables. Pressure drop is the simplest method in 

terms of implementation and use and for this reason is the most commonly used 

technique. It is for this reason that the experimental methodology of this study will adopt 

pressure drop for agglomeration and defluidisation detection. 

2.11.4.2 Electrostatic Measurements 

Electrostatic forces and gas-solid interactions have been noted to influence 

hydrodynamics and agglomeration due to their impact on electrostatic forces. 

Electrostatic forces form as a result of the bed particles moving over the wall of the 

furnace and against each other. This charge then attracts particle to the wall creating less 

turbulent mixing and increasing the potential for agglomerate formation in these charged 

zones as sheets. The weight of the sheets will eventually overcome the electrostatic forces 
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of attraction and potential “sticky” particles which then fall into the bed leading to other 

agglomeration mechanisms (Yang et al., 2016; van Ommen et al., 2000; Hendrickson, 

2006). 

A number of authors have looked into mitigating static charge with different approaches 

to dispel electrostatic charge (Mehrani et al., 2005; Liu et al., 2010; Sowinski et al., 2010). 

The same probes used to discharge the walls can be used to monitor agglomeration build 

up and develop detection methods. By measuring the distribution of charge across a bed 

with a metal probe for instance, it is possible to measure charge and compare this against 

accumulation data seen at the point of agglomeration in the bed and walls of the furnace 

(Fang et al., 2008; Fujino et al., 1985; Gajewski, 1985). However, this type of detection 

method is still in development and has yet to be proven for different agglomeration 

mechanisms. 

2.11.4.3 Temperature 

Most mechanisms for agglomeration are the results of alkali species melting when a 

specific range of temperature is achieved. If there are enough points of measurements 

around the bed, theoretically it is possible to detect temperature change and give warning 

to agglomerates. This is especially true in dead zones where hotspots can form and lead 

to sintering and the formation of larger solids are monitored (Wang et al., 2009). The 

problem with temperature approaches is that whilst there may be a temperature spike in a 

small region due to the formation of agglomerates, differentiating the spike to the global 

temperature of the bed is difficult. Therefore, whilst some points of concern may be 

identified by the system, there is a large probability of missing agglomerates, thus 

rendering the monitor unreliable (Werther, 1999). Many authors have investigated 

numerous methods for reliably measuring localised temperature spikes; Khan and Turton 

(1992) used a network of thermocouples and temperature coefficients taken from 

immersed tubes to calculate temperature variations around a bed, whereas Basu (1990) 

took a more mathematical approach using wall measurements and statistical analysis to 

differentiate temperature variance against a normal operations case.  

Thermocouples will be distributed throughout the test rig used in later experiments and 

the data collected in terms of temperature distribution through the bed will be used to 

detect and predict agglomeration. However, combining pressure and temperature 

monitoring, a better means for detecting agglomeration can be achieved compared to 

using a single approach. 
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2.11.4.4 Other Methods 

Other methods are being developed for monitoring the bed in a FBC but are still in their 

early stages. Such development includes novel approaches towards optical systems using 

fibre optics immersed in the bed to measure bubble and hydrodynamic data. This method 

so far has been found to be limited to lab scale systems because of the size and shape of 

agglomerates in full scale operations (Ishida and Tanaka, 1982; Razzak et al., 2009; Link 

et al., 2004; Schweitzer et al., 2001). Other novel approaches include acoustic emissions, 

that is the measurement of inter particle and particle wall collisions as a signal. Work by 

authors such as Wang et al. (2009) show that potentially, with enough data, mathematical 

manipulation and case study information on agglomerate formation can give positive 

measurements of the bed. Sheahan and Briens (2015); Weiguo et al. (2015) and Jiang et 

al. (2014) have further researched the technique to positively identify specific 

agglomerate’s and particles by improving statistical and mathematical analysis in real 

time test. However, further development of these types of technique are needed to hone 

them for reliable application in industrial type operations.  

2.12 Hydrodynamics 

The hydrodynamics of a fluidised bed combustor describes the physical interactions of 

solids and gases within the fluidising bed. The way in which the air entering the bed is 

distributed, the type of distributor, number of distributors etc. will affect the distribution 

of gases throughout the bed. The particles, air velocities, voidage and a number of other 

variables will influence how bubble develop throughout the bed. This directly affects 

mixing, fluidisation and overall combustion efficiencies (Gogolek and Grace, 1995). This 

section will describe the air enters the bed of a FBC unit and how that air then mixes and 

bubbles develop throughout the bed. 

Hydrodynamics are fundamental to the fluidisation of FBC technology as it describes the 

gas particle interactions and variables that impact on flow. In order to analyse the effect 

of altering variables such as air distribution, volatile gas release and agglomerate 

formation it is necessary to review literature. The following section underlines the key 

fundamentals which could impact the tests described in Chapter 3. 
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2.12.1 Air Inlet and Distribution 

Depending on the purpose of the fluidised bed and the materials within that bed, the way 

in which air is introduced is important for the even distribution of air across the bed. 

Different air inlet systems and techniques will affect the beds performance in different 

ways and alter the development of bubbles and mixing throughout the area of the bed. 

Figure 2-15 illustrates the different types of air distribution technologies that can be 

applied in fluidised bed technologies. 

It is common practice to use sintered or ceramic porous plate distributors for smaller scale 

rigs because this design gives good flow resistance with good bed distribution. However,  

these types of distributors wouldn’t be considered for large scale operations because of 

high pressure drops resulting in higher pump power requirements, low physical strength, 

high design costs and eventual fine particle blockages (Kunii and Levenspiel, 1991). 

Bubble caps will be used in the pilot scale rig as they are used in full industrial scale 

boilers and will give the most representative data.  

2.12.2 Gas-Solid Mixing 

Within a fluidised bed there can be numerous mixtures of materials varying from coal, 

biomass, ashes, inorganic materials, alkali metals, sands, limestone etc. however, the way 

in which these materials act upon each other within a bed, based on their individual 

physical and chemical characteristics, will determine the overall movement and 

interactions within the bed. 

2.12.3 Bubbles in Gas-Solid Flows 

Sections 2.5 though to section 2.7 discussed fundamental physical and mechanical 

properties of a FBC bed which directly influence the fluidisation etc. However, to truly 

understand the way in which gas-particles interact and heat-mass transfer occurs in a bed 

the formation of bubbles must be understood.   

Figure 2-15 Plate and grate type distributors (a) sandwiching perforated plates (b) staggered 

perforated plate (c) dished perforated plate (d) grate bars (Kunii and Levenspiel, 1991) 
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Bubbles will form throughout the bed from the orifice to the surface of the bed 

immediately after minimum fluidisation and change in shape, velocity, pressure and size 

as bubble to bubble interactions take place. The formation of bubbles is completely 

random but generally after fluidisation the number of bubbles will decrease as they 

approach the surface of a bed. This is due to the small bubbles merging (coalescence) 

forming larger bubbles. The large bubbles will then either burst on the surface or break 

up into smaller bubbles in the bed due to bed turbulence and mixing (Howard, 1989). 

Figure 2-16 demonstrates how the different air distribution technologies will initially 

produce smaller bubbles that merge to larger bubbles. 

2.12.4 Bubble Geometry 

When the gas (air) leaves the air distributors, it will displace the sand around the cap 

creating a pressurised void. The gas will then begin to accelerate away from the cap and 

rise as a bubble would in water. The bubble will then form either into a spherical shape 

or into a spherical cap with an indentation in its rear (the wake). 

2.12.4.1 Spherical Bubbles  

Spherical bubbles will rise due to a change in pressure throughout the bubble. The 

pressure in the lower part of the bubble is lower than that of the surrounding bed. This 

allows gases from an emulsion phase to enter the bubble. This exchange of gases gives 

rise to the upward movement of the bubble. Around this type of bubble there is a lower 

density of particles due to the interactions with the gases and solids. As the bubble rises, 

mixing will take place throughout the surrounding and internal material. Most of the 

particles will be displaced around the bubble while a small fraction will “rain” down 

Figure 2-16 the resulting behaviour of bubble formation from different distributor techniques 

(a) porous plate (b) bubble cap (c) resulting bubble formation (Sano et al., 1983; Kunii and 

Levenspiel, 1991) 

(a

) 

(b) (c) 
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through the bubble including large particles such as combustion products and fuel (Kunii 

and Levenspiel, 1991; Fueyo and Dopazo, 1995). 

The rise velocity of a bubble can be calculated based on the exchange of pressure within 

the bubble and the materials. Therefore, the rise velocity of a bubble can be calculated on 

the interactions as shown in Equation 2-27. Spherically capped bubbles  

Where ubr is bubble rise velocity, g is gravity constant, Db is bubble diameter and Dt is 

bed diameter. 

Spherically capped bubbles are the more common bubble shape that is postulated to occur 

in a gas-solid bed. Figure 2-17 illustrates the shape of an ideal spherically capped bubble 

with the indentation or wake following in the bottom of the bubble. Whilst the exchange 

of gases is similar to that of a spherical bubble, due to the indentation, the interactions 

with particles differ. Critically the indentation is filled with particles which will follow 

the bubble as it rises. This will result in greater mixing throughout the bed as material can 

potentially travel from the bottom of the bed directly to the surface (Wu, 2003a).  

Bubble caps were used in calculations for air distribution and offered the best distribution 

for air throughout the bed of the test rig. 

The rising velocity of this type of bubble is as stated in Equation 2-28. Smaller bubbles 

have lower velocities whereas larger bubbles have larger bubbles have larger velocities 

𝑢𝑏𝑟 = [0.711 × (𝑔𝐷𝑏)
1
2]

× 1.2 exp (−1.49
𝐷𝑏

𝐷𝑡
) 

Equation 2-27 
(Fueyo and 

Dopazo, 1995) 

Figure 2-17 The bubble formation of a spherical capped gas bubble moving through 

solid particles producing a wake/indentation (Fueyo and Dopazo, 1995) 
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due to the buoyancy and pressure build up associated with varying bubble size (Fueyo 

and Dopazo, 1995). 

2.12.5 Solid Mixing 

Primary mixing throughout the bed occurs because of the movement of the bubbles. Air 

bubbles rising through the bed carry material upwards and material moves downward in 

areas which there are no bubbles. This is a balanced mechanism thus the more material is 

successfully moving upwards with bubbles, the more material will move downward to fill 

the displaced material (Wu, 2003a). 

Secondary mixing occurs when a bubble reaches the surface of the bed and pops. This 

small explosion is relative to the size and pressure of the bubble. The resulting explosion 

will expel both hot gasses and particles above the bed. At the same point fuel and surface 

particles will fall into the temporary void mixing material into the bed. This is a significant 

part of fluidisation as transfers fuel and heat into the bed and in doing so sustains 

combustion (Howard, 1989). 

Horizontal mixing occurs on the surface through turbulence created by the emergence of 

bubbles and around the distributor caps where turbulence is large enough to move the 

material (Stein et al., 2000). 

Stein et al. (2000) studied the effects of deep beds on the mixing within FB’s. It was found 

that with deeper beds the material rises through the centre of the bed because this is where 

there was a larger collection of bubbles. The material falling down occurred near the walls 

of the fluidised bed creating a circulating effect. Guenther et al. (2002) found that for 

shallow beds the upward movement of bubble in the bed induced the downward 

movement of material through the central area of the bed. Therefore, with alterations to 

the bed height there will be clear differences in the mixing and interactions of a FBC and 

potential with reactions occurring between those mixing particles including agglomerates. 

The bubble geometry and solid-solid/solid-gas mixing will directly impact the rate of 

agglomerate formation. The rate is likely to increase further if an obstruction or negative 

modification were to be made to the air distribution system. Experimental testing in 

Chapter 5 and 7 will illustrate these hypotheses and elaborate on the literature described 

here by comparing an ideal and no ideal air distributor system while combusting high 

alkali content biomass fuels. Based on the understanding developed by previous sections, 

𝑢𝑏𝑟 = 0.71 × (𝑔 × 𝐷𝑏)0.5 Equation 2-28 (Fueyo and Dopazo, 1995) 
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it is expected that the rate of agglomerate formation will alter between the plates as well 

as the agglomerate structure forming. 

2.13 Emissions 

The process of combustion oxidises fuel, in the presence of heat, to products including 

flue gases. In this Chapter the mechanisms and chemistry for the formations of these 

emissions and the way in which they are controlled will be discussed including; carbon 

monoxide (CO), carbon dioxide (CO2), sulphur dioxide (SO2), Nitrogen oxides and 

nitrous oxides (NO/N2O). 

2.13.1 Carbon Monoxide (CO) 

CO is the product of incomplete combustion of carbonaceous materials. CO is formed 

when the concentration of oxygen is below the required level to convert all free carbon 

molecules to CO2. This is usually caused by poor mixing in the area of combustion or in 

a particularly fuel rich system i.e. where the ratio of fuel to excess air is fuel biased 

(Harrison, 2001). 

The chemical formation of CO is illustrated in Reaction 2-19 and Reaction 2-20 as 

described by (Tsuji et al., 2002). 

𝐶 + 0.5𝑂2 ⟶ 𝐶𝑂 ∆𝐺° = −137.168𝐾𝐽 Reaction 2-19 

2𝐶(𝑠) + 𝑂2(𝑔) ⟶ 2𝐶𝑂(𝑔) ∆𝐻𝑓
° = −110.5𝐾𝐽/𝑚𝑜𝑙 Reaction 2-20 

In FBC the concentrations of CO is generally kept below 100ppm as a result of the 

relatively good mixing experienced in a fluidised bed (Minchener.A.J, 2000). Secondly 

the high air flow rate required to bring the bed of a FBC unit to minimum fluidisation 

increases the excess air beyond that found in alternative conventional combustion system 

such as PF regimes (Podolski et al., 1995). CFB systems and other fluidised bed systems 

with increased mixing have less CO emissions due to their increased mixing of fuel and 

available (excess) air. 

The CO emissions produced by a combustion systems such as FBC will be directly 

influenced by the fuel type, bed temperature, fluidisation inlet air velocity, excess air and 

any secondary/tertiary air introduced in other areas of the furnace (Wu, 2003a). 

2.13.2 Coal 

The key parameter for CO production between fuel types is the reactivity of the fuel. 

Different coals have different reactivity. Studies such as (Armesto et al., 2003a; Chern 
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and Hayhurst, 2012; Cliffe and Patumsawad, 2001) have looked into the effect which fuel 

type has on the CO emissions produced, measured at the flue. Armesto et al. (2003a) has 

previously found that there is a difference between anthracite and lignite coal in terms of 

CO emissions. The anthracite was found to produce higher CO levels when in an FBC 

system compared to lignite. This was correlated to lower freeboard temperatures and 

above bed temperatures which could be linked to the lower reactivity and combustibility 

of the anthracite. 

2.13.3 Biomass 

Biomass has a larger volatile matter percentage than that of coal. Mechanisms described 

in section 2.9.3 describes how volatiles are released and combusted near the top of the 

fluidised bed and above this area closer to the freeboard section. As a result, the 

temperatures above bed and in freeboard are much higher when burning biomass in an 

FBC. This higher reactivity of biomass therefore, results in lower CO emissions. Ghani 

et al. (2009) studied the difference in CO emissions from coal, coal/biomass blends and 

dedicated biomass burning in FBC and found that coal produced the most CO emissions, 

the blends produced less with increasing biomass ratios and lowest CO when dedicated 

biomass burning occurs. 

2.13.3.1 Bed Temperature 

Bed temperature will alter the rate of combustion of fuel in the bed. Bed temperature will 

impact CO formation by influencing the energy available to carbonaceous molecules and 

react to CO2. The temperature range in which CO is reduced depending on the FBC type 

being used and the relative flame temperature. 

Leckner and Lyngfelt (2002) used various biomasses as “high volatile” fuels with 

increasing bed temperature to show that with increasing bed temperature from 740°C to 

850°C, within a CFBC, the CO emissions could be reduced from 85ppm to almost zero. 

This was compared to a coal which was the “low volatile” fuel in comparison. It was 

found that there was a different correlation to bed temperature and coal rank. This was 

linked to the char content and volatile content difference in the fuels being opposing 

between fuels and thus shifting bulk of energy release to different parts of the flame. The 

data suggests that the correlation between bed temperature and CO emissions is still 

applicable but possibly with less significance in coal.  

It has been found in Armesto et al. (2002) that the bed temperature increasing in 

temperature brought on the increase of CO emissions initially and then followed a 

significant decrease. This study was in a FBC unit. The difference in mixing and regime 
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of inlet air flow rate influences the CO reaction rate with bed temperature. The study 

showed the overall decrease in CO with increased bed temperature as the CO reacts 

completely to CO2. 

2.13.3.2 Inlet Air Velocity 

The inlet/fluidisation air will directly affect the concentration and formation of CO in any 

FBC system. An increase in the inlet air velocity will result in a decrease in the CO 

residence time within the combustion chamber. This results in a decrease in the reaction 

of CO to CO2 within the flame which increases the CO emissions. The study on rice husk 

utilisation in FBC units by Armesto et al. (2002) indicated a CO emission increase from 

1085 mg/m3 to 1688mg/m3 with the increased inlet air velocity of 1 to 1.2m/s (Wu, 

2003a). Apart from the CO residence time and dilution affect the physical cooling to the 

system influences this outcome by reducing the conversion efficiency of the CO to CO2. 

2.13.3.3 Excess Air 

Excess air will influence the CO emissions through dilution, altering combustion 

characteristics and flame temperatures (Arromdee et al., 2010). 

Abelha et al. (2003) investigated the effect of poultry litter in FBC with varying excess 

air levels. It was found that excess air could vary the CO emissions when varied between 

10% and 40%. When 10% excess air resulted in the smallest CO concentration, however, 

as the excess air was increased to 25% the CO concentration range increased very slightly 

compared to 40% which resulted in high CO emissions. The most effective excess air was 

25% and can attributed to better mixing within the bed whilst maintaining reasonable 

residence times for CO conversion and maintained combustion temperatures. In a similar 

investigation Annamalai et al. (1987) found that when burning manure the optimum 

emissions levels for CO and others was at 650°C and 10% excess air. It was also 

concluded in this investigation that the CO emissions could not be brought below 

0.05vol% without manipulating other parameters other than excess air. 

In other studies Ghani et al. (2009) found that there were variances in CO ranges between 

dedicated coal combustion, co firing and dedicated biomass burning. Across all fuel 

combinations the CO level and combustion efficiency found a peak and then decreased 

with increasing excess air. There is a point at which excess air can be applied for 

combustion optimisation which, based on the literature, is up to 25-30% for biomass and 

up to 40-45% for coal. The difference is based on the volatile content and char content 

difference between the fuels which require different excess air levels to complete 

combustion. 
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2.13.3.4 Secondary Air Regimes 

The introduction of secondary air into a furnace results in CO concentrations decreasing. 

This is due to further conversion of CO to CO2 within the freeboard where residual 

combustion heat will be present (Arromdee et al., 2010). The introduction of staged air or 

secondary air will also increase the mixing and turbulence above bed and throughout the 

freeboard further increasing the reaction rate to CO2 before leaving the furnace (Wu, 

2003a). 

There have been a number of investigations into the effects of air staging especially over 

the last 10-15 years as a result of EU emissions limits. Work has been conducted to 

minimise all emissions as well as CO. Topal et al. (2003) investigated the combustion 

efficiency of olive cake on a CFB combustor unit with the aim of optimising emissions 

and combustion efficiency. It was found that with the secondary air staging the 

combustion efficiency could be improved from 82% to 98% (mitigating heat loss), which 

results in the CO emissions being decreased to less than 10ppm. Youssef et al. (2009) 

investigated air staging effects on four different biomasses; wheat straw, sawdust wood, 

cottonseed buds and corncobs. It was found in this study there was a difference of CO 

emissions of 3000mg/Nm3 for sawdust to 250mg/m3 for cottonseed. With control of air 

to the system combustion efficiency and CO emissions were reduced to below 100ppm. 

Further to this Abelha et al. (2003) found in a study of rice husks and air staging that 

during normal operation a FBC could produce between 1500-1600ppm CO but with a 

minimal air staging ratio to fluidisation inlet air of 1.4 the CO range could be reduced to 

160-540ppm (Wu, 2003). Thus, by introducing air staging to a system it is suggested that 

combustion efficiency can be optimised and thus CO emissions can be decreased to 

reasonable or exceptional levels by cooling the flame or oxidising CO to CO2. 

2.13.4 Carbon Dioxide (CO2) 

CO2 is a significant combustion emission component. As with CO the carbon comes from 

the carbonaceous material in the fuel which can vary in coals between 60-75% for sub-

bituminous to 91-92% in anthracite and averaging around 45% for biomass (Beér, 1977; 

Suyadal, 2006; Gulyurtlu et al., 2013). During combustion, the carbon in the fuel oxidises 

and thus produces CO2 in the flue gas. 

There are a number of side and secondary reactions which can result in the production of 

CO2 depending on the available oxygen within the chemical system and whether it is a 

reducing or oxidising reaction. Reaction 2-1 to Reaction 2-3 describe the overall formation 

of CO2 in an ideal combustion system. 
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The net emission of CO2 for coal is theoretically more than that of any biomass material 

because of the potential for the biomass to emit as much CO2 as it requires to grow. This 

is due to the biomass absorbing CO2 in the growth stage of the fuel and been deemed 

“carbon negative” at emission. If waste food, recycled timber, tree bark etc. is used as a 

fuel it will still have absorbed CO2 during growth and therefore,  the CO2 emitted during 

combustion is equal to that absorbed during growth (Koppejan and van Loo, 2012). In 

reality however, biomass isn’t carbon negative as other factors are overlooked including 

transport, crop fertilisation, crop prioritisation, processing and technique for best utilising 

the material downstream (Zanchi et al., 2012). CO2 emitted from combustion such as FBC 

technology is a contributor to climate change globally but FBC allows fuel flexibility 

especially if in the future carbon capture and storage techniques can be applied to make 

biomass carbon negative (Abanades et al., 2005). 

The literature has shown that operational variables and fuel composition will impact the 

emission of CO2 and CO through temperature and redox dominated reactions. Therefore, 

it is assumed that during experimental testing these parameters will be varied and will 

evaluated against the impact of the fuels in FBC. 

2.13.5 Sulphur Dioxide (SO2) 

SO2 is formed when the organic sulphur contained within the fuel is combusted. In the 

combustion process, most of the Sulphur is oxidised to its stable gaseous form, SO2. The 

higher the content of Sulphur in the fuel the more SO2 will be produced and thus emitted 

as a flue gas component as the reaction of sulphur to SO2 is a 1:1 reaction. (Wu, 2003a). 

Any sulphur which isn’t oxidised is retained as ash. This retention can be between 5-60% 

for different coal and varying operational changes (Eggleston H.S., 2006) and as salts 

form in slags and fouling such as K2SO4 and H2S found in downstream heat transfer 

surfaces where the lower temperatures condense the species out of the flue gases 

(Koppejan and van Loo, 2012). 

2.13.5.1 Coal 

The content of Sulphur in Coal is higher than that of other fuels such as biomass, natural 

gas and municipal solid wastes. Table 2-3 illustrates the variation in sulphur content 

between fuels.  
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The sulphur content of coals is commonly used as an indicator by power generators for 

blending coals. By blending two coals, one with a high sulphur content and one with a 

low sulphur content, it is possible to control and moderate the SO2 emitted as a pollutant 

at the flue stack by simply limiting the available S in the fuel source (Cheng et al., 2003).  

 

2.13.5.2 Biomass & Co-firing 

Biomass combustion produces less SO2 for a number of reasons; firstly, the organic 

sulphur content is much less than that of a fuel such as coal (as illustrated in Table 2-3) 

and secondly, biomass can contain a varying concentration of alkali metals and alkali 

earth compounds (Ca and Mg) which react with the sulphur resulting in a higher retention 

of the sulphur in the ash (Sloss, 2010a; Fernando, 2012b; Fernando et al., 2007). 

The amount of sulphur in biomass is less than that of coal, however, waste derived fuels 

and sewage sludge can contain a varied source material resulting in higher sulphur 

Table 2-3 Sample and default sulphur content values for different fuels (Harrison, 2001) 

  (wt%) (wt%) 



 

63 

 

content. The sulphur level can range from that of biomass to something resembling a coal 

(Fernando et al., 2007). 

One method of reducing the SO2 emissions from the combustion of coal is co-firing coal 

with different ratios and blends of biomass. Apart from the overall sulphur component in 

the fuel, the alkali metals and alkali earth compounds can lead to advantageous reactions 

which retain a greater proportion of the sulphur as ash (Fernando, 2012b). Khan et al. 

(2009), found that it was possible using coal biomass blends, to increase the sulphur 

retention in ash from 10% to 50%. This is due to the amount of Ca within the biomass 

which acts as a reactant which forms a stable calcium sulphate compound. Whilst 

biomasses can reduce the amount of sulphur which is emitted as SO2 either by reducing 

the amount of sulphur present or increasing retention, sewage sludge has been found to 

increase the SO2 emitted during co-firing even though it typically has a high Ca content.  

It has been suggested that the higher combustion temperatures achieved during 

combustion of this blend results in a reduction in CaO reactions hence resulting in 

increased SO2 emissions (Sloss, 2010a). 

2.13.5.3 Sulphur Oxide Removal 

SO2 has been recognised as a serious pollutant and the problems associated with it since 

the early 1980’s. In main land Europe, the emissions were found to lead to acid rain which 

resulted in mass deforestation and land/water pollution destroying local eco systems. As 

such the power generation sites across Europe including the UK had to incorporate 

desulphurisation techniques for flue gas desulphurisation (Harrison, 2001). 

There are a number of methods for reducing the sulphur in a combustion system; firstly, 

using low sulphur content fuels such as biomass or the Co-firing of fuels can lead to a 

SO2 reduction by reducing the total volume of sulphur entering the combustion zone, 

secondly, the construction of large desulphurisation units which spray liquid/atomised 

calcium compounds through absorber units which the flue gases pass through thus 

capturing the SO2 as calcium sulphates and ,thirdly, using additives in the combustion 

zone to retain sulphur in ashes which leave through the bottom/fly ash systems (Álvarez-

Ayuso et al., 2006). Operational parameters can be optimised to retain the maximum 

volume of sulphur in ashes or limit emission mechanisms whilst additive based 

desulphurisation is used for both in furnace retention and downstream cleaning 

techniques. Downstream additive based techniques are preferred for minimum changes 

to a combustion system whilst achieving high levels of efficient sulphur capture. 
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For a FBC system the most effective method (apart from utilising co-firing biomass) is to 

dope the bed with a limestone and/or dolomite mineral. This is fed in with the fuel/sand 

during operation and then removes the sulphur through a number of reactions shown in 

the following section. The product of these reactions are then emptied out with the bottom 

ash (Khan and Gibbs, 2000). 

2.13.6 Sulphation Mechanisms 

FBC systems using coal as a fuel require limestone, dolomite or chemically impregnated 

doping agents in the bed to retain the SO2 compounds. The main reactants considered for 

the purpose of desulphurisation are chosen fundamentally because of their high CaO 

and/or CaO•MgO content (Wu, 2003a). 

Podolski et al. (1995) and Wang et al. (2007) describe the overall reactions which take 

place in atmospheric desulphurisation system as shown in Reaction 2-21 to Reaction 2-24: 

Limestone- 

𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2 Reaction 2-21 
(Podolski et al., 1995; 

Wang et al., 2007) 

2𝐶𝑎𝑂 + 2𝑆𝑂2 + 𝑂2 → 2𝐶𝑎𝑆𝑂4 Reaction 2-22 
(Podolski et al., 1995; 

Wang et al., 2007) 

Dolomite- 

𝐶𝑎𝐶𝑂3 ∙ 𝑀𝑔𝐶𝑂3 → 𝐶𝑎𝑂 ∙ 𝑀𝑔𝑂 + 2𝐶𝑂2 Reaction 2-23 
(Podolski et al., 1995; 

Wang et al., 2007) 

2𝐶𝑎𝑂 ∙ 𝑀𝑔𝑂 + 2𝑆𝑂2 + 𝑂2 → 2𝐶𝑎𝑆𝑂4 ∙ 𝑀𝑔𝑂 Reaction 2-24 
(Podolski et al., 1995; 

Wang et al., 2007) 

The effectiveness of the sorbents being used can be altered by physically altering the 

amount of sorbent in the combustion system. The volume of sorbent used ranges between 

30-50% which is dictated by the efficiency of SO2 removal by the technique and the offset 

cost of transport, material cost, disposal etc. (Basu, 1999). 

2.13.7 Operational Variables 

To control the amount of SO2 emitted from a combustion system a user can manipulate 

the operational variables of the FBC system. Whilst excess air levels and pressure have 

effects on the formation of other pollutants and emissions, the retention of sulphur is 

affected very negligibly, instead the following variables are most significant (de Diego, 

2013).  
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2.13.7.1 Bed Temperature 

The optimum sulphur retention temperature range has been established for atmospheric 

combustion systems as 800-950°C (García-Labiano et al., 2011). Sulphur retention 

efficiency will vary with temperature as a result of the calcination reactions being 

temperature dependant, thus insufficient or excess heat can impeded the calcination 

mechanisms required for sulphur reactions. Podolski et al. (1995) found that when 

dolomite was used in a PFBC system an increase in bed temperature up to 950°C gave 

rise to increased sulphur retention.  

The reasoning for bed temperature effecting sulphur retention is due to reverse Sulphation 

reactions occurring at the higher temperature range, as well as the position of equilibrium 

in the system changing the formation of SO3 to instead promote the formation of SO2 and 

the calcination reactions of the sorbents. The higher temperatures also induce sintering on 

the surface of the bed sorbent resulting in less effective sulphur uptake (Hlincik and 

Buryan, 2013; Zheng et al., 1982). 

2.13.7.2 Fluidisation Air Velocity 

As with the CO, an increase in the fluidisation air velocity results in a decreased residence 

time for molecules and particles contact in the bed. This reduces the contact time for the 

SO2 with the bed sorbent, thus reducing the effective reaction time and therefore,  the 

effectiveness of the sorbent (Lyngfelt and Leckner, 1992). 

2.13.7.3 Sorbent Particle Size 

Surface area affects the availability of effective sorbent reaction surface zones. With 

decreased particle size there is an increase in surface area and hence an increase in the 

sulphur retention. Podolski et al. (1995) found that the sulphur retention increased from 

50-90% when the mean particle size was decreased from 0.99mm to 0.23mm. However, 

different systems have been found to show varying results. 

2.13.7.4 Calcium to Sulphur Ratio 

This Ca:S ratio is the most significant variable in terms of process engineering control. 

The reaction of SO2 uptake to Ca availability is a 1:1 ratio. Therefore, the method to 

reduce an excess of SO2 emissions is to simply increase the amount of sorbent available 

in the bed. Sulphur retention has been shown to be up to 90-95% in FBC by increasing 

the Ca/S ratio between 1-2 (Wang et al., 2007). For this reason, adding an excess of 

sorbent (which is a relatively cheap commodity) is the most common way of reducing 

SO2 emissions in an industrial scale power generation system. 
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The high sulphur content of the Pakistani coals used in the experimental work of this 

study indicates that SO2 will be an important parameter for judging the applicability of 

the coals in full scale systems. SO2 emissions and the effect operational variables have on 

sulphur retention will be a key parameter to gauge each fuels application in FBC. 

2.13.8 Nitrogen Oxides (NO and NO2) 

Nitrogen enters any combustion in two forms, organically bound to the fuel and in the 

atmospheric air used in combustion. The high temperatures and oxidising atmospheres in 

which combustion takes place react the nitrogen into NOx. (Sloss, 2010c). Most of the 

nitrogen will, via a series of reactions, form NOx compounds, this includes NO and NO2 

(Fernando, 2012a). 

In FBC the combustion temperatures (750-900°C) are less than PF which can achieve 

≥1400°C for pulverised coal (Barnes, 2010). The lower flame temperature results in a 

much lower yield of NOx from thermal emission reactions. It is assumed that most 

nitrogen will be released in the form of NO and N2O in FBC combustion. This means that 

nitrogen concentrations from fuel characterisation data can be used to approximate the 

concentrations of NO in the flue gases from FBC operations (Wu, 2003a). 

2.13.8.1 NO and NO2 Formation  

The following discussion and description of reactions refers to the pathways shown in 

Figure 2-18. 

The formation of NO and N2O results from a series of complex reactions taking place 

during combustion which includes, devolitisation of the fuel particle(s), volatile species 

oxidation, char oxidation and partial reduction to N2.  

Initially the nitrogen organically bound in the fuel devolatilises and is portioned into 

volatile nitrogen and char nitrogen. The conversion of fuel bound nitrogen to oxides group 

can vary from less than 5% to 40% (Anthony and Preto, 1995a). The proportions of this 

split are dependent on process variables such as temperature, pressure and catalytic 

activity of the bed materials and subsequent process impurities such as ash. Armesto et 

al. (2003c) found that combusting lignite’s and low grade sub-bituminous coals resulted 

in fuel bound nitrogen being converted to NO rather than N2O. Whereas Boavida et al. 

(1997) found that by using African coals of a similar type but with varying bed 

temperatures yielded greater N2O concentrations, thus emphasising the effects of 

devolitisation temperature and coal type. 
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 Volatile nitrogen undergoes a series of oxidation reactions via homogenous gas phase 

reactions or heterogeneous catalytic reactions over char or bed materials (sand, limestone, 

ash etc.). A number of authors; (Löffler et al., 2001; Johnsson, 1994; Okumura et al., 

2002) have investigated nitrogen bound in fuel and its partition to HCN and NH3 groups 

with varying results. Conclusions can be summarised to coal rank dramatically affecting 

portioning due to devolitisation temperature, effect of local particle gas pressure and 

impurities in the fuel. Thus, the quality of the coal is expected to influence NO formation 

and concentration in later experiments. 

Nitrogen in char can oxidise to NO, N2O and NO2 via a number of intermediary stages 

when HCN and NH3 are present. The NO and N2O undergo partial reduction forming 

NO2. NO can also be partially reduced in the presence of NH3 whilst in its homogeneous 

phase. In the third instance, N2O can be decomposed if there is sufficient heat energy to 

cause the “high temperature” effect. The forth pathway is that NO and N2O are reduced 

in the presence of a CO with a catalyst. This catalyst includes char, bed material, sand 

and limestone.  

The rate of formation for nitrogen oxides greatly varies due to the operational variables 

and the activity of available catalysts in the bed. For instance, calcined limestone which 

may have been introduced into the bed as a SO2 reduction method has high catalytic 

activity when compared to silica sand. Lower grade coals have been found to have high 

nitrogen activity because of high ash content, but adversely the limestone in such tests 

Figure 2-18 NOx reactions; formation and reduction pathways (Anthony and Preto, 1995) 
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were found to have much less activity due to high Sulphation of the limestones active 

sites (Johnsson, 1994). 

The addition of additives based on the literature presented previously suggests that the 

addition of an additive and alteration of operational variable is likely to influence NO 

emissions. 

2.13.8.2 Operational Variables and NO Formation 

The NO formation and concentration is of importance for any industrial scale FBC 

operation. Wu (2003a) reviewed the literature to evaluate the effect of operational 

variables on the formation of nitrogen oxides during FBC and the results are summarised 

in Table 2-4 The variables are described as follows: 

1) Fuel nitrogen content- The greater the nitrogen content in the fuel, generally, the more 

nitrogen oxides released during combustion. Biomass has less organically bound 

nitrogen than coal thus it should yield less nitrogen oxides (Anthony and Preto, 

1995a).  

2) Fuel volatile content-Increased volatile content results in greater NO and reduced N2O 

emissions. This is attributed to increased NH3 production which has a bias for 

oxidation to NO (Basu, 1999). 

3) Combustion temperature- Increased combustion temperature increases combustion 

rates and the concentration of nitrogen radicals. This further increases the oxidation 

of nitrogen radicals. Increased combustion temperature also results in reduced char 

and CO thus promoting reactions to form NO and reducing reduction reactions to N2 

(Lan et al., 2001). 

4) Excess air-Increased excess air results in increased combustion rates leading to 

enhanced homogeneous oxidation reactions of HCN and NH3. This has adverse effect 

on heterogeneous reduction reactions but overall increases the concentration of 

nitrogen oxides (Lan et al., 2001). 

Table 2-4 effect of operational variables on NO and N2O formation 

(Anthony.et.al.1995) 

Increasing parameter NO N2O 

Fuel nitrogen content Increase Increase 

Fuel volatile content Increase Decrease 

Temperature Increase Decrease 

Excess air Increase Increase 

Air staging Decrease Decrease 

Gas velocity - Increase 

Limestone addition Increase Decrease 
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5) Air staging-Air staging in the freeboard reduces the formation of nitrogen oxides. 

This is attributed to an enhanced reducing atmosphere as well as cooling the localised 

flame (Leckner and Lyngfelt, 2002). 

6) Gas velocity- N2O has been reported to increase with superficial gas velocity as a 

result of decreasing residence time (Armesto et al., 2002). 

The operational variables noted previously and the effects on the formation of NO have 

been described as the experiments in later Chapters will alter the operational variables 

and thus result in changing NO flue concentration. 

2.14 Summary 

The literature review is the result of a comprehensive investigation and evaluation of the 

available literature and understanding of fluidised bed technology. The review has 

focused on operational effects when combusting low grade fuels and the effect on system 

efficiencies, emissions and agglomerates. 

As such, it has been found that there is an understanding of agglomeration with biomasses 

and low grade coals in FBC. However, the fuels in this investigation represent a range of 

fuels applicable to the current power generation industry. As such, the results of later 

investigation will offer the greatest comparison to full scale application in industrial 

utilities. This Chapter has focused the work in the following Chapters and emphasised the 

need for research in low grade fuels in fluidised bed with regards to operational variations 

for combustion optimisation and the application to industrial scale systems. 

The information disseminated previously has indicated that co-firing coals and biomass, 

addition of bed sorbents, sorbent particle size, bed temperatures, sorbent fuel ratios and 

air distribution methodology require further research and development. This is due to their 

influence on agglomeration and slagging mechanisms, the resulting emissions and 

effectiveness for improving the fuels and the resulting combustion. 

The information covered in the literature review is necessary for the understanding and 

validation of the work conducted in the investigations of the following Chapters and will 

be referred to and compared against. This will allow for the comparison and verification 

of the results and allow both internal and external validation possible. This will improve 

any accuracies and validity in the results achieved. 
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3 Experimental Fluidised Bed Combustion (FBC) Rig 

Throughout this Chapter, details on the pilot scale rig which was used for combusting the 

low-grade fuels will be described. Initially the rig had to undergo a lengthy 

commissioning phase to bring it to a level of good operation. Significant commissioning 

work has been described as it was such a lengthy part of the testing process. After a series 

of test phases the rig was then taken offline and underwent heavy re-designing. The re-

design phase is also included here and explains the reasons and necessity of the changes 

and to what end those changes achieved. 

3.1 Pilot Scale Rig Description 

The following is detailed descriptions of the test rig which was inherited from the Central 

Electricity Generation Board (CGB) and moved from a test facility located in Mitcheldean 

to its current location at the Low Carbon Combustion Centre (LCCC) in Beighton, 

Sheffield in 2010. 

The rig is made up of a series of sub systems, (hoppers, feeders, gas burners, cyclones, 

heat exchangers, bag filter house, monitoring equipment, fans, etc.) which interact with 

the main body of the rig (approx. 1m x 1m x 5m) where the bed and combustion zones 

are located. The rig can be seen in the images shown in Figure 3-1, schematic is shown 

in Figure 3-2 layout of thermocouples shown in Figure 3-3 and arrangement of pressure 

transducers shown in Figure 3-4. 

3.1.1 System Start-Up 

The thermal rating of the rig is 350kWthermal. In order to achieve this thermal output all 

systems need to be running in correct working order and brought into action through a 

series of steps to ensure safe and reliable operations. This series of steps is described in 

the “start-up procedure” document which was written based on the experiences of using 

the rig. The start-up procedure involves operators bringing each subsystem online, 

starting the pre-heat systems and sequence, the cross over to solid fuel and continuous 

operations and finally how to shut down the unit whilst maintaining safety of personnel 

and the equipment. The following sections describe each of the subsystems utilised to run 

the rig in normal operations. 
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3.1.1.1 Pre-Heat Systems 

The rig has an under-bed gas burner rated at 60-80kWThermal capacity. Once the operators 

are in a state of readiness, the gas burner is ignited. This drives high velocity hot gases 

through the plenum section, through the distribution plate and into the bed. The pre-heat 

time is approx. 2 hours depending on bed mass, ambient temperature and gas mains 

pressure available. The gas burner is capable of achieving temperature ranges of 650-

800°C throughout the bed/freeboard regions. The gas burner is only operated during pre-

heat. Solid fuel takes over combustion and the source of heat when desirable bed 

temperatures are reached. 

3.1.1.2 Hoppers and Feeders 

There are 3 hoppers which have independent screw feeders and controls. This allows 

individual control of different fuel streams and thus blending of fuels. The hoppers are 

equal in capacity; however, the screw diameters are different. There is a 200mm, 125mm 

and 100mm screw. This allows different types of fuel to be drawn through the fuel feeder 

system ranging from biomass pellets to coal fragments or to a more extreme options of 

sewage sludge and chicken litter. All hoppers and screws feed a main screw which directly 

feeds its contents into the combustion area. The fuel falls via gravity into the bed from an 

opening approximately 1m above the bed area.  

3.1.1.3 Fluidised Bed and Freeboard 

The combustion chamber is the main body of the rig. Whilst the dimensions of this section 

are approx. 1m x 1m x 5m, the internal bed area is approx. 0.5m2. Combustion takes place 

within and above the bed in the bed and lower freeboard regions. The combustion gases 

then travel up through the freeboard and leave through the top of the unit into the gas 

clean up systems induced by an induction fan.  

3.1.1.4 Air distribution 

Primary air is fed through a perforated plate which is made up of a series of stand pipes. 

There is a total of 18 stand pipes in the bubble cap design shown in Figure 3-5. There is 

a large area occupying the space of 2 stand pipes in the centre of the pipe formation. This 

is for the removal of bed material post combustion.  

The air leaves the stand pipes and filters through the bed material. This results in lifting 

and expansion of the bed as air fills voids between bed particles. This results in bed 

fluidisation. 
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3.1.1.5 Bed 

The bed is made up of silica sand. This is an inert material mainly consisting of particles 

ranging between 0.5-0.85 mm in diameter (Table 3-1), made up of 97% SiO2. (Table 3-2). 

The average bulk density of the sand is 1461 kg/m3 which is typical of most silica sand. 

 

 

 

 

 

The internal dimensions of the bed in 0.42m x 0.38m. During testing the beds depth can 

be varied between 0.22 and 0.3m. Depth variation is dependent on mass of the bed vs air 

fluidisation potential which was found to be limited to approx. 80 kg i.e. 0.3 m depth. 

3.1.2 Post Combustion Systems 

Combustion gases generated by the process move through the freeboard and exit into the 

heat exchanger. The flue gases are cooled by approx. 300°C. The cooled flue gases then 

Table 3-2 sand data of bed material 

Element Average content (%) 

SiO2 97.15 

Fe2O3 1.96 

Al2O3 0.28 

TiO2 0.01 

K2O 0.05 

Na2O 0.05 

Figure 3-5 Bubble cap design 

Table 3-1 Particle size distribution data 

Apeture
Typical cumulative 

passing

Typical 

cumulative 

retained

typical 

retained 

each sieve

Typical 

retained
category

Microns % % % %

1400 100.0 0.0 0.0

1180 100.0 0.0 0.0

1000 97.0 3.0 3.0

850 83.6 16.4 13.4

710 60.0 40.0 23.6

600 11.7 88.3 48.3

500 1.2 98.8 10.5

425 0.3 99.7 0.9

355 0.1 99.9 0.2

<355 - 100.0 0.1

Very 

coarse 

sand

coarse 

sand

medium 

sand
1.2

95.8

3.0
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pass through a cyclone and bag filter which removes fly ash and particulate matter. The 

remaining gases are then expelled into the atmosphere via a flue stack. 

3.1.2.1 Auxiliaries 

There are a large number of auxiliary systems feeding to the rig and sub systems which 

are necessary to operate the rig properly.  

There are 3 fans used to produce primary air, heat exchanger cooling air and an exhaust 

fan which is required to generate a slightly negative pressure in the combustion zone and 

draw exhaust gases to the flue stack. 

A number of the valves and self-cleaning processes require pressurised air in order to 

operate, this is supplied via a site compressor. 

There is a main control tower which is the hub for any electronic controls, allowing a 

centralised area to make adjustments to the rigs operations. 

Each system relies on the other sub systems in order for combustion to be sustained in a 

safe way within the rig. 

3.1.2.2 Monitoring and Analysis Systems 

In order to control and monitor the rig during operation, there are a series of 

thermocouples and pressure transducers taking measurements across the rig. The 

placement of these devices is strategically located to measure important areas of 

combustion and to ensure that the correct combustion environment is being achieved. 

A sampling line takes online gas samples from the flue gas, post cyclone. The sample is 

received by a chain of condensers to remove excess moisture in the gas line before 

entering two gas analysers. These measure the SO2, NOx, CO, CO2 and O2 concentrations 

in the flue gas. 

All the measurements are taken in real time and are recorded, via national instrument 

signal clean up instrumentation, on the main computer. The computer is not part of the 

control system for the rig, this is a separate control tower. The labview program presents 

important data in a graphical format and saves the data in a way selected by the operator. 

The computer/labview set up allows operators to understand the internal workings of the 

process better and make faster and more informed decisions with regards to the operations 

of the rig. The design of the labview program was modified based on the information 

sourced for the control and monitoring described in the literature review. 
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3.2 Commissioning 

When the rig was handed over for the use and operations it was found that there were 

significant issues with the rig operation both in terms of technical understanding by the 

previous operators and poor design choices with the rig itself. It was therefore, necessary 

for a 12 month commissioning phase which tested individual parts of the rig before 

operating it in extended runs. If any part of the rigid not meet the targeted requirement, 

then it was either replaced or alternative design options were looked into. 

3.2.1 Rig Modifications 

As the work, which was conducted was extensive it is not prudent to include every piece 

of work which was done on the rig but instead examples of significant changes will be 

presented in the following sections  

At every stage of commissioning it was necessary to run a number of tests to ensure that 

equipment and installations were operating as expected. The following descriptions 

include examples of the modifications but are only a small sample of the work scope 

completed. 

3.2.1.1 Cold Commissioning 

The cold commissioning phase consists of a series of tests designed to evaluate individual 

parts/components of the rig without the need to bring any combustion processes online. 

The following samples show the type of work conducted. 

3.2.1.2 Fans 

New fans were installed to replace the previous primary air and exhaust fans which had 

become either damaged through age and poor maintenance or were insufficient in their 

location/loading capacity. Initial cold tests found that the old fans were incapable of 

achieving required flow rates and/or simply did not function correctly. New fans were 

sourced, purchased, installed and all relevant duct work and electrics were attached. 

Figure 3-6, shows the fans which have been installed in and around the rig to provide 

required air flows. As can be seen in Figure 3-6 the fans have been insulated to handle 

the high temperatures flue gas, also the fans had inverters attached to give better control 

of the fans speed which also allowed the instillation of emergency off switches for better 
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safety and operation procedure incorporation. Sound proofing can be seen which reduces 

and redirects the sound of the fan when in operation making the working environment 

safer and for better communications between operators. 

Once the fans were fully installed the process of loading the bed into the test rigs operating 

at different fan flow rates was conducted. Fan settings and flow outputs were changed in 

order to define the best flows for operating the bed in different modes of operation. The 

limits in which rig operation could occur were a priority so operators knew what could be 

added in test design. It was also at this stage that other issues such as minimum negative 

pressures in the combustion chamber were discovered which lead to further work needed 

on and around the rig to reduce leakage. 

3.2.1.3 Logging Program 

The data logging program was designed and built in the software “labview”. Labview is 

a commonly used platform for designing a range of interfaces for users both recording 

and displaying data simultaneously. Figure 3-7 shows the main page of the labview 

software in its most up to date view. As can be seen there are multiple readings being 

taken in real time and important values displayed in graphical format for operator’s visual 

ease. There are also a number of other pages which include calculations done in order to 

inform operators of what values the rig is operating at. 

(a) (b) 

Figure 3-6 installation and sound proofing of new primary and exhaust fans 
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Testing the software was meticulous as each sensor had to be checked for a correct 

response and any bugs dealt with. The software and hardware was tested in every cold 

commissioning test possible to thoroughly test the set up before a full test was undertaken 

and data recorded. 

3.2.1.4 Feeders 

A number of different test phases were conducted on the feeders systems. This included 

operating the feeders both empty and were filled with different fuels, varying their 

Figure 3-7 Labview_5_alarm program on its main screen 

Figure 3-8 125mm screw feeder calibration chart 
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rotation/flow rates and calibrating the feeders for different types, sizes and weights of 

fuel. 

Initial empty testing proved simple enough and gave good reliability in varying the 

feeders in series with other feeders. However, when the feeders were loaded with fuel it 

was found that different feeders had varying electrical loads which limited rotation and 

fuel loading. Electrical work was conducted on the systems to modify the existing system 

and ensure a good range of operation.  

Calibration of the fully functional feeder systems was carried out giving data such as that 

shown in Figure 3-8.  

3.3 Hot Commissioning 

Once all systems had been tested using cold commissioning techniques and all operators 

were happy with the level of safety in operating the rig it was necessary to run a series of 

hot commissioning tests. 

The tests consisted of brining different systems online in a slow systematic approach. This 

allowed the operators to evaluate the systems as changes occurred and make the changes 

needed to operate at a stable level. 

Whilst the rig had been installed and previously shown to work, the documentation 

instructing on operational parameters, start-up and shut down procedure, health and safety 

etc. were all rendered void with the modifications and change in auxiliary equipment i.e. 

Figure 3-9 Operational data from the pilot scale rig under different fluidising regimes 
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the fans, bed materials etc. Therefore, the hot commissioning program had to include tests 

in order to check the modifications. 

Once these tests were completed a final run was conducted, the data recorded shown in 

Figure 3-9. This test included full flow of fuel under varying air flow conditions and 

proved the operators could control the system when different aspects of the rig were 

altered, similar to the expected changes in planned tests. 

This marked the finalisation of the commissioning phase and put the operators in a state 

ready for experimental testing. 

3.4 Coal & Operational Variable(s) Test Methodology  

3.4.1 Rig Specifications 

The experimental rig is a 250-350kW bubbling fluidised bed combustion unit. The rig is 

made of a number of different key components; a feeder system, a combustion section, 

an air-cooled heat exchanger for flue gas temperature control, a cyclone and bag filter 

flue gas clean up system and the analysis and computer monitoring system. 

The dimensions of the main body of the rig are 1m x 1m x 5m in which different stages 

of the combustion chamber are housed. These sections consist of the combustion fluidised 

bed section, the mid freeboard and extended freeboard section. The rig is mainly 

constructed from mild steel and any sections such as the combustion chamber which are 

exposed to temperature are refractory lined.  

3.4.2 Main Rig Systems 

The following sections briefly describe the different systems which contribute to 

successful combustion in the FBC unit.  

3.4.3 Air Supply & Extraction 

The primary air fan supplies air for the fluidisation of the bed. The air is controlled using 

inverters on the fan and through manual changes made to control valves embedded within 

the pipe network. The air is distributed throughout the base of the combustion chamber 

via 18 evenly arranged bubble baps. The fan can supply up to 6000L/min (at 20°C, 

pressure 101.3kPa air pressure) but normally runs at half speed producing between 2500-

2700 L/min. The primary fan feeds both the under-bed air flow and secondary air flow. 

The exhaust air fan draws the flue gases from the rig, via the air-cooled heat exchanger, 

and expels the gases out of the main flue stack. The stack has a small electric fan which 
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creates a draw on the system of 13 mmH2O however, the exhaust fan can create a negative 

pressure of more than 130 mmH2O when running at 100% load (equivalent to 

12000L/min [at 20°C, pressure 101.3kPa air pressure]). Whist at ambient conditions the 

exhaust fan only need run at half load, when the rig is in operation the temperature of the 

flue gases reduces the density of the air thus increasing the volume of flue gases in the 

removal process. Temperatures normally reach 200-300°C at the exhaust fan and require 

the fan to run at 90-95% of maximum load to maintain a minimum negative pressure 

above the bed. 

3.4.4 Fuel Feeders 

Figure 3-10 shows the way in which the three different feeders can be used to feed the 

primary input screw. The primary input screw is 125mm in diameter and runs at a constant 

high rate to ensure fuel transport is maintained whilst minimising potential clogging 

within the pipe. The other three screws can be controlled from the main control tower to 

vary their rotation speed and thus vary the fuel input rate (based on calibration before 

combustion tests). 

The smallest screw, 100mm, is designed to operate at up to 100% rotational speed whilst 

handling high calorific valued fuels such as coal and/or biomass pellets. The medium 

sized screw, 125mm, is designed to operate at 100% load when transporting medium 

density fuels such as china clay or building waste. The third screw is designed to operate 

up to 70% when moving lower density fuels such as paper and municipal solid waste 

(MSW). 

3.4.5 Fluidised Bed  

The combustion chamber of the rig is 4.7m in height with and internal dimensions of 

0.76m x 0.56m. The bed area of the unit has an internal dimension of 0.42m x 0.38m due 

to extra refractory material. 

Figure 3-10 screw feeder layout 
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The bed height has been found to operate well at 9” in depth for biomass and low grade 

coals. However, 3” of this is the dead zone where the air from the bubble caps cannot 

penetrate downwards. Beds with a depth of 12” and above have been successfully 

operated in commissioning tests. However, the preheat sequence time increases with bed 

height and total bed material. With a bed height of 9” it has been found that a fuel flow 

of 30-35kg/hr maintains a bed temperature of 800-850°C with an energy output of 250-

280 MJ/kg for biomass. Low grade coals with similar GCV to biomass required 28-

31kg/hr fuel flow to maintain bed temperatures due to differences in the fuel combustion 

characteristics of coal to biomass.  

3.4.5.1 Bed Material 

The material used in the bed is Sibelco Leighton Buzzard (16/30) which is sourced from 

mainland Europe because of its durability and chemical makeup. The sand has a density 

of 1471 kg/m3 and a range in bulk particle size of 0.50-1.00mm. When a 9” bed is in 

operation the bed material (excluding fuel) weighs approximately 50kg. 

Every test that was performed on the rig with or without fuel used a new load of bed 

material each time. This ensured a minimum cross contamination of ashes, chemistry etc. 

between samples from each test. 

3.4.5.2 Flue Gas Clean Up 

The flue gas exits through the top of the combustion chamber vie the extended freeboard. 

The gases then pass through a shell and tube heat exchanger made up of 19-25mm tubes 

which can remove between 200-300°C from the flue gas depending on furnace air flow. 

The gases then pass through a cyclone which removes fly ash and coarse particles within 

the exhaust stream.  

The exhaust gases then leave via the exhaust fan and out through the main stack. 

3.4.6 Auxiliary Rig Systems 

The rig has a number of auxiliary systems which all contribute to the functionality. 

3.4.6.1 Gas Burner 

There is an 80kW gas burner attached to the plenum (bottom section) of the rig. This is 

used for the pre-heat sequence before solid fuel is introduced to the bed. The gas burner 

is located in the plenum to preheat the bed which is the biggest sink of heat and to heat 

the plenum to preheat air entering the rig from the primary air fan.  
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3.4.6.2 Compressed Air System 

Dry compressed air is supplied from a central site compressor to pneumatic components 

around the rig. A number of lines can be charged with air which enables pneumatic valves 

to be opened and closed around the rig. The two most important uses of the compressed 

air are to supply a valve to empty the bed and another to fulfil the blow back cleaning 

function in the bag filter house. 

3.4.6.3 Sampling Equipment 

The sampling equipment is a permeant heat proof line which extracts an online sample 

from the flue gas stream after the heat exchanger and cyclone section of the rig. A series 

of pumps, dreschell bottles, a condensing unit and filters clean up the sample before it 

enters the analysis equipment. 

The gas analysis equipment compromises of an ABB Magnos and Uras unit which are 

fixed into the advanced optima chasse. This allows the analysis of CO, CO2, SO2 and O2. 

There is a paralleled signal analyser which measures the NO concentration in the flue gas 

stream.  

All of these values are relayed to the main computer as well as giving a readout on the 

analyser for visual conformation as previously described. 

3.4.6.4 Shutdown procedure 

It should be noted that in order to preserve the formation of structures and agglomerates 

of varying bond integrity air flows at the end of every test were reduced. The airflows 

under-bed were reduced to 1000L/min for 24 hours to cool the bed and the surrounding 

thermal mass but to ensure that any flow of gases and particles were limited. The over 

bed airs and over bed burner air is also increased to cool the top of the bed and the upper 

furnace regions. A slow cool ensured the integrity and distribution of the bed materials 

and any agglomerate samples which may have formed during the experiment. 

3.5 Coal Tests Overview 

The specifications of the coals with regards to their chemical and physical make up are 

described in detail in section 4.4. 

3.5.1 Baseline Tests 

Each test had a set preheat and start up sequence using the gas burner unit (in accordance 

to the start-up manual), followed by a period in which solid fuel was introduced into the 
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rig. There was then a conversion stage in which the solid fuel provided the thermal input 

to the bed at which time the gas burner would be extinguished. It was then necessary to 

run the rig on solid fuel for at least 20-30 minutes whilst monitoring bed temperatures 

and rig pressures to ensure stable operations. 

This stage was important as the cooling plenum from the extinguished gas burner results 

in a cooling of the primary air used to fluidise the bed. Therefore, it was necessary to 

monitor and alter fuel flow rates, to maintain the intended thermal output. 

Once a stable period had been achieved, the baseline tests were performed. This was a 

20-30 minute period in which nothing was changed in the operation of the rigs. 

Measurements were taken throughout the whole test but this period gave the baseline 

emissions produced form the fuel at those conditions as well as giving temperatures and 

pressures to work from when altering the operation variables of the test later on. 

3.5.2 Pulse Tests 

The first three tests and baseline tests, were entitled “Pulse tests” because of the method 

used to deliver the mediums and fuel into the bed. 

3.5.2.1 Test 1 

A generic UK coal was used to get a baseline value. This was done at a fuel flow rate of 

45% in the 4” screw resulting in bed temperatures of 800-900°C. This was continued for 

20-25 minutes until the coal in the hopper was depleted. The Pakistani “hybrid” coal was 

then put into the hopper to follow on from the British coal. This sequence was needed for 

a comparison and to allow for changes as a result of the fuels to be measured. 

In the first test the operators were concerned that the high sulphur values shown in 

proximate analysis of the Pakistani coals would result in SO2 values that would exceed 

the analyser’s measurement range. It was decided to take 3kg of each Pakistani coal and 

mixed them together to create a coal representing an average coal from the Trans region, 

reducing the fluctuations in sulphur, minerology etc. 

A baseline value was recorded for this hybrid coal as with any other fuel put into the rig. 

The hybrid fuel was entered at a rate of 30kg/hr (45% of the 4” screw feeder’s power) 

resulting in bed temperatures of >900°C as well as peaks of SO2 values of 4490 ppm and 

4590ppm. 

Once the initial baseline data had been operated with coal only, the feed was then run 

with limestone in measured/mixed batches. This was done by pulsing a secondary screw 

feeder for 2 minutes every 10 minutes. This would achieve 6kg/hr of limestone for every 
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20kg/hr of coal being put into the bed thus resulting in limestone present being at 30% of 

the total fuel input. 

Once limestone had been introduced and pulsed into the bed the test was ended and data 

evaluated to look at the influence on further tests. 

3.5.2.2 Test 2 

Once the preheat sequence had been completed, the hopper was loaded with coal F and 

baseline data was gathered for 20-25 minutes. Fuel flow at 37% of 4” screw feeder power 

(18kg/hr) maintained a bed temperature of 900-950°C. The SO2 values were at the 

maximum range of the analysers during this period. 

Limestone was then introduced into the bed based on a minute to minute basis. The 

previous test used values for desulphurisation over an hour however, this resulted in little 

change because bulk limestone material simply resulted in a sharp drop in SO2 followed 

by an immediate rise back to baseline levels of SO2 without proving anything other than 

limestone can reduce SO2 in the flue, but to an unknown extent. 

The limestone, based on a minute by minute basis, was added to the bed for a total of 25-

30 minutes achieving a sulphur ratio of 1:3. 

The sulphur ratio was then altered to 1:2 and the test was repeated as before. 

3.5.2.3 Test 3 & 4 

Coal G was used during this as it contained less Sulphur, and it was hoped that this would 

produce SO2 values which would remain within the 0-4500ppm range of the analyser. 

Initially baseline data was collected for the coal in accordance to the previous tests and 

found that coal G operated at an optimum bed temperature at a fuel flow rate of 19kg/hr 

(39% power of 4” screw). 

The first batch introduced limestone in a similar pulsed fashion to test 2 to achieve a 

Calcium: Sulphur (Ca:S) ratio of 1:3. This was performed for 20 minutes. The second 

batch was a repeat of the first batch. 

The third batch introduced limestone at 40% that of coal for 20 minutes, which was then 

repeated in batch four. 

The fifth batch was the same as batch one and two to test the response of the bed, however 

the weight of the material of the bed at this point had overcome the primary air and thus 

the test had to end.  
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3.5.3 Premixed Tests 

After running the previous methods of test, where the introduction of limestone was 

maintained by manually turning a screw feeder on and off for set amounts of time, it was 

decided that an alternative method was needed. The previous tests while offering insights 

to desulphurisation of the coals and breakthrough curves was not accurate enough for 

evaluating the desulphurisation propensity of limestone with the Pakistani coals. 

When running the tests the screw feeder would be turned on thus allowing limestone to 

enter the bed with the fuel. However, the Ca:S ratio was constantly changing and 

therefore, a constant and unknown variable. Initially the Ca:S would increase until the 

screw feeder with limestone was stopped as the bed was loaded. The ratio of Ca:S would 

not remain constant as the coal was still entering the bed therefore, the Sulphur value was 

changing and hence the Ca:S ratio was changing. 

As a result, it was decided that the tests following the initial work should use fuel which 

had limestone blended into it. The time the test went on for each batch would be controlled 

by simply weighing out the fuel beforehand and the ratio would also be controlled by 

changing the total mass of limestone in the fuel mix. 

3.5.3.1 Test 5 

In this test coal G was pre-weighed into 25kg batches with different weights of limestone. 

Batches of coal and limestone were mixed beforehand at (S:Ca molar) ratios 1:0, 1:2, 

1:3.5 and 1:4. These ratios were chosen to look at the effect of using conventional industry 

used ratios and testing beyond industry practiced limits. 

Throughout this test the fuel flow rate was modified between batches in order to maintain 

the thermal input of the bed as limestone required heat energy to react fully as well as 

maintaining good combustion within the bed. As the ratio of Ca:S increased, the fuel flow 

rate needed increasing as the total fuel input decreased with increasing limestone content. 

3.5.3.2 Test 6 

This test repeated the work done in test 5 however, coal A was used to evaluate the 

differences between the different coals at the same premixed Ca:S ratios. 

The same ratios were used and the same method of entering the batches were adopted i.e. 

pre-weighing out the material, blending and then feeding the batches in premixed whilst 

altering operational parameters to continue good combustion etc. 
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3.5.4 Temperature Range Tests (Test 7 & 8) 

Whilst during other tests the temperatures of the bed alter over time and required 

alterations in fuel input, the change in emissions could not be specifically attributed to 

bed temperature. Therefore, in these tests bed temperatures were altered through changing 

fuel flows in order to evaluate the desulphurisation effect of the limestone with varied bed 

temperature. 

Coal I was used during this test; therefore, the initial baseline work was completed in 

accordance with the previous tests. 

The coal was premixed with limestone and then introduced at a Ca:S ratio of 1:3. The fuel 

flow was altered in order to hold the bed temperature at different ranges i.e. 750-800°C, 

800-850°C, 850-900°C and 900-950°C. 

Test 8 was a repeat of test 7.  

3.5.5 Particle Size Tests (Test 9 & 10) 

When 1kg samples of the limestone were sieved to find particle distribution it was found 

that 19% of the limestone on average had a particle size between 0-2.00mm, on average 

81% had a particle size between 2.00-2.8mm and on average 4.1% had a particle size 

between 2.8-5.6mm. The limestone was sieved to separate these ranges to ensure there 

were several kg of each available for the planned tests. 

Coal I was used for the particle size tests. Coal I had a particle size range of 10-20mm 

and was mixed into the three limestone particle ranges. 

For these tests a batch containing a mix of coal and limestone whish had not been sifted 

i.e. standard limestone as used in all other tests was combined to produce a batch with a 

Ca:S ratio of 1:3. 

Following this batch were three others made up to a Ca:S ratio of 1:3 as well but using 

the different fractions of limestone named in the particle distribution work previously. 

The bed temperature was maintained and no other variable was changed, one batch 

followed another and the effect on the SO2 emissions were measured as the particle range 

altered. 

3.5.6 Biomass Co-firing Tests 

To evaluate the effect biomass has upon the desulphurisation propensity of sub-

bituminous coals, different ratios of coal to biomass were tested using different coals and 

ratios whilst monitoring the SO2 emissions in the flue. 
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Wood pellets were used as the biomass of choice for co-firing with coal J, B and D. 

Firstly, wood was shown in the XRF analysis performed in the fuel characterisation to 

contain the highest concentration of Ca and Mg in the ash. These are alkali species 

associated with sulphur retention as previously described and therefore, wood pellets offer 

the greatest reaction potential to retain sulphur within the bed and thus desulphurise the 

flue gas output. Secondly, white wood had a similar calorific value to the coals used. As 

Figure 3-11 shows, the theoretical thermal output was calculated of wood pellets and the 

array of coals over varying blends. The average thermal output of these was 200-204 kW 

which was the target output. This made operating the flows and maintaining bed 

temperature easier to control with ratio changes and thus limiting the impact of fuel 

changing and focus the study on ash reaction as the retention mechanism for 

desulphurisation. 

3.5.6.1 Test 11 

Coal J was used in this test and the baseline test was performed in accordance with 

previous tests. 

Following the baseline test, batches of premixed coal and biomass (white wood pellet) 

were weighed out to produce batches with coal to biomass ratios of 7:3, 1:1, 3:2, 2:3 and 

4:1. These were fed into the bed and the bed temperature was maintained by slightly 

altering the fuel flow rate. 

Figure 3-11 Thermal output with varying biomass: coal blends 

(wt%) 
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3.5.6.2 Test 12 

Coal B was used in this test and therefore, the baseline test was performed in accordance 

with previous tests. 

Following the baseline test, batches of premixed coal and biomass (white wood pellet) 

were weighed out to produce batches with coal to biomass ratios of 7:3, 1:1, 3:2, 2:3 and 

4:1. These were fed into the bed and the bed temperature was maintained by slightly 

altering the fuel flow rate. 

3.5.6.3 Test 13 

Coal D was used in this test and therefore, the baseline test was performed in accordance 

with previous tests. 

Following the baseline test, batches of premixed coal and biomass (white wood pellet) 

were weighed out to produce batches with coal to biomass ratios of 7:3, 1:1, 3:2, 2:3 and 

4:1. These were fed into the bed and the bed temperature was maintained by slightly 

altering the fuel flow rate. 

3.6 Modification/Re-design Phase 

During the first series of testing it was decided that an investigation into disrupted air via 

a modified distribution would be undertaken. In order to do this a section of the air 

distribution plate was allowed to leak a proportion of the primary air under the bed and 

created a non-uniform airflow to the bed altering fluidisation with non-uniform sir 

distribution could be potentially encountered in any industrial scale FBC. 

However, after the testing was finished and the rig was taken offline for more extensive 

servicing it was found that the previous 40+ years of operations had degraded some parts 

of the rig beyond repair. Specifically, the combustion chamber of the rig had degraded. 

This included the air distribution plate, the refractory lining and the casing/insulation 

around areas which had not been previously refractory lined. 

3.6.1 Rig Modifications 

3.6.1.1 Air Distribution Plate 

The previous air distribution plate was designed to allow leakage of air through alternative 

openings which diverted air away from the bubble caps. This resulted in an uneven air 

distribution and thus looked at the effects of the air distribution within a series of tests. 
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The new air distribution plate was designed to supply an even in flux of air underneath 

the sand bed. The design of the plate and its bubble caps was fundamental to the 

fluidisation of the bed material and for investigating the differences in FBC agglomeration 

potentials. 

In order to make design choices based on the expected air flows, total bed mass, area of 

bed, number of nozzles etc. it was necessary to complete the following steps and 

calculation: 

3.6.1.2 Pressure Drop Criteria (Bed and Plate) 

The bed pressure drop for these series of calculation is shown in Equation 3-1: 

∆𝑃𝑏𝑒𝑑 = 𝑔 × 𝜌𝑏 × 𝐿𝑏 Equation 3-1 (Yang, 2003) 

Where g is gravity (9.81 m/s), ρb is the density of bed material (kg/m3) and Lb is depth of 

the bed (m). 

Experimental data shown by Yang (2003), found that whilst investigating the effect of 

pressure drop across an air distributor (∆Pgrid) and air nozzle design the criteria in 

Equation 3-2 and Equation 3-3 are applicable for differently orientated flows through a 

plate. Equation 3-4’s rule applies for full scale operations, as the pressure difference 

should not be less than 2500 Pa in order to design a stable system. 

For an upwardly and laterally directed flow 

∆𝑃𝑔𝑟𝑖𝑑 ≥ 0.3∆𝑃𝑏𝑒𝑑 
Equation 3-2 

(Yang, 2003) For a downwardly directed flow 

∆𝑃𝑔𝑟𝑖𝑑 ≥ 0.1∆𝑃𝑔𝑟𝑖𝑑 
Equation 3-3 

∆𝑃𝑔𝑟𝑖𝑑 ≥ 2500𝑃𝑎 Equation 3-4 

The gas velocity of primary air (Uh) is calculated using the pressure drop across the air 

distributor grid and thus taking into account the effect of restricting flow. This value 

underpins further calculation and gives the foundation value required to make choices 

such as number plate holes and nozzle exit size. 

𝑈ℎ = 𝐶𝑑√
2∆𝑃𝑔𝑟𝑖𝑑

𝜌𝑔, ℎ
 Equation 3-5 (Yang, 2003) 

Where Uh is gas velocity through the grid (m/s), ρg,h is the density of air entering via an 

air box at a specific temperatures to each scenario (kg/m3) and Cd is the discharge 

coefficient. A reasonable range for this coefficient is between 0.4-0.77 (Yang, 2003; 

Geldart and Rhodes, 1986).  
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In order to calculate the number of holes needed in the distribution plate it is also 

necessary to calculate the volumetric gas flow rate under the plate in the plenum/wind 

box section. This was done using the equation in Equation 3-6: 

𝑄 = 𝑈𝑠𝑢𝑝 ×
𝜋𝐷2

4
 Equation 3-6 (Yang, 2003) 

Where Usup is the superficial gas velocity (Us=Q/A) (m/s), D2 is the bed diameter (m) and 

Q is the volumetric flow rate (m3/s). 

The number of holes in the air distribution plate was then calculated by the equation in 

Equation 3-7: 

𝑁 = (
𝑄

𝑈ℎ

) × (
1

(
𝜋 × 𝑑ℎ

2

4 )

) Equation 3-7 (Yang, 2003) 

Where dh is the grid hole diameter (m) and N is number of holes. The hole diameters were 

taken as a minimum of 7 times larger than the average bed particle size (Graham, 2016) 

The density of holes required in an area (m2) was then determined using the equation in 

Equation 3-8: 

𝑁𝑗 =
𝑁

(
𝜋
4) × 𝐷2

 Equation 3-8 (Yang, 2003) 

Where Nj is hole density per m2. 

There are an almost infinite number of design variations which could potentially be 

applied to the air distributors in order to achieve better outcomes depending on what the 

system is designed to achieve. One significant design choice is how to place the bubble 

caps/stand pipes next to one another on the plate. Figure 3-12 shows two options for 

Figure 3-12 Shape choice for hole pitch (Yang, 2003) 
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equidistant pitches. The different pitches are used based on the design circumstance of 

the boiler and hole density per m2. The triangular pitch offers less opportunity for “dead 

zones” between holes by achieving higher hole density. However, the square pitch is more 

suitable for a lot of boiler design as well as reducing dead zone opportunities at the wall 

of the boiler. The hole pitch for a square and a triangular pitch can be, and was determined 

using the equations in Equation 3-9 and Equation 3-10. The different aspects of the 

distribution plate were calculated based on data recorded from previous tests as well as 

referring to professional advice. The square pitch design was implemented into the air 

distribution plates based on the advice and advantages of the square pitch design above 

with a total of 30 bubble caps. 

Where Lh is grid hole pitch and Nd number of holes’ density (holes/m2). 

A design was assembled using the “Solidworks” CAD package as seen in Figure 3-13. 

This allowed for the visual checking and communication of ideas between the clients and 

the contractors. The air distribution arrangement shown in Figure 3-13 is the finalised 

version before manufacturing commenced and was the result of numerous modifications 

and changes to the plate as a consequence of other modifications being fitted to the rig. 

The objective of all modifications, including the air distribution plate, was to improve 

operational performance and allow for a more robust system in which future test plans 

could be successfully enacted.  

Once the new plate, new burners etc. were installed the system rig in its entirety was 

checked by H&S representative with the assistance of the operators before initial 

recommissioning work could take place.  

Other modifications to the experimental rig include the addition of a 50kWThermal over bed 

gas burner. This was placed 0.5m above the bed at a 45°angle in order to heat the top of 

the bed and freeboard region during pre-heat. By having this burner in place the pre-heat 

time for each test was reduced as well as ensuring the upper regions of the furnace were 

heated sufficiently for expansion and a uniform temperature throughout the furnace. 

𝐿ℎ =
1

√𝑁𝑑𝑠𝑖𝑛60°
 Equation 3-9 

(Yang, 2003) 

𝐿ℎ =
1

√𝑁𝑑

 Equation 3-10 
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A new under-bed gas burner (85kW) was installed which gave greater control on air flows 

and ramp rates. The burner was an off the shelf unit with high gas velocity capability 

better suited to penetrating the cold sand bed. 

As part of the over bed burner installation the refractory lining around the bed and lower 

freeboard regions was relined. This was to create a more even area i.e. 0.5m3 in which the 

new plate design would create less dead zone around the outer edge of the distribution 

plate. The new refractory also ensured better insulation which in turn meant that the fuel 

flow required to heat the bed to 850°C and sustain stable combustion was less. The new 

refractory created a larger thermal mass to ensure all fuel particles combusted in and 

above the bed. 

All the work previously described was necessary to produce a system that was robust and 

capable of operating under the conditions required for the later investigations. 

Figure 3-13 Solidworks imagery of the fluidised bed (top left), cut away of the main 

body of the rig (top right) and an expanded image of the purposed distribution plate 

layout (bottom) 
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3.6.2 Cold Re-Commissioning 

As a result of the redesign and implementation of new equipment and parts across the rig, 

it was necessary to familiarise, calibrate and recommission the entire rig and its system. 

This included; 

 Construction, testing, calibration and validation of the new analyser setup and 

equipment. 

 Testing and safety checking of the new electrical power system to ensure the use and 

operation of electrical aspects of the rig were both safe to use and functioned as 

intended e.g. operation of screw feeders with variable fuel flow rates. 

 Calibration and operational stress test of the motors and screw feeder assembly on all 

function screw feeder/fuel inlet systems. 

 Operating, familiarising, and successfully operating the rig using newly installed 

burners and burner control modules. 

 Familiarising and testing the air systems e.g. operating under “normal” conditions 

using new pipe network with existing fans in order to achieve a successfully fluidised 

bed. 

 A number of smaller changes were added throughout the down period of the rig and 

as a result the operators took a systematic approach when commissioning the rig to 

evaluate the effect of these changes and to adapt to the new features. 

 Testing of the new burners and optimising the system. 

3.6.3 Hot Commissioning 

Once the cold commissioning stage had been completed and post evaluation of the results 

reinforced the operator’s justification to proceed, the hot commissioning stage could 

commence.  

Initially the burners were operated without the presence of the bed in order to evaluate 

heating potential of the rig, with focus on the over bed burner and top of the freeboard 

temperatures. Figure 3-14 shows the temperature data recorded at points of interest during 

the test. Whilst testing the capabilities of the new burners was a priority, a secondary 

objective was to heat the new refractory lining. The operators had been advised to heat 

the system to 200-300°C, then 500-600°C and finally ≥800°C and hold at each stage to 

cure the new rig lining. This presented an opportunity to analyse the accuracy and ability 

to change the heat generated by the burners and demonstrate the ease in control. 
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In Figure 3-14, there are three marked regions; A, B and C. These represent the end of 

waiting periods in which the heating was left to balance across the rig to cure the 

refractory lining. However, more significantly, in each of the marked zones, C for 

instance, there are a number of incremental increasing steps in the temperature values. 

These are a direct result of opening the control valves to each burner by half a turn, (this 

equates to a flow value but is not equal in value for each turn). The work shown here 

allowed operators to demonstrate the safe operation of the burners as well as giving a 

reference to what flows would allow for a successful heating process of the rig and bed. 

Additionally, the data showed that the top of the rig (FB mid and FB top) could be heated 

to a desirable temperature range in a much shorter time frame when compared to the 

previous rig/burner set up. 

Following this initial test, it was then possible to run the rig with a bed and in a manner, 

that would be expected during a test using solid fuels. However, before full testing was 

conducted it was necessary to run the rig as a hot commissioning test but with solid fuel 

to evaluate performance of the rig and give indicators as to how a typical solid fuel test 

will operate and the values associated with good fluidisation and combustion. 

Figure 3-15 shows the resulting temperature and differential bed pressure values recorded 

during testing. The period in section A of Figure 3-15 demonstrates the pre-heating of the 

combustion chamber. As the plenum temperature illustrates, the temperature fluctuated 

over time. This was a result of alterations made to primary air under the bed and to the 

under-bed burner. Operational variables were made to the exhaust fan to evaluate the 

Figure 3-14 Hot commissioning test of new gas burner(s) temperature profiles 
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impact on negative pressure in the freeboard section and burner blow outs. These changes 

were to find the best operating parameters during normal testing 

Section B illustrates a period in which the under-bed air flows were altered and whilst the 

gas burners were extinguished. In this period air flows were altered as air was no longer 

directed through the gas burners, instead the air was directed through a single entrance 

under the bed as “primary air”. The screw feeders were started in this period and the 

system was allowed to stabilise with the new air flow and the progressive introduction of 

wood pellets. 

Section C is a period in which the solid fuel was the primary source of energy in the 

system and stable operation was sustained as demonstrated by the bed differential 

pressure. This was the key indicator for good combustion alongside the bed and above 

bed temperatures. Throughout this time fuel flows were altered and operating parameters 

were once again finely tuned to achieve the best operating conditions. Then the system 

was pushed beyond normal conditions to ensure the new air distribution plate and 

refractory lining could handle excess heat and abnormal air flows likely to occur during 

agglomeration within the bed. 

All cold and hot commissioning proved to the operators the capabilities and limitations 

of the rig and how best to run the tests. 

Figure 3-15 Hot commissioning test with solid fuel (white wood pellets) 
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3.7 Biomass & Non-Uniform Air Distributor Test Methodology 

3.7.1 Uniform Air Test Schedule 

As described in the commissioning and recommissioning previously, the rig has 

undergone changes in design in order to facilitate the requirements for biomass testing 

with varied air distribution design. The rig operational changes and process choices will 

be described in the following sections. However, the overall thermal rating of the rig was 

decreased from 350kW to 200-220 KW. As part of the maintenance and redesign work, 

the refractory within the bed area was replaced. Additionally, the walls and structure 

around the bed was modified brining new materials to the rig. No alteration was made to 

the internal dimensions of the bed however, a greater thermal mass and more uniform air 

distributor resulted in greater bed temperatures at lower fuel flows (20kg/hr new flow 

compared to 35kg/hr for old system). The operation of fluidising and maintaining the bed 

remained the same and bed temperatures of 800-950 °C were maintained. 

3.7.1.1 Operational Changes 

With the new uniform air distribution plate a higher air flow of 9000 L/min is required to 

fluidise the bed completely. This was evenly distributed through the 30 bubble caps. 

The bed depth in the new setup was 7.5 to 8 inches. The new air distributor plate used 

slightly shorter more effective bubble caps resulting in greater penetration of air 

downwards towards the base plate. This resulted in a greater volume of bed material being 

agitated and fluidised. With a fuel flow of 20-22 kg/hr, the combustion of biomass has 

been found to maintain an average temperature of ≥850 °C. 

Throughout the tests period the analysers were modified and added to. The previous 

system yielded good measurements of a reliable and accurate nature, however, with sight 

to future work new gas analysers were installed. The first (ZKJ model 

chemiluminescence) measured NO (0-5000 ppm), SO2 (0-5000 vol. %), CO (0-2000 ppm) 

and CO2 (0-100 vol. %). The second, ZRE NDIR type infrared gas analyser, analysed NO 

(0-2000 ppm), SO2 (0-2000 ppm), CO2 (0-20 vol. %) CO (0-1000 ppm) and O2 (0-25 vol. 

%). 

The analysers were replaced or upgraded to ensure the ranges were appropriate for the 

flue gases being emitted during combustion. The SO2 emissions produced from biomass 

combustion was within the range of the initial analysers, however, the upgrade increased 

the range necessary for the high sulphur coals. Furthermore, the new analysers used 
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alternative technology. This included the new chemiluminescence in the NO devices 

which gave much better readings with a more suitable measuring range. 

Modifications were made to transducers and thermocouples around the rig and thus the 

calculations etc. had to be updated and improved. New pressure transducers allowed for 

more measurements and a more accurate real-time calculation of the bed pressure 

differential. Values such as these were displayed through a series of graphs and tabs and 

allowed the operators to better perform tests by replicating variables more reliably and 

allowing for quicker reactions to system/bed changes. 

3.7.2 Biomass Test Schedule 

3.7.2.1 Uniform Air Distributor 

Every test followed a pre-heat sequence which was in accordance with the instructions 

laid out in the start-up operations (SOP) document. The pre-heating of the rig included 

the use of both under-bed and over bed burners. Pre-heat was accomplished when both 

the average bed temperature had reached ≥650 °C and more importantly when a pressure 

difference had been measured across the bed. This signified that the bed had begun and 

then fully fluidised and was in a state in which solid fuel could be fed. Figure 3-16 shows 

results from a commissioning test in which the system was pre-heated on gas and solid 

fuel was fed into the bed to achieve typical operational data. The area highlighted as A, 

is the point in which the onset of fluidisation occurs in the bed. The average bed 

Figure 3-16 Average bed temperature and across bed pressure with increasing 

temperature during pre-heat and subsequent commissioning test 

A 
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temperature reaches approx. 850 °C (note that the bed was not uniformly 850 °C, before 

mixing bottom of the bed was 800 °C, top 900 °C and centre 500 °C), the across bed 

pressure drops suddenly by 0.3 kPa. This is a result of the sand beds density reducing with 

increased temperate, hence the passage of air is greater with the reduction in resistance 

generated by the static bed. Once these changes had been seen in the bed, then the 

fluidised bed was ready for solid fuel input and for the test to commence. 

Each of the biomasses analysed and described in the fuel characterisation Chapter (white 

wood, Miscanthus, oats, straw and peanut pellets) were to be tested in the fluidised bed. 

Once the system and bed was pre-heated sufficiently i.e. as to enable combustion of fuel 

particles, the fuel was fed into the bed. With the uniform air distributor plate in place and 

refractory, the fuel flow was between 20-22 kg/hr depending on the fuels calorific values. 

The fuel flow was mediated in order to maintain an internal bed temperature range of 800-

950 °C. Above the bed the temperature was higher than this ranging between 850-1000 

°C with the volatile flame lifting from the bed and into the lower freeboard. 

Fuel was continuously fed and operated until the onset of defluidisation occurred in each 

test. Each fuel was repeated at least once. If a particular fuel presented a fast 

agglomeration propensity, then a repeat was conducted to validate the results and to 

attempt to elevate the agglomeration tendency and extend fluidisation and stable 

operations.  

Figure 3-17 Example pressure data recorded during the combustion of biomass in a 

pilot scale fluidised bed combustor unit 

A B

A 

C

B
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Defluidisation and the end of the test was determined by two parameters. Figure 3-17 

shows the pressure readouts recorded during the combustion of straw. The time period up 

to the line marked A is the pre-heat sequence. Between line A and B the gas burners are 

turned off and the solid fuel is screw fed into the bed. Additionally, the primary airflows 

are altered and redirected to continue fluidisation of the bed whilst being directed through 

an under-bed inlet pipe rather than through the under-bed gas burner. At line B the system 

and air flows are set up and the Dp measurements of 1.2 kPa is ideal and at the time the 

bed could be seen to be visibly bubbling through an observation window. As the bed 

agglomerates and the mixing of the bed decreases as a result the Dp1 (across bed) pressure 

decreases. The reason for the drop is a result of the air flow through the bed beginning to 

channel and find paths caused by the presence of agglomerated structures in the bed. As 

the agglomerates increase in number and volume the channelling increases and thus the 

Dp value continues to decrease. At the time of line C (200 minutes) the bed defluidise. 

The bed slumps and the air is flowing through fixed channels and primarily around the 

bed instead of through it. A sharp increase in the midfreeboard pressure represents an 

increase in suction as the air suddenly moves through the distributor plate and around the 

bed in a less resisting form than when the bed was fluidised and particles in the bed were 

mobile. 
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The second indicator of defluidisation and the onset of agglomerates in the bed is 

indicated by the temperature readouts as shown in Figure 3-18. During the period in range 

A, the temperatures in the top of the bed remains constant (bed F and bed G). However, 

the temperature in the bed, (bed E), slowly reduces in temperature as the bed is mixing 

less and less and as a result the fuel isn’t penetrating as deep. Hence the temperature in 

these regions decreases. As shown in range B, the temperature across the top of the bed 

suddenly decreases and the point which would have represented in the bed sharply 

increases. This is due to the bed slumping and losing depth/height. The top of the bed is 

now represented by bed E and as such the flame is present there giving the increased 

temperature reading. Following this, however, the poor air flow and poor combustion 

conditions result in an overall bed temperature decrease as fuel burns less efficiently. 

Once the bed defluidised in each test or if the end of the work day was achieved (allowing 

a test period of 10 hours max), the fuel flow was stopped and the air flows were reduced 

to preserve the bed in its state at the time of agglomeration/test end. Samples were then 

taken from the bed after a cooling period of 24 hours. This included bed samples, 

agglomerate samples and fly ash sampling for analysis. 

Figure 3-18 Example temperature profile data recorded during the combustion of 

biomass in a pilot scale fluidised bed combustor unit 

A B 
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3.7.2.2 Non-Uniform Air Distributor 

The aim of the non-uniform tests was to test the effect of the air distribution system on 

the bed and formation of agglomerate formation. This could be through erosion, 

agglomerate interference or corrosion of the bubble caps for instance. Each of the 

biomasses were run as in the previous uniform tests. However, before doing so the rig 

underwent modifications.  

Figure 3-19 shows representations of the plates. The left image shows the uniform air 

distributor plate used for previous tests. This contained 30 evenly spaced bubble caps with 

diameters of 40 mm spaced 70 mm apart in each direction. The height of the caps was 

100 mm from base of the plate to the top of the cap. This design was chosen to produce 

higher velocities (theoretical air velocities 0.74 m3/s at 850 °C) through the bed/bubble 

caps over a larger area. This was to ensure even lift and bubble formation in the bed and 

thus more ideal fluidisation/combustion. 

The right Image of Figure 3-19 shows the layout of the non-uniform air distributor plate. 

There are less bubble caps (18) with slightly larger diameters of 50 mm spaced 40 mm 

apart from each other in each direction. Furthermore, there is an ash chute located to one 

side of the plate. This was implemented to remove excess ash/bed material during testing. 

Around the perimeter of the ash chute is a gap of >1.5 mm giving a passage for air. 

The intention of this design was three-fold; firstly, the larger lesser number of bubble caps 

would produce a different velocity through the bed, secondly the bubble caps and thus air 

flow is situated closer to the centre of the rig generating dead zones or areas of less 

vigorous mixing around the perimeter of the bed and corners and, thirdly the air leakage 

around the chute. The air flow velocity through the bed is calculated as 0.02 m3/s because 

of the leakage point. These three factors would allow for the study to look at wall side 

agglomeration formation, the effect of a leakage point on agglomeration formation and 

Figure 3-19 Air distribution plate layout; Left plate showing the uniform distribution 

layout containing 30 bubble caps, right layout using 18 caps and an ash chute 
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defluidisation time and to test the limits of this type of system in its ability to continue 

combustion of biomass and maintaining a good bed temperature range (800-950 °C). 

Each fuel was tested individually. It was found that a flow rate closer to 35 kg/hr was 

required for this system layout as was found with the coal tests.  

As with the uniform air tests there was a standard set of operational parameters that when 

exceeded, denoted the onset or occurrence of defluidisation in the bed by agglomerates. 

Whilst other aspects of the fuels could theoretically defluidise the bed i.e. total bed mass, 

all tests resulted in defluidisation before the total mass of the bed outweighed the inlet air. 

However, because of the difference in air flows and fluidisation in the bed caused by the 

non-uniform distribution a baseline data set was collected to compare the impacts of tests 

variables against. 

 Figure 3-20 shows temperature data recorded during the operation of a test in which 

biomass pellets were combusted with the non-uniform plate installed. Point A is the end 

of the pre-heat sequence, followed by a period of stable combustion and temperature 

recordings. At point B the temperature has fluctuated by over 400 °C. After the trough of 

point B there is a stable period but with slowly increasing bed temperatures until the bed 

temperatures fluctuates dramatically (800°C difference). This indicates the fuel is not 

combusting equally across the bed, only air cooling around the probe could cause such a 

significantly speedy temperature change. This is likely a result of slugging of the bed or 

Figure 3-20 Example of a temperature profile with a defluidising system with the non-

uniform air distribution plate installed 

A B C
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channelling. After point C the all temperatures fluctuate and the bottom thermocouple 

indicates bed cooling to 50 °C. This illustrates defluidisation and the lack of any bed 

mixing as fuel is no longer moving through the bed and combusting in isolated locations. 

The extreme temperature changes through this example demonstrates the effect of non-

uniform air distribution. The formation of agglomerates doesn’t simply result in poor 

mixing but, early in in the defluidisation onset, lead to the poor if any fuel mixing. 

Additionally, the poor air mixing results in the bed slugging and channelling faster than 

with the uniform air distributor. 

Figure 3-21 is an example of pressure data to be expected during the defluidisation of the 

bed. Point A is the end of pre-heat and swap to solid fuel input. From point A to B the 

plenum pressure increases and midfreeboard decreases. As the bed is agglomerating and 

degrading, the air flow through the bed is actually becoming less resistant and air is 

passing with greater ease. The reason being, as the bed gradually defluidise, the air is 

flowing out of the larger opening, which has the least resistance for air passage. As such 

the air moves through the bubbles caps progressively less. Hence the plenum pressure 

drops and the negative pressure in the midfreeboard becomes more positive as air is 

bypassing the caps and simply moving through the bed unrestricted. Between point B and 

C, bumps in the plenum are a result of a slugging bed as the bed redistributes across the 

Figure 3-21 Example of pressure data with a defluidising system with the non-uniform air 

distribution plate installed 

A B C
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bed cross sectional area creating temporary resistance equally until the bed moves again 

unrestricting the leakage point. 

During the non-uniform tests these are the traits that will identify degradation 

defluidisation of the bed. 
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4 Fuel Characterisation 

Throughout this section extensive analysis was conducted on a range of coal and biomass 

fuels to be tested in the pilot scale rig. In order to understand the fundamental chemical and 

physical characteristics of the fuels it was necessary to use a wide variety of techniques which 

can then be used to help understand how the fuels were going to react in a combustion 

environment. Some of the fuels used were obtained as part of a collaborative project with 

Pakistan sponsored by the British Council INSPIRE programme. Other biomass fuels were 

obtained as representative fuels considered for use in UK power generation(Williams, 1978). 

4.1 Coal 

The Pakistani coals used in Chapter 6 are from an area in the northern Punjab area known as 

the “Salt Range”. This area has a large coal field, containing approximately 8 billion tonnes 

of coal, which spans many kilometres. The different areas of the coal field are divided in the 

Western, Eastern, Central and Trans industrial Salt Range. Figure 4-1 shows the coal field 

and proposed power generation facility locations if the coal can be mined and utilised at an 

economically feasible level (Nimmo, 2016). 

Coal has been extracted from 30 mines in the Salt Range in order to evaluate the quality of 

the coal and its combustion potential. The coal samples contain a mixture of sub bituminous 

and lignite coals which contain high concentrations of mineral matter, inorganics and 

organically bound sulphur. Work has been previously done by a partner Pakistani group as 

Figure 4-1 Map of coal field location and proposed power generation sites (Nimmo, 2016) 
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part of the British Council grant (INSPIRE Grant No. 254), to identify the potential for these 

coals in terms of extraction. In this work the fuels were blended together into 10 batches. The 

batches were made up based on their geological locations and chemical compositions.  

The analysis conducted on the coals within this work will use the same batches but with a 

focus towards the combustion potential and the agglomeration potential of those batches. 

Similar techniques were used on the fuels to achieve an independent perspective on the fuels 

chemistry. Figure 4-2 shows four examples of these coal batches and illustrates the physical 

differences in the batches. As the images show the coals look much more like stones or rubble 

than coals. This is due to their high mineral content and lower carbon content. Furthermore, 

the coal hasn’t undergone any form of pre-treatment or cleaning and as such the fuel includes 

the earth debris from the mining process. This is intentional as the fuel isn’t intended to be 

pre-treated at the time of this work and the combustion tests represent what the actual fuels 

in their current states would be. 

The average particle size of the coal ranged between 10-20 mm which was sampled from a 

large bulk source and then refined through sieving. 

4.2 Biomass 

The biomass types used in Chapter 7 were selected to represents a variety of biomasses which 

could be utilised in a full scaled power generation facility. The variety of biomass includes 

white wood, oat process remnants, wheat straw, miscanthus and peanut shell pellets. These 

five biomasses are being investigated and/or used by a number of power generators.  

Figure 4-2 Examples of Coal batches; a) coal A, b) Coal D, c) Coal G and d) Coal J 

a b 

c d 
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Approximately 2 tonnes of each biomass pellets were sourced from a UK power plant. All 

analysis which has been conducted has been done as received. The biomass was then stored 

in large haulage satchels in a dried warehouse to maintain the pellets and limit any 

degradation due to weathering. 

Figure 4-3 shows the different biomass pellets which have been used in a number of different 

tests. The average practice length is 5-15 mm with an average diameter of 4-5 mm. The pellets 

were formed through an extrusion process in which pneumatic pressure forced the biomass 

through a die, generating both heat and pressure, thus resulting in pellet formation. No 

binding agent has been used to form the pellets which has left some of the pellets frail and 

prone to collapsing however, there is enough sap and moisture in the raw fuels to give a 

reasonably stable short pellet. 

4.3 Fuel Preparation 

Both the coal and biomass was analysed and treated on an “as received” basis fuel i.e. 

moisture content was taken into consideration in calculations. The biomass and coal was 

received in different physical states, that being the biomass was in pellet form with a range 

of lengths and the coal was received partially crushed, but with varying degrees of particle 

size. Therefore, it was necessary to process the fuels to transform them into a state which 

could be analysed. 

Figure 4-3 Biomasses; a) wheat straw pellets , b) Miscanthus pellets , c) Peanut Pellets , 

d) Oats pellets , e) White wood pellets 

a b c 

d e 
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4.3.1 Homogenous Sample 

Achieving a homogenous sample of solid material is, in terms of probability, impossible. No 

sample will ever be 100% homogenous and perfectly duplicate the result achieved by another 

sample from the same source material (Skoog et al., 2013). However, measures have been 

adopted that enable representative samples to be obtained of the original fuels and allow for 

comparisons with other samples of the same fuel. The biomass came in two one ton bags and 

each coal was received in two 100kg barrels. 10 kg of each fuel were taken from several 

locations from each of the fuels containers. This ensured that the 10kg sample did not simply 

represent one area of the fuel and thus averaged out the analytes content within the bulk fuel. 

The 10 kg sample, within the lab environment, was then passed through a RT75 sample 

splitter. This randomly split the 10 kg sample to two 5 kg samples. This was repeated again 

leaving four random samples. One was then selected and it was this sample that the analysis 

has been performed on. By using the splitter and taking samples from numerous locations at 

every stage possible, the most homogenous samples obtained and the overall representation 

of the fuel were better achieved. 

4.3.2 Size Reduction for Analysis 

In order to reduce the coal to a uniform particle size it was necessary to use a mill. There was 

a choice between a disk mill and ball mill and it was decided while the disk mill was capable 

of achieving smaller particle size, the ball mills speed of processing to a particle size of 

approximately ≤100μm was more than satisfactory. Hence the coals were milled in a Retsch 

PM100 planetary ball mill. Using high centrifugal forces, a metal container spun the fuel and 

10mm diameter balls occupying a third of the available volume crushed the coal particles. 

Due to the physical and chemical make-up of biomass, milling the material was found to 

produce a sticky mat like material rather than reducing the particle size. This is due to the 

lignin, moisture and heat from the process combining to reshape the pellets rather than milling 

then. Therefore, a Retsch SM300 cutting mill was adopted to more effectively reduce the 

particle size. The process of using this shredded the pellets under a vacuum. The material was 

drawn through a grate ensuring particle sizes ≤150μm. 

After the milling of the fuels, both fuels were then sieved using a series of progressively 

tighter woven sieves which separated the different particle size fractions. Particles collected 

and found to be ≤109μm were separated and saved for analysis where the other fractions were 

also saved but kept separate if needed for later processing. 
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By ensuring particle size was kept equal to the different fuels a level of “fairness” was brought 

to the analysis and elimination of this parameter as a variable was achieved. Therefore, any 

differences in fuel characteristic was due the individual fuels chemistry. 

4.4 Fuel Characterisation 

A number of analysis techniques were performed on the fuels in order to gauge limits of the 

fuel in terms of analytes type etc. which could interfere with other analysis techniques. The 

initial techniques performed were as followed: 

 Ultimate analysis-This was in accordance with analysis standard for coal (BS ISO 

17247:2013) and for biomass (ASTM D 5373). 

 Proximate analysis-Testing followed British standard BI ISO 17246:2010 for coal and for 

biomass ash BS ISO 18122, moisture BS ISO 18134-1 and volatile matter BS ISO 18123. 

 Calorific value- The standards used were; for coal BS ISO 1928:2009 and for biomass 

BS EN 15104:2011. 

 Ash fusion- Analysis in accordance with the standard (DD CEN/TS 15370-1:2006). 

4.4.1 Ultimate Analysis 

Table 4-1 shows the results of the ultimate analysis performed on the fuels. The biomass has 

values comparable to other biomasses in the literature. That being, the sulphur content is less 

than the measuring tolerance of the device (<1 wt. %). The coal, as previously mentioned is 

a sub bituminous type, hence the sulphur content is high compared to anthracite coal and the 

carbon is around 50 wt. %, which is typical of lower grade coals (Wiser, 1999).  

Table 4-1 Ultimate analysis results for biomass and coal samples 

(Excluding ash and moisture, see Table 4-2) 
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4.4.2 Proximate Analysis & Higher Heating value (HHV) 

Table 4-2 shows the proximate and calorific content analysis for the biomass and coals used 

throughout the testing of later investigations. As with the ultimate analysis, the proximate 

analysis results are typical of the fuel types and reflect values available in the literature for 

comparable fuels. 

4.4.3 Ash Fusion 

Table 4-3 shows the results of the analysis. It can be observed that the pellets change shape 

as the temperature of the furnace increases at a pre-set rate where it undergoes the four critical 

stages namely; initial deformation, softening, hemi sphere formation and flowing. This allows 

for the understanding of transformations within ash particles at temperatures experienced 

during combustion. 

The ash fusion temperatures have been used as part of predictive and theoretical analysis of 

agglomeration, slagging, fouling etc. in studies such as Seggiani (1999); Niu et al. (2010); 

Rizvi et al. (2015a); Llorente and García (2005); Masiá et al. (2007). The ash fusion will be 

used in later theoretical work to evaluate the effect of biomass ashes in fluidised bed 

combustion and conclude as to whether this type of analysis offers prediction to fuel 

performance. This combined with theoretical modelling of low grade fuels is likely to offer 

insight and estimations to how such fuel will react in a combustion system. 

fuel
Ash content 

(a.r) (wt.%)

moisture 

content (a.r) 

(wt.%)

Volatile 

matter (a.r) 

(wt.%)

fixed 

carbon 

(a.r) (wt.%)

HHV 1 

(MJ/Kg)

LLV 

(MJ/Kg)

Peanut 4.04 7.80 80.68 18.22 19.14 19.13

Wheat Straw 8.26 10.22 75.67 5.85 15.69 15.68

Miscanthus 4.76 8.89 83.60 9.66 17.15 17.13

Wood 1.14 6.60 76.32 11.83 17.65 17.64

Oat 4.23 8.75 78.29 8.05 17.34 17.33

Coal A 39.91 5.02 32.04 23.04 17.38 17.37

Coal B 29.30 4.56 38.14 28.00 20.33 20.32

Coal C 35.44 6.26 34.04 24.25 18.93 18.93

Coal D 35.18 8.08 31.61 25.14 19.25 19.25

Coal E 27.43 4.47 37.00 31.09 20.39 20.38

Coal F 25.30 7.36 36.56 30.79 21.58 21.57

Coal G 25.14 7.82 34.94 32.09 21.40 21.39

Coal H 20.21 7.74 37.03 35.02 23.20 23.19

Coal I 39.47 7.88 33.73 18.92 16.94 16.93

Coal J 35.27 7.71 37.92 19.10 21.24 21.23

Table 4-2 Proximate and bomb calorimetry data 

HHV (a.r) 

(wt.%) 
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4.5 X-Ray Fluorescence (XRF) 

X-Ray Fluorescence (XRF) is an analytical technique that can be used to analyse the 

elemental content (major and minor) in fuels, ashes and other materials formed as the bi-

products of combustion. However, it has been found, experimentally, that this method has a 

lot of inherent problems with accuracy and repeatability when samples other than coal ashes 

are analysed. The work in the following sections describes the reasoning and evidence of 

these problems and how it has been elevated in order to produce a fast and accurate method 

for analysing the samples produced by the tests of Chapter 6 and 7. 

The following sections describe work and results from using a combination of analytical 

techniques to develop calibration standards and matrices required to accurately analyse 

biomass materials.  

4.5.1 Theory 

XRF is a non-destructive method for analysing solids, liquids, minerals, oils, etc. with a high 

level of accuracy and accurate repeatability. The speed of the technique is fast and with a 

fairly simple sample preparation method combined with the ability to recycle samples in 

further XRF analysis. 

Initial 

deformation
softening

Hemi-

sphere 

formation

Flowing 

Sample (°C) (°C) (°C) (°C)

Coal A 1138 1260 1365 1475

Coal B 1110 1245 1370 1485

Coal C 1070 1250 1380 1495

Coal D 1060 1290 1370 1440

Coal E 1150 1340 1365 1420

Coal F 1145 1335 1380 1460

Coal G 1065 1325 1390 1450

Coal H 985 1260 1375 1435

Coal I 1155 1305 1385 1495

Coal J 1120 1330 1380 1455

Peanut 955 975 1005 1150

Oates 905 980 995 1390

Miscanthus 965 970 1110 1260

Wheat straw 900 1115 1190 1195

White wood 1000 1105 1190 1325

Table 4-3 Ash fusion temperatures of low grade fuels 
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XRF utilises x-rays which are wavelengths that can be seen in the electromagnetic region of 

the light spectra within a range of 0.01 to 10nm (Brouwer, 2003). The x-rays within the 

analytical device are produced by a synchrotron or x-ray tube.  The x-rays being focused 

towards a sample carry a specific/measurable intensity and associated energy. The x-rays can 

be considered both waves and photons at the same time because of their energy value. The x-

ray wavelength range equates to the energies range of 0.125 to 125keV (Brouwer, 2003). The 

wavelengths of the x-rays are inversely proportional to the energies. The following equations 

determine the wavelengths of the x-rays and their associated energies (Serway et al., 2004):  

The equations Equation 4-1 and Equation 4-2 are fundamental to the operations of the XRF 

and the physics applied to calculate the elemental composition of a sample (Serway et al., 

2004). 

The XRF analyser compromises of the following parts: x-ray source, collimator systems, 

analysing crystal/detector, sample and amplifier/ computer readout as shown in Figure 4-4. 

X-rays are produced through internal mechanisms and emitted from the source at the sample. 

The energy of the x-ray photons emitted are proportional to the mechanism in  which they 

are produced, thus giving a value for later analysis calculation (Curry et al., 1990). The x-

rays bombard the sample. The x-rays then interact with the matter based on the samples 

thickness, density and composition of sample. 

The X-rays colliding with atoms with the sample result in fluorescence. Fluorescence from a 

sample comes from the removal of an inner orbital electron and the subsequent binding and 

𝜆 =
𝐶

𝑓
 Equation 4-1 

𝐸 =
ℎ𝑐

𝑓
 Equation 4-2 

Figure 4-4 Basic XRF schematic 
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movement energies. When the x-rays have sufficient energies the x-ray forces an electron 

from the inner K or L orbital of the atom creating an initial vacancy (Shackley, 2011). The 

removal of this electron creates an unstable atom resulting in the atom becoming excited. The 

atoms internal electrical polarity forces stabilisation by moving an electron from either the L 

or M orbital down to the lower energy K orbital to fill the space and become stable again. 

However, because the electron which has filled the space has an energy higher than that for 

the lower orbit, energy is emitted in the form of an x-ray photon specific to the atom and the 

electron orbital change. This then results in a chain reaction of electrons moving to fill orbital 

gaps until the entire atom is stable again, and in doing so emitting X-rays which are 

undetected and used to identify the change (Beckhoff et al., 2007). 

The energy emitted from the sample pass through a number of polarised cells which have a 

prearranged angle and configuration unique to the analysis and device. This results in analysis 

of specific analytes and in a cleaner signal in the measurement (Beckhoff et al., 2007). 

The cleaned up signals from the sample are then passed through crystal’s which disperse the 

waves into different directions based on the waves energies. The different colours and spectra 

of the waves are then detected by the spectrometer detector resulting in a readout on the 

computer analysing/logging equipment (Shackley, 2011). The intensity of the signal is a 

result of the concentration of each element being present in the sample. The more atoms there 

is of an element the higher the probability of the x-rays interacting with them, this then results 

in more of that wave being detected by the equipment. 

4.5.2 Analysis Types 

Whilst there are small variations in XRF devices between manufacturers due to design 

choices and cost, there are three methods of generating the analysis data, with varying levels 

of accuracy and repeatability (Adams et al., 1998). 

Qualitative and semi quantitative analysis are methods which require no calibration standards 

or calibration curve. Instead they use algorithms based on “standard less fundamental 

parameters” (SLFP). These calculate the concentrations based on the elemental intensity by 

computing relationships with absorption effects. This method is typically accurate within 10-

20% of actual sample values (Banks, 2014). However, because of inaccuracy found in this 

method it is common practice to smooth noisy data, overlap and perform matrix corrections 

which “fit” the algorithms to the results. This can give false readings because of the inability 

to measure against background peaks and other scattering wave properties.  

Fully quantitative XRF analysis uses comparative data based on a database of possible photon 

elemental emissions to compare the data against. This method also uses calibration standards 
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to build calibration graphs which are used to design a matrix of the measured elements. This 

is then overlapped on the data being collected from the samples resulting in clearer, repeatedly 

accurate results. Analytes peak intensity can then be computed against concentration of the 

element within the sample (Banks, 2014).  

The fully quantitative method is a better analytical method for determining true 

concentrations in a sample by XRF. However, whilst in the past standards and algorithms 

have been created for analysis of samples containing coal etc. fuels such as biomass have had 

less development. It has been shown in available literature the usefulness of this technique, 

examples including (JOHN K. KUHN, 1975; Kelloway et al., 2014; Evans et al., 1990; 

Bettinelli and Taina, 1990; Kaakinen et al., 1975; Kowalska and Urbanski, 1992; Acharya, 

1992) for the determination of between 11 and 42 elements reliably in coal based samples. 

However, due to the chemical and physical differences in coal and biomass (including 

biomass combustion products), a coal programme cannot simply be used to analyse biomass. 

It is therefore necessary to develop new standards and matrices to accurately measure 

different types of samples (inc, 2014). 

4.5.3 Standards 

There are a very limited number of reliable standards on the open market, which limits the 

accuracy which can be achieved by calibrating an XRF device. Hence a method for producing 

standards and comparing the data produced was necessary. Only by doing this would it be 

possible to analyse the samples produced in the combustion tests described later in this thesis. 

It was decided that standards should be made using biomass in order to build a new XRF 

program. The methodology in Figure 4-5 was devised and includes analytical techniques 

chosen after reviewing key analytical texts such as (Svehla, 2008; Haynes and Lide, 2010) 

and through discussions with analytical technicians contributing to the project.  

4.5.4 Differences between Devices 

Whilst there are a number of different devices capable of performing XRF analysis this brings 

a series of inherent problems for the output of accurate and standardised results. Different 

devices bring a series of variations such as different operators with varying levels of expertise. 

Different devices and operators will also have different sample preparation, degrees of 

accuracy with different powered devices and with different software etc.  

4.5.5 Wet Chemical Analysis 

Wet chemical analysis is an analytical method in which a number of acids are used through a 

series of stages to digest a sample. This then allows for the sample to be totally dissolved into 
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Prepare biomass using the method described in the following sections of the methodology 

Shred biomass /mill. Biomass should be screened to ensure particle sizes are less than 90μm 

Perform standard initial analysis techniques including semi quantitative XRF using previous coal model, CHNS 

and proximate analysis. 

Based on the initial analysis, ash content for samples is acquired and can calculate raw sample needed to 

produce 150g+ of ash for each fuel. 

Biomasses should be ashed at 550°C for 14 hours and screen through 160μm 

Use CHNS and/or TGA/DTA to determine the 

carbon content which must be >1%wt for analysis 

to continue 

Conduct simultaneous thermal analysis Fourier 

transform infrared spectroscopy (STA-FTIR). 

Wet chemical analysis of the biomass ashes 

Preparation of solution A using the method set out 

in the following sections 

Preparation of solution B using the method set out 

in the following sections 

Perform spectrophotometry for silica content as 

described in the appropriate method 

Dry raw biomass at 105°C for 2hrs 

Perform spectrophotometry for Titanium dioxide 

content as described in the appropriate method 

Perform spectrophotometry for phosphorus content 

as described in the appropriate method 

Perform titration for magnesium and calcium 

content as described in the appropriate method 

Perform atomic absorption spectrophotometry for iron, calcium, 

potassium, magnesium, manganese, sodium and aluminium content as 

described in the appropriate method 

Compile all results and use as calibrations standards for calibration matrix building 

Create formed XRF beads of sample for analysis and data entry comparison 

Figure 4-5 Standards development methodology 
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a water solution, and in a state which can then be analysed by a number of different methods 

in order to determine specific analytes concentrations. However, before the acid digestions 

could be undertaken, ashes of the biomass needed to be produced. 

The work involved in the following sections is part of a larger study, in which other students 

were developing standards to produce a bulk of data to build a more accurate XRF program. 

Whilst the same methodology was used by different students, the fuels and experiences were 

unique in each case. Differences were found in the analysis undertaken by different student, 

and it is the opinion of the author and the aiding technicians that the work performed here 

was more accurate and encompassing. It is for this reason that the final XRF program and 

hence results are different to that of other students. The work is surmised in a publicised paper 

(Xing et al., 2016) 

4.5.6 Preparation of the Samples   

4.5.6.1 Ashing of Biomass Samples 

The coal and biomasses have to be in a completely ashed form in order to perform the analysis 

and generate the standards data necessary to build a matrix. However, the method chosen to 

ash the fuels has to ensure that carbon content in the resulting ash equates to ≤1 wt. % of the 

total mass. The reason for ensuring the carbon content is; 1) any residual carbaceous 

compounds can retain some of the analytes and thus reduce the true concentration found in 

solution post acid digestion, 2) carbon physically interferes with the XRF process and, 3) the 

carbon content is assumed to be 0 wt. % as all carbon should be oxidised in the combustion 

process, therefore, if there is any carbon remaining the total of all analytes will be incorrect 

by a factor of the actual carbon wt. %.  

For the purpose of the XRF calibration matrix study, it was suggested that the biomasses not 

be run in accordance with the ASTM method. This methodology subjects a sample to a 

heating rate of 10°C/30sec to a final temperature of 550°C and held there for a number of 

hours. Instead it was suggested, based on STA-FTIR results of biomass as shown in (Xing et 

al., 2016) that the biomass should be heated at the same rate but to a final temperature of 

900°C (Paul, 1990).  

The pellets were heated at 10°C/30sec to a final temperature of 900°C and held at that 

temperature for 14hr. However, when the crucibles were removed from the ovens (after an 

appropriate cooling time) it was found the ash had formed into solids. 

Figure 4-6 shows the solid residues left from the ashing process. Images A and B are from 

two different peanut samples and c and d are the products of straw. It was found that the 

structures in the crucibles were hard, brittle and had large pores within the structures. These 
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materials are a combination of SiO2 with other alkaline salts. The pellets were found to be 

burning out, causing a reduction environment as well as localised hotspots, leading to the 

formation of amorphous silicate glasses, alkaline salt and molten ash compounds generally 

found above 1100ºC. This is the reason for the high voidage and pellet like shape of the solids.  

It is assumed that for all samples prepared for analysis with XRF, that the ashes are fully 

oxidised. This is justified with agitation, final heating rates and hold times in the preparation 

stages whilst using the furnaces. 

In the literature, a similar phenomenon has been reported in the presence of localised heating, 

high concentrations of compounds including Si, K, Fe and Na when heated to 800-1000ºC. 

The mechanisms described by Steenari and Lindqvist (1998) addresses another observation, 

being the hardened ash material had impregnated the surface of the quartz crucibles (red circle 

in Figure 4-6-D). The crucibles are designed for high temperature and acting as an inert 

carrier. However, because of the obvious interactions with the solids it can only be assumed 

that some of the analytes of interest will have been fused into the porous medium of the 

crucible, thus effecting the elemental content of the fuel. 

Figure 4-6 solid ash formations from combusiton of biomass at 900ºC 

A) B) 

C) D) 
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The formation of the solids suggests a liquid and possible gas phase were achieved in the ash 

and thus some of the analytes in question could have been lost. This combined with the 

leeching effect seen in the crucibles renders the samples unfit for further analysis. 

Further attempts to produce a good quality ash was done by following the British standard 

however, when removing the ash from the crucibles it was found that different reactions had 

occurred as shown in Figure 4-7. 

Image A and B shows how even at the lower ashing temperature, the formation of hardened 

SiO2 based amorphous compounds has formed and impregnated the surface of the crucibles. 

This is further evidence to the localised hotspot and combustion creating an environment in 

which the eutectics and slag can form. Image B has undergone hydrochloric acid cleaning, 

exposing the depth of the penetration.  

Image C, D, E and F all show ashes which clearly contain some form of carbon. Combustion 

and complete burnout has not been achieved. This has resulted in the remaining carbon 

deposits to occur either through discolouring in the ash or a clear black layer remaining. Work 

done by Simoneit (2002) found that this combination of variables resulted in a pyrolysis 

effect, leaving the carbaceous compound, even after extended periods of heating. 

Further evidence of a reducing environment, is the formation of a silvery surface as seen in 

image C and F. This was found to be graphitic carbon, which when heated further in an 

Figure 4-7 solid ash formations from combustion of biomass at 550ºC 

A) 

C) D) 

E) 

B) 

F) 
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oxidising environment would combust completely. This has been noted in work such as 

Kiyobayashi and Sakiyama (1993). Using their experience of Pilling (1999), the graphitic 

crucibles were submerged in hydrochloric acid.  

This test would dissolve a non carbaceous material but was found not to giving more clarity 

to the compounds on the crucibles. 

The carbon content of the XRF samples should be ≤1wt% of the total sample. The reasons 

for this have been described previously, as they adversely affect the physical analysis process 

and retain analytes from sample solution. 

It was necessary to try a number of other temperatures and ashing variables in order to 

evaluate the best ash sample i.e. a sample with ≤1 wt. % carbon but without potentially 

releasing analytes in a gaseous slag phase. Whilst a simplified ashing program may present 

itself as a longer heating period, well mixed and to a higher temperature, this was found not 

to be the case.  

Figure 4-8 shows carbon compounds separating from solution during the acid digestion 

process of the ashes in which the sample would be broken down and then enter solution for 

wet chemical analysis. In this form the carbon compounds will not enter solution. Nitric acid 

was added and the solution was heated to digest the carbon but even so not all analytes were 

guaranteed to enter solution and discrepancies were found in the analysis.  

Figure 4-8 carbon separation during acid digestion of biomass ashes 
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Further attempts to form an ash which contained all of its analytes and a minimum carbon 

content were done at 500ºC, 600ºC, 700ºC, 800ºC, 900ºC, 850ºC and 815ºC. Ultimate 

analysis was performed on the ashes and compared as shown in Figure 4-9. Experience from 

these tests led the author to mill the pellets to a particle size of approx. 100µm in order to 

increase surface area and encourage O2 penetration into the fuel and reduce hot spots forming. 

It was also found that stirring the sample every 2 hours for 10 hours and heating for a total of 

24 hours, as the sample heated at 10ºC/30sec to 815ºC was necessary to reduce the liquid 

phase formation which was seen to impregnate the crucibles. A temperature of 815°C was 

the optimum temperature for achieving carbon burnout in the sample whilst retaining the 

highest concertation of lower melting temperature analytes. 

4.5.6.2 SEM & SEM-EDX 

In order to further understand the reasons for difference in analytical results and the way in 

which the ashes reacted, SEM and SEM-EDX was performed on samples. The following 

sections describe the findings of these analysis and possible insight to the way in which the 

parent fuels will react in a fluidised bed system based on the outcome of the ash. Additionally, 

the analysis was used to further the understanding of fuels and the retention of alkaline species 

which would affect the wet chemical analysis result and XRF analysis. 

Figure 4-9 Effect of retained carbon content in fuel with increasing final heating temperature 
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Throughout fuel characterisation and later analysis of ash samples etc. backscatter electron 

imaging is the primary method for analysing material composition and secondary emission 

was used to create the high definition surface topography image. 

Samples were prepared using carbon paint to adhere the unusual shapes of the samples to a 

steel stub. The carbon paint used was applied to conduct charge around the sample as to 

reduce charging and light emission in the SEM analysis process. The samples were placed in 

a vacuum and coated in a vaporised coating of carbon. 

4.5.6.2.1 Wood 

Figure 4-10 shows the SEM images, (image A being a general image of the ash and image B 

being an enhanced image of the ash), and the SEM-EDX analysis results of areas of interest. 

As image A shows the ash is made up of a variance of particle sizes which is indicated to be 

dominated by Ca compared to the other alkaline analytes. The result is relating to the wet 

chemistry and XRF results carried out on the wood ashes which indicated wood pellets to 

contain high Ca with Mg and Si being similarly high. Additionally, the ash visually looks 

quite fibrous and loosely compacted. 

Image B looks at an enhanced area of the ash and as can be seen there is a distribution of ash 

in clumps around the image. The ash looks to still be in particulate format after the ashing 

process which validates the findings that a temperature of 815°C is a more appropriate 

temperature range to ash the biomass pellets without causing the formation of eutectic or 

glass like complexes. 

Image B also indicates to Ca and Si being the two major components within wood ash. SEM-

EDX results suggest that the distribution of the analytes around the sample isn’t homogenous. 

This means ash samples should be milled and blended before further analysis. Further to this 

it shows that the biomass pellets are not equal and are likely to react differently in a 

combustion system, even if slightly. Finally, the ash shows that if wood pellets are combusted 

in FBC operating within the temperatures of 750-850°C, the ash shouldn’t enter the molten 

phase and contribute to agglomeration. 
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4.5.6.2.2 Peanut 

Figure 4-11 shows the SEM images, (image A being a general image of the ash and image B 

being an enhanced image of the ash), and the SEM-EDX analysis results of areas of interest. 

Image A gives an overview of the ash whilst B gives an enhanced view of the ash. The ash 

look various in particle size apart from spherical clumps distributed amongst the sample. 

Figure 4-10 SEM images and SEM-EDX for the images shown in A and B being and 

overall image and enhanced area of the wood ash repectively 

A B 
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The areas in which the fibrous ash is present is indicated to be dominated by K2O, CaO and 

SiO2. However, the spherical anomalies are dominated by higher concentrations of Si and K. 

These are likely to be complexes that have formed during the high temperature oxidation 

process in the furnace and resulted in a liquid phase, resulting in a K-Si eutectic. However, 

the limitation of 815°C has reduced the propagation of the eutectic and silicate complexes 

throughout the ash. This validates the results seen in the ashing tests where temperatures 

≥815°C were found to leave silicate glasses on the ashing crucibles. 

Furthermore, this gives an indication that when the fuels are combusted in the fluidised bed 

experiments, peanut is likely to cause the onset of agglomerate formation via a low melting 

eutectic primarily made of Si-K groups. Localised hotspots will also further lead to the onset 

of eutectics and hence good mixing and bed turbulence will be necessary to keep a bed 

fluidised. 

Figure 4-11 SEM images and SEM-EDX for the images shown in A and B being and 

overall image and enhanced area of the peanut ash repectively 

A B 
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4.5.6.2.3 Oat 

Figure 4-12 shows the SEM images, (image A being a general image of the ash and image B 

being an enhanced image of the ash), and the SEM-EDX analysis results of areas of interest. 

As A and B both show the ash is different to that of peanut and wood pellets. This is much 

more flakey and flat. The shape of the ash could alter the interaction between agglomerate 

onset and the way in which bed particles stick together, especially with more ash being 

available per flake compared to the previous ashes which had smaller particles. 

The SEM-EDX results suggest a high concentration of Si, K and P. These are all species 

associated with the onset of agglomerates and low temperature eutectics. However, they have 

remained in the ash, which hasn’t adhered to one another so potentially this ash could perform 

better in a fluidised bed than peanut.  

Figure 4-12 SEM images and SEM-EDX for the images shown in A and B being and 

overall image and enhanced area of the oat ash repectively 

A B 
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However, for further analysis in wet chemistry, XRF etc., the ash should definitely be milled 

to better break up the ash and produce a more homogenous sample. 

4.5.6.2.4 Miscanthus 

Figure 4-13 shows the SEM images, (image A being a general image of the ash and image B 

being an enhanced image of the ash), and the SEM-EDX analysis results of areas of interest. 

As the images in A and B show, once again the ash is very different again to the ones shown 

previously. The miscanthus ash seems to contain if little loose ash particles, but instead seems 

to be made up of clumped/reacted complexes. 

The SEM-EDX results suggest that the clumps, whilst containing a variety of alkaline groups, 

is primarily made up of Si, Ca and K. As noted previously this type of clumping was seen to 

be made up of a Si-K complex as seen here. The high concentration of Ca isn’t unexpected 

as Ca groups are known to react with K dominated eutectics and is a method for reducing 

Figure 4-13 SEM images and SEM-EDX for the images shown in A and B being and 

overall image and enhanced area of the miscanthus ash repectively 

A B 
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agglomeration formation mechanisms in fluidised beds. Hence in the ash the Ca has reacted 

with the Si-K in the liquid phase forming Si-K-Ca eutectics. The results here show that 

miscanthus will agglomerate in the bed aggressively and the liquid phase will from within 

normal combustion temperatures. 

Furthermore, for analysis performed post ashing, the sample should be milled to ensure the 

liberation and mixing of all species presence as in its current state the sample will not be 

homogenous. 

4.5.6.2.5 Straw 

Figure 4-14 shows the SEM images, (image A being a general image of the ash and image B 

being an enhanced image of the ash), and the SEM-EDX analysis results of areas of interest. 

As image A and B show there is a variety of particles present as well as larger clumped 

material. The finer particles of ash were indicated by SEM-EDX to have higher 

concentrations of Si, Ca, Fe and S. Firstly it should be noted that the fuel does contain sulphur, 

however, the high concertation either shows an error/limitation in the analysis or a 

concentrating during combustion. The result is therefore, taken as an indication not a 

quantitative value. 

Analysis of the clumps in various stages of liquid phase formation suggests high 

concentrations of Fe, Si and Ca. Fe is known to react with Si and Ca in a beneficial and 

negative way depending on the groups it is exposed to and in what concertation. Here it seems 

as though it is negatively forming liquid complexes with the high concertation of Si. It is 

likely that this would be replicated in a fluidised bed and therefore, is likely to be an 

agglomerating fuel. 
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4.5.6.3 Ashing Notes 

FBC takes place at temperatures similar to the temperatures used to ash the biomass fuel. It 

is therefore, likely that similar mechanisms will take place during the combustion process in 

the bed of the FBC unit. The liquid phase eutectic seen in these ashing tests will link to the 

way in which the bed reacts and shed light to any slagging or agglomeration mechanisms 

experienced in pilot scale testing. 

4.5.7 Wet Chemical Analysis Techniques 

The wet chemical analysis techniques chosen were specific in order to measure the 

concentration of 10 different analytes including; sodium, potassium, iron, magnesium, 

manganese, aluminium, calcium, phosphorus, silicon and titanium. 

The techniques chosen for analysing the different analytes are as follows: 

Figure 4-14 SEM images and SEM-EDX for the images shown in A and B being and 

overall image and enhanced area of the straw ash repectively 

A B 
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 Spectrophotometry- This method was used to measure the concentration of TiO2, P2O5 

and SiO2. Reagents are added to the acid digestion solutions, which are then placed within 

the device and light passes through the samples at a specific wavelength. The measured 

absorption i.e. the photons not absorbed by the liquid due to its colour intensity is then 

used to calculate the concentration of the analytes in the solution. 

 Atomic absorption analysis (AAS) - This method was used to measure the concentration 

of Na2O, K2O, Fe2O5, MgO, MnO and Al2O3. The acid digestion solutions were atomised 

in an acetylene flame. Light generated by standardised elemental bulbs then passed 

through the flame. Photons were absorbed by the specific analytes and thus the difference 

in the photons produced minus photons absorbed gives the concentration of the analytes 

within the solution. 

 Titration- Titration was used to measure the concentration of CaO and MgO in the 

solutions. By the addition of a known titrant it was possible to cause a colour change. The 

amount of titre required for the colour change is directly proportional to the concentrate 

of the analytes and thus gave the concentration of the analytes in the solution. 

 The wet chemical analysis was performed a number of times using slight variations on 

the acid digestion method. The differences included slight alterations in timings to allow 

analytes at different stage to be fully digested. This also involved the use of filter papers 

etc. to evaluate if all solids had been digested, which then required digesting into the final 

solution. Very little difference was found between different methodologies giving a good 

level of reliability in the data shown in Table 4-4. 

4.5.7.1 Wet Analysis Results 

Wet chemical analysis was performed on the biomass in accordance with the methodology 

previously stated, that being, the fuel was selected in order to maximise homogeneity. The 

first set of wet chemical analysis was conducted on ashes which had been ashed at a 

temperature of 900°C (900°C was used in the first instance to validate the use of a final 

temperature of 815°C in later tests. The need for this validation was due to initial variation in 

results, however 815°C was validated as the most appropriate temperature). This was stirred 

regularly, heated at a rate of 10°C/30sec etc. as previously stated. 

Table 4-4 shows the results of the wet chemical analysis for ash that was produced using a 

final heating temperature of 900°C. As the data shows, there is little variance between the 

values of the repeats completed in the analysis. This shows that the analysis was conducted 

with a good level of accuracy and the ash was of a homogenous nature. If the values had 

varied greatly then this would have identified issues in both the preparation method and the 

skill level of the analyser. 
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Whilst the minimal variance is a positive outcome, it should be noted the difference in Mg 

concentrations, in which two different analysis techniques were attempted. The AAS method 

and titration method was used but produced very different values. It was found that the 

titrations method was very difficult to accurately identify when the colour indicator had 

changed as a result of the titration reaction. The colour change is unlike a standard colour 

change as the light is fluorescent and thus a pure black background need be applied to see the 

change. It is believed that the titration results are less accurate than those of the ASS method 

and the AAS method will be used in future analysis.  

A final issue with the data seen in Table 4-5 is the total analytes concertation. When using 

XRF devices a total of at least 85% for total analytes is representative of the samples true 

concertation. As the data shows the total concentration varies between 65% and 95%. As this 

work was done as part of a larger investigation, it was decided that the final heating temp of 

815°C would not result in a loss of analytes with lower melting points such as potassium and 

sodium. However, the difference in total concentrations of analytes clearly shows that there 

is a loss of some elements during oxidation and heating in the ashing process.  

Peanut 0.70 16.16 2.07 0.17 4.48 10.41 14.48 22.32 0.002 9.22 80.01

Peanut repeat 0.62 15.90 2.03 0.17 4.38 9.06 12.24 23.02 0.002 5.01 72.43

Oat 2.18 15.06 0.66 0.04 0.90 20.99 17.93 29.61 0.002 0.44 87.82

Oat repeat 2.13 14.77 0.65 0.04 0.88 20.99 18.23 29.51 0.002 0.74 87.95

Misc 0.95 8.72 1.64 0.10 0.69 14.90 12.55 30.19 0.001 1.49 71.23

Misc repeat 1.02 8.63 1.65 0.10 0.68 14.01 13.96 30.71 0.001 1.20 71.96

Wood 0.60 11.64 0.48 0.12 0.36 4.64 6.78 20.08 0.005 2.53 47.22

Wood repeat 0.59 11.42 0.46 0.12 0.38 4.92 7.99 20.65 0.005 2.67 49.19

Straw 2.13 6.48 2.63 1.14 3.82 22.39 21.25 21.07 0.001 3.99 84.91

straw repeat 2.13 6.72 2.64 1.15 3.84 22.40 21.29 21.24 0.001 4.76 86.17
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Table 4-5 Wet chemical analysis data using modified methodology 

Miscanthus 1 0.70 10.61 0.47 0.02 0.47 12.59 33.19 2.94 0.28 1.76 3.83 63.02 65.09

Miscanthus 2 0.67 10.54 0.46 0.02 0.56 12.78 34.31 2.56 0.17 1.75 3.94 63.83 66.01

Wood 1 2.13 7.69 1.09 0.28 2.97 20.68 49.25 1.53 0.53 3.13 5.04 89.28 91.19

Wood 2 2.11 7.16 1.13 0.27 2.81 21.00 54.52 1.33 0.03 3.18 5.33 93.54 95.69

Peanut 1 0.49 15.92 0.73 0.03 3.04 7.25 38.74 3.41 0.75 2.45 4.83 72.80 75.18

Peanut 2 0.51 15.37 0.71 0.02 3.05 7.27 39.66 3.98 1.33 2.48 4.81 74.38 76.71

Oat 1 0.50 14.01 0.13 0.01 0.42 6.44 48.89 10.83 0.50 1.94 3.12 83.68 84.87

Oat 2 0.26 12.28 0.11 0.01 0.38 6.30 49.18 9.87 1.03 1.70 2.52 81.12 81.94

Straw 1 1.72 19.01 0.17 -0.01 0.69 16.47 38.55 3.24 0.66 1.40 5.12 81.90 85.62

Straw 2 1.78 23.33 0.19 -0.02 0.73 16.61 36.75 3.10 0.72 1.41 4.42 84.61 87.62
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Table 4-4 Wet chemical analysis [heating rate 10°C/30sec, max temp 900°C, 24 hour 

heating period, stirred every 4 hours in working hours]. 

Miscanthus 1 0.70 10.61 0.47 0.02 0.47 12.59 33.19 2.94 0.28 1.76 3.83 63.02 65.09

Miscanthus 2 0.67 10.54 0.46 0.02 0.56 12.78 34.31 2.56 0.17 1.75 3.94 63.83 66.01

Wood 1 2.13 7.69 1.09 0.28 2.97 20.68 49.25 1.53 0.53 3.13 5.04 89.28 91.19

Wood 2 2.11 7.16 1.13 0.27 2.81 21.00 54.52 1.33 0.03 3.18 5.33 93.54 95.69

Peanut 1 0.49 15.92 0.73 0.03 3.04 7.25 38.74 3.41 0.75 2.45 4.83 72.80 75.18

Peanut 2 0.51 15.37 0.71 0.02 3.05 7.27 39.66 3.98 1.33 2.48 4.81 74.38 76.71

Oat 1 0.50 14.01 0.13 0.01 0.42 6.44 48.89 10.83 0.50 1.94 3.12 83.68 84.87

Oat 2 0.26 12.28 0.11 0.01 0.38 6.30 49.18 9.87 1.03 1.70 2.52 81.12 81.94

Straw 1 1.72 19.01 0.17 -0.01 0.69 16.47 38.55 3.24 0.66 1.40 5.12 81.90 85.62

Straw 2 1.78 23.33 0.19 -0.02 0.73 16.61 36.75 3.10 0.72 1.41 4.42 84.61 87.62
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The process was repeated using a lower ashing temperatures and found that a temperature of 

815°C was necessary in order to reduce the of lower melting temperature elements to be lost. 

The results in Table 4-5 is the data from this analysis.  

It was decided that the STA-FTIR results were not representative of the ashing process. 

During the STA-FTIR the samples are milled down to a fine uniform powder, the heating rate 

is uniform and the heating/combustion environment is much easier to control with reduced 

heat spots. 

As seen previously, hot spots form when piles of the biomass are being combusted in the 

ashing furnace. In order to increase the surface area and burn the fuel more uniformly, the 

biomass was milled to less than 90 microns.  

The ashing process and subsequent wet chemical analysis, as shown in Table 4-6, produced 

a series of data which was much more representative of the biomasses with a total analytes 

concertation between 98-100% for ashes ashed at 815°C. 

4.5.8 XRF Comparison 

After completing the wet chemical analysis, and developing the preparation method data it 

was necessary to evaluate the performance of the XRF devices available. The reason being, 

after getting some preliminary data from external laboratories, and devices within the UK, it 

was found that the results gave varied data. 

Figure 4-15 shows the results collected from different XRF devices. Each device and lab was 

supplied biomass ash from the same process and thus was treated in the same manner. As 
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Peanut 21.58 5.62 2.12 3.17 0.24 9.07 8.36 44.01 4.87 1.21

Wood 9.61 6.31 6.61 4.34 1.69 7.48 22.69 39.77 2.24 0.46

Oat 16.18 4.77 1.65 0.90 0.17 0.80 3.92 55.98 5.25 0.05

Miscanthus 11.65 3.24 2.95 2.60 0.14 1.42 13.52 56.54 3.85 0.07

straw 19.76 3.60 6.26 1.04 0.06 1.58 21.14 38.38 4.76 0.26

Standard 0.94 1.61 2.88 10.63 0.16 25.49 2.65 47.97 2.07 1.28

Table 4-6 Final result for wet chemical analysis of biomass fuels 
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Figure 4-15 shows, whilst some of the analytes measured across the different devices 

produced similar results, the difference between analytes is too significant to ignore. 

There are a number of reasons for the difference: - 

1) The experience of the user/operator is critical to the result which can be achieved in the 

analysis process. If the operator is unaware of how to use the device properly, unaware 

of the physics involved and is unaware of how the preparation can affect the result 

produced, then the data will vary greatly. 

2) The type of analysis used. As previously stated there is more than one type of analysis. 

Depending on which analysis is used (qualitative, semi-quantitative and quantitative), the 

accuracy and the reliability of the results will vary.  

3) The device used will greatly vary the result. Different devices have different detector 

power (kW), the type of detector, the atmosphere within the device and the complexity 

of the software and the algorithms used. 

4) If and what type of standards are used to calibrate the XRF device will greatly alter the 

calibration curves and thus effect the data produced. It will also alter the way in which 

the normalisation program and the algorithms interoperate the raw data. 

The findings shown in Figure 4-15 were discussed with technicians and the technical staff 

whom supplied the XRF device to be used for analytical work in this investigation at Leeds 

University. The previous points were highlighted as the most significant to impact the results 

achieved by the device. As a result, the technician running the XRF device has been given 

extensive training and time to become extensively familiar with all aspects of the device.  

Within the limits of this investigation; the issues surrounding using XRF as a method for 

measuring biomass ashes and fluidised bed ash related complexes, has been addressed in 

terms of the effect of using different XRF devices. All such, measurements by this technique 

will be performed in the same manner and under the same regime, using the most modern 

and arguably accurate device in the Leeds University engineering labs. In doing so, 

comparisons can be drawn against other samples from the same device. However, caution 

will be taken when attempting to draw conclusions in terms of accurate quantitative data as 

more extensive work is needed to validate and guarantee the accuracy of the data produced 

by this analytical technique. 

4.5.9 Pellet Preparation 

Depending on the type of sample being entered into the XRF device, there is a choice of 

different mediums which the sample can be prepared. This includes; a fusion bead, which 

involves heating the sample to 1200°C in lithium borate powder, to form a glass like disk, 
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alternatively, the sample can be compressed into a disk with a combination of resins and 

waxes, or, alternatively a powder sample can be encapsulate between plastic sheets (mylar) 

in a capsule.  

Each method has its advantages and disadvantages. The best method is creating the fusion 

disks, as this method can achieve more homogenous samples and present a more 

representative sample. However, this is a very work and time intensive method and requires 

a sample which will not undergo a chemical/physical change in the high temperature furnace. 

The pellet method is more difficult to ensure the sample is evenly dispersed but requires less 

time for preparation. The encapsulation method is very quick and simple, however, a large 

sample is needed to fill the capsule. Further to this, the plastic sheet used for encasing the 

sample will interfere with smaller atom elements in the sample thus distorting the results. 

The three methods were run under the same conditions using a bulk ash sample. Each method 

of sample preparation was run using the XRF “Easyscan” method which offer less operational 

choices which was ideal for drawing a less convoluted comparison.  

Figure 4-16 compares the data collected from each of the preparation methods against wet 

chemical analysis. Coals A, C, E, G and I were used as samples for the analysis as they posed 

the greatest contrast between the available fuels in terms of their chemical constituents and 

concentrations. The wet chemistry results are assumed to be the most accurate and 

representative based on the extensive work done prior. For each of the coals used in this part 

of the comparative work it is clear that no XRF method generates accurate and reliable data 

when compared to the wet chemistry result. Each method tends to produce data for one or 

more analytes which is similar to that of the wet chemical results but vary against other 

analytes. For instance, the Al2O3 value in the pushed pellet measurements and wet chemistry 

tend to be similar and the TiO2 value in the fusions are similar to the wet chemical results. 

However, the difference in measured concentration for SiO2 in all cases is very different to 

the wet chemistry results, ≥25% difference in some cases.  

The preparation methods are ranked with increasing quality of results as loose powder, pellet 

and finally fused bead. This is due to the following reasons; firstly, the homogeneity and 

distribution of analytes within the sample, secondly, the homogeneity of the particles and 

their size fraction. The combination of varying particle sizes results in change in irregular 

distance between the source, sample and receiver. Combining this with radiation loss 

mechanisms such as Rayleigh scattering, the measured values become skewed, thirdly, the 

sample surface must be as flat as achievable as this will also effect the pre calibrated measured 

wavelength and result in smaller elements being lost in background noise and other 

wavelengths emitted (Van Grieken and Markowicz, 2001). The reasons stated here justify a 
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large proportion of the differences in the samples, most notably the smaller elements which 

seemed to have been lost in background noise.  

In the previous work the pellets were made up using a binding agent at a ratio of 1:3, sample 

to binder. The comparison was repeated to both validate the results collected in the previous 

comparison, validating repeatability, and to evaluate the effect the sample concentration in 

the pellets has upon measurements in analytes concentration.  

The data gathered in the repeat work gave values which were similar to the original work 

with a variance of 2.1. It was found that the pellet with 50% sample gave measurements most 

similar to that of the wet chemical analysis as shown in Figure 4-17. The pellet with 90% 

sample was the next most closely matched. It is hypothesised that the addition of a binder and 

mixing caused for a better distribution of the sample within the pellets and as a result gave a 

more representative result.  This is surprising, as the industry standard practice is to use fusion 

beads. This method ensures the greatest distribution of sample within the bead. However, it 

is the opinion of the author, based on the results seen in this work, that biomass ash, when 

heated to 1200°C in the fusion furnace, is likely to lose lower melting elements such as K and 

Na. Combine this with a normalisation program within the XRF analysis software and the 

values hence become less representative than that of the less accurate method i.e. pushed 

pellet.  

The conclusion of this work suggests that for biomass and in particular biomass ash, the 

fusion technique may not be the most applicable route for analysis in XRF. The results 

presented here reinforce the need to cross validate collected data of samples with other 

Figure 4-17 validation of XRF sample preparation methodology 
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analysis techniques. As such, in following results Chapters’ bed samples and ash samples are 

to be compared against pervious analysis results to help identify any obvious variations. 

Secondly the application of standards is to be undertaken to better improve and background 

noise in the results. 

4.6  Conclusion 

Throughout the fuel characterisation Chapter a series of biomass and sub-bituminous coals 

were analysed via a number of different techniques in order to understand the chemical and 

physiological characteristics of each fuel. 

Different techniques were employed to analyse the fuels including ultimate, proximate, SEM-

EDX, ash fusion, XRF and bomb calorimetry. The analysis conducted demonstrated how the 

fuels would combust, how the ash would behave and identified the chemical components 

within the fuels. This work has illustrated the variance between the fuels and the significant 

differences in their fundamental makeup. This work has given information which can be used 

to correlate, in combustion testing, the cause of agglomerates and where species come giving 

an insight as to how a fuel is likely to react in fluidised bed systems.  

The characterisation work has identified fundamental alkaline species within the fuels which 

are associated with agglomeration mechanisms. The coals high Fe, Ai and S concentrations 

caused by the presence of pyrite in the coal gives a strong indication to a Fe-Si dominated 

agglomeration mechanism likely to occur during combustion. Whereas, the biomass analysis 

identified high concentrations of K, Na, Si and Ca components which have been seen in the 

literature review Chapter to be associated with agglomeration and slagging mechanisms. 

The analysis performed as well as indicating likely modes for bed slagging and agglomeration 

based on data in the literature has also produced a source of information required to perform 

predictive methods on the fuels. The data collected in this Chapter will be key to evaluating 

predictive methods such as indices and thermodynamic modelling techniques in Chapter 4. 

A significant part of this Chapter has been the investigation of XRF application in the analysis 

of low grade fuels such as biomass. Throughout the Chapter and subsequent testing, XRF has 

been shown to produce variable results using conventional coal XRF analysis methods. 

However, as the work previous shows, there has been significant improvements to the 

analysis technique by modifying preparation sampling, ashing, validation methodology and 

device modifications. The XRF technique now available at the University of Leeds 

engineering department can better analyse low grade fuels when compared to its previous 

arrangement. Whilst there is likely still opportunity for improvement, as it stands at the end 
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of this investigation, XRF is a valuable technique for analysing low grade fuels but requires 

validation via other analysis techniques to ensure accuracy. 

Table 4-7 is a summary of available literature which has been conducted since 2010 

specifically around issues and problems and the solution being employed to tackle XRF 

accuracy for low grade fuels. This is an indication of the work and scope of the area in its 

application for such samples. 

 

Table 4-7 literature review of research and investigations around XRF since 2010 

Sample preparation 

(Loubser and Verryn, 2008; Anzelmo, 

2009; Gazulla et al., 2009; Stankova et al., 

2010; Wang et al., 2010; Gazulla et al., 

2010; Matsunami et al., 2010; Pease, 

2013; Le Roux and De Vleeschouwer, 

2010; LUO et al., 2011) 

XRF analysis technique(s) & methodology 

development 

(Gazulla et al., 2010; Fernández-Ruiz et 

al., 2010; Robinson et al., 2009; Andersen 

et al., 2013; Morgan et al., 2015; Teng et 

al., 2013; de Jonge and Vogt, 2010; 

Terzano et al., 2013) 

Review(s) 

(Evans et al., 2014; Taylor et al., 2014; 

Clough et al., 2014; Gibson et al., 2014; 

Butler et al., 2015) 
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5 Modelling & Predicting Agglomeration in FBC  

The testing and use of the experimental rig is a practical and empirical method which can be used 

to determine the outcome of combusting different fuels in a FBC unit. This data can be used and 

extrapolated up to more commercially scaled operations and shed light upon the likely outcomes 

in applying the fuels of this investigation within a commercial operation. However,  the time and 

direct application of the results takes time and money whilst be limited by unforeseen scaling 

factors such as air distribution limitations known to occur in fluidised beds (Zhu, 2013). 

An alternative method to a solely experimental investigation is the application of theoretical 

modelling to determine the likely outcome of a system or process. The results of which allow 

designers and operators to make informed decisions on how to proceed based on expected 

outcomes.  

“Factsage” is a commercially available software which uses thermodynamic properties such as 

Gibb’s energy in order to predict the chemical composition and thermodynamic changes in a 

defined system. This software package has a number of different applications, allowing users to 

enter details such as ash composition and environmental factors including temperature in order to 

produce data on formation of compounds typically found in slag which would form over varying 

temperatures in a typical combustion system. This section will show the application and crossover 

of the software whilst further expanding results found in the experimental work previously 

described in Chapter 5 and 7.  

5.1 Liquid Slag Formation 

Fluidised bed combustion typically has a temperature range of 800-900 °C and as such eutectic 

compounds forming at this temperature range are important to understanding the formation of 

agglomerates and slags. Agglomerates have been found to occur using the fuels described in 

Chapter 5 and 7. The Factsage software has an “Equilibrium “model which allows users to enter 

ash composition data and environmental variables which produces chemical formation data as an 

output. As such, the following sections will describe the application of the model in predicting and 

describing the formation of alkali related slag phases and in doing so relate this to the agglomerates 

experienced in previous Chapters. 
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5.2 Liquid Melt Phase Modelling 

As discussed in previous sections, the liquid melt phase and the rate at which the melt phase occurs 

at different temperature ranges, will alter the rate of deposition and agglomeration mechanisms in 

fluidised beds. Experimental testing of liquid melt formations has been shown in the fuel 

characterisation section (Chapter 4) using the established analysis method of high temperature ash 

fusion. However, whilst this method gave good results as ash samples melted over increasing 

temperature, it was difficult to see accurate melt phases and differentiate between the different 

melting stages. 

In order to determine, via ash fusion techniques, more accurately when melting phases are 

occurring, a combination of experimental and computational techniques should be adopted. For 

this reason, the Factsage Equilibrium model was applied to model the formation of compounds, 

primarily slag/liquid melt phase compounds, over variable temperature ranges, thus simulating 

these processes which could take place in a fluidised bed combustion system. 

XRF data collected in the fuel characterisation Chapter was used as input for the biomass and coals 

in the FACTSAGE equilibrium model software. The analytes entered were: Ti, Si, K, Mg, Mn, Na, 

P, Al, Ca. The data was entered in the steps dictated in the following sections making it possible to  

Figure 5-1 Main screen for FACTSAGE Equilibrium model software 
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produce theoretical predictive data which potentially represented the formation of 

fouling/depositing/agglomeration compounds in the experimental fluidised bed. 

The inputs were entered through the input screen shown in Figure 5-1 in the steps as followed. 

Chemical species to be modelled were entered in the prompted window. For the purposes of this 

work the compounds were the stable oxide forms of the analytes of interest. 

Selection of the correct databases was crucial. There are a variety of databases, each with pros and 

cons as a result of the papers and sources which the data is based on. For this work the 

“FToxid_SLAGA”, “Fact_PS” and ELEM included the fundamental solutions of this work 

Table 5-1 databases and solutions included within the Factsage model for low grade 

fuels 

Solution species Modelled species description 

FToxid-SLAG 
MgO, Na2O, SiO2, K2O, Al2O3, 

Fe2O3, MnO, P4O6 & TiO2 

slag/liquid Si rich solution 

K,Mg,Mn,Na,Ni,Pb,Si,Sn,Ti

,Zn,Zr, 

Al,As,B,Ca,Co,Cr,Cu,Fe,G; 

dilute S, SO4, PO4, H2O/OH, 

CO3, F, Cl (selection based 

on fuel) 

FToxid-SPINA 

Spinel (MgAl2O4), Magnetite 

(Fe3O4), Hercynite (FeAl2O4), 

Magnesioferrite (MgFe2O4), 

Trevorite (NiFe2O4), Pleonaste 

(MgAl2O4– FeAl2O4) 

solid & liquid solution 

considered 

FToxid-pPyrA 

& LcPy 

MSiO3– MAl2SiO6– MFe2SiO6, 

CaMgSi2O6, CaFeSi2O6 and 

CaAl2SiO6, FeSiO3, CaMgSi2O6 – 

Mg2Si2O6 & MgSiO3 

solid solution 

FToxid-C2SaA 

& C2SaB 

Mg2SiO4, Fe2SiO4, Mn2SiO4, 

Ca2SiO4 
liquid solution 

FToxid-Mel 
Ca2MgSi2O7, Ca2Al2SiO7, 

Ca2MgSi2O7 
solid solution 

FToxid-MulF Al6Si2O13, 
solid solution with Fe(III) in 

dilute solution 

FToxid-

CAFS/CAF6/C

AF2/CAF1/C2

AF/C3AF 

CaAl12O19,CaAl4O7, CaFe4O7, 

(CaO)2(Al2O3)4SiO2 

(CaO)2(Fe2O3)4SiO2 solid 

solution/ CaAl12O19-rich/ 

Ca2Fe2O5 rich 

FToxid-NAS1 NaAlO2 

solid solution with low-

temperature NaAlO2 and 

excess NaAlSiO4 

FToxid-PERO Ca2Ti2O6– Ca2Ti2O5 solid solution 

FToxide-AlSp 
Hercynite (FeAl2O4), Spinel 

(MgAl2O4), Galaxite (MnAl2O4) 
solid solution 

FToxid-CORU 
Corundum (Al2O3) & Hematite 

(Fe2O3) 

Al2O3-Cr2O3-Fe2O3
+ 

(Mn2O3, Ti2O3 in dilute 

amounts) 
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however, other databases as shown in Table 5-1 were included in more comprehensive applications 

shown later on in the work. Using the main screen, it was possible to go through the sub categorised 

database and choose specific reactions to both include and exclude. This is particularly useful as 

some reactions have more than one database due to transition and phase boundary data which 

conflicts.  

The core of the information is entered, now the units, variable conditions and environments for the 

theoretical reactions to take place within the system. Using the unit’s tab, standard units were 

selected. Using the variables tab, the pressure, free energy, temperature range, heating rate, 

temperature profile spacing, phase data, type of output etc. were selected. The final inputs tweaked 

the system by limiting certain reactions and specifying the output objective of the software e.g. 

model precipitating compounds of the identification of eutectic points. 

After clicking the “calculate” function, the data was produced in a number of formats including 

text and graphical. The software “FACTSAGE XML” is a spreadsheet program allowing for 

limited manipulation of the graphs and was used to produce the figures seen later in this Chapter 

of work. 

In order to simulate the combustion environment of a fluidised bed the temperature ranges selected 

had to include 500-1200 °C. In most cases this range was increased to include both lower 

temperatures and higher temperatures (100-2500°C). This was to produce more complete data 

series and thus produce better graphical plots so more thorough examination of the liquid slag 

formation phase could be accomplished. The pressure within the system was 1 atm to simulate the 

atmospheric bubbling fluidised bed and the oxygen concentration was 20.95 % to simulate the air 

entering the combustion zone. 

5.2.1 Modelling Approach 

The initial modelling work, as shown in Figure 5-2 shows the evolution of a liquid phase over 

increasing temperature from 1 kg of ash from the fuels within this study temperature range. Image 

a and b contain predictive data for the coals used in the previous Pakistani coal Chapter. Whilst 

image c and d contain predictive data for the biomass fuels used in the biomass Chapter. 

The reason for two graphs for each series of fuels is that the first image of each set i.e. a and c use 

a more basic modelling process, whereas image b and d uses a much more complex method. 
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Graph b Figure 5-2shows d the differences between the approaches. Fundamentally the 

FACTSAGE program uses a collection of databases which contain the thermodynamic and 

chemical data required for the program to calculate outputs based on the variables the user enters. 

However, there are more than 50 databases with varying quantities of various data. The datum itself 

is the product of experimental research and has been reported in journals, which is referenced in 

the databases. For the basic model the “FT-oxid_SlagA” database was used, which holds the most 

complete series of data on all oxide compounds used in this work. This database is built up of 

validated publications and as such has been used in a number of other studies found in the literature 

including; (Ryś-Matejczuk et al., 2013; Reinmöller et al., 2015; Berjonneau et al., 2009). 

a) b) 

d) c) 

Figure 5-2 Liquid "Slag" melt phases over increasing temperature using both the basic approach and a more 

complex approach with FACTSAGE Equilibrium model; a) Different coals slag melt phases using the basic model, 

b) Different coals slag melt phases using the complex model, a) Different biomass slag melt phases using the basic 

model and, b) Different biomass slag melt phases using the complex model. 
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The complex model used the same database plus an additional 47 (shown in Table 5-2) databases 

chosen based on their chemical content and the chemistry of the fuels demonstrated in the fuel 

characterisation Chapter, the paper references, experience whilst using the program and discussions 

with the FACTSAGE personnel. 

Table 5-2 Model differences between a "basic" and more 

"complex" approach 

Variables Basic model Complex model 

Databases 1 48 

Species 274 657 

Solutions 2 48 

Phases 250 296 

 

Whilst using FACTSAGE with all the database seems advantageous, in practice the complex 

interactions of the chemical species doesn’t always make this possible. Firstly, data between 

databases doesn’t always agree with one another, because it has been determined experimentally 

and thus there is a level of variance in the result. Secondly, whilst more databases mean more 

available data, it also means there are more gaps between data series in the calculations, leading to 

errors in the calculation software and calculations reaching a state of “non-equilibrium” thus 

rendering the data void. Finally, the FACTSAGE software has been designed in such a way that it 

will attempt all calculations no matter the time period. In the authors experience, in many cases the 

more complex configurations left to run for 48 hours achieved little benefit if any. This will be 

demonstrated in the following sections and data sets. 

This final point (and the others) can be seen in Figure 5-2between the two-data series of each fuel 

type. Both data sets show the initial slag formation phase occurring at 800°C and increasing sharply 

to 1300°C, followed by a curve of lesser gradient to 1800°C. In both cases this can be seen, 

however, the initial steep gradient and the following lesser gradient curve have slightly different 

bumps and angles. This is because in the complex model more compounds and phases have been 

evaluated giving a slight variance on the basic data. Both lines should be similar as both contain 

the same fundamental data in the “SlagA” database. The difference being the complex model has 

the potential to identify variance on this fundamental data with its more extensive data series. 

Because of the results seen here, i.e. the slight variance in data between basic and complex 

modelling approach, it was decided that both approaches should be evaluated when using 

FACTSAGE for modelling both poor grade coal and biomass fuels.  
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5.2.2 Liquid Melt Phase-Coal 

The results in Figure 5-2 a and b, show that the initial liquid slag melt phase for the low-grade coals 

starts at 800°C. This is followed by a steep increase in liquid melt, releasing over 80% of the liquid 

melt by the time all the coals have achieved a temperature between 900-1000°C. For each coal, 

when approximately 90-95% of the total liquid melt phase has been released there is a lesser curve 

in the production of the melt phase until a maximum temperature of 1500-1800 C, at which point 

no further melt phase is produced.  

The data shown in Figure 5-2 suggests that when this coal is combusted in a typical fluidised bed 

combustion system, the majority (up to 90 % or 100 g/kg) of the liquid slag melt phase will be 

released from the coal. The data produced suggests that the coals used would produce a slag melt 

phase when operating a fluidised bed at normal conditions. This could result in increased issues 

associated with the release of such melts, including agglomeration propagation. However, further 

analysis is required to identify the contents of the melt phase in order to establish the nature of the 

released compounds and thus their effect on the system. 

A note should be made that there are a number of small differences between the two coal data sets 

but the differences are trivial and do not detach from the main trends shown in both. The complex 

model indicates there may be release of compounds at particular points but without further analysis 

these compounds at this point are not known. 

5.2.3 Liquid Melt Phase-Biomass 

Before analysis of the results shown in Figure 5-2, c and d, (the initial liquid slag melt phase for 

the biomass fuels), it should be noted that the model could not produce reliable results for any of 

the biomasses below 600°C. The basic model produces trend data from 0°C to 600°C however, it 

is highly unlikely that there will be a melt phase at the lower temperature ranges shown, especially 

at 0°C. When the biomass data was produced by the complex model it simply crashed until a lower 

temperature range of 500-600°C was entered at the input screen. This suggests there is either 

missing data for this combination of input species or the software was not designed for this type of 

fuel.  

After discussion with the FACTSAGE developers it was found that the software and data used for 

some of the major databases referenced experimental results using coal. Because of the significant 

difference in thermodynamic properties of coal and biomass, when biomass type fuel data is entered 

in to the model there are discrepancies resulting in crashes and erroneous data. At the time of 

undertaking this work the author was using FACTSAGE version 6.4. Subsequent to these 

discussions, but outside the timescale for this work, an improved version 7.1 (October 2016) has 
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been released -which includes expanded databases containing more compounds and data relevant 

to biomass calculations.  

There are significant differences between the basic and complex modelling approach for the 

biomass fuels. The initial slag melt phase varies between 700-900 °C in the basic model whereas 

the complex model has a range of 600-1000°C. In both models, there is a steep increase in the melt 

phase released, for 100-200°C following the initial melt. In both cases the maximum liquid melt 

released is approx. 100g/kg3 at a temperature of approx. 1000°C for the basic model and 1100°C 

for the complex model. There are large differences between each of the biomasses in both models, 

but this is expected as the chemistry of each fuel is particular to each fuel. Peanut and oat show 

similarities as both are a seed and come from a similar part of the plant/source/growth type etc. 

Straw and Miscanthus also show similarities which is also to be expected as they are both grassy 

type biomass. 

5.2.4 Liquid Melt Phase Conclusion 

The data shown in Figure 5-2 indicates that the models can produce data showing trends for the 

melt phase of the fuels. However, the data also shows that depending on the chemical makeup of 

the fuel there can be large variation in the results achieved. The data produced can fluctuate 

dramatically with a small change in a particular chemical species such as potassium, which is an 

important element for fuel chemistry. This challenges the accuracy and validity of the data to real 

life systems that are being modelled. The coal data shows a more realistic breakdown of the 

expected outcome compared to the biomass. However, without further analysis of this slag break 

down the information is incomplete. 

5.3 Liquid Slag Major Oxides 

In order to understand what the “Slag” data actually represented in Figure 5-2 it was necessary to 

breakdown this data into its constituent parts. As the data, which was entered into the model was 

oxides from XRF measurements, it is these which have been chosen to calculate in Figure 5-3 to 

Figure 5-6. 

5.3.1 Major Oxide Model Difference 

Without repeating previous descriptions of the basic and complex model, there are clearly 

differences between the produced data in Figure 5-5 and Figure 5-6 the major oxides from the basic 

model and from the complex model shown in Figure 5-5 and Figure 5-6. The data for straw could 

not be calculated in the complex model, and the lowest calculated data for the complex model was 
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at 500°C whereas for the basic model data was collected at 100°C. This was due to the reasoning 

discussed in the previous section. 

However, as can be seen between Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6 the differences 

between the basic and more complex model are visible but significantly less dramatic for coal the 

biomass. Once again this has been previously discussed in the previous section but reinforces the 

statements already established, that without the biomass update to the FACTSAGE software it 

seems there are variances in the data produced. 

5.3.2 Biomass Major Oxides 

The major oxide shown for biomass within the slag of Figure 5-3 and Figure 5-4 is SiO2. SiO2 on 

its own is relatively inert and has an initial melt temperature of 1450°C (Werther et al., 2000). 

However, SiO2 will react to form low melting eutectics in the presence of alkali metals and salts. 

The second major constituent oxide in the slag is Na2O and K2O. SiO2 will form low melting 

eutectics with these alkali oxides to form Na2O-SiO2 (790-874°C) (Werther et al., 2000; Gupta et 

al., 2007) and K2O-SiO2 (764°C) (Werther et al., 2000) through the reactions shown in Reaction 

5-1 and Reaction 5-2: 

2𝑆𝑖𝑂2 + 𝑁𝑎2𝐶𝑂3 → 𝑁𝑎2𝑂 ∙ 2𝑆𝑖𝑂2 + 𝐶𝑂2 

(Werther et al., 2000) 

Reaction 5-1 

4𝑆𝑖𝑂2 + 𝐾2𝐶𝑂3 → 𝐾2𝑂 ∙ 4𝑆𝑖𝑂2 + 𝐶𝑂2 Reaction 5-2 

The melting points of these eutectics are within typical combustion conditions for a fluidised bed 

and thus pose a potential issue in terms of the formation of sticky particles which would lead to the 

onset of agglomeration. The formation of these low melting eutectics can be seen to influence the 

formation of the slag melt in Figure 5-2 c and d. There are sharp increases in the formation of the 

liquids melts at the same temperature as the formation of these eutectics. However, there is a 

decrease in the melt phase at around 1000°C. 

This can be explained by the increase in the release of Ca, Mg, Al2O3 and Fe2O3 at around 1000°C. 

Ca, Mg, Al and Fe especially will compete with SiO2 and other alkali groups to from eutectics but 

at higher temperatures than K and Na with SiO2 (Duan et al., 2015). The liquid melt phase of Figure 

5-2 decreases in rate after the 1000°C as the affinity of the K2O and Na2O complexes move away 

from SiO2 structure and form high temperature eutectics (Rizvi et al., 2015b). This trend can be 

seen for wood especially. At 1000-1100°C CaO is released in abundance contributing to the 

formation of CaO-SiO2 and K2O-CaO-SiO2 (Scala and Chirone, 2008). 
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5.3.3 Coal Major Oxides 

Figure 5-3 and Figure 5-4 shows the major oxides distribution for the melt phase for the coals and 

indicates that similarly to the biomass results, SiO2 is the largest constituent. However, whilst the 

biomass slag phase started between 600-700°C, the coal melt phases start higher at ≥900°C. There 

is a significant spike in the SiO2 which decreases in gradient as well as the formation of Na2O. 

Whilst in the biomass fuels this was dominant, in the case of the coal fuels the formation of FeO 

becomes dominant. This is indicated by the decline in SiO2 formation and the decrease in the 

formation of Na2O. The Fe complexes are dominant and have a greater affinity to form eutectics 

with alkali metals such as K and Na through the reactions shown in Reaction 5-3 to Reaction 5-5 

(where X is Na or K), at a temperature of 1135°C (Werther et al., 2000; Olofsson et al., 2002). 

𝐹𝑒2𝑂3 + 𝑋2𝑂 → 𝑋2𝐹𝑒2𝑂4 (Werther et 

al., 2000) 

Reaction 5-3 

𝐹𝑒2𝑂3 + 𝑋2𝐶𝑂3 → 𝑋2𝐹𝑒2𝑂4 + 𝐶𝑂2 Reaction 5-4 

𝐾2𝑂 ∙ 𝑛𝑆𝑖𝑂2 + 𝐴𝑙2𝑂3 → 𝐾2𝑂 ∙ 𝐴𝑙2𝑂3 ∙ 𝑛𝑆𝑖𝑂2 
(Duan et al., 

2015) 
Reaction 5-5 

Na based complexes continue to diminish for each of the coals with increased temperature as alkali 

metals such as this enter a vapour phase forced by preferential reactions with the Ca, Al and Mg. 

This is in agreement with work conducted by a number of authors, (Olofsson et al., 2002; Varol 

and Atimtay, 2015; Duan et al., 2015; Fryda et al., 2008), through reactions such as that in Reaction 

5-3 to Reaction 5-5. 

The results of the major coal oxides agree with expected reactions such as those shown in previous 

figures, but also agree with the experimental findings in the low-grade coal section. To summarise, 

the agglomerates which were found as a consequence of burning low grade fuels, contained eutectic 

compounds rich in Fe2O3-SiO2 and Al rich complexes. These formed as a result of localised hot 

spots and sintering mechanisms. The temperature range correlates with the data produced here 

using the FACTSAGE equilibrium program. This correlation highlights two points, firstly, that the 

FACTSAGE software has an application in this type of combustion system and can generate trend 

data for the prediction and interactions a system may experience, and secondly, that the results in 

Chapter 5 correlate with both literature on the subject and expected outcomes in such scenarios. 
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a) 

e) 

d) 

b) 

c) 

Figure 5-3 Modelled liquid slag major oxides for biomass fuels over a temperature range of 100-2500°C (basic model) 
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a) b) 

c) d) 

Figure 5-4 Modelled liquid slag major oxides for biomass fuels over a temperature range of 100-2500°C (complex 

model) 
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Figure 5-5 Modelled liquid slag major oxides for coal fuels over a temperature range of 500- 2500 °C (basic model) 

a) 

e) 

d) 

b) 

c) 
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a) 

e) 

d) 

b) 

c) 

Figure 5-6 Modelled liquid slag major oxides for coal fuels over a temperature range of 500- 2500 °C (complex 

model) 
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5.3.4 Slag Major Species 

Further analysis and deconstruction of the data produced in the basic and complex model was the 

stable solid phases which theoretically existed within the liquid melt phases. Figure 5-3 to Figure 

5-6 shows the results of the stable solid phases over temperature ranges. 

The data series in these plots originate from the same data series as used previously. Therefore, 

there are discrepancies between the complex and basic models as previously discussed and need 

not repeating. 

However, is should be noted that the trends of all the basic vs. complex model data series are similar 

and represent the same outcome but with varying levels of accuracy and details for biomass fuels. 

The basic data has produced random data at the 0-200°C, which is then followed by a rapid increase 

before trends fit the correlations expected. This is the result of calculations being in a state on non-

equilibrium and thus the values are incorrect and the data that is produced must be discarded as it 

clearly doesn’t fit the rest of the data. 

With reference to the coal solid phase data, the basic model contains little or no information 

required to calculate Fe rich complexes. As seen in the previous section FeO was a major oxide in 

the slag phase. However, in the basic model for stable solids the Fe rich complexes feature -. It 

isn’t until the complex database collection is used and the addition of Fe data allows for a more 

realistic picture of theoretical stable solid phase data to be produced. Hence descriptions on trends 

etc. will refer to the complex data outputs not basic in this case. 

5.3.5 Biomass Slag Major Species 

As Figure 5-7 and Figure 5-8 shows, the biomass fuels produce sodium rich solid phases in the slag 

phase up to a maximum temperature range of 1000-1100°C. After this point the solid Na dominant 

phases are replaced by Ca, Mg and Na silicates and phosphates where the phosphate and silicate 

species are the macro networks. This system for solid phases has been experienced experimentally 

by (Niu et al., 2013) and through theoretical FACTSAGE analysis by (Rizvi et al., 2015b). A 

number of applicable high temperature complex formations of calcium and magnesium silicates 

were described by both as shown in Reaction 5-6 to Reaction 5-10 Whilst there are a number of 

complexes formed ≥1000°C, the Na rich solid phases are of more concern to typical FBC operating 

conditions. As described previously, these Na rich melts form at 874°C, which means agglomerates 

and negative effects are likely to be seen in the bed with these fuels. The data here indicates that in 

order to mitigate the formation of Na complexes either a different fuel, combustion temperature 

range or additives rich in Ca or Mg such as Kaolin (Al2Si2O5(OH)4, dolomite (CaMg(CO3)2, 
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gibbsite (Al(OH)3) etc. to alter preferential reactions to less “sticky” compounds  (Linjewile and 

Manzoori, 1999; Tangsathitkulchai and Tangsathitkulchai, 2001). 

2𝐶𝑎𝑆𝑖2 + 5𝑂2 → 2𝐶𝑎𝑆𝑖𝑂3 + 2𝑆𝑖𝑂2 

(Niu et al., 2013; 

Rizvi et al., 

2015b) 

Reaction 5-6 

2𝐶𝑎𝑆𝑖𝑂3 + 𝑀𝑔𝑂 → 𝐶𝑎2𝑀𝑔𝑆𝑖2𝑂7 + 3𝑆𝑖𝑂2 Reaction 5-7 

2𝐶𝑎𝑆𝑖2 + 𝑀𝑔𝑂 + 6𝑂2 → 𝐶𝑎2𝑀𝑔𝑆𝑖2𝑂7 + 3𝑆𝑖𝑂2 Reaction 5-8 

14𝐶𝑎𝑆𝑖2 + 2𝑀𝑔𝑂 + 35𝑂2 → 2𝐶𝑎7𝑀𝑔(𝑆𝑖𝑂4)4 + 20𝑆𝑖𝑂2 Reaction 5-9 

14𝐶𝑎𝑆𝑖𝑂3 + 2𝑀𝑔𝑂 + 21𝑂2 → 2𝐶𝑎7𝑀𝑔(𝑆𝑖𝑂4)4 + 6𝑆𝑖𝑂2 Reaction 5-10 

5.3.6 Coal Slag Major Species 

Figure 5-9 and Figure 5-10 shows the data series for stable solid phases within the slag phase over 

increasing temperature. As the figure shows, the largest constituent parts contributing to solid phase 

complexes are Na, K, Ca and Mg in silicate and phosphate forms. Below 800°C, silicates are the 

dominant solid phases, however, between 800°C and 1000°C, with phosphate groups replacing the 

Si groups. 

Phosphorous has been found to lower the melting temperature of eutectic complexes and thus 

stripping the silicates of K, Na etc. at ≥1000°C. This has been seen in a number of 

agglomeration/fouling studies with phosphorus rich fuels/additives/bed materials, forming sticky 

phosphates which adhere to the bed particles and thus creating the foundation for agglomeration 

mechanisms (Lindström et al., 2007; Piotrowska et al., 2010; Grimm et al., 2011; Barišić et al., 

2008). An example of phosphate eutectic formation is as shown in Reaction 5-11 and Reaction 

5-12: 

𝑀𝑔3(𝑃𝑂4)2(𝑠) + 𝐾4𝑃2𝑂7(𝑠) → 3𝑀𝑔𝐾𝑃𝑂4(𝑠) + 𝐾𝑃𝑂3(𝑠) (Lindströ

m et al., 

2007) 

Reaction 5-11 

2𝑀𝑔3(𝑃𝑂4)2(𝑠) + 2𝐾4𝑃2𝑂7(𝑠)
→ 5𝑀𝑔𝐾𝑃𝑂4(𝑠) + 𝑀𝑔𝐾2𝑃2𝑂7(𝑠) + 𝐾𝑃𝑂3(𝑠) 

Reaction 5-12 

As previously stated the formation of solid phase Fe complexes can be found throughout typical 

FBC operating temperatures. The data in Figure 5-9 and Figure 5-10 shows this. Whilst the Fe 

groups are effected over the temperature range i.e. also moving from silicate to phosphate groups, 

it should be noted that the temperatures experiments have carried out at would produce mainly Fe-

Si-O2 complexes. The agglomerates found in the experimentation with these fuels produced 

complexes as the model theorises. This is further confirmation that the model is generating realistic 

experiments have occurred because of the fuels characteristics and not because of operational 

variables.  
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data in the described system, but also that the agglomerates and issues experienced in the   

Figure 5-7 stable solid phases in biomass slags over increasing temperature (basic model) 

a) 

e) 

d) 

b) 

c) 
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Figure 5-8 stable solid phases in biomass slags over increasing temperature (complex model) 

a) 

d) 

b) 

c) 
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Figure 5-9 stable solid phases for low grade coals over temperature range 100-2500°C (basic model) 

a) 

e) 

d) 

b) 

c) 
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Figure 5-10 stable solid phases for low grade coals over temperature range 100-2500°C (complex model) 

a) 

e) 

d) 

b) 

c) 
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5.4 Ternary Diagrams 

Another feature of the FACTSAGE software bundle is the phase diagram model. Phase diagrams 

are the graphical representation for a system in equilibrium. Within this system chemical 

components exist in different phases based on their composition, temperature, pressure etc. A single 

component system is classified as unary, two as binary and three as ternary (Campbell, 2012).  

A ternary diagram is a triangular shaped diagram representing the interactions of the three 

components as a 2-D object. Each phase exists as its own triangle and interact on a 3-D plane but 

is difficult to display in this format as illustrated in Figure 5-11. 

Using thermodynamic data, specifically Gibbs energy, it is possible to generate phase tendencies 

of desired components. In doing so it is possible to model the point at which solid phases will form 

complexes, or primary and secondary eutectics. This is another method in which agglomerates can 

be predicted and relate experimentally found eutectics to modelled data. Examples of this 

application can be found in the literature, Teixeira et al. (2012) refers to a K2O-SiO2-CaO ternary 

diagram to explain the formations of agglomerates in FBC when co firing coal and biomass linking 

the fuel characteristics to results found theoretically and experimentally. Öhman and Nordin (2000) 

relates kaolin in the reduction of agglomerates based on its high concentration of Al2O3 and the 

effect on phase boundaries using Al2O3-SiO2-K2O plot.  

Figure 5-11 multiple phase diagram interaction to create overall 2D ternary diagram showing 

the liquidius surfaces of the components 
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The plots on the following pages (Figure 5-12), are modelled predictions as to the interaction of 

alkali groups of interest, based on their effect to agglomeration and sintering mechanisms in FBC. 

The chemical components used in the diagrams were picked based on the XRD and XRF 

agglomerate analysis performed in previous Chapters as they present significant interest. The key 

in Figure 5-13 translates what the points on the ternary diagrams represent. 

Using the FACTSAGE software it was possible to plot the fuels on the ternary diagrams based on 

the component content which relates to the axis of the diagrams. The diagrams in Figure 5-12 show 

how a number of different compounds could theoretically form if the three components of each 

diagram were to be present over the temperature range which was specified for each diagram (100-

2500°C). The coloured lines (contours) in each image are isotherms/ temperature gradients which 

lay between the boundary lines of ach stable phase. Therefore, the images in Figure 5-12 are in fact 

theoretical topographical images, representing a 3D image. By using the ternary diagrams, it is 

possible to eutectics points and binary eutectic points. Image A & B in Figure 5-12 hare circled 

points in which three boundary lines intersect with one another. This point identifies a point in 

which a eutectic made up of the boundary lines components. The contours around this point inform 

us of the temperature range the eutectics are likely to form at. Image A’s eutectic will be made up 

of CaO-Na2CaSi3O7-Na6Si2O7 in this example and is indicated to form at a temperature of 

846.19°C. In image B the circled point represents the formation of the nary eutectic Ca3Si2O7-

CaSiO3-K2Si2O5 at a temperature of 1019.77°C.  

However, whilst it is possible to draw conclusions from the information presented in these types of 

diagrams, the information is only partially complete. As the interactions and data produced in each 

diagram can only simulate three components, other important reactions are not taken into 

consideration. An example being that Na and K will form low melting eutectics when in the 

presence of other alkali groups such as SiO2 and FeO (Linjewile and Manzoori, 1999). Whilst each 

diagram suggests the formations of eutectics at specific operational limits, the information does not 

overlap into other ternary diagrams. For this reason, the images in Figure 5-12 show that there are 

a large abundance of possible eutectic/agglomerates, which could form using these types of fuel, 

but no single diagram can fully determine the effects of the fuels in this study. In order to do this a 

more complex system would be needed and is out of the capabilities of the current version of 

FACTSAGE and would require significant increases in both programming skills and computational 

power. 
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 Figure 5-12 Ternary diagrams for oxides of interest; a) CaO-Na2O-SiO2, b) K2O-CaO-SiO2, c) SiO2-MgO-Na2O, 

d) K2O-Na2O-SiO2, e) Al2O3-MgO-Na2O & f) CaO-Na2O-Al2O3 

a) 

d) 

e) 

c) 

b) 

f) 



 

164 

 

It should be also noted that throughout the process of creating the ternary diagrams in Figure 5-12, 

the author found that the software couldn’t compute certain combinations of components. It was 

found that diagrams including FeO as a component would take extensive time to run (in excess of 

24 hours) and once complete either crash or miss critical data such as boundary lines. After further 

evaluation and discussions with the software designers it was found that compounds such as the 

ferric components have large complexities which are inherent when combining large 

concentrations of reactive groups such as K or Na in the diagrams. This leads to extensive 

computation time and greater possibilities that the software will skip “dead end calculations” thus 

propagating errors in the solutions. There is a newer version of the software (version 7 as mentioned 

above), which addresses a number of these issues and contains further solution databases for 

biomass which would aid in the calculations. However, at the time of this study the software update 

was not available to the author and so conclusions have been drawn on the available data. 

5.5 FACTSAGE Conclusions 

Using the FACTSAGE Equilibrium thermodynamic software has been possible to generate 

predictive data for the outcomes of fuels based on their characteristics within a range of 

temperatures useful for FBC. However, a key finding using the approach of comparing a more 

basic model and a complex version of the same model has revealed software limitations: 

Basic thermodynamic modelling generates data, but which questionable accuracy and reliability. 

Without further analysis of the data and understanding of the equilibrium calculations it is possible 

to mistake results and trends which may not exist in a real system. 

Errors in the calculation of the model as a result of data gaps caused by inconsistencies between 

data sources. The inconsistencies were caused both by multiple sources of data having dissimilar 

values and gaps in the data leading to errors generated during iterations. It was necessary to include 

multiple databases in order to increase the available data for multiple reactions but it also negatively 

resulted in a number of fundamental errors increasing the error rate and complexity of the model. 

Figure 5-13 Ternary diagram fuels key 
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Whilst data produced for the coals gave good repeatability and a good level of reliability based on 

the data produced, the same cannot be said when using biomass data (in version 6.4). The Biomass 

update in version 7 may remedy the issues described in previous sections but at the time when the 

work was carried out this was a large limitation. 

However, overall the software generated data and trends which were found to agree with both work 

conducted in literature and with the experimental results described in later Chapters of this 

document. Therefore, the software could potentially be applied to FBC systems in predicting 

possible issues and outcomes in terms of agglomeration and fouling. However, modelling software 

should be used to accompany experimental work and should not be relied upon for a final definitive 

answer because of issues shown in this work. 

In terms of both the biomass and coal results, the model has proved useful in expanding the 

reasoning to as what alkali groups are reacting and forming agglomerates. The results have shown 

that in the temperature ranges typical to FBC, Na, K, Fe and Al complexes are likely to form as 

silicates and metal organic groups. The structures that will form with these fuels have been found 

to be sticky in nature based on experience and the information in literatures and elaborate on the 

potential for agglomeration formation with these fuels in the FBC test of this document. 

Theoretical simulations were carried out using the thermodynamic properties (Gibbs energy) 

associated with the fuels in the FACTSAGE software. In doing so it was possible to produce a 

series of data which offers explanation to the formation of agglomerates (eutectics) in tests 

performed described in later Chapters. The predictive data produced suggests that high 

concentration of potassium for biomass and high iron and sodium content in the Pakistani coals are 

the cause for slag and stable solid formations in the bed at temperature ranges associated with 

typical fluidised bed combustion. 

The data produced by the FACTSAGE software complements the experimental results described 

in Chapters 6 and 7. For this reason, modelling studies, should be used as parallel studies to better 

inform experimental work and to suggest possible outcomes to the work carried out. Specifically, 

for fluidised bed combustion, the data highlights problematic fuels and the associated agglomerates. 

This could be used to address the onset of agglomerates before they interfere or defluidised a bed. 

However, it was also found that there were a number of issues/limitations with the software. These 

are being addressed with the ongoing development of the software and need no more explanations. 

However, on the whole, the trends within the simulation results were in agreement with both 

literature and the experimental results described in later Chapters. In the future, this software will 

offer more insights into potential slag based agglomerate formations and will be a useful tool to 

accompany other methods of predicting potential issues in fluidised bed systems. 
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6 Low Grade Coal Combustion in FBC 

The sub-bituminous coals analysed in Chapter 4 indicate a number of challenges likely to result 

from the combustion of the fuel particles in FBC. The following Chapter aims to combust the coals 

in a pilot scale rig and evaluate the emissions, pressure, temperatures, combustion performance, 

ease of application and effect on any agglomeration and slagging mechanisms. In doing so the 

applicability of the fuels in this technology will be concluded upon.  

Further to developing an understanding of how the coals will react in a FBC, a number of 

operational variables including; bed sorbent addition, sorbent particle size, combustion 

temperature, sorbent to fuel ratios and co-firing with biomass will be tested to evaluate the impact 

on the effects seen in the previous baseline test scenarios. The results of this will give insight to the 

potential of the fuels via these means with the scope to the sub bituminous coals application in 

medium to full scale power generation facilities. 

6.1 Baseline Data 

The first stage of this investigation was to establish baseline results and to understand how the coals 

will react under steady state operation in a FBC. Each coal had different elemental makeup and as 

such it was assumed each coal would react slightly differently in the bed during combustion. Each 

baseline test aimed to establish steady state combustion whilst maintaining a thermal output of 220-

230kW. The fuel flow rates and under-bed inlet air were altered in order to maintain bed 

temperatures, O2 in the flue gas and a bubbling bed. 

The baseline tests established the emissions levels in the flue gas, temperature profile throughout 

the furnace and pressures within the system such as across bed Dp. These parameters were needed 

in order to compare the effect of operational variables on the systems performance both in terms of 

fluidisation /combustion and the emissions in later tests. Comparisons against the baseline test were 

particularly critical when taking into consideration air requirements for fluidisation. Specifically, 

the air required to fluidise the bed was along the lines of 12000L/min, however, whereas previous 

calculations suggested airflows ≤10000 L/min. The baseline tests also gave both indicators to the 

onset of any agglomerate formation and the resulting defluidisation.  

Figure 6-1 shows the results collected using the LabView software and program “Fluid.bed.v14.vi” 

described in section 3.2.1.3. This includes the emissions, temperature and pressure data recorded 

during an active test. Graph 1 is the temperature data recorded from thermocouples spaced at 

strategic locations around combustion areas and flue gas path. The period up to point A denotes the 

pre-heat sequence in which the bed is heated. In the order; Plenum, Bed A, Bed B and so on, the 
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thermocouples follow the hot gas path through the furnace and exit duct sections ending at the flue 

stack  

The pre heat sequence lasted over a period of approx. 2 hours which was the time required to bring 

the bed to a point at which it would fluidise (≥650°C) and achieve a bed temperature sufficient for 

fuel particle ignition. At this point the solid fuel is fed via screw to the furnace at which point the 

fuel falls into the bed. The resulting temperature spike is noted at the point marked A. There is a 

transition of gas burners being extinguished and the solid fuel supplying the primary source of 

energy to the furnace. Following this there is a steady state period in which fluidisation and 

complete combustion are taking place. The plenum temperature is seen to decrease rapidly after 

point A. This is a result of the under-bed burner shut down and continued inlet of cool air in this 

region. There are small fluctuations in the temperature across the bed but any larger effects to the 

bed is mitigated by the thermal mass of the bed itself. 

The temperature fluctuations at Point B are typical indications for the onset of 

agglomerates/agglomeration in the bed as a result of poor fuel mixing with an increase in larger 

agglomerated particles present. The sudden decrease in temperatures from 850°C and 600°C 

indicate an alteration in the air distribution in the bed and the channelling of regions near the 

thermocouple locations. At this point onwards, the mixing is reduced in the bed because of blocked 

flows by larger structures or the bypassing (channelling) of air through lower pressure/less resistant 

passages. Nevertheless, this type of result was typical for the data collected for all baseline tests 

and thus this type of profile was what operators looked for in normal operation in other tests. The 

test continues until the point marked C at which time the bed is clearly agglomerating and has 

reached a critical point of defluidisation. Bed temperatures grow more erratic and become difficult 

to maintain. At this point the test is ended. The changes in the bed and the temperature readings 

throughout the example of Figure 6-1 are typical to the processes that will be seen in later tests and 

as such will act as a gauge to the onset of agglomeration in those beds. 
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Figure 6-1 Typical data recordings for a baseline test. The example here is data from the 

steady state baseline test for Coal A and subsequent defluidisation. a) temperature, b) pressure 

and c) flue gas emission. 

1 
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Graph 2 of Figure 6-1 shows the pressure readings recorded throughout the baseline test. Point A 

and B are marked in the same place in each of the graphs to show the key point within the baseline 

test needed for comparing later tests and performances for the coals.  

Through the pre-heat sequence it can be seen that the under-bed pressure is positive. This is a result 

of the air flow at the inlet being blocked by the sand bed and thus causing resistance. The back 

pressure increases in the plenum with increased air flow and monitoring is to ensure the 

performance of the under-bed gas burner which uses stoichiometry to adjust gas flows.  

The bed pressure reading is taken from within the bed. As air passage through the bed increases 

with the onset of fluidisation, the pressure reading increases as a result of higher airflows within 

the bed. This shows the change in pressure in the bed throughout the tests and thus, denotes the 

slow of air throughout the packed bed. The third reading and most critical is the mid-freeboard 

pressure. The freeboard has an induced negative pressure of ≤10mmH2O at all times to maintain 

an extraction for heat and flue gases from the furnace. The negative pressure in the freeboard is 

varied slightly in later tests with the ongoing optimisation taking place through testing. The changes 

are made alongside knowledge development and in response to other operational variable changes. 

At point A there is a change across the bed. The freeboard becomes more negative and the plenum 

less positive. This is a result of the onset of fluidisation. The resistance in air flow caused by the 

bed reduces, mixing begins and subsequently the onset fluidisation occurs. Initial airflows were 

greater than those seen in later tests which was a result of learning rig limitations. Later test reduces 

the rate of this change but is still seen as a breakthrough event resulting from bed density decreasing 

and increased mixing suddenly overcoming the forces associated with a static bed. 

At point A the input of solid fuel and shut-down of the under-bed burner results in a pressure 

change. The under-bed pressure decreases as the burner was providing velocity to gases in the 

plenum. An increase in airflow occurs at this point but is masked by the decrease in pressure from 

the extinguished burner. The other pressures react accordingly i.e. mid freeboard becomes less 

negative with less resistant air movement through the bed. The readings between point A and B 

give early indications of the onset of agglomerates forming and as to the health of the bed. 

An important measurement is the progressively increasing plenum pressure. As the bed gains 

weight with the increasing ash content from burnt fuel (batch process), and with the formation of 

agglomerates leading to changes in bed turbulence, the reduced efficiency of air passing through 

the bed result in an increased pressure reading. At point B, the air is poorly distributed and/or 

channelling through/around the bed. Consequently, at point B the bed slumps has shown as a 

sudden pressure drop. The freeboard fluctuates slightly with the alterations in resistance and air 

flow varying the level of suction in the freeboard and hence the negative pressure. 
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The pressures in Figure 6-1 were, representative to subsequent tests in which operational variables 

were changed. The changes in pressure will be used to monitor the onset of fluidisation, bed 

defluidisation and as a method for agglomerate formation monitoring and comparing to later tests 

Graph 3 of Figure 6-1 shows the emissions data recorded in pseudo-real time to the baseline tests. 

The data shows that at the point of solid fuel input into the bed there is an increase in the SO2, CO2 

etc. as a result of the combustion of coal. The emissions measured between point A and B give an 

indication as to the concentrations of the flue gases expected in later tests. Most importantly 

however, is the emissions change with the onset of agglomerates within the bed. There is a variation 

in the stable readings of the emissions with time approaching point B. This is a result of combustion 

efficiency decreasing, reduce gas-solid mixing in and above the bed, localised defluidisation and 

the localised depletion of O2 influencing the flame and thus emission release. Furthermore, these 

changes become more extreme until bed defluidisation decreases total combustion in the bed to a 

point at which the test was ended. This data will be important for contrasting the combustion 

efficiencies and thermal performance of later tests and the influence the operational changes have 

upon these parameters. 

It should also be noted that the baseline emissions results in Figure 6-1 are typical of the pre-heat 

and steady state operation and as such the SO2 emissions will be used evaluate the effect of 

operational variables and Desulpheristation techniques in later experimentation it. 

Figure 6-2 Defluidisation time and SO2 emissions associated with normal operation in 

Fludised bed combustion of different low grade coals 
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Baseline tests were performed on each of the coal batches that were to be used in the investigation 

presented in this Chapter. In doing so a clear comparison could be drawn as to the effect the 

variables of the investigation has on emissions, combustion etc.  

In each baseline test the beds eventually defluidised as a result of agglomerate build up. 

Defluidisation and the method chosen to determine when this had occurred for this investigation 

was described in the methodology Chapter 3. Figure 6-2 shows the two key parameters that will be 

valuated against the fuel improving techniques i.e. Defluidisation time (time between the solid fuel 

initial feed into the bed and characteristic bed temperature fluctuations) as a result of agglomerate 

formation and the SO2 emissions. As the results show, the defluidisation time is different for each 

of the coals and fuel mixes. Factors influencing these results include; ash content, carbon content, 

mineral matter content, moisture content, pyrite content and inorganics present. Coal I which has 

the shortest defluidisation time, was shown in Chapter 4 to have a combination of these negative 

attributes. It is therefore reasonable to expect that different combination of the previously 

mentioned fuel variables will alter the interactions and combustion mechanisms within a FBC. Coal 

I contained the lowest calorific value, second highest ash content and second highest moisture 

content and large concentrations of alkali species such as potassium and sodium which the literature 

indicated would all influence (increase) the formation of agglomerates.  

Figure 6-3 Agglomerated bed as a result of coal A combustion in the pilot scale unit 

Bubble cap 

Top of bed agglomerate 



 

172 

 

Figure 6-2 also shows the experimental and theoretically calculated SO2 emissions associated with 

the combustion of each coal. The fuels which were shown to have higher organic sulphur 

concentrations had higher SO2 emissions. The measured SO2 throughout this investigation are all 

corrected to 6% O2 in order to draw clear comparisons hence the value is slightly lower than that 

of the raw measurements. Furthermore, in each test the presence of pyrite in the fuel means a high 

concentration of sulphur in the fuel as well as a level of sulphur retention in the mineral matter.  

As previously stated, every test resulted in the defluidisation of the bed from the formation of 

agglomerates. The beds agglomerated to a point in which the bed particles were no longer mixing 

and large areas (≥40% of the bed) were found to be fixed in alkali dominated low melting eutectics 

and structures. Figure 6-3 shows the bed after combustion with coal A. In this a large volume of 

agglomerated structure can be seen. The agglomerates were strong enough to suspend themselves 

against the surfaces of the refractory lining. There is also a notable amount of larger mineral 

particles as a result of the mineral matter in the fuel. This content increased over the test period 

altering the hydrodynamics of the bed and contributing to the decreased bed mixing and combustion 

performance throughout the test. 

Figure 6-4 shows a selection of agglomerates taken from different locations around the bed 

following the baseline test with coal A. As can be seen the agglomerated structures are an 

accumulation of sand particles which have become coated in a eutectic complex. The sand particles 

are bonded with both mineral matter and accumulations of other foreign materials. In some cases, 

these were ferric compounds that accumulated in the mineral content found in the fuel. The 

agglomerates ranged in size; some contained large volumes of sand particles adhered to one another 

in 2-3mm (left image) the majority were 20-30mm (centre image) larger clumps measured between 

40-250mm. The weight and density of the agglomerates fluctuated drastically as a result of the 

different bed and material content within the structures and the amount of melt phase which had 

coated the particles in those structures. The agglomerates and the mechanisms of formation are 

explained in the following sections 

Figure 6-4 Agglomerates taken from the defluidised bed post testing of steady state combustion 

with Coal A 
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6.1.1 Agglomeration in Baseline Tests 

Agglomerates were taken from each of the defluidised beds after the tests allowing time for the bed 

and rig to cool (24 hours). In this time a low volume of air was constantly passed through the rig 

to aid cooling but sufficiently small enough to ensure the structures remained intact. During testing 

it is assumed that some of the larger structures may have been reduced in size by the mixing and 

movement of bed material but after the end of the test all structures were preserved as much as 

possible. The following descriptions are the summarised results of the agglomerates taken from 

baseline testing which were analysed using SEM-EDX, XRF and XRD methods. The objective 

being to identify the inorganic species causing the onset of agglomeration during the combustion 

process and relate the mechanisms and chemical species to the analysis conducted in Chapter 4. 

The work here will also be applied in later modelling Chapters to relate specific alkali species seen 

in both the experimental and modelling tests to draw conclusions to agglomeration monitoring 

techniques. 

6.1.2 SEM-EDX 

Initial analysis of agglomerates was done using a scanning electron microscope (SEM), (Carl Zeiss 

EVO MA15). Secondary electron detection was a crucial detection method for the analysis giving 

better resolution of the samples surface morphology and topography. The secondary electron 

technique was used instead of backscatter because of its topological applications and the definition 

it achieved when looking at agglomerate samples. 

Figure 6-5 shows an image from SEM analysis of a typical agglomerate found the baseline tests. 

Sand particles have been coated on all surfaces with a complex which has been in a gaseous or 

Figure 6-5 SEM image of typical agglomerate surface. Sand particles are coated and embedded in 

a material which has blinded the structure of particles together 
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liquid phase. The image is an example of bed particles being coated in a eutectic matrix which has 

led to the adhesion of other colliding particles in the bed. The repeated action then leading to the 

growth of the agglomerated structure. 

Figure 6-7 shows how the particles are both coated in a melt phase and impregnated with the 

substance. SEM-EDX of the particle coating reveals high elemental concentrations of Si, Ca, Al 

and Fe as shown in Figure 6-6. These were identified in the fuel characterisation of the coals. 

As described in the fuel characterisation section, the coals contained high sulphur concentrations. 

This was found to be in both organically bound form in the coal seams but also in the form of Pyrite 

Figure 6-7 Magnification of sand agglomerated particle. The particle is coated and impregnated in an 

Iron/silica rich complex 

Measurement point 1 

Measurement point 2 

Figure 6-6 Elemental analysis by SEM-EDX of coated/impregnated sand particle found in 

agglomerates 
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(FeS2). Pyrite is associated with the formation of agglomerates in FBC catalysing alkali dominated 

reactions and lowering melting temperatures of sticky, problematic species (Siegell, 1984b; Cebeci 

and Sönmez, 2002). Additional to this the presence of Aluminosilicate rich minerals in the large 

quantity of rubble/ash contained within the fuel as hercynicite (Fe+2Al2O3) is known to react with 

Ca complexes extracting compounds that have been seen to reduce agglomerate growth and thus 

leave complexes containing alkalis link to more adhesive matrices (Brown et al., 1994).  

Figure 6-9 SEM-EDX elemental analysis of Fe-Si-Al crystals 

Figure 6-8 Fe-Si-Al complex crystal structure within agglomeration medium and crystal arrangment 

Measurement point 1 

Measurement point 2 

Measurement point 3 
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The SEM-EDX gave indication that the Pyrite was a major contributor to the agglomeration 

mechanism. The presence of Fe rich and sulphate complexes in the analysis indicate the influence 

the pyrite compounds are having on the formation mechanism during combustion.  

Further analysis of the melt phase on/within the bed particles is shown in Figure 6-9 and Figure 

6-8. As Figure 6-9shows, there is extensive crystal formation throughout the complex . SEM-EDX 

of crystals and the materials between crystals indicates that the complexes are Fe-Si-Al complexes. 

In between these crystals the same species are also found, however, the Fe concentration is 

significantly less and Si is more prevalent. This indicates the crystals are forming on the surface of 

particles as the coating spreads around each particle bonding to the main structure. A similar 

formation has been noted in the work of Oliverira et al. (2011) when combusting low grade coals. 

This study was focused on the chemistry of Fe rich groups in coals, including pyrite and found 

agglomerates forming under similar oxidation processes.  

To understand the agglomeration mechanism when combusting sub-bituminous coals further 

analysis of baseline samples was undertaken. Figure 6-10 shows the surface of an agglomerate and 

the initial formation of bridges occurring as bed particles coated in the liquid/solid phase interact 

with one another. 

There is a network of branches reaching from the surface an alkali coated particle, which during 

combustion will have been molten and sticky. The branching was caused by the collision of other 

particles and the sticky surfaces. The branches are made up of the melt phase and would have stuck 

temporarily to the colliding particles, forming bridges, but due to the vigorous turbulence of the 

bed has separated the temporarily adhering particles. This branching effect was seen within the 

Figure 6-10 Example of bridging occurring on agglomerate surface and a stage in the 

propagation of agglomerate formation 

Measurement 

point 3 

Measurement 

point 1 

Measurement 

point 2 
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agglomerate samples taken in all baseline test and is a key stage in the chain growth of the 

agglomerates through bridging, during combustion and fluidisation of the bed material/fuel. 

SEM-EDX analysis of the branches and the surrounding sticky surfaces was completed and is 

shown in Figure 6-11. As the results indicate, the branches are predominately Fe-Si based. Ferro 

groups are shown here to be a significant stage for the adhesion of coated bed material to one 

another. The results shown suggest that these ferro groups are occurring as the agglomerates 

causing localised hotspots. This is due to the initial stages of such complexes requiring lower 

melting temperature eutectics made up of K and Na for instance to create the initial structures. 

These are then theorised to have been lost in the gas phase with increased localised heating, thus 

resulting in the Fe-Si dominated structures left in the bed and presented in the results. This theory 

is in agreement with investigations such as Bartels et al. (2008a) which noted high alkali species in 

the fuel that should have been found in agglomerates but found higher melting eutectics instead. 

In order to further understand and identify the complexes within the agglomerates and hence further 

understand the formation mechanisms of the agglomerates, it was necessary to use further analysis 

techniques. 

6.1.3 X-ray Fluorescence (XRF) 

Samples of the bed was taken and analysed using XRF. By using the modified methodology 

developed as described in the Chapter 4, it was possible to measure with a high level of reliability 

the major and minor oxide content in the sample. 

Figure 6-11 SEM-EDX elemental analysis of bridging section and emphasis of Iron rich nature 



 

178 

 

The results of the XRF analysis are shown in Figure 6-12 and show that Fe, Al and Si are the major 

components within the bed sample. The presence of S is assumed to be due to the presence of pyrite 

within the samples and the retention of S within minerals containing species such as Ca bound to 

the agglomerate. As the coal has combusted in the bed, the agitated bed particles colliding with the 

fuel particles have become coated in the melt phases and localised gas phases. As a result, a 

concentration of Fe2O3, SO3 and Al2O3 has built up within the bed. SiO2 is present in the fuel and 

will have certainly contributed to forming silicate based matrices, however, the bed material itself 

is made up primarily of SiO2 compounds and as such cannot be differentiated in this analysis. 

However, the higher concentration of Fe oxides clearly indicates that the bed is impregnated with 

alkaline species found in high concentrations within the fuel and as such has led to agglomerating 

bed particles via Fe-Si-Al complexes. The high concentration is particularly significant as it is 

assumed the majority of the SiO2 detected in the sample originates from the sand particles and not 

from complexes forming from the melted ash. 

The XRF analysis gives a good indication for what to expect from the analysis of bed materials 

from operational variable testing in terms of agglomeration mechanisms and sources of 

agglomerate material. The results discussed show that the bed is being populated by alkaline 

species released form the fuel in combustion and agglomeration of the bed material occurs as a 

direct result. The data here will be compared as a baseline case to the tests that are described in the 

following sections. 

Figure 6-12 XRF analysis results of bed samples taken from the bed after the combustion of 

Pakistani coal G in a BFBC 
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6.1.4 Agglomeration Mechanism Summary 

The agglomeration mechanism for sub-bituminous coal during combustion in a FBC is dominated 

by the presence of pyrite in the feedstock. It is for this reason that even with the presence of other 

alkali species such as Ca and Mg, the results and analysis indicate that the formation process being 

due to Fe-Si-Al complexes and the presence of sulphates. 

The proposed stages and mechanism for agglomeration in the baseline tests are as the following 

suggests and depicted in Figure 6-13: 

Stage 1, involves a number of routes for ash and alkali species coating the bed particles. With the 

highly turbulent mixing, the bed particles will be exposed and collide with alkali deposits causing 

the attachment of sticky species to build on the surface of the bed particles. This mechanism is 

more common with reactions including species such as Fe which have been shown to interact with 

agglomerates at temperature of ≥850 °C but has a melting temperature of 1377 °C (Fryda et al., 

2008). The second method proposed is the condensing of alkali species on the surface of the bed 

particles. The species enter the gas phase in heated zones of the bed and, via moving bed particles. 

The cooler bed particles are agitated to the surface and condense the gases on the surfaces. This 

method is especially applicable to lower temperature melting species such as K and Na which melt 

between 700 and 800 °C (Pietsch, 2008b). The third method is for a chemical reaction of alkali 

gases to occur on the surface of the particles. 

Specifically, to the formation of sticky alkali covered bed particles with concentrations in a 

temperature range of 800-950 °C, the first and second methods are likely to dominate the formation 

Figure 6-13 Agglomeration mechanism for low grade sub bituminous Pakistani coals in pilot 

scale bubbling fluidised beds 

Bed particles 

Small particle 

& gaseous 

alkali groups 

 

Partial 

melting & 

adhesion 

 

Partial melting & 

agglomeration 

 

   

Stage 1 Stage 2 Stage 3 

SiO2 

SiO2 

SiO2 

SiO2 

SiO2 

SiO2 SiO2 

SiO2 

SiO2 



 

180 

 

of these agglomerates in the first stage. Si is known to form eutectics at 874 °C which is in the 

range of the operating temperatures of the tests in this work (Basu, 2006). This is likely then to 

have combined with the abundant FeO on the surface of the bed particles. There is the possibility 

that the lower melting temperature species and sulphates could catalyse the reactions of Fe and Si 

however it is impossible to quantify such an intricate series of reactions within this investigation. 

The results of bed sample analysis via XRF in Figure 6-12 shows that the release of agglomerate 

species into the bed is occurring and as such a liquid/gas alkaline phase is present in increasing 

concertation in the bed as time/combustion progresses. The chemical content of the coals and the 

resulting agglomerates lend correlations with the route suggested previously. 

As time continues (stage 2), the thickness of the deposits building up on the surface of the bed 

particles increases. Within the sticky layer, the liquid phase causes the homogenisation of the 

species present. In this case, Fe2O3-Al2O3-SiO2 was found to be the main matrix present. Whilst 

this is the dominant species present, it is likely that other alkali species will interact and deposit 

with the surfaces of the matrixes however, the Fe, Si and Al are the highest in concentration in the 

fuel and hence highest concentration in ash and in the deposits. Localised heating is likely to cause 

localised sintering between particles and on the surfaces as thickness grows (Öhman et al., 2000). 

With the continued build-up of a sticky surface forming matrices with the Silicate surface of bed 

particles, coated bed particles move and mix over one another and in colliding create extensions 

(seen in Figure 6-10) and sticky branches which either adhere and retain more material/particles to 

the first particle, or simply move on until another successful collision occurs. Eventually the build-

up of particles within the matrix and eutectic creates the onset of an agglomerate. 

Stage 3 is the formation and growth of the agglomerate and subsequent structures within the bed. 

As small agglomerates create move throughout the bed, localised heat exposure create partial 

melting of the eutectic complexes. This is likely where the Fe2O3-SiO2 formation occurs and is 

embedded with lighter alkali species being lost to the gas phase. The partial meting creates liquid 

phases within small agglomerates and thus giving a liquid like surface in the SEM images above 

as well as a uniform material between bed particles. 

The agglomerate will propagate in size dependant on the interactions with other particles through 

mechanisms described in stage 1. Additionally, the agglomerate will interact with fuel particles 

directly. Firstly, the sticky surface could adhere to a fuel particle and become exposed to high 

concentrations of alkali gases and sintering mechanisms. Furthermore, if the agglomerate is 

sufficient in size, localised poor mixing and localised combustion as a consequence could further 

increase the growth of agglomerates. 
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The final stages of the agglomerates within these tests involved bridge formation occurring between 

agglomerates which then created a growth in the overall structure. Eventually the growth and 

structures get to either a large enough volume or physical size to defluidise proportions of the bed 

in which mixing and combustion is hindered. This is defluidisation and agrees with the descriptions 

and experiences elaborated upon in section 6.1.1. 

6.1.5 Summary 

A theory to the agglomeration mechanism of the low-grade coals used in this investigation has been 

described in section 6.1.4, and the key constituents have been defined as Fe, Si and Al. This doesn’t 

include the reactions occurring at lower melting points as these reactions are overwhelmed or 

secondary to the main complex formations dominated by Fe, Si etc. However, a key limitation of 

the coals (poor quality and high mineral content aside), is the high sulphur content and thus high 

associated SO2 emissions potential.  

As discussed in the literature review, additives containing MgO or CaO can be added to the bed in 

order to capture and desulphurise the flue gases of SO2 emission. Further to this the addition of a 

CaO-rich sorbent to the bed has been found to react with alkali species and thus hinder the 

formation of agglomerates. Specifically, species such a Na, K and Fe (Chou and Lin, 2012). 

Therefore, it is reasonable to theorise that with the addition of limestone for the desulphurisation 

of the coals in the bed, benefits including reduced agglomeration potentials, extension of stable 

fluidisation time and operation of the rig could be experienced. The following sections investigate 

the effects of altering operational variables in terms of both agglomerations and desulphurisation. 

This will then allow for the evaluation of fuel applicability in FBC units at pilot and by extension, 

industrial scale. This will also allow for criticisms around the potential of the coals and any 

operational choices that could be employed to better combust the fuels in full scale systems. 

6.2 Operational Variables & Low Grade Fuels in FBC 

6.2.1 Sorbent Addition 

During the sorbent addition experiments, coals: limestone were fed into the rig at ratios of 0.5, 1.0, 

2.0, 3.0 and 4.0 in order to evaluate the effect on desulphurisation/sulphur retention in the bed and 

to look at the impact of ratio change on defluidisation and rates of agglomerate formations. 

Figure 6-14 shows the data from the combustion coal: limestone blends. By altering the ratio, the 

literature indicated that there would be an optimum ratio between 2 and 3 where maximum sulphur 

would be retained in the bed by the CaO present in the limestone. 
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As the data shows, stable combustion of the coal with varying coal: limestone ratios were achieved. 

The fuel flow rate was kept at a constant 10 kg/hr which was equivalent to 56 kWthermal. It was 

found in previous tests that the higher flowrates used in other tests led to agglomeration and 

defluidisation before the test could be completed. Hence, the flow rates were recalculated to 

optimise the system. This was measured against achieving bed temperatures ≥750°C whilst 

achieving the lowest fuel input. By decreasing the fuel flow, a cooler bed (750-850 °C instead of 

800-950 °C) and lighter bed i.e. less total ash and limestone in the bed, helped extend the test 

beyond 30 minutes. This did not impact the findings in terms of agglomerates as they still formed 

but at slower rate and the Ca content was calculated on a molecular weight basis to the Sulphur in 

the fuel flow. 

The temperature data in Figure 6-14 shows the pre-heat sequence followed by stable bed 

temperatures and thus demonstrates the good performance of the bed and combustion within/above 

the bed before the introduction of coal. Furthermore, the combustion and bed temperatures aren’t 

altered by the addition of limestone throughout the test period and variation in coal: limestone feed 

ratio. 

The bed pressures during the test show a different perspective of the bed and its performance. 

Freeboard pressure remains negative throughout with only small changes occurring as a result of 

air flow modification when clearing view ports. However, the pressure across the bed gradually 

increases over the length of the test. 

The pressure increases with the increase in bed weight, increased volume and increase in varying 

particle sizes entering the bed as a result of constant ash and increasing limestone feed. 

Additionally, the presence of agglomerates forming within the bed leads to a pressure increase with 

alterations in the flow of air through the bed leading to less efficient air distribution throughout the 

bed. The Dp across the bed begins to level out near the end of the test and a maximum pressure 

difference is almost achieved with the onset of defluidisation of the bed, quickly followed by a 

decrease with the failure of the bed and spouting occurring. The is assumed, based on the theory 

described in (Chapter 2) that the multiple changes being made to the bed (bed weight, increased 

volume and increase in varying particle sizes entering the bed) altered the hydrodynamics and flow 

of the bed and in doing so obstructed mixing. Hence, the increase of bed Dp throughout the period 

in which the fuel and limestone was fed into the bed. 

Coal H was a high Sulphur coal and as such the measured SO2 emissions were in excess of 9000 

ppm which while high when compared to a UK coal is comparable to the theoretical SO2 emissions 

calculated previously. In Figure 6-14 the period A is the period in which the fuel stream contains 

only coal H. 
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Figure 6-14 Data example from combustion of Pakistani coals with limestone sorbent [limestone 

and coal H] 

A B C D E F 
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The SO2 emissions measured in the flue gas change with the changing Ca: S ratio as expected. 

When coal only is being combusted the SO2 emission in the flue is measured at ≥9000 ppm. This 

is the baseline value which will be used to compare the ratio effect on SO2 emission in the flue. 

The changes in SO2 emission can be directly related to the Ca and sulphur retention in the bed as 

no other variable was altered throughout the test. 

The O2 concentration was indicated to be between 16 and 17 vol% throughout the tests. This was 

due to two factors. Firstly, higher air flow rates were used (≥130 kg/hr) which was a trade-off 

between optimising flue gas composition and ensuring high enough turbulence was sustained 

within the bed to perform full length test under a bubbling regime. Secondly, there was a leakage 

issue within the upper region of the FBC rig. The air ingress was located in a position that did not 

impede or alter combustion within the bed as the extraction fan ensured negative pressure 

throughout the freeboard. Hence, combustion operated at near ideal levels. However, the leak 

effected the downstream measurements made in the flue gas analysis and as such the SO2 emissions 

were normalised to a standard O2 concentration of 9 vol. %, (normalised values for O2 was 

calculated to be 9% vol. as this is a representative value for FBC combustion emission). By 

normalising the data the dilution factor in the SO2 measurements has been minimised. The effect 

of SO2 retention will be further discussed in the discussion section later in the Chapter.  

As previously indicated, the combustion of coals with the addition of limestone in the pilot scale 

tests presented problems due to the high agglomeration propensity experienced. Samples were 

taken from the bed using the same method as for the baseline tests for further analysis. 

6.2.1.1 SEM-EDX 

Figure 6-15 and Figure 6-16 are point of interest from the SEM-EDX analysis of samples taken 

from the bed after coal: limestone blends had been combusted to investigate the desulphurising 

method on agglomeration and SO2 retention. 

Figure 6-15, image 1 shows the agglomeration of bed particles and the matrix binding the structures 

together in both bridging and fusing mechanisms. In all points of measurement, the surfaces were 

found to be made up of Si-Fe-Al complexes which is in agreement with the ash analysis conducted 

Table 6-1 Feed rates for different Ca:S ratios on a molecular weight basis 

Ca: S Period Coal feed (kg/hr) 
Limestone feed 

(kg/hr) 

Coal only A 10 0.00 

0.5 B 10 0.52 

1.0 C 10 0.62 

2.0 D 10 1.23 

3.0 E 10 1.85 

4.0 F 10 2.47 
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in Chapter 4 and baseline results. Image 1 shows several stages in the agglomeration growth 

process. The small clustered like particles between the bed particles are ash particles and matrices 

of alkali species sticking the bed particles together. The bridge point between entrapped bed 

particles is dominated by Si-Fe complexes with less lower melting temperature alkali species than 

the surface of the agglomerates. This illustrates further the theory that residence time and localised 

heating caused by the onset of agglomeration is driving away lower melting temperature species 

such as K in a gas phase. 

Image 2 further reinforces the previous point that the surface of the bed particles is coated in a Si-

Fe-Al dominated complex with small concentrations of other alkali species. However, the strong 

bond between the sand particles is dominated by Si-Fe complexes.  

Image 3 shows further evidence of the mechanisms above. However, there is also indication of 

limestone embedded within the agglomerate. The limestone particle is bound in the agglomerate 

but is found to have a low sulphur content. This indicates that limestone particles are being coated 

by the alkali melt phase present in the bed and adhering them to the forming agglomerates. In doing 

so limiting the sulphur retention of the limestone. This mechanism could be due to a lack of mixing 

caused by binding with the agglomerate. This coating and incorporation into the agglomerates is 

Figure 6-15 SEM images and the locations of SEM-EDX from wood combustion. Images are as 

followed; 1) agglomerated bed particles, 2) fusion point between bed particles, and, 3) surface of 

agglomeration 

1 2 
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assumed to be limiting the effective surface area of the limestone to the passing gases and thus 

reducing retention into such limestone particles. Finally, the limestone had low concentrations of 

Fe and Al on its surface. It is likely that the matrix coating the sand particles is also to some extent 

coating the limestone. This would inhibit the active surface and thus reduce desulphurisation and 

sulphur retention potential. 

The results here show that the mechanism for agglomerate formation to be in agreement with that 

found in baseline tests. This is then followed by a Si-Fe matrix with low concentrations of low 

melting temperature alkali species which is likely a result of localised heating from poor mixing 

caused by the agglomerate presence and increasing size. Furthermore, the results show that the 

agglomeration potential of the coal is inhibiting the sulphur retention and thus desulphurisation 

potential of the limestone by coating the pores, reducing mixing and reducing active surface area 

of the limestone. With more extensive agglomeration and extended operation time the 

desulphurisation potential of limestone will decrease with these coals. 

6.2.1.2 XRF  

Bed samples were taken after the test and analysed as described in the baseline bed samples 

analysis. 

Figure 6-16 SEM-EDX results for the selected samples shown in Figure 6-15 

1 2 
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Samples of the bed were taken after two different tests in which coal A was combusted with the 

addition of limestone sorbent. The Ca:S ratio was varied throughout test but the total limestone in 

the bed increased throughout the period. It was assumed therefore that the Ca inventory of the bed 

would be high and this would be seen in the CaO concertation measured using XRF. As the results 

in Figure 6-17 show, the bed content was dominated, as with the baseline tests, with Fe, Al and Si 

oxides.  

XRF results only measured trace amounts of CaO in the agglomerates even though there was a 

significant Sulphur concentration present. The data suggests that the limestone was reacting with 

the sulphur during combustion and hence the presence of Si to be expected. The low CaO 

measurement from XRF is likely an indication to the high reactivity of the calcium and reinforcing 

the highly efficient retention of S oxides in limestone. The samples used for XRF analysis are 

therefore assumed to contain only a small percentage of limestone. 

The XRF results highlights the effect of agglomeration on desulphurisation and the addition of 

limestone sorbents to FBC. As seen in results, the sticky surfaces of the complexes have a high 

infinity to adhere to the porous surfaces of the limestone particles. This has been seen to impact the 

limestone in two ways, 1) the limestone contributes to the agglomeration growth mechanism by 

creating a porous medium for eutectics to bond to, and, 2) the limestones desulphurisation potential 

become less as the blocked pores of the limestone react with less sulphur oxides. 

Figure 6-17 XRF analysis results of bed samples taken from the bed after the combustion of 

Pakistani coal A with limestone at variable Ca:S ratios in a BFBC 
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6.2.2 Sorbent Particle Size 

During the sorbent particle tests the aim of the experiments was to alter the average size of the 

limestone being blended with the coal feed. The coal fuel flow rate was kept constant (32kg/hr) 

and the ratio of limestone to coal was also kept fixed (1:3). As discussed in the literature review, 

authors such as (Khan and Gibbs, 1995; Basu, 2013b; Kunii et al., 2013; Dam-Johansen and 

Østergaard, 1991; Leckner, 1998) have previously investigated the effect of sorbent particle size 

on desulphurisation in FBC during the combustion of coal. It was seen that the available surface 

area and hence sulphur retention reactions were impacted by particle size. Muenzer and Bonn 

(1980) found that the optimum particle size ranges for sulphur retention were 10-20 μm and 200-

400 μm. These different ranges are due to the impact the particle ranges have on packing in the bed 

and associated movement of particles and gases. Additionally, the particle sizes were suggested to 

have an impact on the fluidity of the bed as the average particle size altered with the increase in 

sorbent particle size. The following section describes the results of varying the limestone particle 

size and discusses the implication of agglomerate formation and impact of a Ca rich additives with 

varying particle sizes. 

Figure 6-18 shows the data recorded when coal I was combusted with limestone with a varying 

particle size. This includes the temperatures, pressures and emissions resulting from the combustion 

of the coal and limestone blends. The three ranges of particle size used were 0-2 mm, 2.8-4 mm 

and 4-5.6 mm with a ratio of coal to limestone of 3.0 to replicate realistic desulphurisation 

parameters (Hlincik and Buryan, 2013; Tarelho et al., 2005). 

Graph 1 shows the temperatures in which period A, B and C are marked. These represent the 

different particle size ranges; 0-2 mm, 2.8-4 mm and 4-5.6 mm respectively. As the temperature 

data shows the temperature decreased with the introduction of the different sized limestone: coal 

mix. The fuel flow was kept at a constant flow of 35 kg/hr. Whilst the pressures varied very little 

throughout the test, the changes in the temperatures suggest an impact on combustion. The different 

limestone particle sizes could have impacted the way in which the bed, fuel and sorbent were 

mixing. Therefore, a particle range such as 2.8-4 mm, which is within normal FBC specification, 

was evidently going to mix better and thus combust more efficiently in the bed. 

The emissions data (graph 3) marked A, B and C show the effect of limestone particle size on the 

emissions of SO2 with a constant fuel supply. Range A with range 0-2 mm reduced the emission of 

SO2 from 4500 to 3000 ppm. Range B shows the sulphur retention decreased as the flue gas 

measurement increased from 3000 to ≥4500 ppm. Range C resulted in the sulphur retention altering 

again with SO2 in the flue gas decreasing to approx. 4000 ppm. With the variation of limestone 
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particle size there was clearly and impact on the sulphur retention in the bed with 0-2 mm particles 

reducing the SO2 concentration in the flue gas ≥ 3000 ppm.  

Whilst the smallest limestone particle range (A) resulted in the greatest reduction of SO2 

concentration in the flue gas it also impeded on combustion the most. As the implication of particle 

size in the bed Geldart graph states (Figure 2-5), small particle ranges are known to interfere with 

fluidisation, mixing and thus the performance of combusting fuel particles. The work by Geldart 

and Rhodes (1986) is further justified by the middle particle range producing the optimum 

combustion environment and mixing regime as evident by the highest bed temperatures for the 

same fuel feed rate  

Throughout these tests the formation of agglomerates led to the defluidisation of the bed and thus 

defluidisation. The formation of agglomerates was not attributed to the variance in the particle size 

but instead the inherent quantity of Fe and Al groups in the fuel stock. Whilst limestone was found 

in all of the agglomerates, no preference was found for a particular particle size or range. Instead a 

mixture of all particles was coated and entrained in the eutectic complexes as found within the Ca: 

S tests. 

. 
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Figure 6-18 Graphs from the combustion of coal I with limestone whilst varying sorbent average 

particle size; 1) temperatures, 2) pressures and, 3) emissions 

A B C 

A B C 
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6.2.2.1 SEM-EDX 

SEM-EDX analysis found little difference in the agglomerates compared to the baseline data and 

thus the baseline agglomeration mechanisms is applicable in these results. 

The images in Figure 6-19 and SEM-EDX results in Figure 6-20 are point of interest from the 

analysis of materials taken from the bed after the previously described tests. 

Image 1 shows the surface of limestone taken from within the bed after the test. The EDX data 

shows that there are high levels of sulphur present. The SEM image shows that the pores of the 

limestone are also sealed, however, there are still large cracks and troughs within the limestone that 

visually don’t seem to have undergone desulphation reactions. The limestone particle was taken 

from an agglomerate and it seems as though the desulphurisation has once again been inhibited to 

some extent by the coating of a liquid phases. 

Figure 6-19 SEM images and the locations of SEM-EDX from wood combustion. Images are as 

followed; 1) Surface of limestone, 2) surface of agglomerate, and, 3) Agglomerated area with ash 

surface 
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Figure 6-20 SEM-EDX results for the selected samples shown in Figure 6-19 
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Image 2 shows agglomerated bed material similar to that seen in the baseline and Ca: S ratio tests. 

The bed particles embedded within the agglomerate have lower concentrations of agglomerate 

species on the surface of the particles. It would seem as though the surface of the structures are 

coated in very little eutectic matrix. Perhaps with the change in particle size, the change in mixing 

or limitation of particles mixing in the bed, there has been a resulting limitation of particles exposed 

to the eutectic matrix.  

Image 3 shows an ash particle and bed particle which was contained within the core of an 

agglomerate. This was indicated to have a mixture of species including Al, Si, K, Ca and Fe. The 

presence of a complete ash particle indicates combustion of the fuel but also a limitation in the 

localised temperatures. The ash didn’t melt which suggests poor mixing and entrainment into the 

bed or cooler zones forming on the bed. 

The results from the SEM-EDX data show that the agglomeration mechanism and alkali species 

responsible for the propagation of the agglomerates are as seen in previous sections. However, the 

influence of changing the limestone particle size doesn’t seem to be limited to the effect on 

desulphurisation. The different particle sizes will alter the mixing within the bed and thus alter the 

way in which bed particles both interact with one another and become exposed to the sticky alkali 

species and bed ash. 

Therefore, the changing in particle size is likely to lead to both positive and negative effects with 

respect to the formation of agglomerates. However, because of the inherent poor quality of the coal, 

the build-up of alkali species in the bed continued and agglomerates inevitably formed and led to 

the defluidisation of the bed. 

6.2.2.2 XRF 

The XRF results for bed samples taken from the combustion of coal I with varying average 

limestone particle size are shown in Figure 6-21. The results of this bed sample analysis show very 

clear similarities with previous tests and baseline results. Whilst the particle sizes varied in size, 

the mechanism for the onset of agglomeration did not.  

It should be noted that the Fe2O3 concentration in the bed sample from this test was approximately 

5% less than seen in the Ca:S ratio tests. It is assumed that the mixing of the bed slowly decreased 

with an increase in total bed mass with a fixed inlet air flow as well as the particle sizes impacting 

the particle entrainment into the bed.  

The dispersion of the alkali species in the agglomerates and the bed seems to have been stifled by 

the poor mixing brought on with different average particle sizes. Hence the concentration of alkali 
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species has fluctuated slightly compared to the baseline agglomerates that the results have been 

compared to.  

The different particle size range of the sorbents retained different concentrations of sulphur as the 

literature review suggested. However, the impact on mixing was unexpected and will be discussed 

further in later sections. 

6.2.3 Combustion Temperature 

The objective of these tests was to investigate the effects of the flame temperature on the retention 

and hence desulphurisation potential during combustion of coal I. During these tests the coal was 

blended with limestone at a ratio of 1:3 (molar ratio of Ca:S). Literature and industry practice, as 

well as results from previous sections show that a Ca:S ratio of 3-2.5 is the most effective ratio for 

desulphurisation (Kunii et al., 2013; Tarelho et al., 2005; Tarelho et al., 2006). Therefore, in order 

to increase the temperature of the bed the fuel/limestone feed rate was increased/decreased 

accordingly. The base fuel flow rate to achieve ≥700-750 °C was determined to be at 34-35 kg/hr. 

The fuel flow was increased in steps (+1 kg/hr) to 38-40 kg/hr to achieve a maximum temperature 

of ≥950°C.This was mediated as necessary to combat system changes to maintain stable 

combustion and a bubbling fluidised bed. 

Figure 6-21 XRF analysis results of bed samples taken from the bed after the combustion of 

Pakistani coal I with limestone with varying average sorbent particle size in a FBC 
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Figure 6-22 Data from combustion of coal I over varying system combustion temperatures; 1) 

temperatures, 2) pressures, and, 3) emissions 
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Figure 6-22 shows the data collected when the bed temperatures was altered in stable operation. 

Once again pressure data from these measurements shows little change other than what had been 

seen in previous test with the loading of material in the bed over time. Graph 1 and 3, temperature 

and emissions respectively have range A, B and C highlighted. The ranges indicate the period in 

which the modified fuel flows took place. Small changes to the fuel flow (0.5 kg/hr steps) were 

found to have drastic effects in the performance of the bed. It was found that these changes took 

significantly longer to occur in the results and the bed, ≥20mins. This was due to screw feeder 

loading and mixing regime into the bed. Small changes to the fuel flow were found to make extreme 

changes in both the temperatures and SO2 emission. These tests were repeated using smaller fuel 

flow increments 0.1kg/hr to better control the experiments. 

As the data shows from range A to B, an increase in the bed temperature exceeded the desirable 

increase of 50 °C and instead increased by ≥100 °C. This is followed by a dip in the temperatures 

as the bed re-stabilises. The periods A, B and C are the resulting increments of a more controlled 

test in which the target temperature ranges were achieved and held.   

The retention of SO2 was impacted by the temperature of the bed and furnace area. With increasing 

temperature, the literature discussed previously noted a decrease in the limestones reaction 

efficiency as a consequence of the calcination reactions of the limestone being impeded. The data 

shows there was a limiting temperature for efficient sulphur retention of ≥750-≤820°C. 

Furthermore, different combustion temperatures were shown in Chapter 2.10.1 to impact the 

propagation and rate of formation of agglomerates. The peak temperature for SO2 retention is also 

normal combustion temperatures for FBC systems and for large concentrations release of alkali 

species in the gas phase.  

It was evident that elevated temperatures in the bed beyond normal operational limits (>900°C) 

resulted in more amorphous glass materials in agglomerate samples, more extensive agglomerates 

and agglomerates with a much harder structure. Figure 6-23 shows an image of the bed and the 

extent of the agglomeration that occurred as a repercussion of excessive heating.  

There was a large amount of material containing the mineral matter and limestone which can be 

seen to be protruding from the agglomerated structures throughout Figure 6-23. Image A shows the 

typical agglomerate which was found in the bed and repeats tests. Image B has blackened areas 

made up of hardened glass like areas (circle) throughout the top surface of the agglomerates which 

were located near the surface of the bed. As the mechanism for agglomeration in Figure 6-13 

suggested, there is an impact of sintering in homogenising the eutectic matrix on the surface of the 
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agglomerating particles as well as a separate sintering impact on the formation of higher 

temperature dependant complexes. Whilst the sintered material and agglomerates consistently 

contained Fe-Si-Al the samples indicate that localised hotspots on the surface of the bed have 

resulted in silicate glass formation which has been further accelerated by poor mixing brought on 

by the decreased mixing resulting from higher temperature agglomerate formation. 

6.2.3.1 SEM-EDX 

The images in Figure 6-25 and SEM-EDX images in Figure 6-24 are point of interest from the 

analysis of materials taken from the bed after the previously described tests. 

Image 1 shows the typical type of agglomerate found within the bed. SEM-EDX indicates high Si-

Fe-Al matrixes as with the previous tests. Where in previous tests the high concentrations of Fe 

were found more in the fusion points within the agglomerate, those Fe rich complexes were found 

to coat more of the bed particles here. The higher temperatures which the agglomerates were 

exposed to will have liberated high volumes of liquid and gaseous inorganic species. The result of 

this is that more bed particles surfaces were coated in more of the Fe-Si rich complexes seen to be 

very strong in previous tests. 

A B

Figure 6-23 Agglomerated bed of temperature variable tests combusting coal I and 

Limestone (ratio 3.0). Bottom of the bed found to be standard agglomerate as in other 

tests, top of bed found to contain sintered material 
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Further to the sintering process, image 2 shows the point at which a limestone particle has fussed 

with a bed particle. This has not been seen in previous tests. Rather than the limestone adhering 

with a particle surface there would be a eutectic surface adhering them together. In image 2 the 

sand particle is clearly fussed to the limestone particle. The EDX data suggests the presence of Fe, 

Si and K. Limestone or materials rich in CaO and MgO are known to react with alkali species and 

reduce agglomeration potential. It would seem here as though the limestone particle has reacted 

with these species, but in doing so, due to elevated temperatures, has created a eutectic surface 

which is sticky enough and attractive enough to bond with bed particles. This has propagated the 

growth of agglomerates which have then encapsulated this particle.  

The results here show that the agglomeration mechanism is the same as previously described. 

However, the change in bed temperatures and combustion temperatures seems to have influenced 

the bonding of limestone particles to bed particles without independent eutectic formation. The 

CaO rich limestone should have positively reduced the agglomeration potential but is shown here 

to likely have contributed to the formation of agglomerates within the bed. 

Figure 6-24 SEM-EDX results for the selected samples shown in Figure 6-25 

Figure 6-25 SEM images and the locations of SEM-EDX from wood combustion. Images are as 

follows; 1) agglomerated bed particles, and, 2) fusion point between limestone and bed particle 

1 2 
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6.2.3.2 XRF 

Samples from the bed were taken from the bed in a similar fashion to previous tests and analysed 

using XRF. The results of the agglomerates show similarities to the baseline study however the bed 

samples as seen in Figure 6-26 show a slight difference in the alkaline species present.  

The major species in the bed are Si, Fe, Al and S as was the case in the previous bed samples. The 

XRF results indicate that the Fe concentration in the agglomerates increase with increased average 

bed temperature when compared to baseline results from previous testing. This is due to higher 

temperature calcination of limestone reducing the reactions on the active surface with Fe as seen 

in previous tests. As the variable changing in this test was the temperature, it is assumed that the 

higher temperatures (≥900°C) led to the Fe components being in a more fluid melt phase or 

alternatively more so in the gas phase. The higher temperatures would likely allow for a less viscous 

Fe complex which has coated the bed particles and thus the concentration in the agglomerates is 

slightly elevated. The higher XRF result can also be attributed to the normalisation algorithms in 

the device. With higher temperatures, the lower melting temperature species will have been lost in 

the flue gas. Therefore, the total remaining material in the eutectic will be dominated by the higher 

melting temperature species such as Fe-Si. 

Figure 6-26 XRF analysis results of bed samples taken from the bed after the combustion of 

Pakistani coal I with limestone at variable temperatures in a BFBC 
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6.2.4 Co-firing with Biomass 

The objective of these tests was to evaluate the desulphurisation potential of biomass and coal 

blends whilst looking at bed performance with respect to stable combustion and the effect on 

agglomeration. During these tests wood pellets were mixed with different coals with similar 

calorific value in batches creating fuel blends containing 100%, 80%, 70%, 60%, 50%, 40% and 

0% coal content (on wt.% basis). In doing so, it was possible to analyse the change in SO2 emission 

as a result of biomass in the fuel and to evaluate the combustion behaviour within the rig. 

Figure 6-27 shows the measurements recorded during the test of Co-firing wood pellets with coal 

J. Graph 1 shows the temperatures within and above the bed remained fairly constant with the 

changes in fuel batches. The objective fuel flow was 39 kg/hr to achieve a thermal output of 200-

205 kW. Period A-F represent the different batches within the bed from 100% coal to 0%. The 

average bed temperature throughout the test moved from 750 to 810 °C. This is a result of the 

degradation of the bed and onset of agglomeration along with the volatile flame becoming the 

dominant form of combustion whereas the char combustion was the primary source of combustion 

with higher coal ratios. 

Graph 2 shows that pressures throughout the period in which solid fuel was the primary method for 

combustion and very little changed. However, over the 280 minute solid fuel combustion time, the 

midfreeboard pressure slowly increased whilst the bed pressures slowly decreased. This is a result, 

again, of agglomeration build up in the bed and total volume of ash/mineral matter loading the bed. 

Most significantly, the emission data shown in graph 3, shows the changing SO2 emissions with 

the change in the fuel blends. The other measured emissions remain fairly constant throughout the 

test, once again indicating ideal stable combustion. 

Figure 6-28 shows the measured SO2 emissions as a result of biomass: coal ratio change. 

Additionally, the theoretical SO2 emission based on the fuel input is also plotted to compare the 

theoretical against the experimental. It was found that as the percentage of coal in the fuel decreases 

as the percentage of biomass increases, the SO2 emission decreases. At 100% coal content, the SO2 

emission for coal B and D was 5800 and 5600ppm. With an increase in biomass in the fuel ratio of 

50:50, the SO2 emissions dropped to 5500 ppm and 4500 ppm for coal B and D respectively. For 

coal B this is a 5% reduction in the SO2 emission and for coal D a 19% reduction in SO2 emission 

for a 50% reduction in the primary sulphur source. 

The results show a decrease in the SO2 emission as a result of the fuel blend change. However, the 

data indicates that instead of the sulphur being retained within the bed as a result of the presence 

of biomass, instead the reduction in total sulphur seems to influence the SO2 emission. The presence 
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Figure 6-27 Data for the co-firing of Pakistani coals and white wood pellets; 1) temperatures, 2) 

pressures, and, 3) emissions 

A B C D E F

A B C D E F
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of biomass in the fuel seems to have improved the stability of combustion, giving more ideal flame 

shape through the furnace and thus better temperature spread.  

Instead an increase in the biomass content in the fuel feed reduces the input of total sulphur in the 

system and therefore less oxidised to SO2 in the flue gases. 

The effect of blending the coal with a clean biomass like wood resulted in benefits such as an 

extended period of fluidisation and operation before agglomeration led to defluidisation of the bed. 

The bed did eventually defluidise but whereas, combusting the coals on their own in the case of 

coal I running for 74 minutes, coal G 102 minutes and coal A 109 minutes, by co-firing biomass 

the tests extended to 155, 175 and 198 minutes for coal B, D and J respectively. 

The bed was found to be in a different state to the previous tests. Figure 6-29 shows the surface of 

the agglomerated bed after the co-firing of wood pellets and Pakistani coal D. The circled area 

draws attention to the protruding structures which were found throughout the bed. These are similar 

to those seen in the combustion temperature tests in which higher temperatures resulted in sintered 

areas and more extensive agglomerated structures. However, in other tests the agglomerates were 

dominated by the mineral matter and other impurities of the coal. In the agglomerates here less 

mineral matter etc. can be identified and instead more sand particles make up the structure of the 

agglomerates. The different densities, weights, shape etc. seem to have separated the biomass 

Figure 6-28 Experimental and theoretical SO2 emissions with varying biomass: coal 

feed ratio 
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pellets to the surface of the bed as mixing and defluidisation set in whereas, the coal particles still 

combusted in lower regions of the bed or alternatively combusted on the surface but with little if 

any material left behind for analysis. There will have been an impact in the distribution of heat and 

combustion and this can be seen by the spike at the end of the test in the graph 1 of Figure 6-27. 

The volatile matter is burning above the bed creating the raised temperatures measured and the coal 

is burning in the bed thus maintaining the bed temperature. 

6.2.4.1  SEM-EDX 

The images in Figure 6-30 and SEM-EDX images in Figure 6-31 are point of interest from the 

analysis of samples taken from the bed after the previously described tests.  

Figure 6-29 agglomerated structures and ashed pellets from the Co-firing of wood pellets 

and coal 

Figure 6-30 SEM SEM images and the locations of SEM-EDX from wood combustion. Images 

are as followed; 1) Surface of agglomerates taken from the co-firing test bed, and, 2) embedded 

particles in agglomerated mineral matter 
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Image 1 shows an agglomerate from the bed during the co-firing of wood pellets and coal D. In 

this image, sand particles are embedded in a matrix of Fe-Si rich material. The agglomerated 

surface was found to contain traces of the alkali species identified in the XRF ash analysis. Across 

the surface of the agglomerate, as with previous samples, the agglomerates were dominated by Fe-

Si-Al complexes. 

Image 2 shows the other types of surfaces found within the agglomerates. These were areas which 

were found close to ashed pellets which had pores/openings. However, the EDX measurements still 

indicate that these areas are mainly Si-Fe complexes. However, around the area in which the 

particle is embedded, the traces of alkali species is slightly higher than in the rest of the 

agglomerates. This suggests that perhaps pellets combusting near the surface of the agglomerates 

are interacting with agglomerates. Additionally, localised heat could explain the holes/pores in the 

surface. With heating, some species will move to the gas phase, increasing small areas of pressure 

and leaving the liquid phase of the agglomerate surface, hence leaving the pitted surface as show 

in image 2. 

The results here show similar results to previous agglomerations and SEM data. The wood 

contained an ash content ≤1.5% therefore the total ash present interacting with the bed compared 

to the high ash content of the coal is negligible. The coal ash and mineral matter dominated the 

formation of the agglomerate and the defluidisation of the bed. The wood pellet seems to have 

simply reduced the total amount of these components entering the bed and in doing so extending 

the operation of the rig. 

6.2.4.2 XRF 

Bed sample analysis completed using XRF is shown in Figure 6-32. Again, the main oxide 

constituents within the bed are Fe, Si, Al and S. However, because of the biomass and its alkali 

Figure 6-31 SEM-EDX results for the selected samples shown in Figure 6-30 
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content within the fuel, there are trace amounts of alkaline species not seen in the previous XRF 

bed analysis, this includes; Na, K, Mg, K, Ti and Mn oxides between 0.5 and 2%.  

Increased concentrations of other species including Fe, Si and Al were seen in the agglomerate 

samples analysed and described previous. However, a small volume of components associated with 

the stickiness of agglomeration and ash have remained within the bed as shown by Figure 6-32. 

The low concertation of alkaline species in the bed is due to a large majority of the coated bed 

particles become engulfed in the agglomeration mechanism and in large bodies of material. The 

trace amounts of species such as Na and K in the bed sample are likely the result of fuel particles 

burning out on the surface of the bed at the end of the tests when the bed is defluidised and air flow 

reduced. Thus, there is a small amount remaining on some of the sand particles which were likely 

located to final combustion of biomass particles. 

6.3 Discussion 

The following section discusses the results in more details and disseminates the findings with terms 

to the performance of the fuels in FBC respective to agglomeration and flue gas emissions. 

Figure 6-32 XRF analysis results of bed samples taken from the bed after the co-firing of 

Pakistani coal B with wood pellets in a BFBC 
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6.3.1 Baseline Tests 

The baseline tests were conducted in order to understand the effect of different sub bituminous 

coals in a FBC system. This included analysis of operational data, samples from beds and in-depth 

measurements of agglomerates and similar materials caused as a consequence of combusting such 

fuels. The baseline tests were also performed in order to generate a level of understanding with data 

that could then be compared against others tests in which different operational variables could be 

applied and assessed. The following sections are the discussions surrounding different aspects that 

could be used to assess the impact and thus applicability of the coals in a full-scale system. 

6.3.1.1 Performance of Coals 

The combustion of sub-bituminous coals presented a number of issues with respect to stable flame 

formation. The fuels were very difficult to combust in a steady fashion with a constant thermal 

output. This is due to the variability in the fuel composition i.e. high mineral matter, ash content 

and calorific content within the fuel particles. This resulted in a fluctuation in the combustible 

material entering the bed per unit time. The fluctuation was then seen as a flame favouring one side 

of the bed which can be correlated to hot and cold spots forming in the bed with inconsistent 

combustion. These factors contributed to the formation of agglomerates which were seen in all coal 

tests. The variability in volatile content constantly altered the flame position from an in-bed flame 

to above bed flame. Both have very different properties in terms of heating the bed, igniting other 

fuel particles and the loss of heat to the flue gases. This generated further variability in the bed 

temperatures as well as difficulty in changing and optimising operational variables. Small changes 

in the fuel flow were often found to make little difference to the bed temperatures, followed by a 

spike in heat as slug of high calorific content particles entered the bed respectively. This increased 

the range of the combustion temperatures and increased the formation rate of agglomerates. 

6.3.1.2 High Sulphur  

The coals contained high volume of pyrite (FeS) which presented a high volume of inorganically 

bound sulphur to the fuel. The sulphur content of the coals is significantly higher than that of coals 

burnt in power generation sites throughout Europe and thus requires desulphurisation to be 

commercially viable. 

The baseline tests and subsequent tests all showed a release of high SO2 emissions of ≥4500 ppm 

(corrected to 6%O2) without the modification of operational parameters or the addition of sorbents 

in the bed. This gave a bench mark values for subsequent tests. Subsequent operational variables 

will compare the SO2 to evaluate the fuel application potential of the coals via these means in 

different scale utilities. 
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6.3.1.3 Agglomeration 

The baseline tests produced large quantities of agglomerated structures consisting of mineral matter 

from the coal, coal ash, bed particles and alkali concentrations in low temperature melting eutectics. 

The liquid phases forming the eutectic complexes were dominated by Fe-Si-Al matrices. It was 

found that the high concentration of Fe species, from the pyrite in the coal, led to agglomerates 

forming liquid phases with the combustion temperature range for fluidised bed combustion (750-

950°C). Whilst Fe has a melting temperature above the constituents in the agglomerates, the 

presence of high concentrations of S in the fuel is likely to have catalysed the formation of Fe-Si-

Al dominated compounds. 

The analysis previously shown is a baseline case for the agglomerates and associated mechanism 

for the combustion of the coals in this investigation. As all the coals contained similar levels of 

alkali species, especially high concentrations of sticky species such as K and Na as well as the 

presence of Fe and Al it was expected that these would dominate the agglomerates forming in 

subsequent tests.  

The agglomerates were found to propagate in size and lead to the eventual defluidisation of the bed 

in all baseline tests. This was induced by either large structures impeding mixing, fluidisation and 

combustion, or for the structures to be of a size that trapped incoming fuel into a localised area 

creating large cool spots and a combustion zone dominated by sintering under the fuel feeder port. 

The data recorded throughout the baseline tests and the subsequent chemical and physical analysis 

performed on bed samples allowed for comparisons in other tests to evaluate the impact of the 

variable in that test. 

6.3.1.4 Performance of Rig 

The most significant unforeseen issue with the rig was the leakage issues and the ingress of air in 

the upper freeboard regions. This resulted in the measured O2 concentration in the baseline tests 

being between 16 and 17 vol%. Hence the values that have been reported are corrected to 6%O2 

which is standard for this type of combustion environment and excess air level. The air was found 

to be leaking downstream before the sampling point and away from the bed and combustion zone 

thus, wasn’t seen to interfere with the combustion of the fuels. The freeboard region was kept under 

negative pressure at all times (between 10-15 mmH2O) and thus the air didn’t move in the direction 

of the main flame.  

Overall the rig showed a good capability to combust the fuels and was fully commissioned before 

the baseline tests. The data collected with the baseline tests was evidence to the performance of the 

rig and gave confidence and experience to conduct the rest of the investigation successfully. The 
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values were used to compare against other subsequent tests and gauge the impact of operational 

variables.  

6.3.2 Ca:S Ratio Tests 

The use of sorbents as additives in FBC is a common practice for addressing agglomeration, 

slagging, fouling and as a method for emission control. As the literature review, has shown in 

Chapter 2, limestones and dolomites have been evaluated for their SO2 capturing capabilities in 

numerous combustion technologies. 

Limestone was added at different ratios to validate the findings seen in the literature and 

demonstrate that SO2 could be controlled and reduced in the flue gas through its application. 

Sulphur retention in the bed was achieved and the ratios used illustrates that the most efficient ratio 

for sulphur retention with a limestone additive is between 2-2.5:1. The results of the experimental 

work shown in section 6.2.1 are in agreement with the results demonstrated in the literature (Barišić 

et al., 2008; Hlincik and Buryan, 2013; Khan and Gibbs, 2000; Tarelho et al., 2005; Tarelho et al., 

2006). The results show that the quality of the fuels combustion can be improved with the addition 

of limestone. The following sections will elaborate on varying additive parameters to optimise and 

improve FBC applications for sub bituminous coals. 

The SO2 concentration against Ca:S ratio is shown in Figure 6-33. There was a decrease in SO2 

concentration in the flue gas as a result of the calcium in the limestone reacting with SO2 and 

retaining it as calcium sulphates in the bed. The data suggests that a ratio between 3 and 4 retained 

the most SO2 and thus had the largest impact on desulphurising the system. However, the calcium 

utilisation efficiency (Caη%) has also been plotted in Figure 6-33 using Equation 6-1. 

Whereas the lowest SO2 emission was measured between a Ca: S ratio of 3 and 4, the calcium 

utilisation efficiency is shown to be highest at a Ca: S of 0.5. The Caη% is highest at 0.5 because it 

is the lowest volume of limestone and thus Ca in the fuel mix but is achieving a higher proportion 

reduction in SO2 concentration in the flue compared to the higher limestone flows.  

Whilst the desulphurisation potential of the limestone is clearly demonstrated in the results and 

literture alike, it was found there were implications as to the opeartion of the bed as a result of the 

increased mineral matter content in the tests. Figure 6-14 shows the pressure measurements made 

during testing with varying Ca:S ration and that as time progressed the bed Dp increased with the 

increased weight of the bed and the formation of agglomerates. 

𝐶𝑎𝜂% = 100 × (
𝐶𝑜𝑎𝑙 𝑜𝑛𝑙𝑦 𝑆𝑂2 − 𝛥𝑆𝑂2

𝛥𝑆𝑂2 × 𝐶𝑎: 𝑆 𝑟𝑎𝑡𝑖𝑜
) Equation 6-1 (Nimmo et al., 2004) 
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Figure 6-34 shows how as the test progressed and the Ca: S was changed the total limestone in the 

bed increased and thus the Ca inventory within the bed increased. The loading of the bed increases 

with the increase in limestone feed rates required for the respective ratios. 

As the test is progressing and limestone is loading the bed, the available Ca surface area is being 

used up in the desulphurisation mechanism. However, the efficiency of this reaction in ideal 

scenarios is 97% and thus there is an increasing value of unreacted Ca which can act to retain SO2 

Figure 6-33 SO2 concentration in the flue as a result of combusting varying ratios 

of coal H and limestone against the calcium utilisation efficiency 

Figure 6-34 Calcium utilisation efficiency and calcium loading in the bed over 

varying coal and limestone ratios 
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during the test as the Ca:S is being altered However with this in mind the calcium utilisation 

efficiency decreases with increasing calcium availability, both in terms of total bed loading and 

limestone feed rate.  

Three factors were limiting the effective desulphurisation reactions in these tests; 1) the increasing 

total volume of bed is reducing the turbulence of mixing and thus impeding the gas-solid reactions 

on the limestone surfaces, 2) the increasing volume of inert mineral matter from the fuel is altering 

the flows within the bed. Increasing mineral matter volume from the fuel altered the average bed 

particle size thus altering mixing, and 3) the onset and propagation of agglomerates is binding with 

limestone limiting its desulphurising potential whilst also coating limestone particles with eutectic 

complexes. The complexes block the Ca reactive pores and thus limit the SO2 retention. Therefore, 

whilst the increased ratio of Ca:S in the literature and results shows a peak of efficiency, there is a 

limitation in this efficiency capped by overdosing and unreacted material. The most efficient 

desulphurisation ratio is still 2-2.5 in the results presented here however the overdosing and residual 

Ca is covered less as a potential factor in the literature and the results of this investigation indicate 

it has a potential that needs to be considered when applying a limestone to desulphurise this type 

of coal. 

During tests in which the Ca:S ratio was varied it was found that the bed would agglomerate and 

defluidise. Figure 6-35 shows an example of the agglomerates which were found in all tests for 

which the Ca:S was altered. As the images show, the agglomerate is made up of bed particles, fuel 

particles, ash and limestone. Due to the poor quality of the coal and its high alkali species 

concentration and mineral matter, it was found that the agglomerates consisted of large quantities 

of larger inert particles, stuck together with eutectic complexes on the surfaces of the large particles. 

Figure 6-35 Images of agglomerates from the combustion of Pakistani coal with varying coal: 

limestone ratios. Left image showing the embedding of limestone in agglomerate, right image 

showing larger particles trapped in bed agglomerate with sintered top layer 
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Surrounding the mineral matter was large volumes of sand, coated in the eutectic, with limestone 

particles embedded between. Further to this, on the surface of the agglomerates were areas of liquid 

phase silicates which were likely the result of sintering from localised hotpots induced by the poor 

mixing caused by the formation of the agglomerate structure. The agglomerates found were made 

up of several layers with weak and strong structures throughout. This illustrates the formation of 

separate agglomerate mechanisms which have propagated in size and bound to one another. This 

has led to the propagation of the agglomerate structure and the eventual defluidisation of the bed. 

There was found to be little literature on the effect of limestone on sub bituminous coals which 

have been seen to have a high rate of aggressive agglomeration.  

The limestone is CaO dominated and as such it was expected that the active sites would react with 

alkali species such as K and Na. The results in Figure 6-20 and Figure 6-21 show that the limestone 

retained an amount of sulphur and in doing so reduced the SO2 measured in the flue. However, the 

high concentration of the Fe-Si-Al eutectic was found on the surfaces of the lime embedded within 

the agglomerates. This indicates that the limestone was impeded in sulphur retention as its active 

sites and pores became enriched with the low melting temperature eutectic. Furthermore, the high 

volume of limestone in the agglomerates would suggest that the limestone actively adhered to the 

eutectics and in doing so significantly contributed to the agglomeration mechanism. The extent of 

this mechanism is not understood but as shown in the literature review limestone can be used to 

react with eutectics and reduce agglomeration. In this case however, it would seem the high alkali 

content of the coal has overwhelmed the positive effects of the limestones in the bed. 

The results of the agglomerate analysis show clear similarities with the baseline results and the 

samples taken from these series of tests. This is a clear indication that whilst the CaO from the 

limestone may react with the melt phase and gas phases during the agglomerate formation 

mechanism, the volume is high enough to overpower the benefits. Furthermore, the eutectics 

complexes were seen to impede the limestone by blocking active sites. In conclusions to this, 

limestone was successful in reducing the SO2 emissions but the efficiency measured wasn’t as high 

as initially projected based on indications from the literature. As a standalone technique for 

desulphuring the fuel it has validity but is limited by its potential efficiency due to the alkali content 

of the coals. 

6.3.3 Temperature Tests 

Varying the temperature of the fluidised bed was found to alter the effective sulphur retention 

within the bed. By increasing the bed temperature beyond 830 °C there was a direct effect on SO2 

retained in the bed. Figure 6-36 shows the temperature and the resulting effect on sulphur 

emissions. As the temperature is increased beyond normal FBC temperatures (750-850°C), the 
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concentration of SO2 measured in the flue gas increases. This agrees with findings in the literature 

(Kunii et al., 2013; Tarelho et al., 2005; Tarelho et al., 2006). Furthermore, the literature suggests 

that above 870°C, sintering mechanisms can occur, especially as a result of localised hotspots 

exceeding these temperature ranges. This is a result of the localised reduction in mixing and 

localised hotspots contributing to the presence of liquid phases with increasing overall bed 

temperatures. 

The results correlate with the literature, such as Wu [21] who reported an optimum temperature 

range of being between 800°C and 900°C. However, the consequence of these temperatures on the 

formation of agglomerates is not considered in the same experiments. The results of this 

investigation emphasise the need to keep combustion temperatures low as to achieve high sulphur 

retention in the bed but minimising known agglomeration temperature ranges. The results in Figure 

6-36 showed that a SO2 emission level of 1500 ppm was achieved at 750°C compared to ≥4000 

ppm at 900 °C . This is due to the calcination and CaSO4 reactions occurring with the limestone 

and SO2 at these temperatures. When combusting the sub-bituminous coals with their variability as 

described in the baseline section, there was seen to be a limitation to the combustion stability. As 

such, trying to maintain a specific/small range of combustion temperatures which achieves an 

optimum retention in S is less feasible than with a higher-grade coal. 

Further to the SO2 retention difference, whilst trying to alter the bed temperature through fuel flow 

alterations, temperature variations and unexpected changes in combustion occurred. The test 

showed that whilst trying to alter this variable the variability and inconsistency in the fuel and the 

Figure 6-36 Temperature variance effect of desulphurisation during fluidised bed combustion of 

Pakistani coal I 



 

213 

 

sheer volume of mineral matter increased with the addition of limestone impeded stable operations. 

If this fuel was to be used in an industrial operation which required ramping up and down the fuel 

could present variation in the combustor and lead to other issues such as accelerated agglomeration, 

sintering, fouling etc. 

The agglomerates found within the bed were comparable to the other tests within this investigation. 

However, higher temperature ranges resulted in the increased rate of agglomerate formation with 

signs of sintering on the surface of the bed. Ash fusion tests performed in the fuel characterisation 

of the coals found that initial deformation/melting of the coal ash didn’t occur until 1100°C. The 

ash in these tests soften ≥1350 °C. Therefore, three possibilities for the sintered material exist; 1) 

the agglomerates are occurring because of low temperature melting eutectics as previously 

discussed and this, with the elevated temperatures, is leading to further eutectics or, 2) With the 

increased agglomerate formation, the bed has defluidised locally. As can be seen in Figure 6-23, 

the agglomerates/sintered material occur on one side of the bed. This is where the fuel fee falls into 

the bed. With localised defluidisation the fuel would amass and in doing so create a localised 

hotspot in which elevated temperatures could exceed 1350 °C (section 4.4.3) and hence the 

formation of a SI-Al-Fe rich glassy material forms (sinters), 3) Whilst the ash fusion temperatures 

indicated that the ash of the fuels in this investigation would melt ≥1350°C there were under 

oxidising conditions. Oxidising conditions were used to simulate the environments in a FBC i.e. 

Large volume of excess air and O2. However, the fluctuations observed in temperatures, pressures, 

bubble formations and flame shape indicate that both oxidising and reducing zones could have 

occurred in the bed at the same time. Reducing conditions have lower melting temperatures than 

oxidising and thus, sintered liquid melt phases could have occurred in O2 deficient zones of the bed 

leading to the onset of large sintered zones throughout the bed. Reducing conditions are highly 

probable under the fuel entrance point with a larger volume of O2 being consumed in this zone with 

the high abundance of fuel stripping the localised atmosphere of O2 hence reducing environments 

occurring. 

The results show that there was a clear temperature range in which the limestone fed with the fuel 

retained the highest percentage of SO2 in the bed. However, the peak efficiency at >870°C is above 

the melting temperatures of K, Na etc. as described in the baseline section. Hence, whilst optimising 

this operational variable has the potential to reduce SO2 emissions, the impact on agglomerate 

formation remain constant. In order to reduce the agglomerate formation, the efficiency would be 

reduced with the lower temperature range of the bed. The temperature of 870°C poses issues on the 

formation of agglomerates and potential increase the rates of formation. However, as tests required 

an exceedance of these temperatures the rate effect cannot be quantified. The higher temperatures 
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resulted in harder agglomerates forming with melt phase but this was to be expected. This again is 

a consequence that is not included when considering the formation rates of agglomerates when 

identifying efficient SO2 removal whilst combusting low grade coals. 

6.3.4 Particle Size Tests 

Figure 6-37 illustrates the effect of varying sorbent particle size on the retention of SO2 emissions 

in a FBC. The data shows that when limestone particles of 0-2 mm are fed with the fuel the least 

amount of SO2 is emitted in the flue gas and is therefore retained in the bed. This is can be related 

to the diffusion and dispersion of the limestone particles that alters with each range of the sorbent 

alongside the active surface area of the particles available. The range 0-2mm has the largest 

potential surface area for active Ca reactions and is small/light enough to have the highest 

dispersion potential of all the ranges. Hence, the particles are more agitated moving around in 

reactive combustion zones compared to the other ranges. 

Temperature ranges of the bed were altered to evaluate the impact average bed temperature on the 

retention capacity of the sorbent. As shown there is little different with the smallest particle range. 

However, with the other two ranges the increase in temperature of 50 °C results in 992 ppm and 

1444 ppm increase in SO2 emission for particle ranges 2.8-4 and 4.5-6 respectively. Further to this, 

the results indicated that the middle range retained the least concentration of SO2 and the largest 

particles fell between the two ranges in terms of retention potential. This is in agreement with the 

work demonstrated by Muenzer and Bonn (1980). The literature surveyed in Chapter 2 doesn’t take 

into account the impact that particle sizes and optimised specifications have on the hydrodynamics 

Figure 6-37 SO2 emissions measured at flue gas sampling point with varying temperature and 

particle size 
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of the bed. Whilst the desulphurisation propensity was noted to very high with smaller particle sizes 

it was also found that the state of combustion was also most beneficially affected in the same range. 

Figure 6-38 shows the average bed temperature, (Bed A through to Bed B), the subsequent SO2 

emission from the bed and the different limestone particle size ranges. Input of limestone decreases 

the bed temperature in each case. This is due to the limestone requiring heating to bring it to the 

same temperature as the bed and endothermic calcination reactions occurring, thus there is a delay 

in the desulphurisation effect. However, the temperature decrease for each range is different with 

range B, 2.8-4mm having least heat loss for the same volume of material. This is due to the range 

being most similarly sized to the particles in the bed and thus impacting mixing into the bed the 

least. Range A as described in Geldart (1973), will act more as a powder type and be extremely 

difficult to fluidise and particles lift as a small plugs rather than bubble thus interfering with bed 

fluidity and consequently fuel mixing and combustion. Range C has a comparable heat loss effect 

to group A, which coincides with the work by Geldart (1973), who found larger group particles 

such as ≥4.5 mm to create larger bubbles bursting at the surface of the bed, creating temporary 

voids. This is filled by larger particles settling near the distributor plate and thus redirecting/altering 

bed air flow. Therefore, in terms of optimising the desulphurisation process whilst maximising 

mixing and bed hydrodynamics and thus the combustion process range B was also the best particle 

size range in these tests. 

The beds agglomerated because of a combination of the total bed weight, impurities in the fuel and 

the average bed particle size increasing over the length of the tests. The average particle size 

increased because of fuel mineral matter not necessarily the limestone presence (limestone made 

up less than 5% of the beds total). However, there was no clear indication to one fuel having a more 

significant impact on the agglomeration rate compared to the others. The limestone particles found 

Figure 6-38 Temperature variance across the bed as a result of variable combustion conditions 

with the alteration in sorbent average particle size range; A-0-2mm, B- 2.8-4mm and C-4.5-6mm. 

A B C
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in the agglomerates included a mixture of all particle ranges injected into the bed. Whilst each 

range will have impacted fluidisation and the mixing slightly differently it was the limitation of 

bed weight that defluidised these systems with the addition of agglomerates forming. 

6.3.5 Co-firing Biomass Tests 

Co-firing of biomass and sub bituminous coal is a feasible method for fuel blending in Pakistan 

because of the large abundance of indigenous forests across Pakistan. In terms of availability and 

feasibility the abundance of wood is an attractive proposition for combustion improvements in 

FBC. 

When co-firing wood pellets with the low-grade coals, it was found that the defluidisation time 

extended, as shown in Figure 6-2. The time till defluidisation can be seen to almost double for 

similar coals when wood pellets are substituted for the coal in the blend. The addition benefitted 

the bed in two ways; firstly, the addition of wood pellets meant a reduction in the coal. The 

reduction meant there was less mineral matter in the bed which had been seen in pervious tests to 

both react with eutectic formation and to impact fluidisation by alternating the average particle size 

in the bed, thus interfering with ideal fluid dynamics. The second benefit was the reduction in FeS 

(pyrite) and thus a reduction in the agglomerate mechanism seen previously. The wood pellets 

increased the K and Na concentration in the fuel which was shown in the Chapter 2 to react with 

components such as Fe. The eutectic formation of Si-K-Fe and Si-Na-Fe is linked with 

agglomeration, however, the rate of formation was seen to be less than the mechanism dominated 

by the high concentration of FeS. A combination of these two factors can be linked to the extended 

defluidisation time. 

The temperature and pressure data in Figure 6-27 is a reflection of the more ideal combustion taking 

place when using a blend of wood pellets and Pakistani coal. The results in section 7.4.1 will later 

demonstrate the combustion profile of biomasses in FBC and the results previous in this Chapter 

demonstrate the temperature profiles etc. associated with coal combustion. By co-firing coal and 

biomass, the bed was loaded with carbon which was primarily sourced in the coal, whilst the above 

bed and freeboard region experienced a more prominent volatile flame as a result of the high 

volatile concertation sourced in the biomass pellets. The result of combining the fuels resulted in a 

more even spread of temperatures, a more manageable thermal mass (bed) and greater 

flexibility/ability to absorb fuel variability. The results of the co-firing made the continued 

operation of the bed easier to operate than when combusting just coal. 

Co-firing the fuels reduced the SO2 emissions measured in the flue gases. As Figure 6-28 shows, 

there was a downward trend with the increase in biomass in the fuel blend. The correlation in SO2 
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reduction and increased biomass ratio can be related to two parameters. Firstly, biomass in general 

contains very little sulphur (wood < 0.1wt%). Therefore, by increasing the biomass volume in the 

blend and decreasing the coal volume, the total organic bound sulphur entering the furnace 

decreases. As such, a percentage difference in SO2 emissions can be calculated based on the sulphur 

entering the furnace compared to that measured. This was shown in Figure 6-28 where the SO2 

emissions measured correlated to those calculated. There was a slight variance in the theoretical 

and measured results. The difference between measured and theoretical results can be attributed to 

the retention of sulphur in the bottom ash. Wood pellets were chosen because they contained the 

highest concentration of alkali species known to react and retain sulphur (Ca and Mg). As the SEM-

EDX and XRF results indicated, there was some retention of S in the ash and agglomerates. The 

retention was much less than predicted before testing, and was found to make little improvement 

in terms of SO2 reduction. However, the reduction in SO2 emission is attributed to reduced total 

sulphur input to the furnace. 

Agglomerates formed in all of the co-firing tests. The image shown in Figure 6-29, shows how 

when agglomeration was occurring and the biomass pellets would combust on the upper surface of 

the bed whereas the presence of coal burnout was not to be seen. The biomass contained less ash 

so if a crust had formed on the bed with the onset of agglomerates then localised ashes for coal 

particles should have been seen. It is assumed that the higher density coal particles which were also 

bigger, larger in weight (approx. 10-15g for biomass pellet and >20g for coal) sank into the bed 

with the fluid movement of the bed. Some small areas of the bed were found to have coal burnout 

pile but not to the extent of the biomass pellets. The onset of localised defluidisation as a 

consequence of eutectic formation is likely to have caused this phenomenon of separation.  

The separation of particles as agglomeration occurred will have influenced the distribution of 

inorganics throughout the bed as coal inorganics were locked into the bed whereas biomass based 

inorganics reacted on the upper surface creating variations of the eutectics. It is assumed for this 

reason that glassier K dominated silicates were experienced on top of the bed without sintering 

temperature being achieved, and the agglomerates seen in previous tests were seen more prevalent 

in the lower regions of the agglomerates. This separation mechanism is interesting but the initial 

agglomeration mechanism is linked to the Fe-Si dominating eutectic seen in previous tests as there 

was too little a volume of the inorganic ash in the biomass ash to significantly impact the formation 

mechanism. 

The elemental analysis of agglomerate samples taken from the Cofiring tests showed that whilst 

the agglomerate formation mechanism was dominated by the presence of Fe-Si-Al, the presence of 

the lower temperature melting components such as K and P were interacting with the eutectic 
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complexes. Because of the lower carbon content in the bed as a consequence of the reduced coal 

volume in the blends the bed temperatures were lower than in coal only fuel flows. However, the 

same eutectic complexes can be found in co-firing and coal only tests with different bed 

temperatures. It was found that the increased alkali content of the biomass with respect to P and K 

could have impacted the agglomeration mechanism. complexes containing P, K and sulphates have 

been seen in the literature (Barišić et al., 2008; Lindström et al., 2007; Piotrowska et al., 2010) to 

lower the temperatures of melt phases for complexes interacting with Al and Fe. The role which P 

plays in these systems and reactions is disputed because of the wide range of reactions links P can 

follow in such reactions. However, the SEM-XRD results in Figure 6-31 indicates that the presence 

of P and similarly catalytic compounds in the presence of the eutectic results in an increase in the 

Al concertation and reducing in Si. This would suggest that the sample taken from an area 

dominated by melt phases has an agglomerate mechanism sharing the route shown in the previous 

sections as well as a catalytic route specifically due to the presence of biomass in the fuel blend. 

6.4 Conclusions 

Throughout this Chapter a series of Pakistani sub-bituminous coals were combusted in a pilot scale 

fluidised bed to evaluate the effect of the coals in an FBC environment. The results of these tests 

allowed for the evaluation of emissions, combustion stability and agglomeration propensity. By 

using these parameters (and others) the potential for improving the fuels in terms of combustion 

stability, agglomeration severity and SO2 emission reduction by altering operational variables, co-

firing with biomass and blending a limestone sorbent in the fuel was possible. 

6.4.1 Combustion of Sub-Bituminous Coals 

Each of the coals used in combustion experiments throughout this Chapter underwent a baseline 

test in which the coal was used to achieve stable operation. In these tests the operational variables 

were the same for each coal in order to compare the effects later operational changes had on the 

performance of the rig and to create a platform of information that would indicate any improvement 

seen in the use of the coals via system optimisation. 

The baseline test gave clear indication as to the high emission of SO2 and other flue gases as a result 

of combusting the coals in FBC and indicated that if these coals were to be used in full scale 

operation, these are parameters which would require control and mediation to allow for compliance 

of the coals with emissions legislation etc. The range of the SO2 emissions was between 3000-

≥5000ppm which was found that the high volume of pyrite in the coals led to the high concentration 

of SO2 in the flue gas. 
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It was found that the coals would combust with a level of stability at the beginning of the 

experimental tests. However, the varying calorific content, inorganics content and moisture content 

led to the combustion and subsequent temperatures fluctuating. In some cases, the fluctuations were 

seen to be ≥380°C which makes the stable and continued operation of the coals difficult and 

unpredictable. Furthermore, as the tests progressed the high volume of inert mineral material in the 

coals would lead to the average particle size in the bed increasing, the total weight of the bed 

increasing, the fluidisation decreasing and the rate of mixing to decrease. All these factors led to 

fluctuating combustion both in and above the bed which in turn was a result and cause of localised 

hotspots. These were all contributing factors to the onset of agglomerates and sintered material in 

the bed.  

In every baseline tests in which the sub-bituminous coals were combusted, the bed eventually 

defluidised as a result of the formation of agglomerates and the decrease of fluidisation because of 

the previously stated points. The agglomerates were found to be dominated by eutectics containing 

Fe-Si-Al and in a number of cases S as a result of the high pyrite mineral matter getting bound into 

the agglomerated structures. The temperatures at which eutectics contacting Fe-Si etc. are higher 

than the average combustion temperature recorded in during testing. It could be seen by areas of 

different agglomerates that the impact of localised defluidisation and localised hotspots had 

contributed to the formation of melt phases containing these species. Further to this, the presence 

of S, P and lower melting temperature alkali species seen in higher concentrations in the coal, is 

assumed to have influenced the formation of the eutectic complexes via an unquantified catalytic 

mechanism. Evidence of the catalysis occurring was seen in the varying concentration of such 

species in agglomerates which contained varying levels of silicate melts, i.e. more melt resulted in 

less catalytic species. Thus, the higher temperatures the agglomerates caused via localised hotspots 

as a repercussion of the catalytic reactions, released the lower melting temperature species in the 

gas phase leaving a Fe and Al dominated silicate material behind. 

The results of the baseline tests highlighted the difficulty in combusting the coals in FBC 

technologies because of its propensity to form agglomerates in typical operating conditions and 

demonstrating the need to modify the fuel, technology or process in order to accommodate its high 

levels of emissions and ash/mineral content. 

6.4.2 Effect of Operational Changes 

Using literature of Chapter 2 a number of operational variables were chosen to evaluate the 

application potential of coals in FBC systems with regards to their control of combustion, impact 

of SO2 emissions and rates of agglomeration. 
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1) Ca:S tests 

Limestone was added to the fuel feed at different ratios calculated on the Ca and sulphur content 

of the limestone and coal. In doing so the limestone acted as a sorbent which underwent calcination 

reaction sin the bed and thus reacted in the presence of SO2 compounds and retained the sulphur in 

calcium sulphates, hence the SO2 emissions in the flue stack were measurably less. It was found 

that a Ca:S ratio of 2-2.5 was the most effective when desulpurising sub-bituminous coals. It was 

also shown that there the Ca utilisation efficacy was higher when at a Ca:S ratio of 2 because of 

the available Ca in the bed and the increasing Ca inventory in the bed caused by the test being a 

batch process. The results were in agreement with literature and studies that were cited in the 

literature review and as such were compared to the results of similar experimentation. 

The focus of limestone addition was to evaluate the sorbent effect and reduction in SO2 emissions. 

However, previous literature hadn’t shown the effect on combustion and the formation of 

agglomerates which resulted from the introduction of the limestone to the bed. 

Whilst the Ca and Mg content of the limestone was predicted to reduce agglomeration tendencies 

during combustion, it was found the formation rate of agglomerates was similar to that of the 

baseline tests. The high inorganic and alkali content in the coals resulted in the liberation of eutectic 

complexes, which whilst absorbed by limestone, was in high enough volume to overpower any 

positive effects caused by the presence of the limestone. As such, the agglomerates were found to 

contain limestone particles which were seen to have been coated in the eutectic melt in which the 

pores of the limestone had become blocked by liquid phases. The formation of eutectics, dominated 

by Fe-Si-Al, meant a reduction in the active retention of SO2 emissions which is the justification 

behind the decrease in SO2 emissions being less than prior calculations suggested. 

The formation of the agglomerates and the presence of an increased volume of sorbent material in 

the fuel feed (limestone) resulted in less ideal combustion. The bed was much cooler than in 

baseline tests and in higher Ca:S ratio tests the volume of carbon per unit of fuel feed resulted in 

cold spots and areas of incomplete combustion. 

The use of limestone held potential for desulphurising the high sulphur coals in FBC however, the 

implications of agglomerate formation and loss of efficiency raises concerns over the need to 

overdose a system to meet emissions targets. Furthermore, the limestone was an ineffective method 

in these tests for the reduction of agglomerates resulting from the chemical constituents of the coals. 

2) Temperature tests 

Studies in the literature indicated that there was an optimum temperature in which the 

desulphurising potential of the limestone could be maximised. This was due to the calcination 
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reactions and the formation of calcium sulphates. It was found that a temperature of 830-880°C 

retained the highest concentration of S during testing with the coals which was in agreement with 

the literature. 

Two issues arouse as a direct consequence of varying the combustion temperatures; firstly, the 

fuels variability as previously described, generated temperature fluctuations which made 

maintaining strict temperature ranges difficult. Secondly, the average temperature was shown to be 

in the ranges being controlled for the test, but investigation of the bed after the tests showed 

localised areas of eutectic and melt phase formation. This was due to localised hotspots and the 

combustion of coal particles with varying intestines because of individual particles content, resulted 

in the fluctuations seen in the flame. This was not seen in any other tests and is assumed to have 

occurred because of air changes needed to maintain temperatures and fluidisation causing poor 

localised mixing and thus an agglomerate/sinter mechanism occurring. 

Tests in which the temperature range was varied were found to contain more sintered or more 

extensively dominated by liquid phase’s eutectic complexes within and above the bed in post-test 

investigations. An increase in combustion temperatures and bed temperatures impacted the SO2 

retention of the limestone whilst causing the formation or more stable and extensive agglomerate 

structures in the bed made up of Fe-Si and Fe-Si-Al rich compounds. 

3) Particle size tests 

The average particle size of the limestone feed was varied and in doing so demonstrated the effect 

on combustion, S retention and formation of agglomerates. 

It was found that the rate of agglomeration didn’t vary significantly between the rages as any impact 

that the particle size could have had on the mechanism was over powered by the high content of 

alkali components in the fuel and the high mineral matter contributing to the alteration in bed 

mixing. 

The different particle sizes did result in a variation in combustion as a result of particle entrainment 

in the turbulent bed and the distribution of the particles. The literature review had clearly shown 

different particles influenced mixing differently, however whilst larger particles were assumed to 

mix less readily, it was the dispersion of smaller particles that caused the largest problem to 

combustion stability. With the larger limestone particles in the fuel blend a more uniform mixture 

entered the bed and dispersed better. This was compiled by the increase in average particle size 

caused by the mineral matter building up in the bed throughout the test. Whilst this test 

demonstrated the influence of particle size on combustion and mixing, it emphasised the need for 



 

222 

 

constant removal of bottom ash, not simply because of total bed weight, but because of its 

implications to mixing regimes and particle dispersion.  

The results of the investigation showed that surface area and available reactive surfaces increased 

the rate of S retention and that smaller particles maximised this. However, there is a trade-off and 

a peak in efficient S retention and bed mixing that needs consideration when altering this 

operational variable. 

4) Co-firing biomass tests 

Limestone was replaced with wood pellets and different ratios of a coal: biomass blend was 

investigated. In this series of tests the wood contained Ca and Mg which was theorised to retain S 

in the bed similar to limestone, as well as reduce the total S content entering the bed. It was found 

that the SO2 emission reduced with an increase of wood in the fuel blend but this was almost 

proportional to the reduction in S in the fuel feed. A small variation was seen between experimental 

and theoretical SO2 emissions which was linked to retention in the bed. However, the concertation 

achieved by this method indicated that very little coal would be a in a fuel blend to achieve SO2 

emissions desirable for extended combustion. 

The incorporation of biomass increased the stability of the flame seen during testing which was a 

result of the increased volatile matter in the fuel. A mixture of carbon form the coal in the bed and 

volatile matter in the biomass combusting above the bed resulted in better temperature distribution 

throughout the system and a more even distribution of combusting gases in and above the bed. The 

flame was seen to flicker less and there was a more stable output in terms of pressures, temperatures 

and emissions demonstrating the increase in fuel performance a multi staged burn and blend option 

poses on FBC technologies. 

The bed did agglomerate but the rate and thus time for agglomeration to occur and defluidise the 

bed increased when compared to a coal only system. The biomass contained little ash compared to 

the coal and therefore the content of ash that could melt and contribute to the formation of eutectics 

was less than a coal only system. However, the presences of increased alkali species K. Na and P 

in the biomass compared to the coal resulted in agglomerates including higher concentrations of 

these species. The backbone of the agglomerates was Fe-Si-Al but the presences of the lower 

temperature melting species is likely to have contributed to these mechanisms via catalytic 

mechanisms and alternative agglomeration routes. This was evident by the presence of the alkali 

components in the samples taken from the bed. 

Biomass co-firing offered a realistic means of potentially remedy the negative impacts of using a 

sub-bituminous coal but the best results were seen when using higher percentages of biomass than 
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coal. Therefore, if a country such as Pakistan were to use such a coal in FBC this investigation has 

shown that the operational variables previous could improve combustion of the coals before co-

firing techniques need to be employed to give ideal operation. 

6.4.3 Remedies for Coal Problems 

The operational variables and addition of sorbents to the coal blend shown in this investigation 

illustrate the ability to optimise the combustion of sub-bituminous coals in FBC. It has been shown 

that through Sorbent addition such as limestone the emission of SO2 can be reduced and controlled 

through retention in the bed. Alternative sorbents containing similar retentive species can be found 

in dolomites, kaolin and biomasses and as such offer an alternative method for controlling high 

emissions of SO2 gases. 

Similarly the investigation illustrated the impact of controlling temperature, sorbent particle size 

and the ratio of Ca:S in the fuel blend. By following a program of optimisation, a full-scale system 

could adopt these parameters as a cheap and accessible method for improving the fuels applicability 

in FBC utilities. 

Other potential remedies for improving the combustion, agglomeration propensity and flue gas 

emissions includes;1) increasing the bed depth to increase the thermal mass to absorb fluctuations 

in fuel variability and thus ensuring a more stable flame, heat output and ensure a constant 

operation, 2) replacing the bed material with a sorbent or alkali rich material such as olivine which 

contains high Mg concentrations which react with species such as K, Fe etc. and in doing so remove 

them through bottom ash systems, 3) fuel washing in which the coal is left to soak in water or a 

chemical which leaches out specific components and in doing so improves the previously desired 

qualities and allows for easy handling of the fuel component which is undesired, and 4) using a 

multi-staged firing system in which higher grade and lower grade coals are fed into the bed 

strategically to balance the combustion whilst moderating any negative effects one fuel may have 

over another. 

A number of potential remedies could be employed for the improvement of operation when using 

the coals in this investigation. Each poses a cost and complexity of operation but as the results 

showed each coal had individual characteristics that could be addressed by one or more technique 

unique to that coal. 

6.4.4 Application to Full Scale FBC 

The sub-bituminous coals used through this investigation posed issues in terms of agglomerate 

formation, high concentrations of controlled emissions and difficult with respect to combustion and 

flame shape. Whilst the pilot scale rig is 1m3, a full-scale system would be multiple times larger 
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with a much deeper and broader bed. A key limitation for the pilot scale units was the effect of 

fluctuations in the coals ash, mineral, GCV and inorganic content. The smaller bed therefore 

reacted quicker and was effected by smaller changes, whereas a larger system would absorb the 

fluctuations better and produce a much more stable heat and combustion output. 

If this were combined with emission reduction techniques and agglomeration prediction and 

monitoring techniques outlined in Chapter 2 and 7, then the formation of agglomerates and the 

impact that have could be managed and mitigated. Therefore, the Pakistani sub-bituminous coals 

illustrate potential to alleviate economic fuel supply concerns in a developing country which has 

indigenous fuel stocks available. 
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7 Biomass Combustion in FBC 

7.1 Summary 

The focus of this Chapter is to evaluate a number of aspects surrounding the application of 

biomasses in FBC. By analysing the fuels physiology, chemistry, combustibility and ease of use in 

a FBC system, conclusions will be drawn as to the fuels applicability in pilot scale and industrial 

systems. 

The first series of tests used a pilot scale FBC rig which simulated ideal combustion and aimed to 

sustain good fluidisation and combustion. The results of the tests included emissions data, ash 

samples, bed samples and agglomerates. By measuring these type of samples, the issues and 

problems found with combusting biomass in FBC will be compared against fuel characterisation 

data and modelling data and in doing so evaluate predictions of agglomeration formation in beds 

and conclude on the fuels ease of use. 

The second series of tests will incorporate a non-uniform air distribution plate within the fluidised 

bed. In these tests the plate will be changed to alter the air flows through the bed and to create an 

uneven distribution of air throughout the bed. Samples and performance will be evaluated to 

compare how the fuel would perform in pilot scale FBC. The aim of this work is to asses problems 

which can occur in industrial scale operations dud to non-uniform air flows and suggest predictive 

methods and operational remedies that could reduce the defluidisation time/effect seen in the beds. 

The focus of these tests was to understand agglomeration propensity of the fuels and as such the 

defluidisation time of the beds when operating the fuels in both ideal and non-ideal beds. By 

comparing results and evaluating agglomerate formation mechanisms, this Chapter will conclude 

on methods to avoid agglomeration and further the use of these fuels in fluidised bed combustor 

units. 

The following section includes the emissions, pressure and temperature results of the tests 

performed with the uniform air distributor plate installed for the combustion of biomass fuels. The 

post analysis includes SEM and XRF analysis.  
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7.2 Uniform Air Distribution 

With the uniform air distribution plate installed, sustained operation of biomass was attempted. It 

was found that the different fuels with their varying physical and chemical compositions would 

react in the bed very differently. The following descriptions are the results from those tests. 

7.2.1 Wood Pellets 

Figure 7-1 shows the temperature, pressure and emissions data from the combustion of wood pellets 

in the fluidised bed rig. Wood pellets was the easiest to operate with in terms of most stable flame, 

least interference with the bed (agglomerates) and the only test to sustain operation without 

defluidisation as a result of agglomerate formation. 

At point A (Figure 7-1), the gas burners are extinguished, solid fuel is fed into the bed and then the 

air flows are altered to prioritise under-bed flow and restrict the burner’s air flows. Between Point 

A and B the system is tested. Visual inspections of the bed via a side port allows the operators to 

physically see the bed bubbling, (example in Figure 7-2), this is related to the inlet air flow. It was 

found that a measured airflow of 135 kg/hr was required to produce a stable level of bubbling. 

Stable combustion was continued in this way for 150 minutes at a fuel flow rate of 21 kg/hr. As the 

test progressed the temperatures and pressures began to fluctuate, with an increase in both 

temperature and pressure the fluctuations as time continued. This is also shown in the emissions 

data before point D. Fairly consistent emissions become less constant with CO levels increasing. 

This culminates to the assumption that the bed is fluidised but mixing is less efficient. As the rig 

and fuel had demonstrated a stable period it was decided to proceed with inlet air changes to 

evaluate combustion and rig performance.  

The data between points B and C on all graphs in Figure 7-1 is the period in which air flow rates 

were altered. Figure 7-3 compares the measured inlet air to the rig against the temperatures across 

the rig and freeboard section of the rig. As the graphs shows, the air was increased to approx. 200 

kg/hr, and then decreased in increments after a period of sustained combustion and fluidisation 
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Figure 7-1 Temperature, pressure and emissions data collected during the combustion of wood 

pellets with a uniform air distribution plate installed 
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and been seen in the recorded data of Figure 7-1. As Figure 7-3 shows, when the air flow was 

reduced to 180, 170 and 160 kg/hr the temperatures remain reasonably stable. Ranges B to C in 

Figure 7-1 confirm that the conditions in the rig remained stable. Combustion was both visibly seen 

to be as stable with validation in the consistent emissions and temperature recordings.  However, 

after the airflow had been reduced to 145 kg/hr and less, the temperatures across the rig were seen 

to decreases (Figure 7-3). Region C to D in the temperature and emissions data of Figure 7-1, show 

instability in operation.  The temperatures decrease uniformly across the rig by a minimum of 

100°C, whilst the O2 and CO concentrations measured in the flue increase dramatically. This 

indicates the combustion of the wood pellets is less efficient and the onset of incomplete 

combustion is present. The pressure readouts indicate that the bed is still fluidised. Therefore, the 

Figure 7-2 Images of the side view port looking down on top of the bubbling bed. These images 

show the protruding thermocouples in the bed with bubbles of sand bursting around them 

Figure 7-3 total inlet air flow rates against rig tempeartures during the combustion of wood 

pellets 
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reduction in air has reduced the fluidisation to a state of bubbling but consequently the bubbling is 

not violent or agitated enough to mix the fuel into the bed or distribute the air across the bed 

uniformly. Hence, with the air reduced back to original air flow rates (130 kg/hr), the temperature 

and emissions continue to suggest poor combustion. Inevitably the reduction in airflow caused the 

defluidisation of the bed. This was the end of the pre-determined test period and agglomeration 

was not the cause for the end of the test/defluidisation. 

Defluidisation was determined as a series of parameters as described in the experimental 

methodology. 

7.2.1.1 SEM-EDX 

Samples from the bed post-test found there were very little if any agglomerates. Small cylindrical 

clusters measuring 3mm in diameter were the only signs of agglomeration. The agglomerates and 

any clump/clustered sample seen in the bed were prepared as with previous samples for SEM i.e. 

affixed to stubs with carbon paint and coated using carbon plasma. 

Figure 7-4 A collection of SEM images and the locations of SEM-EDX from wood combustion. 

Images are as followed; 1) Surface of agglomerate, 2) enhanced image of bridging between 

agglomerates, 3) combustion point of wood pellet, and, 4) cross section of agglomerate 
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Figure 7-4 shows four SEM images of significant findings found during SEM analysis and Figure 

7-5 shows SEM-EDX analysis conducted on samples taken from the bed after combustion of wood 

pellets with the uniform air distribution plate installed. Image 1 shows the surface of a typical 

agglomerate found in the bed. SEM-EDX analysis indicates that Si, Fe and K are the three major 

components within the agglomerate, with traces of Al and Mg around the surface. The Si will have 

been sourced from the sand particle embedded in the agglomerate with Si-Fe-K complexes 

adhering the materials together. Image 2 shows the bridging between two agglomerates. SEM-EDX 

indicates Fe and Si to be dominant in the fused bridge area with K more concentrated on the surface 

of the agglomerates rather than in the bridge. Image 3 shows the location in which a pellet 

combusted and consequently created a localised area of heat. In doing so SEM-EDX result shows 

concentrations of Fe to be higher than in the surrounding area where the agglomeration is present. 

Image 4 shows the cross section of a bed agglomerate. The SEM-EDX results indicate that Fe is 

present in-between the sand particles which have formed within the agglomerate structure. 

The SEM and SEM-EDX analysis were found to indicate that the agglomerates which were taken 

from the bed post combustion of wood pellets were highly concentrated in problematic species 

including Fe, Si and K. This falls in line with results from XRF analysis and SEM-EDX work 

conducted in the fuel characterisation Chapter on the ashes.  

Figure 7-5 shows the SEM-EDX results for the selected samples shown in Figure 7-4 
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The results here give insight into the agglomeration mechanism within the bed. The results from 

the pellet combustion location in Image 3 shows that with high localised temperatures resulting in 

Fe being the major constituent in forming agglomerates. The higher temperature is likely to have 

caused lower temperature alkaline species into a gaseous phase and thus producing a lower 

concentration in the agglomerates.  

Additionally, the results from images 2 and 4 suggest that once agglomerates have started to form 

the main complex of lower melting eutectics is made up of Si-K-Fe. However, the bonding and 

bridging between these agglomerates is dominated by Fe-Si eutectics. The initial agglomerates 

containing K will have produced a sticky surface in which sand particles etc. will have adhered and 

propagated the formation of agglomerates. With localised reduction of turbulence and mixing, the 

combustion of pellets is combusting and generating localised hotspots. In doing so a Fe-Si eutectic 

is liberated and becomes the main mechanism for adhering agglomerates together and thus further 

propagating the agglomerated structure. 

7.2.1.2 XRF 

XRF analysis was performed on bed samples taken after the completion of tests combusting 

biomass pellets. The XRF analysis used the methodology described in the fuel characterisation 

Chapter 4. 

Figure 7-6 XRF analysis of bed samples taken after testing from the combustion of wood 

pellets in a BFBC with uniform air distribution 
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As Figure 7-6 shows, the bed contained mainly Si, Na, Ca and Fe. The wood pellets were shown 

to have the lowest fraction of ash and as such the bed content, excluding concentrations of ash in 

agglomerates, were very low. As such the high SiO2 concentration in the bed is accounted for as 

bed material. The low concentration of other alkali species is an indication that the majority of bed 

particles coated in alkali species had clustered in larger agglomerated structures. 

7.2.2 Peanut Pellets 

Figure 7-7 shows the temperature, pressure and emissions data recorded during the combustion of 

peanut pellets with the uniform air distribution plate installed. The data from this test shows the 

difficulty associated with the combustion of biomass fuels with higher concentrations of less 

desirable species including Na, K and Fe groups. Subsequently this test ended with the 

defluidisation of the bed as a result of agglomerates forming.  

The Pre-heat time of this test was 2 hours, which was longer than required to achieve a bed 

temperature of ≥600 °C. The justification for this was that if the bed were to defluidise, as it did, 

that this would be the result of low temperature eutectics forming in a single mechanism. To 

elaborate, if the bed was cooler than ≥600°C it was feared that in the time it took for the solid fuel 

to achieve a bed temperature of ≥750°C, there would be a window of opportunity in which species 

with lower melting temperatures than fluidised bed combustion could form agglomerates that 

would not be found in an industrial scenario where the pre-heating would have achieved higher 

temperatures associated with normal operating conditions. This assumption and concern comes 

from ternary diagram data shown in Chapter 5. 

After the pre-heat sequence, had achieved an average temperature of 700 °C (point A Figure 7-7), 

then the gas burners were replaced with peanut pellets. As a side note, the CO emission up to point 

A is due to lower gas velocity produced by the under-bed burner during the test. On site, other gas 

fired units were operating and reduced the overall gas availability. In order to reduce pre-heat time 

whilst achieving the before mentioned conditions, lower air velocities were used in the under-bed 

burner. This resulted in a good level of heating but the over bed burner burnt in less desirable 

conditions hence the higher CO concentration. This value decreased as the bed heated, decreased 

in density and eventually fluidised. The CO decreased as a result of air passing through the bed 

with less resistance and the over bed burner having a better stoichiometric ratio of O2. 
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Figure 7-7 Temperature, pressure and emissions data collected during the combustion Peanut pellets 

and defluidisation of the bed with a uniform air distribution plate installed 
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After the introduction of biomass, the bed soon experienced problems. As the pressure chart shows, 

a higher air flow was used creating an across bed ΔP of 2kPa, but this created higher bed 

temperatures with higher excess air. The airflow was reduced to normal flow rates with a measured 

total air flow of 150 kg/hr. However, the Dp decreased to levels less than in normal operations. 

During period A to B, Bed B and C both exceeded 1000°C and all other bed temperatures were 

uncontrollable. Fuel flow was reduced from 21 kg/hr to 19kg/hr to evaluate the effect of less fuel. 

The results were a constant temperature. This is seen as the stable period to point B. 

The emissions through period A to B was erratic. O2 decreased to normal concentrations for 

combustion initially but returned to ≥16 vol.% as the test continues CO throughout this period 

varies between ranges of 50-500 ppm. Additionally, CO2 spikes and drops with the availability and 

depletion of O2. The emissions show that the combustion in the bed was incomplete and poor. This 

coincides with the bed temperature changes and low pressure Dp. Summarising period A to B, the 

bed is agglomerating rapidly as soon as solid fuel enters the bed. This generates temperature spikes 

which are addressed immediately. However, throughout the period rapid agglomeration was 

occurring. The emissions indicate non-uniform combustion. Therefore, it is safe to assume that 

there are localised hotpots of fuel burning producing excessive CO concentrations. It is likely that 

sintering occurred as a result of non-uniform combustion and the initial temperature spike.  

With the onset of agglomeration through the bed (point B spikes in pressure and temperature). 

Bursts of higher flow rate air were put through the bed in an attempt to break up agglomerated 

structures and extend the test. This, in this case, actually worsened the situation. Bed temperatures 

after point B plummeted and the across bed Dp also decreased. It is thought that the bursts of air 

blew the loose un-agglomerated bed material away from the unobstructed bubble caps. This 

resulted in very little fuel mixing and thus combustion on top of agglomerated material and 

complete failure of the bed. Point C shows the end of the tests after the agglomeration and 

defluidisation had taken over. The peanut pellets led to speedy and total agglomeration. 

7.2.2.1 SEM-EDX 

Figure 7-8 shows the four SEM images of interest picked from SEM and Figure 7-9 shows SEM-

EDX analysis conducted on samples taken from the bed after combustion of peanut pellets with the 

uniform air distribution plate installed. Image 1 shows the surface of an agglomerate taken from 

the bed post combustion of peanut pellets. SEM-EDX indicates that the major components within 

the sample are K and Si. Image 1 was typical for most agglomerates found within the bed, however, 

the branching seen in image 2, was found on a number of samples around the bed. This branching 

effect is the result of agglomerates and material moving against one another in the turbulent bed. 

The SEM-EDX results indicate that within these branched areas upon the surface of the 
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agglomerates the alkaline content is made up of a number of species including K, Si, Al, Mg, Ca 

and P. Only within these types of branches was this clustering of species seen. Image 3 shows the 

cross section of an agglomerate with sand particles embedded with the agglomerate complex. 

However, SEM-EDX indicates that the agglomerate is made up primarily of Si and Fe. Only nearer 

the surface of the agglomerate are the species named in image 2 found. Within the core of the 

agglomerate a eutectic made up almost entirely of Fe-Si is present. It is assumed that whilst a 

majority of the Fe comes from the ash a proportion must be reacting with the sand which was found 

to contain a proportion of Fe. In the coal tests this was overshadowed by the Fe content of the Coal 

but as biomass contains less ash than coal the bed Fe content must be considered. 

The data from analysis of image 1 and 2 shows that in the early stages of the agglomeration process, 

the dominant eutectic is comprised of Si-K. However, the branching and propagation of the 

agglomerate seem to be linked to the branching of occurring on the surface of the agglomerates 

containing a cluster of alkaline species (image 2). The eutectic/complex would be very sticky due 

to the presence of such a mixture of alkaline species and hence leads to the adhesion of 

agglomerates and sand particles to one another. The data from image 3 shows that once an 

agglomerate grows in size, the internal eutectic is made up primarily of Si-Fe with only a thin layer 

of surface material containing other alkaline species. Once an agglomerate has formed is likely that 

1 2 

3 

Figure 7-8 A collection of SEM images and locations of SEM-EDX from peanut combustion. 

Images show the following; 1) surface of agglomerate, 2) enhanced image of branching and 

alkaline complex, and, 3) cross section of agglomerate 
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constant exposure to heat and mixing to sand particles results in the sticky surface wither being lost 

as in the gaseous state or sticking to other particles in the liquid phase. If there are a low 

concentration of these surface species, then it is likely they are distributed throughout the bed but 

with lower concertation. This theory is validated by ash analysis work shown in the fuel 

characterisation Chapter 4. 

7.2.2.2 XRF 

The XRF analysis of bed samples taken after the combustion of peanut pellets is shown in Figure 

7-10. The figure show that the samples taken from the bed after combustion were made up of Si 

based compounds. This is assumed to be because of the silica sand bed material. The next main 

component is K, Fe and Ca oxides. The K concentration has contributed to the formation of the 

agglomerates. Furthermore, the higher concentration of K in the pellets is likely the key component 

for the fast agglomeration and defluidisation time of the bed. The Fe concentration, as seen in the 

coal test and literature, will have also contributed to the formation of low melting eutectics in the 

bed during combustion.  

The results in Figure 7-10 correlates to the analysis of Figure 7-9 SEM-EDX results. The 

combination of data give a good foundation and indication to the significance of Si-K, K-Fe and 

Si-K-Fe complexes in the onset of agglomeration during the combustion of peanut pellets. 

Figure 7-9 shows the SEM-EDX results for the selected samples of Figure 7-8 
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7.2.3 Oats Pellets 

After the difficulty seen in maintaining stable operation with peanut pellets, it was decided that a 

similar approach with the pre-heat would be used for oats pellets.  The concern is based on the fuel 

characterisation analysis performed in Chapter 4. Oat and Peanut pellets had similar chemical 

characteristics and performed similarly in ash fusion testing and thus share similar melt phases. 

Figure 7-11 shows the temperature, pressure and emissions data recorded during the test. Pre-heat 

was performed in the same manner as with peanut pellets, until with an average bed temperature 

of ≥700°C was achieved. Fuel was then switched from gas to oats pellets at point A.  

Immediately after biomass was introduced into the bed there were problems controlling the bed 

temperatures. An initial fuel flow rate of 19 kg/hr had been chosen as this was less than required to 

achieve a bed temperature of 900°C on a theoretical basis. Fluctuating, but within the range of 

expected temperatures, continued for 19 minutes to point B. As the pressure data shows the across 

bed Dp remained at 1.8 kPa throughout this period. The air flow rate was 160 kg/hr. This was 

slightly higher than the peanuts test to ensure that agglomerates or poor mixing wasn’t a result of 

insufficient air but instead due to agglomerate formation. Between point A and B the O2 

concentration averaged approx. 8 vol% which was desirable and indicated combustion at 60 % 

Figure 7-10 XRF analysis of bed samples taken after testing from the combustion of peanut 

pellets in a BFBC with uniform air distribution 
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excess air, which was once again close to operational targets. The CO and CO2 emissions through 

this period fluctuates dramatically, however, this indicates that while the bed was fluidised and 

combustion was relatively stable, there was localised variation in the bed and air channelling 

occurring. 

The effects of the channelling can be seen by the sudden system change at and after point B to point 

C. Bed temperature D shoots to ≥1350°C as Bed B and C temperatures decreased sharply to 550 

and 500 °C respectively. Across bed pressure decreases to 0.5 kPa and the O2 concentration 

increases to ≥12 vol%. The period between point B and C shows a sudden change in the bed which 

was later found to be due to sintering. The fuel contains high concentrations of Fe, Na and Si species 

associated with liquid phases and agglomeration. After point B the bed degrades with poor mixing 

occurring, the onset of agglomerated and sintered bed material occurred leading to the channelling 

of air flows and slumping of bed. This idea is reinforced by the gradual and step increases in mid 

freeboard pressure. With the onset of agglomeration and channelling in the bed, the air is no longer 

uniformly passing through the bed material and instead moving through less resistant and less 

covered bubble caps. Hence the freeboard negative pressure slowly equalises to ambient pressure. 

Before point C and at point C there are further extreme spike in bed temperature and emissions. 

The fuel is stopped due to the fear of damaging internal equipment. However, it is already clear by 

point C that the bed had agglomerated, defluidised and was no longer operating in a condition in 

which would be suitable for the combustion of fuel for steam generation. 
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Figure 7-11 Temperature, pressure and emissions data collected during the combustion Oats pellets 

and defluidisation of the bed with a uniform air distribution plate installed 
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7.2.3.1 SEM-EDX 

Figure 7-12 shows four SEM images and Figure 7-5 shows SEM-EDX analysis conducted on the 

samples taken from the bed after combustion of oats pellets with the uniform air distribution plate 

installed.  

The results found that agglomerates from the combustion of oat pellets were very similar to that of 

peanut. The only significant difference being the concentration of alkaline species, primarily K, to 

be less than in peanut sample and found only in surfaces of agglomerates. Image 1 shows a cross 

section of an agglomerate and how sand particles are squashed together with a thick outer layer of 

a previously liquid phase. Image 2 shows a cross section of a thinner piece of agglomerate and how 

the sand particle is still similarly sized but the outer agglomerated layer is thinner. Additionally, 

the agglomerate can be seen to be impregnating and penetrating the sand particles within the main 

structure of the mass. The data suggests a slightly different mechanism for agglomeration with oat 

pellets. With the onset of agglomeration in the bed the increased temperature of localised 

combustion could have liberated alkaline species into the gas phase and thus left the agglomerates 

with lower concentrations of alkaline species. However, the SEM and SEM-EDX data does 

conform to visual results of the bed. There was large volume of smaller masses built up into large 

loose structures. The structures are shown in image 1. Therefore, a different agglomeration path is 

being taken, or the mixing, temperatures or alkaline species are limiting agglomeration sizes but 

not the propagation of overall structures throughout the bed. 

2 1 

Figure 7-12 SEM images and location of SEM-EDX measurements from oats combustion. The 

images show the following; 1) cross section of agglomerate, and, 2) cross section of liquid 

agglomerate/sintered area 
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7.2.3.2 XRF 

Figure 7-14 shows the results for XRF analysis of samples taken from the bed after the combustion 

of oat pellets. The XRF results shows, as with previous analysis, that the majority of measured 

species are Si based, whilst K and P are the next most significant components in the agglomerates. 

K, Si and P have all been seen in the literature and in previous tests to contribute to the formation 

of agglomerates at accelerated rates. 

The results, coupled with the results of Figure 7-13, indicate the significance of Si-K, Si-P and Si-

K-P in the formation of agglomerates when combusting oat pellets. 

Figure 7-13 shows SEM-EDX results for the selected samples of Figure 7-12 

Figure 7-14 XRF analysis of bed samples taken after testing from the combustion of oat pellets 

in a BFBC with uniform air distribution 
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7.2.4 Straw Pellets 

The combustion of straw pellets was repeated as it was found that the defluidisation time as a direct 

result of agglomerates forming in the bed was less than 35 minutes. Whilst this is similar to other 

discussed earlier, the fuel was almost impossible to control in a manner resembling stable 

combustion. The repeat test was performed in order to validate the difficulty associated with 

combusting this fuel in a FBC unit. 

Figure 7-15 shows the temperature pressure and emissions data measured during the test. Once the 

pre-heating had finished at point A, the fuel was switched from gas to straw pellets. Stable 

combustion only lasted for 5 minutes. The O2 concentration was measured at 9 vol. % which was 

the intended value for the experiment. The fuel flow was fixed at 20 kg/hr, with an air flow of 120 

kg/hr. However, as time progressed the CO emission measured increased from approx. 50 ppm to 

≥150 ppm.  

When the bed temperatures suddenly decreased 23 minutes into the test the air was increased to 

135 kg/hr. It was visually observed that at this flow the bed was still bubbling but beyond was 

creating a violent bed with an undesirable flow of materials was being violently ejected. As a result 

of the flow rate increase, the bed mixes and fluidises better. However, as the emissions show the 

bed was degrading and combustion was suffering, even with the increased mixing viewed from the 

side port. 

The CO emissions increase to ≥500 ppm whilst the O2 also increased to ≥14 vol. %. This is an 

indication of poor combustion occurring above and within the bed. Furthermore, at point B the bed 

temperatures fall sharply, the across bed Dp falls and the emissions slump. The agglomerates 

forming in the bed have defluidised the bed completely and fuel is combusting on top of the bed 

rather than in it. At this point the test has ended. 

The emissions data and temperature data show that the bed was degrading as soon as solid fuel was 

combusting in the bed. The bed temperatures were more desirable than previous repeats with an 

average bed temperature of 775°C. Even so the bed material agglomerated with impurities within 

the fuel immediately. 
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Figure 7-15 Temperature, pressure and emissions data collected during the combustion Straw 

pellets and defluidisation of the bed with a uniform air distribution plate installed 
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7.2.4.1 SEM-EDX 

Figure 7-16 shows four SEM images and Figure 7-17 shows SEM-EDX analysis conducted on the 

samples taken from the bed after combustion of straw pellets with the uniform air distribution plate 

installed.  

The agglomerates found in the bed after the combustion of straw pellets were very different to those 

found in previous tests. Image 1 and 2 show a bubble-like effect found around the bed particles 

both on the surface and embedded within agglomerated structures. Within these bubbled structures 

high concentrations of alkaline species including Si, K, P and Fe were found to make up the 

majority present.  

Image 3 and 4 are examples of the surface of agglomerates in the bed. Image 3 shows a crystalline 

structure made up predominately of Si and K. The crystals are likely the product of a eutectic 

formation where Si-K is cause of the surface crystals. Whereas, in other areas around agglomerates 

the branching effect seen in image 4 is more common. Within these branches clusters of 

agglomeration species are found (K, Ca, P and Si), similarly to those in the peanut agglomerates. 

The SEM-EDX indicates there is also S present within the branches. This increase in localised 

concertation with increases in localised Ca concertation is assumed to be the results of a Sulphation 

reaction. 

Image 5 shows the cross section of agglomerates found within the bed and SEM-EDX indicates 

that the agglomerate complex between sand particles are made up of complexes containing K-Si-

Ca-Fe. Whilst this is the case for the internal structure of the agglomerate, image 6 shows the bond 

point between bed particles, and SEM-EDX indicates that on the surface in these locations Fe-Si-

K complexes are dominant. 

The results displayed here suggest an agglomeration mechanism similar to peanut, wood and oat 

pellet agglomeration. However, it doesn’t follow the same exact process but instead share 

similarities with each. The bubble effect (image 1 and 2) can be linked to that found in the wood 

data but instead of depositing Fe concentrates, a liquid phase is formed with K concentrated within. 

This K liquid phase would create a sticky liquid capable to stick particles together. This is 

potentially the initial stages of this mechanism. 

The branching effect is similar to that of peanut and has the same cluster effect of alkaline species 

in these branches. Similarly, the complexes in the branches would be very sticky and are likely to 

have formed in shape as a result of particle moving against and moving away from the branch 

source location. This is the next stage in the propagation of the agglomerate. 



 

245 

 

The difference in internal and external structure of the eutectics bounding the sand particles 

together in image 5 and 6 is likely the final stage of the agglomerate formation. The internal 

structure is a matrix containing Si-Fe-K and because of the high concentration of K this structure 

builds in size more quickly than previous agglomerates. In doing so retaining K and other lighter 

components. However, the exposed surface which underwent continued heating and oxidation, the 

Fe-Si complex is dominant, with a loss of K and lighter alkaline species. It is expected that, based 

on what was seen in other tests, Fe-Si eutectics would merge these smaller agglomerates together 

into larger more load bearing agglomerated structures. 

1 2 

5 6 

3 4 

Figure 7-16 A collection of SEM images and SEM-EDX locations from straw combustion. The 

images are; 1) bubble agglomerate formed around combusting pellet, 2) Structure remaining 

from pellet combusting internally, 3) enhanced area of agglomerate surface, 4) enhanced area of 

surface with branching, 5) cross section of agglomerate, and, 6) surface of sintered material 
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7.2.4.2 XRF 

Figure 7-18 shows the results from the XRF analysis of bed samples taken from the rig after the 

test was complete. As the figure shows the main component is Si with K, Ca, Na and Fe making 

up the majority of the other alkaline species in the agglomerates. This is similar to previous tests 

but shows a correlation between the alkaline species in Chapter 4 and those in the agglomerates. 

Na, K and Fe have been noted to contribute to the agglomeration in the bed and this is further 

shown by the results in Figure 7-17 and Figure 7-18. 

 

 

Figure 7-17 shows the SEM-EDX results for the selected samples in Figure 7-16 
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7.2.5 Miscanthus Pellets 

Miscanthus shares similarities with straw. They are both grassy type fuels and their plant 

physiology lends to similar distributions of alkaline species on specific regions of the plant and 

thus concentrations of specific groups such as K and Na. This reasoning assumes that the 

combustion of Miscanthus would be similar to the performance of straw pellets. 

Figure 7-19 shows the temperature, pressure and emissions data measured during the combustion 

of Miscanthus pellets. The Miscanthus test is another example of how a biomass fuel will combust 

in a fluidised bed and immediately degrade a bed. It was found that Miscanthus is very difficult to 

control in terms of combustion and in terms of sustaining a fluidised bed. 

The total measured air flow rate was set at 130 kg/hr at point A when gas was switched to 

Miscanthus pellets. As the previous test had shown an increase in the under-bed air didn’t result in 

improved combustion or fluidisation of the bed. Within 8 minutes of the fuel entering the bed, 

temperatures decrease sharply as the bed slumps. This is a result of the bed agglomerating 

aggressively. The across pressure Dp rapidly increases with the onset of agglomeration. At point B 

the bed has agglomerated and the system fails to operate in a stable manner. The increase in 

Figure 7-18 XRF analysis of agglomerated bed samples taken after testing from the combustion 

of wood pellets in a BFBC with uniform air distribution 
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Figure 7-19 Temperature, pressure and emissions data collected during the combustion 

Miscanthus pellets and defluidisation of the bed with a uniform air distribution plate installed 
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midfreeboard pressure is evidence of agglomeration as the air moving through the bed is unimpeded 

by bed material. 

Throughout the period of A to B, the CO and O2 emissions fluctuate in a manner displaying 

combustion fluctuations. With the slumping and channelling of the bed, the combustion is 

consuming and change the availability of O2 and the incomplete combustion is varying in intensity. 

This continues until the bed defluidise completely and inevitable air channelling and re directing 

of air around the agglomerated bed results in relatively normal emission concentrations.  

The distribution of heat throughout the bed wasn’t uniform. After point B the fuel is combusting 

on top of the bed rather than in it. The temperatures recorded above the bed reach ≥1050 °C. The 

onset of sintering is likely to have occurred with material at the top of the bed because of this. 

Furthermore, the bottom of the bed cools with the restriction of fuel to the lower regions of the bed. 

Once the bed has agglomerated, the rig is acting more like a grate incinerator rather than a fluidised 

bed and suspending the fuel upon the surface of the bed rather than in it. 

7.2.5.1 SEM-EDX 

Figure 7-20 shows four SEM images and Figure 7-5 shows SEM-EDX analysis conducted on 

samples taken from the bed after combustion of straw pellets with the uniform air distribution plate 

installed.  

The agglomerates within the bed from the combustion of miscanthus pellets were very similar to 

the structures and shapes found within the bed after straw pellet combustion. That being there were 

bubbled areas and high concentrations of K which had formed liquid phases in the agglomerate. 

This is evident from image 2 which shows bed particles stuck within the agglomerate with a series 

1 

2 

Figure 7-20 SEM images and SEM-EDX measurement location from miscanthus combustion. 

The images are as followed; 1) surface of agglomerate, and, 2) agglomerate bridging between 

sand particles 
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of bridges being formed from the main body of the agglomerate to the new particles. The complexes 

adhering the particles together was indicated to be Si-K rich. 

However, there were some differences found when the agglomerates propagated in size to larger 

structures. Image 1 shows the surface of an agglomerate. Here there are plate like masses. These 

were found to be primarily made up of Fe with very little Si etc. The plate like structures were seen 

to follow the contours of areas in which two or more large agglomerates had adhered to one another. 

The fused point between the structures which would become more structurally sturdy over time 

then built up the Fe rich plates on the surface. The high Fe source is assumed again to be a 

combination of the Fe in the biomass ash and Fe reacting from the bed material. The extent of the 

Fe in the structures indicates that a reaction is occurring and making any Fe a significant part of 

the agglomerate formation mechanism. Quantifying the role the Fe in bed and the ash however is 

difficult. 

The agglomeration mechanism seems to be very similar to that of the straw tests, however, as to 

the cause of the Fe plates in the fusion point, there is still question. Possibly with veins of different 

alkaline species in the fuel/ash there were Fe rich seems which then present themselves in a liquid 

phase as a result of localised heating as a result of the larger agglomerate forming.  

7.2.5.2 XRF 

Figure 7-22 shows the results of XRF analysis for bed samples taken from the combustion of 

Miscanthus pellets. As the data shows, the high concentration of Si, due to silica sand, is the main 

component in the samples. However, Fe is the next significant component, which was seen to be 

high in concentration in the pellets and in the SEM-EDX analysis of Figure 7-21.  

Figure 7-21 SEM-EDX results for the points of interest samples analysed and described in 

Figure 7-20 
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The data of this section shows the significance of Fe in the formation of agglomerate’s. 

Additionally, the rate of agglomeration when combusting Miscanthus pellets had the second 

highest rate of formation. 

7.3  Non-Uniform Air Distribution 

The findings of the previous section have shown the performance of biomass fuels under typical 

operational conditions, and the effect biomass has upon a bed in a bubbling fluidised bed unit. This 

section will now evaluate the effect of biomass in the same type of operation. 

As described in the experimental methodology Chapter 3, the non-uniform plate was designed so 

the air flow would impact the bed in a number of ways. There is an area in which the air flow will 

experience less resistance (the leakage point) around a material emptying chute. The bubble caps 

are also located nearer the centre of the rig leaving dead zones around the edge of the bed. Further 

to this the height of the bubble caps is 50 mm taller leaving a larger dead space below the bubble 

caps. Finally, the reduction in bubble cap number will alter the velocity of the air flow from the 

bubble caps to that seen in the uniform air distribution plate. The differences are as shown in  

At the time of the non-uniform plate installation and operation of the rig the burners and pressure 

transducers were set up in a slightly different layout to that of the uniform plate test. For these 

Figure 7-22 XRF analysis of bed samples taken after testing from the combustion of miscanthus 

pellets in a BFBC with uniform air distribution 
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reasons, the heating capacity of the under-bed burner is less than that of the previous system. 

Additionally, the difference in pressure readouts is a result of the rig alterations. This has not 

impeded in the accuracy and validity of the data in any way, instead the base case for comparison 

is slightly different. 

7.3.1 Wood Pellets 

Wood pellets were combusted in a similar manner to the uniform plate test. However, because of 

the changes in the rig air flows, fuel flows and subsequent pressures, temperatures etc. were 

different.  

Figure 7-23 shows the temperature, pressure and emissions measurements made during the 

combustion of wood pellets with the leakage plate installed. Point A indicates the point at which 

the preheat sequence finished and gas was replaced with wood pellet combustion. There is a 

continued increase in temperatures across the bed and freeboard area to point B. 

Whilst the temperatures are stable throughout the full extent of the test, the pressure measurements 

offer an alternate perspective. At point A the switch in fuels and redirecting of under-bed air can 

be seen. However, between point A and B there is a progressive decrease in bed and plenum 

pressure and increase in freeboard pressure. This continues after point B but with less severity. The 

increase in freeboard pressure with the increase in freeboard pressure indicates a change in air 

movement and bed resistance. From point A, air is finding less resistance and moving through the 

bed unabated which increases freeboard pressure and decreasing the back pressure in the plenum. 

This is a result of the air moving from an even distribution through the bubble caps and instead 

moving through the leakage point with increasing volume as the test continues. The bed material 

and fuel must still be moving to the leakage point as the bed temperature remains constant. There 

was no agglomerate found in the bed post-test bed. Therefore, the leakage in this scenario never 

defluidised the bed but instead impeded ideal fluidisation.  

This is further emphasised by the emission measured throughout the test. At point A in the 

emissions data the fuel changeover can be seen. Over the test period the emissions are fairly steady 

state, apart from point A to B where the CO emission declines in line with the pressure change 

across the rig/bed. As the temperature continue to increase to point B and further the CO emissions 

are being converted to CO2 with the continuously heated freeboard region until it drops to approx. 

10ppm. Whilst this test was able to continuously operate with the leakage point in place for an 

extended period of time, it should be noted that wood was comparatively easier to combust as found 

with previous tests. There were no agglomerates found in this test was only a coating similar to that 

of the previous wood tests on bed particles. on the operation of the rig it was seen that the O2  
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Figure 7-23 Temperature, pressure and emissions data collected during the combustion wood 

pellets and defluidisation of the bed with a non-uniform air distribution plate installed 
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concentration never dropped below 13 vol. % over the test. In the previous test an airflow of 9000 

L/min was found to be a maximum required to run but with the leakage an airflow of ≥12000L/min 

was required to keep the bed bubbling or in a state near to bubbling. This test was a baseline test 

and expected to perform well because of the low agglomeration potential. It was theorised even a 

small volume of agglomeration would propagate fast in these poorly mixing beds and thus 

defluidise and impede operation more quickly than that of the uniform air plate. 

7.3.1.1 SEM-EDX 

Figure 7-24 shows SEM images and Figure 7-25 shows SEM-EDX analysis conducted on samples 

taken from the bed after combustion of wood pellets with the non-uniform air distribution plate 

installed. Image 1 shows a sand particle which has been coated in a liquid phase indicated to be 

made up of Si, Ca and Fe. On the surface of particles such as this and upon larger agglomerate 

surfaces there were found embedded crystal structures such as those shown in image 2 and 3.  The 

crystals of image 2 were indicated to be largely made up of K-Ca complexes. The structure in image 

2 is an example of a bridge which has formed between sand particles and is indicated to be a eutectic 

containing Si-K-Ca. The crystal structures of image 3 were commonly found on the surface of areas 

in which a number of bridges had formed between bed particles. The SEM-EDX data indicates that 

these were made up of Si-K-P complexes. Additionally, the crystals in image 3 were found to be 

moving into a liquid phase, looking as if they had begun or undergone some form of melting. 

Image 4 is a typical amalgamation of processes found embedded within larger structures. There 

would be a combination of clustered alkaline species within a branched structure, with a 

bubbled/localised combustion point adjacent. The clusters were indicated to be made up of Si-Fe-

K complexes whereas the bubble adjacent to these areas were found to contain more species but in 

lower concentration.  

Images 5 and 6 were typical of surfaces of larger agglomerates which were large in size and difficult 

to break apart. The area between agglomerates and bed particles were indicated to be high in Fe. 

The enhanced image 6 shows that there were in fact clusters of agglomerate species but Fe-Si was 

still dominant. On the surface of the fusion/bridged point balls of alkaline species have formed as 

a result of a liquid phase moving in the bed. It should also be noted that Ca was also highly 

concentrated in these clusters. 

The mechanism for agglomeration, based on the results found are slightly different to those of the 

uniform air plate test. In the mechanism for wood pellets here the sand particles are initially coated 

with a liquid phase on the surface containing Si-Fe-Ca complexes. The bridging and building up of 
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agglomerate surfaces and structure was found to be related to the formation of crystals on the 

surface which contained a sticky K-Ca. These melted under constant heat to create a sticky surface.  

The surface in areas in which Fe was present led to the clustering of alkaline species and thus a 

sticky surface to adhere to bed material. In image 4 a pellet has been caught and combusted locally 

creating the bubble and low concertation in a localised area of alkaline species which were 

reminiscent in concertation to XRF data in previous wood ash analysis. The sticky K rich and Fe 

Figure 7-24 shows a series of SEM images and SEM-EDX measurement locations from point of 

interest for samples collected form the combustion of wood pellets. The images are follows; 1) 

Sand particle coated in agglomerate complex, 2) crystal formation bridged between sand 

particles, 3) crystal formations upon the surface of agglomerates, 4) branching on the surface of 

agglomerates, 5) fusion point between agglomerate structures, and, 6) enhanced images of fusion 

point between agglomerates. 
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rich surface seem to be the primary methods for building of agglomerates and forming strong bonds 

between agglomerates and eutectic surfaces. The Fe-Si concentrations found on the particle 

surfaces are linked to higher combustion temperatures melting lower melting temperature alkane 

groups into the gas phase. 

7.3.1.2 XRF 

Figure 7-26 shows the XRF results for bed samples taken from the bed after the combustion of 

wood pellets with a non-uniform air distribution plate installed. The looser agglomerated material 

with less significant bridging components resulted in a higher proportion of sand particles making 

up the agglomerates with less complexes between or on the surfaces on the particles. As a result, 

Figure 7-25 SEM-EDX results for the points of interest samples analysed and described in Figure 

7-24 
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the XRF analysis had a high concentration of Si with lower concentrations of alkaline species such 

as K and Fe. 

However, the alkaline species and matrices leading to the formation of the agglomerates were 

similar to the examples seen in previous tests. The XRF results both relate back to the fuel analysis 

and the data in Figure 7-24 and Figure 7-25 . 

7.3.2 Peanut Pellets 

Figure 7-27 shows the temperature, pressure and emissions data measured during the combustion 

of peanut pellets with the leakage plate installed.  Point A shows the crossover of gas to solid fuel 

after the completion of the preheat sequence. 

Immediately after point A the temperatures across the bed fluctuate, followed by a sudden decrease 

in bed temperatures at point B. The temperatures regain normal ranges between point B and C but 

with Bed A increasing to ≥950°C and then progressively decrease. At point C the bed temperature 

remains fairly constant at 750-850 °C but with Bed A dropping and erratically shooting up 

temporarily throughout the test post point C. The data shows that the combustion initially is good 

with stable temperatures and thus combustion of material. After point B the dip in the decrease 

suggests that the fuel either isn’t mixing in the bed or isn’t combusting. The decrease in bed A after 

Figure 7-26 XRF analysis of bed samples taken after testing from the combustion of wood 

pellets in a BFBC with non-uniform air distribution 
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Figure 7-27 Temperature, pressure and emissions data collected during the combustion peanut 

pellets and defluidisation of the bed with a non-uniform air distribution plate installed 

A B C

A 

B C

A B



 

259 

 

point B indicates that combustion is affected by the condition of the bed. Furthermore, after point 

C the fluctuations and cooling indicate poor mixing in the bed. 

It was noted after this test the Bed A thermocouple lies in a position in which a channel seems to 

form with the onset of agglomeration in the bed. This particular point of the air flow of the leakage 

point and bubble caps surrounding seem to converge. Combine this with a bed decreasing in 

height/voidage/reduced through put of uniform air, the thermocouple measures the cooling effect 

seen in a defluidising bed. Therefore, this is a good indication of the onset of agglomeration. 

In the emissions data, the CO spikes and drop sharply and repeatedly. This is with the bed slumping 

and partially defluidising and refludising temporarily. The O2 concentration drops to a more 

desirable 12 vol. % however, this immediately increases to ≥15 vol. %. Air is bypassing combustion 

zones and hence the O2 in the flue is higher. The increased air flow rate increases the O2 

concentration but the airflow should achieve an excess air of appx 150% whereas the measurements 

are closer to an excess air of 250%, in excess of normal operation. However, a reduction of airflow 

would result in defluidisation of the partly or completely fluidised bed. This was a serious limitation 

with the leakage in place. 

The emissions actually move to more ideal operating conditions when agglomeration has set in, 

past point C. Once again, channelling and diverted air around the slumped bed and through the 

leakage point creates localised combustion areas. In these points high velocity air is combusted 

with fuel which is why the CO2 concertation remains steady throughout. The NO emission 

increases with the onset of agglomerates and defluidisation, point B and beyond. The localised 

hotspot combustion could be forming localised environments for the formation of NO from 

organically bound nitrogen. 

The pressure changes in the pressure graph correlate with previous findings. An increase in 

midfreeboard as a result of reduced bed resistance on air passage. Plenum pressure decreases as 

back pressure reduced. Bed pressure reduces with reduction of air in bed voids. The air is moving 

through the leakage point thus reducing the pressure of air at the bubble caps. This increases 

resistance at the bubble caps, redirecting air further to the leak. Agglomerates allow for channelling 

and limit the ability for the bed to fluidise again. The leakage accelerates defluidisation. The 

addition of dead space and limited mixing will allow for faster agglomerate formation also. 

7.3.2.1 SEM-EDX 

Figure 7-28 shows SEM images and Figure 7-29 shows SEM-EDX analysis conducted on samples 

taken from the bed after combustion of peanut pellets with the non-uniform air distribution plate 
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Figure 7-28 shows a series of SEM images and SEM-EDX measurement locations from point 

of interest for samples collected form the combustion of peanut pellets. The images are 

follows; 1) branching on the surface of agglomerated bed particle, 2) enhanced image of 

branching, 3) surface of agglomerated bed particle, 4) cross section of bridged agglomerate, 5) 

cross section of agglomerate, 6) surface of liquid phase agglomerate, 7) agglomerate branching, 

and ,8) enhanced image of branched bridging. 
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installed. Image 1 and image 2 show the branching found on the surface of agglomerates with 

image 2 focusing on particularly compact areas of agglomeration. SEM-EDX data indicates that 

the branching once again contains concertation of alkaline species with Fe, Si, Ca, K and P making 

up a majority of the material. The analysis show that there is an even distribution of Ca, K, Si and 

P in the different branches. The branches would once again be creating a very stable and sticky 

surface to adhere to other bed particles. 

Image 3 shows the surface of a bed particle which has been coated in a complex which was in liquid 

phase and as such, left a liquid like pattern on the particle. The surface area which has the largest 

cover of the complex has other materials embedded in it displaying the process of adhesion the bed 

parties undergoes during agglomeration. The liquid phase was indicated to be primarily Si-K. When 

Figure 7-29 SEM-EDX results for the points of interest samples analysed and described in Figure 

7-28 
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looking at the cross section of an agglomerate (image 4), the surface data agrees with the results of 

image 3 but the internal bridging of the agglomerate contains high concentrations of Ca with trace 

amounts of K and Fe. 

An abnormality found in the agglomerates of these tests were the voids within the agglomerates. 

This suggests the presence of gas and/or internal pressure acting upon the agglomerate. Analysis 

of the perimeter of such voids gave no indication of high concentrations of alkaline species 

compared to the surrounding eutectic complex. It was hypothesised that combustion occurring 

within the agglomerate cause the voids but the lack of carbonates etc. disproves this. It is more 

likely that the agglomerate, mixing/rolling within the bed captures gases/air, and being in a molten 

semi solid state simply encapsulates gases which then trapped during cooling. 

Image 6 shows the surface of an agglomerate and reinforces the theory of liquid phases and the 

transaction to a gas phase. The bubble-like sphere in the agglomerate matrix is made up of a cluster 

of alkaline species; Si, Mg, Al, P, K, Ca and Fe. The heating of this particle has led to the expansion 

of gases within the agglomerate and hence the creating of this shape. This would account for the 

loss of such species in these sand previous agglomerates. 

Image 7 and 8 show the branching and bridging found within the agglomerates from these tests 

with K and Ca indicated as to the backbone of the eutectic. These types of bridges were not found 

in the tests with uniform air. The agglomerates here contained a greater number of weaker 

structures which were preserved as a result of low velocity flows caused by the non-uniform air 

flow through the bed. 

The agglomerate mechanism was found to be similar to that of the uniform air test, however, most 

significantly, weaker agglomerates and eutectic structures were able to form as a result of the poorer 

mixing within the non-uniform bed. 

7.3.2.2 XRF 

Figure 7-30 shows the results for XRF analysis of bed samples taken from the bed after the 

combustion of peanut pellets. As the results shows K, Fe and Al make up a majority of the species 

associated with agglomeration (other than Si sourced in the bed material).  

This once again correlates to the analysis previously performed on the fuels and samples. 

Furthermore, the trends for more brittle agglomerates to form relates back to the combustion of 

wood pellets with a non-uniform air distributor in place. 
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7.3.3 Oats Pellets 

Figure 7-31 shows the temperature, pressure and emission data the combustion of oat pellets with 

the leakage plate installed. 

The results seen here were reminiscent of the peanut tests. After pre-heat, has finished, point A, oat 

pellets are being combusted. Stable combustion seems to be occurring to point B by the results of 

the temperatures throughout the bed.  However, again the pressure changes across the bed indicate 

degradation of the bed and reduction in mixing/fluidisation.  

At point B measurements were of a similar value which in the peanut tests the bed had defluidised 

as the result of the formation of agglomerates. Once there was a temperature slump, point B to C, 

and the pressures had declined enough that it was decided that the bed was going to defluidise. A 

pulse of high flow air entered the bed in an attempt to both break up weak agglomerate structures 

and to redistribute material around the bed and into potential depleted bed areas around the leak 

point. This resulted in a short increase in plenum pressure, a slight increase in flue gas O2 and a 

drop-in bed temperatures. 

The results of this effort were bed temperatures returning to a more typical operational range and 

the pressure to remain steady. They didn’t improve however, simply ceased degrading. Within 4-5 

Figure 7-30 XRF analysis of agglomerated bed samples taken after testing from the 

combustion of peanut pellets in a BFBC with non-uniform air distribution 
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Figure 7-31 Temperature, pressure and emissions data collected during the combustion oats 

pellets and defluidisation of the bed with a non-uniform air distribution plate installed 
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minutes the bed temperatures began to spike and pressures started to decrease again. Between point 

C and D another pulse was attempted resulting in a temporary improvement of the bed again.  

After point D temperatures, pressures and emissions indicate agglomerates are present and 

controlling the mixing of the bed and the combustion process. The test is therefore, ended. 

The pulsing in this test was found to improve the fluidisation temporarily. However, it is more 

likely that redistribution of material redirected air through the bubble caps mitigating channelling 

air temporarily. This is why the degradation after the pulses was similar in length as it represents 

the time to redistribute materials and airflows across the cross section of the bed. 

7.3.3.1 SEM-EDX 

Figure 7-32 shows SEM images and Figure 7-33 shows SEM-EDX analysis conducted on samples 

taken from the bed after combustion of oat pellets with the non-uniform air distribution plate was 

installed.  

The way in which agglomerates formed as a result of oat pellets combusting in these tests compared 

to the uniform test is very different to that of the miscanthus and peanut tests. Image 1 and 2 show 

bed particles which have been coated in an agglomerate complex. The shape and structure of the 

agglomerates resembles the ash analysed in the fuel characterisation Chapter. It is possible here to 

see the ash, which hasn’t melted, but instead formed low melting eutectics within the ash, which 

has then adhered to the surface of the bed particles. SEM-EDX suggests that the complex is made 

up of Si-P-K. The measured concentrations show relevance to the concentrations measured in the 

initial ashes. This further suggests that the ashes haven’t melted entirely but instead have a partial 

liquid phase in which alkali species haven’t distributed. 

Image 3 emphasises the type of structure and the fibrous ash nature of the agglomerate. The 

particles are being held together by ash particles in a semi liquid phase and the depth of the 

agglomerate within and on the surface of the bed particles is minimal.  

Image 4 shows the surface of the coated ash particle. Here the partially meted agglomerate can be 

seen and the onset of small branching regions. As the test was very short it is likely that the period 

of combustion wasn’t extensive enough to melt the ash and thus the agglomerate formation didn’t 

occur as previously seen. Instead a loosely packed cluster of material has adhered together with ash 

particles. It is wrong to call these clusters of materials agglomerate in the conventional sense. The 

results here instead suggest the early stages of agglomeration for oat pellets.  

Further to this point, image 5 shows a bridge forming between particles. The outline of the ash 

particles can be seen and is partially consumed with a liquid phase. The SEM-EDX results for 

image 5 show lower concentrations of lighter alkaline species than the flakey ashed area. This 



 

266 

 

coincides with the theory that there was a partial liquid phase as a result of increased temperature. 

Hence the lighter Na and P concertation’s are less in the bridge after being lost to a gas phase. 

The loose/weak type of structures that led to the defluidisation of the bed didn’t occur with the 

uniform bed as the mixing/air flow broke up the structures. However, with the air flow altered as it 

was, these types of structures were able to propagate significantly enough to impede the bed and 

fluidisation.  

Figure 7-32 shows a series of SEM images and SEM-EDX measurement locations from point 

of interest for samples collected form the combustion of oat pellets. The images are follows; 

1) bed particles coated in agglomerate complex, 2) bed particle bonded to ash, 3) fibrous 

agglomerate structure, 4) surface of agglomerate, and, agglomerate bridging point. 
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7.3.3.2 XRF 

Figure 7-34 shows the XRF results of a bed sample taken after the combustion of oat pellets. The 

XRF results correlate with the species identified by the SEM-EDX analysis in the previous 

descriptions. 

Figure 7-33 SEM-EDX results for the points of interest samples analysed and described in 

Figure 7-32 

Figure 7-34 XRF analysis of agglomerated bed samples taken after testing from the 

combustion of oat pellets in a BFBC with non-uniform air distribution 
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The results show that during the combustion of oat pellets with a non-uniform bed the onset of 

agglomerate formation was dominated by Fe and Si alkaline groups. Furthermore, Na and K were 

lost in the gas phase indicating elevated temperatures as well as their potential initial impact on the 

formation of agglomerates. This was influenced partially by the air flow and was seen in the 

uniform tests to occur in a slightly different mechanism. 

7.3.4 Straw Pellets 

Figure 7-35 shows the temperature, pressure and emission measurements made during the 

combustion of straw pellets with the non-uniform plate installed. 

The defluidisation time while combusting straw pellets was the shortest biomass test (10 minutes 

max) and thus was repeated to check validity of the results. The same result was found in the repeat.  

At point A in Figure 7-35, the pre-heat sequence finished and gas was switched off for straw pellets 

as the primary method of combustion. The bed temperatures immediately reach 750-850°C as 

intended and rig pressure initially indicate stable conditions in the bed and flame. However, within 

8-10 minutes the bed temperatures sharply decrease to a range of 500-700°C. Additionally, the bed 

pressures reduce to values indicating no resistance by the bed. Throughout this period A to B, the 

CO and CO2 emissions fluctuate. At point A to B there were significant problems in the bed. 

Point B to C shows on all graphs, sudden and catastrophic failure of the bed. The bed temperatures 

spike and with bed A reaching ≥1180°C, which would allow for sintering. Bed pressure remain at 

levels indicating little bed fluidisation/mixing. CO emissions fluctuated and fell between 100-500 

ppm with O2 fluctuating from 14 to 21 vol.%.  

The bed agglomerated within minutes of the fuel entering the bed. As the emissions indicate, 

combustion wasn’t steady and the presence of variable CO indicate localised combustion with the 

presence of reducing environments. When CO fluctuates in the extreme and O2 reaches atmospheric 

concertation’s, it is assumed air is passing through the bed without interacting with fuel in the 

combustion zones. This can only happen through the designed leakage point. 

With air bypassing combustion zones the fuel built up under the feeder point with poor mixing 

within the bed. This is the reason for the temperature spike. It is likely that directly under the feeder 

was ≥1200 °C as the thermocouples were centred to the bed and thus the fuel would have spilled 

over in a pile to generate the measured temperatures. 

The early and significant onset of agglomeration is evident by the pressure measurements. As soon 

as the temperatures slump there is and excessive pressure measurement to accompany them. This 

shows that the air isn’t fluidising the bed and is likely moving primarily through the leak point. The 
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Figure 7-35 Temperature, pressure and emissions data collected during the combustion straw 

pellets and defluidisation of the bed with a non-uniform air distribution plate installed 
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fuel is known to agglomerate fast and aggressively as seen in the uniform plate tests and fuel 

characterisation. The fast formation of agglomerates, even if weak initially in the test, was enough 

to interfere with mixing the bed material and hence allow the leak point to reduce in bed height. 

This then resulted in air reduction in bubble caps and for the agglomeration to accelerate whilst 

temperatures increased which will have created the onset of further structures within the bed. 

This all culminated to the failure of the bed speedily and aggressively. The agglomerates found in 

the bed were large, hardened and present throughout the bed apart from around the leak point. 

7.3.4.1 SEM-EDX 

Figure 7-36 shows SEM images and Figure 7-37 shows SEM-EDX analysis conducted on samples 

taken from the bed after combustion of straw pellets with the non-uniform air distribution plate 

installed.  

The agglomerates found from these tests were much more relatable to those in the uniform air test 

with straw pellets. Image 1 and 2 show the surface of the agglomerates and the coating of sand 

particles with thick alkaline eutectic layers dominated by Si and K. 

Furthermore, to the similarities found, image 3 shows the embedding of sand particles with 

agglomerates which have been made up of a liquid phase impregnating sand particle pores. K and 

Si are the major constituents of the structures. Image 4 shows the surface of a bridging point 

between agglomerates in which large concertation’s of Fe were found. This is similar to the 

mechanisms found in the uniform air test bridging. 

Whilst the branching seen in image 5 is reminiscent of the results previously discussed, with SEM-

EDX showing clumping of alkaline species, the formations shown in image 6 also occurred. 

Branching occurs from particles moving of the sticky surfaces of the agglomerate. However, the 

structures in image 6 contains clustering/branching points alongside molten liquid, bubbled phases 

which are in many cases hollow. The strength of these structures is weak and brittle. As a result of 

the immobilised bed/ poor mixing as a consequence of the non-uniform plate, these areas seem to 

have melted/entered a liquid phase instead of adhering to a bed particle and thus propagating the 

agglomerates. Instead a weaker structure is formed with more spaces between particles and more 

solid, smaller concentrated agglomerates (such as image 3). 
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Figure 7-36 shows a series of SEM images and SEM-EDX measurement locations from point of 

interest for samples collected form the combustion of straw pellets. The images are follows; 1) 

enhanced area of agglomerated surface, 2) break away section of agglomerated bed particle, 3) 

cross section of agglomerate, 4) surface of fused area between agglomerates, 5) branching on 

surface of agglomerate, and, 6) complex structures between agglomerates. 
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7.3.4.2 XRF 

Figure 7-38 shows the XRF results of bed samples taken after the combustion of straw pellets in a 

non-uniform air distributed system. The data correlates with the results of the SEM-EDX data. 

Straw pellets were shown in Chapter 4 to have high levels of K (6-26%), Ca (4-76%) and P (21-

44%) which relates to the higher concentrations measured in XRF analysis of bed samples. The 

data for straw pellet samples further adds evidence to the importance of K, Fe, Ca and in some 

cases P to the formation of agglomerates in fluidised beds. 

Figure 7-37 SEM-EDX results for the points of interest samples analysed and described in 

Figure 7-36 
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The XRF analysis shows fluctuation in the analytes found within the samples taken from the bed. 

The samples were taken from different regions in the bed but indicates that areas experienced 

different localised fluidisation and localised combustion and as such different concentrations of 

agglomerate formed. Alternatively, this could be an indication of the variability in chemical and 

physical makeup of the pellets and its impact on agglomerate formation. 

7.3.5 Miscanthus Pellets 

Figure 7-39 shows the temperature, pressure and emission measurements made during the 

combustion of Miscanthus pellets with the non-uniform plate installed. 

Miscanthus is similar to straw as previously described and for this reason it was assumed that it 

would react similarly in the rig as straw pellets. It was found that the Miscanthus pellets defluidised 

the bed slower than straw pellets (10 minutes difference). 

Once the pre-heat period had finished and gas was replaced by miscanthus pellets the bed 

temperatures started to fluctuate, as shown by period A to B. At point B Bed A temperatures spikes 

to ≥1100°C and then fall to approx. 550°C. Between point B and C bed temperatures A fluctuates 

by approx. 250°C. These sudden changes are the result of the bed slumping and bed material 

movement stalling. The bed wasn’t completely defluidised in this period and so it is likely that low 

air moment broke through the bed and caused localised mixing. However, at point C Bed A 

Figure 7-38 XRF analysis of agglomerated bed samples taken after testing from the combustion 

of straw pellets in a FBC with non-uniform air distribution 
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Figure 7-39 Temperature, pressure and emissions data collected during the combustion 

Miscanthus pellets and defluidisation of the bed with a non-uniform air distribution plate installed 
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temperatures plummets to ≤300°C and remains there. The other bed temperatures remain at ≥700 

°C. The fuel is falling into the void created by the leak at this time and combusting fuel at a constant 

rate which is the reason for the constant temperature. The bed isn’t uniformly heated and the fuel 

isn’t mixing in. Instead the fuel is combusting near the thermocouple locations, and thus non-

representative temperatures of the bed as a whole. 

The pressure reading from this test are very similar to that of previous tests in which the bed has 

agglomerated and defluidised with the leak in place. Point A shows the end of the pre-heat and the 

immediate collapse in ideal pressures. The pressures changes at point B to C coincide with the 

temperature changes seen in the bed. This suggests a change in the mixing in the bed. When the 

bed mixing fluctuates, the temperature fluctuate dramatically. It is with these fluctuations in 

pressure that the air is changed in flow through the leak and bubble caps. As the leak point fills 

with falling material the pressure returns to more stable conditions (not ideal) and as a result the 

returned air flow in the bubble caps causes better mixing, increasing distribution and thus 

temperatures return to more normal operational ranges. Once the leak loses material and air flow 

through the bubble caps have less flow and hence poor mixing etc. resulting in temperature drops. 

When the bed completely defluidises with the presence of extensive agglomeration at point C the 

Bed A temperature fell and the pressures indicate little if any flow resistance across the bed. 

The emissions data also coincide with the sudden onset of poor mixing and formation of 

agglomerates in the bed. After preheat (point A), the emission concentrations begin to settle to 

stable combustion ranges. However, at point B, when the bed is clearly destabilised and 

flow/mixing is impeded the CO emissions reflect the changes in the bed with fluctuations and 

increased in concentration to ≥250ppm. All other emissions fluctuate with the changes seen in the 

pressure and temperature measurements. They become stable when defluidisation and 

agglomeration have set in due to channelling 

7.3.5.1 SEM-EDX 

Figure 7-40 shows four SEM images and Figure 7-41 shows SEM-EDX analysis conducted on 

samples taken from the bed after combustion of miscanthus pellets with the non-uniform air 

distribution plate installed.  

Agglomerates from the Miscanthus tests presented a collection of individual agglomerating 

phenomena which has been seen in variations in other tests. 

Image 1 shows an agglomerated bed particle and the subsequent attachments of smaller particles 

and materials to the sticky surface. The SEM-EDX data indicates that the complex is primarily Si-

K and thus the surface is expected to be sticky and adhesive. 
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Image 2 shows branching embedded on a series of bridges made up of an ash molten phase. The 

results here correlate with the findings of previous analysis. The molten regions analysed have low 

concentrations of species except Si-K. Whereas, the branched areas contain clusters of species. It 

is reasonable to assume that when the eutectic is heated sufficiently to enter the liquid phase, which 

lower temperatures species are lost to the gas phase. 

Figure 7-40 shows a series of SEM images and SEM-EDX measurement locations from point of 

interest for samples collected form the combustion of straw pellets. The images are follows; 1) 

agglomerate and cross section, 2) branching on molten agglomerate area, 3) surface of 

agglomerate, 4) branching to bridging mechanism, 5) liquid agglomerate branch like complex, 

and, 6) branching on agglomerate surface 
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Image 3 shows the surface of a bed particle being engulfed by a liquid phase eutectic made up 

primarily of Si, Ca and K. The particles have an ash particle adhered to it and has thus become 

immobilised. Localised heating or poor mixing within the agglomerated region has led to a 

temperature increases and thus the eutectic has formed a liquid phase. 

Image 4 shows extensive branching coming from a bed particle. The structure is seen to make up 

of a series of extending branches. Within the core of the extension can be seen a molten region, yet 

the surface is made up of non-liquid phase eutectics. The branching has formed when a liquid phase 

has adhered to branched regions and ash within the bed and thus the structure has grown. This was 

not found in the uniform bed tests because the lower air flow rates here allow for the structure to 

Figure 7-41 SEM-EDX results for the points of interest samples analysed and described in 

Figure 7-40 
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exist. Any vigorous mixing would likely break up these structures. Therefore, there is an effect 

here of the propagation of agglomerates as a result of poor air flow/mixing. 

Image 5 and 6 show another example of branching and extensive web like structure within the 

agglomerated masses which didn’t exists with the uniform plate. The structures in image 5 contain 

concentrations of Si-K-Ca. The branched effect seen in image 6 also contains Si-K-Ca but with the 

addition of other alkaline species. It is theorised that the web structure is a result of branches 

extended as particles moving against the branches adhere and then break free, but in doing so extend 

the branches in a direction. By repeating this mechanism, the formation of the weak web structure 

builds up. Once again however, this type of structure wasn’t found in the uniform tests. The 

structure didn’t exist with good mixing and thus emphasises the effect of poor mixing on 

agglomeration propagation. 

7.3.5.2 XRF 

Figure 7-42 shows the XRF results of agglomerated bed sample taken after the combustion of 

miscanthus pellets. Whereas with previous XRF analysis of bed samples taken after the combustion 

of biomass with a non-uniform air distributor in place, the concentration of species other than Si 

are higher. 

Figure 7-42 XRF analysis of bed samples taken after testing from the combustion of 

miscanthus pellets in a BFBC with non-uniform air distribution 
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Alkaline species K, Ca and Fe were again seen to be a majority contributor to the formation of 

agglomerates. This agrees with previous fuel characterisation and SEM-EDX analysis. 

Furthermore, the XRF analysis shows how the reduced fluidisation in the bed leads to the increased 

formation of more brittle agglomerates made up of species seen less in more strengthened 

agglomerates.  

7.4 Discussion 

The following section will discuss the performance of the two plates, the performance of the 

biomasses in these systems by evaluating agglomeration mechanisms and tests performance and 

finally conclude on findings to solutions to problems found during the previously described tests. 

7.4.1 Fuel Performance 

A key objective of this investigation was the applicability of biomass fuels as a combustion fuel in 

fluidised bed combustors at industrial scale and thus their implication and full scale. A large number 

of tests have been shown in previous sections with variable success in sustained operation. The 

following data in Table 7-1is a summary of the outcomes produced during stable operation of each 

biomass.  

The data summarised in Table 7-1 illustrates the differences in combustion characteristics between 

the fuels, the effect of the distribution plates on the combustion environment and demonstrates the 

variability of operation when combusting biomass fuels. 

As the data illustrates, there was variability between the temperatures achieved in the bed, above 

the bed and at the furnace exit. This was a direct result of the combustibility of each biomass and 

the respective combustion zones associated with each biomass. Wood pellets were found to be the 

most stable in terms of combustion which is seen in equal distribution of temperatures through the 

furnace and the smallest range of emissions. However, when compared to a problematic fuel such 

as Miscanthus which had large emissions ranges and larger fluctuations in temperature. The data 

gives an indication to the applicability of each biomass and the potential difficulty for employing 

each fuel in FBC at pilot scale and full scale facilities.  

The data in Table 7-1 also shows the differences associated with a uniform air distribution system 

and a non-uniform air distribution system. Wood as an example, has a different, more erratic 

temperature spread for the non-uniform air system when compared to the uniform air system. The 

difference comes as a result of poor fuel distribution caused by the lower mixing and turbulence of 

the bed due to the non-uniform air plate. Consequently, the combustion of fuel is less uniform and 

as such the temperatures within the furnace fluctuate causing the wider temperature ranges and  
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Table 7-1 Summary data for the combustion of biomass fuels in a fluidised bed combustion unit 

Fuel  Wood Peanut Oats Straw Miscanthus 

Temperatures (°C)       

Uniform air 

bed 
700-

750 

698-

875 

690-

899 

550-

690 
560-920 

freeboard 
750-

780 

580-

790 

520-

810 

310-

380 
540-715 

boiler exit 
300-

340 

420-

518 

200-

301 

370-

410 
200-250 

Non-uniform air 

bed 
870-

880 

775-

885 

790-

860 

650-

800 
655-812 

freeboard 
730-

860 

610-

815 

650-

770 

540-

760 
582-781 

boiler exit 
300-

585 

460-

650 

500-

630 

242-

340 
416-632 

Emissions       

Uniform air 

CO2 (vol.%) 7-8 3-8 4-10 1-6 4-10 

CO (ppm) 53-60 
140-

250 
8-420 86-240 4-250 

NO (ppm) 1-15 1-30 0-16 33-120 11-160 

SO2 (ppm) 1-8 0-150 0-159 20-30 15-62 

Non-uniform air 

CO2 (vol.%) 5-7 6-7 6-8 3-9 5-8 

CO (ppm) 1-78 7-127 21-57 21-311 48-178 

NO (ppm) 
150-

169 

250-

348 

250-

331 

140-

278 
176-260 

SO2 (ppm) 16-38 9-20 17-37 7-33 13-80 

Defluidisation time 

(min) 
      

Uniform air N/A 83 48 55.5 43 

Non-uniform air N/A 76 135 33.5 74 

SEM-EDX1       

Uniform air 

1 Fe K K K Fe 

2 Ca Ca Fe Ca K 

3 K P Mg Fe Na 

Non-uniform air 

1 K K K K K 

2 Ca Ca P Ca Fe 

3 Fe Na Ca Fe Fe 

XRF2       

Uniform air 

1 Fe K K K Fe 

2 Na Ca P Ca Ca 

3 Ca Fe Fe Fe K 

Non-uniform air 

1 Ca Fe Fe K Ca 

2 K K K Ca K 

3 Fe Ca Na Fe Fe 

1. Ranking of analytes concentrations based on SEM-EDX analysis. 

2. Ranking of analytes concentrations based on XRF analysis. 
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emissions variations. With respect to each fuel, a larger difference in the temperature ranges and 

emissions as a result of the air plate change is an indication of how flexible each fuel is within a 

damaged or variable system. The difference between wood pellets and straw pellets for instance 

would indicate that if a system were likely to experience and air flow changes then wood pellets 

would be more beneficial to that system.  

The results of differences in temperatures, emissions and the effect of the plate changes are further 

emphasised in the defluidisation times. This will be described further in subsequent sections, 

however, the differences in defluidisation times do not imply one plate is better than another. The 

effect of the combustion characteristics of each fuel directly influences the applicability of each 

fuel in a particular combustion environment. Oat pellets were seen to defluidise quicker in a 

uniform system than in a non-uniform system. This is due to the poor mixing and the in ability of 

ash particles to coat sufficient bed particles to agglomerate and cause local defluidisation required 

to propagate eutectic structures. However, the volatile mass was sufficient in the combustion zones 

in which air was passing to sustain temperatures and emissions associated with relatively good 

combustion. 

Table 7-1 also includes the three highest concentrations of alkaline species in bed samples taken 

after each test. Si was ignored for the purpose of this summary as the majority of silicon can be 

assumed to be from the bed material. Whilst the fuels contained variable concentrations of Si and 

was seen to form silicate glasses etc. it is the other components and their interactions with Si which 

are most significant to the formation of eutectics and agglomerates.  

The effect the fuels had on agglomerates and air flow will be described in subsequent sections 

however, the ranking of concentrations shown in Table 7-1 illustrates the similarities and 

differences in agglomerate and slagging mechanisms between each fuel. The fuel characterisation 

results of Chapter 4 correlates to the build-up in concertation of alkaline species such as K, Fe and 

Ca in the bed samples, however, the combination of high concentration alkaline species for each 

fuel indicates which fuel is likely to have the highest agglomerate forming potential. Furthermore, 

with a change in air distribution plate, fuels such as peanut has a change in the three analytes. This 

indicates that there is likely more than one mechanism for agglomeration and slagging associated 

with that fuel and thus could be more problematic than another. 

The results show that the wood pellets were easiest to sustain stable operation with, which can be 

associated with its primary alkaline species in the bed samples as well as showing least variability 

between plates. The lower ash content in the wood pellets and the contents pf that ash being made 

up of less problematic elements with regards to agglomeration resulted in the reduced 

agglomeration rates and stability of bed fluidisation throughout tests. This combination of 
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information when compared to another biomass such as Miscanthus which was the opposite is each 

regard, demonstrates the applicability of each fuel in FBC systems. Furthermore, it demonstrates 

how the different fuels will achieve different combustion dynamics and offer different challenges 

in pilot and full scale operations. 

7.4.2 Operational Performance 

There was a difference in both the ease of which the rig could be operated with the different plates 

installed as well as the overall performance of combusting biomass pellets with two different plates 

installed. Figure 7-43 will be used to highlight and describe the differences found in the operational 

performance with the two different plates installed. 

When operating the rig with the uniform plate installed it was found that the sustained and stable 

operation was much easier to both alter and control. With uniform air being distributed throughout 

the bed, less air was required to fluidise the bed material. This resulted in reduced O2 concentrations 

in the flue gas and combustion and operations were conducted at excess O2 levels closer to desired 

concentrations (10 vol. %, excess air 120%). For this reason when adjustments were made to the 

bed in terms of air flow, fuel flow etc. the bed and system would react as expected. This was due 

to the system always being in steady state and changes such as air flow being an even change to 

the system. Whereas when the non-uniform plate was installed an air change wouldn’t necessarily 

Figure 7-43 Defluidisation time of different biomasses with a uniform and non-uniform 

distribution plate installed 
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affect the whole bed but present a higher flow through the leak and lead to chain reactions that 

reduced the performance of the bed.  

It was found that when the non-uniform plate was installed the bubbling of the bed and fluidisation 

was both more difficult to control and predict. The leakage point required a higher air flow (≥10000 

L/min) to fluidise. The leakage allowed a high throughput of air and without a high airflow it was 

found would move through the leak rather than the bubble caps because of the resistance caused 

by the weight of the bed surrounding the bubble caps. Further to this, if air flow and fuel flow were 

altered, it was assumed that a proportion of the flow change was effecting most of the bed but an 

unquantifiable effect was being caused by the leakage point. For this reason system change had to 

be in larger value than with the uniform plate and caused more extreme variation in the operation 

of the bed. Overall the performance of the bed and rig was hindered and made much more complex 

with the leakage present than with the uniform plate installed. 

There was a difference in the rate of defluidisation between the two plates. As Figure 7-43 shows, 

different fuels had different defluidisation times and more over the plate installed in those tests 

seemed to influence the defluidisation time further.  

Wood pellets did not lead to the defluidisation of the bed but instead the period in which the test 

could run limited running time and thus the tests were ended. Each of the other fuels with both 

plates installed led to defluidisation by the formation of agglomerates. The difference in 

defluidisation time between the two plates for a fuel such as oat comes down to operational changes 

caused by the presence or lack of an air leak. With the uniform plate installed the pre-heat time was 

almost double the length of the leakage plate test. With the uniform air plate the air was distributed 

evenly throughout the bed during pre-heat and in doing so acted as a cooling factor to the bed. 

Further to this heat absorbed by the air in the plenum and bed led to an increased temperature in 

the midfreeboard and top freeboard region (regardless of over bed burner presence). Whilst the 

uniform plate led to better heating of the rig overall, it also limited the heat rate of the bed which 

was the limiting factor before fuel could be fed into the bed and thus limited the operational time 

achieved with biomass pellets being the primary form of combustion. With the leakage plate a 

significant proportion of the air passed through the leak rather than the bubble caps. In doing so, 

the area around the leak was cooled but the bubble caps and surrounding bed were heated much 

faster. As soon as the average bed temperature was ≥400 °C, the bed density reduces significantly 

and mixing increases around the bubble cap and eventually bed. This mechanism leads to a much 

quicker heating of the bed but at a consequence of the upper freeboard regions being cooler than 

with the uniform plate installed. This has implications to CO conversion and oxidation reactions, 

especially if tests were run for 24 hours for instance. The increasing temperature in the upper 
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freeboard would alter flue gas composition over time. However, because of the relatively short 

period in which these tests were run, changes in the flue gas composition were found to be due to 

operational changes rather than by freeboard temperatures in this capacity. 

The time between the end of the pre-heat period and the defluidisation of the bed/end of the test 

are represented by the values shown in Figure 7-43. The results show that when the uniform plate 

is installed the Peanut and straw tests take longer to defluidise. Whereas with the leakage plate 

installed oats and Miscanthus take longer to defluidise. This is due to the alkali species found to be 

within the agglomerates and is further discussed in following discussion. However, alkali species 

aside, the leakage plate was predicted to limit defluidisation time across all fuels. It was found that 

the leakage point created a region in the bed of high mixing and high turbulence therefore, 

increasing the number of localised collisions and the force of those collisions. This acted to break 

up weaker agglomerated structures and thus extend the time before agglomerate size led to 

defluidisation. As later discussions show, the presence of Mg-P-Si eutectic dominated 

agglomerates would back up this theory as this type of eutectic and stricture are known to be weaker 

than eutectics found in the uniform tests which were made up primarily of Si-Fe complexes. Hence 

the uniform tests lasted longer in fuels in which these species were in lower concentrations in the 

fuel ash and the opposite with fuels with higher concentrations of the species. 

There were clear differences in the performance of the rig and bed when the two plates were 

installed. With the uniform plate installed the bed was easier to control but because of the 

experimental design changes the fuel flow required to achieve the desired bed temperatures was 22 

kg/hr rather than 35 kg/hr when combusting wood pellets. This is due to the increase of thermal 

mass around the bed area and the increase in both insulation, reflection of heat back in to the 

combustion chamber and most importantly ideal combustion and ideal fluidisation /mixing in the 

bed. 

7.4.3 Impact on Fluidisation 

The uniform plate resulted in good mixing throughout the bed, less dead zone regions, fewer 

hotspots and all inlet air being exposed to the bed around the bubble caps. The impact on 

fluidisation was that the bed was fluidised uniformly and mixing was seen across the bed rather 

than in specific zones. The uniform plate created an across bed ΔP of approx. 1.8 KPa which was 

higher than that of the non-uniform plate. The result was the leak which bypassed the bed and thus 

the pressure within the plenum was less than with the uniform plate and the negative pressure in 

the freeboard for the uniform tests was more negative because of the bed obstruction compared to 

the non-uniform plate bypassing the bed which induced a less negative freeboard pressure. 

Furthermore, small changes in air flows and fuel feeding were seen to make an equal change to the 
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bed and combustion zone. This was a direct result of good combustion. Whereas with the non-

uniform plate installed larger changes were required to see changes in the data readouts as more 

significant air flows for instance were required to alter the bubbling bed. 

The non-uniform plates leak meant that the bed fluidised bit for very short periods of operational 

time. With the high velocity exit at the leak the bed material would be displaced and a chain reaction 

of higher velocity and less resistance by bed material would occur. This directly impacted the air 

flow through the bubble caps. With more air leaking through the bed leak, the resistance caused by 

med material around the bubble caps overpowered the decreasing pressure of air moving through 

the bubble caps. This chain reactions slowly but eventually led to the air moving though the bubble 

caps becoming negligible and thus mixing, fluidisation and combustion all decreased in operational 

performance and condition. 

7.4.4 Impact on Combustion 

The air distribution plate impacted the way in which the air interacted with the fuel whilst 

combusting. The superficial velocity increased with the installation of the leakage plate as the inlet 

air flow was increased from 4000 L/min to 10000 L/min. As a result the heat from combustion in 

the bed was absorbed by the cooler inlet air. This led to the distribution of heat throughout the rig 

moving from the rig into the freeboard. 

Figure 7-44 shows the combustion profiles from biomass tests when the uniform air distribution 

plate and non-uniform distribution plate was installed. With the non-uniform distribution plate 

installed the bed temperatures within the bed (between 0 and 0.7m), were ≥800 and <850 °C. 

Furthermore, the lower freeboard (1.5 m) and mid freeboard (2.0 m) were found to be 

approximately ≥800°C and ≤700°C respectively. Whereas with the uniform plate installed the 

average bed temperature was ≥950 °C with the lower free board and mid freeboard averaging ≤700 

°C and ≤550 °C respectively.  

The explanation for the difference between the plates comes down to a number of factors; 1) the 

air though put of the plates, as previously described, was higher for the non-uniform/leakage plate. 

The air moving through the leak point was significant and because of the localised poor mixing etc. 

will have bypassed most of the combustion and instead acted to cool the bed and localised area. 

Whereas the uniform plate has all air coming through into combustion zones and being heated so 

less cooling affect was seen in the bed region, 2) mixing was less turbulent in the non-uniform test 

as a result of air passing through the leak and less through the bubble caps. The poor mixing meant 

fuel was found nearer the surface of the bed and the volatile flame associated with biomass 

combustion was combusting above the bed and in the lower freeboard regions, hence the bed 
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temperature is less than the uniform plate and has higher freeboard temperatures in the lower 

freeboard than the uniform plate. Furthermore, the turbulent mixing of the uniform bed mixed the 

pellets thoroughly and hence combustion was primarily within the bed and the volatile flame 

combusted within the bed rather than in the freeboard regions, and, 3) uniform combustion as a 

result of turbulent mixing and uniform air distribution was seen with the uniform air distribution 

plate but with the leakage plate was seen to either combust in specific regions or on the side nearest 

to the screw feeder inlet. With the uniform plate the ideal operation of the bed meant fuel combusted 

evenly within the bed, however, with the leakage plate, all the negative implications meant that 

combustion wasn’t uniform across the bed. This limited the combustion and thus the energy release 

form the biomass plate and is represented as a lower peak temperature compared with the uniform 

plate. If the fuel wasn’t mixing into the bed, good combustion would be seen as higher temperatures 

at the top or in the lower freeboard. However, the temperatures here never match the peak 

temperatures of the uniform plate’s bed temperatures. Hence combustion was operating much more 

ideally with the uniform plate installed.  

The implications to combustion between the two plates are evident within the results of the tests 

and the combustion profiles. With the uniform plate installed the mixing was more turbulent and 

uniform and thus fuel was combusting within the bed under more ideal conditions. Whereas with 

Figure 7-44 combustion profiles using wood pellets from across the rig with different air 

distribution plates installed 
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leakage plate the opposite was the case where good mixing and distribution of both air and fuel led 

to the combustion of fuel being more ideal and contained within the bed as desired and thus 

temperatures represent the ideal combustion in the desired bed area. 

Implications to agglomeration with the two different plates is significant. With the leakage plate 

installed, mixing was hindered and the formation of hotspots occurred. As a result of this 

agglomeration through a mechanism dominated by Fe-Si-P-Ca eutectics was found to form at 

increasing rates. Further to this, the localised hotspots caused by the poor mixing with the leak plate 

will result in sintering mechanisms propagating agglomerate growth and strength.  

The poor mixing caused by the leakage plate was found to cause poor distribution of the pellets 

throughout the bed and in a number of tests for the pellets to be combusting on the surface of the 

bed and not within. Therefore, there is a higher concentration of liquid/melt phase’s alkali species 

in these heated fuel rich zones. This causes significant agglomeration rate due to the high 

concentration and availability of eutectic in these zones which will develop agglomerates of 

significant strength and size more quickly than in other regions of the bed. 

The leakage led to a smaller amount of bed material being exposed to the biomass pellets. 

Therefore, as the initial eutectics were forming, smaller volumes of bed material were exposed to 

the sticky complexes. Thus, a more significant volume of eutectic was present in the small volume 

of bed material but resulting in agglomerated structures forming in significant quantities and total 

size, much faster than if an even distribution of the eutectic was distributed throughout all bed 

particles.  

The poor mixing and onset of agglomeration are evident by the structures and distribution of the 

agglomerated structures as shown in Figure 7-45.  

A significant result of the poor mixing and regions of low if any mixing was the finding of eutectics 

and agglomerated structures which were not present in the uniform distribution tests. Crystallised 

structures with concentrations of Mg-K-P were found to be present but not in the uniform test 

samples. It is believed that these weaker structures were able to contribute to the formation of larger 

agglomerated structures and thus increase the rate and size of agglomerates forming in the leakage 

tests. Furthermore, areas in which stationary pellets had combusted with no bed movement, caused 

bubble like features (examples in Figure 7-24), in which a bubble shape made up of liquid phase 

alkali species were able to form. The result being the localised area was made up of a sticky melt 

which would propagate the agglomerate growth further. 

However, when the uniform distribution plate was installed and the tests were repeated and 

compared, it was found that the previously described phenomena couldn’t exist. The even air 
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distribution and constant turbulent mixing of bed particles throughout meant that localised hotspots 

were reduced in number, fuel was mixed throughout and less localised concentrations of alkali 

species were able to form, weaker structures were broken up by the moving particle collisions and 

the primary eutectic was made up of Fe-Si-K complexes.  

Agglomerates still formed with the uniform plate installed, however, the increased overall average 

bed temperature is likely to have contributed to the onset of agglomeration. Biomass fuels have 

higher agglomeration potential due to their high alkali and alkaline species concentrations. 

However, the addition of increased bed temperatures acts to create a liquid phase in the bed and 

thus provide the environment necessary to form agglomerates. The uniform plate altered the way 

in which the agglomerated structures propagated in size once the initial eutectics had formed whilst 

offering greater operational stability and control. 

7.4.5 Biomass and Fluidised Bed Combustion 

Biomass combusted in a bubbling fluidised bed was found to cause both benefits and repercussions 

to the system in a number of aspects. Most significantly and foremost is the agglomeration caused 

by the presence of alkali and alkaline species in high concentration in the fuel. The presence of Si, 

K, Fe and P was found to be the main components within the agglomeration mechanism evident 

by the measurements made in the agglomerates taken from the bed. The presence of the alkali 

species led to the formation of complexes/ low temperature eutectics which coated the particles 

within the bed. As such the bed particles became sticky, adhered to one another in the bed and thus 

the agglomerates formed. Through hotspots and localised poor mixing the alkali species in the 

biomass pellets led to sintering and structures representing those mechanisms to form. Whilst alkali 

Figure 7-45 Agglomerated bed as a result of combusting straw pellets 



 

289 

 

species are present in other fuels such as coal, it is clearly evident that in these test the high 

concentrations of K, Na etc. components led to increased rates of agglomerate formation and the 

onset of defluidisation as a result. Furthermore, the XRF data in the fuel characterisation and the 

XRF data of the agglomerates and bed material show that the high concentrations of specific alkali 

species can be related to the higher rates of agglomerate formation. It is for this reason that such 

significant differences in defluidisation time can be seen between fuels in Figure 7-43. 

Another unforeseen consequence of using different biomass pellets was the effect on the flame and 

combustion environment within and above the bed. As data in both the uniform and non-uniform 

sections described previously show different fuels combusted in different manners regardless of 

similar operating conditions. This is due to the physical makeup of the pellets in terms of what part 

of the plants were used to make up the pellets and the way in which the pellets broke up during 

combustion. White wood pellets generated very stable combustion environments with particles 

breaking up and burning at a fairly even rate throughout the bed. This can be seen by stable 

temperatures when a steady state fuel feed was applied. Whereas when you compare the wood 

pellet combustion to the peanut pellets combustion results, where the temperature profiles were 

fluctuating by >400 °C with operations running in steady state. The bed, inlet air, pressure 

difference etc. were all similar between these tests, therefore, the pellets themselves and the way in 

which they combusted is the only explanation for the difference. 

The biggest benefit in stable operations was that the emissions from the combustion of the pellets 

were low with respect to NO, SO2 and CO. The fuels combusted completely until the onset of 

agglomeration was found to alter mixing etc. and thus alter the combustion environments between 

oxidising and reducing atmospheres. Slight variations in emissions were noted between biomass 

fuels, however, the values recorded were negligible with respect to the total emission. This is 

especially true for NO concentrations measured and shows the tests again ran well as the low NO 

emissions are typical of the cooler flame in a fluidised bed combustor. 

7.4.6 Implications to Full Scale Plant 

With the combustion of white wood, the tests demonstrated that sustained operation of BFBC while 

combusting biomass is possible and generates emissions desirable by full scale operations in the 

energy industry, especially when considering the decreasing emissions limits being implemented 

throughout Europe and the UK. However, all biomasses demonstrated some form of agglomeration 

with wood having the least potential and straw having the highest potential for agglomeration. If 

these fuels were to be utilised in full scale operations the beds would be larger but the higher fuel 

flows would balance out this factor. Special attention would be needed to combust these fuels in 

full scale BFBC. However, the concept has been proven in the work of this study.  
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The consequence of a leak of damaged plate was shown to alter agglomeration and in most cases, 

increase the rate of eutectic formation. If a leak were found in a full-scale operation the size of the 

leak could be the leading factor to determine the extent of the issue. In the pilot scale tests the leak 

represented 2 broken bubble caps because of the area the hole occupied. In full scale operations 

hundreds of bubble caps would be used and the interference of a couple of bubble caps would only 

create small issues in the bed. However, it could lead to localised poor mixing and hotspots and 

thus initiate the first stages in agglomerate formation. Therefore, the work here shows that a large 

leak would cause combustion, mixing and temperature distribution problems. However, for this to 

occur in a full-scale operation, pressures and temperatures throughout the bed would have been 

seen to alter and this could be addressed at the next planned outage without major influence on the 

performance of the combustor. 

7.4.7 Potential Remedies 

The results of the previously described investigation have shown that K, Si, Fe and Ca are chemical 

components fundamental to the formation of agglomerates in the bed. There are a number of 

process and techniques that could be employed to reduce the likelihood of agglomeration related 

mechanisms causing bed defluidisation and/or an unexpected outage of the furnace: 

7.4.7.1 Bed Cleaning 

A widely-adopted method for the maintenance and reduction of agglomeration related mechanisms 

is online cleaning of the bed. This is done by bleeding of the bed at a constant rate or removing 

partitioned sections of the bed. This is then sieved to remove bed material and particles which have 

clumped together. The “clean” material which isn’t removed is then returned to the bed. By doing 

this the build-up of agglomerates is reduced or controlled and hence a FBC unit can be kept online. 

There is an associated cost with this process but it often outweighs the cost of an outage and boiler 

clean (Basu, 2013a; Oka, 2003). 

7.4.7.2 Bed Material 

As the results of this investigation demonstrated, silicates containing and varying concentration of 

potassium, sodium, calcium and iron were the primary cause for agglomerate and slag mechanisms 

in the bed. Therefore, a potential method for addressing these specific alkaline species would be 

through the use of alternative bed materials. The sand used in the experimental testing was silicon 

based and thus aided the propagation of agglomerates. However, if an alternative mineral such as 

olivine were to replace the silica sand then the agglomeration mechanisms could potentially be 

mitigated.  
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Olivine is a mineral made up of magnesium iron silicates which falls under nesosilicates. The high 

concentrations of Mg2+ and Fe2+ leads to a number of reactions with alkaline groups such as K and 

Na forming a surface on the olivine bed particles with a higher melting temperature than with a 

silica sand. This results in bed material being coated but with very few bridging interactions 

occurring between particles and thus there is little if any agglomeration related propagation and 

structure build up in the bed (Grimm et al., 2012). A number of studies have been conducted to the 

application of olivine in fluidised beds for their tar removal uses as well as agglomeration 

mitigation properties (Grimm et al., 2012; Fryda et al., 2008; Virginie et al., 2012; Koppatz et al., 

2011). The data in the literature has shown that with high alkaline concentrations in fuels for 

fluidised bed combustion, olivine can have positive impacts on bed fluidity. However, 

consequences of olivine are focused to fouling effects seen in economiser regions due to KCl 

release and particle size elutriated in the flue gases due to olivine’s high attrition rates. However, 

the severity of the agglomeration mechanism seen in the fuels of this study require some form of 

system modification to ensure sustained stable operation. 

7.4.7.3 Additives 

An alternative means to address specific chemical components within the bed which are attributed 

to agglomeration is the addition of additives. Kaolin for instance is a mineral dominated by 

aluminium silicates. Aluminium silicates have been seen in a number of studies (Davidsson et al., 

2008; Vamvuka et al., 2008; Steenari and Lindqvist, 1998; Davidsson et al., 2007; Öhman and 

Nordin, 2000) to increase the melting temperature of bed material and bottom ash particles. By 

injecting a mineral such as kaolin either directly into a furnace or mixing it in with the fuel there is 

a simplistic method available to mitigate specific chemical components within the bed and thus 

improve the fuel. Alternative additives are available including pot ash, coal ash and steel industry 

residues, however, considering the data produced during this investigation, kaolin and aluminium 

silicate based additives are appropriate for the fuels concerned. 

The previously mentioned remedies for agglomeration of the biomass fuels were chosen for their 

impact regardless of a system in which the air is being uniformly distributed or in a situation in 

which it is not. Whilst there would be an impact on the efficiencies of additives, due to the reduction 

in mixing, there would still be benefits seen as a result of their addition. The remedies mentioned 

would prolong a bed even in the air distribution system was failing. Of course, there is a limitation 

to that statement but the options could be applied to prolong a bed to its next planned outage. 
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7.5 Conclusions 

Throughout this Chapter a number of biomass pellets were combusted in a pilot scale bubbling 

fluidised bed combustor. The objective of this investigation was to look at the effect of biomass as 

a fuel feedstock for FBC unit and the impact a uniform and non-uniform or damaged air distribution 

system would have whilst combusting biomass. 

Different biomass pellets were combusted in the pilot scale rig with varying success. Whilst stable 

operation was achieved with each fuel, the length of time before the onset of defluidisation was 

quite varied. All fuels other than wood pellets led to the formation of agglomerates which directly 

impacted fluidisation and consequently led to defluidisation of the bed. With this in mind, the 

biomass could be utilised in a FBC unit, however, the result suggests that different fuels would 

produce different challenges and degrees of success in sustained operation. 

The cause of the agglomerates in this investigation was a collection of alkaline species forming 

eutectics. The eutectics were found to be dominated by silicates containing varying concentrations 

of K, Ca, Fe and P. These alkaline species were coved in the literature review and have been 

reviewed for their connection to agglomerate formation.  Bed particles were found to be coated in 

a sticky layer made up of the aforementioned alkaline species. When the particles collided with one 

another in the turbulent bed, the particles would stick together if conditions were correct. Localised 

mixing and temperatures led to the hardening of bridges between particles and the propagation of 

agglomerated structures within the bed. Larger structures were also found to have sintered regions. 

This was a result of localised defluidisation causing fuel particle sot combust in a stationary 

position and hence local temperatures increased to conditions in which sintering occurred. 

The air distribution plate was modified throughout the testing period to evaluate the effect of 

combusting the biomass fuels when there was a uniform air flow through the bed and when the air 

flow was non-uniform. The results showed that whilst a non-uniform bed created areas of good and 

poor mixing, this did not necessarily increase the formation of agglomerates. With fuels, such as 

Oat pellets, weaker agglomerates containing larger crystals made up of K and P were able to form 

in a uniform bed. However, in a non-uniform bed the high turbulent region acted to break up the 

weaker larger structures building up. Therefore, extending the lifespan of the bed. However, overall 

the impact of a non-uniform air distributor was on the furnace temperatures and subsequent 

emissions. Whilst a bed was flexible enough to continue combustion, the quality of the combustion 

and concentration of emissions was less desirable. The non-uniform plate led to combustion 

variation and flame fluctuations leading to hot and cold zones which directly impacted the 

formation of NO and CO. In a full scale unit, a small change in the air distribution plate would be 
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seen as a slow degradation of emission and temperature spread throughout the boiler. However, the 

plate used in these tests was large enough to air bypassing and non-uniform flow which wouldn’t 

be allowed to occur in a full scale unit. Therefore, the results show the extreme effect of the air 

change but give important information as to the changes to be expected and measured in a furnace 

to measure its health and efficiency. 

The fuels in this investigation were seen to pose serious agglomeration risk and problems if applied 

in full scale units. However, the investigation has shown that the fuels can be combusted and 

achieve temperatures and emissions which are desirable in power generation facilities. Therefore, 

with online bed management and the application of additives, different bed materials and online 

bed cleaning technologies, the fuels could be applied for full scale operations. The results of this 

investigation have identified the most probable route for agglomerate and eutectic formation in the 

bed and as such gives important information which could be applied to mitigate and manage the 

formation of these structures in a full-scale bed.  
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8 Conclusions 

The investigations presented in this thesis evaluated and analysed five biomasses in pellet 

form and a range of low grade sub bituminous coals from a single northern Pakistan coal 

seam. The fuels were characterised and analysed in such a way as to evaluate their 

applicability in pilot to full scale FBC power generation operations and to evaluate the 

potential for agglomeration during combustion as a result of the chemical and 

physiological make-up of the fuel. Furthermore, a number of operational variables were 

altered to evaluate the effects associated and translate them to combustion of the fuels in 

full scale operations. 

The literature review showed the extensive work that has been carried out with fluidised 

bed combustion and identified current theories and highlight areas which haven’t been 

investigated. It also highlighted the need for investigations in low grade coals and biomass 

combustion and the respective issues associated with combusting those fuels in FBC 

technologies. The literature review created a foundation which allowed for the 

development of methodology and focus this investigation towards specific operational 

variables as well as helping build up a knowledge for the application of the fuels in full 

scale industrial operations. 

The methodology chapter evaluated operational variables that could be utilised for the 

study of low grade coals and effect of operational variables when combusting a biomass 

fuel in FBC. This also included the commissioning, design and modifications of the pilot 

scale rig. The work in this Chapter allowed for the author to develop the rig whilst 

implementing a design which allowed for operational variables to be altered with a 

uniform and non-uniform air distribution system to be tested. 

The fuel characterisation chapter included analysis of the coals and biomasses. This data 

was fundamental for theoretical modelling and predictive methods were evaluated for 

applicability. The fuel characterisation also identified key alkaline species which were 

attributed to agglomeration and slagging mechanisms seen in experimental work.  

A significant side project resulting from the fuel characterisation work was the validation 

and development of XRF analysis with respect to low grade coals but most significantly 

biomass ash. A number of shortfalls were identified in the sampling, ashing and 

processing methods for XRF. These were tested and compared to wet chemistry methods 
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and in doing so improved the accuracy and reliability of XRF analysis with respect to the 

fuels in this thesis. 

Thermodynamic modelling and predictive methods were applied and validated for its 

application to FBC and with the fuels in this thesis. Predictive indices, fuel 

characterisation techniques and thermodynamic model FACTSAGE were all used to 

predict the likelihood of agglomerate formation in FBC using the fuels previously 

described. The fuel characterisation work gave an insight to which fuels would create a 

liquid melt phase but didn’t simulate FBC conditions in a way that could result in direct 

conclusions. The theoretical modelling gave extensive and insightful information to the 

slag formation, temperature ranges and chemical constituents likely to be released during 

the combustion of the fuels. The model gave indication to particular agglomerate and slag 

formation mechanisms. However, limitations and issues were demonstrated through the 

testing of the model as to the models application in FBC environments. The modelling 

was a useful tool and gave strong indications as to the outcome of using the fuels of this 

study but required experimental validation. 

Combustion of low grade sub bituminous coals in fluidised beds allowed for the 

investigation to the coals ability to combust in a stable manner in a FBC pilot scale rig. A 

number of fundamental operational variables were altered to identify methods for 

improving combustion and operational length by minimising agglomeration propensity 

whilst controlling the emission of SO2 in the flue gas. The investigation identified Fe, S 

and Si as the key constituents of eutectics within the bed leading to the formation of 

agglomerates and thus the onset of bed defluidisation. By altering operational variables, 

it was possible to improve certain aspects such as SO2 retention, combustion temperatures 

and emissions whilst mediating agglomerate formation. The results included the 

applicability of the coals in full scaled operations, issues likely to occur as a result of 

combusting the fuels and the best method of operating with the fuels. 

The final investigated the application of biomass fuels in FBC and the associated issues 

found to occur as a consequence. Results correlated the results seen in the fuel 

characterisation. Analysis of the bed samples and agglomerates taken after the 

combustion of the different biomasses. It was found that Si, K, Na and P were key alkaline 

species in the formation of low temperature melting eutectics. As well as combusting each 

fuel, the rig was modified as described in the experimental methodology, to evaluate the 

effect of a uniform air distribution system and a non-uniform air distribution system. 

Parallel tests were run and found that the change in air flow uniformity effected different 

fuels agglomeration mechanisms in different ways. Both positive and negative effects 
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were seen to occur and consequently the defluidisation time with each fuel were seen to 

alter in different ways. The results of this investigation allowed for speculation to the 

applicability of the fuels in full scale operations and offered remedies which could be 

employed in all cases to better the combustion and sustain a bed for longer before potential 

defluidisation occurring due to agglomerated structures forming.  

8.1 Application to Industry 

As described in the introduction of this thesis, biomass and low grade fuels stand to play 

a significant role in the global energy market as populations continue to increase, 

countries look to use cheaper indigenous fuel supplies and standards of life rely more on 

electrification. Low grade fuels such as sub bituminous coals present an alternative to 

expensive imports in countries such as Pakistan, Japan and India. Furthermore, with the 

global political and social scene moving towards more stringent emissions targets and 

reductions, the need for development and implementation of low emissions technologies 

and research is becoming more and more common place. As such, the work and results 

within the experimental and theoretical Chapters of this thesis have the following 

industrial applications: 

1) Theoretical investigation- The results of theoretical investigation have shown how 

indices, thermodynamic models and fuel data can be used to predict the slagging 

tendencies of low grade fuels. The results give clear indication as to temperature 

ranges and operational parameters that are likely to have a higher or lower risk with 

slagging and agglomeration. This type of investigation gives industrial boiler 

designers and decision makers with regards to fuel specification, another tool and 

method of indication when applying low grade fuels to fluidised bed combustors. 

2) Experimental biomass testing- The results of biomass testing in Chapter 7 indicates a 

mechanism of agglomeration while combusting five biomass fuels. The results are 

directly relevant to industrial applications as a number of the different biomasses are 

used in industrial applications globally. The results of these fuels give performance 

engineers and reliability engineers insight into potential causes for 

slag/agglomeration, boiler outages and allow for the identification of counter 

measures to be applied based on these results to improve the system. 

The testing of two different air flows is another series of information and knowledge 

which could be applied to industrial units when air flows are an issue in a bed. The 

results showed how different fuels react differently with the different air regimes. 
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This is significant when engineers are considering impacts of boiler efficiencies and 

degradation of air systems. 

3) Experimental coal testing- The results, similarly to the biomass results, give the trends 

of slagging and agglomeration mechanism required to implement counter measures 

to issues related to combusting low grade coals. With a number of fluidised bed 

combustors being installed to burn low grade coals in countries such as Pakistan, the 

information of this thesis has direct application as to the performance and 

considerations needed when combusting the coals. Furthermore, it highlights the 

challenges and poses potential remedies that should be considered in the design phase 

for successful and continued running of industrial power generation facilities. 

4) Fuel characterisation-The results are significant to both the analytical and power 

generation applications. The proper analysis of these fuels and fuels like them are 

required to understand the fuels chemistry and physiology and ensuring limits and 

specifications are adhered to. If analytical designers and companies are to apply their 

equipment in the developing industry then continued research and development is 

needed as demonstrated within this thesis. The results give clear indication to areas 

that require resources and as such has significant industrial application. 

8.2 Future Work 

As a result of the work conducted throughout the previously described investigations, 

there are a number of areas in which further research and expansion of current work would 

yield data and information into the use of low grade fuels in fluidised bed combustors. 

8.2.1 Fuel Characterisation 

The fuel characterisation work was fundamental to understanding the way in which the 

low-grade coals and biomasses would react in a combustion environment. Furthermore, 

the results indicated a large variation in the chemical and physical contents of the fuels. 

The work lends itself to an extension of work using a wider range of these types of fuels 

to understand the variability of the fuels. A larger range of fuels would allow investigators 

to better understand variability and then to look at the impact of the fuel variability of 

combustion systems. Considering that fluidised bed is able to generate constant thermal 

output with variable fuel input, comparing the fuel characterisation and variability against 

experimental trialling would generate useful trends to industrial impact and application. 

A significant component of the fuel characterisation Chapter was the improvement and 

validation of XRF analysis techniques for low grade coals and biomass ashes. The areas 
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of sampling preparation, ashing and sample medium were investigated with 

improvements produced in the current work. Continued work with XRF applications is 

needed to further develop algorithms, validate and improve normalisation software and 

build a matrix up of different lithium tetra borate mixtures for better setting alkaline rich 

ashes. This work would allow to improve repeatability, accuracy and the range of 

application the XRF analysis could have with biomass related samples. A significant 

problem area was setting samples in glass mediums but this method could offer the best 

level of accuracy in the analysis. Therefore, efforts should be driven towards fine tuning 

this technique. 

Further development of fuel characterisation techniques such as XRF gives another tool 

which can potentially achieve high accuracy, high reliability and a wide range of 

application to different types of samples.  Continued work in these areas would allow for 

a quicker more reliable technique applicable in the biomass and low grade combustion 

sector. 

8.2.2 Experimental work 

The findings from the experimental results yielded from the combustion of low grade 

coals and biomasses gave strong indication to the potential for such fuels in pilot to 

industrial scale power generation applications. Consequently, there are a number of other 

areas which should now be investigated to continually develop the understanding of how 

the fuels will react under other operational variables, the effect of extended operations 

and the impact of system modifications. 

The experimental results demonstrated they impact of combustion the fuels of this thesis 

in terms of emissions, temperature profiles, agglomeration and slagging mechanisms and 

the impact of altering specific operational variables. The result of this work gave positive 

outcomes and as such potential remedies could be provided to address issues seen in 

testing. However, due to the time and scope limitation of the work conducted certain 

operational variables weren’t trialled.  Altering the bed height would be the next variable 

to test. Bed depth can be used to moderate mixing, reduce the impact of agglomerates and 

slag in the bed and alter thermal loading in a furnace. Investigating this would allow for 

potential emissions improvements, extended defluidisation times with high alkaline fuels 

and potential for bed degradation development i.e. the effect of different sand volumes on 

alkaline propagation throughout a bed. 

Other external variables could also be trialled to evaluate the potential for bed 

improvement and continued operation including bed additives such as kaolin and other 
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aluminium silicate based minerals and altering the bed material from silica to mineral 

such as olivine. Testing these system changes would help evaluate the impact of higher 

melting temperatures caused by specific desirable alkaline groups (Ca, Mg and Al). 

Furthermore, there is a direct impact to the industrial power generation sector as to which 

option offers the easiest, cheapest and most effective counter measure to agglomeration 

and slagging seen as a consequence of combusting low grade fuels. 

An important consideration for future work is the length to which previous tests were 

conducted for. Whilst most of the coals and biomass fuels had defluidisation times within 

the 8-10 hour operation window allowed when using the pilot scale rig, it would have 

been useful to continue the tests when comparing cleaner fuels such as wood. By 

extending future testing, the application to industry becomes more significant as extended 

testing would develop slagging and fouling build ups within the rig. As industrial 

facilities, can operate for up to 6 months continuously, future investigations should 

consider combustion times an important variable for pilot to industrial comparisons. This 

modification would also allow for better validation of results against those seen in 

industrial boilers. 

An important area which was outside the scope of this thesis is the impact of the fuels on 

corrosion in boilers/furnaces. If extended tests were available and achievable through 

operational variable changes, then corrosion probes and testing could be performed using 

the pilot scale rig. Corrosion type events accounts for 39-67% of plant forced shutdowns 

(Payer et al., 1978; Shibli, 2014)(variance due to technology types) and thus has 

significant application and interest to the industrial sector and the implementation of the 

type of fuels investigated in this thesis. Therefore, a valuable area of research in the future 

would be corrosion studies when possible in pilot scale testing. 

The pilot scale rig was modified during the course of experimental work as shown in 

Chapter 7. This demonstrated the importance of changing the technology to evaluate the 

impact alternative designs and technological choices have upon the same fuels.  Whilst 

there are a number of bubbling fluidised bed installations in the UK (Stevens croft, 

Blackburn meadows and Wilton 10), international projects are more focused to circulating 

fluidised bed combustion units. As described in the literature review (Chapter 2), 

efficiencies and scale limitation of bubbling fluidised units makes circulating system in a 

majority of cases more desirable. Therefore, a significant modification to the 

experimental rig would be the installation of a secondary combustion chamber and 

secondary cyclone. This type of rig would have a wider audience in terms of interest of 

the results and as such find more industrial partners and installations the work could be 
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compared to. As such the impact of the results would be larger and offer significant 

developments and engineering improvements when combusting low grade fuels. 

8.2.3 Modelling 

The work performed yielded good results with respect to slagging causing components 

and temperatures. However, there was a difference between the two approaches in which 

a simple model was compared to a more comprehensive model. The simple model gave 

more extensive ranges it could work in but the comprehensive model produced data with 

more specificity to changes over temperatures ranges. 

In the most recent updates of FACTSAGE version 7 and above, there has been 

developments in chemical databases and thermodynamic properties for biomass fuels and 

ashes. An investigation could now be performed, using future updates and more data 

becomes available, and against the coal based model and its applicability when using 

biomass type input properties. This type of validation study is needed to compare the 

previous results, the new series of results achievable and again compare them to the 

experimental work conducted on those fuels. This work has the potential to yield more 

accurate and complete data series to the slag potential of biomass fuels. It would also give 

a level of reliability to FACTSAGE’s application in industrial applications and fluidised 

bed based power generation operations. 

The low-grade coal application of the work conducted gave a good level of reliability and 

correlation to the results coming from analysing bed samples post combustion testing. 

However, to check the extent of FACTSAGE’s use with low grade coals, a wider variety 

of fuel properties should be tested in the model. Additionally, the parameters which 

FACTSAGE uses to calculate slagging propensity etc. are quite generic. For application 

in fluidised bed further work is needed to consider high air flow, high turbulence and the 

impact that almost isothermal systems have on localised combustion and alkaline 

component interaction. 

A combination of the previous future work would allow for FACTSAGE’s application in 

the power generation to be extended from conventional systems such as PF coal to the 

increasing number of alternate power generation methods including grate fired furnaces, 

fluidised beds and further afield oxygen based carbon capture developments. Currently 

the model shows a strong potential for power generation and as a predictive tool for low 

grade fuels however, with continued development and validation could offer more 

definitive results for decision making in combustion systems. 
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8.3 Research Dissemination 

The research in this thesis has been included in a number of papers, presentations both 

visual and oral and has been presented in a series of in seminars, meetings and forums 

during the course of the PhD. Table 8-1 summarises the forums in which the research has 

been reviewed. 

Table 8-1 

Format Description  

Papers 

Chilton. S, Daood. S, Nimmo. W, Rehman.S & 

Williams.G. (2017) The effects of low grade coals in pilot 

scale fluidised bed combustion with respect to 

agglomeration and fuel upgrading. 

Under 

review 

Chilton. S, Daood. S, Nimmo. W, Rehman.S & 

Williamss.G. (2016/7) Prediction of agglomeration from 

the Combustion of biomass in a 350kW Pilot Scale 

Bubbling Fluidised Bed Combustion (BFBC) Unit. 

Under 

review 

Asad Naeem Shah, Nasir Hayat, Fiaz Hussain Shah, 

Muhammad Javed, Muhammad Akram, Stephen Chilton, 

William Nimmo. (2016) Optimization of fluidized bed 

combustion (FBC) to control emissions with emphasis on 

desulfurization of high sulphur coals during combustion 

using limestone and biomass. Fuel Processing Journal 

Under 

review 

Xing, P., Mason, P. E., Chilton, S., Lloyd, S., Jones, J. M., 

Williams, A. & Pourkashanian, M. (2016). A comparative 

assessment of biomass ash preparation methods using X-

ray fluorescence and wet chemical analysis. Fuel, 182, 

161-165. 

Published 

Rehman S, Shah AN, Mughal HU, Javed MT, Akram M, 

Chilton S & Nimmo W (2016) Geology and combustion 

perspectives of Pakistani coals from Salt Range and Trans 

Indus Range. International Journal of Coal Geology, 168, 

202-213. 

Published 

Belhadj E, Chilton S, Nimmo W, Roth H & Pourkashanian 

M (2016) Numerical simulation and experimental 

validation of the hydrodynamics in a 350 kW bubbling 

fluidized bed combustor. International Journal of Energy 

and Environmental Engineering. 7.1 (2016): 27-35. 

Published 

Ullah, A., Hong, K., Chilton, S., & Nimmo, W. (2015). 

Bubble-based EMMS mixture model applied to turbulent 

fluidization. Powder Technology, 281, 129-137. 

Published 

Conferences 

11th ECCRIA 2016 Oral 

EUBCE Netherlands 2016 Oral 

EUBCE Austria 2015 Visual 

Leeds Emissions 2015 Oral 

Combustion Symposium 2014 Visual 

Bioenergy 2014 Visual 

OXY3 Spain 2013 Visual 

Meetings & 

Seminars 

CRF Enviro and characterisation Annual meeting 2016 Oral 

CRIEPI Japan 2015 Oral 
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Bioenergy hub Leeds 2014 Visual 

14th APGTF 2014  

CRF Warick 2014  

13th APGTF 2013  

Cambridge biomass forum 2013  
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