
Establishing and Maintaining
Semantically Rich Traceability:

A Metamodelling Approach

Nikolaos Matragkas

Department of Computer Science

University of York

A thesis submitted for the degree of

Doctor of Philosophy

March 2011

mailto:nikos@cs.york.ac.uk
http://www.cs.york.ac.uk
http://www.york.ac.uk

Abstract

This thesis addresses the problem of model-to-model traceability in Model
Driven Engineering (MDE). A MDE process typically involves models ex-
pressed in different modelling languages that capture different views of the
system under development. To enhance automation, consistency and co-
herency, establishing and maintaining semantically rich traceability links
between models used throughout the software development lifecycle is of
paramount importance.

This thesis deals with the various challenges associated with providing
traceability support in the context of MDE by defining a domain-specific,
model-based traceability approach, which supports the main traceability ac-
tivities in a rigorous and semi-automatic manner. To evaluate the validity of
the thesis proposition, a reference implementation has been provided. The
results obtained from the application of the proposed approach to various
case-studies and examples have confirmed the feasibility and benefits of
such an approach.

Contents

Nomenclature xi

1 Introduction 1
1.1 Motivation and Research Challenges 2

1.1.1 Software Traceability in MDE 2
1.2 Hypothesis and Objectives . 4

1.2.1 Definition of Case-Specific Traceability Models 5
1.2.2 Identification of Trace Links 5
1.2.3 Maintenance of Traceability Models 6
1.2.4 Usage scenarios of Traceability in MDE 6

1.3 Research Results . 6
1.4 Thesis Structure . 7

2 Background 10
2.1 Defining Traceability . 10
2.2 Benefits of Traceability . 13
2.3 Traceability Modes . 16

2.3.1 Backward and Forward Traceability 17
2.3.2 Pre and Post-Requirement Specification Traceability 17
2.3.3 Horizontal and Vertical Traceability 18
2.3.4 Implicit and Explicit Traceability 18
2.3.5 Functional and Non-Functional Traceability 19

2.4 Traceability Related Activities . 19
2.4.1 Traceability Identification . 20

2.4.1.1 Information Retrieval Approaches 23

ii

CONTENTS

2.4.1.2 Rule-Based Approaches 27
2.4.1.3 Miscellaneous Approaches 30

2.4.2 Traceability Representation 34
2.4.2.1 Specification of Traceability Information 34
2.4.2.2 Actualisation and Visualisation of Traceability Infor-

mation . 44
2.4.3 Traceability Maintenance . 48

2.4.3.1 Event-Driven Traceability Maintenance 49
2.4.3.2 State-based Traceability Maintenance 52

2.4.4 Traceability Usage . 52
2.4.4.1 Traceability for change management and impact anal-

ysis . 53
2.4.4.2 Traceability for V&V activities 54
2.4.4.3 Traceability for Testing 55
2.4.4.4 Traceability for Understanding the System 56
2.4.4.5 Traceability for Reuse 56
2.4.4.6 Traceability for Software Project Management 57

2.5 Traceability in Practice . 57
2.5.1 Traceability Tools . 58

2.5.1.1 Tools with Traceability Support 58
2.5.1.2 Specialised Traceability Tools 59
2.5.1.3 Tool chains . 60

2.5.2 Empirical Studies . 61
2.5.3 Limitations . 64

2.5.3.1 Natural Factors . 64
2.5.3.2 Economic Factors 65
2.5.3.3 Social Factors . 67

2.6 Concluding Remarks on Traceability 67
2.7 Model Driven Engineering . 67

2.7.1 A Basic Theory of Models . 68
2.7.2 Metamodeling . 72
2.7.3 MDE: Concepts and Practices 73

2.8 Chapter Summary . 77

iii

CONTENTS

3 Analysis of Software Traceability & Hypothesis 79
3.1 Introduction . 79
3.2 Phenetics . 81
3.3 Discussion . 91

3.3.1 Analysis of the Data Matrix 91
3.3.2 Interpretation of the Dendrogram 94

3.4 Research Hypothesis . 97
3.5 Research Scope . 101
3.6 Research Methodology . 101

3.6.1 Analysis . 102
3.6.2 Design and Implementation 102
3.6.3 Testing . 103

3.7 Chapter Summary . 103

4 A Metamodelling Approach to Traceability 104
4.1 Representation of traceability with TML 106

4.1.1 Strongly Typed Trace-links Conforming to a Case-Specific Meta-
model . 107

4.1.2 Correctness Constraints . 108
4.1.3 Recurring Patterns in Case-Specific Traceability Metamodels . . 109
4.1.4 The Traceability Metamodelling Language 111

4.1.4.1 Abstract Syntax . 112
4.1.4.2 Semantics . 114
4.1.4.3 Concrete Syntax . 123
4.1.4.4 Traceability Representation - Examples 124

4.2 Trace Link Recovery with TML . 134
4.2.1 Summarising Current Practices to Traceability Identification . . 134
4.2.2 Requirements for Traceability Identification 138
4.2.3 Identification in TML . 138

4.2.3.1 Internal Trace to Generic Trace 140
4.2.3.2 From a Generic Trace Model to a Traceability Model 146

4.2.4 Traceability Recovery with TML - Conclusions 149
4.2.5 Traceability Identification - Example 151

iv

CONTENTS

4.3 Maintenance of traceability with TML 156
4.3.1 Link Types . 156
4.3.2 Model Change Types . 156
4.3.3 Summarising Current Practices to Traceability Maintenance . . 157
4.3.4 Requirements for Traceability Maintenance 158
4.3.5 State-Based Traceability Maintenance in TML 159
4.3.6 Maintenance of Traceability with TML - Conclusions 163
4.3.7 Traceability Maintenance - Example 164

4.4 Traceability usage in the context of MDE 168
4.4.1 Transformation Validation with TML 169
4.4.2 Change Propagation with TML 173

4.5 Chapter Summary . 176

5 Reference Implementation 177
5.1 Eclipse Platform . 178
5.2 Eclipse Modeling Framework . 178
5.3 Epsilon Framework . 179

5.3.1 Epsilon Object Language . 180
5.3.2 Epsilon Transformation Language 181
5.3.3 Epsilon Generation Language 181
5.3.4 Epsilon Validaton Language 181
5.3.5 Epsilon Comparison Language 181
5.3.6 Epsilon Wizard Language . 182

5.4 Eclipse Views & Editors . 182
5.5 Launch Configuration Interface . 183
5.6 Availability . 183
5.7 Chapter Summary . 183

6 Evaluation 186
6.1 Means of Evaluation . 187

6.1.1 Traceability scenarios . 188
6.1.2 Peer review . 188
6.1.3 Case study . 189

v

CONTENTS

6.1.3.1 Graphical Modelling Framework 190
6.1.3.2 EuGENia . 191
6.1.3.3 The filesystem metamodel 193
6.1.3.4 Defining Traceability between Ecore and GMF Models 196
6.1.3.5 Establishing traceability 203
6.1.3.6 Using and maintaining traceability 204

6.2 Evaluation of the contributions . 210
6.2.1 Classification of Traceability Approaches (Section 3.2) 210
6.2.2 Traceability Metamodelling Language (Section 4.1) 211
6.2.3 Traceability Identification with TML (Section 4.2) 212
6.2.4 Traceability Maintenance with TML (Section 4.3) 213
6.2.5 Traceability Usage (Section 4.4) 213

6.3 Evaluation of the Thesis Proposition 214
6.4 Shortcomings and Limitations . 215

6.4.1 Lack of support for non-model artefacts 215
6.4.2 Lack of support for custom traceability information 215

6.5 Chapter Summary . 216

7 Conclusions and Future Work 217
7.1 Review Findings . 218
7.2 Proposed Solution . 219

7.2.1 Traceability Metamodelling Language 219
7.2.2 Traceability Identification with TML 220
7.2.3 Traceability Maintenance with TML 220
7.2.4 Traceability Usage . 221

7.3 Evaluation Results . 221
7.4 Areas of Further Work . 222

7.4.1 Support for non-model artefacts 222
7.4.2 Expand the concept of DSM2L 222

A Characters Used in the Phenetic Analysis 223

B Phenetic Analysis Data 227

vi

CONTENTS

C Phenetic Analysis Results 233

D TML Transformations 244

E EVL Constraints for the Filesystem Case-Study 250

References 279

vii

List of Figures

2.1 Traceability Definitions . 14
2.2 Traceability Process . 21
2.3 Reactive Traceability (Costa & da Silva, 2007) 22
2.4 IR Models (Kuropka, 2004) . 24
2.5 Traceability Metamodel according to (Ramesh & Jarke, 2001) 36
2.6 Requirements Interdependencies Classification (Dahlstedt & Persson,

2003) . 39
2.7 Traceability Metamodel proposed by (Amar et al., 2008) 41
2.8 Traceability Metamodel proposed by (Jouault, 2005) 42
2.9 AMW core metamodel by (Fabro et al., 2005) 44
2.10 Traceability relating problem statements and solutions by (Arkley &

Riddle, 2005) . 55
2.11 TraceM conceptual framework (Sherba et al., 2003) 62
2.12 A hierarchical structure for modeling in software engineering (Cowling,

2005) . 70
2.13 Traceability Definitions . 74

3.1 Dendrogram of Traceability Approaches 90
3.2 Basic relations of representation and conformance in MDE (adapted

from (Jouault et al., 2009)) . 99
3.3 Overview of the research methodology 102

4.1 Conceptual diagram of the TML approach 105
4.2 The ComponentClassTraceMetamodel Traceability Metamodel 110
4.3 Abstrax Syntax of TML . 112

viii

LIST OF FIGURES

4.4 TML model in the Exeed Editor . 124
4.5 Example of the Properties Pane . 125
4.6 The ComponentClassTraceMetamodel specified using TML 126
4.7 The SD Metamodel of the i* Framework 129
4.8 The Sample OO Metamodel . 129
4.9 The IStar2OO metamodel . 131
4.10 Generic Trace Metamodel . 140
4.11 Transformation-Chain . 141
4.12 ETL launch configuration . 148
4.13 Restaurant Booking System Class Model 151
4.14 ETL with TML run configuration . 153
4.15 Restaurant Booking System Component Model 154
4.16 Snapshot of the generated traceability model 154
4.17 Class and Component Models for the Restaurant Example 165
4.18 Class-to-Component TML Model . 166
4.19 Properties of the getPackageContents ReconciliationExpression 167
4.20 Faulty Class-2-Component ETL transformation - 1st case 172

5.1 The architecture of the Eclipse Platform 179
5.2 The architecture of the Epsilon framework (Kolovos et al., 2007) 180
5.3 Example of the Exeed TML editor . 183
5.4 Illustration of TML context menu . 184
5.5 Illustration of the modified launch configuration of ETL 185

6.1 GMF Overview (Eclipse Foundation, 2011b) 190
6.2 EuGENia workflow (Kolovos et al., 2010) 192
6.3 Graphical editor of the filesystem DSL (Kolovos et al., 2010) 196
6.4 TML model for filesystem case study 197
6.5 Illustration of the EuGENia Ecore metamodel 200
6.6 Illustration of the filesystem traceability model 204
6.7 Illustration of the RenameClass menu 207

ix

List of Tables

2.1 TEAP activities . 43
2.2 Sample Traceability Matrix . 45

3.1 Operational Taxonomic Units for the phenetic analysis 83
3.2 Attribute table . 85
3.3 Similarity/Dissimilarity Coefficients Formulas 87
3.4 CCC for the Different Dendrograms 88
3.5 Link Semantics in Relation to the Automation of the Identification Ac-

tivity . 92

4.1 Traceability Identification Techniques 135
4.2 Decision table for overall matching result for a given link end 163

B.1 List of Character States . 227
B.2 States Possessed by Each Character 232

C.1 Resemblance Matrix using the Dice Coefficient - Part I 234
C.2 Resemblance Matrix using the Dice Coefficient - Part II 235
C.3 Resemblance Matrix using the Hamming Coefficient - Part I 236
C.4 Resemblance Matrix using the Hamming Coefficient - Part II 237
C.5 Resemblance Matrix using the Jaccard Coefficient - Part I 238
C.6 Resemblance Matrix using the Jaccard Coefficient - Part II 239
C.7 Resemblance Matrix using the Kulczynski Coefficient - Part I 240
C.8 Resemblance Matrix using the Kulczynski Coefficient - Part II 241
C.9 Resemblance Matrix using the Sokal-Sneath Coefficient - Part I 242
C.10 Resemblance Matrix using the SokalSneath Coefficient - Part II 243

x

Author’s Declaration

Except where stated, all the work contained in this thesis represents the
original contribution of the author.

Parts of this work have been previously published by the author as journal,
conference and workshop papers:

• Nicholas Drivalos, Richard F. Paige, Kiran Fernandes and Dimitrios S.
Kolovos. Towards Rigorously Defined Model-to-Model Traceability,
in Proc. 4th Workshop on Traceability, ECMDA’08, Berlin, Germany,
June 200

• Nicholas Drivalos, Dimitrios S. Kolovos, Richard F. Paige, Kiran J.
Fernandes. Engineering a DSL for Software Traceability, in Proc. 1st
International Conference on Software Languages Engineering, SLE
’08, Toulouse, France, Sept 2008

• Steffen Zschaler, Dimitrios S. Kolovos, Nikolaos Drivalos, Richard F.
Paige and Awais Rashid. Domain-Specific Metamodelling Languages

for Software Language Engineering, in Proc. 2nd International Con-
ference on Software Language Engineering, Colorado, USA, October
2009

• Richard F. Paige, Nicholas Drivalos, Dimitrios S. Kolovos, Chris Power,
Goran K. Olsen and Steffen Zschaler. Rigorous Identification and En-

coding of Trace-Links in Model-Driven Engineering, Journal of Soft-
ware and Systems Modelling, Springer, 2010 - accepted and to appear

- DOI: 10.1007/s10270-010-0158-8

• Louis M. Rose, Dimitrios S. Kolovos, Nicholas Drivalos, James R.
Williams, Richard F. Paige, Fiona A.C. Polack, and Kiran J. Fernan-
des. Concordance: An Efficient Framework for Managing Model In-

tegrity, in Proc. 6th European Conference on Modelling Foundations
and Applications (ECMFA), June 2010, Paris, France

• Nicholas Drivalos-Matragkas, Dimitrios S. Kolovos, Richard F. Paige,
Kiran J. Fernandes. A state-based approach to traceability mainte-

nance, in Proc. of the 6th ECMFA Traceability Workshop, Paris,
France, June 2010

Chapter 1

Introduction

“Software entities are more complex for their size than perhaps any other human con-
struct because no two parts are alike (at least above the statement level). If they are, we
make the two similar parts into a subroutine–open or closed. In this respect, software
systems differ profoundly from computers, buildings, or automobiles, where repeated
elements abound” (Brooks, 1987). It is this inherent complexity that makes software
development a challenging activity. Various methodologies and techniques have been
proposed and adopted over the years to reduce this complexity. The majority of those
approaches is based on the principles, of abstraction, separation of concerns and prob-
lem decomposition (Dijkstra, 1976).

Model Driven Engineering (MDE) is a state of the art approach to software de-
velopment that realises the aforementioned principles. It is primarily concerned with
reducing the accidental complexity of software development through the use of tech-
nologies, which support the automatic transformation of problem-level abstractions to
software implementations. The premise of the MDE paradigm is that models should be
used to describe complex systems at different levels of abstraction and from a variety of
viewpoints. These models should then be consecutively refined until they reach a state,
where the final software system can be derived from them. Therefore, MDE promotes
models to first class artefacts.

Following (Aizenbud-Reshef et al., 2006a), each model in MDE can possibly have
its own notation, representation, tools and users. Moreover, in an MDE process the de-
velopers, the tools, the artefacts and the processes are weakly integrated resulting to im-

1

1.1 Motivation and Research Challenges

plicit interconnections between them. consequently, maintaining consistency between
the artefacts or propagating changes can be challenging.

This chapter highlights briefly the problems that motivated the work in this thesis.
Following that, it outlines the research hypothesis and objectives and provides a sum-
mary of the results and the main contributions of this research work. Finally, it provides
an overview of the organization of the thesis and a summary of the remaining chapters.

1.1 Motivation and Research Challenges

Models in MDE can take on different perspectives. Furthermore, (Kent, 2003) argues
that different perspectives can possibly require modelling languages with different prop-
erties. As a consequence, during software development, it is possible that the system
is modeled from different perspectives, which could be possibly expressed in different
languages. However, since those models describe the same system (just from different
viewpoints and at different levels of abstraction) they are implicitly related. Such im-
plicit relationships can not be easily used to maintain consistency between the various
development artefacts. Researchers have proposed the use of traceability relationships
to articulate the aforementioned implicit interdependencies (e.g. (Aizenbud-Reshef
et al., 2006a; Paige et al., 2008; Walderhaug et al., 2008)).

Traceability can be considered as any relationship that exists between artefacts in-
volved in software development life cycle (Aizenbud-Reshef et al., 2006a). Such re-
lationships include mappings, that are generated as the result of forward or backward
transformations, links that are computed based on existing information or statistically
inferred links.

1.1.1 Software Traceability in MDE

Researchers have associated different aspects of software traceability to a set of activ-
ities in an attempt to structure the field of traceability research (e.g. (Spanoudakis &
Zisman, 2005; von Knethen & Paech, 2002)). Although those activities vary in the lit-
erature, four of them are common and are considered to be at the crux of traceability.
These four activities are:

2

1.1 Motivation and Research Challenges

• Representation: in this activity the entities to be traced and the valid traceability
relationship types between them are defined.

• Identification: in this activity previously unknown traceability relationships are
identified.

• Maintenance: this is the activity of modifying existing traceability relationships
in order to keep them in a valid state, while the entities, they refer to, change.

• Usage: this is the activity of using previously retrieved traceability information to
support software development scenarios.

Various traceability approaches have been proposed in the literature in order to sup-
port the aforementioned activities. However, the majority of those approaches is not
developed specifically for providing traceability support in the context of MDE. As a
result, they do not fulfil the requirements of a traceability approach which targets MDE
processes. Since models are the primary artefacts used in MDE, one of the require-
ments of a traceability approach is to be able to support traceability between models.
This means that a traceability approach should consider both the structural information
of models as well as their textual content in order to establish meaningful relationships.
Currently though the majority of the traceability approaches gives an emphasis on the
lexical content of artefacts ignoring their structural information.

Furthermore, in MDE various modelling languages are used to express models. An
approach which focuses on MDE, should be extensible in order to facilitate support
for heterogeneous modelling languages. Currently, many of the existing approaches
focus on particular languages or on particular modelling artefacts, thus limiting their
applicability to specific scenarios.

Finally, since models can possibly conform to different metamodels and have dif-
ferent semantics, traceability information between them can possibly have different se-
mantics. Moreover, depending on the use of traceability different semantics might apply
to traceability information between the same models. Therefore, in this context a trace-
ability approach should be able to define the semantics of traceability information for
the various traceability scenarios.

3

1.2 Hypothesis and Objectives

1.2 Hypothesis and Objectives

Based on the above discussion, the thesis proposition is stated as follows:

This thesis demonstrates that a domain specific model-based traceabil-

ity approach can support and automate the process of rigorously managing

the different types of heterogeneous traceability relationships between both

derived and initial models in an MDE process.

The main characteristics highlighted in the above statement are the following:

1. Model-based Approach: In the spirit of MDE the proposed approach shall be
applicable to model artefacts.

2. Manage Traceability: The proposed approach will provide support for all four
traceability activities, i.e. representation, identification, maintenance and usage
of traceability.

3. Heterogeneous Traceability Relationships: Using the proposed approach, an
engineer will be able to manage traceability relationships between models ex-
pressed in heterogeneous notations.

4. Rigorous: The proposed approach will support the capture of case- specific or
scenario-specific semantics.

5. Automation: The proposed approach will provide semi-automatic identification
and maintenance of traceability information.

6. Derived and Initial Models: The proposed approach will be suitable for trace-
ability between models, which are generated automatically by applying model
operations on other models (derived models) as well as between models, which
are created manually by engineers (initial models).

Motivated by the aforementioned limitations of the existing approaches, this re-
search focuses on the following objectives:

• To propose an approach, which enables the construction of rigorous, well-defined,
case-specific traceability models.

4

1.2 Hypothesis and Objectives

• To support and automate the activity of identifying traceability links between
models.

• To support and automate the activity of maintaining traceability information be-
tween models.

• To propose novel usage scenarios of traceability information in MDE.

In the sequel, an overview of the research objectives is provided.

1.2.1 Definition of Case-Specific Traceability Models

It is widely accepted in the literature that the meaning of trace links should be precisely
defined (e.g. (Aizenbud-Reshef et al., 2006a; Walderhaug et al., 2008)). A precise se-
mantics for traceability will allow developers to capture more accurately the intended
meaning of a specific traceability relationship , and will enable richer, tool-supported
analysis and reasoning about traceability. In the spirit of MDE, a well-defined traceabil-
ity model with case-specific semantics should conform to a case-specific traceability
metamodel and a set of correctness contstraints. Therefore, this thesis aims to propose
an approach, which will facilitate the definition of traceability metamodels and of their
accompanying correctness constraints in order to support the definition of traceability
models with rich, case-specific semantics.

1.2.2 Identification of Trace Links

As mentioned in section 1.1.1, the computation of traceability information is one of the
main traceability activities. Since manual computation is considered to be costly, the
automation of this activity is of paramount importance. Automation however should
not come at the expence of the quality of the computed traceability models. Those mod-
els should still possess important characteristics, such as precisely-defined and case-
specific semantics. One of the objectives of this thesis is to define an approach, which
will support the automatic computation of well-defined traceability models in the con-
text of MDE.

5

1.3 Research Results

1.2.3 Maintenance of Traceability Models

The activity of traceability maintenance deals with the upkeep of the integrity of com-
puted trace links, while the entities, they refer to, continue to change and evolve. Trace-
ability maintenance is considered to be of paramount importance, since it contributes to
tha avoidance of the degradation of traceability information. Maintaining traceability
models manually can be a time consuming and error prone activity. Hence, this thesis
aims to define an approach, with which the validity of trace links can be maintained in
a semi-automatic manner.

1.2.4 Usage scenarios of Traceability in MDE

Many different traceability usage scenarios have been identified in the literature. These
scenarios capture different ways in which traceability information can be used to support
the development of software systems. The identified scenarios are usually generic and
apply to software development in general. One of this objectives of this work is to
identify usage scenarios, if any, which are MDE-specific. That is, scenarios which are
encountered mainly in MDE processes.

1.3 Research Results

As a result of this thesis, a holistic approach to model-to-model traceability support
for MDE processess has been proposed. This approach is considered to be holistic,
since it supports all four of the main traceability activities; namely the definition of
traceability information, the computation of traceability models, the maintenance of
computed traceability models and finally the use of such models.

The thesis has also contributed a novel classification of the existing traceability ap-
proaches. This classification of traceability approaches has been developed using the
technique of numerical taxonomy. It is considered to be unique and novel in the sense
that to our knowledge none of the existing traceability classifications refers to, or ap-
plies, any concepts or techniques from the science of classification.

The thesis propostion has been validated by demonstrating that scenario specific
traceability models with rich semantics, can be defined, computed, maintained and sup-
port MDE activities using the proposed approach. Finally, acceptance by the MDE

6

1.4 Thesis Structure

research community has provided confidence for the applicability and validity of the
proposed approach.

1.4 Thesis Structure

This thesis contains seven chapters, structured as follows. In chapter 2 a detailed review
of the related work is performed. More specifically, in section 2.1 various traceability
definitions are considered and a working definition of traceability is provided. Sec-
tion 2.2 presents the importance of traceability in the software development process,
while in section 2.3 the main traceability modes are illustrated. The main section of
this chapter is section 2.4. In this section the four traceability activities are analysed
and the approaches related to each of the four activities are introduced. More partic-
ularly, in section 2.4.1 various techniques for the computation of traceability models
are presented. These techniques include Information Retrieval (IR) methods, rule-based
approaches, history analysis approaches and run-time monitoring methods. In the next
section, that is section 2.4.2, the activity of traceability representation is briefly intro-
duced and the most influential approaches related to this activity are presented. Section
2.4.3 summarises the literature related to traceability maintenance, while section 2.4.4
identifies and briefly describes the various traceability usage scenarios reported in the
traceability literature. Following that, section 2.5 discusses the use of traceability in
industrial settings. In this section, popular tools are presented, empirical studies related
to traceability are introduced and finally limitations, which affect the adoption of trace-
ability in the industry, are identified. Finally, the second part of chapter 2, that is section
2.7, consists of a brief discussion on the main concepts and practices related to MDE.

Chapter 3 summarises the findings of the review performed in chapter 2 and it pro-
vides a formal framework for understanding the different areas of traceability research.
This is achieved by developing a classification of traceability approaches using phenet-

ics, which is a classification approach borrowed from Biology. Based on the phenetic
analysis, limitations of the contemporary traceability approaches are identified and the
thesis proposition as well as the research objectives are outlined. More particularly, in
section 3.2 the phenetic analysis is performed. The outcome of this analysis is an at-
tribute matrix and a classification captured in a tree-like structure called dendrogram.

7

1.4 Thesis Structure

Section 3.3 provides a discussion on the findings of the phenetic analysis and on iden-
tified open issues in the domain of traceability. Based on this discussion, the research
context and the thesis proposition are established in section 3.4. Finally, in section 3.6,
the research methodology that is followed in order to evaluate the validity of the thesis
proposition is presented.

Chapter 4 presents a novel approach to model-to-model traceability support for
MDE processes. This approach focuses on how to define and implement semantically-
rich trace links that can become amendable to automatic manipulation. More pre-
cisely, section 4.1 defines the Traceability Metamodelling Language (TML), which is
a domain-specific metamodelling language for traceability. The abstract and the con-
crete syntax of TML are presented as well as its semantics. Section 4.2 presents how
traceability models, which conform to scenario-specific traceability metamodels, can
be computed in a semi-automatic manner, while section 4.3 illustrates how the validity
of traceability models can be maintained, when the models they refer to change. This
is achieved by using maintenance-specific metadata captured in TML models as well
as traces generated from model management tasks. Finally, section 4.4 presents two
novel usage scenarios of traceability in the context of MDE. More particularly, section
4.4.1 illustrates how TML models can be used to identify problematic sections of model
transformation specifications. In section 4.4.2 TML models are used in conjunction
with model transformation languages to propagate changes to affected models during
model refactorings.

In chapter 5, a discussion on interesting aspects of the reference implementation
is provided. Such aspects include the choice of the Eclipse platform and the Epsilon
framework atop which the tool which supports the proposed approach is built. Further-
more, how the proposed approach is integrated with the Epsilon framework is presented.

Chapter 6 presents the evaluation of the proposed contributions against the thesis
proposal. Section 6.1 describes the means of evaluation, which were employed. More
particularly, in section 6.1.1 the use of examples and short case study for evaluating the
various concepts of this thesis is illustrated. Section 6.1.2 evaluates the impact of this
research work in terms of visibility and acceptance by the MDE community. In section
6.1.3, a case study, which was used to evaluate the proposed approach, is illustrated. In
section 6.2 the contributions of this thesis are examined individually, while in section

8

1.4 Thesis Structure

6.3 an evaluation of the thesis proposition is provided. Finally, section 6.4 discusses the
limitations and shortcomings of the proposed approach.

Chapter 7 concludes by summarizing the findings and contributions of this thesis.
Furthermore, it discusses how the thesis proposition is supported by the thesis contribu-
tions. Finally, it provides directions to further work in the field of traceability for MDE
processes.

Appendix A identifies and describes briefly the various characters used in the phe-
netic analysis conducted in chapter 3. Appendix B illustrates the different states, which
can be possessed by each of the characters described in appendix A, while in appendix
C the detailed results of the phenetic analysis are presented. Appendix D provides the
complete transformations of TML. Finally, in appendix E the generated constraints of
the case study, which is presented in chapter 6, are provided.

9

Chapter 2

Background

The aim of this chapter is to illustrate and to provide a critical review of the research
relevant to the work presented in this thesis. The review is separated into two main sec-
tions. The first section discusses software traceability and outlines its importance and
principles. It describes the main traceability activities, namely identification, represen-
tation, maintenance and usage, as well as the related literature. Finally, it presents briefly
some of the most widely used traceability tools and it identifies some of the issues which
have hindered the adoption of traceability practices in industry. The second section de-
scribes Model Driven Engineering (MDE), whose principles are used extensively in this
work. This section starts with a brief discussion about models and modeling in general
in software engineering. This is followed by a presentation of the basic metamodeling
concepts and the use of metamodels in MDE. Finally, the chapter is concluded with a
brief discussion of the main MDE principles and practices.

2.1 Defining Traceability

It is challenging to locate traceability research in the computer science and software
engineering research map, since it overlaps with different domains of interest, including
requirements engineering (RE), knowledge engineering and software project manage-
ment. Consequently, the existing terminology and definitions are not entirely standard-
ised, since they depend heavily on the domain in which they are used. A study of the
existing body of literature suggests that the notion of traceability has its origins in the

10

2.1 Defining Traceability

field of RE. Many researchers have made their focus mainly on the relationship between
a system’s requirements specification and other artefacts of the software development
process, or even more on the association of the requirements specification with various
stakeholders (e.g. (Gotel & Finkelstein, 1994; Ramesh & Jarke, 2001)). Thus, the terms
requirements traceability and traceability are very often used interchangeably. In recent
years, the research community has started to delve into traceability without associating
it strictly to requirements. That is to say, traceability today is understood as a more
comprehensive concept encompassing the whole of the development process, without
putting special emphasis on any phase of it (Aizenbud-Reshef et al., 2006a; Winkler &
von Pilgrim, 2009).

As is evident from the existing literature, traceability is a term that is open to con-
siderable variation among definitions. Several definitions exist depending on how trace-
ability is conceived and in which domain it is used. One of the earliest definitions of
traceability has its origins in the work of (Gotel & Finkelstein, 1994):

“Requirements traceability refers to the ability to describe and follow the
life of a requirement in both forward and backward direction, i.e from its
origins through its development and specification, to its subsequent deploy-
ment and use, and through period of ongoing refinement and iteration in
any of these phases.”

This definition has been formulated in the context of RE, hence it assumes that trace-
ability applies only to the relation of requirements with other artefacts of the software
development process. Notably, traceability is defined as a time dependency of a require-
ment and its associated artefacts,such as a requirement’s implementation. However, this
definition overlooks the fact that usually it is useful to interrelate artefacts that are cre-
ated simultaneously, or artefacts that do not have a predecessor-successor relationship,
such as two distinct requirements.

(Pinheiro, 2004) offers a similar definition to (Gotel & Finkelstein, 1994) by stating
that “requirement traceability refers to the ability to define, capture and follow the traces
left by requirements on other elements of the software development environment and
the traces left by those elements on requirements.” Despite the fact that this definition
is still heavily affected by the domain in which it is used, i.e. the RE domain, it is more

11

2.1 Defining Traceability

generic in the sense that it does not require the traceable artefacts to have a predecessor-
successor relationship.

A domain-specific definition is provided by the Object Management Group (Object
Management Group, 2011b). According to the OMG, “a trace records a link between a
group of objects from the input models and a group of models from the output models.
This link is associated with an element from the model transformation specification
that relates the groups concerned”. This definition is provided in the context of Model
Driven Engineering, and particularly in the context of model-to-model transformations.
Therefore, such a definition is not sufficient to cover traceability in all the different
varieties and forms, which are encountered in contemporary software engineering, thus
limiting its usefulness in the MDE domain.

A more generic definition of traceability can be found in the IEEE’s Standard Glos-
sary of Software Engineering Terminology (IEEE, 1990).

“The degree to which a relationship can be established between two or more
products of the development process [...]”

In a similar way, (Aizenbud-Reshef et al., 2006a) defines traceability “as any relation-
ship that exists between artefacts involved in the software engineering life cycle”. These
two definitions do not focus on any particular domain but rather define traceability with
respect to products or artefacts of the development process. However, the terms prod-
uct and artefact have a coarse-granular connotation, implying whole documents, models
or code. As a result, parts of documents, model elements or small pieces of code are
disregarded by those two definitions.

(Paige et al., 2008) acknowledge the need to relate not only artefacts but also parts
of artefacts, as long as these parts are unique and identifiable. Hence, they identify
traceability as “the ability to chronologically interrelate uniquely identifiable entities in
a way that matters”. Nonetheless, they impose a time constraint over what can be traced,
since they imply that traceable entities can be only chronologically interrelated.

Finally, (Spanoudakis & Zisman, 2005) go one step further and they define trace-
ability not only with respect to artefacts produced during the development process, but
also with respect to stakeholders and artefact rationale.

12

2.2 Benefits of Traceability

“[Software traceability] is the ability to relate artefacts created during the
development of a software system to describe the system from different
perspectives and levels of abstraction with each other, the stakeholders that
have contributed to the creation of the artefacts and the rationale that ex-
plains the form of the artefacts.”

Although this definition adds into the picture, stakeholders and rationale, it considers
only whole artefacts and not artefact parts, thus it suffers from the same limitations as
the definitions mentioned above.

The definitions described so far focus on particular attributes of traceability (e.g.
time dependency). However, there are no definitions that provide a generic and inclusive
framework, encompassing all attributes. The scope of this thesis requires a definition
of traceability able to cover all potential cases. This inevitably results in a broader
spectrum of attributes included (in the definition) capable of capturing all traceability
cases (between models) identified during this work. Hence, for the purposes of this
work, we will provide our own working definition, which is the following:

“Software traceability is the ability to interrelate uniquely identifiable enti-
ties, the stakeholders that have contributed to the creation of those entities
and the rationale that explains their form in a way that matters.”

Figure 2.1 below illustrates one possible gamut, drawing attention to the way in
which traceability is conceived by the research community from the more specific defi-
nitions to the more generic ones.

2.2 Benefits of Traceability

In the previous section, several definitions of traceability are provided. As can be seen,
it is a very generic concept and easy to understand. What might not be obvious from the
aforementioned definitions is why traceability is needed. In this section, the importance
of traceability in the software development process will be illustrated.

The benefits of traceability are well documented in the literature. (Ramesh et al.,
1993) groups the various benefits of traceability according to the needs of the stake-
holders involved in the development process. His results are based on a multitude of
sources such as literature surveys, focus groups, interviews and empirical studies.

13

2.2 Benefits of Traceability

Figure 2.1: Traceability Definitions

14

2.2 Benefits of Traceability

From the project management point of view, traceability can be used to track project
status. By using a tracking information system (i.e. traceability) the impact of change
can be estimated. Moreover, conflicts between requirements can be discovered early
and requirements not satisfied yet by an implementation can be identified. As a result,
the work required to realize this requirements can be estimated. Finally, future systems
could potentially have reduced development time and effort, since past implementation
decisions can be tracked down and reused.

From the customer point of view, (Ramesh et al., 1993) identifies several benefits
related to traceability. If traceability information is captured and maintained, then the re-
quirements that satisfy parts of the implementation can be identified. Additionally, tests
which must be performed to ascertain the presence of a requirement can be determined.
As a consequence, the quality of the product with respect to the user requirements can be
evaluated. Acceptance testing can be associated directly to the user requirements being
tested for. Finally, user requirements are linked to design decisions so that developers
can keep their focus on those requirements they are trying to satisfy.

Traceability should ideally link the results of design, the rationale of the various
design decisions, alternatives considered and the assumptions made in a decision. If
these are recorded, a designer can benefit from traceability in several ways. First, she
can verify more easily that a design satisfies the requirements. Furthermore, the designer
can estimate the impact of a change in requirements on the design or the impact of
a change in available implementation technology on the design assumptions. Lastly,
design components can be reused in various projects, since the assumptions under which
those components will work are recorded (Ramesh & Edwards, 1993).

The traceability benefits realised by a system maintainer have to do mainly with im-
pact analysis. First, a maintainer can estimate the impact of a change in one requirement
to others. Additionally, the impact of a change in a requirement on the implementation
can be estimated. Finally, permissibility of changes in implementation can be estimated
with respect to unchanged requirements.

Due to the aforementioned benefits, traceability is closely associated with software
and system quality. There is a number of regulations, which dictate the use of traceabil-
ity. Some of them are the following (Albinet et al., 2007):

• IEC 880 for nuclear systems

15

2.3 Traceability Modes

• CENELEC EN 50126, EN 50128 and EN 50129 for railway systems

• DO-178 and DO-254 for aeronautic systems

Additionally, many quality standards recommend traceability as a desired feature of
a system. These standards include the following:

• IEEE Std. 1219

• ISO 9000

• ISO 15504

• CMMI

Traceability can be considered a quality attribute since it helps developers ensure
that they are building the right system in the right way (Behrens, 2007). First, traceabil-
ity can be used to ensure that a software product has all the characteristics requested by
the stakeholders and to ensure that the product does not have characteristics which are
not requested by the stakeholders. In software engineering, this is called software vali-

dation, i.e. the process of checking that the product design satisfies or fits the intended
usage. Moreover, traceability can be used to ensure that the software built conforms to
its specification. Traces can be used to link various artefacts and their related tests. This
use of traceability is related to the verification of software.

2.3 Traceability Modes

There are several ways in which tracing can be performed. With reference to time, an
entity can be traced in a forward or backward direction. With regard to the evolution
of entities, they may be traced to aspects occurring before or after their inclusion in
formal documents of the development life-cycle such as the requirements specification.
Finally with regard to the type of entities involved, we may have implicit or explicit
traceability.

16

2.3 Traceability Modes

2.3.1 Backward and Forward Traceability

The direction of tracing can be an indication of time dependency or causality. Backward
and forward traceability have been defined in the context of RE in the following way
(Wieringa, 1995):

Backward traceability is the ability to trace a requirement to its source,
i.e. to a person, institution, law, argument, etc.

Forward traceability is the ability to trace a requirement to components of
a design or implementation.

A requirement is traced forward, for example when the requirement is changed and
the impact of this change needs to be investigated. A requirement is traced backward, for
example, when there is a requirement change and we need to understand it, investigating
the information used to elicit the changed requirement.

The ANSI/IEEE Std 830-1984, namely the IEEE Guide to Software Requirements
Specifications, defines forward and backward traceability in a more generic fashion.
Backward traceability refers to the ability to follow the traceability relationship from a
specific artefact back to its source from which it has been derived. On the other hand,
forward traceability is ability to follow a traceability relationship to an artefact which
spawned from a source artefact.

2.3.2 Pre and Post-Requirement Specification Traceability

Another distinction of traceability is between pre and post-requirements specification
(RS) traceability. This distinction is encountered mainly in the RE literature and it
refers to the relationships a requirement has prior or after its inclusion in the RS docu-
ment (Wieringa, 1995). More precisely, the tracing of a requirement can be done either
for the purpose of getting information related to the process of elicitation of the require-
ment prior to its inclusion in the RS document or for the purpose of getting information
about the requirement’s use after its inclusion in it (Gotel & Finkelstein, 1994). This
distinction can be very useful since the software development process is driven by the
RS document. Therefore, if a requirement changes developers might want to find out
what is the source of this change. Additionally, when a requirement changes, developers

17

2.3 Traceability Modes

need to find its interdependencies with other artefacts such as design modules, which
can be affected by this change. (Gotel & Finkelstein, 1994) claim that pre-RS traceabil-
ity is more challenging than post-RS traceability due to the informal nature of activities
which take place during the requirements elicitation.

2.3.3 Horizontal and Vertical Traceability

The distinction between horizontal and vertical traceability is mentioned in the trace-
ability literature as well. However, there is no common agreement as to what exactly is
meant by those two terms. (Lindvall & Sandahl, 1996) define horizontal traceability as
the relationships between different models and vertical traceability as the relationships
between elements of the same model. (Boldyreff et al., 2002) provide a different defi-
nition: the term horizontal traceability is defined as the relationships between artefacts
developed in one stage of the development lifecycle, while the term vertical traceabil-
ity is defined as the relationships between artefacts developed in different stages of the
software development lifecycle.

2.3.4 Implicit and Explicit Traceability

Artefacts of the software development process can be traced explicitly or implicitly.
Explicit traceability requires the engineer to manually establish a relationship between
two artefacts. Implicit traceability results from an inherent relationship between the
traceable items (Paige et al., 2008). In most cases, traceability is handled explicitly.

(Aizenbud-Reshef et al., 2006a) use the terms imposed and inferred traceability in-
stead. An imposed traceability relationship is a relationship between entities that exists
by volition of the relationship creator and it cannot be invalid until its creator determines
that it is invalid. For example a satisfies relationship can be created between a require-
ment and an element of a design model. When the requirement changes it is not clear
if the relationship is still valid or not. On the other hand an inferred relationship is one
that exists because the related entities satisfy a rule that describes the relationship. An
inferred relationship can not be invalid since if the rule is not satisfied the relationship
does not exist. An example of an inferred relationship is the relationship which is a
result of a model transformation.

18

2.4 Traceability Related Activities

(Maeder & Riebisch, 2007) provide a different interpretation of the two terms. Ex-
plicit traceability is described as any explicitly expressed relationship between enti-
ties, while implicit traceability is considered to be any interrelationship between entities
which is implied but not explicitly represented. For example, a link between two ele-
ments, which belong to different models and have the same name, is considered to be
an implicit link.

2.3.5 Functional and Non-Functional Traceability

Following (Pinheiro, 2004), traceability can be divided into functional and non-functional.
Functional trace links are those links related to well established mappings between en-
tities. This kind of trace is related to the functional aspects of software development,
and more precisely those aspects that are described in terms of transformations on well-
defined states of the artefacts of the software development process. Functional trace
links are the result of syntactic and semantic interrelationships between the entities in-
volved in the development process. The transformation from one artefact to the other
does not have to be automatic, but it has to adhere to unambiguous and well-defined
procedures. According to (Lindvall & Sandahl, 1996), this is called seamless trans-
formation. An example of a seamless transformation is the transformation of an audio
recording of a meeting to a transcript of the meetings minutes.

Conversely, non-functional traceability is related to the informal aspects of software
development such as intentions, purpose, goals, responsibilities and other intangible
concepts. (Pinheiro, 2004) classified the areas covered by non-functional traceability
into four groups, namely reason, context, decision and technical.

2.4 Traceability Related Activities

Researchers have associated different aspects of traceability to a set of activities in an
attempt to structure the field of traceability research (Pinheiro, 2004; Spanoudakis &
Zisman, 2005; von Knethen & Paech, 2002). Although those activities vary in the liter-
ature, four of them are common and are considered to be at the crux of any traceability
approach. The aforesaid activities are the following:

• Identification

19

2.4 Traceability Related Activities

• Representation

• Maintenance

• Utilisation

Figure 2.2 illustrates a simple traceability workflow. Initially, all possible links be-
tween two artefacts are identified. Then, these links are represented in an appropriate
notation and stored. If a change is incurred by the referred entities and this change af-
fects the recorded trace links then the links must be updated. Finally, when the use of
traceability information is required during the software development process, the stored
trace links are accessed and used. Although in the workflow the various traceability
activities seem to follow a waterfall process model, this is not the case. How and when
these activities take place depends heavily on the overall software development process
followed in a project. In the early days of software engineering, the waterfall model was
the predominant process used in software development, and thus traceability activities
followed a linear process. Today iterative and agile processes are gaining in popular-
ity, so traceability approaches are adjusting and are becoming more lightweight (e.g.
(Lee et al., 2003)). By and large, traceability activities are usually interleaved with one
another as well as with the other activities of software development in a way which
depends on the tracing needs of a project. At present, there is no standard nor a set of
guidelines to practitioners on how to use the various traceability approaches within a
standardize software development process.

In the following sections, the four identified activities are discussed in more detail,
including related work.

2.4.1 Traceability Identification

Traceability identification is the activity of discovering previously unknown trace links
and recording them in an appropriate format. The terms trace recording (Winkler &
von Pilgrim, 2009), trace generation (Spanoudakis & Zisman, 2005), trace creation

(Aizenbud-Reshef et al., 2006a) and trace production (Pinheiro, 2004) are also used.
The need for providing support for trace link identification has been widely reported in
the traceability literature (Antoniol et al., 2002; Egyed & Grunbacher, 2002; Marcus
& Maletic, 2003; Murphy et al., 1995; Zisman et al., 2003). However, the majority

20

2.4 Traceability Related Activities

Figure 2.2: Traceability Process

of contemporary tools offer only limited support for traceability identification as they
require the users to create trace links manually. The manual creation of trace links
is expected in numerous approaches including (Bayerand & Widen, 2001; Dick, 2005;
IBM, 2010; Pinheiro & Goguen, 1996; Pohl, 1996a). However, manual creation of trace
links is considered as difficult, error-prone and time consuming. As a result, traceability
is rarely established manually unless there is a regulatory reason to do so (Spanoudakis
& Zisman, 2005).

Following (Costa & da Silva, 2007), there are two viewpoints associated with the
identification and creation of trace links. First, artefacts can be considered as existent
and traces will instantiate and describe some implicit or explicit semantic relation or
dependency between them. The focus of traceability in this case is on creating and
maintaining the relationships between existing artefacts. The identification and gener-
ation of trace links can be done manually or automatically by comparing the relevant
artefacts and by using a predefined set of rules. This viewpoint is called the depen-

dency viewpoint. On the other hand, an artefact can be generated by another artefact,
using some type of transformation (manual or automatic). In this case, the trace links
record relationships between the generated artefact and the one which was used for the
generation. The identification and creation of the trace links is a byproduct of the trans-
formation and in most cases can be done automatically. This viewpoint is the generative

viewpoint. (Costa & da Silva, 2007) argue that these two approaches are not only valid
but necessary in a development process and a combination of both should be used in

21

2.4 Traceability Related Activities

Figure 2.3: Reactive Traceability (Costa & da Silva, 2007)

every traceability approach to identification and generation of trace links. The com-
bination of the two aforementioned approaches is called reactive traceability (Figure
2.3).

Similar to the distinction provided by (Costa & da Silva, 2007), (Winkler & von
Pilgrim, 2009) argue that the identification and recording of traceability information
can be performed either on-line or off-line. In the former case traces are identified
and recorder automatically by tools as by-products of the development activity. In the
latter case, traces are identified and created automatically or manually after the actual
development activity has finished. The time elapsed between the completion of the
development activity and the recording of traces affects the precision and the quality of
the traces (Cleland-Huang et al., 2003). The longer the time elapsed, the more imprecise
the trace links are. In the following, a critical discussion of the main approaches to
traceability identification is provided.

22

2.4 Traceability Related Activities

2.4.1.1 Information Retrieval Approaches

Information retrieval (IR) is the science of searching for documents, for information
within documents, and for metadata about documents (Doyle & Becker, 1975). The
standard problem of IR is the following: Given a collection of documents (corpus) and a
query, determine those documents that are relevant to the query. IR works in two phases.
In the first phase the system analyzes and indexes the document collection resulting
into a representation for each item in the collection. This representation consists of all
the keywords contained in each document. In the second phase, the system analyzes
incoming queries and it constructs a representation of them. Finally it uses a matching
algorithm to determine which document representations match the query representation.

IR techniques are used for trace link recovery on the assumption that two related
documents will share the same vocabulary since developers normally choose names for
the various entities from the application-domain knowledge. The corpus in the case of
traceability consists of the various traceable artefacts.

The use of an IR method for the identification of trace links requires text intensive
entities. Such methods do not rely on structural properties of the input and they are
usually employed for off-line tracing.

For an IR method to be efficient, the documents are typically transformed into a
suitable representation according to an appropriate mathematical model. Figure 2.4 il-
lustrates the relationship of some common models, which are categorised according to
their mathematical basis and the properties of the model. The set-theoretic models
represent documents as sets of words or phrases. Similarities are usually derived from
set-theoretic operations on those sets. On the other hand, algebraic models represent
documents and queries as vectors, matrices, or tuples. The similarity of the query vec-
tor and document vector is represented as a scalar value. A popular algebraic model
is the Vector Space model (VSM), which treats the weight of keywords in documents
as vectors and it computes the similarity between documents as the cosine of the angle
between the two vectors. A common criticism of VSM is that it does not take into con-
sideration relationships among the various keywords. For example, having the keyword
“automobile” in one document and the keyword “car” in another does not contribute to
the similarity measure between those two documents. To overcome the synonymy and

23

2.4 Traceability Related Activities

Figure 2.4: IR Models (Kuropka, 2004)

polysemy limitations of VSM, (Deerwester et al., 1990) developed the Latent Seman-
tic Indexing (LSI) method. LSI uses a mathematical technique called Singular Value
Decomposition (SVD) to identify patterns in the relationships between the keywords
contained in a document. A key feature of LSI is its ability to extract the conceptual
content of a body of text by establishing associations between those terms that occur in
similar contexts. The last category of models used for document representation in IR
consists of probabilistic models (PM). These treat the process of document retrieval as
a probabilistic inference. The similarities between documents are computed as proba-
bilities that a document is relevant for a given query.

The performance of the various IR techniques (and not only) is usually evaluated
using two measures, precision and recall. Precision is defined as the fraction of re-
trieved documents which are relevant, while recall is defined as the fraction of relevant
documents retrieved.

Precision =
|{relevantDocuments} ∩ {retrievedDocuments}|

|{relevantDocuments}|

Recall =
|{relevantDocuments} ∩ {retrievedDocuments}|

|{retrievedDocuments}|
A perfect precision score of 1.0 means that every result retrieved by a search was rel-

evant (but says nothing about whether all relevant documents were retrieved) whereas a

24

2.4 Traceability Related Activities

perfect recall score of 1.0 means that all relevant documents were retrieved by the search
(but says nothing about how many irrelevant documents were also retrieved). Usually,
there is an inverse relationship between precision and recall, where it is possible to in-
crease one at the cost of reducing the other. For example, when IR methods are used
to retrieve trace links, the IR approach can often increase its recall by retrieving more
trace links, at the cost of increasing number of irrelevant links retrieved, i.e. decreasing
precision.

There is a wide variety of trace link recovery approaches based on IR. A brief dis-
cussion of the most influential approaches is presented in the remainder of this section.

(Hayes et al., 2003) use a vector space IR method to automate the generation of
trace links between natural language documents. In an attempt to reduce the number of
missed or irrelevant trace links generated, they extend their initial VSM technique with
the use of key-phrase lists and thesauruses. Their work has demonstrated that the use of
a thesaurus can improve the recall of their approach (i.e. number of missed trace links)
but it decreases the precision, i.e more irrelevant links are generated. Additionally,
they have demonstrated that the use of thesauruses provides better results in terms of
precision and recall than the results provided from the use of key-phrase lists. Based on
their results, they have built the RETRO (REquirements TRacing On-target) tool (Hayes
et al., 2004). One of the features of RETRO is the improvement of the generated trace
links based on user input. Finally, they have attempted to improve their results using and
LSI model (Hayes et al., 2006). However, the VSM based technique with the thesaurus
extension outperformed the LSI-based one.

(Antoniol et al., 2002) examine the use of IR techniques for trace link generation
between requirements written in natural language and a source code component. In
their approach, a list of identifiers and comments is extracted from the source code and
this list is used to construct the corpus for the implementation. Queries are matched to
the various documents (i.e. requirement documents and source code) using both PMs
and VSMs. The results obtained using both models are quite similar.

In an attempt to improve the precision and recall problems of the existing IR retrieval
techniques, (Cleland-Huang et al., 2005) introduce three strategies for incorporating
supporting information into a probabilistic retrieval algorithm. The strategies include
hierarchical modeling, logical clustering of artifacts, and semiautomated pruning of the

25

2.4 Traceability Related Activities

probabilistic network. They investigate how the proposed strategies affect the perfor-
mance of the probabilistic retrieval algorithm and they conclude that their strategies
ameliorate the algorithm only when they are applied to a subset of the dataset, where
the confidence for acceptance and rejection is low. (Zou et al., 2006) improve the results
achieved by these strategies by adding a new one, which utilises key phrases instead of
key words. The outcome of this research effort is implemented in a tool called Poirot
(Lin et al., 2006). Poirot uses a probabilistic network model to generate trace links be-
tween requirements, design elements, code and other artefacts stored in distributed third
party case tools such as DOORS (IBM, 2010) and source code repositories. The tool
is designed with extensibility in mind, so that additional artefact types and third party
tools can be added.

Another approach which automates the generation of trace links between require-
ment documents and source code is the one proposed by (Maletic et al., 2003). Since
they use an LSI model, their approach takes into account synonym terms. A trace link
between two documents is established when the semantic similarity of those documents
is greater than a threshold. In (State & Maletic, 2003), a comparison between this LSI-
based approach and the VSM/PM-based approach of (Antoniol et al., 2002) takes place.
According to this comparison. LSI outperforms VSM and PM in terms of precision and
recall.

More researchers have experimented with LSI-based models. (Lucia et al., 2007)
argues that using IR methods based on LSI models is not the optimal method for re-
covering trace links, since the number of false positives grows up too rapidly when the
similarity of artefact pairs decreases below an optimal threshold. Moreover, this sim-
ilarity threshold changes depending on the type of the artefacts and projects. As part
of their work, they have developed Re-Trace (Lucia et al., 2008), a trace link recovery
tool in ADAMS (ADvanced Artifact Management System), which is an artifact-based
process support system for the management of human resources, projects, and software
artifacts (Lucia et al., 2004). The main novelty proposed by (Lucia et al., 2007) is the
pre-categorisation of the analysed artefacts and the truncation of the list of possible can-
didates dynamically based on user feedback. This approach is shown to improve the
performance of their algorithm.

(Lormans & van Deursen, 2005) and (Lormans & van Deursen, 2006) investigate
what are the advantages of using LSI to track and trace requirements and what kind

26

2.4 Traceability Related Activities

of trace links can be recovered using LSI. Furthermore they offer an analysis of why
correct trace links are missed and false links are retrieved. One of their interesting
experimental findings is that tracing requirements in test cases is more accurate than
tracing requirements in design.

Finally, (Natt och Dag et al., 2002) and (Natt och Dag et al., 2005) investigate how
to apply IR techniques for the automatic detection of requirement interdependencies
and duplication. They claim automated similarity analysis on a syntactic level using IR
techniques may be effective in pinpointing true requirement duplicates and interdepen-
dencies. However, they conclude that their technique can not replace human judgment.

The aforementioned trace recovery methods are considered to be after-the-fact meth-
ods. That is, lists of possible candidates are returned by the algorithms and each trace
link has to be reviewed and accepted or rejected by the user. Additionally, the ap-
proaches which rely on the use of IR methods for the trace link recovery, work on the
assumption that the artefacts between which tracing occurs share the same terminology.
In cases where the artefacts are not from the same domain, these approaches underper-
form. Another shortcoming of the approaches discussed in this section is the fact that
they are not able to capture trace link semantics. That is, using IR techniques for trace
recovery is useful only in finding a similarity between two artefacts. However, such
techniques are not able to inform the user how the traceable artefacts are related.

2.4.1.2 Rule-Based Approaches

Another research direction for the recovery of trace links is the use of dedicated trace
link recovery rules. These rules usually express heuristics which predict how different
entities are linked, as well as the rationale of their relationship. Rule-based approaches
can be applied both to models and text-based artefacts. This contrasts with the IR meth-
ods described in the previous section, which apply mostly to text-based artefacts such
as requirements expressed in natural language or code.

One of the most basic rule-based approaches to the identification of trace link candi-
dates is to search models or texts for occurrences of common keywords. An underlying
assumption of this approach is that developers developers normally choose names for
the various entities in a consistently. (Spanoudakis et al., 2004) propose the use of
XML-based rules for the generation of traceability between requirements statements,

27

2.4 Traceability Related Activities

use cases and analysis models. The artefacts to be traced are represented in XML
and the generated trace links are represented as hyperlinks expressed in XLink (W3C,
2001), which is an XML markup language that provides methods for creating internal
and external links within XML documents, and associating metadata with those links.
Two different types of traceability rules are used in this approach. More specifically,
requirement-to-object-model rules are used to trace the requirements and use cases to
an analysis object model, and inter-requirements traceability rules are used to trace re-
quirements and use cases to each other. The approach has been evaluated in numerous
case studies, and the results achieved were promising, since the recall and precision
measures achieved range between 50% and 95%. One shortcoming of this approach is
the fact that the traceabiltiy engineer has to specify manuallly a complete set of trace-
ability rules. In an attempt to address this shortcoming, (Spanoudakis et al., 2003)
developed a machine learning algorithm that produces traceability rules. The genera-
tion of such rules is informed by examples of traceability relations which are provided
by the user and is based on a generalisation of other existing traceability rules.

In XTraQue (Jirapanthong & Zisman, 2007), the basic algorithm of (Spanoudakis
et al., 2004) is modified so that it can be applied to the automatic recovery of traceabil-
ity relations between elements of documents generated in feature-based object-oriented
methodologies. The traceability rules used in this work are classified into two groups,
namely (a) direct rules, which support the creation of traceability relations that do not
depend on the existence of other relations, and (b) indirect rules, which require the exis-
tence of previously generated relations. The documents are represented in XML and the
rules are expressed in an extension of XQuery (W3C, 2007). This approach can gen-
erate nine types of traceability relations including satisfiability, dependency, overlaps,
evolution, implements, refinement, containment, similar, and different relations between
feature-based and object-oriented documents created during the development of product
line systems such as process models, use cases, class diagrams, sequence diagrams, etc.
The rules used in this approach take into consideration the semantics of the documents
under consideration, the various types of traceability relations in the product line do-
main, grammatical roles of the words in the textual parts of the documents,synonyms
and distance of words being compared. The work has been evaluated in terms of preci-
sion and recall in five different scenarios. The results of these experiments have shown
an average precision of 85.3% and an average recall of 83.3%.

28

2.4 Traceability Related Activities

Machine learning techniques are used as well by (Grechanik et al., 2007), whose ap-
proach is applied to the identification of trace links between use-cases and Java source
code. The proposed solution is called LEarning and ANAlyzing Requirements Trace-
ability (LeanArt). It combines program analysis, run-time monitoring, and machine
learning to automatically propagate a small set of initial trace links between program
variables and elements of use case diagrams to additional unlinked program entities
thereby recovering new trace links. The core idea of LeanArt is that after programmers
initially link a few program entities to elements of the use cases, the system will collect
adequate information from these links to recover trace links for the rest of the program
automatically. This is achieved by monitoring the program execution traces and infer-
ring the various reads and writes from and to the variables. Using this information in
combination with the manually defined trace links, the learning algorithm can relate pro-
gram entities with use case elements. LeanArt approach was evaluated on open-source
and commercial applications written in Java. The obtained results show that after users
link approximately 6% of the program entities to elements from use-case diagrams, Lea-
nArt correctly recovers 87% of trace links in the best case, 64% on average, and 34% in
the worst case. The variability of the experimeant results is attributed to the fact that the
LeanArt approach depends heavily on the consistent naming of the use-case elements
and the program variables.

In TOOR (Traceability of Object Oriented Requirements) (Pinheiro & Goguen,
1996), requirements can be traced to design documents, specifications, code and other
artefacts through user-defined relations. This allows developers to distinguish among
different links between the same objects. Moreover, using mathematical properties such
as transitivity, TOOR can relate entities which are not directly related. The tool is used
in three phases. In the definition phase, classes of objects to be traced and of relations
among them are defined in a project specification. In the registration phase, objects and
relations are registered as the project evolves, using TOOR templates. Finally, in the
extraction phase, traces are computed and presented.

(Cleland-Huang et al., 2002b) and (Cleland-Huang & Schmelzer, 2003) use user in-
put to recover trace links between requirements and performance models and between
non-functional requirements and design code artefacts. Fine-grained trace links are dy-
namically generated during system maintenance and refinement based on user-defined
links, which are specified during the inception, the elaboration and the construction of

29

2.4 Traceability Related Activities

the system. This approach supports trace recovery based on invariant rules of design
patterns which are used to identify critical components of classes.

Most of the aforementioned rule-based approaches for the recovery of trace links
perform satisfactorily in situations where terminology is used consistently in the differ-
ent traceable artefacts. However, these approaches require substantial effort for setting
up the basis for traceability, i.e. for specifying a complete set of traceability rules. Addi-
tionally, the flexibility of the rule-based approaches is limited in the sense that in many
cases it is not easy to change the initial traceability infrastructure such as traceability
rules, trace link types, etc, if the need arises.

2.4.1.3 Miscellaneous Approaches

In order to overcome the limitations associated with the IR and rule-based methods of
trace link recovery, some alternative approaches have been proposed. In this section, we
will briefly present the most influential of those approaches.

A strand of research on this area examines how the semi-automatic generation of
traces can take place and what is the most efficient method for the manual definition
of the various trace links. In this group of approaches, the manual declaration of trace
links is assisted by the use of visualisation techniques. Usually, the various documents
to be related are displayed in a tool and the users can select the elements to be related
in an easier way. A representative approach of this philosophy is the approach created
by (Alexander, 2003), who extends the requirements management tool DOORS (IBM,
2010), to allow the recovery and organisation of trace links between requirements and
use cases.

Although, this approach provides the users with advanced support for visualising
and navigating the traceable artefacts, the effort required to manually establish the trace
links is still high, especially for large or complex artefacts. Moreover, no support is pro-
vided for defining the semantics of the trace links in an enforceable way. As a result, the
correctness of the established trace links depends on the understanding of the semantics
of the links by the users

Another research direction involves the analysis of the change history of the trace-
able artefacts or the analysis of their run-time behavior. (Ying et al., 2004) and (Zim-
mermann et al., 2004) have developed an approach that applies data mining techniques

30

2.4 Traceability Related Activities

to determine change patterns among sets of files that were changed together frequently
in the past. The underlying assumption of their approaches is that the change patterns
can be used to recommend potentially relevant source code to a developer performing
a modification task. However, no guidance is provided for the type of the relationship
of two related entities. (Wenzel et al., 2007) describe an approach for deriving trace
links between single model elements by comparing the version history of the models to
which the model elements belong. This approach is limited only to similar elements in
different versions of a model.

(Egyed & Grunbacher, 2005) use program execution traces to recover relations be-
tween source code, requirements and test-cases. In this approach, test-cases are man-
ually related to requirements. By using these manually defined links together with the
dynamic program behavior logs from the execution of the test-cases, their tool is able to
recover trace links between requirements and code. These trace links are derived using
transitive reasoning and shared use of common ground. An example of transitive rea-
soning is when A depends on B and B depends on C then A depends on C. On the other
hand, shared use of common ground is the use of the criterion that if A and B depend
on subsets of a common ground (code in this case) and these subsets overlap, then A
depends on B.

PRO-ART (Pohl, 1996a) is a prototypical requirements engineering environment, in
which traceability relations are created as a result of creating, deleting or manipulating
requirements. The focus of this work is on pre-requirements specification traceabil-
ity. The authors propose a framework, which derives three dimensions of interest from
the major sources of problems in requirements engineering, namely the Representation

Dimension, the Specification Dimension and the Agreement Dimension. Based on the
three-dimensional framework, a set of traceability models are developed to enable con-
tent oriented capture of the requirements engineering processes. The traceability models
are formalized using the knowledge representation language Telos (Mylopoulos et al.,
1990). This work proposes the communication of actions (create, delete, modify) be-
tween tools. The communication between the actions is controlled by a communication
manager, thus enabling process guidance and control. This approach assumes that inter-
operable tools are available for relating the inputs/outputs of the actions provided by the
different tools as well as the requirements engineering environment is process centered

31

2.4 Traceability Related Activities

since the dependencies which are created between the inputs/outputs of different actions
depend on the way the process was performed, i.e. on the sequence of actions.

Analysing existing trace relationships to obtain implied relationships may also pro-
vide a source of automatically recovered trace links. TraceM is a framework for au-
tomating the management of traceability relationships and it uses this technique. A
key contribution of TraceM is its ability to transform implicit relationships into explicit
relationships by processing chains of traceability relationships (Sherba et al., 2003).
This work builds on techniques from open hypermedia (Østerbye & Wiil, 1996) and
information integration (Anderson et al., 2002). TraceM allows stakeholders to view
the explicit relationships in a system and to chain these relationships together to make
previously implicit relationships explicit. Moreover, since these implicit relationships
are being made explicit within the context of a comprehensive requirements traceabil-
ity framework, they can be explicitly managed, tracked, and analyzed as the software
project evolves.

Finally, trace information can be automatically recovered as by-products of trans-
formation activities, that is, activities which automatically transform one artefact to an-
other. This can be done either implicitly or explicitly (Olsen & Oldevik, 2007). By
implicit, it is meant that a transformation engine generates the trace links automatically
when a transformation is executed. By explicit, it is meant that additional code must
be inserted into the transformation code in order to generated the trace information. A
number of model transformation tools support the automated generation of trace-links.
The ATLAS Transformation Language (ATL) (Jouault et al., 2006) uses higher-order
transformations (HOT) to add trace information in the transformation model. The Ep-
silon framework (Kolovos & Paige, 2010) also provides implicit traceability support
through an external trace model that can be accessed in Epsilon’s workflow mechanism
(which is based on ANT). An Epsilon program, such as a transformation or a model
merging operation, can expose trace information (in the form of a container of trace-
links) and this information can be accessed by other model management tasks (such as
validations) or even non-MDE tasks, such as visualisations generated with GraphViz.

In the MOF QVT Request for Proposals (RFP) issued by OMG in 2002, traceabil-
ity is defined as an optional requirement (Object Management Group, 2011c). The
specification describes three model transformation languages that can be used: Rela-
tions, Core, and Operational Mappings. In the Relations and Operational Mappings

32

2.4 Traceability Related Activities

languages, trace-links are created automatically without user intervention. In the Core
language, a trace class must be specified explicitly for each transformation mapping.
The QVT Operational implementation provided by Borland is one implementation that
has this support. The implementation does not store trace models as external files, that
would be inter-exchangeable between tools. This can be seen as a disadvantage of the
tool (Kurtev et al., 2007).

Similar solutions are provided by other model-to-model transformation languages
and MDE frameworks such as Kermeta (Falleri et al., 2006), FUJABA (Gorp & Janssens,
2005) and UniTI (Vanhooff et al., 2007a)

Some existing model-to-text transformation languages have support for traceability
as well. In the MOF Models-to-Text Standard (Object Management Group, 2006b),
traceability is defined to be explicitly created by the use of a trace block inserted into
the code. This approach provides user-defined blocks that represent a trace to the code
generated by the block; this is specifically useful for adding traces to parts of the code
that are not easily automated. A drawback of the approach is a cluttering of the trans-
formation code. A complementary approach, as taken in MOFScript (Oldevik et al.,
2005), is to automate the generation of traces based on model element references. This
approach is also taken in the Epsilon Generation Language (Rose et al., 2008).

Acceleo Pro Traceability (OBEO07) is a traceability tool developed by Obeo that
handles traceability links between model elements and code and vice versa. This tool
enables round trip support; updates in the model or the code are reflected in the con-
nected artefacts. Analyses are also available using the traces as input, but since this is a
commercial tool, restricted information describing the solution is available. It seems to
be based on similar ideas that are used in MOFScript where model elements are traced
to exact positions in files.

Nevertheless, there are still open issues in the area of trace recovery. In the case of
implicit trace recovery, the produced trace links do not have any case-specific seman-
tics. They are generic and usually of the form <source element, transformation rule,
target element>. As will be discussed in more detail in the next section, such links
do not facilitate any further analysis of the trace information. On the other hand, in
the case of explicit trace recovery, trace links with rich-semantics can be generated. To
achieve this, the traceability engineer has to insert traceability code into the transfor-

33

2.4 Traceability Related Activities

mation specification. Consequently, the transformation code becomes “polluted”, i.e.
code of secondary importance is included, hence it becomes less readable.

2.4.2 Traceability Representation

The previous section presented the literature on the identification and recovery of trace
links. In this section we focus on traceability representation. The traceability repre-
sentation activity deals with the definition of the entity types to be traced and the rela-
tionship types between them. Moreover, it deals with the representation of the captured
traceability information in the form of data structures as well as their visualisation and
storage.

2.4.2.1 Specification of Traceability Information

Many different stakeholders such as project managers, analysts, designers, testers, and
end users are involved in the system development life cycle. The traceability needs
of these stakeholders differ due to differences in their goals and perspectives. Conse-
quently, there are wide variations in the format and content of traceability information
across different system development efforts. Providing traceability support during sys-
tem development can be along several dimensions. For example, the types of links of
interest to a system tester may be different from those of interest to a system designer.
A system tester may be interested in finding out what are the system components that
are affected by a requirement while a system designer may be interested in finding out
how the components of the system are affected by requirements. Moreover, the se-
mantics of a trace link as viewed by different stakeholders may differ. In the case of a
requirement-to-component trace link for example, the system designer might consider
the requirement as a constraint on the system design, while a system tester might be
interested in using the traces to perform coverage analysis in order to find out if every
requirement is implemented by at least one component. Therefore, the meaning (se-
mantics) of trace links is guided by the reasoning that the trace user will be performing
with the relationship (Ramesh & Jarke, 2001).

Many researchers have acknowledged the need to distinguish between different
trace link types with specific semantics in order to facilitate richer traceability analy-
sis. (Bayerand & Widen, 2001) propose that trace links should have rich semantics in

34

2.4 Traceability Related Activities

order to compensate for the high cost of establishing and maintaining traceability, while
(Pinheiro & Goguen, 1996) suggest that trace links should be precisely defined in order
to avoid the problem of culture-based representations. Similarly, (Dick, 2005) advocates
the use of rich traceability semantics in industrial settings.

To address the aforesaid issues associated with the representation of trace links, re-
searchers have attempted to define the syntax and semantics of traceability information.
To do so, they have constructed specifications of what constitutes a valid traceability
model. These specifications are called metamodels, schemes, traceability classifications

or reference models depending on the field in which they are used. For the purposes of
this work, we will refer to this kind of specifications as classifications. Traceability
classifications have been developed that emphasise different attributes, characteristics,
and viewpoints (ranging from conceptual models to concrete designs that can form the
basis of an implementation) on traceability. For example, some classifications are based
on the types of the related artefacts, while others are based on the use of traceability in
supporting different development activities (Spanoudakis & Zisman, 2005).

There are two types of traceability classifications - generic or case-specific. In the
case of generic classifications, the main assumption is that a generic and complete set of
traceability standards can be found and described. This set will determine the types of
trace links, semantic expressiveness and other qualities of traces that should be record
in every case. On the other hand, the advocates of the case-specific classifications argue
that such a generic set of standards can not be defined, since the space of trace links and
of their constraints is vast and most of the time the decision of which link types to use
depends on the particular usage scenario as well as on the domain. The contributions
in this area have to do mainly with mechanisms of how to ease the definition of the
required traceability information for every case-specific scenario.

Generic Traceability Classifications One of the main classifications in this category
is the one proposed by (Ramesh & Jarke, 2001), who investigated quite exhaustively the
completeness of a traceability classification in the domain of requirements engineering.
To do so, they made extensive observations in several industrial projects over a number
of years. The results of their observations are captured in a set of reference models
which consist of the most important kinds of traceability links for the various devel-
opment tasks. A basic traceability metamodel is derived and it is illustrated in Figure

35

2.4 Traceability Related Activities

Figure 2.5: Traceability Metamodel according to (Ramesh & Jarke, 2001)

2.5. Sources represent the people who are involved in the development process. Ob-

jects stand for the traceable entities, while Sources correspond to sources of information
or knowledge such as documents, standards, meeting minutes, policies, etc. The three
entities of the meta model correspond roughly to the three dimensions of requirements
engineering proposed by (Pohl, 1996a) in that they cover the aspects of understanding

(objects), agreement (stakeholders), and physical representation (sources).
The proposed metamodel can be used to represent six dimensions of traceability

information.

• What information should be recorded as traceability information?

• Who are the Stakeholders who create, update and use the traceability information
as well as the traceable entities?

• Where does the traceability information come from?

• How is traceability information represented? How does this information relate to
other traceability components?

• Why has a traceable entity been created, modified or evolved?

• When has the traceability been captured, modified or evolved?

36

2.4 Traceability Related Activities

Following (Ramesh & Jarke, 2001), there are two types of traceability users - low-

end and high-end users. Low-end users consider traceability simply as a mandate
from the project sponsors or for compliance with standards. These users describe the
various project interdependencies using simple traceability classifications. Conversely,
high-end users consider traceability as a major opportunity for customer satisfaction and
knowledge creation throughout the systems development process. Therefore, they use
much richer traceability classifications, which enable them to perform richer analysis
and reasoning on traces. (Ramesh & Jarke, 2001) propose two levels of reference mod-
els depending on the type of the traceability users. The first level is aimed at the low-end
users and it provides just a handful of trace link types. The second level is aimed at the
high-end users and it consists of approximately 50 different types of trace links. These
trace links include relationships such as satisfies, describes and depends on.

Another classification focusing on requirements traceability is proposed by (Pohl,
1996b). In this work, 18 different trace link types are identified and organised into five
different categories. These categories are the following:

• Condition Link Group: this group consists of the relationships between require-
ments and the various constraints associated with them.

• Documentation Link Group: this group includes relationships between different
types of software documentation and requirements.

• Abstraction Link Group: this category includes relationships representing abstrac-
tion between requirements, such as generalisation or refinement.

• Evolutionary Link Group: this group consists of replacement relations between
requirements.

• Content Link Group: this category includes trace links which denote comparison,
conflict and contradiction between requirements.

A similar approach is proposed by (Spanoudakis & Zisman, 2005), who has con-
ducted a thorough literature survey in order to define 8 categories of trace link types.
These categories are the following:

37

2.4 Traceability Related Activities

• Dependency links describe a relationship in which an element e1 depends on an
element e2, if its existence relies on the existence of e2 or if changes in e2 have to
be reflected in e1.

• Generalisation/Refinement links are used to identify decomposition of entities,
composition of entities or refinements.

• Evolution links are used to describe the evolution relation between two artefacts.
When artefact e1 evolves to artefact e2, then artefact e1 is replaced by e2.

• Satisfiability links signifies the compliance of an artefact to another one.

• Overlap links describe a relationship in which artefacts e1 and e2 refer to common
features of a system or of its domain.

• Conflict links describe an incompatibility or an inconsistency relation between
two artefacts.

• Rationalisation links are used to represent the rationale behind the creation and
evolution of artefacts.

• Contribution links represent the association between artefacts and stakeholders,
who have contributed to their creation.

In addition to the aforementioned trace link categories, (Spanoudakis & Zisman,
2005) present a very detailed description (in the form of a matrix) of the various trace
link types that have been proposed in the literature and the types of software artefacts
that these links interrelate. Moreover, associations between stakeholders and artefacts
are presented. Based on their matrix description, they observe that most approaches
focus mainly on types of traceability relations that relate requirements specifications, as
well as requirements with design. The number of approaches, which focus on the links
between code and requirements or between code and design artefacts are far less. This
is attributed to the fact that initially, traceability was a concept very closely related to
requirements, as well as to the fact that establishing trace links between code and other
development artefacts is a hard task. Finally, (Spanoudakis & Zisman, 2005) identify
the lack of standard semantics for the various trace link types found in the literature and

38

2.4 Traceability Related Activities

Figure 2.6: Requirements Interdependencies Classification (Dahlstedt & Persson, 2003)

they stress the need for richer trace link semantics, since it is the precondition for the
development of tools for the generation, maintenance and deployment of meaningful
trace links.

(Dahlstedt & Persson, 2003) propose a classification of interdependency trace links
between requirements. This classification is illustrated in Figure 2.6. In the proposed
classification, requirements interdependencies are grouped into two main categories -
structural and cost/value interdependencies. Structural interdependencies are concerned
with the fact that given a specific set of requirements, they can be organised in a structure
where relationships are of a hierarchical nature as well as of a cross-structure nature. On
the other hand, cost/value interdependencies are concerned with the costs involved in
implementing a requirement relative to the value that the fulfillment of that requirement
will provide to the perceived customer/user.

Another classification of trace link types is proposed by (von Knethen & Paech,
2002). This classification investigates the technological aspects of traceability in five
different dimensions. One of the proposed dimensions for classifying traceability ap-
proaches is the types of relationships they support. That is, what kinds of relationships

39

2.4 Traceability Related Activities

are described by trace links, what is their direction, what are their attributes, what is the
setting of those relationships and finally how these relationships are represented. From
the literature the authors identify three general kinds of relationships: (1) relationships
between documentation entities at different levels of abstraction, (2) relationships be-
tween documentation entities on the same abstraction level, and (3) relationships be-
tween documentation entities of different versions of the same software product.

There are a few open issues with the traceability classifications mentioned above.
The semantics of the link types they describe is not formally defined and it is subject
to the view and interpretation of the reader. Furthermore, most of the link types de-
scribed in those classification are binary, something which comes to contrast with the
fact that trace links can very often be n-ary (Munson & Nguyen, 2005). (Dick, 2005)
advocates the need for even more complex trace link structures such as alternatives and
conjunctions.

In an attempt to specify the semantics and the composition of traceability infor-
mation in a well-structured manner, the MDE community encodes such information in
well-defined metamodels.

(Walderhaug et al., 2006) propose a traceability metamodel, which sets a basis for
defining trace models. This metamodel consists of four entities. The TraceModel entity
is used to represent the container for the various trace links as well as for the various
traceable artefacts. The TraceableArtefactType entity defines the mapping of a specific
model artefact type to a corresponding traceable artefact. The ArtefactTraceType defines
a specific trace type for a TraceableArtefactType. Finally, the RelationTraceType defines
a specific trace type for a certain relation between a source and a target artefact type.
Instantiations of this metamodel can be used to model different traceability scenarios.

(Amar et al., 2008) propose a traceability metamodel which is suited to model trans-
formations. Their metamodel allows to structure the traces, which are generated by the
transformation engine. The proposed metamodel is an extension of the one of (Falleri
et al., 2006). The authors argue that it is useful, for imperative as well as declarative
transformations, to have a multiscaled trace. The fact that an operation transformation
can call another one (or that the rules can trigger other rules) creates levels of nesting
that it’s useful to be able to represent. That’s why the composite pattern is applied on
the trace links. This metamodel is illustrated in Figure 2.7.

40

2.4 Traceability Related Activities

Figure 2.7: Traceability Metamodel proposed by (Amar et al., 2008)

Similarly to (Amar et al., 2008), (Jouault, 2005) aims to provide traceability support
for model transformation scenarios. Towards this goal, he proposes a concise trace-
ability metamodel (Figure 2.8). It consists of two entities, the TraceLink entity and the
AnyModelElement entity. The TraceLink entity has a ruleName attribute, which stores
the transformation rule name and pointing to AnyModelElement via two multivalued
references: sourceElements and targetElements.

Another traceability metamodel can be found in the work done by (Sousa et al.,
2008). Apart from the metamodel entities which are encountered in the metamodels
presented above such as trace link, traceable artefact and traceable artefact type, addi-
tional metamodel entities are used. Each link has a link type as well as a scope which
describes for which entities a link is valid.

Several other researchers from the MDE community (e.g. (Barbero et al., 2007;
Grammel & Voigt, 2009; Olsen & Oldevik, 2007; Vanhooff et al., 2007b)) have come

41

2.4 Traceability Related Activities

Figure 2.8: Traceability Metamodel proposed by (Jouault, 2005)

up with their own traceability metamodels. These metamodels usually extend a ba-
sic traceability metamodel with case-specific enhancements. A traceability metamodel
which is generic and adequate for every traceability scenario is yet to be found (Limon
& Garbajosa, 2005). Hence, another research direction on traceability representation fo-
cuses on ways to facilitate the definition of case-specific traceability information. This
strand of research is presented in the next section.

Case-specific Traceability Classifications The space of trace-links is vast; many dif-
ferent kinds of case- and domain-specific trace-links have been identified. These are
often presented in the form of traceability classifications; a number of these have ap-
peared in the literature. For example, classifications given in terms of scenarios of use
of traceability are postulated by (Olsen & Oldevik, 2007; Walderhaug et al., 2006).
Classifications in terms of specific domains have been produced by (Ramesh & Jarke,
2001) for requirements engineering, for business applications (Rummler et al., 2007),
and for usability and accessibility (Power et al., 2009). Moreover, traceability classifi-
cations in MDE have been developed that emphasise different attributes, characteristics,
and viewpoints (ranging from conceptual models to concrete designs that can form the
basis of an implementation) on traceability. It is apparent from the above, that different
stakeholders in different domains have different needs in regards to traceability. Hence,
different traceability classifications are needed.

(Paige et al., 2008) propose a lightweight process for engineering traceability clas-
sifications from different viewpoints. The lightweight process is called the Traceabil-
ity Elicitation and Analysis Process (TEAP). It is derived from a process developed in
(Chan & Paige, 2005) for eliciting and understanding different forms of model-based
contracts. The aim of TEAP is to elicit and analyse traceability relationships in order to
determine how they fit into a traceability classification. While eliciting new traceability
relationships, we improve our understanding of the key attributes of these traceability

42

2.4 Traceability Related Activities

relationships: the artefacts they involve, their semantics, and their domain of applicabil-
ity. TEAP is an iterative process. There are three main activities: Elicitation, Analysis,
and Classification, outlined in Table 2.1. Elicitation involves studying the domain and
available scenarios to help identify new trace-links; Analysis involves developing our
understanding of the trace-links’ semantics and their relationship to other trace-links;
and Classification involves structuring the trace-links.

Activity Description

Elicitation Identify new types of trace-links and relationships.
Analysis Understand relationships between new trace-links and

existing trace-links; identify constraints.
Classification Build and/or refine a classification.

Table 2.1: TEAP activities

TEAP deals mainly with understanding a domain’s traceability needs. The trace-
ability engineers are responsible then to encode their understanding, usually in the form
of a metamodel. This is a technical task and it is not addressed by TEAP. (Fabro et al.,
2005) propose a tool which supports this activity. The Atlas Model Weaver (AMW)
can capture and store links between models of diverse metamodels. The various links
are stored in models, which are called weaving models. Weaving models have special
characteristics. They are not self contained, i.e., a weaving model is useful only if the
related models exist as well. To support link semantics, the user of the tool can extend
the core weaving metamodel (Figure 2.9) with case-specific semantics. To extend the
core metamodel, the user writes a Kernel Meta Meta Model (KM3) (Jouault & Bézivin,
2006) script in order to specify the case-specific link entities and then the tool merges
automatically these link entities with the core weaving metamodel.

(Guerra et al., 2010) propose an inter-modelling language, which allows expressing
relations between models in a declarative way, using both structural object patterns and
declarative attribute conditions. This language can express relationships between mod-
els, which can be then used in different scenarios. Model-to-model traceability is one
of those scenarios.

While there is a significant amount of work in the area of generic classifications,
during the conducted literature review we have not encountered any other approaches on

43

2.4 Traceability Related Activities

Figure 2.9: AMW core metamodel by (Fabro et al., 2005)

case-specific traceability classifications. One possible reason might be the fact that only
recently have researchers started investigating ways to support the creation of case- or
project-specific traceability classifications instead of trying to find a generic traceability
metamodel which applies in any traceability scenario.

2.4.2.2 Actualisation and Visualisation of Traceability Information

Deciding on which traceability information is relevant and meaningful is only one activ-
ity associated with traceability representation. Once such decision is made, traceability
information have to be realised in an appropriate form in order to be used in software
projects. We call this activity traceability actualisation. Moreover, since the traceability
information captured for a particular project can be very complex, appropriate visuali-
sation techniques have to be used in order for this information to be presented to their
intended users.

44

2.4 Traceability Related Activities

(Marcus et al., 2005) argue that visualising traceability links is important, non triv-
ial, and considerable support is needed. Following (Wieringa, 1995), there are three
different ways to realise and visualise traceability information. This can be done by
using traceability matrices, cross-references or graphs (models or diagrams).

A traceability matrix is a simple two-dimensional grid in which the horizontal and
vertical dimension list the items that can be linked, and the entries in the matrix represent
links between these items. Table 2.2 illustrates a sample traceability matrix, whose
purpose is to store traceability relations between requirements and test cases. When a
test case is associated with a particular requirement then an x at the intersection of the
corresponding row and column indicates this relationship.

Req. Identifiers Req. UC 1.2 Req. UC 1.3 Req. UC 1.4 Req. UC 1.4 Req. UC 1.5
Test Cases 2 2 2 1 0
1.1.1 x
1.1.2 x x
1.1.3 x x
1.1.4 x
1.1.5 x

Table 2.2: Sample Traceability Matrix

According to (Wieringa, 1995), the matrix representation can be considered equiva-
lent to a graph representation, but it is less orderly as a visual representation technique.
Traceability matrices can be easily understood and used by non-technical users. More-
over, they can very efficiently capture simple traceability relations.

However, there are open issues with traceability matrices that have to do with the
complexity and scale of real-life projects. First, only binary relations between enti-
ties can be represented. However, very often n-ary relationships are required (Sherba
et al., 2003). Another important limitation of traceability matrices is the fact that rich
link semantics can not be represented easily. That is, different link types and project
specific constraints can not be captured by this simple form of traceability information
representation. Finally, since traceability matrices are in tabular form, they are typically
created using a spreadsheet application and are independent of the artefacts they refer to.
Hence, the process of capturing and maintaining traceability is mainly done manually.

45

2.4 Traceability Related Activities

Nonetheless, in (Cleland-Huang et al., 2003), the authors argue that the number of trace-
ability links that need to be captured grows exponentially with the size and complexity
of the software system. This means that manually capturing traceability data for large
software projects requires an extreme amount of time and effort.In an attempt to address
the aforesaid limitations, researchers have come up with more sophisticated traceability
matrices. For example, for different types of links, different symbols or colours can be
used (Pinheiro, 2004).

A different way to realise and visualise traceability information is by treating arte-
facts as nodes and the trace links between them as edges of a traceability graph. Such
graphs or models are used in several approaches. In (Fabro et al., 2005), traceability
models, which are considered as a particular case of weaving models, are used by the
AMW tool. Several other approaches use diagrams to represent traceability. These
approaches include the work done by (Göknil et al., 2010; Pinheiro & Goguen, 1996;
Pohl, 1996a; Ramesh, 2007).

Following (Kolovos et al., 2006b), there are two strategies to storing and managing
traceability information in the case of model-to-model traceability. In the first one, the
traceability information is embedded in the models they refer to, while in the second
strategy the traceability information is stored separately from the models.

In the intra-model storage of traceability information case, the traceability informa-
tion is stored within the artefact they refer to in the form of model elements or model
element attributes, such as tags and properties. Despite its simplicity and human friend-
liness, keeping such information with the artefacts can be problematic for several rea-
sons. If the link is directed and stored in the source model only, it is not visible from
the target model. On the other hand, if the traceability information is stored in both
models, then this information must be maintained consistent, thus the burden of main-
taining consistency is introduced every time a change occurs (Aizenbud-Reshef et al.,
2006b). In addition, embedding traceability information inside a model causes “pollu-

tion” (Kolovos et al., 2006b), i.e. the inclusion of elements in the model of secondary
importance. Such an inclusion can render a model overcrowded and can make it difficult
to understand and maintain. Finally, the issue of uniformity arises in this approach (Old-
evik & Aagedal, 2005). In an MDE environment, it is common that models have their
own representations and semantics. Hence, it is very difficult to distinguish the trace-
ability information from the other model artefacts. As a result, automated analysis of

46

2.4 Traceability Related Activities

traceability information becomes very challenging. The main approaches falling under
this strategy utilise mainly language specific constructs. For example, specific types of
traceability links are represented in UML diagrams by using stereotyped dependencies,
such as� refines� (Heaven & Finkelstein, 2004).

In the second strategy for representing traceability, traceability information is stored
separately from the artefacts they refer to in a separate model. Constructing such models
has two clear advantages. First, the source and target models remain “clean”, since the
traceability links are stored in a separate model, whose concern is to capture this kind
of information. In this way, the aforementioned “pollution” is avoided. In addition,
storing traceability links in a model who conforms to a metamodel with clearly defined
semantics makes automatic analysis by tools much easier. A prerequisite for storing
traceability links externally from the models they refer to, is that the various model
elements have unique identifiers, so that the related traceability links can be resolved
unambiguously (Kolovos et al., 2006b). For example, such a mechanism is provided by
MetaObject Facility (MOF) (Object Management Group, 2006a) and Eclipse Modelling
Framework (EMF) (Eclipse Foundation, 2010a) in the form of a xmi.id identifier.

The main drawback of using diagrams as a method of traceability representation and
visualisation has to do with human’s ability to represent and read complex structures on
two or even three dimensions. Depending on the complexity and size of the traceabil-
ity scenario, diagrams can become cluttered and difficult to read very easily (Herman
et al., 2000). Thus, using abstraction and separation of concerns to represent complex
traceability scenarios is a common practice.

The third strategy for realising and visualising traceability information is by using
cross-references. Cross-references can be considered as pointers which are embedded
in an artefacts and point to another artefact with which there is a relation. These pointers
can be written in natural language or in more sophisticated ways such as hyperlinks.

Using cross-references to represent trace links can be intuitive and easy. Moreover,
there is software which can generated reports out of a document’s references (Wieringa,
1995). However, cross-referencing does not provide a concise representation of trace
links to and from a document. Moreover, cross-references are always binary links. As
mentioned above, in realistic traceability scenarios the need for n-ary relations arises
very often. Finally, a cross reference can indicate only the existence of a relation be-

47

2.4 Traceability Related Activities

tween two artefacts, but it provides no information for the type of the relation or the
rationale of its existence.

2.4.3 Traceability Maintenance

The third main activity associated with software traceability is traceability maintenance.
Traceability maintenance is very closely related to software entropy (Bianchi et al.,
2001). Software entropy has to do with the increase of disorder of software as it is
evolved. According to the second law of thermodynamics, a closed system’s disorder
cannot be reduced, it can only remain unchanged or increase. A measure of this disorder
is entropy. This law seems plausible for software and its associated artefacts, such as
documentation or design. As software is modified, its disorder always increases.

Since traceability information is tightly coupled with the other artefacts of the de-
velopment process, it is subject to software entropy as well. That is, traceability in-
formation is subject to gradual degradation as the related artefacts are modified. As a
result, the recorded relationships may end up being incorrect or inaccurate and as a re-
sult cannot support change propagation or impact analysis activities. One of the most
challenging aspects of traceability is how to maintain the integrity of the relationships,
i.e. trace links, while the referenced entities continue to change and evolve. To achieve
this, referential integrity and link integrity must not be violated. The difference between
referential and link integrity is very subtle. In the context of relationship management,
referential integrity is a measure of the reliability of a reference to an end-point, whether
a source or a destination of the relationship. On the other hand, link integrity measures
the reliability of the whole link (i.e. all endpoints) (Davis, 1998). When the entity at
the end of a link is not present or is not the entity that was intended by the link author,
then the referential integrity is violated and the link is said to be dangling. Both manual
effort and computation time need to be invested to ensure referential integrity and the
goal is to minimize manual effort at the expense of computational time. Ensuring ref-
erential and link integrity requires the examination of both the links and the changes of
the models under consideration.

There are two main approaches for maintaining trace link integrity: event-driven
and state-based approaches. In the former approach, the elementary changes of the
various model elements are constantly monitored, change events are generated based

48

2.4 Traceability Related Activities

upon these elementary changes and finally according to the change events corrective
actions are taken. In the latter approach, the detection of model changes takes place
by comparing different versions of the models and suspect links are found based on the
identified changes. In the following, the main contributions in those two research areas
are presented.

2.4.3.1 Event-Driven Traceability Maintenance

Event-driven traceability maintenance approaches resolve around the monitoring of el-
ementary artefact change events and the generation of compound changes. This is
achieved by utilizing a set of rules for recognizing the events as constituent parts of
intentional development activities. Once these activities have been identified, traceabil-
ity links related to the changing model elements can be updated automatically.

The atomic model changes associated with the first phase of this approach are usu-
ally addition, deletion and modification of artefacts. In the second phase, the develop-
ment activity that is realized by a chain of the aforesaid changes must be recognized.
Such activities include replacement, merging and splitting of traceable artefacts. Atomic
changes are associated to development activities using a predefined set of rules.

There are three main challenges associated with recognizing the various compound
development activities (Mäder et al., 2008). First, the same development activity can be
achieved by different elementary changes. For example there are two different ways to
replace a model element. The developer can either delete the original element and then
add the new on or she can just modify the existing one. An additional challenge is the
fact that the same development activity can be achieved by the same elementary changes
in different sequences. If for example a developer wants to replace a model element, she
can either add the new one first and then delete the old one or vice-versa. Finally, the
type of change and the impacted model element do not offer enough information for
relating changes to each other. The final step of the event-driven approaches to trace-
ability maintenance is the reconciliation of the dangling links. This can be performed
manually by the user or automatically if a predefined rule exists for every change event.

To overcome the identified challenges, the event-driven approaches restrict their
scope in two main ways. First, the user is restricted to using a particular tool for evolving
the artefacts. For example, in the event-driven approach proposed by (Cleland-Huang

49

2.4 Traceability Related Activities

et al., 2002a) for maintaining trace links between requirements and other development
artefacts, requirements have to evolve using a specific editor and a particular notation.
In this tool, to merge two requirements r1 and r2 the user has to write the following
expression:

r3 → r1 + r2 (2.1)

Although, this tool is effective for tracking requirement changes, it can not be used
in the general case since different artefacts will evolve differently and they will need
different editors.

The second restriction which is imposed by many even-driven approaches has to
do with the notations or artefacts they support. Such approaches usually focus to only
one type of artefact or one notation and usually they use specific characteristics of the
notation in order to identify the compound changes. For example, according to the
UML specification a bidirectional association between two entities can be considered
equivalent to two unidirectional associations between the same artefacts. This is a char-
acteristic of the UML notation, which can be used by an event-driven tool to identify
this refinement and adjust traceability information accordingly. However, this rule can
not be generalised since it is UML specific.

Since event-driven approaches focus on a particular domain, artefact or notation,
they can preserve link integrity to a satisfactory degree. However, due to the multitude
of different traceability scenarios, a more generic solution to the problem of traceability
maintenance is required. Such a solution is yet to be found.

One of the most influential and well-known event-driven approaches is the one pro-
posed by (Cleland-Huang et al., 2002a). In this approach, a publish-subscribe mecha-
nism is used. This mechanism follows the Observer design pattern. An interrelationship
between a requirement and another artefact is register to a central server. The evolution
of requirements is then expressed as a series of change events. When a requirement
is changed, all observers, i.e. artefacts which are related to this requirement, are no-
tified about this change. The stakeholders who are responsible for the maintenance of
the aforementioned observers could then check for potential changes in the traceability
links. The change in requirements is performed using a dedicated to this purpose nota-
tion, hence the identification of complex events such as decomposition or replacement
of requirements is possible.

50

2.4 Traceability Related Activities

Another event-based approach to traceability maintenance is proposed by (Mäder
et al., 2009). TtraceMaintainer is an extension to UML tools, which records operations
performed by a developer. If a chain of operations is identified as a single change event,
then the tool is able to maintain trace links which are affected based on predefined poli-
cies. If no policy is defined then the user is notified about the change. TraceMaintainer
works only with UML structural models, though the authors investigate the applicability
of their approach in other types of models.

A similar approach to traceMaintainer is the one proposed by (Murta et al., 2006).
ArchTrace is a tool that addresses the consistency and evolution of trace links between
software architecture models and their associated code. ArchTrace relies on an infras-
tructure for identifying change events in the architecture models and continuously up-
dating the trace links based on the change events and a set of policies. These policies
are atomic elements which can be disabled and enabled individually so that they fit to
the user’s situational needs. The ArchTrace tool assumes the use of xADL 2.0 (Dashofy
et al., 2001) to describe software architectures and Subversion (Collins-Sussman et al.,
2004) to store source code.

Finally, (Aizenbud-Reshef et al., 2005) define the operational semantics of traceabil-
ity in UML. One of the questions they try to answer is what actions should be triggered
when an event occurs which impacts on the traceability relationship in order to ensure
that the relationship is still valid according to its semantics. To this end, they define
two types of semantics for traceability, namely preventative and reactive semantics.
The former type describes actions which should not happen, such as deleting an entity
which is dependent on another entity before the dependency is deleted. For example, if
a class A imports a class B, class B can not be deleted before the import dependency
is removed. The latter type of traceability semantics describes what actions should be
triggered when an event occurs which affects the referenced entities or the traceability
relationship itself. To support operational semantics for traceability c argue that a set of
semantic properties should be defined. Each semantic property is a triplet of the form:

{event, condition, actions} (2.2)

An event involves an element of the relationship, a condition is a logical constraint
of the relationship and actions can be either preventative or reactive. One of the main

51

2.4 Traceability Related Activities

shortcomings of this solution is the fact that they only specify three atomic events -
create, modify and delete. However, they do not propose what should happen with more
complex events such as merge or split actions. Additionally, they do not specify how
the various events should be recognized in order for the actions to take place.

2.4.3.2 State-based Traceability Maintenance

In this method, the detection of model changes takes place by comparing an instance of
the model under consideration in time t1 with an instance of the model in time t0, where
t0 is the time when the model was checked for the last time. This comparison can take
many different forms. Usually, all the artefacts under consideration are expressed in a
common representation, such as XMI, and then their diff is calculated. Change detection
can take place either in predefined times (for example when a model is saved) or when
the user requires to ensure that the trace link integrity is not violated. If model changes
are detected, the trace links, which refer to those models should be updated. If there
are predefined policies associated with the detected changes, then the link maintenance
can be done automatically. State-based approaches are often limited in detecting only
syntactic model changes, while semantic model changes can jeopardise the link integrity
as well. To out knowledge, an approach which addresses this issue does not exist up till
now.

An example of a state-based approach is the one proposed by (Sharif & Maletic,
2007). In this approach a difference tool such as EMFCompare is used to identify syn-
tactic differences between different versions of a model. Based on these differences and
user input the links are evolved. (Maletic et al., 2005) propose an analogous approach.
Text differencing is used to identify syntactic changes in different versions of source
code or of XML representations and according to the identified changes user input is
required to reconcile the dangling trace links.

2.4.4 Traceability Usage

Recording and maintaining traceability is not an end in itself. On the contrary, traceabil-
ity is deployed in the development life cycle of a software system to support different
development and maintenance activities. Following (Aizenbud-Reshef et al., 2005), the
type of traceability information captured for the needs of a project depends mainly on

52

2.4 Traceability Related Activities

the project’s traceability goals, i.e. the intended use of the traceability information. Re-
views of different traceability usage scenarios are presented in (Gotel & Finkelstein,
1994; Ramesh & Edwards, 1993; von Knethen & Paech, 2002). The main goal of this
section is to identify and briefly describe the various traceability usage scenarios re-
ported in the traceability literature.

2.4.4.1 Traceability for change management and impact analysis

One of the primary motivations for capturing traceability information between various
artefacts of the development lifecycle is the ability to use the established relationships
in order to assess the potential impact of changes in one part of the system to other parts
of it (change impact analysis). The ability to determine the impact of a change improves
the maintenability of a system according to many researchers such as (Arkley & Riddle,
2005; Neal, 1994). Moreover, traceability information can help the engineers make
decisions about whether such changes should be introduced and with which priority
(change management) (Spanoudakis & Zisman, 2005).

Primary change impact analysis consists of identifying particular traceability rela-
tion types of interest as well as possible attributes associated with them. In this simple
form of impact analysis, all the artefacts which are associated to the artefact which is
changed are identified and the possibility of their being affected by this change is as-
sessed based on the type of relationship they have with the changed artefact.

(Spanoudakis & Zisman, 2005) argue that more complex forms of impact analy-
sis might be needed depending on the scenario. Examples of such scenarios include
the classification of affected artefacts into different groups depending on the effect the
change will have on them or the estimation of the cost of propagating the change. To
support such complex scenarios, semantically-rich traceability must be established be-
tween the various artefacts. The necessity of having rich traceability semantics in order
to use traceability for impact analysis in complex scenarios has been identified by em-
pirical studies (Bianchi et al., 2000; Sandahl, 1996). Moreover, the granularity of the
relationships affects the results of impact analysis (Bianchi et al., 2000).

Traceability for impact analysis purposes has been proposed by many authors. (Go-
tel & Finkelstein, 1994) and (Ramesh & Edwards, 1993) propose the use of trace links

53

2.4 Traceability Related Activities

to trace changes of requirements to downstream artefacts. In such cases, trace infor-
mation could be used to assess the impact of the change on implementation time as
well as on implementation costs. Furthermore, (Arkley & Riddle, 2005) propose the
use of trace links to predict the impact of requirements changes on the quality of a
system, such as the stability of it. (von Knethen & Grund, 2003) have developed a tool
named Quatrace, which can be used for semi-automatic impact analysis based on traces.
(O’Sullivan, 2003) came up with a UML model-based approach to impact analysis that
can be applied before any implementation of artefact changes, thus allowing an early
decision-making and change planning process.

Finally, traceability information can be used to propagate changes between related
artefacts so that those artefacts remain synchronised and consistent. (Fritzsche et al.,
2008) discuss how trace links can be used to relate performance models with appli-
cation models in order to provide to the developers performance prediction feedback
mechanisms.

2.4.4.2 Traceability for V&V activities

Trace links can provide the basis for performing validation and verification analysis. By
validation, it is meant the analysis undertaken to ensure that a system fulfills its intended
purpose. On the other hand, by verification it is meant the analysis undertaken to ensure
that a system is build according to its specification. Traceability is mandated in several
standards like DO-178b (for Aeronautics , RTCA) fof V&V purposes.

In (von Knethen et al., 2002), preliminary system verification takes place by com-

posing dependency and satisfiability relations in order to establish whether all the re-
quirements of a system have been allocated to specific design or source code compo-
nents. Moreover, in (Gotel & Finkelstein, 1995) contribution trace links are used to
identify stakeholders and involve them in requirements validation activities. Finally,
(Ramesh & Edwards, 1993) uses traceability information to detect inconsistency, in-
completeness and other defects of requirements specifications.

For the purpose of system verification, (Fiutem & Antoniol, 1998) present an ap-
proach to check the compliance of OO design with respect to source code using trace-
ability information. Similarly, (Spanoudakis & Kim, 2004) propose techniques for de-
tecting overlap relationships between structural and behavioral object-oriented models

54

2.4 Traceability Related Activities

of software system and then they use this information to checks whether the overlapping
elements satisfy specific consistency rules and. In cases where these rules are violated,
the proposed approach guides software designers in handling the detected inconsisten-
cies.

2.4.4.3 Traceability for Testing

In addition to the aforementioned usage scenarios, traceability relationships can be used
to check the existence of appropriate test cases for testing different requirements. The
results of such analysis usually provide input to software inspection and auditing activi-
ties (von Knethen et al., 2002). Furthermore, traceability can be used to related possible
solutions for failed tests to the actual problems (Figure 2.10) (Arkley & Riddle, 2005).

Figure 2.10: Traceability relating problem statements and solutions by (Arkley & Rid-
dle, 2005)

55

2.4 Traceability Related Activities

2.4.4.4 Traceability for Understanding the System

One of the main uses of traceability is for understanding various artefacts in reference
to the context in which they were created or in reference to other artefacts related to
them (Spanoudakis & Zisman, 2005). Hence, traceability is of paramount importance
in cases where artefacts are assessed or maintained by individuals other than the ones
who created them. Furthermore, in development scenarios where many heterogeneous
artefacts are developed, traceability can be used to understand the interdependencies
between those artefacts (Aizenbud-Reshef et al., 2006a)

Several approaches use traceability in order to relate source code to manual pages,
requirement models and system documentation (Antoniol et al., 2002; Maletic & Mar-
cus, 2001; Marcus & Maletic, 2003). Moreover, rationalisation relationships have been
proposed as a way for providing rationale about the form of requirements and system
design artefacts (Pohl, 1996a; Pohl et al., 1999; Ramesh & Dhar, 1992). (Arkley &
Riddle, 2005; Ramesh & Edwards, 1993) also use trace links to relate artefact rationale
with its related artefact.

(Sabetzadeh & Easterbrook, 2005) suggest the use of traceability information for
mapping different viewpoints of a system to each other. (van den Berg et al., 2006) trace
relations to define crosscutting, i.e.the phenomenon which occurs when, in a mapping
between source and target, a source element is scattered over many target elements and
where in at least one of these target elements, one or more other source elements are
tangled.

Another common use of trace links is in system reengineering where traceability
information is used to relate components of a legacy system with components of a new
system depending on their functionality (Ebner & Kaindl, 2002). Finally, in model
transformation scenarios, trace links can be used for debugging the transformation.

2.4.4.5 Traceability for Reuse

Traceability can be also used to identify reusable artefacts at different levels of abstrac-
tion during the development process. After being identified, such artefacts can be reused
through different scenarios. During the development of a new system, already imple-
mented requirements could be identified and reused together with their related design
and implementation (Constantopoulos et al., 1995). This is a very frequent scenario in

56

2.5 Traceability in Practice

product line software engineering, where a new variant of an existing system is created
(Arkley & Riddle, 2005).

The abovementioned scenarios concern mainly traceability relations between arte-
facts at different abstraction levels. (Alexander, 2003) and (von Knethen et al., 2002)
propose the use of horizontal traceability for artefact reuse. Specifically, the former in-
troduces a method to relate product requirements to existing use cases, while the latter
proposes an approach for the reuse of coarse-grained requirement specifications ex-
pressed in structured text.

2.4.4.6 Traceability for Software Project Management

Another common use of traceability is for software project management purposes. (Go-
tel & Finkelstein, 1994) argue that trace links can be used for assessing the develop-
ment process. This can be done since traces comprise a log of events occurred during
the development of the system. This log could provide valuable information by being
analysed using various metrics. Moreover traces can be used to monitor the status of
requirements during development. That is requirements can be tracked through the var-
ious development phases such as implementation and testing (Arkley & Riddle, 2005;
Ramesh & Edwards, 1993). From a project management point of view, traceability in-
formation can be used to rate requirements according to their risk or priority (Ramesh
& Edwards, 1993). This can be achieved by using traceability relationships to trace re-
quirements back to their goals. Finally, (Pohl, 1992) propose the use of traceability to
identify and reuse best practices during software development.

2.5 Traceability in Practice

In the previous section, the relevant literature on traceability research has been pre-
sented. The purpose of this section is to discuss briefly the use of traceability in indus-
trial settings. In section 2.5.1 the most well-known traceability tools are presented. In
section 2.5.2, empirical studies about the use of traceability in industrial organisations
are discussed, while in section 2.5.3 various limitations in current traceability practices
are identified.

57

2.5 Traceability in Practice

2.5.1 Traceability Tools

The main focus of this section is on traceability tools. There are three categories of tools.
The first one consists of tools which support traceability as a secondary functionality.
The second category consists of tools whose main functionality is traceability support.
Finally, the third category consists of tool chains, in which traceability support plays an
important role.

2.5.1.1 Tools with Traceability Support

There are many CASE tools which provide traceability support. The Requirements-
Driven Design system (RDD-100) (Holagent, 2005) is a software product family prod-
uct which is dedicated to requirements analysis, modeling, and design. The tool is built
on an entity-relationship-attribute database and it supports functional flow modeling,
data modeling, behavioural modeling, requirements analysis, report and document gen-
eration. Entity-Relationship-Attribute modeling is the basis through which requirements
traceability is achieved. Requirements are represented as entities and relations define
named bi-directional links to other requirements or other information stored within the
tool.

Another example of a tool with traceability support is Modelio (Softeam, 2010),
which is a modeling tool supporting dictionaries, requirements, business rules, and goals
and report generation. Modelio provides full support of the UML standard as well as of
the Business Process Modeling Notation (BPMN). The traceability support of the tool
comes either in the form of traceability matrices or traceability models, as well as with
a predefined set of traceability links.

Finally, the Software Concordance (SC) Editor (Nguyen & Munson, 2003) is a plug-
gable architecture to support the integration of editors for different types of software
artifacts. The SC environment is compatible with XML-based document editing en-
vironments since it supports the integration of editors for new document types whose
internal representation is XML-compatible. Traceability links between different ele-
ments are represented using a formal hypertext model. This hypertext model can be
defined as “a set of intellectual works and their inter- and intra-work relationships, rep-
resented by links, in combination with a user interface for viewing instances of these
works and navigating from instance to instance across links” (Whitehead, 2000). A

58

2.5 Traceability in Practice

work is an artefact that can be drawn from any medium, such as text or image. The
links are mainly recorded manually by the user. The tool also provides facilities for the
automatic recording of conformance links IR techniques (Maletic et al., 2003), as well
as support for the automatic handling of link evolution.

2.5.1.2 Specialised Traceability Tools

While in the previous section, we have discussed some examples of tools whose main
functionality is not related to software traceability but they provide some limited trace-
ability support, in this section we discuss some examples of tools which focus mainly
on traceability support.

An example of such a tool is DOORS (IBM, 2010)- which is a requirement man-
agement tool. One of the main functionalities of this tool is to provide requirements
traceability support. This is achieved by using hypermedia technologies. DOORS lets
the engineer define attributes for the linked artefacts or even for the links. This attributes
can define the purpose of links or their priority. For projects with process improvement
goals, rules for link creation and direction can be defined, which helps users follow the
process and prevent careless mistakes. With the addition of link information to history
records. DOORS is a very intuitive and practical tool and this is how its popularity in
the industry is explained. However, it is arguably not a very flexible tool, since it comes
with a generic set of trace links and it does not distinguish between different kinds of
links that can exist between different artefacts.

Another requirements management and traceability tool is RTM (Serena Software
Inc., 2010). RTM is a requirements management tool implemented on top of an Oracle
database. All requirement documents are stored in the database and each document has
an id, while each paragraph has a number. Requirements can be refined and the trace link
which relates the old and the new requirement is a substitutes link. Moreover, tests for
the requirements can be defined and those tests can be linked back to the requirements
using traceability information. Finally, the tool can perform impact analysis. When a
requirement changes, the tool can determine which other artefacts are affected.

(Pohl, 1996a) proposes the PRO-ART tool, which is a requirements engineering
environment. PRO-ART enables requirements pre-traceability by enabling the user to
define and execute a requirements engineering process in a very fine-grained way. The

59

2.5 Traceability in Practice

tool guides the user through the requirements elicitation and specification activities. As
a result, traces between requirements are captured automatically by logging all the ac-
tions which take place in the tool and then by processing those logs. As a framework for
structuring the trace information the tool adopts the Information Resource Dictionary
Standard (IRDS) Standard (ISO/IEC, 1990).

While PRO-ART is focused on requirements traceability, the Traceability for Object-
Oriented Requirements (TOOR) tool (Pinheiro & Goguen, 1996) is more generic in the
sense that TOOR is neither process-oriented nor restricted to requirements elicitation.
TOOR’s purpose is to enable traceability between requirements and other artefacts of
the development process such as design modules or system documentation. The idea be-
hind this tool is to specify the various traceable artefacts that can take part in a software
development process, use TOOR to input these artefacts as they are created, and then
trace requirements, making use of the relations among the current collection of arte-
facts. The aforementioned artefacts as well as traces between them are expressed in a
declarative high-level object-oriented programming language called FOOPS. Moreover,
TOORprovides a powerful mechanism for querying the various traceability information,
which are generated and stored in the tool.

2.5.1.3 Tool chains

In this category of traceability tooling, the majority of the development activities takes
place using different and often heterogeneous tools and traceability information is gen-
erated and managed at the level of the middleware, which is used for the integration
of the various tools. An example of such an approach is the platform proposed by the
OPHELIA project (Hapke et al., 2004). Traceability in the OPHELIA platform takes
place at the traceability layer (Smith et al., 2003). Traceability is achieved by repre-
senting all artefacts of the software engineering process as CORBA objects and then
allowing the engineer to define relationships between all CORBA objects in a dedicated
tool which is called Traceplough.

In the approach proposed by the OPHELIA project, traceability information is gen-
erated and stored in the middleware which is used for tool integration. Hence, it is kept
separate from the various related artefacts. Contrary to this, the approach proposed by

60

2.5 Traceability in Practice

the GENESIS platform (Boldyreff et al., 2002) keeps the related artefacts and the trace-
ability information together. The GENESIS platform supports cooperation and com-
munication among software engineers belonging to distributed development teams in-
volved in modeling, controlling, and measuring software development and maintenance
processes. It is made up of three main elements: a distributed workflow management
system, a resource management system, and an artefact management system. The arte-
fact management system is used to store and retrieve any item produced by any member
of a software engineering team. Each stored artefact is accompanied by meta-data about
its history and dependencies on other artefacts.

Aother approach which attempts to integrate the traceability information in the dif-
ferent tools of the tool chain is the one proposed by (Sherba et al., 2003). The tool they
have developed is called TraceM and its conceptual framework is illustrated in Figure
2.11. The main elements of this framework are tool, artifact, relationship, and metadata.
A tool is something that a stakeholder uses to perform a task such as a word processor
or a UML diagramming tools. An artefact is produced by a tool. A relationship is a
semantic association between artefacts, portions of artefacts, or relationships. Metadata
allows a method engineer to describe the artifacts and relationships that are created and
used during the project.

To conclude this brief presentation of the various traceability tools, we must ac-
knowledge that a direct comparison between the various tools is very difficult for two
main reasons. First, the various tools focus on different aspects of the development
process such as the requirements elicitation phase or the whole development life-cycle.
Therefore, the requirements for each tool are different. Second, while some of these
tools are used widely in the industry (e.g. DOORS), others are only prototypes which
are used in small industrial projects. Despite all the research efforts, tool integration is
still a big issue in software traceability. (Aizenbud-Reshef et al., 2006a) identify the
lack of tool integration as one of the main challenges in traceability.

2.5.2 Empirical Studies

Various empirical studies have taken place in order to investigate the traceability prac-
tices in industrial organisations. These studies have indicated substantial differences

61

2.5 Traceability in Practice

Figure 2.11: TraceM conceptual framework (Sherba et al., 2003)

62

2.5 Traceability in Practice

in the relevant practices, which depend on environmental, organisational and technical
factors.

Following (Arkley & Riddle, 2005), one of the main factors that hinders the use of
traceability in industrial projects is the ability to capture and maintain useful traceability
information in a cost-effective manner. The main source of the problem according to
(Arkley & Riddle, 2005) is the heterogeneity of the tools, which are used during soft-
ware development as well as the lack of interoperability among those tools. Hence,
traceability is considered to be an expensive activity especially for small or short-term
projects.

The aforementioned cost of traceability is even higher if developers need to be
trained in order to use the traceability tools and techniques. (Alexander, 2002) has
found that most stakeholders are not familiar with tools and techniques to capture, man-
age and use traceability information. Moreover, (Gills, 2005) has found that for almost
every IT project, organisations develop a new traceability metamodel. As a result this
adds to the effort required for supporting traceability.

The accuracy and effectiveness of any analysis which uses trace links depends heav-
ily on the quality of the trace links, namely the correctness and completeness of trace-
ability information. However, these two properties can not be guaranteed for either
manual or automatically generated links (Lindvall & Sandahl, 1998). As a result, or-
ganisations rely on the experience and knowledge of engineers in order to perform par-
ticular types of analysis instead of using captured traceability relationships.

Despite the aforementioned problems with the use of traceability in industrial set-
tings, success stories can be found in the traceability literature. (Kirova et al., 2008)
describe their experiences in defining and deploying a traceability framework that meets
the strategic goals of the host organization, its project needs and process improvement
objectives. The derived benefits from their framework are reported in detail. A striking
example of the effect of successful traceability practices on the software development
process is the fact that using their framework reports and reviews that used to take
one to two days to prepare, they can be obtained in seconds. A similar success story
is reported by (Asuncion et al., 2007), who present a successful end-to-end software
traceability tool developed at Wonderware, a software development company.

The abovementioned success stories are not common though. Usually, trace links are
not captured or maintained in a consistent and rigorous way. Moreover, they are almost

63

2.5 Traceability in Practice

never consulted as support for software development activities. In the next section, we
will briefly present the main factors, which affect the use of traceability in the industry.

2.5.3 Limitations

Although the advantages of traceability are well documented, traceability practice is
not widely spread, as it can be seen by the various empirical studies. In this section, the
limiting factors affecting traceability are briefly discussed.

(Winkler & von Pilgrim, 2009) provide a classification framework for categorizing
the factors, which prevent the wide adoption of traceability practices in industry. This
classification framework consists of four categories. These categories are:

• Natural factors, which are related to the imprecise and incomplete nature of
traceability.

• Technical factors, which are related to the technical aspects of traceability.

• Economic factors, which are related to the difficulty to measure the Return on
Investment (ROI) of traceability.

• Social factors, which have to do with how humans affect traceability practices.

We argue, that technical limitations to traceability arise mainly because of the other
three limitations. If for example, traceability was complete and well-defined many of the
recording technical limitations would not have existed. Hence, for this thesis, traceabil-
ity is only limited because of natural, economic and social factors. In the following we
will briefly discuss these three categories and how they can affect traceability practices.

2.5.3.1 Natural Factors

As was discussed in section 2.4, what traceability is, what kind of trace links should
be captured, and how this information should be used is not universally agreed. There
is no complete traceability scheme or metamodel and many researchers believe that
such a metamodel can not exist (e.g. (Winkler & von Pilgrim, 2009)). This imprecise
nature of traceability leads to many of the problems mentioned above. (Stone & Sawyer,
2005) argue that the information needed for capturing and maintaining traceability is

64

2.5 Traceability in Practice

considered to be tacit. This makes the identification of the types of trace links needed
for a project a difficult task.

Additionally, traceability practice is not only affected by the imprecise nature of
traceability but also by the imprecise nature of other activities of the software develop-
ment lifecycle. This is mainly the case during the initial phases of a project such as the
requirement elicitation activities. It is very common the artefacts that result from these
activities are expressed in natural language or in informal notations (Goguen, 1996).
These artefacts are very often imprecise, ambiguous and incomplete. As a result, cap-
turing and maintaining trace links from and to those artefacts is very difficult.

2.5.3.2 Economic Factors

These limiting factors to traceability practice adoption have mainly to do with the costs
of traceability in relation to its benefits as it is perceived by the stakeholders of a project.
Usually, it is considered by management that traceability is optional work for which
insufficient resources are allocated (Wieringa, 1995). This is in accordance with the
belief of many engineers that traceability recovery and maintenance is costing them a
lot of effort (Flynn & Dorfman, 1990).

There is a inverse relationship between the cost of traceability and the degree of
automation which can be achieved. That is, the higher the automation for capturing and
maintaining traces, the lower the cost of traceability.

Another factor which affects the cost is the customisation needed for various trace-
ability tools (Dmges & Pohl, 1998). Due to the project-specific nature of traceability,
tools most of the time need some short of customisation in order to be used for a par-
ticular project or in a particular organisation. As a consequence, the higher the effort
for customising the relevant traceability tools or the interfaces among the tools of a tool
chain, the higher the cost of traceability. As it is discussed in the previous sections,
due to the nature of traceability it will never be possible to have a generic definition of
trace types or a generic traceability tool which could fit exactly the needs of different
projects. Consequently, traceability will always be a costly activity. What can be done
though is that this cost can be minimised by providing ways to support project specific
traceability. By minimizing cost of traceability and by acknowledging the big benefits
of using traceability, traceability can be made attractive for project managers.

65

2.5 Traceability in Practice

(Heindl & Biffl, 2005) propose a value-based requirements tracing process in order
to address the issue of the high traceability cost. The goal of their approach is to iden-
tify traces based on prioritized requirements and thus to identify which traces are more
important and valuable than others for the organisation. The authors have explored the
effects of their approach using a case study. The findings of their case study are quite
promising. Their approach was used in a real-life project setting and it was compared
with ad hoc tracing and full tracing in terms of costs and benefits. One of the main
results of the case study show that value-based traceability took around 35% less effort
compared to full tracing. Moreover, risky requirements needed more detailed tracing
and this was achieved with the proposed approach. One thing which remains unclear
with this work is how the particular tools used for the purposes of tracing affect the
results. Their findings were used to develope a tracing activity model (TAM) (Heindl
& Biffl, 2008), as a framework for comparing different tracing strategies. This frame-
work can be used to inform managers about the costs and benefits of alternative tracing
strategies.

Following (Egyed, 2006), the cost and complexity of traceability can be dealt with
by limiting trace analysis to some necessary minimum. Unfortunately, engineers rarely
predict accurately which trace dependencies are more important than others. The au-
thor proposes a value-based approach to assist engineers into deciding which traces are
needed, when they are needed and at what level of precision, completeness and correct-
ness. This approach could reduce the cost of traceability by avoiding unnecessary trace
recovery and maintenance. Cost of traceability can also be reduced by tailoring the pre-
cision, completeness and correctness of trace links depending on their intended usage.
To investigate more about the trade-off between these three attributes and traceability
cost, (Egyed, 2009) has conducted three case studies. The results of these case studies
show that cost and effort of traceability can be reduced by reducing the granularity of
the traceable artefacts. More precisely, they have found that requirements-to-class-level

granularity provides higher value for money compared to requirements-to-package-level

and requirements-to-method-level granularity. Consequently, they argue that reducing
the granularity of the traceable artefacts reduces the benefit from using traceability in-
formation. Finally, the authors of this work argue that the essential attributes for a
traceability approach are completeness and correctness, since they play an important
role in follow up activities such as software maintenance.

66

2.6 Concluding Remarks on Traceability

2.5.3.3 Social Factors

It is widely accepted in the traceability literature, that traceability practices can never
be fully automated (Egyed, 2006). Therefore, humans play an important role in cap-
turing and maintaining traceability. Motivating the stakeholders who are responsible
for traceability is of paramount importance for successful traceability practices. Lack
of motivation is identified as a limiting factor to traceability by (Gotel & Finkelstein,
1994). According to this work, the individuals who are responsible for capturing traces
are different from the individuals who use them. This results to low motivation on the
side of the ones responsible for capturing the traces and consequently the quality of the
captured traces is very low. Moreover, (Hayes & Dekhtyar, 2005) argue that human
analysts do not trust the traces produced by automated traceability methods and many
times they make the results of such methods worst. This can be the result of missing
motivation or lack of understanding of traceability.

2.6 Concluding Remarks on Traceability

The focus on the previous sections was on traceability research, as well as on current
traceability practices and limitations. Traceability is a very broad research area which
covers the entire software development lifecycle. Since the first traceability tool (Pierce,
1978) in 1978, traceability research has gained increasing attention. Despite this, there
are still many open issues regarding traceability. In Chapter 4, we will identify these is-
sues and analyse the traceability research landscape by using a systematic, rigorous yet
practical evolutionary method. This survey method will systematically capture the evo-
lutionary interrelationships of current traceability approaches, thus providing a formal
framework of understanding. This will be achieved by using the key characters from the
existing approaches described in this chapter and by classifying those approaches on an
evolutionary dimension based on their common descent.

2.7 Model Driven Engineering

The proposed approach to traceability in this thesis, which will be presented in the next
sections, is based on the principles of Model Driven Engineering (MDE). Hence, in this

67

2.7 Model Driven Engineering

section, we will briefly discuss what MDE is and we will present the key topics relevant
to this work.

2.7.1 A Basic Theory of Models

In the MDE approach to software engineering models are promoted to primary artefacts
of the development process. Therefore, a thorough understanding of the basic principles
underlying models and modeling core concepts is essential for comprehending the new
paradigm in software engineering.

Models are of central importance in every aspect of human life. The capacity to
build models is an innate ability, without which it would be impossible for humans to
cope with everyday complexity. The unconscious process of model building leads to
the reduction of this complexity by abstracting away unnecessary details of the human
environment. In science, modeling is very crucial , since it is one of the determinants
in theory development. In all engineering disciplines, models are used widely to predict
the behavior of artefacts before they are actually built (Ludewig, 2003).

Models are of great significance in software engineering as well. Almost every
process during the development of software implies some kind of modeling. Hence,
software engineers and computer scientists spend a great deal of time building, testing
and revising modeling languages, models and modeling tools. In short, models are one
of the fundamental instruments of modern software engineering. Therefore, a thorough
understanding of the basic principles underlying models and modeling core concepts is
essential.

Giving a precise and universal definition of the term model is very difficult. The root
of the term model is the Latin word modulus, which means measure, pattern, example
to be followed . Since, models are applied in almost every facet of modern science and
engineering, different and often conflicting definitions exist. From a philosophical point
of view, a model is ”a mental construction that, based on the reality, reproduces the
main components and relationships of the analyzed segment of the reality (G. Kappel
& Wimmer., 2006). In this definition, the term model is considered in the context of the
empirical sciences. The functionality of such models is purely representational and the
materialization of such mental constructs is not required. Models then act as a ”sim-
plification” of reality, abstracting away redundant details and emphasizing the features.

68

2.7 Model Driven Engineering

The relationship of the model and the reality is said to be isomorphic, a term borrowed
from mathematics1

In biology, ”a model is a description of a system. A system is any collection of
interrelated objects. An object is some elemental unit upon which observations can be
made but whose internal structure either does not exist or is ignored; a description is a
signal that can be decoded or interpreted by humans” (Haefner, 2003). Finally, quoting
(Rothenberg, 1989):

Modeling, in the broadest sense, is the cost-effective use of something in
place of something else for come cognitive purpose.It allows us to use
something that it is simpler ,safer or cheaper than reality instead of real-
ity for some purpose.A model represents reality for the given purpose; the
model is an abstraction of reality in the sense that it cannot represent all
aspects of reality. This allows us to deal with the world in a simplified
manner,avoiding the complexity,danger and irreversability of reality.

As it is evident from the definitions provided, there is no universal agreement as to
what exactly a model is.

For the purposes of this work, we will use the definition provided by (Ludewig,
2003). Subsequently, “the particular strength of models is based on the idea of abstrac-
tion. A model is “a representation of an original”. The idea of abstraction, which is
used in this definition is actually what differentiates a model from a copy.

Various classifications of models exist. One such classification is that of (Seidewitz,
2003). He suggests that there are two classes of models- descriptive and prescriptive

models.The former are models, which echo exactly the system under study. Such mod-
els are usually met in traditional scientific disciplines,such as physics and chemistry. In
software modeling, these models are used to illustrate how a system works; for instance
a Unified Modeling Language(UML) class model could be employed to describe the
class structure of an object-oriented software system. The aforementioned UML model
would be valid if the class structure was consistent with the descriptive model. The latter

1”The word ”isomorphism” applies when two complex structures can be mapped onto each other, in
such a way that to each part of one structure there is a corresponding part in the other structure, where
”corresponding” means that the two parts play similar roles in their respective structures.” (Hofstadter,
1979)

69

2.7 Model Driven Engineering

class consists of models, which specify the system to be created (Ludewig, 2003). Such
models are usually used in traditional engineering disciplines. Specifically, in software
development models are employed to design software systems. So, the aforesaid UML
model used to describe an object-oriented software system, can be also used to design
the system.In the case of a prescriptive model, if the system deviates in anyway from
the model, then it is the system,which is invalid and not the model (Seidewitz, 2003) .

A hierarchy of models used in software engineering is produced by (Cowling, 2005).
This hierarchy is illustrated in Figure 2.12.

Figure 2.12: A hierarchical structure for modeling in software engineering (Cowling,
2005)

At the top level of his hierarchy there are two orthogonal aspects of modeling. The
first of those aspects refers to the types of models that can be build and this can be
subdivided into two more subcategories. One of these subcategories is concerned with
qualitative or structural models, which relate to the description of the various properties
of the entity modeled and the relationships among them. The other type of models at
this level of the hierarchy is quantitative models, which model the measurable prop-
erties of the modeled entity. Further down, the qualitative models are subdivided into
formal models and diagrammatic ones. The diagrammatic ones employ usually boxes
and lines to model an entity and then visualize it (e.g. UML). The formal models use
mathematical notations to model the world (e.g. the Z notation (Spivey, 1989)). Cowl-
ing identifies two different purposes for the models used in software engineering. The
first one is concerned with the models used to describe software products, for example

70

2.7 Model Driven Engineering

models used to describe software architectures or requirements for a software system.
The second purpose of the models used in software engineering is to describe software
development processes. Finally, product models are subdivided into three different ar-
eas. Models, which describe the functionality of a system. Models, which describe the
behavior of a system and finally models, which describe the cost of construction of a
system.

Another criterion,which can be used to classify models is the degree of formalism
used for the model specification and verification. Formal models have unambiguous
and precise semantics. This is accomplished by the utilization of mathematical nota-
tions such as Z (Woodcock, 1996) and B-method (Wordsworth, 1996). Even though
formal methods add rigor in the process of defining models, software developers seem
unwilling to use them. This is mainly due to several issues related to formal methods
such as the inability of mainstream programmers to apply them (Bowen, 1994) or their
limited scalability (Sommerville, 2004). Conversely, semi-formal models employ infor-
mal methods such as natural language, in to define their semantics. By doing so , greater
flexibility is achieved, since different interpretations in different contexts are allowed.
Unlike formal methods, semi-formal methods are used widely in the software industry.
Examples of such semi-formal modeling technologies are MOF (Object Management
Group, 2006a) and EMF (Eclipse Foundation, 2010a).

Following (Ludewig, 2003), who quotes a German text written by (Stachowiak,
1973), a model must meet three criteria so as to differentiate itself from any other
artefact. The first one is the mapping criterion according to which a model should
be mapped to a phenomenon or object. The second one is called reduction criterion.
As indicated by this criterion, not all properties of the system under study should be
mapped to the model describing it. The fewer the amount of properties mapped, the
higher the level of abstraction of the model. Finally, the last criterion is the pragmatic

criterion, which suggests that the original can be substituted by the model for some par-
ticular purpose. If and only if all these criteria are met, an artefact can be considered to
be a model.

Before concluding this brief introduction to models, two more modeling concepts
should be introduced. The first one is the concept of a modeling language. According
to (Seidewitz, 2003), a modeling language supports the representation of statements
in models of particular systems under study. For the time being, the most prominent

71

2.7 Model Driven Engineering

modeling language in the field of software modeling is UML. The second concept is
that of the interpretation of a model. By interpreting a model, the model elements are
mapped to the elements of the system modeled. By doing so, the truth value of the
statements in the model can be determined.

The above discussion summarizes the fundamental key terms and concepts behind
models and modeling in general, using examples from the domain of software engineer-
ing , where applicable. Understanding the basics of model theory is imperative, since
models play a crucial role in software development practice. In the following, we will
briefly present the basics of metamodeling and MDE.

2.7.2 Metamodeling

The old modelling practices of software engineering used to employ models only as
documentation for the produced software. This is in contrast to the modern practices
of MDE, where models are used as formal input/output of computerised tools (Bezivin,
2005). For this reason, models and modeling languages should be defined in a precise
and unambiguous manner. This is accomplished by the use of metamodels. Quoting
(Seidewitz, 2003)

A metamodel is a specification model for a class of systems under study
(SUS), where each SUS in the class is itself a valid model expressed in a
certain modeling language. That is, a metamodel makes statements about
what can be expressed in the valid models of a certain modeling language.

More simply put, a metamodel is the model of a modeling language. It consists of a
collection of the construct and rules needed to define a semantic model. The term meta

is just used to stress the fact that a metamodel describes a modeling language at a higher
level of abstraction. The activity of constructing metamodels is called metamodeling.
The basic uses of metamodels are language definition, domain-specific modeling and
model interchange (Gitzel & Korthaus, 2004).

Even though a metamodel is defined as a model, it is still differentiated from models
by two characteristics. The first one is that fact that a metamodels must belong to a
metamodel architecture. That is, it must belong to a framework, within which attributes
of a metamodel can be realized. This framework defines how metamodeling levels are

72

2.7 Model Driven Engineering

related to one another (Atkinson & Khne, 2001). The concept of a metamodel archi-
tecture is closely related to a metamodel hierarchy. Following (Gitzel & Hildenbrand,
2005), a metamodel hierarchy is defined as “a tree of models connected by instanceOf
relationships”. In this hierarchy, there is a reoot model and all the models, which have
the same distance form this root model belong to the same layer or level of the hierarchy.

The second characteristic, which distinguishes metamodels from models, is the fact
that they must have the expressiveness to capture all the essential features and properites
of a modeled language, i.e. its abstract syntax.

The above discussion summarises the conceptual framework of metamodeling. Meta-
modeling plays a crucial role in MDE, since it provides the necessary facility to define
semanticaly rich languages. This is imperative in the context of MDE, since languages
with exressional power can precisely capture various aspects of a problem domain.

2.7.3 MDE: Concepts and Practices

MDE provides a conceptual framework for the development of software intensive sys-
tems. (Kent, 2003), states that MDE combines methods, frameworks, processes, tools
and modeling languages in order to produce, efficiently and rapidly, quality software. In
the crux of MDE is the fact that all the artefacts produced during the software develop-
ment process are models, which are expressed in modeling languages. These models are
subjected to subsequent transformations until they reach a final state, where executable
code is produced. The MDE approach to software development differs from all the other
traditional development methods in the way artefacts are produced in each development
phase as well as in how these artefacts are processed. In MDE, as mentioned earlier, all
the artefacts are models, which are expressed in a well defined modeling language. This
enables the developers to manipulate and to transform all the produced models using
specialized computer-based tools (Alanen & Truscan, 2003). Such tools maximize the
gains from having models and minimize the effort and time needed to maintain them
(Kent, 2003).

(Alanen & Truscan, 2003) describe the MDE method using a 4-layer hierarchy. Ev-
ery layer contains functions not found in any other layer. These functions are used by
the next layer in the hierarchy.

73

2.7 Model Driven Engineering

Figure 2.13: Traceability Definitions

In layer three of the aforementioned hierarchy, the design of the system takes place
following a systematic approach.Firstly, the functional specification of the system oc-
curs until reaching a desired level of detail. Functional requirements are defined and
then these requirements are specified in a platform independent approach.At this point,
developers are only concerned about the functionality, which the system must deliver,
and the platform-specific details are not taken into consideration until later in the pro-
cess. Subsequently, the initial broad specification is transformed into a domain depen-
dent specification using domain based knowledge. By doing so, various generic reusable
components can be specified for the particular problem domain. The resulting domain
specific specification and the operations it will provide, will be used later to bridge the
functional specification with the platform dependent specification. The last stage of this
conceptual layer is to transform the domain dependent specification into platform de-
pendent. Following this design methodology, different target platforms can be chosen
for implementation. To do so, designers have to consider the resource needs of the do-
main operations derived in the previous stage, and then they have to ascertain which
platforms are capable of offering these resources. Finally, the domain specification is
directly mapped onto the chosen platforms. The end result of this process is a functional
specification of the system, which is both domain and platform dependent (Alanen &

74

2.7 Model Driven Engineering

Truscan, 2003).
In layer two of the hierarchy, the behaviour of the system is implemented using

mainly model transformations and model manipulation. In this level MDE scripts, ex-
pressed in the available modeling languages, are used extensively. These scripts are
small applications able to query or transform a target model. Three types of scripts are
required in the MDE process,which can be categorized according to the functionality
they offer. The first type is query scripts. These scripts are usually employed to gather
information from models,but they do not alter the model under examination in any way.
Other functions of query scripts are to define model constraints, design guidelines and
diagnostic software metrics. The second type of scripts required in an MDE process is
model transformation scripts. These scripts can be either update transformation or map-
ping transformation scripts according to the scope of their effect on the target model.
An update transformation script alters specific elements of a model. It comprises several
queries, which select particular elements from the model under consideration, and then a
delete,update, or create operation, which modify the selected elements.Thus, the source
model and the target model coincide. Update transformations are usually employed
when only a small part of the model needs modification. A special case of update trans-
formations, where the whole model is being modified, is called model refinement or
refactoring. Following Beck, a refactoring is “a change to the system that leaves its

behavior unchanged, but enhances some non-functional quality-simplicity, flexibility,

understandability,”(Beck, 1999).
The second type of transformation script is the mapping transformation. Contrary

to update transformation, a mapping transformation transmutes elements of the source
model to elements in one or more target models. Depending on whether the source and
target models belong to the same formalism, mapping transformation scripts can be fur-
ther categorized to model translation and language translation scripts. The former can
be used to define mappings between models in the same language, while the latter can
be used to define mappings between models in different languages (Kent, 2003). An-
other classification of a mapping transformation can be done according to the level of
abstraction of the source and target models. A horizontal transformation is a transforma-
tion which takes place among models, which reside on the same level of abstraction. On
the other hand, a vertical transformation is a transformation, which takes place among
models, which reside on different levels of abstraction (Mens et al., 2005). The main

75

2.7 Model Driven Engineering

difference between the mapping transformation approach and the update transformation
approach is that when a mapping transformation is performed a new model is produced,
while the source one remains intact (Gerber A., 2002).

One of the fundamental aims of model transformations is to generate artefacts through-
out the software development process. Those artefacts are produced using specialized
computer-based tools and can range from documentation or alternate specifications to
code. The aforementioned tools must posses three characteristics. To begin with, such
tools must comply with the syntax of the target language. Then, they have to com-
ply with the semantics of the modeling language and to end with, they have to support
traceability and reverse engineering. The first characteristic guarantees the syntactic
correctness of the derived artefacts. Such a verification process is trivial according to
(Alanen & Truscan, 2003), since target languages comply to a well defined grammar
(e.g. BNF). The second characteristic guarantees semantic equivalence between the
target language and the the source model. Lastly, traceability and reverse engineering
should be features of the aforesaid computer-based tools, so that particular parts of the
target language could be mapped back to the original source model.

In the last two layers of the MDE hierarchy under consideration, the surrounding
environment of the MDE is described. This includes the interoperable tools used in
MDE, the facilities which are provided by those tools, available languages and model
manipulation rules. One of the indispensable advantages of the MDE techniques stems
from the fact that various phases of the software development process are automated by
the use of specialized tools. It is crucial for the success of an MDE approach that the
abovementioned tools are able to communicate with each other, since MDE is utilized
in such a vast domain of applications, which encompasses many diverse variables, that
it is impossible for a single tool to cover all of them. A prerequisite for the communi-
cation of these tools is the existence of a standard interchange format, with which all
the tools will comply (Stevens, 2003). An essential function,which should be provided
by the CASE tools, is a versioning system. As described earlier in this paper, the MDE
approach comprises successive transformations of models until executable code is gen-
erated. Nonetheless, the intermediate versions of models should not be discarded. On
the contrary, they should be stored and there should be a way the various tools to be able
to discern among the various versions of a model. Such a functionality can be very use-

76

2.8 Chapter Summary

ful, since transactional support for the various transformations can be realized (Alanen
& Truscan, 2003).

2.8 Chapter Summary

This chapter has presented the core principles of software traceability and identified
the core traceability activities. For each activity, the state-of-the art approaches have
been identified and a discussion on their advantages and shortcomings has been pro-
vided. Following that, a discussion on traceability practices has been presented. Based
on existing empirical surveys, limitations of current traceability practices have been dis-
cussed. At the second part of this survey, the principles of Model Driven Engineering
have been identified. These principles form the basis on which this work is founded. In
the next chapter we will identify the open research issues related to traceability based
on the conducted literature survey.

77

2.8 Chapter Summary

78

Chapter 3

Analysis of Software Traceability &
Hypothesis

In Chapter 2, a detailed review of the software traceability field was conducted. In
this review, the different approaches to traceability are presented and open issues are
identified. In this chapter, these findings are summarised and further analysed by using a
classification approach borrowed from Biology called phenetics or numerical taxonomy.
By using phenetics, we provide a formal framework for understanding the different areas
of traceability research by using different clustering techniques to classify the various
approaches. Based on the phenetic analysis, we will establish the research hypothesis
as well as the research objectives of this work. Finally, in the last section of this chapter
the research methodology will be outlined.

3.1 Introduction

A classification, as usually understood, allocates entities to initially undefined classes
or categories so that entities in a class are in some sense close to one another (Cormack,
1971). Following (Hempel, 1952), classification is a process which is basic to all scien-
tific and engineering domains, since it generates the concepts upon which a discipline
can begin to build an understanding of the phenomena within its domain. Moreover,
(Cormack, 1971) acknowledges that the most important step in conducting any form
of scientific study involves the ordering and classification of objects under study. In

79

3.1 Introduction

Cormack’s lecture to the Royal Statistical Society, the benefits of a classification were
summarised:

... the information about the entities is represented in such a way that it
will suggest fruitful hypotheses which cannot be true or false, probable or
improbable, only profitable or unprofitable.

Numerous classifications have been created to study software traceability approaches
(e.g. (Dahlstedt & Persson, 2003; Pinheiro, 2004; Spanoudakis & Zisman, 2005; von
Knethen & Paech, 2002; Wieringa, 1995; Winkler & von Pilgrim, 2009)), but to our
knowledge these classifications are informal in nature and none of them refers to, or ap-
plies, any concepts or techniques from the science of classification. Thus, the purpose of
this section is to produce a well defined theoretical classification of software traceability
approaches. This classification will be then used to establish the research hypothesis for
this thesis. To this end, Numerical Taxonomy or Phenetics (Sneath & Sokal, 1963), a
formal and scientific approach to building classifications, will be used.

In biological sciences, there are two main types of classification systems, phenetic
and phylogenetic. Phenetic systems, also known as taxometrics, is the numerical eval-
uation of the similarity between taxonomic units and the ordering of those units into
categories (taxa) on the basis of their affinities (Sneath & Sokal, 1973). The primary
aim of the approach is repeatability and objectivity. Phenetic techniques include various
forms of clustering and ordination, so that the variation displayed by entities is reduced
to a manageable level. In practice this means measuring dozens of variables, and then
presenting them as two or three dimensional graphs.

On the other hand, phylogenetic systems group entities of interest purely on the evo-
lutionary interrelationships of the various taxonomic units. This is achieved by using
morphological data matrices. The term phylogenetics is of Greek origin from the terms
phyle/phylon, which means “race” and genetikos, which means “relative to birth”. Phy-
logenetic systems are also referred to as Cladistic classification in honour of the German
entomologist Willi Hennig, who proposed the theory of Phylogenetic Systematic Prin-
ciple (PSP) (Ridley, 1993).

A classification problem is usually referred to as the λ-problem (Leseure, 2000) or
the φ-problem (McCarthy & Tsinopoulos, 2003). The λ-problem for this thesis aims to
group the various traceability approaches according to their similarity and then identify

80

3.2 Phenetics

knowledge gaps in the existing body of work. Since this investigation does not focus on
the evolutionary relationships between the various approaches but only on their overall
similarity, the phenetic method of classification seems the most appropriate. This is due
to the fact that this method considers the overall similarity of the taxonomic units and it
does not distinguish between plesiomorphies - traits that are inherited from an ancestor
- and apomorphies - traits that evolved anew in one or several lineages. In summary, the
aim of a phenetic classification of traceability approaches is to yield taxonomic groups
which bring together approaches with the highest proportion of similar attributes. Such
a classification could provide a system for conducting, documenting and coordinating
comparative studies of those approaches. In the next section, the basics of phenetics
will be briefly presented.

3.2 Phenetics

Phenetics establishes classifications of entities based on their similarities. It utilizes
many equally weighted attributes of the taxonomic units and employs clustering algo-
rithms to yield objective groupings. It is out of the scope of this work to describe in
detail how phenetics works. However, a brief description of the phenetic process will
be provided in this section.

The construction of a system of classification by numerical phenetic methods in-
volves six operation steps (Sneath & Sokal, 1973):

1. Select and assemble the units to be classified.

2. Select the characters and construct the data matrix.

3. Estimate the similarity among the units, based on their characters.

4. Formulate the taxonomic groups based on degrees of resemblance among the
units.

5. Validate statistically the results in order to find the best solution.

6. Interprete the results of the clustering.

81

3.2 Phenetics

Select and assemble specimens: The first step in the phenetic process is to select
and assemble the specimens, i.e. the entities under study. In the jargon of numerical
taxonomy, a specimen is referred to as an Operational Taxonomic Unit (OTU). For the
purposes of this study, the OTUs are the tracability approaches presented in section
2. For numerical analysis, the various OTUs are selected non-randomly. For example,
several approaches have been excluded from this study on the grounds that their docu-
mentation is limited. Due to the non-random nature of the sample, this approach should
be used only as a descriptive method for measuring the similarity in the sample. Any
conclusions ascribed to a larger population from which the sample was drawn (in this
case all the existing traceability approaches) must be based on analogy and not on in-
ferential statistics. The nonrandom sample of entities prevents us from testing statistical
hypotheses about the results of analysis. Hence, we must rely on informed judgment
to assess the risk of extrapolating our findings to the population from which the sam-
ple was drawn. However, following (Romesburg, 1984), if a sample seems typical of a
larger population of entities and if the sample size is large, the probability of incorrect
extrapolation is reduced. For the purposes of this study, although not all the existing
traceability approaches are included in the study, most of the approaches found in the
literature are included. This means that the sample size corresponds to a high propor-
tion of the entire population. Based on that, the results from the phenetic analysis can
be used for making assumptions about the entire population.

Forty-five traceability approaches have been chosen based on the availability of suf-
ficient information for each approach. From a sampling theory point of view it is an
intentional non-probabilistic sample. These OTUs are listed in Table 3.1. If the ap-
proach is supported by a tool, the name of the tool is provided in the parentheses. Since
an in depth literature review took place in chapter 2, a detailed discussion of the OTUs
will not be provided here.

Select the characters and construct the data matrix: Every one of the OTUs listed
in Table 3.1 possesses a set of characters, i.e. a set of observable features or attributes.
The terms character and attribute will be used interchangeably in this work. Charac-
ters play a fundamental role in a resulting classification since specimens are grouped
based on their characters. Quoting (Davis & Heywood, 1963), “although it is the or-
ganisms which are classified, it is their characters which provide the evidence used in

82

3.2 Phenetics

Source # Source # Source

1
(Amar et al., 2008)

16
(Lin et al., 2006)

31
(Sharif & Maletic, 2007)

(Etrace) (ArchTrace)
2 (Antoniol et al., 2002)

17
(Lucia et al., 2007) 32 (Sherba et al., 2003)
(ADAMS ReTrace) (TraceM)

3 (Cleland-Huang et al., 2003)
18

(Lucia et al., 2008) 33 (Sousa et al., 2008)
(ADAMS ReTrace)

4 (Costa & da Silva, 2007)
19

(Mäder, 2008) 34 (Spanoudakis et al., 2003)
(RT-MDD) (TraceMaintainer)

5
(Egyed & Grunbacher, 2002) 20 (Maletic et al., 2003) 35 (Spanoudakis et al., 2004)

(Trace Analyzer)

6
(Fabro et al., 2005) 21 (Maletic et al., 2005) 36 (Spanoudakis & Zisman, 2005)

(Atlas Model Weaver)

7
(Falleri et al., 2006) 22 (Marcus & Maletic, 2003)

37
(Vanhooff et al., 2007a)

(KERMETA) (UniTi)
8 (Grammel & Voigt, 2009)

23
(Murta et al., 2006) 38 (von Knethen & Grund, 2003)

(Trace-DSL) (Poirot TraceMaker) (QuaTrace)

9
(Grechanik et al., 2007)

24
(Natt och Dag et al., 2005) 39 (Walderhaug et al., 2006)

(LeanArt) (ReqSimile)

10
(Hayes et al., 2003)

25
(Olsen & Oldevik, 2007) 40 (Wenzel et al., 2007)

(RETRO) (MOFScript)

11
(Hayes et al., 2004)

26
(Pinheiro & Goguen, 1996) 41 (Bayerand & Widen, 2001)

(RETRO) (TOOR)

12
(Hayes et al., 2006)

27
(Pohl, 1996a)

42
(Ying et al., 2004)

(RETRO) (Pro-Art)

13
(Jirapanthong & Zisman, 2007) 28 (Ramesh & Jarke, 2001) 43 (Zimmermann et al., 2004)

(Xtraque) (ROSE)

14
(Jouault, 2005)

29
(Rose et al., 2008) 44 (Zisman et al., 2003)

(ATL) (EGL)

15
(Kolovos & Paige, 2010)

30
(Schwarz et al., 2009) 45 (Zou et al., 2006)

(EPSILON) (Graph-based Traceability)

Table 3.1: Operational Taxonomic Units for the phenetic analysis

classification”. In selecting the taxonomic characters, three types of characters should
be ignored:

• Characters that do not reflect the inherent nature of the OTU (e.g. if an approach
is supported by a tool or not).

• Characters, which do not vary in the group (e.g. all the approaches under consid-
eration deal with traceability).

83

3.2 Phenetics

• Characters, which are invariant, i.e. add no information (e.g. the name of the
creator of an approach).

The basic unit of information for a phenetic study is called a unit character. The unit
character is defined as a “taxonomic character of two or more states, which within the
study at hand cannot be subdivided logically” (Sneath & Sokal, 1963). The selection of
characters for use in a phenetic study is of paramount importance , since these characters
form the basis of the classification. In computing the similarity between taxonomic
units, all taxonomic characters are treated as of equal value and importance. Due to this
all character have the equal weight during the classification process.

The requisite minimum number of characters for a phenetic study is not known.
(Sneath & Sokal, 1973) recommend not less than sixty characters. However, they admit
that a requirement of such a number is arbitrary and cannot be justified. Hence, it seems
sensible to use as many characters and of as diverse nature as possible, in order to obtain
good representations of the entities involved.

Determining the characters is a two-step process - the search for characters and the
selection of characters. The former step is an idiosyncratic process, while the latter in-
cludes descisions such as rejecting a character as irrelevant or as introducing noise to
the data (McCarthy & Tsinopoulos, 2003). The process of determing the relevant char-
acters for a classification problem is also called character mining. The mined characters
for this thesis are listed in table 3.2. In Appendix A, each of the mined characters is
explained briefly.

The data set for the classification problem at hand consists of qualitative attributes
measured on nominal scale. Some of the attributes are binary, i.e. they have only
two states, while others are multistate. Since all the attributes are qualitative, they do
not need to be standardised. To code the multistate attributes, we have used dummy

binary attributes. For example, a multistate attribute is the automation of the iden-

tification activity of a traceability approach. The states of this attribute are manual,
semi-automatic, automatic. To represent this multistate attribute, we have created three
different binary dummy variables, namely the “manual identification of links” attribute,
the “semi-automatic identification of links” attribute and the the “automatic identifica-

tion of links” attribute. These three attributes have only two states - the “present” and
the “absent” states. The coding of the attributes took place based on the information

84

3.2 Phenetics

Character # Character # Character
1 Manual Identification of Links 14 Implicit identification with

transformations
27 Text-to-text traceability

2 Semi-automatic Identification of
Links

15 Explicit identification with
transformations

28 Model-to-text traceability

3 Automatic Identification of Links 16 Guidance for traceability usage 29 Model-to-model
Traceability

4 Identification with IR techniques -
VSM

17 Inter-artefact storage of
traceability information

30 Artefact-specific support

5 Identification with IR techniques -
LSI

18 Intra-artefact storage of
traceability information

31 Artefact-agnostic support

6 Identification with IR techniques -
PM

19 Case-specific traceability
metamodel - extensible

32 State-based maintenance

7 Identification with indirect rules 20 Case-specific traceability
metamodel - non-extensible

33 Event-driven
maintenance

8 Identification with direct rules 21 Generic traceability metamodel 34 Automatic traceability
maintenance

9 Identification with program
analysis

22 Representation with hyperlinks 35 Manual traceability
maintenance

10 Identification with run-time
monitoring

23 Representation with graphs 36 Semi-automatic
traceability maintenance

11 Identification augmented with
A.I. techniques

24 Representation with inline tags 37 Dependency viewpoint
support

12 Identification augmented with
visualisation techniques

25 Representation with matrices 38 Generative viewpoint
support

13 Identification with history
analysis

26 Semantically-rich link semantics

Table 3.2: Attribute table

provided in Chapter 2. While the coding process is subject to error, the validity of the
process is guaranteed by the fact that numerical taxonomy relies on a large number of
characters. Therefore, if the number of errors is kept within reasonable bounds, the
correctly coded characters should largely determine the relationships generated by the
cluster analysis. Table B.1 in Appendix B lists the different states for the 38 attributes,
while table B.2 shows the states possessed by each OTU.

The estimation of resemblance: Resemblance among the OTUs is estimated by cal-
culating a coefficient of similarity or dissimilarity between all pairs of the taxonomic
units over all attributes of the data matrix. Many such coefficients have been proposed

85

3.2 Phenetics

in the literature. A thorough review of the various similarity/dissimilarity metrics is
provided in (Choi et al., 2010). The difference between a dissimilarity and a similarity
coefficient is merely a difference in the way the scale runs. The smaller the value of a
dissimilarity coefficient, the more similar the two OTUs under consideration are. On
the other hand, the larger the value of a similarity coefficient is the more similar the the
two OTUs under consideration are. The values for every pair of OTUs are stored in a
resemblance matrix.

For the purposes of this work we have chosen the following coefficients:

1. Kulczynski similarity distance

2. Dice similarity distance

3. Hamming dissimilarity distance

4. Jaccard similarity distance

5. Sokal-Sneath dissimilarity distance

The above coefficients assume that the data are binary. The choice of those co-
efficients was made based on the fact that they all ignore the “0-0” matches. In any
matching problem with binary data, there are four different types of matches. The first
type of match is the so-called “1-1” match, that is an attribute is present in both OTUs.
The other two types are the “1-0” match and the “0-1” match, in which an attribute
is present in only one of the OTUs. Finally, the “0-0” match type is when an attribute
is absent from both OTUs. The above formulas ignore the “0-0” matches, assuming
that such matches do not contribute to the similarity of two OTUs. This is a logical
assumption for this study since many OTUs are lacking many of the attributes. Hence,
these attributes do not vary significantly across the set of OTUs. As a result, they can
not contribute to the discrimination between classes of objects (Romesburg, 1984).

In Table 3.3, the formulas of the coefficients are illustrated. In these formulas, a

stands for the “1-1” match, while b and c stand for the “1-0” match and the “0-1”

match respectively.
The dissimilarity matrices for the five coefficients are shown in Appendix C. Each

entry represents the dissimilarity between a pair of approaches. For example the (1,2)
entry of the matrix depicts the dissimilarity between approach number 1 (Amar et al.,

86

3.2 Phenetics

Coefficient Formula

Kulczynski distance
a/2(2a+ b+ c)

(a+ b)(a+ c)

Hamming distance b+ c

Dice dissimilarity
2a

2a+ b+ c

Jaccard distance
a

a+ b+ c

Sokal-Sneath dissimilarity
a

a+ 2b+ 2c

Table 3.3: Similarity/Dissimilarity Coefficients Formulas

2008) and approach number 2 (Antoniol et al., 2002). The resemblance matrix is a
hollow symmetric matrix. It is hollow since the values on the main diagonal correspond
to pairs of the same approach, whose distance is zero. The next step is the recognition
of patterns in the dissimilarity matrix. This is the area of numerical taxonomy which
utilises clustering techniques.

Formulate the taxonomic groups: In this step, the resemblance matrix is trans-
formed into a dendrogram. This is achieved by using a clustering method. A clustering
method is a series of steps that incrementally reduce the size of the resemblance ma-
trix, generating the dendrogram from the values of the matrix. Once a value is used for
generating a branch of the dendrogram, then this value is deleted by the resemblance
matrix. At the end, the matrix dissapears completely . The dendrogram consists of var-
ious clusters. A cluster is a set of one or more objects that they are similar (Romesburg,
1984).

Following (Romesburg, 1984), there are four main clustering methods:

1. Unweighted pair-group method using arithmetic averages (UPGMA)

2. Ward’s method

87

3.2 Phenetics

3. Single-linkage method

4. Complete-linkage method

A thorough discussion of the various clustering methods is out of the scope of this
work. At this point though, it should be noted that the Ward method is most appropriate
for quantitative data and not for binary data. Hence the other three will be used for the
purposes of this analysis. These methods can possibly produce very different classi-
fications, resulting in fifteen (5 resemblance coefficients × 3 clustering methods)
different classifications. Since the result of the analysis so far gives more than one clas-
sifications, we need a method for deciding which one of those classifications is the best.
This is achieved in the next step of the process.

Statistically validate the results: Since the dendrogram used to show the results of
a cluster analysis is a two-dimensional representation of a multi-dimensional structure,
some distortion of the relationships in the similarity matrix on which it is based is in-
evitable. That is, it is often the case that the clustering method distorts the information
in the resemblance matrix in order to produce the dendrogram.

The cophenetic corelation coefficient (CCC) can measure how well a dendrogram
and a resemblance matrix fit each other (Romesburg, 1984). The computation of the
CCC is a two-step process. First, a matrix of cophenetic values is obtained from the
dendrogram by finding the similarity level that links each pair of OTUs. The cross-
product correlation coefficient is then computed between the cophenetic matrix and the
resemblance matrix. This is the CCC. A value of one represents complete agreement
between the two matrices. The higher the CCC is, the closer the dendrogam fits the
resemblance matrix.

Table 3.4: CCC for the Different Dendrograms

Kulczynski Dice Hamming Jaccard Sokal-Sneath

UPGMA 0.861 0.799 0.754 0.832 0.881
Single-linkage 0.744 0.666 0.559 0.740 0.802
Complete-linkage 0.786 0.761 0.737 0.810 0.848

88

3.2 Phenetics

Table 3.4 shows the CCC for the different combinations of clustering methods and
resemblance coefficients. For five combinations, the CCC indicates high concordance
since it is larger than 0.8 (Romesburg, 1984). To select the classification with the small-
est error, the classification with the highest CCC must be chosen. This classification is
the one provided by using the Sokal-Sneath dissimilarity coefficient and the UPGMA
clustering method. The dendrogram which corresponds to this combination is illustrated
in Figure 3.1. Via inspection, we “cut” the tree at distance=0.8.

All computations in this study were conducted using the Scipy-cluster package
(Eads, 2008), which is a Python library for agglomerative clustering. The last step
of the phenetic process is the interpretation of the dendrogram, which is presented in
the following section.

The main limitations of this study are of two kinds: limitations with the numerical
taxonomy itself and limitations with the construction of the data matrix. A detailed
discussion of the limitations of numerical taxonomy is provided by (Queiroz & Good,
1997). On the other hand, the limitations imposed by the construction of the data matrix
have to do partly with the subjectivity of selecting attributes as well as with the infor-
mation available to the researcher for the coding of the attributes. Attribute mining is
a subjective task based on the researcher’s intuition and knowledge of the domain. To
compensate this subjectivity, as many as possible attributes were chosen for the con-
ducted analysis. Moreover, the quality of the data matrix was influenced by the amount
and quality of the information provided by the documentation of each approach. Cod-
ing some of the attributes was a challenge since not enough information was available
for some of the approaches. In these cases, interpretations and assumptions were made
based on the intuition of the analyst.

89

3.2
Phenetics

Figure 3.1: Dendrogram of Traceability Approaches

90

3.3 Discussion

3.3 Discussion
In the previous section the phenetic process was followed in order to construct a clas-
sification of different traceability approaches. The result of this process is captured in
the form of a dendrogram, which is illustrated in Figure 3.1. The purpose of this section
is twofold. First, open issues in the area of traceability will be identified based on the
literature survey conducted in chapter 2 and on the data matrix illustrated in Table B.2.
Second, an interpretation of the dendrogram produced in the previous section will take
place.

3.3.1 Analysis of the Data Matrix
By studying Table B.2 as well as the survey conducted in chapter 2, the following ob-
servations can be made about the traceability approaches under study:

Observation # 1 - Coverage of traceability activities: In chapter 2 four different
activities related to traceability have been identified, namely traceability representation,
traceability identification, traceability maintenance and traceability usage. The only two
traceability approaches which cover all four aspects of traceability is (Schwarz et al.,
2009) and (Grammel & Voigt, 2009). The rest of the approaches are concerned with
one or two specific aspects of traceability only. As a result, they are defined in a rather
isolated way, using different, not necessarily combinable techniques and technologies.
This consequently makes their integration into a comprehensive traceability environ-
ment a challenge.

Observation # 2 - Support for Dependency and Generative Viewpoints: In sec-
tion 2.4.1.1, the two viewpoints associated with traceability are presented. In the De-
pendency viewpoint, the focus of traceability is on creating and maintaining traceability
relationships between existing artefacts. On the other hand, in the Generative view-
point the focus on traceability is on creating and maintaining traceability relationships
as a byproduct of transformations between artefacts. A comprehensive traceability ap-
proach should be able to support both of those viewpoints. The only approach of the
approaches under study that is considering both of the aforementioned viewpoints is the
RT-MDD (Costa & da Silva, 2007). The rest of the traceability approaches focus on one
viewpoint. Most of the approaches, which originate from the MDE community (e.g.
(Falleri et al., 2006; Jouault, 2005; Olsen & Oldevik, 2007)), focus on the Generative
viewpoint, while the rest focus on the Dependency viewpoint.

Observation # 3 - Link Semantics and Automation: The need to distinguish be-
tween different types of trace links with specific semantics is widely accepted in the

91

3.3 Discussion

traceability community (Aizenbud-Reshef et al., 2005; Olsen & Oldevik, 2007; Paige
et al., 2008; Walderhaug et al., 2008). Defining link semantics in an enforceable way
facilitates and supports richer analysis such as coverage analysis or orphan analysis
(Walderhaug et al., 2008). By link semantics, it is not necessarily meant formal seman-
tics. What is meant is typed trace links accompanied by additional correctness con-
straints expressed in an appropriate language. This is the bare minimum for supporting
automatic trace link manipulation by tools. By observing the various approaches under
study only four out of the forty-five traceability approaches (8%) support links with rich
semantics. Other approaches acknowledge the need for typed links (e.g. (Ramesh &
Jarke, 2001)) without dealing with constraints, while others do not deal with the seman-
tics of links at all. This is the case for example with the IR approaches such as (Hayes
et al., 2003) or (Antoniol et al., 2002), which support the discovery of generic links
between artefacts without dealing with the type of the discovered relationship.

One observation that can be made by studying the data matrix in Table B.2 is that
there seems to be a negative relationship between an approach’s automation of the iden-
tification activity and its support for rich link semantics. Only two out of the forty-five
different traceability approaches (4%) support both automatic traceability identification
and rich semantics of trace links (Grammel & Voigt, 2009; Schwarz et al., 2009). To
validate this observation we have calculated the correlation between the two attributes
using the Cramèr’s v correlation coefficient (Cramér, 1946), which is designed to mea-
sure the strength of association between categorical (nominal) data. The value of the
correlation coefficient is 0.809. This indicates a strong correlation between the two
variables. Since we are dealing with qualitative data, the notion of negative or possitive
correlation does not exist and hence can not be captured formally by the correlation
coefficient. However, since our data matrix is small we can observe that in most cases
when the Automatic Traceability Identification attribute is “present”, i.e. has a value
of 1, the Rich Link Semantics attribute is “absent”. The only exceptions are the two
approaches mentioned above. Table 3.5 summarizes the above discussion.

Table 3.5: Link Semantics in Relation to the Automation of the Identification Activity

Manual Identification Semi-automatic Automatic Total
Rich Link Semantics 4 0 2 6
No Rich Link Semantics 8 19 12 39
Total 12 19 14 46

Observation # 4 - Artefact Support: During the development and deployment of
software systems, different heterogeneous artefacts are used. From informal models of
the environment in which the system will operate, to source code and its documenta-
tion. These artefacts can have different formats. For example they can have graph-like

92

3.3 Discussion

or tree-like structure or they can be unstructured text. Moreover, these artefacts are often
represented in various heterogeneous notations. A generic traceability approach should
be able to deal with different types of artefacts and notations. This can be achieved
by having the appropriate extension mechanisms to accommodate the extra notations
or artefacts. From the traceability approaches under study, eighteen of them (40%)are
artefact specific. That is, the solution they propose applies only to particular combina-
tions of artefacts. For, example, LeanArt (Grechanik et al., 2007) supports traceability
between UML use cases and source code. Although some of these approaches are quite
efficient in supporting specific scenarios of traceability, the solutions they propose can
not be easily generalised. This is due to the fact that the technologies they are using
are artefact specific or that they are using artefact-specific characteristics to enable the
capture of traceability.

Observation # 5 - Traceability Representation: In section 2.4.2, two main ap-
proaches have been identified for specifying the semantics of traceability information.
Generic traceability metamodels attempt to capture the types of trace links, semantic
expressiveness and other qualities of traces that should be record for the general case.
Due to the diversity of situations in which traceability information needs to be captured,
such metamodels can not achieve completeness. Hence, case-specific metamodels are
developed in order to capture the structure of traceability information for particular sce-
narios. For the purposes of this analysis, we have broken down the case of case-specific
metamodels into two subcategories. The first category includes approaches, which de-
velop a case-specific metamodel for the scenario the approach is dealing with, i.e. for
the notation the approach is considering or for the types of artefacts the approach deals
with. This metamodel can apply only in the particular scenario and can not be extended
(e.g. (Sherba et al., 2003)). On the other hand, there are approaches which do not fo-
cus on specifying a case-specific traceability metamodel, but they focus on providing
the mechanisms for specifying such metamodels with reduced effort (e.g. (Fabro et al.,
2005)). Out of the forty-five approaches considered in this analysis only eight (17%)
provide a metamodel which can be used in different scenarios by extending it. Twelve
approaches provide a metamodel only for the scenario they are dealing with and they
do not suggest any extensions for different scenarios, while eleven approaches use a
generic metamodel, which consists of the basic concepts of traceability such as trace
link or traceable artefact. The rest of the approaches do not deal at all with specifying
traceability information using a structured way such a metamodel or schema.

Observation # 6 - Traceability Maintenance: Traceability maintenance, i.e. the
activity of maintaining the integrity of trace links while the referenced entities continue
to change and evolve, is considered a crucial activity (Aizenbud-Reshef et al., 2006a;
Cleland-Huang et al., 2002a). Despite of its importance however, there is an imbal-

93

3.3 Discussion

ance in the literature between the approaches which cover the rest of the traceability
activities and the approaches which cover traceability maintenance. Out of the forty-
five approaches only six (13%) deal with this aspect of traceability. Moreover, these
approaches do not consider any other traceability activities and some of them are very
specialised. For example, (Mäder, 2008) develops a tool for maintaining trace links
between UML class diagrams only.

In this section, a set of observations was made based on the data matrix, which was
constructed during the phenetic analysis. To sum up the above findings, one can note
that there are many different parameters which can affect the applicability of a trace-
ability approach in different scenarios such as the different viewpoints it supports, the
different traceability activities it covers or the different types of trace links it can dis-
tinguish. Based on the above observations, no traceability approach can be applied in
every scenario. Most of the approaches focus on particular aspects of traceability and
hence they are developed in isolation from the other approaches. This comes into con-
trast with the software development practices, where many intertwined technologies and
development environments are used to develop heterogeneous types of interrelated arte-
facts. In such development scenarios, isolated approaches can not perform satisfactory
since they are unable to cover the entire development effort. Moreover, they are not
very easily integrated with other approaches, since they are not built with extensibility
in mind.

3.3.2 Interpretation of the Dendrogram
Figure 3.1 is a tree structure, which represents the similarity between the different trace-
ability approaches. This dendrogram can provide a system for conducting, documenting
and coordinating a comparative study of traceability approaches. One aspect to be noted
in this study is that this is a pioneering study, because a classification of traceability re-
search approaches has never been studied using the phenetic approach before.

The first cluster created is the Generative Approaches cluster and consists of the
following approaches:

• (Costa & da Silva, 2007)

• (Olsen & Oldevik, 2007)

• (Falleri et al., 2006)

• (Amar et al., 2008)

• (Rose et al., 2008)

• (Grammel & Voigt, 2009)

• (Kolovos & Paige, 2010)

• (Schwarz et al., 2009)

• (Jouault, 2005)

• (Vanhooff et al., 2007a)

Since this cluster was created first, this indicates that the approaches belonging to

94

3.3 Discussion

it demonstrate the highest similarity with each other. The focus of these approaches is
on traceability as a by-product of model transformations. Such model transformations
can be either model-to-model or model-to-text transformations. Generative traceability
is achieved by either inserting traceability related code in the transformation code or
by relying on the transformation engine to produce the traceability. The approaches,
which rely on a transformation engine to generate traceability, do not support links with
rich semantics while the approaches, which rely on additional traceability-specific code,
tend to pollute the transformation with code not directly related to the transformation.
Generative Approaches can generate trace links automatically. Moreover, all of the
approaches in this cluster represent the traceability information in graphs or trees. Al-
though all of the Generative Approaches can identify trace links automatically, none of
them can support the automatic maintenance of the recovered links. Finally, none of the
methods can support the Dependency viewpoint of traceability.

The next cluster consists of approaches which focus mainly on solving the problem
of traceability representation by trying to define the structure of traceability informa-
tion. Hence we name this cluster Representation-intensive Approaches cluster. The
approaches in this cluster demonstrate the highest similarity with the approaches in the
Generative Approaches cluster. This has to do mainly with the fact that nine out of the
eleven approaches capture traceability information in graphs (i.e. models), while they
define the structure of those graphs using traceability metamodels. More particularly,
six approaches use case-specific metamodels, which can be extended to support differ-
ent traceability scenarios, one approach uses a generic and non-extensible metamodel
and three approaches define a generic metamodel. Moreover, seven out of the eleven
approaches in this cluster support model-to-model traceability. On the other hand, the
approaches belonging to this cluster do not provide any automation for the identifica-
tion of traceability relationships and they support only the Dependency viewpoint of
traceability. Finally, half of the approaches of this cluster attempt to automate the main-
tenance of the identified trace links. At this point though, it should be noted that al-
though the approaches in this cluster focus on traceability representation, none of them
supports a rigorous way to define the semantics of the traceability information, that is
case-specific extensible metamodels accompanied by correctness constraints. The ap-
proaches belonging to this cluster are the following:

• (Maletic et al., 2005)

• (Murta et al., 2006)

• (Pinheiro, 2004)

• (Mäder, 2008)

• (Sharif & Maletic, 2007)

• (Spanoudakis & Zisman, 2005)

• (Sousa et al., 2008)

• (Fabro et al., 2005)

• (Bayerand & Widen, 2001)

• (Ramesh & Jarke, 2001)

• (Walderhaug et al., 2006)

95

3.3 Discussion

The third cluster is the Hyperlink-Based Approaches cluster. This cluster consists of
the following approaches:

• (Maletic et al., 2003)

• (Jirapanthong & Zisman, 2007)

• (Spanoudakis et al., 2003)

• (Spanoudakis et al., 2004)

• (Grechanik et al., 2007)

• (Sherba et al., 2003)

The main characteristic of this cluster is the fact that all of its approaches represent
traceability using hyperlinks. As a consequence, the focus of those approaches is on text
intensive artefacts since hyperlink technologies are traditionally associated with such
artefacts. Out of the six approaches of this cluster two deal with text-to-text traceability,
one deals with model-to-text traceability while three of them deal with both. Another
consequence of using hyperlinks to represent trace links is the fact that the Hyperlink-
Based Approaches do not support rich link semantics. One possible interpretation to
this might be the fact that the medium used to represent trace links, i.e. hyperlinks, is
limiting the capture of rich semantics. This is because the hyperlink system used does
not support typed or semantic links (Frei & Stieger, 1995). Furthermore, the approaches
belonging to this cluster deal with the automation of the identification of traceability
relationships. Five of them do this by using indirect and direct rules while one approach
uses run-time monitoring and program analysis. Finally, all of the Hyperlink-Based
Approaches support only the Dependency Viewpoint.

The final cluster generated by the phenetic analysis is the largest one. This cluster
consists of the following approaches:

• (Ying et al., 2004)

• (Zimmermann et al., 2004)

• (von Knethen & Grund, 2003)

• (Zisman et al., 2003)

• (Egyed & Grunbacher, 2002)

• (Pohl, 1996a)

• (Hayes et al., 2006)

• (Hayes et al., 2003)

• (Hayes et al., 2004)

• (Zou et al., 2006)

• (Cleland-Huang et al., 2005)

• (Lin et al., 2006)

• (Antoniol et al., 2002)

• (Natt och Dag et al., 2005)

• (Marcus & Maletic, 2003)

• (Lucia et al., 2008)

• (Pierce, 1978)

All of the approaches focus on text intensive artefacts hence we call this cluster
Text-Intensive Approaches cluster. The approaches in the previous cluster focus as well
on text-intensive artefacts. However, there are two main differences. First, while the
approaches in the previous cluster use mainly rule-based techniques to automate the

96

3.4 Research Hypothesis

identification of the trace links, the approaches belonging to this cluster use mainly IR
techniques. Second, the methods of the previous cluster store traceability information
in the artefacts it refers to (intra-artefact storage), while the methods of this cluster store
traceability information in dedicated data structures. Thirteen approaches use matrices
to store traceability information, two use graphs, while for two of the approaches is not
mentioned in their documentation how traceability information is stored. Finally all of
the approaches of this cluster deal only with the Dependency viewpoint.

To conclude, each of the traceability approaches under study can be considered as a
collection of different attributes. Figure 3.1 is a tree structure, which represents the sim-
ilarity between those approaches based on their attributes. This dendrogram can provide
a system for conducting and documenting a comparative study of the various traceabil-
ity approaches. Moreover the generated dendrogram can be used to understand more
about the factors that are critical to a traceability approach. For example, it is clear that
the majority of the traceability approaches focus mainly on pre-existing artefacts (De-
pendency Viewpoint), while the Generative Approaches ignore completely this aspect
of traceability. This is due to the fact that the emphasis on the majority of those ap-
proaches is on model transformations, hence the focus is on the Generative Viewpoint.
Finally, the generated dendrogram together with the data matrix can be used to high-
light the research and knowledge gaps within the field of traceability. For example, one
such gap can be the fact that the Generative Approaches focus only on the Generative
Viewpoint of traceability, while it is argued in the literature that both the Dependency
and the Generative viewpoints should be covered. Based on the analysis so far, in the
next section we will state the research hypothesis for this work.

3.4 Research Hypothesis
As stated in chapter 1, the aim of this work is to provide traceability support in MDE. In
this section, we will sumamrise the basic principles of MDE and we will relate them to
the observations and analysis of the previous sections. This will allow us to set up the
context of the research hypothesis as well as the research hypothesis of this work.

To summarize the discussion which has taken place in chapter 1 and section 2.7, we
can state that MDE relies on two simple facts (Jouault et al., 2009). First, any kind of
system can be represented by models. Second, any model must conform to a metamodel.
Within this context, models can be and are intended to be automatically processed by
a set of operators. These two simple facts are illustrated in Figure 3.2. Based on those
two facts, the main principles of MDE can be derived. These are the following:

• Models are promoted to first-class citizens and they are used extensively to raise
the level of abstraction at which developers create and evolve software. Therefore

97

3.4 Research Hypothesis

models are used to bridge the gap between the problem domain and the software
implementation domain.

• MDE is based on system decomposition, that is, the division of a system into
elements in order to improve comprehension of the system and the way in which
it meets the needs of the user. Because of the limited capability of humans to
understand complexity, a “divide and conquer” system decomposition approach
is appropriate. Effective application of system decomposition requires the means
of modeling the system from a variety of viewpoints and at increasing levels of
specificity. Very often models for different viewpoints are expressed in different
notations. This is desirable because it is much easier to define and share that view
if it is expressed in a notation that is suited for that purpose (Egyed et al., 2005).

• Every model has to conform to a metamodel. Metamodels are used as filters
to define different viewpoints. Used as a typing system, they provide precise
semantics to artefacts and relations between these artefacts. This homogeneity
of definition of metamodels and models enable engineers to apply operations on
them in a generic way.

• Since models are considered as first-class citizens, they “drive” the development
process. This is achieved by using models to derive other models by performing
different automatic model management operations such as transformation, com-
position and difference. The models, which are the product of such operations are
called derived models. However other models have to come from somewhere in
the first place. These models are usually created manually by engineers and they
are called initial models.

These principles have an effect on the requirements of any traceability approach,
which targets MDE processes. The requirements for such a traceability solution are the
following:

1. Requirement 1: Since models are the primary artefacts used in MDE, the trace-
ability approach should be able to support traceability between models. This is
not enough however, since when applying MDE, development of initial models
starts often from other kinds of artefacts such as informal, natural language de-
scriptions of requirements and spreadsheets, and ends up to non-model artefacts
such as source code and system documentation. Hence, any traceability solution
in MDE needs to consider these artefacts as well, in terms of how models can be
traced to other (non-model) artefacts and how (non-model) artefacts can be traced
to models (Paige et al., 2008).

2. Requirement 2: Given that it is common that different notations are used to
express different viewpoints (Egyed et al., 2005), a traceability approach in MDE

98

3.4 Research Hypothesis

Figure 3.2: Basic relations of representation and conformance in MDE (adapted from
(Jouault et al., 2009))

should not be notation specific but it should be either generic or extensible in
order to facilitate the different notations.

3. Requirement 3: Since models conform to different metamodels and have dif-
ferent semantics, traceability information between different models can possibly
have different semantics. Moreover, depending on the use of traceability differ-
ent semantics might apply to traceability information between the same models.
Hence, a traceability approach should be able to define the semantics of trace-
ability information for the various traceability scenarios. As a result, traceability
information can be automatically manipulated and analysed by a machine.

4. Requirement 4: In view of the fact that, models can be generated automatically
by applying model operations on other models (derived models) or manually by
engineers (initial models), a traceability approach should be able to support both
the Generative and Dependency viewpoints of traceability.

Apart from these four requirements, we have identified two more based on the anal-
ysis conducted in the previous sections. These requirements are not directly related with
the application of traceability in MDE, but they could benefit any traceability approach.
These requirements are the following:

5. Requirement 5: A traceability approach should cover the four basic traceability
activities described in Chapter 2. If an approach focuses on some of the traceabil-

99

3.4 Research Hypothesis

ity activities ignoring the rest, then there is the danger that this approach uses not
easily combinable technologies and techniques. As a result, combining different
approaches to cover all aspects of traceability can be a challenge. Therefore, a
traceability approach should either support all of the basic traceability activities
or provide the appropriate extensibility mechanisms for the activities it does not
support.

6. Requirement 6: A traceability approach should automate as much as possible the
different traceability activities. By automating traceability activities, the cost and
complexity of traceability is reduced (Egyed et al., 2005). At this point however
it should be noted that not all of the traceability activities can be automated fully.
Traceability representation for example is an activity which relies on human in-
tuition and knowledge of a domain, hence it can not be automated. Moreover,
traceability activities can not be fully automated for every possible scenario. This
is due to the fact that establishing and maintaining traceability often relies on in-
formal information. Due to this fact, there is always a trade off between semantics
and automation. Fully automatic identification and maintenance of traceability
can not achieved without ignoring the informal information, which is not under-
standable by a machine.

The above requirements can be used to derive the thesis hypothesis:

This thesis demonstrates that a domain specific model-based traceabil-
ity approach can support and automate the process of rigorously managing
the different types of heterogeneous traceability relationships between both
derived and initial models in an MDE process.

The main characteristics highlighted in the above statement are the following:

1. Model-based Approach: In the spirit of MDE the proposed approach shall be
applicable to model artefacts.

2. Manage Traceability: The proposed approach will provide support for all four
traceability activities, i.e. representation, identification, maintenance and usage
of traceability.

3. Heterogeneous Traceability Relationships: Using the proposed approach, an
engineer will be able to manage traceability relationships between models ex-
pressed in heterogeneous notations.

4. Rigorous: The proposed approach will support the capture of case- specific or
scenario-specific semantics.

100

3.5 Research Scope

5. Automation: The proposed approach will provide semi-automatic identification
and maintenance of traceability information

6. Derived and Initial Models: The proposed approach will be suitable for trace-
ability between models, which are generated automatically by applying model
operations on other models (derived models) as well as between models, which
are created manually by engineers (initial models).

Based on the previous discussion, the objectives of this research are the following:

• To propose an approach with which rigorous, well-defined, case-specific trace-
ability models can be developed.

• To support and automate the activity of identifying traceability links between
models.

• To support and automate the activity of maintaining traceability information be-
tween models.

• To propose novel usage scenarios of traceability information in MDE.

The objectives of this thesis - listed above - should fullfil the previously identified
requirements for traceability support for MDE processes.

3.5 Research Scope
The purpose of this section is to establish the scope and boundaries of this work. As
described in the previous sections traceability support in MDE should be able to accom-
modate both models and textual artefacts. Due to the fact that dealing with traceability
for models and for textual artefacts is quite different, as well as given the time and re-
source constraints of this work, a decision has been made to limit the scope of this work
to address only the technical space of models. This decision was made on the grounds
that models are the main artefacts in MDE and it is them that guide the development
process.

3.6 Research Methodology
The main purpose of this section is to provide a description of the methodology, which
was used in order to evaluate the validity of the hypothesis. To this end, a typical itera-
tive software engineering process was used. The process consisted of multiple iterations

101

3.6 Research Methodology

of an analysis phase, a design phase, an implementation phase and a testing phase. A
graphical overview of this process is illustrated in Figure 3.3. In the following, the four
phases of the process are briefly described.

Figure 3.3: Overview of the research methodology

3.6.1 Analysis
In the analysis phase, the most influential and the most well-documented approaches to
traceability have been identified. These approaches have then been reviewed in terms of
the technical aspects, the assumptions made about traceability as well as the advantages
and the shortcomings. Through this analysis a number of research challenges has been
identified that have motivated the hypothesis and objectives of this thesis.

3.6.2 Design and Implementation
Based on the findings of the analysis phase, a conceptual solution has been designed in
order to investigate the hypothesis. Through multiple iterations, this designed has been

102

3.7 Chapter Summary

refined to a technical design, which in turn has guided the development of the reference
implementation.

3.6.3 Testing
Throughout the previous phases, case studies have been identified and used in order to
assess the quality of the proposed approach as well as the correctness of the reference
implementation. Further iterations of the process have been guided by findings in the
testing phases.

3.7 Chapter Summary
In the first part of this chapter, a detailed analysis of the literature review took place.
This analysis took place using a method called Numerical Taxonomy. This method is
utilised by biologies in order to classify living organisms. Based on this analysis the re-
search challenges of this work were identified. Moreover, the research hypothesis of this
thesis was established and the objectives have been identified. The following chapters
discuss the establishment of a domain-specific and model-based approach to traceability
in MDE. This approach is used as means for exploring the proposed hypothesis.

103

Chapter 4

A Metamodelling Approach to
Traceability

In the previous sections, traceability approaches found in the literature have been pre-
sented. Based on this extended literature survey, these approaches have been classified
using the method of numerical taxonomy. This analysis has led to the identification of a
set of requirements for a traceability approach in the context of MDE. In this section, a
novel approach to model-to-model traceability support is presented. This approach fo-
cuses on how to define and implement semantically rich trace links that are amendable
to automatic manipulation.

At the crux of the proposed approach lies the Traceability Metamodelling Language
(TML), which is a domain-specific metamodelling language (Zschaler et al., 2009) for
traceability. The purpose of TML is to enable the construction of case-specific and
semantically rich traceability metamodels as well as the generation of their accompany-
ing correctness constraints. This rigorously defined traceability information can be then
used to automatically identify trace links between models and to automatically maintain
the established links. Finally, the recovered trace links can be used in a variety of differ-
ent ways depending on the traceability scenario. In other words, the approach proposed
in this work covers all four activities of the traceability lifecycle, namely representation,
identification, maintenance and usage.

A fundamental assumption of the proposed approach is that in the general case one
needs to establish trace links between elements belonging to a number of models that
potentially conform to diverse metamodels. Additionally, several types of trace links
linking different types of model elements may need to be captured, depending on the
traceability scenario. Finally, correctness constraints that extend beyond simple type
conformance should be captured. These constraints are usually domain and/or case-
specific. As a consequence, the traceability engineer might need to specify multiple

104

traceability models which conform to different traceability metamodels. The aim of
TML is to enable the construction and maintenance of traceability metamodels and the
accompanying constraints with reduced effort by encoding constructs and relationships
that are often encountered when constructing traceability metamodels into first-class
metamodelling artefacts. Moreover, TML can be used for generating the appropriate
supporting infrastructure of the generated metamodels. A conceptual diagram of the
holistic approach to traceability proposed by TML is illustrated in figure 4.1.

Figure 4.1: Conceptual diagram of the TML approach

105

4.1 Representation of traceability with TML

For a given traceability scenario, a developer needs to capture valid traceability in-
formation for the metamodels of interest in a TML model. The information contained in
the TML model are then used to generate other artefacts or to support the various trace-
ability activities. An Ecore metamodel and its accompanying correctness constraints
can be generated by the TML model. These artefacts are directly related to the trace-
ability representation activity and define the valid traceability relationships for a given
scenario. Moreover, a TML model can be used to recover trace links between two mod-
els, which conform to the metamodels the TML model refers to, in order to support
the traceability identification activity. Moreover, the traceability model, which consists
of the various recovered links, can be evolved and maintained reflectively by using the
case-specific maintenance information captured in it.

This chapter consists of four main sections. In section 4.1, the abstract syntax and
semantics of TML are presented. Section 4.2 discusses how TML models can be used
to recover trace links between two models. Section 4.3 provides a discussion on how
traceability models can be maintained in a valid state, while the models to which they
refer change. Finally, in section 4.4, two novel traceability usage scenarios in the context
of MDE are presented.

4.1 Representation of traceability with TML
As discussed in the beginning of this chapter, any traceability scenario in the context of
TML should start by defining the traceability information for the given scenario. That
is, the traceability engineers should define the various entity types to be traced and the
relationship types between them. Moreover, they should decide on the data structures
with which they will represent the captured traceability information as well as how such
information would be visualised and stored.

It is widely accepted in the literature that the meaning of trace links should be pre-
cisely defined (e.g. (Aizenbud-Reshef et al., 2006a; Paige et al., 2008; Walderhaug
et al., 2008)). A precise semantics for traceability will allow developers to capture more
accurately the intended meaning of a specific traceability relationship, and will enable
richer, tool-supported analysis and reasoning about traceability. In the TML approach,
semantically rich trace links should possess two characteristics:

1. They should be strongly typed conforming to a case-specific traceability meta-
model.

2. The case-specific metamodel should be accompanied by a set of case-specific cor-
rectness constraints, which express validity requirements that can not be captured
by the metamodel itself.

106

4.1 Representation of traceability with TML

These characteristics are sufficient for supporting rich traceability in the sense that
we discussed in the previous sections of this work. In the following, we will explain
briefly why these characteristics are important and sufficient for supporting trace links
amendable to manipulation by traceability tools.

4.1.1 Strongly Typed Trace-links Conforming to a Case-Specific Meta-
model

To support rigorous traceability, trace links should be strongly typed. In this way, the
various semantic heterogeneities among the different trace-links can be captured, hence
richer and more precise analysis and reasoning (human or computerized) can be fa-
cilitated. Additionally, creation of illegitimate links can be prevented. For example,
consider the case where we need to define a trace metamodel which allows the estab-
lishment of trace-links between instances of A from metamodel MMa and instances of
B from metamodel MMb, but no links between two instances of A or two instances of
B. By specifying the strongly typed link A-to-B, the user avoids the generation of the
invalid link between two instances of A or two instances of B. These link types are spe-
cific to creating mappings between metamodels MMa and MMb and have a meaning
only in this context.

In the spirit of MDE, the models which contain the traceability information should
conform to a metamodel. The argument for this is uniformity and standardisation: if
traceability information is also a model, then standard MDE tooling can be used to pro-
cess (e.g., transform, validate, analyse visualise) this information. To accomplish this,
there are two alternative approaches: use of a general purpose traceability metamodel
or use of multiple case-specific traceability metamodels. In the case where a general
purpose trace metamodel is used, a trace link can connect any number of elements, of
any type and in any model.

Instead of defining only generic trace link types in a general-purpose traceability
metamodel, one could capture all possible existing link types in a comprehensive meta-
model. However, attempting to this is not feasible since the space of trace links is vast
(Paige et al., 2008). Most of the time the decision of which link types to use depends on
the particular usage scenario as well as on the domain. Therefore, it is argued in the liter-
ature (Jouault, 2005; Kolovos et al., 2006c), that trace-link types should be defined in a
case-specific/scenario-specific trace metamodel, in order to enable richer, case-specific
analysis. To specify the trace-link types, the trace metamodel needs to explicitly refer
to types of elements defined in other metamodels, namely the metamodels a particular
trace link refers to. For the definition of such a traceability metamodel, a modelling
technology that does not consider each metamodel as a closed space i.e. a technology
which supports inter-metamodel references must be employed. An exemplar modelling
technology which has this functionality is the Eclipse Modelling Framework (EMF)

107

4.1 Representation of traceability with TML

(Eclipse Foundation, 2010a).
An example of case-specific trace information is the link rationale associated with

particular types of trace-links. A description of a trace-link’s raison d’être, as well as
the assumptions made behind its creation, can provide additional information about its
validity. The rationale behind a trace-link should capture why a link exists, the as-
sumptions under which the link is valid, and the various alternatives and argumentation
behind the choice of one of those alternatives. Additionally, link rationale can support
accountability of trace-links. While this concept could be represented in a general-
purpose trace metamodel (i.e., as a metaclass), such an approach would not let the de-
velopers easily encode case-specific information that supports rigorous analysis – they
would have to encode case-specific information using general concepts such as strings,
or other primitive datatypes, thus making analysis more difficult to carry out.

Despite the fact that case-specific trace metamodels require additional effort for their
construction and also extra effort to support the direct communication of tools with
heterogeneous trace metamodels, we argue that the definition of such metamodels can
provide flexibility and specificity for supporting analysis, in a way that is beneficial to a
system development project. The main benefit of this approach is its ability to capture
domain information and semantics, suitable for different scenarios.

4.1.2 Correctness Constraints
Apart from the aforementioned type-safety, there are often additional constraints that
need to be specified and which the trace metamodel can not capture by itself. For ex-
ample, in the context of the previous example, an additional constraint may dictate that
for each instance of A from MMa there exists one and only one A-to-B link, that links it
with an instance of B from MMb. Such a constraint can be specified using a constraint
language which supports the expression of constraints spanning over elements belong-
ing to various models of potentially heterogeneous metamodels. The Object Constraint
Language (Object Management Group, 2003) currently lacks such capabilities as it does
not provide constructs for expressing inter-model constraints. Exemplar constraint lan-
guages that support establishing intra-model constraints include the Epsilon Validation
Language (EVL) (Kolovos et al., 2007) and the XLinkit toolkit (Christian Nentwich,
Licia Capra, Wolfgang Emmerich and Anthony Finkelstein, 2002).

The combination of a strongly typed case-specific trace metamodel with inter-model
constraints that can be checked automatically prevents users and tools from establishing
incorrect trace-links. Furthermore, such an approach enables trace-links that can be au-
tomatically validated and analyzed to discover potential omissions and inconsistencies.
Such inconsistencies can arise either during the establishment of the trace-links or later
on in the lifecycle of the models among which traceability links have been established.

Through experimentation with defining a number of case-specific traceability meta-

108

4.1 Representation of traceability with TML

models we have identified a set of recurring patterns both in terms of the structure of
the metamodels and in terms of the additional constraints that guarantee the semantic
integrity and completeness of the trace models. A description of these recurring pat-
terns can be found in (Drivalos et al., 2008). The existence of recurring patterns hints
that a higher-level of abstraction is potentially beneficial for defining trace metamod-
els. By this rationale, we have developed the Traceability Metamodelling Language
(TML) (Drivalos et al., 2008), a domain specific language which promotes the identi-
fied patterns into first-class artefacts and which is dedicated to the construction of trace
metamodels with the aforementioned characteristics.

4.1.3 Recurring Patterns in Case-Specific Traceability Metamodels
In section 4.1.1, we have argued for the need for traceability models that conform to
case-specific metamodels. Through experimentation with defining a number of case-
specific traceability metamodels we have identified a set of recurring practices and pat-
terns both in terms of the structure of the metamodel and of the additional constraints
that guarantee the semantic integrity and completeness of the traceability models. In
this section, we outline the identified patterns and demonstrate them through a simple –
but representative – example. In our example, which is based on the example originally
demonstrated in (Drivalos et al., 2008), we have hand-crafted a traceability metamodel
(ComponentClassTraceMetamodel) for capturing traceability links between models that
conform to two minimal ClassMetamodel and ComponentMetamodel metamodels.

The three metamodels appear in figure 4.2. The aim of this example is to demon-
strate how traceability information can be be captured between a component model and
a class model. Such a scenario can arise in a Component-Based Development Envi-
ronment, where class diagrams are used to refine the architecture specified by compo-
nent diagrams into a concrete design. In this example, we use two simple metamod-
els, the ClassMetamodel and the ComponentMetamodel, which are illustrated at the
top and bottom of figure 4.2 respectively. Our aim is to capture traceability links be-
tween models which conform to those two metamodels, i.e. the ComponentModel and
the ClassModel. The trace model which will hold the trace information is the Com-
ponentClassTraceModel and conforms to the ComponentClassTraceMetaModel. More
precisely, we want to trace instances of Package from the ClassMetamodel and instances
of Component from the ComponentMetamodel. Additionally, we want to capture links
between instances of Method from the ClassMetamodel and instances of Service from
the ComponentMetamodel.

Through the process of defining traceability metamodels similar to the one pre-
sented in figure 4.2 we have identified that each traceability metamodel contains a root
class (typically named TraceModel) that acts as the root of a traceability model. More-
over, it contains a number of traceability link types (ComponentPackageTraceLink and

109

4.1 Representation of traceability with TML

ServiceMethodTraceLink in our example), all of which extend an abstract TraceLink
abstract class for structuring purposes. Each traceability link contains a number of
references of different types and cardinalities. For example, the ComponentPackage-
TraceLink metaclass contains the one-to-one component reference and the one-to-one
package reference so that it is able to trace one component to one package only. On
the other hand, the ServiceMethodTraceLink metaclass contains the one-to-one service
reference and the one-to-many methods reference so that it can trace one service to
multiple methods.

Figure 4.2: The ComponentClassTraceMetamodel Traceability Metamodel

Apart from the references that represent link ends (e.g. packages, services), each
traceability link also typically stores some additional primitive information. This infor-
mation either applies to all traceability links (e.g. the description and creator attributes
in meta-class TraceLink) or to some particular types of traceability links only (e.g. the
alternatives attribute in the ServiceMethodTraceLink meta-class which shows if the ser-
vice depends on all of the methods (logical and) or only on one of them (logical or)).

Moreover, establishing a traceability metamodel extends beyond constructing the
abstract syntax and involves also the specification of validity constraints. Examples of

110

4.1 Representation of traceability with TML

such constraints are the following:

ForAll: It is often required that at least one traceability link of a particular kind exist
for all instances of a type. In our example, we require that at least one service-method
traceability link exists for each service in the Component model.

Unique: Another common constraint is when it is required that at most one traceabil-
ity link of a particular kind exists for each instance of a given type. In our example it is
required that each component can link to at most one package to avoid fragmentation.

Optional: Additional information captured in the form of primitive attributes (e.g.
description) is often neglected by end-users, thus resulting in poorly documented trace-
ability models. For this purpose, it is typical that additional constraints are specified
that ensure that the values of the attributes in the trace models are not empty. Apart
from these reoccurring patterns, there are other case-specific constraints that cannot be
generalized. For instance, in our example such a constraint is that the methods a service
traces to belong to classes contained in a package which is traced to the component that
provides the service.

The existence of reoccurring patterns hints that a higher-level of abstraction is po-
tentially beneficial for defining traceability metamodels. With this rationale, in the next
section, we attempt to promote the identified patterns into first-class artefacts in a meta-
modelling language dedicated to the construction of traceability metamodels.

4.1.4 The Traceability Metamodelling Language
Once recurring patterns, such as those discussed above, have been identified, the next
step is to derive more abstract constructs from them. These constructs are encoded in
the Traceability Metamodelling Language (TML). TML enables the construction and
maintenance of traceability metamodels and their accompanying constraints with re-
duced effort by encoding constructs and relationships that are often encountered when
constructing traceability metamodels into first-class metamodelling artefacts.

In three-level metamodelling architectures such as MOF and EMF, there is only
one metamodelling language and that is MOF (Object Management Group, 2011a) and
Ecore (Eclipse Foundation, 2010a) respectively. As such, defining a metamodelling lan-
guage in the context of such an architecture appears to be a contradiction. Therefore at
this point we should clarify that strictly speaking, TML is not a metamodelling language
but a modelling language, since its metamodel is expressed using Ecore. However, TML
models (instances of the TML metamodel) are eventually transformed into Ecore meta-
models, which conceptually renders TML a metamodelling language. This is further
clarified in the sequel.

111

4.1 Representation of traceability with TML

Figure 4.3: Abstrax Syntax of TML

4.1.4.1 Abstract Syntax

As discussed above, the abstract syntax of TML has been defined using Ecore and is pre-
sented in Figure 4.3. In this section, the concepts of the TML metamodel are discussed
in detail.

Trace: Acts as the root of a TML model. A Trace defines a name and can contain
a number of TraceLinks and Contexts. Moreover, it can contain FuzzyMatchingTech-

112

4.1 Representation of traceability with TML

niques and ReconciliationExpressions.

TraceLink: Represents a traceability link between a number of elements and it has
a TraceLinkType. It defines a name and contains a number of TraceLinkEnds. It also
associates to a number of contexts through which it can capture custom information.
Finally, it can be associated to a number of Constraints, which ensure the semantic
correctness of a TraceLink.

TraceLinkEnd: Represents an end of a traceability link. It defines a name and the
type of elements it can link to. Through the ofTypeOnly attribute it also defines if it
can link to elements of the particular type only or if it can also link to instances of
all the subtypes of the type. The unique attribute defines if more than one traceability
link linking to the same model element of this type are legitimate. The forAll attribute
specifies if it is mandatory for all elements of that type to exist a traceability link of this
kind. The lowerBound and upperBound attributes specify how many elements of the
specified type can be linked to the same end.

Constraint: Represents case-specific correctness constraints that can not be automati-
cally generated by the traceability metamodel. More information about these constraints
will be provided in Section 4.1.4.2.

Context: The role of the context metaclass is to enable traceability metamodel design-
ers to attach custom information to traceability links. Each context defines a number of
ContextData and can be specified as default, which means that it is implicitly associated
to all TraceLinks (as opposed to the explicit data reference of class TraceLink).

ContextData: Captures additional information of the primitive type (currently the
String, Boolean, Float and Integer types are supported) about a TraceLink. It defines
a name, a type and whether it is optional or not.

MaintenanceData: This meta-class represents data that must be captured in order to
facilitate the automatic maintenance of a traceability model. This data can be retrieved
by utilising dedicated ReconciliationExpressions.

ReconciliationExpression: Represents a string expression in a model query language
such as the Epsilon Object Language (EOL). This expression can be used to query the
models a traceability model refers to and retrieve particular data, which are important
for the maintenance of the traceability model. More information about the Reconcili-
ationExpression and the traceability maintenance mechanism built in TML in general
will be provided in Section 4.3.

113

4.1 Representation of traceability with TML

FuzzyMatchingTechnique: This meta-class is also associated with the maintenance
of the traceability models and more particularly with the use of fuzzy matching tech-
niques. A thorough discussion about how fuzzy matching can be used to recover broken
trace links is provided in Section 4.3.

MaintenanceDataType: Provides the valid data types of MaintenanceData.

ContextDataType: Provides the valid data types of ContextData.

FuzzyMatchingImplementation: This interface can be implemented by a Java class
in order to define different fuzzy matching algorithms for traceability maintenance. This
is an extension mechanism of TML and it will be explained in section 4.3.

4.1.4.2 Semantics

The semantics of TML are specified in a translational manner (Kleppe, 2007) using two
formal and executable transformations. These transformations transform a TML model
into an Ecore metamodel and a set of constraints expressed in the Epsilon Validation
Language (EVL) (Kolovos et al., 2007).

Transforming to an Ecore metamodel As discussed above, a TML model lives in
the M1 level of the three-tiered metamodelling architecture, and thus it cannot be in-
stantiated as-is. Therefore, in order to instantiate it we need to transform it into an M2
level model (proper metamodel). The listings following demonstrate the transformation
from TML to Ecore using the Epsilon Transformation Language (ETL) (Kolovos et al.,
2008), although in principle any model-to-model transformation language (e.g. ATL
(Jouault et al., 2006), QVT (Object Management Group, 2002), Kermeta (Chauvel &
Fleurey, 2010)) could have been used for this purpose. In this section we go through the
transformation and discuss its functionality. The complete transformation can be found
in Appendix D.

Listing 4.1: The TML2ECore Transformation expressed in ETL - Pre Block
1 pre {

2 var traceModel := new ECore!EClass;

3 traceModel.name := ’TraceModel’;

4 var traceContext := new ECore!EClass;

5 traceContext.name := ’TraceContext’;

6 traceContext.‘abstract‘ := true;

7 var contextsReference :=new ECore!EReference;

114

4.1 Representation of traceability with TML

8 contextsReference.name :=’contexts’;

9 contextsReference.eType := traceContext;

10 contextsReference.containment := true;

11 contextsReference.upperBound := -1;

12 traceModel.eStructuralFeatures.add(contextsReference);

13 var traceLink := new ECore!EClass;

14 traceLink.name := ’TraceLink’;

15 traceLink.‘abstract‘ := true;

16 var traceLinkEnd := new ECore!EClass;

17 traceLinkEnd.name := ’TraceLinkEnd’;

18 traceLinkEnd.‘abstract‘ := true;

19 var modelLinksReference := new ECore!EReference;

20 modelLinksReference.name := ’links’;

21 modelLinksReference.eType := traceLink;

22 modelLinksReference.containment := true;

23 modelLinksReference.upperBound := -1;

24 traceModel.eStructuralFeatures.add(modelLinksReference);

25 var traceLinkEndStatus = new ECore!EClass;

26 traceLinkEndStatus.name = "TraceLinkEndStatus";

27 traceLinkEndStatus.‘abstract‘ = true;

28 var traceLinkEndOKStatus = new ECore!EClass;

29 traceLinkEndOKStatus.name = "TraceLinkEndOKStatus";

30 traceLinkEndOKStatus.eSuperTypes.add(traceLinkEndStatus);

31 var traceLinkEndInvalidStatus = new ECore!EClass;

32 traceLinkEndInvalidStatus.name = "TraceLinkEndInvalidStatus";

33 traceLinkEndInvalidStatus.eSuperTypes.add(traceLinkEndStatus);

34 var traceLinkEndAmbiguousStatus = new ECore!EClass;

35 traceLinkEndAmbiguousStatus.name = "TraceLinkEndAmbiguousStatus";

36 traceLinkEndAmbiguousStatus.eSuperTypes.add(traceLinkEndStatus);

37 var traceLinkEndAmbiguousStatusCandidates = new ECore!EReference;

38 traceLinkEndAmbiguousStatusCandidates.name = ‘candidates‘;

39 traceLinkEndAmbiguousStatusCandidates.upperBound = -1;

40 traceLinkEndAmbiguousStatusCandidates.lowerBound = 2;

41 traceLinkEndAmbiguousStatus.eStructuralFeatures.add(

traceLinkEndAmbiguousStatusCandidates);

42 traceLinkEndAmbiguousStatusCandidates.eType = EcoreM2!EClass.all.

selectOne(c|c.name = ‘EObject‘);

43 var traceLinkEndStatusReference = new ECore!EReference;

44 traceLinkEndStatusReference.name = ‘status‘;

45 traceLinkEndStatusReference.eType = traceLinkEndStatus;

46 traceLinkEndStatusReference.lowerBound = 1;

115

4.1 Representation of traceability with TML

47 traceLinkEndStatusReference.lowerBound = 1;

48 traceLinkEnd.eStructuralFeatures.add(traceLinkEndStatusReference);

49 traceLinkEndStatusReference.containment = true;

50 }

In Listing 4.1, the preamble block of the transformation between TML and Ecore is
illustrated. In ETL, the pre block is a block of statements which are executed before the
transformation rules are executed. In the above transformation, the purpose of the pre
block is to initialize a traceability metamodel and create the main meta-classes. Lines 2
and 3 of the transformation create the container of a traceability metamodel, namely the
TraceModel EClass.

In lines 4–12, the abstract class TraceContext is created and is added to the Trace-
Model. Moreover, the cardinality of the EReference associated with the TraceContext
EClass is set to -1 meaning that in any traceability metamodel, there can be infinite con-
texts. All these contexts will extend the abstract TraceContext EClass. Lines 13–49 of
the transformation generate the TraceLink abstract class, which is the root-type for links.
Moreover, these lines specify that a TraceModel contains zero or more links. In addition
to the TraceLink EClass, lines 13–49 create the TraceLinkEnd EClass as well as three
EClasses, which are associated with the status of a link end, namely TraceLinkEndOK-
Status, TraceLinkEndInvalidStatus, TraceLinkEndAmbiguousStatus. These EClasses
are associated with the maintenance of the traceability model. If a link end is flagged
to be ambiguous, it can have a set of 2 or more alternatives for this link end. This
relationship is specified in lines 37–42.

Listing 4.2: Trace2EPackage Rule
1 rule Trace2EPackage

2 transform s : Trace!Trace

3 to t : ECore!EPackage {

4 t.name := s.name;

5 t.nsURI := s.name;

6 t.nsPrefix := s.name;

7 t.eClassifiers.add(traceModel);

8 t.eClassifiers.add(traceLink);

9 t.eClassifiers.add(traceContext);

10 t.eClassifiers.add(traceLinkEnd);

11 t.eClassifiers.add(traceLinkEndStatus);

12 t.eClassifiers.add(traceLinkEndOKStatus);

13 t.eClassifiers.add(traceLinkEndInvalidStatus);

14 t.eClassifiers.add(traceLinkEndAmbiguousStatus);

116

4.1 Representation of traceability with TML

15 t.eClassifiers.addAll(s.links.equivalent());

16 t.eClassifiers.addAll(s.contexts.equivalent());

17 for (c in s.links) {

18 t.eClassifiers.addAll(c.ends.equivalent());

19 }

20 }

Rule Trace2EPackage illustrated in Listing 4.2 creates a new EPackage from the TML
Trace, sets its name and namespace URI and adds the EClasses generated from the
traceLinks and contexts of the Trace to the list of EClassifiers of the EPackage. Further-
more, it adds the EClasses associated with the status of the link ends to the list of the
classifiers of the EPackage and it adds the respective link ends to the appropriate links
(lines 17 and 18).

Listing 4.3: TraceLink2EClass & TraceLinkEnd2EClass Rules
1 rule TraceLink2EClass

2 transform s : Trace!TraceLink

3 to t : ECore!EClass {

4 t.name := s.name + ’TraceLink’;

5 t.eSuperTypes.add(traceLink);

6 for (c in s.contexts) {

7 var ref := new ECore!EReference;

8 ref.eType := c.equivalent();

9 ref.name := c.name.firstToLowerCase();

10 ref.upperBound := -1;

11 t.eStructuralFeatures.add(ref);

12 }

13 for (c in s.ends) {

14 var ref := new ECore!EReference;

15 ref.eType := c.equivalent();

16 ref.name := c.name;

17 ref.lowerBound := c.lowerBound;

18 ref.upperBound := c.upperBound;

19 ref.containment := true;

20 t.eStructuralFeatures.add(ref);

21 }

22 }

23
24 rule TraceLinkEnd2EClass

117

4.1 Representation of traceability with TML

25 transform s : Trace!TraceLinkEnd

26 to t : ECore!EClass {

27 t.name := s.eContainer().name + s.name.firstToUpperCase() + ’

LinkEnd’;

28 t.eSuperTypes.add(traceLinkEnd);

29 t.eStructuralFeatures.addAll(s.maintenanceData.equivalent());

30 var ref := new ECore!EReference;

31 ref.eType := s.type;

32 ref.name := "target";

33 ref.lowerBound :=1;

34 ref.upperBound := 1;

35 t.eStructuralFeatures.add(ref);

36 }

In Listing 4.3, rule TraceLink2EClass creates a new EClass for each TraceLink and
sets its name to be the same as the TraceLink. Moreover, it creates a new EReference
for each link end of the TraceLink with respective cardinality (upper and lower bounds)
(lines 13–20). Finally, rule TraceLink2EClass creates a new EReference for each con-
text of the TraceLink. In line 24, rule TraceLinkEnd2EClass creates a new EClass for
each TraceLinkEnd. In addition, the relevant to this link end maintenance attributes are
added.

Listing 4.4: Context2EClass & ContextData2EAttribute Rules
1 rule Context2EClass

2 transform s : Trace!Context

3 to t : ECore!EClass {

4 t.eSuperTypes.add(traceContext);

5 t.name := s.name + ’Context’;

6 t.eStructuralFeatures.addAll(s.data.equivalent());

7 }

8
9 rule ContextData2EAttribute

10 transform s : Trace!ContextData

11 to t : ECore!EAttribute {

12 t.name := s.name;

13 t.eType := s.type.literal.createEType();

14 }

118

4.1 Representation of traceability with TML

Rules Context2EClass and ContextData2EAttribute in Listing 4.4 transform each
context and its respective data into an EClass and a set of EAttributes of the appropriate
type respectively.

Listing 4.5: MaintenanceData2EAttribute Rule
1 rule MaintenanceData2EAttribute

2 transform s : Trace!MaintenanceData

3 to t : ECore!EAttribute {

4 guard : s.type.literal <> ’Set’

5 t.name := s.name;

6 t.eType := s.type.literal.createEType();

7 }

Listing 4.5 illustrates the rule MaintenanceData2EAttribute. This rule transforms all
the MaintenanceData of a TML into a set of EAttributes. These attributes are added to
their corresponding link ends and are used for the maintenance of a traceability model.

Listing 4.6: The TML2ECore Transformation expressed in ETL - Post Block
1 post {

2 traceLink.eSuperTypes.addAll(Trace!Context.all.select(c|c.‘default‘)

.equivalent());

3 }

In Listing 4.6, the post block of the transformation between TML and Ecore is illus-
trated. In ETL, the post block is a block of statements which are executed after the
transformation rules have been executed. In the above transformation, the purpose of
the post block is to associate all the contexts with the default attribute set to true with
every TraceLink.

Transforming to EVL Constraints As discussed in Section 4.1, every traceability
metamodel must be accompanied by a set of correctness constraints. In the TML ap-
proach we consider two sets of constraints. The first set consists of the constraints,
which have been identified in Section 4.1.3. These constraints are common in differ-
ent traceability metamodels and hence they can be abstracted into first class entities of
TML and therefore they are generated automatically. The second set consists of those
constraints, that are case-specific and do not apply in the general case of a traceability
metamodel. These constraints can not be generated automatically from a TML model.

119

4.1 Representation of traceability with TML

However, in order to reduce the effort associated with the specification of traceability
metamodels, we can generate a skeleton of those constraints, which then has to be filled
in manually by the traceability engineers. In this section we illustrate the transforma-
tions from a TML model to the aforementioned sets of constraints and discuss their
functionality.

To generate the constraints that complement the Ecore metamodel, we have em-
ployed a template-based model-to-text transformational approach using the Epsilon
Generation Language (Rose et al., 2008) as the template language. Again, any model-
to-text language such as MOFScript (Oldevik, 2011) or XPand (Efftinge, 2006b) could
have been used instead. In this section we go through the transformations and discuss
their functionality. The complete transformations can be found in Appendix D.

Listing 4.7: EGL Rule for Generating the ForAll EVL Constraint
1 [%for(link in Trace!TraceLink.allInstances) { %]

2 [%for(end in link.ends.select(e|e.forAll)) { %]

3 context [%=end.type.name%] {

4 constraint OneForEach[%=end.name.firstToUpperCase()%]{

5 [%=end.computeGuard()%]

6 [%if (end.isMany()) {%]

7 check : [%=link.name%]TraceLink.all.exists(e|e.[%=end.name%].

target.includes(self))

8 [%} else {%]

9 check : [%=link.name%]TraceLink.all.exists(e|e.[%=end.name%].

target = self)

10 [%}%]

11 message : ’No links of type [%=link.name%] found for [%=end.name

%] ’ + self

12 }

13 }

14 [%}%]

Listing 4.7 demonstrates the constraint which checks the forAll attribute. For all
TraceLinkEnds that have the forAll attribute set to true (line 2), a constraint is generated
in line 4. In line 5, the guard of the constraint is generated by calling the compute-
Guard() operation which returns an appropriate guard according to the value of the
ofTypeOnly attribute of the TraceLinkEnd. In lines 7 and 9, two alternative constraint
bodies (check) are generated depending on the cardinality of the processed end. In line
11 the message part of the constraint - which is evaluated if the constraint is not satisfied
for a particular model element - is specified.

120

4.1 Representation of traceability with TML

Listing 4.8: EGL Rule for Generating the Unique EVL Constraint
1 [%for(end in link.ends.select(e|e.unique)) { %]

2 context [%=end.type.name%] {

3 constraint Unique[%=end.name.firstToUpperCase()%]{

4 [%=end.computeGuard()%]

5 [%if (end.isMany()) {%]

6 check : [%=link.name%]TraceLink.all.select(e|e.[%=end.name%].

target.includes(self)).size() < 2

7 [%} else {%]

8 check : [%=link.name%]TraceLink.all.select(e|e.[%=end.name%].

target = self).size() < 2

9 [%}%]

10 message : ’Multiple links of type [%=link.name%] found for [%=end.

name%] ’ + self

11 }

12 }

13 [%}%]

14 [%}%]

In Listing 4.8, a constraint is generated based on the value of the unique attribute,
to ensure that only one trace link is allowed for each instance of a given type. For all
TraceLinkEnds that have the unique attribute set to true (line 1), a constraint is generated
in line 3. As in Listing 4.7, in line 4, the guard of the constraint is generated by calling
the computeGuard() user defined operation. In lines 7 and 9, two alternative constraint
bodies (check) are generated depending on the cardinality of the processed end. In line
11 the message part of the constraint - which is evaluated if the constraint is not satisfied
for a particular model element - is specified.

Listing 4.9: EGL Rule for Generating the Optional EVL Constraint
1 [%for (context in Trace!Context.allInstances) { %]

2 context [%=context.name%]Context {

3 [%for (data in context.data) { %]

4 [%=data.getInvariantType()%] NotOptional[%=data.name%] {

5 check : self.[%=data.name%].isDefined()

6 [%if (data.type.literal = ’String’){%]

7 and self.[%=data.name%].trim() <> ’’

8 [%}%]

9 message : ’No value specified for attribute [%=data.name%]’

10 }

121

4.1 Representation of traceability with TML

11 [%}%]

12 }

13 [%}%]

The last generated correctness constraint is based on the value of the optional at-
tribute of ContextData and its purpose is to ensure the non-emptiness of mandatory
contextual information. The rule that generates this constraint is illustrated in Listing
4.9.

Apart from these automatically generated constraints, a traceability engineer can
specify in a TML whether particular trace link types should be accompanied by par-
ticular constraints or critiques. Then TML uses EGL to generate a skeleton of those
constraints, whose body has to be written manually by the traceability engineer. The
rules which generate the skeleton of the constraints and the critiques are illustrated in
Listing 4.10.

Listing 4.10: EGL Script for Generating the Skeleton of the Custom EVL Constraints
1 [%for (link in TraceLink.all.select(l|l.constraints.size() > 0)) { %]

2 context [%=link.name + "TraceLink"%] {

3 [%for (constraint in link.constraints) { %]

4 constraint [%=constraint.name%] {

5 check : true

6 message : ""

7 }

8 [%}%]

9 }

10 [%}%]

11
12 [%for (link in TraceLink.all.select(l|l.critiques.size() > 0)) { %]

13 context [%=link.name + "TraceLink"%] {

14 [%for (critique in link.critiques) { %]

15 critique [%=critique.name%] {

16 check : true

17 message : ""

18 }

19 [%}%]

20 }

21 [%}%]

In Lines 2 and 15 of Listing 4.10 the constraints and critiques are generated respec-

122

4.1 Representation of traceability with TML

tively for the appropriate TraceLinks. The check and the message parts of the constraints
and the critiques have to be filled in manually by the traceability engineer.

4.1.4.3 Concrete Syntax

The built-in reflective editor of the Eclipse modelling Framework (EMF) (Eclipse Foun-
dation, 2010a) is chosen for editing and manipulating TML models. Following (Kolovos,
2007), there are four different approaches to building a concrete syntax for an Ecore-
based language. In the first approach, the Graphical Modelling Framework (GMF)
(Eclipse Foundation, 2010b) can be used to generate a graphical editor for the language
of interest. A different approach involves the use of one of the existing model-to-text
frameworks such as the Xtext framework from openArchitectureWare (Efftinge, 2006a).
The third option is to use the tools, which are shipped with EMF and generate a set of
plug-ins for a tree-based editor. Finally, the built-in reflective editor of Ecore can be
used to generate and edit models in the XML Metadata Interchange (XMI) format.

The first three options require the generation and maintenance of additional Eclipse
plug-ins, while the last one requires only the existence of the Ecore metamodel. Due
to this it is considered the most flexible and the most appropriate for research activi-
ties (Kolovos, 2007). An additional advantage of the built-in reflective editor over the
other three options is the fact that implementing a GMF editor, a textual concrete syntax
or generating/maintaining additional plug-ins for a EMF tree-based editor is time con-
suming, especially for a research project, in which the metamodels change frequently.
Hence, the option of the built-in reflective editor seems the most appropriate for the
purposes of this work.

One main drawback of the built-in reflective editor is its lack of customisability.
That is, the icons for the various model elements are identifcal to each other, while the
various labels that represent the model elements in the editor consist of the name of the
meta-class and the value of its attribute. Finally, all the models must have an .ecore or
.xmi extension and not a customised extension (e.g. .tml), since Eclipse binds editors to
file extensions.

To overcome the aforementioned issues with the built-in reflective editor, we have
chosen to utilise the Extended Emf Editor (Exeed) (Kolovos, 2007). Exeed adds the
customisation facilities which are missing from the built-in editor. That is, Exeed allows
the developer to format labels and icons of models. An example of a TML model in an
Exeed editor is illustrated in Figure 4.4. Moreover, every tree is accompanied by a
properties pane in which the various properties of the different model elements can be
specified. An example of the properties pane is illustrated in Figure 4.5.

123

4.1 Representation of traceability with TML

4.1.4.4 Traceability Representation - Examples

In this section, we present how to define and implement semantically rich trace-links
using concrete examples.

Example 1: Component and Class-Based modelling In Section 4.1.3 we have de-
veloped a traceability metamodel in Ecore (ComponentClassTraceMetamodel) for cap-
turing traceability links between models that conform to two minimal ClassMetamodel
and ComponentMetamodel metamodels (figure 4.2). In this section, we will attempt to
reproduce the hand-crafted traceability metamodel and a subset of the associated con-
straints using TML instead. Our aim is to capture traceability links between instances
of Package from the ClassMetamodel and Component from the ComponentMetamodel,
and links between instances of Method from the ClassMetamodel and Service from the
ComponentMetamodel. Furthermore, we will produce a set of related constraints di-
rectly from the TML traceability metamodel.

The first step of specifying the TML metamodel illustrated in figure 4.6 is to define
the root element, i.e. the Trace element. In our example we call this element Compo-
nentClassTraceMetamodel. Then, the two traceability links (ComponentPackage and
ServiceMethod) are created. Each traceability link is associated with link ends. In the
case of the ComponentPackage link, there are two link ends associated with it, the pack-
age link end of type Package from the ClassMetamodel and the component link end of
type Component from the ComponentMetamodel.

Each link end has a set of attributes. The package link end has the attribute forAll set
to true, which means that it is mandatory for all elements of type Package to be involved
in a traceability link. In addition, the upper and the lower bound for the package link
end are set to 1, limiting its multiplicity to 1. The attribute ofTypeOnly is boolean, and
it is set to true. This means, that this link end can be only of type Package and it can

Figure 4.4: TML model in the Exeed Editor

124

4.1 Representation of traceability with TML

Figure 4.5: Example of the Properties Pane

not be of type Model, which extends the class Package in the ClassMetamodel. Finally,
the attribute unique, which ensures that at most one traceability link of a particular kind
exists for each instance of a given type, is set to true. This will be later interpreted as a
constraint that each component can link to at most one package.

The other link end of the ComponentPackage link is the component link end of type
Component from the ComponentMetamodel. The forAll attribute is set to true, meaning
that all components must link to a package. Additionally, the upper and the lower bound
for the component link end are set to 1, while the ofTypeOnly attribute’s value is trie.
Finally, the unique attribute is set to true which means that each component can only be
traced to one package.

Similarly, the ServiceMethod link is associated with two link ends, the the methods
link end of type Method from the ClassMetamodel and the service link end of type
Service from the ComponentMetamodel. These link ends have the same set of attributes.
The value of the forAll attribute is false for the methods link end, while it is true for the
service link end. Furthermore, the multiplicity for the methods link end is set to be
one-to-many, while the multiplicity for the service link end is set to be one-to-one. For
both of these two link ends, the value of the attribute ofTypeOnly is false. Finally, the
methods link end ’s unique attribute is set to false, whereas the same attribute for the
service link end is set to true.

Apart from the links and their associated link ends, the TML metamodel specifies
a number of contexts, which can be associated to one or more of the traceability link
types. The first context specified in our example is the Common context, whose default
attribute is set to true. By setting this attribute to true, we associate this context explicitly
to both of the aforementioned links of our model. Each context of TML has a number
of ContextData. In our example, the Common context has two, namely description
and author. The former provides a short description for each traceability link, while the

125

4.1 Representation of traceability with TML

Figure 4.6: The ComponentClassTraceMetamodel specified using TML

latter provides the creator of each link. Each ContextData has three attributes associated
with it, i.e. name, type and optional. The description ContextData is of type String and
its optional attribute is set to false. This means that it is mandatory that every link in
our model has a description. The author ContextData is of type String as well and its
optional attribute is set to true, meaning that it is not mandatory to specify an author for
each traceability link in our exemplar model.

The second context of our example is the Alternatives context, which is not attached
to all of the trace links in the model, but only to the ServiceMethod traceability link.
Hence, the default attribute of this context is set to false. Its ContextData is named
alternatives, and shows if a service depends on all of the methods (logical and) or only
on one of them (logical or). In our example, this is of type boolean and it is mandatory.

Generating the Ecore-based metamodel and the EVL constraints After creating a
TML model, we can use the M2M and M2T transformations presented in Section 4.1.4
to obtain a traceability metamodel in Ecore and a set of associated constraints expressed
in our case in EVL. The generated, case-specific traceability metamodel in Ecore is
semantically equivalent to the hand-crafted one presented in Figure 4.2. In addition, the
specified attributes for the various TML elements, are used to generate constraints in
EVL. For example, the forAll attribute of the component link end, which is set to true in
our example, produces the EVL constraint of Listing 4.11 while the optional attribute
of the description context data which is set to false produces the constraint of Listing

126

4.1 Representation of traceability with TML

4.12.

Listing 4.11: The EVL constraint generated by the forAll attribute
1 context Component {

2 constraint OneForEachComponent{

3 check : ComponentPackage.all.exists(e|e.component = self)

4 message : ’No links of type ComponentPackage found for component

’

5 + self

6 }

7 }

Listing 4.12: The EVL constraint generated by the optional attribute
1 context Common {

2 constraint NotOptionaldescription {

3 check : self.description.isDefined()

4 and self.description.trim() <> ’’

5 message : ’No value specified for attribute description’

6 }

7 }

Example 2: Traceability in Requirements Engineering In the previous example,
we demonstrated how TML can be used to specify traceability information. In this one,
we will demonstrate the approach on a more realistic scenario, based on the require-
ments engineering (RE) domain.

In the RE literature, the RE effort is divided in two broad phases, the early-phase and
the late-phase (Yu, 1997). The early-phase activities include those that consider how the
intended system can be integrated in the organisation, how it can meet the organisational
goals, why the system is needed, what alternatives exist, etc. The emphasis of this
phase is on understanding the various “whys” that underlie the system requirements
rather than on “what” the system should do. The knowledge obtained from the early-
phase activities will be used to guide the activities in the later phases of the software
development.

In contrast to the early-phase of RE, the late-phase focuses on coming up with a
detailed requirements specification as well as on the completeness, consistency, and
automated verification of this specification. Following (Yu, 1997), it is argued that
because early-phase RE activities have different objectives and goals from those of the

127

4.1 Representation of traceability with TML

the late-phase ones, it is appropriate to have different modelling support for the two
phases.

According to Alencar et al. (2000), the i* framework (Grau et al., 2006; Yu, 1997)
is well suited for early-phase requirements capture, while the Unified Modelling Lan-
guage (UML) (Object Management Group, 2004) can be used for late-phase require-
ments capture. UML is not adequate to deal with early requirements capture and anal-
ysis, since it cannot describe and evaluate alternatives and their relationship to organi-
sational objectives. Instead, the i* framework can be used , since it allows for a better
description and reasoning of the various organisational relationships among the agents
of a system as well as the understanding of the rationale of the decisions taken. Hence,
both UML and the i* framework can be used complementarity to support the entire
RE phase. However, since different notations are used to represent different but pos-
sibly overlapping views of the system, traceability information must be captured and
maintained among the different views.

In this example, we will trace concepts between the Strategic Dependency (SD)
metamodel of the i* framework and a simplified version of an OO Class Diagram meta-
model. The rationale behind the various relationships between those two metamodels
can be found in (Alencar et al., 2000), where a set of heuristics is provided for trans-
forming SD models to UML class diagrams.

i* (Grau et al., 2006; Yu, 1997) is a modelling framework which focuses on the
strategic actor relationships. In contrast to many standard modelling techniques like
UML or Entity-Relationship diagrams, i* provides abstractions which are capable of
expressing organisational relationships among the various organisational agents and the
rationale behind the various decisions taken. The various participants of the organi-
sational setting are actors with intentional properties such as goals and beliefs. These
actors depend on each other in order to fulfill their objectives and have their tasks per-
formed. The i* framework consists of two models: the SD model and the Strategic
Rationale (SR) model.

The SD is a graph whose nodes represent the system actors and the vertices rep-
resent dependency relationships among them. The goal of an SD model is to capture
the motivation and the rationale of actor’s activities. An SD model distinguishes four
types of dependencies; goal dependencies, task dependencies and resource dependen-
cies. Furthermore a goal can be either a hard goal or a soft goal. In the RE literature, a
soft goal is a goal, which can not be precisely defined. A soft goal is similar to a hard
goal except that the criteria for whether a soft goal is achieved are not clear-cut and a
priori. In a goal dependency, an actor depends on another actor for the fulfillment of
one goal. In a resource dependency, an actor depends on another actor for a resource,
while in a task dependency an actor depends on another actor to carry out a task. Actors
can be classified into agents, roles and positions. An agent is an actor with a concrete
physical existence. A role is an abstract characterisation of the behaviour of a social

128

4.1 Representation of traceability with TML

Figure 4.7: The SD Metamodel of the i* Framework

actor within some specialised context, while a position is a set of roles of a single agent.
A simplified metamodel for an SD model can be found in figure 4.7.

Figure 4.8: The Sample OO Metamodel

The second metamodel we will use in this example is a simplified OO class diagram
metamodel. This metamodel is illustrated in figure 4.8. In the context of RE, a class

129

4.1 Representation of traceability with TML

diagram can be thought of as a conceptual model of the system under consideration.
It describes the various entities involved in the system, their relationships, the domain
model constraints, the system scope as well as the domain-vocabulary. Hence, it pro-
vides a structural view of the system under consideration and it can be complemented
by other dynamic views, such as Use Case Models Object Management Group (2004).

For this example, the following mappings will be captured:

• Instances of the Actor class in the i* framework will be mapped to instances of
the Class class in the OO model.

• A Task in a SD model will be mapped to an Operation of the relevant class in the
OO model.

• Instances of the Resource class in the i* framework will be mapped to instances
of the Class class in the OO model.

• Instances of the HardGoal class and instances of the SoftGoal class in the i*
framework will be mapped to instances of the Attribute class, which belong to
relevant classes in the context class diagram. Since this context class diagram is
part of the late-phase of RE, the recording of the various domain entities goals
and their satisfaction in the form of class attributes is considered to be beneficial.

The first step of the proposed approach is to define the IStar2OO case-specific
traceability metamodel. This metamodel specifies the IStar2OO class, which func-
tions as a container for the various trace-links. Then, the five trace links (Actor2Class,
Task2Operantion, Resource2Class, HardGoal2Attribute and SoftGoal2Attribute) are cre-
ated. Each traceability link is associated with the relevant link ends. In the case of the
Actor2Class link, there are two link ends associated with it, the Actor link end of type
Actor from the IStar metamodel and the Class link end of type Class from the OO
metamodel.

Each link end has a set of attributes. The Actor link end has the attribute forAll set
to true, which means that it is mandatory for all elements of type Actor to be involved
in a traceability link. In addition, the upper and the lower bound for the Actor link end
are set to 1, limiting its multiplicity to 1. The attribute ofTypeOnly is boolean, and it is
set to false. This means, that this link end can be of any type which extends the class
Actor in the IStar metamodel, such as the classes Agent or Role. Finally, the attribute
unique, which ensures that at most one traceability link of a particular kind exists for
each instance of a given type, is set to true. This will be later interpreted as a constraint
that each Actor can link to at most one Class.

The other link end of the Actor2Class link is the Class link end of type Class from
the OO metamodel. The forAll attribute is set to true, meaning that all Classes must
link to an Actor. Additionally, the upper and the lower bound for the component link

130

4.1 Representation of traceability with TML

end are set to 1, while the ofTypeOnly attribute’s value is true. Finally, the unique
attribute is set to true which means that each Class can only be traced to one Actor. In
a similar manner the rest of the trace links of the traceability metamodel are specified.
The IStar2OO metamodel is illustrated in figure 4.9.

Figure 4.9: The IStar2OO metamodel

In the previous example, there were no custom constraints. In this example apart from
the constraints, which are generated automatically, there are case-specific constraints
and critiques which have to be coded by the traceability engineer. Critiques are con-
straints, which check for non-critical issues that should nevertheless be addressed by
the user. The various constraints and critiques are modeled in the TML model as it is
illustrated in figure 4.9.

131

4.1 Representation of traceability with TML

For the Actor2Class trace link the ActorClassName critique is specified. According
to this critique, for every Actor2Class trace link, the name of the Actor reference and
the name of the Class reference should be the same.

The ActorClassAgreement constraint is attached to the Task2Operation trace link.
This constraint ensures that if a Task is linked to an Operation via a Task2Operation
trace link, then the Actor to whom the Task belongs must be also linked to the Class,
which contains that operation

The Resource2Class trace link has the ResourceClassName critique attached to it,
which is similar to the ActorClassName one. This critique generates a warning if the
name of the Resouce and the Class, which are linked via the Resource2Class trace link,
have a different name.

According to the heuristics provided in (Alencar et al., 2000), for every Hard-
Goa2lAttribute trace link, the Attribute end of the link must be of type Boolean. This is
because hard goals are well defined, hence it is always possible to establish if one has
been fulfilled or not. This is captured by the AttributeIsBoolean constraint, attached to
this trace link.

Finally, the constraint AttributeIsEnumeration is attached to the SoftGoal2Attribute
trace link. This constraint ensures that for every SoftGoalAttributeTraceLink, the At-
tribute end of the link must be an Enumeration. This is due to the fact that soft goals are
not well defined. They can only be satisfied to some degree and the different values of
the Enumeration represent the different degrees of soft goal fulfillment.

From this set of constraints and critiques, TML can generate an EVL skeleton. An
excerpt from this skeleton is illustrated in Listing 4.13

Listing 4.13: Excerpt of the EVL skeleton generated by TML
1 context IStar2OO!HardGoal2Attribute {

2 constraint AttributeIsBoolean {

3 guard :

4 check :

5 message :

6 }

7 }

8
9 context IStar2OO!SoftGoal2Attribute {

10 constraint AttributeIsEnumeration {

11 guard :

12 check :

13 message :

14 }

132

4.1 Representation of traceability with TML

15 }

Once the skeleton is generated, the traceability engineer can fill in the bodies of the
generated constraints and critiques. A benefit of the proposed approach is the fact that
all the information required for traceability are captured in one model and they are not
scattered in various artefacts. Hence, the traceability engineer can capture at a higher
level of abstraction the types of constraints that are required for the various links as well
as their rationale.

An excerpt of the completed custom EVL for this example is illustrated in Listing
4.14.

Listing 4.14: Excerpt of the EVL Code Created by the Engineer
1 context IStar2OO!HardGoal2Attribute {

2 constraint AttributeIsBoolean {

3 guard : self.attribute.isDefined()

4 check : self.attribute.type = OOMetamodel!PrimitiveType#’Boolean’

5 message : ’Attribute ’ + self.attribute.name + ’ should be of type

Boolean’

6 }

7 }

8
9 context IStar2OO!SoftGoal2Attribute {

10 constraint AttributeIsEnumeration {

11 guard : self.attribute.isDefined()

12 check : self.attribute.isTypeOf(OOMetamodel!Enumeration)

13 message : ’Attribute ’ + self.attribute.name + ’ should be of type

Enumeration’

14 }

15 }

In Listing 4.14, constraint AttributeIsBoolean applies to all instances of the Hard-
Goa2lAttribute in an IStarOOTraceModel trace link. In the first part of the constraint, a
guard is defined, which checks if an attribute end is defined for the instance of the Hard-
Goal2Attribute trace link. In EVL, a guard limits the applicability of a constraint to a
narrower subset of instances of its specified type. Hence, if the guard fails, namely no
attribute end is defined for the particular link instance, then the contained invariant will
not be evaluated. The check part of the constraint returns true if the attribute reference
of the HardGoal2Attribute trace link is of type Boolean and false otherwise. If the check
part returns false, that is if the attribute reference of the HardGoal2Attribute link is not
of the type Boolean, then an appropriate error message is produced in the message part.

133

4.2 Trace Link Recovery with TML

Constraint AttributeIsEnumeration works in a similar manner. This constraint applies
to all instances of the SoftGoal2Attribute trace link in an IStar2OO trace model.

As with the previous example, to establish traceability links between the SD meta-
model of the i* framework and a sample OO metamodel, we have captured all the
required information in a dedicated traceability model, namely the IStar2OO model.
From this TML we generated an Ecore metamodel in which every legitimate type of
traceability link is represented as a metaclass, which contains references to the types
of elements it can link. Additionally, two sets of constraints were captured. The first
one consists of the constraints which can be generated automatically by the IStar2OO
model. The second one consists of case-specific constraints which have to be written by
the traceability engineer.

4.2 Trace Link Recovery with TML
In the previous section, we described how TML can facilitate the specification of seman-
tically rich and case-specific traceability information. In this section, we will describe
how this traceability information can be used to discover previously unknown trace links
and to record them in dedicated traceability models.

The problem of trace link recovery is the following. Given model MA which con-
forms to metamodel MMA and model MB which conforms to metamodel MMB how
can we automate the identification of links (relationships) between the two models?
Automatic trace link recovery becomes more important when the associated artefacts
are large (i.e. there are more possible links between the artefacts) as well as when the
relationships between the artefacts increases in complexity. As discussed in section 2,
this is an important issue in the traceability research community and there is a substan-
tial amount of research work on this issue. In the following, we summarise the various
techniques that are used in the literature for trace link recovery and we argue why these
techniques are not sufficient to support this traceability activity in MDE. Furthermore,
we identify a set of requirements which must be satisfied by a trace link recovery tech-
nique in the domain of MDE, and finally we present an approach which is based on
TML.

4.2.1 Summarising Current Practices to Traceability Identification
In chapter 2, we presented the main methodologies to traceability identification, while
in chapter 3, we listed a set of identification techniques in the form of taxonomic char-
acters. These techniques are the following:

Techniques 1-3 come from the IR domain. These techniques are used for trace link
recovery on the assumption that two related documents will share the same vocabulary

134

4.2 Trace Link Recovery with TML

1 Identification with IR techniques - VSM 7 Identification with run-time monitoring
2 Identification with IR techniques - LSI 8 Identification augmented with A.I. Techniques
3 Identification with IR techniques - PM 9 Identification augmented with visualisation techniques
4 Identification with indirect rules 10 Identification with history analysis
5 Identification with direct rules 11 Implicit identification with transformations
6 Identification with program analysis 12 Explicit identification with transformations

Table 4.1: Traceability Identification Techniques

since developers normally choose names for the various entities from the application-
domain knowledge. Moreover, the use of such techniques requires text intensive arte-
facts, since they are generally based on chunks of natural language text and usually do
not rely on any structural properties of the input (Winkler & von Pilgrim, 2009).

Overall, trace recovery with IR techniques performs satisfactory in a situation, where
the above assumptions hold. The process of recording traces is fully automatic and
manual intervention is only necessary when traces are queried and used. However, the
initial quality of the candidate links prior to the manual review is often poor (Winkler
& von Pilgrim, 2009). As a result, the engineer who uses IR for trace recovery, has to
have knowledge about a particular traceability scenario or about a particular domain,
since he or she has to verify if a candidate is a correct link or not. Furthermore, these
techniques do not identify all possible links, since entities can be linked even though
they are not similar from a textual point of view. Finally, the links recovered by such
approaches have poor semantics. Most of the IR techniques are able to retrieve pairs or
sets of entities which are similar in some way, but the semantics of the links cannot be
derived. That is, IR methods can identify possible links, but they do not provide further
information about the nature or the type of the recovered links.

The aforementioned assumptions and concerns make IR techniques an unsatisfac-
tory solution to traceability identification between models in MDE. In a MDE model the
structural properties of the model and it textual parts are equally important, since they
can capture essential information about the modeled entity. Hence, neglecting these
properties for recovering trace links (as IR techniques do) limits the effectiveness of
any recovery mechanism. Moreover, as mentioned in chapter 3 one of the principles of
MDE is the application of system decomposition by modelling a system from a variety
of viewpoints, which do not possibly share the same vocabulary (Sommerville et al.,
1997). Hence, relying on similar vocabularies to recover trace links between models
in MDE is not ideal. Furthermore, the semantics of models and therefore the seman-
tics of the traceability links play a crucial role in MDE as discussed in chapter 3. IR
techniques though can not support rigorous semantics for the recovered links, and this
limits the applicability of such techniques for this purpose in MDE. Finally, IR tech-
niques consider only the Dependency viewpoint of traceability, while in MDE both the
Dependency and the Generative viewpoints are equally important. Due to these reasons,

135

4.2 Trace Link Recovery with TML

IR techniques are a poor candidate for automated trace link recovery between models in
an MDE process.

Similar to the IR techniques, A.I. techniques are used to augment and automate
approaches to trace link recovery. These techniques use mainly machine learning algo-
rithms to categorize and find relationships between the traceable artefacts. One of the
most widely used approaches is topic modelling (Asuncion et al., 2010), which is a ma-
chine learning technique for automatically inferring semantic topics from a text corpus.
Due to their nature, the A.I. techniques have the same limitations with IR techniques
when it comes to traceability support in MDE. They perform better with textual than
non-textual artefacts. They rely on consistent terminology in the traceable artefacts.
They do not support fine-grained granularity of trace links (i.e. they usually identify
links between entire artefacts and not between entities in those artefacts) and finally,
they do not support rigorous trace link semantics.

The next type of trace recovery techniques consists of techniques 4 and 5. These
techniques apply rules to the attributes of a traceable artefact in order to recover possible
links. In the case of indirect rules, the traceability engine exploits transitivity in order to
identify implicit links. For example, if a link exists from an artefact A to an artefact B
and another link from B to C, then the traceability engine is able to automatically derive
and record a link from A to C. On the other hand, in the case of direct rules, assertion
rules are defined to identify similarity between two traceable entities. For example, the
rule can exploit lexical analysis techniques to identify similarity between the entities
based on common occurances of a keyword.

Most rule-based approaches require some form of human interaction in order to set
up a basis for traceability. This may be either a set of traces recorded manually, or
a basis of customized rules. Compared to recording traces completely manually, the
costs are lower. However, flexibility is also generally decreased, as most approaches
rely on aspects such as particularly structured artifacts or consistent use of terminology.
Moreover, no guidance or assistance is provided to the engineer to create the various
rules. As a result, witting complex rules can be error prone and time consuming.

Techniques 6 and 7 rely on program analysis to recover previously unknown trace
links. The former technique relies on static program analysis techniques to identify
links between software entities, while the latter relies on dynamic program analysis
techniques for the same purpose. Although, these techniques can be efficient for recov-
ering links between software entities, this is not the case for recovering links between
MDE models. First, in most cases models in MDE are not executable, hence dynamic
program analysis does not apply. Second, many of the links that exist between models
are informal and they can not be recovered by this kind of analysis. Relevant to this is
the fact that the techniques, which rely on program analysis for trace link recovery, can
not capture the semantics of trace links, since they can identify only a limited number
of link types. Therefore, from an MDE perspective, such approaches are not ideal for

136

4.2 Trace Link Recovery with TML

trace link recovery between models.
History analysis is another technique used to recover trace links. This technique

utilizes version control systems such as subversion (Pilato, 2004) to identify change
patterns among sets of files that are modified together frequently in the past. The under-
lying assumption of this technique is that the change patterns can be used to recommend
potentially relevant documents. The main shortcoming of this approach is that although
frequent common modifications might imply some kind of a relationship, they can not
inform the engineers on the type of this relationship. Therefore, the semantics of the
trace links can not be defined using a history analysis approach.

The next type of trace link recovery method makes use of visualisation techniques
to augment the manual declaration of trace links. Such a technique can be for example
a special coloring schemes for particular types of artefacts, when they are displayed in
a tool. The user can make use of the visual information to manually establish trace
links. Since, the establishment of the links is done manually, the cost of traceability
remains high, especially for large or complex artefacts. Moreover, such approaches do
not provide any support for defining the semantics of the trace links in an enforceable
way.

The final type of trace link recovery techniques consists of techniques 11 and 12.
These techniques rely on transformations in order to identify and establish possible trace
links between artefacts. In the case of recovering trace links implicitly, the required
traceability information can be generated by the traceability engine, which is used to
execute the transformation. As a by-product of the transformation the transformation
engine generates traceability information in the form of the following tuple:

<source element, transformation rule, target element>

The source is the element which is used as source in the transformation, the target
is the resulting element and the third element of the tuple is the transformation rule,
which was used to generate the target element from the source element. This traceability
information do not provide any particular link types or semantics for the different types
of traceability relationships that can exist.

In the second case of trace link recovery using transformations, links can be estab-
lished explicitly by injecting traceability-related code in the transformation code. This
approach has the advantage, that links with particular semantics can be created. On the
other hand though, the transformation code becomes “polluted” from the traceability-
related code, hence it becomes less readable. Finally, both explicit and implicit trace
recovery techniques neglect completely the Dependency viewpoint of traceability and
they focus solely on the Generative viewpoint.

From the above summary of the various trace recovery methods, it can be seen
that none of the above methods was built having in mind the principles and special
conditions which apply to an MDE process as described in section 3.4. In the following

137

4.2 Trace Link Recovery with TML

section, we identify the requirements of a trace link recovery method for MDE, while
in section 4.2.3, we present a novel approach to trace link recovery based on the TML.

4.2.2 Requirements for Traceability Identification
The purpose of this section is to summarise the characteristics a trace link recovery
method in MDE should have based on the discussion which took place in the previous
sections. These characteristics are:

1. Model-centric approach: In order to provide MDE-specific support, a trace link
recovery method should utilize both the structural metadata as well as the lexical
information of a model element in order to recover possible trace links. This is
due to the fact that the main artefacts in MDE are models, and for such graph-like
artefacts as models the structural properties of an element are equally important
to its lexical parts, since they can capture essential information about the modeled
entity.

2. Support for rich traceability semantics: Since the semantics of trace links
is very important as discussed in section 2.4.2, a trace link recovery technique
should be able to recover links with rich semantics, and not just a generic rela-
tionship between two entities.

3. Support for both Dependency and Generative Identification: Since initial and
derived models are used in MDE and they are very often related to each other,
a trace recovery technique for MDE should be able to support both Generative
and Dependency viewpoints. That is, such a technique should be able to recover
trace links between a generated model and the model which was used for this
generation, as well as trace links between models which do not share this kind of
relationship, but co-exist.

4. Automated Recovery: Trace link recovery is considered a costly and error prone
activity (Egyed et al., 2005). Hence automating this activity is of paramount
importance.

5. Framework-agnostic: Since in MDE there is a plethora of model management
frameworks (Mens et al., 2005), a trace link recovery method should be generic
and not tied to any particular technology.

4.2.3 Identification in TML
In the previous section, we presented the main trace link recovery methods and we iden-
tified a set of requirements, which should be satisfied by such a method in the context of

138

4.2 Trace Link Recovery with TML

MDE. From this discussion it is apparent, that the main issue of the existing approaches
is the fact that the recovered links do not have rich, scenario-specific semantics. TML
does not propose a new recovery technique but its purpose is to enhance the links recov-
ered by model management frameworks with case-specific semantics. Moreover, the
proposed approach is able to support both the Dependency and Generative viewpoints
of traceability. This is a very important feature in the context of an MDE process, since
both initial and derived models are used in such processes.

An MDE process typically consists of a number of model management (e.g. model
to model transformation, model validation) and classical software development (e.g.
code compilation, file system management) tasks (Kolovos, 2008b). Many of these
tasks generate an internal trace. For example, an ETL module provides the exportTrans-
formationTrace attribute or an Epsilon Comparison Language (ECL) (Kolovos, 2009)
module provides the exportMatchTrace attribute that enable the developer to export the
internal trace to the project context. TML relies on such model management languages
for a set of traceability links. In the case where a model management language does not
provide such an internal trace, the TML approach proposes the injection of traceability-
related code in the code written in the model management language in order to generate
the required set of trace links. An example of this case is provided in section 6, where
EOL is used to describe a transformation instead of ETL.

Trace link recovery in TML relies on two model-to-model transformations. The
first transformation is from the internal trace generated by a model management task to
a generic trace representation, while the second transformation is from the generic trace
representation to the case-specific traceability model.

Many model management frameworks are currently used to manipulate models
(Kolovos, 2008a). As TML should not be restricted to a particular model management
framework or to a particular language,which supports particular model management
tasks, a key purpose of the generic trace representation is to provide an abstraction layer
through which model management frameworks will be able to uniformly utilise the
functionality offered by TML. The metamodel of this internal representation is shown
in figure 4.10.

The GTrace class acts as the root of a generic trace model and it can contain a
number of links, which are captured by the GTraceLink concept. Finally, each link can
have two or more traced elements. Each of the main three concepts of a generic trace
model (i.e. GTrace, GTraceLink and GTracedElement) can be annotated. The details of
these annotations have the form of key-value mappings and their purpose is to capture
useful details for the model management task of interest. For example, an annotation
can capture which of the link ends is the source of a transformation and which one is
the target.

In the following sections, we will present these transformations, as well as how TML
supports the Generative and Dependency viewpoints.

139

4.2 Trace Link Recovery with TML

Figure 4.10: Generic Trace Metamodel

4.2.3.1 Internal Trace to Generic Trace

The first transformation of this transformation-chain is the one from the internal trace
of a model management task to a generic trace representation. Since, the purpose of
the TML approach is to support both the Dependency and Generative viewpoints, we
have currently implemented two transformations,which cover these cases. To support
the Generative Viewpoint, we have implemented a transformation, which takes as a
source the internal trace produced by ETL and produces a generic trace. To support
the Dependency Viewpoint, we have implemented a transformation, which takes as a
source the internal trace produced by ECL and produces a generic trace. These two
transformations, as well as their rationale and how they can support the two viewpoints,
are discussed in the following.

Generative Viewpoint Due to the importance of model transformations in MDE, the
support of the Generative viewpoint is of paramount importance for any traceability ap-
proach whose focus is on an MDE process. Many declarative and hybrid transformation
languages such as ETL and ATL have built-in support for traceability. Such support is
needed to link elements generated by different transformation rules together. For ex-
ample, a target element may be referred to by using its corresponding source element
as a key. Such a form of traceability however does not have rich semantics and usually
does not persist after executing a transformation. For this reason, it is called internal
traceability (Jouault, 2005).

140

4.2 Trace Link Recovery with TML

Figure 4.11: Transformation-Chain

In the TML approach, we use this internal traceability to generate a trace repre-
sented in an intermediate generic format and then using a TML model and this generic
representation, we generate case specific traceability models. For this thesis, we have
used the internal trace generated by the ETL, but in principle any transformation engine
which generates internal traces could have been used. In the case where there is no
internal trace, then the generic trace can be generated by injecting traceability-specific
code in the transformation code. In this section we will first present how the proposed
approach works in the case, where an internal transformation trace in available, and then
we will discuss how traceability can be establish when the transformation does not pro-
duce such a trace. In the case of a transformation language, which generates an internal
trace, the algorithm for generating the generic trace model works in the way described
by pseudocode in algorithm 1.

When a transformation is executed a GTrace model is created. For every link of
the internal trace model of the transformation engine a GenericTraceLink is created and
an GAnnotation is attached to it. The name of this annotation is the transformation
language used. For example, in the implementation for this work this will be “ETL”.
Moreover, the key of the GAnnotationDetails is “rule”, while its value is the name
of the transformation rule, from which this link is created. Each link of the internal
trace has a set of source elements and a set of target elements depending on the trans-

141

4.2 Trace Link Recovery with TML

Transformation 1 Internal Trace to Generic Trace - Transformation Language
create a GTrace model
for all links in internalTrace do

create a GenericTraceLink
create and attach a GAnnotation to GenericTraceLink

5: set GAnnotation.name←′′ ETL′′

set GAnnotationDetails.key ← ′′rule′′

set GAnnotationDetails.value← name of transformation rule

for all source elements in links do
create GTracedElement

10: set GTracedElement← element

attach a GAnnotation
set GAnnotation.name←′′ ETL′′

set GAnnotationDetails.key ← ′′kind′′

set GAnnotationDetails.value← ′′source′′

15: end for
for all target elements in links do

create GTracedElement
set GTracedElement← element

attach a GAnnotation
20: set GAnnotation.name←′′ ETL′′

set GAnnotationDetails.key ← ′′kind′′

set GAnnotationDetails.value← ′′target′′

end for
end for

formation language. The next step of the algorithm is to take all the source elements
of the internal link and create the relevant GTracedElements. Moreover a GAnnota-
tion is attached to every GTracedElement, whose key is set to “kind” and its value to
“source”. The purpose of this annotation is to capture the directionality of the link, by
specifying that a particular GTracedElement of a GTraceLink is a source. Similarly, for
every target element of the internal trace link the algorithm generates the correspond-
ing GTracedElements with an GAnnotation, whose key is set to “kind” and its value to
“target”.

In the case of a language which does not support an internal trace, traceability re-

142

4.2 Trace Link Recovery with TML

lated code has to be injected in the transformation code in order to generate the GTrace
model. The form and content of this code depend on the transformation language we
are targeting. For this work, we have implemented traceability support for the EOL, an
OCL-based imperative model management language built on top of the Epsilon plat-
form (Kolovos & Paige, 2010). To this end, we have implemented the following class in
Java, which has the add, operation. This operation takes as parameters a source element,
a target element and a transformation rule and adds a trace link to an internal trace.

Listing 4.15: Java implementation of the Trace class
1 public class Trace extends TransformationTrace {

2 public void add(Object source, Object target, String ruleName) {

3 ArrayList<Object> targets = new ArrayList<Object>();

4 targets.add(target);

5 super.add(source, targets, null);

6 }

7 }

When we want to generate a trace in an EOL script, we just have to invoke the add
method directly from within the EOL code. This is illustrated in listing 4.16.

Listing 4.16: Invoking the add method in EOL
1 // TML: Trace Source to Target

2 trace.add(source, target, "");

In section 6, the injection of traceability code in an EOL script is demonstrated in a
case study in which EOL is used to implement a complex (≈1000 loc) model-to-model
transformation.

Dependency Viewpoint The second viewpoint supported by the TML approach is the
Dependency viewpoint. In this case, traceability must be established between existing
models, which do not have the kind of relationship between a source and a target of a
model transformation. Such traceability has to capture some implicit or explicit seman-
tic relation, or dependencies, between the related models. The majority of the traceabil-
ity approaches we have presented in the previous sections cover this kind of traceability.
However, most are not developed for recovering traceability between models. Given
the structured nature of models traditional text-based comparison approaches have been
shown to be insufficient for finding similarities between models (Treude et al., 2007).

In this work we propose the use of model comparison in order to discover semantic
and structural similarities between models. Once such similarities have been discovered
and an internal trace is created, the semantics of this internal trace is enhanced in a

143

4.2 Trace Link Recovery with TML

similar way with the way described in the previous section, where it is described the
traceability recovery support in the Generative case.

Model comparison is the task of identifying matching elements between models. In
general, matching elements are elements that are involved in a relationship of interest
(Kolovos, 2009). Several approaches to model matching have been proposed in the lit-
erature. Id-based approaches establish matches between models based on the common
non-volatile identity of model elements (e.g. (Alanen & Porres, 2003)). However, these
approaches cannot be applied to modelling technologies that do not support such iden-
tifiers or to individually developed models. Signature-based approaches overcome the
limitations of id-based approaches by the identities used for the comparisons are com-
puted automatically using the features of each element (Fleurey et al., 2007). The main
issue with this approach to model comparison is the fact that string-based identifiers
are not meaningful for all types of model elements. The third type of approaches to
model comparison consists of similarity-based approaches (e.g. (Treude et al., 2007)).
These approaches treat models as typed attribute graphs and calculate the similarity be-
tween nodes based on the combined weighted similarity of their features. The main
limitation of the similarity-based approaches is that they are generic and they can not be
easily configured to exploit the semantics and particularities of the various modelling
languages. Moreover, they can not be applied to heterogeneous models, which conform
to different metamodels.

For this work, we have chosen to use the ECL, which is a hybrid, task-specific,
model comparison language. ECL overcomes the aforementioned limitations of the
similarity-based approaches by enabling developers to specify precise language-specific
algorithms for establishing matches between elements conforming to different meta-
models in a rule-based manner. ECL produces an internal trace similar to the internal
trace produced by transformation languages like ETL. More precisely, the internal trace
of ECL has the following form:

<source, target, matching rule >

In the case of a comparison language, which generates an internal trace, the algorithm
for generating the generic trace model is similar to the algorithm used for a transforma-
tion language. The transformation is presented using the following pseudocode. When a
model comparison is executed a GTrace model is created. For every link of the internal
trace model of the comparison engine a GenericTraceLink is created and an GAnnota-
tion is attached to it. The name of this annotation is the comparison language used. For
example, in the implementation for this work this will be “ECL”. Moreover, the key of
the GAnnotationDetails is “rule”, while its value is the name of the comparison rule,
from which this link is created. Each link of the internal trace has a source element
and a target element The next step of the algorithm is to take the source element of
the internal trace link and create the relevant GTracedElement. Moreover a GAnnota-
tion is attached to every GTracedElement, whose key is set to “kind” and its value to

144

4.2 Trace Link Recovery with TML

Transformation 2 Internal Trace to Generic Trace - Comparison Language
create a GTrace model
for all links in internalTrace do

create a GenericTraceLink
create and attach a GAnnotation to GenericTraceLink

5: set GAnnotation.name←′′ ECL′′

set GAnnotationDetails.key ← ′′rule′′

set GAnnotationDetails.value← name of comparison rule

for all source elements in links do
create GTracedElement

10: set GTracedElement← element

attach a GAnnotation
set GAnnotation.name←′′ ECL′′

set GAnnotationDetails.key ← ′′kind′′

set GAnnotationDetails.value← ′′source′′

15: end for
for all target elements in links do

create GTracedElement
set GTracedElement← element

attach a GAnnotation
20: set GAnnotation.name←′′ ECL′′

set GAnnotationDetails.key ← ′′kind′′

set GAnnotationDetails.value← ′′target′′

end for
end for

“source”. The purpose of this annotation is to capture the directionality of the link, by
specifying that a particular GTracedElement of a GTraceLink is a source. Similarly, for
every target element of the internal trace link the algorithm generates the correspond-
ing GTracedElements with an GAnnotation, whose key is set to “kind” and its value to
“target”.

In the case of a comparison language which does not support an internal trace, trace-
ability related code has to be injected in the comparison code in order to generate the
GTrace model. The form and content of this code depend on the comparison language
we are targeting. This part of the approach is identical to the one described for the

145

4.2 Trace Link Recovery with TML

Generative viewpoint.

4.2.3.2 From a Generic Trace Model to a Traceability Model

The second step of the transformation-chain consists of the transformation from a GTrace
model to the traceability model. This transformation enhances the information con-
tained in the Gtrace model with case-specific semantics provided by the TML model.
The resulting traceability model conforms to the traceability metamodel generated by
the transformation of the case-specific TML model to the case-specific traceability
metamodel expressed in Ecore, which is described in section 4.1.4.2. This transfor-
mation is described using the pseudocode in algorithm 3.

Usually, executing a model management task requires the declared models and meta-
models to be bound to actual models in the file system. This is called the operational
context of the transformation (Jouault et al., 2006). This is usually done in the launch
configuration of the task. In the TML approach, apart from the models and metamodels,
the TML model which corresponds to a particular task belongs to its operational con-
text. In our implementation, in which we provide TML support for ETL and ECL, the
traceability model is passed as a parameter to the execution engine. An example of this
is illustrated in figure 4.12, where it is shown the launch configuration pane of an ETL
transformation. By extending the operational context, the postprocessor of the model
management language, has all the necessary information for transforming the generic
trace to a traceability model.

This transformation creates first a trace model for the model management task it
corresponds to, if such model does not exist. The next step in the transformation is to
iterate across all the links in the GTrace model and try to math them with suitable links in
the TML model, which is part of the operational context of the model management task.
If more than one suitable links are found then, the GTaceLink is flagged as ambiguous
and a warning is generated stating the alternatives for this link. If no suitable link is
found then the GTaceLink is flagged as invalid and a warning is generated. An invalid
link means that there is no suitable trace link in the TML model. An assumption we
make is that a meaningful relationship between two elements should be captured in
the traceability model. Hence, when a GTaceLink is invalid, this indicates that there
might be an error in the transformation rule which created this link. We will expand
further into this aspect of TML in section 4.4, where we describe how a traceability
model can be used to test the correctness of particular aspects of a transformation. The
last part of this transformation is executed if only one suitable link is found for the
GTraceLink under consideration. If such a link is found then a link is created in the
trace model and its link ends are created with their corresponding reference values. The
type and name of this link are set to be the same with the ones of the link found in the
TML model and its status is set to be OK. Moreover, the maintenance data of the link
are generated according to the information found in the TML model. Once the trace

146

4.2 Trace Link Recovery with TML

Transformation 3 Internal Trace to Generic Trace - Comparison Language
if TraceModel is not defined then

create a TraceModel

end if
for all GTraceLinks in GTrace do

5: find suitable links among the TraceLinks in TMLModel

if number of suitable links>1 then
flag the link as ambiguous
produce user warning

else if number of suitable links = 0 then
10: flag the link as invalid

produce user warning
else

create Link in TraceModel

Link.name← GTraceLink.name + ′′TraceLink′′

15: Link.type← TraceLink.type

for all TraceLinkEnds in TraceLink do
create LinkEnds of Link
add addReferenceV alues to LinkEnds
add TraceLinkEndOKStatus

20: add MaintenanceData to LinkEnds
end for

end if
validate TraceModel with EV L constraints

end for

model is generated, the corresponding correctness constraints which accompany the
TML model are executed to ensure the correctness of the generated traceability model.
If the validation process returns errors and assuming that the TML is specified correctly,
this is an indication that the model management task has errors.

To find suitable links to a GTraceLink, the model management task postproces-
sor, attempts to match a GTraceLink with a link specified in the TML model. To do
this, the postprocessor attempts to match the link end types and the cardinalities of the
GTraceLink with the link end types and the cardinalities of the links in the TML model.
If a match is found, then it is assumed that the GTraceLInk corresponds to that link.

147

4.2 Trace Link Recovery with TML

Figure 4.12: ETL launch configuration

In the case, where more than one candidate links exist, the postprocessor needs extra
information in order to decide between the different alternatives. This information is
provided to the postprocessor in the form of annotations, which are added the rule or
operation which created a particular link in the internal trace and specify to which trace
link type the internal link corresponds. The name of such annotations is TML and their
value is a trace link type. Their concrete syntax is illustrated in listing 4.17.

Listing 4.17: TML annotation example
1 @TML traceLinkType="linkType"

In the case that traceability code is injected in a model management task code (that is
if the model management language does not produce an internal trace) then the signature
of the add operation, which is described in listing 4.15, is changed so that it takes a
particular link type as parameter. Adding TML annotations to a model management
tasks means that the developer of such tasks is familiar with the TML model which
defines the traceability between the various model elements. This is an assumption of
the proposed approach. We argue that this assumption is valid, since the TML model
should describe all the valid relationships between models and all the subsequent actions
which create instances of such relationships should do this in a way which is consistent
with the TML model.

For example, consider the case where model elements eA and eB, which belong to
models MA and MB respectively, are related in two different ways. The semantics of
the first relationship is captured by trace link [eA − to − eB]generatedBy and this link

148

4.2 Trace Link Recovery with TML

captures the fact that eB is generated by eA using an ETL transformation. The seman-
tics of the second relationship is captured by trace link [eA − to − eB]rationalisation and
this links captures a rationalisation relationship between the two elements as defined by
(Spanoudakis & Zisman, 2005). When the ETL transformation is executed, the post-
processor will match the generated GTraceLinK of the rule which transforms eA to eB

to both [eA− to−eB]generatedBy and [eA− to−eB]rationalisation links in the TML model,
which defines the traceability between the metamodels to which the models of interest
belong. This is because both the link ends of those links as well as their cardinalities
cardinalities are identical. Due to this, the transformation rule will be flagged accord-
ingly to inform the user that it created an ambiguous link. To avoid this the developer of
the transformation can add the annotation illustrated in listing 4.18 to the transformation
rule in order to inform the ETL postprocessor which is the trace link in the TML model
which corresponds to this transformation rule.

Listing 4.18: TML annotation example
1 @TML traceLinkType="eA2eBGeneratedByTraceLink"

2 rule eA2eB

3 transform s : MMa!eA

4 to t : MMb!eB {

5 ...

6 }

At this point it should be noted that the proposed approach cannot generate the vari-
ous Contexts, which might be attached to the trace links in the TML model. These con-
texts often store informal information about a trace link, hence their automatic genera-
tion is not possible. The developer has to add them manually once the traceability model
is generated. This is why, the proposed approach is characterised as semi-automatic and
not as fully automatic. To our view though, automatic recovery of trace links with rich,
scenario-specific semantics is difficult to achieve due to the informal nature of trace-
ability information. Following (Pinheiro, 2004), this informality is unavoidable, since
a number of software engineering activities are inherently informal, such as the initial
stages of requirements elicitation.

4.2.4 Traceability Recovery with TML - Conclusions
This section has provided a detailed discussion on traceability recovery using TML.
TML proposes the use of existing model management operations for generating trace
links between models and the enhancement of the generated traces with rich semantics
using a transformation chain and a TML model. Initially, the internal trace, which is

149

4.2 Trace Link Recovery with TML

generated by the model management operation is transform to a generic trace. Since,
TML does not target a particular model management framework, an abstract represen-
tation is required to hide the differences and particularities of the different frameworks,
which can be supported by TML. This abstraction layer is provided by the GTrace
notation, which is a generic traceability representation. The second step of the trans-
formation chain consists of a transformation from a GTrace model to a case-specific
traceability model.

In section 4.2.2, a set of requirements has been identified for a traceability recovery
approach in the context of MDE. The proposed approach in this thesis satisfies the
identified requirements is in the following way:

1. Model-centric approach: since the proposed approach relies on existing model
management frameworks in order to recover a set of trace links, it is considered
to be model-centric. Model management frameworks provide operations, which
are used on models and they produce internal traces.

2. Support for rich traceability semantics: the proposed approach utilises the
traces produced by model management operations and enhances them with scenario-
specific semantics, which are captured in a TML model.

3. Support for both Dependency and Generative identification: the proposed
transformation utilises the internal trace produced by model transformations in
order to provide support for the Generative viewpoint. On the other hand, the pro-
posed approach utilises model comparison for supporting the Dependency view-
point. This is achieved by finding structural and semantic similarities between
co-existing models using an appropriate model comparison language, whose in-
ternal trace is used for generating the semantically-rich trace links.

4. Automated recovery: to a great extent, the proposed approach automates the
recovery of trace links. Informal aspects of the trace links though have to added
manually to the traceability model.

5. Framework-agnostic: Due to its design, the proposed approach is not restricted
to a particular model management framework. The current implementation pro-
vides transformations for EOL, ETL, and ECL, but TML could provide traceabil-
ity support for other model management operations and frameworks. This can be
done by implementing appropriate transformations.

In the next section, we will present an example on how trace links can be recovered
using TML.

150

4.2 Trace Link Recovery with TML

4.2.5 Traceability Identification - Example
In this section, we give a concise example of the proposed approach to trace link recov-
ery. The purpose of this example is to demonstrate how trace links can be recovered
between models which conform to the two metamodels defined in section 4.1.3. In
our example, we want to recover trace links between a class model, which conforms
to the ClassMetamodel and models the booking system of a restaurant, and a compo-
nent model, which conforms to the ComponentMetamodel and which is generated by
the ClassModel using a model-to-model transformation written in ETL. An EMF tree
representation of the class model of the restaurant booking system is shown in figure
4.13.

Figure 4.13: Restaurant Booking System Class Model

This model consists of three packages, namely the Restaurant package, the Book-
ingSystem package and the Customer package. The Restaurant package models entities
related directly to the restaurant, hence it contains the Restaurant and Table classes.
These classes provide a set of methods such as getBookings, getTables, getNumbers,
etc. The second package is the BookingSystem package and it consists of the Reser-

151

4.2 Trace Link Recovery with TML

vation and BookingSystem classes. Finally, the last package is the Customer package,
which contains only one class, namely the Customer class.

This class diagram can be transformed to its corresponding component diagram.
This scenario often arises when a simple analysis class diagram is transformed to a com-
ponent diagram to describe the architectural design of the system. This transformation
written in ETL is illustrated in listing 4.19. The Package2Component rule transforms
each Package to a Component and it assigns to it the name of the Package as well as the
relevant services which correspond to the methods of the Classes which are contained in
the Package. The second rule, which is called Method2Service, transforms each method
of a Class in the ClassModel to a Service.

Listing 4.19: Class-2-Component ETL transformation
1 rule Package2Component

2 transform s : ClassModel!Package

3 to t : ComponentModel!Component {

4 t.name = s.name;

5 for(class in s.contents){

6 for (service in class.methods.equivalent()){

7 t.services.add(service);

8 }

9 }

10 }

11 rule Method2Service

12 transform s : ClassModel!Method

13 to t : ComponentModel!Service {

14 t.name = s.name;

15 }

In a typical ETL transformation scenario, the developer would pass the two models
as the operational context of the transformation and the transformation would have been
executed. In the case of the proposed approach, apart from the source and target models
the developer has to include the TML model to the operational context of the transfor-
mation, so that the post-processor can use the case-specific traceability information in
order to recover trace links with rich semantics. The TML model for this scenario is
the one defined in section 4.1.4.4. Figure 4.14 illustrates the altered ETL run config-
uration, in which the TML model is passed as a parameter to the postprocessor of the
transformation.

When the above transformation is executed the component model for the restau-
rant booking system is generated, but at the same time the traceability model is gener-

152

4.2 Trace Link Recovery with TML

ated with all the Package2ComponentTraceLink and Method2ServiceTraceLink links, as
specified in the TML model. Moreover, the associated constraints with the TML model
are run by the postprocessor to verify that the generated traceability model is correct. A
snapshot of the generated traceability model is shown in figure 4.15.

In this example, we did not need to put any annotations in the transformation code,
since the links specified in the TML model referred to different model elements. There-
fore no ambiguity could arise in resolving the links during the generation of the trace-
ability model.

In the example so far, we have demonstrated how the proposed approach can be
used when the component model is generated automatically from the class model. In
the scenario where the component model is derived manually from the class model (De-
pendency viewpoint), the approach is very similar. The only difference is that instead
of using a transformation, we use a model comparison script to identify similarities be-
tween the two models and generate an internal trace. The component model for this
scenario is shown in figure 4.16.

Such a model comparison script written in ECL is illustrated in listing 4.20. This
script consists of two rules. The first one compares the Packages of the class model
with the Components in the component model. If a Package has the same name with
a Component and the Methods of its contained Classes have the same name with the
Services of the Component, then a match-trace is added to the internal trace of the
comparison. The second rule compares all the Methods in the class model with all

Figure 4.14: ETL with TML run configuration

153

4.2 Trace Link Recovery with TML

Figure 4.15: Restaurant Booking System Component Model

Figure 4.16: Snapshot of the generated traceability model

the Services in the component model. A match-trace is added to the internal trace of
the comparison, if their names match. The final part of the script consists of a user-
defined operation, which is applied to the context of a Package and returns true if a
string signature, which consists of the names of the Methods of the Classes contained in
it, equal a string signature of the names of the Services of a Component, which is passed
as a parameter to the operation.

154

4.2 Trace Link Recovery with TML

Listing 4.20: Class-2-Component ECL comparison
1
2 rule PackageComponent

3 match l : ClassModel!Package

4 with r : ComponentModel!Component {

5 compare : l.name = r.name and l.matchMethods2Services(r)

6 }

7
8 rule Method2Service

9 match l : ClassModel!Method

10 with r : ComponentModel!Service {

11 compare : l.name = r.name

12 }

13
14 operation ClassModel!Package matchMethods2Services(component :

ComponentModel!Component) : Boolean{

15 var t : String;

16 for(class in self.contents.select(c|c.isTypeOf(Class))){

17 t = t+class.methods.collect(c|c.name).concat(’,’).toLowerCase();

18 if (hasMore){

19 t=t+’,’;

20 }

21 }

22 if(t.equals(component.services.collect(s|s.name).concat(’,’).

toLowerCase)){

23 return true;

24 }

25 else{

26 return false;

27 }

28 }

The trace links in this case are recovered in a similar way to the approach followed
in the case of the Generative viewpoint. The quality of the links recovered in this case
depends on how well the comparison script can identify true similarities between the
two models. User input during the execution of the comparison can enhance its results.
This facility is provided by ECL, and this is one reason we have chosen ECL for the
reference implementation.

155

4.3 Maintenance of traceability with TML

4.3 Maintenance of traceability with TML
In the previous section, we described how trace links with rich semantics can be recov-
ered using a TML model. In this section, we will deal with the problem of traceability
maintenance. One of the most challenging aspects of traceability is how to maintain
the integrity of the relationships, i.e. trace links, while the referenced entities continue
to change and evolve. The problem of traceability maintenance can be described in-
formally using the following example. Consider the case where traceability model TA,
which conforms to traceability metamodel TMA, captures traceability between models
MA andMB which conform to metamodelsMMA andMMB respectively. If one of the
models MA or MB (or even both) change, the validity of the trace links in the traceabil-
ity model may be affected. The activity of restoring the validity of model TA is called
traceability maintenance. Since in most traceability scenarios, a lot of time and effort is
required to be invested for the specification and capture of the traceability information,
traceability maintenance is of paramount importance in order to avoid degradation of
the captured traceability information.

Understanding how link integrity can be violated and how it can be restored requires
the examination of both the trace links and the changes on the models, which are refer-
enced by the links. In the next two sections, namely sections 4.3.1 and 4.3.2, we analyse
those two parameters of the traceability maintenance activity.

4.3.1 Link Types
(Aizenbud-Reshef et al., 2006a) argue that the way a relationship is managed depends
on the type of the relationship. More precisely, they identify two types of relationships
or trace links. An imposed relationship is a relationship between entities that exists by
volition of the relationship creator and it can not be invalid until its creator determines
that it is invalid. For example a satisfies relationship can be created between a require-
ment and an element of a design model. When the requirement changes it is not clear if
the relationship is still valid or not.

On the other hand an inferred relationship is one that exists because the related
entities satisfy a rule that describes the relationship. An inferred relationship can not be
invalid since if the rule is not satisfied the relationship does not exist. An example of an
inferred relationship is the relationship which is a result of a model transformation.

4.3.2 Model Change Types
Knowing just the type of a link is not enough from a maintenance point of view. To
understand how traceability maintenance works one also needs to know the types of
model changes, which take place at the trace link ends. For instance, in the case of an

156

4.3 Maintenance of traceability with TML

imposed relationship, a link can be invalidated without input from its creator, if one of
the entities, which are referenced by the link ends, is moved or deleted.

There are three atomic model change types - addition, modification or deletion. In
the literature, many additional types of change have been identified such as model el-
ement replacement or model merging (for example in (Mäder et al., 2009)). In the
context of this work, we consider all other types of change as a combination of the three
aforementioned atomic types. For example, a model element replacement consists of
two different actions, element deletion and element addition. Similarly, model merging
can be considered as the compound effect of deleting two models and adding a new one,
which is the union of the two.

Addition of models or model elements can not cause a link to be invalid. However, it
affects the completeness of the link set; namely, new models or model elements may be
added and all the appropriate links to and from the new entities are not added. Deletion
can result to link integrity errors since a link end can possibly point to an entity which no
longer exists. Finally, modification can occur at two different levels. First, whole models
can be modified. This includes the moving of the model from one directory to another or
the renaming of the model. Second, internal modifications can take place at the model
element level. Such modifications include the change of element attributes in a way
that the validity of the link is compromised. For example, in a model transformation
scenario, if we change the type of an element in the source model, then the trace link
with the relative element in the target model might not be valid any more.

4.3.3 Summarising Current Practices to Traceability Maintenance
As discussed in section 2, there are two main approaches for maintaining trace link
integrity, namely event-driven and state-based approaches. The main limitation of even-
driven approaches has to do with their limited scope. Limiting the scope of such an
approach means limiting its applicability to particular notations or to particular tools in
a way, which can not be easily generalised to include additional notations or tools. The
reason this limitations are introduced is because of the three challenges to identifying
compound change events. These challenges are the following (Mäder et al., 2008):

• The same development activity can be achieved by performing different elemen-
tary changes.

• The same development activity can be achieved by the same elementary changes
performed in different sequences

• The type of a model change and the impacted model element do not offer enough
information for relating changes to each other

157

4.3 Maintenance of traceability with TML

Because of the aforesaid limited scope of event-driven approaches, they do not pro-
vide the flexibility envisaged by the proposed approach, since TML targets diverse mod-
elling languages which possibly conform to heterogeneous metamodels and are manip-
ulated in different tools.

The second family of approaches to traceability maintenance consists of the state-
based approaches. State-based approaches are often limited in detecting only syntactic
model changes, while semantic model changes can jeopardise the link integrity as well.
To out knowledge, an approach which addresses this issue does not exist up till now.

4.3.4 Requirements for Traceability Maintenance
If we consider the key characteristics of link integrity and traceability maintenance as
discussed above, we can derive a set of requirements for a traceability maintenance
approach.

1. (R1) Detection and Correction of Invalid Links: a traceability maintenance ap-
proach should be able to not only detect dangling links (i.e. links whose integrity
is compromised), but it should also be able to re-establish the link integrity. In
the ideal case, the approach should be able to reestablish the compromised links
automatically, i.e. without any input from the user. In the cases where this is not
possible (for example with some types of imposed links), the approach should
give guidance to the user as to how to reconcile the link. This could be achieved
by reducing the space of possible link end candidates. In the worst case scenario,
when guidance for the reestablishment of the link integrity can not be provided,
then all dangling links should at least be reported back to the user for manual
reconciliation. The purpose of a good traceability maintenance approach should
be to maximize the automation of the reconciliation activity without ignoring the
semantics of the reconciled links.

2. (R2) Support for both imposed and inferred link maintenance: As discussed
in section 4.3.1, there are two generic types of links. A traceability maintenance
approach should be able to manage both of those link types.

3. (R3) Support for different model change types: In section 4.3.2, three atomic
model change types have been identified. A traceability maintenance approach
should be able to detect dangling links caused by all three types, namely deletion,
addition and modification. A note should be made at this point concerning the
addition model change type. If addition is not a part of a chain of changes then
it does not compromise link integrity. However it compromises the completeness
of the link set and hence an appropriate trace link identification approach should
be applied. In the case where addition is a part of a chain of changes (for example

158

4.3 Maintenance of traceability with TML

a model element replacement) then the traceability maintenance approach should
be able to detect possible dangling links caused by this chain of changes.

4. (R4) Support for heterogeneous notations: A traceability maintenance approach
should not restrict its scope to a particular notation or to a particular way mod-
els can be evolved. It should be able to maintain link integrity between models
represented in heterogeneous notations no matter how these models change.

Based on this set of requirements, we have developed a traceability maintenance
approach in the context of TML. This approach is illustrated in the next section.

4.3.5 State-Based Traceability Maintenance in TML
In figure 4.3 the TML metamodel is illustrated. In this metamodel, a set of concepts
related to the maintenance of traceability is defined. The classes which correspond to
those concepts are the following:

• the MaintenanceData class

• the ReconciliationExpression class

• the FuzzyMatchingTechnique class

• the MaintenanceDataType enumeration

• the FuzzyMatchingImplementation interface

In a TML model, every TraceLinkEnd can have 0 to n maintenance data. By main-
tenance data, we mean data which represent particular characteristics of the model ele-
ment to which a link end refers. For example maintenance data could be a simple name
attribute or more complex data structures as we will demonstrate in the next section.
The rationale behind capturing maintenance data is that there are some aspects of an
element which justify the existence of a link. If these change then the validity of the
link comes under question. These aspects are domain specific and the domain expert
can capture them in a TML model. Every instance of the MaintenanceData attribute
of a link end is associated with a reconciliation expression, which is an expression in a
model query language and it can access the associated data of the model element. Ini-
tially it is used to assign a value to the MaintenanceData attribute and then it is used
during the traceability maintenance activity in order to retrieve the actual model element
data, so that it can be compared with the value of the MaintenanceData attribute of the
link end.

The first action which is performed during the maintenance of a traceability model
is the identification of links whose integrity might be compromised. This is achieved

159

4.3 Maintenance of traceability with TML

by checking first if there are links in the traceability model, which point to no existent
elements. This can be the case when a model element is deleted for example. Moreover,
the maintenance engine compares the MaintenanceData attributes of every link end in
the traceability model with the actual data of the various model elements to which a
link refers. As said above, the actual data are retrieved using the relevant to the Main-
tenanceData ReconciliationExpression. If those two are identical, this means that the
link is valid. If not, the integrity of the link is compromised and appropriate action must
be taken in order to reconcile the link. When a link is found to be dangling, the trace-
ability maintenance engine attempts to reconcile it. If this is not possible, then the user
is notified of the broken link.

To reconcile a broken link, the traceability maintenance engine traverses all the
model elements in order to detect one whose actual data, which are derived using the
reconciliation expression, match the maintenance data of the link end. A link end can
have more than one MaintenaceData attributes associated to it. Moreover, each of those
attributes can have one or more FuzzyMatchingTechniques. These FuzzyMatchingTech-
niques are user-defined algorithms, which are used for the comparison of the value of
a MaintenaceData attribute with the data which are derived from the model element
using the ReconciliationExpression. This functionality is provided to the end user, be-
cause there are often cases when a less-strict approach to matching the two values is
desired. For instance, when a model element is renamed to an ontologically equivalent
name (e.g. Client and Customer). In this case, to achieve a more precise matching,
the use of a lexical database (e.g. WordNet (Miller, 1995)) is necessary. Alternatively,
fuzzy string matching algorithms such as those presented in (Chapman, 2005) can be
used. Each FuzzyMatchingTechnique has two attributes, namely upperThreshold and
lowerThreshold. If the result of the matching is above the value of the upperThreshold
attribute, then we treat this match as an exact match. If the result of the matching is
between the value of the upperThreshold and the value of the lowerThreshold, then this
match is treated as an approximate match and user input might be required. Finally, if
the result of the matching is below the value of the lowerThreshold, then we assume
than no matching element was found using the MaintenanceData. The algorithm which
is used to identify candidate links for a MaintenanceData attribute is described using
the pseudocode in algorithm 4.

First, this algorithm checks whether there are fuzzy matching techniques associated
to a MaintenanceData attribute. In the case where no such techniques are defined there
are two alternatives. If the actual data derived from the model element of interest match
the maintenance data, then a candidate is identified since we have an exact match. In
the case that there is no such match, the engine is not able to detect a candidate model
element using the given maintenance data. If there are fuzzy matching techniques as-
sociated to the MaintenanceData attribute, then the algorithm uses them in order to
compare the actual data with the maintenance data. In this scenario, the best result re-

160

4.3 Maintenance of traceability with TML

Algorithm 4 Traceability Maintenance Algorithm - Fuzzy Matching Techniques
def matchingResult

if TraceLinkEnd has no FuzzyMatchingTechniques then
if actualData=maintenanceData then

matchingResult← exactMatch

5: else
matchingResult← noMatch

end if
else

matchingResult← noMatch

10: for all FuzzyMatchingTechniques of TraceLinkEnd do
compare actualData with maintenanceData using
FuzzyMatchingTechnique

if result > upperThreshold then
matchingResult← exactMatch

else if result < upperThreshold and result > lowerThreshold then
15: if matchingResult 6=exactMatch then

matchingResult← approximateMatch

end if
end if

end for
20: end if

turned is the one used. For example, consider the scenario where the MaintenanceData
attribute of a given link end has three fuzzy matching techniques associated to it. The
result returned the first one for a particular model element is that the MaintenanceData
attribute matches exactly the actual data which are derived from this model element. The
result returned using the second fuzzy matching technique is that the MaintenanceData
attribute partially matches the actual data which are derived from this model element.
Finally, the result returned using the third fuzzy matching technique is that there is no
match. In this case, the result returned by the first fuzzy matching technique will be
used, since it is the best one. This means that the model element under consideration
can be used to reconcile the link end.

In addition to having many fuzzy matching techniques attached to a particular Main-
tenanceData attribute, there can be multiple MaintenanceData attributes attached to a
given link end. During reconciliation, these attributes can produce different results. For

161

4.3 Maintenance of traceability with TML

example, such a case is when a link end has two MaintenanceData attributes associated
to it and during the reconciliation process, the use of the first attribute returns that a
given model element is a candidate for this link end, while the use of the second one
returns that this model element should not be considered as a possible candidate for the
link end. The algorithm for deciding whether a model element is a possible candidate
for a dangling link end or not is illustrated using the pseudocode 5.

Algorithm 5 Traceability Maintenance Algorithm - Multiple Maintenance Data per
Link End

def overallMatchingResult

for all MaintenanceData of a LinkEnd do
matchingResult ← match(maintenanceData, actualData)

if matchingResult=approximateMatch then
5: if overallMatchingResult 6=exactMatch then

overallMatchingResult← approximateMatch

end if
else if matchingResult=noMatch then

if overallMatchingResult=null then
10: overallMatchingResult← noMatch

end if
else if matchingResult=exactMatch then

overallMatchingResult← exactMatch

end if
15: end for

At the beginning of the search for possible candidates for a broken link end, a vari-
able called overallMatch is initialised with a null value. For each of the Maintenance-
Data attributes of the link end a match operation is performed in order to compare the
value of the attribute to the actual data derived from the various model elements and
the overallMatch attribute is assigned values accordingly. A noMatch value means that
a model element should not be considered as a possible candidate, while an approxi-
mateMatch means that there is partial similarity and user input is needed. Finally, an
exactMatch value means that the MaintenanceData attribute matches the values derived
from the given model element. The decision table for deciding the overall match result
(i.e. using all the available maintenance data) is shown in table 4.2.

The last step of maintaining a broken link using the proposed approach is to create
a reference between a dangling link end and a candidate model element, if such an
element is found, or otherwise report the link as broken back to the user, so that the link

162

4.3 Maintenance of traceability with TML

Table 4.2: Decision table for overall matching result for a given link end

matchingResult
overallResult

noMatch approximateMatch exactMatch

noMatch noMatch approximateMatch exactteMatch
approximateMatch approximateMatch approximateMatch exactMatch
exactMatch exactMatch exactMatch exactMatch

can be reconciled manually. To do so two lists are created for every broken link end. The
contents of those lists are the results of the matching tasks described above. The fist list
contains all the model elements, which are found to be exact matches using the various
MaintenanceData attributes. If this list has only one element then a reference is created
between the link end and this model element and the MaintenanceData attributes of the
link end is updated based on its new target. If this list has more than one elements, then
user input is required in order to choose which of the elements is the most appropriate for
the link end under consideration. Finally if this list is empty the second list is checked.
The second list consists of the model elements, which are found to be approximate
matches using the various MaintenanceData attributes. In the case where there are
elements in this list user input is requested in order to reconcile the link. Finally, if this
list is empty, the link is reported as broken to the user, who performs the maintenance,
and manual reconciliation is required in order to re-establish the integrity of the broken
link.

Traceability maintenance can run either manually when the traceability engineer
wishes to reestablish the integrity of the traceability model or it could run automati-
cally when model changes are detected. In the current implementation the first case is
supported. However in future work the second option can be supported by coupling
the proposed approach with indexing toolsConcordance Rose et al. (2010). Concor-
dance provides a cross-model reference reconciliation client, which can detect changes
incurred at the model level.

4.3.6 Maintenance of Traceability with TML - Conclusions
This section has provided a detailed discussion on traceability maintenance using TML.
The proposed approach proposes the use of dedicated maintenance meta-data and ac-
companying expressions with which those data can be derived for maintaining broken
links. The proposed approach can be enhanced with the use of fuzzy matching tech-
niques in order to match link ends with candidate model elements.

The proposed approach to traceability maintenance satisfies the requirements iden-

163

4.3 Maintenance of traceability with TML

tified in section 4.3.4 in the following way:

1. (R1) Detection and correction of broken links: the approach is capable of not
only detecting but also of reconciling broken links. The success of the approach
relies on how well and precisely the traceability engineer captures the required
maintenance data for a given link end.

2. (R2) Support link maintenance for both imposed and inferred links: Since
the rationale for a link is captured in the TML model by the model engineer, the
approach does not rely on an explicit relationship between model elements for
reconciling the trace links. Therefore, it supports both imposed and inferred link
maintenance.

3. (R3) Support link maintenance for all model change types: The proposed ap-
proach does not rely on identifying model changes, since it is a state-based ap-
proach. Therefore, different types of model changes do not affect the applicability
of the approach directly.

4. (R4) Support for heterogeneous notations: TML is a generic approach to trace-
ability. All the required traceability information is captured in the TML model
from which the maintenance script is generated. Therefore, for every set of no-
tations a TML model can be defined. The only constraint of TML is that the
metamodels of the various notations should be expressed in a common meta-
metamodel. In the current implementation this is Ecore, which is the metamodel
of the Eclipse modelling Framework Eclipse Foundation (2010a).

In the following, we will present how a traceability model can be evolved and how
trace link integrity can be maintained using a simple example.

4.3.7 Traceability Maintenance - Example
In this section, we present an example whose purpose is to demonstrate how we can
maintain the integrity of trace links between models which conform to the two meta-
models defined in section 4.1.4.4. These two models model the booking system of a
restaurant, and they are the same with the ones used in section 4.2.5. Figure 4.17 shows
the Class and Component models for this example.

The TML model for this scenario is illustrated in figure 4.18. This TML model is
the same as the one used in the example in section 4.2.5. The only difference is that the
TML model for this example is enhanced with dedicated maintenance data. The first
step of the proposed approach to traceability maintenance is to capture maintenance
data for the link ends of the trace links we want to maintain. For demonstration pur-
poses in this example, we will maintain the integrity of the trace link between instances

164

4.3 Maintenance of traceability with TML

Figure 4.17: Class and Component Models for the Restaurant Example

of the Package meta-class and instances of the Component meta-class. We assume that
the validity of such links can be jeopardised if the name of the package is changed, if
the name of the component is changed or finally if the classes contained in a package
change. One could argue at this point that there is no need for a dedicated approach
to traceability maintenance in this scenario, since a developer can re-execute the trans-
formation after changing the models of interest and a valid traceability model can be
regenerated. Doing so has two main consequences. First, if the traceability model has
additional informal information such as various contexts attached to the different trace
links, this will be lost in the case of the re-generation of the traceability model. Second,
in the case of the dependency viewpoint of traceability, models co-exist and one is not
generated from the other using a transformation. Due to these reasons, regenerating a
traceability model whenever a change occurs in the referenced models is not considered
as a solution to the problem of traceability maintenance.

165

4.3 Maintenance of traceability with TML

Figure 4.18: Class-to-Component TML Model

To come back to the provided example, we have attached two MaintenanceData
attributes to the Package meta-class. The first one is called PackageContainmentData
and it is a string signature of the names of the various classes contained in a package.
The reconciliation expression associated to this attribute is captured in the Reconcilia-
tionExpression model element named getPackageContents. The expression captured by
it is shown in listing 4.21. This expression can be applied to the context of a Package.
It selects all elements contained in a Package class, which are of type Class, and cre-
ates a String signature with the concatenation of the names of the classes contained in a
package. The properties of this ReconciliationExpression is illustrated in figure 4.19.

Listing 4.21: GetPackageContents Reconciliation Expression

1 self . contents . select (c |c. isTypeOf(Class)) . collect (c |c.name).concat(’ , ’)

A FuzzyMatchingTechique is attached to the getPackageContents. This technique
uses the SimMetrics open source extensible library of similarity metrics (Chapman,
2005). SimMetrics provides a library of float based similarity measures between string
data. The implementation of the SimMetrics tool used in this example is illustrated in
listing 4.22. This code compares two strings using the Levenshtein algorithm (Gus-
field, 2007). Moreover, in the properties view of the FuzzyMatchingTechique, we have

166

4.3 Maintenance of traceability with TML

specified an upper threshold of 0.8 and a lower threshold of 0.5. The values for these at-
tributes depend on the accuracy required by the traceability engineer. Setting very high
upper and lower thresholds means that the two compared strings have to be extremely
similar in order to return a match. In this case, the traceability engineer wishes to have
full control over the maintenance process and he or she wants to make sure that the au-
tomatic reconciliation returns only valid results. This is done of course on the expense
of less automation, since user interference is required more often.

Figure 4.19: Properties of the getPackageContents ReconciliationExpression

Listing 4.22: Java implementation of fuzzy matching tool
1 package org.eclipse.epsilon.tml.fuzzymatching.simmetrics;

2
3 import org.eclipse.epsilon.eol.exceptions.EolInternalException;

4 import org.eclipse.epsilon.eol.exceptions.EolRuntimeException;

5 import TML.impl.FuzzyMatchingImplementationImpl;

6
7 public class SimmetricsTool extends FuzzyMatchingImplementationImpl{

8 public double similarity(String s1, String s2)

9 throws EolRuntimeException {

10 uk.ac.shef.wit.simmetrics.similaritymetrics.

AbstractStringMetric metric;

11 if (s1 == null || s2 == null) {

12 if (s1 == null && s2 == null) {

13 return 1.0;

14 } else {

15 return 0.0;

16 }

17 }

18 try {

167

4.4 Traceability usage in the context of MDE

19 metric = (uk.ac.shef.wit.simmetrics.similaritymetrics.

AbstractStringMetric) Class .forName("uk.ac.shef.wit.

simmetrics.similaritymetrics.Levenshtein").newInstance();

20 return metric.getSimilarity(s1, s2);

21 } catch (Exception e) {

22 throw new EolInternalException(e);

23 }

24 }

25 }

Apart from the getPackageContents attribute, we have attached to all four link ends
MaintenanceData attributes associated with the name of the model element they refer
to. More particularly, we have attached the PackageName attribute to the Package link
end, the ComponentName attribute to the Component link end, the MethodName at-
tribute to the Method link end and the ServiceName attribute to the Service link end.
All of these attributes are related to the getName expression. This simple expression
(self.name) returns the name of a model element a trace link end refers to. For the Pack-
ageName, ComponentName, MethodName and ServiceName attributes, we have used
the WordNet and the SimMetrics tools for supporting fuzzy matching. As it can be seen
by this example complex expressions can be used as reconciliation expressions and their
complexity is only limited by the expressiveness of the query language that is used. Fur-
thermore, the MaintenanceData attributes can capture both structural as well as lexical
properties of the referenced models.

Once the MaintenanceData attributes have been specified in the TML model, as
well as the appropriate ReconciliationExpressions and FuzzyMatchingTechniques, the
models of interest can be altered and the traceability information between them can be
adjusted accordingly.

4.4 Traceability usage in the context of MDE
In the previous sections, we described how to define traceability models with rich, case-
specific semantics using TML. Moreover, we have presented how trace links between
models can be automatically recovered and how the integrity of the recovered links
can be maintained when the referenced models change. Such traceability models can
be used during the development life cycle of a software system in multiple ways to
support different activities. Different traceability usage scenarios are summarised in
section 2.4.4. Most of the scenarios in the literature are generic in the sense that they
are not directly related to a development paradigm. In this section, we will present two
traceability usage scenarios which are directly related to using traceability information
in the context of MDE.

168

4.4 Traceability usage in the context of MDE

The first scenario has to do with the use of traceability information in order to test
model transformations. In the existing literature, it is suggested that traceability relation-
ships can be used to check for the existence of appropriate test cases for testing different
requirements. In this work, we propose that traceability information can be also used to
test the correctness of transformation or translation activities, such as a model-to-model
transformations. This traceability usage scenario is described in section 4.4.1.

The next traceability usage scenario has to do with model refactorings. A model
refactoring is considered to be an action that automatically creates, updates or deletes
a model element. This action can be considered as an update transformation, whose
source and target models are the same. This type of model transformation is usually
needed when a small subset of a model needs to be changed. It is common though that
when a model element changes, there are model elements in other models that need
to be changed as well. For example using the working example of this thesis, if the a
Package in a class model is renamed, then the corresponding Component element in the
component model needs to be renamed accordingly. In this work we propose the use of
traceability information in conjunction with in-place transformations in order to refactor
a model model and propagate the changes to the related models. This traceability usage
scenario is presented in section 4.4.2.

4.4.1 Transformation Validation with TML
One of the main claims of MDE is that increased productivity can be achieved by provid-
ing automated support for creating and transforming software models. Effective support
for model transformations is thus of paramount importance for the successful realiza-
tion of MDE in practice. Such support should include efficient techniques and tools
for testing the correctness of model-to-model transformation specifications. Testing a
transformation means determining whether it has been correctly carried out (Harrold,
2000). The motivation for testing transformation specifications is described in (Jing,
2007).

Following (Harrold, 2000), transformation testing involves the “execution of a de-
terministic transformation specification with test data (i.e., input to test cases) and a
comparison of the actual results (i.e., the target model) with the expected output (i.e.,
the expected model), which must satisfy the intent of the transformation”. If the actual
target and the expected models match, then it can be assumed that the transformation is
correct given the initial input. On the other hand, if the actual target and the expected
models do not match, this means that the transformation specification is incorrect and
that it needs modification. (Harrold, 2000) argues that the comparison of the actual
transformation target with the expected output can be a challenge to transformation
testing. Manual comparison of models can be error-prone and time consuming, while
the automated comparison using graph matching algorithms can be expensive in terms

169

4.4 Traceability usage in the context of MDE

of computation requirements for such a task. Moreover, another intrinsic limitation of
this black box testing approach to model transformations, is the fact that testers usually
have to manage large input and output models due to the need to test the entire transfor-
mation specification as a whole (Ciancone et al., 2010). Considering the transformation
as a whole can be problematic especially for large models, since more effort is required
for the design of the tests as well as for their execution.

To address these limitations (Ciancone et al., 2010) propose the execution and test-
ing of parts of the transformation in isolation in order to reduce complexity. However,
no systematic method is provided on how to choose these parts of the transformation,
which will be tested. In this work we propose the use of traceability information as a
possible way to identify problematic parts of a transformation and then use an appropri-
ate transformation testing approach to test extensively these parts.

When a transformation is executed an internal trace is produced by the transforma-
tion engine. To identify problematic parts of a transformation, a case-specific traceabil-
ity metamodel can be possibly used. This is achieved by checking whether the internal
trace of the transformation execution conforms to the traceability metamodel. This ap-
proach is based on two main assumptions. First, a detailed traceability metamodel needs
to be specified before the testing procedure. This traceability metamodel captures all the
valid relationships that can exist between two models which conform to the metamodels
of interest. Second, we assume that the traceability metamodel is correct and captures
all the valid relationships between the two metamodels of interest.

A traceability metamodel includes trace links, which capture valid traceability re-
lationships between two models. In the proposed approach, if a transformation rule
generates a traceability link, which can not be matched to any of the existing trace link
types in the traceability metamodel, then this rule needs to be tested further. To match
the internal trace generated by a transformation engine to the trace links in the trace-
ability model, we follow the same method used in section 4.2, where we matched the
internal trace generated by a transformation engine to trace link types in a TML model
in order to generate a traceability model. When a transformation is executed an internal
trace is generated by the transformation engine and then the transformation postproces-
sor creates a GTrace model, which is a generic traceability representation irrespective of
the language used to express the transformation. Thereafter, the postprocessor attempts
to find candidate link types in the TML model for the various trace links in the GTrace
model. This is achieved by comparing the link end types and cardinalities of the various
GTraceLink with the the link end types and cardinalities of the link types in the TML
model. If a match is found, then it is assumed that the GTraceLInk corresponds to that
link type. Otherwise, the GTraceLInk is flagged as invalid. These invalid GTraceLinks
are indications of faulty transformation rules.

The traceability model generated after a transformation can indicate faults in the
transformation specification in a different way as well. Every TML model is accompa-

170

4.4 Traceability usage in the context of MDE

nied by two sets of validity constraints as discussed in section 4.1.4.2, namely generic
constraints and custom constraints. These constraints check the correctness of the gen-
erated traceability model and they extend beyond simple type conformance, which is
ensured by the existence of a case-specific traceability model. If the validation of a
traceability model fails, this is an indication of a problematic transformation. This is
because the execution of the transformation has generated an invalid traceability model.
Therefore, the transformation specification must be reviewed and modified accordingly.
For debugging purposes, appropriate markers and errors/warning messages can be gen-
erated, in order to help the tester identify the faulty section of a transformation specifi-
cation.

The proposed approach on transformation testing using traceability information can
be elucidated by the use of a simple example. In this case as well we will use the
working example of this thesis in order to illustrate how problematic sections of trans-
formation specifications can be identified by using traceability information. Consider
the scenario where the class model, which is illustrated in figure 4.13 and models the
booking system of a restaurant, needs to be transformed to its corresponding compo-
nent model. The TML model, which defines the valid traceability links between the
ClassMetamodel and the ComponentMetamodel is defined in section 4.1.4.4. The trans-
formation between the aforementioned metamodels expressed in ETL is illustrated in
listing 4.19. However, for this example we will introduce on purpose different types of
errors in the transformation specification and then we will show how these errors can be
identified using the proposed approach.

A possible transformation error might be when the transformation engineer trans-
forms an entity of the source metamodel to an invalid entity in the target metamodel. For
this example, consider the scenario where the engineer transforms erroneously instances
of the Class meta-class to instances of the Component meta-class. The transformation
rule for this transformation is illustrated in listing 4.23.

Listing 4.23: Faulty Class-2-Component ETL transformation - 1st case
1 rule Class2Component

2 transform s : ClassModel!Class

3 to t : ComponentModel!Component {

4 t.name = s.name;

5 }

When this transformation is executed the transformation postprocessor attempts to
generate a traceability model which conforms to the metamodel specified for this sce-
nario. However, in doing so it can not find any valid link types for the Class2Component
rule, since there is no link type, whose link ends point to the two meta-classes of the
transformation rule. As a result, the transformation postprocessor generates a warning
marker next to the rule that caused this problem. This is illustrated in figure 4.20. Hav-

171

4.4 Traceability usage in the context of MDE

ing this information, the transformation engineer can modify the transformation rule
accordingly.

Figure 4.20: Faulty Class-2-Component ETL transformation - 1st case

A different scenario occurs when the transformation engineer transforms an instance
of the Package meta-class to two instances of the Component meta-class. Consider for
example the transformation rule illustrated in listing 4.24. This example is very sim-
plistic, but its sole purpose is to illustrate this transformation scenario using the existing
example. This transformation will generate a warning, since in the TML model the re-
lationship between instances of the Package meta-class and instances of the Component
meta-class is a 1-to-1 relationship and not 1-to-2 as indicated by this rule. Provided
the warning after executing the transformation, the engineer can review and modify the
relevant transformation rule accordingly.

Listing 4.24: Faulty Class-2-Component ETL transformation - 2nd case
1 rule Class2Component

2 transform s : ClassModel!Package

3 to t1 : ComponentModel!Component, t2 : ComponentModel!Component {

4 t1.name = s.name +’1’;

5 t2.name = s.name +’2’;

6 }

A third scenario is when the transformation generates a traceability model, which
conforms to the traceability metamodel, but it does not validate using the correctness
constraints, which accompany the traceability model. An example of such a constraint
is the constraint illustrated in listing 4.25, which is generated since the forAll attribute
of the Package link end, which belongs to the Package2Component link of the TML
model, is set to true.

Listing 4.25: Constraint generated when the forAll attribute is set to true

172

4.4 Traceability usage in the context of MDE

1 context Package {

2 constraint OneForEachPackage{

3 check : Package2ComponentTraceLink.all.exists(e|e.Package.target =

self)

4 message : ’No links of type Package2Component found for Package ’

+ self

5 }

6 }

A possible transformation rule might transform instances of the Package meta-class
to instances of the Component metaclass, but only when they contain instances of the
Class meta-class. This constraint is expressed as a guard in line 4 of the transformation
illustrated in listing 4.26.

Listing 4.26: Faulty Class-2-Component ETL transformation - 3rd case
1 rule Class2Component

2 transform s : ClassModel!Package

3 to t : ComponentModel!Component {

4 guard : s.contents.select(c|c.isTypeOf(Class)).size()>0

5 t.name = s.name;

6 }

When this transformation rule is executed, it generates a traceability model which
conforms to the traceability metamodel. However, if an instance of the Package meta-
class does not contain at least one class, then this instance will not be used to generate a
corresponding instance of the Component meta-class and therefore no trace link will be
generated for this particular instance. This does not satisfy the constraint above, which
requires that for every instance of the Package meta-class there must exist one trace
link. Therefore, a validation error will be generated when the validation is executed.
Assuming that the TML model captures valid relationships and their constraints between
models which conform to the metamodels of interest, this transformation rule must be
reviewed and modified accordingly.

4.4.2 Change Propagation with TML
The importance of model transformations in MDE is well documented (e.g. (Mens
et al., 2005; Sendall & Kozaczynski, 2003)). There are two types of transformations,
namely mapping and update transformations (Mens et al., 2005). Mapping transforma-
tion typically transform a source model to a new target model. On the other hand an

173

4.4 Traceability usage in the context of MDE

update transformation performs in-place modifications of a model. Following (Kolovos
et al., 2007), there are two categories of update transformations, namely transformations
in the small and transformations in the large. Update transformations in the large apply
to a sets of model elements, which is calculated by using a set of well-defined rules.
Conversely, update transformations in the small are applied to specific model element,
which have been explicitly selected by the user (Kolovos et al., 2007). To summarize
the discussion on the different types of model transformation, one can say that mapping
transformations take a source model and generate a new target model, update trans-
formations in the large modify a large portion of the model of interest, while update
transformation in the small modify only few selected elements of a model.

As developers modify or refactor development entities such as models in order to
improve in a disciplined way some of their qualitative attributes, they must ensure to
update other system models in order to be consistent with these changes. Many re-
searchers have identified the dangers of not propagating changes (e.g. (Brooks, 1975;
Parnas, 1994)). The main concequence of not propagating changes is the introduction of
inconsistencies between entities. The use of traceability for identifying impacted arte-
facts when a change occurs is proposed by many researchers such as (Cleland-Huang
et al., 2003) and (Helming et al., 2009). In the context of MDE and model transfor-
mations, no inconsistencies can be introduced by mapping transformations, since a new
model is generated from scratch when the transformation is executed. In the case of an
update transformation in the large inconsistencies change propagation is required since
inconsistencies can be introduced by executing such a transformation. Dedicated trans-
formation languages which maintain consistency between two models are proposed in
the literature. An example of such a language is the propagating model transformation
language (PMT) (Tratt, 2008), in which a model transformation language is described,
which is suitable for making suitable updates to models after an initial transformation.
To our knowledge, there is no solution proposed to change propagation for update trans-
formations in the small. Therefore, in this work we propose the combination of a task
specific language designed for specifying model transformations in the small with TML
in order to propagate model changes.

Update transformations are actions that automatically create, update or delete model
elements in a user-driven fashion (Kolovos et al., 2007). These actions are commonly
referred to as wizards. Since it is quite common in software development that the var-
ious models and software artefacts of the development lifecycle are related, when a
model is modified or deleted using a wizard, other related artefacts might be affected
by this change. Traceability information can be used to identify those related arte-
facts and modify them accordingly in order to maintain consistency. To demonstrate
how this can be achieved we will use the working example of this thesis. Consider the
Class and Component models which describe the restaurant booking system and which
are defined in section 4.2.5. These two models conform to the ClassMetamodel and

174

4.4 Traceability usage in the context of MDE

the ComponentMetamodel. One simple wizard for the ClassMetamodel can be the Re-
namePackage wizard, which applies to a Package instance and changes its name. This
wizard expressed in the Epsilon Wizard Language (EWL) (Kolovos et al., 2007) is il-
lustrated in listing 4.27. This wizard consists of three parts. The guard part defines
the types of the elements the wizard applies to. The title part provides a short, human-
readable description of the wizard’s functionality. Finally, in the do part of the wizard,
the set of actions to be performed to the selected model element(s) is specified.

Listing 4.27: RenamePackage wizard expressed in EWL
1 wizard RenamePackage {

2 guard : self.isKindOf(Package)

3 title : ’Rename Package’

4 do {

5 var newName = UserInput.prompt("New name", "Select a new name");

6 self.name = newName;

7 }

8 }

If a developer uses this wizard to rename a Package instance in a class model, then
an inconsistency can be introduced. This can happen in the case where we require that
the name of a Package and the name of its corresponding Component should be the
same. A solution could have been to regenerate the component model once the class
model has been edited. Such a solution is not always ideal, because by reexecuting the
transformation in order to propagate the change will cause any manual modification of
the component model to be lost. In addition, if the two example models were substan-
tially larger, then reexecuting the entire transformation for such small changes would
not be the most efficient approach in terms of computation resources.

In this work we propose the combination of such wizards with TML models in order
to maintain consistency in such scenarios. Using the case-specific traceability informa-
tion specified in a TML model, the wizard can be written in such a way, that in addition
to rename the selected Package instance, it renames all the Component instances which
are linked to it using a Package2ComponentTraceLink. This is illustrated in listing 4.28,
where lines 7-9 select all the instances of Component, which are linked to the selected
Package instance, and rename them accordingly.

Listing 4.28: RenamePackage wizard in combination with TML
1 wizard RenamePackage {

2 guard : self.isKindOf(Package)

3 title : ’Rename package’

4 do {

175

4.5 Chapter Summary

5 var newName = UserInput.prompt("New name", "Select a new name");

6 self.name = newName;

7 for (p2c in Trace!Package2ComponentTraceLink.all.select(p2c|p2c.

EClass.target = self)) {

8 p2c.Component.target.name = newName;

9 }

10 }

11 }

4.5 Chapter Summary
In this chapter, we have presented the main contributions of this thesis. In section 4.1,
we have defined and presented TML, which is a metamodelling language for defin-
ing case-specific traceability metamodels. TML can be used to generate traceability
metamodels and their accompanying correctness constraints. In section 4.2, we have
presented how TML models can be used to recover traceability information between
two models in a semi-automatic manner. The proposed approach supports both the De-
pendency and Generative viewpoints and it can be extended to support multiple model
management tasks. In section 4.3 of this chapter, a state-based approach to traceability
maintenance has been presented based on TML. Finally, in section 4.4 we have pro-
posed two possible uses of traceability information in the context of MDE. The first
one has to do with white-box testing and how traceability information can be used to
guide the tester to identify problematic sections of a transformation specification. The
second one is related to the use of traceability information in update transformations in
the small in order to propagate changes to other models.

176

Chapter 5

Reference Implementation

In chapter 4, TML and its use to support the main traceability activities have been dis-
cussed in detail. To build confidence on the feasibility and applicability of the proposed
approach a reference implementation of the infrastructure has been constructed.

For this implementation, a combination of Java (Oracle, 2011), the Epsilon frame-
work (Kolovos & Paige, 2010) and the EMF (Eclipse Foundation, 2010a) has been used.
Java has been selected as the main language of choice for the reference implementation
for several reasons. First, Java is a robust object-oriented language for which there are
high-quality open source development tools. One of the most popular tools and the one,
which was used for this work, is the Eclipse JDT Eclipse Foundation (2011c). Moreover
Java is used by the most widely modelling frameworks such as EMF. The API provided
by EMF, has been used extensively for developing the reference implementation, and it
is written in Java.

In addition to Java, the Epsilon framework has been selected for developing the
various model management tasks, such as model transformations and comparisons. In
particular cases, Epsilon has been extended with TML-specific functionality. Such an
example is the run configurations developed for ETL and ECL in order to support au-
tomatic recovery of trace links. In principle any other model management framework
could have been used instead of Epsilon. However, Epsilon was preferred for two main
reasons. The first reason had to do with the familiarity of the authors with Epsilon.
Second, Epsilon offers some unique features; while those are not essential for imple-
menting the proposed approach they are desirable and useful. One such feature is the
support in Epsilon for interactive model management. In a number of occasions, during
the execution of a model management task, there is a need to interact with the user to
resolve issues that the program cannot decide automatically. Epsilon provides user input
for all of its model management tasks. This functionality can be very helpful in the case
of traceability support, since due to the informal and complicated nature of traceability
activities, it is often the case that user input is required. Since this is a built-in function

177

5.1 Eclipse Platform

in Epsilon, no extra implementation effort was required for adding using interaction fea-
tures. Another useful aspect of Epsilon is its focus on reusability and modularity. This
is due to its architecture, which will be presented in the next section. This feature was
useful for developing traceability support, because in Epsilon complex model queries
are abstracted in succinct model operations.

Finally, EMF was used as the modeling framework for this work. Similarly to choos-
ing Epsilon as the model management framework, EMF was chosen because it is famil-
iar to the author and because it is supported by open-source high-quality tools and edi-
tors. In principle, any other modeling framework could have been used for developing
the reference implementation for the proposed approach.

This chapter presents an overview of the reference implementation and highlights
noteworthy aspects of it. The rest of the chapter is organized as follows.

5.1 Eclipse Platform
The reference implementation is built atop the Eclipse platform (Eclipse Foundation,
2011a). Eclipse is an open-source software development environment, which consists
by an integrated development environment (IDE) and an extensible plug-in system. The
Eclipse plug-in system allows developers to extend the core of the tool by contributing
functionality in the form of plug-ins. Due to this extensibility mechanisms, a wide-
range of tools have been developed atop Eclipse, such as editors and execution engines
for programming languages, as well as modelling tools such as EMF and GMF. This
modular architecture of Eclipse is illustrated in figure 5.1.

Eclipse is the platform of choice for MDE tools as the majority of contemporary
MDE languages and frameworks provide Eclipse-based development tools Kolovos
(2008b). Moreover, due to the aforementioned extensibility mechanisms, the devel-
opment of new tools and their integration with existing tools can be done with little
effort. Given these reasons, Eclipse was chosen as the platform atop which the refer-
ence implementation is developed.

5.2 Eclipse Modeling Framework
The EMF project is a modeling framework and code generation facility for building
tools and other applications based on a structured data model. Typically, a model spec-
ification is described in the XML Metadata Interchange (XMI) (Group, 2011). EMF
provides tools and support to produce a set of Java classes for the model. Moreover, it
provides a set of adapter classes that enable the viewing and command-based editing of
the model and its editor.

178

5.3 Epsilon Framework

Figure 5.1: The architecture of the Eclipse Platform

The metamodel used to define TML is the model used to represent models in EMF,
namely Ecore. Moreover, Ecore traceability metamodels are generated from TML mod-
els. Ecore is itself an EMF model, and therefore is its own metamodel. Since EMF is
the modeling framework support by the Eclipse platform, and we have chosen Eclipse
as the basis for our implementation, EMF was selected as the modeling framework for
this work.

5.3 Epsilon Framework
Since in this work we are dealing with models, which need to be navigated and manip-
ulated, an appropriate model management framework had to be selected. The model
management framework of choice is the Epsilon framework. Epsilon is a family of
consistent and interoperable task-specific programming languages which can be used
to interact with EMF models to perform common MDE tasks such as code generation,
model-to-model transformation, model validation, comparison, migration, merging and
refactoring. Epsilon stands for Extensible Platform of Integrated Languages for mOdel
maNagement.

Following (Kolovos et al., 2007), each model management task is best supported by

179

5.3 Epsilon Framework

a task-specific language. The purpose of Epsilon is to consolidate the common features
of the various task-specific languages in one base language and then develop the various
model management languages atop it. The base language is EOL. Moreover, Epsilon
provides the Epsilon Connectivity Layer (ECL), which abstracts over the different mod-
elling frameworks and enables the Epsilon task-specific languages to uniformly manage
models of those frameworks.

Apart from the existing model management languages, Epsilon provides appropri-
ate extensibility mechanisms to implement new task specific languages with minimal
replication. The architecture of the Epsilon framework is illustrated in figure 5.2.

Figure 5.2: The architecture of the Epsilon framework (Kolovos et al., 2007)

At the bottom is the EMC, which abstracts the various modelling technologies such
as EMF and Metadata Repository (MDR) (Netbeans, 2003). Atop EMC, EOL is de-
veloped, which is the basis for the current and future task-specific languages. Since
Epsilon framework is build in Eclipse, it is well integrated with other Eclipse develop-
ment tools, through the use of the plug-in system provided by the Eclipse platform. The
task specific languages used for this work are briefly described in the following.

5.3.1 Epsilon Object Language
EOL (Kolovos et al., 2006a) has been used extensively to implement common model
querying and navigation activities. EOL reuses the navigational and querying features of
the Object Constraint Language (OCL) (Object Management Group, 2003) and it adds
support for statement sequencing and model modification capabilities. Moreover, EOL
provides simultaneous access to multiple models which conform possibly to heteroge-
neous metamodels. Finally, EOL supports reuse by allowing user to define operations,
which apply to elements of a specific meta-class. Multiple user-defined operations have

180

5.3 Epsilon Framework

been defined in the context of this work. An example of one of the user-defined opera-
tions used in this work is the createEType() operation, which is shown in listing D.1.

5.3.2 Epsilon Transformation Language
ETL (Kolovos et al., 2008) is a hybrid, rule-based, model-to-model transformation lan-
guage built on top of EOL. It is capable of transforming an arbitrary number of source
models into an arbitrary number of target models. Moreover, as ETL is based on EOL,
it reuses its imperative features to enable users to specify particularly complex, and even
interactive, transformations. In the context of this work, ETL is used to define the trans-
formation specification from a TML model to a case-specific traceability metamodel
expressed in Ecore. This transformation is presented in section 4.1.4.2.

5.3.3 Epsilon Generation Language
EGL (Rose et al., 2008) is a template-based, model-to-text transformation language
for generating code, documentation and other textual artefacts from models. EGL of-
fers model-to-text specific features such as protected regions for mixing generated with
hand-written code and template coordination. Similarly to ETL, EGL is built atop EOL,
therefore it has access to general model management support. In the context of this
work, EGL is used to generate the generic and custom correctness constraints of the
traceability metamodel. The transformations for deriving these constraints are presented
in section 4.1.4.2.

5.3.4 Epsilon Validaton Language
EVL (Kolovos et al., 2007) is the validation language of the Epsilon platform. It is an
OCL-like validation language, which in addition supports dependencies between con-
straints, customizable error messages and specification of fixes, which are invoked to
repair inconsistencies. Similarly to the other languages of the Epsilon framework. EVL
builds on top of EOL. This enables it to evaluate inter-model constraints. In the proposed
approach, EVL is used to express correctness constraints which apply to a traceability
metamodel. The generation of such constraints is presented in section 4.1.4.2.

5.3.5 Epsilon Comparison Language
ECL (Kolovos, 2009) aims to enable users to specify comparison algorithms in a rule-
based manner to identify pairs of matching elements between two models of potentially
different metamodels. ECL is a hybrid language with support for the specification of
fuzzy matching algorithms as well as with support for interactive matching. ECL is used

181

5.4 Eclipse Views & Editors

in this work to provide traceability support for the Dependency viewpoint. To recover
trace links between two models, which co-exist, correspondences between them must
be found. ECL is used to express the comparison algorithms between those models and
the internal trace, which is returned from the comparison is used to recover the trace
links between the models of interest. This approach is presented in section 4.2.3.1.

5.3.6 Epsilon Wizard Language
The final language of the Epsilon framework, which is used in this work, is EWL
(Kolovos et al., 2007). EWL is language, whose aim is to support interactive in-place
transformations on user-selected model elements. The niche of EWL is the automation
of recuring model editing tasks such as model refactorings. EWL is used in this thesis
in the context of traceability usage. We propose the use of EWL in combination with
traceability models, in order to refactor models and then propagate the changes to af-
fected model elements in other models. The presentation of this approach takes place in
section 4.4.2.

5.4 Eclipse Views & Editors
To enable users to define TML models and then manipulate them accordingly, we have
reused the basic EMF tree editor. However, the editor has been customised by using
the EXtended Emf EDitor (Exeed) (Kolovos, 2007). This is achieved by adding Exeed-
specific EAnnotations to the EClasses of TML. These annotations provide instructions
about how to format labels and icons of the editor and then Exeed uses this information
to visualise the TML models accordingly. A screenshot of the Exeed editor is illustrated
in figure 5.3.

Moreover, we have extended Eclipse context menus with TML specific options. In
the context of models with the tml extension, an option for generating the Ecore meta-
model and the accompanying constraints. In the context of models with the tmltrace
extension, an option for executing the “traceability maintenance” operation. An illus-
tration of this context specific menus is shown in figure 5.4.

Finally, to enable users to locate errors in ETL transformations, we have enhanced
the ETL editor with in-place markers as well as with error messages which are printed
in the Epsilon console.

182

5.5 Launch Configuration Interface

Figure 5.3: Example of the Exeed TML editor

5.5 Launch Configuration Interface
To support the automatic generation of case-specific traceability models, the ETL and
ECL launch configuration instances had to be modified. In addition to specifying the
models on which the transformation or comparison operates on, the traceability meta-
model to which the traceability model will conform, has to be specified. To this end,
additional tabs and dialogs has been added to the existing ETL and ECL launch config-
urations. Figure 5.5 illustrates the modified launch configuration interface of ETL.

5.6 Availability
Initially, the source code and documentation of the implementation was maintained lo-
cally. Since November 2010 the Eclipse-based traceability tools have been hosted by
“Google Project Hosting” website. The source code for this work can be found at the
following address:

http://tml.googlecode.com/svn/trunk/

5.7 Chapter Summary
In this chapter, an overview of the reference implementation that enables users to use
the proposed approach is provided. Through this chapter, noteworthy implementation

183

5.7 Chapter Summary

Figure 5.4: Illustration of TML context menu

decisions such as the choice of specific development environments or of specific pro-
gramming and developing languages has been discussed. The next chapter evaluates
the validity of the hypothesis using a number of criteria, including a complex case study
which has been realized using the reference implementation.

184

5.7 Chapter Summary

Figure 5.5: Illustration of the modified launch configuration of ETL

185

Chapter 6

Evaluation

In this thesis a novel approach to model-to-model traceability for MDE processes has
been proposed. This chapter describes the means by which the proposed approach was
evaluated against the thesis proposition throughout the duration of this research. The
thesis proposition was stated as follows:

This thesis demonstrates that a domain specific model-based traceability
approach can support and automate the process of rigorously managing
the different types of heterogeneous traceability relationships between both
derived and initial models in an MDE process.

As discussed in chapter 3, the proposition implies the following challenges:

1. Model-based Approach: In the spirit of MDE the proposed approach should be
applicable to model artefacts.

2. Manage Traceability: The proposed approach should provide support for all four
traceability activities, i.e. representation, identification, maintenance and usage
of traceability.

3. Heterogeneous Traceability Relationships: Using the proposed approach, an en-
gineer should be able to manage traceability relationships between models ex-
pressed in heterogeneous languages.

4. Rigorous: The proposed approach should support the capture of case-specific or
scenario-specific semantics.

5. Automation: The proposed approach should provide semi-automatic identifica-
tion and maintenance of traceability information

186

6.1 Means of Evaluation

6. Derived and Initial Models: The proposed approach should be suitable for trace-
ability between models which are generated automatically by applying model op-
erations on other models (derived models), as well as between models,which are
created manually by engineers (initial models).

The aforementioned challenges are addressed by four distinct strands within the
thesis, namely:

• The representation of traceability using a dedicated metamodelling language, namely
TML, which focuses on specifying case-specific traceability metamodels. This
strand is described in section 4.1.

• Traceability identification using traceability models with rich semantics described
in section 4.2.

• Traceability maintenance by reflectively evolving the traceability model described
in section 4.3.

• Traceability usage is presented in section 4.4.

The evaluation of the proposition was focused on examining the application of the
framework with respect to the following two concerns. First the feasibility of the ap-
proach and second the benefits yielded by applying the approach in order to address the
challenges inherent in the proposition

6.1 Means of Evaluation
Various means of evaluation were employed during the different stages of the research.
These included the following:

• Use of traceability scenarios

• Peer review

• Case study

In the following sections, we will explain how we evaluated the proposed work using
the above means, as well as the results of this evaluation.

187

6.1 Means of Evaluation

6.1.1 Traceability scenarios
The initial means of evaluation for the various concepts of this thesis were examples and
traceability scenarios. New concepts were tested by their application in such scenarios.
If proof of the aplicability of a concept was provided, then the concept was accepted.
On the other hand, if a counter-example was found, these concepts were rejected as
inappropriate and inefficient.

Examples of the traceability scenarios used include:

• Traceability between a Class schema and a relational database model.

• Traceability between Goal models and Class schemas.

• Traceability between a Table model and an HTML Table specification.

Examples were only an initial evaluation technique. The application of the various
concepts of this thesis was also evaluated in a larger scale case study, which is presented
in section 6.1.3.

6.1.2 Peer review
The proposal and the design of the proposed approach was inherently a difficult subject
to evaluate due to the fact that it is infeasible to obtain a statistically significant sample
of case studies. For this reason, peer review was considered to be an important means
of evaluation of the validity of the approach. The results of this research have been
presented in a number of academic papers in journals, international conferences and
workshops. The feedback related to this work was positive and it had to do with the fea-
sibility of the approach as well as with the potential benefit gained from its application.
The author’s publications, which are directly related to this thesis, are listed below.

• Nicholas Drivalos, Richard F. Paige, Kiran Fernandes and Dimitrios S. Kolovos.
Towards Rigorously Defined Model-to-Model Traceability, in Proc. 4th Workshop
on Traceability, ECMDA’08, Berlin, Germany, June 200
In this paper the main motivation for case-specific traceability support was pro-
vided.

• Nicholas Drivalos, Dimitrios S. Kolovos, Richard F. Paige, Kiran J. Fernandes.
Engineering a DSL for Software Traceability, in Proc. 1st International Confer-
ence on Software Languages Engineering, SLE ’08, Toulouse, France, Sept 2008
In this paper the abstract syntax and the semantics of TML are presented.

188

6.1 Means of Evaluation

• Steffen Zschaler, Dimitrios S. Kolovos, Nikolaos Drivalos, Richard F. Paige and
Awais Rashid. Domain-Specific Metamodelling Languages for Software Lan-
guage Engineering, in Proc. 2nd International Conference on Software Language
Engineering, Colorado, USA, October 2009
In this paper, the author contributed a discussion on TML as a special case of
a Domain Specific Metamodelling Language (DSM2L). The term DSM2L was
coined first in (Drivalos et al., 2009).

• Richard F. Paige, Nicholas Drivalos, Dimitrios S. Kolovos, Chris Power, Goran
K. Olsen and Steffen Zschaler. Rigorous Identification and Encoding of Trace-
Links in Model-Driven Engineering, Journal of Software and Systems Modelling,
Springer, 2010 - accepted and to appear - DOI: 10.1007/s10270-010-0158-8
The contribution of the author in this paper is a discussion on what constitutes
traceability information with rich semantics.

• Louis M. Rose, Dimitrios S. Kolovos, Nicholas Drivalos, James R. Williams,
Richard F. Paige, Fiona A.C. Polack, and Kiran J. Fernandes. Concordance: An
Efficient Framework for Managing Model Integrity, in Proc. 6th European Con-
ference on Modelling Foundations and Applications (ECMFA), June 2010, Paris,
France
In this work, the author has contributed to the discussion about the requirements
of a framework for managing model integrity, as well as how such a framework
can be used to maintain traceability models.

• Nicholas Drivalos-Matragkas, Dimitrios S. Kolovos, Richard F. Paige, Kiran J.
Fernandes. A state-based approach to traceability maintenance, in Proc. of the
6th ECMFA Traceability Workshop, Paris, France, June 2010 In this work, the
approach for maintaining the integrity of traceability models is presented.

Through a web survey, it was found that the above work has been cited in a number
of external publications (e.g. (Dhoolia et al., 2010; Schwarz et al., 2009; Seibel et al.,
2010; Williams & Polack, 2010; Winkler & von Pilgrim, 2009). This provides further
evidence that this work is well-communicated and established within the MDE research
community.

6.1.3 Case study
The third means of evaluation was a complex case study. The complexity of it is related
to the size of the produced traceability model as well as to the nature of the traceability
relationships.

In this case study, traceability support is provided for the EuGENia (Kolovos et al.,
2009) tool using TML. EuGENia is a tool that automatically generates all the models

189

6.1 Means of Evaluation

needed to implement a Graphical Modelling Framework (GMF) (Eclipse Foundation,
2011b) editor from a single annotated Ecore metamodel. In the sequel, we will describe
the context of this case study by introducing what GMF and EuGENia are and how Eu-
GENia works. Finally we will present how EuGENia can be enhanced when combined
with TML.

6.1.3.1 Graphical Modelling Framework

GMF provides a generative component and runtime infrastructure for developing graph-
ical editors based on the EMF and the Graphical Editing Framework (GEF) (Moore,
2004). The aim of GMF is to reduce the time and effort required to develop diagram-
based editors for modelling languages.

In order to implement a graphical editor with GMF, developers need to construct a
number of intermediate models that specify various characteristics of the visual editor.
These models are then combined and used eventually as input in a set of model-to-text
transformations in order to generate the Eclipse plug-ins that contain the Java code,
which implements the editor. The process of developing a graphical editor using GMF
is illustrated in figure 6.1.

Figure 6.1: GMF Overview (Eclipse Foundation, 2011b)

In this diagram, the main components and models used during GMF-based develop-
ment are illustrated. The first model, which is required by GMF, is the domain model.
This model is expressed in Ecore and its purpose is to capture the main concepts of the
modelling language for which the editor is built. Apart from the domain model, the
graphical and tooling definitions of the language have to be defined. The first model
which captures such information is the graphical definition model (gmfgraph). This
model consists of the graphical elements, which will be used in the diagram to display

190

6.1 Means of Evaluation

classes of the domain model. Moreover, the tool definition model (gmftool) contains
optional tooling definitions for the design of the palette and other aspects of the edi-
tor such as menus and toolbars. The final model used during GMF-based development
is the mapping model (gmfmap), whose purpose is to link together the graphical and
tooling definitions to the selected domain model. Once the appropriate gmfmap model
is defined, GMF provides a generator model (gmfgen) to allow implementation details
to be defined for the generation phase. This generation model is then consumed by a
set of model-to-text transformations that eventually generate the Java code and Eclipse
plugins, which realise the graphical editor.

To support this procedure, GMF provides a wizard that can facilitate the generation
of the aforementioned models from the domain model. The generated models have then
to be refined manually using dedicated tree editors. (Kolovos et al., 2009) have identi-
fied a number of problems associated to this process. First, the refinement of the models
generated by the wizard, requires a good knowledge of the respective metamodels (i.e.
the gmfgraph, gmftool and gmfmap metamodels). However, those metamodels are far
from trivial. In addition, in case a developer makes a logical error in one of the mod-
els, GMF either produces low level error messages, which are not really helpful for a
novice user, or it proceeds with the code generation and generates erroneous code. Fur-
thermore, in the case of complex domain models, the GMF wizard fails to yield useful
results (Wienands & Golm, 2009). This can be attributed to the fact that very little can
be inferred about the graphical syntax of a notation based on the abstract syntax alone.
As a consequence, a big part of the GMF models has to be handcrafted. Finally, main-
taining the handcrafted GMF-specific models is quite challenging, since GMF does not
provide any reconciler that can update these models automatically when the domain
model changes. Therefore, once the models are customised after their initial generation
by the GMF wizard, they have to be maintained manually.

All of the aforementioned issues make implementing a graphical editor with GMF
a laborious and error prone task, particularly so for the inexperienced developer. In
order to address the issues related to GMF and enable developers to implement fully-
functional GMF editors with minimal effort, (Kolovos et al., 2009) have developed a
tool called EuGENia. This tool will be presented in the sequel.

6.1.3.2 EuGENia

Despite its issues, GMF is currently one of the most powerful and widely used open-
source graphical editor frameworks (Kolovos et al., 2010). The aim of EuGENia is to
shield developers from the complexity of GMF and address the highlighted challenges.

EuGENia provides a higher level of abstraction for the definition of the graphi-
cal concrete syntax of modelling languages. This is achieved by using annotations at
the metamodel level. These annotations provide a generic and flexible mechanism for
extending the metamodel with visual concrete syntax information. Once this informa-

191

6.1 Means of Evaluation

tion is specified, EuGENia can automatically produce the required GMF intermediate
models which are necessary in order for GMF to generate a fully-functional visual edi-
tor. This generation is made feasible by using automated model-to-model and in-place
transformations to generate, in a consistent and repeatable manner, the platform-specific
models required by GMF.

Following (Kolovos et al., 2010), to automate the construction of the GMF-specific
models, the Ecore domain model is annotated with high level GMF-specific informa-
tion and then a model-to-model transformation is used to generate the tooling, graph
and mapping GMF models. In the next step the gmfmap model is transformed to the
generator model (gmfgen) using the GMF built in transformation. Finally, an in-place
update transformation is applied to the gmfgen in order to specify some of the graphical
syntax configuration options. The EuGENia workflow is illustrated in figure 6.2.

Figure 6.2: EuGENia workflow (Kolovos et al., 2010)

The EuGENia transformations are implemented using the imperative model trans-
formation language. The chose of an imperative language over a rule-based language
has to do with the high complexity of the transformation and the need for low-level
control of the execution flow.

One limitation of EuGENia is the fact that it does not provide support for all the
features of GMF. Instead it is focused on the most commonly used features for imple-
menting a visual editor (Kolovos et al., 2009). For cases where the concrete syntax of
the notation of interest can not be fully supported by EuGENia, developers need to mod-

192

6.1 Means of Evaluation

ify the generated from EuGENia models manually. A problem which can arise when
changes occur at the domain model, involves keeping the domain and GMF models con-
sistent without affecting any manual modifications of the GMF models. That is, when
a model element in the domain model is refactored any related model elements of the
GMF models must be modified accordingly in order for the models to remain consistent.
There are two options for updating the GMF models. First, the transformations can be
re-executed so that the updates are reflected in the new GMF models. However, any
manual modifications of the initial intermediate models (for example of some features,
which are not supported by EuGENia) will be lost. In the second option, the developer
can refactor the domain model and then manually update the generated models. How-
ever, this is a tedious and error prone task, since the annotations supported by EuGENia
are not a 1-1 mapping with the features of GMF. Therefore, finding and modifying the
appropriate elements in the GMF models is not a trivial task.

A possible solution to this issue is the use of traceability information and of dedi-
cated wizards in order to refactor the domain model and update the GMF models auto-
matically, without re-executing the EuGENia transformations. This is the scenario we
will use in order to apply and evaluate our approach. Below we will examine how com-
bining our approach with EuGENia can help solve the aforementioned problem. To this
end, we will use a concrete example in which we implement an editor for a filesystem
metamodel.

6.1.3.3 The filesystem metamodel

In this case study, we will use the modelling scenario described in (Kolovos et al., 2009).
In this scenario, EuGENia is used to generate a graphical editor for a filesystem domain
model. As implied by its name, this metamodel specifies the concepts involved in a
file system and their relationships. In listing 6.1, the filesystem metamodel is presented
expressed in the Emfatic (alphaWorks, 2005) textual notation. The root concept of this
metamodel is the Filesystem class. A filesystem can contain any number of Drives and
Syncs. Files, Shortcuts and Folders are special types of Drives. A Sync class represents
a synchronization relationship between a source and a target files, while a Shortcut is a
special file that points to a target file.

Listing 6.1: The filesystem metamodel (Kolovos et al., 2009)
1 @namespace(uri="filesystem", prefix="filesystem")

2
3 package filesystem;

4
5 class Filesystem {

6 val Drive[*] drives;

7 val Sync[*] syncs;

193

6.1 Means of Evaluation

8 }

9
10 class Drive extends Folder {

11 }

12
13 class Folder extends File {

14 val File[*] contents;

15 }

16
17 class Shortcut extends File {

18 ref File target;

19 }

20
21 class Sync {

22 ref File source;

23 ref File target;

24 }

25
26 class File {

27 attr String name;

28 }

To generate the graphical editor for this domain model with EuGENia, one must
first decide on how each concept of the metamodel is mapped to a visual construct in
the editor. After taking this decision, the metamodel expressed in Emfatic is annotated
accordingly. The annotation gmf.diagram is attached to the Filesystem class in line 5.
This annotation specifies that this class will be represented as a diagram. In line 30, the
gmf.node is attached to the File class and it specifies that each File will be represented
as a node containing a label, whose value is its name attribute. Since Drive, Folder,
and Shortcut extend the File class they will be represented as nodes as well, since they
inherit the visual syntax of their super-class. The gmf.link annotation, which is specified
in line 24, specifies that a Sync will be represented as a dotted link between a source
and a target file. Moreover, the same annotation is defined for target property of the
Shortcut class in line 20 and it specifies that this property is represented as a dashed link
with an arrowhead pointing at the target File. Finally, the gmf.compartment annotation
specifies that each Folder will contain a compartment that will host the Files contained
in the objects contents reference.

Listing 6.2: The filesystem metamodel with EuGENia-specific annotations (Kolovos
et al., 2009)

1 @namespace(uri="filesystem", prefix="filesystem")

194

6.1 Means of Evaluation

2 @gmf(foo="bar")

3 package filesystem;

4
5 @gmf.diagram(foo="bar")

6 class Filesystem {

7 val Drive[*] drives;

8 val Sync[*] syncs;

9 }

10
11 class Drive extends Folder {

12 }

13
14 class Folder extends File {

15 @gmf.compartment(foo="bar")

16 val File[*] contents;

17 }

18
19 class Shortcut extends File {

20 @gmf.link(target.decoration="arrow", style="dash")

21 ref File target;

22 }

23
24 @gmf.link(source="source", target="target", style="dot", width="2")

25 class Sync {

26 ref File source;

27 ref File target;

28 }

29
30 @gmf.node(label = "name")

31 class File {

32 attr String name;

33 }

Once the Ecore model is annotated with the appropriate EuGENia annotations, the
intermediate GMF models can be automatically generated and the graphical editor can
be derived. This editor is illustrated in figure 6.3.

During this process no traceability information between the filesystem domain model
and the intermediate GMF models (gmftool, gmfgraph, gmfmap) is maintained. As a
result, if a change occurs in the filesystem model, we either have to regenerate every-
thing or we have to manually modify the affected models. In order to provide automatic
support for this kind of refactorings, we will enhance EuGENia with TML so that when

195

6.1 Means of Evaluation

Figure 6.3: Graphical editor of the filesystem DSL (Kolovos et al., 2010)

a model element in the filesystem is modified, the corresponding elements in the inter-
mediate GMF models are modified accordingly.

6.1.3.4 Defining Traceability between Ecore and GMF Models

The first step of the proposed approach is to define the valid traceability relationships
between the Ecore domain model and the GMF models as well as any correctness con-
straints that might apply to this scenario. To do this we shall use the TML tree editor
in order to specify the TML case-specific traceability model. This model is illustrated
in figure 6.4. At this point it should be noted that for brevity the provided TML model
does not capture all existing relationship types between the an Ecore model and the
GMF models. By using a subset of the existing relationship types we avoid the intro-
duction of unnecessary complexity in the discussion.

This TML model captures the following trace link types:

• EPackage2Canvas: this link type represents links between an EPackage of the
domain model and a Canvas of the gmfgraph model. The forAll, Unique and
ofTypeOnly attributes are set to true for both of the link ends. The EPackage link
end has a maintenance attribute called Name, whose value can be retrieved by
using the getName reconciliation expression. Similarly, the Canvas link end has

196

6.1 Means of Evaluation

Figure 6.4: TML model for filesystem case study

197

6.1 Means of Evaluation

also the Name maintenance data attribute, whose value can be retrieved by the
same reconciliation expression. Moreover, the sameName constraint is attached
to this link. This constraint checks whether the EPackage and the Canvas have the
same name.

• EClass2Connection: this link type represents links between an EClass of the do-
main model and a Connection of the gmfmap model. The forAll attribute for the
EClass link end is set to false, while the same attribute for the Connection class
is set to true. Furthermore, the Unique and the ofTypeOnly attributes are set to
true for both of the link ends. The EClass link end has a maintenance attribute
called Name, whose value can be retrieved by using the getName reconciliation
expression. Similarly, the Connection link end has also the Name maintenance
data attribute, whose value can be retrieved by the same reconciliation expres-
sion. The sameName constraint is attached to this link as well.

• EClass2Node: this link type represents links between an EClass of the domain
model and a Node of the gmfgraph model. The forAll attribute for the EClass
link end is set to false, while the same attribute for the Node class is set to true.
The Unique and the ofTypeOnly attributes are set to true for both of the link ends.
The EClass link end has a maintenance attribute called Name, whose value can be
retrieved by using the getName reconciliation expression. Similarly, the Node link
end has also the Name maintenance data attribute, whose value can be retrieved
by the same reconciliation expression. Moreover, the IsGmfNode constraint is
attached to this link. This constraint checks whether the annotation attached to
the EClass link end is a gmf.node EuGENia annotation.

• EClass2DiagramLabel: this link type represents links between an EClass of the
domain model and a DiagramLabel class of the gmfgraph model. The forAll
attribute for the EClass link end is set to false, while the same attribute for the
DiagramLabel class is set to true. Furthermore, the Unique and the ofTypeOnly
attributes are set to true for both of the link ends. The EClass link end has a
maintenance attribute called Name, whose value can be retrieved by using the
getName reconciliation expression. Similarly, the DiagramLabel link end has also
the Name maintenance data attribute, whose value can be retrieved by using the
same reconciliation expression.

• EClass2FigureDescriptor: this link type represents links between an EClass of
the domain model and a FigureDescriptor of the gmfgraph model. The forAll
attribute for the EClass link end is set to false, while the same attribute for the
FigureDescriptor class is set to true. The Unique and the ofTypeOnly attributes
are set to true for both of the link ends. The EClass link end has a maintenance

198

6.1 Means of Evaluation

attribute called Name, whose value can be retrieved by using the getName recon-
ciliation expression. Similarly, the FigureDescriptor link end has also the Name
maintenance data attribute, whose value can be retrieved by the same reconcilia-
tion expression.

• EPackage2Palette: this link type represents links between an EPackage of the do-
main model and a Palette of the gmftool model. The forAll, Unique and ofType-
Only attributes are set to true for both of the link ends. The EPackage link end
has a maintenance attribute called Name, whose value can be retrieved by using
the getName reconciliation expression. Similarly, the Palette link end has also the
Name maintenance data attribute, whose value can be retrieved by the same rec-
onciliation expression. Finally, the sameName constraint is attached to this trace
link, in order to check whether the EPackage and the Palette share the same name.

• EClass2CreationTool: this link type represents links between an EClass of the
domain model and a CreationTool in the gmftool model. The forAll attribute for
the EClass link end is set to false, while the same attribute for the CreationTool
class is set to true. Moreover, the Unique and the ofTypeOnly attributes are set to
true for both of the link ends. The EPackage link end has a maintenance attribute
called Name, whose value can be retrieved by using the getName reconciliation
expression. Similarly, the CreationTool link end has also the Name maintenance
data attribute, whose value can be retrieved by the same reconciliation expression.

• EClass2NodeMapping: the final trace link type of this TML model represents
links between an EClass of the domain model and a NodeMapping of the gmfmap
model. The forAll attribute for the EClass link end is set to false, while the same
attribute for the NodeMapping class is set to true. The Unique and the ofTypeOnly
attributes are set to true for both of the link ends. The EClass link end has a main-
tenance attribute called Name, whose value can be retrieved by using the getName
reconciliation expression. The NodeMapping link end has the domainMetaEle-
mentName maintenance data attribute, whose value can be retrieved by the getDo-
mainMetaElementName reconciliation expression (self.domainMetaElement.name).
This expression retrieves the name of the element of the domain model to which
NodeMapping link end corresponds.

Once the TML model is defined, an Ecore traceability metamodel and its accompa-
nying correctness constraints can be generated by using the built-in TML transforma-
tions. The generated traceability metamodel captures the valid trace links between an
Ecore model and the GMF models (i.e. gmfgraph, gmftool, gmfmap). An illustration of
this metamodel is provided in figure 6.5.

There are two sets of constraints generated from the above TML model. The first
set consists of those that are automatically generated from the various attributes of the

199

6.1 Means of Evaluation

Figure 6.5: Illustration of the EuGENia Ecore metamodel

TML model. The second set consists of constraints that can not be fully generated from
the TML model. In this case a skeleton of the constraints is generated and then the
body of those constraints has to be written by the developer. An example of a constraint
belonging to the fist set is illustrated in listing 6.3. This constraint captures the fact that
a Node must be related to only one EClass via a EClass2Node trace link.

200

6.1 Means of Evaluation

Listing 6.3: The UniqueNode constraint
1 context Node {

2 constraint UniqueNode{

3
4 guard : self.isTypeOf(Node)

5
6 check : EClass2NodeTraceLink.all.select(e|e.Node.target = self).

size() < 2

7
8 message : ’Multiple links of type EClass2Node found for Node ’ +

self

9 }

10 }

Another example of generated constraint is the OneForEachDiagramLabel con-
straint illustrated in listing 6.4. This constraint checks, whether every instance of the
DiagramLabel metaclass in a model is related to an instance of the EClass metaclass via
an instance of the EClass2DiagramLabel trace link.

Listing 6.4: The OneForEachDiagramLabel constraint
1 context DiagramLabel {

2 constraint OneForEachDiagramLabel{

3
4 guard : self.isTypeOf(DiagramLabel)

5
6 check : EClass2DiagramLabelTraceLink.all.exists(e|e.DiagramLabel.

target = self)

7
8 message : ’No links of type EClass2DiagramLabel found for

DiagramLabel ’ + self

9 }

10 }

The second set of constraints is generated using the Constraint model elements of
the TML model. An example of such a user-defined constraint is the IsGmfNode con-
straint, which is illustrated in listing 6.5. This constraint checks whether the EClass
which is referred by the EClass link end of an EClass2NodeTraceLink is annotated with
the @gmf.node annotation. If this EClass is not annotated with this annotation, then it
should not be linked to a Node.

201

6.1 Means of Evaluation

Listing 6.5: The IsGmfNode constraint
1 context EClass2NodeTraceLink {

2 //The annotation link end must be a gmf.node

3 constraint IsGmfNode {

4
5 check : self.EClass.isNode()

6
7 message : "EClass " + self.EClass.name + " is not annotated as

@gmf.node"

8 }

9 }

In this constraint, the user-defined operation isNode is used. This operation is listed
in figure 6.6. This operation is declared as cached, meaning that it is only executed once
for each distinct EClass and subsequent calls on the same target return the cached result.
In lines 4 and 5, the operation checks if an EClass is a link or abstract. If it is neither,
the operation checks if the gmf.node annotation is applied to the target EClass and if it
it returns true

Listing 6.6: The isNode EOL user-defined operation
1 @cached

2 operation ECore!EClass isNode() : Boolean {

3
4 if (self.isLink()) return false;

5 if (self.abstract) return false;

6
7 var isNode := self.isAnnotatedAs(’gmf.node’);

8 var isNoNode := self.isAnnotatedAs(’gmf.nonode’);

9
10 if (isNoNode) return false;

11 else if (isNode) return true;

12 else return self.eSuperTypes.exists(s|s.isNode());

13
14 return isNode;

15 }

Another example of a user-defined constraint is the IsGmfLink constraint, which is
illustrated in listing 6.7. This constraint checks whether the EClass which is referred by
the EClass link end of an EClass2ConnectionTraceLink is annotated with the @gmf.link
annotation. If this EClass is not annotated with this annotation, then it should not be
linked to a Connection. In appendix E, the constraints used for this case study are
provided.

202

6.1 Means of Evaluation

Listing 6.7: The IsGmfLink constraint
1 context EClass2ConnectionTraceLink {

2 //The annotation link end must be a gmf.node

3 constraint IsGmfLink {

4
5 check : self.EClass.isLink()

6
7 message : "EClass " + self.EClass.name + " is not annotated as

@gmf.link"

8 }

9 }

By using the TML domain specific language, we were able to capture all the neces-
sary traceability information for this scenario in a scenario-specific metamodel. More-
over, we were able to capture the semantics of scenario-specific correctness constraints.

6.1.3.5 Establishing traceability

In the next step, we establish the scenario specific traceability information. This is
achieved by following the approach described in section 4.2. In this scenario, the filesys-
tem Ecore metamodel with the accompanying EuGENia-specific annotations is used to
generate the GMF models, required to produce the filesystem visual editor. To produce
the intermediate GMF models a model-to-model transformation (Ecore2GMF) is used.
This transformation is expressed in EOL and it contains 1167 lines of code. The entire
transformation for EuGENia can be found at the Epsilon subversion repository:

http://dev.eclipse.org/svnroot/modeling/org.eclipse.gmt.epsilon

Using EOL as the transformation language means that no internal trace is produced
when the transformation is executed. Therefore, in order to generate the GTrace model
for this particular scenario, we have to inject traceability specific code in the transforma-
tion specification. This statements have the generic format illustrated in listing 6.8. This
statement uses the add method (its implementation is illustrated in listing 4.15) to create
a GTraceLink for the various relationships, which are expressed in the transformation.

Listing 6.8: EOL statement for producing GTraceLinks
1 trace.add(source, target, "");

Once the appropriate code is injected in the EOL transformation specification, we
can execute the EuGENia transformation and generate the intermediate GMF models
and the traceability model for this scenario. Part of this model is illustrated in figure
6.6.

203

6.1 Means of Evaluation

Figure 6.6: Illustration of the filesystem traceability model

The final step for creating the traceability model is to execute the correctness con-
straints, which accompany the traceability metamodel in order to validate that the pro-
duced traceability model is valid. Now that the traceability model is produced, it can
be used during the development lifecycle and it can be maintained and evolved if the
models referenced by the traceability metamodel change.

By using the proposed approach, we were able to semi-automatically generate the
traceability metamodel. If ETL had been used as the transformation language, the com-
putation of the traceability metamodel would have been automatic.

6.1.3.6 Using and maintaining traceability

In this section, we will present how the produced traceability model can be used to keep
consistent the filesystem Ecore model with its related GMF models, when the filesys-
tem model is refactored. Moreover, we will show how TML can be used to maintain
the integrity of the establish traceability model. To achieve this, we use the approach
proposed in sections 4.4.2 and 4.3.

204

6.1 Means of Evaluation

In order to propagate any possible changes of the filesystem model to the GMF
models appropriate model wizards have been developed. These wizards use the case-
specific traceability information to identify which model elements are related to the
modified one. For the purposes of this case study, we have developed three such wiz-
ards. The first one is illustrated in listing 6.9. This wizard renames an EClass, when
a gmf.node annotation is attached to it. In line 3 a guard is specified, which uses the
isNode user-defined operation. This guard guarantees that this wizard is applied only to
EClasses, which have the gmf.node annotation attached to them. In the do part of the
wizard its behaviour is specified. When this wizard is executed, the user is prompted to
provide a new name for the EClass. This is specified in line 9. In line 12, the appro-
priate GMF models and the corresponding traceability model are loaded into memory.
In the rest of the body of the wizard, the traceability information is used to update el-
ements of the GMF models, which are related to the renamed EClass. In lines 15 - 17
instances of the FigureDescriptor metaclass, which are related to the renamed element
via an EClass2FigureDescriptorTraceLink, are renamed accordingly. In a similar man-
ner, the name of the instances of the Node, DiagramLabel and CreationTool metaclasses
is changed to the new name of the EClass. Finally, in line 35 the user-defined name is
assigned to the name attribute of the EClass.

Listing 6.9: The RenameNodeClass wizard
1 wizard RenameNodeClass {

2
3 guard : self.isNode()

4
5 title : ’Rename class’

6
7 do {

8
9 var newName = UserInput.prompt("New name", "Select a new name");

10
11 var modelLoader = new Native("org.eclipse.epsilon.tml.eugenia.

refactoring.GmfModelLoader");

12 modelLoader.loadOtherModels(self);

13
14 // Update respective FigureDescriptor

15 for (e2fd in Trace!EClass2FigureDescriptorTraceLink.all.select(

e2fd|e2fd.EClass.target = self)) {

16 e2fd.FigureDescriptor.target.name = newName + "Figure";

17 }

18
19 // Update respective Node

205

6.1 Means of Evaluation

20 for (e2n in Trace!EClass2NodeTraceLink.all.select(e2n|e2n.EClass.

target = self)) {

21 e2n.Node.target.name = newName;

22 }

23
24 // Update respective DiagramLabel

25 for (e2dl in Trace!EClass2DiagramLabelTraceLink.all.select(e2dl|

e2dl.EClass.target = self)) {

26 e2dl.DiagramLabel.target.name = newName + "Label";

27 }

28
29 // Update respective Tool

30 for (e2t in Trace!EClass2CreationToolTraceLink.all.select(e2t|e2t.

EClass.target = self)) {

31 e2t.CreationTool.target.‘title‘ = newName;

32 e2t.CreationTool.target.description = "Create new " + newName;

33 }

34
35 self.name = newName;

36 }

37 }

Similarly, the RenameLinkClass wizard illustrated in listing 6.10, renames an EClass,
which is annotated with the gmf.link annotation. In line 3 the appropriate guard is de-
fined in order to ensure that this wizard applies only to EClasses with the aforemen-
tioned annotation attached to them. The rest of the body of this wizard is similar to the
RenameNodeClass wizard defined above.

Once the appropriate wizards are defined, the user can choose the Rename menu
option and rename simultaneously the EClass and its associated model elements in the
GMF models. An illustration of this menu is shown in figure 6.7.

When the name of an EClass changes the validity of the traceability model is not
violated, since the relevant trace links point to valid model elements. What needs to be
updated though is the value of the Name maintenance data attribute which is attached to
the EClass link end of the relevant trace links. This value can be updated by selecting
the “Maintain Trace” option of the context specific menu of the traceability model.

Listing 6.10: The RenameLinkClass wizard
1 wizard RenameLinkClass {

2
3 guard : self.isLink()

4

206

6.1 Means of Evaluation

Figure 6.7: Illustration of the RenameClass menu

207

6.1 Means of Evaluation

5 title : ’Rename class’

6
7 do {

8 var newName = UserInput.prompt("New name", "Select a new name");

9
10 var modelLoader = new Native("org.eclipse.epsilon.tml.eugenia.

refactoring.GmfModelLoader");

11 modelLoader.loadOtherModels(self);

12
13 // Update respective FigureDescriptor

14 for (e2fd in Trace!EClass2FigureDescriptorTraceLink.all.select(

e2fd|e2fd.EClass.target = self)) {

15 e2fd.FigureDescriptor.target.name = newName + "Figure";

16 }

17
18 // Update respective Connection

19 for (e2c in Trace!EClass2ConnectionTraceLink.all.select(e2c|e2c.

EClass.target = self)) {

20 e2c.Connection.target.name = newName;

21 }

22
23 // Update respective Tool

24 for (e2t in Trace!EClass2CreationToolTraceLink.all.select(e2t|e2t.

EClass.target = self)) {

25 e2t.CreationTool.target.‘title‘ = newName;

26 e2t.CreationTool.target.description = "Create new " + newName;

27 }

28
29 self.name = newName;

30 }

31 }

The third wizard is the DeleteClass wizard illustrated in listing 6.11. When this
wizard is executed it deletes an EClass and all the other elements in the GMF models
that are related to this EClass. The structure of this wizard is similar to the structure of
the ones specified above. The first part of the wizard consists of a guard. This guard
specifies that this wizard applies to EClasses, which are not eSuperTypes of any other
EClass. In the do part of the wizard, the relevant GMF models and the traceability
model are loaded into the memory. Finally, the elements of the GMF models, which are
related to the deleted EClass via various trace links are deleted as well.

208

6.1 Means of Evaluation

Listing 6.11: The DeleteClass wizard
1 wizard DeleteClass {

2
3 guard : not EClass.all.exists(c|c.eSuperTypes.includes(self))

4
5 title : ’Delete class’

6
7 do {

8 var modelLoader = new Native("org.eclipse.epsilon.tml.eugenia.

refactoring.GmfModelLoader");

9 modelLoader.loadOtherModels(self);

10
11 // Update respective FigureDescriptor

12 for (e2fd in Trace!EClass2FigureDescriptorTraceLink.all.select(

e2fd|e2fd.EClass.target = self).clone()) {

13 delete e2fd.FigureDescriptor.target;

14 delete e2fd;

15 }

16
17 // Update respective Node

18 for (e2n in Trace!EClass2NodeTraceLink.all.select(e2n|e2n.EClass.

target = self).clone()) {

19 delete e2n.Node.target;

20 delete e2n;

21 }

22
23 // Update respective DiagramLabel

24 for (e2dl in Trace!EClass2DiagramLabelTraceLink.all.select(e2dl|

e2dl.EClass.target = self).clone()) {

25 delete e2dl.DiagramLabel.target;

26 delete e2dl;

27 }

28
29 // Update respective Tool

30 for (e2t in Trace!EClass2CreationToolTraceLink.all.select(e2t|e2t.

EClass.target = self).clone()) {

31 delete e2t.CreationTool.target;

32 delete e2t;

33 }

34
35 delete self;

209

6.2 Evaluation of the contributions

36 }

37 }

Deleting the link ends of the trace links, which point to a deleted EClass affects
the validity of the traceability model, since these links have dangling link ends. In this
case-study, we have implemented the wizard in such a way, that these links are deleted
when the wizard is executed. If the wizard was not implemented in this manner, then we
could have used the “Maintain Trace” option, in order to modify the traceability model
and reestablish its validity by deleting the trace links with dangling link ends.

By using the proposed approach, we were able to develop wizards which propagate
changes to affected models. Moreover, we were able to maintain the traceability model,
when such changes took place.

6.2 Evaluation of the contributions
In this section, the contributions of this thesis are examined individually. The discussion
that follows is based on the analysis of the application through the means of evaluation
described above.

6.2.1 Classification of Traceability Approaches (Section 3.2)
In chapter 3, a classification of traceability approaches has been developed using the
technique of numerical taxonomy. This classification is unique and novel in the sense
that the existing traceability classifications are informal in nature and none of them
refers to, or applies, any concepts or techniques from the science of classification.

The contribution in this area is twofold. First, the application of numerical taxon-
omy in the domain of traceability is novel and it led to the construction of a well defined
theoretical classification of software traceability approaches. The second contribution
is the produced classification per se. This outcome is captured in the form of the den-
drogram illustrated in figure 3.1. This tree structure represents the overall similarity of
the traceability approaches used in this study based on their characteristics and it can
provide a system for conducting, documenting and coordinating a comparative study of
the various traceability approaches.

By using the dendrogram, we were able to compare the various traceability ap-
proaches based on their overall characteristics without having to choose which char-
acteristics might be of interest. These characteristics reflected design choices, which
affect the applicability of an approach to different scenarios. The data matrix, which
accompanies the dendrogram makes explicit the possible design choices for the trace-
ability approaches under study, which is one of the main contributions of this thesis.

210

6.2 Evaluation of the contributions

Furthermore, based on the clustering results we have identified a few major categories
in which most approaches fit.

Finally, the produced classification proved also a very successful means of reason-
ing about the need of the proposed approach and positive comments as well as further
interest about the application of numerical taxonomy in different scenarios have been
expressed by research peers.

6.2.2 Traceability Metamodelling Language (Section 4.1)
In section 4.1, TML was presented. The purpose of TML is to enable the construction
of case-specific and semantically-rich traceability metamodels as well as the genera-
tion of their accompanying correctness constraints in order to provide model-to-model
traceability support in MDE processes. The motivation for TML was based on the ex-
isting traceability literature (e.g. (Aizenbud-Reshef et al., 2006a; Paige et al., 2008;
Walderhaug et al., 2008)), which argues that it is necessary to define different types of
trace links for different application scenarios. Moreover, researchers argue that trace-
ability models should be well-defined so that they can be automatically manipulated by
software tools (e.g (Aizenbud-Reshef et al., 2006a; Walderhaug et al., 2008)).

By experimenting with TML in different traceability scenarios, we determined that
TML fulfills its requirements. One can define easily traceability metamodels with
scenario-specific semantics and a set of accompanying constraints. The traceability
models which result from using TML are well-defined in the MDE sense (i.e. they
conform to a well-structured metamodel and they are accompanied by correctness con-
straints). Therefore, they can be automatically manipulated by using existing model
management frameworks.

The concepts which comprise TML have been defined in an iterative manner using
the approach in different traceability scenarios and examples. The application of the
proposed approach in different scenarios enabled the constant evaluation of the correct-
ness and completeness of TML. Moreover, the use of TML in the examples and the
case-study demonstrates the benefits of using the proposed approach.

Another benefit of TML is the fact that it uses the existing technologies in its appli-
cation domain, i.e. the MDE domain. TML is defined using metamodelling and model
management tasks such as model transformation, model validation, etc. As a result the
learning curve for a developer, who is familiar with MDE, is not steep. Therefore it
is reasonable anticipated that TML can be extended or adjusted/modified by the MDE
community with minimal effort.

211

6.2 Evaluation of the contributions

6.2.3 Traceability Identification with TML (Section 4.2)
The main contribution of section 4.2 is an approach for the automatic computation of
traceability models. Traceability models can be created manually by using a dedicated
tree editor, but generating them automatically requires less effort and it is less error-
prone. The proposed approach uses model management operations for the computation
of traceability models, and then enhances these models with case-specific semantics
using TML models.

One of the benefits of the proposed solution to the computation of traceability mod-
els is the fact that it is framework-agnostic. The reference implementation uses the
Epsilon model management framework, but any other framework could have been used
instead as long as an internal trace is generated while executing model management
tasks. The genericity of the proposed approach can be attributed to the addition of an
abstraction level between TML and the model management framework, which is en-
hanced with TML. This abstraction level hides the differences and particularities of the
different model management frameworks.

An important characteristic of the proposed approach is the fact that it is model-
centric. This means that for the computation of the traceability models both the struc-
tural metadata as well as the lexical information of models are used. Structural metadata
can be cardinalities of model elements or their associations or possibly different types of
containments. This is achieved by using existing model management languages, which
are built for this task.

Using the identification approach, we were able to create traceability models in dif-
ferent application scenarios in an automatic manner. One limitation though of the ap-
proach is that it can not generate automatically informal aspects of a traceability model.
These informal information are captured in dedicated model elements called Contexts
in TML. In the proposed approach the contexts have to be filled in manually by the
developer once the traceability model is created.

In section 3.3, we argued why a traceability approach should support the two view-
points of traceability: Dependency and Generative. The application of the proposed
approach to the different traceability scenarios has demonstrated that it supports both
traceability viewpoints. By using the trace produced by transformation languages a
scenario-specific traceability model can be computed automatically, covering the Gen-
erative viewpoint. Moreover, by comparing different models using a comparison lan-
guage and then utilising the trace produced by the comparison language can compute a
traceability model, covering the Dependency viewpoint.

In conclusion, the evaluation of the proposed approach to the computation of trace-
ability models has been successful. The means of evaluation have been applied exten-
sively throughout the research and provided sufficient evidence for the feasibility and
applicability of the proposed approach. This approach fulfills all the identified require-
ments for a trace link recovery method in the context of MDE, as they were identified

212

6.2 Evaluation of the contributions

in section 4.2.

6.2.4 Traceability Maintenance with TML (Section 4.3)
The main contribution of section 4.3 is an approach for the semi-automatic maintenance
of traceability models. The integrity and validity of traceability models can be violated,
when the models they refer to change. This thesis proposes a novel approach to main-
taining the validity of traceability models by storing dedicated maintenance metadata,
as well as expressions to calculate them. When a the validity of a link is considered to be
violated, then a maintenance algorithm is executed in order to reconcile the broken link.
If the automatic reconciliation of the link is not possible then user-input is required.

By using this approach in the various scenarios, we found out that it can detect bro-
ken links in the majority of the cases. Therefore, even in the cases where the automatic
reconciliation was not feasible, the broken links are reported back to the user for manual
reconciliation. As a result, the traceability model is in a valid state. During the applica-
tion of the approach, we have noticed that the results of the maintenance depend heavily
on the definition of the appropriate maintenance data. This implies that the nature of
the maintenance data should be defined by someone who has deep understanding of the
metamodels between which traceability is captured.

Furthermore, it was found that the proposed approach was able to support link main-
tenance for all model change types. This is due to the fact that it is a state-based method,
which does not rely on identifying model changes. As a result, even in complex sce-
narios where the compound changes can not be easily identified, the proposed approach
can find broken links and reconcile them.

Overall, the approach to traceability maintenance proposed in this thesis is found to
be novel and beneficial for traceability support.

6.2.5 Traceability Usage (Section 4.4)
Section 4.4 discusses two novel uses of scenario-specific traceability in the context of
MDE. In the first usage-scenario, traceability models, which are computed during the
execution of a transformation are used to identify possibly problematic sections of trans-
formations. This sections can be then tested extensively using various transformation
testing techniques. In the second usage scenario, traceability can be used to propagate
changes and keep models consistent during model refactorings.

Both usage scenarios were applied to a variety of examples. The evaluation of the
first application scenario (i.e. the use of traceability for testing transformations) was
positive. Using the proposed approach a number of transformation specification defects
were identified such as wrong cardinalities or transformation rules which transformed
wrong model elements. The evaluation of the second usage scenario was positive as

213

6.3 Evaluation of the Thesis Proposition

well. Changes were successfully propagated after model refactorings. During our ex-
perimentation, we found that the types and complexity of changes which can be prop-
agated to other models depend solely on the expressive power of the transformation
language, which is used to specify the refactorings. The combination of EWL and EOL
proved to be expressive enough to capture and propagate even complex refactorings.

6.3 Evaluation of the Thesis Proposition
The contributions were also assessed in terms of the distinct characteristics of the thesis
proposition, which were identified in section 3.4.

1. Model-based Approach: Traceability information is captured as a model which
conforms to a well-defined traceability metamodel. Moreover, model manage-
ment tasks and operations are used to create, modify and update the traceability
models. The proposed approach provides traceability support for modelling arte-
facts taking into consideration specific characteristics, such as the structure of the
model. Therefore, we conclude that the proposed approach is model-based.

2. Manage Traceability: The proposed approach provides support for all four trace-
ability activities, i.e. representation, identification, maintenance and usage of
traceability. TML can be used to define well-structured, scenario-specific trace-
ability metamodels. Moreover, it can be used to generate additional correctness
constraints, which accompany the traceability metamodel. The approach pro-
posed in section 4.2 can be used to support the computation of traceability mod-
els, which conform to a well-defined traceability metamodel. Furthermore, the
approach presented in section 4.3 can be used to maintain the integrity of a trace-
ability model, when the models it refers to change. Finally, section 4.4 proposes
two novel usage scenarios for traceability information.

3. Heterogeneous Traceability Relationships: Using the proposed approach, an
engineer is able to manage traceability relationships between models expressed
in heterogeneous languages. Since the proposed approach does not depend on a
particular technology, it can support different languages and modelling technolo-
gies, if the appropriate infrastructure is developed. The concepts described and
used in this thesis are language-agnostic and should apply to different traceability
scenarios.

4. Rigorous: The proposed approach supports the capture of case- specific or scenario-
specific semantics. This is achieved by enabling the developer to define a different
case-specific traceability metamodel with its accompanying constraints for differ-
ent scenarios with reduced effort.

214

6.4 Shortcomings and Limitations

5. Automation: The proposed approach provides semi-automatic identification and
maintenance of traceability information. This is achieved by using model-management
frameworks in order to manipulate the well-defined traceability models.

6. Derived and Initial Models: The proposed approach is suitable for traceability
between models, which are generated automatically by applying model operations
on other models (derived models) as well as between models, which are created
manually by engineers (initial models). This is achieved by utilising the traces
produced from both transformation and matching model management tasks and
enhancing them with scenario-specific semantics.

6.4 Shortcomings and Limitations
This section presents the main limitations and shortcomings of the proposed approach
and reference implementation.

6.4.1 Lack of support for non-model artefacts
The approach proposed in this thesis focuses on providing traceability support between
models. However, when applying MDE, development of models starts from other kinds
of artefacts such as informal, natural language descriptions of requirements or spread-
sheets and it ends usually with textual artefacts such as executable source code and its
accompanying documentation. Following (Paige et al., 2008), a traceability approach
should consider how models can be traced to other (nonmodel) artefacts and how (non-
model) artefacts can be traced to models. Therefore, in order to be able to support
end-to-end traceability in MDE - that is, traceability between all artefacts developed
and generated in an MDE systems development process - then we need to extend our
approach to support non-model artefacts.

6.4.2 Lack of support for custom traceability information
Another limitation of the approach described in this thesis is the lack of support for
custom traceability information. In TML, developers can capture custom information
in dedicated metaclasses called Contexts. These metaclasses can be used to capture
concepts, which are not supported by the TML metamodel. An example of such infor-
mation is the name of a developer, who is responsible for maintaining a particular trace
link. Although TML gives the ability to developers to capture this kind of information,
when computing the traceability models, the proposed approach is not able to generate
this information automatically. The different contexts, which are attached to the various

215

6.5 Chapter Summary

links of the traceability model, have to be filled in manually by the developer. That
is why we consider our approach to provide semi-automatic identification, instead of
automatic.

6.5 Chapter Summary
This chapter has confirmed the feasibility and validity of the thesis hypothesis by using
several means of evaluation. First and foremost, the use of the reference implementation
in a complex traceability case-study. Moreover, the approach was applied to smaller ex-
amples and case-studies throughout the duration of this research. Finally, publications
and acceptance by the research community has provided valuable feedback and confi-
dence for the validity of the TML approach.

Overall, the evaluation has demonstrated that it is feasible to develop an approach,
which fulfills the requirements identified in section 3.4. Furthermore, the application
of the proposed approach to support traceability in MDE can be beneficial in terms of
applicability, automation and rigorousness. Finally, the evaluation has identified limita-
tions and shortcomings of the approach such as the lack of support for custom informa-
tion and the lack of support for non-model artefacts.

216

Chapter 7

Conclusions and Future Work

This thesis has presented an integrated approach for defining and managing case-specific,
model-to-model traceability information in a rigorous manner. The contributions of this
thesis can be summarised as follows:

• Understand and analyse existing literature on traceability by developing a classi-
fication using numerical taxonomy (section 3.2).

• Specification of TML, which enables the construction of case-specific and semantically-
rich traceability metamodels as well as the generation of their accompanying cor-
rectness constraints (section 4.1).

• Support for semi-automatic identification of traceability information between mod-
els (section 4.2).

• Support for semi-automatic maintenance of the validity of traceability information
between models (section 4.3).

• Usage of traseability information for transformation testing (section 4.4.1)

• Usage of traseability information for change propagation in model refactoring
scenarios (section 4.4.2)

These contributions support the thesis proposition stated in section 3.4:

This thesis demonstrates that a domain specific model-based traceability
approach can support and automate the process of rigorously managing
the different types of heterogeneous traceability relationships between both
derived and initial models in an MDE process.

217

7.1 Review Findings

Moreover, the thesis contributions satisfy the thesis objectives, which were the fol-
lowing:

• To propose an approach with which rigorous, well-defined, case-specific trace-
ability models can be developed.

• To support and automate the activity of identifying traceability links between
models.

• To support and automate the activity of maintaining traceability information be-
tween models.

• To propose novel usage scenarios of traceability information in MDE.

This chapter discusses how the thesis proposition is supported by the above contri-
butions. Moreover, the conclusions and findings of this thesis are summarised and areas
of further work are identified.

7.1 Review Findings
In chapter 2 a review of the existing work in the field of software traceability was per-
formed. During the review, the main traceability approaches and their characteristics
were identified. These findings guided the analysis, which was conducted in chapter 3.
In this analysis, the phenetic approach or else numerical taxonomy was followed. The
result of this analysis is the data matrix shown in table B.1 and the dendrogram illus-
trated in figure 3.1. By analysing the outcomes of the phenetic process, we made a set
of observations.

First, the majority of the traceability approaches included in the analysis deal with
only a subset of the traceability activities. As a result, they are defined rather isolated,
using different, not necessarily combinable techniques and technologies. This conse-
quently makes their integration into a comprehensive traceability environment a chal-
lenge.

Moreover, traceability approaches tend to focus on only one viewpoint of trace-
ability ignoring the other one. Considering that in MDE processes, both viewpoints
(Dependency and Generative) are present, we considered this as a main limitation for
applying one of the existing traceability approaches to an MDE process.

A third observation, was the fact that the approaches, which automate the manage-
ment of traceability information, tend not to define semantics in an enforceable way. As
a result, limited support for rich analysis of traceability information can be provided.
Furthermore, we observed that many of the existing approaches focus only on particular

218

7.2 Proposed Solution

languages and artefact types limiting their applicability to specific traceability scenar-
ios. Finally, we observed that very few approaches consider the activity of traceability
maintenance.

Based on the above observations, we specified a set of requirements, which must be
fulfilled by a traceability approach in the context of MDE and the thesis proposition was
stated in section 3.4.

7.2 Proposed Solution
In chapter 4 the main knowledge contributions of this thesis are imparted. These con-
tributions are directly related to the four aspects of traceability ; namely representation,
identification, maintenance and usage. In the following sections, we will summarise the
results of this thesis.

7.2.1 Traceability Metamodelling Language
The main contribution of this research work is the specification of TML, which is pre-
sented in section 4.1. One of our observations during the review of the literature was
the fact that scenario-specific traceability information with rich semantics is rarely sup-
ported by existing approaches, especially the ones whose focus is on automating the
computation of traceability models or on automating the maintenance of the captured
trace links. In order to provide support for specifying such traceability models - i.e.
traceability models with scenario-specific semantics - we developed TML.

TML is a domain specific metamodelling language, whose purpose is to enable the
construction of scenario-specific traceability metamodels and their accompanying con-
straints with reduced effort. Therefore, TML facilitates the specification of traceability
domain specific languages, each of them targeting a concrete instance of the software
traceability domain. There are three distinct reasons, which motivate the need for having
a dedicated traceability metamodelling language. First, context-specific trace link types
are needed. A generic language will invariably use generic trace link types. Therefore,
rich analysis of traceability information is not supported, since the intended meaning
of the trace links is not precisely captured. Furthermore, context-specific constraints
should be defined in order to capture the intended meaning of trace links - i.e. the se-
mantics of trace links - more accurately. Finally, domain-specific functionality should be
reused across the different instances of the language. For example, supporting the auto-
matic computation of traceability models should be provided for the different scenario-
specific traceability languages.

By using TML, we achieve systematic reuse of common traceability concepts and
infrastructure elements such as trace link constraints or maintenance algorithms across

219

7.2 Proposed Solution

the different case-specific traceability languages. Moreover, we achieve to systemati-
cally support the definition of variability between the scenario-specific traceability lan-
guages. This is achieved by specifying a well-defined set of variation points such as
trace link types or trace link ends. These variation points are supported consistently in
the different parts of the infrastructure, which accompanies TML.

7.2.2 Traceability Identification with TML
One of the objectives of this thesis was to automate the computation of traceability
models. In section 4.2, an approach to the computation of scenario-specific traceabil-
ity models is presented. The motivation for developing a dedicated approach for the
computation of traceability models has to do with the fact that manual creation of such
models is time consuming, labour intensive and error prone.

The proposed approach uses model management operations for the computation of
traceability models, and then enhances these models with case-specific semantics using
TML models. Therefore, we are reusing part of the existing infrastructure of the model
management frameworks, rather than developing this infrastructure from scratch. Al-
though the proposed solution is tightly coupled with the existence of a model manage-
ment framework, it is framework-agnostic. The provided reference implementation uses
the Epsilon model management framework, but any other framework could have been
used instead as long an internal trace is generated while executing model management
tasks. The genericity of the proposed approach can be attributed to the addition of an
abstraction level above TML. This abstraction level hides the differences and particu-
larities of the different model management frameworks.

The resultant approach is a model-centric approach, which can support both trace-
ability viewpoints; namely the Dependency and the Generative viewpoints. To support
the Generative viewpoint, the internal trace of a transformation language such as ETL is
enhanced with scenario-specific semantics, which are derived from a TML model. On
the other hand, to support the Dependency viewpoint, a model matching language such
as ECL is used to find similarities between models, and its internal trace is enhanced
with scenario-specific semantics in order to compute the traceability model.

7.2.3 Traceability Maintenance with TML
In section 4.3 an approach to the semi-automatic maintenance of traceability models is
presented. Traceability maintenance is one of the four main activities associated with
software traceability and it is closely related to software entropy. Its aim is to pre-
vent traceability models from degrading as the artefacts they refer to are modified. As
discussed in section 2.4.3, there are two main approaches to traceability maintenance;
namely event-driven and state-based approaches. Both of them have advantages and dis-

220

7.3 Evaluation Results

advantages. However, in the context of this thesis we propose a state-based approach,
since such an approach is more suitable for the traceability scenarios we are considering
in this research work. In such scenarios, we provide traceability support for different
and possibly heterogeneous notations. Event-driven approaches on the other hand are
usually better suited for notation-specific approaches, since they restrict their applica-
tion domain in order to be able to identify complex and compound model changes.
Therefore, the proposed approach to traceability maintenance is a state-based approach.
This thesis proposes the use of dedicated maintenance metadata and accompanying ex-
pressions to maintain the validity of traceability models.

7.2.4 Traceability Usage
In section 4.4 two novel traceability usage scenarios in the context of MDE were pre-
sented. In the first usage-scenario, traceability models, which are computed during the
execution of a transformation, are used to identify possibly problematic sections of this
transformation. These sections can then be tested extensively using various transforma-
tion testing techniques. The proposed approach relies on the internal trace produced by
transformation engines to identify problematic transformation rules in a transformation
specification. If a trace is generated during the transformation execution, which does
not conform to the scenario-specific traceability metamodel, then this rule should be
further tested.

In the second usage scenario, traceability can be used to propagate changes and
keep consistent models during model refactorings. As developers modify or refactor
development entities such as models in order to improve in a disciplined way some of
their qualitative attributes, they must ensure to update other system models in order to be
consistent with these changes. Therefore, in this thesis we propose the combination of
a task specific language designed for specifying model refactorings with TML models
in order to propagate model changes.

7.3 Evaluation Results
In chapter 6, the validity of the thesis proposition presented in section 3.4 was con-
firmed. Different means of evaluation were employed during the different stages of the
research. In section 6.1.1, evaluation of the various concepts expressed in this thesis was
performed by using small scale examples and case studies. In section 6.1.2, the impact
of the proposed approach was assessed in terms of publicity and external references.
Finally, in section 6.1.3, the thesis proposition was evaluated in terms of feasibility and
potential benefits through a complex case study.

221

7.4 Areas of Further Work

7.4 Areas of Further Work
Several directions to further work have been identified as a result of this work. One
direction is to investigate the need for traceability support of non-model artefacts for
MDE processes. Another possible research direction is to investigate how the concept of
domain-specific metamodelling language (DSM2L) can be applied in different scenarios
of families of languages.

7.4.1 Support for non-model artefacts
Although models are considered to be the main type of artefact used in MDE, there
are other kinds of artefacts which are extensively used. For example, informal, natu-
ral language descriptions of requirements and spreadsheets are used during the initial
phases of the development lifecycle. Moreover, source code and the system’s documen-
tation are produced at later stages. Therefore, a comprehensive approach to traceability
support for MDE needs to consider these types of artefacts as well. It should artefacts
as well, in terms of how models can be traced to other (non-model) artefacts and how
(non-model) artefacts can be traced to models.

One issue which arises with textual artefacts is the fact that it is not trivial to uniquely
identify pieces of text, when they are part of a larger document. Currently, naive
offset/length-based solutions are used, but those are sensitive to subsequent text editing
actions. A possible solution to this problem could be the use of statistical techniques
from the area of Natural Language Processing in order to facilitate referencing.

7.4.2 Expand the concept of DSM2L
This work also raises issues to be investigated in a broader context. Through this work,
a novel approach to developing traceability domain-specific languages has been pre-
sented. This approach was based on the concept of a domain-specific metamodelling
language.

Families of languages similar to case-specific traceability languages appear in other
domains of software engineering such as model differencing or Software Product Lines
(SPL). In such families, there are common recurring patterns and variations across the
different languages. It would be of interest to investigate the challenges associated with
the development of such families of languages. Moreover, it would be interesting to
investigate whether an approach similar to the one followed in this thesis would be
beneficial for the development of families of domain-specific languages.

222

Appendix A

Characters Used in the Phenetic
Analysis

In this appendix, the characters used in the pheneti analysis are presented and a brief
description for each one of them is provided. These characters are the following:

Manual Identification of Links: Previously unknown relationships between artefacts
are discovered and recored manually.

Semi-automatic Identification of Links: Previously unknown relationships between
artefacts are discovered and recored in a partly automatic manner. This means that the
identification process is automatic up to point, but user input is required.

Automatic Identification of Links: Previously unknown relationships between arte-
facts are discovered and recored automatically.

Identification with IR techniques - VSM: The identification of previously unknown
relationships between artefacts is done by using the Vector Space Model to estimate the
similarity between two entities.

Identification with IR techniques - LSI: The identification of previously unknown
relationships between artefacts is done by using the Latent Semantic Indexing method
to estimate the similarity between two entities.

Identification with IR techniques - PM: The identification of previously unknown
relationships between artefacts is done by using probabilistic models to estimate the
similarity between two entities.

223

Identification with indirect rules: Identification of previously unknown relation-
ships between artefacts is performed by utilising rules, which discover implicit rela-
tionships between entities.

Identification with direct rules: Identification of previously unknown relationships
between artefacts is performed by utilising rules, which discover explicit relationships
between entities.

Identification with program analysis: Previously unknown relationships between
artefacts and source code are discovered by using static code analysis.

Identification with run-time monitoring: Previously unknown relationships between
artefacts and source code are discovered by using dynamic code analysis.

Identification augmented with A.I. techniques: The identification method is en-
hanced with artificial intelligence methods, such as machine learning.

Identification augmented with visualisation techniques: The identification method
is enhanced with visualisation methods, such as link colouring.

Identification with history analysis: Previously unknown relationships between arte-
facts are discovered by identifying patterns of change in a repository.

Implicit identification with transformations: Previously unknown relationships be-
tween artefacts are discovered by using information provided by a transformation en-
gine.

Explicit identification with transformations: Previously unknown relationships be-
tween artefacts are discovered by using traceability code inserted in transformation
code.

Guidance for traceability usage: The traceabilit approach proposes how captured
traceability can be used.

Inter-artefact storage of traceability information: traceability information is stored
separately from the artefacts it refers to.

Intra-artefact storage of traceability information: traceability information is stored
in the artefacts it refers to.

224

Case-specific metamodel- extensible: The semantics captured by the traceability meta-
model can be manipulated in order to support different traceability scenarios.

Generic traceability metamodel: The semantics captured by the traceability meta-
model are generic and they do not support specific traceability scenarios.

Representation with hyperlinks: Captured traceability information is represented
using a hyperlink system.

Representation with graphs: Captured traceability information is represented using
graph structures.

Representation with inline tages: Captured traceability information is represented
tags in the artefacts the traceability refers to.

Representation with matrices: Captured traceability information is represented us-
ing matrix structures.

Representation with hyperlinks: Captured traceability information is represented
using a hyperlink system.

Semantically-rich link semantics: Traceability semantics is captured in a rigorous
manner using case-specific metamodels as well as case-specific corectness constraints.

Text-to-text traceability: The approach supports traceability information between
textual artefacts.

Model-to-text traceability: The approach supports traceability information between
models and textual artefacts.

Model-to-model traceability: The approach supports traceability information between
models.

Artefact-specific support: The approach supports traceability between specific arte-
facts (e.g. between UML class diagrams and source code).

Artefact-agnostic support: The traceability approach can be applied to various arte-
facts.

225

State-based maintenance: The maintenance of traceability information is performed
by comparing different states of the traceable artefacts.

Event-driven maintenance: The maintenance of traceability information is triggered
by particular events, which affect the traceable artefacts.

Automatic traceability maintenance: Traceability information is maintained auto-
matically.

Manual traceability maintenance: Traceability information is maintained manually.

Semi-automatic traceability maintenance: Traceability information maintenance is
performed in a partly automatic way, requiring user input.

Dependency viewpoint support: The approach supports traceability between exist-
ing artefacts.

Generative viewpoint support: The approach supports traceability between a gener-
ated artefact and the one which was used for its generation.

226

Appendix B

Phenetic Analysis Data

In this appendix, the data used in the phenetic analysis is presented. Table B.1 illustrates
the different states of a character, while table B.2 shows the state possessed by each
character for the various OTUs.

Table B.1: List of Character States

Character Character State

1 Manual Identification of Links
0= Identification is not performed manually
1= Identification is performed manually

2
Semi-automatic Identification of
Links

0= Identification is not performed semi-
automatically
1= Identification is not performed semi-
automatically

3 Automatic Identification of Links
0= Identification is not performed automatically
1= Identification is not performed automatically

4
Identification with IR techniques -
VSM

0= Identification with IR (VSM) techniques is not
supported
1= Identification with IR (VSM) techniques is not
supported

5
Identification with IR techniques -
LSI

0= Identification with IR (LSI) techniques is not
supported
1= Identification with IR (LSI) techniques is not
supported

Continued on next page

227

Table B.1 – continued from previous page

Character Character State

6
Identification with IR techniques -
PM

0= Identification with IR (PM) techniques is not
supported
1= Identification with IR (PM) techniques is not
supported

7 Identification with indirect rules
0= Rule-based identification with indirect rules
not supported
1= Rule-based identification with indirect rules
supported

8 Identification with direct rules
0= Rule-based identification with direct rules not
supported
1= Rule-based identification with direct rules sup-
ported

9
Identification with program
analysis

0= Identification is not performed using program
analysis
1= Identification is performed using program
analysis

10
Identification with run-time
monitoring

0= Identification is not performed using run-time
monitoring
1= Identification is performed using run-time
monitoring

11
Identification augmented with A.I.
techniques

0= Identification is not augmented with A.I. tech-
niques
1= Identification is augmented with A.I. tech-
niques

12
Identification augmented with
visualisation techniques

0= Identification is not augmented with vizualisa-
tion techniques
1= Identification is augmented with vizualization
techniques

13 Identification with history analysis
0= Identification is not performed using history
analysis
1= Identification is performed using history anal-
ysis

Continued on next page

228

Table B.1 – continued from previous page

Character Character State

14
Implicit identification with
transformations

0= Identification is not based on injecting code in
transformation code
1= Identification is based on injecting code in
transformation code

15
Explicit identification with
transformations

0= Identification is not performed using informa-
tion provided by a transformation engine
1= Identification is performed using information
provided by a transformation engine

16
Inter-artefact storage of traceability
information

0= Traceability information is not stored exter-
nally to the artefacts it refers to
1= Traceability information is stored externally to
the artefacts it refers to

17
Intra-artefact storage of traceability
information

0= Traceability information is not stored in the
artefacts it refers to
1= Traceability information is stored in the arte-
facts it refers to

18
Case-specific traceability
metamodel - extensible

0= Traceability metamodel is not case-specific
and extensible
1= Traceability metamodel is case-specific and
extensible

19
Case-specific traceability
metamodel - non extensible

0= Traceability metamodel is not case-specific
and non- extensible
1= Traceability metamodel is case-specific and
extensible

20 Generic traceability metamodel
0= Traceability metamodel is not generic
1= Traceability metamodel is generic

21 Representation with hyperlinks
0= Traceability representation is not performed
using hyperlinks
1= Traceability metamodel is performed using hy-
perlinks

22 Representation with graphs
0= Traceability representation is not performed
using graphs

Continued on next page

229

Table B.1 – continued from previous page

Character Character State

1= Traceability metamodel is performed using
graphs

23 Representation with inline tags
0= Traceability representation is not performed
using inline tags
1= Traceability metamodel is performed using in-
line tags

24 Representation with matrices
0= Traceability representation is not performed
using matrices
1= Traceability metamodel is performed using
matrices

25 Semantically-rich link semantics
0= Trace link semantics are not defined rigorously
1= Trace link semantics are defined rigorously

26 Text-to-text traceability
0= Text-to-text traceability is not supported
1= Text-to-text traceability is supported

27 Model-to-text traceability
0= Model-to-text traceability is not supported
1= Model-to-text traceability is supported

28 Model-to-model traceability
0= Model-to-model traceability is not supported
1= Model-to-model traceability is supported

29 Artefact-specific support
0= Approach is artefact-agnostic
1= Approach is artefact specific

30 Artefact-agnostic Support
0= Approach is artefact-specific
1= Approach is artefact-agnostic

31 State-based maintenance
0= Traceability maintenance is not state-based
1= Traceability maintenance is state-based

32 Event-driven maintenance
0= Traceability maintenance is not event-driven
1= Traceability maintenance is event-driven

33
Automatic traceability
maintenance

0= Traceability maintenance activity is not auto-
matic
1= Traceability maintenance activity is automatic

34 Manual traceability maintenance
0= Traceability maintenance activity is not man-
ual

Continued on next page

230

Table B.1 – continued from previous page

Character Character State

1= Traceability maintenance activity is manual

35
Semi-automatic traceability
maintenance

0= Traceability maintenance activity is not semi-
automatic
1= Traceability maintenance activity is semi-
automatic

36 Guidance for traceability usage
0= Approach does not provide guidance on how
to use traceability information
1= Approach provides guidance on how to use
traceability information

37 Dependency viewpoint support
0= Dependency viewpoint is not supported
1= Dependency viewpoint is supported

38 Generative viewpoint support
0= Generative viewpoint is not supported
1= Generative viewpoint is supported

231

Table B.2: States Possessed by Each Character
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Amar et.al 2008 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
Antoniol et.al 2002 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
Cleland-Huang et.al 2005 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0
Costa, M. & da Silva, A. R. 2007 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1
Egyed, A. & Grunbacher, P 2002. 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0
Fabro et.al 2005 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0
Falleri et.al 2006 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
Grammel, B. & Voigt, K. 2009 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
Grechanik et.al 2007 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
Hayes et.al 2003 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
Hayes et.al 2004 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
Hayes et.al 2006 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0
Jirapanthong, W. & Zisman, A. 2007 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0
Jouault, F. 2005 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
Kolovos, D. S. & Paige, R. F. 2010 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
Lin et al. 2006 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0
Lucia et al. 2007 & 2008 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0
Mder, P. 2008 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0
Maletic et.al 2003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0
Maletic et.al 2005 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
Marcus, A. & Maletic, J. I. 2003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0
Murta et.al 2006 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
Natt och Dag et.al 2005 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0
Olsen, G. & Oldevik, J. 2007 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0
Pierce 1978 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1
Pinheiro, F. A. C. & Goguen, J. A. 1996 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0
Pohl, K. 1996 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1
Ramesh, B. & Jarke, M. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0
Rose 2008 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1
Schwarz et.al 2009 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1
Sharif, B. & Maletic, J. I. 2007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0
Sherba et.al 2003 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0
Sousa et.al 2008 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0
Spanoudakis et.al 2003 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0
Spanoudakis et.al 2004 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0
Spanoudakis, G. & Zisman, A. 2005 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0
Vanhooff et.al 2007b 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1
von Knethen, A. & Grund, M. 2003 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0
Walderhaug et.al 2006 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
Wenzel et.al 2007 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0
Widen, J. B. T. 2001 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0
Ying et.al 2004 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
Zimmermann et.al 2004 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
Zisman et.al 2003 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0
Zou et.al 2006 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0

232

Appendix C

Phenetic Analysis Results

In this appendix, the results of the phenetic analysis using the different similarity metrics
are provided.

233

Table C.1: Resemblance Matrix using the Dice Coefficient - Part I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.00E+00 2.22E-01 3.33E-01 2.50E-01 4.12E-01 4.00E-01 3.75E-01 5.00E-01 3.75E-01 7.65E-01 6.84E-01 4.44E-01 5.00E-01 4.12E-01 6.67E-01 5.71E-01 2.94E-01 3.68E-01 3.33E-01 5.29E-01 5.29E-01 2.94E-01 2.94E-01 5.29E-01 4.44E-01 1
0.00E+00 2.94E-01 2.22E-01 5.79E-01 4.55E-01 5.56E-01 5.56E-01 5.56E-01 7.89E-01 7.14E-01 4.00E-01 4.44E-01 5.79E-01 7.00E-01 6.25E-01 4.74E-01 5.24E-01 2.00E-01 4.74E-01 5.79E-01 4.74E-01 2.63E-01 4.74E-01 6.00E-01 2

0.00E+00 3.33E-01 6.25E-01 5.79E-01 4.67E-01 6.00E-01 6.00E-01 6.25E-01 5.56E-01 2.94E-01 6.00E-01 5.00E-01 5.29E-01 5.38E-01 5.00E-01 5.56E-01 4.12E-01 6.25E-01 5.00E-01 5.00E-01 3.75E-01 6.25E-01 5.29E-01 3
0.00E+00 6.47E-01 6.00E-01 6.25E-01 6.25E-01 6.25E-01 7.65E-01 6.84E-01 3.33E-01 3.75E-01 6.47E-01 6.67E-01 7.14E-01 5.29E-01 5.79E-01 1.11E-01 5.29E-01 6.47E-01 5.29E-01 2.94E-01 4.12E-01 6.67E-01 4

0.00E+00 3.33E-01 1.76E-01 2.94E-01 1.76E-01 5.56E-01 7.00E-01 5.79E-01 5.29E-01 2.22E-01 6.84E-01 3.33E-01 2.22E-01 1.00E-01 6.84E-01 6.67E-01 7.78E-01 1.11E-01 5.56E-01 7.78E-01 1.58E-01 5
0.00E+00 4.00E-01 4.00E-01 3.00E-01 5.24E-01 5.65E-01 4.55E-01 5.00E-01 4.29E-01 5.45E-01 4.44E-01 2.38E-01 3.04E-01 6.36E-01 6.19E-01 8.10E-01 2.38E-01 4.29E-01 7.14E-01 4.55E-01 6

0.00E+00 3.75E-01 2.50E-01 5.29E-01 6.84E-01 5.56E-01 5.00E-01 5.88E-02 6.67E-01 4.29E-01 2.94E-01 2.63E-01 6.67E-01 6.47E-01 6.47E-01 1.76E-01 5.29E-01 7.65E-01 1.11E-01 7
0.00E+00 1.25E-01 4.12E-01 5.79E-01 5.56E-01 5.00E-01 4.12E-01 5.56E-01 2.86E-01 2.94E-01 3.68E-01 6.67E-01 6.47E-01 6.47E-01 2.94E-01 5.29E-01 7.65E-01 4.44E-01 8

0.00E+00 5.29E-01 6.84E-01 5.56E-01 5.00E-01 2.94E-01 6.67E-01 2.86E-01 1.76E-01 2.63E-01 6.67E-01 6.47E-01 7.65E-01 1.76E-01 5.29E-01 7.65E-01 3.33E-01 9
0.00E+00 2.00E-01 4.74E-01 4.12E-01 5.56E-01 1.58E-01 4.67E-01 5.56E-01 6.00E-01 7.89E-01 8.89E-01 6.67E-01 5.56E-01 6.67E-01 7.78E-01 5.79E-01 10

0.00E+00 4.29E-01 5.79E-01 7.00E-01 4.76E-02 6.47E-01 6.00E-01 6.36E-01 7.14E-01 8.00E-01 7.00E-01 6.00E-01 5.00E-01 6.00E-01 7.14E-01 11
0.00E+00 4.44E-01 5.79E-01 4.00E-01 6.25E-01 4.74E-01 5.24E-01 4.00E-01 5.79E-01 6.84E-01 4.74E-01 4.74E-01 4.74E-01 6.00E-01 12

0.00E+00 5.29E-01 5.56E-01 5.71E-01 5.29E-01 5.79E-01 4.44E-01 5.29E-01 7.65E-01 5.29E-01 2.94E-01 4.12E-01 5.56E-01 13
0.00E+00 6.84E-01 4.67E-01 3.33E-01 2.00E-01 5.79E-01 6.67E-01 6.67E-01 2.22E-01 5.56E-01 7.78E-01 5.26E-02 14

0.00E+00 6.25E-01 5.79E-01 6.19E-01 7.00E-01 7.89E-01 6.84E-01 5.79E-01 4.74E-01 5.79E-01 7.00E-01 15
0.00E+00 2.00E-01 4.12E-01 7.50E-01 7.33E-01 7.33E-01 3.33E-01 6.00E-01 8.67E-01 5.00E-01 16

0.00E+00 2.00E-01 5.79E-01 6.67E-01 7.78E-01 1.11E-01 4.44E-01 6.67E-01 3.68E-01 17
0.00E+00 5.24E-01 7.00E-01 8.00E-01 1.00E-01 5.00E-01 7.00E-01 1.43E-01 18

0.00E+00 5.79E-01 6.84E-01 5.79E-01 3.68E-01 4.74E-01 6.00E-01 19
0.00E+00 7.78E-01 6.67E-01 3.33E-01 2.22E-01 6.84E-01 20

0.00E+00 7.78E-01 6.67E-01 8.89E-01 6.84E-01 21
0.00E+00 4.44E-01 6.67E-01 2.63E-01 22

0.00E+00 3.33E-01 5.79E-01 23
0.00E+00 7.89E-01 24

0.00E+00 25

234

Table C.2: Resemblance Matrix using the Dice Coefficient - Part II
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

3.33E-01 5.00E-01 1.25E-01 4.00E-01 3.33E-01 5.00E-01 7.78E-01 5.56E-01 7.89E-01 6.25E-01 5.29E-01 4.12E-01 5.29E-01 2.94E-01 4.74E-01 6.47E-01 1.76E-01 5.79E-01 6.47E-01 5.00E-01 1
5.00E-01 6.67E-01 1.11E-01 5.45E-01 2.94E-01 4.55E-01 7.00E-01 5.00E-01 6.19E-01 6.67E-01 4.74E-01 3.68E-01 4.74E-01 4.74E-01 3.33E-01 5.79E-01 1.58E-01 4.29E-01 4.74E-01 4.44E-01 2
5.29E-01 4.67E-01 2.00E-01 5.79E-01 4.29E-01 5.79E-01 7.65E-01 5.29E-01 6.67E-01 7.33E-01 6.25E-01 5.00E-01 6.25E-01 5.00E-01 5.56E-01 5.00E-01 1.25E-01 6.67E-01 7.50E-01 6.00E-01 3
5.56E-01 7.50E-01 1.25E-01 6.00E-01 2.00E-01 5.00E-01 7.78E-01 4.44E-01 6.84E-01 6.25E-01 5.29E-01 2.94E-01 4.12E-01 5.29E-01 2.63E-01 5.29E-01 1.76E-01 3.68E-01 4.12E-01 5.00E-01 4
5.26E-02 6.47E-01 5.29E-01 1.43E-01 6.25E-01 6.19E-01 5.79E-01 6.84E-01 8.00E-01 8.82E-01 6.67E-01 6.67E-01 7.78E-01 2.22E-01 8.00E-01 6.67E-01 5.56E-01 8.00E-01 7.78E-01 6.47E-01 5
2.73E-01 7.00E-01 5.00E-01 2.50E-01 6.84E-01 5.83E-01 5.45E-01 4.55E-01 8.26E-01 9.00E-01 6.19E-01 6.19E-01 7.14E-01 2.38E-01 7.39E-01 6.19E-01 5.24E-01 7.39E-01 8.10E-01 7.00E-01 6
2.22E-01 5.00E-01 5.00E-01 3.00E-01 6.00E-01 6.00E-01 6.67E-01 6.67E-01 6.84E-01 8.75E-01 6.47E-01 6.47E-01 7.65E-01 2.94E-01 7.89E-01 5.29E-01 4.12E-01 7.89E-01 7.65E-01 6.25E-01 7
3.33E-01 7.50E-01 5.00E-01 4.00E-01 6.00E-01 6.00E-01 4.44E-01 6.67E-01 7.89E-01 7.50E-01 6.47E-01 6.47E-01 7.65E-01 1.76E-01 7.89E-01 6.47E-01 5.29E-01 7.89E-01 7.65E-01 6.25E-01 8
2.22E-01 6.25E-01 5.00E-01 3.00E-01 6.00E-01 6.00E-01 5.56E-01 6.67E-01 7.89E-01 8.75E-01 6.47E-01 6.47E-01 7.65E-01 5.88E-02 7.89E-01 6.47E-01 5.29E-01 7.89E-01 7.65E-01 6.25E-01 9
5.79E-01 7.65E-01 7.65E-01 6.19E-01 6.25E-01 8.10E-01 2.63E-01 3.68E-01 6.00E-01 6.47E-01 8.89E-01 6.67E-01 7.78E-01 5.56E-01 9.00E-01 5.56E-01 6.67E-01 9.00E-01 8.89E-01 8.82E-01 10
6.19E-01 7.89E-01 6.84E-01 6.52E-01 6.67E-01 8.26E-01 3.33E-01 4.29E-01 5.45E-01 6.84E-01 8.00E-01 5.00E-01 6.00E-01 6.00E-01 8.18E-01 6.00E-01 6.00E-01 7.27E-01 8.00E-01 7.89E-01 11
5.00E-01 6.67E-01 3.33E-01 4.55E-01 2.94E-01 6.36E-01 6.00E-01 5.00E-01 5.24E-01 6.67E-01 5.79E-01 3.68E-01 4.74E-01 4.74E-01 5.24E-01 3.68E-01 2.63E-01 6.19E-01 6.84E-01 6.67E-01 12
5.56E-01 8.75E-01 3.75E-01 6.00E-01 2.00E-01 5.00E-01 5.56E-01 2.22E-01 5.79E-01 6.25E-01 5.29E-01 2.94E-01 4.12E-01 5.29E-01 5.79E-01 4.12E-01 4.12E-01 5.79E-01 5.29E-01 5.00E-01 13
2.63E-01 5.29E-01 5.29E-01 2.38E-01 6.25E-01 6.19E-01 6.84E-01 6.84E-01 7.00E-01 8.82E-01 6.67E-01 6.67E-01 7.78E-01 3.33E-01 8.00E-01 5.56E-01 4.44E-01 8.00E-01 7.78E-01 6.47E-01 14
6.00E-01 7.78E-01 6.67E-01 6.36E-01 6.47E-01 8.18E-01 4.00E-01 4.00E-01 5.24E-01 6.67E-01 7.89E-01 4.74E-01 5.79E-01 5.79E-01 8.10E-01 5.79E-01 5.79E-01 7.14E-01 7.89E-01 7.78E-01 15
3.75E-01 7.14E-01 5.71E-01 4.44E-01 6.92E-01 6.67E-01 5.00E-01 6.25E-01 8.82E-01 8.57E-01 7.33E-01 6.00E-01 8.67E-01 3.33E-01 8.82E-01 7.33E-01 6.00E-01 8.82E-01 8.67E-01 7.14E-01 16
1.58E-01 6.47E-01 4.12E-01 2.38E-01 6.25E-01 5.24E-01 5.79E-01 5.79E-01 8.00E-01 8.82E-01 6.67E-01 4.44E-01 6.67E-01 1.11E-01 7.00E-01 5.56E-01 4.44E-01 7.00E-01 7.78E-01 6.47E-01 17
4.76E-02 6.84E-01 4.74E-01 4.35E-02 6.67E-01 5.65E-01 6.19E-01 6.19E-01 8.18E-01 8.95E-01 7.00E-01 6.00E-01 7.00E-01 2.00E-01 7.27E-01 6.00E-01 5.00E-01 7.27E-01 8.00E-01 6.84E-01 18
6.00E-01 7.78E-01 2.22E-01 5.45E-01 2.94E-01 5.45E-01 8.00E-01 5.00E-01 6.19E-01 6.67E-01 5.79E-01 3.68E-01 4.74E-01 5.79E-01 2.38E-01 5.79E-01 2.63E-01 3.33E-01 3.68E-01 5.56E-01 19
6.84E-01 8.82E-01 4.12E-01 6.19E-01 5.00E-01 4.29E-01 8.95E-01 6.84E-01 5.00E-01 8.82E-01 0.00E+00 4.44E-01 3.33E-01 6.67E-01 7.00E-01 5.56E-01 4.44E-01 3.00E-01 2.22E-01 1.76E-01 20
7.89E-01 2.94E-01 5.29E-01 8.10E-01 6.25E-01 6.19E-01 7.89E-01 7.89E-01 9.00E-01 1.76E-01 7.78E-01 7.78E-01 8.89E-01 7.78E-01 5.00E-01 8.89E-01 4.44E-01 9.00E-01 8.89E-01 7.65E-01 21
5.26E-02 6.47E-01 4.12E-01 1.43E-01 6.25E-01 5.24E-01 5.79E-01 5.79E-01 8.00E-01 8.82E-01 6.67E-01 5.56E-01 6.67E-01 1.11E-01 7.00E-01 5.56E-01 4.44E-01 7.00E-01 7.78E-01 6.47E-01 22
4.74E-01 7.65E-01 1.76E-01 5.24E-01 3.75E-01 4.29E-01 7.89E-01 3.68E-01 6.00E-01 7.65E-01 3.33E-01 2.22E-01 3.33E-01 4.44E-01 5.00E-01 5.56E-01 2.22E-01 4.00E-01 4.44E-01 2.94E-01 23
6.84E-01 1.00E+00 4.12E-01 7.14E-01 3.75E-01 4.29E-01 7.89E-01 4.74E-01 4.00E-01 7.65E-01 2.22E-01 2.22E-01 1.11E-01 6.67E-01 6.00E-01 3.33E-01 4.44E-01 2.00E-01 2.22E-01 2.94E-01 24
2.00E-01 5.56E-01 5.56E-01 1.82E-01 6.47E-01 6.36E-01 7.00E-01 7.00E-01 7.14E-01 8.89E-01 6.84E-01 6.84E-01 7.89E-01 3.68E-01 8.10E-01 5.79E-01 4.74E-01 8.10E-01 7.89E-01 6.67E-01 25
0.00E+00 6.67E-01 4.44E-01 9.09E-02 6.47E-01 5.45E-01 6.00E-01 6.00E-01 8.10E-01 8.89E-01 6.84E-01 5.79E-01 6.84E-01 1.58E-01 7.14E-01 5.79E-01 4.74E-01 7.14E-01 7.89E-01 6.67E-01 26

0.00E+00 6.25E-01 7.00E-01 7.33E-01 6.00E-01 8.89E-01 8.89E-01 8.95E-01 5.00E-01 8.82E-01 8.82E-01 1.00E+00 6.47E-01 4.74E-01 8.82E-01 5.29E-01 1.00E+00 1.00E+00 8.75E-01 27
0.00E+00 5.00E-01 2.00E-01 4.00E-01 7.78E-01 4.44E-01 6.84E-01 6.25E-01 4.12E-01 2.94E-01 4.12E-01 4.12E-01 3.68E-01 5.29E-01 5.88E-02 4.74E-01 5.29E-01 3.75E-01 28

0.00E+00 6.84E-01 5.83E-01 6.36E-01 6.36E-01 8.26E-01 9.00E-01 6.19E-01 6.19E-01 7.14E-01 2.38E-01 7.39E-01 6.19E-01 5.24E-01 7.39E-01 8.10E-01 7.00E-01 29
0.00E+00 5.79E-01 6.47E-01 4.12E-01 5.56E-01 4.67E-01 5.00E-01 2.50E-01 3.75E-01 6.25E-01 4.44E-01 5.00E-01 2.50E-01 5.56E-01 5.00E-01 4.67E-01 30

0.00E+00 8.18E-01 5.45E-01 7.39E-01 7.00E-01 4.29E-01 5.24E-01 5.24E-01 5.24E-01 3.91E-01 5.24E-01 4.29E-01 4.78E-01 5.24E-01 5.00E-01 31
0.00E+00 5.00E-01 7.14E-01 6.67E-01 8.95E-01 6.84E-01 7.89E-01 5.79E-01 9.05E-01 6.84E-01 7.89E-01 9.05E-01 8.95E-01 8.89E-01 32

0.00E+00 6.19E-01 6.67E-01 6.84E-01 3.68E-01 4.74E-01 5.79E-01 6.19E-01 4.74E-01 4.74E-01 6.19E-01 6.84E-01 6.67E-01 33
0.00E+00 8.95E-01 5.00E-01 5.00E-01 3.00E-01 8.00E-01 7.27E-01 3.00E-01 6.00E-01 3.64E-01 4.00E-01 3.68E-01 34

0.00E+00 8.82E-01 6.47E-01 7.65E-01 8.82E-01 4.74E-01 8.82E-01 6.47E-01 8.95E-01 8.82E-01 8.75E-01 35
0.00E+00 4.44E-01 3.33E-01 6.67E-01 7.00E-01 5.56E-01 4.44E-01 3.00E-01 2.22E-01 1.76E-01 36

0.00E+00 2.22E-01 5.56E-01 5.00E-01 4.44E-01 3.33E-01 4.00E-01 4.44E-01 4.12E-01 37
0.00E+00 6.67E-01 6.00E-01 2.22E-01 4.44E-01 2.00E-01 3.33E-01 1.76E-01 38

0.00E+00 7.00E-01 5.56E-01 4.44E-01 7.00E-01 7.78E-01 6.47E-01 39
0.00E+00 7.00E-01 4.00E-01 4.55E-01 5.00E-01 6.84E-01 40

0.00E+00 4.44E-01 4.00E-01 5.56E-01 4.12E-01 41
0.00E+00 5.00E-01 5.56E-01 4.12E-01 42

0.00E+00 1.00E-01 2.63E-01 43
0.00E+00 2.94E-01 44

0.00E+00 45

235

Table C.3: Resemblance Matrix using the Hamming Coefficient - Part I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.00E+00 1.32E-01 1.32E-01 1.05E-01 1.84E-01 2.11E-01 1.58E-01 2.11E-01 1.58E-01 3.42E-01 3.42E-01 2.11E-01 2.11E-01 1.84E-01 3.16E-01 2.11E-01 1.32E-01 1.84E-01 1.58E-01 2.37E-01 2.37E-01 1.32E-01 1.32E-01 2.37E-01 2.11E-01 1
0.00E+00 2.11E-01 7.89E-02 3.16E-01 3.42E-01 2.89E-01 2.37E-01 2.89E-01 3.16E-01 3.16E-01 2.37E-01 2.37E-01 3.16E-01 2.89E-01 2.89E-01 2.63E-01 3.16E-01 7.89E-02 3.16E-01 2.63E-01 2.63E-01 2.11E-01 2.63E-01 3.42E-01 2

0.00E+00 1.32E-01 2.63E-01 2.89E-01 1.84E-01 2.37E-01 2.37E-01 2.63E-01 2.63E-01 1.32E-01 2.37E-01 2.11E-01 2.37E-01 1.84E-01 2.11E-01 2.63E-01 1.84E-01 2.63E-01 2.11E-01 2.11E-01 1.58E-01 2.63E-01 2.37E-01 3
0.00E+00 2.89E-01 3.16E-01 2.63E-01 2.63E-01 2.63E-01 3.42E-01 3.42E-01 1.58E-01 1.58E-01 2.89E-01 3.16E-01 2.63E-01 2.37E-01 2.89E-01 5.26E-02 2.37E-01 2.89E-01 2.37E-01 1.32E-01 1.84E-01 3.16E-01 4

0.00E+00 1.84E-01 7.89E-02 1.32E-01 7.89E-02 2.63E-01 3.68E-01 2.89E-01 2.37E-01 1.05E-01 3.42E-01 1.32E-01 1.05E-01 5.26E-02 3.42E-01 3.16E-01 3.68E-01 5.26E-02 2.63E-01 3.68E-01 7.89E-02 5
0.00E+00 2.11E-01 2.11E-01 1.58E-01 2.89E-01 3.42E-01 2.63E-01 2.63E-01 2.37E-01 3.16E-01 2.11E-01 1.32E-01 1.84E-01 3.68E-01 3.42E-01 4.47E-01 1.32E-01 2.37E-01 3.95E-01 2.63E-01 6

0.00E+00 1.58E-01 1.05E-01 2.37E-01 3.42E-01 2.63E-01 2.11E-01 2.63E-02 3.16E-01 1.58E-01 1.32E-01 1.32E-01 3.16E-01 2.89E-01 2.89E-01 7.89E-02 2.37E-01 3.42E-01 5.26E-02 7
0.00E+00 5.26E-02 1.84E-01 2.89E-01 2.63E-01 2.11E-01 1.84E-01 2.63E-01 1.05E-01 1.32E-01 1.84E-01 3.16E-01 2.89E-01 2.89E-01 1.32E-01 2.37E-01 3.42E-01 2.11E-01 8

0.00E+00 2.37E-01 3.42E-01 2.63E-01 2.11E-01 1.32E-01 3.16E-01 1.05E-01 7.89E-02 1.32E-01 3.16E-01 2.89E-01 3.42E-01 7.89E-02 2.37E-01 3.42E-01 1.58E-01 9
0.00E+00 1.05E-01 2.37E-01 1.84E-01 2.63E-01 7.89E-02 1.84E-01 2.63E-01 3.16E-01 3.95E-01 4.21E-01 3.16E-01 2.63E-01 3.16E-01 3.68E-01 2.89E-01 10

0.00E+00 2.37E-01 2.89E-01 3.68E-01 2.63E-02 2.89E-01 3.16E-01 3.68E-01 3.95E-01 4.21E-01 3.68E-01 3.16E-01 2.63E-01 3.16E-01 3.95E-01 11
0.00E+00 2.11E-01 2.89E-01 2.11E-01 2.63E-01 2.37E-01 2.89E-01 2.11E-01 2.89E-01 3.42E-01 2.37E-01 2.37E-01 2.37E-01 3.16E-01 12

0.00E+00 2.37E-01 2.63E-01 2.11E-01 2.37E-01 2.89E-01 2.11E-01 2.37E-01 3.42E-01 2.37E-01 1.32E-01 1.84E-01 2.63E-01 13
0.00E+00 3.42E-01 1.84E-01 1.58E-01 1.05E-01 2.89E-01 3.16E-01 3.16E-01 1.05E-01 2.63E-01 3.68E-01 2.63E-02 14

0.00E+00 2.63E-01 2.89E-01 3.42E-01 3.68E-01 3.95E-01 3.42E-01 2.89E-01 2.37E-01 2.89E-01 3.68E-01 15
0.00E+00 7.89E-02 1.84E-01 3.16E-01 2.89E-01 2.89E-01 1.32E-01 2.37E-01 3.42E-01 2.11E-01 16

0.00E+00 1.05E-01 2.89E-01 3.16E-01 3.68E-01 5.26E-02 2.11E-01 3.16E-01 1.84E-01 17
0.00E+00 2.89E-01 3.68E-01 4.21E-01 5.26E-02 2.63E-01 3.68E-01 7.89E-02 18

0.00E+00 2.89E-01 3.42E-01 2.89E-01 1.84E-01 2.37E-01 3.16E-01 19
0.00E+00 3.68E-01 3.16E-01 1.58E-01 1.05E-01 3.42E-01 20

0.00E+00 3.68E-01 3.16E-01 4.21E-01 3.42E-01 21
0.00E+00 2.11E-01 3.16E-01 1.32E-01 22

0.00E+00 1.58E-01 2.89E-01 23
0.00E+00 3.95E-01 24

0.00E+00 25

236

Table C.4: Resemblance Matrix using the Hamming Coefficient - Part II
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

1.58E-01 2.11E-01 5.26E-02 2.11E-01 1.32E-01 2.63E-01 3.68E-01 2.63E-01 3.95E-01 2.63E-01 2.37E-01 1.84E-01 2.37E-01 1.32E-01 2.37E-01 2.89E-01 7.89E-02 2.89E-01 2.89E-01 2.11E-01 1
2.89E-01 3.42E-01 1.32E-01 3.42E-01 1.58E-01 3.42E-01 3.42E-01 2.89E-01 3.68E-01 2.37E-01 3.16E-01 2.11E-01 2.63E-01 2.63E-01 1.58E-01 3.16E-01 1.58E-01 2.11E-01 2.11E-01 2.89E-01 2
2.37E-01 1.84E-01 7.89E-02 2.89E-01 1.58E-01 2.89E-01 3.42E-01 2.37E-01 3.16E-01 2.89E-01 2.63E-01 2.11E-01 2.63E-01 2.11E-01 2.63E-01 2.11E-01 5.26E-02 3.16E-01 3.16E-01 2.37E-01 3
2.63E-01 3.16E-01 5.26E-02 3.16E-01 7.89E-02 2.63E-01 3.68E-01 2.11E-01 3.42E-01 2.63E-01 2.37E-01 1.32E-01 1.84E-01 2.37E-01 1.32E-01 2.37E-01 7.89E-02 1.84E-01 1.84E-01 2.11E-01 4
2.63E-02 2.89E-01 2.37E-01 7.89E-02 2.63E-01 3.42E-01 2.89E-01 3.42E-01 4.21E-01 3.95E-01 3.16E-01 3.16E-01 3.68E-01 1.05E-01 4.21E-01 3.16E-01 2.63E-01 4.21E-01 3.68E-01 2.89E-01 5
1.58E-01 3.68E-01 2.63E-01 1.58E-01 3.42E-01 3.68E-01 3.16E-01 2.63E-01 5.00E-01 4.74E-01 3.42E-01 3.42E-01 3.95E-01 1.32E-01 4.47E-01 3.42E-01 2.89E-01 4.47E-01 4.47E-01 3.68E-01 6
1.05E-01 2.11E-01 2.11E-01 1.58E-01 2.37E-01 3.16E-01 3.16E-01 3.16E-01 3.42E-01 3.68E-01 2.89E-01 2.89E-01 3.42E-01 1.32E-01 3.95E-01 2.37E-01 1.84E-01 3.95E-01 3.42E-01 2.63E-01 7
1.58E-01 3.16E-01 2.11E-01 2.11E-01 2.37E-01 3.16E-01 2.11E-01 3.16E-01 3.95E-01 3.16E-01 2.89E-01 2.89E-01 3.42E-01 7.89E-02 3.95E-01 2.89E-01 2.37E-01 3.95E-01 3.42E-01 2.63E-01 8
1.05E-01 2.63E-01 2.11E-01 1.58E-01 2.37E-01 3.16E-01 2.63E-01 3.16E-01 3.95E-01 3.68E-01 2.89E-01 2.89E-01 3.42E-01 2.63E-02 3.95E-01 2.89E-01 2.37E-01 3.95E-01 3.42E-01 2.63E-01 9
2.89E-01 3.42E-01 3.42E-01 3.42E-01 2.63E-01 4.47E-01 1.32E-01 1.84E-01 3.16E-01 2.89E-01 4.21E-01 3.16E-01 3.68E-01 2.63E-01 4.74E-01 2.63E-01 3.16E-01 4.74E-01 4.21E-01 3.95E-01 10
3.42E-01 3.95E-01 3.42E-01 3.95E-01 3.16E-01 5.00E-01 1.84E-01 2.37E-01 3.16E-01 3.42E-01 4.21E-01 2.63E-01 3.16E-01 3.16E-01 4.74E-01 3.16E-01 3.16E-01 4.21E-01 4.21E-01 3.95E-01 11
2.63E-01 3.16E-01 1.58E-01 2.63E-01 1.32E-01 3.68E-01 3.16E-01 2.63E-01 2.89E-01 3.16E-01 2.89E-01 1.84E-01 2.37E-01 2.37E-01 2.89E-01 1.84E-01 1.32E-01 3.42E-01 3.42E-01 3.16E-01 12
2.63E-01 3.68E-01 1.58E-01 3.16E-01 7.89E-02 2.63E-01 2.63E-01 1.05E-01 2.89E-01 2.63E-01 2.37E-01 1.32E-01 1.84E-01 2.37E-01 2.89E-01 1.84E-01 1.84E-01 2.89E-01 2.37E-01 2.11E-01 13
1.32E-01 2.37E-01 2.37E-01 1.32E-01 2.63E-01 3.42E-01 3.42E-01 3.42E-01 3.68E-01 3.95E-01 3.16E-01 3.16E-01 3.68E-01 1.58E-01 4.21E-01 2.63E-01 2.11E-01 4.21E-01 3.68E-01 2.89E-01 14
3.16E-01 3.68E-01 3.16E-01 3.68E-01 2.89E-01 4.74E-01 2.11E-01 2.11E-01 2.89E-01 3.16E-01 3.95E-01 2.37E-01 2.89E-01 2.89E-01 4.47E-01 2.89E-01 2.89E-01 3.95E-01 3.95E-01 3.68E-01 15
1.58E-01 2.63E-01 2.11E-01 2.11E-01 2.37E-01 3.16E-01 2.11E-01 2.63E-01 3.95E-01 3.16E-01 2.89E-01 2.37E-01 3.42E-01 1.32E-01 3.95E-01 2.89E-01 2.37E-01 3.95E-01 3.42E-01 2.63E-01 16
7.89E-02 2.89E-01 1.84E-01 1.32E-01 2.63E-01 2.89E-01 2.89E-01 2.89E-01 4.21E-01 3.95E-01 3.16E-01 2.11E-01 3.16E-01 5.26E-02 3.68E-01 2.63E-01 2.11E-01 3.68E-01 3.68E-01 2.89E-01 17
2.63E-02 3.42E-01 2.37E-01 2.63E-02 3.16E-01 3.42E-01 3.42E-01 3.42E-01 4.74E-01 4.47E-01 3.68E-01 3.16E-01 3.68E-01 1.05E-01 4.21E-01 3.16E-01 2.63E-01 4.21E-01 4.21E-01 3.42E-01 18
3.16E-01 3.68E-01 1.05E-01 3.16E-01 1.32E-01 3.16E-01 4.21E-01 2.63E-01 3.42E-01 3.16E-01 2.89E-01 1.84E-01 2.37E-01 2.89E-01 1.32E-01 2.89E-01 1.32E-01 1.84E-01 1.84E-01 2.63E-01 19
3.42E-01 3.95E-01 1.84E-01 3.42E-01 2.11E-01 2.37E-01 4.47E-01 3.42E-01 2.63E-01 3.95E-01 0.00E+00 2.11E-01 1.58E-01 3.16E-01 3.68E-01 2.63E-01 2.11E-01 1.58E-01 1.05E-01 7.89E-02 20
3.95E-01 1.32E-01 2.37E-01 4.47E-01 2.63E-01 3.42E-01 3.95E-01 3.95E-01 4.74E-01 7.89E-02 3.68E-01 3.68E-01 4.21E-01 3.68E-01 2.63E-01 4.21E-01 2.11E-01 4.74E-01 4.21E-01 3.42E-01 21
2.63E-02 2.89E-01 1.84E-01 7.89E-02 2.63E-01 2.89E-01 2.89E-01 2.89E-01 4.21E-01 3.95E-01 3.16E-01 2.63E-01 3.16E-01 5.26E-02 3.68E-01 2.63E-01 2.11E-01 3.68E-01 3.68E-01 2.89E-01 22
2.37E-01 3.42E-01 7.89E-02 2.89E-01 1.58E-01 2.37E-01 3.95E-01 1.84E-01 3.16E-01 3.42E-01 1.58E-01 1.05E-01 1.58E-01 2.11E-01 2.63E-01 2.63E-01 1.05E-01 2.11E-01 2.11E-01 1.32E-01 23
3.42E-01 4.47E-01 1.84E-01 3.95E-01 1.58E-01 2.37E-01 3.95E-01 2.37E-01 2.11E-01 3.42E-01 1.05E-01 1.05E-01 5.26E-02 3.16E-01 3.16E-01 1.58E-01 2.11E-01 1.05E-01 1.05E-01 1.32E-01 24
1.05E-01 2.63E-01 2.63E-01 1.05E-01 2.89E-01 3.68E-01 3.68E-01 3.68E-01 3.95E-01 4.21E-01 3.42E-01 3.42E-01 3.95E-01 1.84E-01 4.47E-01 2.89E-01 2.37E-01 4.47E-01 3.95E-01 3.16E-01 25
0.00E+00 3.16E-01 2.11E-01 5.26E-02 2.89E-01 3.16E-01 3.16E-01 3.16E-01 4.47E-01 4.21E-01 3.42E-01 2.89E-01 3.42E-01 7.89E-02 3.95E-01 2.89E-01 2.37E-01 3.95E-01 3.95E-01 3.16E-01 26

0.00E+00 2.63E-01 3.68E-01 2.89E-01 3.16E-01 4.21E-01 4.21E-01 4.47E-01 2.11E-01 3.95E-01 3.95E-01 4.47E-01 2.89E-01 2.37E-01 3.95E-01 2.37E-01 5.00E-01 4.47E-01 3.68E-01 27
0.00E+00 2.63E-01 7.89E-02 2.11E-01 3.68E-01 2.11E-01 3.42E-01 2.63E-01 1.84E-01 1.32E-01 1.84E-01 1.84E-01 1.84E-01 2.37E-01 2.63E-02 2.37E-01 2.37E-01 1.58E-01 28

0.00E+00 3.42E-01 3.68E-01 3.68E-01 3.68E-01 5.00E-01 4.74E-01 3.42E-01 3.42E-01 3.95E-01 1.32E-01 4.47E-01 3.42E-01 2.89E-01 4.47E-01 4.47E-01 3.68E-01 29
0.00E+00 2.89E-01 2.89E-01 1.84E-01 2.63E-01 1.84E-01 2.11E-01 1.05E-01 1.58E-01 2.63E-01 2.11E-01 2.11E-01 1.05E-01 2.63E-01 2.11E-01 1.84E-01 30

0.00E+00 4.74E-01 3.16E-01 4.47E-01 3.68E-01 2.37E-01 2.89E-01 2.89E-01 2.89E-01 2.37E-01 2.89E-01 2.37E-01 2.89E-01 2.89E-01 2.63E-01 31
0.00E+00 2.63E-01 3.95E-01 3.16E-01 4.47E-01 3.42E-01 3.95E-01 2.89E-01 5.00E-01 3.42E-01 3.95E-01 5.00E-01 4.47E-01 4.21E-01 32

0.00E+00 3.42E-01 3.16E-01 3.42E-01 1.84E-01 2.37E-01 2.89E-01 3.42E-01 2.37E-01 2.37E-01 3.42E-01 3.42E-01 3.16E-01 33
0.00E+00 4.47E-01 2.63E-01 2.63E-01 1.58E-01 4.21E-01 4.21E-01 1.58E-01 3.16E-01 2.11E-01 2.11E-01 1.84E-01 34

0.00E+00 3.95E-01 2.89E-01 3.42E-01 3.95E-01 2.37E-01 3.95E-01 2.89E-01 4.47E-01 3.95E-01 3.68E-01 35
0.00E+00 2.11E-01 1.58E-01 3.16E-01 3.68E-01 2.63E-01 2.11E-01 1.58E-01 1.05E-01 7.89E-02 36

0.00E+00 1.05E-01 2.63E-01 2.63E-01 2.11E-01 1.58E-01 2.11E-01 2.11E-01 1.84E-01 37
0.00E+00 3.16E-01 3.16E-01 1.05E-01 2.11E-01 1.05E-01 1.58E-01 7.89E-02 38

0.00E+00 3.68E-01 2.63E-01 2.11E-01 3.68E-01 3.68E-01 2.89E-01 39
0.00E+00 3.68E-01 2.11E-01 2.63E-01 2.63E-01 3.42E-01 40

0.00E+00 2.11E-01 2.11E-01 2.63E-01 1.84E-01 41
0.00E+00 2.63E-01 2.63E-01 1.84E-01 42

0.00E+00 5.26E-02 1.32E-01 43
0.00E+00 1.32E-01 44

0.00E+00 45

237

Table C.5: Resemblance Matrix using the Jaccard Coefficient - Part I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.00E+00 4.55E-01 5.00E-01 4.00E-01 5.83E-01 5.71E-01 5.45E-01 6.67E-01 5.45E-01 8.67E-01 8.13E-01 6.15E-01 6.67E-01 5.83E-01 8.00E-01 7.27E-01 4.55E-01 5.38E-01 5.00E-01 6.92E-01 6.92E-01 4.55E-01 4.55E-01 6.92E-01 6.15E-01 1
0.00E+00 6.67E-01 3.00E-01 8.00E-01 7.65E-01 7.86E-01 6.92E-01 7.86E-01 8.00E-01 7.50E-01 6.43E-01 6.92E-01 8.00E-01 7.33E-01 8.46E-01 7.14E-01 7.50E-01 2.73E-01 8.00E-01 7.14E-01 7.14E-01 6.15E-01 7.14E-01 8.13E-01 2

0.00E+00 5.00E-01 7.69E-01 7.33E-01 6.36E-01 7.50E-01 7.50E-01 7.69E-01 7.14E-01 4.55E-01 7.50E-01 6.67E-01 6.92E-01 7.00E-01 6.67E-01 7.14E-01 5.83E-01 7.69E-01 6.67E-01 6.67E-01 5.45E-01 7.69E-01 6.92E-01 3
0.00E+00 7.86E-01 7.50E-01 7.69E-01 7.69E-01 7.69E-01 8.67E-01 8.13E-01 5.00E-01 5.45E-01 7.86E-01 8.00E-01 8.33E-01 6.92E-01 7.33E-01 2.00E-01 6.92E-01 7.86E-01 6.92E-01 4.55E-01 5.83E-01 8.00E-01 4

0.00E+00 5.00E-01 3.00E-01 4.55E-01 3.00E-01 7.14E-01 8.24E-01 7.33E-01 6.92E-01 3.64E-01 8.13E-01 5.00E-01 3.64E-01 1.82E-01 8.13E-01 8.00E-01 8.75E-01 2.00E-01 7.14E-01 8.75E-01 2.73E-01 5
0.00E+00 5.71E-01 5.71E-01 4.62E-01 6.88E-01 7.22E-01 6.25E-01 6.67E-01 6.00E-01 7.06E-01 6.15E-01 3.85E-01 4.67E-01 7.78E-01 7.65E-01 8.95E-01 3.85E-01 6.00E-01 8.33E-01 6.25E-01 6

0.00E+00 5.45E-01 4.00E-01 6.92E-01 8.13E-01 7.14E-01 6.67E-01 1.11E-01 8.00E-01 6.00E-01 4.55E-01 4.17E-01 8.00E-01 7.86E-01 7.86E-01 3.00E-01 6.92E-01 8.67E-01 2.00E-01 7
0.00E+00 2.22E-01 5.83E-01 7.33E-01 7.14E-01 6.67E-01 5.83E-01 7.14E-01 4.44E-01 4.55E-01 5.38E-01 8.00E-01 7.86E-01 7.86E-01 4.55E-01 6.92E-01 8.67E-01 6.15E-01 8

0.00E+00 6.92E-01 8.13E-01 7.14E-01 6.67E-01 4.55E-01 8.00E-01 4.44E-01 3.00E-01 4.17E-01 8.00E-01 7.86E-01 8.67E-01 3.00E-01 6.92E-01 8.67E-01 5.00E-01 9
0.00E+00 3.33E-01 6.43E-01 5.83E-01 7.14E-01 2.73E-01 6.36E-01 7.14E-01 7.50E-01 8.82E-01 9.41E-01 8.00E-01 7.14E-01 8.00E-01 8.75E-01 7.33E-01 10

0.00E+00 6.00E-01 7.33E-01 8.24E-01 9.09E-02 7.86E-01 7.50E-01 7.78E-01 8.33E-01 8.89E-01 8.24E-01 7.50E-01 6.67E-01 7.50E-01 8.33E-01 11
0.00E+00 6.15E-01 7.33E-01 5.71E-01 7.69E-01 6.43E-01 6.88E-01 5.71E-01 7.33E-01 8.13E-01 6.43E-01 6.43E-01 6.43E-01 7.50E-01 12

0.00E+00 6.92E-01 7.14E-01 7.27E-01 6.92E-01 7.33E-01 6.15E-01 6.92E-01 8.67E-01 6.92E-01 4.55E-01 5.83E-01 7.14E-01 13
0.00E+00 8.13E-01 6.36E-01 5.00E-01 3.33E-01 7.33E-01 8.00E-01 8.00E-01 3.64E-01 7.14E-01 8.75E-01 1.00E-01 14

0.00E+00 7.69E-01 7.33E-01 7.65E-01 8.24E-01 8.82E-01 8.13E-01 7.33E-01 6.43E-01 7.33E-01 8.24E-01 15
0.00E+00 3.33E-01 5.83E-01 8.57E-01 8.46E-01 8.46E-01 5.00E-01 7.50E-01 9.29E-01 6.67E-01 16

0.00E+00 3.33E-01 7.33E-01 8.00E-01 8.75E-01 2.00E-01 6.15E-01 8.00E-01 5.38E-01 17
0.00E+00 6.88E-01 8.24E-01 8.89E-01 1.82E-01 6.67E-01 8.24E-01 2.50E-01 18

0.00E+00 7.33E-01 8.13E-01 7.33E-01 5.38E-01 6.43E-01 7.50E-01 19
0.00E+00 8.75E-01 8.00E-01 5.00E-01 3.64E-01 8.13E-01 20

0.00E+00 8.75E-01 8.00E-01 9.41E-01 8.13E-01 21
0.00E+00 6.15E-01 8.00E-01 4.17E-01 22

0.00E+00 5.00E-01 7.33E-01 23
0.00E+00 8.82E-01 24

0.00E+00 25

238

Table C.6: Resemblance Matrix using the Jaccard Coefficient - Part II
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

5.00E-01 6.67E-01 2.22E-01 5.71E-01 5.00E-01 6.67E-01 8.75E-01 7.14E-01 8.82E-01 7.69E-01 6.92E-01 5.83E-01 6.92E-01 4.55E-01 6.43E-01 7.86E-01 3.00E-01 7.33E-01 7.86E-01 6.67E-01 1
7.33E-01 8.67E-01 4.55E-01 7.65E-01 5.45E-01 7.65E-01 8.13E-01 7.33E-01 8.24E-01 6.92E-01 8.00E-01 6.15E-01 7.14E-01 7.14E-01 4.62E-01 8.00E-01 5.00E-01 5.71E-01 6.15E-01 7.86E-01 2
6.92E-01 6.36E-01 3.33E-01 7.33E-01 6.00E-01 7.33E-01 8.67E-01 6.92E-01 8.00E-01 8.46E-01 7.69E-01 6.67E-01 7.69E-01 6.67E-01 7.14E-01 6.67E-01 2.22E-01 8.00E-01 8.57E-01 7.50E-01 3
7.14E-01 8.57E-01 2.22E-01 7.50E-01 3.33E-01 6.67E-01 8.75E-01 6.15E-01 8.13E-01 7.69E-01 6.92E-01 4.55E-01 5.83E-01 6.92E-01 4.17E-01 6.92E-01 3.00E-01 5.38E-01 5.83E-01 6.67E-01 4
1.00E-01 7.86E-01 6.92E-01 2.50E-01 7.69E-01 7.65E-01 7.33E-01 8.13E-01 8.89E-01 9.38E-01 8.00E-01 8.00E-01 8.75E-01 3.64E-01 8.89E-01 8.00E-01 7.14E-01 8.89E-01 8.75E-01 7.86E-01 5
4.29E-01 8.24E-01 6.67E-01 4.00E-01 8.13E-01 7.37E-01 7.06E-01 6.25E-01 9.05E-01 9.47E-01 7.65E-01 7.65E-01 8.33E-01 3.85E-01 8.50E-01 7.65E-01 6.88E-01 8.50E-01 8.95E-01 8.24E-01 6
3.64E-01 6.67E-01 6.67E-01 4.62E-01 7.50E-01 7.50E-01 8.00E-01 8.00E-01 8.13E-01 9.33E-01 7.86E-01 7.86E-01 8.67E-01 4.55E-01 8.82E-01 6.92E-01 5.83E-01 8.82E-01 8.67E-01 7.69E-01 7
5.00E-01 8.57E-01 6.67E-01 5.71E-01 7.50E-01 7.50E-01 6.15E-01 8.00E-01 8.82E-01 8.57E-01 7.86E-01 7.86E-01 8.67E-01 3.00E-01 8.82E-01 7.86E-01 6.92E-01 8.82E-01 8.67E-01 7.69E-01 8
3.64E-01 7.69E-01 6.67E-01 4.62E-01 7.50E-01 7.50E-01 7.14E-01 8.00E-01 8.82E-01 9.33E-01 7.86E-01 7.86E-01 8.67E-01 1.11E-01 8.82E-01 7.86E-01 6.92E-01 8.82E-01 8.67E-01 7.69E-01 9
7.33E-01 8.67E-01 8.67E-01 7.65E-01 7.69E-01 8.95E-01 4.17E-01 5.38E-01 7.50E-01 7.86E-01 9.41E-01 8.00E-01 8.75E-01 7.14E-01 9.47E-01 7.14E-01 8.00E-01 9.47E-01 9.41E-01 9.38E-01 10
7.65E-01 8.82E-01 8.13E-01 7.89E-01 8.00E-01 9.05E-01 5.00E-01 6.00E-01 7.06E-01 8.13E-01 8.89E-01 6.67E-01 7.50E-01 7.50E-01 9.00E-01 7.50E-01 7.50E-01 8.42E-01 8.89E-01 8.82E-01 11
6.67E-01 8.00E-01 5.00E-01 6.25E-01 4.55E-01 7.78E-01 7.50E-01 6.67E-01 6.88E-01 8.00E-01 7.33E-01 5.38E-01 6.43E-01 6.43E-01 6.88E-01 5.38E-01 4.17E-01 7.65E-01 8.13E-01 8.00E-01 12
7.14E-01 9.33E-01 5.45E-01 7.50E-01 3.33E-01 6.67E-01 7.14E-01 3.64E-01 7.33E-01 7.69E-01 6.92E-01 4.55E-01 5.83E-01 6.92E-01 7.33E-01 5.83E-01 5.83E-01 7.33E-01 6.92E-01 6.67E-01 13
4.17E-01 6.92E-01 6.92E-01 3.85E-01 7.69E-01 7.65E-01 8.13E-01 8.13E-01 8.24E-01 9.38E-01 8.00E-01 8.00E-01 8.75E-01 5.00E-01 8.89E-01 7.14E-01 6.15E-01 8.89E-01 8.75E-01 7.86E-01 14
7.50E-01 8.75E-01 8.00E-01 7.78E-01 7.86E-01 9.00E-01 5.71E-01 5.71E-01 6.88E-01 8.00E-01 8.82E-01 6.43E-01 7.33E-01 7.33E-01 8.95E-01 7.33E-01 7.33E-01 8.33E-01 8.82E-01 8.75E-01 15
5.45E-01 8.33E-01 7.27E-01 6.15E-01 8.18E-01 8.00E-01 6.67E-01 7.69E-01 9.38E-01 9.23E-01 8.46E-01 7.50E-01 9.29E-01 5.00E-01 9.38E-01 8.46E-01 7.50E-01 9.38E-01 9.29E-01 8.33E-01 16
2.73E-01 7.86E-01 5.83E-01 3.85E-01 7.69E-01 6.88E-01 7.33E-01 7.33E-01 8.89E-01 9.38E-01 8.00E-01 6.15E-01 8.00E-01 2.00E-01 8.24E-01 7.14E-01 6.15E-01 8.24E-01 8.75E-01 7.86E-01 17
9.09E-02 8.13E-01 6.43E-01 8.33E-02 8.00E-01 7.22E-01 7.65E-01 7.65E-01 9.00E-01 9.44E-01 8.24E-01 7.50E-01 8.24E-01 3.33E-01 8.42E-01 7.50E-01 6.67E-01 8.42E-01 8.89E-01 8.13E-01 18
7.50E-01 8.75E-01 3.64E-01 7.06E-01 4.55E-01 7.06E-01 8.89E-01 6.67E-01 7.65E-01 8.00E-01 7.33E-01 5.38E-01 6.43E-01 7.33E-01 3.85E-01 7.33E-01 4.17E-01 5.00E-01 5.38E-01 7.14E-01 19
8.13E-01 9.38E-01 5.83E-01 7.65E-01 6.67E-01 6.00E-01 9.44E-01 8.13E-01 6.67E-01 9.38E-01 0.00E+00 6.15E-01 5.00E-01 8.00E-01 8.24E-01 7.14E-01 6.15E-01 4.62E-01 3.64E-01 3.00E-01 20
8.82E-01 4.55E-01 6.92E-01 8.95E-01 7.69E-01 7.65E-01 8.82E-01 8.82E-01 9.47E-01 3.00E-01 8.75E-01 8.75E-01 9.41E-01 8.75E-01 6.67E-01 9.41E-01 6.15E-01 9.47E-01 9.41E-01 8.67E-01 21
1.00E-01 7.86E-01 5.83E-01 2.50E-01 7.69E-01 6.88E-01 7.33E-01 7.33E-01 8.89E-01 9.38E-01 8.00E-01 7.14E-01 8.00E-01 2.00E-01 8.24E-01 7.14E-01 6.15E-01 8.24E-01 8.75E-01 7.86E-01 22
6.43E-01 8.67E-01 3.00E-01 6.88E-01 5.45E-01 6.00E-01 8.82E-01 5.38E-01 7.50E-01 8.67E-01 5.00E-01 3.64E-01 5.00E-01 6.15E-01 6.67E-01 7.14E-01 3.64E-01 5.71E-01 6.15E-01 4.55E-01 23
8.13E-01 1.00E+00 5.83E-01 8.33E-01 5.45E-01 6.00E-01 8.82E-01 6.43E-01 5.71E-01 8.67E-01 3.64E-01 3.64E-01 2.00E-01 8.00E-01 7.50E-01 5.00E-01 6.15E-01 3.33E-01 3.64E-01 4.55E-01 24
3.33E-01 7.14E-01 7.14E-01 3.08E-01 7.86E-01 7.78E-01 8.24E-01 8.24E-01 8.33E-01 9.41E-01 8.13E-01 8.13E-01 8.82E-01 5.38E-01 8.95E-01 7.33E-01 6.43E-01 8.95E-01 8.82E-01 8.00E-01 25
0.00E+00 8.00E-01 6.15E-01 1.67E-01 7.86E-01 7.06E-01 7.50E-01 7.50E-01 8.95E-01 9.41E-01 8.13E-01 7.33E-01 8.13E-01 2.73E-01 8.33E-01 7.33E-01 6.43E-01 8.33E-01 8.82E-01 8.00E-01 26

0.00E+00 7.69E-01 8.24E-01 8.46E-01 7.50E-01 9.41E-01 9.41E-01 9.44E-01 6.67E-01 9.38E-01 9.38E-01 1.00E+00 7.86E-01 6.43E-01 9.38E-01 6.92E-01 1.00E+00 1.00E+00 9.33E-01 27
0.00E+00 6.67E-01 3.33E-01 5.71E-01 8.75E-01 6.15E-01 8.13E-01 7.69E-01 5.83E-01 4.55E-01 5.83E-01 5.83E-01 5.38E-01 6.92E-01 1.11E-01 6.43E-01 6.92E-01 5.45E-01 28

0.00E+00 8.13E-01 7.37E-01 7.78E-01 7.78E-01 9.05E-01 9.47E-01 7.65E-01 7.65E-01 8.33E-01 3.85E-01 8.50E-01 7.65E-01 6.88E-01 8.50E-01 8.95E-01 8.24E-01 29
0.00E+00 7.33E-01 7.86E-01 5.83E-01 7.14E-01 6.36E-01 6.67E-01 4.00E-01 5.45E-01 7.69E-01 6.15E-01 6.67E-01 4.00E-01 7.14E-01 6.67E-01 6.36E-01 30

0.00E+00 9.00E-01 7.06E-01 8.50E-01 8.24E-01 6.00E-01 6.88E-01 6.88E-01 6.88E-01 5.63E-01 6.88E-01 6.00E-01 6.47E-01 6.88E-01 6.67E-01 31
0.00E+00 6.67E-01 8.33E-01 8.00E-01 9.44E-01 8.13E-01 8.82E-01 7.33E-01 9.50E-01 8.13E-01 8.82E-01 9.50E-01 9.44E-01 9.41E-01 32

0.00E+00 7.65E-01 8.00E-01 8.13E-01 5.38E-01 6.43E-01 7.33E-01 7.65E-01 6.43E-01 6.43E-01 7.65E-01 8.13E-01 8.00E-01 33
0.00E+00 9.44E-01 6.67E-01 6.67E-01 4.62E-01 8.89E-01 8.42E-01 4.62E-01 7.50E-01 5.33E-01 5.71E-01 5.38E-01 34

0.00E+00 9.38E-01 7.86E-01 8.67E-01 9.38E-01 6.43E-01 9.38E-01 7.86E-01 9.44E-01 9.38E-01 9.33E-01 35
0.00E+00 6.15E-01 5.00E-01 8.00E-01 8.24E-01 7.14E-01 6.15E-01 4.62E-01 3.64E-01 3.00E-01 36

0.00E+00 3.64E-01 7.14E-01 6.67E-01 6.15E-01 5.00E-01 5.71E-01 6.15E-01 5.83E-01 37
0.00E+00 8.00E-01 7.50E-01 3.64E-01 6.15E-01 3.33E-01 5.00E-01 3.00E-01 38

0.00E+00 8.24E-01 7.14E-01 6.15E-01 8.24E-01 8.75E-01 7.86E-01 39
0.00E+00 8.24E-01 5.71E-01 6.25E-01 6.67E-01 8.13E-01 40

0.00E+00 6.15E-01 5.71E-01 7.14E-01 5.83E-01 41
0.00E+00 6.67E-01 7.14E-01 5.83E-01 42

0.00E+00 1.82E-01 4.17E-01 43
0.00E+00 4.55E-01 44

0.00E+00 45

239

Table C.7: Resemblance Matrix using the Kulczynski Coefficient - Part I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.00E+00 8.60E-01 8.84E-01 8.57E-01 8.89E-01 8.70E-01 8.86E-01 9.13E-01 8.86E-01 9.61E-01 9.41E-01 8.91E-01 9.13E-01 8.89E-01 9.40E-01 9.35E-01 8.60E-01 8.67E-01 8.64E-01 9.15E-01 9.15E-01 8.60E-01 8.60E-01 9.15E-01 8.91E-01 1
0.00E+00 9.13E-01 8.29E-01 9.40E-01 9.22E-01 9.39E-01 9.15E-01 9.39E-01 9.40E-01 9.20E-01 8.94E-01 9.15E-01 9.40E-01 9.18E-01 9.59E-01 9.17E-01 9.20E-01 8.05E-01 9.40E-01 9.17E-01 9.17E-01 8.91E-01 9.17E-01 9.41E-01 2

0.00E+00 8.84E-01 9.38E-01 9.18E-01 9.11E-01 9.36E-01 9.36E-01 9.38E-01 9.17E-01 8.60E-01 9.36E-01 9.13E-01 9.15E-01 9.33E-01 9.13E-01 9.17E-01 8.89E-01 9.38E-01 9.13E-01 9.13E-01 8.86E-01 9.38E-01 9.15E-01 3
0.00E+00 9.39E-01 9.20E-01 9.38E-01 9.38E-01 9.38E-01 9.61E-01 9.41E-01 8.64E-01 8.86E-01 9.39E-01 9.40E-01 9.58E-01 9.15E-01 9.18E-01 8.00E-01 9.15E-01 9.39E-01 9.15E-01 8.60E-01 8.89E-01 9.40E-01 4

0.00E+00 8.44E-01 8.29E-01 8.60E-01 8.29E-01 9.17E-01 9.42E-01 9.18E-01 9.15E-01 8.33E-01 9.41E-01 8.84E-01 8.33E-01 7.75E-01 9.41E-01 9.40E-01 9.62E-01 8.00E-01 9.17E-01 9.62E-01 8.05E-01 5
0.00E+00 8.70E-01 8.70E-01 8.41E-01 8.98E-01 9.02E-01 8.75E-01 8.96E-01 8.72E-01 9.00E-01 8.91E-01 8.14E-01 8.22E-01 9.23E-01 9.22E-01 9.64E-01 8.14E-01 8.72E-01 9.43E-01 8.75E-01 6

0.00E+00 8.86E-01 8.57E-01 9.15E-01 9.41E-01 9.17E-01 9.13E-01 7.95E-01 9.40E-01 9.09E-01 8.60E-01 8.37E-01 9.40E-01 9.39E-01 9.39E-01 8.29E-01 9.15E-01 9.61E-01 8.00E-01 7
0.00E+00 8.25E-01 8.89E-01 9.18E-01 9.17E-01 9.13E-01 8.89E-01 9.17E-01 8.81E-01 8.60E-01 8.67E-01 9.40E-01 9.39E-01 9.39E-01 8.60E-01 9.15E-01 9.61E-01 8.91E-01 8

0.00E+00 9.15E-01 9.41E-01 9.17E-01 9.13E-01 8.60E-01 9.40E-01 8.81E-01 8.29E-01 8.37E-01 9.40E-01 9.39E-01 9.61E-01 8.29E-01 9.15E-01 9.61E-01 8.64E-01 9
0.00E+00 8.10E-01 8.94E-01 8.89E-01 9.17E-01 8.05E-01 9.11E-01 9.17E-01 9.20E-01 9.62E-01 9.81E-01 9.40E-01 9.17E-01 9.40E-01 9.62E-01 9.18E-01 10

0.00E+00 8.72E-01 9.18E-01 9.42E-01 7.44E-01 9.39E-01 9.20E-01 9.23E-01 9.43E-01 9.63E-01 9.42E-01 9.20E-01 8.96E-01 9.20E-01 9.43E-01 11
0.00E+00 8.91E-01 9.18E-01 8.70E-01 9.38E-01 8.94E-01 8.98E-01 8.70E-01 9.18E-01 9.41E-01 8.94E-01 8.94E-01 8.94E-01 9.20E-01 12

0.00E+00 9.15E-01 9.17E-01 9.35E-01 9.15E-01 9.18E-01 8.91E-01 9.15E-01 9.61E-01 9.15E-01 8.60E-01 8.89E-01 9.17E-01 13
0.00E+00 9.41E-01 9.11E-01 8.64E-01 8.10E-01 9.18E-01 9.40E-01 9.40E-01 8.33E-01 9.17E-01 9.62E-01 7.69E-01 14

0.00E+00 9.38E-01 9.18E-01 9.22E-01 9.42E-01 9.62E-01 9.41E-01 9.18E-01 8.94E-01 9.18E-01 9.42E-01 15
0.00E+00 8.54E-01 8.89E-01 9.60E-01 9.59E-01 9.59E-01 8.84E-01 9.36E-01 9.80E-01 9.13E-01 16

0.00E+00 8.10E-01 9.18E-01 9.40E-01 9.62E-01 8.00E-01 8.91E-01 9.40E-01 8.67E-01 17
0.00E+00 8.98E-01 9.42E-01 9.63E-01 7.75E-01 8.96E-01 9.42E-01 7.80E-01 18

0.00E+00 9.18E-01 9.41E-01 9.18E-01 8.67E-01 8.94E-01 9.20E-01 19
0.00E+00 9.62E-01 9.40E-01 8.64E-01 8.33E-01 9.41E-01 20

0.00E+00 9.62E-01 9.40E-01 9.81E-01 9.41E-01 21
0.00E+00 8.91E-01 9.40E-01 8.37E-01 22

0.00E+00 8.64E-01 9.18E-01 23
0.00E+00 9.62E-01 24

0.00E+00 25

240

Table C.8: Resemblance Matrix using the Kulczynski Coefficient - Part II
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

8.64E-01 9.13E-01 8.25E-01 8.70E-01 8.84E-01 8.96E-01 9.62E-01 9.17E-01 9.62E-01 9.38E-01 9.15E-01 8.89E-01 9.15E-01 8.60E-01 8.94E-01 9.39E-01 8.29E-01 9.18E-01 9.39E-01 9.13E-01 1
9.18E-01 9.61E-01 8.60E-01 9.22E-01 8.86E-01 9.22E-01 9.41E-01 9.18E-01 9.42E-01 9.15E-01 9.40E-01 8.91E-01 9.17E-01 9.17E-01 8.41E-01 9.40E-01 8.64E-01 8.70E-01 8.91E-01 9.39E-01 2
9.15E-01 9.11E-01 8.54E-01 9.18E-01 9.09E-01 9.18E-01 9.61E-01 9.15E-01 9.40E-01 9.59E-01 9.38E-01 9.13E-01 9.38E-01 9.13E-01 9.17E-01 9.13E-01 8.25E-01 9.40E-01 9.60E-01 9.36E-01 3
9.17E-01 9.60E-01 8.25E-01 9.20E-01 8.54E-01 8.96E-01 9.62E-01 8.91E-01 9.41E-01 9.38E-01 9.15E-01 8.60E-01 8.89E-01 9.15E-01 8.37E-01 9.15E-01 8.29E-01 8.67E-01 8.89E-01 9.13E-01 4
7.69E-01 9.39E-01 9.15E-01 7.80E-01 9.38E-01 9.22E-01 9.18E-01 9.41E-01 9.63E-01 9.81E-01 9.40E-01 9.40E-01 9.62E-01 8.33E-01 9.63E-01 9.40E-01 9.17E-01 9.63E-01 9.62E-01 9.39E-01 5
8.18E-01 9.42E-01 8.96E-01 7.95E-01 9.41E-01 9.04E-01 9.00E-01 8.75E-01 9.65E-01 9.82E-01 9.22E-01 9.22E-01 9.43E-01 8.14E-01 9.45E-01 9.22E-01 8.98E-01 9.45E-01 9.64E-01 9.42E-01 6
8.33E-01 9.13E-01 9.13E-01 8.41E-01 9.36E-01 9.20E-01 9.40E-01 9.40E-01 9.41E-01 9.81E-01 9.39E-01 9.39E-01 9.61E-01 8.60E-01 9.62E-01 9.15E-01 8.89E-01 9.62E-01 9.61E-01 9.38E-01 7
8.64E-01 9.60E-01 9.13E-01 8.70E-01 9.36E-01 9.20E-01 8.91E-01 9.40E-01 9.62E-01 9.60E-01 9.39E-01 9.39E-01 9.61E-01 8.29E-01 9.62E-01 9.39E-01 9.15E-01 9.62E-01 9.61E-01 9.38E-01 8
8.33E-01 9.38E-01 9.13E-01 8.41E-01 9.36E-01 9.20E-01 9.17E-01 9.40E-01 9.62E-01 9.81E-01 9.39E-01 9.39E-01 9.61E-01 7.95E-01 9.62E-01 9.39E-01 9.15E-01 9.62E-01 9.61E-01 9.38E-01 9
9.18E-01 9.61E-01 9.61E-01 9.22E-01 9.38E-01 9.64E-01 8.37E-01 8.67E-01 9.20E-01 9.39E-01 9.81E-01 9.40E-01 9.62E-01 9.17E-01 9.82E-01 9.17E-01 9.40E-01 9.82E-01 9.81E-01 9.81E-01 10
9.22E-01 9.62E-01 9.41E-01 9.25E-01 9.40E-01 9.65E-01 8.44E-01 8.72E-01 9.00E-01 9.41E-01 9.63E-01 8.96E-01 9.20E-01 9.20E-01 9.64E-01 9.20E-01 9.20E-01 9.44E-01 9.63E-01 9.62E-01 11
8.96E-01 9.40E-01 8.64E-01 8.75E-01 8.60E-01 9.23E-01 9.20E-01 8.96E-01 8.98E-01 9.40E-01 9.18E-01 8.67E-01 8.94E-01 8.94E-01 8.98E-01 8.67E-01 8.37E-01 9.22E-01 9.41E-01 9.40E-01 12
9.17E-01 9.81E-01 8.86E-01 9.20E-01 8.54E-01 8.96E-01 9.17E-01 8.33E-01 9.18E-01 9.38E-01 9.15E-01 8.60E-01 8.89E-01 9.15E-01 9.18E-01 8.89E-01 8.89E-01 9.18E-01 9.15E-01 9.13E-01 13
8.37E-01 9.15E-01 9.15E-01 8.14E-01 9.38E-01 9.22E-01 9.41E-01 9.41E-01 9.42E-01 9.81E-01 9.40E-01 9.40E-01 9.62E-01 8.64E-01 9.63E-01 9.17E-01 8.91E-01 9.63E-01 9.62E-01 9.39E-01 14
9.20E-01 9.62E-01 9.40E-01 9.23E-01 9.39E-01 9.64E-01 8.70E-01 8.70E-01 8.98E-01 9.40E-01 9.62E-01 8.94E-01 9.18E-01 9.18E-01 9.64E-01 9.18E-01 9.18E-01 9.43E-01 9.62E-01 9.62E-01 15
8.86E-01 9.58E-01 9.35E-01 8.91E-01 9.57E-01 9.40E-01 9.13E-01 9.38E-01 9.81E-01 9.80E-01 9.59E-01 9.36E-01 9.80E-01 8.84E-01 9.81E-01 9.59E-01 9.36E-01 9.81E-01 9.80E-01 9.58E-01 16
8.05E-01 9.39E-01 8.89E-01 8.14E-01 9.38E-01 8.98E-01 9.18E-01 9.18E-01 9.63E-01 9.81E-01 9.40E-01 8.91E-01 9.40E-01 8.00E-01 9.42E-01 9.17E-01 8.91E-01 9.42E-01 9.62E-01 9.39E-01 17
7.44E-01 9.41E-01 8.94E-01 7.18E-01 9.40E-01 9.02E-01 9.22E-01 9.22E-01 9.64E-01 9.82E-01 9.42E-01 9.20E-01 9.42E-01 8.10E-01 9.44E-01 9.20E-01 8.96E-01 9.44E-01 9.63E-01 9.41E-01 18
9.20E-01 9.62E-01 8.33E-01 9.00E-01 8.60E-01 9.00E-01 9.63E-01 8.96E-01 9.22E-01 9.40E-01 9.18E-01 8.67E-01 8.94E-01 9.18E-01 8.14E-01 9.18E-01 8.37E-01 8.44E-01 8.67E-01 9.17E-01 19
9.41E-01 9.81E-01 8.89E-01 9.22E-01 9.13E-01 8.72E-01 9.82E-01 9.41E-01 8.96E-01 9.81E-01 7.63E-01 8.91E-01 8.64E-01 9.40E-01 9.42E-01 9.17E-01 8.91E-01 8.41E-01 8.33E-01 8.29E-01 20
9.62E-01 8.60E-01 9.15E-01 9.64E-01 9.38E-01 9.22E-01 9.62E-01 9.62E-01 9.82E-01 8.29E-01 9.62E-01 9.62E-01 9.81E-01 9.62E-01 8.96E-01 9.81E-01 8.91E-01 9.82E-01 9.81E-01 9.61E-01 21
7.69E-01 9.39E-01 8.89E-01 7.80E-01 9.38E-01 8.98E-01 9.18E-01 9.18E-01 9.63E-01 9.81E-01 9.40E-01 9.17E-01 9.40E-01 8.00E-01 9.42E-01 9.17E-01 8.91E-01 9.42E-01 9.62E-01 9.39E-01 22
8.94E-01 9.61E-01 8.29E-01 8.98E-01 8.86E-01 8.72E-01 9.62E-01 8.67E-01 9.20E-01 9.61E-01 8.64E-01 8.33E-01 8.64E-01 8.91E-01 8.96E-01 9.17E-01 8.33E-01 8.70E-01 8.91E-01 8.60E-01 23
9.41E-01 1.00E+00 8.89E-01 9.43E-01 8.86E-01 8.72E-01 9.62E-01 8.94E-01 8.70E-01 9.61E-01 8.33E-01 8.33E-01 8.00E-01 9.40E-01 9.20E-01 8.64E-01 8.91E-01 8.10E-01 8.33E-01 8.60E-01 24
8.10E-01 9.17E-01 9.17E-01 7.86E-01 9.39E-01 9.23E-01 9.42E-01 9.42E-01 9.43E-01 9.81E-01 9.41E-01 9.41E-01 9.62E-01 8.67E-01 9.64E-01 9.18E-01 8.94E-01 9.64E-01 9.62E-01 9.40E-01 25
0.00E+00 9.40E-01 8.91E-01 7.50E-01 9.39E-01 9.00E-01 9.20E-01 9.20E-01 9.64E-01 9.81E-01 9.41E-01 9.18E-01 9.41E-01 8.05E-01 9.43E-01 9.18E-01 8.94E-01 9.43E-01 9.62E-01 9.40E-01 26

0.00E+00 9.38E-01 9.42E-01 9.59E-01 9.20E-01 9.81E-01 9.81E-01 9.82E-01 9.13E-01 9.81E-01 9.81E-01 1.00E+00 9.39E-01 8.94E-01 9.81E-01 9.15E-01 1.00E+00 1.00E+00 9.81E-01 27
0.00E+00 8.96E-01 8.54E-01 8.70E-01 9.62E-01 8.91E-01 9.41E-01 9.38E-01 8.89E-01 8.60E-01 8.89E-01 8.89E-01 8.67E-01 9.15E-01 7.95E-01 8.94E-01 9.15E-01 8.86E-01 28

0.00E+00 9.41E-01 9.04E-01 9.23E-01 9.23E-01 9.65E-01 9.82E-01 9.22E-01 9.22E-01 9.43E-01 8.14E-01 9.45E-01 9.22E-01 8.98E-01 9.45E-01 9.64E-01 9.42E-01 29
0.00E+00 9.18E-01 9.39E-01 8.89E-01 9.17E-01 9.11E-01 9.13E-01 8.57E-01 8.86E-01 9.38E-01 8.91E-01 9.13E-01 8.57E-01 9.17E-01 9.13E-01 9.11E-01 30

0.00E+00 9.64E-01 9.00E-01 9.45E-01 9.42E-01 8.72E-01 8.98E-01 8.98E-01 8.98E-01 8.51E-01 8.98E-01 8.72E-01 8.78E-01 8.98E-01 8.96E-01 31
0.00E+00 8.96E-01 9.43E-01 9.40E-01 9.82E-01 9.41E-01 9.62E-01 9.18E-01 9.82E-01 9.41E-01 9.62E-01 9.82E-01 9.82E-01 9.81E-01 32

0.00E+00 9.22E-01 9.40E-01 9.41E-01 8.67E-01 8.94E-01 9.18E-01 9.22E-01 8.94E-01 8.94E-01 9.22E-01 9.41E-01 9.40E-01 33
0.00E+00 9.82E-01 8.96E-01 8.96E-01 8.41E-01 9.63E-01 9.44E-01 8.41E-01 9.20E-01 8.48E-01 8.70E-01 8.67E-01 34

0.00E+00 9.81E-01 9.39E-01 9.61E-01 9.81E-01 8.94E-01 9.81E-01 9.39E-01 9.82E-01 9.81E-01 9.81E-01 35
0.00E+00 8.91E-01 8.64E-01 9.40E-01 9.42E-01 9.17E-01 8.91E-01 8.41E-01 8.33E-01 8.29E-01 36

0.00E+00 8.33E-01 9.17E-01 8.96E-01 8.91E-01 8.64E-01 8.70E-01 8.91E-01 8.89E-01 37
0.00E+00 9.40E-01 9.20E-01 8.33E-01 8.91E-01 8.10E-01 8.64E-01 8.29E-01 38

0.00E+00 9.42E-01 9.17E-01 8.91E-01 9.42E-01 9.62E-01 9.39E-01 39
0.00E+00 9.42E-01 8.70E-01 8.75E-01 8.96E-01 9.41E-01 40

0.00E+00 8.91E-01 8.70E-01 9.17E-01 8.89E-01 41
0.00E+00 8.96E-01 9.17E-01 8.89E-01 42

0.00E+00 7.75E-01 8.37E-01 43
0.00E+00 8.60E-01 44

0.00E+00 45

241

Table C.9: Resemblance Matrix using the Sokal-Sneath Coefficient - Part I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.00E+00 6.25E-01 6.67E-01 5.71E-01 7.37E-01 7.27E-01 7.06E-01 8.00E-01 7.06E-01 9.29E-01 8.97E-01 7.62E-01 8.00E-01 7.37E-01 8.89E-01 8.42E-01 6.25E-01 7.00E-01 6.67E-01 8.18E-01 8.18E-01 6.25E-01 6.25E-01 8.18E-01 7.62E-01 1
0.00E+00 8.00E-01 4.62E-01 8.89E-01 8.67E-01 8.80E-01 8.18E-01 8.80E-01 8.89E-01 8.57E-01 7.83E-01 8.18E-01 8.89E-01 8.46E-01 9.17E-01 8.33E-01 8.57E-01 4.29E-01 8.89E-01 8.33E-01 8.33E-01 7.62E-01 8.33E-01 8.97E-01 2

0.00E+00 6.67E-01 8.70E-01 8.46E-01 7.78E-01 8.57E-01 8.57E-01 8.70E-01 8.33E-01 6.25E-01 8.57E-01 8.00E-01 8.18E-01 8.24E-01 8.00E-01 8.33E-01 7.37E-01 8.70E-01 8.00E-01 8.00E-01 7.06E-01 8.70E-01 8.18E-01 3
0.00E+00 8.80E-01 8.57E-01 8.70E-01 8.70E-01 8.70E-01 9.29E-01 8.97E-01 6.67E-01 7.06E-01 8.80E-01 8.89E-01 9.09E-01 8.18E-01 8.46E-01 3.33E-01 8.18E-01 8.80E-01 8.18E-01 6.25E-01 7.37E-01 8.89E-01 4

0.00E+00 6.67E-01 4.62E-01 6.25E-01 4.62E-01 8.33E-01 9.03E-01 8.46E-01 8.18E-01 5.33E-01 8.97E-01 6.67E-01 5.33E-01 3.08E-01 8.97E-01 8.89E-01 9.33E-01 3.33E-01 8.33E-01 9.33E-01 4.29E-01 5
0.00E+00 7.27E-01 7.27E-01 6.32E-01 8.15E-01 8.39E-01 7.69E-01 8.00E-01 7.50E-01 8.28E-01 7.62E-01 5.56E-01 6.36E-01 8.75E-01 8.67E-01 9.44E-01 5.56E-01 7.50E-01 9.09E-01 7.69E-01 6

0.00E+00 7.06E-01 5.71E-01 8.18E-01 8.97E-01 8.33E-01 8.00E-01 2.00E-01 8.89E-01 7.50E-01 6.25E-01 5.88E-01 8.89E-01 8.80E-01 8.80E-01 4.62E-01 8.18E-01 9.29E-01 3.33E-01 7
0.00E+00 3.64E-01 7.37E-01 8.46E-01 8.33E-01 8.00E-01 7.37E-01 8.33E-01 6.15E-01 6.25E-01 7.00E-01 8.89E-01 8.80E-01 8.80E-01 6.25E-01 8.18E-01 9.29E-01 7.62E-01 8

0.00E+00 8.18E-01 8.97E-01 8.33E-01 8.00E-01 6.25E-01 8.89E-01 6.15E-01 4.62E-01 5.88E-01 8.89E-01 8.80E-01 9.29E-01 4.62E-01 8.18E-01 9.29E-01 6.67E-01 9
0.00E+00 5.00E-01 7.83E-01 7.37E-01 8.33E-01 4.29E-01 7.78E-01 8.33E-01 8.57E-01 9.38E-01 9.70E-01 8.89E-01 8.33E-01 8.89E-01 9.33E-01 8.46E-01 10

0.00E+00 7.50E-01 8.46E-01 9.03E-01 1.67E-01 8.80E-01 8.57E-01 8.75E-01 9.09E-01 9.41E-01 9.03E-01 8.57E-01 8.00E-01 8.57E-01 9.09E-01 11
0.00E+00 7.62E-01 8.46E-01 7.27E-01 8.70E-01 7.83E-01 8.15E-01 7.27E-01 8.46E-01 8.97E-01 7.83E-01 7.83E-01 7.83E-01 8.57E-01 12

0.00E+00 8.18E-01 8.33E-01 8.42E-01 8.18E-01 8.46E-01 7.62E-01 8.18E-01 9.29E-01 8.18E-01 6.25E-01 7.37E-01 8.33E-01 13
0.00E+00 8.97E-01 7.78E-01 6.67E-01 5.00E-01 8.46E-01 8.89E-01 8.89E-01 5.33E-01 8.33E-01 9.33E-01 1.82E-01 14

0.00E+00 8.70E-01 8.46E-01 8.67E-01 9.03E-01 9.38E-01 8.97E-01 8.46E-01 7.83E-01 8.46E-01 9.03E-01 15
0.00E+00 5.00E-01 7.37E-01 9.23E-01 9.17E-01 9.17E-01 6.67E-01 8.57E-01 9.63E-01 8.00E-01 16

0.00E+00 5.00E-01 8.46E-01 8.89E-01 9.33E-01 3.33E-01 7.62E-01 8.89E-01 7.00E-01 17
0.00E+00 8.15E-01 9.03E-01 9.41E-01 3.08E-01 8.00E-01 9.03E-01 4.00E-01 18

0.00E+00 8.46E-01 8.97E-01 8.46E-01 7.00E-01 7.83E-01 8.57E-01 19
0.00E+00 9.33E-01 8.89E-01 6.67E-01 5.33E-01 8.97E-01 20

0.00E+00 9.33E-01 8.89E-01 9.70E-01 8.97E-01 21
0.00E+00 7.62E-01 8.89E-01 5.88E-01 22

0.00E+00 6.67E-01 8.46E-01 23
0.00E+00 9.38E-01 24

0.00E+00 25

242

Table C.10: Resemblance Matrix using the SokalSneath Coefficient - Part II
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

6.67E-01 8.00E-01 3.64E-01 7.27E-01 6.67E-01 8.00E-01 9.33E-01 8.33E-01 9.38E-01 8.70E-01 8.18E-01 7.37E-01 8.18E-01 6.25E-01 7.83E-01 8.80E-01 4.62E-01 8.46E-01 8.80E-01 8.00E-01 1
8.46E-01 9.29E-01 6.25E-01 8.67E-01 7.06E-01 8.67E-01 8.97E-01 8.46E-01 9.03E-01 8.18E-01 8.89E-01 7.62E-01 8.33E-01 8.33E-01 6.32E-01 8.89E-01 6.67E-01 7.27E-01 7.62E-01 8.80E-01 2
8.18E-01 7.78E-01 5.00E-01 8.46E-01 7.50E-01 8.46E-01 9.29E-01 8.18E-01 8.89E-01 9.17E-01 8.70E-01 8.00E-01 8.70E-01 8.00E-01 8.33E-01 8.00E-01 3.64E-01 8.89E-01 9.23E-01 8.57E-01 3
8.33E-01 9.23E-01 3.64E-01 8.57E-01 5.00E-01 8.00E-01 9.33E-01 7.62E-01 8.97E-01 8.70E-01 8.18E-01 6.25E-01 7.37E-01 8.18E-01 5.88E-01 8.18E-01 4.62E-01 7.00E-01 7.37E-01 8.00E-01 4
1.82E-01 8.80E-01 8.18E-01 4.00E-01 8.70E-01 8.67E-01 8.46E-01 8.97E-01 9.41E-01 9.68E-01 8.89E-01 8.89E-01 9.33E-01 5.33E-01 9.41E-01 8.89E-01 8.33E-01 9.41E-01 9.33E-01 8.80E-01 5
6.00E-01 9.03E-01 8.00E-01 5.71E-01 8.97E-01 8.48E-01 8.28E-01 7.69E-01 9.50E-01 9.73E-01 8.67E-01 8.67E-01 9.09E-01 5.56E-01 9.19E-01 8.67E-01 8.15E-01 9.19E-01 9.44E-01 9.03E-01 6
5.33E-01 8.00E-01 8.00E-01 6.32E-01 8.57E-01 8.57E-01 8.89E-01 8.89E-01 8.97E-01 9.66E-01 8.80E-01 8.80E-01 9.29E-01 6.25E-01 9.38E-01 8.18E-01 7.37E-01 9.38E-01 9.29E-01 8.70E-01 7
6.67E-01 9.23E-01 8.00E-01 7.27E-01 8.57E-01 8.57E-01 7.62E-01 8.89E-01 9.38E-01 9.23E-01 8.80E-01 8.80E-01 9.29E-01 4.62E-01 9.38E-01 8.80E-01 8.18E-01 9.38E-01 9.29E-01 8.70E-01 8
5.33E-01 8.70E-01 8.00E-01 6.32E-01 8.57E-01 8.57E-01 8.33E-01 8.89E-01 9.38E-01 9.66E-01 8.80E-01 8.80E-01 9.29E-01 2.00E-01 9.38E-01 8.80E-01 8.18E-01 9.38E-01 9.29E-01 8.70E-01 9
8.46E-01 9.29E-01 9.29E-01 8.67E-01 8.70E-01 9.44E-01 5.88E-01 7.00E-01 8.57E-01 8.80E-01 9.70E-01 8.89E-01 9.33E-01 8.33E-01 9.73E-01 8.33E-01 8.89E-01 9.73E-01 9.70E-01 9.68E-01 10
8.67E-01 9.38E-01 8.97E-01 8.82E-01 8.89E-01 9.50E-01 6.67E-01 7.50E-01 8.28E-01 8.97E-01 9.41E-01 8.00E-01 8.57E-01 8.57E-01 9.47E-01 8.57E-01 8.57E-01 9.14E-01 9.41E-01 9.38E-01 11
8.00E-01 8.89E-01 6.67E-01 7.69E-01 6.25E-01 8.75E-01 8.57E-01 8.00E-01 8.15E-01 8.89E-01 8.46E-01 7.00E-01 7.83E-01 7.83E-01 8.15E-01 7.00E-01 5.88E-01 8.67E-01 8.97E-01 8.89E-01 12
8.33E-01 9.66E-01 7.06E-01 8.57E-01 5.00E-01 8.00E-01 8.33E-01 5.33E-01 8.46E-01 8.70E-01 8.18E-01 6.25E-01 7.37E-01 8.18E-01 8.46E-01 7.37E-01 7.37E-01 8.46E-01 8.18E-01 8.00E-01 13
5.88E-01 8.18E-01 8.18E-01 5.56E-01 8.70E-01 8.67E-01 8.97E-01 8.97E-01 9.03E-01 9.68E-01 8.89E-01 8.89E-01 9.33E-01 6.67E-01 9.41E-01 8.33E-01 7.62E-01 9.41E-01 9.33E-01 8.80E-01 14
8.57E-01 9.33E-01 8.89E-01 8.75E-01 8.80E-01 9.47E-01 7.27E-01 7.27E-01 8.15E-01 8.89E-01 9.38E-01 7.83E-01 8.46E-01 8.46E-01 9.44E-01 8.46E-01 8.46E-01 9.09E-01 9.38E-01 9.33E-01 15
7.06E-01 9.09E-01 8.42E-01 7.62E-01 9.00E-01 8.89E-01 8.00E-01 8.70E-01 9.68E-01 9.60E-01 9.17E-01 8.57E-01 9.63E-01 6.67E-01 9.68E-01 9.17E-01 8.57E-01 9.68E-01 9.63E-01 9.09E-01 16
4.29E-01 8.80E-01 7.37E-01 5.56E-01 8.70E-01 8.15E-01 8.46E-01 8.46E-01 9.41E-01 9.68E-01 8.89E-01 7.62E-01 8.89E-01 3.33E-01 9.03E-01 8.33E-01 7.62E-01 9.03E-01 9.33E-01 8.80E-01 17
1.67E-01 8.97E-01 7.83E-01 1.54E-01 8.89E-01 8.39E-01 8.67E-01 8.67E-01 9.47E-01 9.71E-01 9.03E-01 8.57E-01 9.03E-01 5.00E-01 9.14E-01 8.57E-01 8.00E-01 9.14E-01 9.41E-01 8.97E-01 18
8.57E-01 9.33E-01 5.33E-01 8.28E-01 6.25E-01 8.28E-01 9.41E-01 8.00E-01 8.67E-01 8.89E-01 8.46E-01 7.00E-01 7.83E-01 8.46E-01 5.56E-01 8.46E-01 5.88E-01 6.67E-01 7.00E-01 8.33E-01 19
8.97E-01 9.68E-01 7.37E-01 8.67E-01 8.00E-01 7.50E-01 9.71E-01 8.97E-01 8.00E-01 9.68E-01 0.00E+00 7.62E-01 6.67E-01 8.89E-01 9.03E-01 8.33E-01 7.62E-01 6.32E-01 5.33E-01 4.62E-01 20
9.38E-01 6.25E-01 8.18E-01 9.44E-01 8.70E-01 8.67E-01 9.38E-01 9.38E-01 9.73E-01 4.62E-01 9.33E-01 9.33E-01 9.70E-01 9.33E-01 8.00E-01 9.70E-01 7.62E-01 9.73E-01 9.70E-01 9.29E-01 21
1.82E-01 8.80E-01 7.37E-01 4.00E-01 8.70E-01 8.15E-01 8.46E-01 8.46E-01 9.41E-01 9.68E-01 8.89E-01 8.33E-01 8.89E-01 3.33E-01 9.03E-01 8.33E-01 7.62E-01 9.03E-01 9.33E-01 8.80E-01 22
7.83E-01 9.29E-01 4.62E-01 8.15E-01 7.06E-01 7.50E-01 9.38E-01 7.00E-01 8.57E-01 9.29E-01 6.67E-01 5.33E-01 6.67E-01 7.62E-01 8.00E-01 8.33E-01 5.33E-01 7.27E-01 7.62E-01 6.25E-01 23
8.97E-01 1.00E+00 7.37E-01 9.09E-01 7.06E-01 7.50E-01 9.38E-01 7.83E-01 7.27E-01 9.29E-01 5.33E-01 5.33E-01 3.33E-01 8.89E-01 8.57E-01 6.67E-01 7.62E-01 5.00E-01 5.33E-01 6.25E-01 24
5.00E-01 8.33E-01 8.33E-01 4.71E-01 8.80E-01 8.75E-01 9.03E-01 9.03E-01 9.09E-01 9.70E-01 8.97E-01 8.97E-01 9.38E-01 7.00E-01 9.44E-01 8.46E-01 7.83E-01 9.44E-01 9.38E-01 8.89E-01 25
0.00E+00 8.89E-01 7.62E-01 2.86E-01 8.80E-01 8.28E-01 8.57E-01 8.57E-01 9.44E-01 9.70E-01 8.97E-01 8.46E-01 8.97E-01 4.29E-01 9.09E-01 8.46E-01 7.83E-01 9.09E-01 9.38E-01 8.89E-01 26

0.00E+00 8.70E-01 9.03E-01 9.17E-01 8.57E-01 9.70E-01 9.70E-01 9.71E-01 8.00E-01 9.68E-01 9.68E-01 1.00E+00 8.80E-01 7.83E-01 9.68E-01 8.18E-01 1.00E+00 1.00E+00 9.66E-01 27
0.00E+00 8.00E-01 5.00E-01 7.27E-01 9.33E-01 7.62E-01 8.97E-01 8.70E-01 7.37E-01 6.25E-01 7.37E-01 7.37E-01 7.00E-01 8.18E-01 2.00E-01 7.83E-01 8.18E-01 7.06E-01 28

0.00E+00 8.97E-01 8.48E-01 8.75E-01 8.75E-01 9.50E-01 9.73E-01 8.67E-01 8.67E-01 9.09E-01 5.56E-01 9.19E-01 8.67E-01 8.15E-01 9.19E-01 9.44E-01 9.03E-01 29
0.00E+00 8.46E-01 8.80E-01 7.37E-01 8.33E-01 7.78E-01 8.00E-01 5.71E-01 7.06E-01 8.70E-01 7.62E-01 8.00E-01 5.71E-01 8.33E-01 8.00E-01 7.78E-01 30

0.00E+00 9.47E-01 8.28E-01 9.19E-01 9.03E-01 7.50E-01 8.15E-01 8.15E-01 8.15E-01 7.20E-01 8.15E-01 7.50E-01 7.86E-01 8.15E-01 8.00E-01 31
0.00E+00 8.00E-01 9.09E-01 8.89E-01 9.71E-01 8.97E-01 9.38E-01 8.46E-01 9.74E-01 8.97E-01 9.38E-01 9.74E-01 9.71E-01 9.70E-01 32

0.00E+00 8.67E-01 8.89E-01 8.97E-01 7.00E-01 7.83E-01 8.46E-01 8.67E-01 7.83E-01 7.83E-01 8.67E-01 8.97E-01 8.89E-01 33
0.00E+00 9.71E-01 8.00E-01 8.00E-01 6.32E-01 9.41E-01 9.14E-01 6.32E-01 8.57E-01 6.96E-01 7.27E-01 7.00E-01 34

0.00E+00 9.68E-01 8.80E-01 9.29E-01 9.68E-01 7.83E-01 9.68E-01 8.80E-01 9.71E-01 9.68E-01 9.66E-01 35
0.00E+00 7.62E-01 6.67E-01 8.89E-01 9.03E-01 8.33E-01 7.62E-01 6.32E-01 5.33E-01 4.62E-01 36

0.00E+00 5.33E-01 8.33E-01 8.00E-01 7.62E-01 6.67E-01 7.27E-01 7.62E-01 7.37E-01 37
0.00E+00 8.89E-01 8.57E-01 5.33E-01 7.62E-01 5.00E-01 6.67E-01 4.62E-01 38

0.00E+00 9.03E-01 8.33E-01 7.62E-01 9.03E-01 9.33E-01 8.80E-01 39
0.00E+00 9.03E-01 7.27E-01 7.69E-01 8.00E-01 8.97E-01 40

0.00E+00 7.62E-01 7.27E-01 8.33E-01 7.37E-01 41
0.00E+00 8.00E-01 8.33E-01 7.37E-01 42

0.00E+00 3.08E-01 5.88E-01 43
0.00E+00 6.25E-01 44

0.00E+00 45

243

Appendix D

TML Transformations

In this appendix, the complete TML transformations are provided.

Listing D.1: TML2ECore Transformation
1 pre {

2 var traceModel := new ECore!EClass;

3 traceModel.name := ’TraceModel’;

4 var traceContext := new ECore!EClass;

5 traceContext.name := ’TraceContext’;

6 traceContext.‘abstract‘ := true;

7 var contextsReference :=new ECore!EReference;

8 contextsReference.name :=’contexts’;

9 contextsReference.eType := traceContext;

10 contextsReference.containment := true;

11 contextsReference.upperBound := -1;

12 traceModel.eStructuralFeatures.add(contextsReference);

13 var traceLink := new ECore!EClass;

14 traceLink.name := ’TraceLink’;

15 traceLink.‘abstract‘ := true;

16 var traceLinkEnd := new ECore!EClass;

17 traceLinkEnd.name := ’TraceLinkEnd’;

18 traceLinkEnd.‘abstract‘ := true;

19 var modelLinksReference := new ECore!EReference;

20 modelLinksReference.name := ’links’;

21 modelLinksReference.eType := traceLink;

22 modelLinksReference.containment := true;

23 modelLinksReference.upperBound := -1;

24 traceModel.eStructuralFeatures.add(modelLinksReference);

244

25 var traceLinkEndStatus = new ECore!EClass;

26 traceLinkEndStatus.name = "TraceLinkEndStatus";

27 traceLinkEndStatus.‘abstract‘ = true;

28 var traceLinkEndOKStatus = new ECore!EClass;

29 traceLinkEndOKStatus.name = "TraceLinkEndOKStatus";

30 traceLinkEndOKStatus.eSuperTypes.add(traceLinkEndStatus);

31 var traceLinkEndInvalidStatus = new ECore!EClass;

32 traceLinkEndInvalidStatus.name = "TraceLinkEndInvalidStatus";

33 traceLinkEndInvalidStatus.eSuperTypes.add(traceLinkEndStatus);

34 var traceLinkEndAmbiguousStatus = new ECore!EClass;

35 traceLinkEndAmbiguousStatus.name = "TraceLinkEndAmbiguousStatus";

36 traceLinkEndAmbiguousStatus.eSuperTypes.add(traceLinkEndStatus);

37 var traceLinkEndAmbiguousStatusCandidates = new ECore!EReference;

38 traceLinkEndAmbiguousStatusCandidates.name = "candidates";

39 traceLinkEndAmbiguousStatusCandidates.upperBound = -1;

40 traceLinkEndAmbiguousStatusCandidates.lowerBound = 2;

41 traceLinkEndAmbiguousStatus.eStructuralFeatures.add(

traceLinkEndAmbiguousStatusCandidates);

42 traceLinkEndAmbiguousStatusCandidates.eType = EcoreM2!EClass.all.

selectOne(c|c.name = "EObject");

43 var traceLinkEndStatusReference = new ECore!EReference;

44 traceLinkEndStatusReference.name = "status";

45 traceLinkEndStatusReference.eType = traceLinkEndStatus;

46 traceLinkEndStatusReference.lowerBound = 1;

47 traceLinkEndStatusReference.lowerBound = 1;

48 traceLinkEnd.eStructuralFeatures.add(traceLinkEndStatusReference);

49 traceLinkEndStatusReference.containment = true;

50 }

51
52 rule Trace2Package

53 transform s : Trace!Trace

54 to t : ECore!EPackage {

55 t.name := s.name;

56 t.nsURI := s.name;

57 t.nsPrefix := s.name;

58 t.eClassifiers.add(traceModel);

59 t.eClassifiers.add(traceLink);

60 t.eClassifiers.add(traceContext);

61 t.eClassifiers.add(traceLinkEnd);

62 t.eClassifiers.add(traceLinkEndStatus);

63 t.eClassifiers.add(traceLinkEndOKStatus);

245

64 t.eClassifiers.add(traceLinkEndInvalidStatus);

65 t.eClassifiers.add(traceLinkEndAmbiguousStatus);

66 t.eClassifiers.addAll(s.links.equivalent());

67 t.eClassifiers.addAll(s.contexts.equivalent());

68 for (c in s.links) {

69 t.eClassifiers.addAll(c.ends.equivalent());

70 }

71 }

72
73 rule TraceLink2EClass

74 transform s : Trace!TraceLink

75 to t : ECore!EClass {

76 t.name := s.name + ’TraceLink’;

77 t.eSuperTypes.add(traceLink);

78 for (c in s.contexts) {

79 var ref := new ECore!EReference;

80 ref.eType := c.equivalent();

81 ref.name := c.name.firstToLowerCase();

82 ref.upperBound := -1;

83 t.eStructuralFeatures.add(ref);

84 }

85 for (c in s.ends) {

86 var ref := new ECore!EReference;

87 ref.eType := c.equivalent();

88 ref.name := c.name;

89 ref.lowerBound := c.lowerBound;

90 ref.upperBound := c.upperBound;

91 ref.containment := true;

92 t.eStructuralFeatures.add(ref);

93 }

94 }

95
96 rule Context2EClass

97 transform s : Trace!Context

98 to t : ECore!EClass {

99 t.eSuperTypes.add(traceContext);

100 t.name := s.name + ’Context’;

101 t.eStructuralFeatures.addAll(s.data.equivalent());

102 }

103
104 rule ContextData2EAttribute

246

105 transform s : Trace!ContextData

106 to t : ECore!EAttribute {

107 t.name := s.name;

108 t.eType := s.type.literal.createEType();

109 }

110
111 rule MaintenanceData2EAttribute

112 transform s : Trace!MaintenanceData

113 to t : ECore!EAttribute {

114 guard : s.type.literal <> ’Set’

115 t.name := s.name;

116 t.eType := s.type.literal.createEType();

117 }

118
119 rule TraceLinkEnd2EClass

120 transform s : Trace!TraceLinkEnd

121 to t : ECore!EClass {

122 t.name := s.eContainer().name + s.name.firstToUpperCase() + ’

LinkEnd’;

123 t.eSuperTypes.add(traceLinkEnd);

124 t.eStructuralFeatures.addAll(s.maintenanceData.equivalent());

125
126 var ref := new ECore!EReference;

127 ref.eType := s.type;

128 ref.name := "target";

129 ref.lowerBound :=1;

130 ref.upperBound := 1;

131 t.eStructuralFeatures.add(ref);

132 }

133
134 @cached

135 operation String createEType() {

136 var type := new ECore!EDataType;

137 type.name := self;

138 type.instanceClassName := ’java.lang.’ + self;

139 Trace!Trace.all.first().equivalent().eClassifiers.add(type);

140 return type;

141 }

142
143 post {

144 traceLink.eSuperTypes.addAll(Trace!Context.all.select(c|c.‘default‘)

247

.equivalent());

145 }

Listing D.2: TML2EVL Transformation
1 [%for (link in Trace!TraceLink.allInstances) { %]

2 [%for (end in link.ends.select(e|e.forAll)) { %]

3 context [%=end.type.name%] {

4 constraint OneForEach[%=end.name.firstToUpperCase()%]{

5 [%=end.computeGuard()%]

6 [%if (end.isMany()) {%]

7 check : [%=link.name%]TraceLink.all.exists(e|e.[%=end.name%].

target.includes(self))

8 [%} else {%]

9 check : [%=link.name%]TraceLink.all.exists(e|e.[%=end.name%].

target = self)

10 [%}%]

11 message : ’No links of type [%=link.name%] found for [%=end.name%]

’ + self

12 }

13 }

14 [%}%]

15
16 [%for(end in link.ends.select(e|e.unique)) { %]

17 context [%=end.type.name%] {

18 constraint Unique[%=end.name.firstToUpperCase()%]{

19 [%=end.computeGuard()%]

20 [%if (end.isMany()) {%]

21 check : [%=link.name%]TraceLink.all.select(e|e.[%=end.name%].

target.includes(self)).size() < 2

22 [%} else {%]

23 check : [%=link.name%]TraceLink.all.select(e|e.[%=end.name%].

target = self).size() < 2

24 [%}%]

25 message : ’Multiple links of type [%=link.name%] found for [%=end.

name%] ’ + self

26 }

27 }

28 [%}%]

29 [%}%]

30

248

31 [%for (context in Trace!Context.allInstances) { %]

32 context [%=context.name%]Context {

33 [%for (data in context.data) { %]

34 [%=data.getInvariantType()%] NotOptional[%=data.name%] {

35 check : self.[%=data.name%].isDefined()

36 [%if (data.type.literal = ’String’){%]

37 and self.[%=data.name%].trim() <> ’’

38 [%}%]

39 message : ’No value specified for attribute [%=data.name%]’

40 }

41 [%}%]

42 }

43 [%}%]

44
45 [%

46 operation Trace!TraceLinkEnd computeGuard() : String {

47 if (self.ofTypeOnly) {

48 return ’guard : self.isTypeOf(’ + self.type.name + ’)’;

49 }

50 return ’’;

51 }

52 operation Trace!TraceLinkEnd checkDefined() : String {

53 if (self.upperBound <= 1 and self.upperBound <> -1) { return ’.

isDefined()’; }

54 else { return ’.isEmpty()’; }

55 }

56 operation Trace!ContextData getInvariantType() : String {

57 if (self.optional = true) { return ’critique’; }

58 else { return ’constraint’; }

59 }

60 operation Trace!TraceLinkEnd isMany() : Boolean {

61 return self.upperBound > 1 or self.upperBound = -1;

62 }

63 %]

249

Appendix E

EVL Constraints for the Filesystem
Case-Study

In this appendix, the EVL constraints, which are used in the Filesystem case-study, are
provided.

Listing E.1: EVL Constraints for the Filesystem Case-Study
1 context EPackage {

2 constraint OneForEachEPackage{

3
4 guard : self.isTypeOf(EPackage)

5
6 check : EPackage2CanvasTraceLink.all.exists(e|e.EPackage.target =

self)

7
8 message : ’No links of type EPackage2Canvas found for EPackage ’ +

self

9 }

10 }

11 context Canvas {

12 constraint OneForEachCanvas{

13
14 guard : self.isTypeOf(Canvas)

15
16 check : EPackage2CanvasTraceLink.all.exists(e|e.Canvas.target =

self)

17
18 message : ’No links of type EPackage2Canvas found for Canvas ’ +

250

self

19 }

20 }

21 context EPackage {

22 constraint UniqueEPackage{

23
24 guard : self.isTypeOf(EPackage)

25
26 check : EPackage2CanvasTraceLink.all.select(e|e.EPackage.target =

self).size() < 2

27
28 message : ’Multiple links of type EPackage2Canvas found for

EPackage ’ + self

29 }

30 }

31 context Canvas {

32 constraint UniqueCanvas{

33
34 guard : self.isTypeOf(Canvas)

35
36 check : EPackage2CanvasTraceLink.all.select(e|e.Canvas.target =

self).size() < 2

37
38 message : ’Multiple links of type EPackage2Canvas found for Canvas

’ + self

39 }

40 }

41 context EClass {

42 constraint OneForEachEClass{

43
44 guard : self.isTypeOf(EClass)

45
46 check : EClass2NodeTraceLink.all.exists(e|e.EClass.target = self)

47
48 message : ’No links of type EClass2Node found for EClass ’ + self

49 }

50 }

51 context Node {

52 constraint OneForEachNode{

53
54 guard : self.isTypeOf(Node)

251

55
56 check : EClass2NodeTraceLink.all.exists(e|e.Node.target = self)

57
58 message : ’No links of type EClass2Node found for Node ’ + self

59 }

60 }

61 context EClass {

62 constraint UniqueEClass{

63
64 guard : self.isTypeOf(EClass)

65
66 check : EClass2NodeTraceLink.all.select(e|e.EClass.target = self).

size() < 2

67
68 message : ’Multiple links of type EClass2Node found for EClass ’ +

self

69 }

70 }

71 context Node {

72
73 constraint UniqueNode{

74
75 guard : self.isTypeOf(Node)

76
77 check : EClass2NodeTraceLink.all.select(e|e.Node.target = self).

size() < 2

78
79 message : ’Multiple links of type EClass2Node found for Node ’ +

self

80 }

81 }

82 context EClass {

83 constraint OneForEachEClass{

84
85 guard : self.isTypeOf(EClass)

86
87 check : EClass2DiagramLabelTraceLink.all.exists(e|e.EClass.target

= self)

88
89 message : ’No links of type EClass2DiagramLabel found for EClass ’

+ self

252

90 }

91 }

92 context DiagramLabel {

93 constraint OneForEachDiagramLabel{

94
95 guard : self.isTypeOf(DiagramLabel)

96
97 check : EClass2DiagramLabelTraceLink.all.exists(e|e.DiagramLabel.

target = self)

98
99 message : ’No links of type EClass2DiagramLabel found for

DiagramLabel ’ + self

100 }

101 }

102 context EClass {

103 constraint UniqueEClass{

104
105 guard : self.isTypeOf(EClass)

106
107 check : EClass2DiagramLabelTraceLink.all.select(e|e.EClass.target

= self).size() < 2

108
109 message : ’Multiple links of type EClass2DiagramLabel found for

EClass ’ + self

110 }

111 }

112 context DiagramLabel {

113 constraint UniqueDiagramLabel{

114
115 guard : self.isTypeOf(DiagramLabel)

116
117 check : EClass2DiagramLabelTraceLink.all.select(e|e.DiagramLabel.

target = self).size() < 2

118
119 message : ’Multiple links of type EClass2DiagramLabel found for

DiagramLabel ’ + self

120 }

121 }

122 context EClass {

123 constraint OneForEachEClass{

124

253

125 guard : self.isTypeOf(EClass)

126
127 check : EClass2FigureDescriptorTraceLink.all.exists(e|e.EClass.

target = self)

128 message : ’No links of type EClass2FigureDescriptor found for

EClass ’ + self

129 }

130 }

131 context FigureDescriptor {

132 constraint OneForEachFigureDescriptor{

133
134 guard : self.isTypeOf(FigureDescriptor)

135
136 check : EClass2FigureDescriptorTraceLink.all.exists(e|e.

FigureDescriptor.target = self)

137 message : ’No links of type EClass2FigureDescriptor found for

FigureDescriptor ’ + self

138 }

139 }

140 context EClass {

141 constraint UniqueEClass{

142
143 guard : self.isTypeOf(EClass)

144
145 check : EClass2FigureDescriptorTraceLink.all.select(e|e.EClass.

target = self).size() < 2

146
147 message : ’Multiple links of type EClass2FigureDescriptor found

for EClass ’ + self

148 }

149 }

150 context FigureDescriptor {

151 constraint UniqueFigureDescriptor{

152
153 guard : self.isTypeOf(FigureDescriptor)

154
155 check : EClass2FigureDescriptorTraceLink.all.select(e|e.

FigureDescriptor.target = self).size() < 2

156
157 message : ’Multiple links of type EClass2FigureDescriptor found

for FigureDescriptor ’ + self

254

158 }

159 }

160 context EPackage {

161 constraint OneForEachEPackage{

162
163 guard : self.isTypeOf(EPackage)

164
165 check : EPackage2PaletteTraceLink.all.exists(e|e.EPackage.target =

self)

166 message : ’No links of type EPackage2Palette found for EPackage ’

+ self

167
168 }

169 }

170 context EPackage {

171 constraint UniqueEPackage{

172
173 guard : self.isTypeOf(EPackage)

174
175 check : EPackage2PaletteTraceLink.all.select(e|e.EPackage.target =

self).size() < 2

176
177 message : ’Multiple links of type EPackage2Palette found for

EPackage ’ + self

178 }

179 }

180 context EClass {

181 constraint OneForEachEClass{

182
183 guard : self.isTypeOf(EClass)

184
185 check : EClass2CreationToolTraceLink.all.exists(e|e.EClass.target

= self)

186 message : ’No links of type EClass2CreationTool found for EClass ’

+ self

187 }

188 }

189 context CreationTool {

190 constraint OneForEachCreationTool{

191
192 guard : self.isTypeOf(CreationTool)

255

193
194 check : EClass2CreationToolTraceLink.all.exists(e|e.CreationTool.

target = self)

195 message : ’No links of type EClass2CreationTool found for

CreationTool ’ + self

196 }

197 }

198 context EClass {

199 constraint UniqueEClass{

200
201 guard : self.isTypeOf(EClass)

202
203 check : EClass2CreationToolTraceLink.all.select(e|e.EClass.target

= self).size() < 2

204
205 message : ’Multiple links of type EClass2CreationTool found for

EClass ’ + self

206 }

207 }

208 context CreationTool {

209 constraint UniqueCreationTool{

210
211 guard : self.isTypeOf(CreationTool)

212
213 check : EClass2CreationToolTraceLink.all.select(e|e.CreationTool.

target = self).size() < 2

214
215 message : ’Multiple links of type EClass2CreationTool found for

CreationTool ’ + self

216 }

217 }

Listing E.2: EVL User-Defined Constraints for the Filesystem Case-Study
1 import "ECoreUtil.eol";

2
3 context EPackage2CanvasTraceLink {

4 //They should have the same name

5 constraint sameName {

6 check : self.EPackage.name.equals(self.Canvas.name)

7

256

8 message : "The name of the" + self.EPackage.name +"EPackage is not

the same with the name of the" +self.Canvas.name+" Palette."

9 }

10 }

11
12 context EClass2ConnectionTraceLink {

13 //The annotation link end must be a gmf.link

14 constraint IsGmfLink {

15 check : self.EClass.isLink()

16
17 message : "EClass " + self.EClass.name + " is not annotated as

@gmf.link"

18 }

19 }

20
21 context EClass2NodeTraceLink {

22 //The annotation link end must be a gmf.node

23 constraint IsGmfNode {

24 check : self.EClass.isNode()

25
26 message : "EClass " + self.EClass.name + " is not annotated as

@gmf.node"

27 }

28 }

29
30 context EPackage2PaletteTraceLink {

31 //They should have the same name

32 constraint sameName {

33 check : (self.EPackage.name +’Palette’).equals(self.Palette.˜title

)

34
35 message : "The name of the" + self.EPackage.name +"EPackage match

the title of the" +self.Palette.˜title

36 }

37 }

257

References

SERENA SOFTWARE INC. (2010). Requirements traceability management (rtm) version
5.6. http://www.serena.com/Products/rtm/home.asp. 59

AIZENBUD-RESHEF, N., PAIGE, R.F., RUBIN, J., SHAHAM-GAFNI, Y. & KOLOVOS,
D.S. (2005). Operational semantics for traceability. In Proceedings of the 1st Trace-
ability Workshop, ECMDA-FA. 51, 52, 92

AIZENBUD-RESHEF, N., NOLAN, B., RUBIN, J. & SHAHAM-GAFNI, Y. (2006a).
Model traceability. IBM Systems Journal, 45. 1, 2, 5, 11, 12, 18, 20, 56, 61, 93, 106,
156, 211

AIZENBUD-RESHEF, N., NOLAN, B.T., RUBIN, J. & SHAHAM-GAFINI, Y. (2006b).
Model Traceability. IBM Systems Journal. 46

ALANEN, L.J.P.I., M. & TRUSCAN, D. (2003). Realizing a model driven engineering
process. Tech. rep., TUCS. 73, 74, 76, 77

ALANEN, M. & PORRES, I. (2003). Difference and Union of Models. 144

ALBINET, A., BOULANGER, J.L., DUBOIS, H., PERALDI-FRATI, M.A., SOREL, Y.
& VAN, Q.D. (2007). Model-based methodology for requirements traceability in
embedded systems. In Proceedings of the 3rd Traceability Workshop, ECMDA-FA.
15

ALENCAR, F., CASTRO, J., CYSNEIROS, G. & MYLOPOULOS, J. (2000). From Early
Requirements Modeled by i* Technique to Later Requirements Modeled in Precise
UML. In In Proc. of the III Workshop de Engenharia de Requisitos, Rio de Janeiro,
Brasil. 128, 132

ALEXANDER, I. (2002). Towards automatic traceability in industrial practice. In Pro-
ceedings of the 1st International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE’02). 63

258

REFERENCES

ALEXANDER, I. (2003). Semiautomatic tracing of requirement versions to use cases:
Experiences and challenges. In 2nd International Workshop on Traceability in Emerg-
ing Forms of Software Engineering. 30, 57

ALPHAWORKS, I. (2005). Emfatic language for emf development.
http://www.alphaworks.ibm.com/tech/emfatic. 193

AMAR, B., LEBLANC, H. & COULETTE, B. (2008). A traceability engine dedicated to
model transformation for software engineering. In Proceedings of the 4thTraceability
Workshop, ECMDA-FA. viii, 40, 41, 83, 86, 94

ANDERSON, K.M., SHERBA, S.A. & LEPTHIEN, W.V. (2002). Towards large-scale
information integration. In Proceedings of the 24th International Conference on Soft-
ware Engineering, Orlando, FL, USA. 32

ANTONIOL, G., CANFORA, G., CASAZZA, G., LUCIA, A.D. & MERLO, E. (2002).
Recovering traceability links between code and documentation. IEEE Transactions
on Software Engineering, 28, pp. 970 – 983. 20, 25, 26, 56, 83, 87, 92, 96

ARKLEY, P. & RIDDLE, S. (2005). Overcoming the traceability benefit problem. In
Proceedings of the 13th IEEE International Conference on Requirements Engineer-
ing. viii, 53, 54, 55, 56, 57, 63

ASUNCION, H.U., FRANÇOIS, F. & TAYLOR, R.N. (2007). An end-to-end industrial
software traceability tool. In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. 63

ASUNCION, H.U., ASUNCION, A.U. & TAYLOR, R.N. (2010). Software traceability
with topic modeling. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, 95–104, ACM, New York, NY, USA.
136

ATKINSON, C. & KHNE, T. (2001). The essence of multilevel metamodeling. In Pro-
ceedings of the 4th International Conference on the UML 2001. 73

BARBERO, M., FABRO, M.D.D. & BÉZIVIN, J. (2007). Traceability and provenance
issues in global model management. In Proceedings of the 3rd Traceability Workshop,
ECMDA-FA. 41

BAYERAND, J. & WIDEN, T. (2001). Introducing traceability to product lines. In Lec-
ture Notes In Computer Science; Revised Papers from the 4th International Workshop
on Software Product-Family Engineering. 21, 34, 83, 95

259

REFERENCES

BECK, K. (1999). Extreme Programming Explained. Addison-Wesley. 75

BEHRENS, T. (2007). Never ’without a trace’: Practical advice on implementing trace-
ability. IBM Technical Library. 16

BEZIVIN, J. (2005). On the unification power of models. Journal on Software and Sys-
tems Modeling, 171–188. 72

BIANCHI, A., VISAGGIO, G. & FASOLINO, A.R. (2000). An exploratory case study
of the maintenance effectiveness of traceability models. In Proceedings of the 8th
International Workshop on Program Comprehension. 53

BIANCHI, A., CAIVANO, D., LANUBILE, F. & VISAGGIO, G. (2001). Evaluating soft-
ware degradation through entropy. In Proceedings of the 11th International Software
Metrics Symposium. 48

BOLDYREFF, C., NUTTER, D. & RANK, S. (2002). Active artefact management for
distributed software engineering. In Proceedings of the 26th International Computer
Software and Applications Conference on Prolonging Software Life: Development
and Redevelopment. 18, 61

BOWEN, .S.V., J.P. (1994). Formal methods: Epideictic or apodeictic? Software Engi-
neering Journal. 71

BROOKS, F.P., JR. (1975). The mythical man-month. In Proceedings of the interna-
tional conference on Reliable software, 193–, ACM, New York, NY, USA. 174

BROOKS, J., F. P. (1987). No silver bullet: Essence and accidents of software engineer-
ing. IEEE Computer, 20, 177–203. 1

CHAN, Z. & PAIGE, R. (2005). Designing a domain-specific contract language. In
Proc. European Conference on MDA, LNCS 3748, Springer-Verlag. 42

CHAPMAN, S. (2005). Simmetrics: An open source extensible library of similarity and
distance metrics. http://www.dcs.shef.ac.uk/ sam/simmetrics.html. 160, 166

CHAUVEL, F. & FLEUREY, F. (2010). Kermeta Language Overview.
http://kermeta.org/, http://www.kermeta.org. 114

CHOI, S., CHA, S. & TAPPERT, C. (2010). A survey of binary similarity and distance
measures. Journal of Systemics, Cybernetics and Informatics, 8, pp. 4348. 86

CHRISTIAN NENTWICH, LICIA CAPRA, WOLFGANG EMMERICH AND ANTHONY

FINKELSTEIN (2002). xlinkit: A Consistency Checking and Smart Link Generation
Service. ACM Transactions on Internet Technology, 2, 151–185. 108

260

REFERENCES

CIANCONE, A., FILIERI, A. & MIRANDOLA, R. (2010). Mantra: Towards model
transformation testing. Quality of Information and Communications Technology, In-
ternational Conference on the, 0, 97–105. 170

CLELAND-HUANG, J. & SCHMELZER, D. (2003). Dynamic tracing non-functional
requirements through design pattern recognition. In Proceedings of the 2nd Interna-
tional Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE
2003). 29

CLELAND-HUANG, J., CHANG, C.K. & GE, Y. (2002a). Supporting event based trace-
ability through high-level recognition of change events. In 26th Computer Software
and Applications Conference, Oxford, UK. 49, 50, 93

CLELAND-HUANG, J., CHANG, C.K., SETHI, G., JAVVAJI, K., HU, H. & XIA,
J. (2002b). Automating speculative queries through event-based requirements trace-
abiltiy. In Proceedings of the IEEE Joint International Requirements Engineering
Conference, Essen, Germany. 29

CLELAND-HUANG, J., CHANG, C.K. & CHRISTENSEN, M.J. (2003). Event-based
traceability for managing evolutionary change. IEEE Transactions on Software Engi-
neering, 29, pp. 796–810. 22, 46, 83, 174

CLELAND-HUANG, J., SETTIMI, R., DUAN, C. & ZOU, X. (2005). Utilizing sup-
porting evidence to improve dynamic requirements traceability. In Proceedings of the
13th IEEE International Conference on Requirements Engineering. 25, 96

COLLINS-SUSSMAN, B., FITZPATRICK, B.W. & PILATO, C.M. (2004). Version Con-
trol with Subversion. o’Reilly. 51

CONSTANTOPOULOS, P., JARKE, M., MYLOPOULOS, J. & VASSILIOU, Y. (1995).
The software information base: a server for reuse. he International Journal on Very
Large Data Bases, 4, pp 1–43. 56

CORMACK, R.M. (1971). A review of classification. Journal of the Royal Statistical
Society. Series A (General), 134, 321–367. 79

COSTA, M. & DA SILVA, A.R. (2007). Rt-mdd framework a practical approach. In
Proceedings of the 3rd Traceability Workshop, ECMDA-FA. viii, 21, 22, 83, 91, 94

COWLING, A.J. (2005). The role of modelling in the software engineering curriculum.
The Journal of Systems & Software. viii, 70

CRAMÉR, H. (1946). Mathematical Methods of Statistic. Princeton: Princeton Univer-
sity Press. 92

261

REFERENCES

DAHLSTEDT, A.G. & PERSSON, A. (2003). Requirements interdependencies - mould-
ing the state of research into a research agenda. In Ninth International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ 2003), held in
conjunction with CAiSE 2003. viii, 39, 80

DASHOFY, E.M., VAN DER HOEK, A. & TAYLOR, R.N. (2001). A highly-extensible,
xml-based architecture description language. In Working IEEE / IFIP Conference on
Software Architecture , Amsterdam, The Netherlands. 51

DAVIS, H.C. (1998). Referential integrity of links in open hypermedia systems. In Pro-
ceedings of the 9th ACM conference on Hypertext and hypermedia : links, objects,
time and space, Pittsburgh, Pennsylvania, United States, pp. 207–216. 48

DAVIS, P.H. & HEYWOOD, V.H. (1963). Principles of Angiosperm Taxonomy. Prince-
ton: Van Nostrand. 82

DEERWESTER, S., DUMAIS, G.W., FURNAS, S.T., LANDAUER, T.K. & HARSH-
MAN, R. (1990). Indexing by latent semantic analysis. Journal of the American Soci-
ety for Information Science, 41, pp. 391–407. 24

DHOOLIA, P., MANI, S., SINHA, V. & SINHA, S. (2010). Debugging model-
transformation failures using dynamic tainting. In ECOOP 2010 Object Oriented Pro-
gramming, vol. 6183 of Lecture Notes in Computer Science, 26–51, Springer Berlin,
Heidelberg. 189

DICK, J. (2005). Rich traceability. In Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering. 21, 35, 40

DIJKSTRA, E.W. (1976). A Discipline of Programming. Prentice Hall, Inc. 1

DMGES, R. & POHL, K. (1998). Adapting traceability environments to project-specific
needs. Communications of the ACM, 41, pp. 54–62. 65

DOYLE, L. & BECKER, J. (1975). Information Retrieval and Processing. Melville Pub-
lishing Company, Los Angeles. 23

DRIVALOS, N., R. F. PAIGE, K.J.F. & KOLOVOS, D.S. (2008). Towards rigorously
defined model-to-model traceability. In ECMDA Traceability WS. 109

DRIVALOS, N., KOLOVOS, D.S., PAIGE, R.F. & FERNANDES, K.J. (2009). Engi-
neering a DSL for software traceability. In 1st International Conference on Software
Language Engineering (SLE 2008), Revised Selected Papers, Springer-Verlag, pp.
151–167. 189

262

REFERENCES

DRIVALOS, N., KOLOVOS, D.S., PAIGE, R. & FERNANDES, K. (2008). Engineering
a Domain-Specific Language for Software Traceability. In Proc. Software Language
Engineering, Toulouse, France. 109

EADS, D. (2008). Hcluster: Hierarchical Clustering for SciPy. 89

EBNER, G. & KAINDL, H. (2002). Tracing all around in reengineering. IEEE Software,
19, pp. 70–77. 56

ECLIPSE FOUNDATION (2010a). Eclipse Modelling Framework Project.
http://www.eclipse.org/modeling/emf. 47, 71, 108, 111, 123, 164, 177

ECLIPSE FOUNDATION (2010b). Graphical Modeling Framework.
http://www.eclipse.org/modeling/gmp/. 123

ECLIPSE FOUNDATION (2011a). Eclipse. http://www.eclipse.org/. 178

ECLIPSE FOUNDATION (2011b). Graphical modeling project (gmp).
http://www.eclipse.org/modeling/gmp/?project=gmf-tooling. ix, 190

ECLIPSE FOUNDATION (2011c). Java development tools. http://www.eclipse.org/jdt/.
177

ECMDA Traceability WS (2008). Proceedings of the 3rd Traceability Workshop,
ECMDA-FA. 262, 276

EFFTINGE, S. (2006a). oAW xText - A framework for textual DSLs. In Workshop on
Modeling Symposium at Eclipse Summit. 123

EFFTINGE, S. (2006b). openArchitectureWare 4.1 Xpand. Language reference.
http://www.eclipse.org/gmt/oaw/doc/4.1/r20 xPandReference.pdf. 120

EGYED, A. (2006). Value-Based Software Engineering, chap. Tailoring Software Trace-
ability to Value-Based Needs. Springer Berlin Heidelberg. 66, 67

EGYED, A. (2009). Value-based requirements traceability: Lessons learned. Lecture
Notes in Business Information Processing, 14, pp. 240–257. 66

EGYED, A. & GRUNBACHER, P. (2002). Automating requirements traceability: Be-
yond the record & replay paradigm. In Proceedings of the 17th IEEE International
Conference on Automated Software Engineering. 20, 83, 96

EGYED, A. & GRUNBACHER, P. (2005). Supporting software understanding with auto-
mated requirements traceability. International Journal of Software Engineering and
Knowledge Engineering., 15, pp. 783–810. 31

263

REFERENCES

EGYED, A., BIFFL, S., HEINDL, M. & GRÜNBACHER, P. (2005). A value-based ap-
proach for understanding cost-benefit trade-offs during automated software traceabil-
ity. In Proceedings of the 3rd international workshop on Traceability in emerging
forms of software engineering, TEFSE ’05, 2–7, ACM, New York, NY, USA. 98,
100, 138

FABRO, M.D.D., BEZIVIN, J., JOUAULT, F., BRETON, E. & GUELTAS, G. (2005).
AMW: A Generic Model Weaver. In Proceedings of IDM05. viii, 43, 44, 46, 83, 93,
95

FALLERI, J., HUCHARD, M. & NEBUT, C. (2006). Towards a traceability framework
for model transformations in kermeta. In Proceedings of the 2nd Traceability Work-
shop, ECMDA-FA. 33, 40, 83, 91, 94

FIUTEM, R. & ANTONIOL, G. (1998). Identifying design-code inconsistencies in
object-oriented software: a case study. In Proceedings of the International Confer-
ence on Software Maintenance. 54

FLEUREY, F., BAUDRY, B., FRANCE, R. & GHOSH, S. (2007). A generic approach
for automatic model composition. In In Proc. AOM at MoDELS, 2007. 144

FLYNN, R. & DORFMAN, M. (1990). The automated requirements traceability system
(ARTS): An experience of eight years. System and Software Requirements Engineer-
ing, pp. 423–438. 65

FOR AERONAUTICS (RTCA), R.T.C. (1982). DO-178B: Software considerations in
airborne systems and equipment certification. 54

FREI, H.P. & STIEGER, D. (1995). The use of semantic links in hypertext information
retrieval. Inf. Process. Manage., 31, 1–13. 96

FRITZSCHE, M., JOHANNES, J., ZSCHALER, S., ZHEREBTSOV, A., & TEREKHOV,
A. (2008). Application of tracing techniques in model-driven performance engineer-
ing. In Proceedings of the 4th Traceability Workshop, ECMDA-FA. 54

G. KAPPEL, H.K.G.K.T.R.W.R.W.S., E. KAPSAMMER & WIMMER., M. (2006).
On models and ontologies. In A Layered Approach for Model-based Tool Integration,
11–27. 68

GERBER A., K.R.J.S.A.W., M. LAWLEY (2002). Transformation: The missing link
of mda. In Graph Transformation: First International Conference (ICGT 2002). 76

GILLS, M. (2005). Survey of traceability models in IT projects. In Proceedings of the
1st Traceability Workshop, ECMDA-FA. 63

264

REFERENCES

GITZEL, R. & HILDENBRAND, T. (2005). A taxonomy of metamodel hierarchies.
Tech. rep., Department of Information Systems, Universitt Mannheim. 73

GITZEL, R. & KORTHAUS, A. (2004). The role of metamodeling in model-driven de-
velopment. In Proceedings of the 8th World Multi-Conference on Systemics, Cyber-
netics and Informatics (SCI2004). 72

GOGUEN, J.A. (1996). Formality and informality in requirements engineering. In Pro-
ceedings of the 2nd International Conference on Requirements Engineering (ICRE
’96). 65

GÖKNIL, A., KURTEV, I. & VAN DEN BERG, K. (2010). Tool support for generation
and validation of traces between requirements and architecture. In Proceedings of the
6th Traceability Workshop, ECMFA. 46

GORP, P.V. & JANSSENS, D. (2005). CAViT: a consistency maintenance framework
based on visual model transformation and transformation contracts. In J. Cordy, R.
Lmmel, and A. Winter, editors, Transformation Techniques in Software Engineering,
number 05161 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fr Informatik (IBFI), Schloss Dagstuhl, Germany. 33

GOTEL, O. & FINKELSTEIN, A. (1994). An analysis of the requirements traceabil-
ity problem. In Proceedings of the First International Conference on Requirements
Enginnering (RE’94), pp. 94–101. 11, 17, 18, 53, 57, 67

GOTEL, O. & FINKELSTEIN, A. (1995). Contribution structures [requirements arti-
facts]. In Proceedings of the Second IEEE International Symposium on Requirements
Engineering. 54

GRAMMEL, B. & VOIGT, K. (2009). Foundations for a generic traceability framework
in model-driven software engineering. In Proceedings of the 5th Traceability Work-
shop, ECMDA-FA. 41, 83, 91, 92, 94

GRAU, G., CARES, C., FRANCH, X. & NAVARRETE, F.J. (2006). A comparative
analysis of i* agent-oriented modelling techniques. In 18th International Conference
on Software Engineering and Knowledge Engineering, SEKE 2006, 657–663. 128

GRECHANIK, M., MCKINLEY, K.S. & PERRY, D.E. (2007). Recovering and using
use-case-diagram-to-source-code traceability links. In Proceedings of the the 6th joint
meeting of the European software engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering. 29, 83, 93, 96

GROUP, O.M. (2011). Xml metadata interchange. http://www.omg.org/spec/XMI/. 178

265

REFERENCES

GUERRA, E., DE LARA, J., KOLOVOS, D.S. & PAIGE, R.F. (2010). Inter-modelling:
from theory to practice. In Proceedings of the 13th international conference on Model
driven engineering languages and systems: Part I, MODELS’10, 376–391, Springer-
Verlag, Berlin, Heidelberg. 43

GUSFIELD, D. (2007). Algorithms on strings, trees, and sequences : computer science
and computational biology. Cambridge Univ. Press. 166

HAEFNER, J. (2003). Modeling biological systems. Principles and applications.. Chap-
man and Hall. New York. 69

HAPKE, M., JASZKIEWICZ, A., KOWALCZYKIEWICZ, K., WEISS, D. & ZIEL-
NIEWICZ, P. (2004). Ophelia: Open platform for distributed software development.
In Open Source for an Information and Knowledge Society: Proceedings of the Open
Source International Conference. Malaga, Spain. 60

HARROLD, M.J. (2000). Testing: a roadmap. In ICSE ’00: Proceedings of the Con-
ference on The Future of Software Engineering, 61–72, ACM, New York, NY, USA.
169

HAYES, J.H. & DEKHTYAR, A. (2005). Humans in the traceability loop: can’t live
with ’em, can’t live without ’em. In Proceedings of the 3rd international workshop
on Traceability in emerging forms of software engineering. 67

HAYES, J.H., DEKHTYAR, A. & OSBORNE, J. (2003). Improving requirements tracing
via information retrieval. In Proceedings of the 11th IEEE International Conference
on Requirements Engineering. 25, 83, 92, 96

HAYES, J.H., DEKHTYAR, A., SUNDARAM, S.K. & HOWARD, S. (2004). Helping
analysts trace requirements: An objective look. In Proceedings of the Requirements
Engineering Conference, 12th IEEE International. 25, 83, 96

HAYES, J.H., DEKHTYAR, A. & SUNDARAM, S.K. (2006). Advancing candidate link
generation for requirements tracing: The study of methods. IEEE Transactions on
Software Engineering, 32, pp. 4–19. 25, 83, 96

HEAVEN, W. & FINKELSTEIN, A. (2004). A UML Profile to Support Requirements
Engineering with KAOS. IEEE Proceedings: Software. 47

HEINDL, M. & BIFFL, S. (2005). A case study on value-based requirements tracing. In
Proceedings of the 10th European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Foundations of software engineer-
ing. 66

266

REFERENCES

HEINDL, M. & BIFFL, S. (2008). Modeling of requirements tracing. Lecture Notes
In Computer Science, Balancing Agility and Formalism in Software Engineering:
Second IFIP TC 2 Central and East European Conference on Software Engineering
Techniques, CEE-SET 2007, Poznan, Poland, Revised Selected Papers, pp. 267–278.
66

HELMING, J., KOEGEL, M., NAUGHTON, H., DAVID, J. & SHTEREV, A. (2009).
Traceability-based change awareness. In Proceedings of the 12th International Con-
ference on Model Driven Engineering Languages and Systems, MODELS ’09, 372–
376, Springer-Verlag, Berlin, Heidelberg. 174

HEMPEL, C.G. (1952). Symposium: Problems of concept and theory formation in the
social sciences, language and human rights. Philadelphia: University of Pennsylba-
nia Press. 79

HERMAN, I., MELANÇON, G. & MARSHALL, M.S. (2000). Graph visualization and
navigation in information visualization: A survey. IEEE Transactions on Visualiza-
tion and Computer Graphics, 6, pp. 24–43. 47

HOFSTADTER, D. (1979). Gdel, Escher, Bach. Random House, New York. 69

HOLAGENT (2005). Holagent corporation product rdd-100.
http://www.holagent.com/products/product1.html. 58

IBM (2010). Rational doors. http://www-01.ibm.com/software/awdtools/doors/productline/.
21, 26, 30, 59

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE
Std. 610.12-1990. 12

ISO/IEC (1990). Information technology information resource dictionary systems
(irds) framework. 60

JING, Y.L. (2007). A Testing Framework for Model Transformations, 219–236.
Springer. 169

JIRAPANTHONG, W. & ZISMAN, A. (2007). Xtraque: traceability for product line sys-
tems. Software and Systems Modeling, 8, pp.117–144. 28, 83, 96

JOUAULT, F. (2005). Loosely coupled traceability for ATL. In Proceedings of the 1st
Traceability Workshop, ECMDA=-FA. viii, 41, 42, 83, 91, 94, 107, 140

JOUAULT, F. & BÉZIVIN, J. (2006). Km3: a dsl for metamodel specification. In Pro-
ceedings of 8th IFIP International Conference on Formal Methods for Open Object-
Based Distributed Systems, LNCS 4037, Bologna, Italy. 43

267

REFERENCES

JOUAULT, F., ALLILAIRE, F., BÉZIVIN, J., KURTEV, I. & VALDURIEZ, P. (2006).
ATL: a QVT-like transformation language. In OOPSLA Companion, 719–720. 32,
114, 146

JOUAULT, F., BÉZIVIN, J. & BARBERO, M. (2009). Towards an advanced model-
driven engineering toolbox. Innovations in Systems and Software Engineering, 5, 5–
12. viii, 97, 99

KENT, S. (2003). Model driven engineering. In Integrated Formal Methods: Third In-
ternational Conference, IFM 2002, Turku, Finland,. 2, 73, 75

KIROVA, V., KIRBY, N., KOTHARI, D. & CHILDRESS, G. (2008). Effective require-
ments traceability: Models, tools, and practices. Bell Labs Technical Journal, 12, pp.
143–157. 63

KLEPPE, A. (2007). A Language Description is More than a Metamodel. In Proc. 4th
International Workshop on Software Language Engineering, Nashville, USA. 114

KOLOVOS, D. (2008a). An Extensible Platform for Speciffication of Integrated Lan-
guages for Model Management. Ph.D. thesis, Department of Computer Science, Uni-
versity of York. 139

KOLOVOS, D. (2008b). An Extensible Platform for Specification of Integrated Lan-
guages for Model Management. Ph.D. thesis, Department of Computer Science, Uni-
versity of York. 139, 178

KOLOVOS, D. (2009). Establishing correspondences between models with the epsilon
comparison language. In Proceedings of the 5th European Conference on Model
Driven Architecture - Foundations and Applications, ECMDA-FA ’09, Springer-
Verlag, Berlin, Heidelberg. 139, 144, 181

KOLOVOS, D.S. (2007). Editing emf models with exeed (extended emf editor). Tech.
rep., Department of Computer Science, University of York. 123, 182

KOLOVOS, D.S. & PAIGE, R.F. (2010). Extensible Platform for Spec-
ification of Integrated Languages for mOdel maNagement (Epsilon).
http://www.eclipse.org/gmt/epsilon. 32, 83, 94, 143, 177

KOLOVOS, D.S., PAIGE, R.F. & POLACK:, F. (2006a). The epsilon object language.
In Proceedings of the European Conference in Model Driven Architecture (EC-MDA)
2006, Bilbao, Spain. 180

KOLOVOS, D.S., PAIGE, R.F. & POLACK, F. (2006b). On Demand Merging of Trace-
ability Links wiht Models. In ECMDA - TW: Traceability Workshop, at European
Conference on Model Driven Architecture, Bilbao, Spain. 46, 47

268

REFERENCES

KOLOVOS, D.S., PAIGE, R.F. & POLACK, F. (2006c). On-demand merging of trace-
ability links with models. In Proceedings of the 2nd Traceability Workshop, ECMDA-
FA. 107

KOLOVOS, D.S., PAIGE, R.F., POLACK, F.A.C. & ROSE, L.M. (2007). Update trans-
formations in the small with the epsilon wizard language. Journal of Object Technol-
ogy (JOT), Special Issue for TOOLS Europe. ix, 174, 175, 179, 180, 182

KOLOVOS, D.S., PAIGE, R.F. & POLACK, F.A. (2008). The Epsilon Transformation
Language. In Proc. 1st International Conference on Model Transformation, Zurich,
Switzerland, to appear. 114, 181

KOLOVOS, D.S., ROSE, L.M., PAIGE, R.F. & POLACK, F.A.C. (2009). Raising the
level of abstraction in the development of gmf-based graphical model editors. In Pro-
ceedings of the 2009 ICSE Workshop on Modeling in Software Engineering, MISE
’09, 13–19, IEEE Computer Society, Washington, DC, USA. 189, 191, 192, 193, 194

KOLOVOS, D.S., ROSE, L.M., ABID, S.B., PAIGE, R.F., POLACK, F.A.C. & BOT-
TERWECK, G. (2010). Taming emf and gmf using model transformation. In Proceed-
ings of the 13th international conference on Model driven engineering languages
and systems: Part I, MODELS’10, 211–225, Springer-Verlag, Berlin, Heidelberg.
ix, 191, 192, 196

KOLOVOS, D.S., PAIGE, R.F. & POLACK, F.A. (2007). On the Evolution of OCL for
Capturing Structural Constraints in Modelling Languages. In Proc. Dagstuhl Work-
shop on Rigorous Methods for Software Construction and Analysis. 108, 114, 181

KUROPKA, D. (2004). Modelle zur Repräsentation Natürlichsprachlicher Dokumente
- Information-Filtering und -Retrieval mit relationalen Datenbanken. Logos Verlag.
viii, 24

KURTEV, I., DEE, M., GOKNIL, A. & VAN DEN BERG, K. (2007). Traceability-based
change management in operational mappings. In Proc. Workshop on Traceability. 33

LEE, C., GUADAGNO, L. & JIA, X. (2003). An agile approach to capturing require-
ments traceability. In Proceedings of the 2nd International Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE 2003),. 20

LESEURE, M. (2000). Manufacturing strategies in the hand tool industry. International
Journal of Operations & Production Management, 20, pp. 1475–1487. 80

LIMON, A. & GARBAJOSA, J. (2005). The need for a unifying traceability scheme. In
Proceedings of the 1st Traceability Workshop, ECMDA-FA. 42

269

REFERENCES

LIN, J., LIN, C.C., CLELAND-HUANG, J., SETTIMI, R., AMAYA, J., BEDFORD,
G., BERENBACH, B., KHADRA, O.B., DUAN, C. & ZOU, X. (2006). Poirot: A
distributed tool supporting enterprise-wide automated traceability. In 14th IEEE In-
ternational Requirements Engineering Conference (RE’06). 26, 83, 96

LINDVALL, M. & SANDAHL, K. (1996). Practical implications of traceability. Software
Practice and Experience, 26, pp. 1161–1180. 18, 19

LINDVALL, M. & SANDAHL, K. (1998). Traceability aspects of impact analysis in
object-oriented systems. Journal of Software Maintenance: Research and Practice,
10, pp. 37–57. 63

LORMANS, M. & VAN DEURSEN, A. (2005). Reconstructing requirements coverage
views from design and test using traceability recovery via lsi. In Proceedings of the
3rd international workshop on Traceability in emerging forms of software engineer-
ing. 26

LORMANS, M. & VAN DEURSEN, A. (2006). Can lsi help reconstructing requirements
traceability in design and test? In Proceedings of the Conference on Software Main-
tenance and Reengineering. 26

LUCIA, A.D., OLIVETO, R. & TORTORA, G. (2004). ADAMS: An artifact-based pro-
cess support system. In Proceedings of 16th International Conference on Software
Engineering and Knowledge Engineering (Banff, Alberta, Canada, June). F. Maurer
and G. Ruhe, Eds. 26

LUCIA, A.D., FASANO, F., OLIVETO, R. & TORTORA, G. (2007). Recovering trace-
ability links in software artifact management systems using information retrieval
methods. ACM Transactions on Software Engineering and Methodology (TOSEM),
16. 26, 83

LUCIA, A.D., OLIVETO, R. & TORTORA, G. (2008). Adams re-trace: traceability
link recovery via latent semantic indexing. In Proceedings of the 30th international
conference on Software engineering. 26, 83, 96

LUDEWIG, J. (2003). Models in software engineering an introduction. Software and
Systems Modeling, 2, 5–14. 68, 69, 70, 71

MÄDER, P. (2008). Tracemaintainer - automated traceability maintenance. In 16th IEEE
International Requirements Engineering Conference, Barcelona, Catalunya, Spain.
83, 94, 95

MÄDER, P., GOTEL, O. & PHILIPPOW, I. (2008). Rule-based maintenance of post-
requirements traceability relations. In Proceedings of the 2008 16th IEEE Interna-
tional Requirements Engineering Conference. 49, 157

270

REFERENCES

MÄDER, P., GOTEL, O. & PHILIPPOW, I. (2009). Enabling automated traceability
maintenance through the upkeep of traceability relations. In Proceedings of the 5th
European Conference on Model-Driven Architecture, Foundations and Applications,
Enschede, the Netherlands. 51, 157

MAEDER, P. & RIEBISCH, M. (2007). Customizing traceability links for the unified
process. In Software Architectures, Components, and Applications. QoSA 2007 - Re-
vised Selected Papers. Springer LNCS. 19

MALETIC, J., COLLARD, M.L. & SIMOES, B. (2005). An xml-based approach to
support the evolution of model-to-model traceability links. In Proceedings of the 3rd
International Workshop on Traceability in Emerging Forms of Software Engineering.
52, 83, 95

MALETIC, J.I. & MARCUS, A. (2001). Supporting program comprehension using se-
mantic and structural information. In Proceedings of the 23rd International Confer-
ence on Software Engineering. 56

MALETIC, J.I., MUNSON, E.V., MARCUS, A. & NGUYEN., T.N. (2003). Using a
hypertext model for traceability link conformance analysis. In Proceedings of the 2nd
International Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE). 26, 59, 83, 96

MARCUS, A. & MALETIC, J.I. (2003). Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proceedings of the 25th Inter-
national Conference on Software Engineering. 20, 56, 83, 96

MARCUS, A., XIE, X. & POSHYVANYK, D. (2005). When and how to visualize trace-
ability links? In Proceedings of the 3rd international workshop on Traceability in
emerging forms of software engineering. 45

MCCARTHY, I.P. & TSINOPOULOS, C. (2003). Strategies for agility: an evolutionary
and configurational approach. Strategies for agility: an evolutionary and configura-
tional approach, 14, pp. 103–113. 80, 84

MENS, T., CZARNECKI, K. & GORP, P.V. (2005). A taxonomy of model transforma-
tions. In Dagstuhl 04101 Language Engineering for Model-Driven Software Devel-
opment.. 75, 138, 173

MILLER, G.A. (1995). Wordnet: A lexical database for english. Communications of the
ACM, 38, 39–41. 160

MOORE, B. (2004). Eclipse development using the graphical editing framework and
the eclipse modeling framework. IBM Corp., Riverton, NJ, USA. 190

271

REFERENCES

MUNSON, E.V. & NGUYEN, T.N. (2005). Concordance, conformance, versions, and
traceability. In Proceedings of the 3rd international workshop on Traceability in
emerging forms of software engineering. 40

MURPHY, G.C., NOTKIN, D. & SULLIVAN, K. (1995). Software reflexion models:
Bridging the gap between source and high-level models. In Proceedings of the 3rd
ACM SIGSOFT Symposium on Foundations of Software Engineering. 20

MURTA, L.G.P., VAN DER HOEK, A. & WERNER, C.M.L. (2006). Archtrace: Policy-
based support for managing evolving architecture-to-implementation traceability
links. In 21st IEEE/ACM International Conference on Automated Software Engineer-
ing, Tokyo, Japan. 51, 83, 95

MYLOPOULOS, J., BORGIDA, A., JARKE, M. & KOUBARAKIS, M. (1990). Telos:
Representing knowledge about information systems. ACM Transactions on Informa-
tion Systems, 8, pp. 325–362. 31

NATT OCH DAG, J., REGNELL, B., CARLSHAMRE, P., ANDERSSON, M. & KARLS-
SON, J. (2002). A feasibility study of automated natural language requirements anal-
ysis in market-driven development. Requirements Engineering. 27

NATT OCH DAG, J., GERVASI, V., BRINKKEMPER, S. & REGNELL, B. (2005). A
linguistic-engineering approach to large-scale requirements management. IEEE Soft-
ware, 22, pp. 32–39. 27, 83, 96

NEAL, R.W.M. (1994). Why and how of requirements tracing. IEEE Software, 11,
pp.104 – 106. 53

NETBEANS (2003). Netbeans metadata repository introduction (mdr and related stan-
dards). netbeans-uml-extender-plugin.googlecode.com/files/MDR-whitepaper.pdf.
180

NGUYEN, T.N. & MUNSON, E.V. (2003). The software concordance: a new software
document management environment. In Proceedings of the 21st Annual International
Conference on Documentation, San Francisco, CA, USA. 58

OBEO07 (2007). Acceleo Pro Traceability. http://www.acceleo.org/pages/additionnal products/en,
Last accessed June 2007. 33

OBJECT MANAGEMENT GROUP (2002). Revised submission for MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10). http://www.omg.org/cgi-
bin/doc?ptc/03-10-04. 114

OBJECT MANAGEMENT GROUP (2003). UML 2.0 OCL specification. OMG Docu-
ment, uRL http://www.omg.org/cgi-bin/doc?ptc/03-10-14. 108, 180

272

REFERENCES

OBJECT MANAGEMENT GROUP (2004). UML 2.0 infrastructure specification. OMG
Document, uRL http://www.omg.org/cgi-bin/doc?ptc/04-10-14. 128, 130

OBJECT MANAGEMENT GROUP (2006a). Meta Object Facility (MOF) 2.0 Core Spec-
ification. http://www/omg.org/cgi-bin/doc?ptc/03-10-04. 47, 71

OBJECT MANAGEMENT GROUP (2006b). MOF models to text transfor-
mation language; final adopted specification. OMG Document 08-01-16,
http://www.omg.org/spec/MOFM2T/1.0/PDF. 33

OBJECT MANAGEMENT GROUP (2011a). Metaobject facility.
http://www.omg.org/mof/. 111

OBJECT MANAGEMENT GROUP (2011b). Model Driven Architecture.
http://www.omg.org/mda. 12

OBJECT MANAGEMENT GROUP (2011c). MOF QVT draft specification. OMG Docu-
ment ptc/2007/07/07, http://www.omg.org/cgibin/doc?ptc/2007-07-07. 32

OLDEVIK, J. (2011). MOFScript User Guide. http://www.eclipse.org/gmt/mofscript/doc/
MOFScript-User-Guide.pdf. 120

OLDEVIK, J. & AAGEDAL, J. (2005). Future Research Topics Discussion. Trace-
ability Workshop, EC-MDA, http://www.sintef.no/upload/10558/Future-Research-
Topics.pdf. 46

OLDEVIK, J., NEPLE, T., GRONMO, R., AAGEDAL, J. & BERRE, A. (2005). Toward
standardised model-to-text transformations. In Proceedings of the First European
Conference on Model Driven Architecture: Foundations and Applications, Nürnberg,
Germany,, no. 3748 in LNCS, Springer. 33

OLSEN, G. & OLDEVIK, J. (2007). Scenarios of traceability in model-to-text transfor-
mations. In Proc. European Conference on MDA, LNCS, Springer-Verlag. 32, 41, 42,
83, 91, 92, 94

ORACLE (2011). Java programming language. http://www.java.com/en/. 177

ØSTERBYE, K. & WIIL, U.K. (1996). The flag taxonomy of open hypermedia systems.
In Proceeding of the Seventh ACM Conference on Hypertext, Washington, DC, USA.
32

O’SULLIVAN, L.C.B.Y.L.L. (2003). Impact analysis and change management of uml
models. In Proceedings of the International Conference on Software Maintenance.
54

273

REFERENCES

PAIGE, R., OLSEN, G., KOLOVOS, D., ZSCHALER, S. & POWER, C. (2008). Build-
ing model-driven engineering traceability classifications. In Proceedings of the 4th
Traceability Workshop, ECMDA-FA, SINTEF Technical Report. 2, 12, 18, 42, 92,
98, 106, 107, 211, 215

PARNAS, D.L. (1994). Software aging. In Proceedings of the 16th international con-
ference on Software engineering, ICSE ’94, 279–287, IEEE Computer Society Press,
Los Alamitos, CA, USA. 174

PIERCE, R.A. (1978). A requirements tracing tool. In Proceedings of the software qual-
ity assurance workshop on Functional and performance issues. 67, 96

PILATO, M. (2004). Version Control With Subversion. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA. 137

PINHEIRO, F.A.C. (2004). Perspectives on Software Requirements, chap. Requirements
Traceabiltiy, pp. 91–113. Kluwer Academic Publishers, The Netherlands. 11, 19, 20,
46, 80, 95, 149

PINHEIRO, F.A.C. & GOGUEN, J.A. (1996). An object-oriented tool for tracing re-
quirements. IEEE Software, 13, pp. 52–64. 21, 29, 35, 46, 60, 83

POHL, K. (1996a). Pro-art: Enabling requirements pre-traceability. In Proceedings of
the 2nd International Conference on Requirements Engineering (ICRE ’96). 21, 31,
36, 46, 56, 59, 83, 96

POHL, K. (1996b). Process-Centered Requirements Engineering. John Wiley & Sons,
Inc. New York, NY, USA. 37

POHL, M.J.K. (1992). Information systems quality and quality informations systems.
In Proceedings of the IFIP WG8.2 Working Conference on The Impact of Computer
Supported Technologies in Information Systems Development. 57

POHL, P.H.K., WEIDENHAUPT, K. & JARKE, M. (1999). Improving reviews by ex-
tended traceability. In Proceedings of the Thirty-Second Annual Hawaii International
Conference on System Sciences. 56

POWER, C., PETRIE, H., SWALLOW, D. & PAIGE, R.F. (2009). Pre-requirements
traceability in universally accessible e-learning systems. In under review. 42

QUEIROZ, K.D. & GOOD, D.A. (1997). Phenetic clustering in biology: A critique. The
Quarterly Review of Biology, 72, pp. 3–30. 89

274

REFERENCES

RAMESH, B. & DHAR, V. (1992). Supporting systems development by capturing delib-
erations during requirements engineering. IEEE Transactions on Software Engineer-
ing, 18, pp. 498–510. 56

RAMESH, B. & EDWARDS, M. (1993). Issues in the development of a requirements
traceability model. In Proceedings of the IEEE International Symposium on Require-
ments Engineering, San Diego, California. 15, 53, 54, 56, 57

RAMESH, B. & JARKE, M. (2001). Toward reference models of requirements trace-
ability. IEEE Trans. Software Eng., 27, 58–93. viii, 11, 34, 35, 36, 37, 42, 83, 92,
95

RAMESH, B., HARRINGTON, G., RONDEAU, K. & EDWARDS., M. (1993). A model
of requirements traceability tosupport systems development. technical report nps-
sm-93-017. Tech. rep., Naval Surface Warfare CenterDahlgren Division, 10901 New
Hampshire Avenue, Silver Spring, Maryland 20903-5000, U.S.A. 13, 15

RAMESH, K.M.B. (2007). Traceability-based knowledge integration in group decision
and negotiation activities. Decision Support Systems, 43, pp. 968–989. 46

RIDLEY, M. (1993). Evolution. Blackwell Scientific Publications, Oxford. 80

ROMESBURG, C.H. (1984). Cluster Analysis for Researchers. Belmont, CA: Lifetime
Learning Publications. 82, 86, 87, 88, 89

ROSE, L.M., PAIGE, R.F., KOLOVOS, D.S. & POLACK, F. (2008). The Epsilon Gen-
eration Language. In Fourth European Conference on Model Driven Architecture:
Foundations and Applications, Fraunhofer FOKUS, Berlin, Germany, 1–16. 33, 83,
94, 120, 181

ROSE, L.M., KOLOVOS, D.S., DRIVALOS, N., WILLIAMS, J.R., PAIGE, R.F., PO-
LACK, F.A. & FERNANDES, K.J. (2010). Concordance: An efficient framework for
managing model integrity. In Proc. 6th European Conference on Modelling Founda-
tions and Applications (ECMFA), June 2010, Paris, France (to appear). 163

ROTHENBERG, J. (1989). The Nature of Modeling in Artificial Intelligence, Simulation,
and Modeling.. John Wiley and Sons, Inc. 69

RUMMLER, A., GRAMMEL, B. & POHL, C. (2007). Improving traceability in model-
driven development of business applications. In Proceedings of the 3rd Traceability
Workshop, ECMDA-FA. 42

SABETZADEH, M. & EASTERBROOK, S. (2005). Traceability in viewpoint merging: a
model management perspective. In Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering. 56

275

REFERENCES

SANDAHL, M.L.K. (1996). Practical implications of traceability. In SoftwarePractice
& Experience. 53

SCHWARZ, H., EBERT, J. & WINTER, A. (2009). Graph-based traceability: a compre-
hensive approach. Software and Systems Modeling. 83, 91, 92, 94, 189

SEIBEL, A., NEUMANN, S. & GIESE, H. (2010). Dynamic hierarchical mega mod-
els: comprehensive traceability and its efficient maintenance. Software and Systems
Modeling, 9, 493–528, 10.1007/s10270-009-0146-z. 189

SEIDEWITZ, E. (2003). What models mean. IEEE Software. 69, 70, 71, 72

SENDALL, S. & KOZACZYNSKI, W. (2003). Model transformation: The heart and soul
of model-driven software development. IEEE Software, 20, 42–45. 173

SHARIF, B. & MALETIC, J.I. (2007). Using fine-grained differencing to evolve
traceability links. International Symposium on Grand Challenges in Traceability
(GCT’07). 52, 83, 95

SHERBA, S.A., ANDERSON, K.M. & FAISAL, M. (2003). A framework for mapping
traceability relationships. In 8th IEEE International Conference on Automated Soft-
ware Engineering, Montreal, Quebec, Canada. viii, 32, 45, 61, 62, 83, 93, 96

SMITH, M., WEISS, D., WILCOX, P. & DEWER, R. (2003). The ophelia traceability
layer. Cooperative Methods and Tools for Distributed Software Processes, pp. 150–
161. 60

SNEATH, P. & SOKAL, R.R. (1963). Priciples of Numerical Taxonomy. W.H. Freeman,
San Francisco. 80, 84

SNEATH, P.H. & SOKAL, R.R. (1973). Numerical Taxonomy: The Principles and
Practice of Numerical Classification. W.H. Freeman, San Francisco. 80, 81, 84

SOFTEAM (2010). Modelio. http://www.modeliosoft.com/. 58

SOMMERVILLE, I. (2004). Software Engineering. Pearson Education Limited, Essex
England. 71

SOMMERVILLE, I., SOMMERVILLE, I., SAWYER, P. & SAWYER, P. (1997). View-
points: principles, problems and a practical approach to requirements engineering.
Annals of Software Engineering, 3, 101–130. 135

SOUSA, A., KULESZA, U., RUMMLER, A., ANQUETIL, N., MITSCHKE, R., MOR-
EIRA, A., AMARAL, V. & ARAÚJO, J. (2008). A model-driven traceability frame-
work to software product line development. In ECMDA Traceability WS. 41, 83,
95

276

REFERENCES

SPANOUDAKIS, G. & KIM, H. (2004). Supporting the reconciliation of models of ob-
ject behaviour. Software and Systems Modeling, 3, pp. 273–293. 54

SPANOUDAKIS, G. & ZISMAN, A. (2005). Software traceability: a roadmap. Hand-
book of Software Engineering and Knowledge Engineering, 3. 2, 12, 19, 20, 21, 35,
37, 38, 53, 56, 80, 83, 95, 149

SPANOUDAKIS, G., D’AVILA GARCEZ, A.S. & ZISMA, A. (2003). Revising rules
to capture requirements traceability relations: A machine learning approach. In
Proceedings of the Fifteenth International Conference on Software Engineering &
Knowledge Engineering (SEKE’2003), Hotel Sofitel, San Francisco Bay, CA, USA.
28, 83, 96

SPANOUDAKIS, G., ZISMAN, A., PEREZ-MINANA, E. & KRAUSE, P. (2004). Rule-
based generation of requirements traceability relations. The Journal of Systems and
Software, pp. 105–127. 27, 28, 83, 96

SPIVEY, J. (1989). The Z Notation: A Reference Manual.. Prentice Hall. 70

STACHOWIAK, H. (1973). Allgemeine Modeltheorie. Springer Verlag. 71

STATE, A.M.K. & MALETIC, J.I. (2003). Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proceedings of the 25th Interna-
tional Conference on Software Engineering. 26

STEVENS, P. (2003). Small-scale xmi programming: a revolution in uml tool use? Au-
tomated Software Engineering. 76

STONE, A. & SAWYER, P. (2005). Finding tacit knowldge by solving the pre-
requirements tracing problem. In Proceedings of the 11th International Workshop
on Requirements Engineering : Foundation for Software Quality (REFSQ’05), Porto,
Portugal. 64

TRATT, L. (2008). A change propagating model transformation language. Journal of
Object Technology, 7, 107–126. 174

TREUDE, C., BERLIK, S., WENZEL, S. & KELTER, U. (2007). Difference compu-
tation of large models. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The founda-
tions of software engineering, ESEC-FSE ’07, 295–304, ACM, New York, NY, USA.
143, 144

VAN DEN BERG, K., CONEJERO, J.M. & HERNNDEZ, J. (2006). Analysis of crosscut-
ting across software development phases based on traceability. In Proceedings of the
2006 international workshop on Early aspects at ICSE. 56

277

REFERENCES

VANHOOFF, B., AYED, D., BAELEN, S.V., JOOSEN, W. & BERBERS, Y. (2007a).
UniTI : A unified transformation infrastructure. In G. Engels, B. Opdyke, D. C.
Schmidt, F.Weil (eds), MoDELS, vol. 4735 of Lecture Notes in Computer Science,
Springer. 33, 83, 94

VANHOOFF, B., BAELEN, S.V., JOOSEN, W. & BERBERS, E. (2007b). Traceability
as input for model transformations. In Proceedings of the 3rd Traceability Workshop,
ECMDA-FA. 41

VON KNETHEN, A. & GRUND, M. (2003). Quatrace: A tool environment for (semi-)
automatic impact analysis based on traces. In Proceedings of the International Con-
ference on Software Maintenance. 54, 83, 96

VON KNETHEN, A. & PAECH, B. (2002). A survey on tracing approaches in theory and
practice. technical report 095.01/e. Tech. rep., Fraunhofer IESE. 2, 19, 39, 53, 80

VON KNETHEN, A., PAECH, B. & HOUDEK, F.K.F. (2002). Systematic requirements
recycling through abstraction and traceability. In Proceedings of the 10th Anniversary
IEEE Joint International Conference on Requirements Engineering. 54, 55, 57

W3C (2001). Xml linking language (xlink) version 1.0. http://www.w3.org/TR/xlink/.
28

W3C (2007). Xquery 1.0: An xml query language. http://www.w3.org/TR/xquery/. 28

WALDERHAUG, S., JOHANSEN, U., STAV, E. & AAGEDAL, J. (2006). Towards a
generic solution for traceability in MDD. In Proceedings of the 2nd Traceability
Workshop, ECMDA-FA. 40, 42, 83, 95

WALDERHAUG, S., STAV, E., JOHANSEN, U. & OLSEN, G.K. (2008). Designin
Software-Intensive Systems: Methods and Principles, chap. Traceability in Model-
Driven Software Development, pp. 133–159. IGI Global. 2, 5, 92, 106, 211

WENZEL, S., HUTTER, H. & KELTER, U. (2007). Tracing model elements. In Inter-
national Conference on Software Maintenance, 104–113. 31, 83

WHITEHEAD, E. (2000). An analysis of the hypertext versioning domain. Ph.D. thesis,
University of California, Irvine. 58

WIENANDS, C. & GOLM, M. (2009). Anatomy of a visual domain-specific language
project in an industrial context. In Proceedings of the 12th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS ’09, 453–467,
Springer-Verlag, Berlin, Heidelberg. 191

278

REFERENCES

WIERINGA, R. (1995). An introduction to requirements traceability. Tech. rep., Faculty
of Mathematics and Computer Science, University of Vrije, Amsterdam. 17, 45, 47,
65, 80

WILLIAMS, J.R. & POLACK, F.A. (2010). Automated formalisation for verification of
diagrammatic models. Electronic Notes in Theoretical Computer Science, 263, 211 –
226, proceedings of the 6th International Workshop on Formal Aspects of Component
Software (FACS 2009). 189

WINKLER, S. & VON PILGRIM, J. (2009). A survey of traceability in requirements
engineering and model-driven development. Software and Systems Modeling. 11, 20,
22, 64, 80, 135, 189

WOODCOCK, J., J. & DAVIES (1996). Using Z: Specification, Refinement, and Proof..
Prentice Hall. 71

WORDSWORTH, J. (1996). Software Engineering with B.. Addison Wesley Longman.
71

YING, A.T.T., MURPHY, G.C., NG, R. & CHU-CARROLL, M.C. (2004). Predict-
ing source code changes by mining change history. IEEE Transactions on Software
Engineering, 30, pp. 574–586. 30, 83, 96

YU, E. (1997). Towards Modeling and Reasoning Support for Early-Phase Require-
ments Engineering. Proc. RE-97 - 3rd International Symposium on Requirements En-
gineering, Annapolis. 127, 128

ZIMMERMANN, T., WEISGERBER, P., DIEHL, S. & ZELLER, A. (2004). Mining ver-
sion histories to guide software changes. In Proceedings of the 26th International
Conference on Software Engineering. 30, 83, 96

ZISMAN, A., SPANOUDAKIS, G., PEREZ-MINANA, E. & KRAUSE, P. (2003). Trac-
ing software requirements artifacts. In Proceedings of International Conference on
Software Engineering Research and Practice (Las Vegas, NV). 20, 83, 96

ZOU, X., SETTIMI, R. & CLELAND-HUANG, J. (2006). Phrasing in dynamic require-
ments trace retrieval. In Proceedings of the 30th Annual International Computer Soft-
ware and Applications Conference. 26, 83, 96

ZSCHALER, S., KOLOVOS, D.S., DRIVALOS, N., PAIGE, R.F. & RASHID, A. (2009).
Domain-specific metamodelling languages for software language engineering. In
Software Language Engineering, LNCS. Springer, Berlin. 104

279

	Nomenclature
	1 Introduction
	1.1 Motivation and Research Challenges
	1.1.1 Software Traceability in MDE

	1.2 Hypothesis and Objectives
	1.2.1 Definition of Case-Specific Traceability Models
	1.2.2 Identification of Trace Links
	1.2.3 Maintenance of Traceability Models
	1.2.4 Usage scenarios of Traceability in MDE

	1.3 Research Results
	1.4 Thesis Structure

	2 Background
	2.1 Defining Traceability
	2.2 Benefits of Traceability
	2.3 Traceability Modes
	2.3.1 Backward and Forward Traceability
	2.3.2 Pre and Post-Requirement Specification Traceability
	2.3.3 Horizontal and Vertical Traceability
	2.3.4 Implicit and Explicit Traceability
	2.3.5 Functional and Non-Functional Traceability

	2.4 Traceability Related Activities
	2.4.1 Traceability Identification
	2.4.1.1 Information Retrieval Approaches
	2.4.1.2 Rule-Based Approaches
	2.4.1.3 Miscellaneous Approaches

	2.4.2 Traceability Representation
	2.4.2.1 Specification of Traceability Information
	2.4.2.2 Actualisation and Visualisation of Traceability Information

	2.4.3 Traceability Maintenance
	2.4.3.1 Event-Driven Traceability Maintenance
	2.4.3.2 State-based Traceability Maintenance

	2.4.4 Traceability Usage
	2.4.4.1 Traceability for change management and impact analysis
	2.4.4.2 Traceability for V&V activities
	2.4.4.3 Traceability for Testing
	2.4.4.4 Traceability for Understanding the System
	2.4.4.5 Traceability for Reuse
	2.4.4.6 Traceability for Software Project Management

	2.5 Traceability in Practice
	2.5.1 Traceability Tools
	2.5.1.1 Tools with Traceability Support
	2.5.1.2 Specialised Traceability Tools
	2.5.1.3 Tool chains

	2.5.2 Empirical Studies
	2.5.3 Limitations
	2.5.3.1 Natural Factors
	2.5.3.2 Economic Factors
	2.5.3.3 Social Factors

	2.6 Concluding Remarks on Traceability
	2.7 Model Driven Engineering
	2.7.1 A Basic Theory of Models
	2.7.2 Metamodeling
	2.7.3 MDE: Concepts and Practices

	2.8 Chapter Summary

	3 Analysis of Software Traceability & Hypothesis
	3.1 Introduction
	3.2 Phenetics
	3.3 Discussion
	3.3.1 Analysis of the Data Matrix
	3.3.2 Interpretation of the Dendrogram

	3.4 Research Hypothesis
	3.5 Research Scope
	3.6 Research Methodology
	3.6.1 Analysis
	3.6.2 Design and Implementation
	3.6.3 Testing

	3.7 Chapter Summary

	4 A Metamodelling Approach to Traceability
	4.1 Representation of traceability with TML
	4.1.1 Strongly Typed Trace-links Conforming to a Case-Specific Metamodel
	4.1.2 Correctness Constraints
	4.1.3 Recurring Patterns in Case-Specific Traceability Metamodels
	4.1.4 The Traceability Metamodelling Language
	4.1.4.1 Abstract Syntax
	4.1.4.2 Semantics
	4.1.4.3 Concrete Syntax
	4.1.4.4 Traceability Representation - Examples

	4.2 Trace Link Recovery with TML
	4.2.1 Summarising Current Practices to Traceability Identification
	4.2.2 Requirements for Traceability Identification
	4.2.3 Identification in TML
	4.2.3.1 Internal Trace to Generic Trace
	4.2.3.2 From a Generic Trace Model to a Traceability Model

	4.2.4 Traceability Recovery with TML - Conclusions
	4.2.5 Traceability Identification - Example

	4.3 Maintenance of traceability with TML
	4.3.1 Link Types
	4.3.2 Model Change Types
	4.3.3 Summarising Current Practices to Traceability Maintenance
	4.3.4 Requirements for Traceability Maintenance
	4.3.5 State-Based Traceability Maintenance in TML
	4.3.6 Maintenance of Traceability with TML - Conclusions
	4.3.7 Traceability Maintenance - Example

	4.4 Traceability usage in the context of MDE
	4.4.1 Transformation Validation with TML
	4.4.2 Change Propagation with TML

	4.5 Chapter Summary

	5 Reference Implementation
	5.1 Eclipse Platform
	5.2 Eclipse Modeling Framework
	5.3 Epsilon Framework
	5.3.1 Epsilon Object Language
	5.3.2 Epsilon Transformation Language
	5.3.3 Epsilon Generation Language
	5.3.4 Epsilon Validaton Language
	5.3.5 Epsilon Comparison Language
	5.3.6 Epsilon Wizard Language

	5.4 Eclipse Views & Editors
	5.5 Launch Configuration Interface
	5.6 Availability
	5.7 Chapter Summary

	6 Evaluation
	6.1 Means of Evaluation
	6.1.1 Traceability scenarios
	6.1.2 Peer review
	6.1.3 Case study
	6.1.3.1 Graphical Modelling Framework
	6.1.3.2 EuGENia
	6.1.3.3 The filesystem metamodel
	6.1.3.4 Defining Traceability between Ecore and GMF Models
	6.1.3.5 Establishing traceability
	6.1.3.6 Using and maintaining traceability

	6.2 Evaluation of the contributions
	6.2.1 Classification of Traceability Approaches (Section 3.2)
	6.2.2 Traceability Metamodelling Language (Section 4.1)
	6.2.3 Traceability Identification with TML (Section 4.2)
	6.2.4 Traceability Maintenance with TML (Section 4.3)
	6.2.5 Traceability Usage (Section 4.4)

	6.3 Evaluation of the Thesis Proposition
	6.4 Shortcomings and Limitations
	6.4.1 Lack of support for non-model artefacts
	6.4.2 Lack of support for custom traceability information

	6.5 Chapter Summary

	7 Conclusions and Future Work
	7.1 Review Findings
	7.2 Proposed Solution
	7.2.1 Traceability Metamodelling Language
	7.2.2 Traceability Identification with TML
	7.2.3 Traceability Maintenance with TML
	7.2.4 Traceability Usage

	7.3 Evaluation Results
	7.4 Areas of Further Work
	7.4.1 Support for non-model artefacts
	7.4.2 Expand the concept of DSM2L

	A Characters Used in the Phenetic Analysis
	B Phenetic Analysis Data
	C Phenetic Analysis Results
	D TML Transformations
	E EVL Constraints for the Filesystem Case-Study
	References

