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Abstract

Quantile regression is a statistical method used to investigate the full

conditional distribution of a response variable. As such, it provides

more information than ordinary least squares regression. To develop

a novel Bayesian method to fit quantile regression, we need to deal

with a number of issues such as likelihood choice, prior specification,

posterior computation and the crossing of quantile functions. The

main interest in this research is to find a flexible distribution that can

provide a good approximation for the underlying distribution and

then can be used to obtain accurate and reliable Bayesian inference

for quantile functions.

In the context of Bayesian linear quantile regression based on the

asymmetric Laplace likelihood, it is assumed that the relationship

between the response variable and the covariates is linear with ho-

moscedastic errors. To deal with some potential violations of these as-

sumptions, the Box-Cox transformation can be used. In this research,

we use a Box-Cox transformation to develop a Bayesian method based

on a pseudo asymmetric Laplace likelihood to fit multiple quantile re-

gressions simultaneously. We specify prior distributions for all param-

eters including the parameter of the Box-Cox transformation. More-

over, the issue of crossing quantile curves is investigated, and a solu-

tion based on prior constraints is considered. Also, we consider two

extensions of Box-Cox regression: Box-Cox quantile regression with

heteroscedastic errors and two-sided Box-Cox quantile regression.

In using the asymmetric Laplace distribution, it is assumed that the

mode of data is represented by the quantile of interest. In addi-

tion, the quantile to be estimated and the skewness of the asymmetric

Laplace distribution are determined by the same parameter. This im-

plies that the asymmetric Laplace distribution is not flexible enough



to accommodate error distributions corresponding to different quan-

tile functions. To overcome these drawbacks, in order to improve

Bayesian inference for quantiles, we propose a new generalisation of

the Gumbel distribution that can be used to provide good approxima-

tions of the error distributions for quantile regression. Then, we use

this generalised Gumbel distribution to develop a Bayesian method

to estimate linear quantile functions individually.

Although simultaneous estimation based on the pseudo asymmetric

Laplace likelihood has the advantage of ensuring non-crossing of quan-

tile regressions and improving the point estimation for quantiles (es-

pecially the extreme one), it can have a very low coverage probability.

This is due to the poor approximation provided by the pseudo asym-

metric Laplace distribution for the underlying distribution. Therefore,

we approximate the joint distribution of quantiles using a weighted

pseudo asymmetric Laplace distribution. The weights control the con-

tribution of likelihood functions corresponding to individual quan-

tiles in forming the joint distribution of multiple quantile functions

included in the simultaneous estimation. We consider two types of

weights which are fixed and estimated. This approximate joint distri-

bution can provide a good representation of the true distribution of

the data. Thus, the Bayesian quantile method based on this weighted

pseudo asymmetric Laplace distribution, which is used to estimate

multiple quantile functions simultaneously without crossing, shows

significant improvement in the coverage probabilities approaching the

nominal coverage probabilities.

To avoid the limitations of Bayesian quantile methods using the asym-

metric Laplace likelihood and to provide a flexible distribution that

can accommodate any number of quantiles, we propose a family of

approximate distributions that can be used for the error distribution

of quantile regression. This family of approximations shows a good

ability to accommodate a variety of underlying distributions. Then,

we apply these approximations to develop Bayesian method to esti-

mate quantile curves for the linear models and heteroscedastic models.



In addition, to check the fit of quantile regression, we develop a new

bootstrap test.



vi
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Chapter 1

Introduction

1.1 Introduction

Since quantile regression was introduced by Koenker & Bassett (1978), it has

been considered as a powerful statistical tool for investigating the relationships

amongst variables. It offers an extension to ordinary least squares regression in

that it describes the entire conditional distribution of the response variable. It

allows estimating multiple quantile functions that can reveal some characteristics

of the conditional distribution such as the shape, skewness and heteroscedasticity.

Also, it is more robust to outliers and misspecification of the underlying distri-

bution. Quantile regression has been applied in a variety of fields. For example,

in health, Sherwood et al. (2013) used weighted quantile regression to describe

the conditional distribution of health care cost data with missing covariates since

quantile regression gives a more comprehensive image of how the health care cost

can be affected by the covariates, and it can deal with skewed and heterogeneous

data; in finance, since quantile regression can deal with extreme values and out-

liers, it was employed by Fin et al. (2009) to analyse Australian stocks data; in

economics, to study determinants of the load cycle at upper quantiles of con-

ditional distribution, Hendricks & Koenker (1992) applied hierarchical quantile

regression to model household electricity demand; and in environmental science,

Bel et al. (2015) employed quantile regression to investigate the impact of speed

limits on air pollution.

There is extensive literature on frequentist estimation approaches for quantile

regression. Since there is no requirement to specify the data’s underlying distri-
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bution, frequentist inference about quantile functions (e.g. confidence interval,

and hypothesis test) is based on asymptotic theories. There are a number of

methods developed to estimate quantile curves by minimising an asymmetric ab-

solute loss function, by for example, Koenker & Hallock (2001), He & Zhu (2003)

and Koenker (2005).

Research on Bayesian quantile regression is still limited. In contrast to classi-

cal estimation methods, Bayesian quantile regression requires the specification of

the full distribution of residuals. Initial interest has been on developing Bayesian

methods to fit median regression, such as the methods developed by Walker &

Mallick (1999) and Kottas & Gelfand (2001). Yu & Moyeed (2001) proposed a

Bayesian method to fit individual quantile regression. This was followed by the

development of a number of Bayesian approaches such as the methods proposed

by Tsionas (2003), Yu & Stander (2007), Geraci & Bottai (2007), Reich et al.

(2010), Lancaster & Jae Jun (2010) and Kozumi & Kobayashi (2011).

Although simultaneous estimation of quantile curves has great advantages,

developing simultaneous methods to fit quantile regression is a long standing

issue. The key advantage of simultaneous estimation of quantiles over individual

quantile estimation is that non-crossing of quantile functions can be achieved

by ensuring the monotonic increase of quantile functions with respect to the

quantile levels over the data space. Also, information over all quantiles of interest

can be combined in order to provide better estimation accuracy and reliability.

In frequentist statistics, there are a number of papers devoted to simultaneous

quantile regression such as Zou & Yuan (2008), Wu & Liu (2009), Bondell et al.

(2010), Jiang et al. (2012) and Xiong & Tian (2015). Moreover, there are a

few examples of Bayesian multiple quantile approaches such as Dunson & Taylor

(2005), Hahn & Burgette (2012) and Feng et al. (2015).

In this chapter, we introduce the concept of quantile regression. We highlight

estimation of quantiles based on the asymmetric absolute function and asym-

metric Laplace distribution. We discuss the motivation of quantile regression

(e.g. Comprehensiveness and Robustness). We discuss the basic idea behind

simultaneous estimation of quantile functions. In addition, we discuss Bayesian

estimation of quantile curves. Finally, we briefly discuss some Bayesian quantile

approaches. We show the main contributions of our project and the outline of

this thesis.
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1.2 The concept of quantiles

1.2 The concept of quantiles

The τ sample quantile is the value that divides a sample of size n into two

subsets such that the lower subset includes almost τn values (for more discussion

on definitions of sample quantiles, see Hyndman & Fan, 1996). This definition

of quantile can be extended to the entire population by considering Y , a random

variable with cumulative distribution function:

F (y) = P (Y ≤ y).

Here, for τ ∈ (0, 1), the τ quantile can be defined as

Qy(τ) = inf {y : F (y) ≥ τ} ,

which is unique under the assumption of F is continuous and strictly increasing.

Koenker & Bassett (1978) proved that for a random sample y1, y2, ..., yn the τ

quantile can be estimated by solving the optimisation problem:

min
µτ∈R

n∑
i=1

ρτ (yi − µτ ), (1.1)

where µτ is the τ quantile parameter and the loss function ρτ (·) is given by

ρτ (u) =
|u|+ (2τ − 1)u

2
(1.2)

=

{
(1− τ)|u|, u ≤ 0,
τ |u|, u > 0.

This loss function is shown in Figure 1.1. The minimizer of the expected loss

function written as

E [ρτ (Y − µτ )] = (τ − 1)

∫ µτ

−∞
(y − µτ )dF (y) + τ

∫ ∞
µτ

(y − µτ )dF (y),

is any element of {y : F (y) = τ}, since F is monotonic. In the case of the unique

solution, the minimizer is µτ = F−1(τ). Otherwise, the smallest value in the

interval of τ quantiles must be the solution. For more discussion, see Koenker

(2005, p.5).

By considering τ = 0.5, the optimization problem given in (1.1) is just the
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Figure 1.1: The loss function ρ(y − µτ ) corresponding to τ = 0.25 where µτ = 0.

sum of the absolute values of the residuals yi − µ0.5. Then, since the absolute

loss function assigns equal weights to the spread of observations, its minimizer

is the value µ0.5 that approximately equalises the number of negative and pos-

itive residuals. This implies that the number of observations above and below

µ0.5 is approximately equal. Thus, by definition, the estimated µ0.5 is the sample

median. For other quantile levels, the optimization problem given in (1.1) is the

absolute loss function that is weighted asymmetrically to ensure that approxi-

mately τn of observations are located below µτ and (1− τ)n is located above µτ

(see Figure 1.1).

Moreover, Yu & Moyeed (2001) considered estimating quantiles using the

asymmetric Laplace (AL) distribution given by the density function

fτ (y|µτ ) = τ(1− τ) exp {−ρτ (y − µτ )} , (1.3)

rather than using the underlying distribution generating y, since the maximisation

of this density is equivalent to the minimisation of the loss function given in (1.2).
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As a special case, the standard symmetric Laplace distribution density is obtained

by setting τ = 0.5 :

fτ (y|µτ ) =
1

4
exp

{
−|y − µτ |

2

}
,

which can be used to estimate the median.
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Figure 1.2: AL densities corresponding to τ = 0.25, 0.5, 0.75 (left to right) and
µτ = 0.

Figure 1.2, which shows the asymmetric Laplace densities corresponding to

τ = 0.25, 0.5 and 0.75, illustrates the properties of the asymmetric Laplace dis-

tribution. It can be seen that the asymmetric Laplace density has long tails that

may be able to accommodate any outlier observations. It is obvious that the

asymmetric Laplace density is a non-differentiable function at its maximum. The

location parameter µτ is interpreted as τ quantile, since it satisfies the definition

of quantile as follows:

Fτ (Y ≤ µτ ) =

∫ µτ

−∞
fτ (y|µτ )dy

=

∫ µτ

−∞
τ(1− τ) exp {−(1− τ)|y − µτ |} dy

= τ.

Yu & Zhang (2005) considered a quantile model depending on the asymmetric

Laplace distribution with the density function given by

fτ (y|µτ , σ) =
τ(1− τ)

σ
exp

{
−ρτ

(
y − µτ
σ

)}
, (1.4)

where µτ and σ are the location and the scale parameters respectively. They
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also derived the properties of this class of asymmetric Laplace distributions. Al-

though the scale parameter has no clear interpretation under non-Laplace error

distributions, it could play an important role in improving the computation.

1.3 The motivation of quantile regression

To illustrate the motivation of quantile regression, we consider the following two

properties.

1.3.1 Comprehensiveness

The ordinary least square estimator of the conditional mean function summarises

the average relationship between the response variable and covariates. Therefore,

in some cases, the least squares estimator is considered as a non-informative

central tendency measure. In contrast, quantile regression allows for a more

comprehensive analysis of the conditional distribution of the response variable

given predictors. For more illustration, consider the example given in Figure 1.3

that shows the relationship between household food expenditure and income for

235 Belgian working class households (this dataset is now available publicly by

Koenker, 2016).
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Figure 1.3: The fitted quantile curves for τ = 0.05, 0.25, 0.5, 0.75, 0.95 (left) and
ordinary least squares regression (right).
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1.3 The motivation of quantile regression

In contrast to least squares regression, from Figure 1.3, quantile regression of-

fers a complete picture of conditional distribution of household food expenditure.

It can be seen that the estimated quantile curves suggest that the conditional

distribution of household food expenditure is asymmetric around the centre with

a long-lower tail and short-upper tail. Also, they can show the heteroscedastic

error distribution (i.e. in this case, the scale of the conditional distribution is not

a constant and increases with the predictors). The relationship is considerably

different for households with a low expenditure from those with a medium or high

expenditure.

1.3.2 Robustness

According to the properties of the estimation procedure based on the loss func-

tion given in (1.2), the quantiles are robust against the outliers. To illustrate

this property, we estimate the median for data with some outliers and we do this

estimation in the presence of the outliers and after they are removed. Then, the

result, as in Figure 1.4, suggests that the median is not affected by the outliers.

Also, they are considered powerful estimators that can deal with the distributions

having long tails or being asymmetrical. The minimisation of this loss function

corresponding to τ is equivalent to the maximisation of true data distribution

under the error distribution being an asymmetric Laplace with skew parameter

τ . Moreover, the estimation procedure based on this loss function can perform

well and provide reliable estimation under non-Laplace distributions of errors.

Consequently, because of the theoretical link between loss function given in (1.2)

and the asymmetric Laplace distribution defined in (1.3), the Bayesian methods

based on the asymmetric Laplace distribution enjoy these attractive properties

of estimation. Yu & Moyeed (2001) suggested that the Bayesian quantile method

based on the asymmetric Laplace likelihood can work under different error dis-

tributions. Thus, the key motivations for using quantile regression technique are

the robustness against outliers, and the fact that no assumption about the error

distribution is required.

1.3.3 Relative efficiency

In this section, we illustrate the relative efficiency of the median as a spacial case

7
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Figure 1.4: The estimated median in the presence of the outliers (green) is rep-
resented by red line and the estimated median after the outliers are removed is
represented by blue line.

of the quantiles compared to the mean. Although the sample mean is considered

sometimes to be more efficient, the sample median can be more robust. Serfling

(2011) showed that the asymptotic relative efficiency (ARE) of sample median

(M) to sample mean (X) for a large sample from a distribution F (e.g. with a

density function f(θ)) is given by

ARE(M,X,F ) = 4[f(θ)]2σ2
F .

Then, in the case that F is normal distribution ARE(M,X,F ) = 2/π ≈ 0.64,

which indicate that the sample mean is more efficient. However, in the case of F is

symmetric Laplace distribution ARE(M,X,F ) = 2. For Student t-distribution,

the asymptotic relative efficiency of the sample median to sample mean is given

by

ARE(M,X, t) =
4ν

ν − 2

{
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
νπ

}2

,
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which depend on the degrees of freedom ν (for more details, see Figure 1.5).

Therefore, for the data from distributions having thick tails, the sample median
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Figure 1.5: The asymptotic relative efficiency of the sample median to sample
mean against the degrees of freedom ν, where F is Student t-distribution. The
red and green lines represent ARE(M,X, t) = 1 and 2/π respectively.

can is considered more efficient while for the data come from distributions having

thin tails the sample mean is considered more efficient. This implies that the

efficiency can changes significantly as the distribution of data changes. Thus, the

efficiency may trade off against the robustness and this can be considered as a

great motivation of robust estimator (e.g. quantiles).

1.4 Simultaneous estimation of quantile func-

tions

The standard analysis of quantile regression discussed in the previous sections

is based on the individual estimation of quantiles. To implement simultaneous

9



Chapter 1. Introduction

estimation of quantile functions, the optimisation problem given in (1.1) should

be extended for a vector τ = (τ1, τ2, ..., τm) by considering a sum of the check

functions corresponding to different quantiles as follows:

min
µτ

m∑
k=1

n∑
i=1

ρτk (yi − µτk) , (1.5)

where 0 < τ1 < τ2 < ... < τm < 1. This is known as composite quantile

regression (for more details, see Bondell et al., 2010; Zou & Yuan, 2008). The

key motivation for using this simultaneous method over the individual quantile

estimation method given in (1.1) is that it can accommodate suitable constraints

or assumptions to ensure that quantile functions monotonically increase in τ (i.e.

µτk−1
< µτk for k = 2, ...,m). Simply, it can be shown that the minimisation of the

composite optimisation problem given in (1.5) is equivalent to the maximisation

of the pseudo asymmetric Laplace likelihood:

l (µτ ;y) ∝

(
m∏
k=1

[τk (1− τk)]n
)

exp

{
−

m∑
k=1

n∑
i=1

ρτk (yi − µτk)

}
. (1.6)

The comparison between the composite loss function
∑m

k=1 ρτk(y − µτk) and the

pseudo asymmetric Laplace density, related to the likelihood given in (1.6), is

shown in Figure 1.6.

1.5 Bayesian estimation of quantiles

For a vector of observations y, Bayesian inference about a set of unknown pa-

rameters Θ is made through the posterior distribution which is given by

p(Θ|y) ∝ l(Θ;y)p(Θ), (1.7)

where l(Θ;y) is the likelihood function and p(Θ) is the prior density. Therefore,

Bayesian models require a full specification of the underlying distribution. For

Bayesian quantile regression, the distribution of the error ε should be with a

density function f such that ∫ 0

−∞
f(ε)dy = τ, (1.8)

10
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Figure 1.6: The composite loss function (left) and the pseudo-asymmetric Laplace
density (right) corresponding to τ = 0.05, 0.5, 0.75 where µτ0.05 = −2.5, µτ0.5 = 0
and µτ0.75 = 2.

so the error distribution is restricted to have the τ quantile of zero. In practice, it

is very challenging to find the error distribution that satisfies the equation given

in (1.8). As a result, a number of approaches were proposed to specify a suitable

likelihood for Bayesian quantile regression. Yu & Moyeed (2001) were the first

to develop a Bayesian method based on an asymmetric Laplace likelihood to fit

quantile regression. Dunson & Taylor (2005) applied the substitution likelihood

to construct a simultaneous quantile method to estimate multiple curves without

crossing. Applying exponentially tilted empirical likelihood, Lancaster & Jae Jun

(2010) developed a Bayesian approach to fit quantile regression (for more details,

see Section 1.6).

In the context of Bayesian inference based on the posterior distribution given

in (1.7), priors play a crucial role in inference. Non-informative and improper

priors offer simplicity for some complex models and they can be useful in some

situations, such as the representation of ignorance about the parameters. How-

ever, model selection can be impossible using Bayes factors with non-informative

priors. Also, applying non-informative priors can lead to instability in the pos-

terior estimates and cause convergence-related problems. In applied research, it

is important to benefit from prior information that is available about the inves-
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tigated problem. Thus, there is no doubt about the importance of specifying

informative priors for all parameters included in the model. To specify priors for

Bayesian model parameters, priors should be assigned over the model space. For

example, in Bayesian quantile regression models that allow for simultaneous in-

ference on multiple quantile curves, the priors for quantile coefficients should take

into account the fact that quantile functions increase in τ . Yu & Moyeed (2001)

specified an improper prior for all quantile regression coefficients. Kozumi &

Kobayashi (2011) utilised double exponential distributions as prior distributions

for quantile regression coefficients. Alhamzawi & Yu (2013) introduced modified

version of Zellner’s g-prior for quantile regression.

The crossing of quantile functions can be a consequence of complex features

of the conditional distribution of the response variable such as heteroscedastic

variance. Also, it can be caused by a relatively small size of the dataset that is

not sufficient to estimate quantile functions accurately. To address the problem

of crossing quantile functions, a variety of approaches were proposed; see, for

example, Dunson & Taylor (2005) and Rodrigues & Fan (2017).

Simultaneous quantile regression methods are sensitive to the number and

location of quantile functions included in the estimation. The degree of sensitivity

can be different due to the complexity of the underlying distribution and the

available data. However, adding additional quantiles to the estimated model can

increase stability of the quantile estimation. Bondell et al. (2010) suggested that

including extra quantiles in a neighborhood of the quantile of interest to reach a

desirable level of stability can improve the estimation of quantile functions, which

is something we investigate later.

Analytical expressions for the posterior distribution and computing the sum-

mary statistics about the parameters of interest are unavailable in closed form

whatever the prior distribution. Therefore, Markov Chain Monte Carlo methods

(MCMC) are required to sample from the posterior distribution. Since Bayesian

quantile regression may include a relatively large number of parameters, espe-

cially in the case of multiple quantile regression, it is difficult or sometimes even

impossible to derive the full conditional distributions for all parameters of the

model in order to apply the Gibbs sampler. Also, to improve the computational

efficiency of the Metropolis-Hastings algorithm, the proposal distributions should

12



1.6 Bayesian quantile regression methods

be constructed carefully. A number of Markov chain Monte Carlo methods simi-

lar to those considered by Tsionas (2003), Dunson & Taylor (2005) and Kozumi

& Kobayashi (2011) can provide an efficient computation for the posterior distri-

bution of quantile regression.

1.6 Bayesian quantile regression methods

To deal with the issues related to Bayesian estimation of quantile curves which

are outlined in the previous section, a variety of Bayesian quantile regression

methods have been developed. In this section, we discuss critically a number of

novel Bayesian methods that have been developed to estimate quantile functions

separately and simultaneously. We briefly describe these approaches and provide

some of their key features and limitations.

1.6.1 Quantile regression based on asymmetric Laplace

Likelihood

Yu & Moyeed (2001) considered the asymmetric Laplace Likelihood, which is

unrelated to the assumed error distribution, to construct a Bayesian method to

estimate quantile curves separately. This likelihood function is used because its

maximisation is equivalent to the minimisation of the loss function given in (1.2).

This leads to the likelihood function for the same model changing as the quantile

of interest changes. To fit quantile regression corresponding to the linear model

given by

yi = x
′

iβ + εi, for i = 1, ..., n (1.9)

where x
′

i is the vector of covariates related to ith observations, β is a vector of

unknown coefficients and εi is the error that follows an unknown distribution

with mean zero and a constant variance, they employed the asymmetric Laplace

likelihood given by

lτ (β;y) ∝ τn(1− τ)n exp

{
n∑
i=1

−ρτ (yi − x
′

iβ)

}
. (1.10)

They also used the prior p(β) ∝ 1, and proved that using this prior with like-

lihood function given in (1.10) yields a proper posterior distribution. Beside
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the simplicity and flexibility, this Bayesian model has a number of key features.

Since the asymmetric Laplace distribution is an exponential of the negative asym-

metric absolute function that is robust against outliers and can provide reliable

estimation under different error distributions (for more details, see Section 1.3.2),

this Bayesian quantile regression is robust against outliers and can perform well in

terms of point estimation under a misspecification of the error distribution. How-

ever, this Bayesian quantile method has some limitations. Although this method

assumes the desired quantile function represents the mode of the conditional dis-

tribution of the response variable, this is not true except for τ quantile function

under an error distribution that is an asymmetric Laplace with skew parameter

τ . This implies that this Bayesian method can offer the target coverage prob-

ability for a particular quantile yet poor coverage probability for other quantile

levels. Thus, the quality of Bayesian estimation based on the asymmetric Laplace

distribution varies with respect to the quantile of interest and is determined by

the similarity between the asymmetric Laplace distribution corresponding to the

quantile of interest and the underlying distribution. In addition, the skewness and

quantile of interest are controlled by the same parameter τ . Using this approach,

there is no guarantee that quantile functions will not cross.

This approach was extended by Yu & Stander (2007) to fit Tobit quantile

regression. Also, they discussed a variety of prior distributions that can be used

with the asymmetric Laplace likelihood to provide a proper posterior distribu-

tion. They drew Bayesian inference based on the asymmetric Laplace distribu-

tion with the scale parameter given in (1.4). An advantage of this approach is to

avoid solving a non-convex optimisation problem that is used to fit Tobit quantile

regression. Moreover, Geraci & Bottai (2007) used an asymmetric Laplace likeli-

hood to develop a Bayesian model including random effects, to fit linear quantile

regression for longitudinal data.

Rodrigues & Fan (2017) developed a two-stage Bayesian method to fit multiple

quantile regressions without crossing. In the first stage, all quantiles of interest

are estimated separately using the Bayesian model suggested by Yu & Moyeed

(2001). In the second stage, the initial estimates achieved in the first stage

are adjusted by borrowing information from neighbor quantile functions using a

Gaussian process. However, if the quantile functions based on initial estimates

do not cross, the second stage has no effect on the estimation. This method can
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1.6 Bayesian quantile regression methods

be used to fit linear and non-linear quantile regression. However, in the case of

poor initial estimates, this approach yields an unreasonably high bandwidth.

Bayesian quantile methods based on the asymmetric Laplace likelihood func-

tions focus on the quality of the point estimation of parameters and ignore other

Bayesian inference, such as the properties of posterior distribution and credible

intervals. Most of these methods use asymmetric Laplace likelihood functions

blindly to draw Bayesian inference under any underlying distribution without

caring about the quality of the approximation achieved using these asymmetric

Laplace distributions, which can be very poor in some cases. To deal with the

estimation of quantile curves from a Bayesian viewpoint, more research is needed

to decide if the asymmetric Laplace likelihood is an appropriate choice to con-

struct a Bayesian model to fit quantile regression or is just a point estimation

procedure that is not suited to make Bayesian inference on quantiles.

1.6.2 Quantile approach using a representation of AL dis-

tribution based on a mixture distribution

To estimate the quantile curves corresponding to the model given in (1.9) indi-

vidually, Tsionas (2003) considered a representation of the asymmetric Laplace

distribution based on a piecewise normal density given by

fτ (yi|β, σ, wi) ∝
1

σ
√
wi

exp

{
− τ

2σ2wi

(
yi − x

′
iβ
)2
, yi ≥ x

′
iβ,

− 1−τ
2σ2wi

(
yi − x

′
iβ
)2
, yi < x

′
iβ,

(1.11)

where wi follows the standard exponential distribution. He used the phrase “the

normal mixture” density. Then he proved that the posterior distribution is given

by

p(β, σ,w|y) ∝ σ−(n+1)

n∏
i=1

w
− 1

2
i exp

 −
(τ−wi)

(
yi−x

′
iβ
)2

2σ2wi
, yi ≥ x

′
iβ,

−
(1−τ−wi)

(
yi−x

′
iβ
)2

2σ2wi
, yi < x

′
iβ.

This representation allows the use of a Gibbs sampler with data augmentation to

draw Bayesian inference from this posterior distribution. However, this algorithm

would have a complexity of programming and would slow down as the number

of observations increases. Also, the efficiency of this Gibbs sampler may be ques-
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tionable, since each parameter βj ∈ β is updated separately and this could result

in highly correlated samples from the posterior distribution. To overcome such

issues, Kozumi & Kobayashi (2011) considered the representation of the asym-

metric Laplace distribution based on a mixture of normal distributions to develop

a Gibbs sampler to fit Bayesian quantile regression. They showed that the asym-

metric Laplace random variable can be represented as a mixture of location-scale

normal distributions by considering yi ∼ AL (µτ , 1, τ). Then, they showed

yi
d
= µτ + θτυτ,i + zi

√
φτυτ,i,

where υτ,i, which corresponds to the τ quantile and the ith observation, is an

exponential random variable such that υτ,i ∼ Exp(1) and zi is a normal random

variable such that zi ∼ N(0, 1). They did this by showing that the characteristic

function of yi and µτ + θτυτ,i + zi
√
φτυτ,i are equivalent when

θτ = (1−2τ)
τ(1−τ)

and φτ = 2
τ(1−τ)

.

As an extension of this fact, yi ∼ AL (µ, σ, τ) can be represented by

yi
d
= µτ + σθτυτ,i + σzi

√
φτυτ,i,

which can re-parameterised as

yi
d
= µτ + θτwτ,i + zi

√
σφτwτ,i,

where wτ,i follows the exponential distribution with mean σ. We have zi ∼
N(0, 1), so it follows that

zi
√
σφτwτ,i ∼ N(0, σφτwτ,i)

µτ + θτwτ,i + zi
√
σφτwτ,i ∼ N(µτ + θτwτ,i, σφτwτ,i)

This implies that

yi ∼ N (µτ + θτwτ,i, φτσwτ,i) . (1.12)

Then, they applied this mixture of distributions, along with a prior distribution

of double exponential for quantile coefficients, to fit linear quantile regression.

Also, they extended the proposed method to draw inferences about Tobit quan-

tile curves. By using this Gibbs sampler, all quantile coefficients are updated
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jointly. Consequently, an important reduction in autocorrelation can be achieved

compared to the Gibbs sampler proposed by Tsionas (2003). In addition, this

Gibbs algorithm enjoys flexible and easy implementation. However, similarly to

the Gibbs sampler developed by Tsionas (2003), this Gibbs algorithm could slow

down as the size of sample becomes large. This Bayesian quantile method was

extended by Lum & Gelfand (2012) to fit spatial quantile regression. Moreover,

they proposed the asymmetric Laplace predictive process. Although they esti-

mated quantile functions separately, they argued that the proposed conditional

quantile model stochastically increases in τ .

1.6.3 Quantile method using an infinite mixture of Gaus-

sian distributions

Reich et al. (2010) developed a Bayesian quantile method based on an infinite

mixture of Gaussian distributions. They assumed that the residual εi follows the

infinite mixture of distributions given by

f(εi|µ,σ2,w) =
∞∑
l=1

wlg(εi|µl,σ2
l , ql),

where the wl is a weight such that
∑∞

l=1wl = 1 and

g(εi|µl,σ2
l , ql) = qlφ(εi|µl1, σ2

l1) + (1− ql)φ(εi|µl2, σ2
l2),

where φ(.) is the normal density and ql is a weight calculated such that∫ 0

−∞
g(εi|µl,σ2

l , ql)dεi = τ.

Also, they extended this approach to fit quantile regression for clustered data.

They concluded that under a variety of distributions, the proposed method can

perform better than traditional frequentist methods in terms of mean squared

errors and coverage probabilities.
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1.6.4 Multiple quantile regression based on the generali-

sation of Jeffreys’s substitution likelihood

Lavine (1995) generalised the substitution likelihood proposed by Jeffreys (1961)

to accommodate a vector of quantile functions given by µτ = (µτ1 , µτ2 , ..., µτm)

rather than just the median. This generalisation is given by

ls(µτ ;y) ∝
(

n

η(µτ1)...η(µτm+1)

)m+1∏
k=1

∆τ
η(µτk )

k , (1.13)

where n is the number of observations, 0 = τ0 < τ1 < τ2 < ... < τm <

τm+1 = 1, µτ0 = −∞, µτm+1 = +∞, ∆τ = (τ1, τ2 − τ1, ..., 1 − τm)
′

and η(µτk) =∑n
i=1 1(µτk−1

<yi≤µτk ). Jeffreys (1961) suggested that applying ls(µτ ;y) instead of

the likelihood function can yield a valid uncertainty. Also, the validity of Jeffreys’s

substitution likelihood was investigated by Monahan & Boos (1992) and they

suggested that the posterior distributions formed using Jeffreys’s substitution

likelihood are not valid by coverage. However, they showed that by large-sample

approximation of likelihood, Jeffreys’s substitution likelihood is asymptotically

valid. Moreover, Lavine (1995) suggested that ls(µτ ;y) is asymptotically conser-

vative at the truth. Dunson & Taylor (2005) applied this generalised substitution

likelihood to construct a Bayesian quantile method that allows the drawing of

Bayesian inference about multiple linear quantile curves simultaneously with-

out crossing. The substitution likelihood ls(µτ ;y) is a constant as µτ1 and µτm

approach −∞ and ∞ respectively. Therefore, to achieve a proper posterior dis-

tribution, Dunson & Taylor (2005) used a bounded prior distribution, which can

ensure that quantile functions monotonically increase in τ . Then, to simulate

from the posterior distribution, they used a Metropolis-Hastings algorithm with

a proposal distribution being a normal approximation for quantile regression co-

efficients. Under different distributions, Dunson & Taylor (2005) concluded that

the proposed method shows a low bias of estimation and reasonable coverage

probability. Also, they concluded that this method appeared to be non-sensitive

to the number and locations of quantiles included in simultaneous estimation.

Dunson & Taylor (2005) implemented the investigation of the bias and the

coverage probability for the method based on the generalised Jeffreys’s substitu-

tion likelihood using simulations from univariate distributions. Therefore, further
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work may be needed to check the performance of this method to handle linear

regression or more complex models. In addition, more investigation may be re-

quired to examine the computational stability of the Bayesian method based on

this generalised substitution likelihood.

1.6.5 Quantile regression based on an empirical likelihood

Lancaster & Jae Jun (2010) employed exponentially tilted empirical likelihood

to develop a Bayesian method to draw inferences on quantile curves individually.

They considered the posterior distribution given by

p(µτ |y) ∝ π(µτ )
n∏
i=1

exp{λ′g(yi, µτ )}∑n
i=1 exp{λ′g(yi, µτ )}

,

where µτ is τ quantile, π(.) is the prior distribution, and

g(yi, µτ ) =

{
1− τ yi ≤ µτ ,
−τ yi > µτ .

Also, the vector λ is the solution of the following optimisation problem:

min
λ

1

n

n∑
i=1

exp{λ′g(yi, µτ )}.

For quantile regression, they showed the asymptotic form of the posterior distri-

bution. They concluded that inference from the posterior distributions based on

the substitution likelihood proposed by Jeffreys (1961) and exponentially tilted

empirical likelihood are similar, although the ratio of the two posterior distribu-

tions suggested that there is a difference asymptotically.

1.6.6 Quantile regression based on an approximate likeli-

hood

Hahn & Burgette (2012) proposed an approximate likelihood to construct a

Bayesian method to fit multiple quantiles corresponding to the vector 0 < τ1 <

τ2 < ... < τm < 1. They considered the approximate distribution that can be
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written as

fτ (yi|µτ ) =


τ2−τ1

(µτ2−µτ1)
exp

(
− τ2−τ1
τ1(µτ2−µτ1)

|yi − µτ1|
)
, yi ≤ µτ1 ,

τk−τk−1

µτk−µτk−1
, µτk−1

< yi ≤ µτk ,

τm−τm−1

(µτm−µτm−1)
exp

(
− τm−τm−1

(1−τm)(µτm−µτm−1)
|yi − µτm|

)
, yi > µτm .

Then, they employed Gaussian process priors for quantile regression coefficients

along with this approximate distribution to suggest a flexible solution for non-

linear quantile regression. They applied a random walk Metropolis-within-Gibbs

to sample from the posterior distribution.

To fit the linear model given in (1.9), Feng et al. (2015) developed a Bayesian

quantile approach using an approximate distribution that is represented by the

density function:

fτ
(
yi|βτ , σ2

)
=


τ1f̂L(yi|βτ1 , σ2), yi ≤ x

′
iβτ1 ,∑m−1

k=1
τk+1−τk

x
′
iβτk+1

−x′iβτk
, x

′
iβτk < yi ≤ x

′
iβτk+1

,

(1− τm) f̂R(yi|βτm , σ2), yi > x
′
iβτm ,

where f̂L(yi|βτ1 , σ2) is the left half of a normal distribution with mean x
′
iβτ1 and

variance σ2, and f̂R(yi|βτm , σ2) is the right half of a normal distribution with

mean x
′
iβτm and variance σ2. Then, they developed a Bayesian quantile approach

to estimate linear quantile functions simultaneously. A truncated normal distri-

bution that ensures that quantile functions monotonically increase in τ at each

observation is used as a prior for quantile linear coefficients. They concluded

that their proposed MCMC converges to the target distribution as the number of

quantiles m approaches infinity. However, they mentioned that this method re-

quires intensive computation. Also, they suggested that theoretical justifications

are needed for some assumptions used by this method.

1.7 The contributions of our project

This research has several contributions. Firstly, we developed a Bayesian quan-

tile method based on the pseudo asymmetric Laplace likelihood, that accom-

modates the Box-Cox transformation, to estimate quantile curves of non-linear
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models with heteroscedastic errors without crossing. Then, this work extended

to Box-Cox quantile regression with heteroscedastic error and two-sided Box-

Cox quantile regression. Secondly, we proposed a new distribution called the

generalised Gumbel distribution that shows more flexibility to approximate the

underlying distribution than the asymmetric Laplace distribution. Then, the

likelihood function corresponding to this proposed distribution was used to con-

struct a Bayesian quantile approach to fit quantile regressions individually and

provide better Bayesian inference. Thirdly, we developed a novel approximation

of the joint distribution of multiple quantiles that was obtained by weighting the

product of density functions corresponding to individual quantiles and can ap-

proximate the true distribution of the data well. Then, this approximation was

used to estimate multiple quantile functions simultaneously without crossing, and

obtain accurate and reliable Bayesian inference on quantiles’ coefficients. Finally,

to overcome the limitations of using the asymmetric Laplace distribution for error

distribution, we considered a family of approximate distributions that can be used

to model the errors in the context of quantile regression. This family was utilised

to develop Bayesian quantile estimation for linear models with homoscedastic and

heteroscedastic errors. In addition, we proposed a bootstrap test to check the fit

of quantile regression.

1.8 Thesis outline

In Chapter 2, we use the Box-Cox transformation to handle nonlinearity and het-

eroscedasticity of the Bayesian quantile linear model considered by Yu & Moyeed

(2001). To be able to estimate multiple quantiles simultaneously, we consider

using the pseudo asymmetric Laplace likelihood which is formed by multiplying

the asymmetric Laplace likelihoods corresponding to the individual quantiles. In

addition, to ensure non-crossing of quantile functions, we specify suitable prior

distributions for all parameters of the model. We propose a Gibbs algorithm

with a Metropolis-Hastings step to sample more efficiently from the posterior

distribution. Then, we use simulated and real data to compare simultaneous and

individual estimates of quantile curves for non-linear models with heteroscedastic

errors. To handle more complex models, this approach is extended in Chapter 3
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to Box-Cox quantile regression with heteroscedastic errors and two-sided Box-Cox

quantile regression.

In Chapter 4, we review the use of the asymmetric Laplace distribution for

Bayesian estimation of quantile curves and illustrate its limitations as an error

distribution. Also, we show that this Bayesian quantile approach can have poor

coverage probabilities. Then, we suggest an alternative quantile model based

on a generalisation of the Gumbel distribution that can approximate a variety

of underlying distributions better than the asymmetric Laplace distribution. In

addition, we use simulated data to implement a comparison study between the

new quantile approach and that based on the asymmetric Laplace likelihood.

In Chapter 5, we discuss the quality of the approximation based on the pseudo

asymmetric Laplace likelihood considered in Chapters 2 & 3 and explain how and

why this approximation can be poor. Then, to improve the performance of this

approximation, we develop a weighted pseudo asymmetric Laplace distribution,

where the weights determine the contribution of each individual quantile-related

asymmetric Laplace distribution in forming the underlying distribution. We con-

sider two types of weights which are fixed weights and the estimated weights.

Also, we consider an automated random walk Metropolis-Hastings based on a

multivariate normal distribution with an updated covariance matrix to sample

from the posterior distribution. We implement a simulation study to investi-

gate the performance of Bayesian quantile approaches based on the weighted

pseudo asymmetric Laplace likelihood and compare the obtained results with

others given by the quantile method based on the pseudo asymmetric Laplace

likelihood. Moreover, the proposed methods are used to fit multiple quantile

regressions for real data.

In Chapter 6, we propose a family of approximate likelihood functions that

can be used to construct Bayesian models to estimate quantile functions. We

discuss the properties of these approximations and show how these approxima-

tions can improve the Bayesian inference for the quantile functions. Then, we

use this family of approximations to develop Bayesian quantile approaches to fit

homoscedastic and heteroscedastic linear regressions. In addition, we proposed a

new bootstrap test to examine the goodness-of-fit of quantile regression.

In Chapter 7, we provide a summary of this research and we implement com-

parisons between the proposed methods in terms of the maximum a posteriori
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(MAP) estimators and the 95% highest posterior density intervals (HPD). Also,

we compare the proposed quantile approaches with the method considered by Yu

& Moyeed (2001). Finally, we illustrate some potential future works.

1.9 Conclusion

The construction of efficient quantile regression models requires addressing issues

related to the likelihood choice; specification of suitable priors over the model

space for all components of the quantile regression coefficients; posterior compu-

tation; sensitivity to the number and locations of quantile functions included in

the estimation; and crossing of quantile functions. However, the main aim in this

research is to develop flexible likelihood functions that can be used to improve

Bayesian inference for quantile functions.

23



Chapter 1. Introduction

24



Chapter 2

Simultaneous Box-Cox Quantile

Regression

2.1 Introduction

The Bayesian linear quantile model considered by Yu & Moyeed (2001) assumes

that the relationship between the response variable and the covariates is linear

with homoscedastic errors. To make this model more flexible, transformation

techniques can be used to address violations of these assumptions.

Transformation methods are widely considered as a useful statistical technique

for addressing two violations of the linear regression model: non-linearity and

heteroscedasticity. However, in order to benefit fully from the transformation, a

suitable transformation for the response variable needs to be determined from the

data. This can be achieved by applying the Box-Cox transformation proposed

by Box & Cox (1964). The Box-Cox transformation includes as special cases the

most popular transformations, such as linear, log, polynomial and square-root

transformations. Box-Cox regression relaxes an assumption that the relationship

between the response variable and the covariates is linear with the errors being

independently normally distributed, with a mean equal to zero and constant

variance. Thus, the Box-Cox regression model is considered as a great extension

of linear regression.

In classical estimation, there are a number of methods developed to employ

the Box-Cox transformation in the context of quantile regression. Powell (1991)

used the Box-Cox transformation to develop an extension of linear quantile re-
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Chapter 2. Simultaneous Box-Cox Quantile Regression

gression. Chamberlain (1994) implemented Box-Cox quantile regression utilising

an algorithm that includes linear programming and a one-dimensional search.

Machado & Mata (2000) showed how Box-Cox quantile regression can be applied

to describe the relationship between the industry attributes and the firm size.

To overcome the problem of computing the inverse of the Box-Cox transforma-

tion which could be undefined for some observations, Fitzenberger et al. (2009)

employed a modified version of the objective function considered by Buchinsky

(1995) to suggest an estimator dealing with inadmissible observations. In addi-

tion, they generalised this result to include the case of multiple regression.

In this chapter, we employ the Box-Cox transformation to develop a Bayesian

method based on a pseudo asymmetric Laplace likelihood to fit multiple quan-

tile regression. Also, we specify convenient prior distributions for all parameters

including the transformation parameter. Moreover, the issue of the crossing of

quantile curves is discussed and a solution, based on prior distributions, is con-

sidered to ensure non-crossing of quantile functions over an unbounded space of

covariates.

2.2 Box-Cox transformation

In linear regression analysis, it is often assumed that the relationship between

the response variable and the covariates is linear with errors that are normally

distributed with a constant variance. To make these assumptions more flexible,

Box & Cox (1964) proposed the following family of power transformations:

Λ (yi;λ) =

{
yλi −1

λ
, λ 6= 0,

log (yi) , λ = 0,
(2.1)

where yi > 0 for i = 1, ..., n and λ ∈ R is the transformation parameter. To be

able to compare the residual sum of squares obtained with different values of λ,

Box & Cox (1964) suggested the standardized transformations:

Λ (yi;λ) =

{
yλi −1

λỹλ−1 , λ 6= 0,

ỹ log (yi) , λ = 0,
(2.2)
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2.2 Box-Cox transformation

where ỹ is the geometric mean, given by ỹ =
(∏n

i=1 yi

) 1
n
. The Box-Cox trans-

formation includes a variety of standard transformations as special cases. For

example, λ = −1, 0, 0.5, implies reciprocal, logarithmic and square-root trans-

formations respectively (for more examples, see Figure 2.1). Since the Box-Cox

transformation is valid only for yi > 0, for all i = 1, 2, ..., n, Box & Cox (1964)

also proposed the shifted transformation:

Λ (yi;λ, φ) =

{
(yi+φ)λ−1
λỹλ−1 , λ 6= 0,

ỹ log (yi + φ) , λ = 0,

where φ is selected such that yi + φ > 0, for all i = 1, 2, ..., n and ỹ in this case

is given by
(∏n

i=1(yi + φ)
) 1
n
. For more details about alternative forms of the

Box-Cox transformation, see Sakia (1992).

0.0 0.5 1.0 1.5 2.0

−
2

−
1

0
1

2

y

Λ
(y

, λ
)

−1
0
0.5
1
2
3

Figure 2.1: Box-Cox transformation corresponding to λ = −1, 0, 0.5, 1, 2, 3.
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2.3 Box-Cox quantile regression

In the context of quantile regression, the Box-Cox transformation is applied in

order to achieve the assumption of linearity and homoscedastic errors. After

applying the Box-Cox transformation to the response variable, the regression

model can be written as

Λ (yi;λ) = α + x
′

iβ + εi, for i = 1, 2, ..., n, (2.3)

where εis are independently distributed with a mean equal to zero and constant

variance; xi is a p×1 vector of covariates for the ith observation; α is an unknown

intercept coefficient and β is a p× 1 vector of unknown slope coefficients. Then,

the conditional quantile function is given by

Q(τk|xi) = Λ−1
(
ατk + x

′

iβτk |λτk
)
, (2.4)

where 0 < τk < 1. Then, the τk quantile function can be estimated by solving

the optimisation problem:

min
ατk ,βτk ,λτk

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)
,

where ρτk is the loss function given in (1.2). This estimator is a consistent and

asymptotically normal estimator (Powell, 1991). Moreover, Buchinsky (1995)

proposed an iterative procedure, with two steps in each iteration, to estimate

ατk , βτk and λτk :

1. Estimate ατk and βτk by solving

min
ατk ,βτk

1

n

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)
,

where Λ (yi;λτk) is the Box-Cox transformation form given in (2.1).

2. Estimate λτk using

λτk = arg min
λτk

1

n

n∑
i=1

ρτ

(
yi −

[
λτk

(
ατk + x

′

iβτk

)
+ 1
]1/λτk

)
. (2.5)
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2.4 Bayesian model for Box-Cox quantile regression

However, the optimization problem given in (2.5) can only be solved if

λτk

(
ατk + x

′

iβτk

)
+ 1 > 0, (2.6)

for each i = 1, 2, ..., n and λτk ∈ R. There are a number of suggestions to over-

come this problem. Fitzenberger et al. (2009) used a defined set of admissible

observations that satisfy the condition given in (2.6) for all λτk ∈ R, where this

set of observations varies with different ατk and βτk ; for further discussions, see

Manly (1976) and John & Draper (1980). However, this computational issue

can be avoided by applying the proposed Bayesian Box-Cox quantile regression

described in the next section, since there is no requirement to calculate the in-

verse of the Box-Cox transformation for the quantity given in (2.6) during the

estimation process.

2.4 Bayesian model for Box-Cox quantile regres-

sion

2.4.1 Likelihood construction

To develop a Bayesian method to estimate an individual quantile curve, we can

consider the asymmetric Laplace likelihood with the Box-Cox transformation

(AL-BC) that is given by

l (ατk ,βτk , στk , λτk ;y) ∝
[
τk(1− τk)

στk

]n
exp

{
−

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk
στk

)}

∝ σ−nτk exp

{
−

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk
στk

)}
, (2.7)

where Λ (yi;λτk) is the Box-Cox transformation defined in (2.2). To understand

the reason behind using the asymmetric Laplace distribution to construct a

Bayesian model to fit quantile regression, see Sections 1.2 & 1.4. To improve

the estimation and avoid the crossing of quantile functions, we also develop a

Bayesian multiple quantile method using the pseudo asymmetric Laplace likeli-
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hood with Box-Cox transformation (PAL-BC) that is given by

l (ατ , Bτ ,στ ,λτ ;y) ∝

(
m∏
k=1

σ−nτk

)
exp

{
−

m∑
k=1

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk
στk

)}
, (2.8)

where 0 < τ1 < ... < τm < 1; ατ = (ατ1 , ..., ατm); Bτ =
[
βτ1 βτ2 ... βτm

]
p×m

such that βτk = (β1,τk , ..., βp,τk)
′ and λτ = (λτ1 , ..., λτm). Maximising this pseudo

likelihood is equivalent to minimising a weighted version of the original optimi-

sation problem given by

min
ατ ,Bτ ,λτ∈R

m∑
k=1

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)
, (2.9)

with weights being 1/στk for k = 1, ..,m (for more details see Appendix A.1).

2.4.2 The crossing issue and specification of prior distri-

butions

To overcome the crossing issue, the conditional quantile functions, for Box-Cox

regression, given in (2.4) should satisfy

Q(τk|xi) < Q(τk+1|xi),

for all k = 1, 2, ...,m−1 and all i = 1, ..., n. Then, using Box-Cox transformation

given in (2.2), it follows that

[
ỹλτk−1λτk

(
ατk + x

′
iβτk

)
+ 1
]1/λτk

<
[
ỹ
λτk+1

−1
λτk+1

(
ατk+1 + x

′
iβτk+1

)
+ 1
]1/λτk+1

, (2.10)

It is obvious that the region of interest for non-crossing is bounded and depends

on xi. Beside this disadvantage, applying this constraint can lead to unreliable

estimation and computational issues as the number of observations satisfying

this constraint is extremely low. However, the region of non-crossing can be ex-

tended to be the whole space of covariates, which is assumed to be unbounded,

by specifying suitable prior distributions for all parameters rather than apply-

ing the constraint given in (2.10). To begin with the transformation parameter,

allowing different transformations for different levels of quantiles implies each

transformation parameter is estimated using the information conveyed through
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2.4 Bayesian model for Box-Cox quantile regression

its corresponding quantile function. Consequently, due to the lack of observed

information at some quantile levels especially the extreme ones, the true trans-

formation may be misspecified. Therefore, in order to combine information over

multiple quantile functions to estimate the optimal transformation parameter, we

assume a priori that all transformation parameters λτk are equal with common

value λ. Then, we consider the following prior distribution:

p(λ) ∝ exp

{
− 1

2v2
(λ− λ∗)2

}
where λ∗, v are specified parameters. Also, by definition of linear quantile regres-

sion, the slope coefficients are identical over all quantile levels and represented by

the vector β. Hence, the prior distribution for the slope coefficients are specified

as follows

p(β) ∝ exp

{
−1

2
(β − β∗)

′
S−1 (β − β∗)

}
where β∗, S are the specified mean vector and covariance matrix respectively. In

addition, the quantile functions should increase in τ . Therefore, conditional on

the prior distributions for β and λ, the intercept coefficients should satisfy

ατk < ατk+1
for k = 1, 2, ...,m− 1.

Hence, the prior distribution for intercept coefficients is specified as

p(ατ ) ∝ exp

{
−1

2

m∑
k=1

(
ατk − α∗τk

)2

c2
τk

}
1(ατ1<ατ2<...<ατm),

where α∗τk , cτkare specified parameters. It is explicit that by using this specifica-

tion of prior distributions, the solution of the inequality given in (2.10) does not

depend on xi. Hence, the region of non-crossing determined by this condition is

extended to be the whole space of covariates, which is assumed to be unbounded.

The element of στ are assumed a priori independent with inverse-gamma distri-

butions IG(aτk , bτk), so we can write

p(στ ) ∝

(
m∏
k=1

σ
−(aτk+1)
τk

)
exp

{
−

m∑
k=1

bτk
στk

}
,

where aτk , bτk are specified parameters.
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Chapter 2. Simultaneous Box-Cox Quantile Regression

2.4.3 Posterior computation

The posterior distribution based on the pseudo asymmetric Laplace likelihood

and the prior distributions given in the previous section is

p (ατ ,β,στ , λ|y) ∝

(
m∏
k=1

σ
−(n+aτk+1)
τk

)
exp

{
−

m∑
k=1

n∑
i=1

ρτk

(
Λ (yi;λ)− ατk − x

′

iβ

στk

)}

× exp

{
−(λ− λ∗)2

2v2

}
exp

{
−1

2
(β − β∗)

′
S−1 (β − β∗)

}

× exp

{
−

m∑
k=1

bτk
στk

}
exp

{
−1

2

m∑
k=1

(
ατk − α∗τk

)2
c2
τk

}
1(ατ1<...<ατm).

To obtain a sample from this posterior distribution, we can apply the Metropolis-

Hastings algorithm given in Algorithm 1. The hyperparameters Σατ , Σβ, στk and

νλ are specified during the initial implementation when MCMC algorithm is mon-

itored to ensure its convergence with an acceptance probability of approximately

0.234 (for more details, see Roberts et al., 1997). Although the Metropolis-

Algorithm 1 Metropolis-Hastings

1. set initial values
r = 1, α

(0)
τ = α̂τ , β

(0) = β̂, σ
(0)
τ = σ̂τ , λ

(0) = λ̂.
while r ≤ R
2. generate candidate values from proposal distributions

α•τ
ind∼ Nm(α

(r−1)
τ ,Σατ ).

β•
ind∼ Np(β

(r−1),Σβ).

σ•τk ∼ LN(σ
(r−1)
τk , νστk ), for all k, where LN is the log-normal.

λ• ∼ N(λ(r−1), νλ).
3. calculate

Λ (y;λ) =

{
yλ
•−1

λ•ỹλ•−1 λ• 6= 0

ỹ log (y) λ• = 0
4. generate

u ∼ U(0, 1), where U is the uniform distribution.
5. calculate

4 = p(α•τβ
•,σ•τ ,λ

•|y)

p
(
α

(r−1)
τ ,β(r−1),σ

(r−1)
τ ,λ(r−1)

∣∣∣y)
∏m
k=1 LN(σ

(r−1)
τk

|σ•τk )∏m
k=1 LN(σ•τk

|σ(r−1)
τk

)

6. if u ≤ min(1,4)

then α
(r)
τ = α•τ , β

(r) = β•, σ
(r)
τ = σ•τ , λ

(r) = λ•.

else α
(r)
τ = α

(r−1)
τ , β(r) = β(r−1), σ

(r)
τ = σ

(r−1)
τ , λ(r) = λ(r−1).

end
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2.4 Bayesian model for Box-Cox quantile regression

Hastings algorithm offers a simple implementation, the specification of a suitable

proposal distribution is very challenging due to the relatively large number of

parameters in Bayesian multiple quantiles models. Also, the simulated samples

obtained by applying the Metropolis-Hastings algorithm have high autocorrela-

tion. This issue could be solved by choosing a better proposal though, and that is

effectively what the Gibbs sampler is. Therefore, to improve the computational

efficiency of the proposed method, we consider the Gibbs sampler, which requires

deriving the full conditional distributions of all parameters included in the model.

Since deriving the conditional distributions from the Bayesian model based on

the asymmetric Laplace likelihood is intractable, the representation of the asym-

metric Laplace distribution using a mixture of normal distributions considered

by Kozumi & Kobayashi (2011), as shown in Section 1.6.2, is applied. Then, the

likelihood function can be written as

l (ατ , Bτ ,Wτ ,στ ,λτ ;y) ∝

(
m∏
k=1

n∏
i=1

σ
− 1

2
τk w

− 1
2

τk,i

)
exp

−
m∑
k=1

n∑
i=1

(
Λ (yi;λτk )− ατk − x

′
iβτk − θτkwτk,i

)2

2φτkστkwτk,i

 .

where

θτk =
(1− 2τk)

τk (1− τk)
and

φτk =
2

τk(1− τk)
.

Also, wτk,i follows the exponential distribution with mean στk . Then, the posterior

distribution, based on the mixture of normal likelihood functions and the specified

prior distributions, is

p (ατ ,β,Wτ ,στ , λ|y) ∝

(
m∏
i=1

n∏
i=1

σ
− 1

2
τk w

− 1
2

τk,i

)
exp

−
m∑
k=1

n∑
i=1

(
Λ (yi;λ)− ατk − x

′

iβ − θτkwτk,i
)2

2στkφτkwτk,i


×

(
m∏
k=1

σ
−(aτk+1)
τk

)
exp

{
−

m∑
k=1

bτk
στk

}
exp

{
−1

2
(β − β∗)

′
S−1 (β − β∗)

}

× exp

{
− (λ− λ∗)2

2v2

}
exp

{
−

m∑
k=1

(
ατk − α∗τk

)2
2c2τk

}
1(ατ1<ατ2<...<ατm).

After conditional distributions of all the parameters included in the model are

derived as shown in Appendix A.2, the Gibbs sampler algorithm for the proposed
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Chapter 2. Simultaneous Box-Cox Quantile Regression

multiple Box-Cox quantile regressions is given in Algorithm 2. For more details

about how the convergence of these MCMC methods are diagnosed see Appendix

B.1.

Algorithm 2 Gibbs sampler algorithm

1. set initials

r = 1, β(0) = β̂, W
(0)
τ = Ŵτ , σ

(0)
τ = σ̂τ , λ

(0) = λ̂.

while r ≤ R

2. generate α
(r)
τk |β(r−1),w

(r−1)
τk , σ

(r−1)
τk , λ(r−1) using the conditional distribu-

tion: ατk |β,wτk , στk , λ ∼ N
(
α̃τk , ψ

2
τk

)
1(ατk<ατk+1), where

α̃τk = ψ2
τk

(
α∗τk
c2τk

+
n∑
i=1

(
Λ(yi;λ)−x′iβ−θτkwτk,i

)
στkφτkwτk,i

)
, ψ2

τk
=

(
1
c2τk

+
n∑
i=1

1
στkφτkwτk,i

)−1

,

for all k = 1, 2, ...,m

3. generate β(r)|α(r)
τ ,W

(r−1)
τ ,σ

(r−1)
τ , λ(r−1) using the conditional distribution:

β|ατ ,Wτ ,στ , λ ∼ N
(
β̃,Σ

)
, where

β̃ = Σ

(
S−1β∗ +

n∑
i=1

m∑
k=1

xi(Λ(yi;λ)−ατk−θτkwτk,i)
στkφτkwτk,i

)
, Σ =

(
S−1 +

n∑
i=1

m∑
k=1

xix
′
i

στkφτkwτk,i

)−1

.

4. generate w
(r)
τk,i

|α(r)
τk ,β

(r), σ
(r−1)
τk , λ(r−1) using the conditional distribution:

wτk,i|ατk ,β, στk , λ ∼ GIG

1

2
,

√(
Λ (yi;λ)− ατk − x

′
iβ
)2

στkφτk
,

√
θ2
τk

στkφτk
+

2

στk

 ,

where GIG is the density of generalized inverse Gaussian distribution given in

Appendix A.2.

5. generate σ
(r)
τk |α

(r)
τk ,β

(r),w
(r)
τk , λ

(r−1) using the conditional distribution:

στk |ατk ,β,wτk , λ ∼ IG (δ0, δ1) , where IG is the density of the inverse-gamma

distribution and

δ0 = 3n
2

+ aτk , δ1 = bτk +
n∑
i=1

(
Λ(yi;λ)−ατk−x

′
iβ−θτkwτk,i

)2

2φτkwτk,i
+

n∑
i=1

wτk,i .

6. update λ(r)|α(r)
τ ,β(r),W

(r)
τ ,σ

(r)
τ using a one-step Metropolis-Hastings algo-

rithm based on the conditional distribution:

p (λ|ατ ,β,Wτ ,στ ) ∝ exp

{
−

n∑
i=1

m∑
k=1

((
Λ (yi;λ)− ατk − x

′
iβ − θτkwτk,i

)2

2στkφτkwτk,i

)

− (λ− λ∗)2

2v2

}
.
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2.5 Simulations and applications

2.5 Simulations and applications

In this section, we check and compare the performances of the individual quantile

estimation method (AL-BC) and the simultaneous estimation method (PAL-BC)

using simulations and real data. Mainly, we draw Bayesian inference on the first

quartile, the median and the third quartile. In addition, we examine the proposed

methods in terms of estimating the extreme quantiles corresponding to τ = 0.05

and 0.95. To examine the proposed composite likelihood functions precisely, we

may need to reduce the impact of prior distributions on the estimation. This can

be achieved by considering weak prior distributions. Therefore, all approaches are

constructed using the same diffuse proper prior distributions that lead to proper

posterior distributions, each normal prior distribution has mean equal to zero and

variance equal to 105. Also, each multivariate normal distribution has a mean

vector of zeros and a diagonal covariance matrix with entries equal to 105. The

inverse-gamma parameters are set equal to 0.01. To examine the performance of

the proposed methods to handle the simulated and real datasets, we use a variety

of goodness of fit measures. If the true quantile function Q(τ |.) is known, then

the mean squared error (MSEτ ) is given by

MSEτ =
1

n

n∑
i=1

(
Q(τ |xi)−Q(τ |xi)

)2
,

where Θ is a vector of the posterior parameters and Q is the estimated mean of

the quantile function that is given by

Q(τ |xi) =
1

R

R∑
r=1

Q̂(τ |xi,Θr),

where R is the size of the sample simulated from the posterior distribution. Also,

we use the mean absolute error (MAEτ )

MAEτ =
1

n

n∑
i=1

∣∣Q(τ |xi)−Q(τ |xi)
∣∣ .

For real data, we use the leave-one-out cross-validation estimation of the error,
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Chapter 2. Simultaneous Box-Cox Quantile Regression

which is given by

QLCVτ =
1

n

n∑
i=1

ρτ

(
yi −Q

−i
(τ |xi)

)
, (2.11)

where Q
−i

is the posterior mean of the quantile function that is estimated when

the ith observation is left out. Since the loss function is more related to individual

estimation, it could favour the individual estimation over the simultaneous esti-

mation. Also, this loss function does not give the actual errors between the true

observations and fitted values (that is, as happened in the case of ordinary least

squares regression), it represents the errors weighted by either τ or (1− τ). How-

ever, it can be used to show the change in errors caused by using simultaneous

estimation rather than the individual quantile estimations.

2.5.1 Simulated Data

In this section, we consider 200 observations from the model:

yi = log(1 + xi + εi), (2.12)

where xi is generated from the uniform distribution U(1,6) and εi is simulated

from the normal distribution N(0, 0.7). The simulated data are shown in Figure

2.2.
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Figure 2.2: Scatter plot of the original response variable (left) and transformed
response obtained using the PAL-BC method (right) against x.
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Figure 2.2 shows the relationship between the response variable and the co-

variate to be non-linear with heteroscedastic errors. However, it also shows that

after applying the PAL-BC method, the relationship between the transformed

response variable Λ(y;λ) with λ = 2.13 (that is, the posterior mean) and the co-

variate is linear with a constant variance. This suggests that the PAL-BC method

can handle the violation of linearity and homoscedastic errors for this particular

example. Figure 2.3 shows that the AL-BC method suggests similar transforma-

tions to that obtained by the PAL-BC method in the case of τ = 0.25, 0.5 with

λ0.25 = 2.25 and λ0.5 = 2.05, and a slightly different transformation in the case

τ = 0.75 with λ0.75 = 1.72. To provide more explanation about this difference in

estimating the transformations and its effect on the estimation of quantile func-

tions, we implement a simulation study using 300 samples, that just differ in the

errors εi, from the model given in (2.12).
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Figure 2.3: Scatter plot of the transformed response obtained using the AL-BC
method corresponding to τ = 0.25, 0.5, 0.75 (left to right) against x.

Figure 2.4 shows a comparison between the estimated quantile curves using

the two approaches and the true quantile functions. For the 0.5 quantile functions,

we can say that the two approaches share similar results, while for the 0.25 and

0.75 quantile functions, the PAL-BC approach outperforms the other approach

that fails to estimate the correct transformation. This is because that although

the observed information at the 0.25 and 0.75 quantile levels is not sufficient to

estimate the transformation parameter and the quantile coefficients accurately,

the PAL-BC method combines the observed information over multiple quantile

levels to give estimates close to the true values for the parameters related to the
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Figure 2.4: The average of the posterior mean of quantile curves (red) obtained
by applying the PAL-BC method (left) and the AL-BC method (right) over 300
simulations, and true quantile curves (black) for quantiles: 0.25, 0.5 and 0.75.

0.25 and 0.75 quantile functions. This conclusion is supported by Table 2.1 which

suggests that the simultaneous estimation using the PAL-BC method succeeds

in reducing MSEτ and MAEτ for the 0.25 and 0.75 quantile functions more than

individual estimation using the AL-BC method. Table 2.1 also shows that the

AL-BC approach performs better when the quantile of interest is close to the true

mode of the data. From Figure 2.5, the two approaches suggest the averages of

the 95% highest posterior density intervals for quantile functions containing the

true quantile curves. The PAL-BC approach shows a better precision around the

true quantile functions especially in the case of the 0.75 quantile.

τ
MSEτ MAEτ

PAL-BC AL-BC PAL-BC AL-BC

0.25 0.13 (0.0076) 0.19 (0.0135) 2.38 (0.0643) 2.53 (0.0667)
0.5 0.07 (0.0039) 0.07 (0.0042) 1.87 (0.0501) 1.91 (0.0539)
0.75 0.05 (0.0029) 0.13 (0.0219) 1.66 (0.0494) 2.43 (0.1008)

Table 2.1: The averages of mean squared error (MSEτ × 10−2), mean absolute
error (MAEτ×10−2) and their standard errors (s.e.×10−2) in the brackets, based
on 300 samples.
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Figure 2.5: The average of the 95% highest posterior density intervals (green)
estimated by applying PAL-BC (top) and AL-BC (bottom) over 300 simulations,
and true quantile curves (black) for quantiles: 0.25, 0.5 and 0.75 (left to right).

To investigate how increasing the number of quantiles affects simultaneous

estimation and compare the proposed approaches in terms of estimating the ex-

treme quantile functions, we implement individual estimations for the 0.05 and

0.95 quantiles, and simultaneous estimations for the 0.05 and 0.95 quantiles along

with the 0.25, 0.5 and 0.75 quantiles. Figure 2.6 shows that the PAL-BC ap-

proach catches the quantiles of the underlying distribution well while the AL-BC

method performs badly because the quantile of interest comes away from the

median which is the mode of the data. In addition, Figures 2.4 & 2.6 suggest

that PAL-BC method provides almost the same estimates under different number

of quantiles. From Figure 2.7 the averages of the 95% highest posterior density

intervals estimated using the PAL-BC method for the 0.95 quantile function in-

cludes the true quantile curve while the averages of the 95% highest posterior

density intervals estimated using the AL-BC method does not. Therefore, it can

be concluded that applying the PAL-BC method reduces the uncertainty shown

by the other method about the location of the true 0.95 quantile function.
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Figure 2.6: The average of the posterior mean of quantile curves (red) obtained
by applying the PAL-BC method (left) and the AL-BC method (right) over 300
simulations, and true quantile curves (black) for quantiles: 0.05, 0.25, 0.5 0.75
and 0.95.

2.5.2 Air Quality data

This dataset contains daily measurements of air quality, in New York city over the

period from May to September 1973, on six variables which are Ozone: the mean

of ozone in parts per billion, Solar.R: Solar radiation in the frequency band 4000 -

7700, Wind : the average of wind speed in mile per hour, Temp: the maximum of

daily temperature in Fahrenheit degree, Month and Day (these data are available

publicly, R Core Team, 2016). In this section, we are interested in analysing the

relationship between Ozone and Temp that is described in Figure 2.8.

Figure 2.8 shows the nonlinear relationship between Ozone and Temp with

heteroscedastic errors. Also, it shows how the PAL-BC method can deal with

these violations of assumptions. Figure 2.9 shows how the AL-BC method sug-

gests different transformations for the quantile levels. Table 2.2 gives more details

about this difference in transformations and its effect on the estimates.

Figure 2.10 shows the comparison between quantile functions estimated using

the PAL-BC method, the AL-BC method and local polynomial quantile regression

(LPQR) proposed by Koenker (2005). For illustration, LPQR method estimates
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Figure 2.7: The average of the 95% highest posterior density intervals (green)
estimated by applying the PAL-BC method (top) and the AL-BC method (bot-
tom) over 300 simulations, and true quantile curves (black) for quantiles: 0.05
and 0.95 (left to right).

the quantile functions by solving the optimisation problem given by

min
ατk ,βτk

n∑
i=1

wi(x)ρτk

(
yi − ατk − βτk(xi − x)

)
,

where wi(x) = K
(

(xi − x)/h
)
/h for a positive symmetric unimodal kernel func-

tion K and a bandwidth parameter h. It suggests all methods behave in a similar

way with some differences in estimating quantile functions. Table 2.2 and Figure

2.10 suggest that there is some agreement in estimating median functions between
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Figure 2.8: Scatter plot of the original response variable (left) and transformed
response obtained using the PAL-BC method (right) against Temp.
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Figure 2.9: Scatter plot of the transformed response obtained using the AL-BC
method corresponding to τ = 0.25, 0.5, 0.75 (left to right) against Temp.

the PAL-BC and AL-BC methods. Table 2.3 shows that the means of errors es-

timated using the leave-one-out cross-validation evidences this agreement. For

the 0.25 and 0.75 quantiles, there are slight differences in the means of errors

obtained using the proposed methods.
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2.5 Simulations and applications

PAL-BC AL-BC

Coefficients P.M. 95% HPD Coefficients P.M. 95% HPD

α0.25 −92.54 (−114.09,−70.34) α0.25 −125.90 (−162.48,−94.05)
α0.5 −80.35 (−100.80,−58.25) α0.5 −76.98 (−108.12,−44.98)
α0.75 −69.74 (−91.06,−48.27) α0.75 −12.52 (−47.20, 30.66)

β 2.01 ( 1.84, 2.20)
β0.25 2.27 ( 1.85, 2.72)
β0.5 2.02 ( 1.70, 2.32)
β0.75 1.70 ( 1.47, 1.92)

λ 0.22 ( 0.11, 0.33)
λ0.25 0.38 ( 0.18, 0.55)
λ0.5 0.20 ( 0.01, 0.38)
λ0.75 −0.01 ( −0.17, 0.13)

σ0.25 5.47 ( 4.48, 6.49) σ0.25 5.38 ( 4.42, 6.39)
σ0.5 6.83 ( 5.60, 8.09) σ0.5 6.86 ( 5.62, 8.13)
σ0.75 5.18 ( 4.25, 6.16) σ0.75 5.03 ( 4.15, 5.99)

Table 2.2: The posterior mean (P.M.) and the 95% highest posterior density
intervals (95% HPD).

τ PAL-BC AL-BC

0.25 5.49 5.42
0.5 7.83 7.83
0.75 6.71 6.69

Table 2.3: The mean of errors estimated using the leave-one-out cross-validation
for the different quantile functions.
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Figure 2.10: The quantile curve estimated by applying PAL-BC, AL-BC and
local polynomial quantile regression (LPQR) are represented by the red, green
and blue curves respectively for quantiles: 0.25, 0.5 and 0.75 (left to right).
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Chapter 2. Simultaneous Box-Cox Quantile Regression

2.6 Discussion

Along with handling the violations of the linearity and homoscedasticity effi-

ciently, the PAL-BC method can ensure non-crossing of quantile functions. The

PAL-BC method shows a great ability to estimate the suitable transformation

for the response variable by combining the information over multiple quantile

functions, while the AL-BC method suggests different transformation for each

quantile and this could lead to misspecifying the true transformation, especially

in the case of extreme quantiles.

Simultaneous estimation of quantile curves can outperform the individual es-

timation. Thus, combining observed information over multiple-levels of quantiles

can enhance the estimation of quantile curves and ensure that quantile functions

are monotonically increasing in quantile level. The key features of the proposed

methods are the easy implementation and the flexible assumptions. Also, they

do not require intensive computations and can provide smooth and reliable esti-

mation of quantile functions for complex non-linear models with heteroscedastic

errors. Thus, the proposed methods can be considered as a useful extension of

Bayesian linear quantile regression.

However, the PAL-BC and AL-BC methods have some limitations. Due to

the asymmetry property of the Box-Cox transformation, the PAL-BC and AL-BC

approaches cannot offer a suitable transformation for the response variable in the

cases where covariates should be transformed. Moreover, they are impractical in

the context of multiple regressions where transformation of the response variable

is not enough to fix the violations of linearity over all covariates.

44



Chapter 3

Extensions of Box-Cox regression

3.1 Introduction

Despite the flexibility of the Box-Cox transformation for the response variable,

it has some limitations. In some situations, it can handle non-linearity, but

heteroscedasticity may still exist. Therefore, to improve the estimation, the het-

eroscedastic variance of the conditional distribution of the transformed response

should be taken into account. Also, since transforming the response variable is oc-

casionally not enough to deal with the violation of linearity especially in the case

of multiple covariates, a two-sided transformation, that allows for transforming

each covariate along with the response variable may be needed.

To handle these issues, we consider two extensions of Box-Cox regression.

Firstly, we consider a more general form of Box-Cox regression for heteroscedas-

tic errors. Secondly, we consider a generalisation of Box-Cox regression that, in

addition to transforming the response variable, allows different transformations

for different predictors. Two-sided Box-Cox transformation includes a wide range

of transformations that are symmetric around the linear transformation. Thus,

the two-sided Box-Cox regression can handle more complex nonlinear models

effectively. Figure 3.1 illustrates the properties of the two-sided Box-Cox trans-

formation.

The two-sided Box-Cox transformation has a number of motivations. For ex-

ample, in some situations where it is required to deal with the heteroscedasticity of

linear models, the Box-Cox transformation of the response variable is not able to

handle this problem. Therefore, the two-sided Box-Cox transformation is needed
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Chapter 3. Extensions of Box-Cox regression

−2 −1 0 1 2

−
2

−
1

0
1
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Λ(x, η)

Λ
(y

, λ
)

λ = 0.5,η = − 0.5
λ = − 0.5,η = 0.5
λ = 2,η = − 3
λ = − 3,η = 2

Figure 3.1: Two-sided Box-Cox transformation for range values of transformation
parameters λ and η, where y = x.
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Figure 3.2: Scatter plot of the original and transformed Engel data using the
logarithmic transformation.
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3.2 Bayesian Box-Cox quantile regression with heteroscedastic errors

to address the violation of homoscedasticity. To elaborate, we consider the Engel

dataset that is now available publicly by Koenker (2016) and includes 235 obser-

vations on household food expenditure and income. To treat heteroscedasticity

in the Engel data, the logarithmic transformation of both sides of the regression

can be used as in Figure 3.2. In addition, the standard Box-Cox transformation

of the response variable may not be practical in the case of multiple regression,

since it can not fix the violation of linearity for all covariates. Hence, the two

sided Box-Cox transformation can be considered as an alternative.

In this chapter, we propose two Bayesian methods to estimate quantile func-

tions for these two extensions of Box-Cox regression simultaneously and individ-

ually. Then, we use simulations and real datasets to investigate the performance

of the proposed methods and to implement a comparison study.

3.2 Bayesian Box-Cox quantile regression with

heteroscedastic errors

To take into account heteroscedasticity that is not eliminated by Box-Cox trans-

formation, we consider a more general form of Box-Cox regression given by

Λ (yi;λ) = α + x
′

iβ + σ (xi) εi,

where εi is independently distributed with a mean equal to zero and constant

variance; σ (xi) is the standard deviation of the heteroscedastic error depending

on xi; xi is a p × 1 vector of covariates for the ith observation; α is a unknown

intercept coefficient and β is a p× 1 vector of unknown slope coefficients. Then,

the conditional quantile function is given by

Q(τk|xi) = Λ−1
(
ατk + x

′

iβτk |λτk
)
.

Thus, the Bayesian quantile model for this regression is based on the assumption

of a linear relationship between the transformed response variable and covariates.

To accommodate heteroscedastic scale in the Bayesian quantile model, we assume

that

σ (xi) = exp
(
ψ0 + x

′

iψ
)
, (3.1)
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Chapter 3. Extensions of Box-Cox regression

where

ψ = (ψ1, ψ2, ..., ψp) .

Then, the multiple quantile functions of Box-Cox regression with heteroscedastic

error can be estimated by maximising the pseudo asymmetric Laplace likelihood

function (PAL-HBC) that is obtained by replacing the scale parameters in the

formula (2.8) with the heteroscedastic scale given in (3.1) and can be written as

follows:

l (ατ , Bτ ,λτ ,ψ0,τ ,Ψτ ;y) ∝ exp

{
−

m∑
k=1

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′
iβτk

exp
(
ψ0,τk + x

′
iψτk

) )

−
m∑
k=1

n∑
i=1

(
ψ0,τk + x

′

iψτk

)}
. (3.2)

where ψ0,τ = (ψ0,τ1 , ..., ψ0,τm) and Ψτ is a p×m matrix whose kth column is given

by ψτk = (ψ1,τk , ..., ψp,τk) . Also, the quantile functions can be estimated indi-

vidually by maximising the asymmetric Laplace likelihood function (AL-HBC),

which is obtained by setting m = 1 in the likelihood given in (3.2). The prior

distributions for the coefficients of quantile regression are specified as follows:

p(ατ ) ∝ exp

{
−1

2

m∑
k=1

(
ατk − α∗τk

)2

c2
τk

}
,

p(Bτ ) ∝ exp

{
−1

2

m∑
k=1

(
βτk − β∗τk

)′
S−1
τk

(
βτk − β∗τk

)}
,

and for the vector of the Box-Cox transformation parameters λτ are as given in

Section 2.4.2. The prior distributions for all variance parameters are given by

p(ψ0,τ ) ∝ exp

{
−

m∑
k=1

(
ψ0,τk − ψ∗0,τk

)2

2d2
τk

}
,

p(Ψτ ) ∝ exp

{
−1

2

m∑
k=1

(
ψτk −ψ∗τk

)′
Σ−1
τk

(
ψτk −ψ∗τk

)}
.
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3.3 Bayesian two-sided Box-Cox quantile regression

Then, the posterior distribution is given by

p (ατ , Bτ ,λτ ,ψ0,τ ,Ψτ |y) ∝ l (ατ , Bτ ,λτ ,ψ0,τ ,Ψτ ;y) p(ατ )p(Bτ )p(λτ )p(ψ0,τ )p(Ψτ ).

To simulate samples from this posterior distribution, the Metropolis-Hastings

algorithm can be applied. A simulation study to investigate the performance of

this quantile regression method is implemented in Section 3.4.

3.3 Bayesian two-sided Box-Cox quantile regres-

sion

The standard Box-Cox regression can be extended to a two-sided Box-Cox re-

gression which can be written as

Λ(yi, λ) = α + Λ (xi,η)β + εi,

where Λ (xi,η) =
(

Λ (x1i, η1) ,Λ (x2i, η2) , ...,Λ (xpi, ηp)
)
, and εi is independently

distributed with a mean equal to zero and a constant variance. The quantile

function is given by

Q(τk|xi) = Λ−1
(
ατk + Λ (xi,ητk)βτk |λτk

)
.

Then, multiple quantile curves of the two-sided Box-Cox regression can be esti-

mated by solving the optimisation problem:

Q̂ (τ |X) = min
ατ ,Bτ ,λτ ,Hτ∈R

m∑
k=1

n∑
i=1

ρτk

(
Λ(yi, λτk)− ατk − Λ (xi,ητk)βτk

)
,

which is equivalent to maximising the pseudo asymmetric Laplace likelihood func-

tion (PAL-TBC) given by

l (ατ , Bτ ,στ ,λτ , Hτ ;y) ∝

(
m∏
k=1

σ−nτk

)
exp

{
−

m∑
k=1

n∑
i=1

ρτk

(
Λ(yi, λτk)− ατk − Λ (xi,ητk)βτk

στk

)}
,

where Hτ is a p ×m matrix whose kth column is given by ητk = (η1,τk , ..., ηp,τk).

Also, the quantile functions can be estimated individually by maximising the
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Chapter 3. Extensions of Box-Cox regression

asymmetric Laplace likelihood function with the two-sided Box-Cox transfor-

mation (AL-TBC), which is obtained by setting m = 1 in the above likelihood

(PAL-TBC). The prior distributions for coefficients of quantile regression and the

vector of the Box-Cox transformation parameters λτ are as specified in Section

2.4.2. The left-hand side transformation parameters are assumed to be a priori

identical over all quantile levels and qual η. Then,

p(η) ∝ exp

{
−1

2
(η − η∗)

′
Σ−1
η (η − η∗)

}
Hence, the posterior distribution is written as

p (ατ ,β,στ , λ,η|y) ∝ l (ατ ,β,στ , λ,η;y) p(ατ )p(β)p(στ )p(λ)p(η).

The Metropolis-Hastings algorithm can be applied to simulate samples from this

posterior distribution. Alternatively, utilising the representation of the asymmet-

ric Laplace distribution based on a mixture of normal distributions proposed by

Kozumi & Kobayashi (2011) as described in Section 1.6.2, the Gibbs sampler

can be used by employing the representation of the pseudo asymmetric Laplace

likelihood function (PAL-TBC) given by

l (ατ , Bτ ,Wτ ,στ ,λτ , Hτ ;y) ∝

(
m∏
k=1

n∏
i=1

σ
− 1

2
τk w

− 1
2

τk,i

)
exp

{
−

m∑
k=1

n∑
i=1

(Λ(yi, λτk )− ατk − Λ (xi,ητk )βτk )2

2φτkστkwτk,i

}
.

With the conditional distributions of all parameters derived, the Gibbs sampler

including one step Metropolis-Hastings updating transformation parameters can

be applied.

3.4 Simulations and applications

3.4.1 Simulated Data

We compare the performance of simultaneous Box-Cox quantile regression ac-

commodating heteroscedastic error (PAL-HBC) with individual Box-Cox quan-

tile regression with heteroscedastic error (AL-HBC). For the priors, we use the

same specified parameters described in Section 2.5. We sample 300 observations
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3.4 Simulations and applications

from the model:

yi = (1 + xi + 0.3xiεi)
2, (3.3)

where xi is generated from the uniform distribution U(2,20) and εi is simulated

from the normal distribution N(0,1). The simulated data are plotted in Figure

3.3. For these data, the PAL-BC is able to fix the violation of linearity, but the
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Figure 3.3: Scatter plot of the original response variable (left) and transformed
response with λ = 0.51 estimated using PAL-HBC (right) against x.

errors are still heteroscedastic. Therefore, to achieve better Bayesian inference,

it is required to take into account the heteroscedasticity by considering simulta-

neous Box-Cox quantile regression with heteroscedastic error (PAL-HBC). Since

the PAL-HBC method depends on one assumption which is the linearity of rela-

tionship between the transformed response variable and the covariates, it could

be considered more flexible and it may be useful to fit complex models. Thus,

Figure 3.3 suggests that the PAL-HBC method is able to treat the violation of

linearity. In contrast, Figure 3.4 shows that the AL-HBC method recommends

different transformations for the quantile levels, since the AL-HBC method seeks

to handle the violation of linearity at the desired quantile level. Since the true

error distribution is normal, the median function that plays the role of central

tendency measurement can provide much information about the suitable distri-

bution for the data. For this reason, there is almost perfect agreement in the
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Chapter 3. Extensions of Box-Cox regression

estimation of the transformation parameters corresponding to τ = 0.5 between

the PAL-HBC and AL-HBC methods. For further illustration, we implement a

simulation study using 300 samples of size 300 that just differ in the errors εi,

from the model given in (3.3).
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Figure 3.4: Scatter plot of the transformed response obtained using the AL-
HBC method corresponding to τ = 0.25, 0.5, 0.75 (left to right) against x, where
λ0.25 = 0.77, λ0.5 = 0.52 and λ0.75 = 0.30.

5 10 15 20

0
20

0
40

0
60

0
80

0

x

y

5 10 15 20

0
20

0
40

0
60

0
80

0

x

y

Figure 3.5: The average of the posterior mean of quantile curves (red) obtained
by applying PAL-HBC (left) and AL-HBC (right) over 300 simulations, and true
quantile curves (black) for quantiles: 0.25, 0.5 and 0.75.
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Figure 3.6: The average of the 95% highest posterior density intervals (green)
estimated by applying PAL-HBC (top) and AL-HBC (bottom) over 300 simula-
tions, and true quantile curves (black) for quantiles: 0.25, 0.5 and 0.75 (left to
right).

Figure 3.5 shows a comparison between the estimated quantile curves obtained

using the two approaches and the true quantile functions. It can be seen that

the PAL-HBC approach outperforms AL-HBC. Consistent with this conclusion,

Table 3.1 suggests that the PAL-HBC method gives a greater reduction in MSEτ

and MAEτ for all levels of quantile than the AL-HBC method.

τ
MSEτ MAEτ

PAL-HBC AL-HBC PAL-HBC AL-HBC

0.25 114.22 ( 8.81) 315.34 (17.41) 6.30 (0.23) 10.63 (0.28)
0.5 190.84 (14.29) 227.51 (16.26) 8.17 (0.28) 8.63 (0.28)
0.75 359.25 (25.35) 1475.39 (66.86) 11.00 (0.36) 21.20 (0.45)

Table 3.1: The averages of mean squared error (MSEτ ), mean absolute error
(MAEτ ) and their standard errors (s.e.) in the brackets, based on 300 samples.

53



Chapter 3. Extensions of Box-Cox regression

Figure 3.6 suggests that the averages of the 95% highest posterior density in-

tervals estimated using the two approaches for the median function include the

true quantile regression curve. Also, it shows that the averages of the 95% high-

est posterior density intervals estimated using the PAL-HBC method for the 0.25

and 0.75 quantile functions include the true quantile curves while the averages of

the 95% highest posterior density intervals estimated using the AL-HBC method

does not. Thus, the PAL-HBC method is more confident about the location of

the true 0.25 and 0.75 quantile functions.
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Figure 3.7: The average of the posterior mean of quantile curves (red) obtained
by applying PAL-HBC (left) and AL-HBC (right) over 300 simulations, and true
quantile curves (black) for quantiles: 0.05, 0.25, 0.5, 0.75 and 0.95.

To examine the effect of the number of quantiles included in simultaneous

estimation on the performance of the PAL-HBC approach and to challenge the

proposed methods to estimate more extreme quantiles, we estimate the 0.05 and

0.95 quantiles individually and simultaneously along with the 0.25, 0.5 and 0.75

quantiles. From Figure 3.7, the PAL-HBC method shows a great ability to esti-

mate all quantiles of interest. On the other hand, the AL-HBC method gives poor

estimates especially for the extreme quantiles. Also, Figures 3.5 & 3.7 suggest

that the addition of 0.05 and 0.95 quantiles to the simultaneous estimation re-

duces the bias of estimates given by PAL-HBC for the three quartiles. Figure 3.8
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3.4 Simulations and applications

shows how the PAL-HBC approach provides more accurate 95% highest poste-

rior density intervals, including the true functions for the 0.05 and 0.95 quantiles,

while the AL-HBC method fails to do that. Thus, the AL-HBC approach is

unable to determine the correct transformation for the data using observed in-

formation available at individual quantile functions, especially the extreme ones.

On the other hand, the PAL-HBC method, combining observed information over

multiple quantiles, suggests an accurate estimation of the transformation.
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Figure 3.8: The average of the 95% highest posterior density intervals (green) esti-
mated by applying PAL-HBC (top) and AL-HBC (bottom) over 300 simulations,
and true quantile curves (black) for quantiles: 0.05 and 0.95 (left to right).

55



Chapter 3. Extensions of Box-Cox regression

3.4.2 Housing values in Boston

We compare the performance of simultaneous two-sided Box-Cox quantile re-

gression (PAL-TBC) with individual two-sided Box-Cox quantile regression (AL-

TBC). We use the real data for the housing market in Boston. This dataset
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Figure 3.9: Scatter plot of the original response variable against the original
predictor (left) and the transformed response variable against the transformed
predictor obtained using PAL-TBC (right).

includes the measurement of median value of owner-occupied homes in $1000s,

among other variables, crime rate by town, age (proportion of owner-occupied

units built prior to 1940), the proportion of the lower status of the population

and full value property tax rate per $10,000 (for more details, see Harrison &

Rubinfeld, 1978). These data are now available publicly by Venables & Ripley

(2002). Here we study the relationship between median value of owner-occupied

homes and the proportion of the lower status of the population over different

levels of quantiles. For the data given in Figure 3.9, the simultaneous Box-Cox

quantile method (PAL-BC) can not suggest a suitable transformation, that is able

to handle the violation of linearity and homoscedasticity, for the response vari-

able. This complex model is considered beyond the ability of the PAL-BC method

since a two-sided transformation is required. Then, to achieve the assumptions
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3.4 Simulations and applications

of the linearity and homoscedasticity, it is required to consider a more power-

ful extension of the PAL-BC method which is simultaneous two-sided Box-Cox

quantile regression (PAL-TBC). Figure 3.9 shows the capacity of the PAL-TBC

method to handle the violation of linearity and constant variance by suggesting

suitable transformations for the response variable and the covariate while Figure

3.10 shows the inability of the AL-TBC method to deal with these violations

for the 0.25 and 0.75 quantile functions. Table 3.2 illustrates the differences in

the estimation of transformation between the two proposed approaches and the

effects of these differences on the estimates.

From Figure 3.11, which shows the estimation of quantile functions obtained

by applying simultaneous two-sided Box-Cox quantile regression (PAL-TBC),

individual two-sided Box-Cox quantile regression (AL-TBC) and local polynomial

quantile regression (LPQR) described in Section 2.5.2, there is close agreement

between the PAL-TBC and the AL-TBC methods in the estimation of median

function. Also, compared to the LPQR method, it is obvious that the PAL-

TBC and AL-TBC methods suggest reasonable transformations for the response

variable and the predictor variable. Table 3.3 shows similar means of errors

estimated using the leave-one-out cross-validation method, given in (2.11), for

both the approaches.
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Figure 3.10: Scatter plot of the transformed response variable against the trans-
formed predictor obtained using AL-TBC for quantiles: 0.25, 0.5 and 0.75 (left
to right).
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Chapter 3. Extensions of Box-Cox regression

PAL-TBC AL-TBC

Coefficients P.M. 95% HPD Coefficients P.M. 95% HPD

α0.25 64.89 (60.55,69.55) α0.25 45.41 ( 40.35, 51.09)
α0.5 67.47 (63.07,72.13) α0.5 67.99 ( 57.46, 79.42)
α0.75 70.42 (66.03,75.10) α0.75 123.47 (103.64,144.35)

β −1.06 (−1.10,−1.02)
β0.25 −0.99 (−1.05,−0.93)
β0.5 −1.04 (−1.11,−0.96)
β0.75 −0.95 (−1.01,−0.89)

λ 0.30 ( 0.20, 0.38)
λ0.25 0.75 ( 0.56, 0.94)
λ0.5 0.28 ( 0.05, 0.51)
λ0.75 −0.24 (−0.39,−0.09)

η 0.04 (−0.07, 0.16)
η0.25 0.12 (−0.11, 0.35)
η0.5 0.06 (−0.20, 0.28)
η0.75 −0.08 (−0.25, 0.10)

σ0.25 1.38 ( 1.26, 1.51) σ0.25 1.33 ( 1.23, 1.44)
σ0.5 1.79 ( 1.65, 1.96) σ0.5 1.8 ( 1.64, 1.95)
σ0.75 1.49 ( 1.36, 1.63) σ0.75 1.44 ( 1.32, 1.59)

Table 3.2: The posterior mean (P.M.) and the 95% highest posterior density
intervals (95% HPD).
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Figure 3.11: Quantile curve estimated by applying PAL-TBC, AL-TBC and local
polynomial quantile regression (LPQR) are represented by the red, green and blue
curves respectively for quantiles: 0.25, 0.5 and 0.75 (left to right).
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3.4 Simulations and applications

τ PAL-TBC AL-TBC

0.25 1.37 1.36
0.5 1.90 1.91
0.75 1.69 1.65

Table 3.3: The mean of errors estimated using the leave-one-out cross-validation
method, given in (2.11), for the different quantile functions.

3.4.3 Air Quality data

In this section, we illustrate the motivation of the two-sided Box-Cox regression

to handle the violation of linearity and homoscedasticity for multiple regression.

We use Air Quality data, described in Section 2.5.2, to investigate the relationship

of Ozone against Solar.R, Wind and Temp. The original relationships between

these variables are shown in Figure 3.12. It can be seen that there are different

types of relationship between the response variable and the covariates. The rela-

tionship between Ozone and Solar.R is linear with heteroscedastic error, and the

relationship between Ozone and Wind is inverse nonlinear with heteroscedastic

error. Also, there is a nonlinear relationship with heteroscedastic error between

Ozone and Temp. Due to these differences and complexity in the relationship

between the response variable and the covariates, Box-Cox quantile regression

discussed in Chapter 2 is not able to suggest a transformation, for the response

variable, that is able to handle the violation of linearity and homoscedasticity.

Therefore, these data can be considered as a good motivation to use two-sided

Box-Cox quantile regression. We use this dataset to investigate the performance

of simultaneous two-sided Box-Cox quantile regression (PAL-TBC) and individ-

ual two-sided Box-Cox quantile regression (AL-TBC). Table 3.4 show that the

PAL-TBC approach suggests different transformations for the variables of inter-

est. Also, Figure 3.13 shows that the suggested transformations by the PAL-TBC

method succeed in accommodating nonlinear relationships between the variables.

To examine the existence of heteroscedasticity, Koenker & Bassett (1982) sug-

gested statistical test to examine the null hypothesis of the equality of the slope

coefficients in τ . They assumed that

H0 : RBτ = r,
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Chapter 3. Extensions of Box-Cox regression

Ozone
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Figure 3.12: The scatter plot of original relationships between the variables.

where Bτ is a matrix of the slope coefficients corresponding to individual quantiles

given by Bτ = [(βτ1,1, ...,βτ1,p)
′
, ..., (βτm,1,βτm,p)

′
]
′
,. Under the null hypothesis

H0, the test statistic is given by

Tn = n (RBτ − r)
′
[
RV −1

n R
′
]

(RBτ − r) ,

which is asymptotically chi-square with degrees of freedom equal to the rank of

R, where Vn is mp×mp with (s, t)th element given by

Vn(τs, τt) = [min(τs, τt)− τsτt]Hn(τs)
−1JnHn(τt)

−1,
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3.5 Discussion

where

Hn(τk) = lim
n→∞

1

n

n∑
i=1

xix
′

if
(
Q(τk)

)
, and Jn =

1

n

n∑
i=1

xix
′

i,

where f is the conditional distribution of the response variable and Q is the

quantile function of the error distribution. To examine the equality of slope

coefficients over different quantiles, we implement a general class of this test

called the joint test of equality of slope coefficients of quantile regressions that is

described by Koenker (2016). At the significance level of 0.05, the test suggests

that slope coefficients of quantile regressions for the transformed data, shown in

Figure 3.13, are identical under different numbers of quantile functions included

in the joint test. This implies the absence of heteroscedasticity. On the other

hand, the AL-TBC approach suggests different transformations for each quantile

level (for more details see Table 3.4 and Figures 3.14 & 3.15 & 3.16). From Figure

3.16, nonlinearity may not well handled by this approach (e.g. an outlier with

very low Ozone level is produced)

Table 3.4 shows that there is a similarity between the PAL-TBC and AL-

TBC methods in estimating the parameters corresponding to the median func-

tion. Also, it suggests that there is no agreement between these approaches in

estimating the parameters for the 0.25 and 0.75 quantile functions. By looking

at Table 3.5, the AL-TBC method shows a slight reduction in the error, esti-

mated using the leave-one-out cross-validation corresponding to the 0.25 quantile

function, compared to the PAL-TBC method. However, the PAL-TBC method

outperforms the AL-TBC method in terms of the errors corresponding to the 0.5

and 0.75 quantile functions.

3.5 Discussion

Simultaneous Box-Cox quantile regression with heteroscedastic error (PAL-HBC)

shows an excellent ability to fit a nonlinear relationship with heteroscedastic-

ity and shows superiority over individual Box-Cox quantile regression with het-

eroscedastic error (AL-HBC) by suggesting an optimal transformation for all

quantiles rather than a different transformation for each quantile. Two-sided

Box-Cox quantile regression can be considered as a good extension of Box-Cox
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Chapter 3. Extensions of Box-Cox regression

Transformed Ozone
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Figure 3.13: The scatter plot of relationships between the transformed variables
obtained using the PAL-TBC method.

quantile regression that can deal with more complex models, which are consid-

ered beyond the simple Box-Cox transformation of the response variable. Simul-

taneous two-sided Box-Cox quantile regression (PAL-TBC) has a great ability

to accommodate nonlinearity and heteroscedasticity for regression models with

multiple covariates. Moreover, the simultaneous Box-Cox quantile methods can

outperform the individual Box-Cox quantile methods, especially in estimating

the extreme quantile functions.

The results of the analysis show that individual Box-Cox quantile methods

handle the nonlinearity by suggesting a transformation estimated using observed
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3.5 Discussion

PAL-TBC AL-TBC

Coefficients P.M. 95% HPD Coefficients P.M. 95% HPD

α0.25 53.90 (26.85,78.44) α0.25 31.94 (−42.35, 87.00)
α0.5 62.21 (34.76,85.89) α0.5 56.80 (−85.17,137.24)
α0.75 74.07 (46.15,97.77) α0.75 100.48 ( 23.83,191.41)

β1 0.06 ( 0.04, 0.08)
β1,0.25 0.06 ( 0.03, 0.10)
β1,0.5 0.05 ( 0.02, 0.09)
β1,0.75 0.04 ( 0.01, 0.07)

β2 −2.13 (−2.54,−1.71)
β2,0.25 −2.08 (−3.16,−0.99)
β2,0.5 −2.09 (−2.95,−1.20)
β2,0.75 −1.68 (−2.67,−0.64)

β3 1.39 ( 1.20, 1.58)
β3,0.25 1.44 ( 1.08, 1.80)
β3,0.5 1.39 ( 1.06, 1.74)
β3,0.75 1.29 ( 0.91, 1.66)

λ 0.32 ( 0.21, 0.43)
λ0.25 0.46 ( 0.26, 0.67)
λ0.5 0.29 ( 0.06, 0.52)
λ0.75 0.04 (−0.15, 0.24)

η1 0.36 (−0.11, 0.88)
η1,0.25 0.50 (−0.54, 1.47)
η1,0.5 0.48 (−0.59, 1.81)
η1,0.75 0.61 (−0.81, 2.23)

η2 −0.08 (−0.55, 0.36)
η2,0.25 0.12 (−0.73, 1.11)
η2,0.5 0.00 (−1.11, 1.03)
η2,0.75 0.06 (−1.31, 1.52)

η3 4.11 ( 2.49, 5.59)
η3,0.25 4.60 ( 2.17, 6.81)
η3,0.5 3.96 ( 0.78, 6.64)
η3,0.75 3.54 ( 0.97, 6.29)

σ0.25 4.22 ( 3.44, 5.03) σ0.25 4.20 ( 3.42, 5.02)
σ0.5 5.58 ( 4.53, 6.67) σ0.5 5.69 ( 4.65, 6.80)
σ0.75 4.64 ( 3.83, 5.58) σ0.75 4.59 ( 3.73, 5.46)

Table 3.4: The posterior mean (P.M.) and the 95% highest posterior density
intervals (95% HPD).

information, conveyed through a particular quantile function, that can not be

sufficient to estimate the suitable transformation for the data. This leads to

the suggestion of different transformations for the same dataset. Along with the

fact that there is no theoretical justification for this variation in transformation
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Chapter 3. Extensions of Box-Cox regression

τ PAL-TBC AL-TBC

0.25 5.26 4.88
0.5 7.19 7.24
0.75 6.61 7.35

Table 3.5: The mean of errors estimated using the leave-one-out cross-validation,
given in (2.11), for the different quantile functions.

parameters, it is complicated to interpret the quantile coefficients and transfor-

mation parameters. Thus, an optimal transformation parameter estimated using

simultaneous Box-Cox quantile methods for all quantile levels has justification

and practical motivations.

Although simultaneous Box-Cox quantile regression methods can be consid-

ered to improve the estimation and ensure the monotonic increase of the quantile

function over different quantile levels, they could be sensitive to the number and

locations of quantile functions included in the estimation. Therefore, to improve

the performance of simultaneous Box-Cox quantile methods, this issue should

be further investigated. Also, since the likelihood is a fundamental part of any

Bayesian model, more research is needed on using the pseudo asymmetric Laplace

likelihood to construct a Bayesian model to fit multiple quantile regressions si-

multaneously.

Despite the fact that Gibbs sampler algorithms - suggested to sample from

the proposed posterior distributions in Chapters 2 and 3 - converge to the target

distribution quicker than Metropolis-Hastings algorithms, these Gibbs samplers

become less efficient as the number of observations or quantiles included in the

estimation increases (that is, since wτk,i in Algorithm 2 is generated separately for

each i and k). Therefore, to improve the performance of the proposed Box-Cox

quantile methods, further research should be conducted on posterior computation

methods, especially in the context of simultaneous quantile regression.

In terms of point estimation, the quantile methods based on the asymmetric

Laplace likelihood and the pseudo asymmetric Laplace likelihood can show reli-

ability. In the next chapters, we analyse and examine the use of the asymmetric

Laplace likelihood and the pseudo asymmetric Laplace likelihood to make statisti-

cal inference on quantile coefficients from a Bayesian perspective by investigating

the coverage probabilities.
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Figure 3.14: The scatter plot of relationships between the transformed variables
obtained using the AL-TBC method corresponding to τ = 0.25.

65



Chapter 3. Extensions of Box-Cox regression

Transformed Ozone

100 300

●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●

●●●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●
●

●●
●

●

●

●●●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

10 20 30 40

0
40

80
12

0

● ●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●●
●
●●

●

●

●

●●●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

10
0

30
0 ●

●
●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
● ●●

●

●

●

●

●● ●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●●
●●

●
●

●● ●

●●

●
●●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

Transformed Solar.R

●

●
●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
● ●●

●

●

●

●

● ●●

●
●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

● ●
● ●

●
●

●● ●

● ●

●
●●

●
●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
● ●●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●
●

● ●
● ●

●
●
●●●

●●

●
●●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●
●

●
● ●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●

●

●●
●●

●
●

● ●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●●

●●

●

●●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●
●●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●

● ●
●●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●●

●●

●

● ●

●

●

● ●

●

●

●
●●

●

●

●

●

●

Transformed Wind

10
15

20
25

●
●

●
●

●

●

●

●●
●

●
●●

●

●
●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●
●●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●
●

●●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

0 40 80 120

10
20

30
40

●

●
●

●
●

●●

●
●●

●
● ●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●●

●

●

●● ●●
●

●
●

●

● ●

●

●
●

●

●
●●● ●

●
● ●

●

●
●

●
●

●
● ●●

●

●
●

●

●

●

●

●

●
●
● ●

●

●

●
●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●
●

●●

●
●●

●
●●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
● ●

●

●●

●

●

●● ●●
●

●
●

●

●●

●

●
●

●

●
●●● ●

●
●●

●

●
●

●
●

●
●● ●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

10 15 20 25

●

●
●

●
●

● ●

●
● ●

●
●●

●

●
●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
● ●

●

●●

●

●

●●● ●
●

●
●

●

●●

●

●
●
●

●
●● ●●

●
●●

●

●
●
●

●
●

●● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

Transformed Temp

Figure 3.15: The scatter plot of relationships between the transformed variables
obtained using the AL-TBC method corresponding to τ = 0.5.
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3.5 Discussion
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Figure 3.16: The scatter plot of relationships between the transformed variables
obtained using the AL-TBC method corresponding to τ = 0.75.
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Chapter 3. Extensions of Box-Cox regression
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Chapter 4

On likelihood functions for

Bayesian quantile estimation

4.1 Introduction

In frequentist statistics, there is no requirement to specify the joint distribution

of the data and parameters corresponding to quantiles since the quantile regres-

sion is fitted by solving a linear programming problem. However, in the context

of Bayesian statistics, the conditional distribution of the data given quantile pa-

rameters must be specified in order to determine the likelihood function that is

a fundamental part of Bayesian models.

The literature on parametric quantile regression has focused on developing

approximations for the underlying joint distribution of the data and parameters

corresponding to quantile functions. The most widely used approximation is

based on the asymmetric Laplace likelihood, considered by Yu & Moyeed (2001),

whose maximisation is equivalent to the minimisation of a loss function considered

by Koenker & Bassett (1978). Therefore, this likelihood function is considered

a natural choice to construct a Bayesian model to fit quantile regression. There

are a number of Bayesian quantile methods based on the asymmetric Laplace

likelihood such as those proposed by Yu & Stander (2007), Geraci & Bottai

(2007) and Rodrigues & Fan (2017); for more details see, Section 1.6.

The asymmetric Laplace distribution enjoys a number of attractive properties

as an error distribution, such as the robustness against outliers and misspecifi-

cation of the underlying distribution. The Bayesian quantile methods, based on
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Chapter 4. On likelihood functions for Bayesian quantile estimation

the asymmetric Laplace likelihood, can show a reliability in terms of point esti-

mation. However, we need more investigation to understand this likelihood and

to deal with its limitations. This aim can be achieved by checking other aspects

of Bayesian inference such as coverage probabilities.

In this chapter, we discuss Bayesian quantile regression based on the asymmet-

ric Laplace likelihood and we illustrate the limitations of this Bayesian approach.

In addition, to deal with these limitations, we develop a new probability distribu-

tion that can accommodate a wide variety of underlying distributions whatever

the quantile of interest.

4.2 Review of asymmetric Laplace likelihood

To develop a likelihood ratio test for quantile regression, Koenker & Machado

(1999) used the asymmetric Laplace distribution which was employed later by

Yu & Moyeed (2001) to construct a Bayesian method to estimate quantile curves

separately. The asymmetric Laplace distribution can be represented by the fol-

lowing probability density function:

fτ (y|µτ , σ) =
τ(1− τ)

σ
exp

{
−ρτ

(
y − µτ
σ

)}
, (4.1)

where 0 < τ < 1 is the skew parameter, σ > 0 is the scale parameter, −∞ <

µτ <∞ is the location parameter, and ρτ (.) is a loss function given by

ρτ (u) =
|u|+ (2τ − 1)u

2
. (4.2)

The asymmetric Laplace distribution is skewed to the left when τ > 0.5 and

skewed to the right when τ < 0.5. The reason behind choosing this likelihood to

develop Bayesian models to fit quantile regressions is not an attempt to model

the true error distribution. Rather, it is that the maximisation of the asymmetric

Laplace likelihood function is exactly equivalent to the minimisation of the loss

function given in (4.2). Yu & Moyeed (2001) concluded that the use of the asym-

metric Laplace distribution to develop Bayesian quantile methods is satisfactory

whatever the underlying distribution. Sriram et al. (2013) established posterior

consistency to suggest a theoretical justification to use this likelihood for Bayesian
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4.2 Review of asymmetric Laplace likelihood

inference on quantiles under the misspecification of the true likelihood. They sug-

gested an asymptotic justification for using the asymmetric Laplace distribution

as an error distribution under several conditions on the covariates, the priors and

the underlying distribution.

Although the asymmetric Laplace distribution has received growing attention

in the context of Bayesian quantile regression, it has some limitations that can

lead to concern about the reliability of Bayesian inference, obtained using this

likelihood, on quantiles. The first limitation is that the asymmetric Laplace distri-

bution has a fixed shape with sharp peak at the quantile of interest. Therefore, it

will not approximate the underlying distribution well. For fixed τ , the estimated

mode of the asymmetric Laplace density given in (4.1) represented by µτ does not

correspond to the mode of the data. The second limitation is that the quantile

of interest and skewness are controlled by the same parameter. For example, the

median can be estimated by setting τ = 0.5, and this implies that the symmetric

Laplace likelihood must be used as an underlying distribution. Therefore, by

using the Bayesian model based on the asymmetric Laplace distribution, we as-

sume different distributions for the same dataset to be able to estimate a variety

of quantile functions. Therefore, when this method leads to a good estimation

for a particular quantile, this does not imply good estimation for other quantile

functions. The quality of the estimation depends on the similarity between the

asymmetric Laplace distribution corresponding to the desired quantile function

and the underlying distribution. For example, if the true distribution is normal,

the best coverage probability can be achieved for the median and the worst cover-

age probabilities are for extreme quantiles. Generally, we can only achieve good

estimation with reasonable coverage probabilities for the quantile functions that

are close to the mode of the data. These limitations make the asymmetric Laplace

distribution powerless to accommodate the underlying distributions. Thus, the

Bayesian inference on quantiles obtained using the asymmetric Laplace likelihood

can be poor and unreliable. In an attempt to address this gap in the literature,

we propose a new distribution that can accommodate the underlying distribution

regardless of the quantile of interest.
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4.3 Generalised distributions for quantile esti-

mation

To handle the limitations of the asymmetric Laplace likelihood and increase its

flexility to accommodate a variety of underlying distributions, we investigate a

generalised asymmetric Laplace distribution, with a shape parameter γ > 0, given

by the density function:

f(y|µτ , σ, γ) =


γτ(1−τ)

σΓ( 1
γ

)
exp

{
−
[
(1− τ)|y−µτ

σ
|
]γ}

, y ≤ µτ ,

γτ(1−τ)

σΓ( 1
γ

)
exp

{
−
[
τ |y−µτ

σ
|
]γ}

, y > µτ ,
(4.3)

where µτ is τ quantile and σ is the scale parameter. This generalisation satisfies

the properties:∫ ∞
−∞

f(y|µτ , σ, γ)dy = 1 and

∫ µτ

−∞
f(y|µτ , σ, γ)dy = τ.

For more details, see Appendix C.1.

It is obvious that the generalised asymmetric Laplace likelihood function no

longer corresponds to the loss function given in (4.2), where it forms an ap-

proximation of the underlying distribution. This implies that the quality of the

estimation depends on the ability of this generalisation to accommodate the true

error distributions, and this may not be achieved for all quantile levels. The

generalised form given in (4.3) includes a variety of distributions as special cases,

such as the asymmetric Laplace distribution and a skewed normal distribution

which correspond to γ = 1 and γ = 2, respectively. Also, as the shape parameter

γ approaches infinity, the density f(y|µτ , σ, γ) becomes a uniform distribution

over the interval (µτ − σ, µτ + σ). By using this distribution, it is still assumed

that the mode of the underlying distribution is represented by the quantile of in-

terest. Therefore, the shape parameter can offer a flexibility that can lead to an

improvement in the estimation of quantile functions which are very close to the

true mode of the dataset. However, in the case of extreme quantiles, in attempt

to accommodate the true mode of data, the shape parameter γ approaches in-

finity; that is, this generalisation becomes an approximate uniform distribution.

This can result in poor and biased estimation for quantiles located in the tails
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4.3 Generalised distributions for quantile estimation

of the true distribution. Moreover, since this approximate distribution no longer

shares the estimation properties with the loss function given by (4.2), it is very

sensitive to misspecification of the underlying distribution. Thus, this generalisa-

tion cannot be the promising solution for limitations of the asymmetric Laplace

distribution.

To overcome these drawbacks, we assume that the joint distribution of the

data is represented by a new generalisation of the Gumbel distribution described

by Johnson et al. (1994, p.2). This generalised Gumbel distribution has five

parameters that give it more flexibility to accommodate different types of under-

lying distributions. This generalisation is described by the following probability

density:

f(y|µτ ,σ,γ) =


γ1τ(1−τ)eγ1

(eγ1−1)σ1
exp

{
−(1− τ)

∣∣∣y−µτσ1

∣∣∣− γ1 exp
[
−(1− τ)

∣∣∣y−µτσ1

∣∣∣]} , y ≤ µτ ,

γ2τ(1−τ)eγ2

(eγ2−1)σ2
exp

{
−τ
∣∣∣y−µτσ2

∣∣∣− γ2 exp
[
−τ
∣∣∣y−µτσ2

∣∣∣]} , y > µτ ,

where µτ is τ quantile, σ and γ are the vectors of the scale and shape parameters.

It is obvious that this density is discontinuous when µτ = 0 (that is, jumping).

This is because that the density function f(y|µτ ,σ,γ) is restricted to satisfy the

following properties:∫ ∞
−∞

f(y|µτ ,σ,γ)dy = 1 and

∫ µτ

−∞
f(y|µτ ,σ,γ)dy = τ,

in order to preserve that the estimator µτ is interpreted as a quantile (for more

details, see Appendix C.2). Also, since the shape and scale parameters are al-

lowed to be different for each part of the distribution to ensure the flexibility

of the density f(y|µτ ,σ,γ) to accommodate different distributions without as-

suming that the quantile of interest is the true mode of data. However, this

discontinuity will be disappeared when γ1 ≈ γ2 and σ1 ≈ σ2 (for example, in

the case of estimating the median for the normal distribution). In the context

of approximation, it is complicated to figure out the effect of the discontinuity

on the consistency and the bias of the estimation, since these properties depend

on the overall approximation of the underlying distribution. Since the quality of

the approximation obtained using this density can vary with respect to the un-

derlying distribution and the quantile to be estimated, we use Kullback-Leibler
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Chapter 4. On likelihood functions for Bayesian quantile estimation

divergence to investigate numerically how this approximation diverges from the

true distribution of the data. Along with this, the converge probabilities and the

lack of bias are examined (for more details, see Sections 4.5 & 4.6). A number of

Bayesian quantile methods were developed using this type of densities (for exam-

ple, see Feng et al., 2015; Hahn & Burgette, 2012). The cumulative distribution

function of this distribution can be written as follows

F (y;µτ ,σ,γ) =


τeγ1

eγ1−1
h
(
γ1 exp

{
(1− τ)

[
y−µτ
σ1

]})
, y ≤ µτ ,

1− (1−τ)eγ2

eγ2−1
h
(
γ2 exp

{
−τ
[
y−µτ
σ2

]})
, y > µτ ,

(4.4)

where h(x) = 1− e−x. This cumulative distribution function is continuous and it

has the value of τ at y = µτ .

4.4 An approximate quantile estimation for lin-

ear models

Consider the linear regression model

yi = α + x
′

iβ + εi, for i = 1, ...n

where εi is independently distributed with a mean equal to zero and a constant

variance; xi is a p×1 vector of covariates for the ith observation; α is an intercept

coefficient and β is a p× 1 vector of unknown slope coefficients. Then, the linear

quantile function is given by

Q(τk|xi) = ατk + x
′

iβτk .

To develop a Bayesian quantile method to estimate this linear quantile function

for 0 < τ1 < τ2 < ... < τm < 1 individually, we can consider the generalised

Gumbel likelihood given by

l(ατk ,βτk ,σ,γ;y) ∝
n∏
i=1


γ1e

γ1

(eγ1−1)σ1
exp

{
−(1− τk)

∣∣∣ yi−µiσ1

∣∣∣− γ1 exp
[
−(1− τk)

∣∣∣ yi−µiσ1

∣∣∣]} , yi ≤ µi,

γ2e
γ2

(eγ2−1)σ2
exp

{
−τk

∣∣∣ yi−µiσ2

∣∣∣− γ2 exp
[
−τk

∣∣∣ yi−µiσ2

∣∣∣]} , yi > µi,
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4.5 Univariate simulation study

where µi = ατk +x
′
iβτk . For all parameters included in the model assumed to be

a priori independent, we consider relatively diffuse prior distributions that lead

to a proper posterior distribution. For quantile regression coefficients, the prior

distribution is given by

ατk ∼ N(α∗, σα),

βτk ∼ Np(β
∗,Σβ),

where each normal distribution has mean equal to zero and variance equal to

105. Also, each multivariate normal distribution has a mean vector of zeros and

a diagonal covariance matrix with entries equal to 105. For the scale and shape

parameters, we consider the inverse-gamma distribution (IG) that is given by

σt ∼ IG(a, b),

γt ∼ IG(a, b),

for t = 1, 2, where the inverse-gamma parameters are set to be a = b = 0.01. The

posterior distribution is then given by

p(ατk ,βτk ,σ,γ|y) ∝ l(ατk ,βτk ,σ,γ;y)p(ατk)p(βτk)p(σ)p(γ).

Then, a random walk Metropolis-Hastings algorithm is used to sample from this

posterior distribution.

4.5 Univariate simulation study

In this section we implement a simulation study to investigate the performance

of the asymmetric Laplace and the generalised Gumbel distributions, when used

as error distributions, to develop Bayesian quantile methods. We use Bayesian

methods based on the asymmetric Laplace likelihood and the generalised Gum-

bel likelihood functions to estimate quantiles corresponding to 0.05, 0.25, 0.5,

0.75 and 0.95 individually for 1000 samples of size 150 from normal distribution

N(0, 1), Student’s t distribution t(3) and gamma distribution Gamma(3, 3). Then,

we plot the average of estimated density and cumulative functions computed at

the maximum a posteriori estimators.
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Figure 4.1: The average of the estimated probability density functions (top) and
the estimated cumulative functions (bottom) for normal distribution based on
1000 simulations. The true distribution is represented by black curves and its ap-
proximations obtained using the asymmetric Laplace distribution, corresponding
to τ = 0.05, 0.25, 0.5, 0.75, 0.95 (left to right), are represented by red curves.
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Figure 4.2: The average of the estimated probability density functions (top) and
the estimated cumulative functions (bottom) for Student’s t distribution based on
1000 simulations. The true distribution is represented by black curves and its ap-
proximations obtained using the asymmetric Laplace distribution, corresponding
to τ = 0.05, 0.25, 0.5, 0.75, 0.95 (left to right), are represented by red curves.

Figures 4.1, 4.2 and 4.3 show how the asymmetric Laplace distribution is max-

imised at the desired quantile which may not match the true mode of the data.

In addition, they show how this approach assumes different distributions for the
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Figure 4.3: The average of the estimated probability density functions (top) and
the estimated cumulative functions (bottom) for gamma distribution based on
1000 simulations. The true distribution is represented by black curves and its ap-
proximations obtained using the asymmetric Laplace distribution, corresponding
to τ = 0.05, 0.25, 0.5, 0.75, 0.95 (left to right), are represented by red curves.
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Figure 4.4: The average of the estimated probability density functions (top) and
the estimated cumulative functions (bottom) for normal distribution based on
1000 simulations. The true distribution is represented by black curves and its ap-
proximations obtained using the generalised Gumbel distribution, corresponding
to τ = 0.05, 0.25, 0.5, 0.75, 0.95 (left to right), are represented by red curves.

same dataset and how this depends on the quantile to be estimated. This results

in a good approximation for the underlying distribution when the desired quantile

to be estimated is close to the true mode of the dataset, and poor approxima-
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Figure 4.5: The average of the estimated probability density functions (top) and
the estimated cumulative functions (bottom) for Student’s t distribution based on
1000 simulations. The true distribution is represented by black curves and its ap-
proximations obtained using the generalised Gumbel distribution, corresponding
to τ = 0.05, 0.25, 0.5, 0.75, 0.95 (left to right), are represented by red curves.
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Figure 4.6: The average of the estimated probability density functions (top) and
the estimated cumulative functions (bottom) for gamma distribution based on
1000 simulations. The true distribution is represented by black curves and its ap-
proximations obtained using the generalised Gumbel distribution, corresponding
to τ = 0.05, 0.25, 0.5, 0.75, 0.95 (left to right), are represented by red curves.

tions in the case of other quantiles especially the extreme ones. Moreover, since

the asymmetric Laplace distribution has a fixed shape with a sharp peak, it also

cannot accommodate the underlying distribution when the quantile of interest
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and the true mode of the dataset are identical (e.g. the estimation of the median

for the normal distribution). On the other hand, Figures 4.4, 4.5 and 4.6 show

that the generalised Gumbel distribution has great flexibility to provide good ap-

proximations for an underlying distribution regardless of the quantile of interest.

Also, the generalised Gumbel distribution no longer deals with the desired quan-

tile as the mode of the approximate distribution and attempts to estimate the

true mode of the dataset whatever the required quantile. In addition, the gener-

alised Gumbel distribution has a flexible shape that can accommodate different

underlying distributions. For further investigation, we use the Kullback–Leibler

divergence given by

KLD
(
f‖f̂

)
=

∫ ∞
−∞

f(y) log

(
f(y)

f̂(y)

)
dy,

where f is the true distribution of the data and f̂ is the approximate distribution.

Then, Table 4.1 shows that the Kullback–Leibler divergence of the asymmetric

Laplace distribution with respect to the true distribution achieves its minimum

when the quantile of interest is close to the true mode of the data and increases as

the quantiles are further away. On the other hand, Table 4.2 shows how the gen-

eralised Gumbel likelihood tends to provide similarly accurate approximations for

the underlying distribution whatever the quantile of interest. Also, it shows that

by using the generalised Gumbel distribution, the Kullback–Leibler divergence

tends to share the same minima for all quantiles.

εi 0.05 0.25 0.5 0.75 0.95

N(0, 1) 0.38 0.12 0.06 0.12 0.38
Student’s t(3) 0.68 0.14 0.03 0.14 0.68
Gamma(3, 3) 0.10 0.05 0.13 0.32 0.76

Table 4.1: The average of Kullback–Leibler divergence, from the approximation
obtained using the asymmetric Laplace distribution to the true distribution, based
on 1000 simulations.

4.6 Linear models

To investigate the quality of approximations achieved using the asymmetric Laplace
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Chapter 4. On likelihood functions for Bayesian quantile estimation

εi 0.05 0.25 0.5 0.75 0.95

N(0, 1) 0.07 0.04 0.05 0.04 0.06
Student’s t(3) 0.07 0.05 0.04 0.05 0.07
Gamma(3, 3) 0.04 0.05 0.06 0.10 0.19

Table 4.2: The average of Kullback–Leibler divergence, from the approximation
obtained using the generalised Gumbel distribution to the true distribution, based
on 1000 simulations.

distribution and the generalised Gumbel distribution, we examine the accuracy of

the coverage probabilities of 95% HPD intervals estimated using Bayesian quan-

tile methods. The asymmetric Laplace likelihood and the generalised Gumbel

likelihood are used along with diffuse priors that could not deliver any significant

information about the parameters of the model. We fit quantile regressions for

1000 datasets with sample size of 200 generated from the linear model given by

yi = 1 + xi + εi,

where xi ∼ U(20, 30) and εi is considered to follow different distributions. The

simulated datasets only differ in the errors εi.

εi α0.05 α0.25 α0.5 α0.75 α0.95 β0.05 β0.25 β0.5 β0.75 β0.95

N(0, 1) 0.68 0.87 0.89 0.87 0.66 0.69 0.87 0.89 0.86 0.66
Student’s t(3) 0.58 0.88 0.93 0.88 0.61 0.57 0.88 0.93 0.88 0.61
Gamma(3, 3) 0.79 0.88 0.89 0.84 0.61 0.78 0.88 0.89 0.85 0.60

Table 4.3: The coverage probabilities of the 95% HPD intervals for the quan-
tile regression coefficients estimated individually using Bayesian quantile method
based on the asymmetric Laplace likelihood over 1000 simulations.

εi α0.05 α0.25 α0.5 α0.75 α0.95 β0.05 β0.25 β0.5 β0.75 β0.95

N(0, 1) 0.88 0.92 0.91 0.90 0.88 0.88 0.90 0.92 0.90 0.88
Student’s t(3) 0.90 0.91 0.93 0.91 0.91 0.90 0.92 0.93 0.91 0.91
Gamma(3, 3) 0.92 0.90 0.90 0.86 0.80 0.90 0.90 0.90 0.87 0.86

Table 4.4: The coverage probabilities of the 95% HPD intervals for the quan-
tile regression coefficients estimated individually using Bayesian quantile method
based on the generalised Gumbel likelihood over 1000 simulations.
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Consistent with the discussion in the previous section, Table 4.3 shows that

the Bayesian quantile method based on the asymmetric Laplace likelihood gives

different coverage probabilities for different quantiles. This approach gives cover-

age probabilities that approach the nominal coverage probabilities as the quantile

to be estimated gets closer to the actual mode of the underlying distribution, and

gives lower coverage probabilities for the extreme quantiles. Table 4.4 shows how

using the generalised Gumbel likelihood to construct Bayesian quantile model

gives improved coverage probabilities for different levels of quantiles where all

coverage probabilities approach the nominal coverage probabilities with great

improvement compared to those achieved using the Bayesian quantile method

based on the asymmetric Laplace likelihood. Despite the relatively large number

of parameters in the Bayesian model based on the generalised Gumbel likelihood,

it still enjoys fast convergence to the target distribution and stability of the pos-

terior computation using the Metropolis-Hastings algorithm. Thus, it is obvious

that the Bayesian quantile method based on the generalised Gumbel likelihood

outperforms the other method based on the asymmetric Laplace likelihood in

terms of the coverage probability for all quantiles. By looking at the distribu-

tions of the maximum a posteriori estimators shown in Figures 4.7 and 4.8, neither

approach shows any undesirable behaviour in the estimation of the maximum a

posteriori. Regarding the lack of bias, the Bayesian quantile method based on

the generalised Gumbel likelihood performs better when the generalised Gumbel

distribution corresponding to the quantile of interest can approximate the under-

lying distribution well. Otherwise, the Bayesian quantile method based on the

asymmetric Laplace can be better, although the maximum a posteriori estimators

obtained using this method tend to be much more variable compared to others

obtained using Bayesian quantile method based on the generalised Gumbel likeli-

hood. This is because the generalised Gumbel distribution is no longer linked to

the loss function given in (4.2) that is minimised when the number of observations

under the quantile curve is almost equal to τn. Whereas, since the asymmetric

Laplace likelihood has a direct link to this loss function, it is maximised when

the number of observations under the quantile curve is almost equal to τn and

this gives the asymmetric Laplace distribution some flexibility to work under

misspecification of the underlying distribution. Moreover, the Bayesian method

based on the generalised Gumbel likelihood tends to show the same uncertainty
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Chapter 4. On likelihood functions for Bayesian quantile estimation

about the true quantile function for all quantile levels, while the other method

based on the asymmetric Laplace likelihood shows a greater uncertainty about

the true functions of the extreme quantiles.

4.7 Discussion

The asymmetric Laplace likelihood has a direct link to the loss function used in

classic statistics to estimate the quantile functions. Therefore, when the approx-

imate distribution departs from the true distribution of the data, the Bayesian

method based on the asymmetric Laplace likelihood may be better than other ap-

proaches, especially in terms of point estimation. However, the Bayesian method

based on the asymmetric Laplace likelihood does not give a good approximation

of the underlying distribution that can be used to draw reliable Bayesian infer-

ence on quantile curves, especially for non-complex models where its alternatives

can provide more accurate and reliable inference.

The generalised Gumbel likelihood can be considered a great alternative to

the asymmetric Laplace likelihood to construct an efficient Bayesian quantile

method. In contrast to the asymmetric Laplace distribution, the generalised

Gumbel distribution attempts to approximate the underlying distribution what-

ever the quantile of interest. Although the quantile estimation based on the

generalised Gumbel likelihood no longer corresponds to the traditional loss func-

tion, the Bayesian quantile method based on this likelihood shows flexibility to

fit quantile regressions under different error distributions and can outperform the

Bayesian quantile method based on the asymmetric Laplace likelihood.

Improving Bayesian estimation based on the asymmetric Laplace distribu-

tion for all quantiles is difficult. This is because, by using this approach to

estimate several quantiles individually, we assume different distributions for the

same dataset. Therefore, accurate Bayesian inference on a particular quantile

does not imply accurate Bayesian inference for other quantiles. To overcome

this problem, we may need to combine these different distributions in a suitable

way to form the underlying distribution. In the next chapter, we discuss the

pseudo asymmetric Laplace likelihood used in Chapter 2 and 3 from a Bayesian

viewpoint. In addition, we develop a mixture of the asymmetric Laplace distri-

butions corresponding to the individual quantiles to form the joint distribution
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of the multiple quantiles and provide a good approximation for the underlying

distribution of the data.
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Figure 4.7: The box-plot of the maximum a posteriori estimators, obtained indi-
vidually using Bayesian quantile method based on the asymmetric Laplace like-
lihood, over 1000 simulations. The red lines represent the true values.
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Figure 4.8: The box-plot of the maximum a posteriori estimators, obtained indi-
vidually using Bayesian quantile method based on the generalised Gumbel likeli-
hood, over 1000 simulations. The red lines represent the true values.
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Chapter 5

On the approximation of the

joint distribution of quantiles

5.1 Introduction

Although simultaneous estimation of multiple quantile functions is favoured over

individual quantile estimation, in that simultaneous estimation can ensure mono-

tonically increasing quantile functions in quantile level τ (that is, avoiding the

issue of crossing quantile curves), investigation of the properties of simultaneous

estimation from a Bayesian perspective is an outstanding research issue.

The asymmetric Laplace likelihood is the most widely used likelihood in

Bayesian quantile regression. However, estimating quantile functions separately

using a Bayesian method based on the asymmetric Laplace likelihood assumes a

different error distribution for each quantile level. This implies that good estima-

tion for a particular quantile does not mean good estimations for other quantile

functions. The quality of estimation depends on the similarity between the asym-

metric Laplace likelihood corresponding to the quantile of interest and the true

error distribution. Also, the quantile functions can cross.

Simultaneous estimation of multiple quantile functions based on the pseudo

asymmetric Laplace density discussed in Chapter 2 & 3 can be considered as a

solution for these problems. However, it does not provide a good approximation

for the underlying distribution and this may lead to poor Bayesian inference for

the quantile regression coefficients.
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Since valid Bayesian inference about quantile curves require a good approx-

imation for the underlying distribution, we employ the asymmetric Laplace dis-

tributions corresponding to individual quantile functions to develop a novel ap-

proximation, based on a weighted pseudo asymmetric Laplace distribution, for

the true error distribution.

In this chapter, we discuss the properties of the pseudo asymmetric Laplace

likelihood. We introduce a weighted pseudo asymmetric Laplace distribution that

can be used to approximate the underlying distribution very well. In addition,

we discuss different specifications of weights. Then, we implement a simulation

study to examine the ability of the proposed methods to approximate the true

distribution of the data and to estimate the quantiles. Also, we consider a real-

data application.

5.2 The pseudo asymmetric Laplace distribu-

tion

The pseudo asymmetric Laplace (PAL) distribution, formed by the product of

asymmetric Laplace distributions corresponding to the quantile functions in-

cluded in the estimation, can be represented by the following pseudo probability

density f̂ :

f̂ (y|µτ ,στ ) ∝

[
m∏
k=1

τk (1− τk)
στk

]
exp

{
−

m∑
k=1

ρτk

(
y − µτk
στk

)}
.

Although the Bayesian method based on this pseudo distribution shows reliable

estimation for the quantile regression coefficients in terms of point estimation,

which is due to its link to the composite optimisation problem as shown in Chap-

ter 2, it provides poor approximation for the underlying distribution. Accumu-

lated errors over all quantile functions included in the simultaneous estimation

result in low density at all observations. This results in some observations, which

are from the tails of the underlying distribution, having an approximate density

value of zero. In other words, the approximate distribution obtained using the

pseudo asymmetric Laplace density has a smaller scale than the true distribution.

In addition, the coverage probabilities decrease as the number of quantile func-
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tions included in simultaneous estimation increases. Thus, this approximation

becomes worse as the number of quantiles included in the simultaneous estima-

tion increases. This leads to an actual concern about Bayesian inference based

on this likelihood. Therefore, to approximate the underlying distribution effec-

tively, we need to control the contribution played by each asymmetric Laplace

density corresponding to individual quantiles in forming the joint pseudo asym-

metric Laplace distribution of the quantiles. In the next section, we propose a

weighted pseudo asymmetric Laplace distribution that can approximate the un-

derlying distribution more accurately. This can then be used to develop efficient

Bayesian multiple quantile regressions without crossing.

5.3 The weighted pseudo asymmetric Laplace

distribution

For a finite set of probability density functions given by f1(y), ..., fm(y), the mix-

ture distribution formed by averaging these densities can be represented by the

density function:

f(y) =
m∑
k=1

wkfk(y),

where wk is a weight such that
∑m

k=1wk = 1. Then, f(y) is the weighted arith-

metic mean of the given set of probability density functions. Similarly, the dis-

tribution formed by multiplying these densities can be represented by function:

g(y) =
m∏
k=1

[
fk(y)

]wk ,
which is no longer a density function. Then, g(y) is the weighted geometric mean

of the given set of probability density functions. However, the properties of the

estimator based on g is related to the sum of the weighted logarithm of density

functions:

h(y) =
m∑
k=1

wk log
(
fk(y)

)
.

For a random variable y, we assume that y ∼ F , where F is a continuous distribu-

tion. Then, the probability density f of the distribution F can be approximated
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by the weighted pseudo asymmetric Laplace (WPAL) density given by

f̂(y|µτ ,στ ) ∝

 0 ,µτ 6∈ A,
m∏
k=1

[
τk(1−τk)
στk

exp
{
−ρτk

(
y−µτk
στk

)}]wτk
,µτ ∈ A,

∝

 0 ,µτ 6∈ A,[
m∏
k=1

(
τk(1−τk)
στk

)wτk]
exp

{
−

m∑
k=1

wτkρτk

(
y−µτk
στk

)}
,µτ ∈ A,

(5.1)

for k = 1, 2, ...,m, where µτk is the τk quantile of the distribution F , 0 < τ1 <

... < τm < 1, A = {µτ : µτ1 < ... < µτk < ... < µτm} and wτk is a weight for

each component of the mixture to control the contribution of the asymmetric

Laplace distribution corresponding to each individual quantile in forming the

approximation of the underlying distribution.

5.4 Normalising term

The normalising term for the density given in (5.1) can be obtained by solving

the following equation with respect to δ:∫ ∞
−∞

1

δ
f̂ (y|µτ ,στ ) dy = 1, (5.2)

Assuming that wτk does not depend on y for any k, we can show that

∫ µτ1

−∞
f̂ (y|µτ ,στ ) dy =

m∏
k=1

(
τk(1−τk)
στk

)wτk
exp

{
−

m∑
k=1

wτk (1−τk)

στk
µτk + µτ1

m∑
k=1

wτk

(
1−τk
στk

)}
m∑
k=1

wτk

(
1−τk
στk

) ,

and

∫ µτt+1

µτt

f̂ (y|µτ ,στ ) dy =

m∏
k=1

(
τk (1− τk)

στk

)wτk
exp

{
wτk

(
t∑

k=1

τk
στk

µτk −
m∑

k=t+1

(1− τk)

στk
µτk

)}

×

[
wτk

(
m∑

k=t+1

(1− τk)

στk
−

t∑
k=1

τk
στk

)]−1 [
exp

{
wτk

(
m∑

k=t+1

(1− τk)

στk

−
t∑

k=1

τk
στk

)
µτt+1

}
− exp

{
wτk

(
m∑

k=t+1

(1− τk)

στk
−

t∑
k=1

τk
στk

)
µτt

}]
.

90



5.5 Maximising the weighted pseudo asymmetric Laplace likelihood

Also,

∫ ∞
µτm

f̂ (y|µτ ,στ ) dy =

m∏
k=1

(
τk(1−τk)
στk

)wτk
exp

{
m∑
k=1

wτkτkµτk
στk

− µτm
m∑
k=1

wτkτk
στk

}
m∑
k=1

wτkτk
στk

.

Then, the normalising term is given by

δ =

∫ µτ1

−∞
f̂ (y|µτ ,στ ) dy +

m−1∑
t=1

∫ µτt+1

µτt

f̂ (y|µτ ,στ ) dy +

∫ ∞
µτm

f̂ (y|µτ ,στ ) dy. (5.3)

For more details, see Appendix D.1. Since the approximation density given in

(5.1) depends on the number and locations of quantile functions included in the

simultaneous estimation, the normalising term is not a constant and it depends

on location and scale parameters. Then, there is no guarantee that∫ µτk

−∞

1

δ
f̂ (y|µτ ,στ ) dy = τk, for k = 1, 2, ..,m. (5.4)

This implies that µτk is no longer interpreted as τk quantile. Therefore, using this

normalising term during the estimation process, it was seen that the approximate

density given in (5.1) is not maximised at the quantile functions of interest. To

avoid this issue, the normalising term δ should be obtained by solving the equation

system given by Equations 5.2 & 5.4. Since, in the case of multiple quantiles this

leads to an over-determined equation system, calculating the normalising term to

satisfy these properties is intractable. However, although the normalising term δ

cannot be involved in the estimation, it can be used after estimates are obtained

as a normalising constant to normalise the density and cumulative functions for

comparison purposes.

5.5 Maximising the weighted pseudo asymmet-

ric Laplace likelihood

Assume that y is a random variable from a continuous distribution F with prob-

ability density f . To estimate quantile functions of F corresponding to τk for all

k, the likelihood function related to the WPAL distribution given in (5.1) can be
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used. Then, maximising the WPAL likelihood can be achieved by

max
µτ

n∏
i=1

f̂(y|µτ ,στ )

max
µτ

n∑
i=1

log
(
f̂(y|µτ ,στ )

)
The maximisation of the expected log-likelihood can be obtained as follow:

max
µτ

(
E
[
L(y;µτ ,στ )

])
,

where L(y;µτ ,στ ) = log
(
f̂(y|µτ ,στ )

)
. Assuming that wτk is a constant with

respect to y, the first order conditions are given by

d

dµτ

{∫ ∞
−∞

L(y;µτ ,στ )f(y)dy

}
= 0.

Then, after some straightforward calculations, we have that

F (µτk) = τk, for k = 1, 2, ...,m.

This implies that estimators obtained by maximising expected log-likelihood are

the quantile functions of the distribution F . This property is shown for two

quantile functions in Appendix D.2.

5.6 The specification of the weight function

To provide a good approximation for the underlying distribution of y, the in-

formation over multiple quantiles must be combined properly by specifying a

suitable weight function. To achieve this aim, the weight function wτk should be

such that the WPAL density minimises the Kullback–Leibler divergence given by

KLD
(
f‖f̂

)
=

∫ ∞
−∞

f(y) log

(
f(y)

1
δ
f̂(y|µτ ,στ )

)
dy,

where δ is a constant normalising the WPAL density (i.e. δ can be computed using

Equation 5.3). In the following sections, we discuss different types of weights that
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5.6 The specification of the weight function

can be used.

5.6.1 Fixed weights

Since the aim is to use the WPAL distribution to approximate an unknown dis-

tribution, it is complicated to find optimal weights that minimise the Kullback–

Leibler divergence under any true distribution. However, it is rational to consider

equal fixed weights, given by the function

wτk =
1

m
, for k =, 1, 2, ...,m, (5.5)

where m is the number of quantiles included in the estimation. Under these

weights, it is assumed that all quantiles included in the estimation contribute

equally in approximating the underlying distribution. In addition, by using this

weight function, the WPAL density is the geometric mean of asymmetric Laplace

probability densities corresponding to quantile functions included in the simulta-

neous estimation.

5.6.2 Estimated weights

Instead of applying fixed weights, we can allow wτk to be estimated along with

other parameters included in the Bayesian model such that wτk ∈ (0, 1) and∑m
k=1wτk = 1. However, using the weighted pseudo asymmetric Laplace density

given in (5.1) gives the estimated weights approaching one for the asymmetric

Laplace density that has a lower Kullback–Leibler divergence and zero for the

others. This implies that the WPAL likelihood is maximised at the values of

weights which are not related to the achievement of minimum Kullback–Leibler

divergence. For example, if we use the WPAL density corresponding to the

0.25, 0.5 and 0.75 quantiles to estimate quantiles of two samples from N(0, 1) and

Gamma(3, 3), then in the case of N(0, 1), the estimated weight corresponding to

the 0.5 quantile approaches one while the estimated weights corresponding to

the 0.25 and 0.75 quantiles approach zero, and in the case of Gamma(3, 3), the

estimated weight corresponding to the 0.25 quantile approaches one while the

estimated weights corresponding to the 0.5 and 0.75 quantiles approach zero.

A possible solution for this issue is to assume that wτk ∈ (lb, 1) where lb is

a lower boundary of weights selected such that 0 < lb < 1, and
∑m

k=1wτk = 1.
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Chapter 5. On the approximation of the joint distribution of quantiles

However, if lb = 1
m

, the estimated weights become the equal fixed weights. Also,

choosing a small value for lb may lead to biased and poor estimation for the

quantile functions that receive lower weights. To handle this issue effectively, we

propose a new version of the WPAL density as follows:

f̂(y|µτ ,στ ,wτ ) ∝

 0 ,µτ 6∈ A,
m∏
k=1

[
τk(1−τk)
wτkστk

exp
{
−ρτk

(
y−µτk
στk

)}]wτk
,µτ ∈ A, (5.6)

where wτk > 0 for k = 1, 2, ...,m. It is obvious that each asymmetric Laplace

component included in the WPAL density is divided by wτk as a penalty term

to make the likelihood maximised at desired weights which can contribute to the

achievement of minimum Kullback–Leibler divergence. Similarly to Section 5.5,

it is straightforward to show that this likelihood function is maximised at the

quantiles. Also, the normalising term can be derived similarly to that in Section

5.4. In the next section, we use the proposed approximate likelihood functions to

develop Bayesian methods to estimate multiple linear quantile functions simulta-

neously without crossing.

5.7 Bayesian linear multiple quantile regressions

Consider the linear regression model

yi = α + x
′

iβ + εi, for i = 1, ..., n,

where εi is independently distributed with a mean equal to zero and a constant

variance; xi is a p×1 vector of covariates for the ith observation; α is an intercept

coefficient and β is a p × 1 vector of unknown slope coefficients. To develop a

Bayesian quantile approach to estimate the linear quantile function given by

Q(τk|xi) = ατk + x
′

iβ,

for 0 < τ1 < τ2 < ... < τm < 1 simultaneously, we assume that the response vari-

able yi follows a distribution which is approximated by the WPAL distribution.
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5.7 Bayesian linear multiple quantile regressions

5.7.1 Using equal fixed weights

To develop a Bayesian method to fit multiple quantile regressions, we can apply

the following WPAL likelihood with equal fixed weights:

l̂(ατ ,β,στ ;y) ∝


0 ,ατ 6∈ A,[

m∏
k=1

(
τk(1−τk)
στk

)nwτk ]
exp

{
−

m∑
k=1

wτk
n∑
i=1

ρτk

(
yi−ατk−x

′
iβ

στk

)}
,ατ ∈ A,

∝


0 ,ατ 6∈ A,[

m∏
k=1

(
τk(1−τk)
στk

) n
m

]
exp

{
− 1
m

m∑
k=1

n∑
i=1

ρτk

(
yi−ατk−x

′
iβ

στk

)}
,ατ ∈ A,

where A = {ατ : ατ1 < ... < ατk < ... < ατm}. For the priors, we consider diffuse

prior distributions that can be used to obtain proper posterior distributions. For

quantile regression coefficients, the prior distribution is given by

ατk ∼ N(α∗, σα), for k = 1, ...,m,

β ∼ Np(β
∗,Σβ),

where each normal distribution has mean zero and variance equal to 105. Also,

each multivariate normal distribution has a mean vector of zeros and a diagonal

covariance matrix with entries equal to 105. For the scale parameters, we consider

the inverse-gamma distribution (IG) given by

σk ∼ IG(a = 0.01, b = 0.01), for k = 1, ...,m.

Then, the posterior distribution is given by

p(ατ ,β,στ |y) = l̂(ατ ,β,στ ;y)p(ατ )p(β)p(στ ).

5.7.2 Using estimated weights

To develop a Bayesian method to estimate multiple quantile functions, we can

apply the following WPAL likelihood with estimated weights:

l̂(ατ ,β,στ ,wτ ;y) ∝


0 ,ατ 6∈ A,[

m∏
k=1

(
τk(1−τk)
wτkστk

)nwτk ]
exp

{
−

m∑
k=1

wτk
n∑
i=1

ρτk

(
yi−ατk−x

′
iβ

στk

)}
,ατ ∈ A.
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Chapter 5. On the approximation of the joint distribution of quantiles

Along with prior distributions specified in the previous section, the prior distri-

bution for the vector of weights wτ is given by

wτ ∼ Dirichlet(π),

where concentration parameters π is the vector of ones. Then, the posterior

distribution is given by

p(ατ ,β,στ ,wτ |y) = l̂(ατ ,β,στ ,wτ ;y)p(ατ )p(β)p(στ )p(wτ ).

5.7.3 Posterior computation

To obtain a sample from posterior distributions, we apply an automated random

walk Metropolis-Hastings algorithm based on a multivariate normal distribution

with an updated covariance matrix. We assume

θ∗ ∼ N(θ(r−1), φ
2
(r−1)S(r−1)).

where r is the iteration number, the θ∗ is a vector of candidate values for param-

eters, θ(r−1) is a vector of the stored candidate values at the (r− 1)th iteration, S

is a positive-definite matrix and φ2 is a positive value. For the parameters with

positive support such as the scale, we use the transformation σ = exp(θ∗). To au-

tomate the random walk Metropolis-Hastings algorithm and achieve the desired

acceptance probability, Garthwaite et al. (2016) proposed an adaptive method

based on the Robbins-Monro search process to estimate an optimal covariance

matrix for the proposal distribution. They assume that

S(r) = Σ(r) +
φ2

(r)Iv

r
,

where

Σ(r) =

{
Iv r ≤ c,

1
r−1

∑r
r∗=1

(
θ(r∗) − θ(r)

) (
θ(r∗) − θ(r)

)′
r > c,

where θ(r) is the sample mean vector of the stored candidate values until the rth

iteration, v is the length of θ, I is the identity matrix and c is a fixed number of
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5.8 Simulation studies and real data analysis

iterations. To reduce the computation, they use

θ(r) =
1

r

[
(r − 1)θ(r−1) + θ(r)

]
,

and if r > c, they use

Σ(r) =
r − 2

r − 1
Σ(r−1) + θ(r−1)θ

′

(r−1) −
r

r − 1
θ(r)θ

′

(r) +
1

r − 1
θ(r)θ

′

(r).

Also, they assume that φ is updated using the formula:

φ(r) =

{
φ(r−1) + a(1−p̂)

max{2c,(r−1)/v)
θ∗ is accepted,

φ(r−1) − ap̂
max{2c,(r−1)/v)

θ∗ is rejected,

where p̂ = 0.234 (for more details, see Roberts et al., 1997) and

a = φ(r−1)

(1− 1

v

)
(2π)

1
2 e

[−Φ−1(p̂/2)]
2

2

2 [−Φ−1 (p̂/2)]
+

1

vp̂(1− p̂)

 ,
where Φ is the cumulative function of the standard normal distribution. The value

max{2c, (r − 1)/v) is used to ensure that the estimate of Σ is reasonably stable

before updating φ. In the case of the WPAL likelihood with estimated weights, we

update weight parameters at each iteration independently from other parameters

in the model using a Dirichlet distribution, with suitable fixed variance, as a

proposal distribution.

5.8 Simulation studies and real data analysis

5.8.1 Univariate models

In this section, we generate univariate samples, each of size 150, from normal dis-

tribution N(0, 1), gamma distribution Gamma(3, 3), Student’s t distribution t(3)

and mixture distribution 0.5N(−2, 1) + 0.5N(2, 1). Then, we investigate the per-

formance of the pseudo asymmetric Laplace (PAL) and the weight pseudo asym-

metric Laplace (WPAL) distributions corresponding to different sets of quantiles

to approximate the true distributions by comparing the estimated density and
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Chapter 5. On the approximation of the joint distribution of quantiles

cumulative functions with true ones. The estimated density and cumulative func-

tions are represented by the average of normalised function values computed at

the maximum a posteriori estimators over 1000 simulations. A set of five quan-

tiles corresponding to τ = (0.05, 0.25, 0.5, 0.75, 0.95) are used in estimation. Also,

we examine the effect of the number and locations of quantiles included in the es-

timation on the approximation by comparing the average of Kullback–Leibler di-

vergence over 5 different sets of quantiles where the first set includes two quantiles

corresponding to τ = (0.45, 0.55). Then, two more quantiles corresponding to

τ = (0.45− k
10
, 0.55+ k

10
), for k = 1, ..., 4, are involved at each replication up to 10

quantiles (Scheme 1). In addition, we consider another 5 different sets of quantiles

where the first set includes two quantiles corresponding to τ = (0.05, 0.95). Then,

two more quantiles corresponding to τ = (0.05 + k
10
, 0.95 − k

10
), for k = 1, ..., 4

are added at each replication up to 10 quantiles (Scheme 2).
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Figure 5.1: The probability density function (left) and the cumulative distribu-
tion function (right) for the true distribution (black) which is N(0,1) and their
approximations obtained using the PAL distribution based on 5 quantiles (red).

Figure 5.1 shows poor approximation by the PAL distribution for the nor-

mal distribution. The approximate distribution has a smaller scale than the true

distribution. This leads to unreliable Bayesian inference about the quantile coef-

ficients (e.g. the highest probability density intervals). Also, it can be seen from
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5.8 Simulation studies and real data analysis

Figure 5.2 that, by increasing the number of quantiles included in estimation,

the approximation becomes worse (i.e. the scale of approximate distribution ap-

proaches zero). Although the quantile method based on the PAL distribution

performs well in terms of the point estimation, from a Bayesian perspective, the

PAL distribution can be considered an asymptotic error distribution for quantile

regression that may lead to invalid Bayesian inference.
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Figure 5.2: The average of Kullback–Leibler divergence, from the approximation
obtained using the PAL distribution to N(0,1), over 500 simulations against the
number of quantiles corresponding to Scheme 1 (left) and Scheme 2 (right). The
dotted curves represent the 95% confidence intervals for the mean.

Figures 5.3 & 5.4 show the ability of the WPAL distribution to approximate

the true distributions. It is obvious that the approximation performs better in the

case of unimodal distributions. However, the WPAL distribution still provides

a reasonable approximation for bimodal distributions. This can lead to reliable

and accurate Bayesian inference for quantile coefficients.

From Table 5.1, by using the WPAL density with estimated weights, more

weights assign to quantile functions which are close to the modes of the true

distributions. In addition, the estimated weight shows a flexibility to deal with

symmetric and asymmetric distributions and this could lead to an improvement

in the approximation based on the WPAL distribution.

Figure 5.5 & 5.6 show the effects of the number and locations of quantiles

included in the estimation on the quality of approximations obtained using the
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Figure 5.3: The probability density function (top) and the cumulative distribu-
tion function (bottom) for normal, gamma, Student’s t and mixture distributions
(left to right). The true distributions are represented by black curves and their
approximations obtained using the WPAL distribution based on 5 quantiles with
equal fixed weights are represented by red curves.

εi 0.05 0.25 0.5 0.75 0.95

N(0, 1) 0.17 0.22 0.23 0.22 0.17
Student’s t(3) 0.14 0.23 0.26 0.23 0.14
Gamma(3, 3) 0.24 0.24 0.22 0.18 0.12

0.5N(−2, 1) + 0.5N(2, 1) 0.20 0.21 0.19 0.21 0.20

Table 5.1: The average of the maximum a posteriori estimators for the weights,
corresponding to the Bayesian method based on the WPAL distribution with
estimated weights, over 1000 simulations.

WPAL distribution with equal fixed weights and estimated weights. Also, they

show that the number and locations of quantiles included in the estimation affect

the approximation differently according to characteristics of the true distribution.

For all considered distributions, the Kullback–Leibler divergences decrease when

the number of quantiles included in the estimation increases, except for Student’s

t-distribution in Figure 5.5 and the mixture distribution in Figure 5.6, where the

Kullback–Leibler divergences increase slightly. This is because the asymmetric

Laplace distributions corresponding to quantiles added to the estimation do not
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Figure 5.4: The probability density function (top) and the cumulative distribu-
tion function (bottom) for normal, gamma, Student’s t and mixture distributions
(left to right). The true distributions are represented by black curves and their
approximations obtained using the WPAL distribution based on 5 quantiles with
estimated weights are represented by red curves.

convey accurate information about these quantiles of the underlying distribution.

However, despite this change in the quality of the approximation, the Kullback–

Leibler divergences still lie in an acceptable range. In addition, Figure 5.5 & 5.6

show that the approximation based on the estimated weights may outperform the

approximation based on the equal fixed weights.

5.8.2 Linear models

In this section, we evaluate the accuracy of the coverage probabilities of 95% HPD

intervals estimated using Bayesian quantile methods based on the PAL likelihood

and the WPAL likelihood functions. To examine the proposed methods beyond

univariate models, we consider estimating quantiles curves for 200 observations

from the linear model:

yi = 1 + xi + εi

where xi ∼ U(20, 30) and εi is considered to follow different distributions. The

simulated datasets, used in the simulation study, only differ in εi. Tables 5.2 &
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Figure 5.5: The average of Kullback–Leibler divergence, from the approximation
obtained using the WPAL distribution with equal fixed weights (red) and esti-
mated weights (green) to the true distribution, over 500 simulations against the
number of quantiles corresponding to Scheme 1. The dotted curves represent the
95% confidence intervals for the mean.

5.3 show how poor approximation obtained by the PAL distribution affects the

estimation of the 95% highest posterior density intervals. Also, consistent with

the discussion in Section 5.2, Tables 5.3 shows how that approximation becomes

worse as the number of quantiles included in the estimation increases.

Table 5.4 shows that the Bayesian quantile method based on the WPAL likeli-

hood with equal fixed weights offers a great improvement in coverage probabilities

that approach desired levels of the nominal coverage probabilities for all quan-

102



5.8 Simulation studies and real data analysis

0.
00

0.
05

0.
10

0.
15

Number of quantiles included in the estimation

K
LD

2 4 6 8 10

(a) N(0, 1)

0.
1

0.
2

0.
3

0.
4

Number of quantiles included in the estimation

K
LD

2 4 6 8 10

(b) Student’s t(3)
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Figure 5.6: The average of Kullback–Leibler divergence, from the approximation
obtained using the WPAL distribution with equal fixed weights (red) and esti-
mated weights (green) to the true distribution, over 500 simulations against the
number of quantiles corresponding to Scheme 2. The dotted curves represent the
95% confidence intervals for the mean.

εi α0.05 α0.25 α0.5 α0.75 α0.95 β

N(0,1) 0.57 0.57 0.57 0.57 0.57 0.56

Table 5.2: The coverage probabilities of the 95% HPD intervals for the quantile
regression coefficients estimated using the Bayesian quantile method based on the
PAL likelihood over 1000 simulations.
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εi α0.05 α0.15 α0.25 α0.35 α0.45 α0.55 α0.65 α0.75 α0.85 α0.95 β

N(0,1) 0.48 0.46 0.46 0.46 0.46 0.46 0.46 0.48 0.48 0.47 0.44

Table 5.3: The coverage probabilities of the 95% HPD intervals for the quantile
regression coefficients estimated using the Bayesian quantile method based on the
PAL likelihood over 1000 simulations.

tile functions under different true distributions. Table 5.5 shows that a similar

result, with slight improvements for normal and Student’s t-distributions, can be

achieved by applying the Bayesian quantile method based on the WPAL likeli-

hood with estimated weights. This method suggests different weights for each

quantile as in Table 5.6 where more weights are assigned to quantiles close to the

modes of the true distributions.

εi α0.05 α0.25 α0.5 α0.75 α0.95 β

N(0, 1) 0.93 0.93 0.94 0.93 0.93 0.92
Student’s t(3) 0.96 0.97 0.97 0.97 0.95 0.96
Gamma(3, 3) 0.97 0.97 0.98 0.98 0.97 0.97

0.5N(−2, 1) + 0.5N(2, 1) 0.97 0.97 0.97 0.97 0.97 0.97

Table 5.4: The coverage probabilities of the 95% HPD intervals for the quantile
regression coefficients estimated using the Bayesian quantile method based on the
WPAL likelihood with equal fixed weights over 1000 simulations.

εi α0.05 α0.25 α0.5 α0.75 α0.95 β

N(0, 1) 0.95 0.95 0.95 0.95 0.95 0.94
Student’s t(3) 0.95 0.96 0.96 0.96 0.96 0.96
Gamma(3, 3) 0.96 0.97 0.97 0.98 0.98 0.97

0.5N(−2, 1) + 0.5N(2, 1) 0.97 0.97 0.98 0.98 0.98 0.97

Table 5.5: The coverage probabilities of the 95% HPD intervals for the quantile
regression coefficients estimated using the Bayesian quantile method based on the
WPAL likelihood with estimated weights over 1000 simulations..

Tables 5.7 & 5.8 show that by increasing the number of quantile functions

included in the estimation, the approximation based on the WPAL distribution

may be improved or worsened slightly depending on the underlying distribution.

It is seen that the coverage probabilities have little changes along with increasing
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5.8 Simulation studies and real data analysis

εi 0.05 0.25 0.5 0.75 0.95

N(0, 1) 0.17 0.22 0.23 0.22 0.17
Student’s t(3) 0.14 0.23 0.26 0.23 0.14
Gamma(3, 3) 0.23 0.24 0.22 0.18 0.12

0.5N(−2, 1) + 0.5N(2, 1) 0.20 0.21 0.19 0.21 0.20

Table 5.6: The average of the maximum a posteriori estimators for the weights,
corresponding to the Bayesian method based on the WPAL distribution with
estimated weights, over 1000 simulations.

the number of quantile functions included in the estimation. However, Table 5.9

shows that the Bayesian quantile method based on the WPAL likelihood with

estimated weights gives small values of weights for extreme quantiles and this

can result in conservative intervals (e.g. 0.05 quantile for Student’s t distribution

and 0.95 quantile for gamma distribution as shown in Table 5.8)

From Figures 5.7 – 5.10 that show the distributions of the maximum a posteri-

ori estimators obtained using the Bayesian quantile method based on the WPAL

likelihood over 1000 simulations, there is no strange behaviour of the maximum a

posteriori estimators which are distributed around the true values. This is shown

under different number of quantiles included in the simultaneous estimation.

εi α0.05 α0.15 α0.25 α0.35 α0.45 α0.55 α0.65 α0.75 α0.85 α0.95 β

N(0, 1) 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95
Student’s t(3) 0.97 0.97 0.96 0.96 0.97 0.96 0.96 0.97 0.97 0.97 0.96
Gamma(3, 3) 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.96

0.5N(−2, 1) + 0.5N(2, 1) 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.97 0.97 0.97 0.97

Table 5.7: The coverage probabilities of the 95% HPD intervals for the quantile
regression coefficients estimated using the Bayesian quantile method based on the
WPAL likelihood with equal fixed weights over 1000 simulations.

εi α0.05 α0.15 α0.25 α0.35 α0.45 α0.55 α0.65 α0.75 α0.85 α0.95 β

N(0, 1) 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.96 0.95
Student’s t(3) 0.99 0.98 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.98 0.96
Gamma(3, 3) 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.99 0.97

0.5N(−2, 1) + 0.5N(2, 1) 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97

Table 5.8: The coverage probabilities of the 95% HPD intervals for the quantile
regression coefficients estimated using the Bayesian quantile method based on the
WPAL likelihood with estimated weights over 1000 simulations.
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Figure 5.7: The box-plot of the maximum a posteriori estimators, obtained using
the Bayesian quantile method based on the WPAL likelihood with equal fixed
weights, over 1000 simulations. The red lines represent the true values.

εi 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

N(0, 1) 0.08 0.10 0.10 0.11 0.11 0.11 0.11 0.10 0.10 0.08
Student’s t(3) 0.07 0.09 0.11 0.12 0.12 0.12 0.12 0.11 0.09 0.07
Gamma(3, 3) 0.11 0.12 0.12 0.11 0.11 0.10 0.10 0.09 0.08 0.06

0.5N(−2, 1) + 0.5N(2, 1) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Table 5.9: The average of the maximum a posteriori estimators for the weights,
corresponding to the Bayesian quantile method based on the WPAL distribution
with estimated weights, over 1000 simulations.
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Figure 5.8: The box-plot of the maximum a posteriori estimators, obtained using
the Bayesian quantile method based on the WPAL likelihood with estimated
weights, over 1000 simulations. The red lines represent the true values.

5.8.3 The Chatterjee-Price Attitude data

These data are from a survey collected from nearly 35 employees corresponding

to 30 randomly selected departments to present the percentage of favourable

responses, in each department, to seven questions related to the overall rating, the

handling of employee complaints, not allowing special privileges, the opportunity

to learn, raises based on performance, too critical and advancement. This dataset

is available publicly by R Core Team (2016). In this section, we use our proposed
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Figure 5.9: The box-plot of the maximum a posteriori estimators, obtained using
the Bayesian quantile method based on the WPAL likelihood with equal fixed
weights, over 1000 simulations. The red lines represent the true values.

methods to study the relationship between the overall rating and the handling of

employee complaints given in Figure 5.11.

Figure 5.11 shows how the individual estimations of quantile curves based on

the asymmetric Laplace likelihood fails in describing the conditional distribution

of the overall rating. Figure 5.12 shows the ability of simultaneous estimation to

improve the estimation of quantile curves. It shows that nearly all simultaneous

methods suggest that the conditional distribution of the overall rating is not sym-

metric with a short upper tail and long lower tail. From Table 5.10, it can be seen
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Figure 5.10: The box-plot of the maximum a posteriori estimators, obtained using
Bayesian quantile method based the WPAL likelihood with estimated weights,
over 1000 simulations. The red lines represent the true values.

that there is a clear difference in the 95% highest posterior density intervals ob-

tained using the different approaches. Also, there is some agreement between the

methods in terms of the maximum a posteriori estimators especially the methods

based on the WPAL likelihood with equal fixed weights and the PAL likelihood.

Using the Bayesian quantile method based on the WPAL likelihood with esti-

mated weights, the maximum a posteriori estimators for weights corresponding

to 0.05, 0.25, 0.5, 0.75 and 0.95 quantiles respectively are 0.17, 0.18, 0.16, 0.23 and

0.26.
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Figure 5.11: The scatter plot of the overall rating against the handling of em-
ployee complaints (left). The estimated quantile functions, based on the maxi-
mum a posteriori estimators obtained individually using the asymmetric Laplace
likelihood, for τ = 0.05, 0.25, 0.5, 0.75, 0.95 (right).
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Figure 5.12: The estimated quantile functions, based on the maximum a posteriori
estimators obtained simultaneously using the WPAL likelihood with equal fixed
weights and estimated weights, and the PAL likelihood (left to right), for τ =
0.05, 0.25, 0.5, 0.75, 0.95.

To investigate the performance of the proposed methods, we apply leave-one-

out cross-validation method for quantile regression which is given by

QLCVτk
=

1

n

n∑
i=1

ρτk

(
yi − Q̂−i(τk|xi)

)
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WPAL(1) WPAL(2) PAL

Coefficients MAP 95% HPD MAP 95% HPD MAP 95% HPD

α0.05 3.49 (−12.63, 14.86) 4.39 (−203.89, 24.36) 3.12 (−0.66, 9.06)
α0.25 7.90 (−5.88, 22.76) 8.93 ( −5.67, 23.07) 7.56 ( 3.51, 15.70)
α0.5 13.94 ( 0.71, 29.57) 16.21 ( 1.80, 30.45) 14.35 ( 10.27, 22.50)
α0.75 21.86 ( 7.01, 33.96) 22.17 ( 7.98, 34.87) 20.27 ( 16.62, 27.10)
α0.95 22.91 ( 12.09, 38.85) 24.01 ( 12.46, 40.20) 22.20 ( 19.24, 28.87)

β 0.74 ( 0.56, 0.94) 0.73 ( 0.55 , 0.94) 0.76 ( 0.66 , 0.81 )

Table 5.10: The maximum a posteriori (MAP) estimators and the 95% high-
est posterior density intervals (95% HPD) obtained using the weighted pseudo
asymmetric Laplace likelihood with equal fixed weights (WPAL(1)) and estimated
weights (WPAL(2)), and the pseudo asymmetric Laplace likelihood (PAL).

where Q̂−i is the estimated quantile function based on the maximum a posteriori

estimators that is estimated when the ith observation is left out. Also, we use the

average of leave-one-out cross-validation estimation of the error over all quantile

functions, included in the simultaneous estimation, given by

AQLCV =
1

m

m∑
k=1

QLCVτk
.

where m is the number of quantiles. Table 5.11 shows similar leave-one-out cross-

τ WPAL(1) WPAL(2) PAL

0.05 0.71 0.70 0.69
0.25 2.63 2.62 2.75
0.5 3.25 3.30 3.27
0.75 2.09 2.06 2.10
0.95 0.53 0.50 0.49

AQLCV 1.85 1.84 1.86

Table 5.11: The Leave-one-out cross-validation estimation of the error for quantile
functions.

validation estimation of the error for the individual quantiles and its average over

all quantiles included in the simultaneous estimation. This implies that there is

some agreement between the different simultaneous quantile methods in terms of

the maximum a posteriori estimators. To investigate the estimated conditional

distribution of the response variable, we compare the estimated conditional den-
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Chapter 5. On the approximation of the joint distribution of quantiles

sity of the response variable obtained using simultaneous quantile regression based

on the WPAL likelihood with those obtained using other methods which can be

used to fit this dataset, such as Bayesian linear regression based on normal dis-

tribution and Bayesian linear regression based on skew normal distribution (for

more details, see Wuertz et al., 2016). Figure 5.13, which shows the estimated

conditional density of the response variable (the overall rating) given the mean of

the covariate (the handling of employee complaints) using the different methods,

illustrates the flexible approximation of the conditional distribution obtained by

using the WPAL distribution compared to other methods.
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Figure 5.13: Comparison of estimated conditional densities of y|x = E(x) ob-
tained using Bayesian quantile regression based on the WPAL distribution cor-
responding to 5 quantiles (left) and 10 quantiles (right) with equal fixed weights
(green) and estimated weights (blue), and Bayesian regression based on normal
distribution (black) and skew normal distribution (red). Overall rating is repre-
sented by y and handling of employee complaints is represented by x.

5.9 Conclusion

The proposed quantile methods based on the weighted pseudo asymmetric Laplace

(WPAL) likelihood with equal fixed weights and estimated weights show a flexi-

bility to approximate a variety of error distributions including symmetric, asym-
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metric and bimodal distributions. This leads to great improvement in the reliabil-

ity of Bayesian inference on quantile coefficients (e.g. the coverage probabilities

approach the nominal coverage probabilities). Both equal fixed weights and es-

timated weights have their own motivation. The equal fixed weights reduce the

uncertainty in the Bayesian model and estimated weights can show more flex-

ibility to improve the approximation of underlying distributions. However, the

weighted pseudo asymmetric Laplace likelihood with estimated weights might be

more conservative in terms of the highest posterior density intervals for the ex-

treme quantiles of distributions with long tails, especially in the case of a large

number of quantiles included in the simultaneous estimation. This is because of

the small weights assigned for these quantiles.

Bayesian inference on quantile coefficients should not be based on the asym-

metric Laplace likelihood blindly and alternatives that are parameterised by the

quantiles and can provide a good approximation to the underlying distributions

should be considered. In the next chapter, we propose a family of approximate

likelihood that can be used to draw reliable and valid Bayesian inference on con-

ditional quantile functions.
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Chapter 6

A family of approximate

likelihood functions for quantile

regression

6.1 Introduction

Bayesian quantile methods based on the asymmetric Laplace likelihood have been

used in the literature more than other Bayesian quantile approaches. However,

the asymmetric Laplace distribution has several limitations which were discussed

in Chapter 4 (for example, the quantile of interest is assumed to be the mode

of the underlying distribution of the data and the quantile of interest and skew-

ness are determined by the same parameter). Also, it does not have a direct

application to accommodate a vector of quantiles. Therefore, to overcome these

shortcomings and to improve the quality and reliability of Bayesian inference on

quantile functions, Dunson & Taylor (2005), Reich et al. (2010), Lancaster &

Jae Jun (2010), Hahn & Burgette (2012) and Feng et al. (2015) have proposed

a number of alternatives to Bayesian quantile methods based on the asymmetric

Laplace likelihood (for more details see, Section 1.6).

To achieve more accurate and reliable Bayesian inference on quantiles, we pro-

pose a family of approximate distributions that are parameterised by quantiles

and can accommodate different types of underlying distributions. This family of

approximate distributions can achieve their maximum at the quantile of interest

without assuming that this quantile represents the mode of the true distribution
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Chapter 6. A family of approximate likelihood functions for quantile regression

of the data. These approximate likelihood functions can be used to construct

Bayesian methods to estimate quantile curves individually and simultaneously.

Then, we extend these methods to fit linear quantile regression with homoscedas-

tic and heteroscedastic errors. To investigate the performance of proposed meth-

ods, we propose a bootstrap test to check the lack of fit for quantile regressions.

In addition, we implement simulation studies and use real data to investigate the

properties of estimators obtained using the proposed quantile methods.

6.2 Approximate likelihood functions for indi-

vidual quantile estimation

For a random variable y, we assume that y ∼ F , where F is a continuous dis-

tribution with τk quantile given by qτk . Then, for any known density g(y|θ), the

true probability density f(y|qτk) can be approximated by a density function

f̂(y|θ, qτk ,w) =

{
w1g(y|θ), y ≤ qτk ,
w2g(y|θ), y > qτk ,

(6.1)

where g(y|θ) is a known density. Then, to specify w1 and w2 such that qτk is the

τk quantile of the underlying distribution, the following two conditions must be

satisfied: ∫ qτk

−∞
w1g(y|θ)dy = τk, (6.2)∫ ∞

qτk

w2g(y|θ)dy = 1− τk. (6.3)

This implies that

w1 =
τk∫ qτk

−∞ g(y|θ)dy

=
τk

G(qτk ;θ)
,

w2 =
1− τk∫∞

qτk
g(y|θ)dy

=
1− τk

1−G(qτk ;θ)
,
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6.2 Approximate likelihood functions for individual quantile estimation

where G is the cumulative distribution function corresponding to the density g.

It can be seen that the restriction of the density function f̂(y|θ, qτk ,w) to meet

the condition given in Equations 6.2 & 6.3 could results in discontinuity (that

is, jumping) at the quantile qτk . This discontinuity would disappeared as g ≈ f ,

since w1 and w2 would approach one. The cumulative distribution function F̂

corresponding to the density f̂ is continuous with F̂ (qτk) = τk. The properties of

the estimation based on this approximation are assessed numerically as in Section

6.7. Consider the Kullback–Leibler divergence given by

KLD(f‖f̂) =

∫ ∞
−∞

f(y) log

(
f(y)

f̂(y|θ, qτk ,w)

)
dy.

It is obvious that if g = f , then f̂ = f and KLD(f‖f̂) = 0. It is obvious that

the choice of function g plays a fundamental role in determining the quality of

approximation. Therefore, we investigate the performance of this approximation

under three different choices of the function g as discussed in the next sections. We

consider the normal distribution, the generalised normal distribution that includes

a variety of symmetric distributions as special cases (for example, symmetric

Laplace and normal distribution), and a mixture of skewed Laplace and skew

normal distributions.

6.2.1 The weighted normal distribution

To begin with a simple case, assume g is the density of normal distribution, then

the approximate density is given by

f̂(y|θ, qτk) =


w1

σ
√

2π
exp

{
− (y−µ)2

2σ2

}
, y ≤ qτk ,

w2

σ
√

2π
exp

{
− (y−µ)2

2σ2

}
, y > qτk ,

where µ, σ2 and qτk are location, variance and τk quantile parameters respectively.

Also, the weights are given by

w1 = τk

[
Φ

(
qτk − µ
σ

)]−1

,

w2 = (1− τk)
[
1− Φ

(
qτk − µ
σ

)]−1

.
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where Φ is the cumulative function of the standard normal distribution.

6.2.2 The weighted generalised normal distribution

To add more flexibility to the approximate distribution to be able to accommodate

a variety of symmetric distributions and approximate other distributions, we

assume g to be the generalised normal distribution. The associated approximate

density can be written as

f̂(y|µ, σ, qτk , γ) =


w1

2γσΓ(γ)
exp

{
−
(
|y−µ|
σ

) 1
γ

}
, y ≤ qτk ,

w2

2γσΓ(γ)
exp

{
−
(
|y−µ|
σ

) 1
γ

}
, y > qτk ,

where µ, σ, γ and qτk are location, scale, shape and τk quantile parameters. Also,

the weights are given by

w1 = 2τk

(
1 + sign(qτ − µ)

1

Γ (γ)
Γ

[
γ,

(
|qτ − µ|

σ

) 1
γ

])−1

,

w2 = 2(1− τk)

(
1− sign(qτ − µ)

1

Γ (γ)
Γ

[
γ,

(
|qτ − µ|

σ

) 1
γ

])−1

.

where Γ(., .) is the lower incomplete gamma function: Γ(a, x) =
∫ x

0
ta−1e−tdt.

6.2.3 The weighted mixture distribution

To improve the performance of the approximation distribution in terms of sym-

metric and asymmetric distribution, we consider g to be a mixture of skewed

Laplace and skewed normal distributions. Then, the approximate density is given

by

f̂(y|µ, qτk , σ, κ, ν) =


w1

2∑
t=1

(1−ν)t−1

νt−2 gt(y|µ, σ, κ), y ≤ qτk ,

w2

2∑
t=1

(1−ν)t−1

νt−2 gt(y|µ, σ, κ), y > qτk ,

where

gt(y|µ, σ, κ) =


tκ

σ(1+κ2)Γ( 1
t
)
exp

{
−
(

1
κσ
|y − µ|

)t}
, y ≤ µ,

tκ
σ(1+κ2)Γ( 1

t
)
exp

{
−
(
κ
σ
|y − µ|

)t}
, y > µ.
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6.3 An approximate likelihood function for simultaneous estimation of quantiles

which is a density function for any t > 0 (for more details, see Appendix E.1).

Also,

w1 =
τk

G(qτk ;µ, σ, κ, ν)
,

w2 =
1− τk

1−G(qτk ;µ, σ, κ, ν)
,

where

G(qτk ;µ, σ, κ) =


2∑
t=1

(1−ν)t−1

νt−2

[
κ2

(1+κ2)Γ( 1
t )

Γ̃

(
1
t ,

(
|qτk−µ|
κσ

)t)]
, qτk ≤ µ,

2∑
t=1

(1−ν)t−1

νt−2

[
1− 1

(1+κ2)Γ( 1
t )

Γ̃

(
1
t ,

(
κ|qτk−µ|

σ

)t)]
, qτk > µ,

where Γ̃(., .) is the upper incomplete gamma function: Γ̃(a, x) =
∫∞
x
ta−1e−tdt

and ν is a mixture weight such that ν ∈ (0, 1); for more details, see Appendix

E.2. This mixture distribution includes a number of distributions as special cases,

such as normal and Laplace distribution families.

6.3 An approximate likelihood function for si-

multaneous estimation of quantiles

To prevent the crossing of estimated quantile functions, the family of approxi-

mate likelihood functions that are discussed in the previous section can be easily

generalised to accommodate multiple quantiles corresponding to 0 < τ1 < τ2 <

... < τm < 1. To achieve this goal, we reformulate the density function given in

(6.1) to be written as

f̂(y|θ, qτ ) =


w1g(y|θ), y ≤ qτ1 ,
w2g(y|θ), qτ1 < y ≤ qτ2 ,

...
...

wm+1g(y|θ), y > qτm ,

where

w1 =
τ1

G(qτ1 ;θ)
,
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Chapter 6. A family of approximate likelihood functions for quantile regression

w2 =
τ2 − τ1

G(qτ2 ;θ)−G(qτ1 ;θ)
,

...

wm+1 =
1− τm

1−G(qτm ;θ)
,

where G is the cumulative distribution function corresponding to the density g.

It is obvious that KLD(f‖f̂) = 0 if g = f , since if g = f , f̂ = f .

As this approximation is affected by the choices of g, it can also be affected

by the number and locations of quantiles included in simultaneous estimation.

In the following section, we employ this family of approximate likelihood func-

tions to construct Bayesian methods to fit multiple quantile linear regressions

simultaneously.

6.4 Simultaneous estimation of linear quantile

functions

Consider the linear regression model

yi = βo + x
′

iβ + εi, for i = 1, 2, ..., n, (6.4)

where εi is independently distributed with a mean equal to zero and a constant

variance; xi is a p×1 vector of covariates for the ith observation; βo is an intercept

coefficient and β is a p × 1 vector of unknown slope coefficients. To develop

a Bayesian quantile method to estimate the linear quantile function given by

Q(τk|xi) = ατk + x
′
iβ, for 0 < τ1 < τ2 < ... < τm < 1 simultaneously using the

family of approximate likelihood functions, we can consider the weighted normal

likelihood written as

l(βo,β,ατ , σ
2;y) ∝

n∏
i=1



w1

σ
√

2π
exp

{
−(yi−βo−x

′
iβ)

2

2σ2

}
, yi ≤ ατ1 + x

′

iβ,

w2

σ
√

2π
exp

{
−(yi−βo−x

′
iβ)

2

2σ2

}
, ατ1 + x

′

iβ < yi ≤ ατ2 + x
′

iβ,

...
...

wm+1

σ
√

2π
exp

{
−(yi−βo−x

′
iβ)

2

2σ2

}
, yi > ατm + x

′

iβ,
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6.4 Simultaneous estimation of linear quantile functions

where the weights are given by

w1 = τk

[
Φ

(
ατk − βo

σ

)]−1

,

wk = (τk − τk−1)

[
Φ

(
ατk − βo

σ

)
− Φ

(
ατk−1

− βo
σ

)]−1

for k = 2, ...m,

wm+1 = (1− τm)

[
1− Φ

(
ατm − βo

σ

)]−1

.

To illustrate the performance of the proposed approximate likelihood function, we

use diffuse proper prior distributions, which yield proper posterior distributions,

for all model parameters. For linear quantile regression coefficients, the prior

distribution is given by

ατk ∼ N(α∗, σα), for k = 1, ...,m,

β ∼ Np(β
∗,Σβ),

where each normal distribution has mean equal to zero and variance equal to

105 and each multivariate normal distribution has a mean vector of zero and a

diagonal covariance matrix with entries equal to 105. For the variance parameter,

we consider the inverse-gamma distribution (IG) that is given by

σ2 ∼ IG(a = 0.01, b = 0.01).

Then, the posterior distribution is given by

p(βo,β,ατ , σ
2|y) ∝ l(βo,β,ατ , σ

2;y)p(βo)p(β)p(ατ )p(σ
2).

Also, we can consider the weighted generalised normal likelihood given by

l(βo,β,ατ , σ, γ;y) ∝
n∏
i=1



w1

2γσΓ(γ) exp

{
−
( ∣∣∣yi−βo−x′iβ∣∣∣

σ

) 1
γ

}
, yi ≤ ατ1 + x

′

iβ,

w2

2γσΓ(γ) exp

{
−
( ∣∣∣yi−βo−x′iβ∣∣∣

σ

) 1
γ

}
, ατ1 + x

′

iβ < yi ≤ ατ2 + x
′

iβ,

...
...

wm+1

2γσΓ(γ) exp

{
−
( ∣∣∣yi−βo−x′iβ∣∣∣

σ

) 1
γ

}
, yi > ατm + x

′

iβ,
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where the weights are given by

w1 = 2τk

(
1 + sign(ατ1 − βo)

1

Γ (γ)
Γ

[
γ,

(
|ατ1 − βo|

σ

) 1
γ

])−1

,

wk = 2(τk − τk−1)

(
sign(ατk − βo)

1

Γ (γ)
Γ

[
γ,

(
|ατk − βo|

σ

) 1
γ

]

−sign(ατk−1
− βo)

1

Γ (γ)
Γ

γ,(∣∣ατk−1
− βo

∣∣
σ

) 1
γ

−1

for k = 2, ...m,

wm+1 = 2(1− τm)

(
1− sign(ατm − βo)

1

Γ (γ)
Γ

[
γ,

(
|ατm − βo|

σ

) 1
γ

])−1

.

For the scale parameter, we consider the inverse-gamma distributions (IG) given

by

σ ∼ IG(a = 0.01, b = 0.01).

Also, the shape parameter has a prior distribution:

γ ∼ IG(a = 0.01, b = 0.5),

which is a diffuse distribution with a mode that is approximately equal to 0.5

that results to the shape of normal distribution. Then, the posterior distribution

is given by

p(βo,β,ατ , σ, γ|y) ∝ l(βo,β,ατ , σ, γ;y)p(βo)p(β)p(ατ )p(σ)p(γ).

Moreover, we can consider the weighted mixture of skewed Laplace and skewed

normal likelihood functions given by

l(βo,β,ατ , σ, κ, ν;y) ∝
n∏
i=1



w1

2∑
t=1

(1−ν)t−1

νt−2 gt(yi|βo,β,σ, κ), yi ≤ ατ1 + x
′

iβ,

w2

2∑
t=1

(1−ν)t−1

νt−2 gt(yi|βo,β,σ, κ), ατ1 + x
′

iβ < yi ≤ ατ2 + x
′

iβ,

...
...

wm+1

2∑
t=1

(1−ν)t−1

νt−2 gt(yi|βo,β,σ, κ), yi > ατm + x
′

iβ,
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6.4 Simultaneous estimation of linear quantile functions

where, for t = 1, 2,

gt(yi|βo,β,σ, κ) =


tκ

σ(1+κ2)Γ( 1
t
)
exp

{
−
(

1
κσ

∣∣yi − βo − x′iβ∣∣)t} , yi ≤ βo + x
′
iβ,

tκ
σ(1+κ2)Γ( 1

t
)
exp

{
−
(
κ
σ

∣∣yi − βo − x′iβ∣∣)t} , yi > βo + x
′
iβ.

Also, the weights are given by

w1 =
τ1

G(ατ1 ; βo, σ, κ, ν)
,

w2 =
τ2 − τ1

G(ατ2 ; βo, σ, κ, ν)−G(ατ1 ; βo, σ, κ, ν)
,

...

wm+1 =
1− τm

1−G(ατm ; βo, σ, κ, ν)
,

where

G(ατk ;βo, σ, κ, ν) =


2∑
t=1

(1−ν)t−1

νt−2

[
κ2

(1+κ2)Γ( 1

t
)
Γ̃

(
1
t ,

(
|ατk−βo|

κσ

)t)]
, ατk ≤ βo,

2∑
t=1

(1−ν)t−1

νt−2

[
1− 1

(1+κ2)Γ( 1

t
)
Γ̃

(
1
t ,

(
κ|ατk−βo|

σ

)t)]
, ατk > βo.

For the mixture weight parameter, we consider the Beta distribution (Beta) given

by

ν ∼ Beta(1, 1),

which is the uniform distribution over the interval (0,1). For the skew parameter,

we consider the inverse-gamma distribution (IG) given by

κ ∼ IG(a = 0.01, b = 0.01).

Then, the posterior distribution is given by

p(βo,β,ατ , σ, κ, ν|y) ∝ l(βo,β,ατ , σ, κ, ν;y)p(βo)p(β)p(ατ )p(σ)p(κ)p(ν).
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6.5 Simultaneous estimation of quantiles for het-

eroscedastic linear models

Consider the heteroscedastic linear regression model

yi = βo + x
′

iβ + σ(xi)εi,

where εi is independently distributed with a mean equal to zero and a constant

variance and σ(xi), is standard deviation of the error term, assumed to be a

function of the covariates. To accommodate the heteroscedastic scale in the

Bayesian quantile model, we assume that σ(xi) = exp
(
ψo + x

′
iψ
)
. Then, we

propose a Bayesian quantile method to estimate linear quantile function:

Q(τk|xi) = ατk + x
′

iβτk ,

for 0 < τ1 < τ2 < ... < τm < 1 simultaneously using the family of approximate

likelihood functions by considering the weighted mixture of skewed Laplace and

skewed normal likelihood functions given by

l(βo,β,ατ , Bτ , ψo,ψ, κ, ν;y) ∝
n∏
i=1



w1

2∑
t=1

(1−ν)t−1

νt−2 gt(yi|βo,β,ψo,ψ, κ), yi ≤ Q(τ1|xi),

w2

2∑
t=1

(1−ν)t−1

νt−2 gt(yi|βo,β,ψo,ψ, κ), Q(τ1|xi) < yi ≤ Q(τ2|xi),

...
...

wm+1

2∑
t=1

(1−ν)t−1

νt−2 gt(yi|βo,β,ψo,ψ, κ), yi > Q(τm|xi),

where

gt(yi|βo,β,ψo,ψ, κ) =


tκ

σ(xi)(1+κ2)Γ( 1
t )

exp

{
−
(

1
κσ(xi)

∣∣∣yi − βo − x′iβ∣∣∣)t} , yi ≤ βo + x
′

iβ,

tκ
σ(xi)(1+κ2)Γ( 1

t )
exp

{
−
(

κ
σ(xi)

∣∣∣yi − βo − x′iβ∣∣∣)t} , yi > βo + x
′

iβ.

Also, the weights are given by

w1 =
τ1

G(ατ1 ,βτ1 ; βo,β, ψo,ψ, κ, ν)
,

w2 =
τ2 − τ1

G(ατ2 ,βτ2 ; βo,β, ψo,ψ, κ, ν)−G(ατ1 ,βτ1 ; βo,β, ψo,ψ, κ, ν)
,

...
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wm+1 =
1− τm

1−G(ατm ,βτm ; βo,β, ψo,ψ, κ, ν)
,

where

G(ατkβτk ;βo,β, ψo,ψ, κ, ν) =


2∑
t=1

(1−ν)t−1

νt−2

[
κ2

(1+κ2)Γ( 1
t )

Γ̃
(

1
t , ξ1

)]
, Q(τk|xi) ≤ βo + x

′

iβ,

2∑
t=1

(1−ν)t−1

νt−2

[
1− 1

(1+κ2)Γ( 1
t )

Γ̃
(

1
t , ξ2

)]
, Q(τk|xi) > βo + x

′

iβ,

where

ξ1 =

(∣∣ατk − βo + x
′
i(βτk − β)

∣∣
κ exp

(
ψo + x

′
iψ
) )t

, ξ2 =

(
κ
∣∣ατk − βo + x

′
i(βτk − β)

∣∣
exp

(
ψo + x

′
iψ
) )t

.

The prior distributions for the quantile slope coefficients and scale components

are given by

βτk ∼ Np(β
∗,Σβ) for k = 1, ...,m,

ψo ∼ N(ψ∗o , σψo),

ψ ∼ Np(ψ
∗,Σψ),

with the same specified parameters used, in Section 6.4, for prior distributions of

quantile coefficients. Then, the posterior distribution is given by

p(βo,β,ατ , Bτ , ψo,ψ, κ, ν|y) ∝ l(βo,β,ατ , Bτ , ψo,ψ, κ, ν;y)p(βo)p(β)p(ατ )p(Bτ )

× p(ψo)p(ψ)p(κ)p(ν).

6.6 Checking the goodness of fit

To check the goodness of fit for quantile regression, a number of hypothesis test

methods have been developed (for example, see Wang, 2008; Zheng, 1998). In

this section we proposed a new bootstrap test to examine the goodness of fit for

linear quantile regression given in (6.4). We consider

Ho : P
(
ε(τk) ≤ 0

)
= τk,

H1 : P
(
ε(τk) ≤ 0

)
6= τk,
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Chapter 6. A family of approximate likelihood functions for quantile regression

where P
(
ε(τk) ≤ 0

)
is the cumulative distribution function of the residuals, corre-

sponding to τk quantile function, which given by εi(τk) = yi− (ατk +x
′
iβ). Then,

the test statistic is given by

D = P̂
(
ε(τk) ≤ 0

)
− τk,

where P̂
(
ε(τk) ≤ 0

)
is a non-parametric estimation of unknown cumulative func-

tion P
(
ε(τk) ≤ 0

)
. Then, the p-value of the two-sided test is given by

p-value = 2 min {P (D ≤ 0|Ho), P (D > 0|Ho)} ,

= 2 min

{∑B
b=1 1(Db≤0)

B
,

∑B
b=1 1(Db>0)

B

}
, (6.5)

where B is the number of bootstrap simulations obtained by resampling from the

observed data with replacement, and 1(A) is an indicator function which equals one

if A holds and zero otherwise. To estimate the cumulative function P
(
ε(τk) ≤ 0

)
,

we could use the empirical cumulative function given by

P̂
(
ε(τk) ≤ 0

)
=

1

n

n∑
i=1

l(
εi(τk)≤0

).
However, the hypothesis test would then favor quantile curves satisfying the sam-

ple definition of quantiles. To improve the performance of the hypothesis test,

we estimate P
(
ε(τk) ≤ 0

)
using the cumulative function estimation considered

by Nadaraya (1964) and that can be defined for identically and independently

distributed random variables Z1, ...Zn as follows

P̂ (Z ≤ z) =
1

n

n∑
i=1

K

(
z − Zi
h

)
,

where K is the cumulative distribution function of a positive kernel (here we use

Epanechnikov kernel function). For bandwidth selection, we use a plug-in esti-

mator of optimal bandwidth proposed by Altman & Leger (1995). To illustrate

the performance of this method to approximate cumulative distributions, Figure

6.1 shows the lack of bias in the estimation of the cumulative distribution func-

tions corresponding to normal and gamma distributions (for more details about

implementation of these methods, see Wang, 2012).

126



6.7 Simulation studies and real data analysis

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 6.1: The average of the estimated cumulative functions, obtained using
the method developed by Nadaraya (1964) with a plug-in estimator of optimal
bandwidth proposed by Altman & Leger (1995) for N(0, 1) and Gamma(3, 3),
over 1000 simulations of size 150.

6.7 Simulation studies and real data analysis

6.7.1 Univariate models

In this section, we generate univariate samples, each of size 150, from normal dis-

tribution N(0,1), gamma distribution Gamma(3,3) and Student’s t distribution

t(3). Then, we investigate the performance of the proposed family of approxi-

mate distributions, discussed in Section 6.4, to construct Bayesian methods to

draw Bayesian inference on the first quartile, the median, and the third quartile

by comparing the estimated density and cumulative functions with true ones.

The estimated density and cumulative functions are represented by the average

of function values computed at the maximum a posteriori estimators over 1000

simulations.

Figures 6.2, 6.3 & 6.4 illustrate the good quality of approximation obtained us-

ing the proposed family of approximate distributions under the different choices

of the function g. They show how the choice of the function g can affect the

approximation. Also, they show that the approximation based on the weighted

mixture of skewed Laplace and skewed normal distributions outperform other ap-

proximations based on the weighted normal and the weighted generalised normal
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Figure 6.2: The probability density function (top) and the cumulative distribu-
tion function (bottom) for the normal, gamma and Student’s t distributions (left
to right). The true distributions are represented by black curves and their ap-
proximations, obtained using the weighted normal distribution, are represented
by red curves.

distributions. In addition, these figures suggest that the quantiles included in the

simultaneous estimation can play a significant role in improving the approxima-

tions of the underlying distributions, in the case that the g density function does

not accommodate these underlying distributions. Although the proposed family

of approximate distributions does not assume that any quantile of interest is the

mode of the true distribution, Figures 6.2, 6.3 & 6.4 show that the proposed fam-

ily of approximate distributions jumps at estimated quantiles. This can affect the

quality of the approximation especially in the case of small size of datasets. Thus,

in the case that the function g can accommodate the underlying distribution, the

proposed approximation may perform better for fewer quantiles.

To examine the accuracy of the proposed bootstrap test, we implement a
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Figure 6.3: The probability density function (top) and the cumulative distribu-
tion function (bottom) for the normal, gamma and Student’s t distributions (left
to right). The true distributions are represented by black curves and their ap-
proximations, obtained using the weighted generalised normal distribution, are
represented by red curves.

simulation study to calculate the p-value for the hypothesis test:

Ho : P (y ≤ µτk) = τk,

H1 : P (y ≤ µτk) 6= τk,

where µτk is set to be the true quantile. Then, we compute P (reject Ho|Ho is true)

at the significance level 0.05. From Table 6.1, the estimated significance level is

very close to the nominal level for all distributions. This implies that the pro-

posed test can be useful in measuring the goodness of fit for quantile regression

and comparing different quantile methods.
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Figure 6.4: The probability density function (top) and the cumulative distribu-
tion function (bottom) for the normal, gamma and Student’s t distributions (left
to right). The true distributions are represented by black curves and their ap-
proximations, obtained using the weighted mixture of skewed Laplace and skewed
normal distributions, are represented by red curves.

εi 0.05 0.25 0.5 0.75 0.95

N(0, 1) 0.07 0.06 0.04 0.05 0.06
Student’s t(3) 0.08 0.06 0.05 0.05 0.06
Gamma(3, 3) 0.07 0.05 0.05 0.05 0.07

Table 6.1: The estimated P (reject Ho|Ho is true) over 1000 simulations.

6.7.2 Linear models

In this section, we evaluate the accuracy of the coverage probabilities of 95%

HPD intervals estimated using Bayesian quantile methods based on the family

of approximate likelihood functions. We consider estimating quantile curves for

200 observations from the linear model

yi = 1 + xi + εi,
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6.7 Simulation studies and real data analysis

where xi ∼ U(20, 30) and εi is considered to follow different distributions. In the

simulation study, we use 1000 simulated datasets which only differ in the errors

εi.

εi α0.25 α0.5 α0.75 β
N(0, 1) 0.94 0.94 0.94 0.94

Student’s t(3) 0.86 0.85 0.86 0.85
Gamma(3, 3) 0.81 0.81 0.80 0.81

Table 6.2: The coverage probabilities of the 95% HPD intervals for the quan-
tile regression coefficients estimated simultaneously using the Bayesian quantile
method based on the weighted normal likelihood over 1000 simulations.
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Figure 6.5: The box-plot of the maximum a posteriori estimators, obtained si-
multaneously using the Bayesian quantile method based on the weighted normal
likelihood, over 1000 simulations. The red lines represent the true values.

εi α0.25 α0.5 α0.75 β
N(0, 1) 0.91 0.90 0.90 0.90

Student’s t(3) 0.86 0.85 0.85 0.85
Gamma(3, 3) 0.84 0.83 0.84 0.84

Table 6.3: The coverage probabilities of the 95% HPD intervals for the quan-
tile regression coefficients estimated simultaneously using the Bayesian quantile
method based on the weighted generalised normal likelihood over 1000 simula-
tions.

Tables 6.2, 6.3 & 6.4 show that the coverage probabilities, obtained using

simultaneous quantile methods based on the proposed family of approximate dis-
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Figure 6.6: The box-plot of the maximum a posteriori estimators, obtained simul-
taneously using the Bayesian quantile method based on the weighted generalised
normal likelihood, over 1000 simulations. The red lines represent the true values.

εi α0.25 α0.5 α0.75 β
N(0, 1) 0.91 0.90 0.91 0.90

Student’s t(3) 0.90 0.90 0.90 0.90
Gamma(3, 3) 0.91 0.91 0.91 0.91

Table 6.4: The coverage probabilities of the 95% HPD intervals for the quan-
tile regression coefficients estimated simultaneously using the Bayesian quantile
method based on the weighted mixture of skewed Laplace and skewed normal
likelihood functions over 1000 simulations.

tributions, are always below the nominal 95% and approach the nominal coverage

probabilities more closely as the function g can represent the conditional distri-

bution of the response variable perfectly. Therefore, the approximation based on

the weighted mixture of skewed Laplace and skewed normal likelihood functions

gives the best result, and this is consistent with the discussion in the previous

section. In addition, these tables suggest that, under the misspecified choice for

the function g, the proposed family of approximations still performs well.

Figures 6.5, 6.6 & 6.7 show the distribution of the maximum a posteriori es-

timators, obtained using the Bayesian methods based on the proposed family of

approximate likelihood functions, for linear quantile coefficients over 1000 simula-

tions. It can be seen that the distribution of the maximum a posteriori estimates

given by the Bayesian quantile methods based on the proposed family of approx-

imations, over replicated datasets, are symmetric and centered at the true values
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Figure 6.7: The box-plot of the maximum a posteriori estimators, obtained si-
multaneously using the Bayesian quantile method based on the weighted mixture
of skewed Laplace and skewed normal likelihood functions, over 1000 simulations.
The red lines represent the true values.

under different choices of the density function g.

6.7.3 Heteroscedastic linear models

In this section, we examine the performance of the Bayesian method, based on

the weighted mixture of skewed Laplace and skewed normal likelihood functions

described in Section 6.5, to estimate the quantile functions for linear models with

heteroscedastic errors. We consider 1000 datasets, differing in εi, of size 200

generated from the heteroscedastic linear model

yi = 1 + xi + (1 + ψxi)εi

where xi ∼ U(20, 30), ψ = 0.3 and εi is considered to have a chi-square distri-

bution with 3 degrees of freedom. From Table 6.5, the coverage probabilities

α0.25 α0.5 α0.75 β0.25 β0.5 β0.75

0.92 0.91 0.93 0.93 0.91 0.91

Table 6.5: The coverage probabilities of the 95% HPD intervals for the quan-
tile regression coefficients estimated simultaneously using the Bayesian quantile
method based on the weighted mixture of skewed Laplace and skewed normal
likelihood functions with heteroscedastic scale over 1000 simulations.
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Chapter 6. A family of approximate likelihood functions for quantile regression

corresponding to heteroscedastic linear quantile regression coefficients indicate

that the Bayesian method based on the weighted mixture of skewed Laplace and

skewed normal likelihood functions succeeds in effectively handling this complex

model that has a long tail with heteroscedasticity. Also, Figure 6.8 illustrates a

good behaviour of the distributions of the maximum a posteriori estimators.
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Figure 6.8: The box-plot of the maximum a posteriori estimators, obtained si-
multaneously using the Bayesian quantile method based on the weighted mixture
of skewed Laplace and skewed normal likelihood functions with heteroscedastic
scale, over 1000 simulations. The red lines represent the true values.
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6.7.4 Cats data

In contrast to the asymmetric Laplace distribution estimating the quantile that

minimises the traditional loss function, the proposed family of approximations

estimates the quantile satisfying the definition of the quantile with respect to the

approximate underlying distribution. This implies that the quality of estimation

depends on the quality of the approximation for the distribution of the data.

Therefore, for fair investigation, we use a new dataset rather than using the

Chatterjee-Price Attitude data used in Section 5.8.3, which is relatively small to

provide enough information for approximating the underlying distribution. We

use Cats data, that includes the measurements on the heart weights (in grams)

and body weights ( in kilograms) of 144 male and female cats, to investigate

performance of Bayesian methods based on the proposed family of approximations

to estimate the quantile curves corresponding to the first quartile, the median,

and the third quartile simultaneously. This dataset is available publicly by R

Core Team (2016) and Venables & Ripley (2002).
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Figure 6.9: The estimated quantile functions based on the maximum a poste-
riori estimators obtained simultaneously using the weighted normal likelihood,
the weighted generalised normal likelihood and the weighted mixture of skewed
Laplace and skewed normal likelihoods (left to right), for τ = 0.25, 0.5, 0.75.

From Figure 6.9 and Table 6.6, there is a similarity in the maximum a pos-

teriori estimators obtained using the Bayesian quantile methods based on the

weighted generalised normal likelihood, and the weighted mixture of skewed

Laplace and skewed normal likelihoods. In addition, the Bayesian quantile method

based on the weighted normal likelihood do not agree with other methods in terms
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Chapter 6. A family of approximate likelihood functions for quantile regression

QR-WN QR-WGN QR-WM

Coefficients MAP 95% HPD MAP 95% HPD MAP 95% HPD

α0.25 −1.22 (−2.45,−0.17) −1.20 (−2.36,−0.31) −1.21 (−1.88, 0.17)
α0.5 −0.80 (−1.69, 0.61) −0.31 (−1.40, 0.41) −0.30 (−1.15, 0.92)
α0.75 0.54 (−0.41, 1.89) 0.78 (−0.26, 1.59) 0.80 ( 0.08, 2.21)

β 4 ( 3.56, 4.38) 4 ( 3.57, 4.33) 4 ( 3.42, 4.16)

Table 6.6: The maximum a posteriori (MAP) estimators and the 95% highest pos-
terior density intervals (95% HPD) obtained simultaneously using the weighted
normal likelihood (QR-WN), the weighted generalised normal likelihood (QR-
WGN) and the weighted mixture of skewed Laplace and skewed normal likelihood
functions (QR-WM).

of some maximum a posteriori estimators especially for the intercept coefficients

corresponding to the 0.5 and 0.75 quantiles. This implies that the approximate

distribution based on the weighted normal density could not accommodate the

true distribution of the data well. However, despite some agreement between the

proposed methods in terms of the maximum a posteriori estimators, the proposed

methods suggest different 95% highest posterior density intervals for quantile re-

gression coefficients.

According to Figure 6.10 and Table 6.7, the bootstrap test suggests that the

Bayesian quantile methods based on the weighted generalised normal likelihood

and the weighted mixture of skewed Laplace and skewed normal likelihood func-

tions succeed in estimating all quantiles of interest, while the method based on

the weighted normal likelihood fails to estimate the median. This suggests that

the flexibility of the function g to accommodate the conditional distribution of

the response variable can lead to a more accurate and reliable estimation of the

quantile functions.

τ QR-WN QR-WGN QR-WM

0.25 0.30 0.21 0.25
0.5 0.02 0.57 0.54
0.75 0.24 0.72 0.63

Table 6.7: The p-values corresponding to the proposed bootstrap test method
for quantile functions estimated simultaneously using the weighted normal likeli-
hood (QR-WN), the weighted generalised normal likelihood (QR-WGN) and the
weighted mixture of skewed Laplace and skewed normal likelihoods (QR-WM).
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6.8 Discussion

6.8 Discussion

The proposed family of approximate likelihood functions can provide flexible and

reliable alternatives to the asymmetric Laplace likelihood for developing Bayesian

quantile methods to estimate quantile functions individually and simultaneously.

Also, it can outperform the asymmetric Laplace likelihood in terms of Bayesian

inference on quantile coefficients. It still performs well under the assumption of

heteroscedasticity. Moreover, the proposed methods are easy to be implemented

and interpreted from a Bayesian perspective.

The choice of the function g can affect the approximation fundamentally.

Therefore, the proposed family of approximate likelihood functions can be ex-

tended by considering a suitable form of the function g that can handle complex

models and draw reliable Bayesian inference on quantiles. In addition, the pro-

posed method can be extended by considering the function g to be a nonpara-

metric kernel density.
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Chapter 6. A family of approximate likelihood functions for quantile regression
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Figure 6.10: The histogram of test statistics, corresponding to the 0.25, 0.5 and
0.75 quantile curves (left to right) estimated simultaneously using the weighted
normal likelihood, the weighted generalised normal likelihood and the weighted
mixture of skewed Laplace and skewed normal likelihoods (top to bottom), over
100,000 bootstrap samples. The red lines represent 95% percentile confidence
interval.
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Chapter 7

Comparison and Conclusion

7.1 Summary

The aim of this research was to provide efficient methods to draw Bayesian infer-

ence for multiple quantile curves. This goal could be achieved by addressing three

challenges. Firstly, the full specification of the residual distribution was required

and this was the main interest. Secondly, it was necessary to specify suitable

priors for all quantile regression coefficients. Finally, since it was impossible to

draw samples from complex posterior distributions directly, efficient numerical

sampling methods should be used to simulate from the posterior distributions.

In addition, the issue of the crossing of quantile curves was taken into account

while developing the Bayesian quantile models.

The Box-Cox transformation, which is a nonlinear monotonic transformation

function including several known transformations as special cases, could be used

to extend linear regression to deal with more complex nonlinear models. We

employed the Box-Cox transformation in the context of Bayesian linear quantile

regression based on the asymmetric Laplace likelihood function to deal with viola-

tions of linearity and homoscedasticity. Then, we proposed simultaneous Box-Cox

quantile regression to estimate multiple quantile curves without crossing. To im-

prove the efficiency of posterior computation, we proposed a Gibbs sampler with

a Metropolis-Hastings step. Also, to overcome the limitations of this Box-Cox

quantile regression, we considered the extensions to Box-Cox quantile regression

with heteroscedastic errors and two-sided Box-Cox quantile regression.
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Chapter 7. Comparison and Conclusion

Although the asymmetric Laplace likelihood has been used extensively in the

literature to develop Bayesian quantile methods due to its direct link to the tra-

ditional loss function used to estimate quantiles, it has some limitations that can

lead to a real concern about Bayesian inference drawn using this likelihood on

quantiles’ coefficients. Namely, these limitations are that skewness is controlled

by the same parameter used to estimate the quantile of interest. Also, by us-

ing this likelihood, it is assumed that the mode of the underlying distribution

is represented by the quantile of interest. To overcome this lack of flexibility

to accommodate the distribution of the data, we proposed a new distribution

called the generalised Gumbel distribution that showed a great ability to approx-

imate the underlying distribution. Then, we employed this distribution to draw

a Bayesian inference on quantile functions of linear models individually.

Simultaneous estimation of multiple quantile functions has been favoured over

individual estimation given that it can be employed to overcome the issue of

crossing quantile curves. In this project, we employed simultaneous estimation of

quantiles to approximate the true distribution of the data. We formed the joint

distribution of multiple quantile functions using a mixture of asymmetric Laplace

distributions with suitable weights that can be fixed or estimated along with other

model parameters. The proposed approach offered a great improvement in the

accuracy and reliability of Bayesian inference on multiple linear quantile functions

without crossing. This method has shown promising results and can be extended

easily to handle more complex models.

To improve the quality of Bayesian inference on quantile regression, we pro-

posed a family of approximate distributions that are parameterised by quantiles

and maximized at the quantile of interest. In contrast to the asymmetric Laplace

distribution, the proposed family of approximations does not assume that the

mode of the data is represented by the quantile of interest. Also, it can be used

to develop Bayesian methods to estimate the quantiles individually and simul-

taneously. This family of approximate likelihood functions was used to estimate

multiple quantile functions without crossing for linear models with homoscedastic

and heteroscedastic error. In addition, we proposed a new bootstrap test to check

the lack of fit for quantile regression.

The proposed methods enjoy flexible assumptions and provide the Bayesian
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7.2 Comparison

framework for the analysis of quantile regression. Moreover, they can be imple-

mented easily and can accommodate different types of regression models.

7.2 Comparison

As mentioned, a number of methods for handling quantile regression within a

Bayesian context were explored in this thesis. In this section, we compare the

different proposed Bayesian quantile methods based on the generalised Gum-

bel likelihood (GGUM), the pseudo asymmetric Laplace likelihood (PAL), the

weighted pseudo asymmetric Laplace likelihood with fixed weights (WPAL(1))

and with estimated weights (WPAL(2)), and the weighted mixture of skewed

Laplace and skewed normal distributions (QR-WM). We also compare them with

the traditional Bayesian quantile regression based on the asymmetric Laplace

(AL) likelihood. Tables 7.1 & 7.2 show the key differences between using the

different approximate distributions as an error distribution for quantile regres-

sion. Moreover, we compare Bayesian inference, obtained using these methods,

on quantile regression coefficients for Cats data described in Section 6.7.4. In

addition, we use the bootstrap hypothesis test discussed in Section 6.6 to check

the goodness of fit for these different Bayesian models.

Figure 7.1 shows how the different Bayesian quantile methods describe the

conditional distribution of the response variable. It can be seen that there are

differences in the estimates between the individual estimation and the simulta-

neous estimation of quantile functions. The individual estimation recommends

that the characteristics of the conditional distribution change over the covariate.

Although this behaviour can have a reasonable interpretation such as in the case

of heteroscedasticity, it can be a result of the lack of information at some quantile

levels, especially if the behaviour is not consistent over multiple quantiles. The

simultaneous methods give similar estimation where they suggest that the con-

ditional distribution is asymmetric with a longer upper tail. Table 7.3 illustrate

the difference in the maximum a posteriori estimators obtained using the differ-

ent methods. There are obvious differences especially between the individual and

simultaneous approaches. To study and understand this variation, we apply the

bootstrap test to examine the null hypothesis that the estimated functions can

be defined as quantile functions for the true distribution of the data. Table 7.4
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Chapter 7. Comparison and Conclusion

AL GGUM

• Its maximisation is equivalent
to the minimisation of the loss
function given in (1.2).

• It provides poor approximation
of the underlying distribution.

• The quality of the estimation de-
pends on the quantile function of
interest.

• The estimated quantile func-
tions can cross.

• The coverage probability could
be very low for some quantiles
of interest.

• It has no flexible shape to ac-
commodate different underlying
distributions.

• It is assumed that the quantile
of interest represents the mode
of the data.

• Its maximum is equivalent to the
approximate maximum of the
underlying distribution.

• It can give good approximation
of the underlying distribution.

• The quality of the estimation
tends to be the same for all
quantiles of interest.

• The estimated quantile func-
tions can cross.

• The coverage probability ap-
proaches the nominal coverage
probability for all quantiles.

• It has flexible shape to accom-
modate different underlying dis-
tributions.

• It is not assumed that the quan-
tile of interest represents the
mode of the data.

Table 7.1: Comparison between the use of the asymmetric Laplace (AL) and the
generalised Gumbel distributions (GGUM) for estimating the quantiles individ-
ually.

giving the p-values corresponding to quantile functions estimated using the differ-

ent quantile approaches shows that the bootstrap test suggests that the quantile

method based on the generalised Gumbel likelihood fails to estimate the true

0.05 quantile function where the null hypothesis is rejected with p-value, which

obtained by formula (6.5), equal to zero. Also, Figure 7.1(b) shows that there

are no observations under the 0.05 quantile line, which is unlikely.

Figures 7.2 & 7.3, which show the 95% highest posterior density (HPD) in-

tervals for quantile coefficients, reveal the similarity in the estimated 95% HPD
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7.2 Comparison

PAL WPAL(1) & WPAL(2) QR-WM

• Its maximisation is
equivalent to the min-
imisation of the com-
posite loss function
given in (1.5).

• It gives poor approx-
imation of the under-
lying distribution and
the coverage proba-
bility could be very
low.

• It can accommodate
a solution for crossing
of quantile functions.

• The quality of
approximation is
affected by the num-
ber and locations of
quantiles included in
the estimation.

• The approximation
become worse as
the number of quan-
tiles included in the
estimation increases.

• Its maximisation is
approximately equiv-
alent to the maximi-
sation of the underly-
ing distribution.

• It gives good approx-
imation of the under-
lying distribution and
the coverage proba-
bility approaches the
nominal level.

• It can accommodate
a solution for crossing
of quantile functions.

• The quality of
approximation is
affected by the num-
ber and locations of
quantiles included in
the estimation.

• The approxima-
tion improve as the
number of quan-
tiles included in the
estimation increases.

• Its maximisation is
approximately equiv-
alent to the maximi-
sation of the underly-
ing distribution.

• It gives good approx-
imation of the under-
lying distribution and
the coverage proba-
bility approaches the
nominal level.

• It can accommodate
a solution for crossing
of quantile functions.

• The quality of ap-
proximation can be
robust against the
number and locations
of quantiles included
in the estimation.

• The approximation
can be stable as the
number of quan-
tiles included in the
estimation increases.

Table 7.2: Comparison between the use of the pseudo asymmetric Laplace (PAL)
distribution, the weighted pseudo asymmetric Laplace distribution with equal
fixed weights (WPAL(1)) and with estimated weights (WPAL(2)) and the weighted
mixture of skewed Laplace and skewed normal distributions (QR-WM) for esti-
mating the quantiles simultaneously.

intervals between the approach based on the weighted pseudo asymmetric Laplace

likelihood with fixed weights and estimated weights. For all quantiles, these fig-

ures show that the method based on the pseudo asymmetric Laplace likelihood
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(b) GGUM
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(c) PAL
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(d) WPAL(1)
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(e) WPAL(2)
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(f) QR-WM

Figure 7.1: The colored lines represent the estimated quantile function,
based on the maximum a posteriori estimators, corresponding to τ =
0.05, 0.25, 0.5, 0.75, 0.95.

Individual estimation Simultaneous estimation

Coefficients AL GGUM Coefficients PAL WPAL(1) WPAL(2) QR-WM

α0.05 -0.19 -2.38 α0.05 -2.02 -2.08 -1.99 -2.41
α0.25 -0.83 -1.21 α0.05 -0.97 -0.92 -0.92 -1.21
α0.5 0.30 0.08 α0.05 -0.05 -0.12 -0.16 -0.32
α0.75 0.00 1.43 α0.05 1.04 0.98 1.16 0.78
α0.95 0.46 1.30 α0.05 2.41 2.38 2.44 2.21

β0.05 3.25 3.62

β 3.89 3.90 3.87 4
β0.25 3.83 4.00
β0.5 3.75 3.82
β0.75 4.25 3.71
β0.95 4.66 4.27

Table 7.3: The maximum a posteriori estimators obtained using different quantile
methods
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7.2 Comparison

τ AL GGUM PAL WPAL(1) WPAL(2) QR-WM

0.05 0.32 0.00 0.64 0.79 0.78 0.98
0.25 0.77 0.26 0.60 0.20 0.63 0.26
0.5 0.72 0.87 0.66 0.84 0.66 0.61
0.75 0.74 0.57 0.93 0.91 0.62 0.72
0.95 0.83 0.39 0.73 0.72 0.61 0.83

Table 7.4: The p-value corresponding to the bootstrap hypothesis test for each
level of quantiles.
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Figure 7.2: The 95% highest posterior density intervals for intercept coefficients
are represented by the colored lines.

provides shorter 95% HPD intervals which are nested in other 95% HPD inter-

vals, except those obtained by the approach based on the asymmetric Laplace

likelihood. In addition, they show great intersections between the 95% HPD in-

tervals suggested by the different approaches. However, these intersections can be

explained better by Figure 7.4 which shows joint 95% highest posterior density re-

gions of intercept and slope coefficients estimated using the method described by

Bolker (2016) and Bolker (2008). It can be seen that 95% HPD regions obtained
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using the quantile method based on the pseudo asymmetric Laplace likelihood

represent the smallest credible regions shared by all simultaneous approaches and

included all maximum a posteriori estimators suggested by these methods. This

implies that the differences in the maximum a posteriori estimators, obtained us-

ing the simultaneous methods and shown in Table 7.3, are not quite significant.

For the 0.25 and 0.5 quantiles, the individual estimation methods tend to agree

with simultaneous estimation methods regarding the maximum a posteriori esti-

mators and sharing the HPD region including all of these estimators. Moreover,

all methods share the smallest 95% HPD region, including all maximum a poste-

riori estimators, obtained using the pseudo asymmetric Laplace likelihood for the

0.25 quantile coefficients. The reason behind this type of agreement is that the

0.25 and 0.5 quantiles are close to the mode of the data where the individual esti-

mation methods can provide better approximation for the underlying distribution

as discussed in Chapter 4. To illustrate the mode of the conditional distribution

of the response variable, the conditional kernel density, estimated using the local

polynomial estimation described by Hyndman (2013) and Hyndman et al. (1996),

is shown in Figure 7.5.

7.3 Future work

In this research, much of the effort was on constructing likelihood functions that

can be used to obtain accurate and reliable Bayesian inference on quantile curves.

However, there are some research areas in Bayesian quantile analysis that need

more attention. In the following section, we highlight some potential research

gaps in the context of quantile regression that can be addressed in future.

7.3.1 The asymptotic properties of Bayesian estimators

A number of new Bayesian estimators were proposed in this thesis. Therefore, in

order to extend this work to deal with more complex models, we will investigate

some asymptotic prosperities of these estimators under regular and irregular con-

ditions. In particular, the effect of the discontinuity on the consistency and the

bias of the Bayesian estimators based on the likelihood functions considered in

Chapters 4 & 6 will be examined. Also, we will derive these asymptotic properties

under different priors.
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Figure 7.3: The 95% highest posterior density intervals for slope coefficients are
represented by the colored lines.

7.3.2 Simultaneous non-linear quantile regression

The Bayesian linear quantile method based on weighted pseudo asymmetric Laplace

likelihood proposed in Chapter 5 can be easily extended to polynomial and spline

quantile regression. In addition, the simultaneous quantile methods based on

the weighted pseudo asymmetric Laplace likelihood can be employed to handle

Bayesian model selection rather than using an individual quantile, which can be

subjective to the chosen quantile.

7.3.3 Goodness of fit

The work on goodness of fit measures for quantile regression in literature is lim-

ited in the sense they depend on asymptotic theories considered in classical statis-

tics, or they are based on assuming the asymmetric Laplace distribution as an

error distribution. Therefore, these methods require improvement in order to

achieve an accurate investigation and reliable examination of the obtained in-

ferences on quantile functions. To achieve this aim, we may need to adapt the
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Figure 7.4: The joint 95% highest posterior density regions of the intercept and
slope coefficients of quantile regression.
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goodness of fit test based on posterior predictive p-values – that are discussed,

for example, by Meng (1994) – in the context of quantile regression. More-

over, although the Bayesian model selection based on Bayes factor is considered

straightforward, its practical implementation may need carefully specified priors

and efficient posterior computation. Therefore, more research on developing the

methods of Bayesian model selection for quantile regression is required.

7.3.4 Prior distribution

Informative priors play a significant role in Bayesian analysis, especially in real ap-

plied research where using the informative priors available about the investigated

problem can be useful to obtain more reliable Bayesian inference. Also, infor-

mative priors can be required to implement model selection using Bayes factors.

Applying informative priors can improve the stability of the posterior estimation

and convergence. However, to be able to employ informative prior beliefs about

the model parameters effectively, we need to consider suitable theoretical formu-

las that can accommodate these beliefs easily and simplify the posterior form. To

achieve this in the context of the simultaneous quantile estimation, we may need

to consider the joint prior distribution for all quantile coefficients.

7.3.5 Prediction

Bayesian prediction has the advantage that it takes into account the uncertainty

caused by the parameter being unknown. However, predictive inference obtained

using the Bayesian quantile model based on the asymmetric Laplace likelihood

may be misleading, because the asymmetric Laplace likelihood is unrelated to the

distribution generating data. The proposed likelihood functions in this project

can offer solutions for this issue, since they correspond to the underlying dis-

tribution of data. Moreover, as the proposed methods show a great ability to

accommodate a variety of error distributions, this should improve the predic-

tion of the distribution of new unobserved data points. Then, we can carry out

predictive inference and decisions about future observables.
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Appendix A

A.1 The link between the pseudo AL likelihood

and the weighted optimisation problem.

The weighted optimisation problem to estimate the quantile functions can be

written as

Q̂ (τ |X) = min
ατ ,Bτ ,λτ∈R

m∑
k=1

n∑
i=1

wτkρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)
where

∑m
k=1wτk = 1. By assuming that στk is the scale parameter corresponding

to the τk quantile function, we can write

Q̂ (τ |X) = min
ατ ,Bτ ,λτ∈R

m∑
k=1

n∑
i=1

1

στk
ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)
,

since, for a constant c > 0, 1
στk

= cwτk .

Q̂ (τ |X) = max
ατ ,Bτ ,λτ∈R

−
m∑
k=1

n∑
i=1

1

στk
ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)
= max

ατ ,Bτ ,λτ∈R
exp

{
−

m∑
k=1

n∑
i=1

1

στk
ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)}

= max
ατ ,Bτ ,λτ∈R

(
m∏
k=1

σ−nτk

)
exp

{
−

m∑
k=1

n∑
i=1

1

στk
ρτk

(
Λ (yi;λτk)− ατk − x

′

iβτk

)}
,

since
m∏
k=1

σ−nτk is a constant with respect to ατ , Bτ and λτ .
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= max
ατ ,Bτ ,λτ∈R

(
m∏
k=1

σ−nτk

)
exp

{
−

m∑
k=1

n∑
i=1

ρτk

(
Λ (yi;λτk)− ατk − x

′
iβτk

στk

)}

A.2 Conditional distributions for parameters of

Bayesian Box-Cox quantile model

In following sections, we derive the conditional distributions for parameters of

simultaneous Bayesian Box-Cox quantile model (PAL-BC). The pseudo posterior

distribution is given by

p (ατ ,β,Wτ ,στ , λ|y) ∝
m∏
i=1

n∏
i=1

σ
− 1

2
τk w

− 1
2

τk,i
exp

−
m∑
k=1

n∑
i=1

(
Λ (yi;λ)− ατk − x

′

iβ − θτkwτk,i
)2

2στkφτkwτk,i


×

m∏
k=1

σ
−(aτk+1)
τk exp

{
−

m∑
k=1

bτk
στk

}
exp

{
−1

2
(β − β∗)

′
S−1 (β − β∗)

}

× exp

{
− (λ− λ∗)2

2v2

}
exp

{
−

m∑
k=1

(
ατk − α∗τk

)2
2c2τk

}
1(ατ1<ατ2<...<ατm).

A.2.1 Conditional Distribution of ατk

We assume that

α̃τk = ψ2
τk

(
α∗τk
c2τk

+
n∑
i=1

(
Λ(yi;λ)−x′iβ−θτkwτk,i

)
στkφτkwτk,i

)
, ψ2

τk
=

(
1
c2τk

+
n∑
i=1

1
στkφτkwτk,i

)−1

Hence, for k = 1, 2, ...,m− 1, the conditional distribution of ατk given by

p (ατk |β,wτk ,στ , λ) ∝ exp

−1

2

α2
τk

ψ2
τk

− 2
ατk α̃τk
ψ2
τk

+

n∑
i=1

(
Λ (yi;λ)− x′iβ − θτkwτk,i

)2

στkφτkwτk,i

+
α∗2τk
c2τk


 1(ατk<ατk+1)

∝ exp

−1

2

α2
τk

ψ2
τk

− 2
ατk α̃τk
ψ2
τk

+
α̃2
τk

ψ2
τk

−
α̃2
τk

ψ2
τk

+

n∑
i=1

(
Λ (yi;λ)− x′iβ − θτkwτk,i

)2

στkφτkwτk,i
+
α∗2τk
c2τk


 1(ατk<ατk+1)
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p (ατk |βτ ,wτk , στk , λ) ∝

exp

{
− (ατk − α̃τk)

2

2ψ2
τk

}
+ exp

−1

2

n∑
i=1

(
Λ (yi;λ)− x′iβ − θτkwτk,i

)2

στkφτkwτk,i

−
α∗2τk
2c2τk

+
α̃2
τk

2ψ2
τk


 1(ατk<ατk+1)

∝ exp

{
− (ατk − α̃τk)

2

2ψ2
τk

}
1(ατk<ατk+1).

Then, this can be written

ατk |βτk ,wτk , στk , λ ∼ N
(
α̃τk , ψ

2
τk

)
1(ατk<ατk+1).

A.2.2 Conditional Distribution of β

The conditional distribution of β can be written as

p (β|ατ ,Wτ ,στ , λ) ∝ exp

−
n∑
i=1

m∑
k=1


(

Λ (yi;λ)− ατk − x
′

iβ − θτkwτk,i
)2

2στkφτkwτk,i


− 1

2
(β − β∗)

′
S−1 (β − β∗)


∝ exp

{
−

n∑
i=1

m∑
k=1

[
1

2στkφτkwτk,i

(
β
′
xix

′
iβ − 2x′iβ (Λ (yi;λ)− ατk − θτkwτk,i)

+ (Λ (yi;λ)− ατk − θτkwτk,i)
2
)]
− 1

2

[
β
′
S−1β − 2β

′
S−1β∗ + β∗

′

S−1β∗
]}

∝ exp

{
−1

2

[
n∑
i=1

m∑
k=1

1

στkφwτk,i

(
β
′
xix

′
iβ − 2x′iβ (Λ (yi;λ)− ατk − θτkwτk,i)

+ (Λ (yi;λ)− ατk − θτkwτk,i)
2
)

+ β
′
S−1β − 2β

′
S−1β∗ + β∗

′

S−1β∗
]}

∝ exp

{
−1

2

[
β
′

(
S−1 +

n∑
i=1

m∑
k=1

xix
′
i

στkφτkwτk,i

)
β − β

′

(
S−1β∗

+

n∑
i=1

m∑
k=1

xi (Λ (yi;λ)− ατk − θτkwτk,i)
στkφτkwτk,i

)
−

(
β∗
′
S−1

+

n∑
i=1

m∑
k=1

(Λ (yi;λ)− ατk − θτkwτk,i)x
′

i

στkφτkwτk,i

)
β

+

n∑
i=1

m∑
k=1

(Λ (yi;λ)− ατk − θτkwτk,i)
2

στkφτkwτk,i
+ β∗

′

S−1β∗

]}
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Now, we assume that

β̃ = Σ

(
S−1β∗ +

n∑
i=1

m∑
k=1

xi(Λ(yi;λ)−ατk−θτwτk,i)
στkφτkwτk,i

)
, Σ =

(
S−1 +

n∑
i=1

m∑
k=1

xix
′
i

στkφτkwτk,i

)−1

Hence, the conditional distribution of β

p (β|ατ ,Wτ ,στ , λ) ∝ exp

{
−1

2

[
β
′
Σ−1β − β

′
Σ−1β̃ − β̃

′
Σ−1β

+

n∑
i=1

m∑
k=1

(Λ (yi;λ)− ατk − θτkwτk,i)
2

στkφτkwτk,i
+ β∗

′

S−1β∗

]}

p (β|ατ ,Wτ ,στ , λ) ∝ exp

{
−1

2

[
β
′
Σ−1β − β

′
Σ−1β̃ − β̃

′
Σ−1β + β̃

′
Σ−1β̃ − β̃

′
Σ−1β̃

+

n∑
i=1

m∑
k=1

1

στkφτkwτk,i
(Λ (yi;λ)− ατk − θτkwτk,i)

2
+ β∗

′

S−1β∗

]}

∝ exp

{
−1

2

(
β − β̃

)′
Σ−1

(
β − β̃

)}
× exp

{
−1

2

n∑
i=1

m∑
k=1

(Λ (yi;λ)− ατk − θτkwτk,i)
2

στkφτkwτk,i
+ β∗

′

S−1β∗ − β̃
′
Σ−1β̃

}

∝ exp

{
−1

2

(
β − β̃

)′
Σ−1

(
β − β̃

)}
Then, this can be written

β|ατ ,Wτ ,στ , λ ∼ N
(
β̃,Σ

)
A.2.3 Conditional Distribution of wτk,i

The conditional distribution of wτk,i is given by

p
(
wτk,i|ατk ,β, στk , λ

)
∝ w

− 1
2

τk,i
exp

−
(

Λ (yi;λ)− ατk − x
′
iβ − θτkwτk,i

)2

2στkφτkwτk,i

× exp(−
1

σ
wτk,i)

∝ w
− 1

2
τk,i

exp

−

(

Λ (yi;λ)− ατk − x
′
iβ
)2
− 2θτkwτk,i

(
Λ (yi)− ατk − x

′
iβ
)

+ θ2
τk
w2
τk,i

2στkφτkwτk,i


−

1

σ
wτk,i


∝ w

− 1
2

τk,i
exp

−

(

Λ (yi;λ)− ατk − x
′
iβ
)2
w−1
τk,i
− 2θτk

(
Λ (yi;λ)− ατk − x

′
iβ
)

+ θ2
τk
wτk,i

2στkφτk



154



A.2 Conditional distributions for parameters of Bayesian Box-Cox quantile model

−
2wτk,i

2σ


∝ w

− 1
2

τk,i
exp

−1

2

w−1
τk,i

(
Λ (yi;λ)− ατk − x

′
iβ
)2

στkφτk
− 2

θτk

(
Λ (yi;λ)− ατk − x

′
iβ
)

στkφτk


+wτk,i

(
θ2
τk

στkφτk

)]
−

2wτk,i

2στk

}

∝ w
− 1

2
τk,i

exp

{
−

1

2

[
w−1
τk,i

((
Λ (yi;λ)− ατk − x′iβ

)2
στkφτk

)
+

(
m∑
k=1

θ2
τk

στkφτk
+

2

στk

)
wτk,i

]}

which the density of generalized inverse Gaussian distribution (GIG), then, it is

can be written

wτk,i|ατk ,β, λ, σ ∼ GIG

1

2
,

√
(Λ (yi;λ)− ατk − x′iβ)2

στkφτk
,

√
θ2
τk

στkφτk
+

2

στk


where the density of generalized inverse Gaussian distribution (GIG) is given by

f (x|t, a, b) =
(b/a)t

2Kt (ab)
xt−1 exp

{
−1

2

(
a2x−1 + b2x

)}
A.2.4 Conditional Distribution of στk

The conditional distribution of στk is given by

p (στk |ατk ,β,wτk , λ) ∝ σ
−(n2 +aτk+1)
τk exp

−
n∑
i=1


(

Λ (yi;λ)− ατk − x
′

iβ − θτkwτk,i
)2

2στkφτkwτk,i

− bτk
στk


×
(

1

στk

)n
exp

(
− 1

στk

n∑
i=1

wτk,i

)

∝ σ−( 3n
2 +aτk+1) exp

− 1

στk

bτk +

n∑
i=1

(
Λ (yi;λ)− ατk − x

′

iβ − θτkwτk,i
)2

2φτkwτk,i


− 1

στk

n∑
i=1

wτk,i


∝ σ

−( 3n
2 +aτk+1)

τk exp

− 1

στk

bτk +

n∑
i=1

(
Λ (yi;λ)− ατk − x

′

iβ − θτkwτk,i
)2

2φτkwτk,i

155



Chapter A.

+

n∑
i=1

wτk,i




Thus

στk |ατk ,β,wτk , λ ∼ IG

(
3n

2
+ aτk , bτk +

n∑
i=1

(Λ (yi;λ)− x′iβ − θτkwτk,i)
2

2φτkwτk,i
+

n∑
i=1

wτk,i

)

where IG is the inverse gamma distribution.
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Appendix B

B.1 Markov chain Monte Carlo (MCMC)

All MCMC methods used in this thesis to simulate from the posterior distri-

butions are diagnosed carefully to achieve the best results. In this section, as

an example, we diagnose and compare Metropolis-Hastings algorithm and Gibbs

sampler used in Chapter 2 to simulate from the posterior distributions. To do

this, we use the simulated data from the model given in (2.12). To make sure that

MCMC converges to the target distribution properly, we implement Metropolis-

Hastings algorithm with 100000 iterations and a burn-in of 20000 iterations. We

seek for an acceptance probability of approximately 0.234 (for more details, see

Roberts et al., 1997). Also, we run the Gibbs samplers with 10000 iterations and

a burn-in of 1000 iterations. To see how MCMC move around the model parame-

ter space and the chain mixing, we can look at the trace plots and in this case, we

need to check each parameter. Figures B.1, B.2, B.3 and B.4 show the good mix-

ing of all chains for both the sampling methods. We apply Geweke’s convergence

test (for more details, see Plummer et al., 2006), to compare the mean of the first

30% and the last 30% of each chain. Geweke’s statistic is given by the difference

between the means of the two parts of the Markov chain divided by its estimated

standard error and asymptotically follows the standard normal distribution. At

the significance level of 0.05, Table B.1 suggests that all chains converge to the

stationary distributions. Also, we use Gelman and Rubins convergence diagnos-

tic to monitor convergence of five parallel chains run with overdispersed starting

values (for more details, see Plummer et al., 2006). Table B.2, which show the

estimates of the potential scale reduction factor, indicates that all Markov chains

are converged. By looking at Figures B.5, B.6, B.7 and B.8 that shows the auto-
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correlation of the simulated samples from the posterior distribution. It is obvious

that the samples generated using Metropolis-Hastings algorithm have higher au-

tocorrelation than those obtained using the Gibbs sampler. Therefore, we use the

thinning method to handle this issue. We thin the samples by keeping every 50th

simulated value obtain using Metropolis-Hastings algorithm and 6th simulated

value obtained using the Gibbs sampler. The the results are given in Figures

B.9, B.10, B.11 and B.12. However, there are no considerable changes in the

summary Bayesian statistics such as the posterior mean, the posterior standard

deviation and highest posterior density (HPD) intervals. From Table B.3, the

both sampling approaches approximately share the same posterior means and

95% HPD intervals for all model parameters. These two methods do not require

a computational power and much time to be implemented. However, Metropolis-

Hastings algorithm is faster than the Gibbs sampler. All R codes are available to

be ordered from the author and will be available publicly along with publications

related to this research.
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Figure B.1: The trace plots for the samples of the intercept coefficients obtained
using Metropolis-Hastings algorithm (top) and Gibbs sampler (bottom).
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Figure B.2: The trace plots for the samples of the slope coefficient obtained using
Metropolis-Hastings algorithm (left) and Gibbs sampler (right).
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Figure B.3: The trace plots for the samples of the scale parameters obtained
using Metropolis-Hastings algorithm (top) and Gibbs sampler (bottom).
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Figure B.4: The trace plots for the samples of the transformation parameter
obtained using Metropolis-Hastings algorithm (left) and Gibbs sampler (right).

Coefficients Metropolis-Hastings Gibbs

α0.25 0.91 0.46
α0.5 0.89 0.86
α0.75 0.89 0.95
β 0.88 0.69
λ 0.24 0.54

σ0.25 0.42 0.63
σ0.5 0.36 0.92
σ0.75 0.13 0.31

Table B.1: The p-value corresponding to Geweke’s convergence test.
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B.1 Markov chain Monte Carlo (MCMC)

Metropolis-Hastings Gibbs

Coefficients P.E. U.C.L. P.E. U.C.L.

α0.25 1.01 1.02 1.01 1.02
α0.5 1.01 1.02 1.01 1.02
α0.75 1.01 1.02 1.01 1.02
β 1.01 1.03 1.01 1.03
λ 1.00 1.00 1.01 1.02

σ0.25 1.00 1.00 1.00 1.00
σ0.5 1.00 1.00 1.00 1.00
σ0.75 1.00 1.00 1.00 1.00

M.S.R. 1.01 1.01

Table B.2: The point estimates (P.E.), the upper confidence limit (U.C.L.) and
the multivariate potential scale reduction factor (M.S.R.) obtained using Gelman
and Rubin’s convergence diagnostic for chains corresponding to the two proposed
sampling methods.
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Figure B.5: The autocorrelation plot for the samples of the intercept coefficients
obtained using Metropolis-Hastings algorithm (top) and Gibbs sampler (bottom).
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Figure B.6: The autocorrelation plot for the samples of the slope coefficient
obtained using Metropolis-Hastings algorithm (left) and Gibbs sampler (right).
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Figure B.7: The autocorrelation plot for the samples of the scale parameters
obtained using Metropolis-Hastings algorithm (top) and Gibbs sampler (bottom).
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Figure B.8: The autocorrelation plot for the samples of the transformation pa-
rameter obtained using Metropolis-Hastings algorithm (left) and Gibbs sampler
(right).
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Figure B.9: The autocorrelation plot (after thinning) for the samples of the inter-
cept coefficients obtained using Metropolis-Hastings algorithm (top) and Gibbs
sampler (bottom).
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Figure B.10: The autocorrelation plot (after thinning) for the samples of the
slope coefficient obtained using Metropolis-Hastings algorithm (left) and Gibbs
sampler (right).
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Figure B.11: The autocorrelation plot (after thinning) for the samples of the
scale parameters obtained using Metropolis-Hastings algorithm (top) and Gibbs
sampler (bottom).
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Figure B.12: The autocorrelation plot (after thinning) for the samples of the
transformation parameter obtained using Metropolis-Hastings algorithm (left)
and Gibbs sampler (right).

Metropolis-Hastings Gibbs

Coefficients P.M. 95% HPD P.M. 95% HPD

α0.25 −0.51 (−0.55,−0.47) −0.51 (−0.55,−0.47)
α0.5 −0.40 (−0.44,−0.37) −0.41 (−0.44,−0.37)
α0.75 −0.31 (−0.36,−0.27) −0.31 (−0.36,−0.27)
β 0.24 ( 0.23, 0.25) 0.24 ( 0.23, 0.25)
λ 2.13 ( 1.93, 2.33) 2.13 ( 1.94, 2.33)

σ0.25 0.05 ( 0.04, 0.05) 0.05 ( 0.04, 0.06)
σ0.5 0.06 ( 0.06, 0.07) 0.06 ( 0.06, 0.07)
σ0.75 0.05 ( 0.05, 0.06) 0.05 ( 0.05, 0.06)

Table B.3: The posterior mean (P.M.) and the 95% highest posterior density
intervals (95% HPD) obtained the two proposed sampling methods.
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Appendix C

C.1 Properties of the generalised asymmetric

Laplace distribution

For the generalised asymmetric Laplace distribution given in (4.3), we can show

that ∫ ∞
−∞

f(y|µτ , σ, γ) = 1 and

∫ µτ

−∞
f(y|µτ , σ, γ) = τ,

as follows∫ µτ

−∞
f(y|µτ , σ, γ)dy =

∫ µτ

−∞

γτ(1− τ)

σΓ( 1
γ
)

exp

{
−
[
(1− τ)

∣∣∣∣y − µτσ

∣∣∣∣]γ} dy
=

γτ(1− τ)

σΓ( 1
γ
)

∫ µτ

−∞
exp

{
−
[
(1− τ)

∣∣∣∣y − µτσ

∣∣∣∣]γ} dy
=

γτ(1− τ)

σΓ( 1
γ
)

∫ µτ

−∞
exp

{
−
[
−(1− τ) (y − µτ )

σ

]γ}
dy.

Substituting

u =

[
−(1− τ) (y − µτ )

σ

]γ
du = −(1− τ)γ

σ

[
−(1− τ) (y − µτ )

σ

]γ−1

dy

= −(1− τ)γ

σ

[
u

1
γ

]γ−1

dy

= −(1− τ)γ

σ
u1− 1

γ dy,
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gives ∫ µτ

−∞
f(y|µτ , σ,γ)dy =

τ

Γ( 1
γ
)

∫ 0

∞
−u−(1− 1

γ ) exp {−u} du

=
τ

Γ( 1
γ
)

∫ ∞
0

u
1
γ
−1 exp {−u} du

=
τ

Γ( 1
γ
)
Γ(

1

γ
) = τ.

Also, ∫ ∞
µτ

f(y|µτ , σ,γ)dy =

∫ ∞
µτ

γτ(1− τ)

σΓ( 1
γ
)

exp

{
−
[
τ

∣∣∣∣y − µτσ

∣∣∣∣]γ} dy
=

γτ(1− τ)

σΓ( 1
γ
)

∫ ∞
µτ

exp

{
−
[
τ

∣∣∣∣y − µτσ

∣∣∣∣]γ} dy
=

γτ(1− τ)

σΓ( 1
γ
)

∫ ∞
µτ

exp

{
−
[
τ (y − µτ )

σ

]γ}
dy.

Substituting

u =

[
τ (y − µτ )

σ

]γ
du =

τγ

σ

[
τ (y − µτ )

σ

]γ−1

dy

=
τγ

σ

[
u

1
γ

]γ−1

dy

=
τγ

σ
u1− 1

γ dy,

gives ∫ ∞
µτ

f(y|µτ ,σ,γ)dy =
(1− τ)

Γ( 1
γ
)

∫ ∞
0

u−(1− 1
γ ) exp {−u} du

=
(1− τ)

Γ( 1
γ
)

∫ ∞
0

u
1
γ
−1 exp {−u} du

=
(1− τ)

Γ( 1
γ
)

Γ(
1

γ
) = 1− τ.
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C.2 Properties of the generalised Gumbel dis-

tribution

For the generalised Gumbel distribution, we can show that∫ ∞
−∞

f(y|µτ ,σ,γ) = 1 and

∫ µτ

−∞
f(y|µτ ,σ,γ) = τ,

as follows

∫ µτ

−∞
f(y|µτk ,σ,γ)dy =

∫ µτk

−∞

γ1τ(1− τ)eγ1

σ1(eγ1 − 1)
exp

{
−(1− τ)

∣∣∣∣y − µτσ1

∣∣∣∣− γ1 exp

[
−(1− τ)

∣∣∣∣y − µτσ1

∣∣∣∣]} dy
=

∫ µτ

−∞

γ1τ(1− τ)eγ1

σ1(eγ1 − 1)
exp

{
(1− τ)

(
y − µτ
σ1

)
− γ1 exp

[
(1− τ)

(
y − µτ
σ1

)]}
dy.

Substituting

u = γ1 exp

{
(1− τ)

(
y − µτ
σ1

)}
du =

γ1(1− τ)

σ1

exp

{
(1− τ)

(
y − µτ
σ1

)}
dy

=
(1− τ)u

σ1

dy,

gives∫ µτ

−∞
f(y|µτ ,σ,γ)dy =

γ1τ(1− τ)eγ1

σ1(eγ1 − 1)

∫ γ1

0

exp

{
log

(
u

γ1

)
− u
}

σ1

(1− τ)u
du

=
τeγ1

eγ1 − 1

∫ γ1

0

exp {−u} du

= τ.

Also,

∫ ∞
µτ

f(y|µτ ,σ,γ)dy =

∫ ∞
µτ

γ2τ(1− τ)eγ2

σ2(eγ2 − 1)
exp

{
−τ
∣∣∣∣y − µτσ2

∣∣∣∣− γ2 exp

[
−τ
∣∣∣∣y − µτσ2

∣∣∣∣]} dy
=

∫ ∞
µτ

γ2τ(1− τ)eγ2

σ2(eγ2 − 1)
exp

{
−τ
(
y − µτ
σ2

)
− γ2 exp

[
−τ
(
y − µτ
σ2

)]}
dy.

Substituting

u = γ2 exp

{
−τ
(
y − µτ
σ2

)}
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du = −γ2τ

σ2

exp

{
−τ
(
y − µτ
σ2

)}
dy

= −τu
σ2

dy,

gives∫ ∞
µτ

f(y|µτ ,σ,γ)dy =
γ2τ(1− τ)eγ2

σ2(eγ2 − 1)

∫ 0

γ2

− exp

{
log(

u

γ2

)− u
}
σ2

τu
du

=
(1− τ)eγ2

eγ2 − 1

∫ γ2

0

exp {−u} du

= 1− τ.
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D.1 Normalising term

To find the normalising term for the density given (5.1), we can calculate

δ =

∫ ∞
−∞

f̂ (yi|µτ ,στ ) dy.

Assumed that wτk is a constant with respect to y for all k, we can show that

∫ µτ1

−∞
f̂ (y|µτ ,στ ) dy =

∫ µτ1

−∞

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
−

m∑
k=1

wτk (1− τk)

στk
|y − µτk |

}
dy

=

∫ µτ1

−∞

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
m∑
k=1

wτk (1− τk)

στk
(y − µτk )

}
dy

=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]∫ µτ1

−∞
exp

{
m∑
k=1

wτk (1− τk)

στk
y −

m∑
k=1

wτk (1− τk)

στk
µτk

}
dy

=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
−

m∑
k=1

wτk (1− τk)

στk
µτk

}

×
∫ µτ1

−∞
exp

{
y

m∑
k=1

wτk

(
1− τk
στk

)}
dy

=

[∏m
k=1

(
τk(1−τk)
στk

)wτk ]
exp

{
−
∑m
k=1

wτk (1−τk)

στk
µτk

}
exp

{
µτ1

∑m
k=1 wτk

(
1−τk
στk

)}
∑m
k=1 wτk

(
1−τk
στk

)
and

∫ µτt+1

µτt

f̂ (y|µτ ,στ ) dyi =

∫ µτt+1

µτt

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
−

t∑
k=1

wτkτk
στk

(y − µτk)

+

m∑
k=t+1

wτk (1− τk)

στk
(y − µτk)

}
dy
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=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]∫ µτt+1

µτt

exp

{
−

t∑
k=1

wτkτk
στk

y +

t∑
k=1

wτkτk
στk

µτk

+

m∑
k=t+1

wτk (1− τk)

στk
y −

m∑
k=t+1

wτk (1− τk)

στk
µτk

}
dy

=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
wτk

(
t∑

k=1

τk
στk

µτk −
m∑

k=t+1

(1− τk)

στk
µτk

)}

×
∫ µτt+1

µτt

exp

{
wτk

(
m∑

k=t+1

(1− τk)

στk
−

t∑
k=1

τk
στk

)
y

}
dy

=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
wτk

(
t∑

k=1

τk
στk

µτk −
m∑

k=t+1

(1− τk)

στk
µτk

)}

×

[
wτk

(
m∑

k=t+1

(1− τk)

στk
−

t∑
k=1

τk
στk

)]−1 [
exp

{
wτk

(
m∑

k=t+1

(1− τk)

στk

−
t∑

k=1

τk
στk

)
µτt+1

}
− exp

{
wτk

(
m∑

k=t+1

(1− τk)

στk
−

t∑
k=1

τk
στk

)
µτt

}]

Also,

∫ ∞
µτm

f̂ (y|µτ ,στ ) dy =

∫ ∞
µτm

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
−

m∑
k=1

wτkτk
στk

(y − µτk)

}
dy

=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]∫ ∞
µτm

exp

{
−

m∑
k=1

wτkτk
στk

(y − µτk)

}
dy

=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]∫ ∞
µτm

exp

{
−

m∑
k=1

wτkτk
στk

y +

m∑
k=1

wτkτk
στk

µτk

}
dy

=

[
m∏
k=1

(
τk (1− τk)

στk

)wτk]
exp

{
m∑
k=1

wτkτkµτk
στk

}∫ ∞
µτm

exp

{
−y

m∑
k=1

wτkτk
στk

}
dy

=

[∏m
k=1

(
τk(1−τk)
στk

)wτk ]
exp

{∑m
k=1

wτkτkµτk
στk

}
exp

{
−µτm

∑m
k=1

wτkτk
στk

}
∑m
k=1

wτkτk
στk

D.2 Maximizing the weighted pseudo asymmet-

ric Laplace likelihood

Assume that y a random variable from a continuous distribution F with proba-

bility density f . Then, to estimate two quantile functions of F corresponding to

τ1 and τ2, we can use the weighted pseudo-asymmetric Laplace distribution given
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by

f̂(y|µτ ,στ ) =



[
2∏
k=1

(
τk(1−τk)
στk

)wτk ]
exp

{
−wτ1 (1−τ1)

στ1
|y − µτ1 | −

wτ2 (1−τ2)

στ2
|y − µτ2 |

}
y ≤ µτ1[

2∏
k=1

(
τk(1−τk)
στk

)wτk ]
exp

{
−wτ1τ1

στ1
|y − µτ1 | −

wτ2 (1−τ2)

στ2
|y − µτ2 |

}
µτ1 < y ≤ µτ2[

2∏
k=1

(
τk(1−τk)
στk

)wτk ]
exp

{
−wτ1τ1

στ1
|y − µτ1 | −

wτ2τ2
στ2

|y − µτ2 |
}

y > µτ2

.

Then, the logarithm of f̂ is given by

L(y;µτ ,στ ) =



[
2∑
k=1

wτk log
(
τk(1−τk)
στk

)]
− wτ1 (1−τ1)

στ1
|y − µτ1 | −

wτ2 (1−τ2)

στ2
|y − µτ2 | y ≤ µτ1[

2∑
k=1

wτk log
(
τk(1−τk)
στk

)]
− wτ1τ1

στ1
|y − µτ1 | −

wτ2 (1−τ2)

στ2
|y − µτ2 | µτ1 < y ≤ µτ2[

2∑
k=1

wτk log
(
τk(1−τk)
στk

)]
− wτ1τ1

στ1
|y − µτ1 | −

wτ2τ2
στ2

|y − µτ2 | y > µτ2

,

=


φ− wτ1 (1−τ1)

στ1
|y − µτ1 | −

wτ2 (1−τ2)

στ2
|y − µτ2 | y ≤ µτ1

φ− wτ1τ1
στ1

|y − µτ1 | −
wτ2 (1−τ2)

στ2
|y − µτ2 | µτ1 < y ≤ µτ2

φ− wτ1τ1
στ1

|y − µτ1 | −
wτ2τ2
στ2

|y − µτ2 | y > µτ2

where φ =
2∑

k=1

wτk log
(
τk(1−τk)
στk

)
. To show that the location parameters µτ1 and

µτ2 is τ1 and τ2 quantiles of distribution F respectively, we need to find

max
µτ

(
E
[
L(y;µτ ,στ )

])
.

Assuming that wτk is a constant with respect to y, First order conditions are

given by

0 =
d

dµτ

{∫ µτ1

−∞

(
φ−

wτ1 (1− τ1)

στ1
|y − µτ1 | −

wτ2 (1− τ2)

στ2
|y − µτ2 |

)
f (y) dy

+

∫ µτ2

µτ1

(
φ−

wτ1τ1

στ1
|y − µτ1 | −

wτ2 (1− τ2)

στ2
|y − µτ2 |

)
f (y) dy

+

∫ ∞
µτ2

(
φ−

wτ1τ1

στ1
|y − µτ1 | −

wτ2τ2

στ2
|y − µτ2 |

)
f (y) dy

}

0 =
d

dµτ

{∫ µτ1

−∞
φf (y) dy +

∫ µτ1

−∞

wτ1 (1− τ1)

στ1
(y − µτ1 ) f (y) dy +

∫ µτ1

−∞

wτ2 (1− τ2)

στ2
(y − µτ2 ) f (y) dy

+

∫ µτ2

µτ1

φf (y) dy −
∫ µτ2

µτ1

wτ1τ1

στ1
(y − µτ1 ) f (y) dy +

∫ µτ2

µτ1

wτ2 (1− τ2)

στ2
(y − µτ2 ) f (y) dy

+

∫ ∞
µτ2

φf (y) dy −
∫ ∞
µτ2

wτ1τ1

στ1
(y − µτ1 ) f (y) dy −

∫ ∞
µτ2

wτ2τ2

στ2
(y − µτ2 ) f (y) dy

}

0 =
d

dµτ

{∫ µτ1

−∞
φf (y) dy +

wτ1 (1− τ1)

στ1

[∫ µτ1

−∞
yf (y) dy −

∫ µτ1

−∞
µτ1f (y) dy

]
+
wτ2 (1− τ2)

στ2

[∫ µτ1

−∞
yf (y) dy −

∫ µτ1

−∞
µτ2f (y) dy

]
+

∫ µτ2

µτ1

φf (y) dy
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−
wτ1τ1

στ1

[∫ µτ2

µτ1

yf (y) dy −
∫ µτ2

µτ1

µτ1f (y) dy

]
+
wτ2 (1− τ2)

στ2

[∫ µτ2

µτ1

yf (y) dy −
∫ µτ2

µτ1

µτ2f (y) dy

]

+

∫ ∞
µτ2

φf (y) dy −
wτ1τ1

στ1

[∫ ∞
µτ2

yf (y) dy −
∫ ∞
µτ2

µτ1f (y) dy

]
−
wτ2τ2

στ2

[∫ ∞
µτ2

yf (y) dy −
∫ ∞
µτ2

µτ2f (y) dy

]}

0 =
d

dµτ

{
φF (µτ1 ) +

wτ1 (1− τ1)

στ1

[∫ µτ1

−∞
yf (y) dy − µτ1F (µτ1 )

]
+
wτ2 (1− τ2)

στ2

[(∫ µτ1

−∞
yf (y) dy

)
− µτ2F (µτ1 )

]
+ φF (µτ2 )− φF (µτ1 )

−
wτ1τ1

στ1

[(∫ µτ2

µτ1

yf (y) dy

)
− µτ1F (µτ2 ) + µτ1F (µτ1 )

]

+
wτ2 (1− τ2)

στ2

[(∫ µτ2

µτ1

yf (y) dy

)
− µτ2F (µτ2 ) + µτ2F (µτ1 )

]
+ φ− φF (µτ2 )

−
wτ1τ1

στ1

[(∫ ∞
µτ2

yf (y) dy

)
− µτ1 + µτ1F (µτ2 )

]
−
wτ2τ2

στ2

[(∫ ∞
µτ2

yf (y) dy

)
− µτ2 + µτ2F (µτ2 )

]}

By Differentiating with respect to µτ1 , we can find that

0 = φf (µτ1) +
wτ1(1− τ1)

στ1
[µτ1f (µτ1)− F (µτ1)− µτ1f (µτ1)]

+
wτ2(1− τ2)

στ2
[µτ1f (µτ1)− µτ2f (µτ1)]− φf (µτ1)

−wτ1τ1

στ1
[−µτ1f (µτ1)− F (µτ2) + F (µτ1) + µτ1f (µτ1)]

+
wτ2(1− τ2)

στ2
[−µτ1f (µτ1) + µτ2f (µτ1)]− wτ1τ1

στ1
[−1 + F (µτ2)]

0 = −wτ1(1− τ1)

στ1
F (µτ1)− wτ1τ1

στ1
F (µτ1) +

wτ1τ1

στ1
wτ1τ1

στ1
=

wτ1(1− τ1)

στ1
F (µτ1) +

wτ1τ1

στ1
F (µτ1)

wτ1τ1

στ1
=

wτ1F (µτ1)

στ1
[(1− τ1) + τ1]

wτ1τ1

στ1
=

wτ1F (µτ1)

στ1
τ1 = F (µτ1)

By Differentiating with respect to µτ2 , we can find that

0 =
wτ2(1− τ2)

στ2
[−F (µτ1)] + φf (µτ2)− wτ1τ1

στ1
[µτ2f (µτ2)− µτ1f (µτ2)]

+
wτ2(1− τ2)

στ2
[µτ2f (µτ2)− F (µτ2)− µτ2f (µτ2) + F (µτ1)]− φf (µτ2)

−wτ1τ1
στ1

[−µτ2f (µτ2) + µτ1f (µτ2)]− wτ2τ2
στ2

[−µτ2f (µτ2)− 1 + F (µτ2) + µτ2f (µτ2)]
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0 = −wτ2(1− τ2)

στ2
F (µτ2) +

wτ2τ2
στ2

− wτ2τ2
στ2

F (µτ2)

wτ2τ2
στ2

=
wτ2(1− τ2)

στ2
F (µτ2) +

wτ2τ2
στ2

F (µτ2)

wτ2τ2
στ2

=
wτ2F (µτ2)

στ2
[(1− τ2) + τ2]

τ2 = F (µτ2)
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Appendix E

E.1 The weighted mixture distribution

In this section, we show that the function given by

gt(y|µ, σ, κ) =


tκ

σ(1+κ2)Γ( 1
t
)
exp

{
−
(

1
κσ
|y − µ|

)t}
, y ≤ µ

tκ
σ(1+κ2)Γ( 1

t
)
exp

{
−
(
κ
σ
|y − µ|

)t}
, y > µ

.

is a density function for any t > 0 as follows

∫ µ

−∞
gt(y|µ, σ, κ)dy =

∫ µ

−∞

tκ

σ(1 + κ2)Γ(1
t
)

exp

{
−
∣∣∣∣y − µκσ

∣∣∣∣t
}
dy

=
tκ

σ(1 + κ2)Γ(1
t
)

∫ µ

−∞
exp

{
−
(
−y − µ

κσ

)t}
dy

Substituting

u =

(
−y − µ

κσ

)t
du = − t

κσ

(
−y − µ

κσ

)t−1

dy

= − t

κσ
u1− 1

t dy,

gives ∫ µ

−∞
gt(y|µ, σ, κ)dy =

κ2

(1 + κ2)Γ(1
t
)

∫ 0

∞
−u−(1− 1

t ) exp {−u} du
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=
κ2

(1 + κ2)Γ(1
t
)

∫ ∞
0

u
1
t
−1 exp {−u} du

=
κ2

(1 + κ2)Γ(1
t
)
Γ(

1

t
)

=
κ2

1 + κ2

Also ∫ ∞
µ

g(y|µ, σ, κ)dy =

∫ ∞
µ

tκ

σ(1 + κ2)Γ(1
t
)

exp

{
−
∣∣∣∣κ(y − µ)

σ

∣∣∣∣t
}
dy

=
tκ

σ(1 + κ2)Γ(1
t
)

∫ ∞
µ

exp

{
−
(
κ(y − µ)

σ

)t}
dy

Substituting

u =

(
κ(y − µτ )

σ

)t
du =

tκ

σ

(
κ (y − µτ )

σ

)t−1

dy

=
tκ

σ
u1− 1

t dy,

gives ∫ ∞
µ

gt(y|µ, σ, κ)dy =
1

(1 + κ2)Γ(1
t
)

∫ ∞
0

u−(1− 1
t ) exp {−u} du

=
1

(1 + κ2)Γ(1
t
)

∫ ∞
0

u
1
t
−1 exp {−u} du

=
1

1 + κ2

Then, ∫ µ

−∞
gt(y|µ, σ, κ)dy +

∫ ∞
µ

gt(y;µ, σ, κ)dy =
κ2

1 + κ2
+

1

1 + κ2

= 1
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E.2 The cumulative distribution function for the

weighted mixture distribution

In this section, we show how we can derive the cumulative distribution function

in the case of the mixture of skewed Laplace and skewed normal distributions.

We assume that

g(y|µ, σ, κ) =


2∑
t=1

(1−ν)t−1

νt−2

[
tκ

σ(1+κ2)Γ( 1
t
)
exp

{
−
(

1
κσ
|y − µ|

)t}]
, y ≤ µ

2∑
t=1

(1−ν)t−1

νt−2

[
tκ

σ(1+κ2)Γ( 1
t
)
exp

{
−
(
κ
σ
|y − µ|

)t}]
, y > µ

.

Then, the cumulative function is given by

G(qτk ;µ, σ, κ) =


2∑
t=1

(1−ν)t−1

νt−2

[
tκ

σ(1+κ2)Γ( 1
t

)

∫ qτk
−∞ exp

{
−
(

1
κσ
|y − µ|

)t}
dy
]

qτk ≤ µ
2∑
t=1

(1−ν)t−1

νt−2

[
1− tκ

σ(1+κ2)Γ( 1
t

)

∫∞
qτk

exp
{
−
(
κ
σ
|y − µ|

)t}
dy
]

qτk > µ

=



2∑
t=1

(1− ν)t−1

νt−2

[
tκ

σ(1 + κ2)Γ( 1
t
)

∫ qτk

−∞
exp

{
−
(
− 1

κσ
[y − µ]

)t}
dy

]
,︸ ︷︷ ︸

A

qτk ≤ µ

2∑
t=1

(1− ν)t−1

νt−2

[
1− tκ

σ(1 + κ2)Γ( 1
t
)

∫ ∞
qτk

exp

{
−
(κ
σ

[y − µ]
)t}

dy

]
,︸ ︷︷ ︸

B

qτk > µ

.

First, we assume that

u =

(
− 1

κσ
[y − µ]

)t
.

This implies that

du = − t

κσ

(
− 1

κσ
[y − µ]

)t−1

dy

= − t

κσ

(
u

1
t

)t−1

dy

= − t

κσ
u1− 1

t dy.
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Then,

A =
2∑
t=1

(1− ν)t−1

νt−2

[
− κ2

(1 + κ2)Γ(1
t
)

∫ (− 1
κσ [qτk−µ])

t

∞
u

1
t
−1 exp {−u} du

]

=
2∑
t=1

(1− ν)t−1

νt−2

[
κ2

(1 + κ2)Γ(1
t
)

∫ ∞
(− 1

κσ [qτk−µ])
t
u

1
t
−1 exp {−u} du

]

=
2∑
t=1

(1− ν)t−1

νt−2

[
κ2

(1 + κ2)Γ(1
t
)
Γ̃

(
1

t
,

(
− 1

κσ
[qτk − µ]

)t)]

=
2∑
t=1

(1− ν)t−1

νt−2

[
κ2

(1 + κ2)Γ(1
t
)
Γ̃

(
1

t
,

(
1

κσ
|qτk − µ|

)t)]
.

Γ̃ is upper incomplete gamma function. Second, we assume that

u =
(κ
σ

[y − µ]
)t
.

This implies that

du =
tκ

σ

(κ
σ

[y − µ]
)t−1

dy

=
tκ

σ

(
u

1
t

)t−1

dy

=
tκ

σ
u1− 1

t dy.

Then,

B =
2∑
t=1

(1− ν)t−1

νt−2

[
1− 1

(1 + κ2)Γ(1
t
)

∫ ∞
(κσ [qτk−µ])

t
u

1
t
−1 exp {−u} du

]

=
2∑
t=1

(1− ν)t−1

νt−2

[
1− 1

(1 + κ2)Γ(1
t
)
Γ̃

(
1

t
,
(κ
σ

[qτk − µ]
)t)]

=
2∑
t=1

(1− ν)t−1

νt−2

[
1− 1

(1 + κ2)Γ(1
t
)
Γ̃

(
1

t
,
(κ
σ
|qτk − µ|

)t)]
.
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