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ABSTRACT

Fundamental questions in the theory of partial differential equations are that of existence
and uniqueness of the solution. In this thesis we address these questions corresponding to
two models governing the dynamics of incompressible fluids, both being the modification

of classical Navier-Stokes equations: constrained Navier-Stokes equations and tamed Navier-
Stokes equations.

The former being Navier-Stokes equations with a constraint on the L2 norm of the solution
considered on a two-dimensional domain with periodic boundary conditions. We prove existence of
the unique global-in-time solution in deterministic setting and establish existence of a pathwise
unique strong solution under the impact of a stochastic forcing.

The tamed Navier-Stokes equations were introduced by Röckner and Zhang [75], to study the
properties of solutions of the 3D Navier-Stokes equations. We use three new ideas to prove the
existence of a strong solution and existence of invariant measures: approximating equation on
an infinite dimensional space in contrast to classical Faedo-Galerkin approximation; tightness
criterion related to the Dubinsky’s compactness theorem introduced recently by Brzeźniak and
Motyl [23]; and lastly proving the existence of invariant measures based on continuity and
compactness in the weak topologies [62].
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1
INTRODUCTION

The time dependent partial differential equations, commonly known as evolution equations

play a crucial role in modelling various natural processes mathematically, which are used

to study the behaviour of physical entities like wave function of a particle, temperature

profile of a system, stocks in a financial market and velocity of a fluid. Well-known examples are

Schrödinger equation from quantum mechanics, reaction diffusion equations modelling biological

processes and heat flow, Black-Scholes equation from finance and Navier-Stokes equations from

fluid mechanics.

At instances these physical processes are subject to external forcing, which mostly is random

in nature. Thus, one has to modify the mathematical models accordingly to incorporate this

randomness, which in turn gives rise to stochastic partial differential equations (SPDE), providing

us with more robust model to study these natural processes.

Though (S)PDE serve the purpose of analysing these physical entities well, they pose quite

basic mathematical questions, like global in time existence and uniqueness of the solution,

existence of invariant measures. This thesis deals with such questions for constrained Navier-

Stokes equations, stochastic constrained Navier-Stokes equations and stochastic tamed Navier-

Stokes equations.

1.1 Stochastic and deterministic constrained partial
differential equations

In the theory of partial differential equations one often studies equations with constraints on the

values of the unknown function. Here primary examples are geometric heat and wave equations

where it is required that the solution is a manifold-valued function. Such models have been
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CHAPTER 1. INTRODUCTION

extensively studied, one could mention Eells-Sampson [41], Struwe and Shatah [83–85] for the

deterministic problems; Funaki [44], Carroll [32] and Brzeźniak et al [11, 27] for the stochastic

problems. If the target manifold is a sphere, one can study a generalisation of the heat flow map,

called the Landau-Lifshitz-Gilbert Equations [2, 4, 19, 22]. Recently, different kind of constraints,

the nonlocal ones, were investigated by Rybka [81], Caffarelli-Lin [30] and Cagliotti et al. [31].

For instance, one imposes the constraint that the Lp norm of the solution remains constant.

It is well understood that how to construct a stochastic or deterministic equation on hypersur-

faces of an Euclidean space (or even general Hilbert space) from a given equation on an ambient

space, provided the latter is given in terms of smooth functions. To be precise let us describe this

procedure.

Suppose that
(
H,〈·, ·〉) is a Hilbert space and M = ϕ−1({1}) ⊂ H is a hypersurface for some

non-degenerate smooth function ϕ : H→ [0,∞). Each element ω ∈M has a tangent space TωM

which can be identified with the closed subspace of H (of co-dimension 1) given by kerdωϕ= {x ∈
H: (dωϕ)(x)= 0}, where dωϕ ∈L (H,R) is the Fréchet derivative of ϕ at ω. By the Riesz Lemma

there exists a unique element in H, denoted by (Dϕ)(ω), such that (dωϕ)(x)= 〈(Dϕ)(ω), x〉, x ∈H.

Since (Dϕ)(ω) 6= 0, the orthogonal projection πω : H→ TωM is given (with | · | being the norm on

H) by the formula

(1.1.1) πω(x)= x−〈x,~n(ω)〉~n(ω), x ∈H ,

where

~n(ω)= Dϕ(ω)
|Dϕ(ω)| , ω ∈M .

Given a vector field f : H→H we can consider the “tangent projection” f̂ of the restriction of

f to M (which is a “tangent" vector field on M ) defined by

(1.1.2) f̂ (ω) :=πω( f (ω)) ∈ TωM , ω ∈M .

The associated ODE

(1.1.3)
dx(t)

dt
= f (x(t)) , t ≥ 0 ,

takes the following well-known form on M

(1.1.4)
dx(t)

dt
= f̂ (x(t)) , t ≥ 0 .

Note that f̂ has a smooth extension to an open neighbourhood of M and the ODE (1.1.4) is locally

well-posed on that neighbourhood. One can then show that given x0 ∈M , the local solution stays

on M , by either using local diffeomorphism of some neighbourhood of x0 in M (i.e. de facto the

Hilbert manifold structure of M ) or by showing that ϕ(x(t))= 0 for t in the domain of the solution.

If one knows that M is a compact set (that requires H to be finite dimensional) then we can easily

16
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deduce that each solution starting at x0 ∈M is a global one, i.e. defined on [0,∞). However, if M

is not compact the solutions may not be global-in-time.

Similar argument can be made for stochastic differential equations, with one small but

important difference. Suppose f0, f1, · · · , fN is a finite collection of vector fields on H and W =
(W(t)), t ≥ 0 is an RN -valued Wiener process, we write W(t) = (Wj(t)) defined on some filtered

probability space (Ω,F ,F,P), F= (Ft)t≥0, satisfying the so-called usual conditions [63].

In the whole ambient space we can study stochastic differential equations either in the

Itô or Stratonovich form, the latter requiring more regularity assumptions on the vector fields

f1, · · · , fN :

(1.1.5) dx = f0(x)dt+
N∑

i=1
f i(x)dWi ,

or

dx = f0(x)dt+
N∑

i=1
f i(x)◦dWi

= f0(x)dt+
[

1
2

N∑
i=1

f ′i (x) f i(x)

]
dt+

N∑
i=1

f i(x)dWi ,(1.1.6)

where f ′i (x)= dx f i, x ∈H. On the other hand, it turns out that the correct form of these equations

on M is the Stratonovich one. This fact is related to the Wong-Zakai type theorems, see [10] or

the rough paths theory proposed recently by Terry Lyons [59]. With the same notation as before

one can consider an equation

dx = f̂0(x)dt+
N∑

j=1
f̂ j(x)◦dWj

= f̂0(x)dt+
N∑

j=1
f̂ j(x)dWj + 1

2

N∑
j=1

f̂ ′j(x) f̂ j(x)dt .(1.1.7)

The issues of local and global solutions to the above problem can be solved through a similar

approach as the one used to answer the analogous questions in the deterministic case, see for

instance [15] and references therein.

However, when the vector fields are not smooth or not everywhere defined or both, the

situation changes. For instance, let us consider an unbounded, self-adjoint and non-negative

operator A on a Hilbert space H. The domain of A, denoted by D(A), is a Hilbert space endowed

with the “graph norm" :

|x|2D(A) = |x|2 +|Ax|2, x ∈D(A) .

Such an operator A induces a (only densely defined) vector field f0(x) = −Ax. Theory of corre-

sponding deterministic and stochastic problems related to equations (1.1.5) and (1.1.6) is now

well developed and understood, see e.g. a monograph [38] by Da Prato and Zabczyk. However,

this is not the case for equations (1.1.7) with a vector field f̂0 defined by

(1.1.8) f̂0(x)= f0(x)−〈 f0(x),~n(x)〉~n(x) , x ∈M ∩D(A) ,
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in the view of (1.1.1) and (1.1.2). In [48], Hussain studied reaction diffusion equations under a

non-local constraint, in both deterministic and stochastic cases. He established the existence of

“unique" global “solution" for these equations.

The aim of this thesis is to present a detailed study of such questions in the case of Navier-

Stokes equations. We address the questions of existence and uniqueness for two dimensional

Navier-Stokes equations with a constraint on the L2 norm of the solution. Another related

problem that we have addressed in this thesis is that of three dimensional tamed Navier-Stokes

equations, which can be used to study the properties of the solution (if exist) of three dimensional

Navier-Stokes equations. We provide a new approach to prove the existence of a pathwise unique

strong solution for the tamed Navier-Stokes equations under the impact of stochastic forcing.

1.2 Thesis layout

Chapter 2 includes all the necessary preliminaries required by the reader to understand the

thesis. The majority of this thesis focuses on constrained Navier-Stokes equations. Thus, in

Chapter 3 after introducing certain functional spaces and operators we deduce constrained

Navier-Stokes equations (CNSE) from Navier-Stokes equations under the constraint of constant

energy.

The questions of existence and uniqueness of a global-in-time solution of the deterministic

CNSE are considered in Chapter 4. We start by giving the motivation behind studying such a

system and stating the main results of the chapter. We prove the global existence of the solutions

using the Banach Fixed Point Theorem and a non-explosion principle, i.e. proving the enstrophy

(gradient norm) of the solution remains bounded. The periodic boundary conditions play a crucial

role in obtaining the boundedness of enstrophy. We show that if the solution starts from the

manifold M , then it stays on M . Furthermore we prove the existence of local solutions to CNSE

with Dirichlet boundary conditions (as well as invariance of M ). In the vanishing viscosity limit,

we show that the CNSE converges to the Bardos solution (see [5]) of the Euler equation. We

extend our analysis to fractional Sobolev spaces, where using the Banach Fixed Point Theorem,

Kuratowski-Zorn Lemma and maximal solutions we prove the global existence of solutions to

CNSE. We end the chapter with an informal discussion about the lower bound on the regularity

of the initial data corresponding to the well-posedness of CNSE.

The stochastic generalisation of CNSE is studied in Chapter 5. We consider the noise of

gradient type in the Stratonovich form. The structure of the noise is such that it is "tangent"

to the manifold M . Here we take more classical approach of Faedo-Galerkin approximation to

prove the existence of local solutions. We start by showing that each approximating equation has

a global solution, which satisfy suitable a’priori estimates. Then, using Aldous condition along

a’priori estimates, we prove that the laws of the solutions of these approximating equations are

tight on a suitably chosen topological space ZT . By applications of the Jakubowski-Skorohod

18
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and martingale representation theorems we deduce the existence of martingale solutions. We

also prove the so-called maximum regularity of solutions and their pathwise uniqueness, which

helps us to establish the existence of a strong solution to stochastic constrained Navier-Stokes

equations (SCNSE) by invoking Yamada-Watanabe type theorem. We end the chapter by showing

that the solution of SCNSE depends continuously on the initial data.

Moving away from constrained equations, in Chapter 6 we shift our focus to tamed Navier-

Stokes equations, which were introduced by Röckner and Zhang [75]. In this chapter we study

stochastic tamed Navier-Stokes equations on R3 and reprove the results from [76] using a different

approach and in doing so we generalise the L4 estimate of the solution from T3 to the whole

Euclidean space. We use three new ideas to prove the existence and uniqueness of global solutions

and the existence of invariant measures on the whole Euclidean space. Firstly, in contrast to

classical Faedo-Galerkin approximation where one uses finite dimensional spaces, we study the

truncated equations on infinite dimensional spaces. We prove the existence of global solutions

to these truncated equations satisfying suitable a’priori estimates. Secondly, we use a tightness

criterion related to Dubinsky’s compactness criterion introduced recently by Brzeźniak and Motyl

[23]. Finally, we end the chapter by proving the existence of invariant measures using the method

based on continuity and compactness in the weak topologies [62].

Chapter 7, the final chapter of the thesis summarises some of the open problems arising from

this thesis and also enlists other related problems that will be part of my future research.

19





C
H

A
P

T
E

R

2
PRELIMINARIES

This chapter has been included in the thesis so as to make it self-contained. We hope

to provide all the necessary mathematical concepts that the reader might require to

understand this thesis. The content of this chapter has been taken from various textbooks

which have been aptly listed in the bibliography.

2.1 Hilbert space and orthogonal projection

Let H be a Hilbert space with the norm | · |H induced by the inner product 〈·, ·〉H .

Definition 2.1.1. Let x, y ∈ H, then we say x is orthogonal to y if 〈x, y〉H = 0. In general, if V is a

subspace of H, then so is the set

V⊥ = {x ∈ H : 〈x, y〉H = 0 ∀y ∈V } .

Lemma 2.1.2. [50, Theorem 21.4] Let V be a closed subspace of H. Then every x ∈ H has a unique

decomposition

x = y+ z with y ∈V , z ∈V⊥ .

Theorem 2.1.3 (Projection Theorem). Let V be a closed subspace of H. Then for every x ∈ H, there

exists a unique element x̂ ∈V (same as y from the previous lemma) such that

|x− x̂|H = inf
v∈V

|v− x|H .

Moreover

i) x̂ = x iff x ∈V.
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ii) x− x̂ ∈V⊥ and

|x|2H = |x̂|2H +|x− x̂|2H .

Corollary 2.1.4. [50, Corollary 21.5] For every closed subspace V of H there exists a unique

linear map

π : H 3 x 7→ x̂ ∈V ,

with

‖π‖ := sup
x∈H, x 6=0

|πx|H
|x|H

= 1,

π2 =π and kerπ=V⊥ .

Remark 2.1.5. The existence of the element x̂ in Corollary 2.1.4 is guaranteed by Theorem 2.1.3.

The map π described in Corollary 2.1.4 is called the orthogonal projection of H onto V .

Definition 2.1.6. The sequence (xn)n∈N ⊂ H is said to converge (strongly) to x ∈ H, symbolically

xn → x, if

∀ε> 0 ∃ N ∈N : ∀n ≥ N |xn − x|H < ε .

Definition 2.1.7. A sequence (xn)n∈N ⊂ H is called weakly convergent to x ∈ H, symbolically

xn * x, if

〈xn, y〉H →〈x, y〉H , for all y ∈ H .

One can easily see that a sequence converging in usual sense also converges weakly, since,

|〈xn, y〉−〈x, y〉| ≤ |xn − x|H |y|H .

Theorem 2.1.8. [50, Theorem 21.8] Every bounded sequence (xn)n∈N ⊂ H has a weakly convergent

subsequence.

Lemma 2.1.9. [50, Lemma 21.11] Every weakly convergent sequence (xn)n∈N ⊂ H, is bounded.

Remark 2.1.10. H is not metrizable w.r.t weak convergence. But a closed unit ball in a separable

Hilbert space H w.r.t weak convergence is metrizable.

Definition 2.1.11. H is called a separable Hilbert space if it contains a countable dense subset.

Definition 2.1.12. An orthonormal basis of a Hilbert space H is a sequence
{
e j

}
j∈N ⊂ H, such

that linear span of
{
e j

}
is dense in H and

〈e j, ek〉H = δ j k , j,k ∈N ,

|e j|H = 1, ∀ j ∈N

where δ j k is the Kronecker delta.

Theorem 2.1.13. Every separable Hilbert space H admits an orthonormal basis.
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2.2 Linear operators

Let X and Y be normed spaces with | · |X and | · |Y norms respectively.

Definition 2.2.1. A linear operator from X to Y is a map L : X →Y such that for α,β ∈R

L(αx+βy)=αLx+βLy , x, y ∈ X .

Definition 2.2.2. If L : X →Y is a linear operator, the kernel of L is defined as the pre-image of

the null vector in Y i.e.

kerL := {x ∈ X : Lx = 0} .

The range of L is the set of all images i.e.

L (X ) := {Lx : x ∈ X } .

Definition 2.2.3. A linear operator L : X →Y is called bounded if there exists a C > 0 such that

|Lx|Y ≤ C|x|X , x ∈ X .

Theorem 2.2.4. [50, Theorem 7.18] A linear operator L : X → Y is bounded if and only if it is

continuous i.e. if xn → x, then Lxn → Lx.

The set of all bounded linear operators from X into Y is denoted by L (X ,Y ). If X =Y then

we will write L (X ) .

Theorem 2.2.5. [50, Theorem 7.21] Let Y be a Banach space and X a normed space. Then,

L (X ,Y ) , with the norm

(2.2.1) ‖L‖L (X ,Y ) := sup
x∈X , |x|X=1

|Lx|Y , L ∈L (X ,Y ) ,

is a Banach space.

Lemma 2.2.6. Let Z be a real normed space with the norm | · |Z . Assume that L1 : X → Y and

L2 : Y → Z are bounded linear operators. Then the composition L2◦L1 is a bounded linear operator

from X into Z and

(2.2.2) |L2 ◦L1|L (X ,Z) ≤ |L2|L (Y ,Z)|L1|L (X ,Y ) .

Definition 2.2.7. A sequence of operators (Ln)n∈N ⊂L (X ,Y ) is said to:

a) converge in operator norm to L ∈L (X ,Y ), if

‖Ln −L‖L (X ,Y ) → 0 as n →∞ .

b) strongly converge to L ∈L (X ,Y ), iff Lnx converges to Lx strongly in Y for each x in X .
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Definition 2.2.8. A linear operator L : X → R is called a linear functional. The space of all

bounded linear functionals f : X →R is called the dual space of X and is denoted by X∗ or X ′, i.e.

X∗ =L (X ,R).

Remark 2.2.9. By Theorem 2.2.5, X∗ is a Banach space with the norm

(2.2.3) |L|L (X ,R) = sup
x∈X : |x|X=1

|Lx| , L ∈ X∗ .

Theorem 2.2.10 (Riesz Representation Theorem). [50, Theorem 21.6] Let L be a bounded linear

functional on the Hilbert space H. Then there exists a uniquely determined y ∈ H with

Lx = 〈x, y〉H , ∀x ∈ H .

Moreover

|L|L (H,R) = |y|H .

Definition 2.2.11. If there exits an injective continuous linear map L from X into Y , then X is

said to be embeddable in Y . Such a map L is called the embedding.

Definition 2.2.12. Assume that X ⊆ Y . Then X is called continuously embedded in Y if the

inclusion map (identity function) i : X →Y is continuous, i.e. there exists a constant c > 0 such

that

|u|X ≤ c|u|Y u ∈ X .

In this case we denote this embedding symbolically by X ,→ Y and the map i is called the

embedding operator.

Definition 2.2.13. Let X∗ be dual and X∗∗ be double dual of X respectively. Then we have a

canonical map x → x̂ defined by:

x̂( f )= f (x) f ∈ X∗ ,

gives an isometric linear isomorphism (embedding) from X into X∗∗. The space X is called

reflexive if this map is also surjective.

2.2.1 Closed operators

Definition 2.2.14. L : D(L) → Y is a linear operator, D(L) ⊂ X , then L is called a closed linear

operator if its graph

G(L)= {(x, y) : x ∈ D(L), y= Lx}

is closed in the normed space X ×Y .

Theorem 2.2.15. [50] Let L be a linear operator in the Banach space (X , |·|X ). Define norm on

D(L) by
|x|D(L) = |x|X +|Lx|X , x ∈D(L) .

Then (D(L), |·|D(L)) is a Banach space iff L is closed.
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2.2.2 Adjoint operators

Let H be a Hilbert space with the norm | · |H . Let L : D(L)→ H be a densely defined operator, with

D(L)⊂ H. Let us denote by D(L∗) the set,

D(L∗)= {y ∈ H : D(L) 3 x →〈Lx, y〉H ∈R is H-continuous} .

Note that if L is bounded then D(L∗) = H.

Hence by Riesz Representation Theorem 2.2.10, for every y ∈ D(L∗) there exists a unique

(uniqueness is guaranteed by the denseness of L) z ∈ H such that

〈Lx, y〉H = 〈x, z〉H , ∀x ∈D(L) .

For y ∈D(L∗), put L∗y= z.

Definition 2.2.16. For a densely defined linear operator L : D(L)→ H, with D(L)⊂ H, its adjoint

is an operator L∗ : D(L∗)→ H that satisfies the identity

〈Lx, y〉H = 〈
x,L∗y

〉
H , x ∈D(L), y ∈D(L∗) .

Definition 2.2.17. A densely defined operator L : D(L)→ H, with D(L)⊂ H, is called self-adjoint

iff D(L)=D(L∗) and

〈Lx, y〉H = 〈x,Ly〉H , x, y ∈D(L) .

2.2.3 Compact operators

Definition 2.2.18. Let X and Y be normed spaces. A linear operator L : X →Y is called compact

if for each bounded sequence (xn)n∈N ⊂ X , the sequence (Lxn)n∈N has a convergent subsequence

in Y .

Definition 2.2.19. The embedding X ,→Y is compact iff the identity map i : X →Y is compact.

Lemma 2.2.20. [96, Theorem 8.3] Let X and Y be Banach spaces, then L C (X ,Y ), set of all

compact operators from X into Y is a closed (and hence complete) subspace of L (X ,Y ) with

operator norm.

Definition 2.2.21. Let X and Y be Hilbert spaces. A linear operator L : X →Y is called Hilbert-

Schmidt if for every complete orthonormal basis (en)n∈N ⊂ X

(2.2.4) ‖L‖HS :=
∞∑
j=1

∣∣Le j
∣∣2
Y <∞ .

The space of all Hilbert-Schmidt operators L : X → Y will be denoted by T2(X ,Y ) and the

operator norm will be denoted by ‖ · ‖2 or ‖ · ‖T2(X ,Y ) which is equal to ‖ · ‖HS norm defined in

(2.2.4).

Theorem 2.2.22. [96, Theorem 8.7] Hilbert-Schmidt operators are compact.
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2.3 Semigroups

For this section we will assume that X is a Banach space with the norm | · |X . The content of this

section is based on [73].

Definition 2.3.1. A function S : [0,∞) 3 t 7→ S(t) ∈ L (X ), which is usually denoted by S =
{S(t)}t≥0, is called a semigroup of linear bounded operators on X if

i) S(0)= I, where I is the identity operator on X,

ii) for all t, s ≥ 0,

S(t+ s)= S(t)S(s) ,

where S(t)S(s) denotes the composition of the operators S(t) and S(s).

Definition 2.3.2. Let S be a semigroup on X . If

(2.3.1) lim
t→0

|S(t)− I|L (X ) = 0,

then S is called a uniformly continuous semigroup.

Definition 2.3.3. A semigroup S on X is called a C0-semigroup (or strongly continuous semi-

group) iff for each x ∈ X ,

(2.3.2) lim
t→0

|S(t)x− x|X = 0.

Theorem 2.3.4. If S be a C0-semigroup on X, then there exist constants M ≥ 1 and β≥ 0 such

that

(2.3.3) |S(t)|L (X ) ≤ Meβt, t ≥ 0.

Corollary 2.3.5. If S is a C0-semigroup on X, then for each x ∈ X, the function

S(·)(x) : [0,∞) 3 t 7→ S(t)(x) ∈ X

is continuous on [0,∞).

Definition 2.3.6. Let S be a semigroup on X . A linear operator L defined by

(2.3.4) D(L)=
{

x ∈ X : lim
t→0

S(t)x− x
t

exists
}

and

(2.3.5) Lx = lim
t→0

S(t)x− x
t

= dS(t)x
dt

∣∣
t=0 , x ∈D(L)

is called the infinitesimal generator of the semigroup S.
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Theorem 2.3.7. A linear operator L is the infinitesimal generator of a uniformly continuous

semigroup iff L is a bounded linear operator.

Theorem 2.3.8. Let S be a C0-semigroup on X with the infinitesimal generator L. Then for all

t ≥ 0,

i) for each x ∈ X,

lim
h→0

1
h

∫ t+h

t
S(s)x ds = S(t)x ,(2.3.6)

ii) for each x ∈ X,
∫ t

0 S(s)x ds ∈D(L) and

L
(∫ t

0
S(s)x ds

)
= S(t)x− x ,(2.3.7)

iii) for each x ∈D(L), S(t)x ∈D(L) and

d
dt

S(t)x = LS(t)x = S(t)Lx ,(2.3.8)

iv) for each x ∈D(L),

S(t)x−S(s)x =
∫ t

s
S(τ)Lx dτ=

∫ t

s
LS(τ)x dτ .(2.3.9)

Corollary 2.3.9. If L is the infinitesimal generator of a C0 semigroup S on X, then D(L) is dense

in X and L is a closed linear operator.

Definition 2.3.10. A C0-semigroup S on X is called uniformly bounded if there exists a constant

M ≥ 1 such that for each t ≥ 0,

(2.3.10) |S(t)|L (X ) ≤ M .

Definition 2.3.11. A C0-semigroup S on X is called a contraction semigroup if for each t ≥ 0,

(2.3.11) |S(t)|L (X ) ≤ 1.

2.4 Deterministic compactness criterion

Let
(
X ,ρ

)
be a metric space. Consider the set,

C (X ) := { f : X →R is continuous} ,

then C (X ) is a Banach space endowed with the norm

‖ f ‖C (X ) := sup
x∈X

| f (x)| .

We say that a sequence ( fn) converges to f in C (X ) if

sup
x∈X

| fn (x)− f (x)|→ 0,

i.e. ( fn) converges uniformly to f in X .
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Definition 2.4.1. Let
(
X ,ρ

)
be a metric space. A family of functions Λ⊂C (X ) is called equicon-

tinuous if for every ε> 0 there exists a δ> 0 such that for all f ∈Λ,

| f (u)− f (v)| < ε, for all u,v ∈ X satisfying ρ (u,v)< δ .

The family Λ is called uniformly bounded if there exists a constant C > 0 such that

| f (u)| ≤ C, for all f ∈Λ and for all u ∈ X .

Definition 2.4.2. If
(
X ,ρ

)
be a metric space, a subset K ⊂ X is called precompact (or relatively

compact) if closure K of K is compact in X .

Theorem 2.4.3 (Arzelà-Ascoli Theorem). [50, Theorem 5.20] Let
(
X ,ρ

)
be a compact metric space.

For a family of functions Λ⊂C (X ) following conditions are equivalent :

i) Λ is relatively compact,

ii) Λ is equicontinuous and uniformly bounded.

Following is an immediate consequence of the Arzelà-Ascoli theorem.

Corollary 2.4.4. [50, Corollary 5.21] Let
(
X ,ρ

)
be a compact metric space. If a sequence of

functions ( fn) ⊂ C (X ) is equicontinuous and uniformly bounded then it contains a uniformly

convergent subsequence.

Now we state the classical compactness criteria due to Dubinsky [94, Theorem IV.4.1] (see

also [56]).

Theorem 2.4.5 (Dubinsky Theorem). Let E0,E and E1 be reflexive Banach spaces such that

E0 ,→ E ,→ E1 and the embedding E0 ,→ E is compact. Let q ∈ (1,∞) and let K be a bounded subset

in Lq(0,T;E0) consisting of functions equicontinuous in C ([0,T];E1). Then K is relatively compact

in Lq(0,T;E)∩C ([0,T];E1).

2.5 Random variables

Throughout this section, we assume that X is a separable Banach space with norm | · |X and Ω is

a non-empty set. The contents of this section are based on [38, 79].

Definition 2.5.1. A family F of subsets of Ω is called a σ-field on Ω if

i) Ω ∈F ,

ii) if A ∈F , then Ω\ A ∈F ,

iii) if A1, A2, ... is a sequence of sets in F , then the countable union
⋃

n∈N An also belongs to F .
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The pair (Ω,F ) is called a measurable space.

Definition 2.5.2. Let (Ω1,F ) and (Ω2,G ) be two measurable spaces. A map ξ :Ω1 →Ω2 is said

to be measurable if for every A ∈G ,

ξ−1(A)= {ω ∈Ω1 : ξ(ω) ∈ A} ∈F .

Such a measurable map is called a random variable on Ω1.

Definition 2.5.3. Let H be a family of subsets of Ω. The smallest σ-field on Ω containing H is

called the σ-field generated by H and it is denoted by σ(H ).

Definition 2.5.4. The smallest σ-field containing all closed (or open) subsets of X is called the

Borel σ-field of X and it is denoted by B(X ).

Lemma 2.5.5. [38, Proposition 1.3] Let X∗ be the dual space of X. Then B(X ) is the smallest

σ-field of X containing all sets of the form

{x ∈ X :ϕ(x)≤α}, ϕ ∈ X∗, α ∈R .

Definition 2.5.6. Let (Ω,F ) be a measurable space. A mapping ξ :Ω→ X is said to be Borel

measurable if for each A ∈B(X ), ξ−1(A) ∈F . Such a Borel measurable map is called an X -valued

random variable on Ω.

Definition 2.5.7. Let (Ω,F ) be a measurable space and ξ be an X -valued random variable on Ω.

The smallest σ-field σ(ξ) containing all sets ξ−1(A), A ∈B(X ), is called the σ-field generated by ξ.

Lemma 2.5.8. [38, Lemma 1.5] Let (Ω,F ) be a measurable space. Assume that ξ and ζ are

X-valued random variables on Ω. Then

i) for α,β ∈R, αξ+βζ is an X-valued random variable on Ω,

ii) the mapping Ω 3ω 7→ |ξ(ω)|X is a real-valued random variable on Ω.

Definition 2.5.9. Let (Ω,F ) be a measurable space. A map µ : F → R is called a non-negative

measure if

i) for all A ∈F , µ(A)> 0,

ii) µ(;)= 0,

iii) for all countable collection {A i}∞i=1 of pairwise disjoint sets in F ,

µ

( ∞⋃
i=1

A i

)
=

∞∑
i=1

µ(A i) .
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The third condition in the definition is called the σ-additivity and the triple (Ω,F ,µ) is called a

measure space. A non-negative measure P satisfying P(Ω)= 1 is called a probability measure and

the triple (Ω,F ,P) is called a probability space.

Theorem 2.5.10 (Lebesgue’s Monotone Convergence Theorem). [79, Theorem 1.26] Let ( fn)n∈N
be a sequence of real valued measurable functions on Ω, satisfying

a) 0≤ f1 ≤ f2 ≤ ...≤∞

b) fn → f point-wise as n →∞ .

Then f is measurable and ∫
Ω

fn dµ→
∫
Ω

f dµ as n →∞ .

Theorem 2.5.11 (Fatou’s Lemma). [79, Lemma 1.28] If fn :Ω→ [0,∞] is measurable for all n ∈N,

then ∫
Ω

(
lim

n→∞ inf fn

)
dµ≤ lim

n→∞ inf
∫
Ω

fn dµ ,

lim
n→∞sup

∫
Ω

fn dµ≤
∫
Ω

(
lim

n→∞sup fn

)
dµ .

Theorem 2.5.12. [79, Theorem 1.33] If f ∈ L1 (
µ
)

i.e.
∫

E f dµ<∞, then∣∣∣∣∫
Ω

f dµ
∣∣∣∣≤ ∫

Ω
| f | dµ .

Theorem 2.5.13 (Lebesgue’s Dominated Convergence Theorem). [79, Theorem 1.34] Suppose

( fn)n∈N be the sequence of real valued measurable functions on Ω such that fn → f point-wise as

n →∞. If there exists a function g ∈ L1 (
µ
)

such that | fn(ω)| ≤ g(ω) for every ω ∈Ω then f ∈ L1 (
µ
)

and

lim
n→∞

∫
Ω
| fn − f | dµ= 0,

lim
n→∞

∫
Ω

fn dµ=
∫
Ω

f dµ .

Theorem 2.5.14 (Vitali Convergence Theorem or Vitali Theorem). [79, Exercise 6.10 (b)] Let

(Ω,F ,µ) be a measure space. If µ(Ω)<∞ and { fn}n∈N is a sequence of functions on Ω such that

i) { fn} is uniformly integrable,

ii) fn → f pointwise a.e. on Ω,

iii) | f (x)| <∞ a.e.

Then f ∈ L1(µ) and

lim
n→∞

∫
Ω
| fn − f |dµ= 0.
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Definition 2.5.15. Let (Ω,F ,P) be a probability space. A set F defined by

F = {A ⊂Ω : ∃ B,C ∈F ;B ⊂ A ⊂ C,P(B)=P(C)}

is a σ-field and is called the completion of F . If F =F , then the probability space (Ω,F ,P) is

said to be complete.

Definition 2.5.16. Let (Ω,F ,P) be a probability space and ξ be an X -valued random variable on

Ω. Then a mapping L(ξ) : B(X )→ [0,1] defined by

L(ξ)(A)=P(
ξ−1(A)

)=P ({ω ∈Ω : ξ(ω) ∈ A}) , A ∈B(X )

is called the law (or the distribution) of ξ.

Theorem 2.5.17 (Kuratowski Theorem). [70, Theorem 3.9] Assume that X1, X2 are the Polish

spaces with their Borel σ−fields denoted respectively by B(X1),B(X2). If ϕ : X1 → X2 is an injective

Borel measurable map then for any E1 ∈B(X1), E2 :=ϕ(E1) ∈B(X2).

2.6 Miscellaneous preliminaries

Lemma 2.6.1 (Gagliardo - Nirenberg inequality). [91] Assume that r, q ∈ [1,∞), and j,m ∈ Z
satisfy 0≤ j < m. Then for all α ∈

[
j

m ,1
]

there exists a constant C > 0 such that

(2.6.1)
∣∣∣D ju

∣∣∣
Lp(Rn)

≤ C
∣∣Dmu

∣∣α
Lr(Rn) |u|1−αLq(Rn) , u ∈ C∞

0
(
Rn)

,

where 1
p = j

n +α(1
r − m

d
)+ (1−α) 1

q . If m− j− n
r is a non-negative integer, then the equality holds

only for α ∈
[

j
m ,1

)
.

The next two results play a pivotal role in this thesis.

Theorem 2.6.2 (Banach Fixed Point Theorem). [50, Theorem 4.7] Let (X ,d) be a complete metric

space, K ⊂ X be a closed subset, f : K → K be a function that satisfies the inequality, for some

0≤α< 1,

d ( f (u), f (v))≤αd (u,v) , for all u,v ∈ X ,

Then f has uniquely determined fixed point in K i.e. there exists a unique a ∈ K such that f (a)= a.

Lemma 2.6.3. [88, Lemma III.1.2] Let T > 0, V ,H be two Hilbert spaces, V∗ and H∗ be cor-

responding dual spaces. Assume that V ,→ H ≡ H∗ ,→ V∗, where embeddings are dense too. If

a function u belongs to L2(0,T;V ) and its weak derivative u′ belongs to L2(0,T;V ′), then u is

a.e. equal to a continuous function v : [0,T] → H such that the function [0,T] 3 t 7→ |v(t)|2H ∈ R is

absolutely continuous and

d
dt

|v(t)|2H = 2
〈
v′,v

〉
H , for almost all t ∈ [0,T].
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The following lemma is used repeatedly in this thesis. We will later state a generalisation of

it for random variables.

Lemma 2.6.4 (Bellman–Gronwall Inequality or Gronwall Lemma). [86, Section 1.3.6] Suppose

φ ∈ L1 [a,b] satisfies

φ(t)≤ f (t)+β
∫ t

a
φ(s)ds , a.e. ,

where f ∈ L1 [a,b] and β is a positive constant, then

φ(t)≤ f (t)+β
∫ t

a
f (s)eβ(t−s) ds, for a.e. t ∈ [a,b] .

In particular if f (t)=α (constant) then

φ(t)≤αeβ(t−a), for a.e. t ∈ [a,b] .

Lemma 2.6.5. [58, Chapter 2] Let f ∈ Lp0 ∩Lp1 . Then for θ ∈ (0,1) there exists a constant c > 0

such that

| f |Lpθ ≤ c| f |1−θLp0 | f |θLp1 , f ∈ Lp0 ∩Lp1 ,

where
1
pθ

= 1−θ
p0

+ θ

p1
.

Lemma 2.6.6 (Poincaré Inequality). [50, Corollary 20.16] Let Ω⊂Rd be open and bounded. Then

there exists a constant C, depending only on Ω

|u|L2(Ω) ≤ C|∇u|L2(Ω) u ∈W1,2
0 (Ω) .

Theorem 2.6.7 (Plancherel Theorem). [79, Theorem 9.13] Let f ∈ L2 and we denote its Fourier

transform by f̂ . Then

i) for every f ∈ L2, | f |L2 = | f̂ |L2 ,

ii) the mapping f → f̂ is a Hilbert space isomorphism of L2 onto L2.

2.6.1 Kuratowski-Zorn Lemma

This subsection is based on [60, Chapter 1].

Definition 2.6.8. A relation ¹ on Ξ is called partial order if ¹ is:

i) reflexive i.e. x ¹ x for all x ∈Ξ,

ii) antisymmetric i.e. for all x, y ∈Ξ if x ¹ y and y¹ x, then x = y,

iii) transitive i.e. for all x, y, z ∈Ξ if x ¹ y and y¹ z, implies x ¹ z.
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In this case (Ξ,¹) is called partially ordered set (or poset).

Definition 2.6.9. A chain in a poset (Ξ,¹) is a subset B ⊆Ξ such that any two elements in B are

comparable.

Definition 2.6.10. Let (Ξ,¹) be a poset and B ⊆Ξ then an element u ∈Ξ is called upper bound

of B, if x ¹ u for all x ∈ B.

Definition 2.6.11. Let (Ξ,¹) be a poset. An element m ∈Ξ is called maximal element of Ξ, if

there is no element x ∈Ξ such that m ¹ x and m 6= x.

Now we state the main result of this subsection.

Lemma 2.6.12 (Kuratowski-Zorn Lemma). If every chain in a poset (Ξ,¹) has an upper bound in

Ξ, then Ξ contains a maximal element.

2.7 Stochastic processes and martingale

We fix a probability space (Ω,F ,P) for this section and assume that H is a separable Hilbert

space with the norm | · |H . The content of this section is based on [28, 38].

Definition 2.7.1. An H-valued continuous-time stochastic process {ξt}t∈T is a family of H-valued

random variables indexed by time t. Moreover, either T := [0,T] or T := [0,∞) .

For each ω ∈Ω, the map

ξ (ω) :T 3 t → ξt (ω) ∈ H

is called a path (or trajectory) of the process ξ.

We will use the notation ξ instead of {ξ(t)}t∈T for simplicity. And throughout this section we

will assume that ξ is an H-valued stochastic process on T unless specified otherwise.

Definition 2.7.2. A process ξ is called continuous if P-a.s. the trajectories of ξ are continuous on

T, i.e. there exists Ω̄ ∈F with P(Ω̄)= 1 such that for each ω ∈ Ω̄, the mapping T 3 t 7→ ξ(t,ω) ∈ H

is continuous.

Definition 2.7.3. An H-valued stochastic process ζ on T is called a modification (or version) of

the process ξ if

P({w ∈Ω : ξ(t,w) 6= ζ(t,w)})= 0 for every t ∈T .

Definition 2.7.4. A process ξ is called measurable if the following mapping

ξ : [0,T]×Ω→ H

is B([0,T])⊗F -measurable.
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Definition 2.7.5. A process ξ is called stochastically continuous at t0 ∈ [0,T] if for every ε,δ> 0,

there exists ρ > 0 such that for each t ∈ [t0 −ρ, t0 +ρ]∩ [0,T],

P({ω ∈Ω : |ξ(t,ω)−ξ(t0,ω)|H ≥ ε})≤ δ .

If the process ξ is stochastically continuous for each t0 ∈ [0,T], then it is said to be stochastically

continuous on [0,T].

Lemma 2.7.6. [38, Proposition 3.2] If a process ξ is stochastically continuous on [0,T], then it

has a measurable modification on [0,T].

Definition 2.7.7. A family {Ft}t≥0 of σ-fields such that for all t Ft ⊂F , is called a filtration if

for any 0≤ s ≤ t <∞, Fs ⊂Ft.

From now on, we will assume that F= {Ft}t≥0 is a filtration.

Definition 2.7.8. A process ξ is said to be adapted to F if for each t ∈ [0,T], ξ(t) is Ft-measurable.

Definition 2.7.9. A process ξ is called progressively measurable if for each t ∈ [0,T], the following

mapping

ξ : [0, t]×Ω 3 (s,w) 7→ ξ(s,w) ∈ H

is B([0, t])⊗Ft-measurable.

Definition 2.7.10. A subset P ⊆ [0,∞)×Ω is said to be progressively measurable, if the process

ξs(ω) := 1P (s,ω) is progressively measurable. The σ-field generated by all such subsets P of

[0,∞)×Ω is called progressively measurable σ-field.

Remark 2.7.11. If the process ξ is progressively measurable, then it is adapted to F.

Lemma 2.7.12. Limits of progressively measurable processes are progressively measurable.

Lemma 2.7.13. [38, Proposition 3.5] If a process ξ is stochastically continuous on [0,T] and

adapted to F, then it has a progressively measurable modification.

Definition 2.7.14. A random variable τ :Ω→ [0,∞] i.e. a random time, is a stopping time (w.r.t

filtration F) if for all t ∈T,

{τ≤ t} := {ω ∈Ω : τ (ω)≤ t} ∈Ft .

Remark 2.7.15. i) One can easily see that if τ and σ are two stopping times then τ∧σ, τ∨σ
and τ+σ are also stopping times.

ii) Every stopping time τ is Fτ-measurable, where

Fτ = {B ∈F : B∩ {τ≤ t} ∈Ft, for all t ∈T}

is a σ-field.
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iii) A r.v ζ is Fτ-measurable if and only if for all t ∈T, ζ1{τ≤t} is Ft-measurable.

Lemma 2.7.16. [74, Proposition 1.1.3] Let ξ be a progressively measurable process, and τ a

stopping time. Then ξτ1{τ≤t} is Fτ-measurable and the stopped process ξt∧τ is also progressively

measurable.

Definition 2.7.17. An H-valued process ξ is called an F-martingale if

i) ξ is adapted to F,

ii) for each t ∈ [0,T], E (|ξ(t)|H)<∞,

iii) for each t, s ∈ [0,T] with t ≥ s,

E (ξ(t)|Fs)= ξ(s) , i.e. ∀A ∈Fs

∫
A
ξ(t)dP=

∫
A
ξ(s)dP .

Lemma 2.7.18. [38, Proposition 3.9] Let M 2
T be the space of all H-valued, continuous and square

integrable martingales ξ on [0,T]. Then M 2
T is a Banach space with respect to the following norm

|ξ|M 2
T
=

(
E sup

t∈[0,T]
|ξ(t)|2H

) 1
2

, ξ ∈M 2
T .

Theorem 2.7.19 (Burkholder-Davis-Gundy inequality). [74, Theorem 1.1.6] Let 1≤ p <∞, then

for all H-valued continuous martingales M with M0 = 0 and stopping time τ, there exist positive

constants cp and Cp such that

(2.7.1) E
[
〈M(τ)〉p/2

]
≤ E

(
sup

0≤t≤τ
|Mt|

)p
≤ CpE

[
〈M(τ)〉p/2

]
,

where 〈M〉 denotes the quadratic variation of M.

We will require following generalisation of the Gronwall Lemma [40, Lemma 3.9] :

Lemma 2.7.20 (Generalised Gronwall Lemma). Let X ,Y , I and ϕ be non-negative processes and

Z be a non-negative integrable random variable. Assume that I is non-decreasing and there exist

non-negative constants C,α,β,γ,η with the following properties

(2.7.2)
∫ T

0
ϕ(s)ds ≤ C a.s., 2βeC ≤ 1, 2ηeC ≤α ,

and such that for 0≤ t ≤ T,

(2.7.3) X (t)+αY (t)≤ Z+
∫ t

0
ϕ(r)X (r)dr+ I(t), a.s. ,

(2.7.4) E(I(t))≤βE(X (t))+γ
∫ t

0
E(X (s))ds+ηE(Y (t))+ C̃ ,

where C̃ > 0 is a constant. If X ∈ L∞([0,T]×Ω), then we have

(2.7.5) E [X (t)+αY (t)]≤ 2exp
(
C+2tγeC

)(
E(Z)+ C̃

)
, t ∈ [0,T] .
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2.8 Wiener process and the martingale representation theorem

We assume that H is a separable Hilbert space with the norm | · |H and (Ω,F ,P) is a probability

space. The definitions and results are taken from [28, 38].

Definition 2.8.1. A probability measure µ on (H,B(H)) is called Gaussian if for arbitrary h ∈ H

there exist m ∈R, σ≥ 0, such that

µ {x ∈ H : 〈h, x〉H ∈ A}=N (m,σ)(A), A ∈B(R) .

Definition 2.8.2. An H-valued stochastic process X on [0,∞) is said to be Gaussian if, for

any n ∈ N and for arbitrary positive numbers, t1, t2, · · · , tn, the Hn-valued random variable

(X (t1), X (t2), · · · , X (tn)) is Gaussian.

Definition 2.8.3. A real valued Wiener process (or Brownian motion) is a stochastic process W(t)

with values in R defined for t ∈ [0,∞) such that

i) W(0)= 0 a.s.,

ii) the sample paths t 7→W(t) are a.s. continuous,

iii) for 0≤ s ≤ t <∞, W(t)−W(s) is normally distributed with mean 0 and variance t− s,

iv) for any 0= t0 ≤ t1 ≤ ·· · ≤ tn <∞, the increments

W(t1)−W(t0), · · · ,W(tn)−W(tn−1)

are independent.

Definition 2.8.4. We call W(t) = (
W1(t),W2(t), · · · ,Wd(t)

)
, a d-dimensional Wiener process if

W1(t), · · · ,Wd(t) are independent R-valued Wiener processes.

Let U be a Hilbert space (can be finite dimensional too) with norm | · |U and Q ∈L (U) be a

symmetric non-negative operator. We also assume that TrQ <∞. Then there exists a complete

orthonormal basis {ek} in U , and a bounded sequence of non-negative real numbers λk such that

Qek =λkek , k = 1,2, · · · .

Without loss of generality, we may assume that Q is injective.

Definition 2.8.5. A U-valued stochastic process W(t), t ≥ 0 is called a Q-Wiener process if

i) W(0)= 0 a.s.,

ii) W has a.s. continuous trajectories,

iii) W has independent increments,
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iv) L (W(t)−W(s))=N (0, (t− s)Q), 0≤ s ≤ t .

If a process W(t), t ∈ [0,T] satisfies (i)− (iii) and (iv) for t, s ∈ [0,T] then we say that W is a

Q-Wiener process on [0,T].

Lemma 2.8.6. [38, Proposition 4.1] Assume that W is a Q-Wiener process on U, with TrQ <∞.

Then the following statements hold :

i) W is a Gaussian process on U and

(2.8.1) E(W(t))= 0, Cov(W(t))= tQ , t ≥ 0.

ii) For arbitrary t,

(2.8.2) W(t)=
∞∑
j=1

√
λ j β j(t)e j a.e.

where

β j(t)= 1
λ j

〈W(t), e j〉U , j = 1,2, · · · ,

are real valued Brownian motions mutually independent on (Ω,F ,P) and the series (2.8.2)

is convergent in L2(Ω,F ,P).

Theorem 2.8.7 (Martingale Representation Theorem). [38, Theorem 8.2] Assume that M ∈
M 2

T (H) and

〈〈M〉〉t =
∫ t

0

(
ϕ(s)Q1/2

)(
ϕ(s)Q1/2

)∗
ds , t ∈ [0,T] ,

where ϕ is a predictable T2(U0,H) process; U0 =Q1/2U is a Hilbert space endowed with the inner

product

〈u,v〉U0 = 〈Q−1/2u,Q−1/2v〉U u,v ∈U0 ,

and Q a given bounded symmetric non-negative operator in U. Then there exists a probabil-

ity space
(
Ω̃,F̃ , P̃

)
, a filtration {F̃t} and a Q-Wiener process W, with values in U, defined on(

Ω× Ω̃,F ×F̃ ,P× P̃)
adapted to {Ft ×F̃t}, such that

(2.8.3) M(t,ω,ω̃)=
∫ t

0
ϕ(s,ω,ω̃)dW(s,ω,ω̃) , t ∈ [0,T], (ω,ω̃) ∈Ω× Ω̃ ,

where

(2.8.4) M(t,ω,ω̃)= M(t,ω) , and ϕ(t,ω,ω̃)=ϕ(t,ω) , (ω,ω̃) ∈Ω× Ω̃ .

Next we state a simplified version of an existence theorem for the stochastic differential

equation

(2.8.5) X (t)= ξ+
∫ t

0
σ(X (s))dW(s)+

∫ t

0
b(X (s))ds ,
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where the maps

σ : Rd →T2(H,Rd) , b : Rd →Rd ,

where H is a real separable, possibly infinite dimensional, Hilbert space, are measurable. Suppose

that U := (Ω,F ,P;F) is a filtered probability space and W = (W(t))t≥0 be an H-cylindrical Wiener

process on U .

Theorem 2.8.8. [1, Theorem 3.1] Assume that the functions σ and b satisfy the following condi-

tions

(i) For any R > 0 there exists a constant C > 0 such that

‖σ(x)−σ(y)‖T2(Rd ;H) +|b(x)−b(y)|Rd ≤ C|x− y|2
Rd , |x|Rd , |y|Rd ≤ R.

(ii) There exists a constant K1 > 0 such that

‖σ(x)‖2
T2(Rd ;H) +2〈x,b(x)〉Rd ≤ K1(1+‖x‖2

Rd ), x ∈Rd.

Then, for any Rd-valued F0-measurable random variable ξ, there exists a unique global solution

X = (X (t))t≥0 to (2.8.5).

2.9 Tightness and Skorohod Theorem

In this section we take E to be a separable Banach space with the norm | · |E and let B(E) be its

Borel σ-field. The family of probability measures on (E,B(E)) will be denoted by Λ. The set of all

bounded and continuous E-valued functions is denoted by Cb(E). The content of this section is

based on [23, 24] and [38, Chapter 2].

Definition 2.9.1. The family Λ of probability measures on (E,B(E)) is said to be tight if for

arbitrary ε> 0 there exists a compact set Kε ⊂ E such that

µ(Kε)≥ 1−ε , for all µ ∈Λ .

Definition 2.9.2. A sequence of measures
{
µn

}
n∈N on (E,B(E)) is said to be weakly convergent

to a measure µ if for every ϕ ∈Cb(E) we have

lim
n→∞

∫
E
ϕ(x)µn(dx)=

∫
E
ϕ(x)µ(dx) .

Definition 2.9.3. The family Λ is said to be compact (respectively relatively compact), if an arbi-

trary sequence
{
µn

}
n∈N of elements from Λ contains a subsequence

{
µnk

}
k∈N weakly convergent

to a measure µ ∈Λ (respectively to a measure µ on (E,B(E))).

Theorem 2.9.4 (Prokhorov Theorem). [38, Theorem 2.3] The family Λ of probability measures on

(E,B(E)) is relatively compact if and only if it is tight.
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The following theorem, due to Skorohod, links the concept of weak convergence of probability

measures with that of almost sure convergence of random variables.

Theorem 2.9.5 (Skorohod Theorem). [38, Theorem 2.4] For an arbitrary sequence of probability

measures
{
µn

}
n∈N on B(E) weakly convergent to a probability measure µ, there exists a probability

space (Ω,F ,P) and random variables X , X1, · · · , such that L (Xm)=µm, L (X )=µ and

lim
n→∞Xn = X , P−a.s.

We will need the following Jakubowski’s generalisation of the Skorohod Theorem, in the form

given by Brzeźniak and Ondreját [26, Theorem C.1], see also [49], as we deal with non-metric

spaces.

Theorem 2.9.6. Let X be a topological space such that there exists a sequence { fm}m∈N of contin-

uous functions fm : X →R that separates points of X . Let us denote by S the σ-algebra generated

by the maps { fm}. Then

a) every compact subset of X is metrizable,

b) if (µm)m∈N is a tight sequence of probability measures on (X ,S ), then there exists a subse-

quence (mk)k∈N, a probability space (Ω,F ,P) with X -valued Borel measurable variables

ξk,ξ such that µmk is the law of ξk and ξk converges to ξ almost surely on Ω.

Let (S,%) be a separable and complete metric space.

Definition 2.9.7. Let u ∈C ([0,T];S). The modulus of continuity of u on [0,T] is defined by

m(u,δ) := sup
s,t∈[0,T], |t−s|≤δ

%(u(t),u(s)), δ> 0.

Let (Ω,F ,P) be a probability space with filtration F := (Ft)t∈[0,T] satisfying the usual condi-

tions, see [63], and let (Xn)n∈N be a sequence of continuous F-adapted S-valued processes.

Definition 2.9.8. We say that the sequence (Xn)n∈N of S-valued random variables satisfies

condition [T] iff ∀ε> 0,∀η> 0, ∃δ> 0:

(2.9.1) sup
n∈N

P
{
m(Xn,δ)> η}≤ ε .

Lemma 2.9.9. [24, Lemma 2.4] Assume that (Xn)n∈N satisfies condition [T]. Let Pn be the law of

Xn on C ([0,T];S), n ∈N. Then for every ε> 0 there exists a subset Aε ⊂C ([0,T];S) such that

sup
n∈N

Pn(Aε)≥ 1−ε

and

(2.9.2) lim
δ→0

sup
u∈Aε

m(u,δ)= 0.
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Now we recall the Aldous condition [A], which is connected with condition [T]. This condition

allows to investigate the modulus of continuity for the sequence of stochastic processes by means

of stopped processes.

Definition 2.9.10. [Aldous condition] A sequence (Xn)n∈N satisfies condition [A] iff ∀ε > 0,

∀η> 0, ∃δ> 0 such that for every sequence (τn)n∈N of F-stopping times with τn ≤ T one has

sup
n∈N

sup
0≤θ≤δ

P
{
%(Xn(τn +θ), Xn(τn))≥ η}≤ ε .

Lemma 2.9.11. [64, Theorem 3.2] Conditions [A] and [T] are equivalent.
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CONSTRAINED NAVIER-STOKES EQUATIONS

Incompressible Navier-Stokes equations describe the dynamics of an incompressible viscous

fluid. These equations were proposed by C. Navier in 1822 on the basis of a suitable molecu-

lar model and were later derived by G. Stokes by means of the theory of continua. A solution

to these equations predicts the behaviour of the fluid, in particular, describes the evolution

of velocity of the fluid as a function of space and time, given the initial and boundary states.

Even though Navier-Stokes equations have variety of applications ranging from aerodynamics to

biology, such as modelling the flow of blood in the circulatory system; the basic mathematical

question of the existence of a unique global-in-time solution to these parabolic PDEs on a bounded

domain in R3 still remains open. The non-linear convective term poses a lot of problems during

the analysis as well as in physical systems by causing physical phenomenons, such as eddy flows

and turbulence.

The existence of a unique global-in-time solution to the Navier-Stokes equations on R2 has

been known for a long time. In her seminal paper [54], Ladyzhenskaya proved an inequality

to control the non-linear convective term on a bounded domain in R2, which was later used to

prove the global-in-time existence of a unique solution to the Navier-Stokes equations. This trick

already fails in the case of a bounded domain in R3. One can prove the existence of a global-in-time

weak solutions [47, 55], also known as Leray solutions on a general bounded domain in R3.

In this chapter we introduce the constrained Navier-Stokes equations, which are Navier-

Stokes equations with a constraint on the L2−energy of the solution. We assume that the

L2-energy of the solution remains constant and is assumed to be equal to 1. The motivation to

study such a constrained problem, is that these equations should be a better approximation to

incompressible Euler equations, since for the Euler equations, the energy of (sufficiently smooth)

solutions is constant (see [31]).
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We end the introduction by giving a brief overview of the chapter: in Section 3.1 we define

our functional spaces along with the Stokes operator, for both R2 and bounded domain with

periodic boundary conditions (i.e. a torus). We introduce the bilinear map corresponding to the

non-linear convective term along with some of its important properties in Section 3.2. We conclude

the chapter by introducing the constraint and corresponding orthogonal projection map which

projects the Hilbert manifold M onto its tangent space, that along with all the functional setting

is used to describe the constrained Navier-Stokes equations (CNSE) in Section 3.3.

3.1 Functional setting

Let O be either a bounded domain in R2, the full Euclidean space R2 or the torus T2. For p ∈ [1,∞]

and k ∈N, the Lebesgue and Sobolev spaces of R2-valued functions will be denoted by Lp(O ,R2)

and Wk,p(O ,R2) respectively, and often Lp and Wk,p whenever the context is understood. The

usual scalar product on L2 is denoted by 〈u,v〉 for u,v ∈ L2. The associated norm is given by

|u|L2 ,u ∈ L2. We also write Wk,2(O ,R2) := Hk(O ) and will denote it’s norm by ‖ ·‖Hk . In particular

the scalar product for H1(O ) is given by

〈u,v〉H1 = 〈u,v〉+〈∇u,∇v〉, u,v ∈ H1(O ) ,

and thus the norm is

‖u‖H1 = [|u|2L2 +|∇u|2L2

]1/2
.

In the following two subsections we will introduce some additional spaces. The structure of

the spaces will depend on the choice of O .

3.1.1 Functional setting for R2

We consider the whole space R2. We introduce the following spaces:

H= {
u ∈ L2(R2,R2) : divu = 0

}
,

V= H1 ∩H.
(3.1.1)

We endow H with the scalar product and norm of L2 and denote it by 〈u,v〉H, |u|H respectively for

u,v ∈H. We equip the space V with the scalar product and norm of H1 and will denote it by 〈·, ·〉V
and ‖ ·‖V respectively.

Let Π : L2 →H be the Leray-Helmholtz projection operator [88] which projects vector fields

on to the plane of divergence free vector fields. We denote by A : D(A)→H, the Stokes operator

which is defined by

D(A)=H∩H2(R2) ,

Au =−Π∆u, u ∈D(A).
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It is well known that A is a self adjoint non-negative operator in H [33]. Note that ∆ and Π

commute with each other. Moreover

D((A+ I)1/2)=V and 〈Au,u〉 = |∇u|2L2 , u ∈D(A).

From now onwards we will denote E :=D(A).

3.1.2 Functional setting for a periodic domain

We denote the bounded domain with periodic boundary conditions by T2 which can be identified

to a two dimensional torus. Let C ∞
c (T2,R2) denote the space of all R2−valued functions of class

C ∞ with compact supports contained in T2. We introduce the following spaces:

V = {
u ∈C ∞

c (O ,R2) : divu = 0
}

,

L2
0 =

{
u ∈ L2(T2,R2) :

∫
T2

u(x)dx = 0
}

,

H= {
u ∈ L2

0 : divu = 0
}

,

V= H1 ∩H.

(3.1.2)

We endow H with the scalar product and norm of L2 and denote it by 〈u,v〉H, |u|H respectively for

u,v ∈ H. We equip the space V with the scalar product 〈∇u,∇v〉L2 and norm ‖u‖V,u,v ∈ V. One

can show that in the case of T2, V-norm ‖ ·‖V, and H1-norm ‖ ·‖H1 are equivalent on V.

As before we denote by A : D(A)→H, the Stokes operator which is defined by

D(A)=H∩H2(T2) ,

Au =−Π∆u, u ∈D(A).

It is well known that A is a self adjoint positive operator in H [90]. Moreover

D(A1/2)=V and 〈Au,u〉 = ‖u‖2
V = |∇u|2L2 , u ∈D(A).

In the following section we will introduce a tri-linear form corresponding to the non-linear

convective term from Navier-Stokes equations, which is well defined for any general domain O

and will state some of its properties.

3.2 Convective term

From now onwards we denote our domain by O which can be either R2 or T2. We introduce a

continuous tri-linear form b : Lp ×W1,q ×Lr →R,

b(u,v,w)=
2∑

i, j=1

∫
O

ui ∂v j

∂xi w j dx ,
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where p, q, r ∈ [1,∞] satisfies
1
p
+ 1

q
+ 1

r
≤ 1.

By the Sobolev Embedding Theorem [91] and the Hölder inequality [91], we obtain the

following estimates

|b(u,v,w)| ≤ |u|L4‖v‖V|w|L4 , u,w ∈ L4,v ∈V,

≤ c‖u‖V‖v‖V‖w‖V, u,v,w ∈V.
(3.2.1)

Hence, we can define a bilinear map B : V×V→V′ such that

〈B(u,v),ϕ〉 = b(u,v,ϕ), for u,v,ϕ ∈V,

where 〈·, ·〉 denotes the duality between V and V ′.

Using the following well-known Ladyzhenskaya’s inequality on O ⊂R2 [88] (this is a special

case of Gagliardo - Nirenberg inequality) :

(3.2.2) ‖u‖L4 ≤ 21/4|u|1/2
L2 |∇u|1/2

L2 , u ∈V,

and the Hölder inequality, we obtain

(3.2.3) |b(u,v,ϕ)| ≤
p

2 |u|
1
2
H ‖u‖

1
2
V ‖v‖

1
2
V |v|

1
2
D(A) |ϕ|H , u ∈V,v ∈D(A),ϕ ∈H.

Thus b can be uniquely extended to the tri-linear form (denoted by the same letter)

b : V×D(A)×H→R .

We can now also extend the operator B uniquely to a bounded bilinear operator

(3.2.4) B : V×D(A)→H.

The following properties of the tri-linear map b and the bilinear map B are very well estab-

lished in [88] and Appendix A:

b(u,u,u)= 0, u ∈V,

b(u,w,w)= 0, u ∈V,w ∈ H1 ,

〈B(u,u),Au〉H = 0, u ∈D(A).

(3.2.5)

Note that the last identity in (3.2.5) holds only in the two cases that we have considered here, i.e.

on the whole Euclidean space R2 and torus T2.
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3.3 NSEs and CNSE

The 2D Navier-Stokes equations (NSE) governing the dynamics of an incompressible viscous

fluid are given as following:
∂u(x, t)
∂t

−ν∆u(x, t)+ (u(x, t) ·∇)u(x, t)+∇p(x, t)= 0,

divu(x, t)= 0,

u(x,0)= u0(x) ,

(3.3.1)

where x ∈O and t ∈ [0,T] for every T > 0; u : O → R2 and p : O → R are velocity and pressure of

the fluid respectively. ν is the viscosity of the fluid.

With all the notations as defined in the Sections 3.1 and 3.2, the Navier-Stokes equations

(3.3.1) projected on divergence free vector field using the Leray-Helmholtz projection operator is

given by 
du
dt

+νAu+B(u,u)= 0,

u(0)= u0 .
(3.3.2)

Let us denote the set of divergence free R2-valued functions with unit L2 norm, as following

M = {u ∈H : |u|H = 1} .

Then the tangent space at u is defined as the following closed subspace of H,

TuM = {v ∈H : 〈v,u〉H = 0} , u ∈M .

A linear map πu : H→ TuM defined by

πu(v)= v−〈v,u〉H u ,

is the orthogonal projection from H onto TuM .

Remark 3.3.1. It follows from (3.2.5) that

B(u,u) ∈ TuM , u ∈M ∩D(A).

In particular,

πu (B(u,u))= B(u,u) , u ∈M ∩D(A).

Let

F(u)= νAu+B(u,u)
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and F̂(u) be the projection of F(u) on the tangent space TuM , then for u ∈D(A),

F̂(u)=πu(F(u))= F(u)−〈F(u),u〉H u

= νAu+B(u,u)−〈νAu+B(u,u),u〉H u

= νAu−ν〈Au,u〉H u+B(u,u)−〈B(u,u),u〉H u

= νAu−ν|∇u|2L2 u+B(u,u) .

The last equality follows heuristically from Remark 3.3.1.

Thus by projecting NSEs (3.3.2) on the tangent space TuM , we obtain our constrained

Navier-Stokes equations (CNSE) which is given by

(3.3.3)


du
dt

+νAu−ν|∇u|2L2 u+B(u,u)= 0,

u(0)= u0 .

The majority of this thesis is dedicated to the study of the constrained Navier-Stokes equations

(3.3.3) under the impact of external forcing, both deterministic and stochastic. Even though in

Chapter 4 the analysis has been carried out in the absence of any deterministic external forcing

(i.e. assuming external force is identically zero) one can easily generalise the results obtained

there for non-zero deterministic external forcing, under suitable assumptions. We also show that

the solution of CNSE (3.3.3) converge to the unique solution (Bardos solution, see [5]) of the Euler

equations (formally obtained by putting ν= 0 in (3.3.1)) in inviscid limit (ν↘ 0) with appropriate

assumptions on the initial data.

In Chapter 5 we shift our focus to the stochastic generalisation of (3.3.3) where we assume

that the stochastic forcing is tangent to the manifold M , enabling the solution to stay on the

manifold. The analysis is carried out using classical tools from the theory of partial differential

equations, like Faedo-Galerkin approximations and compactness.
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4
DETERMINISTIC CONSTRAINED NAVIER-STOKES EQUATIONS ON A

2D TORUS

We study 2D Navier-Stokes equations with a constraint on L2 energy of the solution.

We prove the existence and uniqueness of a global solution for the constrained Navier-

Stokes equations on R2 and T2, by a fixed point argument. We also show that the

solution of constrained Navier-Stokes equations converges to the solution of Euler equations as

viscosity ν vanishes.

4.1 Introduction

The motivation behind this chapter is threefold. Firstly Caglioti et.al. in [31] studied the well-

posedness and asymptotic behaviour of two dimensional Navier-Stokes equations in the vorticity

form with two constraints: constant energy E(ω) and moment of inertia I(ω)

∂ω

∂t
+u ·∇ω= ν∆ω−νdiv

[
ω∇

(
bψ+a

|x|2
2

)]
,

which can be rewritten as

(4.1.1)
∂ω

∂t
+u ·∇ω= νdiv

[
ω∇

(
logω−bψ−a

|x|2
2

)]
,

where ω = Curl(u), a = a(ω) and b = b(ω) are the Lagrange multipliers associated to those

constraints and

E(ω)=
∫
R2
ψωdx , I(ω)=

∫
R2

|x|2ωdx, ψ=−∆−1ω .

They were able to show the existence of a unique classical global-in-time solution to (4.1.1) for a

family of initial data [31, Theorem 5]. They also showed that the solution to (4.1.1) converges, as
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time tends to +∞, to the unique solution of an associated microcanonical variational problem [31,

Theorem 8].

Secondly, Rybka [81] and Caffarelli & Lin [30] study the linear heat equation with constraints.

Rybka studied heat flow on a manifold M given by

M =
{

u ∈ L2(Ω)∩C (Ω) :
∫
Ω

uk(x)dx = Ck, k = 1, . . . , N
}

,

where Ω denotes a connected bounded region in R2 with smooth boundary. He proved [81,

Theorem 2.5] the existence of the unique global solution for the projected heat equation

(4.1.2)


du
dt =∆u−∑N

k=1λkuk−1 inΩ⊂R2 ,
∂u
∂n = 0 on ∂Ω, u(0, x)= u0 ,

where λk = λk(u) are such that ut is orthogonal to Span
{
uk−1}

, for a more regular initial data.

He also showed that the solutions to (4.1.2) converge to a steady state as time tends to +∞.

On the other hand Caffarelli and Lin initially establish the existence and uniqueness of a global,

energy-conserving solution to the heat equation [30, Theorem 1.1]. They were then able to extend

these results to more general family of singularly perturbed systems of non-local parabolic

equations [30, Theorem 3.1]. Their main result was to prove the strong convergence of the

solutions of these perturbed systems to some weak-solutions of the limiting constrained non-local

heat flows of maps into a singular space.

Finally, these equations should be a better approximation of the Euler equations (for small

viscosity), since for the Euler equations, the energy of (sufficiently smooth) solutions is constant

(see [31]).

In this chapter we consider a problem which links the aforementioned works. We consider

Navier-Stokes equations as in [31], but subject to the same energy constraint as in [30, 81].

Contrary to [31] we prove global-in-time existence of the solution but only on a torus, namely in

the periodic case. Surprisingly our proof of global existence does not hold for a general bounded

domain, although the local existence holds. We also prove our result of global existence of

the solution for R2. We additionally show that, in vanishing viscosity limit, the solution of the

constrained equation (4.1.3) below, converges to the Bardos solution (see [5]) of the Euler equation

(formally obtained setting ν= 0).

We are interested in the Cauchy problem
du
dt

=−νAu+ν|∇u|2L2 u−B(u,u) ,

u(0)= u0 ,
(4.1.3)

where u ∈H, and H is a space of divergence free, mean zero vector fields on a torus, see (3.1.2) for

the precise definition.

The above problem has a local maximal solution for each u0 ∈V∩M , where V is defined in

(3.1.2) and

M = {u ∈H : |u|H = 1} .
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Moreover u(t) ∈ M for all times t. This result is true, both for constrained Navier-Stokes

equations on a bounded domain or with periodic boundary conditions (i.e. on a torus). In a more

geometrical fashion, equation (4.1.3) can be also written as

du
dt

=−∇M E (u)−B(u,u) ,

where E (u)= 1
2 |∇u|2L2 ,u ∈M and ∇M E (u) is the gradient of E with respect to H-norm projected

onto TuM . The remarkable feature of this is that on a torus ∇M E (u) and B(u,u) are orthogonal

in H. This orthogonality holds for the Navier-Stokes without constraint too, i.e. on a torus ∇E (u)

is orthogonal to B(u,u) in H. The fact that this constraint preserves the orthogonality somehow

makes it a natural constraint.

Hence, at least in a heuristic way

d
dt

E (u(t))=
〈
∇M E (u(t)),

du
dt

〉
H

= 〈∇M E (u(t)),−∇M E (u(t))−B(u,u)〉H
=−|∇M E (u(t))|2H,

so that E (u(t)) is decreasing and thus the H1,2 norm of the solution remains bounded.

Next we state the two main results of this chapter on a torus.

Let us denote

XT =C ([0,T];V)∩L2(0,T;E) .

Theorem 4.1.1. Let ν> 0 be fixed. Let u0 ∈V∩M . Then there exists a global and locally unique

solution u of (4.1.3) such that u ∈ XT for each T > 0.

The space XT with more details and the precise definition of the solution of (4.1.3) will be

given in Section 4.2. Theorem 4.1.1 will be proved in steps in Sections 4.2 and 4.3.

Theorem 4.1.2. Let u0,uν0 ∈V∩M and uν be the solution of (4.1.3) (existence and uniqueness of

uν follows from Theorem 4.1.1). Assume that uν0 → u0 in V as ν↘ 0, and that Curl(uν0), Curl(u0)

stays uniformly bounded in L∞(T2). Then for each T > 0, uν converges in C ([0,T];L2(T2)) to the

unique solution u of the limiting equation (namely (4.1.3) with ν= 0).

We end the introduction with a brief description of the content of the chapter. In Section 4.2,

a precise definition of the solution to problem (4.1.3) is given, and local existence and uniqueness

are proved, together with some basic properties of the solution. In Section 4.3, global existence

is established. After proving Theorem 4.1.2 in Section 4.4, we study CNSE (4.1.3) in fractional

Sobolev spaces and establish the existence of a unique solution for much more regular initial data

in Section 4.5. We end the chapter by presenting a formal discussion regarding the lower bound

on the regularity of the initial data so as to have the existence of a solution to problem (4.1.3).
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4.2 Local solution : Existence and Uniqueness

In this section we will establish the existence of a local solution to
du
dt

+Au−|∇u|2L2 u+B(u,u)= 0,

u(0)= u0 ∈V∩M ,
(4.2.1)

by using the Banach fixed point theorem. We obtain certain estimates for non-linear terms of

(4.2.1) using results from Chapter 3. After obtaining these estimates we construct a globally

Lipschitz map. Some ideas in the Subsection 4.2.1 are based on [29].

In what follows we put E :=D(A) and V, H are spaces as defined in Section 3.1.

Lemma 4.2.1. Let G1 : V→H be defined by

G1(u)= |∇u|2L2 u, u ∈V.

Then, there exists C > 0 such that for u1,u2 ∈V,

(4.2.2) |G1(u1)−G1(u2)|H ≤ C‖u1 −u2‖V
[‖u1‖V +‖u2‖V

]2 .

Proof. Let us consider u1,u2 ∈V, then

|G1(u1)−G1(u2)|H = ∣∣|∇u1|2L2 u1 −|∇u2|2L2 u2
∣∣
H

= ∣∣|∇u1|2L2 u1 −|∇u1|2L2 u2 +|∇u1|2L2 u2 −|∇u2|2L2 u2
∣∣
H

= ∣∣|∇u1|2L2(u1 −u2)+ (|∇u1|2L2 −|∇u2|2L2)u2
∣∣
H

≤ |∇u1|2L2 |u1 −u2|H + [|∇u1|L2 +|∇u2|L2
][|∇u1|L2 −|∇u2|L2

] |u2|H
≤ |∇u1|2L2 |u1 −u2|H + [|∇u1|L2 +|∇u2|L2

] |∇(u1 −u2)|L2 |u2|H
≤ C

[|∇u1|2L2‖u1 −u2‖V + [|∇u1|L2 +|∇u2|L2
] |∇(u1 −u2)|L2‖u2‖V

]
≤ C‖u1 −u2‖V

[|∇u1|2L2 +|∇u2|L2‖u2‖V +|∇u1|L2‖u2‖V
]

,

where we have repeatedly used the fact that V is continuously embedded in H. Thus, we obtain

(4.2.2). �

Lemma 4.2.2. Let G2 : E→H be defined by

G2(u)= B(u,u) , u ∈E.

Then, there exists C̃ > 0 such that for u1,u2 ∈E,

(4.2.3) |G2(u1)−G2(u2)|H ≤ C̃
[
‖u1‖1/2

V |u1|1/2
E ‖u1 −u2‖V +‖u2‖V‖u1 −u2‖1/2

V |u1 −u2|1/2
E

]
.
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Proof. Let us take u1,u2 ∈E, then

|G2(u1)−G2(u2)|H = |B(u1,u1)−B(u2,u2)|H
= |B(u1,u1)−B(u2,u1)+B(u2,u1)−B(u2,u2)|H
= |B(u1 −u2,u1)+B(u2,u1 −u2)|H
= |Π [(u1 −u2) ·∇u1]+Π [u2 ·∇ (u1 −u2)]|H
≤ |(u1 −u2) ·∇u1|H +|u2 ·∇ (u1 −u2)|H
≤ |u1 −u2|L4(O )|∇u1|L4(O ) +|u2|L4(O )|∇(u1 −u2)|L4(O ) .

Now using the Ladyzhenkaya’s inequality (3.2.2) and the embedding of V in H, we obtain

|G2(u1)−G2(u2)|H ≤
p

2 |u1 −u2|1/2
H |∇(u1 −u2)|1/2

H |∇u1|1/2
H |∇2u1|1/2

H

+
p

2 |u2|1/2
H |∇u2|1/2

H |∇(u1 −u2)|1/2
H |∇2(u1 −u2)|1/2

H

≤
p

2 C
[
‖u1 −u2‖V‖u1‖1/2

V |u1|1/2
E

+‖u2‖V‖u1 −u2‖1/2
V |u1 −u2|1/2

E

]
.

Thus, we obtain the inequality (4.2.3). �

4.2.1 Construction of a globally Lipschitz map

Let θ :R+ → [0,1] be a C∞
0 non-increasing function such that

min
x∈R+

θ′(x)≥−1, θ(x)= 1 iff x ∈ [0,1] and θ(x)= 0 iff x ∈ [3,∞)

and for n ≥ 1 set θn(·)= θ( ·
n ). Observe that if h :R+ →R+ is a non-decreasing function, then for

every x, y ∈R+,

θn(x)h(x)≤ h(3n), |θn(x)−θn(y)| ≤ 3n|x− y| .
Let us fix T > 0. We will first construct a solution on [0,T]. For that, set

XT =C ([0,T];V)∩L2(0,T;E) ,

with norm

|u|2XT
= sup

t∈[0,T]
‖u(t)‖2

V +
∫ T

0
|u(t)|2E dt .

Let us define G : E→H as

(4.2.4) G(u) :=G1(u)−G2(u)= |∇u|2L2 u−B(u,u) .

Lemma 4.2.3. Suppose G : E→H is a map defined in (4.2.4). Define a map

Φn,T : XT → L2(0,T;H)
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by

(4.2.5) Φn,T (u)(t)= θn(|u|X t )G (u(t)) , t ∈ [0,T] .

Then Φn,T is globally Lipschitz and moreover, for any u1,u2 ∈ XT

(4.2.6) |Φn,T (u1)−Φn,T (u2)|L2(0,T;H) ≤ K(n,T)|u1 −u2|XT T
1
4 ,

where

K(n,T)= 3n
(
27n3T1/4 +9n2 +12nT1/4 +2

)
,

depends on n and T only.

Proof. Assume that u1,u2 ∈ XT . Set

τi = inf
{
t ∈ [0,T]; |ui|X t ≥ 3n

}
, i = 1,2.

Without loss of generality assume that τ1 ≤ τ2. Consider

|Φn,T (u1)−Φn,T (u2)|L2(0,T;H) =
[∫ T

0
|Φn,T (u1)−Φn,T (u2)|2H dt

] 1
2

=
[∫ T

0

∣∣∣θn(|u1|X t )G(u1)−θn(|u2|X t )G(u2)
∣∣∣2
H

dt
] 1

2

,

for i = 1,2 θn(|ui|X t )= 0 for t ≥ τ2, thus we have

|Φn,T (u1)−Φn,T (u2)|L2(0,T;H) =
[∫ τ2

0

∣∣∣θn(|u1|X t )G(u1)−θn(|u2|X t )G(u2)
∣∣∣2
H

dt
] 1

2

=
[∫ τ2

0

∣∣∣θn(|u1|X t ) [G1(u1)−G2(u1)]−θn(|u2|X t ) [G1(u2)−G2(u2)]
∣∣∣2
H

dt
] 1

2

=
[∫ τ2

0

∣∣∣θn(|u1|X t )G1(u1)−θn(|u1|X t )G1(u2)+θn(|u1|X t )G1(u2)−θn(|u2|X t )G1(u2)

+θn(|u1|X t )G2(u2)−θn(|u1|X t )G2(u1)+θn(|u2|X t )G2(u2)−θn(|u1|X t )G2(u2)
∣∣∣2
H

dt
] 1

2

.

Using the Minkowski inequality we get,

|Φn,T (u1)−Φn,T (u2)|L2(0,T;H)

≤
[∫ τ2

0

∣∣∣θn(|u1|X t ) [G1(u1)−G1(u2)]
∣∣∣2
H

dt
] 1

2 +
[∫ τ2

0

∣∣∣[θn(|u1|X t )−θn(|u2|X t )
]
G1(u2)

∣∣∣2
H

dt
] 1

2

+
[∫ τ2

0

∣∣∣θn(|u1|X t ) [G2(u2)−G2(u1)]
∣∣∣2
H

dt
] 1

2 +
[∫ τ2

0

∣∣∣[θn(|u2|X t )−θn(|u1|X t )
]
G2(u2)

∣∣∣2
H

dt
] 1

2
.
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Set

A1 =
[∫ τ2

0

∣∣∣[θn(|u1|X t )−θn(|u2|X t )
]
G1(u2)

∣∣∣2
H

dt
] 1

2
,

A2 =
[∫ τ2

0

∣∣∣θn(|u1|X t ) [G1(u1)−G1(u2)]
∣∣∣2
H

dt
] 1

2
,

A3 =
[∫ τ2

0

∣∣∣[θn(|u2|X t )−θn(|u1|X t )
]
G2(u2)

∣∣∣2
H

dt
] 1

2
,

A4 =
[∫ τ2

0

∣∣∣θn(|u1|X t ) [G2(u2)−G2(u1)]
∣∣∣2
H

dt
] 1

2
,

and hence

(4.2.7) |Φn,T (u1)−Φn,T (u2)|L2(0,T;H) ≤ A1 + A2 + A3 + A4.

Since θn is a Lipschitz function with Lipschitz constant 3n, we obtain

A2
1 =

∫ τ2

0

∣∣[θn(|u1|X t )−θn(|u2|X t )
]
G1(u2)

∣∣2
H dt ≤ 9n2

∫ τ2

0

∣∣ |u1|X t −|u2|X t

∣∣2
H |G1(u2)|2H dt .

Again, using the Minkowski inequality, we get

A2
1 ≤ 9n2

∫ τ2

0
|u1 −u2|2X t

|G1(u2)|2H dt

≤ 9n2 |u1 −u2|2XT

∫ τ2

0
|G1(u2)|2H dt .(4.2.8)

Now consider
∫ τ2

0 |G1(u2)|2H dt. Using (4.2.2) we get

∫ τ2

0
|G1(u2)|2H dt ≤ C

∫ τ2

0
‖u2(t)‖6

V dt ≤ C

[
sup

t∈[0,τ2]
‖u2(t)‖2

V

]3

τ2 .

Since

|u2|2Xτ2
= sup

t∈[0,τ2]
‖u2(t)‖2

V +
∫ τ2

0
|u2(t)|2E dt ,

thus

sup
t∈[0,τ2]

‖u2(t)‖2
V ≤ |u2|2Xτ2

,

and using

|u2|Xτ2
≤ 3n,

we get

∫ τ2

0
|G1(u2)|2H dt ≤ C

[
sup

t∈[0,τ2]
‖u2(t)‖2

V

]3

τ2 ≤ C|u2|6Xτ2
τ2 ≤ C(3n)6τ2 .

Hence, the inequality (4.2.8) takes the form

A2
1 ≤ 9n2C |u1 −u2|2XT

(3n)6τ2 ,
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from where we deduce

(4.2.9) A1 ≤ (3n)4C |u1 −u2|XT τ
1
2
2 .

Similarly, since θn(|u1|X t )= 0 for t ≥ τ1 and τ1 ≤ τ2, we have

A2 =
[∫ τ2

0

∣∣θn(|u1|X t ) [G1(u1)−G1(u2)]
∣∣2
H dt

] 1
2 =

[∫ τ1

0

∣∣θn(|u1|X t ) [G1(u1)−G1(u2)]
∣∣2
H dt

] 1
2

.

Since θn(|u1|X t )≤ 1 for t ∈ [0,τ1) and using (4.2.2), we have

A2
2 ≤

∫ τ1

0
|G1(u1)−G1(u2)|2H dt ≤ C

∫ τ1

0
‖u1(t)−u2(t)‖2

V [‖u1(t)‖V +‖u2(t)‖V]4 dt

≤ C sup
t∈[0,τ1]

‖u1(t)−u2(t)‖2
V

∫ τ1

0
[‖u1(t)‖V +‖u2(t)‖V]4 dt

≤ C|u1 −u2|2XT
sup

t∈[0,τ1]
[‖u1(t)‖V +‖u2(t)‖V]4

∫ τ1

0
dt

≤ C|u1 −u2|2XT

[
|u1|Xτ1

+|u2|Xτ1

]4
τ1 .

Since |ui|Xτi
≤ 3n, i = 1,2, we get,

A2
2 ≤ C|u1 −u2|2XT

[
|u1|Xτ1

+|u2|Xτ1

]4
τ1 ≤ (6n)4C|u1 −u2|2XT

τ1.

Thus

(4.2.10) A2 ≤ (6n)2C|u1 −u2|XTτ
1
2
1 .

Now we consider

A2
3 =

∫ τ2

0

∣∣∣[θn(|u2|X t )−θn(|u1|X t )
]
G2(u2)

∣∣∣2
H

dt .

Since θn is a Lipschitz function with Lipschitz constant 3n, we obtain

A2
3 ≤ 9n2

∫ τ2

0

∣∣|u2|X t −|u1|X t

∣∣2
H

∣∣G2(u2)
∣∣2
H dt .

Since ∣∣|u2|X t −|u1|X t

∣∣
H ≤ ∣∣u1 −u2

∣∣
X t

,

we get

A2
3 ≤ 9n2

∫ τ2

0

∣∣u1 −u2
∣∣2
X t

∣∣G2(u2)
∣∣2
H dt

≤ 9n2∣∣u1 −u2
∣∣2
XT

∫ τ2

0

∣∣G2(u2)
∣∣2
H dt .(4.2.11)

Now consider
∫ τ2

0

∣∣G2(u2)
∣∣2
Hdt. Using (4.2.3) we get

∫ τ2

0

∣∣G2(u2)
∣∣2
Hdt ≤ C̃

∫ τ2

0
‖u2(t)‖3

V|u2(t)|E dt ≤ C̃

[
sup

t∈[0,τ2]
‖u2(t)‖2

V

] 3
2 ∫ τ2

0
|u2(t)|E dt .
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We apply the Hölder inequality to obtain∫ τ2

0

∣∣G2(u2)
∣∣2
H dt ≤ C̃|u2|3Xτ2

[∫ τ2

0
|u2(t)|2E dt

] 1
2
[∫ τ2

0
dt

] 1
2

.

Now since
∫ τ2

0 |u2|2E dt ≤ |u2|2Xτ2
and |u2|Xτ2

≤ 3n,∫ τ2

0

∣∣G2(u2)
∣∣2
H dt ≤ C̃|u2|3Xτ2

|u2|Xτ2
τ

1
2
2 ≤ C̃(3n)4τ

1
2
2 .

Hence, the inequality (4.2.11) takes the form

A2
3 ≤ 9n2C̃|u1 −u2|2XT

(3n)4τ
1
2
2 ,

from where we deduce

(4.2.12) A3 ≤ (3n)3C̃|u1 −u2|XTτ
1
4
2 .

Since θn(|u1|X t )= 0 for t > τ1 and τ1 < τ2, we have

A4 =
[∫ τ2

0

∣∣∣θn(|u1|X t ) [G2(u2)−G2(u1)]
∣∣∣2
H

dt
] 1

2 =
[∫ τ1

0

∣∣∣θn(|u1|X t ) [G2(u2)−G2(u1)]
∣∣∣2
H

dt
] 1

2
.

Since θn(|u1|X t )≤ 1 for t ∈ [0,τ1] and using (4.2.3), we have

A4 ≤
[∫ τ1

0

∣∣∣G2(u2)−G2(u1)
∣∣∣2
H

dt
] 1

2

≤ C̃
[∫ τ1

0

[
‖u1‖1/2

V |u1|1/2
E ‖u1 −u2‖V +‖u1 −u2‖1/2

V |u1 −u2|1/2
E ‖u2‖V

]2
dt

] 1
2

.

Now by the Minkowski inequality,

A4 ≤ C̃

[[∫ τ1

0
|u1|E‖u1 −u2‖2

V‖u1‖V dt
] 1

2 +
[∫ τ1

0
‖u2‖2

V|u1 −u2|1/2
E ‖u1 −u2‖V dt

] 1
2
]

≤ C̃

 sup
t∈[0,τ1]

‖u1 −u2‖2
V

[
sup

t∈[0,τ1

‖u1‖2
V

] 1
2 ∫ τ1

0
|u1|E dt


1
2

+ C̃

 sup
t∈[0,τ1]

‖u2‖2
V

[
sup

t∈[0,τ1]
‖u1 −u2‖2

V

] 1
2 ∫ τ1

0
|u1 −u2|E dt


1
2

.

Since

sup
t∈[0,τ1]

‖ui‖2
V ≤ |ui|2Xτ1

,
∫ τ1

0
|u1|2E dt ≤ |u1|2Xτ1

,

and by using the Hölder inequality, we obtain

A4 ≤ C̃

[
|u1 −u2|2XT

|u1|Xτ1

[∫ τ1

0
|u1|2Edt

] 1
2
[∫ τ1

0
dt

] 1
2
] 1

2

+ C̃

[
|u1 −u2|XT |u2|2Xτ1

[∫ τ1

0
|u1 −u2|2Edt

] 1
2
[∫ τ1

0
dt

] 1
2
] 1

2

≤ C̃
[
|u1 −u2|2XT

|u1|2Xτ1
τ

1
2
1

] 1
2 + C̃

[
|u1 −u2|2XT

|u2|2Xτ1
τ

1
2
1

] 1
2

.
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For i = 1,2, |ui|Xτ1
≤ 3n, thus

(4.2.13) A4 ≤ 6nC̃|u1 −u2|XTτ
1
4
1 .

Now using (4.2.9), (4.2.11), (4.2.12) and (4.2.13) in (4.2.7), we obtain

|Φn,T (u1)−Φn,T (u2)|L2(0,T;H)

≤ (3n)4C|u1 −u2|XTτ
1
2
2 + (6n)2C|u1 −u2|XTτ

1
2
1 + (3n)3C̃|u1 −u2|XTτ

1
4
2 +6nC̃|u1 −u2|XTτ

1
4
1

≤ (3n)4C|u1 −u2|XT T
1
2 + (6n)2C|u1 −u2|XT T

1
2 + (3n)3C̃|u1 −u2|XT T

1
4 +6nC̃|u1 −u2|XT T

1
4

= K(n,T)|u1 −u2|XT T
1
4 ,

where

K(n,T)= 3n
(
27n3T1/4 +9n2 +12nT1/4 +2

)
,

is a constant which depends only on n and T. Thus we have proved that Φn,T is a Lipschitz

function and satisfies (4.2.6). �

4.2.2 Definition of a solution

Let us recall that E ,→V ,→H. S = (S(t))t≥0 is the Stokes semigroup. The following are well-known

[39, 88, 90]

A1. For every T > 0 and f ∈ L2(0,T;H) a function u = S∗ f , defined by

u(t)=
∫ T

0
S(t− r) f (r)dr , t ∈ [0,T] ,

belongs to XT and

(4.2.14) |u|XT ≤ C1| f |L2(0,T;H) .

A2. For every T > 0 and u0 ∈V a function u = Su0 defined by

u(t)= S(t)u0 ,

belongs to XT and

(4.2.15) |u|XT ≤ C2‖u0‖V .

Definition 4.2.4. • A solution of (4.2.1) on [0,T], T ∈ [0,∞) is a function u ∈ XT satisfying

u(t)= S(t)u0 +
∫ t

0
S(t− r)G(u(r))dr , ∀ t ∈ [0,T] ,

where G : E→H is defined by

G(u)= |∇u|2L2 u−B(u,u) , u ∈E.

• Let τ ∈ [0,∞]. A function u ∈C ([0,τ),V) is a solution to (4.2.1) on [0,τ) iff ∀ T < τ, u|[0,T] ∈
XT is a solution of (4.2.1) on [0,T].
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4.2.3 Local existence

Lemma 4.2.5. Let K(n,T) be as introduced in Lemma 4.2.3. Consider a map Ψn,T : XT → XT

defined by

Ψn,T (u)= S u0 +S∗Φn,T (u) , u ∈ XT .

Then for every u0 ∈V, there exists a constant C1 > 0 such that

(4.2.16) |Ψn,T (u1)−Ψn,T (u2)|XT ≤ C1K(n,T)|u1 −u2|XT T
1
4 , u1,u2 ∈ XT .

Moreover, ∀ ε ∈ (0,1) ∃ T0 = T0(n,ε) such that Ψn,T is an ε-contraction for T ≤ T0.

Proof. The map Ψn,T is evidently well defined. Now for any u1,u2 ∈ XT

|Ψn,T (u1)−Ψn,T (u2)|XT =
∣∣∣S(t)u0 +S∗Φn,T (u1)−S(t)u0 −S∗Φn,T (u2)

∣∣∣
XT

=
∣∣∣S∗ (Φn,T (u1)−Φn,T (u2))

∣∣∣
XT

,

then by treating S ∗ (Φn,T (u1)−Φn,T (u2)) as u and
[
Φn,T (u1)−Φn,T (u2)

] ∈ L2(0,T;H) as f in

inequality (4.2.14) and using Lemma 4.2.3 we get

|Ψn,T (u1)−Ψn,T (u2)|XT ≤ C1|Φn,T (u1)−Φn,T (u2)|L2(0,T;H)

≤ C1K(n,T)|u1 −u2|XT T
1
4 ,

which shows that Ψn,T is globally Lipschitz and satisfies (4.2.16).

Let us fix n ∈N and ε ∈ (0,1). Since the constant C1 is independent of T, we can find a T0 = T0(n,ε)

such that

C1K(n,T0)T
1
4
0 = ε ,

and thus Ψn,T is an ε-contraction for T ≤ T0. �

Let ε ∈ (0,1) then from Lemma 4.2.5, Ψn,T is an ε-contraction for T = T0(n,ε) and thus by

Banach Fixed Point Theorem there exists a unique un ∈ XT
1 s.t.

un =Ψn,T (un) .

This implies that

un(t)= [Ψn,T (un)](t), t ∈ [0,T0] .

Let us define

τn = inf
{
t ∈ [0,T0] : |un|X t ≥ n

}
.

Remark 4.2.6. If |un|X t < n for each t ∈ [0,Tn
0 ] then τn = Tn

0 .

1In fact un should have been denoted by un,T but we have refrained from this.
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Theorem 4.2.7. Let R > 0 be given then ∃ T∗ = T∗(R) such that for every u0 ∈V with ‖u0‖V ≤ R,

there exists a unique local solution u : [0,T∗]→V of (4.2.1).

Proof. Let R > 0 and fix ε ∈ (0,1). Let us choose2 n = bC2R
1−ε c+1 where C2 is as defined in (4.2.15).

Now for these fixed n and ε, ∃ T0(n,ε) such that Ψn,T is an ε-contraction for all T ≤ T0. In

particular, it is true for T = T0 and hence by Banach Fixed Point Theorem ∃! un ∈ XT0 such that

un =Ψn,T (un) .

Note that we have

|un|XT0
= |Ψn,T (un)|XT0

= |Su0 +S∗Φn,T (un)|XT0

≤ |Su0|XT0
+|S∗Φn,T (un)|XT0

.

Now from (4.2.15) and Lemma 4.2.5, we have

|un|XT0
≤ C2‖u0‖V +ε|un|XT0

.

Since ‖u0‖V ≤ R, hence on rearranging we get

(1−ε)|un|XT0
≤ C2R ,

and so

|un|XT0
≤ C2R

1−ε ≤ n .

Now since t 7→ | · |X t is an increasing function, the following holds

|un|X t ≤ n , ∀ t ∈ [0,T0] .

In particular, |un|XT0
≤ n, i.e. |un|XT0

is finite and thus un ∈ XT0 . This implies

θn(|un|X t )= 1, t ∈ [0,T0] .

Thus for t ∈ [0,T0]

un(t)= S(t)u0 +
∫ t

0
S(t− r)G(un(r))dr .

So un on [0,T∗(R)], where T∗ = T0(n,ε), solves (4.2.1) and T∗ depends only on R. Thus, we have

proved the existence of a unique local solution of (4.2.1) for every initial data u0 ∈ V, and this

unique solution is denoted by u. �

2bMc denotes the largest integer less than or equal to M.
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4.2.4 The local solution stays on the manifold M

Lemma 4.2.8. If u is the solution of (4.2.1) on [0,τ) then u′ ∈ L2(0,T;H), for every T < τ, i.e.

u′ ∈ L2
loc([0,τ);H). Moreover, u ∈ L2(0,T;D(A)).

Proof. Let us fix T < τ. Since u is the solution of (4.2.1) on [0,τ) it satisfies

(4.2.17)
du
dt

=−Au+|∇u|2L2 u−B(u,u) .

We will show that RHS of (4.2.17) belongs to L2(0,T;H) and hence u′ ∈ L2(0,T;H).

Since u ∈ L2(0,T;E), Au ∈ L2(0,T;H). From (4.2.2) we have∫ T

0

∣∣∣|∇u(t)|2L2 u(t)
∣∣∣2
H

dt ≤
∫ T

0
C2‖u(t)‖6

Vdt ≤ C2 sup
t∈[0,T]

‖u(t)‖6
V

∫ T

0
dt

≤ C2T

[
sup

t∈[0,T]
‖u(t)‖2

V

]3

≤ C2T|u|6XT
<∞ ,

thus we have shown that |∇u|2L2 u ∈ L2(0,T;H).

From (4.2.3), we have∫ T

0

∣∣∣B(u(t),u(t))
∣∣∣2
H

dt ≤ C̃2
∫ T

0
‖u(t)‖3

V|u(t)|Edt ≤ C̃2 sup
t∈[0,T]

‖u(t)‖3
V

∫ T

0
|u(t)|Edt

≤ C̃2

[
sup

t∈[0,T]
‖u(t)‖2

V

] 3
2 [∫ T

0
|u(t)|2Edt

] 1
2
[∫ T

0
dt

] 1
2

≤ C̃2|u|3XT
|u|XT T

1
2 <∞ .

Thus the convective term from Navier-Stokes also belongs to L2(0,T;H) and hence RHS of (4.2.17)

belongs to L2(0,T;H) which implies that u′ ∈ L2(0,T;H) for all T < τ. The second conclusion can

be inferred from property A1. �

Let us recall that the inner product 〈·, ·〉V was defined in Section 3.1 for R2 as well as T2.

Remark 4.2.9. In the framework of Lemma 2.6.3, we can identify v with u and so we get

(4.2.18)
1
2
|u(t)|2H = 1

2
|u0|2 +

∫ t

0
〈u′(s),u(s)〉H ds , for a.e. t ∈ [0,τ) .

Moreover, from Theorem 4.2.7 and Lemma 4.2.8

(4.2.19)
1
2
‖u(t)‖2

V = 1
2
‖u0‖2

V +
∫ t

0
〈u′(s),u(s)〉V ds , for a.e. t ∈ [0,τ) .

Theorem 4.2.10. If τ ∈ [0,∞], u0 ∈M ∩V and u is a solution to (4.2.1) on [0,τ) then u(t) ∈M for

all t ∈ [0,τ).
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Proof. Let u be the solution to (4.2.1) and u0 ∈M ∩V. Let us define φ(t)= |u(t)|2H −1. Then φ is

absolutely continuous and by Remark 4.2.9 and (4.2.1) we have a.e. on [0,τ)

d
dt
φ(t)= d

dt
[|u(t)|2H −1]= 2〈u′(t),u(t)〉H

= 2〈−Au(t)+|∇u(t)|2L2 u(t)−B(u(t),u(t)),u(t)〉H
=−2〈Au(t),u(t)〉H +2|∇u(t)|2L2〈u(t),u(t)〉H
=−2|∇u(t)|2L2 +2|∇u(t)|2L2 |u(t)|2

= 2|∇u(t)|2L2(|u(t)|2H −1)= |∇u(t)|2L2 φ(t) .

This on integration gives

φ(t)=φ(0)exp
[∫ t

0
|∇u(s)|2L2 ds

]
, t ∈ [0,τ) .

Since u0 ∈M ,φ(0)= 0 and also as u ∈ XT is the solution of (4.2.1),∫ t

0
|∇u(s)|2L2 ds ≤

∫ t

0
‖u(s)‖2

V ds <∞ , t ∈ [0,τ) .

Hence, we infer that |u(t)|2H = 1 for every t ∈ [0,τ). Thus, u(t) ∈M for every t ∈ [0,τ). �

Corollary 4.2.11. Let the initial data u0 ∈M ∩V and u is the solution to (4.2.1) on [0,τ). Then

u′(t) is orthogonal to u(t) in H for almost all t ∈ [0,τ).

Remark 4.2.12. We can also prove Theorem 4.2.7 and Theorem 4.2.10 for any general bounded

domain. Thus, establishing the existence of a local solution to (4.2.1) for any general bounded

domain and R2.

4.3 Global solution: Existence and Uniqueness

The main result of this section is the proof of Theorem 4.1.1, i.e. we will show that the local

solution obtained in Theorem 4.2.7 is indeed a global one. Lemma A.1 and the Remark 4.3.1

play crucial role in proving the global existence of the solution. We first show that the enstrophy

(gradient norm) of the solution remains bounded (see Lemma 4.3.2) and then use stitching

argument to extend our solution from [0,T], T <∞ on to the whole real line.

We recall the orthogonality property of the Stokes-operator in the following remark.

Remark 4.3.1. Let u ∈D(A), then

〈B(u,u),Au〉H = 0, ∀ u ∈D(A),

on a bounded domain with periodic boundary conditions (i.e. on a torus) [90] or on R2.
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We define the energy of our system by

E (u)= 1
2
|∇u|2L2 , u ∈V.

Then, heuristically, for u ∈V∩M ,

∇M E (u)=Πu(∇E )=Πu(Au)

=Au−|∇u|2L2 u .

Thus, for u ∈M

|∇M E (u)|2H = |Au|2H +|∇u|4L2 |u|2H −2|∇u|2L2〈Au,u〉H
= |u|2E +|∇u|4L2 −2|∇u|4L2 = |u|2E −|∇u|4L2 .(4.3.1)

In particular, the R.H.S. of (4.3.1) is ≥ 0.

Lemma 4.3.2. Let u0 ∈V and u be the local solution of (4.2.1) on [0,τ), then

sup
s∈[0,τ)

‖u(s)‖V ≤ ‖u0‖V .

Proof. Let u be the solution of (4.2.1). Then, from (4.2.1), Remark 4.2.9 and Corollary 4.2.11, for

any t ∈ [0,τ) we have

1
2
‖u(t)‖2

V = 1
2
‖u0‖2

V +
∫ t

0
〈u′(s),u(s)〉V ds

= 1
2
‖u0‖2

V +
∫ t

0
〈u′(s),u(s)〉H ds+

∫ t

0
〈u′(s),Au(s)〉H ds

= 1
2
‖u0‖2

V +
∫ t

0
〈−Au(s)+|∇u(s)|2L2 u(s)−B(u(s),u(s)),Au(s)〉H ds

= 1
2
‖u0‖2

V +
∫ t

0

[−〈Au(s),Au(s)〉H +|∇u(s)|2L2〈u(s),Au(s)〉H
]

ds

−
∫ t

0
〈B(u(s),u(s)),Au(s)〉H ds

= 1
2
‖u0‖2

V +
∫ t

0

[−|u(s)|2E +|∇u(s)|4L2

]
ds .

Now from Theorem 4.2.10 we know that u(t) ∈M for every t ∈ [0,τ) and hence by using (4.3.1) we

obtain,
1
2
‖u(t)‖2

V = 1
2
‖u0‖2

V −
∫ t

0

∣∣∣[∇M E (u)](s)
∣∣∣2
H

ds ,

and thus
1
2
‖u(t)‖2

V +
∫ t

0

∣∣∣[∇M E (u)](s)
∣∣∣2
H

ds = 1
2
‖u0‖2

V .

Hence, we have shown that

‖u(t)‖V ≤ ‖u0‖V , t ∈ [0,τ) .

�
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Remark 4.3.3. The boundedness of enstrophy (the square of the gradient norm) of the solution,

as proved in the Lemma 4.3.2, will play a crucial role in proving the existence of a global-in-time

solution to problem (4.2.1). Note that, in the proof of the Lemma 4.3.2, the orthogonality of the

Stokes operator A to the convective term B(u,u) in H was essential, which as far as we know,

holds only on R2 and on bounded domains with periodic boundary conditions (i.e. on a torus). This

is the reason we were unable to prove the existence of a global-in-time solution to problem (4.2.1)

on any general bounded domain.

Lemma 4.3.4. Let 0 ≤ a < b < c < ∞ and u ∈ X[a,b],v ∈ X[b,c], such that u(b−) = v(b+). Then

z ∈ X[a,c) where,

z(t)=
u(t), t ∈ [a,b) ,

v(t), t ∈ [b, c) .

Proof. Let us take 0 ≤ a < b < c <∞ and u ∈ X[a,b],v ∈ X[b,c], such that u(b−) = v(b+). Then for

any 0≤ t1 < t2 <∞, using the definition of the norm | · |X[t1 ,t2] , we have

|z|2X[a,c]
= sup

t∈[a,c]
‖z(t)‖2

V +
∫ c

a
|z(t)|2E dt

≤ sup
t∈[a,b]

‖z(t)‖2
V + sup

t∈[b,c]
‖z(t)‖2

V +
∫ b

a
|z(t)|2E dt+

∫ c

b
|z(t)|2E dt .

Now by the definition of z we have

|z|2X[a,c]
≤ sup

t∈[a,b]
‖u(t)‖2

V + sup
t∈[b,c]

‖v(t)‖2
V +

∫ b

a
|u(t)|2E dt+

∫ c

b
|v(t)|2E dt

= sup
t∈[a,b]

‖u(t)‖2
V +

∫ b

a
|u(t)|2E dt+ sup

t∈[b,c]
‖v(t)‖2

V +
∫ c

b
|v(t)|2E dt

= |u|2X[a,b]
+|v|2X[b,c]

.

Now since u ∈ X[a,b] and v ∈ X[b,c] we have |z|X[a,c] <∞, and thus, z ∈ X[a,c]. �

We will use the following lemma to prove the main result about existence of the global

solution.

Lemma 4.3.5. Let τ be finite and the initial data u0 ∈ V∩M . If u : [0,τ] → V is the solution of

(4.2.1) on [0,τ] and v : [τ,2τ]→V is the solution of (4.2.1) on [τ,2τ] such that u(τ−)= v(τ+), then

z : [0,2τ]→V defined as

z(t)=
u(t), t ∈ [0,τ] ,

v(t), t ∈ [τ,2τ] ,

is the solution of (4.2.1) on [0,2τ] and z ∈ X[0,2τ].
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Proof. Since u is the solution of (4.2.1) on [0,τ] then u ∈ X[0,τ] and similarly v ∈ X[τ,2τ] :=
C ([τ,2τ];V)∩ L2(τ,2τ;E). Thus by Lemma 4.3.4 and the definition of z, z ∈ X[0,2τ]. Now we

are left to show that z : [0,2τ]→V defined as

z(t)=
u(t), t ∈ [0,τ] ,

v(t), t ∈ [τ,2τ] ,

is the solution of (4.2.1) on [0,2τ]. In order to achieve this we will have to show that z satisfies

(4.3.2) for every t ∈ [0,2τ].

(4.3.2) z(t)= S(t)z(0)+
∫ t

0
S(t− r)G(z(r))dr .

For t ∈ [0,τ], z satisfies (4.3.2), since z(t)= u(t), ∀ t ∈ [0,τ] and u is the solution of (4.2.1) on

[0,τ].

For t ∈ [τ,2τ], z(t)= v(t) and since v is the solution to (4.2.1) on [τ,2τ],

z(t)= v(t)= S(t−τ)v(τ)+
∫ t

τ
S(t− r)G(v(r))dr .

Now because of continuity of u and v, v(τ)= u(τ),

z(t)= S(t−τ)
[
S(τ)u0 +

∫ τ

0
S(τ− r)G(u(r))dr

]
+

∫ t

τ
S(t− r)G(v(r))dr .

Now using the definition of z we obtain,

z(t)= S(t)z(0)+
∫ τ

0
S(t− r)G(z(r))dr+

∫ t

τ
S(t− r)G(z(r))dr

= S(t)z(0)+
∫ t

0
S(t− r)G(z(r))dr .

Thus z satisfies (4.3.2) on [0,2τ] and hence z is a solution to (4.2.1) on [0,2τ]. �

Proof of Theorem 4.1.1 Let us take u0 ∈V. Put R = ‖u0‖V. By Theorem 4.2.7 there exists a T > 0

such that there exists a unique function u : [0,T]→V which solves (4.2.1) on [0,T] and u ∈ XT .

Also by Lemma 4.3.2 ‖u(T)‖V ≤ R thus again by Theorem 4.2.7 there exists a unique function

v : [T,2T] → V which solves (4.2.1) on [T,2T] and v ∈ X[T,2T]. Now if we define a new function

z : [0,2T]→V as

z(t)=
u(t), t ∈ [0,T] ,

v(t), t ∈ [T,2T] ,

then by Lemma 4.3.5, z is also a solution of (4.2.1) and z ∈ X2T . Moreover ‖z(2T)‖V ≤ R. We can

keep doing this and extend our solution further and hence obtaining a global solution of (4.2.1)

still denoted by u such that u ∈ XT for every T <∞. Each bit of the solution is unique on the

respective domain and hence when we glue two unique bits we get a unique extension and thus

obtain a unique global solution due to its construction. �
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4.4 Convergence to the Euler equation, i.e. the inviscous limit

In this section we are concerned with the convergence of the solution of the constrained Navier-

Stokes equations, namely 
du
dt

+νAu−ν |∇u|2L2 u+B(u,u)= 0,

u(0)= uν0 ∈V∩M ,
(4.4.1)

as ν vanishes on a torus.

The curl of a vector field u is defined by

(4.4.2) Curl(u) := D1u2 −D2u1 .

We will prove Theorem 4.1.2 after several preliminary results.

Remark 4.4.1. Curl is a linear isomorphism between V and L2
0(T2), where

L2
0(T2) :=

{
ω ∈ L2(T2) :

∫
T2
ω(x)dx = 0

}
.

Moreover for u ∈V and some universal constants C > 0, Cp > 0

(4.4.3) |∆u|L2(T2) ≤ C|∇Curl(u)|L2(T2) ,

(4.4.4) ‖∇u‖Lp(T2) ≤ Cp‖Curl(u)‖L∞(T2) .

This remark is proved in Appendix B.

Hereafter uν is the solution to (4.4.1), and ων(t, x) := Curl(uν(t))(x). In particular, due to

Remark 4.4.1 and Theorem 4.2.10, ων ∈C ([0,T];L2
0(T2))∩L2(0,T;H1(T2)). It is then easy to check

that ων is a weak solution to
dων

dt
+∇· (uνων)= ν∆ων+ν |∇uν|2L2 ω

ν ,

ων(0)=ων0 :=Curl(uν0) ∈ L2
0(T2) .

(4.4.5)

Proposition 4.4.2. Let us fix T > 0, and assume that ων0 ∈ L∞(T2). Then

(4.4.6) sup
t∈[0,T]

‖ων(t)‖L∞(T2) ≤ ‖ων0‖L∞(T2) exp
(
ν‖uν0‖2

V T
)

,

(4.4.7) ν

∫ T

0
|∇ων(t)|2L2(T2) dt ≤ 1

2 |ων0|2L2(T2) +νT‖uν0‖2
V ‖ων0‖2

L∞(T2) exp
(
2ν‖uν0‖2

V T
)

.
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Proof. Take h ∈ C2(R), convex, with bounded second derivative. Then, since ω ∈C ([0,T];L2
0(T2))

〈h(ων(t)),1〉−〈h(ων0),1〉

= ν
∫ t

0

[−〈h′′(ων(s)), |∇ων(s)|2L2〉+ |∇uν(s)|2L2 〈h′(ων(s)),ων(s)〉] ds

≤ ν
∫ t

0
|∇uν(s)|2L2 〈h′(ων(s)),ων(s)〉ds.

(4.4.8)

For p ≥ 2,R > 0, take

(4.4.9) h(w)≡ hp,R(w) :=
|w|p, if |w| ≤ R ,

Rp + p Rp−1(|w|−R)+ p(p−1)
2 Rp−2(|w|−R)2, if |w| > R .

Then |h′(w)w| ≤ p h(w) and, by Lemma 4.3.2 ∀ s ∈ [0, t], ‖uν(s)‖2
V ≤ ‖uν0‖2

V

〈h(ων(t)),1〉 ≤ 〈h(ων0),1〉+ν p
∫ t

0
‖uν0‖2

V 〈h(ων(s)),1〉ds .(4.4.10)

By the Gronwall Lemma

〈h(ων(t)),1〉 ≤ 〈h(ων0),1〉exp
(
ν p‖uν0‖2

V t
)

, t ∈ [0,T] .(4.4.11)

Since

‖ων‖L∞ = sup
p,R

〈hp,R(ων),1〉1/p ,(4.4.12)

we get (4.4.6).

On the other hand, from the first equality in (4.4.8), taking now h(w)= w2/2

1
2 |ων(T)|2L2(T2) +ν

∫ T

0
|∇ων(t)|2L2(T2) dt = 1

2 |ων0|2L2(T2) +ν
∫ T

0
|∇uν(t)|2L2 |ων(t)|2L2(T2) dt

≤ 1
2 |ων0|2L2(T2) +νT‖uν0‖2

V ‖ων0‖2
L∞(T2)e

2νT‖uν
0‖2

V ,

where in the last line we used (4.4.6). Hence (4.4.7). �

Proposition 4.4.3. For each ϕ ∈H2(T2), and ν> 0

〈ων(t)−ων(s),ϕ〉 ≤ (t− s)
(|ων|L∞([0,T]×T2) +2ν‖uν0‖V(1+‖uν0‖2

V)
) |ϕ|H2(T2) .(4.4.13)

Proposition 4.4.4. Suppose that, uniformly in ν, uν0 is bounded in V and Curl(uν0) is bounded in

L∞(T2). Then the sequence uν is precompact in C ([0,T];L2(T2)).

Proof. Let us take and fix ϕ ∈ H2(T2). Also fix 0≤ s < t ≤ T. Then from the equation (4.4.5) and

‖uν(t)‖2
V ≤ ‖uν0‖2

V we get,

∣∣〈uν(t)−uν(s),ϕ〉∣∣≤ ν ∣∣∣∣∫ t

s
〈∆uν,ϕ〉dr

∣∣∣∣+ν‖uν0‖2
V

∫ t

s

∣∣〈uν,ϕ〉∣∣ dr+
∣∣∣∣∫ t

s
〈uν∇uν,ϕ〉dr

∣∣∣∣ .(4.4.14)
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By (4.4.3), (4.4.7) and the hypotheses on the initial data, the first term in the R.H.S. is bounded

by CT |ϕ|L2(t− s)1/2 for some constant CT independent on ν. The second term in the R.H.S. of

(4.4.14) easily enjoys the same bound. As for the third term in the R.H.S., for any p > 2, |u|L∞ ≤
Cp(|u|L2 +‖∇u‖Lp ), so that from (4.4.4) and (4.4.6), this term is still bounded by CT |ϕ|L2(t− s)1/2.

Therefore, since uν0 is bounded uniformly in L2(T2) by Poincaré inequality, it follows that uν

is equibounded and equicontinuous in L2(T2) and, by Arzelà-Ascoli theorem (see Theorem 2.4.3),

precompact in C ([0,T];L2(T2)). �

Proof of Theorem 4.1.2 Fix T > 0. Using Propositions 4.4.3 - 4.4.4, from each subsequence we can

extract a further subsequence such that ων→ω in C ([0,T];H−2(T2)) and weakly in L∞([0,T]×T2),

uν→ u weakly in L∞([0,T];V) and in C ([0,T];L2(T2)). It is immediate to check that ω=Curl(u).

Notice that ων0 :=Curl(uν0) converges weakly in L∞(T2) to ω0 :=Curl(u0). Passing to the limit

in the weak formulation of the equation one then has, for each ϕ ∈ C2([0,T]×T2)

(4.4.15) 〈ω(t),ϕ(t)〉−〈ω0,ϕ(0)〉−
∫ t

0
〈ω(s),∂sϕ(s)〉ds−

∫ t

0
〈u(s)ω(s),∇ϕ(s)〉ds = 0,

and ω(0)=ω0. Recalling that ω=Curl(u)

(4.4.16) 〈u(t),∇⊥ϕ(t)〉−〈u0,∇⊥ϕ(0)〉−
∫ t

0
〈u(s),∂s∇⊥ϕ(s)〉ds−

∫ t

0
〈u(s) ·∇u(s),∇⊥ϕ(s)〉ds = 0.

Since 〈uω,∇ϕ〉 = 〈u ·∇u,∇⊥ϕ〉 holds.

By Bardos uniqueness theorem [5, 37], we conclude that uν→ u. �

4.5 CNSE in the fractional Sobolev spaces

We study 2D Navier-Stokes equations with a constraint on L2 energy of the solution in fractional

Sobolev spaces. In Theorem 4.1.1 we proved the existence of a unique global-in-time solution

for the constrained Navier-Stokes equations (4.1.3) on R2 and T2 with initial data u0 ∈ V (see

Section 3.1). In this section we consider more regular initial data, u0 ∈ V̂=D(A
α
2 ), α ∈ (1,3/2)∪

{2} (see below for details), and prove the existence of a unique global-in-time solution for the

constrained Navier-Stokes equations on a general bounded domain under condition (4.5.21). In

particular, we show it for a bounded periodic domain.

Our proof heavily relies on the Lemma 4.5.2, which holds true only for γ ∈ (0, 1
2 ). This

restriction on γ, is the essential reason for not having an existence of the solution in the case of

α ∈ [3
2 ,2), included in this thesis.

We are interested in the initial value problem
du
dt

=−νAu+ν|∇u|2L2 u−B(u,u), on O ,

u(0)= u0, on O ,

u ·n= 0 on Γ ,

(4.5.1)
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where u ∈ H, and H is a space of divergence free vector fields, see (4.5.2) below for a precise

definition. Γ is the smooth boundary of the bounded and simply connected domain O . n is the

unit outward normal to Γ.

The above problem has a local maximal solution for each u0 ∈ V̂∩M , where V̂ is defined in

(4.5.3) and

M = {u ∈H : |u|H = 1} .

As in Theorem 4.2.10, the solution u of (4.5.4) stays on the manifold M for all times t. We

use a different approach to prove the existence of a global solution compared to the proof of

Theorem 4.1.1. We first show existence of a local solution using Banach fixed point theorem

and then use these local solutions to construct a maximal solution. Next using the maximality

of the solution we show that either the solution is a global one or V̂-norm blows up in finite

time, Lemma 4.5.10. Instead of using the geometric structure of (4.5.1) we use Lemma 2.6.5

and the Gronwall Lemma to obtain the bound on V̂-norm of the solution, Lemma 4.5.12 and

Remark 4.5.13. Invoking contradiction by the use of Lemmas 4.5.10 and 4.5.12, we infer the

existence of a global-in-time solution.

Let us fix T > 0 and set

XT =C ([0,T]; V̂)∩L2(0,T; Ê) .

The following theorem holds true for both, bounded domain with Dirichlet boundary conditions

and bounded domain with periodic boundary conditions, i.e. on a torus.

Theorem 4.5.1. Let α ∈ (
1, 3

2
)∪ {2} and u0 ∈ V̂∩M . If the function β defined in (4.5.21) belongs to

L1([0,T]) for every T > 0, then there exists a global and locally unique solution u of (4.5.1), such

that for every T > 0, u ∈ XT .

In Subsection 4.5.1, the space XT with more details along with a precise definition of the

solution is given, and existence of a local solution is proved, together with some basic properties

of the solution. In Subsection 4.5.2, the maximal solution is defined and it’s existence is proved.

Finally, in Subsection 4.5.3, we define the function β and establish the existence of the global

solution.

Let O be a bounded simply connected domain in R2 with sufficiently regular boundary Γ. We

introduce the following spaces:

H= {
u ∈ L2(O ,R2) : divu = 0,u ·n= 0 onΓ

}
,

V= H1
0 ∩H,

(4.5.2)

where n is the outward normal to Γ.

We endow H with the scalar product and norm of L2 and denote it by 〈u,v〉H, |u|H respectively

for u,v ∈H. We equip the space V with the scalar product and norm of H1 and will denote it by

〈·, ·〉V and ‖ ·‖V respectively.
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Let us recall the Stokes operator A : D(A)→H, which is defined by

D(A)=H∩H2(R2) ,

Au =−Π∆u , u ∈D(A).

It is well known that A is a self adjoint positive operator in H [93, Chapter 4]. Thus, the fractional

powers Aα exist for α ∈R, and

D(Aα)= [H,D(A)]α ,

where [·, ·]α is the complex interpolation functor of order α (see [58, Chapters 2 & 4]). The norms

in the space D(Aα) are equivalent to the norms in the space H2α. We will be using the following

spaces

V̂ :=D(A
α
2 ) ,

Ĥ :=D(A
α−1

2 ) ,

Ê :=D(A
α+1

2 ) .

(4.5.3)

Moreover, for α> 1, we have the following identities (see [92])

D(A
α
2 )= Hα(O )∩V,

D(A
α−1

2 )= Hα−1(O )∩H,

D(A
α+1

2 )= Hα+1(O )∩V.

4.5.1 Local solution : Existence and Uniqueness

In this subsection we will establish the existence of a local solution to the problem (we have taken

ν= 1) 
du
dt

+Au−|∇u|2L2 u+B(u,u)= 0,

u(0)= u0 ,
(4.5.4)

with u0 ∈ V̂∩M , by using the Banach fixed point theorem. We follow the same methodology as

we did while establishing the existence of a local solution to the problem (4.2.1).

The following lemma [12] along with the Gagliardo-Nirenberg inequality (4.5.6) plays a

crucial role in obtaining the bounds on the non-linear terms of (4.5.4)

Lemma 4.5.2. Assume that γ ∈ (0, 1
2 ). Then for any s ∈ (1,2] there exists a constant C > 0 such that

‖B(u,v)‖
D(A

γ
2 )
≤ C‖u‖D(A

s
2 )‖v‖

D(A
γ+1

2 )
, u,v ∈D(A).

In particular,

(4.5.5) ‖u∇v‖Hγ ≤ C‖u‖Hs‖v‖Hγ+1 , u,v ∈ H2 .
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Let u ∈ Hs for any s ∈ (1,2] and v ∈ H1 then there exists a positive constant C depending on s

such that

(4.5.6) ‖uv‖H1 ≤ C‖u‖Hs‖v‖H1 , u ∈ Hs,v ∈ H1 .

In what follows we assume that D(A),V, H, Ê, V̂ and Ĥ are spaces as defined above. The next

lemma establishing the estimates on the non-linear term arising from the constraint can be

proved in the similar way as Lemma 4.2.1. Thus, we will state the lemma without the proof.

Lemma 4.5.3. Let G1 : V̂→ Ĥ be defined by

G1(u)= |∇u|2L2 u , u ∈ V̂ .

Then there exists C > 0 such that for u1,u2 ∈ V̂,

(4.5.7) |G1(u1)−G1(u2)|Ĥ ≤ C‖u1 −u2‖V̂
[‖u1‖V̂ +‖u2‖V̂

]2 .

Lemma 4.5.4. Let α ∈ (
1, 3

2
)∪ {2} and G2 : Ê→ Ĥ be defined by

G2(u)= B(u,u) , u ∈ Ê .

Then there exists C̃ > 0 such that for u1,u2 ∈ Ê,

(4.5.8) |G2(u1)−G2(u2)|Ĥ ≤ C̃‖u1 −u2‖V̂
(‖u1‖V̂ +‖u2‖V̂

)
.

Proof. Let us take u1,u2 ∈ Ê, then

|G2(u1)−G2(u2)|Ĥ = |B(u1,u1)−B(u2,u2)|Ĥ
= |B(u1,u1)−B(u2,u1)+B(u2,u1)−B(u2,u2)|Ĥ
= |B(u1 −u2,u1)+B(u2,u1 −u2)|Ĥ
= |Π [(u1 −u2) ·∇u1]+Π [u2 ·∇ (u1 −u2)]|Ĥ
≤ ‖(u1 −u2) ·∇u1‖Hα−1 +‖u2 ·∇(u1 −u2)‖Hα−1 .

Now for α ∈ (1, 3
2 ), we use (4.5.5) with γ=α−1 ∈ (0, 1

2 ), and for α= 2 we use (4.5.6). Since, (4.5.5)

and (4.5.6) hold for any s ∈ (1,2]; we choose s =α, and hence we obtain

‖(u1 −u2) ·∇u1‖Hα−1 +‖u2∇· (u1 −u2)‖Hα−1 ≤ C‖u1 −u2‖Hα‖u1‖Hα +C‖u2‖Hα‖u1 −u2‖Hα

≤ C‖u1 −u2‖Hα(‖u1‖Hα +‖u2‖Hα)

≤ C‖u1 −u2‖V̂(‖u1‖V̂ +‖u2‖V̂) .(4.5.9)

In case of α= 2 the above inequalities take the form

‖(u1 −u2) ·∇u1‖H1 +‖u2∇· (u1 −u2)‖H1 ≤ C‖u1 −u2‖H2‖∇u1‖H1 +C‖u2‖H2‖∇(u1 −u2)‖H1

≤ C‖u1 −u2‖H2(‖u1‖H2 +‖u2‖H2)

≤ C‖u1 −u2‖V̂(‖u1‖V̂ +‖u2‖V̂) ,(4.5.10)

69



CHAPTER 4. DETERMINISTIC CNSE ON A 2D TORUS

where the last inequality holds since for α= 2, D(A
α
2 )= H2 ∩V .

Thus for α ∈ (1, 3
2 )∪ {2}, from (4.5.9) and (4.5.10), we obtain

|G2(u1)−G2(u2)|Ĥ ≤ C̃‖u1 −u2‖V̂
(‖u1‖V̂ +‖u2‖V̂

)
.

�

Let us recall that Ê ,→ V̂ ,→ Ĥ. Let S = (S(t))t≥0 be the semigroup on Ĥ generated by the

Stokes operator. Then the following are well-known [39, 88, 90]:

A1. For every T > 0 and f ∈ L2(0,T; Ĥ) a function u = S∗ f , defined by

u(t)=
∫ T

0
S(t− r) f (r)dr t ∈ [0,T] ,

belongs to XT :=C ([0,T]; V̂)∩L2(0,T; Ê) and

(4.5.11) |u|XT ≤ C1| f |L2(0,T;Ĥ) ,

where |u|2XT
:= supt∈[0,T] ‖u(t)‖2

V̂
+∫ T

0 |u(t)|2
Ê

dt .

A2. For every T > 0 and u0 ∈ V̂ a function u = Su0 defined by

u(t)= S(t)u0,

belongs to XT and

(4.5.12) |u|XT ≤ C2‖u0‖V̂ .

Definition 4.5.5. • A solution of (4.5.4) on [0,T], T ∈ [0,∞) is a function u ∈ XT satisfying

u(t)= S(t)u0 +
∫ t

0
S(t− r)G(u(r))dr t ∈ [0,T] ,

where G : Ê→ Ĥ is defined by

G(u)= |∇u|2L2 u−B(u,u) , u ∈ Ê .

• Let τ ∈ [0,∞]. A function u ∈C ([0,τ), V̂) is a solution to (4.5.4) on [0,τ) iff ∀ T < τ, u|[0,T] ∈
XT is a solution of (4.5.4) on [0,T].

Now we state the main result of this section, which can be proved as Theorem 4.2.7 using

Lemmas 4.5.3 - 4.5.4.

Theorem 4.5.6. Let R > 0 be given then ∃ T∗ = T∗(R) such that for every u0 ∈ V̂ with ‖u0‖V̂ ≤ R

there exists a unique local solution u : [0,T∗]→ V̂ of (4.5.4).

The following theorem states that the local solution of (4.5.4) stays on the manifold M .

Theorem 4.5.7. If τ ∈ [0,∞], u0 ∈M ∩ V̂ and u is a solution to (4.5.4) on [0,τ) then u(t) ∈M for

all t ∈ [0,τ).

The proof of Theorem 4.5.7 is essentially the same as of Theorem 4.2.10 and hence, we have

skipped it here.
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4.5.2 Maximal solution

Let G be a set of all local solutions, whose existence was established in Theorem 4.5.6. Let

u1,u2 ∈G defined on [0,τ1) and [0,τ2) respectively. We define an order "¹ " on G by

u1 ¹ u2 iff τ1 ≤ τ2 and u2|[0,τ1) = u1 .

Lemma 4.5.8. If G and ¹ are as described above. Then, G has a maximal element.

Proof. In order to show that G has a maximal element we will prove that {G ,¹} is a partially

ordered set (poset) and every chain in G has an upper bound in G .

Claim {G ,¹} is a poset.

Let u1,u2,u3 ∈G s.t. ui is a solution of (4.5.4) on [0,τi), i = 1,2,3.

(a) ¹ is reflexive.

u1 ¹ u1 since τ1 = τ1 and u1|[0,τ1) = u1. Hence ¹ is reflexive.

(b) ¹ is anti-symmetric.

Let u1 ¹ u2 and u2 ¹ u1.

(4.5.13) u1 ¹ u2 =⇒ τ1 ≤ τ2 and u2|[0,τ1) = u1 .

(4.5.14) u2 ¹ u1 =⇒ τ2 ≤ τ1 and u1|[0,τ2) = u2 .

(4.5.13) and (4.5.14) =⇒ τ1 = τ2 and

u1 = u2|[0,τ1) = u2|[0,τ2) = u2 .

Hence ¹ is anti-symmetric.

(c) ¹ is transitive.

Let u1 ¹ u2 and u2 ¹ u3.

(4.5.15) u1 ¹ u2 =⇒ τ1 ≤ τ2 and u2|[0,τ1) = u1 ,

(4.5.16) u2 ¹ u3 =⇒ τ2 ≤ τ3 and u3|[0,τ2) = u2 ,

(4.5.15) and (4.5.16) =⇒ τ1 ≤ τ3 and

u3|[0,τ1) = u2|[0,τ1) = u1 .

Thus u1 ¹ u3. Hence ¹ is transitive.

Thus from (a), (b) and (c), we conclude that {G ,¹} is a poset.

Let ui1 ¹ ui2 ¹ ui3 ¹ ·· · be a chain in G , where each uin is a solution of (4.5.4) on [0,τin ) and

τi1 ≤ τi2 ≤ τi3 ≤ ·· · . Also, let τ= supin ,n∈Nτin and we define u : [0,τ)→ V̂ by

u(t)= uin (t) if t ∈ [0,τin ) .
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Since [0,τin ) ⊂ [0,τ) for every n ∈ N, u is the upper bound of the chain. Since each of uin is a

solution of (4.5.4), u|[0,τ) ∈ XT and from the definition of u it is clear that u solves (4.5.4) on [0,τ),

thus u ∈G .

Hence every chain in G has an upper bound in G . Thus by the Kuratowski-Zorn Lemma (see

Lemma 2.6.12) G has at least one maximal element. �

Definition 4.5.9. We say that a function u is a maximal solution on [0,τ) if u is a solution to

(4.5.4) on [0,τ) and if there exists another function v ∈ XT satisfying (4.5.4) on [0,τv) such that

u ¹ v then τv = τ and u(t)= v(t) ∀ t ∈ [0,τ).

Lemma 4.5.10. Suppose u is a local maximal solution of (4.5.4) on [0,τ) and τ<∞. Then

∀ R > 0, ∃ δ> 0 : ‖u(t)‖V̂ > R if t ∈ (τ−δ,τ) .

Proof. We will prove the proposition by contradiction, i.e. we assume that ∃ R > 0 such that

∀ δ> 0, ∃ tδ ∈ (τ−δ,τ) : ‖u(tδ)‖V̂ < R.

Let us choose δ> 0 such that δ< T∗
2 ∧τ, where T∗ will be chosen later in the proof. Then for

this δ, there exists a tδ ∈ (τ−δ,τ) such that ‖u(tδ)‖V̂ < R.

Now since ‖u(tδ)‖V̂ < R, then by Theorem 4.5.6, there exists T∗ = T∗(R) such that there exists

a unique solution v of (4.5.4) on [tδ, tδ+T∗] and v(tδ)= u(tδ). So on the common domain v= u, i.e.

v(t)= u(t) , t ∈ [tδ,τ) .

Now let us define z : [0, τ̂]→ V̂ as follows:

z(t)=
u(t), t ∈ [0, tδ]

v(t), t ∈ [tδ, τ̂] ,

where τ̂ := tδ+T∗.

Claim u ¹ z and u 6= z.

Since [0,τ]( [0, τ̂], i.e. the domain of z is bigger than that of u and thus by the definition of z,

u 6= z.

Now we need to show that z is a solution of (4.5.4). It is clear from Lemma 4.3.4 that z ∈ X τ̂.

Now it remains to show that z satisfies (4.5.17) for t ∈ [0, τ̂].

(4.5.17) z(t)= S(t)z(0)+
∫ t

0
S(t− r)G(z(r))dr .

For t ∈ [0, tδ], z satisfies (4.5.17), since z(t)= u(t), ∀ t ∈ [0, tδ].

For t ∈ [tδ, τ̂], z(t)= v(t) and since v is the solution of (4.5.4) on [tδ, τ̂],

z(t)= v(t)= S(t− tδ)v(tδ)+
∫ t

tδ
S(t− r)G(v(r))dr .
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Now since v(tδ)= u(tδ),

z(t)= S(t− tδ)
[
S(tδ)u0 +

∫ tδ

0
S(tδ− r)G(u(r))dr

]
+

∫ t

tδ
S(t− r)G(v(r))dr

Now using the definition of z we obtain,

z(t)= S(t)z(0)+
∫ tδ

0
S(t− r)G(z(r))dr+

∫ t

tδ
S(t− r)G(z(r))dr

= S(t)z(0)+
∫ t

0
S(t− r)G(z(r))dr .

Thus z satisfies (4.5.17) on [0, τ̂] and hence z is a solution to (4.5.4) on [0, τ̂].

Hence, u ¹ z, but u is the maximal solution and thus we have the contradiction. This implies

limt→τ− ‖u(t)‖V̂ =∞. �

4.5.3 Global solution: Existence and Uniqueness

In this subsection we will prove the existence of a global solution of (4.5.4) with u0 ∈M ∩ V̂ for

both, bounded domain with Dirichlet boundary conditions (see Theorem 4.5.14) and bounded

domain with periodic boundary conditions, i.e. on a torus (see Corollary 4.5.15). We use the

stitching argument to extend our solution from [0,T], T <∞ on to the whole real line.

Let us recall the functional spaces that we will be using

V̂ :=D(A
α
2 ) ,

Ĥ :=D(A
α−1

2 ) ,

Ê :=D(A
α+1

2 ) .

Lemma 4.5.11. Let α ∈ (1, 3
2 ), θ ∈ (0,1). Then for every ε> 0 there exists a constant C > 0, such

that

(4.5.18) |〈B(u,u),Aαu〉H| ≤ ε|u|2
Ê
+ C
ε
‖u‖2

V̂
‖u‖2−2θ

V |u|2θE , u ∈D(Aα) .

Moreover for α= 2, for every ε> 0 there exists a constant C̃ > 0, such that

(4.5.19) |〈B(u,u),A2u〉H| ≤ ε|u|2
Ê
+ C̃
ε
|u|4E , u ∈D(A2) .

Proof. Let α ∈ (1,3/2) and u ∈D(Aα), then

|〈B(u,u),Aαu〉H| = |〈A α−1
2 B(u,u),A

α+1
2 u〉H|

≤ |A α−1
2 B(u,u)|H|A α+1

2 u|H .

Now using Lemma 4.5.2 with γ=α−1, Interpolation Theorem and the Young inequality we get

for u ∈D(Aα)

|〈B(u,u),Aαu〉H| ≤ C‖u‖Hs‖u‖V̂|u|Ê
≤ C‖u‖1−θ

H1 ‖u‖θH2‖u‖V̂|u|Ê
≤ ε|u|2

Ê
+ C
ε
‖u‖2

V̂
‖u‖2−2θ

V |u|2θE ,
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where θ(s)= s−1 ∈ (0,1].

Let α= 2, then for u ∈D(A2) using Cauchy-Schwarz inequality we get

|〈B(u,u),A2u〉H| = |〈A 1
2 B(u,u),A

3
2 u〉H ≤ ‖B(u,u)‖V|u|Ê ,

where Ê=D(A
3
2 ). Using (4.5.10) and the Young inequality, we obtain

|〈B(u,u),A2u〉H| ≤ C̃|u|2E|u|Ê ≤ ε|u|2
Ê
+ C̃
ε
|u|4E .

Now since for α= 2, V̂=E, (4.5.19) can be rewritten as

(4.5.20) |〈B(u,u),A2u〉H| ≤ ε|u|2
Ê
+ C̃
ε
|u|4

V̂
.

�

Lemma 4.5.12. Let α ∈ (1, 3
2 ) and u be a maximal solution of (4.5.4) on [0,τ) with u0 ∈M ∩ V̂. If

ε ∈ (0,1], θ ∈ (0,1), then there exists a C > 0 such that

‖u(t)‖2
V̂
≤ ‖u0‖2

V̂
+‖u0‖2

V̂

∫ t

0
β(s)e

∫ t
s β(r)dr ds , t ∈ [0,τ) ,

where

(4.5.21) β(s)= 2|∇u(s)|2L2 + 2C
ε

‖u(s)‖2−2θ
V |u(s)|2θE , s ∈ [0,τ) .

Proof. Let α ∈ (1, 3
2 ), u0 ∈ M ∩V and u be the maximal solution of (4.5.4) on [0,τ). Then using

(4.5.4), we have

1
2
‖u(t)‖2

V̂
= 1

2
‖u0‖2

V̂
+

∫ t

0
〈u′(s),Aαu(s)〉H ds

= 1
2
‖u0‖2

V̂
+

∫ t

0
〈|∇u(s)|2L2 u(s)−Au(s)−B(u(s),u(s)),Aαu(s)〉H ds

= 1
2
‖u0‖2

V̂
+

∫ t

0
〈|∇u(s)|2L2 u(s),Aαu(s)〉H ds−

∫ t

0
〈Au(s),Aαu(s)〉H ds

−
∫ t

0
〈B(u(s),u(s)),Aαu(s)〉H ds

= 1
2
‖u0‖2

V̂
+

∫ t

0
|∇u(s)|2L2〈u(s),Aαu(s)〉H ds−

∫ t

0
〈A α+1

2 u(s),A
α+1

2 u(s)〉H ds

−
∫ t

0
〈B(u(s),u(s)),Aαu(s)〉H ds .

On rearranging we get

1
2
‖u(t)‖2

V̂
+

∫ t

0
|u(s)|2

Ê
ds = 1

2
‖u0‖2

V̂
+

∫ t

0
|∇u(s)|2L2‖u(s)‖2

V̂
ds−

∫ t

0
〈B(u(s),u(s)),Aαu(s)〉H ds .
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Using the Cauchy-Schwarz inequality, the Young inequality and Lemma 4.5.11 for every ε ∈ (0,1]

there exists a C > 0 such that for every θ ∈ (0,1)

1
2
‖u(t)‖2

V̂
+

∫ t

0
|u(s)|2

Ê
ds ≤ 1

2
‖u0‖2

V̂
+

∫ t

0
|∇u(s)|2‖u(s)‖2

V̂
ds+

∫ t

0
|〈B(u(s),u(s)),Aαu(s)〉H|ds

≤ 1
2
‖u0‖2

V̂
+

∫ t

0
|∇u(s)|2L2‖u(s)‖2

V̂
ds+

∫ t

0

[
ε|u(s)|2

Ê
+ C
ε
‖u(s)‖2

V̂
‖u(s)‖2−2θ

V |u(s)|2θE

]
ds .

Thus on rearranging we get

1
2
‖u(t)‖2

V̂
+ (1−ε)

∫ t

0
|u(s)|2

Ê
ds ≤ 1

2
‖u0‖2

V̂
+

∫ t

0

[
|∇u(s)|2L2 + C

ε
‖u(s)‖2−2θ

V |u(s)|2θE

]
‖u(s)‖2

V̂
ds .

In particular

(4.5.22)
1
2
‖u(t)‖2

V̂
≤ 1

2
‖u0‖2

V̂
+

∫ t

0

[
|∇u(s)|2L2 + C

ε
‖u(s)‖2−2θ

V |u(s)|2θE

]
‖u(s)‖2

V̂
ds .

Now we apply the Gronwall Lemma in integral form with

β(s)= 2|∇u(s)|2L2 + 2C
ε

‖u(s)‖2−2θ
V |u(s)|2θE , s ∈ [0, t] ,

to obtain

(4.5.23) ‖u(t)‖2
V̂
≤ ‖u0‖2

V̂
+‖u0‖2

V̂

∫ t

0
β(s)e

∫ t
s β(r)dr ds .

�

Remark 4.5.13. Now for α= 2, using (4.5.19), equation (4.5.22) transforms to

(4.5.24)
1
2
|u(t)|2E ≤ 1

2
|u0|2E +

∫ t

0

[
|∇u(s)|2L2 + C

ε
|u(s)|2E

]
|u(s)|2E ds .

Thus, for every ε ∈ (0,1], Lemma 4.5.12 holds true for

β(s)= 2|∇u(s)|2L2 + 2C
ε

|u(s)|2E , s ∈ [0,τ) .

Theorem 4.5.14. Let u be a local maximal solution of (4.5.4) on [0,τ) with τ<∞, u0 ∈M ∩ V̂. If

the function β defined in (4.5.21) belongs to L1([0,τ)), then τ=∞.

Proof. We will prove the theorem by contradiction. Assume τ<∞, then by Lemma 4.5.10

lim
t→τ−

‖u(t)‖2
V̂
=∞ .

But on the other hand, if β ∈ L1([0,τ)) then by Lemma 4.5.12 there exists some K > 0 such that

supt∈[0,τ)‖u(t)‖2
V̂
< K ,

which is a contradiction. Thus we infer that τ=∞. �
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Corollary 4.5.15. Let O be a bounded periodic domain, α ∈ (1, 3
2 )∪ {2} and u0 ∈M ∩D(A

α
2 ). Then

there exists a unique global solution u of (4.5.4) such that for every T > 0, u ∈ XT .

Proof. Let u0 ∈M ∩D(A
α
2 ). It is enough to show that for τ<∞, the function β defined by (4.5.21)

belongs to L1([0,τ), in case of a periodic bounded domain. Now by Theorem 4.1.1, for every τ> 0,

u ∈C ([0,τ];V)∩L2(0,τ;E) and thus β belongs to L1([0,τ)). Hence from Theorem 4.5.14, we have a

unique global solution of (4.5.4). �

4.6 Lower bound on the regularity of the initial data

This section is dedicated to finding a lower bound on the regularity of the initial data u0 such

that problem (4.5.4) has a local solution. The analysis carried out in this section is on a formal

level and some of the details need to be verified hence, remains an open problem.

In the previous sections we have established the existence of a local solution for any general

bounded domain O ⊂R2 and hence we have focussed on such a case here too. We are interested in

the existence of a local solution of the following problem:
du
dt

+Au = |∇u|2L2 u−B(u,u) ,

u(0)= u0 ∈ V̂∩M ,
(4.6.1)

where the Stokes operator A, the bilinear map B, the manifold M and the functional space V̂=
D(A

α
2 ) are understood as in the previous section. After establishing the existence for α ∈ [1, 3

2 )∪{2}

we are specifically interested in α ∈ (0,1).

If the initial data u0 ∈ V̂, then according to the maximal regularity principle [39], the solution

u of the parabolic equation (4.6.1) should belong to XT :=C ([0,T]; V̂)∩L2(0,T; Ê), which in turn

is possible only if the R.H.S. of equation (4.6.1) belongs to L2(0,T; Ĥ).

Since we are interested in finding a lower bound on α we will take a bottom to top approach,

i.e. we will assume that u, the solution of (4.6.1) belongs to XT and then obtain bounds on α for

which each term in the R.H.S. of (4.6.1) belongs to L2(0,T; Ĥ).

Lemma 4.6.1. Let α ∈ (0,1) and u ∈ Ê. Then, there exists a constant C > 0 such that

(4.6.2) |B(u,u)|Ĥ ≤ C‖u‖V̂|u|Ê .

In particular, if u ∈ XT then for every α ∈ (0,1), B(u,u) ∈ L2(0,T; Ĥ).

Proof. Let α> 0 and ϕ ∈ H1−α, then

|b(u,u,ϕ)| = |〈B(u,u),ϕ〉| =
∣∣∣∣∫

O
(u(x) ·∇)u(x)ϕ(x)dx

∣∣∣∣ ,

≤ |u|
L

2
1−α

|∇u|L2 |ϕ|
L

2
α

,(4.6.3)
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where 〈·, ·〉 denotes the duality between Hα−1 and H1−α and we have used the Hölder inequality

to obtain the last relation.

Using the Sobolev embedding theorem for a bounded domain in R2, we have

H1−α ⊂ L
2
α and Hα ⊂ L

2
1−α ,

where α ∈ (0,1). Thus (4.6.3) can be rewritten as

|b(u,u,ϕ)| ≤ C‖u‖Hα |∇u|L2 |ϕ|H1−α

≤ C‖u‖Hα‖u‖V|ϕ|H1−α ,

where C > 0 is a generic constant. Since ϕ ∈ H1−α and Ê⊂V, we have

(4.6.4) |B(u,u)|Ĥ ≤ C‖u‖V̂|u|Ê ,

where we have used the definition of functional spaces from (4.5.3).

Using (4.6.4) and the Hölder inequality, we get∫ T

0
|B(u(t),u(t))|2

Ĥ
dt ≤ C

∫ T

0
|u(t)|2

Ê
‖u(t)‖2

V̂
dt

≤ C sup
t∈[0,T]

‖u(t)‖2
V̂

∫ T

0
|u(t)|2

Ê
dt

≤ C|u|2XT
|u|2XT

.

Since u ∈ XT , we infer that B(u,u) ∈ L2(0,T; Ĥ). �

Lemma 4.6.2. Let u ∈ XT , then for α ∈ [1
2 ,1

)
, |∇u|2L2 u ∈ L2(0,T; Ĥ).

Proof. Let u ∈ XT . Note that for α ∈ (0,1) we have the following inclusion of functional spaces

V̂⊂H⊂ Ĥ. Then by the Hölder inequality, we have∣∣∣|∇u|2L2 u
∣∣∣2
L2(0,T;Ĥ)

=
∫ T

0
|∇u(t)|4L2 |u(t)|2

Ĥ
dt

≤ sup
t∈[0,T]

‖u(t)‖2
V̂

∫ T

0
|∇u(t)|4L2 dt .(4.6.5)

Using the interpolation between V̂ and Ĥ, for every v ∈ V̂ there exists a constant C > 0 such that

|v|H ≤ C|v|α
Ĥ
‖v‖1−α

V̂
.

Therefore on using the above relation in (4.6.5), we obtain∣∣∣|∇u|2L2 u
∣∣∣2
L2(0,T;Ĥ)

≤ C sup
t∈[0,T]

‖u(t)‖2
V̂

∫ T

0
|∇u(t)|4α

Ĥ
‖∇u(t)‖4(1−α)

V̂
dt

≤ C|u|2XT

∫ T

0
‖u(t)‖4α

V̂
|u(t)|4(1−α)

Ê
dt ≤ C|u|2XT

sup
t∈[0,T]

‖u(t)‖4α
V̂

∫ T

0
|u(t)|4(1−α)

Ê
dt

≤ C|u|2XT
|u|4αXT

[∫ T

0
|u(t)|2

Ê
dt

]2(1−α) [∫ T

0
dt

]2α−1

≤ C|u|2(1+2α)
XT

|u|4(1−α)
XT

T2α−1 .

Thus, we infer that for α ∈ [1
2 ,1

)
, |∇u|2L2 u ∈ L2(0,T; Ĥ). �
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Hence, from Lemmas 4.6.1 - 4.6.2 and maximal regularity principle we can conclude that the

minimum regularity required for initial data u0 such that the problem (4.6.1) has a local solution

is D(A1/4).

As mentioned at the beginning of this section, the analysis carried out here is at a formal

level, thus one needs to make sure that this holds rigorously too.
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5
STOCHASTIC CONSTRAINED NAVIER-STOKES EQUATIONS

S tochastic constrained Navier-Stokes equations are a generalisation of constrained Navier-

Stokes equations which were introduced in Chapter 3. In this chapter we study constrained

2-dimensional Navier-Stokes equations driven by a multiplicative Gaussian noise in the

Stratonovich form. In the deterministic case (see Chapter 4) we showed the existence of the global

solution on a two dimensional torus and hence we concentrate on such a case here. We prove the

existence of a martingale solution and later using Schmalfuss idea [82] we show the pathwise

uniqueness of the solutions. We also establish the existence of a strong solution using results

from Ondreját [68].

5.1 Introduction

In this chapter we consider the stochastic Navier-Stokes equations

(5.1.1) du+ [(u ·∇)u−ν∆u+∇p] dt =
m∑

j=1
(c j ·∇)u ◦dWj(t), t ∈ [0,∞)

in O = [0,2π]2 with periodic boundary conditions and with the incompressibility condition

divu = 0.

This problem can be seen as a problem on a two-dimensional torus T2 what we will assume

to be our case. Here u : [0,∞)×O → R2 and p : [0,∞)×O → R represent the velocity and the

pressure of the fluid. Furthermore
∑m

j=1(c j ·∇)u ◦dWj(t) stands for the random forcing, where c j,

j = 1, · · · ,m, are divergence free R2-valued vectors
(
so that the corresponding transport operators

C̃ ju := (c j ·∇)u are skew symmetric in L2(T2,R2)
)

and Wj, j = 1, . . . ,m are independent R−valued

standard Brownian Motions.
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The above problem projected on H∩M can be written in an abstract form as the following

initial value problem

(5.1.2)

du(t)+νAu(t)dt+B(u(t))dt = ν|∇u(t)|2L2 u(t)dt+∑m
j=1 C ju(t)◦dWj(t), t ∈ [0,T],

u(0)= u0,

where H is the space of square integrable, divergence free and mean zero vector fields on O and

M = {u ∈H : |u|H = 1} .

Here A and B are appropriate maps corresponding to the Laplacian and the nonlinear term, res-

pectively in the Navier-Stokes equations, see Chapter 3 and C j =Π(C̃ j), where Π : L2(T2,R2)→H

is the Leray-Helmholtz projection operator [88] that projects the square integrable vector fields

onto the divergence free vector field.

We prove the existence and uniqueness of a strong solution. The construction of a solution is

based on the classical Faedo-Galerkin approximation, i.e.

(5.1.3)


dun(t)=−

[
PnAun(t)+PnB(un(t))−|∇un(t)|2L2 un(t)

]
dt

+∑m
j=1 PnC jun(t)◦dWj(t), t ∈ [0,T],

un(0)= Pnu0

|Pnu0|
given in Section 5.5. Let us point out that without the normalisation of the initial condition in the

above problem (5.1.3), the solution may not be a global one, even in the deterministic case. The

crucial point is to prove suitable uniform a’priori estimates on the sequence un. We will prove

that the following estimates hold

sup
n≥1

E

[∫ T

0
|un(s)|2D(A) ds

]
<∞,

and

sup
n≥1

E

(
sup

0≤s≤T
‖un(s)‖2p

V

)
<∞,

for p ∈ [1,1+ 1
K2

c
), where D(A) is the domain of the Stokes operator and V=D(A1/2), see Section 3.1

for precise definitions and the positive constant Kc is defined in (5.3.1).

In Theorem 5.3.3 we prove the existence of a martingale solution using the tightness criterion

in the topological space ZT =C ([0,T];H)∩L2
w(0,T;D(A))∩L2(0,T;V)∩C ([0,T];Vw) showing that

the trajectories of the solution lie in C ([0,T];Vw) but later on in Lemma 5.3.5 we show that in

fact the trajectories lie in C ([0,T];V).

This chapter is an extension of Chapter 4 from the deterministic to a stochastic setting.

More information and motivation can also be found therein. Let us recall that already in the
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deterministic setting, we have been able to prove the global existence of solutions for CNSE only

on a bounded domain with periodic boundary conditions and this is why we have concentrated

here on such a case. A similar problem for stochastic heat equation with polynomial drift but

with a different type of noise has recently been a subject of a PhD thesis by Javed Hussain [48].

It’s remarkable that in that case the result holds for Dirichlet boundary conditions as well.

We consider the noise of gradient type in the Stratonovich form (5.1.1). The structure of noise

is such that it is tangent to the manifold M just like the non-linear part from Navier-Stokes

and hence, there is no contribution to the equation (5.1.2) because of the constraint. In the

deterministic setting (see Chapter 4) we proved the existence of a global solution by proving the

existence of a local solution using the Banach Fixed Point Theorem and no explosion principle, i.e

enstrophy (V-norm) of the solution remains bounded. We can’t take the similar approach in the

stochastic setting as one can’t prove the existence of a local solution using the Banach Fixed Point

Theorem and hence we switch to more classical approach of proving the existence of a solution

using the Faedo-Galerkin approximation.

We consider the Faedo-Galerkin approximation (5.1.3) of (5.1.2). We prove that each approx-

imating equation has a global solution. One can show that for every n ∈ N global solution to

(5.1.3) exist for all domains, in particular for Dirichlet boundary conditions. But in order to obtain

a’priori estimates, Lemma 5.5.4, we need to consider the Navier-Stokes Equations (NSE) on a

two dimensional torus T2 (i.e. the NSEs with periodic boundary conditions).

In order to prove that the laws of the solution of these approximating equations are tight

on ZT (defined in (5.4.3)), apart from a’priori estimates we also need the Aldous condition,

Definition 2.9.10. After proving that the laws are tight in Lemma 5.5.5, by the application

of Jakubowski-Skorohod Theorem and the martingale representation theorem we prove Theo-

rem 5.3.3. The chapter is organised in the following way:

Stochastic constrained Navier-Stokes equations (SCNSE) are introduced in Section 5.2. The

definitions of a martingale solution and strong solution and all the important results of this

chapter are given in Section 5.3. Section 5.4 contains the well-known and already established

results regarding compactness. In Section 5.5 we establish certain estimates on the way to prove

Theorem 5.3.3. Existence and uniqueness of a strong solution using the results from Ondreját

[68] is proved in Section 5.6. In Section 5.7, we prove the continuous dependence of the solution

of (5.1.2) on the initial data. We conclude the chapter by showing that the semigroup {Tt}t≥0 on

Bb(V) (defined by (5.8.1)) generated by the solution of SCNSE are sequentially weakly Feller in

V.
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5.2 Stochastic constrained Navier-Stokes equations

The 2D Navier-Stokes equations driven by multiplicative Gaussian noise in the Stratonovich

form are given by:
du(t)+ [(u(t) ·∇)u(t)−ν∆u(t)+∇p(t)] dt =∑m

j=1
[(

c j ·∇
)
u(t)

]◦dWj(t), t ∈ [0,∞) ,

divu(·, t)= 0, t ∈ [0,∞) ,

u(x,0)= u0(x), x ∈O ,

(5.2.1)

where u : [0,∞)×O →R2 and p : [0,∞)×O →R are velocity and pressure of the fluid respectively.

ν is the viscosity of the fluid (with no loss of generality, ν will be taken equal to 1 for the rest of

the article). Here we assume that c j are divergence free R2-valued vectors, Wj are R−valued i.i.d.

standard Brownian motions and ◦ denotes the Stratonovich form. Note that the operators C̃ j,

j ∈ {1, . . . ,m}, defined by C̃ ju := (
c j ·∇

)
u, for u ∈V are skew-symmetric on L2(T2,R2), i.e. C̃∗

j =−C̃ j,

where C̃∗
j denotes the adjoint of C̃ j on L2(T2,R2).

We will be frequently using the following short-cut notation

Cu ◦dW(t)=
m∑

j=1
C ju(t)◦dWj(t),

where C j =Π(C̃ j) and Π is the Leray-Helmholtz projection operator, as introduced in Chapter 3.

With all the notations as defined above and in Chapter 3, the stochastic Navier-Stokes

equations (5.2.1) projected on divergence free vector field is given bydu(t)+ [Au(t)+B(u(t))] dt = Cu(t)◦dW(t),

u(0)= u0.
(5.2.2)

Let us recall the orthogonal projection map πu : H→ TuM , which is given by

πu(v)= v−〈v,u〉H u , for u ∈M ,

where TuM is the tangent space corresponding to the manifold M as introduced earlier in

Chapter 3.

Since for every j ∈ {1, . . . ,m}, C∗
j =−C j in H we infer that

(5.2.3) 〈C ju,u〉H = 0, u ∈V, j ∈ {1, . . . ,m}.

In particular, if u ∈V∩M , then C ju ∈ TuM for every j ∈ {1, . . . ,m} and hence won’t produce any

correction terms when projected onto the tangent space TuM , which is shown explicitly below.

Let

F(u)=Au+B(u,u)−Cu ◦dW(t)
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and F̂(u) be the projection of F(u) onto the tangent space TuM , then

F̂(u)=πu(F(u))= F(u)−〈F(u),u〉H u

=Au+B(u)−Cu ◦dW −〈Au+B(u)−Cu ◦dW ,u〉H u

=Au−〈Au,u〉H u+B(u)−〈B(u),u〉H u−Cu ◦dW +〈Cu,u〉Hu ◦dW

=Au−|∇u|2L2 u+B(u)−Cu ◦dW .

The last equality follows from (5.2.3) and the identity that 〈B(u),u〉H = 0.

Thus by projecting NSEs (5.2.2) onto the tangent space TuM , we obtain the following stochas-

tic constrained Navier-Stokes equations (SCNSE)du(t)+ [Au(t)+B(u(t))]dt = |∇u(t)|2L2 u(t)dt+Cu(t)◦dW(t),

u(0)= u0 .
(5.2.4)

5.3 Assumptions, definitions and results

From now on we will assume that c j are constant vector fields. Whether our results are true in a

more general setting is an open problem.

Assumptions. We assume that

(A.1) Vectors c1, . . . , cm belong to R2 such that K2
c < 1 where

(5.3.1) Kc :=max j∈{1,··· ,m}|c j|R2 ,

| · |R2 is the Euclidean norm in R2.

(A.2) u0 ∈V∩M .

Definition 5.3.1. We say that problem (5.2.4) has a strong solution iff for every stochastic basis

(Ω,F ,F,P) and every Rm− valued F−Wiener process W = (W(t))t≥0, there exists a F−progressively

measurable process u : [0,T]×Ω→D(A) with P-a.e. paths

u(·,ω) ∈C ([0,T];V)∩L2(0,T;D(A)),

such that for all t ∈ [0,T] and all v ∈V P-a.s.

〈u(t),v〉−〈u0,v〉+
∫ t

0
〈Au(s),v〉ds+

∫ t

0
〈B(u(s)),v〉ds

=
∫ t

0
|∇u(s)|2L2〈u(s),v〉ds+ 1

2

∫ t

0

m∑
j=1

〈C2
j u(s),v〉ds+

∫ t

0

m∑
j=1

〈C ju(s),v〉dŴj(s).
(5.3.2)

Definition 5.3.2. We say that there exists a martingale solution of (5.2.4) iff there exist

• a stochastic basis (Ω̂,F̂ , F̂, P̂),
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• an Rm−valued F̂−Wiener process Ŵ ,

• and a F̂−progressively measurable process u : [0,T]× Ω̂→D(A) with P̂-a.e. paths

u(·,ω) ∈C ([0,T];Vw)∩L2(0,T;D(A)),

such that for all t ∈ [0,T] and all v ∈V the identity (5.3.2) holds P̂-a.s.

Next we state some important results of this chapter which will be proved in further sections.

Theorem 5.3.3. Let assumptions (A.1) - (A.2) be satisfied. Then there exists a martingale solution

(Ω̂,F̂ , F̂, P̂,Ŵ ,u) of problem (5.2.4) such that

(5.3.3) Ê

[
sup

t∈[0,T]
‖u(t)‖2

V +
∫ T

0
|u(t)|2D(A) dt

]
<∞.

Remark 5.3.4. The solution obtained in the above theorem is weak in probabilistic sense and

strong in PDE sense.

The next lemma shows that almost all the trajectories of the solution obtained in Theo-

rem 5.3.3 are almost everywhere equal to a continuous V-valued function defined on [0,T].

Lemma 5.3.5. Assume that the assumptions (A.1) - (A.2) are satisfied. Let (Ω̂,F̂ , F̂, P̂,Ŵ ,u) be a

martingale solution of (5.2.4) such that

(5.3.4) Ê

[
sup

t∈[0,T]
‖u(t)‖2

V +
∫ T

0
|u(s)|2D(A) ds

]
<∞.

Then for P̂ almost all ω ∈ Ω̂ the trajectory u(·,ω) is almost everywhere equal to a continuous

V−valued function defined on [0,T]. Moreover, the following equality in H holds for every t ∈ [0,T],

P̂−a.s.

u(t)= u0 −
∫ t

0

[
Au(s)+B(u(s))−|∇u(s)|2L2 u(s)

]
ds

+ 1
2

∫ t

0

m∑
j=1

C2
j u(s)ds+

∫ t

0

m∑
j=1

C ju(s)dŴ(s).(5.3.5)

Definition 5.3.6. Let (Ω,F ,F,P,W ,ui), i = 1,2 be the martingale solutions of (5.2.4) with ui(0)=
u0, i = 1,2. Then we say that the solutions are pathwise unique if for all t ∈ [0,T], P−a.s.

u1(t)= u2(t).

In Lemma 5.6.1 we will show that the pathwise uniqueness property for our problem holds.

This will enable us to deduce the following theorem that summarises the main result of this

chapter:
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Theorem 5.3.7. For every u0 ∈V there exists a pathwise unique strong solution u of stochastic

constrained Navier-Stokes equations (5.2.4) such that

(5.3.6) E

[∫ T

0
|u(t)|2D(A) dt+ sup

t∈[0,T]
‖u(t)‖2

V

]
<∞.

Remark 5.3.8. The solution of (5.2.4) obtained in previous theorem is strong in both probabilistic

and PDE sense.

5.4 Compactness

Let us consider the following functional spaces for fixed T > 0:

C ([0,T];H) := the space of continuous functions u : [0,T]→H with the topology T1 induced by

the norm |u|C ([0,T];H) := supt∈[0,T] |u(t)|H,

L2
w(0,T;D(A)) := the space L2(0,T;D(A)) with the weak topology T2,

L2(0,T;V) := the space of measurable functions u : [0,T]→V such that

|u|L2(0,T;V) =
(∫ T

0
‖u(t)‖2

V dt
) 1

2

<∞,

with the topology T3 induced by the norm |u|L2(0,T;V).

Let Vw denote the Hilbert space V endowed with the weak topology.

C ([0,T];Vw) := the space of weakly continuous functions u : [0,T]→V endowed with the weakest

topology T4 such that for all h ∈V the mappings

C ([0,T];Vw) 3 u →〈u(·),h〉V ∈C ([0,T];R)

are continuous. In particular, un → u in C ([0,T];Vw) iff for all h ∈V:

lim
n→∞ sup

t∈[0,T]
|〈un(t)−u(t),h〉V| = 0.

Consider the ball

B := {x ∈V : ‖x‖V ≤ r}.

Let q be the metric compatible with the weak topology on B. Let us consider the following

subspace of the space C ([0,T];Vw)

C ([0,T];Bw)= the space of weakly continuous functions u : [0,T]→V

such that sup
t∈[0,T]

‖u(t)‖V ≤ r.(5.4.1)

The space C ([0,T];Bw) is metrizable (see [9, 23]) with metric

(5.4.2) %(u,v)= sup
t∈[0,T]

q(u(t),v(t)).
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Since by the Banach-Alaoglu theorem [80] Bw is compact, (C ([0,T];Bw),%) is a complete

metric space.

The following lemma [24, Lemma 2.1] says that any sequence (un)n∈N ⊂C ([0,T];B) convergent

in C ([0,T];H) is also convergent in the space C ([0,T];Bw).

Lemma 5.4.1. Let un : [0,T]→V,n ∈N be functions such that

(i) supn∈N sups∈[0,T] ‖un(s)‖V ≤ r,

(ii) un → u in C ([0,T];H).

Then u,un ∈C ([0,T];Bw) and un → u in C ([0,T];Bw) as n →∞.

Let

(5.4.3) ZT =C ([0,T];H)∩L2
w(0,T;D(A))∩L2(0,T;V)∩C ([0,T];Vw),

and let T be the supremum of the corresponding topologies.

Now we formulate the compactness criterion analogous to the result due to Mikulevicus and

Rozowskii [65], Brzeźniak and Motyl [24] for the space ZT .

Lemma 5.4.2. Let ZT , T be as defined in (5.4.3). Then a set K ⊂ZT is T −relatively compact if

the following three conditions hold

(a) supu∈K sups∈[0,T] ‖u(s)‖V <∞ ,

(b) supu∈K

∫ T
0 |u(s)|2D(A) ds <∞ , i.e. K is bounded in L2(0,T;D(A)),

(c) limδ→0 supu∈K sups,t∈[0,T]
|t−s|≤δ

|u(t)−u(s)|H = 0.

Proof. Let K be a subset of ZT . Because of the assumption (a) we may consider the metric

space C ([0,T];Bw)⊂C ([0,T];Vw) defined by (5.4.1) and (5.4.2) with r = supu∈K sups∈[0,T] ‖u(s)‖V.

Because of the assumption (b) the restriction to K of the weak topology in L2(0,T;D(A)) is

metrizable. Since the restrictions to K of the four topologies considered in ZT are metrizable,

compactness of a subset of ZT is equivalent to its sequential compactness.

Let (un) be a sequence in K . By the Banach-Alaoglu Theorem [80], condition (b) yields that

K̄ is compact in L2
w(0,T;D(A)). Condition (c) implies that the functions un are equicontinuous in

C ([0,T],H). Since the embeddings D(A) ,→V ,→H are continuous and the embedding D(A) ,→V

is compact, then Dubinsky Theorem (see Theorem 2.4.5) with conditions (b) and (c) imply that

K is compact in L2(0,T;V)∩C ([0,T];H). Hence in particular, there exists a subsequence, still

denoted by (un), convergent in H. Therefore by Lemma 5.4.1 (un) is convergent in C ([0,T];Bw).

This completes the proof of the lemma. �
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5.4.1 Tightness

Using Section 2.9 and the compactness criterion from Lemma 5.4.2 we obtain the following

corollary which we will use to prove tightness of the laws defined by the Galerkin approximations.

Corollary 5.4.3 (Tightness criterion). Let (Xn)n∈N be a sequence of continuous F-adapted H-

valued processes such that

(a) there exists a constant C1 > 0 such that

sup
n∈N

E

[
sup

s∈[0,T]
‖Xn(s)‖2

V

]
≤ C1,

(b) there exists a constant C2 > 0 such that

sup
n∈N

E

[∫ T

0
|Xn(s)|2D(A) ds

]
≤ C2,

(c) (Xn)n∈N satisfies the Aldous condition [A] in H.

Let P̃n be the law of Xn on ZT . Then for every ε> 0 there exists a compact subset Kε of ZT such

that

sup
n∈N

P̃n(Kε)≥ 1−ε.

Proof. Let ε> 0. By the Chebyshev inequality and (a), we infer that for any n ∈N and any r > 0

P̃n

(
sup

s∈[0,T]
‖Xn(s)‖2

V > r
)
≤ Ẽn

[
sups∈[0,T] ‖Xn(s)‖2

V

]
r

≤ C1

r
.

Let R1 be such that C1
R1

≤ ε
3 . Then

sup
n∈N

P̃n

(
sup

s∈[0,T]
‖Xn(s)‖2

V > R1

)
≤ ε

3
.

Let B1 := {
u ∈ZT : sups∈[0,T] ‖u(s)‖2

V ≤ R1
}
.

By the Chebyshev inequality and (b), we infer that for any n ∈N and any r > 0

P̃n
(|Xn|L2(0,T;D(A)) > r

)≤ Ẽn
[|Xn|2L2(0,T;D(A))

]
r2 ≤ C2

r2 .

Let R2 be such that C2
R2

2
≤ ε

3 . Then

sup
n∈N

P̃n
(|Xn|L2(0,T;D(A)) > R2

)≤ ε

3
.

Let B2 := {
u ∈ZT : |u|L2(0,T;D(A)) ≤ R2

}
.

By Lemmas 2.9.9 and 2.9.11 there exists a subset A ε
3
⊂C ([0,T],H) such that P̃n

(
A ε

3

)≥ 1− ε
3

and

lim
δ→0

sup
u∈A ε

3

sup
s,t∈[0,T]

|t−s|≤δ

|u(t)−u(s)|H = 0.

It is sufficient to define Kε as the closure of the set B1 ∩B2 ∩ A ε
3

in ZT . By Lemma 5.4.2, Kε is

compact in ZT . The proof is thus complete. �
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5.4.2 The Skorohod Theorem

Let us recall the Jakubowski’s generalisation of the Skorohod Theorem as given by Brzeźniak

and Ondreját [26, Theorem C.1], see also [49].

Theorem 5.4.4. Let X be a topological space such that there exists a sequence { fm}m∈N of contin-

uous functions fm : X →R that separates points of X . Let us denote by S the σ-algebra generated

by the maps { fm}. Then

(a) every compact subset of X is metrizable,

(b) if (µm)m∈N is a tight sequence of probability measures on (X ,S ), then there exists a subse-

quence (mk)k∈N, a probability space (Ω,F ,P) with X -valued Borel measurable variables

ξk,ξ such that µmk is the law of ξk and ξk converges to ξ almost surely on Ω. Moreover, the

law of ξ is a Radon measure.

Lemma 5.4.5. The topological space ZT satisfies the assumptions of Theorem 5.4.4.

Proof. We want to prove that on each space appearing in the definition (5.4.3) of the space ZT

there exists a countable set of continuous real-valued functions separating points.

Since the spaces C ([0,T];H) and L2(0,T;V) are separable, metrizable and complete, this

condition is satisfied, see [3], exposé 8.

For the space L2
w(0,T;D(A)) it is sufficient to put

fm(u) :=
∫ T

0
〈u(t),vm(t)〉D(A) dt ∈R, u ∈ L2

w(0,T;D(A)), m ∈N,

where {vm,m ∈N} is a dense subset of L2(0,T;D(A)).

Let us consider the space C ([0,T];Vw). Let {hm, m ∈N} be any dense subset of H and let QT be

the set of rational numbers belonging to the interval [0,T]. Then the family { fm,t, m ∈N, t ∈QT }

defined by

fm,t(u) := 〈u(t),hm〉V ∈R, u ∈C ([0,T];Vw), m ∈N, t ∈QT

consists of continuous functions separating points in C ([0,T];Vw), thus concluding the proof of

the lemma. �

Using Theorem 5.4.4 and Lemma 5.4.5, we obtain the following corollary which we will apply

to construct a martingale solution to the stochastic constrained Navier-Stokes equations (5.2.4).

Corollary 5.4.6. Let (ηn)n∈N be a sequence of ZT -valued random variables such that their laws

L (ηn) on (ZT ,T ) form a tight sequence of probability measures. Then there exists a subsequence

(nk), a probability space (Ω̃,F̃ , P̃) and ZT -valued random variables η̃, η̃k,k ∈ N such that the

variables ηk and η̃k have the same laws on ZT and η̃k converges to η̃ almost surely on Ω̃.

88



5.5. FAEDO-GALERKIN APPROXIMATION AND EXISTENCE OF A MARTINGALE SOLUTION

5.5 Faedo-Galerkin approximation and existence of a
martingale solution

As mentioned in the introduction, the proof of the existence of a martingale solution is based

on the Faedo-Galerkin approximation. In this section we first talk about the basic ingredients

required for the approximation and then obtain the a’priori estimates, which we later use in the

Subsection 5.5.1 to prove the tightness of laws induced by the solutions of the approximating

equations (5.5.2).

Let {e i}∞i=1 be the orthonormal basis in H composed of eigenvectors of A. Let Hn := span{e1, . . . , en}

be the subspace with the norm inherited from H, then Pn : H→Hn given by

(5.5.1) Pnu :=
n∑

i=1
〈u, e i〉H e i , u ∈H,

is the orthogonal projection onto Hn.

Let us consider the classical Faedo-Galerkin approximation of (5.2.4) in the space Hn :

(5.5.2)


dun(t)=−

[
Pn Aun(t)+PnB(un(t))+|∇un(t)|2L2 un(t)

]
dt

+∑m
j=1 PnC jun(t)◦dWj(t), t ∈ [0,T],

un(0)= Pnu0
|Pnu0| .

Using the idea from [48] and the Banach Fixed Point Theorem we can show that the SDE (5.5.2)

has a local maximal solution up to some stopping time τ≤ T. In the following lemma we show

that this local solution stays on the manifold M if we start from the manifold, i.e. if the initial

data un(0) ∈M then un(t) ∈M for every t ∈ [0,τ).

Lemma 5.5.1. Let u0 ∈ V∩M then the solution of (5.5.2) stays on the manifold M , i.e. for all

t ∈ [0,τ),un(t) ∈M .

Proof. Let un be the solution of (5.5.2). Then applying Itô formula to the function |x|2H and the

process un along (5.5.2), (3.2.5) and assumption (A.1), we get
1
2

d|un(t)|2H = 〈un(t),−PnAun(t)−PnB(un(t))+|∇un(t)|2L2 un(t)〉H dt

+ 1
2

m∑
j=1

〈un(t), (PnC j)2un(t)〉H dt+ 1
2

m∑
j=1

〈PnC jun(t),PnC jun(t)〉H dt

+
m∑

j=1
〈un(t),PnC jun(t)dWj(t)〉H

=−‖un(t)‖2
Vdt+|∇un(t)|2L2 |un(t)|2Hdt+ 1

2

m∑
j=1

〈C∗
j un(t),C jun(t)〉H dt

+ 1
2

m∑
j=1

|C jun(t)|2H dt

= ‖un(t)‖2
V

[|un(t)|2H −1
]
dt+ 1

2

m∑
j=1

[|C jun(t)|2H −|C jun(t)|2H
]

dt .
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Thus, we have

d
[|un(t)|2H −1

]= 2‖un(t)‖2
V

[|un(t)|2H −1
]
dt.

Integrating on both sides from 0 to t, we obtain

|un(t)|2 −1= [|un(0)|2H −1
]
exp

[
2

∫ t

0
‖un(s)‖2

V ds
]
.

Now since |un(0)|H = 1 and
∫ t

0 ‖un(s)‖2
V ds <∞, we get |un(t)|H = 1 for all t ∈ [0,τ), i.e un(t) ∈M

for every t ∈ [0,τ). �

Since on the finite dimensional space Hn the H and V norm are equivalent, we can infer

from the previous lemma that the V-norm of the solution stays bounded. Hence using this non-

explosion result as in the case of deterministic setting (see Chapter 4) we can prove the following

lemma:

Lemma 5.5.2. For each n ∈N, there exists a continuous Hn-valued global solution un of (5.5.2).

Moreover for every T > 0, for any q ∈ [2,∞)

E

[∫ T

0
|un(s)|qH ds

]
<∞.

We will require the following lemma to obtain a’priori bounds.

Lemma 5.5.3. Let c ∈R2 and let c :T2 →R2 be the corresponding constant vector field. Put, for

u ∈ H1,2(T2,R2)

C̃u = c ·∇u and Cu =Π(C̃u).

If the vector field u ∈ H2,2(T2,R2) is divergence free, then C̃u is divergence free as well and in

particular,

(5.5.3) ACu−CAu = 0, u ∈ H3,2(T2,R2).

Proof. Let c = (c1, c2) then C̃u = (c1D1 + c2D2)u. We have

div(C̃u)= D1
(
(c1D1 + c2D2)u1

)+D2
(
(c1D1 + c2D2)u2

)
= c1D1D1u1 + c2D1D2u1 + c1D2D1u2 + c2D2D2u2

= c1D1
(
D1u1 +D2u2

)+ c2D2
(
D1u1 +D2u2

)
= (

c1D1 + c2D2
)
(divu)= 0,

where we used that vector c is constant and u is divergence free respectively. In order to establish

the equality (5.5.3) we start by considering ACu−CAu. Since Au is divergence free, from first

part we have Π(C̃Au)= C̃Au and so CAu = C̃Au. Thus

ACu−CAu =−∆(
(c1D1 + c2D2)u

)− (
c1D1 + c2D2

)(−∆u
)

=− [c1∆D1u+ c2∆D2u]+ [c1∆D1u+ c2∆D2u]= 0,

since c is a constant vector, completing the proof. �
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Lemma 5.5.4. Let T > 0 and un be the solution of (5.5.2). Then under the assumptions (A.1) -

(A.2), for all ρ > 0 and p ∈ [1,1+ 1
K2

c
), there exist positive constants C1(p,ρ), C2(p,ρ) and C3(ρ)

such that if ‖u0‖V ≤ ρ, then

sup
n≥1

E

(
sup

r∈[0,T]
‖un(r)‖2p

V

)
≤ C1(p,ρ)(5.5.4)

sup
n≥1

E

∫ T

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds ≤ C2(p,ρ) ,(5.5.5)

and

(5.5.6) sup
n≥1

E

∫ T

0
|un(s)|2D(A) ds ≤ C3(ρ).

Proof. Let un(t) be the solution of (5.5.2) then applying the Itô formula to φ(x) = ‖x‖2
V and the

process un(t), we get

d‖un(t)‖2
V = 2〈Aun(t),−PnAun(t)−PnB(un(t),un(t))+|∇un(t)|2L2 un(t)〉Hdt

+2× 1
2

m∑
j=1

〈Aun(t), (PnC j)2un(t)〉Hdt+2× 1
2

m∑
j=1

〈APnC jun(t),PnC jun(t)〉Hdt

+2
m∑

j=1
〈Aun(t),PnC jun(t)dWj(t)〉H.

Now since 〈|∇un(t)|2L2 un(t),Aun(t)−|∇un(t)|2L2 un(t)〉 = 0, using (3.2.5), we have

d‖un(t)‖2
V =−2〈Aun(t)−|∇un(t)|2L2 un(t),Aun(t)−|∇un(t)|2un(t)〉Hdt

+2〈|∇un(t)|2un(t),Aun(t)−|∇un(t)|2L2 un(t)〉Hdt

−2〈Aun(t),B(un(t),un(t))〉Hdt+
m∑

j=1
〈Aun(t),C2

j un(t)〉Hdt

+
m∑

j=1
〈AC jun(t),C jun(t)〉Hdt+2

m∑
j=1

〈Aun(t),C jun(t)dWj(t)〉H

=−2|Aun(t)−|∇un(t)|2L2 un(t)|2Hdt+
m∑

j=1
〈AC jun(t)−C jAun(t),C jun(t)〉H dt

+2
m∑

j=1
〈Aun(t),C jun(t)dWj(t)〉H.

By Assumption (A.1) and Lemma 5.5.3 we have AC j u−C jAu = 0 for every j ∈ {1, · · · ,m}.

Thus, integrating on both sides we get

‖un(t)‖2
V +2

∫ t

0
|Aun(s)−|∇un(s)|2L2 un(s)|2H ds

= ‖un(0)‖2
V +2

m∑
j=1

∫ t

0
〈Aun(s),C jun(s)dWj(s)〉H(5.5.7)

≤ ‖u(0)‖2
V +2

m∑
j=1

∫ t

0
〈Aun(s),C jun(s)dWj(s)〉H .
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By Lemma 5.5.2, we infer that the process

µn(t)=
m∑

j=1

∫ t

0
〈Aun(s),C jun(s)dWj(s)〉H, t ∈ [0,T]

is a R-valued F-martingale and that E[µn(t)]= 0 for t ∈ [0,T]. Thus

E‖un(t)‖2
V +2E

∫ t

0
|Aun(s)−|∇un(s)|2L2 un(s)|2H ds ≤ E‖u(0)‖2

V, t ∈ [0,T] .(5.5.8)

Hence

(5.5.9) sup
n≥1

sup
t∈[0,T]

E‖un(t)‖2
V ≤ E‖u(0)‖2

V.

Note that using (5.5.9) in (5.5.8), we also have the following estimate

(5.5.10) sup
n≥1

E

∫ T

0
|Aun(s)−|∇un(s)|2L2 un(s)|2H ds ≤ E‖u(0)‖2

V.

Let ξ(t) = ‖un(t)‖2
V, t ∈ [0,T] and φ(x) = xp, for some fixed p ∈ [1,∞). Using the Itô formula

and (5.5.7), we obtain

‖un(t)‖2p
V = ‖un(0)‖2p

V −2p
∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2Hds

+2p(p−1)
m∑

j=1

∫ t

0
‖un(s)‖2(p−2)

V 〈Aun(s),C jun(s)〉2H ds

+2p
m∑

j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s),C jun(s)dWj(s)〉H .(5.5.11)

Since C is skew symmetric, 〈Cun(s),un(s)〉 = 0 and thus, we get

‖un(t)‖2p
V +2p

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2Hds

= ‖un(0)‖2p
V +2p

m∑
j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s),C jun(s)dWj(s)〉H

+2p(p−1)
m∑

j=1

∫ t

0
‖un(s)‖2(p−2)

V 〈Aun(s)−|∇un(s)|2L2 un(s),C jun(s)〉2H ds .

Using the Hölder inequality we have

‖un(t)‖2p
V +2p

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2Hds

≤ ‖un(0)‖2p
V +2p

m∑
j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s),C jun(s)dWj(s)〉H

+2p(p−1)
m∑

j=1

∫ t

0
‖un(s)‖2(p−2)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H|C jun(s)|2H ds.
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5.5. FAEDO-GALERKIN APPROXIMATION AND EXISTENCE OF A MARTINGALE SOLUTION

On rearranging we get

‖un(t)‖2p
V +2p

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2Hds

≤ ‖un(0)‖2p
V +2p

m∑
j=1

∫ t

0
‖un(s)‖2(p−1)〈Aun(s),C jun(s)dWj(s)〉H

+2p(p−1)K2
c

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds,

where Kc is the positive constant defined in equality (5.3.1).

For p ∈ [1,1+ 1
K2

c
), Kp = 2p

[
1−K2

c (p−1)
]> 0, thus

‖un(t)‖2p
V +Kp

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2Hds

≤ ‖un(0)‖2p
V +2p

m∑
j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s),C jun(s)dWj(s)〉H.(5.5.12)

Using Lemma 5.5.2 we infer that the process

ηn(t)=
m∑

j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s),C jun(s)dWj(s)〉H, t ∈ [0,T],

is a martingale and E[ηn(t)]= 0. Thus

E‖un(t)‖2p
V +KpE

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds ≤ E‖un(0)‖2p
V .(5.5.13)

In particular

(5.5.14) sup
n≥1

sup
t∈[0,T]

E‖un(t)‖2p ≤ E‖u0‖2p
V .

Note that using (5.5.14) in (5.5.13), we also have the following estimate,

(5.5.15) sup
n≥1

E

∫ T

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds ≤ 1
Kp

E‖u0‖2p
V .

In order to prove (5.5.4) we start from (5.5.11),

‖un(t)‖2p
V = ‖un(0)‖2p

V −2p
∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2Hds

+2p(p−1)
m∑

j=1

∫ t

0
‖un(s)‖2(p−2)

V 〈Aun(s),C jun(s)〉2H ds

+2p
m∑

j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s),C jun(s)dWj(s)〉H.

Since for every j ∈ {1, · · · ,m}, 〈C jun(s),un(s)〉H = 0, hence

‖un(t)‖2p
V +2p

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds = ‖un(0)‖2p
V

+2p(p−1)
m∑

j=1

∫ t

0
‖un(s)‖2(p−2)

V 〈Aun(s)−|∇un(s)|2L2 un(s),C jun(s)〉2H ds

+2p
m∑

j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s)−|∇un(s)|2L2 un(s),C jun(s)dWj(s)〉H.
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Taking the mathematical expectation and using the Hölder inequality, we have

E sup
r∈[0,t]

‖un(r)‖2p
V +2pE sup

r∈[0,t]

∫ r

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds ≤ E‖un(0)‖2p
V

+2p(p−1)K2
cE sup

r∈[0,t]

[∫ r

0
‖un(s)‖2(p−2)|Aun(s)−|∇un(s)|2L2 un(s)|2H|∇un(s)|2L2 ds

]

+2pE sup
r∈[0,t]

[
m∑

j=1

∫ t

0
‖un(s)‖2(p−1)

V 〈Aun(s)−|∇un(s)|2L2 un(s),C jun(s)dWj(s)〉H
]

.(5.5.16)

Using the Burkholder-Davis-Gundy inequality, we get

E sup
r∈[0,t]

∣∣∣∣∣ m∑
j=1

∫ r

0
‖un(s)‖2(p−1)

V 〈Aun(s)−|∇un(s)|2L2 un(s),C jun(s)dWj(s)〉H
∣∣∣∣∣

≤ 3E

∣∣∣∣∣ m∑
j=1

∫ t

0
‖un(s)‖4(p−1)

V 〈Aun(s)−|∇un(s)|2L2 un(s),C jun(s)〉2H ds

∣∣∣∣∣
1/2

≤ 3E

∣∣∣∣∣ m∑
j=1

∫ t

0
‖un(s)‖4(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H|C jun(s)|2H ds

∣∣∣∣∣
1/2

≤ 3EKc

[∫ t

0
‖un(s)‖2p

V ‖un(s)‖2(p−1)
V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

]1/2

.

Using the Hölder inequality and the Young inequality, we obtain

E sup
r∈[0,t]

∣∣∣∣∣ m∑
j=1

∫ r

0
‖un(s)‖2(p−1)

V 〈Aun(s)−|∇un(s)|2L2 un(s),C jun(s)dWj(s)〉H
∣∣∣∣∣

≤ 3E

[
Kc

(
sup

r∈[0,t]
‖un(r)‖2p

V

)1/2 (∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds
)1/2

]

≤ 3E

[
ε sup

r∈[0,t]
‖un(r)‖2p

V + K2
c

4ε

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

]
.

Thus using this in (5.5.16), we get

E sup
r∈[0,t]

‖un(r)‖2p
V +2E sup

r∈[0,t]

∫ r

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

≤ E‖un(0)‖2p
V +2p(p−1)K2

cE sup
r∈[0,t]

∫ r

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

+ 3pK2
c

2ε
E

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds .(5.5.17)

Hence for ε= 1
12p , Eq. (5.5.17) reduces to

E sup
r∈[0,t]

‖un(r)‖2p
V +4E sup

r∈[0,t]

∫ r

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds ≤ 2E‖un(0)‖2p
V

+4p(p−1)K2
cE sup

r∈[0,t]

∫ r

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

+36p2K2
cE

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds.
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Since
∫ r

0 |Aun(s)−|∇un(s)|2L2 un(s)|2H ds is an increasing function, we have

E sup
r∈[0,t]

‖un(r)‖2p
V +4E

∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

≤ 2E‖un(0)‖2p
V +4pK2

c [10p−1]E
∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds.

In particular

E sup
r∈[0,t]

‖un(r)‖2p
V ≤4pK2

c [10p−1]E
∫ t

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

+2E‖un(0)‖2p
V .

Since E‖un(0)‖2p
V ≤ E‖u0‖2p

V and using (5.5.15), for p ∈ [1,1+ 1
K2

c
)

E

∫ T

0
‖un(s)‖2(p−1)

V |Aun(s)−|∇un(s)|2L2 un(s)|2H ds

is uniformly bounded in n, thus

sup
n≥1

E sup
r∈[0,T]

‖un(r)‖2p
V ≤ C1(p,ρ).

Now we will establish (5.5.6). Note that

E

∫ T

0
|un(s)|2D(A)ds = E

∫ T

0
|Aun(s)−|∇un(s)|2L2 un(s)|2H ds+E

∫ T

0
‖un(s)‖4 ds.

Using (5.5.4) for p = 2 and (5.5.5) for p = 1, we get

sup
n≥1

E

∫ T

0
|un(s)|2D(A)ds ≤ C2(1,ρ)+C1(2,ρ)T =: C3(ρ).

�

5.5.1 Tightness of the laws of approximating solutions

In this subsection using the a’priori estimates from the Lemma 5.5.4 and the Corollary 5.4.3 we

will prove that for every n ∈N the measures L (un) on (ZT ,T ) defined by the solutions of the

stochastic ODE (5.5.2) are tight. The following is the main result of this subsection.

Lemma 5.5.5. The set of measures {L (un),n ∈N} is tight on (ZT ,T ).

Proof. We apply Corollary 5.4.3. According to the a’priori estimates (5.5.4) (for p = 1) and (5.5.6),

conditions (a) and (b) of Corollary 5.4.3 are satisfied. Thus it is sufficient to prove that the

sequence (un)n∈N satisfies the Aldous condition [A] in H. Let (τn)n∈N be a sequence of stopping

times such that 0≤ τn ≤ T. By (5.5.2), for t ∈ [0,T] we have

un(t)= un(0)−
∫ t

0
PnAun(s)ds−

∫ t

0
PnB(un(s))ds+

∫ t

0
|∇un(s)|2L2 un(s)ds

+ 1
2

∫ t

0
(PnC)2un(s)ds+

∫ t

0
PnCun(s)dW(s)

:= Jn
1 + Jn

2 (t)+ Jn
3 (t)+ Jn

4 (t)+ Jn
5 (t)+ Jn

6 (t), t ∈ [0,T].
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Let θ > 0. We start by estimating each term in the R.H.S. of the above equality.

Ad. Jn
2 . Since A : D(A)→H is a bounded linear map, then by the Hölder inequality and estimate

(5.5.6), we have the following inequalities

E
[|Jn

2 (τn +θ)− Jn
2 (τn)|H

]= E ∣∣∣∣∫ τn+θ

τn

PnAun(s) ds
∣∣∣∣
H
≤ cE

∫ τn+θ

τn

|Aun(s)|H ds

≤ cE
∫ τn+θ

τn

|un(s)|D(A) ds ≤ cθ
1
2

(
E

[∫ T

0
|un(s)|2D(A) ds

]) 1
2

≤ cC
1
2
3 ·θ 1

2 =: c2 ·θ
1
2 .(5.5.18)

Ad. Jn
3 . Since B : V×V→H is bilinear and continuous, then using (3.2.3), the Cauchy-Schwarz

inequality, estimates (5.5.4) (for p = 1) and (5.5.6), we have the following estimates

E[|Jn
3 (τn +θ)− Jn

3 (τn)|H]= E
∣∣∣∣∫ τn+θ

τn

PnB(un(s))ds
∣∣∣∣
H
≤ cE

∫ τn+θ

τn

|B(un(s),un(s))|H ds

≤ cE
∫ τn+θ

τn

|un(s)|
1
2
H‖un(s)‖V|un(s)|

1
2
D(A) ds ≤ cE

[∫ τn+θ

τn

‖un(s)‖
3
2
V|un(s)|1/2

D(A) ds
]

≤ cE

([∫ τn+θ

τn

‖un(s)‖2
V ds

] 3
4
[∫ τn+θ

τn

|un(s)|2D(A) ds
] 1

4
)

≤ cθ
3
4

[
E sup

s∈[0,T]
‖un(s)‖2

V

] 3
4 [
E

∫ T

0
|un(s)|2D(A) ds

] 1
4

≤ cC1(1)
3
4 C

1
4
3 ·θ 3

4 =: c3 ·θ
3
4 .(5.5.19)

Ad. Jn
4 . Using Lemma 5.5.1 and estimate (5.5.4) (for p = 1), we have

E[|Jn
4 (τn +θ)− Jn

4 (τn)|H]= E
∣∣∣∣∫ τn+θ

τn

|∇un(s)|2L2 un(s) ds
∣∣∣∣
H

≤ E
∫ τn+θ

τn

|∇un(s)|2L2 |un(s)|H ds ≤ E sup
s∈[0,T]

‖un(s)‖2
Vθ ≤ C1(1) ·θ =: c4 ·θ.(5.5.20)

Ad. Jn
5 . Since C is linear and continuous, then using the Cauchy-Schwarz inequality, assumption

(A.1) and (5.5.6), we have the following

E[|Jn
5 (τn +θ)− Jn

5 (τn)|H]= E
∣∣∣∣∣1
2

m∑
j=1

∫ τn+θ

τn

(PnC j)2un(s)ds

∣∣∣∣∣
H

≤ 1
2

cE

(
m∑

j=1

∫ τn+θ

τn

|C2
j un(s)|H ds

)
≤ 1

2
cK2

cE

∫ τn+θ

τn

|un(s)|D(A) ds

≤ 1
2

cK2
c

[
E

∫ T

0
|un(s)|2D(A) ds

] 1
2

θ
1
2 ≤ cK2

c

2
C

1
2
3 ·θ 1

2 =: c5 ·θ
1
2 .(5.5.21)

Ad. Jn
6 . Using the Itô isometry, assumption (A.1) and estimate (5.5.4) (for p = 1), we obtain the

following

E
[|Jn

6 (τn +θ)− Jn
6 (τn)|2H

]= E ∣∣∣∣∫ τn+θ

τn

PnCun(s)dW(s)
∣∣∣∣2
H
≤ cE

∫ τn+θ

τn

|Cun(s)|2H ds

≤ cK2
cE

∫ τn+θ

τn

‖un(s)‖2
V ds ≤ cK2

cE sup
s∈[0,T]

‖un(s)‖2
Vθ ≤ cK2

c C1(1) ·θ =: c6 ·θ.(5.5.22)
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Let us fix κ > 0 and ε > 0. By the Chebyshev’s inequality and estimates (5.5.18) - (5.5.21), we

obtain

P({|Jn
i (τn +θ)− Jn

i (τn)|H ≥ κ})≤ 1
κ
E
[|Jn

i (τn +θ)− Jn
i (τn)|H

]≤ ciθ

κ
; n ∈N,

where i = 1, · · · ,5. Let δi = κ

ci
ε. Then

sup
n∈N

sup
0≤θ≤δi

P({|Jn
i (τn +θ)− Jn

i (τn)|H ≥ κ})≤ ε, i = 1. . .5.

By the Chebyshev inequality and (5.5.22), we have

P({|Jn
6 (τn +θ)− Jn

6 (τn)|H ≥ κ})≤ 1
κ2 E

[|Jn
i (τn +θ)− Jn

i (τn)|2H
]

≤ c6θ

κ2 , n ∈N.

Let δ6 = κ2

C6
ε. Then

sup
n∈N

sup
0≤θ≤δ6

P({|Jn
6 (τn +θ)− Jn

6 (τn)|H ≥ κ})≤ ε.

Since [A] holds for each term Jn
i , i = 1,2, · · · ,6; we infer that it holds also for (un). Therefore we

can conclude the proof of the lemma by invoking Corollary 5.4.3. �

5.5.2 Proof of Theorem 5.3.3

We prove certain pointwise convergence in Lemma 5.5.8 which is later used to construct a contin-

uous H−valued martingale. Martingale representation theorem then guarantees the existence of

a martingale solution of problem (5.2.4), proving Theorem 5.3.3.

By Lemma 5.5.5 the set of measures {L (un),n ∈N} is tight on the space (ZT ,T ), defined by

(5.4.3). Hence by Corollary 5.4.6 there exist a subsequence (nk)k∈N, a probability space (Ω̃,F̃ , P̃)

and, on this space, ZT -valued random variables ũ, ũnk ,k ≥ 1 such that

(5.5.23) ũnk has the same law as unk and ũnk → ũ in ZT , P̃−a.s.

ũnk → ũ inZT , P̃−a.s. precisely means that

ũnk → ũ in C ([0,T];H),

ũnk * ũ in L2(0,T;D(A)),

ũnk → ũ in L2(0,T;V),

ũnk → ũ in C ([0,T];Vw).

Let us denote the subsequence (ũnk ) again by (ũn)n∈N.
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Since un ∈C ([0,T];Hn), P-a.s. and C ([0,T];Hn) is a Borel subset of C ([0,T];H)∩L2(0,T;V)

and also ũn, un have the same laws on ZT we can make the following inferences

L (ũn)(C ([0,T];Hn)= 1, n ≥ 1 ,

|ũn(t)|H = |un(t)|H, a.s.

Also from (5.5.23) ũn → ũ in C ([0,T];H) and by Lemma 5.5.1 un(t) ∈ M for every t ∈ [0,T].

Therefore we can conclude that

(5.5.24) ũ(t) ∈M , t ∈ [0,T].

Moreover by (5.5.4) and (5.5.6), for p ∈ [1,1+ 1
K2

c
)

sup
n∈N

Ẽ

(
sup

0≤s≤T
‖ũn(s)‖2p

V

)
≤ C1(p),(5.5.25)

sup
n∈N

Ẽ

[∫ T

0
|ũn(s)|2D(A) ds

]
≤ C3.(5.5.26)

By inequality (5.5.26) we infer that the sequence (ũn) contains a subsequence, still denoted by

(ũn) convergent weakly in the space L2([0,T]× Ω̃;D(A)). Since by (5.5.23) ũn → ũ in ZT P̃−a.s.,

we conclude that ũ ∈ L2([0,T]× Ω̃;D(A)), i.e.

(5.5.27) Ẽ

[∫ T

0
|ũ(s)|2D(A) ds

]
<∞.

Similarly by inequality (5.5.25) we can choose a subsequence of (ũn) convergent weak star in the

space L2(Ω̃;L∞(0,T;V)) and, using (5.5.23), we infer that

(5.5.28) Ẽ

(
sup

0≤s≤T
‖ũ(s)‖2

V

)
<∞.

For each n ≥ 1, let us consider a process M̃n with trajectories in C ([0,T];Hn), in particular in

C ([0,T];H) defined by

M̃n(t)= ũn(t)−Pnũ(0)+
∫ t

0
PnAũn(s)ds+

∫ t

0
PnB(ũn(s))ds

−
∫ t

0
|∇ũn(s)|2ũn(s)ds− 1

2

m∑
j=1

∫ t

0
(PnC j)2ũn(s)ds , t ∈ [0,T] .(5.5.29)

Lemma 5.5.6. M̃n is a square integrable martingale with respect to the filtration F̃n = (F̃n,t),

where F̃n,t =σ{ũn(s), s ≤ t}, with the quadratic variation

(5.5.30) 〈〈M̃n〉〉t =
∫ t

0

m∑
j=1

|PnC j ũn(s)|2H ds.

Proof. Indeed since ũn and un have the same laws, for all s, t ∈ [0,T], s ≤ t, for all bounded

continuous functions h on C ([0, s];H), and all ψ,ζ ∈H, we have

(5.5.31) Ẽ
[〈M̃n(t)− M̃n(s),ψ〉Hh(ũn|[0,s])

]= 0
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and

Ẽ
[(
〈M̃n(t),ψ〉H〈M̃n(t),ζ〉H −〈M̃n(s),ψ〉H〈M̃n(s),ζ〉H

−
m∑

j=1

∫ t

s

〈(
C j ũn(σ)

)∗ Pnψ,
(
C j ũn(σ)

)∗ Pnζ
〉
R

dσ
)
·h(ũn|[0,s])

]
= 0.(5.5.32)

�

Lemma 5.5.7. Let us define a process M̃ for t ∈ [0,T] by

M̃(t)= ũ(t)− ũ(0)+
∫ t

0
Aũ(s)ds+

∫ t

0
B(ũ(s))ds(5.5.33)

−
∫ t

0
|∇ũ(s)|2L2 ũ(s)ds− 1

2

m∑
j=1

∫ t

0
C2

j ũ(s)ds .(5.5.34)

Then M̃ is an H−valued continuous process.

Proof. Since ũ ∈C ([0,T];V) we just need to show that each of the remaining four terms on the

RHS of (5.5.33) are H−valued and well defined.

Using the Cauchy-Schwarz inequality repeatedly and by (5.5.27) we have the following

inequalities

Ẽ

∫ T

0
|Aũ(s)|H ds ≤ T1/2

(
Ẽ

∫ T

0
|ũ(s)|2D(A) ds

)1/2

<∞.

Using (3.2.3), the Hölder inequality, (5.5.24) and the estimates (5.5.27) and (5.5.28) we obtain

the following:

Ẽ

∫ T

0
|B(ũ(s))|H ds ≤ 2Ẽ

∫ T

0
|ũ(s)|1/2

H |∇ũ(s)|L2 |ũ(s)|1/2
D(A) ds

≤ 2Ẽ

[(∫ T

0
‖ũ(s)‖4/3

V ds
)3/4 (∫ T

0
|ũ(s)|2D(A) ds

)1/4]

≤ 2T3/4

(
Ẽ sup

s∈[0,T]
‖ũ(s)‖4/3

V

)3/4 (
Ẽ

∫ T

0
|ũ(s)|2D(A) ds

)1/4

<∞.

Using the Hölder inequality, (5.5.24) and inequality (5.5.28) we have

Ẽ

∫ T

0
|∇ũ(s)|2L2 |ũ(s)|H ds ≤ Ẽ

∫ T

0
‖ũ(s)‖2

V ds ≤ Ẽ
(

sup
s∈[0,T]

‖ũ(s)‖2
V

)
T <∞.

Now we are left to deal with the last term on the RHS. Using assumption (A.1) and the

estimate (5.5.27), we have the following inequalities for every j ∈ {1, · · · ,m},

Ẽ

∫ T

0
|C2

j ũ(s)|H ≤ KcT1/2
(
Ẽ

∫ T

0
|ũ(s)|2D(A) ds

)1/2

<∞.

This concludes the proof of the lemma. �
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Lemma 5.5.8. For all s, t ∈ [0,T] such that s ≤ t, we have :

(a) limn→∞〈ũn(t),Pnψ〉H = 〈ũ(t),ψ〉H , P̃-a.s. ψ ∈H ,

(b) limn→∞
∫ t

s 〈Aũn(σ),Pnψ〉H dσ= ∫ t
s 〈Aũ(σ),ψ〉H dσ , P̃-a.s. ψ ∈H ,

(c) limn→∞
∫ t

s 〈B(ũn(σ), ũn(σ)),Pnψ〉H dσ= ∫ t
s 〈B(ũ(σ), ũ(σ)),ψ〉H dσ , P̃-a.s. ψ ∈V ,

(d) limn→∞
∫ t

s |∇ũn(σ)|2L2〈ũn(σ),Pnψ〉H dσ= ∫ t
s |∇ũ(σ)|2L2〈ũ(σ),ψ〉H dσ , P̃-a.s. ψ ∈H ,

(e) limn→∞〈∫ t
s C2

j ũn(σ),Pnψ〉H dσ= ∫ t
s 〈C2

j ũ(σ),ψ〉H dσ , P̃-a.s. ψ ∈H .

Proof. Let us fix s, t ∈ [0,T], s ≤ t. By (5.5.23) we know that

(5.5.35) ũn → ũ in C ([0,T];H)∩L2
w(0,T;D(A))∩L2(0,T;V)∩C ([0,T];Vw), P̃-a.s.

Let ψ ∈H. Since ũn → ũ in C ([0,T];H) P̃-a.s. and Pnψ→ψ in H, we have

lim
n→∞〈ũn(t),Pnψ〉H −〈ũ(t),ψ〉H

= lim
n→∞〈ũn(t)− ũ(t),Pnψ〉H + lim

n→∞〈ũ(t),Pnψ−ψ〉H = 0 P̃-a.s.

Thus we infer that assertion (a) holds.

Let ψ ∈H, then∫ t

s
〈Aũn(σ),Pnψ〉H dσ−

∫ t

s
〈Aũ(σ),ψ〉H dσ

=
∫ t

s
〈Aũn(σ)−Aũ(σ),ψ〉H dσ+

∫ t

s
〈Aũn(σ),Pnψ−ψ〉H dσ

≤
∫ t

s
〈ũn(σ)− ũ(σ),A−1ψ〉D(A) dσ+

∫ t

s
|ũn(σ)|D(A)|Pnψ−ψ|H dσ

≤
∫ t

s
〈ũn(σ)− ũ(σ),A−1ψ〉D(A) dσ+|Pnψ−ψ|H|ũn|L2(0,T;D(A))T

1/2.

By (5.5.35) ũn → ũ weakly in L2(0,T;D(A)) P̃-a.s., ũn is a uniformly bounded sequence in

L2(0,T;D(A)) and Pnψ→ψ in H. Hence we have P̃-a.s.

lim
n→∞

∫ t

s
〈ũn(σ)− ũ(σ),A−1ψ〉D(A) dσ→ 0,

and

lim
n→∞ |Pnψ−ψ|H → 0.

Thus, we have shown that assertion (b) is true.

We will now prove assertion (c). Let ψ ∈V. Then we have the following estimates:∫ t

s
〈B(ũn(σ)),Pnψ〉H −

∫ t

s
〈B(ũ(σ)),ψ〉H dσ

=
∫ t

s
〈B(ũn(σ))−B(ũ(σ)),ψ〉H dσ+

∫ t

s
〈B(ũn(σ)),Pnψ−ψ〉H dσ

=
∫ t

s

[
b(ũn(σ), ũn(σ),ψ)−b(ũ(σ), ũ(σ),ψ)

]
dσ+

∫ t

s
〈B(ũn(σ)),Pnψ−ψ〉H dσ.
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Using (3.2.1), we get

∫ t

s
〈B(ũn(σ)),Pnψ〉H −

∫ t

s
〈B(ũ(σ)),ψ〉H dσ

=
∫ t

s
b(ũn(σ)− ũ(σ), ũn(σ),ψ)dσ+

∫ t

s
b(ũ(σ), ũn(σ)− ũ(σ),ψ) dσ

+
∫ t

s
〈B(ũn(σ)),Pnψ−ψ〉H dσ

≤
∫ t

s
‖ũn(σ)− ũ(σ)‖V‖ũn(σ)‖V‖ψ‖V dσ+

∫ t

s
‖ũ(σ)‖V‖ũn(σ)− ũ(σ)‖V‖ψ‖V dσ

+
∫ t

s
‖ũn(σ)‖2

V‖Pnψ−ψ‖V dσ.

Now since by (5.5.35) ũn → ũ in L2(0,T;V) strongly, the sequence (ũn) is uniformly bounded in

L2(0,T;V). Thus using the Cauchy-Schwarz inequality and the convergence of Pnψ→ψ in V, we

have P̃−a.s.

lim
n→∞

∫ t

s
〈B(ũn(σ)),Pnψ〉H −

∫ t

s
〈B(ũ(σ)),ψ〉H dσ

≤ lim
n→∞ |ũn − ũ|L2(0,T;V)

[
|ũn|L2(0,T;V)

+|ũ|L2(0,T;V)

]
‖ψ‖V + lim

n→∞ |ũn|2L2(0,T;V )‖Pnψ−ψ‖V → 0.

Next we deal with (d). Let ψ ∈H, then

∫ t

s
|∇ũn(σ)|2L2〈ũn(σ),Pnψ〉H dσ−

∫ t

s
|∇ũ(σ)|2L2〈ũ(σ),ψ〉H dσ

=
∫ t

s

[|∇ũn(σ)|2L2 −|∇ũ(σ)|2L2

]〈ũ(σ),ψ〉H dσ+
∫ t

s
|∇ũn(σ)|2L2〈ũn(σ)− ũ(σ),ψ〉H dσ

+
∫ t

s
|∇ũn(σ)|2L2〈ũn(σ),Pnψ−ψ〉H dσ

=
∫ t

s

[|∇ũn(σ)|L2 −|∇ũ(σ)|L2
][|∇ũn(σ)|L2 +|∇ũ(σ)|L2

]〈ũ(σ),ψ〉H dσ

+
∫ t

s
|∇ũn(σ)|2L2〈ũn(σ)− ũ(σ),ψ〉H dσ+

∫ t

s
|∇ũn(σ)|2L2〈ũn(σ),Pnψ−ψ〉H dσ.

Thus, by the Cauchy-Schwarz inequality we get

∫ t

s
|∇ũn(σ)|2L2〈ũn(σ),Pnψ〉H dσ−

∫ t

s
|∇ũ(σ)|2L2〈ũ(σ),ψ〉H dσ

≤
∫ t

s
[‖ũn(σ)− ũ(σ)‖V] [‖ũn(σ)‖V +‖ũ(σ)‖V] |ũ(σ)|H|ψ|H dσ

+
∫ t

s
‖ũn(σ)‖2

V|ũn(σ)− ũ(σ)|H|ψ|H dσ+
∫ t

s
‖ũn(σ)‖2

V|ũn(σ)|H|Pnψ−ψ|H dσ
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By (5.5.35) ũn → ũ strongly in C ([0,T];H)∩L2(0,T;V), in particular ũ ∈ L2(0,T;V), the sequence

(ũn) is uniformly bounded in L2(0,T;V) and Pnψ→ψ in H. Thus, we have P̃−a.s.

lim
n→∞

∫ t

s
|∇ũn(σ)|2L2〈ũn(σ),Pnψ〉H dσ−

∫ t

s
|∇ũ(σ)|2L2〈ũ(σ),ψ〉H dσ

≤ lim
n→∞

[|ũn|L2(0,T;V ) +|ũ|L2(0,T;V )
] |ũn|L∞(0,T;H)|ũn − ũ|L2(0,T;V )|ψ|H

+ lim
n→∞ |ũn|2L2(0,T;V )|ũn − ũ|L∞(0,T;H)|ψ|H + lim

n→∞ |ũn|2L2(0,T;V )|ũn|L∞(0,T;H)|Pnψ−ψ|H → 0.

Hence we infer that assertion (d) holds.

Now we are left to show that (e) holds. Let ψ ∈H, then∫ t

s
〈C2ũn(σ),Pnψ〉H dσ−

∫ t

s
〈C2ũ(σ),ψ〉H dσ

=
∫ t

s
〈C2(ũn(σ)− ũ(σ)),ψ〉H dσ+

∫ t

s
〈C2ũn(σ),Pnψ−ψ〉H dσ

≤
∫ t

s
〈C2 A−1A(ũn(σ)− ũ(σ)),ψ〉H dσ+K2

c

∫ t

s
|ũn(σ)|D(A)|Pnψ−ψ|H dσ,

where Kc is defined in (5.3.1). Since (ũn) is a uniformly bounded sequence in L2(0,T;D(A)) and

C2A−1 is a bounded operator thus by (5.5.35), we have P̃-a.s.

lim
n→∞

∫ t

s
〈C2ũn(σ),Pnψ〉H dσ−

∫ t

s
〈C2ũ(σ),ψ)H dσ

≤ lim
n→∞

∫ t

s
〈A(ũn(σ)− ũ(σ)), (C2A−1)∗ψ〉H dσ+ lim

n→∞K2
c |ũ|L2(0,T;D(A))|Pnψ−ψ|HT1/2

= lim
n→∞

∫ t

s
〈ũn(σ)− ũ(σ),A−1(C2A−1)∗ψ〉D(A) dσ+ lim

n→∞K2
c |ũ|L2(0,T;D(A))|Pnψ−ψ|HT

1
2 → 0,

where to establish the convergence we have used that Pnψ→ψ in H.

This completes the proof of Lemma 5.5.8. �

Let h be a bounded continuous function on C ([0,T];H) and F̃ = (F̃t) = σ{ũ(s), s ≤ t} be the

filtration of sigma fields generated by the process ũ.

Lemma 5.5.9. For all s, t ∈ [0,T], such that s ≤ t and all ψ ∈V:

(5.5.36) lim
n→∞ Ẽ

[〈M̃n(t)− M̃n(s),ψ〉h(ũn|[0,s])
]= Ẽ[〈M̃(t)− M̃(s),ψ〉h(ũ|[0,s])

]
, h ∈C ([0,T];H),

where 〈·, ·〉 denotes the duality between V and V′.

Proof. Let us fix s, t ∈ [0,T], s ≤ t and ψ ∈V. By (5.5.29), we have

〈M̃n(t)− M̃n(s),ψ〉 = 〈ũn(t),Pnψ〉H −〈ũn(s),Pnψ〉H +
∫ t

s
〈Aũn(σ),Pnψ〉H dσ

+
∫ t

s
〈B(ũn(σ)),Pnψ〉dσ−

∫ t

s
|∇ũn(σ)|2L2〈ũn(σ),Pnψ〉H dσ

− 1
2

∫ t

s
〈C2ũn(σ),Pnψ〉H dσ.
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By Lemma 5.5.8, we infer that

(5.5.37) lim
n→∞〈M̃n(t)− M̃n(s),ψ〉 = 〈M̃(t)− M̃(s),ψ〉, P̃-a.s.

In order to prove (5.5.36) we first observe that since ũn → ũ in ZT , in particular in C ([0,T];H)

and h is a bounded continuous function on C ([0,T];H), we get

(5.5.38) lim
n→∞h(ũn|[0,s])= h(ũ|[0,s]) P̃−a.s.

and

(5.5.39) sup
n∈N

|h(ũn|[0,s])|L∞ <∞.

Let us define a sequence of R−valued random variables:

fn(ω) := [〈M̃n(t,ω),ψ〉−〈M̃n(s,ω),ψ〉]h(ũn|[0,s]), ω ∈ Ω̃.

We will prove that the functions { fn}n∈N are uniformly integrable in order to apply the Vitali

theorem later on. We claim that

(5.5.40) sup
n≥1

Ẽ [| fn|2]<∞.

By the Cauchy-Schwarz inequality and the embedding V′ ,→ H, for each n ∈ N there exists a

positive constant c such that

(5.5.41) Ẽ [| fn|2]≤ 2c|h|2L∞ |ψ|2VẼ
[|M̃n(t)|2H +|M̃n(s)|2H

]
.

Since M̃n is a continuous martingale with quadratic variation defined in (5.5.30), by the Burkholder-

Davis-Gundy inequality we obtain

(5.5.42) Ẽ

[
sup

t∈[0,T]
|M̃n(t)|2H

]
≤ cẼ

[
m∑

j=1

∫ T

0
|PnC j ũn(σ)|2H dσ

]
.

Since Pn : H→H is a contraction then by assumption (A.1) and (5.5.25) for p = 1, we have

Ẽ

[
m∑

j=1

∫ T

0
|PnC j ũn(σ)|2H dσ

]
≤ Ẽ

[
mK2

c

∫ T

0
‖ũn(σ)‖2

V dσ
]

≤ mK2
c Ẽ

[
sup

σ∈[0,T]
‖ũn(σ)‖2

V

]
T <∞ .(5.5.43)

Then, by (5.5.41) and (5.5.43) we see that (5.5.40) holds. Since the sequence { fn}n∈N is uni-

formly integrable and by (5.5.37) it is P̃−a.s. point-wise convergent, then application of the Vitali

Theorem (see Theorem 2.5.14) completes the proof of the lemma. �

From Lemma 5.5.6 and Lemma 5.5.9 we have the following corollary.
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Corollary 5.5.10. For all s, t ∈ [0,T] such that s ≤ t :

E
(
M̃(t)− M̃(s)

∣∣F̃t
)= 0.

Lemma 5.5.11. For all s, t ∈ [0,T] such that s ≤ t and all ψ,ζ ∈V :

lim
n→∞Ẽ

[(
〈M̃n(t),ψ〉〈M̃n(t),ζ〉−〈M̃n(s),ψ〉〈M̃n(s),ζ〉

)
h(ũn|[0,s])

]
= Ẽ

[(
〈M̃(t),ψ〉〈M̃(t),ζ〉−〈M̃(s),ψ〉〈M̃(s),ζ〉

)
h(ũ|[0,s])

]
, h ∈C ([0,T];H),

where 〈·, ·〉 denotes the dual pairing between V and V′.

Proof. Let us fix s, t ∈ [0,T] such that s ≤ t and ψ,ζ ∈V and define the random variables fn and f

by

fn(ω) :=
(
〈M̃n(t,ω),ψ〉〈M̃n(t,ω),ζ〉−〈M̃n(s,ω),ψ〉〈M̃n(s,ω),ζ〉

)
h(ũn|[0,s](ω)),

f (ω) :=
(
〈M̃(t,ω),ψ〉〈M̃(t,ω),ζ〉−〈M̃(s,ω),ψ〉〈M̃(s,ω),ζ〉

)
h(ũ|[0,s](ω)), ω ∈ Ω̃.

By (5.5.37) and (5.5.38) we infer that limn→∞ fn(ω)= f (ω), for P̃ almost all ω ∈ Ω̃.

We will prove that the functions { fn}n∈N are uniformly integrable. We claim that for some r > 1,

(5.5.44) sup
n≥1

Ẽ
[| fn|r

]<∞.

For each n ∈N, as before we have

(5.5.45) Ẽ
[| fn|r

]≤ C‖h‖r
L∞‖ψ‖r

V‖ζ‖r
VẼ

[|M̃n(t)|2r +|M̃n(s)|2r] .

Since M̃n is a continuous martingale with quadratic variation defined in (5.5.29), by the Burkholder-

Davis-Gundy inequality we obtain

(5.5.46) Ẽ

[
sup

t∈[0,T]
|M̃n(t)|2r

]
≤ cẼ

[
m∑

j=1

∫ T

0
|PnC j ũn(σ)|2H dσ

]r

.

Since Pn : H→H is a contraction, by assumption (A.1), we have

Ẽ

[
m∑

j=1

∫ T

0
|PnC j ũn(σ)|2H dσ

]r

≤ Ẽ
[
mK2

c

∫ T

0
‖ũn(σ)‖2

V dσ
]r

≤ (mK2
c )r Ẽ

(
sup

σ∈[0,T]
‖ũn(σ)‖2r

V

)
Tr.(5.5.47)

Thus for r ∈ (1,1+ 1
K2

c
), by (5.5.45), (5.5.46), (5.5.47) and (5.5.25) we infer that condition (5.5.44)

holds. By the Vitali theorem

(5.5.48) lim
n→∞ Ẽ[ fn]= Ẽ[ f ].

The proof of the lemma is thus complete. �
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Lemma 5.5.12 (Convergence of quadratic variations). For any s, t ∈ [0,T] and ψ,ζ ∈ V, for all

h ∈C ([0,T];H) we have

lim
n→∞Ẽ

[(
m∑

j=1

∫ t

s

〈(
C j ũn(σ)

)∗ Pnψ,
(
C j ũn(σ)

)∗ Pnζ
〉
R

dσ

)
·h(ũn|[0,s])

]

= Ẽ
[(

m∑
j=1

∫ t

s

〈(
C j ũ(σ)

)∗
ψ,

(
C j ũ(σ)

)∗
ζ
〉
R

dσ

)
·h(ũ|[0,s])

]
.

Proof. Let us fix ψ,ζ ∈V and define a sequence of random variables by

fn(ω) :=
(

m∑
j=1

∫ t

s

〈(
C j ũn(σ,ω)

)∗ Pnψ,
(
C j ũn(σ,ω)

)∗ Pnζ
〉
R

dσ

)
·h(ũn|[0,s]), ω ∈ Ω̃.

We will prove that these random variables are uniformly integrable and convergent P̃−a.s. to

some random variable f . In order to do that we will show that for some r > 1,

(5.5.49) sup
n≥1

Ẽ | fn|r <∞.

Since Pn : H→H is a contraction, by the Cauchy-Schwarz inequality, and assumption (A.1)
there exists a positive constant c such that∣∣(C j ũn(σ,ω)

)∗ Pnψ
∣∣
R
≤ ∣∣(C j ũn(σ,ω)

)∗∣∣
L (H;R) |Pnψ|H ≤ |C j ũn(σ,ω)|L (R;H)|ψ|H

≤ Kc ‖ũn(σ,ω)‖V|ψ|H, j ∈ {1, · · · ,m},

where L (X ,Y ) denotes the operator norm of the linear operators from X to Y . Thus using the

Hölder inequality, we obtain

Ẽ | fn|r = Ẽ
∣∣∣∣∣
(

m∑
j=1

∫ t

s

〈(
C j ũn(σ)

)∗ Pnψ, (Cũn(σ))∗ Pnζ
〉
R

dσ

)
·h(ũn|[0,s])

∣∣∣∣∣
r

≤ |h|rL∞ Ẽ

(
m∑

j=1

∫ t

s

∣∣(C j ũn(σ)
)∗ Pnψ

∣∣
R
· ∣∣(C j ũn(σ)

)∗ Pnζ
∣∣
R

dσ

)r

≤ (mK2
c )r |h|rL∞ |ψ|rH|ζ|rHẼ

(∫ t

s
‖ũn(σ)‖2

V dσ
)r

≤ (mK2
c )r |h|rL∞ |ψ|rH|ζ|rHẼ

(
sup

σ∈[0,T]
‖ũn(σ)‖2r

V

)
Tr.(5.5.50)

Therefore using (5.5.50) and (5.5.25) we infer that (5.5.49) holds for every r ∈ (1,1+ 1
K2

c
).

Now for pointwise convergence we will show that for a fix ω ∈ Ω̃,

lim
n→∞

∫ t

s

m∑
j=1

〈(
C j ũn(σ,ω)

)∗ Pnψ,
(
C j ũn(σ,ω)

)∗ Pnζ
〉
R

dσ(5.5.51)

=
∫ t

s

m∑
j=1

〈(
C j ũ(σ,ω)

)∗
ψ,

(
C j ũ(σ,ω)

)∗
ζ
〉
R

dσ.

Let us fix ω ∈ Ω̃ such that
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(i) ũn(·,ω)→ ũ(·,ω) in L2(0,T;V),

(ii) and the sequence (ũn(·,ω))n≥1 is uniformly bounded in L2(0,T;V).

Note that to prove (5.5.51), it is sufficient to prove that

(5.5.52)
(
C j ũn(σ,ω)

)∗ Pnψ→ (
C j ũ(σ,ω)

)∗
ψ in L2(s, t;R),

for every j ∈ {1, · · · ,m}. Using the Cauchy-Schwarz inequality we have∫ t

s

∣∣(C j ũn(σ,ω)
)∗ Pnψ− (

C j ũ(σ,ω)
)∗
ψ

∣∣2
R

dσ

≤
∫ t

s

(∣∣(C j ũn(σ,ω)
)∗ (

Pnψ−ψ)∣∣
R
+ ∣∣(C j ũn(σ,ω)−C j ũ(σ,ω)

)∗
ψ

∣∣
R

)2
dσ

≤ 2
∫ t

s

∣∣C j ũn(σ,ω)
∣∣2
L (R;H)

∣∣Pnψ−ψ∣∣2
H dσ+2

∫ t

s

∣∣C j ũn(σ,ω)−C j ũ(σ,ω)
∣∣2
L (R;H) |ψ|2H dσ

=: I1
n(t)+ I2

n(t).

We will deal with each of the terms individually. We start with I1
n(t). Since

lim
n→∞ |Pnψ−ψ|H = 0, ψ ∈V,

and by assumption (A.1), (ii) there exists a positive constant K such that

sup
n≥1

∫ t

s
|Cũn(σ,ω)|2L (R;H) dσ≤ K2

c sup
n≥1

∫ t

s
‖ũn(σ,ω)‖2

V dσ≤ K .

Thus we infer that

lim
n→∞ I1

n(t)= 0.

Next we consider I2
n(t). Using assumption (A.1) and (i) we can show that for every j ∈

{1, · · · ,m},

lim
n→∞

∫ t

s

∣∣C j ũn(σ,ω)−C j ũ(σ,ω)
∣∣2
L (R;H) |ψ|2H dσ

≤ lim
n→∞ |ψ|2H K2

c

∫ t

s
‖ũn(σ,ω)− ũ(σ,ω)‖2

V dσ= 0.

Hence, we have proved (5.5.52), finishing the proof of lemma. �

By Lemma 5.5.9 we can pass to the limit in (5.5.31). By Lemmas 5.5.11 and 5.5.12 we can

pass to the limit in (5.5.32) as well. After passing to the limits we infer that for all ψ,ζ ∈V and

h ∈C ([0,T];H):

(5.5.53) Ẽ
[〈M̃(t)− M̃(s),ψ〉h(ũ|[0,s])

]= 0,
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and

Ẽ
[(
〈M̃(t),ψ〉〈M̃(t),ζ〉−〈M̃(s),ψ〉〈M̃(s),ζ〉

−
m∑

j=1

∫ t

s

〈(
C j ũ(σ)

)∗
ψ,

(
C j ũ(σ)

)∗
ζ
〉
R

dσ
)
·h(ũ|[0,s])

]
= 0.(5.5.54)

From the two previous lemmas and Lemma 5.5.6, we infer the following corollary.

Corollary 5.5.13. For t ∈ [0,T]

〈〈M̃〉〉t =
∫ t

0

m∑
j=1

∣∣C j ũ(s)
∣∣2
H ds , t ∈ [0,T] .

Theorem 5.3.3 proof continued. Now we apply the idea analogous to that used by Da Prato

and Zabczyk, see [38, Section 8.3]. By Lemma 5.5.7 and Corollary 5.5.10, we infer that M̃(t),

t ∈ [0,T] is an H-valued continuous square integrable martingale with respect to the filtration

F̃= (F̃t)t≥0. Moreover, by Corollary 5.5.13 the quadratic variation of M̃ is given by

〈〈M̃〉〉t =
∫ t

0

m∑
j=1

∣∣C j ũ(s)
∣∣2
H ds , t ∈ [0,T] .

Therefore by the martingale representation theorem (see Theorem 2.8.7), there exist

• a stochastic basis ( ˜̃Ω, ˜̃F , ˜̃Ft≥0, ˜̃P),

• a Rm−valued ˜̃F−Wiener process ˜̃W(t) defined on this basis,

• and a progressively measurable process ˜̃u(t) such that for all t ∈ [0,T] and v ∈V:

〈 ˜̃u(t),v〉−〈 ˜̃u(0),v〉+
∫ t

0
〈A ˜̃u(s),v〉ds+

∫ t

0
〈B( ˜̃u(s)),v〉ds

=
∫ t

0
|∇ ˜̃u(s)|2L2〈 ˜̃u(s),v〉ds+ 1

2

∫ t

0

m∑
j=1

〈C2
j

˜̃u(s),v〉ds+
∫ t

0

m∑
j=1

〈C j ˜̃u(s),v〉d ˜̃W(s).

Thus the conditions from Definition 5.3.2 hold with (Ω̂,F̂ , {F̂t}t≥0, P̂)= ( ˜̃Ω, ˜̃F , { ˜̃Ft}t≥0, ˜̃P), Ŵ = ˜̃W

and û = ˜̃u. Hence the proof of Theorem 5.3.3 is complete.

5.6 Pathwise uniqueness and strong solution

In this section we will show that the solutions of (5.2.4) are pathwise unique and that prob-

lem (5.2.4) has a strong solution in PDE as well as in probabilistic sense. In the previous section

we showed that paths of martingale solution u of (5.2.4) belong to C ([0,T];Vw)∩L2(0,T;D(A)). We

start by proving Lemma 5.3.5, i.e. showing that the trajectories of the solution u ∈C ([0,T];V)∩
L2(0,T;D(A)).
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Proof of Lemma 5.3.5 u is a martingale solution of (5.2.4) thus, u ∈C ([0,T];Vw)∩L2(0,T;D(A))

P̂−a.s. We start by showing that RHS of (5.3.5) makes sense. In order to do so we will show that

each term on the RHS is well defined.

Firstly we consider the non-linear term arising from Navier-Stokes. Using (3.2.3), the Hölder

inequality, (5.5.24) and the estimate (5.3.4), we have the following bounds :

Ê

∫ T

0
|B(u(s))|2H ds ≤ 2Ê

∫ T

0
|u(s)|H|∇u(s)|2L2 |u(s)|D(A) ds

≤ 2T1/2 (
Ê sups∈[0,T]‖u(s)‖4

V
)1/2

(
Ê

∫ T

0
|u(s)|2D(A) ds

)1/2

<∞.

Using (5.5.24), the Hölder inequality, (5.5.23), estimates (5.5.25) and (5.3.4) we have the

following inequalities for the non-linear term generated from the projection of the Stokes operator,

Ê

∫ T

0

∣∣|∇u(s)|2L2 u(s)
∣∣2
H ds = Ê

∫ T

0
|∇u(s)|4L2 ds ≤ T

(
Ê sup

s∈[0,T]
‖u(s)‖4

V

)
<∞.

Next we deal with the correction term arising from the Stratonovich integral. Using assump-

tion (A.1) and (5.3.4), for every j ∈ {1, · · · ,m} we have

Ê

∫ T

0
|C2

j u(s)|2H ≤ K4
c Ê

∫ T

0
|u(s)|2D(A) ds <∞,

where Kc is defined in (5.3.1).

We are left to show that the Itô integral belongs to L2(Ω× [0,T];V). Due to Itô isometry it is

enough to show that for every j ∈ {1, · · · ,m}

(5.6.1) Ê

∫ T

0
‖C ju(s)‖2

V ds <∞.

Using assumption (A.1) and (5.3.4), we have

Ê

∫ T

0
‖C ju(s)‖2

V ds ≤ Kc Ê

∫ T

0
|u(s)|2D(A) ds <∞.

Thus we have shown that each term in (5.3.5) is well defined. Now we will show that the equality

holds.

Since u is a martingale solution of (5.2.4), for every v ∈V and t ∈ [0,T] it satisfies the equality

(5.3.2), i.e. P̂−a.s.

〈u(t),v〉−〈u0,v〉+
∫ t

0
〈Au(s),v〉ds+

∫ t

0
〈B(u(s)),v〉ds

=
∫ t

0
|∇u(s)|2L2〈u(s),v〉ds+ 1

2

∫ t

0

m∑
j=1

〈C2
j u(s),v〉ds+

∫ t

0

m∑
j=1

〈C ju(s),v〉dŴj(s).

Note that the above equation holds true for every v ∈ V (as defined in (3.1.2)) and hence (5.3.5)

holds in the distribution sense. But since V is dense in V, equality (5.3.5) holds true almost

everywhere, which justifies Remark 5.3.4.
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We use [71, Lemma 4.1] to prove the first part of the lemma. We work with the D(A)⊂V⊂H

space triple. Let us rewrite (5.3.5) in the following form

u(t)= u0 +
∫ t

0
g(s)ds+N(t),

where g contains all the deterministic terms and N corresponds to the noise term. We have

shown that g ∈ L2(Ω;L2(0,T;H)) and N ∈ L2(Ω;L2(0,T;V)). Thus from [71, Lemma 4.1] we infer

that u ∈ L2(Ω;C ([0,T];V)). This concludes the proof of lemma. �

In the following lemma we will prove that the solutions of (5.2.4) are pathwise unique. The

proof uses the Schmalfuss idea of application of the Itô formula for appropriate function (see

[82]).

Lemma 5.6.1. Assume that the assumptions (A.1) - (A.2) are satisfied. If u1,u2 are two martin-

gale solutions of (5.2.4) defined on the same filtered probability space (Ω̂,F̂ , F̂, P̂) then P̂−a.s. for

all t ∈ [0,T], u1(t)= u2(t).

Proof. Let us denote the difference of the two solutions by U := u1 − u2. Then U satisfies the

following equation

dU(t)+ [AU(t)+B(u2(t))−B(u1(t))] dt = [|∇u1(t)|2L2 u1(t)−|∇u2(t)|2L2 u2(t)
]

dt

+
m∑

j=1
C jU(t)◦dWj(t) , t ∈ [0,T].(5.6.2)

Let us define the stopping time

(5.6.3) τN : = T ∧ inf {t ∈ [0,T] : ‖u1(t)‖2
V ∨‖u2(t)‖2

V > N}, N ∈N.

Since Ê
[
supt∈[0,T] ‖ui(t)‖2

V

]<∞ P̂-a.s. for i = 1,2, limN→∞τN = T.

We apply the Itô formula to the function

F(t, x)= e−r(t)|x|2H, t ∈ [0,T] , x ∈V

where r(t), t ∈ [0,T], is a real valued C 1-class function which will be defined precisely later in the

proof.

Since
∂F
∂t

=−r′(t)e−r(t)|x|2H,
∂F
∂x

(·)= 2e−r(t)〈x, ·〉H,

we obtain for all t ∈ [0,T]

e−r(t∧τN )|U(t∧τN )|2H =
∫ t∧τN

0
e−r(s) (−r′(s)|U(s)|2H +2〈−AU(s)+B(u1(s))−B(u2(s)),U(s)〉H

)
ds

+
∫ t∧τN

0
e−r(s)

(
2〈|∇u1(s)|2L2 u1(s)−|∇u2(s)|2L2 u2(s),U(s)〉H +

m∑
j=1

〈C2
jU(s),U(s)〉H

)
ds

+ 1
2

∫ t∧τN

0

m∑
j=1

Tr
[
C jU(s)

∂2F
∂x2 (C jU(s))∗

]
ds+2

∫ t∧τN

0
e−r(s)

m∑
j=1

〈C jU(s),U(s)〉HdW(s).

109



CHAPTER 5. STOCHASTIC CONSTRAINED NAVIER-STOKES EQUATIONS

Thus using the assumption (A.1), we obtain the following simplified expression

e−r(t∧τN )|U(t∧τN )|2H ≤
∫ t∧τN

0
e−r(s) (−r′(s)|U(s)|2H −2‖U(s)‖2

V −2b(U(s),u1(s),U(s))
)

ds

+2
∫ t∧τN

0
e−r(s) ((|∇u1(s)|2L2 −|∇u2(s)|2L2)〈u1(s),U(s)〉H +|∇u2(s)|2L2 |U(s)|2H

)
ds

+
∫ t∧τN

0
e−r(s)

m∑
j=1

(
〈C2

jU(s),U(s)〉H + 1
2
×2〈C jU(s),C jU(s)〉H

)
ds.

Using (3.2.1) and the Cauchy-Schwarz inequality, we get

e−r(t∧τN )|U(t∧τN )|2H +2
∫ t∧τN

0
e−r(s)‖U(s)‖2

V ds

≤
∫ t∧τN

0
e−r(s) (−r′(s)|U(s)|2H +4|U(s)|H‖U(s)‖V‖u1(s)‖V

)
ds

+2
∫ t∧τN

0
e−r(s)‖U(s)‖V

(
|∇u1(s)|L2 +|∇u2(s)|L2

)
|u1(s)|H|U(s)|H ds

+2
∫ t∧τN

0
e−r(s)|∇u2(t)|2L2 |U(s)|2H ds.

Using the Young inequality, we obtain

e−r(t∧τN )|U(t∧τN )|2H +2
∫ t∧τN

0
e−r(s)‖U(s)‖2

V ds ≤
∫ t∧τN

0
e−r(s) [−r′(s)+8‖u1(s)‖2

V
] |U(s)|2H ds

+2
∫ t∧τN

0
e−r(s)(|∇u1(s)|L2 +|∇u2(s)|L2

)2|u1(s)|2H|U(s)|2H ds

+
∫ t∧τN

0
e−r(s)‖U(s)‖2

V ds.(5.6.4)

Now choosing

r(t) :=
∫ t

0

[
8‖u1(s)‖2

V +2
(|∇u1(s)|L2 +|∇u2(s)|L2

)2|u1(s)|2H
]

ds,

inequality (5.6.4) reduces to

e−r(t∧τN )|U(t∧τN )|2H +
∫ t∧τN

0
e−r(s)‖U(s)‖2

V ds ≤ 0.

In particular

(5.6.5) sup
t∈[0,T]

[
e−r(t∧τN )|U(t∧τN )|2H

]
= 0.

Note that since u1 and u2 are the martingale solutions of (5.2.4) satisfying the estimates

(5.5.4) and (5.5.6) and because of the Lemma 5.5.1, r is well defined for all t ∈ [0,T].

Since P̂−a.s. limN→∞τN = T and Ê [r(T)] <∞, thus from (5.6.5) we infer that P̂−a.s. for all

t ∈ [0,T], U(t)= 0. The proof of the lemma is thus complete. �
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Definition 5.6.2. Let (Ωi,F i,Fi,Pi,W i,ui), i = 1,2 be the martingale solutions of (5.2.4) with

ui(0)= u0, i = 1,2. Then we say that the solutions are unique in law if

LawP1(u1)=LawP2(u2) on C ([0,∞);Vw)∩L2([0,∞);D(A)),

where LawPi (ui), i = 1,2 are by definition probability measures on C ([0,∞);Vw)∩L2([0,∞);D(A)).

Corollary 5.6.3. Assume that assumptions (A.1) - (A.2) are satisfied. Then

(1) There exists a pathwise unique strong solution of (5.2.4).

(2) Moreover, if (Ω,F ,F,P,W ,u) is a strong solution of (5.2.4) then for P−almost all ω ∈Ω the

trajectory u(·,ω) is equal almost everywhere to a continuous V−valued function defined on

[0,T].

(3) The martingale solution of (5.2.4) are unique in law.

Proof. By Theorem 5.3.3 there exists a martingale solution and in the Lemma 5.6.1 we showed

it is pathwise unique, thus assertion (1) follows from [68, Theorem 2]. Assertion (2) is a direct

consequence of Lemma 5.3.5. Assertion (3) follows from [68, Theorems 2,11]. �

Using Theorem 5.3.3, Lemma 5.6.1 and Corollary 5.6.3 one can infer Theorem 5.3.7.

5.7 The continuous dependence of solutions on the initial data

This section deals with the continuous dependence of martingale solutions of (5.2.4) on the initial

data. Roughly speaking, we will show that if (u0,n)n∈N ⊂V∩M is a sequence of initial conditions

approaching in V topology to u0 ∈V∩M , then the sequence (un)n∈N of martingale solutions of

(5.2.4) corresponding to initial data (u0,n), satisfying inequalities (5.5.4) – (5.5.6), on a changed

probability basis, converges to a martingale solution with the initial condition u0. Note that

existence of such solutions un, n ∈N, is guaranteed by Theorem 5.3.3. Let us recall that for a

fixed T > 0,

ZT =C ([0,T];H)∩L2
w(0,T;D(A))∩L2(0,T;V)∩C ([0,T];Vw) .

The following auxiliary result which is needed in the proof of Theorem 5.7.7, cannot be

deduced directly from the Kuratowski Theorem.

Lemma 5.7.1. Assume that T > 0. Then the following sets C ([0,T];V)∩ZT and L2(0,T;D(A))∩ZT

are Borel subsets of ZT .

Proof. First of all C ([0,T];V)⊂C ([0,T];H)∩L2(0,T;V). Secondly, C ([0,T];V) and C ([0,T];H)∩
L2(0,T;V) are Polish spaces. And finally, since V is continuously embedded in H, the map

i : C ([0,T];V)→C ([0,T];H)∩L2(0,T;V),
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is continuous and hence Borel. Thus by application of the Kuratowski Theorem (see Theo-

rem 2.5.17) C ([0,T];V) is a Borel subset of C ([0,T];H)∩L2(0,T;V). Therefore by Lemma C.1

C ([0,T];V)∩ZT is a Borel subset of C ([0,T];H)∩L2(0,T;V)∩ZT which is equal to ZT .

Similarly we can show that L2(0,T;D(A))∩ZT is a Borel subset of ZT . L2(0,T;D(A)) ,→
L2(0,T;V) and both are Polish spaces thus by application of the Kuratowski Theorem, L2(0,T;D(A))

is a Borel subset of L2(0,T;V). Finally, we can conclude the proof of theorem by Lemma C.1. �

5.7.1 Tightness criterion and the Jakubowski-Skorohod Theorem

One of the main tools in this section is the tightness criterion in the space ZT . We will use

a slight generalization of the criterion stated in Corollary 5.4.3. Namely, we will consider the

sequence of stochastic processes defined on their own probability spaces in contrast to one

common probability space. Let (Ωn,Fn,Fn,Pn), n ∈N, be a sequence of probability spaces with

the filtration Fn = (Fn,t)t≥0.

Corollary 5.7.2. (Tightness criterion) Assume that (Xn)n∈N is a sequence of continuous Fn-

adapted H-valued processes defined on Ωn such that

sup
n∈N

En
[

sup
s∈[0,T]

‖Xn(s)‖2]<∞,(5.7.1)

sup
n∈N

En

[∫ T

0
|Xn(s)|2D(A) ds

]
<∞,(5.7.2)

(a) and for every ε> 0 and for every η> 0 there exists δ> 0 such that for every sequence (τn)n∈N
of [0,T]-valued Fn-stopping times one has

(5.7.3) sup
n∈N

sup
0≤θ≤δ

Pn
{ |Xn(τn +θ)− Xn(τn)|H ≥ η}≤ ε.

Let P̃n be the law of Xn on the Borel σ-field B(ZT ). Then for every ε> 0 there exists a compact

subset Kε of ZT such that

sup
n∈N

P̃n(Kε)≥ 1−ε.

The proof of Corollary 5.7.2 is essentially same as the proof of Corollary 5.4.3.

If the sequence (Xn)n∈N satisfies condition (a) then we say that it satisfies the Aldous condition

[A] in H on [0,T]. If it satisfies condition (a) for each T > 0, we say that it satisfies the Aldous

condition [A] in H (see Definition 2.9.10).

Below we will formulate a sufficient condition for the Aldous condition. This idea has been

used in the proof of Lemma 5.5.5, but has not been formulated in such a way.

Lemma 5.7.3. Assume that Y is a separable Banach space, σ ∈ (0,1] and that (un)n∈N is a

sequence of continuous Fn-adapted Y -valued processes indexed by [0,T] for some T > 0, such that
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(a′) there exists C > 0 such that for every θ > 0 and for every sequence (τn)n∈N of [0,T]-valued

Fn-stopping times one has

(5.7.4) En
[|un(τn +θ)−un(τn)|Y

]≤ Cθσ.

Then the sequence (un)n∈N satisfies the Aldous condition [A] in Y on [0,T].

Proof. Let us fix η> 0 and ε> 0. By the Chebyshev inequality and the estimate (5.7.4) we obtain

Pn
({|un(τn +θ)−un(τn)|Y ≥ η})≤ 1

η
En

[|un(τn +θ)−un(τn)|Y
]≤ C ·θσ

η
, n ∈N.

Let us choose δ := [η·ε
C

] 1
σ . Then we have

sup
n∈N

sup
1≤θ≤δ

Pn
{|un(τn +θ)−un(τn)|Y ≥ η}≤ ε .

This completes the proof. �

We restate the version of the Skorohod Theorem that we stated in Theorem 5.4.4 in a slightly

different way.

Theorem 5.7.4. Let (X ,τ) be a topological space such that there exists a sequence ( fm) of contin-

uous functions fm : X →R that separates points of X . Let (Xn) be a sequence of X -valued Borel

random variables. Suppose that for every ε> 0 there exists a compact subset Kε ⊂X such that

sup
n∈N

P({Xn ∈ Kε})> 1−ε.

Then there exists a subsequence (nk)k∈N, a sequence (Yk)k∈N of X -valued Borel random variables

and an X -valued Borel random variable Y defined on some probability space (Ω,F ,P) such that

L (Xnk )=L (Yk), k = 1,2, ...

and for all ω ∈Ω:

Yk(ω) τ−→Y (ω) as k →∞.

Note that the sequence ( fm) defines another, weaker topology on X . However, this topology

restricted to σ-compact subsets of X is equivalent to the original topology τ. Let us emphasize

that thanks to the assumption on the tightness of the set of laws {L (Xn),n ∈N} on the space X

the maps Y and Yk, k ∈N, in Theorem 5.7.4 are measurable with respect to the Borel σ-field in

the space X .

In Lemma 5.4.5 we have already shown that the topological space ZT satisfies the assump-

tions of Theorem 5.7.4.
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5.7.2 The continuous dependence

We prove the following result related to the continuous dependence on the deterministic initial

condition.

Theorem 5.7.5. Let T > 0. Assume that
(
u0,n

)
n∈N is a V∩M -valued sequence bounded in V and

(
Ω̂n,F̂n, F̂n, P̂n,Ŵn,un

)
be a martingale solution of problem (5.2.4) with the initial data u0,n and satisfying inequalities

(5.5.4) – (5.5.6). Then, the set of Borel measures
{
L (un),n ∈N}

is tight on the space (ZT ,T ).

Proof. Let us fix T > 0. Let
(
u0,n

)
n∈N be a V∩M -valued sequence. Let

(
Ω̂n,F̂n, F̂n, P̂n,Ŵn,un

)
be the martingale solution of problem (5.2.4) with the initial data un

0 and satisfying inequalities

(5.5.4) – (5.5.6). Such a solution exists by Theorem 5.3.3.

To show that the set of measures
{
L (un),n ∈N}

are tight on the space (ZT ,T ), we argue as

in the proof of Lemma 5.5.3 using Corollary 5.7.2. We first observe that due to estimates (5.5.4)

(with p = 1) and (5.5.6), conditions (5.7.1) and (5.7.2) of Corollary 5.7.2 are satisfied. Thus, we

are left to prove condition (a), i.e. the sequence (un)n∈N satisfies the Aldous condition [A]. By

Lemma 5.7.3 it is sufficient to prove the condition (a′).
Note that we have to choose our steps very carefully as we no longer treat strong solutions

to an SDE in a finite dimensional Hilbert space but instead a strong solution to an SPDE in an

infinite dimensional Hilbert space.

Let (τn)n∈N be a sequence of stopping times taking values in [0,T]. Since each process satisfies

equation (5.3.2), by Lemma 5.3.5 we have

un(t) = u0,n −
∫ t

0
Aun(s)ds−

∫ t

0
B

(
un(s)

)
ds+

∫ t

0
|∇un(s)|2L2 un(s)ds

+ 1
2

∫ t

0
C2un(s)ds+

∫ t

0
Cun(s)dW(s)

=: Jn
1 + Jn

2 (t)+ Jn
3 (t)+ Jn

4 (t)+ Jn
5 (t)+ Jn

6 (t) , t ∈ [0,T] ,

where the above equality is understood in the space V. Let us choose θ > 0. It is sufficient to

show that each sequence Jn
i of processes, i = 1, · · · ,6 satisfies the sufficient condition (a′) from

Lemma 5.7.3. Now the rest of the proof is identical to that of Lemma 5.5.3. �

Remark 5.7.6. It is easy to be convinced that un take values in ZT but it’s not so obvious to see

that in fact un are Borel measurable functions. Indeed, this is so because our construction of

the martingale solution is based on the Jakubowski-Skorohod Theorem, see Theorem 5.7.4 for

details.
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The main result about the continuous dependence of the solutions of the stochastic constrained

Navier-Stokes equations on the initial state is expressed in the following theorem.

Theorem 5.7.7. Assume that
(
u0,n

)
n∈N is a V∩M -valued sequence that is convergent weakly to

u0 ∈V∩M . Let (
Ω̂n,F̂n, F̂n, P̂nŴn,un

)
be a martingale solution of problem (5.2.4) on [0,∞) with the initial data un

0 and satisfying

inequalities (5.5.4) – (5.5.6). Then for every T > 0 there exist

• a subsequence (nk)k,

• a stochastic basis
(
Ω̃,F̃ , F̃, P̃

)
,

• a Rm−valued F̃−Wiener process W̃

• and F̃-progressively measurable processes ũ,
(
ũnk

)
k≥1 (defined on this basis) with laws

supported in ZT such that

(5.7.5) ũnk has the same law as unk on ZT and ũnk → ũ in ZT , P̃ - a.s.

and the system (
Ω̃,F̃ , F̃, P̃,W̃ , ũ

)
is a martingale solution to problem (5.2.4) on the interval [0,T] with the initial data u0. In

particular, for all t ∈ [0,T] and all v ∈V

〈ũ(t),v〉V −〈ũ(0),v〉V +
∫ t

0
〈Aũ(s),v〉V ds+

∫ t

0
〈B(ũ(s)),v〉V ds

=
∫ t

0
〈|∇ũ(s)|2Hũ(s),v〉V ds+〈

∫ t

0
Cũ(s) ◦dW̃(s),v〉

V
, P̃-a.s.

Moreover, the process ũ satisfies the following inequality for every p ∈ [1,1+ 1
K2

c
)

(5.7.6) Ẽ

[
sup

s∈[0,T]
‖ũ(s)‖V

2p +
∫ T

0
|ũ(s)|2D(A) ds

]
<∞.

Proof. Since the product topological space ZT ×C ([0,T],Rm) satisfies the assumptions of The-

orem 5.7.4, by applying it together with Theorem 5.7.5, there exists a subsequence (nk), a

probability space (Ω̃,F̃ , P̃) and ZT ×C ([0,T],Rm)-valued Borel random variables
(
ũ,W̃

)
,
(
ũk,W̃k

)
,

k ∈N such that W̃ and W̃k, k ∈N are Rm-valued Wiener processes such that

(5.7.7) the laws on B(ZT ×C ([0,T],Rm)) of (unk ,W) and (ũk,W̃k) are equal.

where B(ZT ×C ([0,T],Rm)) is the Borel σ-algebra on ZT ×C ([0,T],Rm), and

(5.7.8)
(
ũk,W̃k

)
converges to

(
ũ,W̃

)
in ZT ×C ([0,T],Rm) P̃-almost surely on Ω̃.

115



CHAPTER 5. STOCHASTIC CONSTRAINED NAVIER-STOKES EQUATIONS

Note that since B(ZT ×C ([0,T],Rm)) ⊂ B(ZT )×B(C ([0,T],Rm)), the function u is ZT Borel

random variable.

Define a corresponding sequence of filtrations by

(5.7.9) F̃k = (F̃k(t))t≥0, where F̃k(t)=σ(
{
(
ũk(s),W̃k(s)

)
, s ≤ t}

)
, t ∈ [0,T].

To conclude the proof, we need to show that the random variable ũ gives rise to a martingale

solution. The proof of this claim is very similar to the proof of Theorem 2.3 in [66]. Let us denote

the subsequence (ũnk )k again by (ũn)n.

The few differences are:

(i) The finite dimensional space Hn is replaced by the whole space H. But now since the space

C ([0,T];H) is a Borel subset of ZT and ũn and un have the same laws on ZT , we infer that

ũn ∈C ([0,T];H) n ≥ 1, P̃-a.s.

(ii) The operator Pn has to be replaced by the identity. But this is rather a simplification.

In addition to point (i) above, we have that for every p ∈ [1,1+ 1
K2

c
)

(5.7.10) sup
n∈N

Ẽ
(

sup
0≤s≤T

‖ũn(s)‖V
2p)≤ C1(p),

Similarly,

ũn ∈ L2(0,T;D(A)) n ≥ 1, P-a.s.

and

(5.7.11) sup
n∈N

Ẽ
[∫ T

0
|ũn(s)|2D(A) ds

]
≤ C2.

By inequality (5.7.11) we infer that the sequence (ũn) contains a subsequence, still denoted by

(ũn), convergent weakly in the space L2([0,T]× Ω̃;D(A)). Since by (5.7.8) P̃-a.s. ũn → ũ in ZT , we

conclude that ũ ∈ L2([0,T]× Ω̃;D(A)), i.e.

(5.7.12) Ẽ
[∫ T

0
|ũ(s)|2D(A) ds

]
<∞ .

Similarly, by inequality (5.7.10) we can choose a subsequence of (ũn) convergent weak star in the

space Lp(Ω̃;L∞(0,T;V)) and, using (5.7.8), infer that

(5.7.13) Ẽ
[

sup
0≤s≤T

‖ũ(s)‖V
2p]<∞ .

The remaining proof will be done in two steps.

Step 1. Let us fix T > 0. We will first prove the following Lemma.

Lemma 5.7.8. For all t ∈ (0,T] and ϕ ∈V
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(a) limn→∞ Ẽ
[∫ T

0
∣∣〈ũn(t)− ũ(t),ϕ〉H

∣∣2 dt
]
= 0,

(b) limn→∞ Ẽ
[∣∣〈ũn(0)− ũ(0),ϕ〉H

∣∣2]
= 0,

(c) limn→∞ Ẽ
[∫ T

0
∣∣∫ t

0 〈Aũn(s)−Aũ(s),ϕ〉 ds
∣∣dt

]= 0,

(d) limn→∞ Ẽ
[∫ T

0
∣∣∫ t

0 〈B(ũn(s))−B(ũ(s)),ϕ〉 ds
∣∣dt

]= 0,

(e) limn→∞ Ẽ
[∫ T

0
∣∣∫ t

0 〈|∇ũn(s)|2L2 ũn(s)−|∇ũ(s)|2L2 ũ(s),ϕ〉 ds
∣∣dt

]= 0,

(f) limn→∞ Ẽ
[∫ T

0
∣∣∫ t

0 〈C2ũn(s)−C2ũ(s),ϕ〉 ds
∣∣dt

]= 0,

(g) limn→∞ Ẽ
[∫ T

0
∣∣〈∫ t

0 [Cũn(s)−Cũ(s)]dW̃(s),ϕ〉∣∣2 dt
]= 0.

Proof. Let us fix ϕ ∈V.

Ad (a). Since by (5.7.8) ũn → ũ in C ([0,T];H) P̃-a.s., 〈ũn(·),ϕ〉H →〈ũ(·),ϕ〉H in C ([0,T];R), P̃-a.s.

Hence, in particular, for all t ∈ [0,T]

lim
n→∞〈ũn(t),ϕ〉H = 〈ũ(t),ϕ〉H, P̃-a.s.

Since ũn(t) ∈M for all t ∈ [0,T], supt∈[0,T] |ũn(t)|2H <∞, P̃-a.s., using the dominated convergence

theorem we infer that

(5.7.14) lim
n→∞

∫ T

0
|〈ũn(t)− ũ(t),ϕ〉H|2 dt = 0 P̃-a.s. .

Since ũn(t), ũ(t) ∈M for all t ∈ [0,T], by the Hölder inequality for every n ∈N and r ∈ [1,∞)

(5.7.15) Ẽ
[∣∣∣∫ T

0
|ũn(t)− ũ(t)|2H dt

∣∣∣r]≤ cẼ
[∫ T

0

(|ũn(t)|2r
H +|ũ(t)|2r

H
)
dt

]
= 2cT ,

where c is some positive constant. To conclude the proof of assertion (a) it is sufficient to use

(5.7.14), (5.7.15) and the Vitali Theorem.

Ad (b). Since by (5.7.8) ũn → ũ in C (0,T;H) P̃-a.s. and ũ is continuous at t = 0, we infer that

〈ũn(0),ϕ〉H →〈ũ(0),ϕ〉H, P̃-a.s. Now, assertion (b) follows from the Vitali Theorem.

Ad (c). Since by (5.7.8) ũn → ũ in L2
w(0,T;D(A)), P̃-a.s., we infer that P̃-a.s.

lim
n→∞

∫ t

0
〈Aũn(s),ϕ〉 ds = lim

n→∞

∫ t

0
〈ũn(s),A−1ϕ〉D(A) ds

=
∫ t

0
〈ũ(s),A−1ϕ〉D(A) ds =

∫ t

0
〈Aũ(s),ϕ〉 ds(5.7.16)

By the Hölder inequality and estimate (5.7.11) we infer that for all t ∈ [0,T] and n ∈N

Ẽ
[∣∣∣∫ t

0
〈Aũn(s),ϕ〉 ds

∣∣∣2]
≤ c |ϕ|2H Ẽ

[∫ T

0
|ũn(s)|2D(A) ds

]
≤ c̃C2,(5.7.17)

where c, c̃ > 0 are some constants. By (5.7.16), (5.7.17) and the Vitali Theorem we conclude that

for all t ∈ [0,T]

lim
n→∞ Ẽ

[∣∣∫ t

0
〈Aũn(s)−Aũ(s),ϕ〉 ds

∣∣]= 0.
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Assertion (c) follows now from (5.7.11) and the dominated convergence theorem.

Ad (d). By (5.7.8), ũn → ũ in C ([0,T];H)∩L2(0,T;V), P̃-a.s. and since ũn(t) ∈M for all t ∈ [0,T]

hence by (3.2.1) we infer that P̃-a.s. for all t ∈ [0,T] and ϕ ∈V

lim
n→∞

[∫ t

0
〈B(ũn(s)),ϕ〉H ds−

∫ t

0
〈B(ũ(s)),ϕ〉H ds

]
= lim

n→∞

∫ t

0

[
b(ũn(s), ũn(s),ϕ)−b(ũ(s), ũ(s),ϕ)

]
ds

= lim
n→∞

[∫ t

0
b(ũn(s)− ũ(s), ũn(s),ϕ)ds+

∫ t

0
b(ũ(s), ũn(s)− ũ(s),ϕ)ds

]
≤ lim

n→∞

∫ t

0
(‖ũn(s)‖V‖+‖ũ(s)‖V)‖ũn(s)− ũ(s)‖V‖ϕ‖V ds

≤ lim
n→∞

(|ũn|L2(0,T;V) +|ũ|L2(0,T;V)|
) |ũn − ũ|L2(0,T;V)‖ϕ‖V = 0.(5.7.18)

Using the Hölder inequality, (3.2.1), and the estimate (5.7.10) we infer that for all t ∈ [0,T],

r ∈ (
1,1+ 1

K2
c

)
and n ∈N the following inequalities hold

Ẽ
[∣∣∣∫ t

0
〈B(ũn(s)),ϕ〉 ds

∣∣∣r]≤ Ẽ[(∫ t

0
|B(ũn(s))|V′‖ϕ‖V ds

)r]
≤ (c‖ϕ‖V)r Ẽ

(∫ t

0
‖ũn(s)‖V

2r ds
)

≤ c̃Ẽ
[

sup
s∈[0,T]

‖ũn(s)‖V
2r]≤ C̃C1(r).(5.7.19)

By (5.7.18), (5.7.19) and the Vitali Theorem we obtain for all t ∈ [0,T]

(5.7.20) lim
n→∞ Ẽ

[∣∣∫ t

0
〈B(ũn(s))−B(ũ(s)),ϕ〉 ds

∣∣]= 0.

Hence by (5.7.20) and the dominated convergence theorem, we infer that assertion (d) holds.

Ad (e). By (5.7.8), ũn → ũ in C ([0,T];H)∩L2(0,T;V), P̃-a.s. and since ũn(t) ∈M for all t ∈ [0,T]

hence we infer that P̃-a.s. for all t ∈ [0,T]

lim
n→∞

∫ t

0
|∇ũn(s)|2L2〈ũn(s),ϕ〉H ds−

∫ t

0
|∇ũ(s)|2L2〈ũ(s),ϕ〉H ds

= lim
n→∞

∫ t

0

[|∇ũn(s)|2L2 −|∇ũ(s)|2L2

]〈ũn(s),ϕ〉H ds+
∫ t

0
|∇ũ(s)|2L2〈ũn(s)− ũ(s),ϕ〉H ds

= lim
n→∞

∫ t

0

[|∇ũn(s)|L2 −|∇ũ(s)|L2
][|∇ũn(s)|L2 +|∇ũ(s)|L2

]〈ũn(s),ϕ〉H ds

+ lim
n→∞

∫ t

0
|∇ũ(s)|2L2〈ũn(s)− ũ(s),ϕ〉H ds

≤ lim
n→∞

∫ t

0
(‖ũn(s)− ũ(s)‖V) (‖ũn(s)‖V‖ũ(s)‖V) |ũn(s)|H|ϕ|H ds

+ lim
n→∞

∫ t

0
‖ũ(s)‖2|ũn(s)− ũ(s)|H|ϕ|H ds

≤ lim
n→∞ c̃1

[|ũn|L2(0,T;V) +|ũ|L2(0,T;V)
] |ũ|L∞(0,T;H)|ũn − ũ|L2(0,T;V)

+ lim
n→∞ c̃2|ũ(s)|2L2(0,T;V)|ũn − ũ|L∞(0,T;H) = 0.(5.7.21)
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Using the Hölder inequality, (5.7.10) and the fact that un(t) ∈M for all t ∈ [0,T] we infer that for

all t ∈ [0,T], r ∈ (
1,1+ 1

K2
c

)
and n ∈N the following inequalities hold

Ẽ
[∣∣∣∫ t

0
|∇ũn(s)|2L2〈ũn(s),ϕ〉H ds

∣∣∣r]≤ Ẽ[(∫ t

0
‖ũn(s)‖2

V|ũn(s)|H|ϕ|H ds
)r]

≤ (c|ϕ|H)r Ẽ
[(∫ t

0
|ũn(s)|

r
r−1
H

)r−1 ∫ t

0
‖ũn(s)‖V

2r ds
]

≤ c̃tr−1Ẽ
[

sup
s∈[0,T]

‖ũn(s)‖V
2r]≤ C̃C1(r).(5.7.22)

By (5.7.21), (5.7.22) and the Vitali Theorem we obtain for all t ∈ [0,T]

(5.7.23) lim
n→∞ Ẽ

[∣∣∣∣∫ t

0

〈|∇ũn(s)|2Hũn(s)−|∇ũ(s)|2Hũ(s),ϕ
〉

H ds
∣∣∣∣]= 0.

Hence by (5.7.23) and the dominated convergence theorem, we infer that assertion (e) holds.

Ad (f). Since by (5.7.8), ũn → ũ in L2(0,T;D(A)), P̃-a.s., using (5.7.11) we infer that P̃-a.s.

lim
n→∞

∫ t

0
〈C2ũn(s)−C2ũ(s),ϕ〉H ds = lim

n→∞

∫ t

0
〈C2(ũn(s)− ũ(s)),ϕ〉H ds

= lim
n→∞

∫ t

0
〈C2A−1A(ũn(s)− ũ(s)),ϕ〉H ds.

Now since C2A−1 is a bounded operator

lim
n→∞

∫ t

0
〈C2ũn(s)−C2ũ(s),ϕ〉H ds = lim

n→∞

∫ t

0
〈A(ũn(s)− ũ(s)), (C2A−1)∗ϕ〉H ds

= lim
n→∞

∫ t

0
〈ũn(s)− ũ(s),A−1(C2A−1)∗ϕ〉D(A) ds = 0.(5.7.24)

By the Hölder inequality and estimate (5.7.11) we infer that for all t ∈ [0,T] and n ∈N

Ẽ

[∣∣∣∣∫ t

0
〈C2ũn(s),ϕ〉H ds

∣∣∣∣2
]
= Ẽ

[∣∣∣∣∫ t

0
〈ũn(s),A−1(C2 A−1)∗ϕ〉D(A) ds

∣∣∣∣2
]

≤ c̃|ϕ|2HẼ
[∫ t

0
|ũn(s)|2D(A) ds

]
≤ c̃C2,(5.7.25)

where c̃ > 0 is some constant. By (5.7.24), (5.7.25) and the Vitali theorem we conclude that for all

t ∈ [0,T]

lim
n→∞ Ẽ

[∣∣∣∣∫ t

0
〈C2ũn(s)−C2ũ(s),ϕ〉H ds

∣∣∣∣]= 0.

Assertion (f) follows from (5.7.11) and the dominated convergence theorem.

Ad (g) Since by (5.7.8) ũn → ũ in L2(0,T;V), P̃-a.s., we infer that for all t ∈ [0,T] and ϕ ∈H

lim
n→∞

∫ t

0
|〈Cũn(s)−Cũ(s),ϕ〉|2T2(Rm,R) ds ≤ lim

n→∞ |ϕ|2H
∫ t

0
|Cũn(s)−Cũ(s)|2H ds

≤ lim
n→∞K2

c |ϕ|2H
∫ t

0
‖ũn(s)− ũ(s)‖2

V ds = 0,(5.7.26)
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where c > 0 is some constant.

By the uniform estimates (5.7.10) and (5.7.13) we obtain the following inequalities for every

t ∈ [0,T], r ∈ (1,1+ 1
K2

c
) and n ∈N

Ẽ

[∣∣∣∣∫ t

0
|〈Cũn(s)−Cũ(s),ϕ〉|2T2(Rm;R) ds

∣∣∣∣r]
≤ cẼ

[
|ϕ|2r

H

∫ t

0

[|Cũn(s)|2r
H +|Cũ(s)|2r

H
]

ds
]

≤ c̃Ẽ

[
sup

s∈[0,T]
‖ũn(s)‖2r

V + sup
s∈[0,T]

‖ũ(s)‖2r
V

]
≤ 2c̃C1(r) ,(5.7.27)

where c, c̃ are some positive constants. Using the Vitali theorem, by (5.7.26) and (5.7.27) we infer

that for all ϕ ∈H

(5.7.28) lim
n→∞ Ẽ

[∫ t

0
|〈Cũn(s)−Cũ(s),ϕ〉|2T2(Rm,R) ds

]
= 0.

Hence, by the properties of the Itô integral we infer that for all t ∈ [0,T] and ϕ ∈H

(5.7.29) lim
n→∞ Ẽ

[∣∣∣∣〈∫ t

0
[Cũn(s)−Cũ(s)] dW̃(s),ϕ

〉∣∣∣∣2
]
= 0.

By the Itô isometry, and estimates (5.7.10), (5.7.13) we have for all ϕ ∈H, t ∈ [0,T] and n ∈N

Ẽ
[∣∣〈∫ t

0
[Cũn(s)−Cũ(s)]dW̃(s),ϕ

〉∣∣2]
= Ẽ[∫ t

0
|〈Cũn(s)−Cũ(s),ϕ〉|2T2(Rm;R) ds

]
≤ Ẽ[|ϕ|2H ∫ t

0
|Cũn(s)−Cũ(s)|2H ds

]
≤ cẼ

[
sup

s∈[0,T]
‖ũn(s)‖2

V + sup
s∈[0,T]

‖ũ(s)‖2
V
]≤ 2cC1(1) ,(5.7.30)

where c > 0 is some constant. Thus by (5.7.29), (5.7.30) and the Lebesgue Dominated Convergence

theorem we infer that for all ϕ ∈H

(5.7.31) lim
n→∞

∫ T

0
Ẽ

[∣∣∣∣〈∫ t

0
[Cũn(s)−Cũ(s)] dW̃(s),ϕ

〉∣∣∣∣2
]
= 0.

�

As a direct consequence of Lemma 5.7.8 we get the following corollary which we precede by

introducing some auxiliary notation. Analogously to [20] and [66], let us denote

Λn(ũn,W̃n,ϕ)(t) := 〈ũn(0),ϕ〉H −
∫ t

0
〈Aũn(s),ϕ〉ds−

∫ t

0
〈B(ũn(s)),ϕ〉ds

+
∫ t

0
〈|∇ũn(s)|2L2 ũn(s),ϕ〉 ds+〈

∫ t

0
Cũn(s)◦dW̃n(s),ϕ〉, t ∈ [0,T],(5.7.32)

and

Λ(ũ,W̃ ,ϕ)(t) := 〈ũ(0),ϕ〉H −
∫ t

0
〈Aũ(s),ϕ〉ds−

∫ t

0
〈B(ũ(s)),ϕ〉ds

+
∫ t

0
〈|∇ũ(s)|2L2 ũ(s),ϕ〉 ds+〈

∫ t

0
Cũ(s)◦dW̃(s),ϕ〉, t ∈ [0,T].(5.7.33)
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Corollary 5.7.9. For every ϕ ∈V,

(5.7.34) lim
n→∞ |〈ũn(·),ϕ〉H −〈ũ(·),ϕ〉H|L2([0,T]×Ω̃) = 0

and

(5.7.35) lim
n→∞ |Λn(ũn,W̃n,ϕ)−Λ(ũ,W̃ ,ϕ)|L1([0,T]×Ω̃) = 0.

Proof. Assertion (5.7.34) follows from the equality

|〈ũn(·),ϕ〉H −〈ũ(·),ϕ〉H|2L2([0,T]×Ω̃) = Ẽ
[∫ T

0
|〈ũn(t)− ũ(t),ϕ〉H|2 dt

]
and Lemma 5.7.8 (a). Let us move to the proof of assertion (5.7.35). Note that by the Fubini

theorem, we have

|Λn(ũn,W̃n,ϕ)−Λ(ũ,W̃ ,ϕ)|L1([0,T]×Ω̃)

=
∫ T

0
Ẽ
[|Λn(ũn,W̃n,ϕ)(t)−Λ(ũ,W̃ ,ϕ)(t)| ]dt.

To conclude the proof of Corollary 5.7.9 it is sufficient to note that by Lemma 5.7.8 (b) – (g), each

term on the right hand side of (5.7.32) tends at least in L1([0,T] ×Ω̃) to the corresponding term

in (5.7.33). �

Step 2. Since un is a solution of the stochastic constrained Navier-Stokes equations (5.2.4), for

all t ∈ [0,T] and ϕ ∈V

〈un(t),ϕ〉H =Λn(un,W,ϕ)(t), P-a.s.

In particular, ∫ T

0
E
[|〈un(t),ϕ〉H −Λn(un,W,ϕ)(t)| ]dt = 0.

Since L (un,W)=L (ũn,W̃n),∫ T

0
Ẽ
[|〈ũn(t),ϕ〉H −Λn(ũn,W̃n,ϕ)(t)| ]dt = 0.

Moreover, by (5.7.34) and (5.7.35)∫ T

0
Ẽ
[|〈ũ(t),ϕ〉H −Λ(ũ,W̃ ,ϕ)(t)| ]dt = 0.

Hence for Lebesgue-almost all t ∈ [0,T] and P̃-almost all ω ∈ Ω̃

〈ũ(t),ϕ〉H −Λ(ũ,W̃ ,ϕ)(t)= 0,

i.e. for Lebesgue-almost all t ∈ [0,T] and P̃-almost all ω ∈ Ω̃

〈ũ(t),ϕ〉H +
∫ t

0
〈Aũ(s),ϕ〉 ds+

∫ t

0
〈B(ũ(s)),ϕ〉 ds

= 〈ũ(0),ϕ〉H +
∫ t

0
〈|∇u(s)|2L2 u(s),ϕ〉 ds+〈

∫ t

0
Cu(s)◦dW̃(s),ϕ〉.(5.7.36)
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Putting Ũ := (Ω̃,F̃ , P̃, F̃), we infer that the system (Ũ ,W̃ , ũ) is a martingale solution of equation

(5.2.4). By (5.7.12) and (5.7.13) the process ũ satisfies inequality (5.7.6). The proof of Theo-

rem 5.7.7 is thus complete. �

5.8 Sequentially weak Feller property

In this section we show that the family {Tt}t≥0 defined by formula (5.8.1) is sequentially weakly

Feller. We show that the weak convergence of the solutions of SCNSE in V is sufficient to es-

tablish the sequentially weak Feller property of {Tt}t≥0. This property, along with some a’priori

estimates (e.g. boundedness in probability) implies existence of an invariant measure, see [62]

for a generalised result and [25] for a particular case, i.e. NSEs in two dimensional unbounded

domains. However, so far we have been unable to find such a’priori bounds.

Let us fix a stochastic basis (Ω,F ,F,P) with the filtration F= {Ft}t≥0 and an Rm-valued stan-

dard Wiener process W on this stochastic basis. By u(t,u0) we denote the pathwise unique strong

solution to equation (5.2.4), defined on the above stochastic basis (which exists by Theorem 5.3.7).

For any bounded Borel function ϕ ∈Bb(V), t ≥ 0, we define a function Ttϕ : V→R by

(5.8.1) (Ttϕ)(u0) := E[
ϕ(u(t,u0))

]
, u0 ∈V.

It follows from Lemma 5.6.1 and Ondrejat [69] (see also [17]) that Ttϕ ∈Bb(V) and {Tt}t≥0 is a

semigroup on Bb(V). Moreover, {Tt}t≥0 is a Feller semigroup, i.e. Tt maps Cb(V) into itself.

We also have a different version of the Feller property, which is proved in the following

theorem.

Theorem 5.8.1. The semigroup {Tt}t≥0 is sequentially weakly Feller, i.e., if ϕ : V→R is a bounded

sequentially weakly continuous function, then for t > 0, Ttϕ : V→R is also a bounded sequentially

weakly continuous function. In particular, if ξn → ξ weakly in V then,

(5.8.2) Ttϕ(ξn)→ Ttϕ(ξ) .

Proof. Let us choose and fix 0 < t ≤ T,ξ ∈ V and ϕ : V → R be a bounded weakly continuous

function. Need to show that Ttϕ is sequentially weakly Feller in V. For this aim let us choose an

V-valued sequence (ξn) weakly convergent in V to ξ. Since the function Ttϕ : V→R is bounded,

we only need to prove (5.8.2).

Let un(·) = u(·,ξn) be the strong solution of (5.2.4) on [0,T] with the initial data ξn and let

u(·)= u(·,ξ) be the strong solution of (5.2.4) with the initial data ξ on the same stochastic basis

(Ω,F ,F,P,W), which exist by Theorem 5.3.7. By Theorem 5.7.7, about the continuous dependence

on the initial data, there exist

• a subsequence (nk)k,
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• a stochastic basis (Ω̃, F̃,F̃ , P̃), where F̃= {F̃s}s∈[0,T],

• an Rm-valued F̃-Wiener process W̃ ,

• and progressively measurable processes ũ(s), (ũnk (s))k≥1, s ∈ [0,T] (defined on this basis)

with laws supported in ZT such that

(5.8.3) ũnk has the same law as unk on ZT and ũnk → ũ in ZT , P̃ - a.s.

and the system

(5.8.4) (Ω̃,F̃ , F̃, P̃,W̃ , ũ)

is a martingale solution to (5.2.4) on the interval [0,T] with the initial data ξ.

In particular, by (5.8.3), P̃-almost surely1

ũnk (t)→ ũ(t) weakly in V.

Since the function ϕ : V→R is sequentially weakly continuous, we infer that P̃-a.s.,

ϕ(ũnk (t))→ϕ(ũ(t)) in R.

Since the function ϕ is also bounded, by the Lebesgue dominated convergence theorem we infer

that

(5.8.5) lim
k→∞

Ẽ
[
ϕ(ũnk (t))

]= Ẽ[
ϕ(ũ(t))

]
.

From the equality of laws of ũnk and unk , k ∈N, on the space ZT we infer that ũnk and unk have

the same laws on Vw and so

(5.8.6) Ẽ
[
ϕ(ũnk (t))

]= E[
ϕ(unk (t))

]
.

On the other hand, R.H.S. of (5.8.6) is equal by (5.8.1), to Ttϕ(ξnk ).

Since u, by assumption, is a martingale solution of (5.2.4) with the initial data ξ and by the

above, ũ is also a martingale solution with the initial data ξ. Thus, by Corollary 5.6.3, we infer

that

the processes u and ũ have the same law on the space ZT .

Hence

(5.8.7) Ẽ
[
ϕ(ũ(t))

]= E[
ϕ(u(t))

]
.

As before, the R.H.S. of (5.8.7) is equal by (5.8.1), to Ttϕ(ξ).

1Let us observe that it would be sufficient to have strong convergence below. But we have been unable to get such
a stronger result. The power of our method lies in the fact that the weak convergence is sufficient for our purposes.
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Thus by (5.8.5), (5.8.6) and (5.8.7), we infer

lim
k→∞

Ttϕ(ξnk )= Ttϕ(ξ).

Using the subsequence argument, we can conclude that the whole sequence (Ttϕ(ξn))n∈N is

convergent and

lim
n→∞Ttϕ(ξn)= Ttϕ(ξ).

�
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6
STOCHASTIC TAMED NAVIER-STOKES EQUATIONS ON R3

The tamed Navier-Stokes equations on R3 were introduced by Röckner and Zhang [75],

where they proved the existence and uniqueness of a smooth solution to tamed 3D Navier-

Stokes equations in the whole space. Later on in [76] they proved the existence of a

unique strong solution to stochastic tamed 3D Navier-Stokes equations in the whole space and

for the periodic boundary case using a result from Stroock and Varadhan [87]. In this chapter

we reprove their results for a slightly simplified system using a self-contained approach. We

generalise Röckner and Zhang result corresponding to estimate on L4−norm of the solution from

torus to the Euclidean space R3. We also establish the existence of an invariant measure on R3

for time homogeneous damped tamed 3D Navier-Stokes equations, given by (6.6.1).

6.1 Introduction

We are interested in the study of the stochastic tamed Navier-Stokes equations (NSE) on R3

which were introduced by Röckner and Zhang [76]. We consider the following stochastic tamed

NSEs with viscosity ν (assumed to be positive), on R3:

du(t, x)= [
ν∆u(t, x)− (u(t, x) ·∇)u(t, x)−∇p(t, x)− g(|u(t, x)|2)u(t)+ f (x,u(t, x))

]
dt

+
∞∑
j=1

[
(σ j(t, x) ·∇)u(t)+∇p̃ j(t, x)

]
dW j

t , (t, x) ∈ [0,T]×R3,(6.1.1)

subject to the incompressibility condition

(6.1.2) divu(t, x)= 0, (t, x) ∈ [0,T]×R3 ,

and the initial condition

(6.1.3) u(0, x)= u0(x), x ∈R3,
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where p(t, x) and p̃k(t, x) are unknown scalar functions, and the taming function g :R+ →R+ is

smooth and satisfies for some N ∈N

(6.1.4)


g(r)= 0, if r ≤ N,

g(r)= (r−N)/ν, if r ≥ N +1,

0≤ g′(r)≤ 2/(ν∧1), r ∈ [N, N +1].

{W j
t ; t ≥ 0, j = 1,2, . . . } is a sequence of independent one-dimensional standard F= (Ft)t≥0-Brownian

Motions on the complete filtered probability space (Ω,F ,F,P). The stochastic integral is under-

stood as Itô integral. The arguments of the coefficients are given as follows:

R3 ×R3 3 (x,u) 7→ f (x,u) ∈R3

R+×R3 3 (t, x) 7→σ(t, x) ∈R3 ×`2,

where `2 is the Hilbert space consisting of all sequences of square summable numbers with

standard norm ‖·‖`2 . In the following f and σ are always assumed to be measurable with respect

to all their variables.

In classical Navier-Stokes equations on R3 with u0 ∈V (see Section 6.2) there is only existence

of local solution [88]. The addition of tamed term enables to prove the global existence [75].

The non-explosion of the solution is due to the tamed term. Röckner and Zhang [76] proved the

existence of a martingale solution to (6.1.1) (for more generalised noise) in the absence of compact

Sobolev embeddings. They use the localization method to prove tightness, a method introduced

by Stroock and Varadhan [87]. In this chapter we present a self-contained proof of the same. In

order to prove the existence of a martingale solution they use the Faedo-Galerkin approximation

with the non-classical finite dimensional space H1
n = span{e i, i = 1 · · ·n} where E = {e i}i∈N ⊂ V (see

Section 6.2) is the orthonormal basis of H1. They also require that in the case of periodic boundary

conditions E is an orthogonal basis of H0 which was essential in obtaining the L4−estimate of the

solution. We generalise this result to the Euclidean space R3. Another reason for them to choose

periodic boundary conditions was the compactness of H2 ,→ H1 embedding, which along with the

L4−estimate of the solution was crucial in establishing the existence of invariant measures. We

do not require this embedding and hence are able to obtain the existence of invariant measures

for time homogeneous damped tamed Navier-Stokes equations (6.6.1) on R3.

In the present chapter we prove the existence of a unique strong solution to the stochastic

tamed 3D Navier-Stokes equations (6.1.1) under some natural assumptions (A1) - (A2) on f and σ

(see Section 6.2). To prove the existence of strong solution we use the Yamada-Watanabe theorem

[95] which states that the existence of martingale solutions plus pathwise uniqueness implies the

existence of a unique strong solution. In order to establish the existence of martingale solutions,

instead of using the standard Faedo-Galerkin approximations we use a different approach

motivated from [42] and [61]. We study a truncated SPDE on an infinite dimensional space Hn,

defined in the Section 6.4 and then use the tightness criterion, the Jakubowski-Skorohod Theorem
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and the martingale representaion theorem to prove the existence of martingale solutions. The

essential reason, for us to incorporate this approximation scheme was the non-commutativity of

gradient operator (∇) with the standard Faedo-Galerkin projection operator Pn [13, Section 5].

The commutativity is essential for us to obtain a’priori bounds. We also prove the existence

of invariant measures, Theorem 6.6.1, for time homogeneous damped tamed Navier-Stokes

equations (6.6.1) under the assumptions (A1)′ - (A3)′ (see Section 6.6). We use the technique

(Theorem 6.6.4) of Maslowski and Seidler [62] working with weak topologies to establish the

existence of invariant measures. We show the two conditions of Theorem 6.6.4, boundedness in

probability and sequentially weak Feller property are satisfied for the semigroup (Tt)t≥0, defined

by (6.6.2). In contrast to Röckner and Zhang [76], a’priori bound on L4−norm of the solution plays

an essential role in the existence of martingale solutions and not in the existence of invariant

measures.

This chapter is organised as follows: in Section 6.2, we recall some standard notations and

results and set the assumptions on f and σ. We also establish certain estimates on the tamed

term which we use later in Sections 6.4 and 6.5. In Section 6.3, we establish the tightness

criterion and state Skorohod’s theorem which we use along with a’priori estimates obtained

in the Section 6.5 to prove the existence of a martingale solution and path-wise uniqueness of

the solution. In Section 6.4 we introduce our truncated SPDE and describe the approximation

scheme motivated from [42, 61], along with all the machinery required. Finally in Section 6.6

we establish the existence of an invariant measure for time homogeneous damped tamed 3D

Navier-Stokes equations (6.6.1).

6.2 Functional setting

6.2.1 Notations

Let C∞
0 (R3,R3) denote the set of all smooth functions from R3 to R3 with compact supports. For

p ≥ 1, let Lp(R3,R3) be the vector valued Lp−space in which the norm is denoted by ‖ · ‖Lp . If

p = 2, then L2(R3,R3) is a Hilbert space with the scalar product given by

〈u,v〉L2 :=
∫
R3

u(x) ·v(x)dx, u,v ∈ L2(R3,R3).

Let H1(R3,R3) stand for the Sobolev space of all u ∈ L2(R3,R3) for which there exist weak

derivatives D iu ∈ L2(R3,R3), i = 1, . . . ,3. It is a Hilbert space with the scalar product given by

〈u,v〉H1 := 〈u,v〉L2 + ((u,v)), u,v ∈ H1(R3,R3),

where

(6.2.1) ((u,v)) := 〈∇u,∇v〉L2 =
3∑

i=1

∫
R3

∂u
∂xi

· ∂v
∂xi

dx, u,v ∈ H1(R3,R3).
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Let

V := {
u ∈ C∞

0 (R3,R3) : divu = 0
}
,

H := the closure of V in L2(R3,R3),

V := the closure of V in H1(R3,R3),

D(A) :=H∩H2(R3,R3).

On H we consider the scalar product and the norm inherited from L2(R3,R3) and denote them

by 〈·, ·〉H and ‖ ·‖H respectively, i.e.

〈u,v〉H := 〈u,v〉L2 , |u|H := |u|L2 , u,v ∈H.

On V we consider the scalar product and norm inherited from H1(R3,R3), i.e.

(6.2.2) 〈u,v〉V := 〈u,v〉L2 + ((u,v)), ‖u‖2
V := |u|2H +|∇u|2L2 , u,v ∈V,

where ((·, ·)) is defined in (6.2.1). D(A) is a Hilbert space under the graph norm

|u|2D(A) := |u|2H +|Au|2L2 , u ∈D(A),

where the inner product is given by

〈u,v〉D(A) := 〈u,v〉H +〈Au,Av〉L2 , u,v ∈D(A).

6.2.2 Some operators

Let us recall the tri-linear form b : Lp ×W1,q ×Lr →R which was introduced earlier in Chapter 3

(6.2.3) b(u,w,v)=
∫
R3

(u ·∇w)vdx , u ∈ Lp , w ∈W1,q , v ∈ Lr ,

where p, q, r ∈ [1,∞], satisfy
1
p
+ 1

q
+ 1

r
≤ 1.

We will recall the fundamental properties of the form b which are valid in unbounded domains.

By the Sobolev embedding theorem and Hölder inequality, we obtain the following estimates

|b(u,w,v)| ≤ ‖u‖L4‖w‖V‖v‖L4 , u,v ∈ L4,w ∈V(6.2.4)

≤ c‖u‖V‖w‖V‖v‖V, u,v,w ∈V(6.2.5)

for some positive constant c. Thus the form b is continuous on V. Moreover, if we define a bilinear

map B by B(u,w) := b(u,w, ·) then by inequality (6.2.5) we infer that B(u,w) ∈V′ for all u,w ∈V

and that the following inequality holds

(6.2.6) ‖B(u,w)‖V′ ≤ c‖u‖V‖w‖V, u,w ∈V.
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Moreover, the mapping B : V×V→V′ is bilinear and continuous.

Let us, for any s > 0, define the following standard scale of Hilbert spaces (see Rudin [80] for

the definition of Hs(R3,R3) space)

Vs := the closure of V in Hs(R3,R3).

If s > d
2 +1, then by the Sobolev Embedding theorem

(6.2.7) Hs−1(R3,R3) ,→ Cb(R3,R3) ,→ L∞(R3,R3).

Here Cb(R3,R3) denotes the space of continuous and bounded R3−valued functions defined on

R3. If u,w ∈V and v ∈Vs with s > d
2 +1 then

|b(u,w,v)| = |b(u,v,w)| ≤ |u|L2 |w|L2‖∇v‖L∞ ≤ c|u|L2 |w|L2‖v‖Vs

for some constant c > 0. Thus b can be uniquely extended to the tri-linear form (denoted by the

same letter)

b : H×H×Vs →R

and

|b(u,w,v)| ≤ c|u|H|w|H‖v‖Vs , u,w ∈H,v ∈Vs.

At the same time, the operator B can be uniquely extended to a bounded bilinear operator

B : H×H→V′
s.

In particular, it satisfies the following estimate

(6.2.8) ‖B(u,w)‖V′
s
≤ c|u|H|w|H, u,w ∈H.

We will also use the notation, B(u) := B(u,u).

Let us assume that s > 1. It is clear that Vs is dense in V and the embedding js : Vs ,→V is

continuous. Then there exists [23, Lemma C.1] a Hilbert space U such that U⊂Vs, U is dense in

Vs and

the natural embedding is : U ,→Vs is compact.

The following Gagliardo-Nirenberg interpolation inequality will be used frequently. Let

q ∈ [1,∞] and m ∈N. If
1
q
= 1

2
− mα

3
, 0≤α≤ 1,

then for any u ∈ Hm there exists a constant Cm,q depending on m and q such that

(6.2.9) ‖u‖Lq ≤ Cm,q‖u‖αHm |u|1−αL2
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Let Π be the orthogonal projection from L2(R3,R3) to H, famously known as the Leray-

Helmholtz projection [88]. For any u ∈H and v ∈ L2(R3,R3), we have

〈u,v〉H := 〈u,Πv〉H = 〈u,v〉L2 .

The Stokes operator A: D(A)→H, is given by

Au =−Π(∆u), u ∈D(A).

The bilinear map B : H×H→H will be given by

B(u,v)=Π ((u ·∇)v) , u,v ∈H.

6.2.3 Assumptions

We now introduce the assumptions on the coefficients f and σ:

(A1) A function f :R3 ×R3 →R3 is of C1 class and for any T > 0 there exist a constant CT, f > 0

such that for any x ∈R3,u ∈R3,

|∂x j f (x,u)|2 +| f (x,u)|2 ≤ CT, f · (1+|u|2), j = 1,2,3,

|∂u j f (x,u)| ≤ CT, f .

(A2) A measurable function σ : [0,∞)×R3 →R3 of C1 class with respect to the x-variable and for

any T > 0 there exist a constant Cσ,T > 0 such that for all t ∈ [0,T], x ∈R3

‖∂x jσ(t, x)‖`2 ≤ Cσ,T , j = 1,2,3

and, for all t ∈ [0,∞), x ∈R3

(6.2.10) ‖σ(t, x)‖2
`2 ≤ 1

4
.

Below for the sake of simplicity the variable “x′′ in the coefficients will be dropped.

Define, for k ∈N, G j : [0,T]×H→H by

(6.2.11) G j(t,u) :=Π[(σ j(t) ·∇)u] , t ∈ [0,T] , u ∈H.

Then a function G : H→T2(`2;H) is defined by

(6.2.12) G(u)(k)=
∞∑
j=1

k jG j(u) , u ∈H.

Let {e j}∞j=1 be the orthonormal basis of `2 then we see that (6.2.12) implies

G(u)(e j)=G j(u).

130



6.2. FUNCTIONAL SETTING

For simplicity we will assume that ν= 1. In particular, the function g defined by (6.1.4) will

from now on be given by

(6.2.13)


g(r)= 0, if r ≤ N ,

g(r)= (r−N), if r ≥ N +1,

0≤ g′(r)≤ 2, r ∈ [N, N +1].

Observe that the function g defined in this way satisfies

(6.2.14) |g(r)| ≤ r, r ≥ 0,

and

(6.2.15) |g(r)− g(r′)| ≤ 2|r− r′| , r , r′ ≥ 0.

We are interested in proving the existence of solutions to (6.1.1) - (6.1.3). In particular, we

want to prove the existence of divergence free vector fields u and scalar pressure p satisfying

(6.1.1) and (6.1.3). Thus we project equation (6.1.1) using the orthogonal projection operator Π on

the space H of the L2−valued, divergence free vector fields. On projecting, we obtain the following

abstract stochastic evolution equation:

(6.2.16)

du(t)= [−Au(t)−B(u(t))−Π[g(|u(t)|2)u(t)]+Π f (u(t))
]
dt+∑∞

j=1 G j(t,u(t))dWj(t),

u(0)= u0,

where we assume that u0 ∈ V and W(t) = (Wj(t))∞j=1 is a cylindrical Wiener process on `2 and

{W j(t), t ≥ 0, j ∈N} is an infinite sequence of independent standard Brownian motions. We will

repeatedly use the following notation

G(t,u)dW(t)=
∞∑
j=1

G j(t,u)dWj(t) .

We will need the following lemma in Section 6.4 to obtain the a’priori estimates.

Lemma 6.2.1. i) For any u ∈D(A)

(6.2.17) |〈B(u),u〉V| ≤
1
2
|u|2D(A) +

1
2

∣∣|u| · |∇u|∣∣2L2

ii) If u ∈H, then

(6.2.18)

((−g(|u|2)u,u))≤ CN |∇u|2L2 −2
∣∣|u| · |∇u|∣∣2L2 ,

〈−g(|u|2)u,u〉H ≤−‖u‖4
L4 +CN |u|2H,

where the semi-inner product ((·, ·)) is defined in (6.2.1).
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iii) For any u ∈D(A),

‖G(t,u)‖2
T2(`2;H) ≤

1
4
|∇u|2L2 ,(6.2.19)

‖G(t,u)‖2
T2(`2;V) ≤

1
2
|Au|2L2 +Cσ,T |∇u|2L2 .(6.2.20)

Proof. Let u ∈D(A). Since 〈B(u),u〉H = 0, using the Cauchy-Schwartz and Young inequality we

get

|〈B(u),u〉V| = |〈B(u), (I −∆)u〉H| ≤ |−∆u|L2 |(u ·∇)u|L2

≤ 1
2
|−∆u|2L2 + 1

2
|(u ·∇)u|2L2 ≤ 1

2
|u|2D(A) +

1
2

∣∣|u| · |∇u|∣∣2L2 .

Let us introduce a function φ : R+ →R such that g(r)= r−φ(r) which in particular satisfies

φ(r)=
r, r ≤ N,

N, r ≥ N +1.

Since φ′(r) = 1− g′(r), there exists a constant CN > 0 such that |φ′(r)| ≤ C̃N for every r ≥ 0.

Moreover

φ′(r)=
1, r ≤ N,

0, r ≥ N +1.

Hence, we infer that |φ′(r) · r| is bounded by some positive constant CN .

Let u ∈D(A). Using the definitions of g and of semi-norm ((·, ·)), we get

((−g(|u|2)u,u))=−〈g(|u|2)u,−∆u〉L2

=−
∫
R3

g(|u(x)|2)u(x) · (−∆u(x)) dx

=−
∫
R3

|u(x)|2u(x) (−∆u(x)) dx+
∫
R3
φ(|u(x)|2)u(x) (−∆u(x)) dx.

Thus, on integration by parts we get

((−g(|u|2)u,u))=−
[∫
R3

|u(x)|2 · |∇u(x)|2 dx+2
∫
R3

|u(x)|2 · |∇u(x)|2 dx
]

+
∫
R3
φ(|u(x)|2) · |∇u(x)|2 dx+

3∑
j,k=1

∫
R3

Dk
(
φ(|u(x)|2)

)
u j(x) ·Dku j(x)dx.(6.2.21)

Using the bound on |φ′(r) · r|, we obtain

3∑
j,k=1

∫
R3

Dk
(
φ(|u(x)|2)

)
u j(x) ·Dku j(x)dx = 2

3∑
k=1

∫
R3
φ′(|u(x)|2)〈u(x),Dku(x)〉2

R3 dx

≤ 2
∫
R3

|φ′(|u(x)|2)| · |u(x)|2|∇u(x)|2 dx ≤ CN |∇u|2L2 .(6.2.22)
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Since g(r)≥ 0, |φ(r)| ≤ r for all r ≥ 0. Thus using (6.2.22) in (6.2.21), we obtain

((−g(|u|2)u,u))≤−3
∣∣|u| · |∇u|∣∣2L2 +CN |∇u|2L2 +

∣∣|u| · |∇u|∣∣2L2

= CN |∇u|2L2 −2
∣∣|u| · |∇u|∣∣2L2 .

Now to prove the second inequality, we take the similar approach. Let u ∈H, then

〈−g(|u|2)u,u〉H =−
∫
R3

|u(x)|2|u(x)|2 dx+
∫
R3
φ(|u(x)|2)|u(x)|2 dx.

By the definition of φ there exists a constant CN > 0 such that |φ(r)| ≤ CN for all r > 0, thus

〈−g(|u|2)u,u〉H ≤−‖u‖4
L4 +CN |u|2H.

This completes the proof of part (ii).

Now for (iii), by (A1) and (A2) we have

‖G(t,u)‖2
T2(`2;H) =

∞∑
j=1

|G j(t,u)|2H =
∞∑
j=1

∫
R3

|G j(t, x,u(x))|2 dx

≤
∫
R3

‖σ(t, x)‖2
`2 |∇u(x)|2 dx ≤ sup

x∈R3
‖σ(t, x)‖2

`2 |∇u|2L2 ≤ 1
4
|∇u|2L2 .

Secondly, noting that

‖G(t,u)‖2
T2(`2;V) = ‖G(t,u)‖2

T2(`2;H) +‖∇G(t,u)‖2
T2(`2;H)

and

∂x jGk(t,u)=Π∂x j [(σk(t, x) ·∇)u]=Π[
(∂x jσk(t, x) ·∇)u+ (σk(t, x) ·∇)∂x j u

]
.

Thus

‖∇G(t,u)‖2
T2(`2;H) =

∞∑
k=1

∣∣∣∣∣ 3∑
j=1
Π

[
(∂x jσk(t, x) ·∇)u+ (σk(t, x) ·∇)∂x j u

]∣∣∣∣∣
2

H

≤ 2
∫
R3

3∑
j=1

‖∂x jσ(t, x)‖2
`2 |∇u(x)|2 dx+2

∫
R3

‖σ(t, x)‖2
`2 |∆u(x)|2 dx .

Hence, by assumptions (A1), (A2) and (6.2.19), we have

‖G(t,u)‖2
T2(`2;V) ≤

1
2
|Au|2L2 +CT,σ|∇u|2L2 .

�

Remark 6.2.2. On a purely heuristic level, by the application of Itô Lemma to the function |u|2H
and a solution u to (6.1.1), using Lemma 6.2.1 one obtains the following inequality

1
2

d|u(t)|2H = 〈u(t),−Au(t)−B(u(t))− g(|u(t)|2)u(t)+ f (u(t))〉H

+〈u(t),G(s,u(t))dWt〉H + 1
2
‖Gn(s,un(s))‖2

T2(`2;H)

≤−7
8
|∇u(t)|2L2 −‖u(t)‖4

L4 +CN, f |u(t)|2H +〈u(t),G(s,u(t))dWt〉H ,(6.2.23)

which could lead to a’priori estimates that can be used further to prove the existence of the

solution.
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6.3 Compactness

Let (OR)R∈N be a sequence of bounded open subsets of R3 with regular boundaries ∂OR such that

OR ⊂OR+1. Let us consider the following functional spaces:

C ([0,T];U′) := the space of continuous functions u : [0,T]→U′ with the topology T1 induced by

the norm |u|C ([0,T];U′) := supt∈[0,T] |u(t)|U′ ,

L2
w(0,T;D(A)) := the space L2(0,T;D(A)) with the weak topology T2,

L2(0,T;Hloc) := the space of measurable functions u : [0,T]→H such that for all R ∈N

(6.3.1) qT,R(u) := ‖u‖L2(0,T;HOR ) =
(∫ T

0

∫
OR

|u(t, x)|2 dx dt
)1/2

<∞ ,

with the topology T3 induced by the semi-norms (qT,R)R∈N.

The following lemma is inspired by the classical Dubinsky Theorem (see Theorem 2.4.5) and

the compactness result due to Mikulevicus and Rozovskii [65, Lemma 2.7].

Lemma 6.3.1. Let

(6.3.2) Z̃T :=C ([0,T];U′)∩L2
w(0,T;D(A))∩L2(0,T;Hloc)

and let T̃ be the supremum of the corresponding topologies. Then a set K ⊂ Z̃T is T̃ -relatively

compact if the following two conditions hold :

i) supu∈K

∫ T
0 |u(s)|2D(A) ds <∞ , i.e. K is bounded in L2(0,T;D(A)),

ii) limδ→0 supu∈K sup s,t∈[0,T]
|t−s|≤δ

|u(t)−u(s)|U′ = 0.

The above lemma can be proved by modifying the proof of [23, Lemma 3.1], see also [94, Theo-

rem IV.4.1].

Let Vw denote the Hilbert space V endowed with the weak topology.

C ([0,T];Vw) := the space of weakly continuous functions u : [0,T]→V endowed with the weakest

topology T4 such that for all h ∈V the mappings

C ([0,T];Vw) 3 u →〈u(·),h〉V ∈C ([0,T];R)

are continuous. In particular un → u in C ([0,T];Vw) iff for all h ∈V:

lim
n→∞ sup

t∈[0,T]
|〈un(t)−u(t),h〉V| = 0.

Consider the ball

B := {x ∈V : ‖x‖V ≤ r}.
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Let q be the metric compatible with the weak topology on B. Let us recall the following

subspace of the space C ([0,T];Vw)

C ([0,T];Bw) := the space of weakly continuous functions u : [0,T]→V

such that sup
t∈[0,T]

‖u(t)‖V ≤ r.(6.3.3)

The space C ([0,T];Bw) is metrizable with metric

(6.3.4) %(u,v)= sup
t∈[0,T]

q(u(t),v(t)).

Since by the Banach-Alaoglu theorem [80], the set Bw is compact, (C ([0,T];Bw),%) is a

complete metric space.

The following lemma says that any sequence (un)n∈N ⊂C ([0,T];B) convergent in C ([0,T];H)

is also convergent in the space C ([0,T];Bw). The proof of the lemma is similar to the proof of [24,

Lemma 2.1].

Lemma 6.3.2. Let un : [0,T]→V,n ∈N be functions such that

(i) supn∈N sups∈[0,T] ‖un(s)‖V ≤ r,

(ii) un → u in C ([0,T];H).

Then u,un ∈C ([0,T];Bw) and un → u in C ([0,T];Bw) as n →∞.

Let

(6.3.5) ZT =C ([0,T];U′)∩L2
w(0,T;D(A))∩L2(0,T;Hloc)∩C ([0,T];Vw),

and let T be the supremum of the corresponding topologies.

Now we formulate the compactness criterion analogous to the result due to Mikulevicus and

Rozowskii [65], Brzeźniak and Motyl [23, Lemma 3.3] for the space ZT .

Lemma 6.3.3. Let (ZT ,T ) be as defined in (6.3.5). Then a set K ⊂ZT is T −relatively compact

if the following three conditions hold

(a) supu∈K sups∈[0,T] ‖u(s)‖V <∞ ,

(b) supu∈K

∫ T
0 |u(s)|2D(A) ds <∞ , i.e. K is bounded in L2(0,T;D(A)),

(c) limδ→0 supu∈K sups,t∈[0,T]
|t−s|≤δ

|u(t)−u(s)|H = 0.

Proof. Let us notice that ZT = Z̃T ∩C ([0,T];Vw), where Z̃T is defined by (6.3.2). Let K be a

subset of ZT . Because of the assumption (a) we may consider the metric space C ([0,T];Bw) ⊂
C ([0,T];Vw) defined by (6.3.3) and (6.3.4) with r = supu∈K sups∈[0,T] ‖u(s)‖V. Because of the
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assumption (b) the restriction to K of the weak topology in L2(0,T;D(A)) is metrizable. Since

the restrictions to K of the four topologies considered in ZT are metrizable, compactness of a

subset of ZT is equivalent to it’s sequential compactness.

Let (un) be a sequence in K . By Lemma 6.3.1, the boundedness of the set K in L2(0,T;D(A))

and assumption (c) imply that K is compact in Z̃T . Since the embeddings D(A) ,→ V ,→ H are

continuous and the embedding D(A) ,→V is compact, by Dubinsky Theorem 2.4.5 assumptions

(b) and (c) imply that K is relatively compact in L2(0,T;V)∩C ([0,T];H). Hence in particular,

there exists a subsequence, still denoted by (un), convergent in H. Therefore by Lemma 6.3.2 and

assumption (a), (un) is convergent in C ([0,T];Bw). This completes the proof of the lemma. �

6.3.1 Tightness

Using Section 2.9 and the compactness criterion from Lemma 6.3.3 we obtain the following

corollary which we will use to prove tightness of the laws defined by the truncated SPDE (6.4.26).

Corollary 6.3.4 (Tightness criterion). Let (Xn)n∈N be a sequence of continuous F-adapted H-

valued processes such that

(a) there exists a constant C1 > 0 such that

sup
n∈N

E

[
sup

s∈[0,T]
‖Xn(s)‖2

V

]
≤ C1,

(b) there exists a constant C2 > 0 such that

sup
n∈N

E

[∫ T

0
|Xn(s)|2D(A) ds

]
≤ C2,

(c) (Xn)n∈N satisfies the Aldous condition [A] in H.

Let P̃n be the law of Xn on ZT . Then for every ε> 0, ∃ a compact subset Kε of ZT such that

sup
n∈N

P̃n(Kε)≥ 1−ε.

Proof. Let ε> 0. By the Chebyshev inequality and (a), we infer that for any n ∈N and any r > 0

P̃n

(
sup

s∈[0,T]
‖Xn(s)‖2

V > r
)
≤ Ẽn

[
sups∈[0,T] ‖Xn(s)‖2

V

]
r

≤ C1

r
.

Let R1 be such that C1
R1

≤ ε
3 . Then

sup
n∈N

P̃n

(
sup

s∈[0,T]
‖Xn(s)‖2

V > R1

)
≤ ε

3
.

Let B1 := {
u ∈ZT : sups∈[0,T] ‖u(s)‖2

V ≤ R1
}
.

136



6.3. COMPACTNESS

By the Chebyshev inequality and (b), we infer that for any n ∈N and any r > 0

P̃n
(|Xn|L2(0,T;D(A)) > r

)≤ Ẽn
[|Xn|2L2(0,T;D(A))

]
r2 ≤ C2

r2 .

Let R2 be such that C2
R2

2
≤ ε

3 . Then

sup
n∈N

P̃n
(|Xn|L2(0,T;D(A)) > R2

)≤ ε

3
.

Let B2 := {
u ∈Z : |u|L2(0,T;D(A)) ≤ R2

}
.

By Lemmas 2.9.9, 2.9.11 there exists a subset A ε
3
⊂C ([0,T],H) such that P̃n

(
A ε

3

)≥ 1− ε
3 and

lim
δ→0

sup
u∈A ε

3

sup
s,t∈[0,T]

|t−s|≤δ

|u(t)−u(s)|H = 0.

It is sufficient to define Kε as the closure of the set B1 ∩B2 ∩ A ε
3

in ZT . By Lemma 6.3.3, Kε is

compact in ZT . The proof is thus complete. �

6.3.2 The Skorohod Theorem

Let us recall the Jakubowski’s generalisation of the Skorohod Theorem as given by Brzeźniak

and Ondreját [26, Theorem C.1], see also [49].

Theorem 6.3.5. Let X be a topological space such that there exists a sequence { fm}m∈N of contin-

uous functions fm : X →R that separates points of X . Let us denote by S the σ-algebra generated

by the maps { fm}. Then

(a) every compact subset of X is metrizable,

(b) if (µm)m∈N is a tight sequence of probability measures on (X ,S ), then there exists a subse-

quence (mk)k∈N, a probability space (Ω,F ,P) with X -valued Borel measurable variables

ξk,ξ such that µmk is the law of ξk and ξk converges to ξ almost surely on Ω. Moreover, the

law of ξ is a Radon measure.

Using Theorem 6.3.5, we obtain the following corollary which we will apply to construct a

martingale solution to the tamed Navier-Stokes equations.

Corollary 6.3.6. Let (ηn)n∈N be a sequence of ZT -valued random variables such that their laws

L (ηn) on (ZT ,T ) form a tight sequence of probability measures. Then there exists a subsequence

(nk), a probability space (Ω̃,F̃ , P̃) and ZT -valued random variables η̃, η̃k,k ∈ N such that the

variables ηk and η̃k have the same laws on ZT and η̃k converges to η̃ almost surely on Ω̃.

Proof. It is sufficient to prove that on each space appearing in the definition (6.3.5) of the space

ZT , there exists a countable set of continuous real-valued functions separating points.
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Since the spaces C ([0,T];U′) and L2(0,T;Hloc) are separable, metrizable and complete, this

condition is satisfied, see [3], exposé 8.

For the space L2
w(0,T;D(A)) it is sufficient to put

fm(u) :=
∫ T

0
〈u(t),vm(t)〉D(A) dt ∈R, u ∈ L2

w(0,T;D(A)), m ∈N,

where {vm,m ∈N} is a dense subset of L2(0,T;D(A)).

Let us consider the space C ([0,T];Vw). Let {hm, m ∈N} be any dense subset of H and let QT be

the set of rational numbers belonging to the interval [0,T]. Then the family { fm,t, m ∈N, t ∈QT }

defined by

fm,t(u) := 〈u(t),hm〉V ∈R, u ∈C ([0,T];Vw), m ∈N, t ∈QT

consists of continuous functions separating points in C ([0,T];Vw). The statement of the corollary

follows from Theorem 6.3.5, concluding the proof. �

6.3.3 Martingale and strong solution

We end this section by giving the definitions of a martingale and strong solution to (6.2.16).

Definition 6.3.7. We say that there exists a martingale solution of (6.2.16) iff there exist

• a stochastic basis (Ω̂,F̂ , F̂, P̂),

• a cylindrical Wiener process Ŵ(t)= (
Ŵj(t)

)∞
j=1 on `2, where

{
Ŵj(t), t ≥ 0, j ∈N}

is an infinite

sequence of independent standard (F̂t)−Brownian motions,

• and a progressively measurable process u : [0,T]× Ω̂→D(A) with P̂-a.e. paths

u(·,ω) ∈C ([0,T];Vw)∩L2(0,T;D(A)),

such that for all t ∈ [0,T] and all v ∈ V P̂-a.s.

〈u(t),v〉+
∫ t

0
〈Au(s),v〉ds+

∫ t

0
〈B(u(s)),v〉ds+

∫ t

0
〈g(|u(s)|2)u(s),v〉ds

= 〈u0,v〉+
∫ t

0
〈 f (u(s)),v〉ds+

〈∫ t

0
G(s,u(s))dW(s),v

〉
.

(6.3.6)

Definition 6.3.8. We say that problem (6.2.16) has a strong solution iff for every stochastic

basis (Ω,F ,F,P) and every cylindrical Wiener process W(t) = (
Wj(t)

)∞
j=1 on `2 there exists a

progressively measurable process u : [0,T]×Ω→D(A) with P-a.e. paths

u(·,ω) ∈C ([0,T];V)∩L2(0,T;D(A)),

such that for all t ∈ [0,T] and all v ∈ V (6.3.6) holds P-a.s.
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6.4 Truncated SPDE

We will be using the following notations and spaces repeatedly in this section.

Bn := {
x ∈R3 : |x| ≤ n

}⊂R3, n ∈N .

We will use F (u) and û interchangeably to denote the Fourier transform of u. The inverse Fourier

transform will be given by F−1.

We define Hn as the subspace of H

Hn := {u ∈H : supp(û)⊂ Bn}.

The norm on Hn is inherited from H and will be denoted by ‖ ·‖Hn .

Let

Pn : H→Hn,

be the orthogonal projection i.e. ∀u ∈H, u−Pn u ⊥Hn and

y= Pn u ⇔ y ∈Hn andu− y⊥Hn.

One can show that Pn is given by

(6.4.1) Pn u =F−1(1Bn û).

Let us recall that D(A) :=H∩H2,2 and the Stokes operator is given by

Au =−Π(∆u), u ∈D(A),

and D(A) is a Hilbert space under the graph norm

|u|2D(A) := |u|2H +|Au|2H.

Lemma 6.4.1. Let Pn be the orthogonal projection given by (6.4.1), then Pn : V→V is a contraction.

Proof. Let u ∈V, then by the definition of Pn and V

‖Pnu‖V =
[∫
R3

(1+|ξ|2)|F (Pnu) (ξ)|2 dξ
]1/2

=
[∫
R3

(1+|ξ|2)|1Bn (ξ)û(ξ)|2 dξ
]1/2

=
[∫

|ξ|≤n
(1+|ξ|2)|û(ξ)|2 dξ

]1/2
≤

[∫
R3

(1+|ξ|2)|û(ξ)|2 dξ
]1/2

= ‖u‖V.

Thus we have shown that

‖Pnu‖V ≤ ‖u‖V .

�

Lemma 6.4.2. If u ∈D(A) then ∆u ∈H. In particular, if u ∈D(A) then Au =−∆u.
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Proof. Since u ∈D(A), it is clear that ∆u ∈ L2. Thus we are left to show that div(∆u)= 0 in the

weak sense. Let ϕ ∈ C∞
0 (R3), then using the definition of div and ∆, we get

〈div(∆u) |ϕ〉 =−〈∆u |∇ϕ〉
=−〈u |∆(∇ϕ)〉
= 〈divu |∆ϕ〉 = 0.

By definition Au =−Π(∆u) but since ∆u ∈H, and Π : L2 →H is an orthogonal projection, Π(∆u)=
∆u and hence,

(6.4.2) Au =−∆u, u ∈D(A).

�

Lemma 6.4.3. Hn ⊂D(A) and

(6.4.3) Pn(Au)=Au, u ∈Hn.

Proof. We start with proving the first statement. Let u ∈Hn. By definition

D(A)= {u ∈H : u ∈ H2,2}=
{

u ∈H :
∫
R3

(
1+|ξ|2)2 |û(ξ)|2 dξ<∞

}
.

Since u ∈Hn,supp(û)⊂ Bn,∫
R3

(
1+|ξ|2)2 |û(ξ)|2 dξ=

∫
|ξ|≤n

(
1+|ξ|2)2 |û(ξ)|2 dξ≤ (1+n2)2

∫
|ξ|≤n

|û(ξ)|2 dξ

= (1+n2)2
∫
R3

|û(ξ)|2 dξ= (1+n2)2‖u‖2
Hn

<∞.

Thus we have proved that u ∈D(A) and hence Hn ⊂D(A). Moreover we showed that there exists a

constant Cn > 0, depending on n such that

(6.4.4) |u|D(A) ≤ Cn‖u‖Hn , u ∈Hn.

Now in order to establish the equality (6.4.3), we just need to show that Au ∈Hn. Since u ∈Hn,

u ∈ D(A). Hence, Lemma 6.4.1 implies Au = −∆u. We are left to show that supp(F (Au)) ⊂ Bn.

Using the definition of Au, we get following equalities

F (Au)(ξ)=−F (∆u)(ξ)=−|ξ|2û(ξ).

Thus

supp(F (Au))⊂ supp(| · |2)∩supp(û)⊂ Bn.

Hence Au ∈Hn. Since Pn : H→Hn is an orthogonal projection, we infer that

Pn(Au)=Au.

�
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Lemma 6.4.4. An :=A
∣∣
Hn

: Hn →Hn, is linear and bounded.

Proof. In Lemma 6.4.2 we showed that An is well defined and it’s straightforward to show it is

linear. We are left to show that it is bounded. Let u ∈Hn, then by the Plancherel Theorem (see

Theorem 2.6.7) and the definition of Hn

‖Anu‖Hn = |−∆u|L2 =
[∫
R3

|ξ|2|û(ξ)|2 dξ
]1/2

=
[∫

|ξ|≤n
|ξ|2|û(ξ)|2 dξ

]1/2

≤
[
n2

∫
|ξ|≤n

|û(ξ)|2 dξ
]1/2

=
[
n2

∫
R3

|û(ξ)|2 dξ
]1/2

= n‖u‖Hn .

Thus

(6.4.5) ‖Anu‖Hn ≤ n‖u‖Hn .

�

Lemma 6.4.5. The map Bn defined by

(6.4.6) Bn : Hn ×Hn 3 (u,v) 7→ Pn(B(u,v)) ∈Hn

is well defined and Lipschitz on balls. Moreover

〈Bn(u),u〉H = 0, u ∈Hn,(6.4.7)

|((Bn(u),u))| ≤ 1
2
|u|2D(A) +

1
2

∣∣|u| · |∇u|∣∣2L2 , u ∈Hn,(6.4.8)

where Bn(u) := Bn(u,u) and ((·, ·)) is defined in (6.2.1).

Proof. We will show that ∀u,v ∈Hn, B(u,v) ∈H. Since u,v ∈Hn, u,v ∈D(A). Thus, by the Hölder

inequality

|B(u,v)|H = |Π (u ·∇v) |H ≤ |u ·∇v|L2 ≤ ‖u‖L∞ |∇v|L2 .

From (6.2.7), Hs,2 ,→ L∞ for every s > d
2 . Therefore, there exists a constant C > 0 such that

‖u‖L∞ ≤ C‖u‖Hs,2 .

In particular it holds true for s = 2. Thus, we have

|B(u,v)|H ≤ C‖u‖H2‖v‖H1 .

Now by (6.4.4) and (6.4.15)

(6.4.9) |B(u,v)|H ≤ Kn‖u‖Hn‖v‖Hn <∞.

Hence B(u,v) ∈H, which implies Bn(u,v) ∈Hn and is well defined.
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Let u,v ∈BR , where

(6.4.10) BR := {
u ∈Hn : ‖u‖Hn ≤ R

}
.

Then, as before

‖Bn(u)−Bn(v)‖Hn ≤ |B(u)−B(v)|H ≤ |u ·∇u−v ·∇v|L2

≤ |(u−v) ·∇u|L2 +|v ·∇(u−v)|L2

≤ ‖u−v‖L∞ |∇u|L2 +‖v‖L∞ |∇(u−v)|L2

≤ ‖u−v‖H2‖u‖H1 +‖v‖H2‖u−v‖H1 .

Since u,v ∈BR , using (6.4.4) and (6.4.15), we get

(6.4.11) ‖Bn(u)−Bn(v)‖Hn ≤ Cn,R‖u−v‖Hn , u,v ∈BR .

Since u ∈Hn and Pn is the orthogonal projection on H,

〈Bn(u),u〉H = 〈Pn(B(u,u)),u〉H = 〈B(u,u),Pnu〉H = 〈B(u,u),u〉H = 0.

Also by using the definition of ((·, ·)) and the Cauchy-Schwartz inequality we get

|((Bn(u),u))| = |〈Bn(u),−∆u〉H| = |〈B(u,u),−Pn(∆u)〉H| = |〈B(u,u),−∆u〉H|

≤ |B(u,u)|H |(−∆u)|H ≤ 1
2
|u|2D(A) +

1
2

∣∣|u| · |∇u|∣∣2L2 .

�

Lemma 6.4.6. The map gn defined by

gn : Hn 3 u 7→ Pn
[
Π(g(|u|2)u)

] ∈Hn,(6.4.12)

is well defined and Lipschitz on balls. Moreover

(6.4.13)

((−gn(u),u))≤ CN |∇u|2L2 −2
∣∣|u| · |∇u|∣∣2L2 , u ∈Hn,

〈−gn(u),u〉H ≤−‖u‖4
L4 +CN |u|2H, u ∈Hn.

Proof. Let u ∈Hn, then by the definition of g (6.2.13), the estimate (6.2.14) and the embedding of

H1 ,→ L6, we have

‖gn(u)‖Hn =
∥∥Pn

[
Π(g(|u|2)u)

]∥∥
Hn

≤ |Π(g(|u|2)u)|H ≤ |g(|u|2)u|L2

=
[∫
R3

∣∣g(|u(x)|2)
∣∣2 |u(x)|2 dx

]1/2
≤

[∫
R3

|u(x)|6 dx
]1/2

= ‖u‖3
L6

≤ C‖u‖3
H1 = C

[∫
R3

(1+|ξ|2)|û(ξ)|2 dξ
]3/2

= C
[∫

|ξ|≤n
(1+|ξ|2)|û(ξ)|2 dξ

]3/2

≤ C(1+n2)3/2
[∫

|ξ|≤n
|û(ξ)|2 dξ

]3/2
= C(1+n2)3/2

[∫
R3

|û(ξ)|2 dξ
]3/2

= C(1+n2)3/2|u|3L2 = Cn‖u‖3
Hn

<∞.(6.4.14)
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Therefore gn : Hn →Hn is well defined. From above we can also infer that there exists a constant

Cn > 0 depending on n such that

(6.4.15) ‖u‖H1 ≤ Cn‖u‖Hn , u ∈Hn.

Let u,v ∈BR , then as before using (6.2.13), we have

‖gn(u)− gn(v)‖Hn ≤ |Π(g(|u|2)u)−Π(g(|v|2)v)|H ≤ |g(|u|2)u− g(|v|2)v|L2

≤ |g(|u|2)(u−v)|L2 +|(g(|u|2)− g(|v|2)
)
v|L2

≤
[∫
R3

|u(x)|4|u(x)−v(x)|2 dx
]1/2

+4
[∫
R3

|u(x)−v(x)|2 [|u(x)|2 +|v(x)|2] |v(x)|2 dx
]1/2

.

Since H1 ,→ L6, we obtain

‖gn(u)− gn(v)‖Hn ≤
[∫
R3

|u(x)|6 dx
]1/3 [∫

R3
|u(x)−v(x)|6 dx

]1/6

+4
[∫
R3

|u(x)−v(x)|6 dx
]1/6

[[∫
R3

|u(x)|6 dx
]1/3

+
[∫
R3

|v(x)|6 dx
]1/3

]1/2 [∫
R3

|v(x)|6 dx
]1/6

=
[
‖u‖2

L6‖u−v‖L6 +4‖u−v‖L6
(‖u‖2

L6 +‖v‖2
L6

)1/2 ‖v‖L6

]
≤ C‖u−v‖H1

[
‖u‖2

H1 +4
(‖u‖2

H1 +‖v‖2
H1

)1/2 ‖v‖H1

]
.

Since u,v ∈BR , using (6.4.15), we get

‖gn(u)− gn(v)‖Hn ≤ Ĉn‖u−v‖Hn

[
‖u‖2

Hn
+4

(
‖u‖2

Hn
+‖v‖2

Hn

)1/2 ‖v‖Hn

]
≤ Cn,R‖u−v‖Hn .(6.4.16)

Let u ∈Hn, then using Lemmas 6.4.2 and 6.4.3, the definitions of gn and ((·, ·)) we get

((−gn(u),u))=−〈gn(u),−∆u〉H =−〈Π(g(|u|2)u,−Pn(∆u)〉H
=−〈g(|u|2)u,−Π(∆u)〉H =−〈g(|u|2)u,−∆u〉L2 .

Also note that for u ∈Hn

〈−gn(u),u〉H =−〈Π(g(|u|2))u,Pn u〉H =−〈g(|u|2)u,Π(u)〉L2 =−〈g(|u|2)u,u〉L2 .

Hence the inequalities (6.4.13) can be established with the help of the above two relations and

Lemma 6.2.1 (ii). This completes proof of the lemma. �

Lemma 6.4.7. Let us assume that the function f satisfies the assumption (A1). Then the map

fn :Hn 3 u 7→ Pn [Π( f (u))] ∈Hn(6.4.17)

is well defined and Lipschitz.
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Proof. Let u ∈Hn, then by the assumption (A1),

‖ fn(u)‖Hn ≤ |Π( f (u))|H ≤ | f (u)|L2 ≤ C f |u|L2 = C f ‖u‖Hn <∞ .

Therefore fn : Hn →Hn is well defined. Let u,v ∈Hn, then

‖ fn(u)− fn(v)‖Hn ≤ |Π f (u)−Π f (v)|H ≤ | f (u)− f (v)|L2

≤ C f |u−v|L2 = C f ‖u−v‖Hn .(6.4.18)

�

Lemma 6.4.8. Let σ satisfy the assumption (A2). Then the map

Gn : Hn 3 u 7→ Pn ◦ (G(u)) ∈T2(`2;Hn)(6.4.19)

is well defined and Lipschitz.

Proof. Let u ∈Hn, then

‖Gn(u)‖T2(`2;Hn) ≤ ‖(G(u))‖T2(`2;H) ≤
[∫
R3

‖σ(x)‖2
`2 |∇u(x)|2 dx

]1/2

≤
[
sup
x∈R3

‖σ(x)‖2
`2

]1/2
|∇u|L2 ≤ 1

2
‖u‖H1 .

Using (6.4.15), we infer

(6.4.20) ‖Gn(u)‖T2(`2;Hn) ≤ Cn‖u‖Hn <∞ .

Thus Gn : Hn →T2(`2;Hn) is well defined. Let u,v ∈Hn, then

‖Gn(u)−Gn(v)‖T2(`2;Hn) ≤ ‖G(u)−G(v)‖T2(`2;H)

≤
[∫

R3

∞∑
j=1

|σ j(x)|2|∇(u−v)(x)|2 dx

]1/2

=
[∫
R3

‖σ(x)‖2
`2 |∇(u−v)(x)|2 dx

]1/2

≤
(
sup
x∈R3

‖σ(x)‖2
`2

)1/2
|∇(u−v)|L2 ≤ 1

2
‖u−v‖H1 .

Using (6.4.15), we infer

(6.4.21) ‖Gn(u)−Gn(v)‖T2(`2;Hn) ≤ Cn‖u−v‖Hn .

�

Proposition 6.4.9. L2,H1 and D(A)-norms on Hn are equivalent.
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Proof. Let u ∈Hn, then using the Plancherel Theorem

(6.4.22) |u|L2 =
[∫
R3

|û(ξ)|2 dξ
]1/2

=
[∫

|ξ|≤n
|û(ξ)|2 dξ

]1/2
= ‖u‖Hn .

Thus if u ∈ Hn then L2 and Hn have equal norms. The equivalence of H1 and Hn norms is

established from (6.4.15). Using (6.4.5) and (6.4.22) we can establish equivalence of D(A) and Hn

norms. �

As discussed earlier in the introduction instead of using standard Galerkin approximation

of SPDE on the finite dimensional space we will look at the truncated SPDE on an infinite

dimensional space Hn. We will establish the existence of a unique global solution to the truncated

SPDE and obtain a’priori estimates in order to prove the tightness of measures on a suitable space.

In order to study the truncated SPDE on Hn we project the SPDE (6.2.16) on Hn using Pn.

The projected SPDE on Hn is given by

(6.4.23)

dun(t)=− [Anun(t)+Bn(un(t))+ gn(un(t))− fn(un(t))] dt+Gn(un(t))dW(t),

un(0)= Pn(u0),

where un ∈ Hn, u0 ∈ V and other operators Bn, gn, fn and Gn are as defined in Lemmas 6.4.4 -

6.4.8.

Lemma 6.4.10. Let us define F : Hn →R by

(6.4.24) F(u) := ‖Gn(u)‖T2(`2;Hn) +2〈u,−Anu−Bn(u)− gn(u)+ fn(u)〉H , u ∈Hn .

Then for every u ∈Hn there exists K1 > 0 such that

(6.4.25) F(u)≤ K1(1+‖u‖2
Hn

).

Proof. From the definition of An, Bn, gn and fn, we have

‖Gn(u)‖T2(`2;Hn) +2〈u,−Anu−Bn(u)− gn(u)+ fn(u)〉H
= ‖Gn(u)‖T2(`2;Hn) +2

〈
u,−Π(∆u)−Pn(B(u))−Pn[Π(g(|u|2)u)]+Pn[Π( f (u))]

〉
H .

Since u ∈Hn, using Lemma 6.4.8, we get

F(u)≤ 1
4
‖u‖2

Hn
−2|∇u|2L2 −2〈u,B(u)〉H −2〈u, g(|u|2)u〉H +2〈u, f (u)〉H

≤ 1
4
‖u‖2

Hn
−2|∇u|2L2 −2

∣∣√g(|u|2) |u|∣∣2L2 +C f ‖u‖2
Hn

F(u)+2|∇u|2L2 +2
∣∣√g(|u|2) |u|∣∣2L2 ≤ 1

4
‖u‖2

Hn
+C f ‖u‖2

Hn
≤ K1(1+‖u‖2

Hn
),

for appropriately chosen K1. Thus, in particular

F(u)≤ K1(1+‖u‖2
Hn

).

�
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We will need the following theorem to prove Theorem 6.4.12. We have modified it in the way

(compared to the statement in Theorem 2.8.8, see also [1, Theorem 3.1]) we will use it.

Theorem 6.4.11. Let X be a separable, possibly infinite dimensional, Hilbert space. Assume that

σ and b satisfy the following conditions

(i) For any R > 0 there exists a constant C > 0 such that

‖σ(u)−σ(v)‖T2(`2;X ) +‖b(u)−b(v)‖X ≤ C‖u−v‖2
X , ‖u‖X ,‖v‖X ≤ R.

(ii) There exists a constant K1 > 0 such that

‖σ(u)‖2
T2(`2;X ) +2〈u,b(u)〉L2 ≤ K1(1+‖u‖2

X ), u ∈ X .

Then for any X−valued ξ, there exists a unique global solution u = (u(t))t≥0 to

u(t)= ξ+
∫ t

0
σ(u(s))dW(s)+

∫ t

0
b(u(s))ds.

Theorem 6.4.12. Let the assumptions (A1) and (A2) hold. Then for every u0 ∈ V there exists a

unique global solution un = (un(t))t≥0 to

(6.4.26)un(t)+∫ t
0 [Anun(s)+Bn(un(s))+ gn(un(s))] ds = ∫ t

0 fn(un(s))ds+∫ t
0 Gn(un(s))dW(s),

un(0)= Pnu0.

Proof. The proof is direct application of Theorem 6.4.11. Using Lemmas 6.4.4 - 6.4.8, we can

show that the condition (i) of Theorem 6.4.11 is satisfied. In Lemma 6.4.10 we proved that the

condition (ii) is satisfied. Thus we have the existence of a unique global solution un to (6.4.26). �

By Lemma 6.4.4 the map An is linear and bounded on Hn and thus, An =A on Hn.

6.5 Existence of solution

6.5.1 A’priori estimates

In this subsection we will obtain certain a’priori estimates for the solution un of (6.4.26). We will

use these a’priori estimates in Lemma 6.5.3 to prove the tightness of measures on the space ZT ,

defined in (6.3.5). We will also establish certain higher order estimates which will be required to

prove the convergence of non-linear terms in later sections.

Let us fix T > 0. For any R > 0, define the stopping time

(6.5.1) τn
R := inf{t ∈ [0,T] : ‖un(t)‖V ≥ R},

where un is the solution of (6.4.26). By the definition of martingale solution one can infer that for

every n ≥ 1, τn
R ↗∞ as R ↗∞.
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Lemma 6.5.1. Let un be the solution of (6.4.26). For all ρ > 0 there exist positive constants

C1(ρ),C2(ρ) such that if ‖u0‖V ≤ ρ, then

sup
n∈N

E

(
sup

t∈[0,T]
‖un(t∧τn

R)‖2
V

)
≤ C1(ρ) ,(6.5.2)

sup
n∈N

E

∫ T∧τn
R

0
|un(t)|2D(A) dt ≤ C2(ρ) ,(6.5.3)

Moreover, for every δ> 0 there exists a constant C(δ)> 0 such that if |u0|H ≤ δ, then

(6.5.4) sup
n∈N

E

∫ T∧τn
R

0
‖un(s)‖4

L4 ≤ C3(δ) .

Proof. Let un be the solution of (6.4.26) then applying the Itô formula to φ(x) = |x|2H and the

process un, we get

|un(t∧τn
R)|2H = |Pnu0|2H +2

∫ t∧τn
R

0
〈un(s),−Aun(s)−Bn(un(s))− gn(un(s))〉H ds

+2
∫ t∧τn

R

0
〈un(s), fn(un(s))〉H ds+2

∫ t∧τn
R

0
〈un(s),Gn(s,un(s))dWs〉H

+
∫ t∧τn

R

0
‖Gn(s,un(s))‖2

T2(`2;H) ds.(6.5.5)

Using Lemma 6.2.1, assumptions (A1) and (A2), boundedness of Pn in H, the Cauchy-Schwarz

and the Young inequality, we get

|un(t∧τn
R)|2H ≤ |u0|2H −2

∫ t∧τn
R

0
|∇un(s)|2L2 ds−2

∫ t∧τn
R

0
〈g(|un(s)|2)un(s),un(s)〉H ds

+2C f

∫ t∧τn
R

0
|un(s)|2H ds+2

∫ t∧τn
R

0
〈un(s),G(s,un(s))dWs〉H + 1

4

∫ t∧τn
R

0
|∇un(s)|2L2 ds.(6.5.6)

Since un ∈Hn, we have the following identities

〈gn(un),un〉H = 〈Π(
g(|un|2)un

)
,Pnun〉H = 〈g(|un|2)un,Πun〉L2

= 〈g(|un|2)un,un〉L2 .

Thus, using the second part of the inequality (6.4.13), we get

|un(t∧τn
R)|2H ≤ |u0|2H −2

∫ t∧τn
R

0
|∇un(s)|2L2 ds−2

∫ t∧τn
R

0
‖un(s)‖4

L4 ds+2CN

∫ t∧τn
R

0
|un(s)|2H ds

+2C f

∫ t∧τn
R

0
|un(s)|2H ds+2

∫ t∧τn
R

0
〈un(s),G(s,un(s))dWs〉H

+ 1
4

∫ t∧τn
R

0
|∇un(s)|2L2 ds.

On rearranging we have

|un(t∧τn
R)|2H + 7

4

∫ t∧τn
R

0
|∇un(s)|2L2 ds+2

∫ t∧τn
R

0
‖un(s)‖4

L4 ds

≤ |u0|2H +C f ,N

∫ t∧τn
R

0
|un(s)|2H ds+2

∫ t∧τn
R

0
〈un(s),G(s,un(s))dWs〉H.(6.5.7)
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Now since the process µn(t∧ t∧τn
R), t ∈ [0,T]

µn(t∧τn
R)=

∫ t∧τn
R

0
〈un(s),G(s,un(s))dWs〉H , t ∈ [0,T]

is a F-martingale, as by Lemma 6.2.1 and (6.5.1) we have the following inequalities

E

∫ t∧τn
R

0

∣∣〈un(s),G(s,un(s))〉H
∣∣2 ds ≤ E

∫ t∧τn
R

0
|un(s)|2H‖G(s,un(s))‖2

T2(`2;H) ds

≤ 1
4
E

∫ t∧τn
R

0
|un(s)|2H|∇un(s)|2L2 ds <∞ ,

where to establish the last inequality we have used the equivalences of norm from Proposi-

tion 6.4.9. Thus E[µn(t)]= 0.

Using Lemma 2.7.20 for the following three processes:

X (t)= |un(t∧τn
R)|2H, Y (t)= 7

4

∫ t∧τn
R

0
|∇un(s)|2L2 ds+2

∫ t∧τn
R

0
‖un(s)‖4

L4 ds ,

and

I(t)= 2µn(t)= 2
∫ t∧τn

R

0
〈un(s),G(s,un(s))dWs〉H ,

we see that from (6.5.7), condition (2.7.3) is satisfied for α= 1 , Z = |u0|2H and φ(r)= C f ,N . Since

E(I(t))= 0, condition (2.7.4) is satisfied and hence all inequalities for the parameters (see (2.7.2))

are trivially satisfied. Thus if |u0|H ≤ δ, we have

sup
n∈N

E

[
|un(t∧τn

R)|2H + 7
4

∫ t∧τn
R

0
|∇un(s)|2L2 ds+2

∫ t∧τn
R

0
‖un(s)‖4

L4 ds
]
≤ CT (δ).(6.5.8)

In particular

(6.5.9) sup
n∈N

(
sup

t∈[0,T]
E |un(t∧τn

R)|2H
)
≤ CT (δ).

Hence, using (6.5.8) and (6.5.9) we infer that

(6.5.10) sup
n∈N

E

∫ T∧τn
R

0
‖un(s)‖4

L4 ≤ C̃T (|u0|2H)=: C3(δ).

Since we are interested in the estimates involving V norm of u. We apply the Itô formula to

φ(x)= |∇x|2L2 and the process un(t), obtaining

|∇un(t∧τn
R)|2L2 = |∇(Pnu0)|2L2 +2

∫ t∧τn
R

0
((un(s),−Aun(s)−Bn(un(s))− gn(un(s)))) ds

+2
∫ t∧τn

R

0
((un(s), fn(un(s))))ds+2

∫ t∧τn
R

0
((un(s),Gn(s,un(s))dWs))

+
∫ t∧τn

R

0
‖∇(Gn(s,un(s)))‖2

T2(`2;H) ds,(6.5.11)

148



6.5. EXISTENCE OF SOLUTION

where ((·, ·)) is as defined in (6.2.1). Using Lemma 6.2.1, assumptions (A1) and (A2), boundedness

of Pn in H, estimates (6.4.8), (6.4.13), the Cauchy-Schwarz and the Young inequality, we get

|∇un(t∧τn
R)|2L2 ≤ |∇u0|2L2 −2

∫ t∧τn
R

0
|Aun(s)|2L2 ds+

∫ t∧τn
R

0
|Aun(s)|2L2

+
∫ t∧τn

R

0

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds+2CN

∫ t∧τn
R

0
|∇un(s)|2L2 ds

−4
∫ t∧τn

R

0

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds+
∫ t∧τn

R

0
|Aun(s)|L2 | f (un(s))|L2 ds

+ 1
2

∫ t∧τn
R

0
|Aun(s)|2L2 ds+CT,σ

∫ t∧τn
R

0
|∇un(s)|2L2 ds

+2
∫ t∧τn

R

0
((un(s),G(s,un(s))dWs))

≤ |∇u0|2L2 − 1
2

∫ t∧τn
R

0
|Aun(s)|2L2 ds−3

∫ t∧τn
R

0

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds

+CT,σ,N

∫ t∧τn
R

0
|∇un(s)|2L2 ds+ 1

4

∫ t∧τn
R

0
|Aun(s)|2L2 ds+C f

∫ t∧τn
R

0
|un(s)|2H ds

+2
∫ t∧τn

R

0
((un(s),G(s,un(s))dWs)).

On rearranging we have

|∇un(t∧τn
R)|2L2 + 1

4

∫ t∧τn
R

0
|Aun(s)|2L2 ds+3

∫ t∧τn
R

0

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds

≤ |∇u0|2L2 +CT,σ,N

∫ t∧τn
R

0
|∇un(s)|2L2 ds+C f

∫ t∧τn
R

0
|un(s)|2H ds

+2
∫ t∧τn

R

0
((un(s),G(s,un(s))dWs)).(6.5.12)

Now since the process µn(t∧ t∧τn
R), t ∈ [0,T]

µn(t∧τn
R)=

∫ t∧τn
R

0
((un(s),G(s,un(s))dWs)) , t ∈ [0,T]

is a F-martingale, as by Lemma 6.2.1 and (6.5.1) we have the following inequalities

E

∫ t∧τn
R

0

∣∣((un(s),G(s,un(s))))
∣∣2 ds ≤ E

∫ t∧τn
R

0
|Aun(s)|2L2‖G(s,un(s))‖2

T2(`2;H) ds

≤ 1
4
E

∫ t∧τn
R

0
|Aun(s)|2L2 |∇un(s)|2L2 ds <∞ ,

where to establish the last inequality we have used the equivalences of norm from Proposi-

tion 6.4.9. Thus E[µn(t)]= 0.

Again as before, by applying Lemma 2.7.20 for

X (t)= |∇un(t∧τn
R)|2L2 , Y (t)= 1

4

∫ t∧τn
R

0
|Aun(s)|2L2 ds+3

∫ t∧τn
R

0

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds,

I(t)= 2µn(t)= 2
∫ t∧τn

R

0
((un(s),G(s,un(s))dWs)),
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the inequalities (2.7.3) and (2.7.4) are satisfied. Thus from (6.5.9) and (6.5.11), if ‖u0‖V ≤ ρ, then

sup
n∈N

E

[
|∇un(t∧τn

R)|2L2 + 1
4

∫ t∧τn
R

0
|Aun(s)|2L2 ds+3

∫ t∧τn
R

0

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds
]
≤ CT (ρ).(6.5.13)

In particular

(6.5.14) sup
n∈N

(
sup

t∈[0,T]
E |∇un(t∧τn

R)|2L2

)
≤ CT (ρ).

From (6.5.14) and (6.5.13), we have the following estimate

(6.5.15) sup
n∈N

E

∫ T∧τn
R

0
|Aun(t)|2L2 dt ≤ CT (ρ).

Note that |u|2D(A) := |u|2L2 + |Au|2L2 . Thus from (6.5.9) and (6.5.15) we can infer (6.5.3). On

combining (6.5.9) and (6.5.14), we get

(6.5.16) sup
n∈N

(
sup

t∈[0,T]
E‖un(t∧τn

R)‖2
V

)
≤ CT (ρ).

Using the Burkholer-Davis-Gundy inequality, the definition of 〈·, ·〉V and the Young’s inequality,

for every ε> 0 we obtain

E sup
t∈[0,T]

∫ t∧τn
R

0
〈un(s),G(s,un(s))dWs〉V

= E
[∫ T∧τn

R

0

∣∣〈un(s),G(s,un(s))〉H + ((
un(s),G(s,un(s))

))∣∣2 ds
]1/2

≤ E
[∫ T∧τn

R

0
‖G(s,un(s))‖2

T2(`2;H)|un(s)|2D(A) ds
]1/2

≤ 1
2
E

[
sup

s∈[0,T]
|∇un(s∧τn

R)|2L2

∫ T∧τn
R

0
|un(s)|2D(A) ds

]1/2

≤ εE sup
s∈[0,T]

|∇un(s∧τn
R)|2L2 +CεE

∫ T∧τn
R

0
|un(s)|2D(A) ds.(6.5.17)

On combining (6.5.7) and (6.5.12), then using (6.5.3), (6.5.9), (6.5.14), (6.5.17) and Lemma 2.7.20,

we can infer (6.5.2). Thus the proof of the lemma is complete. �

In the next lemma we will use the estimates from Lemma 6.5.1 to establish higher order

estimates.

Lemma 6.5.2. Let τn
R be as defined in (6.5.1). For all ρ > 0 and p ∈ [1,3] there exist positive

constants C1(p,ρ) , C2(p,ρ) such that if ‖u0‖V ≤ ρ, then

sup
n∈N

E

(
sup

t∈[0,T]
‖un(t∧τn

R)‖2p
V

)
≤ C1(p,ρ) ,(6.5.18)

sup
n∈N

E

∫ T∧τn
R

0
‖un(s)‖2(p−1)

V |Aun(s)|2L2 ds ≤ C2(p,ρ) .(6.5.19)
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Proof. Let p ∈ [1,3]. Then by using the Itô formula for ξ(t)= ‖un(t)‖2
V, φ(x)= xp, equations (6.5.5),

(6.5.11) and the definition of ‖ ·‖V, we obtain

‖un(t∧τn
R)‖2p

V = ‖un(0)‖2p
V −2p

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V

(|∇un(s)|2L2 +|Aun(s)|2L2

)
ds

−2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s),Bn(un(s))〉V ds−2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s), gn(un(s))〉V ds

−2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s), fn(un(s))〉V ds+ p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V ‖Gn(s,un(s))‖2
T2(`2;V) ds

+2p(p−1)
∫ t∧τn

R

0
‖un(s)‖2(p−2)

V 〈un(s),Gn(s,un(s))〉2V ds

+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s),Gn(s,un(s))dWs〉V.

(6.5.20)

Using Lemma 6.2.1, the definition of g (6.2.13), boundedness of Pn in V and assumption (A1), we

can simplify (6.5.20)

‖un(t∧τn
R)‖2p

V ≤ ‖un(0)‖2p
V −2p

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V

(|∇un(s)|2L2 +|Aun(s)|2L2

)
ds

+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

[
1
2
|Aun(s)|2L2 + 1

2

∣∣|un(s)| · |∇un(s)|∣∣2L2

]
ds

−2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s), |un(s)|2un(s)−Nun(s)〉V ds

+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

(
C f |un(s)|2H + 1

4
|Aun(s)|2L2

)
ds

+ p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

[
1
2
|Aun(s)|2L2 +CT,σ|∇un(s)|2L2

]
ds

+2p(p−1)
∫ t∧τn

R

0
‖un(s)‖2(p−2)‖G(s,un(s))‖2

T2(`2;V)‖un(s)‖2
V ds

+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s),G(s,un(s))dWs〉V.

On rearranging we get

‖un(t∧τn
R)‖2p

V ≤ ‖un(0)‖2p
V − p

2

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |Aun(s)|2L2 ds

−2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)|∇un(s)|2L2 ds+ p

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds

−2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds+CN ·2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V |∇un(s)|2L2 ds

−4p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds+2pC f

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |un(s)|2H ds

+ pCT,σ

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |∇un(s)|2L2 ds+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s),G(s,un(s))dWs〉V

+2p(p−1)
∫ t∧τn

R

0
‖un(s)‖2(p−1)

[
1
4
|Aun(s)|2L2 +CT,σ|∇un(s)|2L2

]
ds
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which on further simplification yields

‖un(t∧τn
R)‖2p

V + p(3− p)
2

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |Aun(s)|2L2 ds

+3p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds

≤ ‖un(0)‖2p
V +CT,σ,N,p

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |∇un(s)|2L2 ds+C f

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |un(s)|2H ds

+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s),G(s,un(s))dWs〉V.

(6.5.21)

As before we will show that the process µn(t∧ t∧τn
R), t ∈ [0,T]

µn(t∧τn
R)=

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V 〈un(s),G(s,un(s))dWs〉V, t ∈ [0,T]

is a F-martingale. By Lemma 6.2.1 and (6.5.1) we have the following inequalities

E

∫ t∧τn
R

0
‖un(s)‖4(p−1)

V

∣∣〈un(s),G(s,un(s))〉V
∣∣2 ds

≤ E
∫ t∧τn

R

0
‖un(s)‖4(p−1)

V |un(s)|2D(A)‖G(s,un(s))‖2
T2(`2;H) ds

≤ 1
4
E

∫ t∧τn
R

0
‖un(s)‖4(p−1)

V |un(s)|2D(A)|∇un(s)|2L2 ds <∞,

where the finiteness of the integral follows from Proposition 6.4.9. Hence E[µn(t)]= 0.

Since |un(s)|H ≤ ‖un(s)‖V and |∇un(s)|L2 ≤ ‖un(s)‖V on applying the generalised version of the

Gronwall Lemma (Lemma 2.7.20) for

X (t)= ‖un(t∧τn
R)‖2p

V , I(t)= 2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V 〈un(s),G(s,un(s))dWs〉V,

and

Y (t)= p(3− p)
2

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |Aun(s)|2L2 ds+3p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

∣∣|un(s)| · |∇un(s)|∣∣2L2 ds

+2p
∫ t∧τn

R

0
‖un(s)‖2(p−1)

V

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds,

we have

(6.5.22) sup
n∈N

(
sup

t∈[0,T]
E‖un(t∧τn

R)‖2p
V

)
≤ CT,p‖u0‖2p

V , p ∈ [1,3].

Using (6.5.22) in (6.5.20), we also obtain

(6.5.23) sup
n∈N

E

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V |Aun(s)|2L2 ds ≤ CT,p‖u0‖2p
V := C2(p,ρ), p ∈ [1,3].
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Now we are left to show the estimate (6.5.18). Using the Burkholder- Davis- Gundy inequality,

Lemma 6.2.1 and the Young inequality for every ε> 0, we get

E sup
t∈[0,T]

∫ t∧τn
R

0
‖un(s)‖2(p−1)

V 〈un(s),G(s,un(s))dWs〉V

≤ E
[∫ T∧τn

R

0
‖un(s)‖4(p−1)

V

∣∣〈un(s),G(s,un(s))〉V
∣∣2 ds

]1/2

≤ E
[∫ T∧τn

R

0
‖un(s)‖4(p−1)

V ‖G(s,un(s))‖2
T2(`2;H)|un(s)|2D(A) ds

]1/2

≤ 1
4
E

[∫ T∧τn
R

0
‖un(s)‖4(p−1)

V |∇un(s)|2L2 |un(s)|2D(A) ds
]1/2

≤ 1
4
E

[∫ T∧τn
R

0
‖un(s)‖2p

V ‖un(s)‖2(p−1)
V |un(s)|2D(A) ds

]1/2

≤ 1
4
E

[
sup

t∈[0,T]
‖un(t∧τn

R)‖2p
V

∫ T∧τn
R

0
‖un(s)‖2(p−1)

V |un(s)|2D(A) ds

]1/2

≤ εE sup
t∈[0,T]

‖un(t∧τn
R)‖2p

V +CεE

∫ T∧τn
R

0
‖un(s)‖2(p−1)|un(s)|2D(A) ds.(6.5.24)

Thus from (6.5.21) and using (6.5.23), (6.5.24) and Lemma 2.7.20, we have

E

(
sup

t∈[0,T]
‖un(t∧τn

R)‖2p
V

)
≤ CT,p

(
E‖u0‖2p

V

)
+εE

(
sup

t∈[0,T]
‖un(t∧τn

R)‖2p
V

)
+CT,p,ε.

Choosing ε small enough we get

(6.5.25) sup
n∈N

E

(
sup

t∈[0,T]
‖un(t∧τn

R)‖2p
V

)
≤ CT,p

(
‖u0‖2p

V

)
:= C1(p,ρ), p ∈ [1,3].

�

6.5.2 Tightness of measures

For each n ∈N, the solution un of the truncated equation (6.4.26) defines a measure L (un) on

(ZT ,T ), defined in (6.3.5). In this subsection we will prove that this sequence of measures defined

on ZT is tight.

Lemma 6.5.3. The set of measures {L (un),n ∈N} is tight on (ZT ,T ).

Proof. We recall the definition of stopping time, τn
R

τn
R := inf{t ∈ [0,T] : ‖un(t)‖V ≥ R}.

We will use Corollary 6.3.4 to prove the tightness of measures. According to estimates (6.5.2) and

(6.5.3), conditions (a) and (b) are satisfied. Thus it is sufficient to prove that the sequence (un)n∈N
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satisfies the Aldous condition [A] in H. By (6.4.26), for t ∈ [0,T ∧τn
R] we have

un(t)= un(0)−
∫ t

0
Anun(s)ds−

∫ t

0
Bn(un(s))ds−

∫ t

0
gn(un(s))ds+

∫ t

0
fn(un(s))ds

+
∫ t

0
Gn(s,un(s))dW(s)

:= Jn
1 + Jn

2 (t)+ Jn
3 (t)+ Jn

4 (t)+ Jn
5 (t)+ Jn

6 (t), t ∈ [0,T ∧τn
R] .

Let s, t ∈ [0,T], s < t and θ := t− s. First we will establish estimates for each term of the above

equality.

Ad. Jn
2 . Since A : D(A)→H is a bounded linear map, then by the Hölder inequality and estimate

(6.5.3), we have the following inequalities

E
[|Jn

2 (t∧τn
R)− Jn

2 (s∧τn
R)|H

]= E ∣∣∣∣∣
∫ t∧τn

R

s∧τn
R

Anun(s)ds

∣∣∣∣∣
H

≤ E
∫ t∧τn

R

s∧τn
R

|Aun(s)|H ds

≤ cθ
1
2

(
E

∫ t∧τn
R

s∧τn
R

|un(s)|2D(A) ds

) 1
2

≤ c(C2(R))
1
2 ·θ := c2 ·θ.(6.5.26)

Ad. Jn
3 . B : D(A)×V → H is bilinear and continuous and Pn : H → H is bounded then by

Lemma 6.4.5, the Cauchy-Schwarz inequality and the estimates (6.5.2), (6.5.3) we have

E
[|Jn

3 (t∧τn
R)− Jn

3 (s∧τn
R)|H

]= E ∣∣∣∣∣
∫ t∧τn

R

s∧τn
R

PnB(un(s))ds

∣∣∣∣∣
H

≤ E
∫ t∧τn

R

s∧τn
R

|PnB(un(s),un(s))|H ds

≤ E
∫ t∧τn

R

s∧τn
R

‖B‖ · |un(s)|D(A)‖un(s)‖V ds

≤ ‖B‖ ·E
([

sup
t∈[0,T]

‖un(t∧τn
R)‖2

V

]1/2

·θ1/2
[∫ t∧τn

R

0
|un(s)|2D(A) ds

]1/2)
≤ (C1(R))1/2(C2(R))1/2 ·θ1/2 := c3 ·θ1/2.(6.5.27)

Ad. Jn
4 . Since H1 ,→ L6, then by the definition of g and estimate (6.5.18) (for p = 2), we have

E
[|Jn

4 (t∧τn
R)− Jn

4 (s∧τn
R)|H

]= E ∣∣∣∣∣
∫ t∧τn

R

s∧τn
R

gn(un(s))ds

∣∣∣∣∣
H

≤ E
∫ t∧τn

R

s∧τn
R

|Pn(Πg(|un(s)|2)un(s))|H ds

≤ E
∫ t∧τn

R

s∧τn
R

|g(|un(s)|2)un(s)|L2 ds ≤ E
∫ t∧τn

R

s∧τn
R

(∫
R3

|un(s, x)|6 dx
)1/2

ds

= E

∫ t∧τn
R

s∧τn
R

‖un(s)‖3
L6 ds ≤ CE

∫ t∧τn
R

s∧τn
R

‖un(s)‖3
V ds ≤ C

[
E

(
sup

t∈[0,T]
‖un(t∧τn

R)‖4
V

)]3/4

θ

≤ C · (C1(2,R))3/4 ·θ := c4 ·θ.

(6.5.28)
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Ad. Jn
5 . Using the assumption H1, (6.5.9) and the Cauchy-Schwarz inequality, we obtain the

following inequalities

E
[|Jn

5 (t∧τn
R)− Jn

5 (s∧τn
R)|H

]= E ∣∣∣∣∣
∫ t∧τn

R

s∧τn
R

Pn(Π f (un(s))ds)

∣∣∣∣∣
H

≤ E
∫ t∧τn

R

s∧τn
R

| f (un(s))|H ds

≤ E
(∫ t∧τn

R

s∧τn
R

| f (un(s))|2H ds

)1/2

·θ1/2 ≤ C f

( ∫ t∧τn
R

s∧τn
R

|un(s)|2H ds

)1/2

θ
1
2

≤ C f (C(R))1/2θ := c5 ·θ.(6.5.29)

Ad. Jn
6 . Using the Itô isometry, Lemma 6.2.1 and (6.5.2), we obtain the following

E
[|Jn

6 (t∧τn
R)− Jn

6 (s∧τn
R)|2H

]= E ∣∣∣∣∣
∫ t∧τn

R

s∧τn
R

Gn(s,un(s))dW(s)

∣∣∣∣∣
2

H

≤ cE
∫ t∧τn

R

s∧τn
R

‖G(s,un(s))‖2
T2(`2;H) ds ≤ c

4
E

∫ t∧τn
R

s∧τn
R

|∇un(s)|2L2 ds

≤ c
4
E

(
sup

t∈[0,T]
‖un(t∧τn

R)‖2
V

)
θ ≤ 1

4
C1(R) ·θ := c6 ·θ.(6.5.30)

Let us fix κ > 0 and ε > 0. By the Chebyshev’s inequality and estimates (6.5.26) - (6.5.29), we

obtain

P({|Jn
i (t∧τn

R)− Jn
i (s∧τn

R)|H ≥ κ})≤ 1
κ
E
[|Jn

i (t∧τn
R)− Jn

i (s∧τn
R)|H

]≤ ciθ

κ
; n ∈N,

where i = 1, . . . ,5. Let δi = κ

ci
ε. Then

sup
n∈N

sup
0≤θ≤δi

P({|Jn
i (t∧τn

R)− Jn
i (s∧τn

R)|H ≥ κ})≤ ε, i = 1. . .5.

By the Chebyshev inequality and (6.5.30), we have

P({|Jn
6 (t∧τn

R)− Jn
6 (s∧τn

R)|H ≥ κ})≤ 1
κ2 E

[|Jn
6 (t∧τn

R)− Jn
6 (s∧τn

R)|2H
]≤ c6θ

κ2 ; n ∈N

Let δ6 = κ2

c6
ε. Then

sup
n∈N

sup
0≤θ≤δ6

P({|Jn
6 (t∧τn

R)− Jn
6 (s∧τn

R)|H ≥ κ})≤ ε.

Since [A] holds for each term Jn
i , i = 1,2, . . . ,6; we infer that it holds also for (un)n∈N. Thus the

proof of lemma can be concluded by invoking Corollary 6.3.4. �

Now we will state the main theorem of this section.

Theorem 6.5.4. Let assumptions (H1) and (H2) be satisfied. Then there exists a martingale

solution (Ω̂,F̂ , F̂, P̂,u) of problem (6.2.16) such that

(6.5.31) Ê

[
sup

t∈[0,T]
‖u(t)‖2

V +
∫ T

0
|u(t)|2D(A) dt

]
<∞.

In the following subsection we will prove Theorem 6.5.4 in several steps.
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6.5.3 Proof of Theorem 6.5.4

By Lemma 6.5.3 the set of measures {L (un),n ∈N} is tight on the space (ZT ,T ) defined by (6.3.5).

Hence by Corollary 6.3.6 there exist a subsequence (nk)k∈N, a probability space (Ω̃,F̃ , P̃) and, on

this space, ZT -valued random variables ũ, ũnk ,k ≥ 1 such that

(6.5.32) ũnk has the same law as unk and ũnk → ũ in ZT , P̃−a.s.

ũnk → ũ in ZT , P̃−a.s. precisely means that

ũnk → ũ in C ([0,T];U′) ,

ũnk * ũ in L2(0,T;D(A)) ,

ũnk → ũ in L2(0,T;Hloc) ,

ũnk → ũ in C ([0,T];Vw) .

Let us denote the subsequence (ũnk ) again by (ũn)n∈N.

The following auxiliary result which is needed in the proof of Theorem 6.5.4, cannot be

deduced directly from the Kuratowski Theorem (see Theorem 2.5.17).

Lemma 6.5.5. Let T > 0 and ZT be as defined in (6.3.5). Then the following three sets C ([0,T];V)∩
ZT , C ([0,T];Hn)∩ZT and L2(0,T;D(A))∩ZT are Borel subsets of ZT .

In order to prove Lemma 6.5.5 we will need the following space:

L2
loc([0,T]×R3)=

{
u : [0,T]×R3 →R3 :

∫ T

0

∫
|x|≤R

|u(x, t)|2 dx dt <∞,∀R > 0
}

.

L2
loc([0,T]×R3) is complete under the family of semi-norms

ρR :=
[∫ T

0

∫
|x|≤R

|u(x, t)|2 dx dt
]1/2

.

In particular it’s a Frechét space with the metric

d(u,v)= ∑
n≥1

1
2n

ρn(u−v)
1+ρn(u−v)

.

Remark 6.5.6. L2(0,T;Hloc)⊂ L2
loc([0,T]×R3) and we can define the open sets in L2(0,T;Hloc)

by restricting the metric d to L2(0,T;Hloc). Hence L2(0,T;Hloc) is a topological space with the

trace topology from L2
loc([0,T]×R3).

Let us define a new topological space:

Z̃T :=C ([0,T];U′)∩L2
loc([0,T]×R3)∩L2

w(0,T;D(A))∩C ([0,T];Vw).
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Note that Z̃T and ZT are same as a set. Because L2
loc([0,T]×R3)∩ L2

w(0,T;D(A)) and

L2(0,T;Hloc)∩L2
w(0,T;D(A)) are same as a set. L2(0,T;Hloc) ⊂ L2

loc([0,T]×R3) and the only

extra elements in L2
loc([0,T]×R3) are the ones which are locally square integrable but have

non-zero divergence. But the intersection of L2
loc([0,T]×R3) with L2

w(0,T;D(A)) eliminates those

elements as the divergence free condition is imposed by the second set.

By Remark 6.5.6 and Lemma C.2, Z̃T and ZT have the same topologies. Thus we will prove

Lemma 6.5.5 for Z̃T instead of ZT .

Proof of Lemma 6.5.5 First of all C ([0,T];V)⊂C ([0,T];U′)∩L2
loc([0,T]×R3). Secondly, C ([0,T];V)

and C ([0,T];U′)∩L2
loc([0,T]×R3) are Polish spaces. And finally, since V is continuously embedded

in U′, the map

i : C ([0,T];V)→C ([0,T];U′)∩L2
loc([0,T]×R3),

is continuous and hence Borel. Thus by application of the Kuratowski Theorem, C ([0,T];V) is

a Borel subset of C ([0,T];U′)∩L2
loc([0,T]×R3). Therefore by Lemma C.1, C ([0,T];V)∩ Z̃T is a

Borel subset of C ([0,T];U′)∩L2
loc([0,T]×R3)∩Z̃T which is equal to Z̃T . We can show in the same

way in the case of C ([0,T];Hn)∩ZT .

Similarly we can show that L2(0,T;D(A))∩ Z̃T is a Borel subset of Z̃T . L2(0,T;D(A)) ,→
L2

loc([0,T]×R3) and both are Polish spaces thus by application of the Kuratowski Theorem,

L2(0,T;D(A)) is a Borel subset of L2
loc([0,T]×R3). Finally, we can conclude the proof of theorem

by Lemma C.1. �

By Lemma 6.5.5, C ([0,T];Hn) is a Borel subset of C ([0,T];U′)∩L2(0,T;Hloc). Since un ∈
C ([0,T];Hn),P-a.s., and ũn, un have the same laws on ZT , thus

(6.5.33) L (ũn)(C ([0,T];Hn)= 1, n ∈N.

Since C ([0,T];V)∩ZT and L2(0,T;D(A))∩ZT are Borel subsets of ZT (Lemma 6.5.5) and ũn

and un have the same laws on ZT ; from (6.5.18) and (6.5.3), we have for p ∈ [1,3]

sup
n∈N

Ẽ

(
sup

0≤s≤T
‖ũn(s)‖2p

V

)
≤ C1(p) ,(6.5.34)

sup
n∈N

Ẽ

[∫ T

0
|ũn(s)|2D(A) ds

]
≤ C2(‖u0‖2

V) .(6.5.35)

Since C ([0,T];Hn) is continuously embedded in L4(0,T;L4) and ũn, un have same law µ on

C ([0,T];Hn), we have

Ẽ

∫ T

0
‖ũn(s)‖4

L4 ds =
∫
Ω̃

[∫ T

0
‖ũn(s,ω)‖4

L4 ds
]

dP̃(ω)=
∫

L4(0,T;L4)

[∫ T

0
‖y‖4

L4 ds
]

dµ(y)

=
∫
C ([0,T];Hn)

[∫ T

0
‖y‖4

L4 ds
]

dµ(y)=
∫

L4(0,T;L4)

[∫ T

0
‖y‖4

L4 ds
]

dµ(y)

=
∫
Ω

[∫ T

0
‖un(s,ω)‖4

L4 ds
]

dP(ω)= E
∫ T

0
‖un(s)‖4

L4 ds .
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Thus, by estimate (6.5.4) we infer

(6.5.36) sup
n∈N

Ẽ

∫ T

0
‖ũn(s)‖4

L4 dt ≤ C3(|u0|2H) .

By inequality (6.5.34) we infer that the sequence (ũn) contains a subsequence, still denoted

by (ũn) convergent weakly in the space L2([0,T]× Ω̃;D(A)). Since by (6.5.32) P̃-a.s ũn → ũ in ZT ,

we conclude that ũ ∈ L2([0,T]× Ω̃;D(A)), i.e.

(6.5.37) Ẽ

[∫ T

0
|ũ(s)|2D(A) ds

]
<∞.

Similarly by inequality (6.5.34) for p = 1 we can choose a subsequence of (ũn) convergent

weak star in the space L2(Ω̃;L∞(0,T;V)) and using convergences (6.5.32), we infer that

(6.5.38) Ẽ

(
sup

0≤s≤T
‖ũ(s)‖2

V

)
<∞.

For each n ≥ 1, let us consider a process M̃n with trajectories in C ([0,T];Hn), in particular in

C ([0,T];H), defined by

M̃n(t)= ũn(t)−Pnũ(0)+
∫ t

0
Aũn(s)ds+

∫ t

0
Bn(ũn(s))ds+

∫ t

0
gn(ũn(s))ds

−
∫ t

0
fn(ũn(s))ds , t ∈ [0,T] .(6.5.39)

Lemma 6.5.7. M̃n is a square integrable martingale with respect to the filtration F̃n = (F̃n,t),

where F̃n,t =σ{ũn(s), s ≤ t}, with the quadratic variation

(6.5.40) 〈〈M̃n〉〉t =
∫ t

0
‖Gn(s, ũn(s))‖2

T2(`2;H) ds.

Proof. Indeed since ũn and un have the same laws, for all s, t ∈ [0,T], s ≤ t, then for all bounded

continuous functions h on C ([0, s];Vw), and all ψ,ζ ∈Vγ (for γ> d
2 ), we have

(6.5.41) Ẽ
[〈M̃n(t)− M̃n(s),ψ〉h(ũn|[0,s])

]= 0

and

Ẽ
[(
〈M̃n(t),ψ〉〈M̃n(t),ζ〉−〈M̃n(s),ψ〉〈M̃n(s),ζ〉

−
∫ t

s
〈(G(σ, ũn(σ)))∗ Pnψ, (G(σ, ũn(σ)))∗ Pnζ〉`2 dσ

)
·h(ũn|[0,s])

]
= 0.(6.5.42)

�

Lemma 6.5.8. Let us define a process M̃ for t ∈ [0,T] by

M̃(t)= ũ(t)− ũ(0)+
∫ t

0
Aũ(s)ds+

∫ t

0
B(ũ(s))ds+

∫ t

0
Π(g(|ũ(s)|2)ũ(s))ds

−
∫ t

0
Π f (ũ(s))ds.(6.5.43)

Then M̃ is an H−valued continuous process.
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Proof. Since ũ ∈C ([0,T];V) we just need to show that each of the remaining terms on the RHS of

(6.5.43) are H−valued a.s. and well-defined.

Using the Cauchy-Schwarz inequality repeatedly and (6.5.37) we have the following inequali-

ties

Ẽ

∫ T

0
|Aũ(s)|H ds ≤ T1/2

(
Ẽ

∫ T

0
|ũ(s)|2D(A) ds

)1/2

<∞.

Since Hk,p ,→ L∞ for every k > d/p, hence there exists a C > 0 such that ‖u‖L∞ ≤ C‖u‖H2,2

for every u ∈ H2,2. Thus by the Cauchy-Schwarz inequality, (6.5.37) and (6.5.38) we obtain the

following estimate

Ẽ

∫ T

0
|B(ũ(s))|H ds ≤ T1/2Ẽ

(∫ T

0
|ũ(s) ·∇ũ(s)|2L2 ds

)1/2

≤ T1/2Ẽ

(∫ T

0
‖ũ(s)‖2

L∞ |∇ũ(s)|2L2 ds
)1/2

≤ T1/2 C Ẽ
(∫ T

0
|ũ(s)|2D(A)‖ũ(s)‖2

V ds
)1/2

≤ T1/2 C

[
Ẽ sup

s∈[0,T]
‖ũ(s)‖2

V

]1/2 [
Ẽ

∫ T

0
|ũ(s)|2D(A) ds

]1/2

<∞ .

We know that for d = 3, H1,2 ,→ L6, thus using (6.2.14), convergences (6.5.32) and (6.5.34), we

get

Ẽ

∫ T

0

∣∣Πg(|ũ(s)|2)ũ(s)
∣∣
H ds ≤ Ẽ

∫ T

0
|g(|ũ(s)|2)ũ(s)|L2 ds ≤ Ẽ

∫ T

0
‖ũ(s)‖3

L6 ds

≤ C Ẽ
∫ T

0
‖ũ(s)‖3

V ds ≤ C

(
Ẽ sup

s∈[0,T]
‖ũ(s)‖4

V

)3/4

T <∞ .

Using the assumptions (A1) and (6.5.38) we can show that

Ẽ

∫ T

0
|Π f (ũ(s))|H ds ≤ Ẽ

∫ T

0
| f (ũ(s))|L2 ds ≤ T1/2 Ẽ

(∫ T

0
| f (ũ(s))|2L2 ds

)1/2

≤ T1/2 C f

(
Ẽ

∫ T

0
|ũ(s)|2H ds

)1/2

<∞ .

This concludes the proof of the lemma. �

Lemma 6.5.9. Let us fix γ> d
2 . If u ∈ L2(0,T;H)∩L4(0,T;L4) and (un)n∈N be a bounded sequence

in L2(0,T;H)∩L4(0,T;L4) such that un → u in L2(0,T;Hloc), then for all r, t ∈ [0,T] and all

ψ ∈Vγ :

(6.5.44) lim
n→∞

∫ t

r
〈g(|un(s)|2)un(s),ψ〉ds =

∫ t

r
〈g(|u(s)|2)u(s),ψ〉ds.

Here 〈·, ·〉 denotes the duality pairing between Vγ and V′
γ.
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Proof. We will prove the lemma in two steps.

Step I
Let us fix γ > d

2 and r, t ∈ [0,T]. Assume first that ψ ∈ V . Then there exists a R > 0 such that

supp(ψ) is a compact subset of OR . There exists a constant C ≥ 0 such that

|〈g(|u|2)u,ψ〉| =
∣∣∣∣∫

OR

g(|u(x)|2)u(x)ψ(x)dx
∣∣∣∣≤ |g(|u|2)|L2(OR )|u|2L2(OR )‖ψ‖L∞(OR )

≤ ∣∣|u|2∣∣
L2(OR )|u|L2(OR )‖ψ‖L∞ ≤ C‖u‖2

L4 |u|L2(OR )‖ψ‖Vγ
, u ∈H∩L4,(6.5.45)

where we used (6.2.7) to establish the last inequality. We have

g(|un|2)un − g(|u|2)u = g(|un|2)(un −u)+ [
g(|un|2)− g(|u|2)

]
u.

Thus using the estimate (6.5.45), the Hölder inequality, (6.2.15) and the Cauchy-Schwarz inequal-

ity, we obtain∣∣∣∣∫ t

r
〈g(|un(s)|2)un(s),ψ〉ds−

∫ t

r
〈gn(|u(s)|2)u(s),ψ〉ds

∣∣∣∣
≤

∣∣∣∣∫ t

r
〈g(|un(s)|2)(un(s)−u(s)),ψ〉ds

∣∣∣∣+ ∣∣∣∣∫ t

r

〈(
g(|un(s)|2)− g(|u(s)|2)

)
u(s),ψ

〉
ds

∣∣∣∣
≤ C

∫ t

r
‖un(s)‖2

L4 |un(s)−u(s)|L2(OR )‖ψ‖Vγ
ds

+2
∫ t

r

∣∣〈|un(s)−u(s)| (|un(s)|+ |u(s)|)u(s),ψ〉∣∣ ds

≤ C‖ψ‖Vγ

∫ t

r
‖un(s)‖2

L4 |un(s)−u(s)|L2(OR ) ds

+2C‖ψ‖Vγ

∫ t

s
|un(s)−u(s)|L2(OR )

∣∣u(s) [|un(s)|+ |u(s)|]
∣∣
L2(OR ) ds.

Thus by the Hölder inequality, we get∣∣∣∣∫ t

r
〈g(|un(s)|2)un(s),ψ〉ds−

∫ t

r
〈gn(|u(s)|2)u(s),ψ〉ds

∣∣∣∣
≤ C‖ψ‖Vγ

[
|un|2L4(0,T;L4)|un −u|L2(0,T;L2(OR ))

+2|un −u|L2(0,T;L2(OR ))

[∫ t

r

∣∣u(s) [|un(s)|+ |u(s)|]
∣∣2
L2(OR ) ds

]1/2 ]
≤ C

[
|un|2L4(0,T;L4) +2|u|2L4(0,T;L4)

(
|un|2L4(0,T;L4) +|u|2L4(0,T;L4)

)1/2
]
|un −u|L2(0,T;L2(OR ))‖ψ‖Vγ

.

Since un → u in L2(0,T;Hloc) we infer that (6.5.44) holds for every ψ ∈ V .

Step II
Let ψ ∈Vγ and ε> 0. Then there exists a ψε ∈ V such that ‖ψε−ψ‖Vγ

< ε. Hence, we get∣∣〈g(|un|2)un − g(|u|2)u,ψ〉∣∣
≤ ∣∣〈g(|un|2)un − g(|u|2)u,ψε〉

∣∣+ ∣∣〈g(|un|2)un − g(|u|2)u,ψ−ψε〉
∣∣

≤ ∣∣〈g(|un|2)un − g(|u|2)u,ψε〉
∣∣+[

‖g(|un|2)un‖V′
γ
+‖g(|u|2)u‖V′

γ

]
‖ψ−ψε‖Vγ

.(6.5.46)
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Since V is dense in Vγ, (6.5.45) holds for all ψ ∈Vγ. In particular, there exists a constant C > 0

such that

(6.5.47) ‖g(|u|2)u‖V′
γ
≤ C‖u‖2

L4 |u|H, u ∈H∩L4.

Using (6.5.46), (6.5.47) and the Cauchy-Schwarz inequality we have following inequalities∣∣∣∣∫ t

r
〈g(|un(s)|2)un(s)− g(|u(s)|2)u(s),ψ〉ds

∣∣∣∣
≤ εC

∫ t

r

(‖un(s)‖2
L4 |un(s)|H +‖u(s)‖2

L4 |u(s)|H
)

ds

+
∣∣∣∣∫ t

r
〈g(|un(s)|2)un(s)− g(|u(s)|2)u(s),ψε〉ds

∣∣∣∣
≤ εC

[
‖un‖2

L4(0,T;L4)‖un‖L2(0,T;H) +‖u‖2
L4(0,T;L4)‖u‖L2(0,T;H)

]
+

∣∣∣∣∫ t

r
〈g(|un(s)|2)un(s)− g(|u(s)|2)u(s),ψε〉ds

∣∣∣∣ .

Hence by Step I and the assumptions on u,un there exists a M > 0 such that

limsup
n→∞

∣∣∣∣∫ t

r
〈g(|un(s)|2)un(s)− g(|u(s)|2)u(s),ψ〉ds

∣∣∣∣≤ Mε.

Since ε> 0 is arbitrary we conclude the proof. �

Corollary 6.5.10. Let us fix γ > d
2 . If u ∈ L2(0,T;H)∩L4(0,T;L4) and (un)n∈N be a bounded

sequence in L2(0,T;H)∩L4(0,T;L4) such that un → u in L2(0,T;Hloc), then for all r, t ∈ [0,T] and

all ψ ∈Vγ :

(6.5.48) lim
n→∞

∫ t

r
〈g(|un(s)|2)un(s),Pnψ〉ds =

∫ t

r
〈g(|u(s)|2)u(s),ψ〉ds.

Here 〈·, ·〉 denotes the duality pairing between Vγ and V′
γ.

Proof. Let us fix γ> d
2 and take r, t ∈ [0,T] and ψ ∈Vγ. We have∫ t

r
〈g(|un(s)|2)un(s),Pnψ〉ds =

∫ t

r
〈g(|un(s)|2)un(s),Pnψ−ψ〉ds+

∫ t

r
〈g(|un(s)|2)un(s),ψ〉ds

:= I1(n)+ I2(n).

We will consider each of these integrals individually. Using the estimate from (6.5.47), we have

|I1(n)| ≤
∫ t

r
‖g(|un(s)|2)un(s)‖V′

γ
‖Pnψ−ψ‖Vγ

ds

≤ ‖Pnψ−ψ‖Vγ

∫ t

r
‖un(s)‖2

L4 |un(s)|H ds.

Since the sequence (un)n∈N is bounded in L2(0,T;H)∩L4(0,T;L4) and Pnψ→ψ in Vγ, we infer

lim
n→∞ I1(n)= 0.
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By Lemma 6.5.9, we conclude

lim
n→∞ I2(n)=

∫ t

r
〈g(|u(s)|2)u(s),ψ〉ds.

�

Lemma 6.5.11. For all s, t ∈ [0,T] such that s ≤ t and γ> d
2 :

(a) limn→∞〈ũn(t),Pnψ〉 = 〈ũ(t),ψ〉, P̃-a.s., ψ ∈V,

(b) limn→∞
∫ t

s 〈Aũn(σ),Pnψ〉H ds = ∫ t
s 〈Aũ(σ),ψ〉H dσ, P̃-a.s., ψ ∈H,

(c) limn→∞
∫ t

s 〈B(ũn(σ)),Pnψ〉dσ= ∫ t
s 〈B(ũ(σ)),ψ〉dσ, P̃-a.s., ψ ∈Vγ,

(d) limn→∞
∫ t

s 〈g(|ũn(σ)|2)ũn(σ),Pnψ〉dσ= ∫ t
s 〈g(|ũ(σ)|2)ũ(σ),ψ〉dσ, P̃-a.s., ψ ∈Vγ,

(e) limn→∞
∫ t

s 〈 f (ũn(σ)),Pnψ〉dσ= ∫ t
s 〈 f (ũ(σ)),ψ〉dσ, P̃-a.s., ψ ∈Vγ,

where 〈·, ·〉 denotes the duality pairing between appropriate spaces.

Proof. Let us fix s, t ∈ [0,T], s ≤ t and γ> d
2 . By (6.5.32) we know that

(6.5.49) ũn → ũ in C ([0,T];U′)∩L2
w(0,T;D(A))∩L2(0,T;Hloc)∩C ([0,T];Vw), P̃-a.s.

Letψ ∈V. Since ũn → ũ in C ([0,T];Vw) P̃-a.s., from (6.5.34) ũn is uniformly bounded in C ([0,T];Vw)

and Pnψ→ψ in V, thus

lim
n→∞〈ũn(t),Pnψ〉−〈ũ(t),ψ〉 = lim

n→∞〈ũn(t)− ũ(t),ψ〉+ lim
n→∞〈ũn(t),Pnψ−ψ〉 = 0 P̃-a.s.

Hence, we infer that assertion (a) holds.

Let ψ ∈ H. Since by (6.5.49) ũn → ũ in L2
w(0,T;D(A)) P̃-a.s., from (6.5.35) ũn is uniformly

bounded in L2
w(0,T;D(A)) and Pnψ→ψ in H. Thus, we have P̃−a.s.,

lim
n→∞

∫ t

s
〈Aũn(σ),Pnψ〉H dσ−

∫ t

s
〈Aũ(σ),ψ〉H dσ

= lim
n→∞

∫ t

s
〈Aũn(σ)−Aũ(σ),ψ〉H dσ+ lim

n→∞

∫ t

s
〈Aũn(σ),Pnψ−ψ〉H dσ→ 0.

Hence, we have shown that assertion (b) is true.

For every ψ ∈ Vγ assertion (c) follows directly from [23, Lemma B.1] and a modification of

Corollary 6.5.10.

By (6.5.49) ũn → ũ in L2(0,T;Hloc). From Lemma 6.5.1, convergences (6.5.49) and estimate

(6.5.36) the sequence (ũn) is bounded in L2(0,T;H)∩L4(0,T;L4) and ũ ∈ L2(0,T;H)∩L4(0,T;L4).

Thus, using Corollary 6.5.10 we infer that (d) holds for every ψ ∈Vγ.
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Now we are left to deal with (e). Let ψ ∈Vγ,∫ t

s
〈 f (ũn(σ)),Pnψ〉ds−

∫ t

0
〈 f (ũ(σ),ψ〉dσ

=
∫ t

0
〈 f (ũn(σ))− f (ũ(σ)),ψ〉dσ+

∫ t

0
〈 f (ũn(σ)),Pnψ−ψ〉dσ

Since Vγ ,→H, by the Cauchy-Schwarz inequality we have∫ t

s
〈 f (ũn(σ)),Pnψ〉ds−

∫ t

0
〈 f (ũ(σ),ψ〉dσ

≤
∫ t

0
〈 f (ũn(σ))− f (ũ(σ)),ψ〉dσ+

∫ t

s
‖ f (un(s))‖V′

γ
‖Pnψ−ψ‖Vγ

dσ

≤
∫ t

0
〈 f (ũn(σ))− f (ũ(σ)),ψ〉dσ+C f ‖Pnψ−ψ‖Vγ

∫ t

s
‖ũn(σ)‖H dσ

:= I1(n)+ I2(n).

Since ũn → ũ in L2(0,T;Hloc) and ũn is a bounded sequence in L2(0,T;H), I1(n) can be shown to

converge to zero as n →∞ following the methodology of Lemma 6.5.9 and Corollary 6.5.10. Since

Pnψ→ψ in Vγ, I2(n)→ 0 as n →∞. This completes the proof of Lemma 6.5.11. �

The proofs of Lemmas 6.5.12, 6.5.15 and 6.5.17 follow the similar methodology as that of

Lemmas 5.6 - 5.8 [23] and Lemmas 5.5.9 - 5.5.12.

Let h be the bounded continuous function on C ([0,T];U′) and F̃= (F̃t)=σ{ũ(s), s ≤ t} be the

filtration of sigma fields generated by the process ũ.

Lemma 6.5.12. For all s, t ∈ [0,T], such that s ≤ t and all ψ ∈Vγ :

(6.5.50) lim
n→∞ Ẽ

[〈M̃n(t)− M̃n(s),ψ〉h(ũn|[0,s])
]= Ẽ[〈M̃(t)− M̃(s),ψ〉h(ũ|[0,s])

]
.

Proof. Let us fix s, t ∈ [0,T], s ≤ t and ψ ∈Vγ. By identity (6.5.39) we have

〈M̃n(t)− M̃n(s),ψ〉 = 〈ũn(t)− ũn(s),Pnψ〉+
∫ t

s
〈Aũn(σ),Pnψ〉dσ

+
∫ t

s
〈B(ũn(σ)),Pnψ〉dσ+

∫ t

s
〈g(|ũn(σ)|2) ũn(σ),Pnψ〉dσ−

∫ t

s
〈 f (ũn(σ)),Pnψ〉dσ.

By Lemma 6.5.11, we infer that

(6.5.51) lim
n→∞〈M̃n(t)− M̃n(s),ψ〉 = 〈M̃(t)− M̃(s),ψ〉, P̃-a.s.

In order to prove (6.5.50) we first observe that since ũn → ũ in ZT , in particular in C ([0,T];U′)
and h is a bounded continuous function on C ([0,T];U′), we get

(6.5.52) lim
n→∞h(ũn|[0,s])= h(ũ|[0,s]),
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and

(6.5.53) sup
n∈N

‖h(ũn|[0,s])‖L∞ <∞.

Let us define a sequence of R−valued random variables :

fn(ω) := [〈M̃n(t,ω),ψ〉−〈M̃n(s,ω),ψ〉]h(ũn|[0,s]), ω ∈ Ω̃.

We will prove that the functions { fn}n∈N are uniformly integrable in order to apply the Vitali

theorem. We claim that

(6.5.54) sup
n∈N

Ẽ[| fn|2]<∞.

Since H ,→V′
γ then by the Cauchy-Schwarz inequality, for each n ∈N we have

(6.5.55) Ẽ[| fn|2]≤ 2c‖h◦ ũn‖2
L∞ |ψ|2Vγ

Ẽ
[|M̃n(t)|2H +|M̃n(s)|2H

]
.

Since M̃n is a continuous martingale with quadratic variation defined in (6.5.40), by the Burkholder-

Davis-Gundy inequality we obtain

(6.5.56) Ẽ

[
sup

t∈[0,T]
|M̃n(t)|2H

]
≤ cẼ

[∫ T

0
‖Gn(σ, ũn(σ))‖2

T2(`2;H) dσ
]

Since Pn : H→H is a contraction and by Lemma 6.2.1, (6.5.18) for p = 1, we have

Ẽ

[∫ T

0
‖Gn(σ, ũn(σ))‖2

T2(`2;H) dσ
]
≤ Ẽ

[∫ T

0
‖G(σ, ũn(σ))‖2

T2(`2;H) dσ
]

≤ Ẽ
[∫ T

0

1
4
|∇ũn(σ)|2L2 dσ

]
≤ Ẽ

[
sup

σ∈[0,T]
‖ũn(σ)‖2

V

]
T <∞.(6.5.57)

Then by (6.5.55) and (6.5.57) we see that (6.5.54) holds. Since the sequence { fn}n∈N is uniformly

integrable and by (6.5.51) it is P̃−a.s. point-wise convergent, then application of the Vitali

Theorem completes the proof of the lemma. �

Remark 6.5.13. Using the Burkholder-Davis-Gundy inequality we have proved a stronger claim

(6.5.56) than what we needed.

From Lemma 6.5.7 and Lemma 6.5.12 we have the following corollary.

Corollary 6.5.14. For all s, t ∈ [0,T] such that s ≤ t :

E
(
M̃(t)− M̃(s)

∣∣F̃t
)= 0.

Lemma 6.5.15. For all s, t ∈ [0,T] such that s ≤ t and all ψ,ζ ∈Vγ :

lim
n→∞Ẽ

[(
〈M̃n(t),ψ〉〈M̃n(t),ζ〉−〈M̃n(s),ψ〉〈M̃n(s),ζ〉

)
h(ũn|[0,s])

]
= Ẽ

[(
〈M̃(t),ψ〉〈M̃(t),ζ〉−〈M̃(s),ψ〉〈M̃(s),ζ〉

)
h(ũ|[0,s])

]
,

where 〈·, ·〉 denotes the appropriate dual pairing.
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Proof. Let us fix s, t ∈ [0,T] such that s ≤ t and ψ,ζ ∈Vγ and define R−valued random variables

fn and f by

fn(ω) : =
(
〈M̃n(t,ω),ψ〉〈M̃n(t,ω),ζ〉−〈M̃n(s,ω),ψ〉〈M̃n(s,ω),ζ〉

)
h(ũn|[0,s](ω)),

f (ω) : =
(
〈M̃(t,ω),ψ〉〈M̃(t,ω),ζ〉−〈M̃(s,ω),ψ〉〈M̃(s,ω),ζ〉

)
h(ũ|[0,s](ω)), ω ∈ Ω̃.

By Lemma 6.5.11 or more precisely by (6.5.51) and (6.5.52) we infer that limn→∞ fn(ω)= f (ω),

for P̃ almost all ω ∈ Ω̃. We will prove that the functions { fn}n∈N are uniformly integrable. We claim

that for some r > 1,

(6.5.58) sup
n∈N

Ẽ
[| fn|r

]<∞.

For each n ∈N as before we have

(6.5.59) Ẽ
[| fn|r

]≤ C‖h◦ ũn‖r
L∞‖ψ‖r

Vγ
‖ζ‖r

Vγ
Ẽ
[|M̃n(t)|2r

H +|M̃n(s)|2r
H

]
.

Since M̃n is a continuous martingale with quadratic variation defined in (6.5.40), by the

Burkholder-Davis-Gundy inequality we obtain

(6.5.60) Ẽ

[
sup

t∈[0,T]
|M̃n(t)|2r

H

]
≤ cẼ

[∫ T

0
‖Gn(σ, ũn(σ))‖2

T2(`2;H) dσ
]r

.

Since Pn : H→H is a contraction and by Lemma 6.2.1 we have

Ẽ

[∫ T

0
‖Gn(σ, ũn(σ))‖2

T2(`2;H) dσ
]r

≤ Ẽ
[∫ T

0
‖G(σ, ũn(σ))‖2

T2(`2;H) dσ
]r

≤ Ẽ
[∫ T

0

1
4
|∇ũn(σ)|2L2 dσ

]r

≤ Cr Tr−1Ẽ

[∫ T

0
‖ũn(σ)‖2r

V dσ
]

≤ CrẼ

[
sup

σ∈[0,T]
‖ũn(σ)‖2r

V

]
Tr.(6.5.61)

Thus, if r ∈ [1,3] then, by (6.5.18), (6.5.53) and (6.5.59) - (6.5.61) we infer that (6.5.58) holds.

Hence by application of the Vitali theorem

(6.5.62) lim
n→∞ Ẽ[ fn]= Ẽ[ f ].

�

We will be using the following notations in the following lemmas. V′(OR) is the dual space to

V(OR), where

V(OR) : = the closure of V (OR) in H1(OR ,R3),

where V (OR) denotes the space of all divergence free vector fields of class C ∞ with compact

supports contained in OR . We recall that HOR is the space of restrictions to the subset OR of

elements of the space H i.e.,

HOR := {
u|OR : u ∈H

}
,
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with the scalar product defined by

〈u,v〉HOR
:=

∫
OR

u(x)v(x)dx, u,v ∈HOR .

Lemma 6.5.16. The map G : HOR → T2(`2;V′(OR)) given by (6.2.12) is well defined and there

exists some constant CR > 0 such that

(6.5.63) ‖G(u)‖T2(`2;V′(OR )) ≤ CR‖u‖HOR
, u ∈H.

Moreover, for every ψ ∈ V the mapping H 3 u 7→ 〈G(u),ψ〉 ∈ `2 is continuous, if in the space H we

consider the Fréchet topology inherited from the space L2
loc(R3,R3).

Proof. Let σ= (σ1, ...,σd) : O →Rd and fix R > 0. Let u ∈ V (OR). Then

(6.5.64)
d∑

j=1

∂

∂x j
(σ ju)=

d∑
j=1

(∂σ j

∂x j
u+σ j ∂u

∂x j

)
= (divσ)u+

d∑
j=1

σ j ∂u
∂x j

.

Let v ∈ V (OR). Since v on the boundary ∂OR is equal to zero, thus using the integration by parts

formula, we obtain for v ∈ V (OR)∫
O

( d∑
j=1

σ j ∂u
∂x j

)
vdx =

d∑
j=1

∫
O

∂

∂x j
(σ ju)vdx−

∫
O

(divσ)uvdx

=−
d∑

j=1

∫
O

(σ ju)
∂v
∂x j

dx−
∫
O

(divσ)uvdx.

Using the Hölder inequality, we obtain

(6.5.65)
∣∣∫

OR

( d∑
j=1

σ j ∂u
∂x j

)
vdx

∣∣≤ ‖σ‖L∞ |u|HOR
‖v‖V(OR ) +‖divσ‖L∞ |u|HOR

‖v‖V(OR )

Therefore, if we define a linear functional B̂R by

B̂Rv :=
∫
OR

( d∑
j=1

σ j ∂u
∂x j

)
vdx, v ∈ V (OR) ,

we infer that it is bounded in the norm of the space V(OR). Thus it can be uniquely extended to a

linear bounded functional (denoted also by B̂R) on V(OR). Moreover, by estimate (6.5.65) we have

the following inequality

‖B̂R‖V′(OR ) ≤
(‖σ‖L∞ +‖divσ‖L∞

)|u|HOR

or equivalently

(6.5.66) ‖(σ ·∇)u‖V′(OR ) ≤
(‖σ‖L∞ +‖divσ‖L∞

) · |u|HOR
.

Since by equality (6.2.12), G(u)(e j)=Π
[
(σ j ·∇)u

]
, for some orthonormal basis

{
e j

}∞
j=1 of `2, we

get by estimate (6.5.66)

‖G(u)‖T2(`2;V′(OR )) =
[ ∞∑

j=1
‖G(u)(e j)‖2

V′(OR )

]1/2

≤ (‖σ‖`2 +‖divσ‖`2
) · |u|HOR

.
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Therefore, using the assumption (A2), G(u) ∈T2(`2,V′(OR)) and

‖G(u)‖T2(`2,V′(OR )) ≤ CR · |u|HOR
.

By estimate (6.5.63) and the continuity of the embedding T2(`2,V′(OR)) ,→L (`2,V ′(OR)), we

obtain

‖G(u)y‖V′(OR ) ≤ C(R)|u|HOR
‖y‖`2 , u ∈H, y ∈ `2

for some constant C(R)> 0. Thus, for any ψ ∈V(OR)

(6.5.67) |(G(u)y)ψ| ≤ C(R)|u|HOR
‖y‖`2‖ψ‖V(OR ), u ∈H, y ∈ `2 .

Now we identify V′〈G(·),ψ〉V with the mapping ψ∗∗G : H→ (`2)′ defined by

(ψ∗∗G(u))y := (G(u)y)ψ ∈ R , u ∈H, y ∈ `2 .

Thus, from the inequality (6.5.67), we infer that

(6.5.68) ‖ψ∗∗G(u)‖`2 ≤ C(R)‖ψ‖V|u|HOR
.

Therefore, if we fix ψ ∈ V then, there exists R0 > 0 such that suppψ is a compact subset of OR0 .

Since G is linear, estimate (6.5.68) with R := R0 yields that the mapping

L2
loc(R3,R3)⊃H 3 u 7→ψ∗∗G(u) ∈ `2

is continuous in the Fréchet topology inherited on the space H from the space L2
loc(R

3,R3),

concluding the proof of the lemma. �

Lemma 6.5.17 (Convergence of quadratic variations). For any s, t ∈ [0.T] and ψ,ζ ∈Vγ, we have

lim
n→∞Ẽ

[(∫ t

s
〈(G(σ, ũn(σ)))∗ Pnψ, (G(σ, ũn(σ)))∗ Pnζ〉`2 dσ

)
·h(ũn|[0,s])

]
= Ẽ

[(∫ t

s
〈(G(σ, ũ(σ)))∗ ψ, (G(σ, ũ(σ))∗ ζ〉`2 dσ

)
·h(ũ|[0,s])

]
,

where 〈·, ·〉`2 is the inner product in `2.

Proof. Let us fix ψ,ζ ∈Vγ and define a sequence of random variables by

fn(ω) : =
(∫ t

s
〈(G(σ, ũn(σ,ω)))∗ Pnψ, (G(σ, ũn(σ,ω)))∗ Pnζ〉`2 dσ

)
·h(ũn|[0,s]), ω ∈ Ω̃.

We will prove that the functions are uniformly integrable and convergent P̃−a.s. We will prove

that for some r > 1,

(6.5.69) sup
n∈N

Ẽ[| fn|r]<∞.
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For some c > 0 we have the following inequalities

| (G(σ, ũn(σ,ω)))∗ Pnψ|`2 ≤ ‖G(σ, ũn(σ,ω))‖L (`2;H)|Pnψ|H ≤ 1
2
|∇ũn(σ,ω)|L2 |ψ|H,

and thus

E | fn|r = E
∣∣∣∣(∫ t

s
〈(G(σ, ũn(σ)))∗ Pnψ, (G(σ, ũn(σ)))∗ Pnζ〉`2 dσ

)
·h(ũn|[0,s])

∣∣∣∣r

≤ ‖h◦ ũn‖r
L∞E

(∫ t

s
| (G(σ, ũn(σ,ω)))∗ Pnψ|`2 | (G(σ, ũn(σ,ω)))∗ Pnζ|`2 dσ

)r

≤ c4‖h◦ ũn‖r
L∞ |ψ|rH|ζ|rHE

(∫ t

s
‖ũn(σ,ω)‖2

V dσ
)r

.

Using the Hölder inequality, we get

E

(∫ t

s
‖ũn(σ,ω)‖2

Vdσ
)r

≤ (t− s)r−1E

∫ t

s
‖ũn(σ,ω)‖2r

V dσ≤ CE

(
sup

σ∈[0,T]
‖ũn(σ,ω)‖2r

V

)

for some C > 0. Thus

E | fn|r ≤ C̃E

(
sup

σ∈[0,T]
‖ũn(σ,ω)‖2r

V

)

for some C̃ > 0. Hence by (6.5.18) for r ∈ (1,3]

sup
n≥1

Ẽ| fn|r ≤ C̃ sup
n≥1

Ẽ

[
sup

σ∈[0,T]
‖ũn(σ,ω)‖2r

V

]
≤ C̃C1(r)<∞,

inferring (6.5.69).

Pointwise convergence : Next, we have to prove the following pointwise convergence for a fix

ω ∈ Ω̃, i.e. we will show that for a fix ω ∈ Ω̃

lim
n→∞

∫ t

s

〈
(G(σ, ũn(σ,ω)))∗ Pnψ, (G(σ, ũn(σ,ω)))∗ Pnζ

〉
`2 dσ

=
∫ t

s

〈
(G(σ, ũ(σ,ω)))∗ ψ, (G(σ, ũ(σ,ω))∗ ζ

〉
`2 dσ.(6.5.70)

Let us fix ω ∈ Ω̃ such that

(i) ũn(·,ω)→ ũ(·,ω) in L2(0,T,Hloc),

(ii) ũ(·,ω) ∈ L2(0,T;H) and the sequence (ũn(·,ω))n≥1 is bounded in C ([0,T];V).

Notice that, in order to prove (6.5.70) it is sufficient to prove that

(6.5.71) G(·, ũn(·,ω))∗Pnψ→G(·, ũ(·,ω))∗ψ in L2(s, t;`2).
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We have∫ t

s

∥∥G(σ, ũn(σ,ω))∗Pnψ−G(σ, ũ(σ,ω))∗ψ
∥∥2
`2 dσ

≤
∫ t

s

(∥∥G(σ, ũn(σ,ω))∗(Pnψ−ψ)
∥∥
`2 +

∥∥G(σ, ũn(σ,ω))∗ψ−G(σ, ũ(σ,ω))∗ψ
∥∥
`2

)2
dσ

≤ 2
∫ t

s

∥∥G(σ, ũn(σ,ω))∗
∥∥2

L (H,`2) · |Pnψ−ψ|2H dσ+2
∫ t

s

∥∥G(σ, ũn(σ,ω))∗ψ−G(σ, ũ(σ,ω))∗ψ
∥∥2
`2 dσ

=: 2{I1(n)+ I2(n)}.

(6.5.72)

Let us consider the term I1(n). Since ψ ∈Vγ, we have

lim
n→∞ |Pnψ−ψ|H = 0.

By Lemma 6.2.1, the continuity of the embedding T2(`2,H) ,→L (`2,H) and (ii), we infer that∫ t

s

∥∥G(σ, ũn(σ,ω))∗
∥∥2

L (H,`2) dσ≤ C
∫ t

s
|∇ũn(σ,ω)|2L2 dσ≤ C̃T sup

n≥1
‖ũn(ω)‖C ([0,T];V) ≤ K

for some constant K > 0. Thus

lim
n→∞ I1(n)= lim

n→∞

∫ t

s

∥∥G(σ, ũn(σ,ω))∗
∥∥2

L (H,`2) · |Pnψ−ψ|2H dσ= 0.

Let us move to the term I2(n) in (6.5.72). We will prove that for every ψ ∈Vγ the term I2(n)

tends to zero as n →∞. Assume first that ψ ∈ V . Then there exists R > 0 such that suppψ is a

compact subset of OR . Since ũn(·,ω)→ ũ(·,ω) in L2(0,T;Hloc), then in particular

lim
n→∞qT,R

(
ũn(·,ω)− ũ(·,ω)

)= 0,

where qT,R is the seminorm defined by (6.3.1). In other words, ũn(·,ω)→ ũ(·,ω) in L2(0,T; HOR ).

Therefore there exists a subsequence (ũnk (·,ω))k such that

ũnk (σ,ω)→ ũ(σ,ω) in HOR for almost all σ ∈ [0,T] as k →∞ .

Hence by Lemma 6.5.16

G
(
σ, ũnk (σ,ω)

)∗
ψ→G

(
σ, ũ(σ,ω)

)∗
ψ in `2 for almost all σ ∈ [0,T] as k →∞ .

In conclusion, by the Vitali Theorem

lim
k→∞

∫ t

s
‖G

(
ũnk (σ,ω)

)∗
ψ−G

(
ũ(σ,ω)

)∗
ψ‖2

`2 dσ= 0 for ψ ∈ V .

Repeating the above reasoning for all subsequences, we infer that from every subsequence of the

sequence
(
G

(
σ, ũn(σ,ω)

)∗
ψ

)
n we can choose the subsequence convergent in L2(s, t;`2) to the same
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limit. Thus the whole sequence
(
G

(
σ, ũn(σ,ω)

)∗
ψ

)
n is convergent to G

(
σ, ũ(σ,ω)

)∗
ψ in L2(s, t;`2).

At the same time

lim
n→∞ I2(n)= 0 for every ψ ∈ V .

If ψ ∈Vγ then for every ε> 0 we can find ψε ∈ V such that ‖ψ−ψε‖Vγ
< ε. By the continuity of

embeddings T2(`2,H) ,→L (`2,H) ,→L (`2,V′
γ), Lemma 6.2.1 and (ii), we obtain∫ t

s

∥∥G(σ, ũn(σ,ω))∗ψ−G(σ, ũ(σ,ω))∗ψ
∥∥2
`2 dσ

≤ 2
∫ t

s

∥∥[G(σ, ũn(σ,ω))∗−G(σ, ũ(σ,ω))∗](ψ−ψε)
∥∥2
`2 dσ

+2
∫ t

s

∥∥[G(σ, ũn(σ,ω))∗−G(ũ(σ,ω))∗]ψε

∥∥2
`2 dσ

≤ 4
∫ t

s

[‖G(σ, ũn(σ,ω))‖2
L (`2,V′

γ) +‖G(σ, ũ(σ,ω))‖2
L (`2,V′

γ)

]‖ψ−ψε‖2
Vγ

dσ

+2
∫ t

s

∥∥[G(σ, ũn(σ,ω))∗−G(σ, ũ(σ,ω))∗]ψε

∥∥2
`2 dσ

≤ c T
(‖ũn(·,ω)‖2

C (0,T;V) +‖ũ(·,ω)‖2
C (0,T;V)

) ·ε2 +2
∫ t

s

∥∥[G(σ, ũn(σ,ω))∗−G(σ, ũ(σ,ω))∗]ψε

∥∥2
`2 dσ

≤ Cε2 +2
∫ t

s

∥∥[G(σ, ũn(σ,ω))∗−G(σ, ũ(σ,ω))∗]ψε

∥∥2
`2 dσ,

for some positive constants c and C. Passing to the upper limit as n →∞, we infer that

limsup
n→∞

∫ t

s

∥∥G(σ, ũn(σ,ω))∗ψ−G(σ, ũ(σ,ω))∗ψ
∥∥2
`2 dσ≤ Cε2.

In conclusion, we proved that

lim
n→∞

∫ t

s

∥∥G(σ, ũn(σ,ω))∗ψ−G(σ, ũ(σ,ω))∗ψ
∥∥2
`2 dσ= 0

which completes the proof of (6.5.71). Thus, by (6.5.69), convergence (6.5.70) and Vitali Theorem,

we conclude the proof of Lemma 6.5.17. �

By Lemma 6.5.12 we can pass to the limit in (6.5.41). By Lemmas 6.5.15 and 6.5.17 we can

pass to the limit in (6.5.42) as well. After passing to the limits we infer that for all ψ,ζ ∈Vγ and

all bounded continuous functions h on C ([0,T];U′):

(6.5.73) Ẽ
[〈M̃(t)− M̃(s),ψ〉h(ũ|[0,s])

]= 0,

and

Ẽ
[(
〈M̃(t),ψ〉〈M̃(t),ζ〉−〈M̃(s),ψ〉〈M̃(s),ζ〉

−
∫ t

s
〈(G(r, ũ(r)))∗ψ, (G(r, ũ(r)))∗ ζ〉`2 dr

)
·h(ũ|[0,s])

]
= 0,(6.5.74)

where 〈·, ·〉 is the dual pairing between V′
γ and Vγ.

From Lemma 6.5.7, Lemma 6.5.15 and Lemma 6.5.17, we infer the following corollary.
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Corollary 6.5.18. For t ∈ [0,T]

〈〈M̃〉〉t =
∫ t

0
‖G(s, ũ(s))‖T2(`2;H) ds , t ∈ [0,T] .

Continuation of the proof of Theorem 6.5.4. Now we apply the idea analogous to Chapter 5,

see also [38, Section 8.3]. By Lemma 6.5.8 and Corollary 6.5.14, we infer that M̃(t), t ∈ [0,T]

is an H-valued continuous square integrable martingale with respect to the filtration F̃= (F̃t).

Moreover, by Corollary 6.5.18 the quadratic variation of M̃ is given by

(6.5.75) 〈〈M̃〉〉t =
∫ t

0
‖G(s, ũ(s))‖T2(`2;H) ds t ∈ [0,T] .

Therefore by the martingale representation theorem, there exist

• a stochastic basis ( ˜̃Ω, ˜̃F , ˜̃F, ˜̃P),

• a cylindrical Wiener process ˜̃W(t) on `2,

• and a progressively measurable process ˜̃u(t) such that for all t ∈ [0,T] and all v ∈ V :

〈 ˜̃u(t),v〉−〈 ˜̃u(0),v〉+
∫ t

0
〈A ˜̃u(s),v〉ds+

∫ t

0
〈B( ˜̃u(s), ˜̃u(s)),v〉ds+

∫ t

0
〈g(| ˜̃u(s)|2) ˜̃u(s),v〉ds

=
∫ t

0
〈 f ( ˜̃u(s)),v〉ds+

〈∫ t

0
G(s, ˜̃u(s))d ˜̃W(s),v

〉
.

Thus the conditions from Definition 6.3.7 hold with (Ω̂,F̂ , F̂, P̂) = ( ˜̃Ω, ˜̃F , ˜̃F, ˜̃P), Ŵ = ˜̃W and û = ˜̃u.

The proof of Theorem 6.5.4 is thus complete.

6.5.4 Uniqueness and strong solutions

In this subsection we will show that the solutions of (6.2.16) are pathwise unique and that the

martingale solution of (6.2.16) is the strong solution. Let us recall the definition of pathwise

unique solutions.

Definition 6.5.19. Let (Ω,F ,F,P,W ,ui), i = 1,2 be the martingale solutions of (6.2.16) with

ui(0)= u0, i = 1,2. Then we say that the solutions are pathwise unique if P−a.s. for all t ∈ [0,T],

u1(t)= u2(t).

Theorem 6.5.20. Assume that the assumptions (A1) and (A2) are satisfied. If u1,u2 are two

solutions of (6.2.16) defined on the same filtered probability space (Ω̂,F̂ , F̂, P̂) then P̂−a.s. for all

t ∈ [0,T], u1(t)= u2(t).

The theorem has been proved in [76, Theorem 3.7].

Theorem 6.5.21. Assume that assumptions (A1) and (A2) are satisfied. Then there exists a

path-wise unique strong solution u ∈C ([0,T];V)∩L2(0,T;D(A)) of (6.2.16) such that

sup
t∈[0,T]

‖u(t)‖2
V +

∫ T

0
|u(t)|2D(A) dt <∞.
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Proof. Since by Theorem 6.5.4 there exists a martingale solution and by Theorem 6.5.20 it

is pathwise unique, the existence of strong solution follows from [68, Theorem 2] or by the

Yamada-Watanabe Theorem [95]. �

6.6 Invariant measures

In the following, we consider time homogeneous damped tamed NSEs, i.e. the coefficients f ,σ are

independent of t and furthermore f ∈H is not dependent on u. The time homogeneous damped

tamed NSEs in abstract form are given by

(6.6.1)

du(t)= [−Aαu(t)−B(u(t))−Π[g(|u(t)|2)u(t)]+Π f
]
dt+∑∞

j=1 G j(u(t))dWj(t),

u(0)= u0 ∈V,

where Aα =αI −ν∆ for some α ∈R and ν> 0 is the viscosity. The operator B and the cylindrical

Wiener process W = (
Wj

)∞
j=1 on `2, is same as defined in Section 6.2 and G j are as defined in

(6.2.11).

Let Bb(V) denote the set of all bounded and Borel measurable functions on V. For any

ϕ ∈Bb(V), t ≥ 0, we define a function Ttϕ : V→R by

(6.6.2) Ttϕ(v) := E(
ϕ(u(t;v))

)
, v ∈V.

It follows from Theorem 6.6.2 and Ondrejat [69] (see also [17]) that Ttϕ ∈Bb(V) and {Tt}t≥0 is a

semigroup on Bb(V). Also since this unique solution to (6.6.1) has a.e. path in C ([0,T];V), it is

also a Markov semigroup (see [69, Theorem 27]). Moreover, {Tt}t≥0 is a Feller semigroup, i.e. Tt

maps Cb(V) into itself.

Next we state the main result of this section, regarding invariant measures:

Theorem 6.6.1. Let for every α> 0, the assumptions (A1)′− (A3)′ be satisfied. Then there exists

an invariant measure µ ∈P (V) of the semigroup (Tt)t≥0 defined by (6.6.2), such that for any t ≥ 0

and ϕ ∈SCb(Vw) ∫
V

Ttϕ(u)µ(du)=
∫

V
ϕ(u)µ(du).

If Tt is sequentially weakly Feller Markov semigroup then for every ϕ ∈ SCb(Vw), Ttϕ ∈
SCb(Vw) ⊂ Bb(V) (see [17, 62] for the definitions and inclusions of the spaces); therefore the

integral on LHS in Theorem 6.6.1 makes sense.

Now we list the assumptions that we make on the coefficients f and σ along with a coercivity

type assumption, see [72].

Assumptions. (A1)′ The function f : R3 →R3, is time independent and H-valued.
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(A2)′ A measurable function σ :R3 →R3 of C1 class with respect to the x-variable and for all x ∈R3

there exists a constant Cσ > 0 such that

‖∂x jσ(x)‖`2 ≤ Cσ, j = 1,2,3

and, for all x ∈R3,

‖σ(x)‖2
`2 ≤ 1

4
.

(A3)′ there exists a δ> 0 such that

2ν|∇u|2L2 −‖G(u)‖2
T2(`2;H) ≥ 2δ|∇u|2L2 .

The following theorem regarding the existence of a pathwise unique strong solution to the time

homogeneous damped tamed NSEs (6.6.1) can be proved by modifying the proofs of Theorem 6.5.4

and Theorem 6.5.20 to incorporate the extra linear term αu.

Theorem 6.6.2. Assume that assumptions (A1)′ and (A2)′ are satisfied. Then for every u0 ∈
V, there exists a path-wise unique strong solution u of (6.6.1) for every T > 0 such that u ∈
C ([0,T];V)∩L2(0,T;D(A)), P-a.s.

For the fixed initial data u0 = v ∈V we denote the (pathwise) unique solution of (6.6.1), whose

existence is proved in Theorem 6.6.2 by u(t;v). Then {u(t;v) : v ∈V, t ≥ 0} forms a strong Markov

process with state space V. We have the following result:

Lemma 6.6.3. For v,v′ ∈V and R > 0, define

τv
R := inf {t ∈ [0,T] : ‖u(t;v)‖V > R} ,

and

τ
v,v′
R := τv

R ∧τv′
R .

Suppose that assumptions (A1)′ and (A2)′ hold, then

E‖u(t∧τv,v′
R ;v)−u(t∧τv,v′

R ;v′)‖2
V ≤ Ct,R · ‖v−v′‖2

V.

Proof. Let u(t) := u(t;v), ũ(t) := u(t;v′), and

w(t) := u(t)− ũ(t).

Set tR := τv,v′
R ∧ t. By Itô Lemma, we have

‖w(t)‖2
V = ‖w(0)‖2

V −2
∫ tR

0
〈Aαw(s),w(s)〉V ds−2

∫ tR

0
〈B(u(s))−B(ũ(s)),w(s)〉V ds

−2
∫ tR

0
〈g(|u(s)|2)u(s)− g(|ũ(s)|2)ũ(s),w(s)〉V ds+

∫ tR

0
‖G(u(s))−G(ũ(s))‖2

T2(`2;V) ds

+2
∫ tR

0
〈
∞∑
j=1

(
G j(u(s))−G j(ũ(s))

)
dWj(s),w(s)〉V

:= ‖w(0)‖2
V + I1(tR)+ I2(tR)+ I3(tR)+ I4(tR)+ I5(tR).
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Now we deal with each term individually. From the definition of Aα, we have

I1(tR)=−2
∫ tR

0
〈Aαw(s),w(s)〉V ds =−2α

∫ tR

0
‖w(s)‖2

V −2ν
∫ tR

0
|w(s)|2H2 +2ν

∫ tR

0
|w(s)|2H ds.

By definition of the operator B and the Hölder inequality, we get

|I2(tR)| = 2
∣∣∣∣∫ tR

0
〈B(u(s))−B(ũ(s)),w(s)〉V ds

∣∣∣∣
= 2

∣∣∣∣∫ tR

0
〈B(w(s),u(s)),w(s)〉V ds+

∫ t

0
〈B(ũ(s),w(s)),w(s)〉V ds

∣∣∣∣
≤ 2

∫ tR

0
|w(s) ·∇u(s)|L2

(|w(s)|H +|Aw(s)|L2
)

ds

+2
∫ tR

0
|ũ(s) ·∇w(s)|L2

(|w(s)|H +|Aw(s)|L2
)

ds.

Using Lemma 6.2.1, the Gagliardo-Nirenberg inequality (6.2.9), the Hölder inequality, the Sobolev

embedding theorem (H1 ,→ L6) and the Young inequality, we obtain the following estimate on the

second term,

|I2(tR)| ≤ C
∫ tR

0
|w(s) ·∇u(s)|2L2 ds+Cν

∫ tR

0
|ũ(s) ·∇w(s)|2L2 ds+ ν

2

∫ tR

0
|w(s)|2D(A) ds

≤ C
∫ tR

0
‖w(s)‖2

L∞ |∇u(s)|2L2 +Cν

∫ tR

0
‖u(s)‖2

L6‖∇w(s)‖2
L3 ds+ ν

2

∫ tR

0
|w(s)|2D(A) ds

≤ CR

∫ tR

0
‖w(s)‖3/2

H2 |w(s)|1/2
H ds+CR,ν

∫ tR

0
‖∇w(s)‖H1 |∇w(s)|L2 ds

+ ν

2

∫ tR

0
|w(s)|2D(A) ds

≤ CR,ν

∫ tR

0
‖w(s)‖2

V ds+ ν

2

∫ tR

0
‖w(s)‖2

H2 ds+ ν

2

∫ tR

0
|w(s)|2D(A) ds.

Since |g(r)− g(r′)| ≤ |r− r′|, the Hölder inequality and the Young inequality gives

|I3(tR)| = 2
∣∣∣∣∫ tR

0
〈g(|u(s)|2)u(s)− g(|ũ(s)|2)ũ(s),w(s)〉V ds

∣∣∣∣
≤ 4

∫ tR

0
〈|w(s)|(|u(s)|+ |ũ(s)|)ũ(s)+|u(s)|2w(s),w(s)〉V ds

≤ Cν

∫ tR

0
|w(s) · (|u(s)|+ |ũ(s)|)2|2H + ν

4

∫ tR

0
|w(s)|2D(A) ds.

Using the Hölder inequality, the Sobolev embedding theorem and the Gagliardo-Nirenberg

inequality (6.2.9) we get the following estimates,

|I3(tR)| ≤ Cν

∫ tR

0
‖w(s)‖2

L6

∥∥|u(s)|+ |ũ(s)|∥∥4
L6 ds+ ν

4

∫ tR

0
|w(s)|2D(A) ds

≤ CR,ν

∫ tR

0
‖w(s)‖H2 |w(s)|H ds+ ν

4

∫ tR

0
|w(s)|2D(A) ds

≤ CR,ν

∫ tR

0
‖w(s)‖2

V ds+ ν

4

∫ tR

0
‖w(s)‖2

H2 ds+ ν

4

∫ tR

0
|w(s)|2D(A) ds.
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Using assumption (A2)′ and Lemma 6.2.1 we get the following estimate on I4

|I4(tR)| =
∣∣∣∣∫ tR

0
‖G(u(s))−G(ũ(s))‖2

T2(`2;V) ds
∣∣∣∣≤ 1

2

∫ tR

0
|Aw(s)|2H ds+Cσ

∫ tR

0
|∇w(s)|2L2 ds.

Since E(I5(tR))= 0, by combining all the above estimates and using |u|D(A) ≤ ‖u‖H2 , we get

E‖w(t∧τv,v′
R )‖2

V ≤ ‖w(0)‖2
V +CR,α,ν

∫ tR

0
E‖w(s)‖2

V ds

≤ ‖v−v′‖2
V +CR,α,ν

∫ t

0
E‖w(s∧τv,v′

R )‖2
V ds.

The desired estimate follows from the application of generalised Gronwall Lemma. �

For a metric space U, we use P (U) to denote the total of all probability measures on U. We

will use the following theorem from Maslowski-Seidler [62] to prove the existence of invariant

measures.

Theorem 6.6.4. Assume that

(i) the semigroup {Tt}t≥0, defined by (6.6.2) is sequentially weakly Feller in V,

(ii) for any ε> 0 there exists R > 0 such that

sup
T≥1

1
T

∫ T

0
P({‖u(t;u0)‖V > R})dt < ε.

Then there exists at least one invariant measure for (6.6.1).

6.6.1 Boundedness in probability

Lemma 6.6.5. Let u0 ∈V. Then, under the assumptions of Theorem 6.6.1, for every ε> 0, there

exists R > 0 such that

(6.6.3) sup
T≥1

1
T

∫ T

0
P({‖u(t;u0)‖V > R})dt < ε.

Proof. Using the Itô lemma for the function |x|2H and the process u(t), we have

1
2
|u(t)|2H = 1

2
|u0|2H +

∫ t

0
〈−Aαu(s)−B(u(s))−Π(g(|u(s)|2)u(s))+Π f ,u(s)〉H ds

+
∫ t

0

∞∑
j=1

〈G j(u(s))dWj(s),u(s)〉H + 1
2

∫ t

0
‖G(u(s))‖2

T2(`2;H) ds.(6.6.4)

Now we deal with each term individually.

(6.6.5) 〈Aαu,u〉H =α‖u‖2
H +ν‖∇u‖2

L2 .

(6.6.6) 〈B(u),u〉H = 0.
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(6.6.7) 〈Π g(|u|2)u,u〉H = ∣∣|√g(|u|2) | · |u|∣∣2L2 .

Using the assumptions on f , for some β> 0 we obtain the following estimate:

(6.6.8) 〈Π f ,u〉H ≤ ‖ f ‖V′‖u‖V ≤ 1
4β

‖ f ‖2
V′ +β‖u‖2

V.

Since u is the solution of (6.6.1) and satisfies the estimates (6.4.25) (Theorem 6.5.4 and

Theorem 6.5.21 hold for the tamed NSEs, but we can also prove similar theorems for the damped

tamed NSEs too), we can show that the process

M(t)=
∫ t

0
〈u(s),

∞∑
j=1

G j(u(s))dWj(s)〉H,

is a F-martingale. Thus taking expectation in (6.6.4) and using the estimates (6.6.5) - (6.6.8), we

infer

1
2
E |u(t)|2H ≤ 1

2
|u0|2H −αE

∫ t

0
|u(s)|2H ds−νE

∫ t

0
|∇u(s)|2L2 ds

−E
∫ t

0

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds+ 1
4β
E

∫ t

0
‖ f ‖2

V′ ds+βE
∫ t

0
‖u(s)‖2

V ds

+ 1
2

∫ t

0
‖G(u(s))‖2

T2(`2;H) ds.

On rearranging, we get

1
2
E |u(t)|2H + 1

2
E

∫ t

0

(
2ν|∇u(s)|2L2 −‖G(u(s))‖2

T2(`2;H)

)
ds+E

∫ t

0

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds

≤ 1
2
|u0|2H + 1

4β
T‖ f ‖2

V′ +βE
∫ t

0
|∇u(s)|2L2 ds+ (β−α)E

∫ t

0
|u(s)|2H ds.(6.6.9)

Now using the assumption (A3)′ in (6.6.9), we obtain

1
2
E |u(t)|2H + (δ−β)E

∫ t

0
|∇u(s)|2L2 ds+ (α−β)E

∫ t

0
|u(s)|2H ds

+E
∫ t

0

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds ≤ 1
2
|u0|2H + 1

4β
T‖ f ‖2

V′ .

Choosing β≤ 1
2 min {δ,α} yields

1
2
E |u(t)|2H + δ

2
E

∫ t

0
|∇u(s)|2L2 ds+ α

2
E

∫ t

0
|u(s)|2H ds+E

∫ t

0

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds

≤ 1
2
|u0|2H + 1

4β
T‖ f ‖2

V′ .

Therefore for γ= 1
2 min {α,δ},

1
2
E |u(t)|2H +γE

∫ t

0
‖u(s)‖2

V ds+E
∫ t

0

∣∣|√g(|u(s)|2) | · |u(s)|∣∣2L2 ds ≤ 1
2
|u0|2H + 1

4β
T‖ f ‖2

V′ .
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Thus for any T > 0, we infer that

(6.6.10)
1
T

∫ T

0
E‖u(s)‖2

V ds ≤ 1
2γT

|u0|2H + 1
4γβ

‖ f ‖2
V′ .

Using the Chebyshev inequality and inequality (6.6.10), we infer that for every T ≥ 0

1
T

∫ T

0
P({‖u(t,u0)‖V > R})dt ≤ 1

TR2

∫ T

0
E‖u(t)‖2

V dt

≤ 1
R2

[
1

2γT
|u0|2H + 1

4γβ
‖ f ‖2

V′

]
.

Now for sufficiently large R > 0 depending on ε, |u0|H and ‖ f ‖V′ the assertion follows. �

6.6.2 Sequentially weak Feller property

We are left to verify the assumption (i) of Theorem 6.6.4, i.e. the Markov semigroup {Tt}t≥0 is

sequentially weakly Feller in V. In other words we want to show that for any t > 0 and any

bounded and weakly continuous function ϕ : V→R, if ξn → ξ weakly in V, then

(6.6.11) Ttϕ(ξn)→ Ttϕ(ξ).

In Theorem 5.7.7, we proved for stochastic constrained Navier-Stokes equations that the

martingale solution of SCNSE continuously depends on the initial data. We have a similar result

for time homogeneous damped tamed NSEs, which can be proved analogously, see also [25,

Theorem 4.11].

Theorem 6.6.6. Assume that (u0,n)∞n=1 is a V−valued sequence that is convergent weakly to u0 ∈V.

Let

(Ωn,Fn,Fn,Pn,Wn,un)

be a martingale solution of problem (6.6.1) on [0,∞) with the initial data u0,n. Then for every

T > 0 there exist

• a subsequence (nk)k,

• a stochastic basis
(
Ω̃,F̃ , F̃, P̃

)
,

• a cylindrical Wiener process W̃(t)= (
W̃ j(t)

)∞
j=1 on `2,

• and F̃-progressively measurable processes ũ,
(
ũnk

)
k≥1 (defined on this basis) with laws

supported in ZT (see (6.3.5)) such that

(6.6.12) ũnk has the same law as unk on ZT and ũnk → ũ in ZT , P̃ - a.s.

and the system (
Ω̃,F̃ , F̃, P̃,W̃ , ũ

)
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is a martingale solution to problem (6.6.1) on the interval [0,T] with the initial data u0. In

particular, for all t ∈ [0,T] and all v ∈ V

〈ũ(t),v〉 +
∫ t

0
〈Aαũ(s),v〉 ds+

∫ t

0
〈B(ũ(s)),v〉 ds+

∫ t

0
〈g(|ũ(s)|2)ũ(s),v〉 ds

= 〈ũ(0),v〉V +
∫ t

0
〈 f ,v〉 ds+〈

∫ t

0

∞∑
j=1

G j(s, ũ(s))dWj(s),v〉, P̃-a.s.

Moreover, the process ũ satisfies the following inequality

(6.6.13) Ẽ

[
sup

s∈[0,T]
‖ũ(s)‖V

2 +
∫ T

0
|ũ(s)|2D(A) ds

]
<∞.

We will need the uniqueness in law of solutions of (6.6.1). We define the uniqueness in law

here:

Definition 6.6.7. Let (Ωi,F i,Fi,Pi,W i,ui), i = 1,2 be the martingale solutions of (6.6.1) with

ui(0)= u0, i = 1,2. Then we say that the solutions are unique in law if

LawP1(u1)=LawP2(u2)onC ([0,∞);Vw)∩L2([0,∞);D(A)),

where LawPi (ui), i = 1,2 are by definition probability measures on C ([0,∞);Vw)∩L2([0,∞);D(A)).

Lemma 6.6.8. Assume that assumptions (A1)′− (A2)′ are satisfied. Then the martingale solution

of (6.6.1) are unique in law.

The proof of the above lemma is the direct application of Theorems 2 and 11 of [68] once we

have proved the existence of a pathwise unique martingale solution of (6.6.1), which follows from

Theorem 6.6.2.

Lemma 6.6.9. The semigroup {Tt}t≥0 is sequentially weakly Feller in V.

Proof. Let us choose and fix 0 < t ≤ T,ξ ∈ V and ϕ : V → R be a bounded weakly continuous

function. Need to show that Ttϕ is sequentially weakly Feller in V. For this aim let us choose an

V-valued sequence (ξn) weakly convergent in V to ξ. Since the function Ttϕ : V→R is bounded,

we only need to prove (6.6.11).

Let un(·) = u(·,ξn) be a strong solution of (6.6.1) on [0,T] with the initial data ξn and let

u(·)= u(·,ξ) be a strong solution of (6.6.1) with the initial data ξ. We assume these processes are

defined on the stochastic basis (Ω,F ,F,P,W). By Theorem 6.6.6 there exist

• a subsequence (nk)k,

• a stochastic basis (Ω̃,F̃ , F̃, P̃), where F̃= {F̃s}s∈[0,T],

• a cylindrical Wiener process W̃(t)= (
W̃ j(t)

)∞
j=1 on `2,
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• and progressively measurable processes ũ(s), (ũnk (s))k≥1, s ∈ [0,T] (defined on this basis)

with laws supported in ZT such that

(6.6.14) ũnk has the same law as unk on ZT and ũnk → ũ in ZT , P̃−a.s.

and the system

(6.6.15) (Ω̃,F̃ , F̃, P̃,W̃ , ũ)

is a martingale solution to (6.6.1) on the interval [0,T] with the initial data ξ.

In particular, by (6.6.14), P̃-almost surely

ũnk (t)→ ũ(t) weakly in V.

Since the function ϕ : V→R is sequentially weakly continuous, we infer that P̃-a.s.,

ϕ(ũnk (t))→ϕ(ũ(t)) in R.

Since the function ϕ is also bounded, by the Lebesgue dominated convergence theorem we infer

that

(6.6.16) lim
k→∞

Ẽ
[
ϕ(ũnk (t))

]= Ẽ[
ϕ(ũ(t))

]
.

From the equality of laws of ũnk and unk , k ∈N, on the space ZT we infer that ũnk and unk have

the same laws on Vw and so

(6.6.17) Ẽ
[
ϕ(ũnk (t))

]= E[
ϕ(unk (t))

]
.

On the other hand, R.H.S. of (6.6.17) is equal by (6.6.2), to Ttϕ(ξnk ).

Since u, by assumption, is a martingale solution of (6.6.1) with the initial data ξ and by the

above ũ is also a solution of (6.6.1) with the initial data ξ. Thus, by Lemma 6.6.8, we infer that

the processes u and ũ have the same law on the space ZT .

Hence

(6.6.18) Ẽ
[
ϕ(ũ(t))

]= E[
ϕ(u(t))

]
.

As before, the R.H.S. of (6.6.18) is equal by (6.6.2), to Ttϕ(ξ).

Thus by equations (6.6.16), (6.6.17) and (6.6.18), we infer

lim
k→∞

Ttϕ(ξnk )= Ttϕ(ξ).

Using the subsequence argument, we can deduce that the whole sequence (Ttϕ(ξn))n∈N is conver-

gent and

lim
n→∞Ttϕ(ξn)= Ttϕ(ξ).

�

Thus the existence of an invariant measure is established by using Theorem 6.6.4, Lemmas 6.6.5

and 6.6.9; completing the proof of Theorem 6.6.1.
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7
OPEN PROBLEMS AND FUTURE DIRECTIONS

In the final chapter of this thesis, we formulate some of the open problems that arise from

the work carried out here and will also list down other related problems that I plan to

explore in the future.

7.1 Open problems

7.1.1 Constrained Navier-Stokes equations on a general bounded domain

In Chapter 4, we proved the existence of the global solution to the CNSE


du
dt

+Au−|∇u|2L2 u+B(u,u)= 0,

u(0)= u0 ∈V∩M ,
(7.1.1)

on a two dimensional bounded domain with periodic boundary conditions. We were also able to

establish the existence of local solutions to (7.1.1) as well as invariance of the manifold M , with

Dirichlet boundary conditions. Our approach of proving boundedness of the enstrophy using the

gradient type structure of the equation obviously fails, since the orthogonal property (3.2.5) is not

satisfied in this case. Thus, it will be interesting to see if one can prove the existence of a global

solution to (7.1.1) on a general bounded domain, possibly by obtaining suitable bounds on the

gradient norm of the solution.
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7.1.2 Lower bound on the regularity of the initial data

At the end of Chapter 4 we provided a formal analysis to show that for the CNSE
du
dt

+Au−|∇u|2L2 u+B(u,u)= 0,

u(0)= u0 ∈ V̂∩M ,
(7.1.2)

where V̂=D(A
α
2 ) is as in (4.5.3), to be well-posed we need α to be at least 1

2 . It’s important to note

that we consider these equations on a bounded domain with the periodic boundary conditions.

Since, the formal analysis indicates that the initial data u0 at least needs to be in D(A1/4) for

(7.1.2) to be well posed, one should prove the same rigorously. Another reason to explore this

problem is to compare it with the two dimensional Navier-Stokes equations, where the well-

posedness results for u0 ∈H and V (see [88]), for more regular initial data with a “compatibility

condition" on the boundary of the domain (see [89]) and for u0 ∈ V̂ = D(A
α
2 ), α ∈ (

1, 3
2
)

(see [12,

Proposition 3.3]) are known.

7.1.3 Stochastic constrained Navier-Stokes equations on R2

In Chapter 5 we proved the existence of a strong pathwise unique solution to the SCNSEdu(t)+ [Au(t)+B(u(t))]dt = |∇u(t)|2L2 u(t)dt+Cu(t)◦dW(t),

u(0)= u0 ,
(7.1.3)

on a two dimensional bounded domain with periodic boundary conditions, i.e. on a torus. We

believe that an analogous result holds also in the Euclidean space R2, but so far we have not

addressed this problem (even the existence of a martingale solution). Here we briefly describe a

possible approach to the problem (inspired from Chapter 6 and [23]).

Step I
In the spirit of Chapter 6, one considers truncated equations on infinite dimensional space rather

than Faedo-Galerkin approximations on finite dimensional space. The non-commutativity of

the classical Faedo-Galerkin projection operator with the gradient operator (∇) on the whole

Euclidean space, as mentioned in Chapter 6, is the motivation towards studying truncated SPDEs

instead of approximated finite dimensional SDEs.

Step II
The second major difference between our method and the approach taken in the case of a torus

is in the choice of the space ZT . We will have to prove the tightness of the laws of the solutions

of the truncated SPDEs on a different space instead of the one used in the case of a torus, see

Eq. 5.4.3. Due to the lack of compactness of embedding H1 ,→ L2 on R3, we will use L2
loc space to

deduce strong convergence of approximating solutions. We will also require an auxiliary space U,

as in Chapter 6. In contrast to [23] we will not use this space to prove convergence, but just to

establish the Aldous condition, see Definition 2.9.10. Once we have the tightness of the laws, the
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rest of the proof of the existence of a martingale solution should be analogous to the existence

proof for stochastic tamed Navier-Stokes equations, see Theorem 6.5.4.

7.1.4 Existence of invariant measures for stochastic constrained
Navier-Stokes equations

In Theorem 5.8.1, we proved that the family of semigroups generated by the solution of (7.1.3)

are sequentially weakly Feller, which along with the other necessary condition corresponding to

boundedness in probability implies the existence of invariant measures. The proof will essentially

use Theorem 6.6.4 (see [62]), but we haven’t been able to verify the second condition and this

remains for now an open problem.

7.1.5 Stochastic tamed Navier-Stokes equations : Invariant measures

Röckner and Zhang proved the existence of a unique invariant measure for the time homogeneous

stochastic tamed Navier-Stokes equations on T3 [76]. We established the existence of invariant

measures for the time homogeneous damped tamed Navier-Stokes equations

(7.1.4)

du(t)= [−Aαu(t)−B(u(t))−Π[g(|u(t)|2)u(t)]+Π f
]
dt+∑∞

j=1 G j(u(t))dW j
t ,

u(0)= u0 ∈V,

where Aα = αI −ν∆ for some α ∈ R and ν > 0, on the whole Euclidean space. The question of

uniqueness of invariant measure remains open.

Another interesting problem in this direction could be to prove the existence of invariant

measures for the time homogeneous tamed Navier-Stokes equations on a general bounded domain

after establishing the existence of solutions.

7.2 Possible future research directions

7.2.1 Stochastic 2D viscous shallow water equations

Bresch and Desjardins [8] studied a two dimensional viscous shallow water model with friction

term in a bounded domain with periodic boundary conditions. They proved the existence of global

weak solutions. To the best of my knowledge, this problem has not been studied in a stochastic

setting. Thus, I would like to study the well-posedness of the following SDE which will be a good

starting point to understand the dynamics of such a model under random forcing.

(7.2.1)


∂th+div(h u)= 0,

d(h u)+
[
div(h u⊗u)+ (h u)⊥

R0
+ r0u+ r1h |u|u

−κh∇∆h+ h∇h
Fr2 −νdiv(h∇u)

]
dt = h f dW ,
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supplemented with initial conditions

(7.2.2) h|t=0 = h0, (h u)|t=0 = m0.

In the equation (7.2.1) u denotes the horizontal mean velocity field, h the depth variation, Fr> 0

the Froude number, R0 > 0 the Rossby number and κ ≥ 0 the capillary coefficient. The terms

r0u and r1h |u|u correspond to the drag terms and W = (W1,W2) is a two dimensional Wiener

process where W1 and W2 are real-valued independent Brownian motions defined on a suitable

probability space (Ω,F ,F,P).

Even though the motivations behind the following two problems are completely different, they

are related in the sense that both provide an approximation scheme for CNSE in deterministic

and stochastic setting respectively. The motivation for studying such a constrained problem

(7.2.5) is that these equations should be a better approximation of the Euler equations (for small

viscosity) since, for the Euler equations, the energy of (sufficiently smooth) solutions is constant

(see [31]).

7.2.2 Slightly compressible approximation of constrained Navier-Stokes
equations

Rubinstein et.al. [78] constructed an asymptotic solution for small ε to the following reaction-

diffusion problem on Ω⊂Rm :

(7.2.3)


∂u
∂t

= ε∆u−ε−1∇V (u)

u(x,0,ε)= g(x), ∂nu = 0on ∂Ω.

They showed that at each x ∈Ω, u tends quickly to a minimum of V (u). Motivated by their work,

I would like to show that asymptotically (as ε→ 0) the solution to

(7.2.4)
∂uε

∂t
= ν∆uε+uε ·∇uε−ε−1∇L2ϕ(uε),

on T2, where

ϕ : R2 3 u → 1
4

(|u|2H −1)2 ∈R,

converges to the solution of Navier-Stokes equations whose L2-norm is conserved and equal to 1:

(7.2.5)
∂u
∂t

= ν∆u+u ·∇u+ν|∇u|2L2 u.

We have already established the existence of the global solution to (7.2.5) on T2 in Chapter 4.
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7.2.3 Stochastic hyperbolic constrained Navier-Stokes equations

The motion of a particle of mass µ under the impact of a random forcing b(q)+σ(q)Ẇ with the

damping coefficient proportional to the speed is described according to the Newton law

(7.2.6) µq̈µt = b(qµt )+σ(qµt )Ẇt −αq̇µt , qµ0 = q ∈Rn, q̇µ0 = p ∈Rn.

In practice, the dynamics of the position qt is of interest and thus in principal we are working

with a system involving twice as many variables (qt, q̇t). Valid approximations that reduce the

state space are crucial for both theoretical and computational applications.

Smoluchowski showed that for Brownian particle under an external field, there exists a

Markov process which under certain circumstances is a good approximation to the position of the

Ornstein-Uhlenbeck process (governs the dynamics of a Brownian particle). Developing on the

same, it has been shown [67] that for very small µ, qµt can be approximated by the solution of the

first order equation

(7.2.7) q̇t = b(qt)+σ(qt)Ẇt, q0 = q ∈RN .

In short, this small mass limit or the Smoluchowski-Kramers approximation of the system (7.2.6)

reduces the state space from (qt, q̇t) to qt cutting the dimension of state space to half.

Apart from it’s application in reducing the computational cost significantly Smoluchowski-

Kramers approximation is also used by several mathematicians and physicists to study funda-

mental mathematical notions, like invariant measures and large time behaviour. In particular,

Cerrai and Freidlin [34, 35, 43] have shown that the solution of damped wave equations perturbed

by stochastic forcing converges to the solution of corresponding stochastic heat equation. They

also established relations between stationary distributions and large deviations of a general

class of SPDEs and their limiting equations. Existence of such convergences make it possible to

analyse the simpler equation (first order) in order to understand the large time behaviour and

other asymptotics of second order equation.

Brenier et.al. [7] showed that the solution of a damped wave equation converges to the solution

of Navier-Stokes equations on a two dimensional torus in small mass limit, which could be seen

as a deterministic version of Smoluchowski-Kramers approximation. I would like to consider a

similar problem in the context of stochastic hyperbolic CNSEs. To be precise, I would like to show

that as µ→ 0 the solution of

(7.2.8) µ
∂2uµ

∂t2 + ∂uµ

∂t
= ν∆uµ+uµ ·∇uµ+ν|∇uµ|2L2 uµ+ g(·,uµ)

∂W
∂t

,

converges to the solution of SCNSE with the same external forcing. This would also enable

us to address the questions of stationary distributions and large deviations for the stochastic

hyperbolic CNSE.
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ORTHOGONALITY OF BILINEAR MAP TO THE STOKES OPERATOR

In this appendix we show that the bilinear map B : V×V→V′, defined in Chapter 3 is orthogonal

to the Stokes operator A in H on R2. This in fact holds true for any bounded domain with periodic

boundary conditions and the proof for that can be found in [90]. The proof of the following lemma

is motivated from the same.

Lemma A.1. Let x ∈R2 and u ∈D(A), then

(A.0.1) 〈B(u,u),Au〉H = 0, ∀u ∈D(A).

Proof. Let u ∈D(A) then, by the definition of B(u,v) and Au,

〈B(u,u),Au〉H =
∫
O

(u(x) ·∇)u(x) ·Au(x)dx

=
2∑

i, j,k=1

∫
O

(uiD iu j)(−∆u j)dx

=−
2∑

i, j,k=1

∫
O

uiD iu jD2
ku j dx.

Now by integration by parts and the Stokes formula

〈B(u,u),Au〉H =−
(

2∑
i, j,k=1

uiD iu jDku j

)∣∣∣
∂O

+
2∑

i, j,k=1

∫
O

Dk(uiD iu j)Dku j dx

=
2∑

i, j,k=1

∫
O

DkuiD iu jDku j dx+
2∑

i, j,k=1

∫
O

uiDk iu jDku j dx.
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Now we will show that each of the terms in RHS will vanish. We will consider the first term

and show that it vanishes.

2∑
i, j,k=1

DkuiD iu jDku j = (D1u1)3 +D1u2D2u1D1u1 +D1u1(D1u2)2 + (D1u2)2D2u2

+ (D2u1)2D1u1 +D2u2(D2u1)2 +D2u1D1u2D2u2 + (D2u2)3

= (D1u1 +D2u2)
[
(D1u1)2 + (D2u2)2 −D1u1D2u2

]
+D1u2D2u1(D1u1 +D2u2)+ (D1u2)2(D1u1 +D2u2)

+ (D2u1)2(D1u1 +D2u2).

Now since ∇·u = D1u1 +D2u2 = 0, the first term vanishes identically.

The second term vanishes because

2
2∑

i, j,k=1

∫
O

uiDk iu jDku j dx =
2∑

i, j,k=1

∫
O

uiD i(Dku j)2 dx

=
(

2∑
i, j,k=1

ui(Dku j)2

)∣∣∣
∂O

−
2∑

i, j,k=1

∫
O

D iui(Dku j)2 dx

=−
2∑

j,k=1

∫
O

(∇·u)(Dku j)2 dx = 0.

Thus we have shown that for every u ∈D(A), 〈B(u,u),Au〉H = 0. �
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SOME RESULTS IN THE SUPPORT OF SECTION 4.4

This appendix is dedicated to the proof of Remark 4.4.1, which plays a crucial role in proving the

convergence of solution of Constrained Navier-Stokes to the solution of Euler equations in the

inviscid limit, Theorem 4.1.2.

Remark B.1. If ∇·u = 0 and Curl(u)= 0, then u is constant by Hodge decomposition. In particular,

if u ∈V and Curl(u)= 0, then u = 0.

Proof of Remark 4.4.1. We want to show that Curl is a linear isomorphism between V and L2
0(T2).

It is clear that the map

Curl : V 3 u 7→ω=Curl(u) ∈ L2
0(T2),

is linear and continuous. Hence in order to prove the Remark 4.4.1 it is sufficient to find a

continuous linear map

(B.0.1) Λ : L2
0(T2)→V,

such that,

Curl◦Λ= id on L2
0(T2),(B.0.2)

Λ◦Curl= id on V.(B.0.3)

Let ω ∈ L2
0(T2) then by elliptic regularity [46] (applies also for p 6= 2) there exists a unique

ψ ∈ L2
0(T2)∩H2(T2) such that

(B.0.4) ∆ψ=ω,

and the map

L2
0 3ω 7→ψ ∈ L2

0 ∩H2,
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is bounded. Let us put u =−∇⊥ψ, i.e.

(B.0.5) u = (−D2ψ,D1ψ).

Then u ∈ H1(T2) and ∇ · u = 0 in the weak sense. Thus u ∈ V. Using all of this we define the

bounded linear map Λ : L2
0(T2) 3ω 7→ u ∈V. Now we are left to check that (B.0.2) and (B.0.3) holds

for this Λ.

Let us take ω ∈ L2
0(T2) and put u :=Λ(ω) ∈V. Now considering LHS of (B.0.2),

(Curl◦Λ)(ω)=Curl(u)= D1u2 −D2u1

= D1D1ψ− (−D2D2ψ)=∆ψ=ω,

where we have used the definitions of ψ and u from (B.0.4) and (B.0.5). Hence we have established

(B.0.2).

Now we take v ∈V and put ω=Curl(v) ∈ L2
0(T2). Define ψ ∈ L2

0(T2)∩H2(T2) by

(B.0.6) ∆ψ=ω.

Observe that in view of (4.4.2) we have

∆ϕ=Curl(−D2ϕ,D1ϕ), ϕ ∈ H2(T2).

Thus by (B.0.6) and the definition of u from (B.0.5) we obtain

Curl(u)=Curl(v),

where u = −∇⊥ψ ∈ V. Therefore using Remark B.1 u = v, thus proving that Curl is a linear

isomorphism between V and L2
0(T2). It is straightforward to show (4.4.3). Thus we are left to

prove (4.4.4).

Let us fix p ∈ (1,∞) and take u ∈ H1,p(T2). Denote ω=Curl(u) ∈ Lp
0 (T2). From the first part of

the proof there exists a bounded linear map Λ : Lp
0 (T2)→ H1,p(T2)

Λ : Lp
0 3ω 7→ u ∈ H1,p,

such that

Curl◦Λ= id on Lp
0 (T2).

In particular, there exists a C′
p > 0,

‖Λω‖H1,p(T2) ≤ C′
p‖ω‖Lp(T2), ω ∈ Lp

0 (T2).

Hence

(B.0.7) ‖∇Λω‖Lp(T2) ≤ C′
p‖ω‖Lp(T2), ω ∈ Lp

0 (T2).
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Taking now u ∈ H1,p(T2). Putting ω=Curl(u) so that Λω= u from (B.0.7) we infer (B.0.8),

(B.0.8) ‖∇u‖Lp(T2) ≤ Cp‖ω‖Lp(T2).

Now since ‖ω‖Lp(T2) ≤ ‖ω‖L∞(T2) for every p, we can establish (4.4.4). �
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KURATOWSKI THEOREM

The main objective of this appendix is to establish the preliminaries that are required to prove

Lemmas 5.7.1 and 6.5.5. The proof of lemmas heavily rely on the Kuratowski Theorem [70,

Theorem 3.9], which we recall below for the sake of completeness.

Theorem C.1. Assume that X1, X2 are the Polish spaces with their Borel σ−fields denoted res-

pectively by B(X1),B(X2). If ϕ : X1 → X2 is an injective Borel measurable map then for any

E1 ∈B(X1), E2 :=ϕ(E1) ∈B(X2).

Next two lemmas are the main results of this appendix.

Lemma C.1. Let X1, X2 and Z be topological spaces such that X1 is a Borel subset of X2. Then

X1 ∩Z is a Borel subset of X2 ∩Z, where X2 ∩Z is a topological space too, with the topology given

by

(C.0.1) τ(X2 ∩Z)= {A∩B : A ∈ τ(X2),B ∈ τ(Z)} .

Proof. Since the Borel σ−filed on X2 ∩ Z is the smallest σ−field generated by τ(X2 ∩ Z), i.e.

B(X2 ∩Z)=σ(τ(X2 ∩Z)), in order to prove the lemma it is enough to show that ∀Y ∈B(X1)

(C.0.2) Y ∩Z ∈B(X2 ∩Z).

Firstly, we show that (C.0.2) holds for all Y ∈ τ(X1). Since X1 ∈ B(X2), X1 ⊂ X2 and has trace

topology from X2, i.e ∀Y ∈ τ(X1) there exists a C ∈ τ(X2) such that

Y = C∩ X1 .

As X1 ∈B(X2) there exists a countable collection {K i}i∈N of open subsets of X2 such that

X1 =
⋃
i∈N

K i .
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Therefore,

Y ∩Z = C∩ X1 ∩Z = C∩
(⋃

i∈N
K i

)
∩Z = ⋃

i∈N
(C∩K i)∩Z .

Since C ∈ τ(X2), for every i ∈N, C∩K i is open in X2 and there exists a collection
{
B j

}
j∈N ∈ τ(X2)

such that ⋃
i∈N

(C∩K i)=
⋃
j∈N

B j .

Thus

Y ∩Z = ⋃
j∈N

(
B j ∩Z

)
,

and for every j ∈N, B j ∩Z ∈B(X2 ∩Z). Since B(X2 ∩Z) is a σ−field, the countable union also

belongs to B(X2 ∩Z), proving (C.0.2) for every Y ∈ τ(X1).

Secondly, we implement the method of good sets to prove (C.0.2) for a larger class of subsets of

X1. Let

G = {A ⊂ X1 : A∩Z ∈B(X2 ∩Z)} .

Claim : G is a σ−field.

i) X1 ∈G since X1 ⊂ X1 and X1 ∈ τ(X1) by the definition of topology.

ii) Let A ∈ G . We want to show that Ac := X1 \ A ∈ G , i.e. Ac ⊂ X1 and Ac ∩ Z ∈ B(X2 ∩ Z).

Since A ∈G , A ⊂ X1 and A∩Z ∈B(X2 ∩Z). Clearly Ac = X1 \ A ⊂ X1.

Since A∩Z ∈B(X2 ∩Z), then by the definition of σ−field

c (A∩Z) := (X2 ∩Z)\ (A∩Z) ∈B(X2 ∩Z).

We have the following set relations

c(A∩Z)= c A∪ cZ = [(X2 ∩Z)\ A]∪ [(X2 ∩Z)\ Z]

= [(X2 \ A)∩Z]∪;= (X2 \ A)∩Z

= [
Ac ∪ (X2 \ X1)

]∩Z

= (
Ac ∩Z

)∪ [(X2 \ X1)∩Z]

= (
Ac ∩Z

)∪ c X1 .

Now in the above identity c (A∩Z), c X1 belongs to B(X2∩Z) and hence Ac∩Z ∈B(X2∩Z),

inferring Ac ∈G .

iii) Let {A i}i∈N ∈G . Then A i ⊂ X1 for every i ∈N hence⋃
i∈N

A i ⊂ X1.

Also, the following holds (⋃
i∈N

A i

)
∩Z = ⋃

i∈N
(A i ∩Z).
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Since A i ∈G , A i ∩Z ∈B(X2 ∩Z) and as B(X2 ∩Z) is a σ−field⋃
i∈N

(A i ∩Z) ∈B(X2 ∩Z).

From i)− iii) we can infer that G is a σ−field. We have already shown that τ(X1)⊂G thus

B(X1)=σ(τ(X1))⊂G .

Therefore, we have shown that for every Y ∈B(X1), Y ∩Z ∈B(X2 ∩Z). �

Lemma C.2. Let X1, X2,Y be topological spaces such that X1 ⊂ X2, X1 has trace topology from

X2 and X1 ∩Y = X2 ∩Y then

τ(X1 ∩Y )= τ(X2 ∩Y ).

Proof. The topologies of X1 ∩Y and X2 ∩Y denoted by τ(X1 ∩Y ) and τ(X2 ∩Y ) respectively are

given by

τ(X1 ∩Y )= generated by {A∩B : A ∈ τ(X1),B ∈ τ(Y )} ,

τ(X2 ∩Y )= generated by {C∩B : C ∈ τ(X2),B ∈ τ(Y )} .

Since X1 has a trace topology from X2, for every A ∈ τ(X1) there exists a C ∈ τ(X2) such that

A = C∩ X1. Thus

τ(X1 ∩Y )= generated by {C∩ X1 ∩B : C ∈ τ(X2),B ∈ τ(Y )} .

Thus all we are left to show is C ∩ X1 ∩B = C ∩B for every C ∈ τ(X2) and B ∈ τ(Y ). Since

X1 ∩Y = X2 ∩Y , we have the following set relations

C∩ X1 ∩B = (C∩ X1)∩ (Y ∩B)= (C∩ X1 ∩Y )∩B

= (C∩ X2 ∩Y )∩B = (C∩ X2)∩ (Y ∩B)= C∩B.

�
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CONVERGENCE OF Pn

Here we present various convergence results for the orthogonal projection Pn as given by (6.4.1)

(for more details see Section 6.4) as n →∞.

Lemma D.1. Let γ> d
2 and Pn : H→Hn be the orthogonal projection. Then as n →∞

(i) Pnψ→ψ in H for ψ ∈H,

(ii) Pnψ→ψ in V for ψ ∈V,

(iii) Pnψ→ψ in Vγ for ψ ∈Vγ.

Proof. Let ψ ∈H, then by (6.4.1) and Plancherel Theorem, we have

|Pnψ−ψ|2H =
∫
R3

|F (Pnψ)(ξ)− ψ̂(ξ)|2 dξ=
∫
R3

|1Bn (ξ)ψ̂(ξ)− ψ̂(ξ)|2 dξ=
∫
|ξ|>n

|ψ̂(ξ)|2 dξ.

Now since ψ ∈H using Lebesgue dominated convergence theorem it can be shown that

lim
n→∞

∫
|ξ|>n

|ψ̂(ξ)|2 dξ= 0,

which infers (i).

Let ψ ∈V, then by (6.4.1) and the definition of V−norm we get

‖Pnψ−ψ‖2
V =

∫
R3

(1+|ξ|2)
∣∣F (Pnψ)(ξ)− ψ̂(ξ)

∣∣2 dξ=
∫
R3

(1+|ξ|2)
∣∣1Bn (ξ)ψ̂(ξ)− ψ̂(ξ)

∣∣2 dξ

=
∫
|ξ|>n

(1+|ξ|2) |ψ̂(ξ)|2 dξ.

Again using the Lebesgue dominated convergence theorem and the fact that ψ ∈V, we can show

that

lim
n→∞

∫
|ξ|>n

(1+|ξ|2) |ψ̂(ξ)|2 dξ= 0,
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thus proving (ii).

Let ψ ∈Vγ, then by (6.4.1) and the definition of Vγ−norm we get

‖Pnψ−ψ‖2
Vγ

=
∫
R3

(1+|ξ|2)γ
∣∣F (Pnψ)(ξ)− ψ̂(ξ)

∣∣2 dξ=
∫
R3

(1+|ξ|2)γ
∣∣1Bn (ξ)ψ̂(ξ)− ψ̂(ξ)

∣∣2 dξ

=
∫
|ξ|>n

(1+|ξ|2)γ |ψ̂(ξ)|2 dξ.

Similarly as before it can be shown that

lim
n→∞

∫
|ξ|>n

(1+|ξ|2)γ |ψ̂(ξ)|2 dξ= 0,

as ψ ∈Vγ, which concludes the proof. �
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[10] Z. Brzeźniak, and A. Carroll, Approximations of the Wong ñ Zakai type for stochastic

differential equations in M-type 2 Banach spaces with applications to loop spaces, Séminare

de Probabilités XXXVII, Springer Lecture Notes in Mathematics 1832, 251 – 289 (2003).

[11] Z. Brzeźniak and A. Carroll, The stochastic geometric heat equation, In preparation.
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