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Abstract

Hydraulic fracturing of tight gas shales is a relatively new method of producing economi-

cally from extremely low permeability reservoirs. Due to the low permeability, it is crucial

that fracturing treatments are able to efficiently create regions of enhanced permeability

in the reservoir. The mechanical properties of prospective shale mean that stress inter-

actions between adjacent fractures can be of real consequence to the efficiency of the

treatment, and alternative treatments to mitigate these effects have been designed.

The aim of this research is to conduct numerical simulation of alternative treatment de-

signs, and objectively evaluate critical parameters. In particular, key aspects of the so-

called Texas Two Step method are simulated. This treatment aims to create zones of

altered stress anisotropy between pressurised fractures. This study examines the be-

haviour of said zones as the distance between the fractures is altered, in parallel with

literature describing the method. Explanations for unusual fracture curvature behaviour

are provided.

Further studies examine fracture reorientation within a modified stress field such as that

created by the treatment. Rates of reorientation are measured under varying levels of

stress anisotropy, initial fracture length and orientation to the stress field.

The influence of pre existing natural fractures on the path of a hydraulic fracture is in-

vestigated through further simulations. The effects of natural fracture permeability and

interface properties are studied. The impact of shear stress caused by a propagating

fracture is also examined, and the possible implications for interpretation of microseismic

data discussed.

Finally, a new treatment for simultaneous fracturing with reduced stress shadowing is

proposed and simulated.
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Chapter 1

Introduction

1.1 Background to project

Natural gas has been produced from shales since the early 19th Century. However, the

extremely low permeability of tight shales has meant that gas flow rates were so low that

the total gas produced was negligible. Over the last decade, advanced technology such

has horizontal drilling and hydraulic fracturing has meant that there has been a rapid

increase in the amount of gas that is now produced from shales. In particular, shale

reservoirs now supply around 47% of gas produced in the US. This “shale gas revolution”

has now started to spread to other parts of the world with exploration and appraisal now

occurring throughout the world. Despite this huge interest, the economics of shale gas

production remain marginal. For example, even in the USA, where a production-line ap-

proach has allowed companies to dramatically reduce drilling and completion costs, the

low gas price combined with the low gas flow rates means that only a small number of

shale resource plays are profitable (Baihly et al., 2010).

It is clear that further technological advances are needed to allow gas production from

shales to compete with conventional gas resources such as those found within Russia and

the Middle East. Hydraulic fracturing, where artificial fractures are created by increasing

the fluid pressure in a borehole beyond the fracture pressure, have been the key game

changer regarding the ability of industry to extract gas from shales. It is probably fair

to say that key developments within this area have generally been made on a trial-and-

error basis. Techniques that prove successful in one area spread by word of mouth and

are adopted elsewhere without regard for differences in the reservoirs (e.g. mineralogy,

geomechanical properties, stress etc.).
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1.1.1 Aims and Objectives

The key aim of this research project is to conduct finite element based geomechanical

modelling to provide a more scientific basis for the development of new techniques for

hydraulically fracturing shales.

Specifically, the project aims to increase knowledge around issues of stress field mod-

ifications induced by hydraulic fractures. Examining fracturing treatments which aim to

increase fracture complexity raises further questions about the way in which fractures

propagate under modified in-situ stresses.

Fracturing treatments designed to increase fracture complexity will be modelled, and

the influence of propagated fractures on the surrounding stress field studied. Fracture

path deviation due to interactions between these stresses is expected. Similar numerical

simulations of such fracture treatments have shown intriguing fracture path deviations, and

explaining these behaviours is a primary objective. Metrics to quantify the effectiveness

of such treatments will be studied.

Fracture curvature will be studied using numerical simulation of fracture propagation

under various conditions. It is hoped that insight can be gained regarding the dependence

of fracture curvature on relative principal stress magnitudes, opening pressure, and initial

fracture orientation. These studies could be considered applicable both to propagating

hydraulic fractures, and (re)activated natural fractures.

Natural fractures are expected to play an important role in fracturing treatments. In-

formation gained from studies conducted in homogeneous materials will be compared to

similar studies conducted in the presence of natural fractures.

1.2 Hydraulic Fracturing Primer

Conventional recovery of oil or gas involves drilling a well into a reservoir which contains

the target oil or gas. These hydrocarbons are contained within the pores of a reservoir

rock which has high permeability, allowing the fluid within to move reasonably freely. The

hydrocarbons are constrained from reaching the surface by a layer of impermeable rock,

or other natural barrier. A well placed in the reservoir provides a conduit for the hydrocar-

bons and the differential between the surface pressure and reservoir pressure drives the

hydrocarbons through the well, up to the operator.
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Tight gas shales are natural gas bearing mudstones with extremely low permeabilities.

The permeabilities are so low that they are often the rocks constraining other hydrocar-

bons from reaching the surface (cap rocks). They can also act as source rocks for reser-

voirs, generating hydrocarbons internally. Drilling into such a low permeability rock will

allow a very limited amount of gas to escape into the well - a pore pressure reduction of

a few MPa into an exposed shale can take years. Hence, shale gas recovery has simply

not been an economically viable option until relatively recently. The advent of horizontal

drilling has allowed a long horizontal well to be placed inside a layer of shale. From this

horizontal well, fracturing treatments are able to create fractures into the shale at regular

intervals. First, perforation guns are fired through the well into the shale. These create

starter or seed fractures, orthogonal to the well. Blocking the end of the well and pumping

it full of fracturing fluid increases the pressure in the well until the starter fractures start

to grow into the shale, again generally at right angles to the well. This dramatically in-

creases the surface area of the shale exposed to the well, and may make contact with

natural occurring fractures in the shale that can also add to the amount of gas that can be

recovered.

During the fracturing treatment, small hard particles known as proppant are added to

the fracturing fluid in increasing concentrations. Once the required amount of fracturing

has occurred, the fluid is allowed to flow back into the well in such a way as to leave

the proppant in place, which hold the fractures open. The increased surface area of the

stimulated region should produce gas at a much higher rate than a single vertical well.

1.3 Layout of Thesis

This thesis consists of 8 chapters. This chapter provides the background to the project

and a very brief explanation of the basics of hydraulic fracturing. The subsequent chapters

are summarised below:

Chapter 2 presents a review of the literature regarding the fracturing medium, shale

which is focused on in this work. The nature of some well studied and productive fields

are examined. A review of the prevalence and nature of natural fractures in shales is

conducted, and a summary of current numerical simulation techniques is provided.

Chapter 3 gives an overview of the numerical simulation framework used throughout

this work. This is a fully coupled mechanical-fluid system with discrete fracturing, and

localised adaptive remeshing. Constitutive equations used for mechanical, porous flow

and network flow through fractures are summarised.
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Chapter 4 focuses on simulation of a treatment for creating enhanced complexity. This

uses the interaction between fractures to alter the stress state between them, and a third

fracture is initiated in the zone between them. The simulations consider the effects of

spacing the fractures at varying distances, and a metric for evaluating the effectiveness

of the treatment is developed and compared with literature. Two methods of manipulating

the stress field are identified.

Chapter 5 models a domain which has been altered by a treatment such as that exam-

ined in chapter 4. The behaviour of a fracture propagating through a stress field to which

it is not preferentially aligned is examined, under varied levels of stress anisotropy. The

fracture’s initial length and orientation to the stress field are also varied.

Chapter 6 provides an examination of structured natural fractures interacting with a

propagating hydraulic fracture. Natural fracture permeability and interface properties are

considered. Later, stochastically generated fractures are used to model the trajectory of

a fracture in conditions from chapter 5. The effect of the natural fractures on the trajectory

are evaluated. A final simulation evaluates the effect of shear stress due to a propagating

hydraulic fracture on surrounding natural fractures.

Chapter 7 simulates a well inclined to the principal stress directions, stimulating multiple

fractures simultaneously. The primary aim is to reinforce the shear stresses around each

fracture and reduce the impact of stress shadowing.

Chapter 8 presents a summary of the findings in each chapter, noting original findings

and possible topics for publication. Possible topics of further study are suggested where

applicable.
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Chapter 2

Literature Review

2.1 Hydraulic Fracturing

The permeability of gas shale reservoirs is so low that drilling a single or even network of

wells does not provide enough surface area for gas to flow at rates that are economical

given the cost to drill each well. A solution to this problem is to stimulate fractures ex-

tending from the well surface into the matrix, increasing the effective surface area of the

well such that enough gas can be recovered to justify the expense of the well and fracture

stimulation.

This is accomplished by pumping fluid at high pressure into sealed off sections of wellbore,

which have usually been given “starter” fractures using an explosive treatment. The fluid

moves into the starter fractures and the pressure (not the rate) of the fluid application

causes the matrix to fracture in a number of possible configurations. In higher permeability

reservoirs, the aim is to provide maximum fracture width in order to maximise flow rates

to the well. However, in very low permeability scenarios, fracture conductivity is so much

better than the matrix even at very low fracture widths, so the priority is to maximise

fracture length (Economides and Martin, 2007), or as Warpinski et al. (2009) describe,

creating a complex fracture network (Figure 2.1.1) rather than a simple planar fracture.

Generally speaking, some form of proppant is mixed with the fracturing fluid, the aim of

which is to keep the fractures propped open after the fracturing fluid is flushed away.

2.1.1 Stimulated Reservoir Volume

The stimulated reservoir volume (SRV) is the reservoir volume affected by stimulation,

and is commonly estimated using stimulated reservoir area (SRA), in turn estimated us-

ing microseismic data, and estimates of fracture height. Within the SRV, fracture density
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can vary depending on a number of factors including the type of fracturing induced, the

spacing of initial fractures and the effect of pre-existing natural fractures. The percent-

age of gas recovery from within the SRV is highly dependent on fracture density when

permeabilities are as low as those found in shale reservoirs. In figure 2.1.2, Warpinski

et al. (2009) show this percentage plotted for a simulated tight sandstone reservoir with

a permeability of 1µD and two shale reservoirs with permeabilities of 100 nD and 10 nD

each. The sandstone reservoir is modelled with parallel planar fractures, and the shale

with an orthogonal network of fractures, all at 300 ft spacings. The sandstone will even-

tually recover 80-90% within 15 years, whereas the for the tighter shales, only 25-50% is

estimated to be recoverable.

(Mayerhofer et al., 2010) illustrate the effects of reducing fracture spacing in a fixed SRV

of approximately 2000×106 ft3 , shown in figure 2.1.3. For a fracture network of equally

spaced orthogonal fractures, they note the total fracture length Ltotal for the entire SRV is

Ltotal = 4xfxn
∆xs

+ 2xf + xn (2.1.1)

where xf is the SRV half length, xn the SRV width, and ∆xs the spacing between frac-

tures. By reducing the spacing from 300 to 50ft a more than five-fold increase in Ltotal is

observed, which they estimate would accelerate the 3 year cumulative gas recovery by

the same factor.

Figure 2.1.1: Types of fracture growth (Mayerhofer et al., 2010)
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Figure 2.1.2: Gas recovery factors for example shale and tight gas reservoir performance
(Mayerhofer et al., 2010)

Figure 2.1.3: Effect of fracture spacing (∆xs) on recovery factor (Mayerhofer et al., 2010)

Studies such as Mayerhofer et al. (2010) have shown that for some generalised fracture

networks:

• Gas shales need to be fractured in blocks that are less than 330 m (100 ft) wide to

enable recovery of the majority of the gas-in-place.

• Increased fracture conductivity within realistically achievable bounds increases the

cumulative gas production. Although high conductivity is unlikely to be achieved

throughout the entire network, higher near-wellbore conductivity should, however,

add value.
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• Increasing the stimulated reservoir volume (SRV) increases the total production.

The development of the SRV is influenced by shale thickness, the stress field, the

open and sealed natural fracture network, rock brittleness and large geological fea-

tures; e.g. faults.

• Fracture skin damage is predicted to be insignificant unless the damage is greater

than a 95% loss in permeability.

• Stimulation strategies which result in unstimulated regions are likely reduce produc-

tion by the equivalent volume of the unstimulated region.

Unstimulated regions may be the result of stress shadow effects induced by the fracture

stimulation process (Fisher et al. (2004),Warpinski et al. (2009)). When a hydraulic frac-

ture is opened, the compressive stress normal to the fracture faces is increased above

the initial in-situ stress (σHmin) by an amount equal to the net fracturing pressure. This

stress elevation is a maximum at the fracture face, but the perturbation of the stress field

radiates out into the reservoir, increasing the fracturing pressure necessary to fracture

the adjacent formation. The rate of stress perturbation declines with distance from the

fracture face, and is mainly controlled by the smallest areal fracture dimension (height or

length). In the Barnett Shale fracture heights control the stress shadow, with the stress

shadow becoming quite small at an offset distance equal to about 1.5 times the fracture

height. In the core area of the Barnett fracture heights are typically around 300 to 400 ft,

hence the stress shadow dissipates around 500 ft away from a fracture opening.

Maximising SRV and reducing fracture spacing in multi-stage stimulations is a subject of

ongoing research, and current strategies are designed by considering (Mayerhofer et al.,

2010):

• Lateral length and orientation of the well relative to the natural fracture and stress

orientations.

• Treatment sizes.

• Number of stimulation stages.

• The number and spacing of perforation clusters.

• Diversion techniques and/or openhole packer completion systems for multiple stage

completions.

2.1.2 Fracturing Fluids

Rickman et al. (2008) suggest using brittleness to determine fracturing fluid, which in

the case of brittle shales, slick water (water containing additives to reduce viscosity and
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control capillary pressure effects) is appropriate, with more ductile materials requiring

higher viscosity fluids. They propose that with increased ductility the fracture type tends

towards planar, and conversely complex fracture networks are more readily achieved with

brittle materials (figure 2.1.4). Slickwater fracturing is also known as “waterfracing”.

Figure 2.1.4: Fluid recommendations via brittleness (Rickman et al., 2008)

Warpinski et al. (2009) discuss the departures that unconventional gas and shale gas

reservoirs make from previous industry rules of thumb and experience, including with re-

spect to the use of higher viscosity gels as fracturing fluids, which are more difficult to

recover from complex fracture networks, reducing conductivity of the resulting fracture

network. They also suggest that low permeability slickwaters are able to penetrate into

pre-existing natural fractures and reopen them. Warpinski et al. (2005) compared stimu-

lation using slick water and higher viscosity cross-linked gel systems on wells with similar

conditions, and showed that stimulations using cross-linked gel resulted in a more limited

fracture network. Crucial to the success of waterfracing is the ultra low permeability of the

shale-gas formations, as this limits leak-off of the low-viscosity waterfrac fluid into the for-

mation, facilitating the overpressuring of the fracture relative to the formation. For higher

permeability formations or for formulations with open joints, waterfracs may not generate

sufficient pressure to open natural fractures due to leak-off into the formation and/or along

open fractures.

One concern with waterfracs is that typically only 10-20% of the injected fluid can be re-

covered during the process of flowback for cleanup of loaded fluid. The influence of this

water on production is dependent on various mechanisms, such as (i) imbibition dom-

inated by capillary pressure; (ii) relative permeability; (iii) gravity segregation; and (iv)

stress-sensitive fracture conductivities, etc. Retained water if imbibed rapidly into the for-

mation may not necessarily adversely affect gas production.

2.1.3 Fracture conductivity - proppants

During stimulation the interconnected fracture network has very high permeability, but

the fractures will subsequently close unless supported by proppant or by shear offset
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(surface roughness). Shear offset is a natural part of the stimulation process and the mi-

croseismic activity observed in Barnett stimulations suggest that considerable large-scale

movement occurs. How much permeability/conductivity can be generated by shear offset

alone is not however well quantified (Warpinski et al., 2009). Consequently, proppant,

often graded sand, is generally injected in suspension in the fracturing fluid. For water-

frac shale-gas completions the proppant concentrations are generally quite low and the

settling of proppant particles is quite rapid due to the low viscosity of the water (which is

generally “slickened” using a linear gel).

Warpinski et al. (2009) also question whether the conductivity of the secondary fractures

that are oriented orthogonal to the primary hydraulic fracture azimuth is maintained mostly

by shear offset during fracturing or by proppant. Fluid transport analysis (Warpinski et al.,

2009) for field observations (Fisher et al., 2004) shows that during stimulation the com-

bined influence of the orthogonal fractures results in a network-permeability of the order

of tens to hundreds of Darcies. Although many methods exist for estimating the perme-

ability of rough natural fractures and the effect of variable closure stress as the reservoir

depletes, the amount of conductivity that is retained is unclear, primarily because of the

unknown condition of the fracture walls. The impact of proppant size on prop efficiency for

these fractures is also unknown, for example Warpinski et al. (2009) suggests that small

diameter (100-mesh) sand could potentially increase fracture intensity by bridging across

some fractures forcing new fractures to propagate.

Kassis and Sondergeld (2010) measure the hydraulic conductivity of a rock fracture in

Barnett shale as a function of effective stress, proppant, proppant distribution and fracture

offset. The fractures were created by axial splitting specimens by loading in uniaxial

compression. The permeability of the samples were then measured for matched fractures

with no proppant, offset fractures with no proppant and with Ottawa sand or ceramic

proppant with either sparse or dense distributions (figure 2.1.6). The principal findings of

the study are:

• Fracture offset is as effective as propping a fracture; both increase initial perme-

abilities more than 1000 fold over initial fracture values. Initial permeability was

measured at a normal stress of 800 psi (5.5 MPa) as 48md for matched fractures

rising to 220-4805 mD for fractures offset by 0.004-0.020” (0.1-0.5mm).

• Initial fracture permeability is dependent on surface roughness, quantified as root

mean square asperity heights.

• The pressure dependence of the propped fracture is stronger, i.e. the permeability

is reduced more per increment of pressure than the offset fractures.
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• The flow in unpropped or propped does not obey the simple cubic pressure depen-

dence law proposed by Walsh (1981).

• A simple sparse monolayer of proppant is as effective as a fairway distribution of

proppant in enhancing permeability.

• Ceramic proppant offers no significant advantage over Ottawa sand, even at pres-

sures as high as 6000 psi (41.4 MPa) effective stress. SEM images showed that

sand fractured while ceramic proppant became embedded into the fracture walls.

Failure of sand grains induces more microfractures in the substrate, thus potentially

increasing permeability effect.

Figure 2.1.5: Two fractured Barnett cores (Kassis and Sondergeld, 2010)

(Left) Sparse monolayer and (right) centralized fairway distribution

Figure 2.1.6: Proppant distribution (Kassis and Sondergeld, 2010)

2.2 Mineralogy

A wide range of mineralogical properties can be seen across the most productive U.S

shale plays.

Vitrinite reflectance is one measure of the thermal maturity of organic matter. Vitrinite is

the major component in coal but also appears as grains in shale (and other organic source
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sedimentary rocks). As vitrinite undergoes maturation due to the temperature and pres-

sure of burial, its reflectance increases. The reflectance is defined as the the proportion

of normal incident light reflected by a plane polished surface of vitrinite, and accurately

establishes the effective maximum paleotemperature and its duration at any stage in ge-

ological time (Mukhopadhyay, 1994). This value increases with the number of planar

aromatic sheets in the kerogen. Killops and Killops (2004) give the reflectance values

associated with the production of oil and gas types, shown here in Table 2.1. King (2010)

state that a value of 1.4% or less indicates the possible presence of liquid hydrocarbons

and associated permeability issues.

Vitrinite Reflectance Hydrocarbon Produced

0.65-1.3% oil

1.3-2% wet gas

> 2% dry gas

Table 2.1: Vitrinite Reflectance

Clay content appears to be an important indicator of the viability of a shale play. Britt and

Schoeffler (2009) state that a clay content over 35-40% is too high to be considered widely

prospective, and summarise the mineralogy of samples from 8 shale gas formations in

Figure 2.2.1. Values to the left of the dotted line (with less than 40% clay) make up the

majority of the samples they studied, and of the samples to the right, they note that the

significant samples come from two shales which although gas producing are not currently

economically viable.

Figure 2.2.1: Ternary Diagram of the Mineralogy of Shales(Britt and Schoeffler, 2009)
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2.3 Mechanical properties

Basic geomechanical properties useful in describing (and modelling) their behaviour in-

clude the static and dynamic Young’s moduli (Es, Ed), Poisson’s ratio (νs, νd), the subcriti-

cal crack index and associated values, and the Biot parameter.

Measurement of mechanical properties often involves the use of core samples taken from

the field to find correlations between important mechanical parameters. Values which

can be more readily gathered in the field can then be used to determine those which

are difficult or impossible to test on site. Barree et al. (2009) discuss numerous sources

of complication in applying correlation techniques designed for conventional resources

to unconventional reservoirs such as gas shale. They also point out several processes

associated with obtaining, transporting and processing core samples which can result in

the core becoming an inaccurate representation of the in-situ stress state.

2.3.1 Young’s moduli and Poisson ratios

These give an indication of the brittleness of the shale, which appears to be an important

indicator of prospectivity. Brittle rock is easier to fracture due to its lower Poisson ratio,

and is also able to maintain fracture conductivity due to its stiffness. Grieser and Bray

(2007) plot Es against νs in Table 2.3.1, indicating brittle and ductile regions.

Barree et al. (2009) find that for samples with moderate permeability, Young’s modulus

can either be tested with constant internal pore pressure (drained tests) or with pore fluid

trapped (undrained tests). They postulate that the extremely low permeability of shale pre-

vents pore pressure from dissipating in response to external loads during the timescale of

hydraulic fracture treatments. This may result in the undrained test being more appropri-

ate for determining the Young’s modulus. Poisson’s ratio is similarly affected.

Britt and Schoeffler (2009) note the relationship between previously tested clastic rocks

(Morales and Marcinew, 1993) and their data from prospective shales is consistent. They

illustrate this relationship in Figure 2.3.2. Several non-prospective plays are also plotted

which all exhibit Es modulus below 4 Mpsi (27 GPa). The non prospective samples all had

a very high clay content and were considered “true shales”, in comparison to the Barnett

which is actually a laminated siliceous mudrock.

Britt and Schoeffler (2009) also conducted a series of laboratory experiments to determine

the ability of cores with unpropped fractures (both induced and natural) to maintain gas

flow, and found clay content and mechanical properties likely to play a role in the ability of

samples to maintain fracture permeability with increasing stress.
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Figure 2.3.1: Poisson’s ratio vs Young’s modulus (Mpsi) (Grieser and Bray, 2007)

When determining dynamic Young’s modulus using ultrasonic velocity testing, they were

able to gather shear travel time information both perpendicular and parallel to the core

axis. They found that many of the prospective shales with Es above 3.5 MPsi (24.1 GPa)

could be considered isotropic. Samples with this level of stiffness or above averaged 6%

in comparison to nearly four times this for samples with Es below 3.5 MPsi. These shales

exhibited visible laminations, possibly suggestive of (anisotropic) fissile behaviour.

Figure 2.3.2: Dynamic to Static Young’s Modulus Correlation (Britt and Schoeffler, 2009)

Ranges of Poisson’s ratio and Young’s modulus for 4 major fields are compiled in Table

2.2. These assume isotropic moduli, however authors such as Prioul et al. (2011) stress

the importance of considering material property anisotropy.
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Sondergeld et al. (2010) describe a range of Young’s moduli anisotropy of between 0

and 65% in measured Devonian shales. Distinguishing horizontal (Eh) and vertical (Ev)
Young’s moduli, they use an example of a sample from the Floyd shale to show that

Eh = 2.2Ev. They give a modified calculation for closure stress which takes into account

anisotropy in both Young’s modulus and Poisson’s ratio:

σh = Eh
Ev

(
νzx

1− νxy

)
σV (2.3.1)

They point out that since Eh and νzx are typically larger than Ev and νxy, closure stresses

in these anisotropic shales will be greater than those calculated from the isotropic equa-

tion. They also plot νxy

νzx
against Eh

Ev
for Floyd and Barnett shales, finding a trend suggesting

that Poisson ratios increase with stiffness anisotropy.

Prioul et al. (2011) discuss the effect of anisotropic material properties on fracture initiation

pressure, first noting that most shales can be well approximated as transversely isotropic;

that is they can be considered isotropic within the bedding plane and different normal to

the bedding plane. They give elastic parameters for two rocks; a siliceous mudstone (rock

C) and an argillaceous/calcerous shale (rock F). Young’s moduli and Poisson parameters

from these samples are presented in Table 2.3, in which the subscript v denotes normal to

the bedding plane and subscript h within the bedding plane. Although the Young’s moduli

are not consistent with previously discussed rocks1, the ratio of Young’s moduli in rock C

is similar to that of the Floyd shale in Sondergeld et al. (2010).

Barnett Haynesville Woodford Marcellus

E min Mpsi (GPa) 4.8 (8.3) 1.2 (8.27) 1.57 (10.82) 3.3 (22.75)

E max Mpsi (GPa) 4.8 (33) 8.3 (57.2) 1.62 (11.17) 3.36 (23.17)

ν min 0.2 0.15 0.33 0.187

ν max 0.33 0.25 0.33 0.249

Table 2.2: Comparison of Geomechanical Properties of U.S Gas Shales(Gale et al., 2007;
Jacot et al., 2010)

Sondergeld et al. (2010) compare a brittleness index calculated using relative proportions

of Quartz, Carbonates and Clays proposed by Rickman et al. (2008), with one proposed

by Grieser and Bray (2007), which is based on Young’s modulus and Poisson ratio mea-

surements. They find both methods produce similar results, indicating a relationship be-

tween mineralogy and mechanical properties.

Horsrud et al. (1998) characterised several North Sea shales petrophysically and me-
1These psi values are very low - did the authors intend 2.817×106psi?
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Siliceous Mudstone (C) Argillaceous/Calcereous Shale (F)
Ev psi 2817 1360
Eh psi 5690 5155
Eh
Ev

2.02 3.79
νv 0.197 0.115
νh 0.252 0.145
νh
νv

1.28 1.26

Table 2.3: Transverse Anisotropy in two Shales(Prioul et al., 2011)

chanically. These samples were from a wide range of depths, and mechanically exhibited

trends including increasing strength and stiffness with depth. Heating shale was observed

to significantly reduce its strength and stiffness, with the implication that laboratory testing

should either aim to replicate downhole temperature or correct it.

2.3.2 The subcritical fracture index

The subcritical fracture index is the exponent n in the relationship

V = A ·Kn
I (2.3.2)

where V is the propagation velocity and KI is the mode I stress intensity (from Holder

et al. (2001a)). This relationship describes the stable growth of fractures at stresses

below the fracture toughness of the material, which is a cause of natural fracture growth

in geologic materials. It can also be thought of as a measure of brittleness, with a high

value indicating a rapid transition from zero propagation to almost rupture-crack velocity

for small load increases.

The constant A as well as n can be measured in the laboratory, and Holder et al. (2001b)

describe a methodology specific to (problematic) sedimentary rocks. Olson et al. (2002)

illustrate the effect of this parameter on fracture patterns in Figure 2.3.3. With increasing

n, fracture density decreases and clustering occurs at values 40 and 80.

Gale and Holder (2008) measure the subcritical crack index for a number of samples

taken from two cores obtained from the Barnett shale. Although they note the difficulty

of measuring mudstone samples, they measured consistently high values between 92

and 378. These values are comparable to those for dolostones and chalk (Gale et al.,

2007), but are high relative to those for sandstones, which have means of approximately

55 (Rijken, 2005). They conclude that large fractures in the Barnett are likely to be highly

clustered, with the distance between clusters being dependent on the thickness of the

layer, and in Gale et al. (2007) predict a spacing of several hundred feet between these

clusters.
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Figure 2.3.3: Numerical simulation of subcritical fracture growth with varying n (Olson
et al., 2002)

2.3.3 Biot Parameter

The Biot parameter α describes the effect pore pressure Pp has on effective stress σ̄i, as

in equation 2.3.3 where σi are the diagonal components of the stress tensor (since Pp can

have no effect on shear stress)

σ̄i = σi + αPp (2.3.3)

It is related to the bulk modulus (Kd) of the drained rock, and the undrained bulk modulus

stiffness of the individual rock grains Kg. Both bulk moduli are measures of the stiffness

of the material in hydrostatic compression (i.e. Young’s modulus E is the bulk modulus of

a sample in an unconfined uniaxial compression test), and are determined experimentally

in a triaxial (compression) test. The drained modulus is measured by allowing the pore

fluid to escape (i.e the sample is at constant pore pressure) as the sample is compressed.

α = 1− Kd

Kg
(2.3.4)

The bulk modulus can also be written

K = E

3(1− 2ν) (2.3.5)

and therefore α can also be expressed purely as a function of E and ν:

α = 1− Ed(1− 2νg)
Eg(1− 2νd)

(2.3.6)

For highly porous and compliant materials such as uncemented sandstone, α approaches

1 and pore pressure changes have maximum influence on effective stress. Conversely for

a stiffer and/or less porous material (such as shale) the effect of Pp drops to zero as the

material becomes completely solid or unconnected in terms of fluid flow.
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Miskimins et al. (2004) evaluated the economic importance of the elastic properties Ed,

Eg, νd and νg which comprise α, using three models of varying stiffness reservoir. Their

hard rock model, although representing an oil reservoir, was the most sensitive to changes

in α and they caution against the assumption that α = 1 for stiffer rocks, noting that in

their hard rock model replacing the calculated value of 0.27 with a value of 1 (a common

assumption) resulted in a reserve recovery estimate that was out by 16%.

Lothe et al. (2004) modelled a North Sea reservoir, paying particular attention to Biot’s

constant as they varied Poisson’s ratio with depth using a low, medium and high depth

dependence of ν in the shale cap rock. They illustrated the associated depth dependence

of α to in Figure 2.3.4, using data from Horsrud et al. (1998). Their model showed a

reduction in α as Poisson’s ratio drops, with between 10-20% reduction (from 1) at a

depth of 6 km.

It should be noted, however, that these shales had a minimum clay content of 30% and

average of 57%, which as discussed in 2.2, puts these samples outside the range of

prospective shales, and is an indicator of a lower stiffness than in the prospective shales.

Indeed, the measured Young’s modulus of these samples ranged from 0.8-12.2 GPa and

averaged just 2.91 GPa (cf. Table 2.2). The implication of this is that the values for α

reported are likely to be higher, in particular at shallower depths, than those of a stiffer

shale.

Figure 2.3.4: Depth dependence of Biot’s parameter Lothe et al. (2004); Horsrud et al.
(1998)

Vincke et al. (1998) evaluated shale samples from a depth of about 450 m in an undis-

closed location. Although the Biot parameter is often described using a scalar value, they

assume anisotropy and measure core samples taken perpendicular and parallel to the

bedding planes in the shale. The samples they used had a Young’s modulus of 2.2 GPa

(0.3 Mpsi), which is also considerably less stiff than most of the prospective shales in

Table 2.2. They measured the response both to decreasing total stress in a uniaxial strain

setup, as well as increasing the pore pressure and also found a a change in the Biot pa-

rameter with loading. They found no evidence of strong anisotropy in the Biot parameter
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and concluded that using a scalar (stress dependent) value is sufficient.

Both the above examples found a stress dependence of the Biot parameter in shales with

relatively low Young’s moduli. The Biot parameter is a function of E and ν (2.3.5) which

are themselves stress dependent.

Tran et al. (2010) develop an analytic model of near-wellbore fracture initiation due to

thermal differentials and calculate values for Barnett shale based on the material stiffness.

They use values ranging between 0.632 and 0.87 for different case studies.

Abousleiman et al. (2007) used a Ultrasonic Pulse Velocity tests to determine mechanical

properties for samples from the Woodford shale. The results are tabulated in Figure

2.4. They measured in the direction parallel to the bedding planes (subscripted 1) and

perpendicular (subscripted 3). At this depth range α1 averaged 0.69 and α3 0.62.

Table 2.4: Mechanical properties by UPV: Woodford Shale (Abousleiman et al., 2007)

2.4 In-situ Stress

In-situ stress regimes can be described by relating the magnitudes of the greatest, in-

termediate and least principle stresses (σ11,σ22, σ33) to the vertical, maximum horizontal

and minimum horizontal stresses (σV ,σHmax, σhmin), as in Table 2.5. In a normal faulting

regime, the vertical stress is the maximum principle stress (σV = σ11). In the context of

hydraulic fracturing, mode I (tensile) fractures propagate perpendicular to σ33, this results

in fracture growth vertically and in the direction of σHmax.

Regime
Stress

σ11 σ22 σ3

Normal σV σHmax σhmin

Strike-slip σHmax σV σhmin

Reverse σHmax σhmin σV

Table 2.5: Relative stress magnitudes and faulting regimes (Zoback, 2007)
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Principle stresses vary with depth as a consequence of the increasing load above and

around the rock with depth. Variation at a given depth in each direction can occur through-

out the stress field for many different reasons. These are primarily tectonic or gravitational,

the first being driven by forces acting on the tectonic plates of the earth’s crust, and the

second due to material density. More localised effects can be seen due to fault interaction,

subsidence, vertical uplift, structural effects such as arching, to name but a few. Reservoir

depletion, fluid injection, and other human factors can also introduce important changes.

Prioul et al. (2011) tabulate stress to depth ratios for the principle stresses and pore pres-

sure (Pp) of four major fields (Table 2.6). Clearly the different stress gradients of σH and

σh will result in strong differences in the horizontal stress field. It is apparent that all four

of these fields are in a normal faulting regime since the first principle stress is always the

vertical stress.

Field σV σH σh Pp Depth

(psi/ft) (psi/ft) (psi/ft) (psi/ft) ft

Barnett 1.13 0.6-0.8 0.55-0.75 0.43-0.55 4000-8000

Haynesville 1.11 1.0-1.1 0.95-1.05 0.80-0.90 10500-13500

Marcellus 1.13 0.85-1.05 0.75-1.0 0.55-0.80 4000-8500

Fayetteville 1.13 0.95-1.0 0.85-0.95 0.40-0.45 2000-7000

Table 2.6: Stress gradients of four U.S gas shales (Prioul et al., 2011)

Barree et al. (2009) discuss the difficulty of obtaining accurate pore pressure measure-

ments in unconventional reservoirs with such low permeabilities. They also note that pore

pressure can vary by a large amount when the reservoir rock is also the source (and

may still be producing). They recommend that for unconventional resources core sam-

ples are used to provide qualitative information about small-scale anisotropy, but should

be extended to large-scale estimates of stress and deformation with great caution. They

strongly encourage the use of synthetic sonic logs and elastic moduli derived from stan-

dard wire-line tests as described in Mullen et al. (2007).

2.4.1 Stress changes with production

Zoback (2007) discusses stress paths in depleting reservoirs, beginning by showing the

relationship between Pp and σH . Assuming an infinite isotropic, porous and elastic reser-

voir with instantaneously applied gravitational loading being the only source of horizontal

compressive stress:

σH =
(

ν

1− ν

)
σV + αPp

(
1− ν

1− ν

)
(2.4.1)
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In 2.4.1 σH refers to both σH and σh, since isotropy is assumed. Differentiating with

respect to Pp gives

∆σHor = α
(1− 2ν)
(1− ν) ∆Pp (2.4.2)

For example, if α = 1 and ν = 0.25, ∆σHor ∼ 2
3∆Pp.

Segall and Fitzgerald (1998) have shown that for reservoirs with a length:width ratio of

1:10 or greater, equation 2.4.2 is nearly exactly correct. It follows that in depletion of

such reservoirs, the horizontal stresses will in general decrease with depletion, while the

vertical stress remains essentially constant (Zoback, 2007).

Segura et al. (2011) perform numerical studies on 3D reservoirs, coupling mechanical

stress simulations with an external reservoir flow simulator to characterize stress path

behaviour. In particular, they look at stress path behaviour as stress arching occurs. This

is the transferal of overburden stress to the sideburden as the reservoir compacts. They

examine the effect of 3D geometry on the effect of reservoir stresses, and the results of

these simulations are used to improve the accuracy of standalone fluid simulations. This is

achieved by enabling the effect of the stress path changes to effect pore volume multiplier

tables (PVM), which are then used by standard production simulation software.

2.5 Permeability and Porosity

2.5.1 Permeability

Permeability is a measure of the ability of a porous material to allow fluid to pass through

it. In relation to Darcy’s law:

v = k

µ

∆P
∆x (2.5.1)

where v is fluid velocity, µ is fluid viscosity, ∆P is an applied pressure gradient and ∆x
is the thickness of the material, k is the permeability. Permeability is measured using

constant flow, constant head, transient pulse decay (TPD) and pore pressure oscillation

techniques. Constant flow and constant head tests are steady state tests, and more suited

to permeabilities above 10−15m2. TPD is used by Javadpour et al. (2007) to measure 152

shale samples from 9 reservoirs, where they found a mode permeability of 54 nD. The

cumulative frequency plot of this data (Figure 2.5.1) shows that over 90% of the measured

permeabilities were less than 150 nD.

Horsrud et al. (1998) use a pressure transient method to measure permeability of 7 North

Sea shales, with a mean permeability of 58.85×10−21m2 (approx 58.85 nD). They also
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present data obtained from the consolidation part of triaxial tests. All transient test sam-

ples where measured perpendicular to the bedding plane, and while it would be reason-

able to see higher permeabilities in the bedding plane direction, these higher permeabil-

ities should have dominated their triaxial permeability data, which it did not. Attempts to

measure in the bedding plane direction with the transient method were hampered by high

sample failure rates and pre-existing cracks. These cracks are to be expected when un-

loading samples from effective stresses of around 50 MPa, and may not necessarily close

fully when repressurised.

Figure 2.5.1: Cumulative Frequency of permeability measurements (Javadpour et al.,
2007)

Yang and Aplin (2007) give an overview of their TPD setup and test 30 shale samples at a

range of effective stresses (2.5 to 60 MPa). These results are presented in Figure 2.5.2.

They comment that the effective stress/permeability curve can be used to estimate the

maximum effective stress to which the the sample has been subjected, the break in slope

of such a curve (on a log-log scale) representing this stress. The vertical permeability

results range from 2.4 × 10−22 to 1.6 × 10−19 m2, with horizontal permeabilities being in

general higher, with a range 3.9× 10−21 to 9.5× 10−19 m2.

2.5.2 Porosity

Porosity is the amount of void space in the material, expressed as a percentage of volume.

Pore sizes in shales are highly significant when regarding flow regimes, since pore diam-

eters are often at a similar scale as fluid molecular diameters. For instance, the molecular

diameter of methane is estimated to average 0.381 nm over 3 studies in Sondergeld et al.

(2010).

Several authors (Horsrud et al. (1998) ,Javadpour et al. (2007), Yang and Aplin (2007))

measure porosity and pore size distribution using high pressure mercury injection (mer-
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Figure 2.5.2: Permeability vs Effective Stress, 30 Shale samples

cury porosimetry). Shale samples are dried and the volume of mercury injected is recorded

against injection pressure. Injection pressure is related to the pore radius in the Young-

Laplace equation:

P = 2γ cos θ
r

(2.5.2)

Where P is pressure, r the pore radius, γ the interfacial tension and θ the contact angle

between the solid and liquid. Use of this equation assumes cylindrical pore channels. This

experiment yields both pore size distribution due to the stepped application of pressure,

as well as the final injected volume which establishes the porosity. Javadpour et al. (2007)

measure pore sizes ranging between 4 and 200 nm over 3 shale samples.

Horsrud et al. (1998) summarize pore size distributions in Table 2.7. The notation in-

dicates that 5% of the pore volume is made up of radii below r5 , 20% below r20, etc.

They attribute the larger pore sizes in sample K, which is the deepest sample at 4870

m, to damage associated with pressure unloading from such a depth (as also mentioned

with regards to permeability). They comment on the significant capillary pressure such

low pore sizes can effect, and caution against evaluating shale-fluid interaction effects

when samples are not fully saturated. As an example, a capillary pressure of 4.85 MPa is

generated for water by a 15 nm pore size.

Yang and Aplin (2007) correct for microfracturing caused by unloading and (the physical

process of) sampling, finding the point at which the porosity cumulative frequency curve

vs pore radius becomes a minimum, and removing pores with radii larger than this value

from the data set (Figure 2.5.3). They calculate mean pore throat radius from the relative

pore size distribution, and plot cumulative porosity graphs for all 30 samples, a sample of
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Shale r5 r20 r50 r80 r95

B 4 6 8 11 115

E 6 12 20 32 90

F 5 10 16 19 33

I 5 7 12 30 195

K 4 7 20 157 1360

Table 2.7: Pore size (nm) distribution in 5 North Sea shale samples (from Horsrud et al.
(1998))

which are repeated in Figure 2.5.4.

Figure 2.5.3: Correcting for microfractures (Yang and Aplin, 2007)

Horsrud et al. (1998) test porosity using both drying of the sample (to estimate free water

content) and by He injection, and see a difference in the results which they propose is due

to the compaction of samples during the drying phase.

Schieber (2010) examined several shale successions using Transmission and Scanning

Electron Microscopy (TEM and SEM) of samples prepared using ion milling, a technique

enabling sufficiently thin samples to be prepared without causing damage. The samples

had a range of thermal maturity between immature and supermature, and over this range

3 distinct pore types were observed. These are classified by the author as:
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Figure 2.5.4: Cumulative porosity for 16 of 30 samples(Yang and Aplin, 2007)

• PF - Phyllosilicate framework.

• CD - Carbonate dissolution

• OM - Organic matter

PF pores are the most widespread in all samples and consist of triangular openings in

a lattice of randomly oriented clay mineral platelets. Pores range from a few nm to over

a micron. Although randomly oriented, the pores lie within a largely planar setting, and

are shown to form in pressure shadows around larger compaction resistant grains such

as silt, sand and fossil debris, and the spaces between these grains. Larger pores can

be supported by diagenetic mineral growth which cements the ends of larger clay flakes,

preventing pore collapse. Figure 2.5.5 shows SEM images of PF pores at increasing

resolution.
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Shale He Drying

B 0.30 0.41

D 0.28 0.34

E 0.26 0.31

F 0.25 0.29

I 0.15 0.17

K 0.01 0.03

Table 2.8: Porosity by He-injection and Sample drying (Horsrud et al., 1998)

Figure 2.5.5: Phyllosilicate pores(Schieber, 2010)

CD pores are formed by the partial dissolution of carbonate grains, most commonly

dolomite and calcite. Rather than the entire grain being removed, it is more commonly

observed that the grain margins are eroded. This results in seams of pore space that

are irregular or which retain the rectangular outline of the carbonate substrate. Neither

collapse into these pores nor filling by secondary materials was observed in these pore

spaces, which range in width from a few tens to several hundred nanometers. Figure 2.5.6

shows images of calcite (top) and dolomite (bottom) dissolution pores (black arrows).

OM pores (Figure 2.5.7) are voids left behind due to the maturation of organic material,

and in immature shales are present as kerogen blebs, which in mature shale become

voids varying in size from a few nm to over a micron.

Schieber (2010) comments that porosity measured in this petrographic manner may not

match values calculated from method driven techniques, such as mercury porosimetry.

These often contain simplifications (such as equation 2.5.2 assuming cylindrical pores)

that do not do justice to the complex nature of the pore space in fine grained sediments.
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Figure 2.5.6: Carbonate Dissolution pores (Schieber, 2010)

Figure 2.5.7: Organic Matter pores (Schieber, 2010)
On the left, porous kerogen blebs from a mature shale. On the right, empty pore space
left by migrated material.

2.6 Natural Fractures

Most rocks at depth are fractured or damaged to some extent, due to any of a large

number of potential causes of deformation. In shales, fractures are readily observed

in exposed outcrops and subsurface through core samples, as well as being visible in

wireline logs. In the context of hydraulic fracturing, it is important to understand the role

these fractures can have in affecting hydraulic fracture growth.

The nature of, abundance, and connectivity of natural fractures in the reservoir are all able

to affect growth of a hydraulically induced fracture. A natural fracture network may cause

a hydraulic fracture to create a more complex network of stimulated fractures. This could

be to the advantage of the operator, providing connectivity to a larger region of reservoir

per unit volume/area, whilst conversely this could be a mechanism for fracturing fluid loss

and ultimately reduced productivity.
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2.6.1 Formation

Natural fractures can occur via any of the standard three fracture propagation modes,

illustrated in 2.6.1, as well as combinations of the three. Mode I fractures propagate due

to failure in tension, while mode II and III are shearing failures.

Figure 2.6.1: Fracture Opening Modes

Figure 2.6.2 from Gale et al. (2014) shows mode III and mode I fractures in an outcrop in

northwest Argentina. Mixed mode fracturing is shown in sandstone and limestone in Fig-

ure 2.6.3, where a) shows mode I in sandstone, b) mixed mode I-II fractures in sandstone

and c) mixed mode I-III parent and en-echelon fringe cracks in limestone. (Olson et al.

(2009)).
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Figure 2.6.2: Normal fault (Mode III) and Opening (Mode I) fractures in the Vaca Muerta
Formation, Rio Molichinco, Neuquén, northwest Argentina.
(A): Field book scale = 19 × 12 cm (B): Interpretative diagram showing sense of displace-
ment for different fractures in A. (taken from Gale et al. (2014))

Figure 2.6.3: Mode I and mixed mode natural fractures. Dotted lines indicate representa-
tive fracture planes, solid arrows inferred loading conditions. (from Olson et al., 2009)

38



Generally speaking, rock is much weaker in tension than shear, so much so that their

tensile strength is commonly approximated as zero (Zoback, 2007), and mode I fractures

are consequently more commonly observed in those rocks which support them. Reservoir

shales in particular can have high variations of clay content, and those with higher levels

of clay are more susceptible to visco-plastic deformation, rather than brittle tensile failure

(Sone and Zoback, 2011)

Mechanisms for mode I fracturing are prevalent in many geological processes. Over time,

strata can be bent or folded, which can cause tensile fracture on the outside of a bend.

Lateral extensional forces can cause tensile failure. When strata of differing stiffnesses

are subjected to the same tectonic stress, the differing strain responses can also result in

tensile failure.

Natural hydraulic fracturing via an increase in pore pressure is another possible mech-

anism. Should the pore pressure increase, effective stress will be reduced, potentially

to the point of becoming tensile. Equally, should the lateral total stress decrease due to

uplift, tectonic movement or erosion, an unchanged pore pressure reduces the effective

stress in the same manner.

Lorenz et al. (1991) focused on the generation of regional (large scale) fractures at signif-

icant depth, arguing against this mechanism acting to create natural hydraulic fractures.

The importance of Poisson’s ratio is significant, since a uniform increase in pore pressure

will not result in a uniform change in effective stresses. They derive the relationship:

σh = σV

(
ν

1− ν

)
+ αp

(
1− ν

1− ν

)
(2.6.1)

assuming isotropic horizontal stresses (σh). Given a Poisson’s ratio ν of 0.2, Biot param-

eter α of 1, σh will increase around 75% of any pore pressure increase. The equation

below can be solved for effective horizontal stress σ
′
h becoming zero:

σ
′
h =

(
ν

1− ν

)
(σV − αp) (2.6.2)

resulting in:

p = σV
α

(2.6.3)

Which is to say that under isotropic horizontal stress conditions, the pore pressure p needs

to either reach or exceed the overburden stress to reduce the horizontal stress to zero,

depending on the value of the Biot parameter. If this is the case, then it would be unlikely to

see natural hydraulic fractures as long, straight fractures, since the effective stress in every
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direction is tensile, which should result in random, explosive type fractures. Significant

rock material anisotropy could mitigate this unoriented fracturing.

At low confining stresses, relatively low differential stresses have been observed in labo-

ratories to generate extensional fractures. Increasing pore pressure at depth can reduce

the effective stresses to the point that the differential in horizontal stresses can cause

the same extensional fractures on a regional scale. However, the pore pressure is not

required to exceed the minimum principal stress, as local tensile stresses around flaws

in the rock can initiate microfractures which coalesce and remain held open, not by pore

pressure but the compressional stresses in the rock. These fractures can remain open

long enough to become mineralised (Lorenz et al., 1991).

In contrast, Engelder et al. (2009) investigated the marine Middle and Upper Devonian

section of the Appalachian Basin, which includes the Marcellus shale, and found two

regional joint sets which were observed in outcrop, core, and borehole images. The joints

were formed close to or at, peak burial depth, attributed to natural hydraulic fracturing

induced by overpressures generated by gas production during burial (Lash and Engelder,

2005).

2.6.2 Scale and Orientation

In shales, a wide range of fracture sizes and spacings can be observed. Spacings can be

centimeter scale to several meters (Laubach et al., 1998, Lorenz et al., 1991, Gale et al.,

2014). In some cases relationships between strata thickness and subvertical fracture

spacing can be demonstrated, although not consistently (Lorenz et al., 1991, Gale et al.,

2014).

Regional fractures are commonly composed of two orthogonal sets, typically an older set

which are longer and parallel with a newer set that is shorter and less planar, terminat-

ing against the older set (Engelder et al., 2009 , Lorenz et al., 1991, Gale et al., 2014 ).

Detailed studies are typically performed on outcrops, sedimentary strata which are cur-

rently exposed at the surface. These studies must account for the outcrop being exposed,

namely by recognising fracturing brought about by stress relief associated with the out-

crop arriving at the surface, as well as changes to fractures at depth being modified by the

same. Figure 2.6.4 illustrates the scale of fractures observed in tertiary sandstone in the

Wasatch Formation on northwestern Colorado (in Lorenz et al., 1991) - showing longer,

earlier fractures running left to right and shorter, more irregular cross fractures.
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Figure 2.6.4: Regional Fracture Scale
Plan view pattern of fractures in sandstone, Wasatch Formation (Tertiary age), Piceance
basin, northwestern Colorado. Tracing from a photo mosaic. Note two sets of fractures: a
set of smooth, subparallel fractures trending left to right, and a more irregular set of cross
fractures. Fractures of the first set commonly parallel each other at very closely spaced
intervals; fractures of the second set commonly terminate against members of the first set
(from Lorenz et al., 1991).

Gale et al. (2014) examined natural fractures in 18 shale deposits, via outcrops and core

samples. They could categorise three types of fractures; those at a high angle to bedding

(subvertical), bedding parallel, and compacted fractures.

Subvertical fractures were the most common type of fracture observed, and are also the

least likely to be encountered by vertical core samples. Figure 2.6.5 shows some of their

samples exhibiting various characteristics:
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Figure 2.6.5: Subvertical Fracture Characteristics (Gale et al. (2014))

A) Inclined Fractures

B) Termination (at T) of steeply dipping fracture against another dipping steeply
in the opposite direction. In this example the core has broken along the ce-
ment, and was not open in situ

C) Composite fracture, stepping downward to the right and left ((R) and (L),
respectively), with gradually tapering terminations. Lorenz et al. (1991) at-
tributes gradual tapering in regional fractures to growth at subcritical/quasi-
static rates.

D) Offset, partially open fractures

E) Image log showing the fractures in D, indicating they were open at depth

F) Vuggy pores in fractures with calcite and quartz filling
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Bedding parallel fractures can be up to 15cm thick and tens of meters long. Observed

cements were most commonly calcite, but barite and gypsum have been observed. Ex-

amples of compacted fractures are shown in Figure 2.6.6 . These are unlikely to contribute

to production or be volumetrically significant.

Figure 2.6.6: Compacted Fractures (Gale et al. (2014))

Aperture The kinematic aperture of a fracture is the distance between fracture walls,

including cement and pores, or opening displacement. This is recognised as a practical

measure of fracture size, since core samples, for example, may not capture the full length

or height of a fracture. In fact, given the prevalence of subvertical fractures being sampled

by vertical cores, it is unlikely that a fracture longer than a few inches in length will be

visible to its full extent in more than one dimension. Gale et al. (2014) observed that in

shales, kinematic apertures are mostly in the range of 30 µm-1 mm. A histogram of the

measured apertures in their samples is shown in Figure 2.6.7 to this effect.

2.6.3 Cementation

Shales are typically diagenetically reactive, making fractures likely seal to via mineralisa-

tion. In subvertical fractures, these are comprised of several minerals. The textures of

minerals filling the fractures can aid in determining the fracturing process. For example,

some fractures are filled with fibrous cements which can show evidence of mixed mode
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Figure 2.6.7: Kinematic aperture histogram, from Gale et al. (2014)

opening where fibre directions change. Other fractures contain host rock inclusions within

the cement, evidence of the crack seal mechanism operating as the fracture continues to

open. The most common cement in shales is calcite, found in all samples in Gale et al.

(2014). Other minerals observed in shale cementations include quartz, barite, dolomite,

and pyrite.

Cementation is important when considering interaction with hydraulic fractures, since it

can affect the strength of the natural fracture, and affect its permeability. Gale and Holder

(2008) found that a fracture sealed with calcite had half the tensile strength of the host

rock, acting as a plane of weakness during fracturing. However, a cemented fracture is

also quite likely to be stronger than an uncemented fracture, providing additional shear

and tensile strength, affecting the mechanical interaction with a hydraulic fracture.

Fracture size and rate of growth can affect the amount of cementation that occurs within

the fracture. Slower growing fractures are more likely to be completely filled, as are nar-
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rower apertures (Lander and Laubach (2014)). Other factors include thermal exposure,

the geochemical environment, and the reactivity of the fracture wall rock.

2.6.4 Permeability

While it is commonly assumed that fully sealed fractures are unlikely to contribute to reser-

voir permeability (Gale et al. (2007)), Landry et al. (2014) examined calcite filled fracture

with a width of 200 µm using a scanning electron microscope, finding well connected

porosity. They determined, via lattice Boltzmann simulations and effective medium up-

scaling, the cross fracture permeability of the calcite to be between 25 and 100 nD. This is

very low, but well within the range of tight gas shales. They concluded that in the direction

normal to the fracture, the calcite provides no significant permeability barrier. Perme-

ability in this direction is not particularly relevant to hydraulic/natural fracture interaction

(Bahorich et al. (2012)), rather it indicates that cemented fractures would be unlikely to

adversely affect production. The permeability which they calculate in the orthogonal direc-

tion, i.e. along the natural fracture, is of more interest when considering the behaviour of

a propagating hydraulic fracture. They estimate that this could be higher than 10-50 µD,

again a low value but higher than shale permeabilities, and enough to provide a conduit

for fracturing fluid.

Gutierrez et al. (2000) examined the permeability of closed natural fractures, by dissolv-

ing the mineralisation out of the fracture, and subjecting the samples to both normal and

shear stresses. They found that despite applying pressures in excess of the unconfined

compressive strength of the shale, the fracture permeability remained above that of intact

shale, concluding that once opened, natural fractures are difficult to close mechanically.

Fractures are therefore likely to remain as pathways for fluid flow unless closed by ce-

mentation. The findings of Landry et al. (2014) are thus particularly interesting when

considered in this context.

Stochastic Modelling The assortment of fracturing mechanisms, and resulting fracture

properties of natural fractures, result in systems that are very difficult to characterise in the

field, and for this reason natural fracture modelling will often take some form of stochastic

approach based on core or wire-line log observations, or simplify the problem to regular

sets of fractures oriented in a small number of orientations.
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2.7 Numerical Modelling

This section discusses the numerical hydromechanical (HM) simulation of fracture stimu-

lation and fluid flow in TGRs.

2.7.1 Formulation Types

For coupled simulations which consider flow from the reservoir, there are mainly 3 ap-

proaches that can be used: (i) equivalent continuum, (ii) discrete and (iii) double porosity

formulations/multi porosity. This study is primarily concerned with fracturing fluid and

mechanical reservoir interactions prior to proppant and or production, and this section

considers the first two formulations.

Equivalent continuum formulations

Equivalent continuum formulations consider an equivalent continuum that averages the

mechanical and flow properties of both fractures and intact material. Rutqvist and Stephans-

son (2003) refer to several equivalent continuum models for the HM modelling of fractured

media. One of the simplest approaches is to assume three orthogonal sets of fractures

in a “sugar cube” medium model, for which simple equations for the fluid flow and elastic

properties can be derived. Non-orthogonal fracture sets can be modelled using a multi-

laminate model. If fractures are not grouped in sets but rather randomly distributed, the

equivalent properties may be calculated by the concept of the fabric or crack tensor.

Classical and more recent references on the derivation of equivalent continuum mechan-

ical properties are highlighted in this paragraph. Singh (1973) studies a rock intersected

by a single set of uniformly distributed joints and derives the equivalent elastic modulus

of the system. Gerrard (1982) and Fossum (1985) extended this formulation for a rock

mass with two or three sets of joints and for a randomly jointed rock mass respectively.

Zienkiewicz and Pande (1977) proposed an elasto-viscoplastic multi-laminate model for

non-orthogonal jointed rock masses. More recently Huang et al. (1995) proposes a stress-

strain model for an assemblage of intact rock blocks separated by joint sets that have

different spacing and orientations. The elastic moduli expressions for a rock mass with

three intersecting sets of joints are derived explicitly in terms of properties of joints and

intact rock. Sridevi and Sitharam (2000) model jointed rock behaviour by using some em-

pirical relations that express the properties of the equivalent jointed medium as a function

of a joint factor -dependent on joint orientation, joint frequency and joint strength- and

the properties of the intact rock. Hao et al. (2002) review and use anisotropic constitu-

tive models with statistical initial damage to model existing random cracks and joints in
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rock. Zhang (2004) revise the relationships between the rock mass elastic modulus (i.e.

with joints), the intact rock elastic modulus and the RQD (Rock Quality Designation) index

property in rock mechanics on the base that the equivalent continuum approach must use

deformation properties of intact rock and of discontinuities obtained through laboratory or

in situ tests. They provide several references of works that use the equivalent continuum

approach.

Cho et al. (1991) present the equivalent constitutive equations for the mechanical and

flow behaviour of saturated porous rock with an arbitrary number of joint sets with specific

orientations. The model assumes linear elastic material properties and isotropic perme-

ability for the intact rock. Each joint set is assumed to have linear elastic stiffnesses and

isotropic in-plane permeability. A continuum theory is obtained by adding the compliances

and fluid flows associated with the intact rock and each of the joint sets. The resulting the-

ory accounts for the anisotropy of mechanical properties due to joint orientation, elastic

stiffnesses and spacing and for fluid flow along and fluid exchange between the various

flow paths. Phenomena such as joint separation, sliding and dilatancy are not accounted

for. Some application examples (e.g. sugar cube model) are analyzed.

Chen et al. (2007) formulate and use an equivalent elastic–perfectly plastic constitutive

model with non-associated flow rule and mobilized dilatancy to describe the global non-

linear response of a fractured rock mass with one or multiple sets of parallel fractures.

A strain-dependent hydraulic conductivity tensor is also formulated which accounts for

the normal compressive deformation of the fractures, the effect of material nonlinearity

and post-peak shear dilatancy. Numerical simulations are performed to investigate the

changes in hydraulic conductivities of a cubic block of fractured rock mass under triaxial

compression and shear loading, as well as a circular underground excavation in a real

application example.

Osorio et al. (1999) develop a finite difference model based for stress sensitive reservoirs

with isotropic properties. The mechanical properties and the permeability are a function

of the mean effective stress. A nonlinear elastic representation is used for the mechanical

properties of the rock formation.

Grün et al. (1989) present a 2D FEM coupled HM formulation with the permeability de-

pendent on the fluid pressure as well as the over-pressure.

Han (2003) present different formulations for the calculation of stress-dependent porosity

and permeability for application to a wellbore producing oil from unconsolidated or weakly

consolidated sand. In particular, an expression based on the Carman-Kozeny equation is

used for the dependence of the permeability on the porosity.

Yuan and Harrison (2005) present a hydro-mechanical constitutive model that incorpo-

rates the degradation of strength and stiffness, a confining pressure-dependent dilatancy,
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and a deformation-dependent permeability. In terms of a deformation-dependent perme-

ability they implement a reduction of the permeability during the elastic compaction and

an increase during dilation based on the cubic law. A relationship between permeability

and strain is preferred to a relationship between permeability and stresses.

Ohman et al. (2005)consider a stochastic component to the deterministic stress-induced

component in the determination of the transmissivity of fractured media. The outcome is

a tensorial description of fracture transmissivities in an anisotropic stress-regime, where

the transmissivity for an arbitrarily oriented fracture in the network is determined by its

orientation in relation to the ambient stress-field. These transmissivities are conditioned

such that the overall results satisfy a hydraulic packer test data.

Jin and Somerville (2000) present a coupling strategy, using VISAGE and ECLIPSE,

where the faults/fractures are represented structurally in VISAGE by smeared multi-laminate

joints with a permeability that is strain-path sensitive and its hysteresis may be repre-

sented. A single porosity model is used for flow where the permeability is evaluated as

the sum of the intact and fracture permeabilities.

Duarte Azevedo et al. (1998) use an equivalent continuum approach based on Zienkiewicz

and Pande (1977) multi-laminate model for the HM coupled analysis of fractured materials,

coupling also the permeability to the deformation of discontinuities. The model is applied

to dam stability analyses.

Liu et al. (1999) propose a model with hydraulic conductivities dependent on the indices

RQD (Rock Quality Designation) and RMR (Rock Mass Rating) defining the rock mass

structure. The model is applied to an effective stress analysis of conductivity changes in

a tunnel subjected to a biaxial stress field.

Discrete formulations

Discrete models describe the flow and mechanical behaviour in detail by discretizing small

components of the model individually. The Discrete Element Methodology (DEM) mod-

els particle scale (microscopic) interactions to predict macroscopic deformation. In con-

trast to the Finite Element Method, which applies complicated constitutive equations to

macroscopic scale elements, the DEM uses relatively simple equations of motion for very

small elements. Tradeoffs for the simpler equations include a vastly increased number

of elements to solve for, and extensive experimental validation to verify simulation results

(Sheng et al., 2015).

Sheng et al. (2015) conduct a review of several techniques used to model hydraulic frac-

turing, with an emphasis on discrete formulations. They describe state of the art software

packages which use variations of DEM modelling techniques:
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• Particle Flow Code (PFC) uses a bonded particulate model (BPM), in which inter-

particle bonds are modelled. Breakage of these bonds simulate nucleation of mi-

crocracks, which can coalesce to form microcracks. BPM introduces the ability to

model micromechanical behaviour of solid rocks to DEM models originally designed

to model noncohesive materials such as soils and sands. They provide details of

enhancements to PFC such as the smooth-joint contact model (SJM) and synthetic

rock mass (SRM), and others, which aim to improve upon disadvantages of earlier

versions of the PFC. These included unrealistic ratios between tensile and UCS in

the models, and issues related to the roughness of interface surfaces.

• Yade is a recently developed open source package which has the fundamental prin-

cipals of PFC in common, adding several simulation methods which can be coupled

within the same framework (including DEM, FEM and Lattice Geometrical Model

(LBM)). It also has the advantage of being immediately alterable by researchers due

to its open-source nature. It addresses some of the issues with PFC with alterna-

tive techniques, for example ensuring frictional behaviour despite surface roughness

rather than using the SJM and SRM models.

• UDEC, or Universal Distinct Element Code, is a package based on the DEM equa-

tions, and is targeted at modelling jointed and blocky material. In earlier versions

of UDEC, the domain was divided into blocks, with a finite number of intersecting

discontinuities, the blocks themselves discretised using a finite difference scheme.

It was unable to model the introduction of new fractures, which Sheng et al. (2015)

note has been addressed through the introduction of a polygonal block pattern.

• Discontinuous Deformation Analysis (DDA) contains similarities to FEM, although

it is based on DEM. It can be used to simulate systems of rock blocks, including

interactions such as sliding and detachment. In common with the FEM, the ba-

sic structure consists of linear equations which are the result of differentiating and

minimising each energy contribution to the system. Recent advances include com-

bination of the DDA with Rock Failure Process Analysis (RFPA) software, looking

at large scale deformations of discontinuous rock systems. RFPA is a continuum

mechanics based software, which has the ability to capture small scale effects such

as crack initiation and propagation, small deformations and coalescence in intact

rocks.

Zhang et al. (1996) use DEM (via modified UDEC) to study the effects of stress on the

2-D permeability tensor of natural fracture networks. On the basis of three natural frac-

ture networks sampled around Dounreay, Scotland, numerical modelling examines the

dependency of fluid flow on the variations in burial depth, differential stress and loading
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direction. A factor, termed the average deviation angle of maximum permeability, is de-

fined to describe the deviation degree of the direction of the major permeability component

from the applied major stress direction. For networks whose behaviour is controlled by

set(s) of systematic fractures, this angle is significantly greater than zero, whereas those

comprised of non-systematic fractures have an angle close to zero.

Zhang et al. (1996) also study the 2D permeability tensor of a network of natural frac-

tures using a discrete element based approach as a function of flow direction and stress

conditions for two different models.

Zhang et al. (2009) compare the prediction of effective permeability and elastic properties

using effective medium theories of fractured media with numerical simulations using a

discrete fracture network (DFN) containing two sets of non-orthogonal vertical fractures.

The effect on seismic anisotropy is also studied. Discrepancies between the permeabil-

ity obtained from the simulations and using effective medium theory are attributed to an

oversimplified treatment of fracture interconnectivity in the effective medium theory used.

By contrast, the effective elastic compliances obtained from numerical simulation and

effective medium theory are in good agreement, even for relatively complicated fracture

networks. Although permeability and seismic anisotropy both vary with stress, the relation

between them is not simple. The variation in reflection amplitude with offset and azimuth

is found to be sensitive to the ratio of the normal to shear compliance of the fractures,

whereas permeability is less sensitive to this ratio. For the DFN studied, the permeability

rapidly increases at high level of stress due to dilation of the fractures when the in situ

stress field is strongly anisotropic.

Min (2003) and Min et al. (2004) use also the distinct element method to study the equiv-

alent mechanical and flow behaviour of 2D samples. Min (2003) propose a methodology

to determine the equivalent elastic properties of fractured rock masses using a 2D distinct

element program for the numerical representation of stochastic fracture systems, and ob-

taining an equivalent constitutive model based on the theory of anisotropic elasticity to

describe the macroscopic mechanical behaviour of fractured rock masses. The method-

ology to determine the elastic compliance tensor is verified against known closed-form

solutions for regularly fractured rock mass. For the analyses performed, the results show

that a REV can be defined and the elastic properties of the fractured rock mass can be

represented approximately by the elastic compliance tensor through numerical simula-

tions. The paper provides a good overview of the equivalent continuum approach and

related aspects/theories. Min et al. (2004) investigate the effect of different stress states

on the permeability of a 2D fractured rock model using the distinct element method and

considering the effects of nonlinear normal deformation and shear dilation of fractures. Ef-

fects such as stress-induced channelling or permeability anisotropy are captured. A set of

empirical equations in closed-form, accounting for both normal closure and shear dilation
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of the fractures, is proposed to model the stress-dependent permeability and compared

with the numerical results.

Baghbanan and Jing (2008) study the coupling between stress and permeability of a

fractured sample using the 2D discrete element method. The intact rock matrix is linear

elastic and impermeable, and the fluid flows only through connected fractures obeying the

cubic law. Different stress states are studied, as well as the possibility of establishing an

equivalent permeability tensor and a representative elementary volume (REV).

Jiang et al. (2009) describe several models to relate transmissivity of single joints to nor-

mal stresses. They use Swan’s model to get the transmissivity with depth (i.e. geostatic

stress), and finally obtain a linear relationship between normal stiffness and depth. Kul-

hawy’s equivalent continuum model (Kulhawy, 1978) is finally used to verify the model.

Mas Ivars (2006) use a 3-D distinct element model for the 3D HM analysis of water inflow

into fracture rock excavations. The fractured rock mass is treated as an assemblage

of discrete deformable blocks, subjected to mechanical stress and hydraulic pressure

boundary conditions, with water flow occurring only along the fractures, i.e., no matrix

flow is included. The cubic law is considered and a sensitivity analysis is performed.

Karimi-Fard and Firoozabadi (2001) present the theoretical and finite element formulations

of the 2D problem of water injection in discrete fractured media with capillary pressure.

They state that dual-porosity models are very powerful for sugar-cube representations

in water-wet media, but for a mixed-wet system, the evaluation of the transfer function

becomes complicated due to the effect of gravity.

Taleghani (2010) study the effect of natural fractures on stimulated fracture paths, in par-

ticular the conditions required to initiate new hydraulic fractures at “kinks” where propagat-

ing fractures meet natural fractures. Having joined a natural fracture and traveled some

distance along its length, further stimulation may cause a fracture to initiate in the opposite

direction, as in Figure 2.7.1. They investigate this process by calculating energy release

rates via the Contour Integral Method, which they describe briefly noting that it does not

require calculating displacement derivatives or the calculation of stresses. The energy re-

lease rate G is calculated from mode I and II (tensile and shearing mode) stress intensity

factors KI and KII :G = (K2
I−K

2
II)

E∗ where E∗ = E for plane stress and E∗ = E
(1−ν2) for

plane strain. If G > Gc, the fracture will propagate critically (cf. sub-critical crack growth,

see 2.3.2). Taleghani (2010) give formulations for the stress intensity factors required to

calculate G at a given angle, commenting that crack growth will occur in the direction

maximising G.
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Figure 2.7.1: Fracture re-initiation(Taleghani, 2010)

Fracture growth is simulated using the extended finite element method (XFEM), which is

designed to handle discontinuities such as those occurring at fractures. Sets of natural

fractures are modelled in 2D at two orientations - 30 and 60 degrees from σHmax, find-

ing that the 60 degree case produced new fracture initiation. Adding horizontal stress

differences reduced the amount of re-initiation.

Wu et al. (2009) comment that the discrete fracture approach is the more rigorous of the

three formulations, but is limited by the computational intensity required and lack of knowl-

edge of fracture and matrix properties and their spatial distributions within reservoirs.

Warpinski et al. (2009) suggests that modelling of fracture treatments in this type of reser-

voir is complicated by the poor understanding of the processes that occur during the

treatment, and the lack of experimentally derived geomechanical and flow data. Proxy

information, mainly from sonic logs, are routinely used to compute stress profiles based

on usually inappropriate assumptions of rock mass behaviour; i.e. linearly elasticity (even

though all rocks are fractured) together with vertical dynamic property measurements

along a relatively competent wellbore represent the heterogeneous transverse isotropic

response. For the shale-gas formations, the complexity of the hydraulic fracture process

makes it very difficult to formulate phenomenological algorithms to describe the funda-

mental behaviour. Furthermore, the asymmetry observed in many mapping tests sug-

gests that various combinations of rock, stress, and natural fracture features have a major

influence on the development of the fracture network. Models therefore need to account

for the primary hydraulic fracture that connects to the wellbore and the activation and

opening of the network of fractures that are connected to it.

2.8 Summary of Literature Review

A review of studies on shale mechanical properties, mineral makeup, and properties re-

lated to fluid flow was presented. Many prospective shales are relatively brittle, as ductile

materials do not support the fracturing required to increase production from the ultra low
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(nD) permeability medium. A wide range of geomechanical properties can be observed in

shales. Brittleness is in part due to a reduced clay content, which in turn has a negative

effect on permeability.

The presence of natural fractures in brittle shales in particular is commonplace, and sev-

eral studies on natural fracture scale, abundance and orientation provide useful back-

ground information.

Key findings from the literature review are:

• The term shale is used extremely loosely when applied to “shale gas resource

plays”. In the past, geologists have tended to regard shales as being extremely

fine-grained fissile rocks with high clay contents (i.e. >70%). Most producing shale

reservoirs are not fissile and often contain clay contents of less than 30%; their

mineralogy is dominated by quartz and/or calcite.

• Until recently, there has been a tendency in industry to treat shale gas reservoirs

as linearly elastic isotropic materials. Service companies are now selling wireline

logging tools (sonic dipole) that are capable of measuring Young’s modulus in the

vertical and horizontal plane so these results have now been incorporated into for-

mulations to predict the pressure at which fractures are likely to form. In reality

shales are likely to be vertically transverse isotropic (VTI) materials which require

five elastic constants to characterise their elastic behaviour.

• Industry has tended to treat the effective stress parameter for volume change (i.e.

Biot parameter) as being isotropic and equal to unity. This is unlikely to be the case

in shale reservoirs which are both anisotropic and have a framework modulus that

is similar to the mineral modulus. The Biot parameter has a fundamental control on

horizontal stress – pore pressure coupling and therefore gaining an understanding

of its magnitude is important regarding how the propagation of fractures formed in

partially depleted shales (i.e. refracing jobs).

• The optimal combination of fracing fluids and proppant size depends on both the

fracture complexity and the brittleness of the shale. Predicting shale brittleness and

fracture complexity could therefore help optimise fracture treatments.

• A range of modelling techniques can be used to model flow and mechanical defor-

mation within shale reservoirs.

• Most studies seem to agree that there is no single rule for natural fracture properties

in shales, and that modelling specific to the particular reservoir is essential. Several

difficulties associated with characterisation of natural fractures were discussed.
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Much of the literature regarding the modelling of hydraulic fracturing comprises the details

of specific approaches, and published simulation results justifiably tend towards isolated

examples that demonstrate the strong points of the particular approach. This study will be

using a combined technique which marries the strengths of conventional FEM with dis-

crete approaches to modelling fractures. As a commercial product, small scale validation

has already been performed as part of rigorous pre-release testing. The software will be

applied to investigate complex interactions between multiple fractures, aiming to provide

a view of fracturing in shales that is not routinely seen in published works.
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Chapter 3

Hydraulic Fracturing Simulation

3.1 Introduction

The simulations in this study have been conducted using “Elfen TGR1” which is a state-of-

the-art finite and discrete element software that has been specifically designed to address

reservoir geomechanics. It is capable of modelling many aspects of hydraulic fracturing,

including non-Newtonian fracturing fluids, fluid leakoff, proppant transport, as well as gas

production in Darcy and non-Darcy flow regimes. Many of the more advanced features

were developed during the course of this study, which has been focused on fracture propa-

gation in shales, with low viscosity Newtonian fluid. The following sections contain details

of the theory used in Elfen TGR, omitting discussions of some of the more advanced

capabilities that were not applied.

3.2 Overview

Elfen TGR carries out a coupled multi-field finite and discrete element analysis. A geome-

chanical analysis of the rock matrix is coupled with pore fluid seepage and fracture fluid

flow analyses. The combined seepage and network fields are referred to as “seepnet”,

which is a term simply derived from “seepage” and “network”.

The Elfen TGR modelling process is driven by three main sets of equations:

1. Mechanical stresses and fluid pore pressures of the rock formation (mechanical

equation)
1Developed in Swansea, Wales. Elfen is the Welsh word for “Element”, TGR is an acronym of Tight Gas

Reservoirs
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2. Porous flow in the rock formation (liquid and gas seepage equations)

3. Fluid flow in the fracture region (liquid and gas network equations)

Two types of solution algorithms are used:

• For the mechanical field, the explicit solution method is used. This approach is

conditionally stable and the time step is limited to maintain stability. However, it does

not require the inversion of a matrix to update the primary field variable – making

it computationally inexpensive - and it can be used where situations such as strain

softening of materials make the enforcement of a convergence condition difficult.

• For the seepage and flow fields (both liquid and gas), the implicit solution method

is used. This approach is unconditionally stable and allows the use of large time

increments. In solving the seepnet field, convergence conditions are generally easily

enforced, making the implicit method suitable. However, it does require the inversion

of a matrix, which can be computationally costly.

3.2.1 Validation

Rockfield Software have performed extensive in-house validation of the modelling soft-

ware. The plane strain model used can be validated against a well known 2D fracture

model known as the KGD (for Khristianovic-Geertsma-de Klerk). The Elfen TGR model

fits the following assumptions made in the KGD model:

• vertical fracture propagating in a straight line from the well

• restricted fracture height

• homogeneous, isotropic, linear elastic rock mass

• purely viscous fluid in laminar flow regime

• geometric fracture-extension patterns are simple

• rectangular vertical cross-section of fracture

• plane strain conditions in the horizontal plane
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Figure 3.2.1: KGD 2D fracture model

An example of an Elfen TGR validation of fracture length against the analytical KGD is

shown in Figure 3.2.2.

Figure 3.2.2: Elfen TGR analytical model validation

3.3 Governing Equations

The main equations governing the simulations are derived assuming the following condi-

tions:

1. Equilibrium of stresses with an appropriate constitutive model (mechanical analysis)
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2. Mass conservation with Darcy’s law (liquid seepage analysis) and fracture region

liquid flow characteristics (liquid network analysis).

Note that a distinction is made between a pore fluid and its components:

• a pore fluid can refer to either a liquid or gas body

• liquid and gas components are specifically referred to as such.

For example, pf would refer to a fluid pore pressure which could either be liquid or gas, pl
refers to a liquid pore pressure, pg refers to a gas pore pressure.

In the mechanical equation, the pore pressure could be either liquid or gas, so the pore

fluid label, i.e. pf , is appropriate.

For the seepage and network equations, a distinction must be made between liquid and

gas components, since each has separate treatment at the fundamental equation level.

For example, in the liquid seepage equation the fluid is assumed to be incompressible,

whilst fluid compressibility is permitted in the gas seepage equation. At present, at any

part of the simulation, only single phase flow is considered, and interaction between the

two phases is not modelled.

Mechanical The update of the mechanical stresses satisfies the momentum balance

equation, with the assumption that the fluid acceleration relative to the solid and the con-

vective terms can be neglected.

LT (σ′ − αmpl
)

+ ρg = 0 (3.3.1)

ρ = ρlφ+ ρs (1− φ) (3.3.2)

where:
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Symbol Explanation
L spatial differential operator
σ′ effective stress tensor
α Biot parameter
m vector which in 2D is of the form {1, 1, 0}T

pf pore fluid pressure
ρ density of the solid/fluid mixture
ρl pore fluid density
ρs density of the solid grains
φ porosity of the porous medium
g gravity vector

Table 3.1: Nomenclature for equation 3.3.1

Porous Flow The liquid seepage equation combines mass conservation along with

Darcy’s law and is summarised in equation 3.3.3

∇ ·
(
k

µl
(∇pl − ρlg)

)
=
(
φ

Kl
+ α− φ

Ks

)
∂pl
∂t

+ α
∂εv
∂t

(3.3.3)

where :

Symbol Explanation
k intrinsic or absolute permeability of the porous medium
µl viscosity of the pore liquid
pl pore liquid pressure
ρl density of the pore fluid
g gravity vector
φ porosity of the porous medium
α Biot coefficient
Kl bulk stiffness of the pore liquid
Ks bulk stiffness of the solid grains
εv volumetric strain of the porous medium

Table 3.2: Nomenclature for equation 3.3.3

Liquid Flow within Fractures Similar to the liquid seepage equation, the liquid net-

work equation combines mass conservation along with Darcy’s law and is summarised in

equation 3.3.4.

∂

∂x

[
kfr

(
∂pl
∂x
− ρlg

)]
= Sfr

∂pl
∂t

(3.3.4)

where:
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Symbol Explanation
kfr intrinsic or absolute permeability of the fractured region
pl pore liquid pressure
ρl density of the pore liquid
g gravity vector
Sfr storage coefficient of the porous medium

Table 3.3: Nomenclature for equation 3.3.4

The intrinsic permeability kfrand storage coefficient Sfr are defined as follows (Elfen TGR

provides two network flow definitions; this is the aperture based definition used in the

simulations herein):

• kfr= e2

12µl

• Sfr =
(

1
Kfr,n

+ e
Kf

)
where:

• e is the fracture equivalent aperture (see equation 3.3.5)

• µl is the viscosity of the pore liquid

• Kfr,n is the normal stiffness of the fracture

• Kf is the bulk stiffness of the fracturing fluid

The storage term thus reflects the compressibilities of both the fluid and rock. This def-

inition was developed around the concept of parallel plate flow, and was first derived for

solid interfaces with smooth walls (parallel fractures) which are only an approximation of

reality. In Elfen TGR, the fracture aperture of a wedge-shaped, non-parallel fracture has

been taken as an equivalent aperture e with a modification factor F to the mean fracture

aperture em:

e = em
F

= em
3

√
16r2

e

(1 + r2
e)

4 (3.3.5)

where re is the ratio between the apertures at the ends of the network element, eaand eb:

re = ea
eb

. The mean hydraulic radius em is simply em = ea+eb
2 .
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3.4 Time Integration

The mechanical governing equation is solved explicitly, which means that the time step to

advance the solution is conditionally stable and, with the very stiff shales often observed

in tight gas reservoirs, can be relatively small.

Conversely, the liquid seepage, liquid network, mass transport and heat flow governing

equations (where appropriate) are solved implicitly.

In practice, this mixing of solution schemes results, for a given time interval, in many more

time steps in the explicit scheme compared against the implicit scheme. Therefore, some

form of interpolation of the field variable, in this instance the liquid seepage and liquid

network pore pressures, is required on the explicit side between coupling times.

3.5 Models

3.5.1 Mechanical Model

Elfen TGR has several mechanical models available for use. For the simulations dis-

cussed in later chapters, a Mohr-Coulomb with Rankine corner material was used to rep-

resent the shale. The Mohr-Coulomb yield criterion is a generalisation of the Coulomb

friction failure law and is defined by

τ = c− σntanφ (3.5.1)

where :

• τ is the magnitude of the shear stress

• σn is the mean effective stress

• c is the cohesion

• φ is the friction angle.

In principal stress space, the yield surface is a six-sided conical shape. The conical nature

of the yield surface reflects the influence of pressure on the yield stress and the criterion

is applicable to rock, concrete and soil problems. The implementation includes a tension

cut-off in the form of a complete Rankine tensile corner, as opposed to a hydrostatic cut-

off. The Rankine tensile corner introduces additional yield criteria defined by:
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σi − σt = 0 i = 1, 2, 3 (3.5.2)

where

• σi refers to each principal stress

• σt is the tensile strength

Although at present no explicit softening law is included for the tensile strength, indirect

softening does result from the degradation of cohesion according to the following criterion:

σt ≤ c
(1− sinφ)

cosφ (3.5.3)

This ensures that a compressive normal stress always exists on the failure shear plane.

Figure 3.5.1 illustrates the yield surface according to this model.

Figure 3.5.1: Yield Surface for the Mohr-Coulomb Model

Figure 3.5.2 shows the yield surface in principal stress space both without (a) and with (b)

the Rankine Tensile Corner.

Failure The Mohr-Coulomb model is combined with a Rankine Crack formulation to rep-

resent failure in tension and subsequent fracture. Two parameters are required:

• Tensile Strength σt
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Figure 3.5.2: Yield Surface for the Mohr-Coulomb Model in Principal Stress Space

• Fracture Energy Gf

Once the material has reached its tensile strength, it softens and finally fails once the

appropriate amount of fracture energy has been released. This is illustrated in Figure

3.5.3- the softening slope ET is defined as:

ET = σ2
t lc

2Gf
(3.5.4)

where lc is the characteristic length scale, and is incorporated into the material model

characterisation process. This diagram also shows the softened Young’s modulus ES .

Figure 3.5.3: Failure: General Expression
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3.5.2 Liquid Model

Elfen TGR makes available both Newtonian and non-Newtonian fluids. In the following

chapters, simulations were restricted to Newtonian, low viscosity fluids.

The following assumptions are made to (proppantless) fluid flow within fractures:

• The fluid is incompressible.

• Flow is locally equivalent to the flow between two smooth, parallel plates.

• Flow is laminar, with a low Reynolds number.

• Gravity is not considered.

Newtonian Fluid A simple, constant viscosity fluid was used:

τf = µγ (3.5.5)

where

• µ is the constant Newtonian viscosity

• γ is the shear rate

• τf is the shear stress in the fluid

Although Newtonian fluids are not frequently used in general for hydraulic fracturing oper-

ations (Detournay, 2016), a low and constant viscosity fluid is applicable to treatments of

brittle shales. More viscous, non Newtonian gels and polymers are often used in higher

permeability media.

3.6 Fracturing with Local Remeshing

One of the key difficulties with modelling hydraulic fracturing, in particular when interact-

ing with pre-existing fractures, is the huge range of scale that must be accounted for in

the simulation. To correctly capture near-fracture events, element sizes must be small;

typically well under 1 m. However, the fracture is likely to travel hundreds of metres in

a domain in the order of kilometres in size. Elfen TGR makes extensive use of a local

remeshing technique which allows a fine mesh to be maintained at the fracture tip as it

travels, while keeping a relatively coarse mesh throughout the rest of the domain.
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This method results in much higher quality fracture geometry than other schemes which

rely on fracturing along element boundaries. Authors such as Fu et al. (2012) argue that a

regular triangular mesh allows a fracture to change direction in increments of 45° , and that

multiple direction changes can be summated to achieve any desired fracture path. The

motivation behind the development of the following scheme was the mesh dependence

which element boundary fracturing schemes enforce.

3.6.1 Fracture Prediction

The insertion of a fracture is based on a failure indicator FS :

FS = 2FR − 1
FR

(3.6.1)

where

FR = σt
σ1 + σt

(3.6.2)

A local nodal failure model defines the local average nodal failure factor for a node F f as

F f = max
(
FS : all adjacent elements

)
(3.6.3)

A non-local nodal failure model is used in Elfen TGR, which is based on the failure path

predicted by a patch of damaged adjacent elements. The methodology for evaluating the

fracture path direction and length is as follows:

• Monitor nodal failure factors F f , and when a node’s value exceeds 1.0, introduce a

failure path.

• Extend the failure path as adjacent elements in the fracture direction fail. Fracture

direction is defined as perpendicular to the maximum tensile principle stress.

• When failure path exceeds a specified length all points along path are used to form

the fracture. The fracture polyline is smoothed by a linear function.

3.6.2 Fracture Insertion

A requirement of the coupled geomechanical-flow network-seepage analysis is that the

nodes on either side of a fracture match with the nodes on the fracture flow network - this

is to ensure conservation of the liquid/gas flow into/out of the matrix from the flow network.
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To generate a matching matrix/flow network mesh, the fracture surfaces and flow network

are first merged to a single geometric line - see Figure 3.6.1.

Figure 3.6.1: Mesh collapse prior to insertion

The proposed fracture path polyline is then added to the existing fracture geometry. El-

ements crossed by the new fracture geometry are identified and marked as “seed ele-

ments”. A zone of a configurable number of layers of elements around the seed elements

becomes the local remesh patch. This is illustrated in Figure 3.6.2. The local remesh

patch is able to selectively refine the patch, as well as de-refine regions outside it. This

greatly reduces runtime in comparison to performing a remesh of the entire model. Local

remeshing also allows a coarser mesh to be used initially, since the refinement around

new fracture geometry ensures that there is a fine mesh ahead of the fracture tip. Dere-

finement can reduce the effect of continually refining around the propagating fracture; the

result is a fine mesh around the current fracture tip, with a slightly coarser mesh along the

rest of the fracture.
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Figure 3.6.2: Local Remesh Patch Identification

Once the local patch has been remeshed, all state variables from the old mesh patch are

mapped to the new patch. The fracture is then reinflated, reversing the process illustrated

in Figure 3.6.1.

3.7 Results Visualisation

Most of the result visualisation techniques employed in this work will be familiar or intu-

itive to the reader. Contour plots, which colour the simulation domain according to the

magnitude of a scalar variable, are commonplace. Simple 2D tensor visualisations are

also used throughout, these show two orthogonal lines at nodal positions which indicate

principal stress orientations, and their lengths are scaled according to their magnitudes.

The line colours differentiate the tensor components.

A less common technique employed regularly here are Line Integral Convolution (LIC)

plots. LIC is an image convolution technique first described in Cabral and Leedom (1993),

and is used here to display the principal stress field. The maximum principal stress vector

is used as in input to advect a random noise image; for each point in the output, two

streamlines are calculated using the stress field components - one forwards and one
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backwards. The colours of the noise image lying on the streamlines are combined to

arrive at a final value for the output point. The advected noise image replaces the original

noise image, and the process is repeated several times to arrive at the final plot. The noise

image is greyscale, and colour is introduced to the final output to represent the magnitude

of a given value, which for the stress field is a stress intensity (σI =
√
σ2

11 + σ2
22). In this

work, the colour range is often selected to emphasise the field direction only.

3.8 Conventions

Conventions used to describe relative stress magnitudes in Elfen are not the same as

those typically used in geomechanics. In Elfen, tensile stresses are positive, and σ11 is the

most tensile stress. In the 2D simulations throughout this work, all are in plan view unless

otherwise stated, and are plane strain simulations under normal faulting conditions (i.e.

σV > σHmax). Contour keys in screenshots obtained from Elfen will label the horizontal

principal stresses as either σ11 or σ22, whereas from a geomechanics perspective, σV
would be σ11.

It should be made clear in any discussion of contour plot screenshots exactly what is

being described, however for reference the following Table 3.4 should clarify any doubt.

Furthermore, note that typically Elfen displays effective stresses.

Elfen Geomechanics Alternative Description
σ11 σ33 σHmin Most Tensile/Least Compressive Principal Stress
σ22 σ22 σHmax Intermediate Principal Stress
σ33 σ11 σV Least Tensile/Most Compressive Stress

Table 3.4: Elfen vs Geomechanics Notation for Normal Faulting
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Chapter 4

Modelling the Texas Two Step
Method

4.1 Introduction

One of the simplest forms of fracturing a horizontal well is simultaneous stimulation of

transverse fractures. In common with current fracturing treatments, it requires first per-

forating the well at intervals along its length. Perforation clusters (or intervals in some

literature) are created using high energy methods, including shaped charge explosives,

resulting in perforations through the well casing and opening starter fractures in the rock.

The term opening is used loosely here, as “blasting” or “shattering” may be more appropri-

ate. “Opening”, as used in the rest of this work, is a specific mode of fracture propagation

caused by fracture walls being pulled apart.

The starter fractures are designed to ensure fracturing initiates at specific intervals along

the well. A simultaneous stimulation will isolate a section of the well using a packer, and

pump the well full of fracturing fluid, creating multiple parallel fractures transverse to the

well. A key decision made in this type of fracturing is the spacing of the perforations, since

the stress changes induced by the opening of each fracture can interact with each other

and produce a phenomenon known as stress shadowing.

Stress shadowing is a well known and studied issue in hydraulic fracturing (Olson, 2004,

Fisher et al., 2004, Soliman et al., 2008, Morrill and Miskimins, 2012). Although each frac-

ture in the scenario described is stimulated at the same time and rate, they experience

increased stresses to varying degrees based on their location relative to the other frac-

tures. In a group of 3 or more fractures, the outer fractures see increased lateral stress

acting on their walls from one side only, and since the other side is relatively free to move,

are easier to propagate. The central group of fractures are usually significantly shorter
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than the outer fractures due to this phenomenon. It is also common to see the outer

fractures bending away from the zone of higher stresses, before realigning with the in-situ

stresses once beyond the influence of the central fractures. The amount of increased

stress experienced by each fracture decreases with distance, and at a suitable spacing,

the fracture lengths will be very similar. The balance for an operator using this method

of stimulation is getting the spacing right; too close together and the preferential growth

of the outer fractures will render the central fractures relatively unproductive, too far apart

and gas recovery rates per length of well will be low.

The Texas Two Step Method (Soliman et al., 2010), abbreviated as TTSM throughout

this work, is a fracturing treatment that is sequential, i.e. rather than stimulating a series

of fractures at the same time, individual perforation clusters are isolated using movable

sleeves and treated individually. The method is named after a country and western dance

which allegedly involves taking two steps forward and one step back. For a series of

fractures, the first cluster is stimulated and held open, while the third (i.e. two steps

forward down the well) is then stimulated. Once the fracture from the third cluster has

grown, the injection point is moved back one cluster and the second cluster, now in the

space between two open fractures, is stimulated. See Figure 4.1.1 for a schematic of the

early stages of a TTSM treatment.

Figure 4.1.1: TTSM schematic (Soliman et al., 2010)

An important property of the stress increases following fracture insertion is that the lateral

stresses are increased more than the longitudinal. This is especially important consider-

ing that the hydraulic fracture propagates in the direction perpendicular to the minimum

stress, and that stress increases from neighbouring fractures can be linearly superim-

posed. Assuming a certain amount of stress anisotropy, the resulting effect is that the

minimum horizontal stress between the first two fractures is increased, and this will result
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in a reduction of stress anisotropy. Given appropriate conditions, the principal stresses

may even become reversed. Soliman et al. (2010) argue that this alteration of the stress

field between the two first fractures creates a stress state conducive to increased frac-

ture complexity. This is based on the idea that reducing the stress anisotropy may allow

natural fractures to open during stimulation of the third fracture, creating a “swarm” of frac-

tures. Alternatively, if the anisotropy is reversed, they propose that a longitudinal fracture

between the first two would be created.

Jo (2012) examined this technique further, using the Boundary Element Method to model

the first two fractures propagating sequentially. The effect of fracture spacing on the ge-

ometry of the second fracture was examined. Beyond a certain spacing, the second

fracture deviated away from the first (a “repulsive” path), and conversely at distances less

than this spacing, the second fracture curved towards the first, taking an “attractive” path.

In this chapter, a series of simulations were performed using Elfen TGR to examine vari-

ous effects associated with the TTSM and look at some of the points raised in Jo (2012).

The simulations modelled the propagation of the first two fractures in a TTSM cycle, and

consider the effects on the area between them. Later chapters examine issues relevant

to the propagation of the third fracture, namely propagation in a modified stress field, and

interaction with natural fractures.

4.2 Methodology

A series of simulations using the fully coupled hydro-mechanical analysis technique de-

scribed in chapter 3 were carried out. The model is driven by a prescribed fluid flux which

generates the required pressure to open a starter fracture. The 2D simulation models

a plan view, i.e. at a constant depth, of a relatively thin layer of shale in a 1km square

domain. Under these circumstances gravitational effects are ignored, and uniform, axis

aligned stresses are used to initialise the model, as well as a uniform pore pressure.

Figure 4.2.1, from Bunger et al. (2012) is a schematic of the two fracture problem. In this

chapter, the two fractures are denoted F1 and F2.

Figure 4.2.2 shows the the simulation model setup. Fractures initiate from injection into

vertically oriented starter fractures, the horizontal distance between them being equivalent

to H in figure 4.2.1. Boundary conditions on the domain include consist of fixed external

boundary lines; the size of the domain in relation to the stimulated region mitigates the

effects of these boundaries being unable to move.
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Figure 4.2.1: Outline of the problem in Bunger et al. (2012)

Figure 4.2.2: Simulation Initial Conditions

In a series of simulations, two fractures were opened sequentially, for each fracture pump-

ing a volume of 10 m3 of slickwater at a rate of 0.1 m3

s . Table 4.1 lists the parameters used,

unless noted otherwise. After the first fracture had taken 10 m3 of fluid, the flux loading

was removed and the fracture isolated from the rest of the system, effectively locking the

fluid in the fracture. No leak-off was modelled, to maximise the effect of the first fracture

remaining open due to fluid pressure.
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Parameter Value Unit
Young’s Modulus 32 GPa
Poisson’s Ratio 0.2
Reservoir Pore Pressure 20 MPa
Effective Stress XX 10 MPa
Effective Stress YY 12.75 MPa
Effective Stress Ratio Sxx:Syy 0.7843
Effective Stress ZZ 15 MPa
Porosity 0.01
Fracture Height (Layer thickness) 10 m

Fluid Volume 10 m3

Flow Rate 0.1 m3

s

Fluid Viscosity 1.67e-3 Pa.s
Layer Height 10 m

Table 4.1: Indicative Simulation Parameters

4.3 Results

The simulation results are presented in three aspects. The geometry of the two fractures,

the change in stress anisotropy between and around them, and the pressure required to

open them.

4.3.1 Geometry

The geometry of simulating fractures spaced at 10, 25, 50, 100, 150, 200 and 250 m are

shown superimposed upon each other in Figure 4.3.1.

In Figure 4.3.2, the geometry of the upper half-length of F1 is shown, again with each

simulation result superimposed. The plot has been scaled by an order of magnitude in

the horizontal direction (x) only, to exaggerate the differences between the runs.
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Figure 4.3.1: Fracture Geometry at 10, 25, 50,100, 150, 200 and 250 m spacing
This image shows the results of the simulations superimposed upon each other, with the
F2 fractures at each spacing clearly visible. The F1 fractures can also be seen superim-
posed upon each other at the same position, and are the left most set of fractures.

Figure 4.3.2: Half length of F1, scaled in x by 10
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Figure 4.3.3 plots the final length of the first fracture for each simulation, the aperture of

F1 and F2 vs normalised length are presented in Figure 4.3.4 and 4.3.5 respectively.

Figure 4.3.3: Final length of first fracture

4.3.2 Pressure

The pressure histories for the two extreme spacings are plotted in 4.3.6. Figure 4.3.7 is a

detail of the pressure histories, showing pressure differences at the end of the simulations.
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Figure 4.3.4: Aperture of F1 vs Normalised Length

Figure 4.3.6: Pressure Histories 10m and 250m (F1 and F2)
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Figure 4.3.5: Aperture of F2 vs Normalised Length

Figure 4.3.7: Pressure Histories 10m and 250m (F1 and F2)- End of Simulation

Figure 4.3.8 plots the net opening pressure of F2 for each distance.
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Figure 4.3.8: Net Opening Pressure of F2

4.3.3 Stress

Soliman et al. (2008) presented the results of Sneddon’s (Sneddon (1946)) solution for

the stress state around semi-infinite crack, dividing the change in stresses by the net

extension pressure, and plotting this against the distance from the fracture divided by

the fracture length. This is evaluated along a line perpendicular to the fracture, and the

resulting graph is shown in Figure 4.3.9. A similar plot can be obtained from the numerical

simulations being discussed. Figure 4.3.10 plots the same change in stress/net extension

pressure vs the distance from F1 at 101s.
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Figure 4.3.9: Dimensionless Stress Change vs Dimensionless Distance, Soliman et al.
(2008)
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Figure 4.3.10: Dimensionless Stress Change for a Single Fracture - Simulation

Figure 4.3.11: Difference between Delta SXX and Delta SYY

Figure 4.3.11 plots the difference between the Delta Sxx and Delta Syy values, showing

the maximum occurring at a L/H ratio of approximately 0.3.

Figure 4.3.12 shows the ratio of principal stresses between the two fractures at the end

of the simulation. Figure 4.3.13 shows the ratio of σxx vs σyy, showing stress anisotropy

reversal as a value > 1.0.
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Figure 4.3.12: Stress Anisotropy Factor vs Dimensionless Distance between fractures

Figure 4.3.13: Sxx/Syy vs Dimensionless Distance at 25m spacing
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Figure 4.3.14 plots the ratio of principal stresses at the end of each simulation. Values

nearer 1 are red, those at zero or less are blue - and the minimum and maximum values

are local to each simulation. Figure 4.3.15 plots the anisotropy ratio r (equation 4.3.1) for

each case using a common scale of 0.85 to 1.0, for direct comparison (the initial value is

0.78).

r = σHmin
σHmax

(4.3.1)
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250m Spacing 200m Spacing

150m Spacing 100m Spacing

50m Spacing 25m Spacing

10m Spacing

Figure 4.3.14: Anisotropy 250m-10m, local maxima/minima
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Legend

250m

200m 150m

100m 50m

25m 10m

Figure 4.3.15: Anisotropy ratio 0.85-1.0, 250m-10m spacing
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4.4 Discussion

4.4.1 Geometry

Several observations can be made regarding Figure 4.3.1. In all cases, F1, on the left,

is considerably longer than F2. This is due to the residual fluid pressure in F1 continuing

to propagate the fracture as F2 is formed. Classic stress shadowing effects are seen in

the 50, 100 and 150 m F2 fractures. The principal stress field, as will be seen in the

following discussion, is rotated due to F1 in such a way that the maximum principal stress

is oriented away from F1 at (or just ahead of) the initiation point of F2. This causes the F2

fracture to bend away from F1. The effect is reduced as the fractures are spaced further

apart, and the 250 m fracture is essentially unaffected by F1.

In the 10 and 25 m cases, F2 behaves in a way that could not be easily predicted by

looking at the principal stress field at the time of initiating it. Rather counter-intuitively, F2

is attracted towards F1. This behaviour will be studied in more detail in section 4.4.4.

Variation in the shape and length of F1 can also be seen. Until the initiation of F2, the

simulations are identical (within the limits of mesh dependent effects). For this reason the

variation is restricted to the portion growing under residual pressure in F1.

In Figure 4.3.2, the geometry of the upper half-length of F1 is shown, again with each

simulation result superimposed. The plot has been scaled by an order of magnitude

in the horizontal direction (x) only, to exaggerate the differences between the runs. The

influence of F2 on the continuing growth of F1 can be seen in this plot, and is more intuitive

to interpret than the shapes of the F2 fractures. The furthest spaced F2 fractures at 200

m and 250 m have little effect on the direction or length of F1. The F2 fracture at 10 m

spacing appears to increase the length of F1 without significantly redirecting its direction.

An examination of the stress state below will help to explain this further, although Figure

4.3.1 shows that the second fracture is much further from the tip of the first due to its short

length, and that this may explain the lack of influence on its curvature.

Figure 4.3.3 plots the final length of the first fracture, which is higher when the fractures

are spaced closer together. Plots of the aperture of F1 vs normalised length (Figure 4.3.4)

show the influence of the nearer F2 fractures. These act to close F1 near its center. In the

10 and 25m cases, this has the effect of increasing the aperture as the distance from the

center increases, before returning to the more familiar elliptic profile.
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4.4.2 Pressure

Examining the pressure histories (Figure 4.3.6) for the two extreme spacings shows some

divergence towards the end of the simulation in both F1 and F2. Looking at this part of

the history in more detail (Figure 4.3.7), the difference in final pressures for F1 is ap-

proximately 1.2 MPa, and for F2 0.8 MPa. These differences are not considered to be of

particular consequence.

In Figure 4.3.8, the net opening pressure of F2 is plotted for each distance. At 25 m, a

relatively high opening pressure is observed. This may be due to some stress interference

forming a “sweet spot” here, although it will be necessary to examine the stress state for

further insight.

4.4.3 Stress

Anisotropy Change

Line of Symmetry The plot of dimensionless stress change - Figure 4.3.9 - can be

compared to a similar plot obtained from these numerical simulations. Figure 4.3.10 plots

the same change in stress/net extension pressure vs the distance from F1 at 101s. At this

point in time F2 had not started to open, and there was residual pressure which would

allow F1 to continue propagating, so the analytic solution for the fracture at equilibrium

is not expected to match perfectly. Some spikes are visible near the fracture which are

numerical artifacts - the effects of damage on the near wellbore surface - but in general,

the two sets of curves match well, showing a larger change in the minimum horizontal

stress direction, and an overall drop in vertical (z) stress. Figure 4.3.11 plots the difference

between the Delta σxx and Delta σyy values, showing the maximum occurring at a L/H ratio

of approx. 0.3. In this example, the fracture length H is 134.98 m, making the distance

~40 m.

The principal aim of the TTSM is to reduce or reverse stress anisotropy in the zone be-

tween F1 and F2, to increase fracture complexity when stimulating the third fracture (Soli-

man et al., 2010). With this aim in mind, Figure 4.3.12 shows the ratio of principal stresses

between the two fractures at the end of the simulation. Examining this chart, the most

favourable spacing is at 100 or 150 m, since in both cases the ratio of principal stresses

increases from an in-situ value of 0.78 to ~0.9, and is maintained at this higher level for

a better proportion of the space between the fractures. In the 250 and 200 m cases, the

anisotropy increases as the influence of F1 and F2 on each another is reduced.

Because the maximum principal stress is always higher than the minimum, the ratio of

principal stresses can not exceed a value of 1.0. For this reason that ratio is unable

86



to show anisotropy reversal (ignoring tensile stresses). However, if these are assumed to

remain oriented with the x and y axes, reversal can be shown by plotting σxx vs σyy. Figure

4.3.13 does this, and shows the only simulation in this set of results with any anisotropy

reversal, in which for a short region σxx is greater than σyy. This is at 25 m spacing, and

by looking at 4.3.12 it can be seen that the nearest result to anisotropy reversal is in that

same region, for the same fracture spacing.

Figure 4.4.1: Change in Stress Anisotropy vs Distance along the Wellbore (Soliman et al.
(2010))

In Soliman et al. (2010), similar results are predicted, illustrated in Figure 4.4.1. The

simulations were run under the same conditions given in Table 4.1, with the exception of

a stiffer Young’s modulus (48 MPa vs 32 MPa), and a narrower range of fracture spacings

- between 91 m and 244 m vs 10 m and 250 m. The curve is not directly comparable with

Figure 4.3.12, since Figure 4.4.1 plots absolute distances and the change in absolute

anisotropy, whereas the normalised ranges compress the data in Figure 4.3.12. However,

general trends can be compared in both. In Figure 4.4.1 the anisotropy change is an M-

shaped curve between the most distant fractures, which flattens as the fractures get closer

together, becoming parabolic at the closest spacing. This pattern can also be observed

in Figure 4.3.12.

There are also clear differences. The results are notably asymmetric in Figure 4.3.12, and

at spacings below 100 m it is difficult to distinguish a clear trend. Anisotropy reversal is

apparent in Figure 4.4.1, which does not occur (beyond the small region discussed above)

in these results.
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Full Field 4.3.14 shows the ratio of principal stresses for each simulation. These plots

are contoured using the local maxima and minima. Comparing these maxima over the

whole field with those obtained along the line of symmetry in Table 4.2, it appears that the

closest ratio to 1.0 is not obtained along the line of symmetry, and in that for every case,

higher values are found outside this line.

Fracture Spacing (m)
Maximum Anisotropy Ratio
SHmin/SHmax - Full Field

Maximum
Anisotropy Ratio
- Line of
Symmetry

10 0.973 0.877
25 0.997 0.993
50 0.955 0.932
100 0.938 0.899
150 0.944 0.896
200 0.930 0.887
250 0.938 0.877

Table 4.2: Maximum Anisotropy ratio at end of Simulation - full field

It is possible that these high values are single element “hotspots” or numerical artifacts,

as previously seen near the fracture surface in 4.3.10. To investigate this, plots of the

elements with values between the maximum value along the line of symmetry and the

full-field maxima were created. They showed in all cases, isolated elements near the

fracture which are distributed sparsely enough so as to be ignored - each have at most

two adjacent elements with a similarly high value. When averaged across nodes, the

effect of these elements is seen to be negligible.

An example is presented in Figure 4.4.2. This is one of the “worst” - the 250m spacing

case, which has some larger elements near F2 with an anisotropy ratio above the line of

symmetry maximum. All elements with an anisotropy ratio below the line of symmetry

maximum (0.877) are hidden. The upper image shows the per-element values. When

these are viewed averaged onto the mesh nodes, their impact is significantly reduced,

and on this basis the values above the line of symmetry maximum are deemed outliers.

All values remaining visible are at the lower end of the range.

Figure 4.3.15 plots the anisotropy ratio for each case using a common scale of 0.85 to

1.0, for direct comparison. The ratio of 0.85 has been chosen using Figure 4.3.12, as it

represents an area of lower anisotropy than the initial state (a ratio of 0.78), while most of

the simulations appear to have a comparable amount of data to evaluate. The area of the

simulation domain falling within this range can be considered one metric of performance

of a treatment, given that the aim of the treatment is to reduce anisotropy. Consistent with
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Figure 4.4.2: Anisotropy ratio: Values above the axis of symmetry maximum, 250m spac-
ing.

the line of symmetry results, the plots show large areas within this range at 100m and

150m. To take a more objective look at these contour plots, the total area of elements

falling within the range 0.85 to 1.0 for each simulation are presented in three different

charts, each representing a particular metric. The first metric, AT , in Figure 4.4.3, is a

straight sum of the areas of elements Ai with an anisotropy ratio r within that range.

r = σHmin
σHmax

(4.4.1)

χA (r) :=

1 r ≥ 0.85

0 r < 0.85
(4.4.2)

AT =
∑
i

AiχA (ri) (4.4.3)

This metric puts the 150 m spacing ahead of the 200 m and then 100 m spacings. Perhaps

a better metric would only consider the area between the fractures, since that is the region

which will be stimulated next. Here the x component of each element’s centroid (Cx) is

used in conjunction with the x position of F1 and F2 at initiation (F 1
x and F 2

x ) as follows:
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χx (Cx) :=


1 F 1

x ≤ Cx ≤ F 2
x

0 Cx < F 1
x

0 Cx > F 2
x

(4.4.4)

AI =
∑
i

AiχA (ri)χx (Cx) (4.4.5)

This internal area AI is plotted for each spacing in Figure 4.4.4, and the relative position

of the best four spacings does not change. It is not surprising that the closest spaced

fractures appear to be far less significant in this plot, given the similar lengths of all the

fractures and the reduced capacity for internal area by the very nature of their proximity.

For this reason, a third metric, AN is introduced in equation 4.4.7, in which the internal

area values are divided by the fracture spacing. This metric is plotted in Figure 4.4.5, and

ranks the 100 m spacing ahead of the others, followed by 150 m, then 50 m and 200 m.

Recalling Figure 4.3.8, at 100 m spacing there is a ~1 MPa higher opening pressure for

F2 at 100 m in comparison to the 150 and 50 m spacings. This is a (minor) tradeoff for a

12% and 24% difference in this metric respectively. Whether this metric is an indicator of

increased fracture complexity requires further investigation.

L = F 2
x − F 1

x (4.4.6)

AN =
∑
iAiχA (ri)χx (Cx)

L
(4.4.7)

Stress State - Rotation

As well as anisotropy reduction, TTSM also aims to go beyond the isotropic stress state

and reverse the principal stress directions if possible. There are two mechanisms which

can cause this. The first is a pure magnitude shift of σxx and σyy until the first is larger than

the other. This is the method used to reduce anisotropy along the axis of symmetry in the

TTSM - the magnitudes of σxx and σyy change at different rates as the fractures open.

Alternatively, introduction of shear stress τxy will rotate the principal stresses. Recall that

under the conditions of these simulations, namely an in-situ stress state aligned with the

global X and Y axes, a non-zero X/Y shear stress τxy indicates a rotation of the principal

stresses. Figures 4.4.6 and 4.4.7 are cartoons of these two mechanisms; Figure 4.4.6

illustrates a magnitude change that is higher in the X direction, either by addition of σxx,

or reduction of σyy, or both. Figure 4.4.7 shows the effect of increasing τxy, which rotates
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Figure 4.4.3: Total Area with Anisotropy Ratio > 0.85

the the principal stresses until they are 90° from their original orientation. In this cartoon,

the arrow heads indicate the direction of the compressional principal stresses.

The angle of rotation of the principal stresses is given by

α =
atan2

(
τxy,

(
σxx−σyy

2

))
2 (4.4.8)

where atan2 is the function which returns an angle between −π and π for a given x, y

pair1. A plot of the absolute value of this angle α for α > 5ř, at spacing 150m is presented

in Figure 4.4.8. This shows that the area between the two fractures is exposed to low

amounts of stress rotation.

Stress rotation will be examined in detail for the more complex cases in 4.4.4 - those which

result in attractive growth of F2. The other examples, 50 - 250 m exhibit behaviour typical

of stress shadowing cases and are dealt with here generally.
1The exact implementation of this function depends on the programming language used, which in this

case is C
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Figure 4.4.4: Total Internal Area with Anisotropy Ratio > 0.85

Figure 4.4.6: Principal Stress Reversal Mechanism (a)

Figure 4.4.7: Principal Stress Reversal Mechanism (b)
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Figure 4.4.5: Total Internal Area with Anisotropy Ratio > 0.85 / Spacing

The superposition of stress states works against an increase in shear stress in the zone

between the two fractures for reasons which are clear when τxy is visualised at the end

of pumping the first fracture. Figures 4.4.9 and 4.4.10 plot negative and positive τxy

separately. Shear stress is higher in magnitude surrounding the tips of the fracture, and

taking the upper tip as an example, the zone of negative τxy is largely confined to a zone

extending towards the right. Conversely, a zone of positive τxy extends to the left.

Superimposing a second fracture to the right of Figure 4.4.8 under the same stress con-

ditions would result in the positive τxy zone to the left of that second fracture’s upper tip

negatively interfering with the zone of negative τxy to the right of the first fracture’s upper

tip. The same applies to the lower tips, and is evident in Figure 4.4.8, as the zone of stress

rotation is smaller inside the two fractures than outside. Figure 4.4.11 is a cartoon of this

stress cancellation. Chapter 7 examines how these shear interactions might be used to

positively reinforce each other, rather than cancel.

Another visualisation technique is employed in Figure 4.4.12, which uses LIC (see section

3.7) to advect a noise image using the principal stress vectors. The plot is of a subsection

of the simulation at the end of pumping F2- a region bounded by (300,300) to (650, 650).

The tips of each fracture are highlighted with red dots, and the line joining the start points

of each fracture are joined with a straight red line. The third fracture in the sequence for

TTSM would start at some point along this line, which represents the well. This region

shows little change in stress orientation, consistent with the plot of principal stress angle

in Figure 4.4.8.
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Figure 4.4.8: Absolute Value of Principal Stress Rotation Angle α, α > 5ř

Figure 4.4.9: Single fracture, negative τxy only

4.4.4 Attractive Fracture Growth

As noted in 4.3.1, the simulations with fractures spaced at 10 and 25m exhibit an unex-

pected growth towards each other. Figure 4.4.13, from Bunger et al. (2012), distills their

work on dimensionless classification of parameters affecting closely spaced fractures into

a flow chart. This chart can be used to predict the mechanism driving curvature (if any)

of the second fracture. Jo (2012) suggest that this attractive curvature may be due to

opening and sliding along the first fracture, or shear stress interactions.

The key parameters required to use the flow chart 4.4.13 are set out in tables 4.3 and

4.4, for one set of laboratory experiments from Bunger et al. (2012) and the simulation

values for the 10m spacing numerical simulation, as well as a theoretical case with low

friction in the first fracture. The relevant path through the chart is highlighted in red for the

zero friction example, and in blue for the low friction case. The low friction case was not

simulated numerically, as H1 (F1) is held open with fluid, rather than a proppant which

could provide non-zero friction. Both result in the same outcome, however - “Further
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Figure 4.4.10: Single fracture, positive τxy only

Figure 4.4.11: Shear Stress Summation Cartoon

Analysis”. Hence, an examination into the cause of this behaviour is presented.

It is reasonable to assume that the curvature of the second fracture is due to rotation of

the stress field ahead of it; it follows that examining the principal stress directions is a

logical place to begin. The left of Figure 4.4.14 is a close-up LIC plot of the simulation at

time 112s, 12s after pumping begins into F2 and shortly after it begins to fracture. On the

right is the simulation at 120s, and both are using the most compressive principal stress

direction as the vector field. A false colouring scheme is used to highlight detail in each

image. The colours are scaled according to the following stress intensity σI :

σI =
√
σ2

11 + σ2
22 (4.4.9)
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Figure 4.4.12: LIC visualisation of principal stress field

Figure 4.4.14: LIC plot of 10m spacing at 112s (left) and 120s
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Parameter Description ORNL 1-2 B C

D Dimensionless
deviatoric stress

3.6140 6.875 6.875

S Dimensionless
minimum far-field
stress

2.71E+01 7.50E+01 7.50E+01

M Dimensionless
viscosity

2.95335 27.9443 27.9443

W Dimensionless
H1 width

7.3923 4.4444 3.3333

SM−
1
4 20.6765 32.6202 59.8038

DM−
1
4 2.7568 2.9902 1.3592

HW
aD 0.1636 0.0862 0.1067

Model Prediction Neglect
Curving

Further
Analysis

Further
Analysis

Observation Parallel Attractive
Curvature

N/A

Table 4.4: Laboratory and Numerical Simulation Calculated Parameters.
B = 10 m frictionless, C = 10 m low friction

This is closely related to the von Mises stress, and is used here to aid visualisation of

the curvature of the stress field in areas of higher/lower overall principal stress. These

renderings show the fracture tips of F2 surrounded by stress rotation. A zone in yellow

at the center, but on the right hand side only, of F1shows stress anisotropy reversal- the

most compressive stress σHmax has become σxx.The lack of any obvious influence from

F2 on the left hand side of F1 leads to thoughts regarding the zone of anisotropy reversal,

and how it has come about:

• The fluid filled, frictionless F1is unable to transfer shear stress to the opposite side.

As discussed above, shear stress is analogous to principal stress rotation, so this

could explain the anisotropy reversal, as well as the asymmetry of that reversal

around F1.

• The zone of stress rotation due to shear appears to move with the fracture tips, but

the zone of anisotropy reversal remains at the center of F1, extending lengthwise as

F2 grows. This hints that the stresses have not rotated, but the magnitudes have

changed. (The first mechanism in 4.4.7).

Plotting the shear stress magnitude together with the orientation of σHmax should provide
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Figure 4.4.13: Flow chart classifying fracture growth mechanisms (Bunger et al. (2012))

some insight into how the reversal of principal stress directions is enabled. Figure 4.4.15

shows σHmax and the absolute shear stress magnitude (|τxy|) in the lower half of the area

between the two fractures. Here, the rotation of principal stress due to higher shear stress

values is clear, and the area with the highest stress rotation is in the area of lowest |τxy|.
This suggests that the anisotropy reversal is due to increased lateral stress rather than

shear.
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Figure 4.4.15: Shear stress and σHmax, t=112 s

A look at the displacement in X indicates that the region between the fractures is able to

move more in X than the region to the right of F2. The absolute X displacement is shown

in 4.4.16. In this case, the contour colouring is not confined to the interior of the two

fractures; the area to the left of F1 is contoured white, indicating a low displacement, as is

the area to the right of F2. Not shown here are plots confirming that the displacement is

towards F1.

A possible explanation for this additional displacement concerns the bulk modulus of the

fluid in F1 relative to that of the rock. The slickwater used to keep the fracture open has

a bulk modulus of 2 GPa, while the shale has a bulk modulus of 15.3 GPa. The fluid is

less stiff than the rock, and is allowing the area of rock between the two fractures to move

towards F1 more than the rock to the right of F2.

Importantly, the tips of F2 act as pivots for a rotation of the interior region, and an additional

asymmetric zone of τxy on the outside of the tip is created. This causes a rotation of the

principal stresses ahead of the fracture tip and consequently alters the fracture path. Fig-

ure 4.4.17 illustrates the pivoting direction, overlaid on a plot of the absolute shear stress,

which is evidently stronger on the interior of the fracture. The regions of τxy aligned with

the 1 o’clock direction at the top of F2, and the 5 o’clock direction at the other end are of

the same sign as the τxy on the left of F2. This is clearer to see in Figure 4.4.20, which

plots both absolute and negative values for comparison, albeit in the reverse pivot direc-
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tion. It is these zones which are ahead of the opening fracture that appear to influence

the propagation direction.

Figure 4.4.16: Absolute displacement in X

Figure 4.4.17: Pivoting due to lower fluid stiffness

To confirm this explanation for curvature towards F1, further simulations were carried out

to isolate the effect. A fracture was initiated at 10m from the left hand domain boundary of

a 1km square block, with a fixity applied in both X and Y directions on the boundary face.

The left hand boundary becomes an analogue for F1 in the previous simulations (denoted

F̂1), and removes the possibility of any movement due to sliding on F1, the shape of the
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open fracture, etc. The result is a higher displacement to the right of the opening fracture,

the F2 analogue F̂2. Relative to the fixed F̂1, the domain to the right of F̂2 is less stiff, and

there is correspondingly higher displacement in X to the right. The same pivot is seen

driving a shear stress increase on the left of F̂2 which in turn rotates the principal stresses

ahead of the fracture, causing it to curve away from F̂1. A plot of the absolute accumulated

displacement in X is presented in Figure 4.4.18, |τxy| in 4.4.20, and areas of negative τxy
in 4.4.20. Comparing figures 4.4.20 and 4.4.20 makes the additional zone of negative τxy
due to the pivoting action. Further plots not presented here confirm rotation of principal

stress direction in these zones consistent with the curvature of the fracture.

Figure 4.4.18: Accumulated Displacement in X, Fixed Boundary

Figure 4.4.19: Shear Stress XY, Fixed Boundary, Absolute Values
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Figure 4.4.20: Shear Stress XY, Fixed Boundary, Negative Values

The simulation above was run with the left hand boundary fixed in displacement and

rotation. Similar results were seen when rotation was allowed whilst maintaining the dis-

placement fixities.

A third simulation removed the displacement constraint altogether and replaced it with a

face loading equivalent to σHmin. This provided an analogue to an open F1 with zero

fluid stiffness. As expected, the fracture curves towards the free boundary using the

same mechanism described above. Figure 4.4.21 plots the signed shear stress τxy at

12s, with the deformation exaggerated by a factor of 300 in both X and Y. This confirms

the mechanism for attractive curvature is due to the fluid stiffness being lower than the

fracturing medium. The fluid stiffness may also explain the asymmetry in stress anisotropy

observed between fractures, see Figure 4.3.12.

Figure 4.4.21: Shear Stress XY, free boundary with face loading (300x exaggerated de-
formation)
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4.4.5 Summary

This chapter used fully coupled, discrete/finite element modelling to examine the details

of fracture growth during the first two steps of the TTSM. Full field representations of

stress were examined between the two fractures. Similar results were observed to those

in Soliman et al. (2010), with some notable exceptions.

Soliman et al. (2010) anticipated the change in stress at various points in space between

the two to approximate the stress interactions between the first two fractures. Using super-

position of Sneddon’s calculations (Sneddon, 1946), they described the profile of stress

anisotropy change along the line between the two fracture initiation points, at different

spacings of the first two fractures. Jo (2012) used the boundary element method to predict

the path of the second fracture. Generally speaking, as the two fractures were spaced fur-

ther apart, the effect of stress shadowing diminished, and the associated curvature away

from the first fracture similarly fell away with increasing distance. Rather unexpectedly,

at closer spacings the second fracture path become increasingly curved towards the first

fracture.

The fully coupled nature of the analysis showed additional effects which are not captured

by superposition of analytical results. For instance, the continued growth of the first frac-

ture while the second was initiating, due to out of balance pressure locked in the fracture,

analogous to a shut in period. Asymmetry in principal stress ratios were observed which

are possibly due to fluid stiffness effects. This has implications for the placement of the

third fracture, which in Soliman et al. (2010) is recommended to be placed in the middle

of the two fractures, owing to the symmetry of the stress anisotropy.

The ability to extract the surface area of the model meeting particular anisotropy condi-

tions was used to evaluate a selection of proposed metrics for appraising the success of

each fracture spacing. The final metric arrived at divided the affected area by the fracture

spacing, and ranked the 100m spacing ahead of the others. Soliman predicts the 150 m

spacing to be optimal based on the anisotropy ratio as measured along the wellbore.

The simulation allowed examination of the full stress field at, within reason, any point in

time (limited by the requested output frequency during simulation setup). This allowed

detailed analysis of the conditions leading to interesting phenomena, such as the attrac-

tive fracture growth observed at close fracture spacings. This analysis has shown that

there is another mechanism, unaccounted for in Bunger et al. (2012), which drives this

attractive curvature. The observation was explained by the reduced fluid stiffness in the

open fracture allowing one side of the second fracture to open preferentially, which in turn

caused a principal stress rotation ahead of the fracture tips on one side, altering the path

of the fracture towards the open fracture.
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Chapter 5

Fracture Reorientation

5.1 Introduction

Chapter 4 examined one method of manipulating the stress field to reduce or reverse

stress anisotropy, namely by opening two fractures either side of a zone in which a third

fracture would be initiated. The stress field in that zone, depending on the fracture spac-

ing, would experience an alteration in the stress anisotropy. The anisotropy could be

reduced to near zero, or possibly reversed, as observed by Soliman et al. (2010). This

chapter looks at the behaviour of a single fracture in a similarly affected zone. The stress

field can also be influenced by reservoir production, and the following simulations are also

pertinent to that situation. The motivation is to understand the behaviour of fractures be-

ing stimulated at various orientations to the stress field, which can have applications to

the following situations:

• Propagation of a fracture in a zone of stress anisotropy reversal

• Propagation of a fracture in a rotated principal stress zone

• Stimulation of a natural fracture at an arbitrary orientation to the in-situ stresses

• Refracture of a hydraulic fracture or well that is surrounded by a zone of reduced

pressure

In an anisotropic stress field, a stimulated starter fracture will re-orient with the in-situ

maximum principal stress direction. This has been studied at the wellbore in some detail

(Daneshy, 1973, Mogilevskaya et al., 2000). Some works, such as Soliman et al. (2010),

predict that a reversed stress field will cause fracture initiation to occur in the reversed

maximum principal stress direction. This may well be the case under strong anisotropic
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conditions. However, under the near isotropic conditions such as those induced in the

TTSM, this may not occur. It is possible that the stresses around the fracture tip created

by the opening of the fracture could dominate the in-situ stresses. This may prevent a

fracture from initiating in the direction of the maximum principal stress direction. The

strength of in-situ anisotropy is likely to affect the propagation pattern, and this chapter

examines the effect of varying stress anisotropy on the reorientation rate of fixed length

starter fractures.

In addition to stress anisotropy, the length of a starter fracture inclined to the principal

stress field is predicted to affect the way it reorients to the stress field. Longer fractures

require less pressure to open, which may affect the influence they have on the surrounding

stress field.

It is also predicted that the initial orientation of a fracture will be important. A fracture

aligned with σHmin will take longer or be harder to reorient to σHmax than one which is

already aligned in that direction. A fracture aligned with σHmin is also predicted to require

a higher fluid pressure to initiate. Conversely, this higher pressure could act to increase

the rate of reorientation.

Simulations to investigate the affect of stress anisotropy, initial length and initial orientation

were conducted.

5.2 Methodology

A series of simulations were undertaken using the fully coupled hydro-mechanical analy-

sis technique described in chapter 3. The model is driven by a prescribed fluid flux which

generates the required pressure to open a starter fracture. The 2D simulation models

a plan view, i.e. at a constant depth, of a relatively thin layer of shale in a 1km square

domain. Under these circumstances gravitational effects are ignored, and uniform, axis

aligned stresses are used to initialise the model, as well as a uniform pore pressure.

5.2.1 Variation of Stress Anisotropy

In the first set of simulations, the propagation of a fracture initially oriented at 90° to the

maximum principal stress direction was examined. Varying degrees of stress anisotropy

were used as initial conditions, with the aim of establishing how the stress anisotropy

would affect the rate at which the fracture reoriented towards the maximum principal stress

direction. Figure 5.2.1 outlines the initial conditions of this set of simulations.
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Several exploratory simulations were carried out under varying confining pressures and

in-situ pore pressures to establish a robust set of basic parameters. As expected, higher

confining pressures1 were found to require higher pressure to initiate fracturing. Since

the fracturing occurred at a higher fluid pressure, the fracture propagated more quickly,

requiring a higher coupling frequency between the fluid and mechanical fields to cap-

ture the propagation accurately. This was because fracture insertion could only occur

after a coupling step, and at lower coupling frequency, the mechanical analysis created

large damage zones between fracture insertions. The resulting fracture geometry was

less likely to be accurate than many smaller damage zones frequently inserting smaller

sections of fracture.

Figure 5.2.1: Simulation Initial Conditions

The higher pressure required to fracture also took longer to achieve in simulation time,

resulting in longer realtime runtimes. The results under lower confining pressures were

obtained more quickly and matched well with those under higher pressures, so lower

confining pressures were used in the final runs to reduce computation time. Similarly, the

mechanical effects on rock fluid pressure are ignored during fracturing by default, so rock

pore pressure only serves to increase the total stress, resulting in longer computation

time. Hence, pore pressure in the shale was removed from these simulations. This is

justifiable on a physical basis by considering that the since the pore fluid is a gas, and

highly compressible, the pore pressure change due to mechanical stress is likely to be
1Equiv. to mean effective stresses
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insignificant.

The general parameters established are given in Table 5.1. Each simulation used the

same initial mesh, with a starter fracture oriented at 90° to the maximum principal stress

direction σHmax, in this case σyy. The minimum horizontal stress was varied for each

simulation, with the expectation that at high levels of stress anisotropy (σHmax � σHmin)
reorientation would occur rapidly, and conversely that there may be some state close to

isotropy in which the fracture reoriented slowly if at all.

Parameter Unit Value

Young’s Modulus GPa 32

Poisson’s Ratio 0.2

Reservoir Pore Pressure MPa 0

Effective Stress XX MPa Varies

Effective Stress YY MPa 5

Effective Stress ZZ MPa 5

Porosity 0.01

Fracture Height (Layer thickness) m 10

Initial Fracture Length m 0.4

Fluid Volume m3 3

Flow Rate m3

s 0.1

Fluid Viscosity Pa.s 1.67e-3

Table 5.1: Indicative Simulation Parameters

5.2.2 Variation of Initial Fracture Length

A second set of simulations varied the initial fracture length to see if a relationship between

this and the fracturing pressure could be established.

The initial fracture length was varied at increasing factors of the fracture length used

in the simulations which varied stress anisotropy (section 5.2.1), and Table 5.1 lists the

basic parameters used in the study. In addition, these were repeated at two values of

σHmin to capture any interplay between stress anisotropy and initial fracture length. The

simulations were carried out with initial fractures oriented at 90° to the σHmax of 5 MPa,

with σHmin of 4 and 4.9 MPa.

The model setup was identical to that shown in Figure 5.2.1, with the exception of the

starter fracture length and minimum horizontal stress magnitude.
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5.2.3 Variation of Initial Fracture Orientation

In a third set of simulations, the initial orientation of the starter fracture relative to maxi-

mum principal stress direction was varied. The initial stresses were σHmax= 5 MPa and

σHmin= 4 MPa for all simulations. The initial fracture length in these simulations was 4 m,

corresponding to a length factor of 10 in the simulations of section 5.2.2. This choice of

length factor was made to reduce the opening pressure, based on results in section 5.3.1,

and discussed in section 5.4.1.

Figure 5.2.2 outlines the initial conditions of this set of simulations.

Figure 5.2.2: Simulation Initial Conditions

5.3 Results

5.3.1 Variation of Stress Anisotropy

Several simulations at widely spaced values of σHmin were run to establish areas in which

to concentrate. The fracture geometry at the end of each simulation for three values of

σHmin are shown superimposed in Figure 5.3.1. For scale, the blue fracture spans 70 m

in the X direction, and the starter fracture in all cases is 0.4 m long. The red fracture has

propagated with σHmin=2.5 MPa, the green fracture propagated under σHmin of 3.5 MPa,

and the blue 4.0 MPa. The transition between 3.5 and 4.0 MPa was deemed of more

interest than that between 2.5 and 3.5, since both the latter cases reoriented completely.

Hence, more simulations were carried out between 3.5 and 4.0 MPa than 2.5 and 3.5.

The final values of σHmin used in each simulation are presented in Table 5.2.
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Figure 5.3.1: Reorientation after 30s, σHmin =2.5 MPa (red), 3.5 MPa (green), 4 MPa
(blue)

σHmin =σxx (MPa) σHmax = σyy (MPa)

2.5 5

3.0 5

3.5 5

3.6 5

3.7 5

3.8 5

3.9 5

4.0 5

4.2 5

4.4 5

4.6 5

4.8 5

5 5

Table 5.2: Minimum Horizontal Stress Values
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Opening Pressure

The fluid pressure history for simulations with σHmin at values between 4.1 and 4.9 MPa

are plotted on 5.3.2, and the peak values recorded as the opening pressure in 5.3.3. Note

the high pressure in relation to the in-situ stresses.

Figure 5.3.2: Fluid Pressure History - Variation of σHmin

Figure 5.3.3: Fracture Initiation Pressure vs σHmin
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Reorientation Rate

Given the aim of establishing a rate at which reorientation occurs, it was first necessary to

establish a means of measuring the amount of reorientation. The first step was to extract

orientation information from the simulation, which was achieved by plotting the orienta-

tion of each element along the propagating fracture pipe, as calculated using atan2(x, y)
where x and y are the vector components of each segment. These were plotted against

the x coordinate of each segment. An example of such a plot is Figure 5.3.4.

Figure 5.3.4: Fracture Element Orientation Plot σHmin= 4.1 MPa

The wide range of orientations for each segment in Figure 5.3.4 is quite pronounced;

this is due to the mesh dependence of the fracture insertion scheme, which is discussed

further in section 5.4.1. A polynomial fitted through the data points agrees well with the

orientation in the center of the fracture as well as the tips, and in this case a value of 60°

at the tip was recorded. However, to capture the evolution of fracture tip orientation at a

sufficient resolution, this process of fitting was reduced to taking the average of a fixed

number of orientations at one end of the fracture. Figure 5.3.5 shows the resulting tip

angle measurements through time for a selection of σHmin values.
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Figure 5.3.5: Fracture Tip Angle Evolution - Variation of Stress Anisotropy

It was unclear from Figure 5.3.5 whether some of the fractures would eventually reorient

if given enough time. A selection of longer simulations were run to establish this, with

values of σHmin between 4 and 4.9 MPa, at 0.1 MPa intervals.

The results of a selection of these simulations (σHmin=4, 4.6, 4.9 MPa) are plotted to-

gether with simulation results that had completed reorienting in Figure 5.3.6. These are

normalised in time, using the start of fracturing and the time at which the fracture tip an-

gle reached a steady value. The fractures with σHmin = 4.0 and 4.6 MPa did continue to

curve and align more towards the maximum principal stress direction. The shorter run at

4.6 MPa is plotted in a dotted green for comparison with the longer run in solid green. As

previously, the results are filtered using exponential smoothing.
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Figure 5.3.6: Smoothed and Normalised Fracture Tip Angle Evolution - Variation of Stress
Anisotropy
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Figure 5.3.7: Time to reorient vs Stress Anisotropy - Variation of Stress Anisotropy

5.3.2 Variation of Initial Fracture Length

Recall from section 5.2.2 that two sets of simulations were run, each varying the initial

fracture length. The fluid pressure at fracture initiation (opening pressure) was recorded

for 7 factors of the starter fracture length used in the studies in section 5.3.1, and the

evolution of the fracture tip angle examined, together with fluid pressure histories and the

relationship between fracture length and tip angle.

Geometry

Figure 5.3.8 superimposes the fractures at time 64.6 s for σHmin= 4 MPa on the same

output. A coloured circle overlaid on the fracture indicates the factor of the reference

starter fracture length, that being the length held constant in section 5.3.1, which was 0.4

m. Where they are in similar locations, the indicator is offset to aid identification. This

plot shows the pipe elements that transport fluid through the fractures, which have been

artificially thickened to aid visibility.
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Figure 5.3.8: Fracture geometry at 64.6s

Opening pressure

The fracture initiation pressure for each fracture was recorded for two values of σHmin, and

is shown in Figure 5.3.9. The opening pressure can also be seen as the peak pressure in

Figure 5.3.15, which uses the data from the runs with σHmin= 4 MPa.
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Figure 5.3.9: Opening Pressure vs Initial Length, 90° to σHmax

Reorientation Rate

Figure 5.3.10 is a plot of smoothed tip angle evolutions for a selection of initial lengths

(as factors of the studies above). The initial stress conditions are σHmin = 4.0 MPa, and

σHmax = 5.0 MPa. The reorientation curve is generally more S-shaped in the longer

fractures, although a plot of the elapsed time since fracture initiated shows the relative

evolution more clearly; this is plotted in Figure 5.3.11. Generally the fracture reorientation

time increases with the initial length of the fracture, again illustrated in Figure 5.3.12.

These results are not trending as clearly to a particular curve as those in Figure 5.3.9,

possibly due to the mesh dependency of the fracture path.

Figure 5.3.13 shows the increase in length of each fracture with time. Figure 5.3.14 plots

the tip angle of each fracture against the extension length (the current length - initial

length). The fluid pressure at the point of fluid injection was also monitored, and this is

shown in 5.3.15.
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Figure 5.3.10: Fracture Tip Angle Evolution vs Normalised Time - Variation of Initial Length

Figure 5.3.11: Fracture Tip Angle Evolution vs Elapsed Time - Variation of Initial Length
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Figure 5.3.12: Time to Reorient vs Fracture Length - Variation of Initial Length

Figure 5.3.13: Fracture Length - Variation of Initial Length
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Figure 5.3.14: Fracture Tip Angle vs Extension - Variation of Initial Length

Figure 5.3.15: Fluid Pressure History - Variation of Initial Length
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5.3.3 Variation of Initial Fracture Orientation

Geometry

Figure 5.3.16 superimposes the fractures at time 36 s on the same output. The legend

uses a coloured circle overlaid on the fracture to indicate the initial fracture orientation

relative to the minimum horizontal stress (in degrees). This plot shows the pipe elements

which transport fluid through the fractures, and have been artificially thickened to aid

visibility.

Figure 5.3.16: Fracture geometry at 36 s - Variation of Initial Orientation

Opening Pressure

The fracture initiation pressure was recorded for each simulation, presented in 5.3.17.

The values are the peaks seen in 5.3.18, which shows the fluid pressure at the point of

injection during the simulations.
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Figure 5.3.17: Opening Pressure - Variation of Initial Orientation

Figure 5.3.18: Pressure Evolution - Variation of Initial Orientation
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Reorientation Rate

The fracture tip angle was extracted as described in 5.3.1, and the smoothed evolution of

the fracture tip angle is plotted in 5.3.19, and normalised in time in 5.3.20. In both cases

the legend refers to the angle from the minimum horizontal stress direction.

Figure 5.3.19: Tip Angle Evolution - Variation of Initial Orientation
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Figure 5.3.20: Normalised Tip Angle Evolution - Variation of Initial Orientation

5.4 Discussion

5.4.1 Variation of Stress Anisotropy

Mogilevskaya et al. (2000) examined the dependence of fracture orientation on near-

wellbore fracture paths. Their model used a starter crack of varying orientation and length.

They found that in terms of stress, the dependency could be reduced to a normalised ver-

sion of the stress anisotropy. A dimensionless parameter β was defined:

β = σHmax − σHmin
K1C/

√
R

(5.4.1)

Where R = wellbore radius and K1C is the fracture toughness (unit MPa√
m ). Their results

of varying β are shown in Figure 5.4.1. While not directly comparable with the following

results, their results show a smooth reorientation from the initial crack, and faster reorien-

tation in higher stress anisotropy.
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Figure 5.4.1: Reorientation dependence on β, Mogilevskaya et al. (2000)

Geometry

It was readily apparent on extraction of the element orientations that while at a macro

level the fractures propagate fairly smoothly, the tip angle was actually quite noisy when

considered on a per-element basis. Figure 5.3.4 exemplifies this, showing orientation

perturbations of 20° or more between adjacent sections from a polynomial fit of the same

data. This is an effect of the fracture insertion method. The mechanical simulation looks

for elements that have reached a damage threshold based on the material failure proper-

ties of each element - in these examples, this is when the tensile strength of the rock has

been exceeded by one of the principal stresses.

Once a required number of elements at the current fracture tip have been damaged be-

yond the threshold value, the fracture geometry is modified by inserting a new section

of fracture based on the geometry of the damaged elements. An illustrative example is

presented in Figure 5.4.2, which shows the current fracture tip location as a thick black

line - representing the pipe elements used in the fluid analysis. The current elements that

have reached the threshold damage value are red, and a dashed blue line is indicative of

the direction in which a new segment of geometry will be added. This will not extend past

the last damaged element, and the direction is determined by the geometric mean of the

damaged elements. Local remeshing of the area around the inserted line ensures that

the direction is maintained - further details of this process are given in section 3.6. Since

the threshold number of elements required to trigger fracture insertion is quite low (around

3), and the elements are small in relation to the main fracture, the stresses around the

fracture tip are not unduly affected by the inserted geometry. This means that the stresses

due to the fracture being propagated continue to produce inserted geometry which is rep-

resentative of that stress field, yet at fine scale show the perturbations seen in Figure

5.4.2, and the noise in temporal plots such as Figure 5.3.6.
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Figure 5.4.2: Fracture direction prediction

It is possible, however, that when the fracture is small or of similar scale to the in compar-

ison to the element size, that fractures are artificially difficult to initiate. For this reason it

is important that the ratio of in-situ fracture length to minimum element size is considered

when setting up the simulations.

Opening Pressure

The opening pressure of this set of simulations is very high - much higher than that pre-

dicted by wellbore tensile failure pressures, for example. Hossain et al. (2000) derive the

fracturing pressure Pwf for a horizontal well parallel to σHmax, in a normal faulting regime:

Pwf = 3σHmin − σV − Pp − σt (5.4.2)

A normal faulting regime is one in which both σHmin and σHmax are of lower magnitude

than σV , which is the case in these simulations. They are run with pore pressure Pp = 0.

The rock tensile strength is denoted as σt, which for the simulations in this chapter is 1

MPa. This is frequently assumed to be near zero due to the presence of natural fractures

(Zoback (2007), Hossain et al. (2000)) . Nevertheless, according to equation 5.4.2, the

predicted fracturing pressure in MPa for the most isotropic case above is:

Pwf = 3 ∗ 4.9− 5− 0− 1 = 8.7 (5.4.3)

Clearly this is nowhere near the pressures of around 45-48 MPa seen in the simulations,
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and the reason is quite obvious - the derivations used to arrive at equation 5.4.2 use the

wellbore geometry to predict the stresses around the wellbore at a given a fluid pressure.

The simulations here are without the internal surface of the wellbore, and are likely to be

dependent on the fracture length - which is explored in more detail in section 5.4.2.

Figures 5.3.2 and 5.3.3 do not make it clear whether there is a consistent effect due to

changing σHmin. Three extra simulations were run to provide a greater range of σHmin,

and these added to the opening pressure chart, updated in Figure 5.4.3. From this data

it would appear that if there is a change in initiation pressure due to the stress anisotropy

changing, that it is being masked by numeric or algorithmic issues. One potential source

of contamination of the data is discussed further in section 5.4.2, and given the results

presented there, these results may have been more useful (in terms of fracture initiation

pressure) had the initial fracture been longer.

Figure 5.4.3: Fracture Initiation Pressure vs σHmin- extended results

In contrast to the fracture initiation pressure, propagation pressures in Figure 5.3.2 appear

to be closer to those predicted by fracture mechanics for linear propagation of a long

fracture in a normal faulting regime, i.e. just above one of the horizontal principal stresses..

However, from the scale of the chart it is difficult to determine whether it the minimum

or maximum horizontal stress is influencing the propagation pressure. A detail of the

pressure history is presented in Figure 5.4.4. This plot is especially interesting when

considering the time taken for the fracture to reorient, which will be discussed in 5.4.1. Of

particular interest are the dips in pressure for the more anisotropic examples.

127



The propagation pressure for each case was taken as the final pressure of each history

plot; in Figure 5.4.4 many of the histories have already reached a steady pressure, and

this is the case eventually for all of the simulations. This steady pressure Pp was measured

at the point of fluid injection, and is compared to a propagation pressure calculated using

both σHmaxand σHmin, i.e. the following vales are plotted for each variation of σHmin
simulation, in Figure 5.4.5:

• Pp − σHmax

• Pp − σHmin

For most cases the propagation fluid pressure is within 0.5 to 1 MPa of the maximum prin-

cipal stress value, consistent with the pressure required to hold open the starter fracture

walls, which are oriented perpendicular to the maximum horizontal stress direction. How-

ever, that same pressure is not required to hold the fracture open once it has reoriented,

and the fluid pressure drops significantly in the reoriented areas of the fracture, as can be

seen in Figure 5.4.6. Similarly in Figure 5.4.7, which shows propagation with σHmin = 4.5
MPa the fluid pressure in the reoriented area is lower than at the injection point, but at a

generally higher pressure, because of the higher σHmin. In both cases at the end of the

reoriented zone the fluid pressure is approximately 0.5 MPa above σHmin.

Mogilevskaya et al. (2000) calculated similar behavior for small initial fracture length, de-

scribing the process as unstable, due to pressure oscillations.

Figure 5.4.4: Fluid Pressure Detail
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Figure 5.4.5: Propagation Pressure comparison to σHmax and σHmin

Figure 5.4.6: Fluid Pressure in Fracture, σHmin = 2.5 MPa
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Figure 5.4.7: Fluid Pressure in Fracture, σHmin = 4.5 MPa

Reorientation Rate

Figure 5.3.5 shows the history of the fracture tip orientation for varying values of σHmin,

which was varied at 0.1 MPa intervals. The data is smoothed using exponential smooth-

ing2 with a smoothing factor αs = 0.3. This acts as a low-pass filter, reducing the noise of

rapid tip orientation changes due to mesh dependence. Higher stress anisotropy resulted

in a more rapid transition to the maximum principal stress direction. Conversely, at near-

isotropic stress values the tip angle changes very little, if at all in time. Single moving

average trend lines are plotted for some representative values of σHmin, which help to

identify three broad categories of curve:

• Rapid reorientation for σHmin .3.9 MPa

• Constant, low tip angle for σHmin &4.7 MPa

• Steady increase in tip angle

It was unclear whether some of the simulations in the third category would eventually

reorient given more time, so these were re-run for a longer duration. The time normalised

tip orientation plot 5.3.6 includes these longer simulation runs. The fractures with σHmin
2st = αsxt + (1 − αs) st−1
st= smoothed sample at time t, xt= unsmoothed sample at time t, αs = smoothing factor.
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= 4.0 and 4.6 MPa did continue to curve and align more towards the maximum principal

stress direction. In this plot, the gradient of the lowest three values of σHmin are similar,

and curve to become more shallow as the tip angle approaches the final value. The curve

is shallower and more linear for higher values of σHmin. It is worth noting that at even at

high anisotropy, the fracture tip angle does not reach 90° . It is not possible to tell whether

the range of final orientations is due to mesh dependent effects or a trend related to the

anisotropy.

Figure 5.3.7 plots the time taken for the fracture to align with the maximum horizontal

stress against the amount of stress anisotropy. This data appears to show an inverse

power relationship, illustrated by a trend line plotted on the same chart. An inverse power

relationship makes sense in that an asymptote on the y axis is expected, as this cor-

responds to a fracture propagating under isotropic conditions, where no reorientation is

expected. At the upper limit of x, namely σHmin = 0, a low or zero reorientation time is

expected. To allow for an intercept of the horizontal axis, an offset of t0 can be introduced.

t = αf

(σHmax − σHmin)β
+ t0 (5.4.4)

For the trend line plotted in 5.3.7, αf=17, β =1.7 and t0 = 1.102, which allows instant

reorientation under maximum anisotropy (σHmin=0).

Figure 5.4.4 gives a detailed view of the fluid pressure at the injection point as many of

the fractures were reorienting. For the first set of shorter simulations, the final pressures

are extrapolated as horizontal lines, to provide a reference for the additional longer runs.

Figures 5.4.8 and 5.4.9 examine this chart for the case of σHmin = 2.5 MPa, with the

addition of tip angle and fracture aperture data. Figure 5.4.8 shows that the reorientation

occurred during the rapid drop in pressure that began when the fracture initiated. The

fluid pressure drops below 5 MPa, which is required to hold the fracture open at that point.

According to Figure 5.4.9,the fracture remains open at this point. A third chart, Figure

5.4.10 shows a spike in flow rate during the rapid drop in fluid pressure.
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Figure 5.4.8: Fluid Pressure and Tip Angle Evolution, σHmin = 2.5 MPa
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Figure 5.4.9: Fluid Pressure and Aperture Evolution, σHmin = 2.5 MPa

Figure 5.4.10: Fluid Pressure and Fluid Rate, σHmin= 2.5 MPa
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Figure 5.4.11: Fluid Pressure and Tip Angle Evolution, σHmin = 3 MPa

The flow rate spike in Figure 5.4.10 peaks some time before the pressure reaches its

minimum value, whereas in Figure 5.4.8 the tip angle is most closely aligned with σHmax
at close to the minimum pressure. This suggests that the pressure drop is due to the

realignment itself, and Figure 5.4.4 appears to support this, in that the drop below σHmax

is less for the less anisotropic cases. In more detail, Figure 5.4.11 shows a fluid pressure

and tip angle evolution chart for the case σHmin= 3 MPa, with the same time and fluid

pressure axis ranges as Figure 5.4.8. The fluid pressure minimum occurs later in the 3

MPa case, and correspondingly, so does the maximum tip angle.

The fact that the fracture remains open at this position as the pressure drops below σHmax

suggests that it is being held open mechanically at another position (i.e. it has closed at

that other position), or that the fluid pressure drop is a transient effect, with the surrounding

fluid able to provide the pressure to support the fracture as a wave of low pressure passes.

An examination of the mechanical simulation makes it clear that the fracture has closed at

isolated positions, and no evidence of a pressure wave moving through the fracture could

be found. Where the fracture has closed, the simulation enforces a minimum permeability

value, equivalent to an aperture of 0.45mm. This will allow some fluid to flow, possi-

bly enough to maintain fracture growth. It is also possible that the closure has stopped
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significant flow, and that fracture growth is simply due to residual pressure in the fracture.

Considering the fluid pressure required to open the fracture in the reoriented area is half

that at the initiation point, the closure may simply be a function of the difference in those

pressures. The Newtonian, low viscosity fluid is nearly completely incompressible, and a

pressure differential along the pipe is difficult to justify. It is also possible that the fracture

closure is an artifact of the mesh and/or fracture insertion. For example, the oscillations in

fracture direction seen in section 5.4.1 could produce a mesh which results in penetration

if any relative lateral movement of the two sides of the fracture occurs. A nodal penetration

would close the fracture. However, a reduction in fluid pressure is seen consistently in

Figure 5.4.4, to a lesser effect at lower levels of stress anisotropy. This suggests that this

is a real phenomenon which is anisotropy dependent. Further studies with much finer

meshes could prove useful to confirm this.

The result of the closure is a reduction of permeability which is not symmetrical, and run-

ning the simulation again for longer demonstrates the effect; one wing grows preferentially

due to having the higher permeability. Figure 5.4.12 shows the fracture pipe elements at

7 5s overlaid on a grid of 10 m squares for scale. The upper arm has grown nearly 30 m

further than the lower. The contour of flow rate highlights the difference between the two

wings.
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Figure 5.4.12: Asymmetric fracture growth with flow rate, σHmin=2.5 MPa

5.4.2 Variation of Initial Fracture Length

Geometry

Figure 5.3.13 plots the length growth of each fracture in time. It was expected that even-

tually the rate of growth of each fracture would become the same; the fluid pressures in

each fracture should converge as the lengths increase. This behaviour is observed, and
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the longest fracture has a fairly constant gradient. Others transition from their higher rate

of growth, which is consistent with a higher opening pressure, to the lower rate. Examining

the fluid pressure history - which is measured at the point of fluid injection and presented

in 5.3.15 shows a marked difference in the evolution of the fluid pressure, quite different

from the profile seen in linear fracture growth. This is typically a linear ramp in pressure

as the fluid pressure builds in the starter fracture with little volume change, followed by a

rapid drop in pressure as the volume of the fracture increases, levelling out at a pressure

that is just above the minimum horizontal stress + the tensile strength of the rock. 5.3.18

plots the pressure history for a smaller starter length at different initial orientations, which

are a good example of this behaviour.

Figure 5.3.14 plots the tip angle of each fracture against the extension length (the current

length - initial length).

An interesting observation is the similarity of the fracture reorientation rates of the f5 and

f50 fractures - in Figure 5.3.11 these are almost identical. Figure 5.3.15 shows markedly

different pressure histories, indicating that the reorientation rate is not simply dependent

on the opening pressure.

Opening Pressure

It seems intuitive that the length of a pre-existing fracture being opened should affect the

fluid pressure required to cause it to propagate further, since a longer wall length provides

a longer lever with which to open the fracture. How this reduced opening pressure and/or

the length of open fracture affects the rate of reorientation is less clear.

Figure 5.3.9 plots the opening pressure for the various fracture lengths at the two values

of σHmin (4 and 4.9 MPa, with σHmax = 5.0 MPa), with the fracture oriented parallel to the

minimum horizontal stress.

The relationship between length and opening pressure appears to follow an inverse power

rule, similar to the reorientation rate in Figure 5.2.3. Little difference can be distinguished

between the two sets of runs, indicating that the opening pressure is not sensitive to

σHmin. There appears to be a horizontal asymptote of the relationship between opening

pressure and initial fracture length around 1 MPa (the tensile strength of the shale) above

the maximum horizontal stress σHmax.

This is of interest given that a tensile fracture opening without a starter fracture direction

(e.g. from a wellbore leak off test) is expected to propagate at the tensile strength of the

rock T0 + σHmin once it is & 1m long (Zoback, 2007).

The dependency on σHmax is understandable when the results in section 5.3.1 are con-

sidered, namely that all the fractures initiated in the direction of σHmin, and therefore had
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to overcome σHmax to open as a mode I fracture.

This is of particular interest when considering a propagating hydraulic fracture encounter-

ing a natural fracture in this orientation. This will be examined further in 6, but the implied

consequence is that a natural fracture oriented perpendicular to the maximum principal

stress direction could significantly affect the propagation pressure of the hydraulic frac-

ture, dependent on the level of stress anisotropy, and any resistance to opening in the

natural fracture, such as cementation.

Once the fracture has reoriented, the lower limit on the propagation pressure should be

σHmin + T0, and Figure 5.3.15 supports this somewhat, with some fractures propagating

at less than σHmax + T0.

Reorientation Rate

Figure 5.3.10 is a plot of smoothed tip angle evolutions for the various initial lengths,

normalised in time. The reorientation curve is generally more S-shaped in the longer

fractures, and a plot of the actual elapsed time since fracture initiated shows the relative

evolution more clearly; this is plotted in Figure 5.3.11. Generally, the fracture reorientation

time increases with the initial length of the fracture, again illustrated in Figure 5.3.12.

These results are not trending as clearly to a particular curve as those in Figure 5.3.9.

Despite being smoothed, the amount of noise in the tip angle data could contribute to-

wards some runs lying outside a clear trend. As mentioned in subsection 5.4.1, the results

can be affected by the geometry of the finite element mesh. Asymmetry of the growth in

the Y direction could also account for the lack of consistency - see Figure 5.3.8. The tip

angles used in the data above are always taken from the lower tip.

Of particular interest is the fact that the f50 and f5 cases take very similar paths in time.

This would warrant further study.

5.4.3 Variation of Initial Fracture Orientation

Geometry

The final geometry of each fracture (see Figure 5.3.16) shows a non uniform relationship

between the initial orientation and reorientation rate. This is inferred from the larger “gaps”

between the final fracture paths as the initial orientation is reduced. All curves appear

to follow a tangential curve, and further investigation could confirm this, and possibly

determine coefficients to a function of the type:

Y = A+B tan(C(x− d))
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Mogilevskaya et al. (2000) also examined the dependence of fracture orientation on near-

wellbore fracture paths. Figure 5.4.13 shows the fracture paths they calculated for a

fixed value of the stress anisotropy normalisation parameter β, and variations of initial

orientation α. Their results are clearly highly influenced by the well geometry, and less

comparable to the results here than the stress anisotropy variations.

Figure 5.4.13: Fracture path dependence on orientation, Mogilevskaya et al. (2000)

Opening Pressure

Opening pressures follow a decreasing trend as the starter fracture approaches the di-

rection of maximum horizontal stress. This is as expected, as when it is oriented parallel

to the minimum horizontal stress (0° in Figure 5.3.17) the fracture will be trying to open

against the maximum horizontal stress rather than the minimum. The trend in Figure

5.3.17 appears to be linear, with the 30° case slightly out of range. The curve may also

be S-shaped, something which further simulations could establish.

Reorientation Rate

The non-uniform behaviour suggested by the fracture geometry can be considered more

likely after examining the normalised reorientation rate data in Figure 5.3.20. This shows

a shallow s-curve for the 0° case, a straight line for the 90° case, and between the two,

curves which vary to some degree. These simulation runs had less frequent output than

some of those in previous chapters, which made the fracture tip noise more troublesome.
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The simulations at orientations near 90° were more difficult to prescribe a reorientation

time, again in part due to the tip angle noise. Without some further analysis, and possibly

more frequent output, no clear conclusions about the relationship between initial orienta-

tion and rate of reorientation can be made.

5.4.4 Summary

A key finding of all simulations was that all fractures initiated in the direction of the starter

fracture. Some literature (e.g. Soliman et al., 2010) assume that the stress field will dictate

the orientation of a fracture. The three factors studied here are all shown to influence the

way in which the fracture realigns with σHmax, in agreement with Mogilevskaya et al.

(2000).

During fracture reorientation, a drop in pore pressure was detected which appeared to be

dependent on the stress anisotropy. At high levels of stress anisotropy, some simulations

exhibited fracture closure in one wing. It is not clear if this is a real world effect of curvature,

the pressure drop, or an artifact of the mesh.

When varying the starter fracture length, two length factors were observed to reorient in

a very similar manner, not only when normalised in time, but in actual time. There was

an order of magnitude difference in length between the two cases, and an explanation for

this behaviour is not clear at this time.

Difficulties involved in this study were dominated by two factors. The first was the noise

around the fracture tip orientation, which made evaluation of the final time taken to reorient

challenging. This could be improved by running simulations with finer meshing parameters

and better smoothing algorithms. The influence of stress anisotropy on initiation pressure

was difficult to quantify owing to very high initiation pressures, which in turn were the result

of small starter fractures. Revisiting these simulations with longer starter fractures could

be of benefit.

Fracture closure which appeared to be due to the curvature of the fracture was identified

in some cases, resulting in asymmetric fracture growth. Examining this in detail would be

useful, as it is not currently clear whether this is an artifact of the fracturing algorithm, a

real effect due to reduction in of pressure, or a geometric/mechanical effect.

Further studies could apply a variation of flow rate, which would result in fluid pressure

differences that were independent of the stress anisotropy. Finer graduations of initial

fracture orientation would enable determination of the trend for opening pressure to vary

with starter fracture orientation. In general, all studies were limited to finding qualitative

relationships between parameters, and work to quantify these may provide equations that

could be used to actively influence fracture paths.
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The apparent anomaly in behaviours when varying fracture length is of interest. Two

cases, at factors 5 and 50 of the reference length, showed remarkably similar reorientation

rates. This is not predicted by the model in Mogilevskaya et al. (2000), nor observed.

All studies assumed a homogeneous fracturing medium. Additional simulations in the

presence of natural fractures near or around the starter fractures would be of interest.

The finding that all fractures initiated parallel to the starter fracture could be challenged

by natural fractures of varying interface properties and orientations intersecting the starter

fractures.
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Chapter 6

Interaction with Natural Fractures

6.1 Introduction

Previous chapters have considered the propagation of a hydraulic fracture through a ho-

mogeneous system. Fracturing treatments such as the TTSM aim to increase fracture

complexity through reduced stress anisotropy, which in turn requires some form of het-

erogeneity in the fractured medium to be exploited. In this chapter, the effect of natural

fractures on a propagating fracture are examined using the numerical simulation tech-

nique described in Chapter 3.

The assortment of fracturing mechanisms, and resulting fracture properties, result in a

system that is very difficult to characterise in the field, and for this reason natural fracture

modelling will often take some form of stochastic approach based on core or wire-line

log observations, or simplify the problem to regular sets of fractures oriented in a small

number of orientations. Section 2.6 presents a review of the current literature regarding

natural fractures in shales. The following studies begin by using a single set in a single

orientation, moving on to using stochastically generated sets to examine the effect on frac-

ture reorientation. Finally, a study of the effect shear stresses can have on unconnected

natural fractures is presented.

6.1.1 Shear Stress and Tensile Fracturing

A tensile fracture opens due to tensile forces acting at its tip, which pull apart the medium

it is propagating through. This occurs in hydraulic fractures because fluid pressure is

providing a compressive force on the fracture walls, acting to create tensile forces at the

fracture tip. As a free surface, the fracture walls support no shear stress, and the principal

stresses are perpendicular and parallel to them. The transition between compressional
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stresses on the fracture walls and tensile stresses at the tip must occur via either a region

of stress rotation or a pure magnitude change. The mechanism for the former is shear

stress - it is equivalent to the rotation of the principal stresses, and it must occur outside

the fracture walls, i.e. in the fracturing medium. It follows that in the absence of stress

discontinuities, the fracturing medium must support shear stress to allow the fracture to

propagate. Hence, the following simulations focus on the effects of varying that ability via

natural fractures, and the effect this has on the propagation of the fracture.

6.1.2 Propagation Through Natural Fractures

As a hydraulic fracture propagates in a matrix containing sets of natural fractures, it will

eventually encounter a natural fracture unless it is propagating parallel to them. Gu et al.

(2011) summarise the possible interactions which may occur between the hydraulic frac-

ture (HF) and natural fracture (NF). The hydraulic fracture can be arrested due to slippage

along the NF. This is the loss of shear strength discussed in section 6.1.1, resulting in

dilation of the NF and continued propagation along its length. If the HF crosses the NF, it

may either continue propagating while the NF stays closed, or dilate the NF and continue

along its length. Figure 6.1.1 summarises these interactions.

Figure 6.1.1: Possible Hydraulic Fracture/Natural Fracture Interactions (taken from Gu
et al. (2011))
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The above outcomes consider the entry of the hydraulic fracture into the natural fracture

and behaviour shortly afterwards. In addition, should the hydraulic fracture travel along

the NF, the following may occur (Figure 6.1.2) ; the HF may exit part way along the NF, or

the HF may exit from the ends of the NF.

Figure 6.1.2: Possible HF exit conditions

Gu et al. (2011) describe a criterion for the hydraulic fracture crossing the natural fracture,

based on the requirement that no slip occurs on the natural fracture boundary. While

this can be expressed explicitly for an orthogonal interaction, this is not the case for non-

orthogonal cases. Figure 6.1.3 is their chart showing the criterion for a selection of various

interaction angles. The friction coefficient of the interface required for the fracture to cross

is to the right of the chart and higher. For instance, under isotropic stress conditions the

friction coefficient required for a fracture to cross a natural fracture at 90° is just above 0.4.

The high sensitivity of the criterion to the interface angle is clear from the wide spacing of

each of the criterion limiting curves.

Chuprakov et al. (2010) quantify the activation of a natural fault interacting with the prop-

agating hydraulic fracture.

The studies below begin by analysing sets of natural fractures, which are oriented per-

pendicular to the main hydraulic fracture. The interaction between the hydraulic fracture

and the natural fractures is examined in a qualitative manner. The effect of varying stress

anisotropy on the more complex geometries is then investigated.

6.1.3 Moment Tensors

This chapter makes use of a capability of Elfen TGR to generate microseismic moment

tensors. In practice, a series of geophones are employed either in the subsurface, or more
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Figure 6.1.3: Crossing Criterion for Anisotropic Stresses, Cohesionless, Zero Tensile
Strength (Gu et al., 2011)

typically on the surface in large 2D arrays. These record compressional (P) and secondary

shear (S) wave arrival times and initial polarization direction, from microseismic events

created during hydraulic fracturing. As P waves are compressional, when experienced by

a point in space they appear as a compression followed by dilation. These data are then

inverted to arrive at an estimate of the origin of the microseismic event, as well as a stress

moment tensor, which can be visualised in a number of ways. A common visualisation

technique is the “beachball” plot. Figure 6.1.5 shows a series of moment tensors, each

with a corresponding beachball plot.

The simplest form of the beachball plot retains two orthogonal axes, and can be seen

in the second row of 6.1.5. The beachball plot can be explained by considering a sliding

event between two surfaces. A down/up sliding motion is represented in Figure 6.1.4 (left).

The relative movement along the central vertical axis of each side of this square is repre-

sented by a red arrow on each side of the axis. Pressure waves will exit this rectangular

region in all directions, but at points above and to the right hand side, the compression

will be seen first. At points below and to the right hand side, a dilation will be seen first.

The upper right of this event descriptor is labelled + for compression, and likewise the

lower left the same. Shading the positive areas give a beachball such as the second from

the top on the left hand side of Figure 6.1.5. The two orthogonal axes represent the two

possible fault planes, as the up/down sliding illustrated on the left of Figure 6.1.4 will give
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the same beachball plot as a left/right sliding as per the right hand image. Of particular

interest in the 2D examples in this work are the isotropic compressional and dilational

representations, which are solid colours.

Elfen TGR calculates the stress state as slip or failure occurs, and can generate the

microseismic representations directly. In Elfen dilational events are coloured blue while

compressional are white.

Figure 6.1.4: Beachball Schematic
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Figure 6.1.5: Microseismic Moment Tensors and Beachball Renderings

6.2 Methodology

The reference setup for an initial set of simulations was chosen to be a set of uniformly

spaced horizontal natural fractures, with a hydraulic fracture propagating vertically through

them. It was expected that the natural fracture permeability would play a large part in con-

trolling the path of the hydraulic fracture. Assuming that the natural fractures had high fric-

tional properties or cohesive cementation, two end case scenarios were predicted. A very

high permeability natural fracture would arrest the hydraulic fracture by allowing fracturing

fluid to fill it and stop the transferral of tensile stress to the opposite side. This could occur

through reduction in frictional properties via lubrication or dilation of the fracture. Similarly,

given natural fracture interface properties which reduced the chance of sliding, a very low

permeability natural fracture should appear almost invisible to the hydraulic fracture, and

the hydraulic fracture should continue propagating vertically. It was predicted that at an

“intermediate” value of permeability, the effects of frictional properties within the natural

fracture would come into play and could be studied in closer detail. A set of simulations
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was conducted to identify a suitable intermediate permeability which could be used for

such closer studies. This permeability value was used in further simulations which var-

ied the contact properties and stress anisotropy during propagation through horizontal

fractures.

Further simulations were carried out to ascertain the influence natural fractures may have

on the results from chapter 5. Two of the simulations are presented; both using stochas-

tic natural fracture generation to create natural fracture sets at a non-orthogonal angle

to the principal stress directions. A hydraulic fracture was initiated in the horizontal di-

rection, where σHmax was vertical and reorientation in a homogeneous medium occurred

smoothly. The first simulation used a single natural fracture set which was oriented around

60° to the vertical. A second simulation with an additional set placed around 30° was also

performed.

Finally, the impact of shear stress on natural fractures was investigated, with one simula-

tion presented here. Since significant shear stresses can develop around a propagating

fracture, the simulation was designed to assess the impact these may have, without the

influence of fracturing fluid on the interface properties becoming a factor.

6.2.1 Fracture interface properties

The behaviour of the natural fractures in the following simulations was modified by altering

the contact properties of fractures in the system. These govern the strength of the bond

between two surfaces using a Mohr-Coulomb failure criterion, illustrated in Figure 6.2.1.

The two parameters cohesion - c and friction angle φ dictate the shear stress (or difference

in principal stresses) at which the bond between the two surfaces is broken. In terms of

simulation input parameters, the coefficient of friction α = tan(φ)

For a given normal stress σ, the failure shear stress τf = c+ σtan(φ), or τf = c+ ασ.

Figure 6.2.1: Mohr-Coulomb failure envelope
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6.2.2 Propagation Through Natural Fractures

One set of simulations used a simple set of natural fractures oriented at 90° to the antici-

pated hydraulic fracture propagation direction, i.e. horizontally. These were 40m long and

spaced 2m apart vertically. These long fractures could be interpreted as inter-bedded

strata, planes of weakness within the fracturing medium, as well as in-situ natural frac-

tures.

Three parameters were varied. First, the permeability of the natural fractures. This was

to establish a permeability that would allow the natural fractures to take on fluid without

arresting the hydraulic fracture. Following the establishment of a suitable natural frac-

ture permeability, the frictional properties of cohesion and friction angle were permuted

between high and low values. The simulations were initially run under near-isotropic con-

ditions. The basic parameters are shown in Table 6.1, and a detail of the fracture area in

Figure 6.2.2. This shows the region with natural fractures, which is at the centre of a 1km

square block. The denser region near the very centre of this image is the initiation point

of the hydraulic fracture. This model is not entirely symmetrical. While the starter fracture

is centered in the model, the region of natural fractures is slightly offset, and there is one

more natural fracture on the lower part of the model than the upper. The consequences

of this asymmetry will be discussed when they become pertinent.

Parameter Value Unit

Young’s Modulus 32 GPa

Poisson’s Ratio 0.2

Reservoir Pore Pressure 0 MPa

Effective Stress XX 4.9 MPa

Effective Stress YY 5 MPa

Effective Stress ZZ 5 MPa

Porosity 0.01

Fracture Height (Layer thickness) 10 m

Initial Fracture Length 0.4 m

Fluid Volume 10 m3

Flow Rate 0.1 m3

s

Fluid Viscosity 1.67e-3 Pa.

Natural Fracture Length 40 m

Natural Fracture Spacing 2 m

Table 6.1: Indicative Simulation Parameters
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Figure 6.2.2: Model setup: Propagation Through Natural Fractures
This figure shows the refinement region which is 40m square. This region sits in a block
1km square. A region of further mesh refinement in the centre of the image shows the
position of the starter fracture.

Permeability

The basic case for these simulations used very high friction and cohesion parameters for

the natural fractures, so that their permeability alone determined the propagation of the

hydraulic fracture. Friction was set to 0.95 and cohesion to 20 MPa, which put the failure

envelope outside the stresses anticipated. For comparison, the cohesion value of intact

shale was 25 MPa.

This involved running a series of simulations, modifying the permeability of the natural

fractures by around one order of magnitude at a time. Although many simulations were

carried out, the most relevant examples are presented. Permeability values examined in

section 6.3.1 are tabulated with the corresponding hydraulic conductivity and apertures in

Table 6.2:
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Reference Permeability (m2) Hydraulic Conductivity (m
s ) Aperture (m)

A 1.7 E-8 0.1 4.52 E-4

B 1.7 E-10 0.001 4.52 E-5

C 8.51 E-10 0.005 1.01 E-4

D 3.47 E-11 2.04E-4 1.7E-6

Table 6.2: Permeability Values of Natural Fractures

Natural Fracture Interface Properties

On attaining “intermediate” permeability values from section 6.2.2, the two main contact

property parameters - friction coefficient and cohesion- were alternately switched off in

isolation and together. Friction was set to zero while retaining a high cohesion value, and

cohesion was reduced to zero while retaining a high coefficient of friction.

The first three simulations presented in the results section are given in Table 6.3.

Description ID Friction Cohesion (Pa) Permeability (case ID)

High Friction Cohesionless 1 0.95 0 B

High Cohesion Frictionless 2 0 20e6 B

Frictionless Cohesionless 3 0 0 B

Table 6.3: Natural Fracture Contact Properties

Stress Anisotropy

To briefly examine the influence of increased stress anisotropy on propagation through

natural fractures, two simulations were performed with permeability case B in Table 6.2,

reducing the minimum horizontal stress to 4 MPa and 3 MPa respectively. These simula-

tions were intended to augment the previous simulations examining propagation through

perpendicular fractures.

6.2.3 Fracture Reorientation

The impact of natural fractures on a selected fracture reorientation case was examined.

Two simulations were run under the conditions in Table 6.4. The results from chapter 5

were used to select the key parameters. The level of stress anisotropy used previously

gave a clear reorientation from the minimum horizontal stress direction, and the fracture
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length of 4m resulted in a lower, more stable initiation pore pressure. With the exception

of these parameters and additional natural fractures, the simulations were identical to

the simulations in chapter 5. Both simulations used the same contact and permeability

properties for the natural fractures, shown in Table 6.5.

The first simulation introduced a single, stochastically generated set of fractures aligned

at a mean 60° to the vertical. The mean fracture length was 10m, with a standard devi-

ation of 8, providing a wide range of fracture lengths. Other parameters used, and their

descriptions are given in Table 6.6 for this first set of natural fractures.

A second set of natural fractures was introduced in the second simulation. The only

difference in parameters of that set was the mean orientation, set to 30° for the second

set.

Parameter Value Unit

Young’s Modulus 32 GPa

Poisson’s Ratio 0.2

Reservoir Pore Pressure 0 MPa

Effective Stress XX 4 MPa

Effective Stress YY 5 MPa

Effective Stress ZZ 5 MPa

Porosity 0.01

Fracture Height (Layer thickness) 10 m

Initial Fracture Length 4 m

Fluid Volume 3 m3

Flow Rate 0.1 m3

s

Fluid Viscosity 1.67e-3 Pa.s

Initial Orientation to σHmin 0 °

Table 6.4: Indicative Simulation Parameters

Parameter Value Unit

Friction Coefficient 0.95

Cohesion 20e6 MPa

Initial Aperture 4.53e-5 m

Permeability 1.7e-10 m2

Table 6.5: Natural Fracture Sets Common Properties
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Parameter Description (unit) Mean S1 Std Deviation S1

Orientation Rotation from Vertical (°) 60 2

Spacing Perpendicular distance between fractures (m) 5 3

Fracture Length (m) 10 8

Persistence Longitudinal Distance between fracture tips (m) 3 1

Table 6.6: Natural Fracture Set 1 - Parameters

6.2.4 Impact of Shear Stress

The shear zone around the tip of a propagating fracture is of some interest, and in particu-

lar the interaction of this with natural fractures. A simulation was seat up with the intention

of examining the effect of a propagating hydraulic fracture on surrounding natural frac-

tures, without coming into direct communication (i.e. via fracturing fluid). The pertinent

geometry of the initial project is shown in Figure 6.2.3. The stress field is anisotropic, with

horizontal effective stresses of σHmax = 5 MPa, σHmin = 3 MPa, and a pore pressure of

20 MPa. Two separate natural fracture systems are set up on either side of the predicted

fracture path, both oriented in the same (45° ) direction. The natural fracture region is a

100m square sitting in a domain 1km square. The fracture was stimulated in the same

manner as the other simulations in this work; with a proppantless slickwater, pumped

at 0.1 m3

s . Microseismic event simulation was used to produce output at positions where

displacements occurred, mimicking the results obtained by microseismic data processing.

Although fluid interaction with the natural fractures was not expected, the permeability of

the natural fractures was reduced to 1.02e-11 m2(10.33 Darcy).

6.3 Results

6.3.1 Propagation Through Natural Fractures

Permeability

Selected results from a high permeability (reference A in Table 6.2) simulation are below.

High Permeability Pore pressure at the end of the simulation is shown in Figure 6.3.1,

and the flow rate at the same time in Figure 6.3.2. Details of the mechanical simulation

are presented in figures 6.3.3 and 6.3.4. Those show the most tensile principal stress

magnitude σ11 before and after insertion of the fracture propagating slightly through the
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Figure 6.2.3: Initial geometry, shear stress influence on natural fractures
This figure shows a region of in-situ fractures 100m square, which sit in a block 1km
square. The starter hydraulic fracture can be seen in the centre of the image.

natural fractures. The former is restricted to show only tensile stress (positive values),

while the latter shows the lack of any tensile stress after the fracture is inserted. Shear

stress τxy is shown in Figure 6.3.5 prior to fracture insertion.
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Figure 6.3.1: Pore Pressure - High Permeability Fractures

Figure 6.3.2: Flow Rate - High Permeability Fracture
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Figure 6.3.3: Tensile Principal Stress at 13.9s - High Permeability Fractures

Figure 6.3.4: Most Tensile Principal Stress at 14s - High Permeability Fractures
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Figure 6.3.5: Shear Stress XY at 13.9s - High Permeability Fractures

Low Permeability At the other end of the permeability range, case D in 6.2 has a very

low permeability of 3.4 E-11m2. Figure 6.3.6 is a plot of fluid pressure after 24s.
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Figure 6.3.6: Pore Pressure - Low Permeability Fractures

Intermediate Permeability Selected results from intermediate permeability simulations

include the pore pressure plot at the end of the simulation for case B in Table 6.2. Figure

6.3.7 shows the results of a run with natural fracture permeability of 1.7 E-10m2. This

value was selected with one other to use for later studies on the effects of natural fracture

interface properties. The end of the fracture outside the natural fracture area has been

truncated in this image.
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Figure 6.3.7: Pore Pressure - Intermediate Permeability Fractures (case B)

Higher permeabilities took more fluid into the natural fractures and allow fracturing through

several natural fractures, ultimately propagating from the end one of the first natural frac-

tures encountered. Figure 6.3.8 shows the pore pressure at the end of one of those

simulations; this permeability value was selected as case C in Table 6.2.
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Figure 6.3.8: Pore Pressure - Intermediate Permeability Fractures (case C)

Natural Fracture Interface Properties

Fluid Pressure History Two fluid pressure charts are presented in figures 6.3.9 and

6.3.10, which show the fluid pressure at the point of injection for the three simulations dis-

cussed in this section, as well as the corresponding high friction, high cohesion (obtained

in section 6.3.1) example. The first highlights the fracture initiation pressure for the four

simulations, and the second focuses on the propagation pressure.
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Figure 6.3.9: Fluid Pressure History, Variation of Contact Parameters

Figure 6.3.10: Fluid Pressure History, Variation of Contact Parameters Detail

High Friction-Cohesionless Removing the cohesion from the contact surface proper-

ties results in Y shaped branching in one wing of the hydraulic fracture. Figure 6.3.11

shows the pore pressure in the system at 19.2s, and Figure 6.3.12 the flow rate through

the fractures at the same time.

161



Figure 6.3.11: Pore Pressure - High Friction, Cohesionless, Permeability B
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Figure 6.3.12: Flow Rate - High Friction, Cohesionless, Permeability B

High Cohesion-Frictionless The results of this simulation were similar to those with

high friction and cohesion, although not identical. Figure 6.3.13 shows the pore pressure

at the end of the simulation ID 2 in Table 6.3.
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Figure 6.3.13: Pore Pressure - High Cohesion, Frictionless Permeability B

Frictionless and Cohesionless This simulation demonstrates the effect of removing

all strength and friction properties of the natural fractures. Figure 6.3.14 shows the fluid

pressure in the natural fractures at the end of the simulation. The vertical fracture propa-

gation was arrested, pore fluid filling the natural fractures until propagating from the end

of one natural fracture.

Figure 6.3.14: Pore Pressure - Frictionless, Cohesionless Permeability B
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Stress Anisotropy

Two simulations were performed with the same parameters as those described in section

6.2.2, i.e. α = 0.95, C=20e6 MPa. The minimum principal stresses were reduced to 4

MPa and 3 MPa, for comparison with the earlier simulation that had σHmin= 4.9 MPa.

Plots of fluid pressure in the network elements of the two simulations are shown in Figures

6.3.16 and 6.3.15. A plot of the hydraulic fracture length and volume for all three simula-

tions is presented in Figure 6.3.17. The data are plotted against elapsed fracturing time,

removing the offset of fracturing start time which is due to the higher pressure needed to

fracture as σHmin increases. Note that the reference simulation ran for a shorter period,

so is not directly comparable beyond 16s fracturing time.

Figure 6.3.18 shows the fluid pressure history for the three simulations.
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Figure 6.3.15: Fluid Pressure σHmin = 4 MPa
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Figure 6.3.16: Fluid Pressure σHmin = 3 MPa
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Figure 6.3.17: Length and Volume of Hydraulic Fracture through Natural Fractures, vary-
ing Anisotropy

Figure 6.3.18: Fluid Pressure, varying stress anisotropy
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6.3.2 Fracture Reorientation

Plots of the final pore pressure in the natural and hydraulic fractures are shown for the

single and two set simulations in figures 6.3.19 and 6.3.20 respectively. The two set

simulation failed to complete owing to a software fault, and is shown at 76s. The first

simulation completed and is at time 100s. The fluid pressure histories of both simulations

up to 76s are shown in Figure 6.3.21.

Figure 6.3.19: Fracture Reorientation, single Natural Fracture set
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Figure 6.3.20: Fracture Reorientation, two Natural Fracture Sets

Figure 6.3.21: Fluid Pressure History - Reorientation with Natural Fractures
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6.3.3 Impact of Shear Stress

Figure 6.3.22 shows the pore pressure at the end of the simulation.

Figure 6.3.22: Pore Pressure - Shear Stress Influence

Figure 6.3.23 plots the value of the damage state indicator on a per-element basis. This

value indicates that the material has begun to fail, and due to tensile damage, the material

has begun soften and travel the downward slope in Figure 3.5.3. The plot is taken at 31

s, just before the hydraulic fracture first makes contact with a natural fracture.

The absolute shear stress in XY is plotted at the same time in Figure 6.3.24, while Figure

6.3.25 shows elements of the two previous plots superimposed. These are the absolute

shear stress in XY, τxy, for values between 1 MPa and the maximum 3.73 MPa, which

are contoured blue to red. The peak values occur in only a few elements, so most of the

visible part of this contour is a shade of blue. On top of this is overlaid the data from Figure

6.3.23, with all damaged elements coloured red.
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Figure 6.3.23: Damage State Indicator - Shear Stress Influence, 32s

Figure 6.3.24: Absolute value of τxy
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Figure 6.3.25: Absolute τxyand Damage State Indicator

An LIC plot of the stress field prior to hydraulic fracture interaction with the natural fractures

is shown in 6.3.26.
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Figure 6.3.26: LIC plot of Principal Stress Field, 31 s

Microseismic event output is visualised in two plots below. The first, Figure 6.3.27 is at

the time 31 s, before the hydraulic fracture contacts any natural fractures. Figure 6.3.28

shows the microseismic data output until time 71 s, which is the time the hydraulic fracture

exits the region of natural fractures.

Beachball plots are used to represent the moment tensor. All events up to the current time

are overlaid on the same plot, with the most tensile principal stress contoured. The beach-

balls are coloured blue in the tensional quadrants, with solid blue markers representing

isotropic dilation, or tensile failure events.

The pore or fluid pressure in the fractures is contoured in Figure 6.3.28. This is primarily

to show the fracture has not affected pore pressure outside of the simple path it takes

between nearby natural fractures, once it has begun travelling through them.
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Figure 6.3.27: Microseismic Events, 31 s
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Figure 6.3.28: Microseismic Events and Pore Pressure, 71 s

6.4 Discussion

6.4.1 Propagation Through Natural Fractures

Permeability

High Permeability Figure 6.3.1 illustrates the effect of a hydraulic fracture coming into

contact with a high permeability natural fracture set. The contact properties allow trans-

mission of the mechanical forces required to continue propagating the hydraulic fracture.

This is shown by the continuation of the fracture through the first fracture each wing sees.

However, it is easier for the fluid to flow into the natural fracture than to continue opening
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the hydraulic fracture, and pore pressure in the natural fractures begins to build. By the

time the pressure has increased along the length of the natural fracture, its length makes it

easier to open than the original hydraulic fracture. One side of the natural fracture begins

to propagate, which then takes the rest of the pumped fluid. The flow rate contour plot

Figure 6.3.2 shows that although three other wings are pressurised, fluid is propagating

in one direction only. Unless some impediment is encountered by the propagating frac-

ture, the other wings are unlikely to grow, nor the original hydraulic fracture to propagate

further.

An examination of a detail of the mechanical analysis shows that despite the high perme-

ability of the natural fractures, the hydraulic fracture does continue to propagate briefly.

Figure 6.3.3 shows the magnitude of σ11 prior to fracture insertion - and importantly the

contact properties within the natural fracture have allowed the tensile stress area to cross

the natural fracture. Similarly a plot of τxy (Figure 6.3.5) confirms that shear stress has

been transmitted through the fracture. These go hand in hand, as the shear stress zones

allow the transition from compressional forces at the fracture walls to tensile stress at the

tip (see section 6.1.1).

Low Permeability The low permeability case serves to confirm the expected behaviour

- the hydraulic fracture continued to propagate through the natural fractures. Figure 6.3.6

shows this clearly. However, the fracture behaviour is not completely unchanged in com-

parison to a fracture propagating in a homogeneous rock. The fracture is diverted from

the vertical in small amounts between each natural fracture, to the left in the upper wing

and to the right in the lower. The hydraulic fracture exited the region of natural fractures

at both ends, despite there being fewer natural fractures to cross at the top of the model.

Intermediate Permeability The two intermediate permeability cases each exhibit be-

haviour similar to either the high or low permeability examples. Figure 6.3.7 shows the

lower of the two permeabilities. In this example the pore pressure has increased in the

natural fractures, but in contrast to the low permeability example, one wing of the hydraulic

fracture exits the area of natural fractures before the other. One contributing factor to this

(aside from the asymmetry of the model) could be one of the natural fractures taking on

more fluid than the others. The nearest fracture to the initiation point on the lower half of

the model can be seen in Figure 6.3.7 to have a longer region of higher pore pressure

than many of the other fractures. Closer examination of this area reveals some interesting

points.

Figure 6.4.1 plots markers indicating contact pressures on top of the natural and hydraulic

fracture geometry. The fracture initiation point is indicated by a blue arrow on this image.
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At this point in the simulation, several of the natural fractures have opened, indicated by

the lack of contact markers near the hydraulic fracture. This is due to the high propagation

pressure at the beginning of the simulation, in turn a factor of the starter fracture length.

Charts such as 5.3.9 illustrate the length dependence of opening pressure on starter

fracture length (albeit under a different stress regime). The pressure in the propagating

fracture - 17.2 MPa - is more than enough to overcome the maximum horizontal stress

σHmax (5 MPa), and open the natural fractures which reached a similar pressure. The

higher permeability of the opened fractures allowed them to take a larger volume of fluid

than those which encountered a lower fluid pressure later in the simulation.

Figure 6.4.1: Open Natural Fractures - case B at 14.4s

Figure 6.4.2 shows the same area later in the simulation. At this point the fluid pressure in

the hydraulic fracture had reduced to 7.1 MPa, which was still higher than σHmax. Contact

markers at the ends of the previously open natural fractures indicate that the fractures

have closed, isolating the fluid in the natural fracture from the hydraulic fracture. The

reason for this closure, when the natural fractures are under enough pressure to remain

open, is intriguing. Two possible mechanisms are:

• Stress shadowing effects - the pressurised neighbouring natural fractures acting to

close each other
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• Pinching of the natural fracture openings due to the opening of the hydraulic fracture

Further simulations to investigate this effect in more detail would be of benefit, including

behaviour as the fluid pressure is reduced, and in particular in the presence of proppant.

It may be the case that this is an illustration of fluid leak-off occurring. If the fluid was

isolated for the latter reason above, a propped fracture may maintain the contact points,

and continue to isolate the fluid in the natural fracture. Conversely, the natural fractures

may allow the fluid to escape when the pressure is reduced.

Figure 6.4.2: Isolated Fluid in Natural Fractures - case B at 17.1s

Figure 6.3.8 shows the fluid pressure at the end of simulation for the higher permeability

of the two intermediate cases - case C (permeability 8.51 E-10m2). This exhibits similar

behaviour to the high permeability example in terms of the final outcome - the fluid fills the

natural fractures nearest the initiation point and propagates from the end of one of them.

It differs to that example in that while the natural fractures near the initiation point open,

the hydraulic fracture continues to propagate vertically.
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Figure 6.4.3: Open Natural Fractures - case C at 17.2s

Figure 6.4.3 shows a plot similar to Figure 6.4.1 for this permeability. Again, the lack of

contact markers indicate natural fractures that have been opened by the fluid pressure

of the hydraulic fracture. At the top of the image an open fracture can be seen, and this

is mirrored at the lower region of the model (the image has been cropped). At previous

times in the simulation, some of the other natural fractures showed the same behaviour,

opening when first coming into contact with the propagating fracture, but closing some

time later.

This example also shows one instance of branch creation in the lower half of the model.

This simulation was not run with a high enough output resolution to determine the exact

cause of this branch. It can be seen that the right hand branch is inserted first, followed by

the left, which then becomes the preferred route for the fluid, closing the right hand side

as it is filled.

The intermediate permeability cases were selected to use as base cases for variation of

contact properties, since they both displayed effects which are due to the natural fracture

permeability, yet allowed vertical continued propagation of the hydraulic fracture to varied

extents.

Natural Fracture Interface Properties

High Friction-Cohesionless The immediately obvious departure from the high friction,

high cohesion examples (6.3.1) is the branching behaviour of the upper wing. Recon-
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sidering Figure 6.2.1, this can be drawn as Figure 6.4.4 for the cohesionless case and

α = 0.95:

Figure 6.4.4: Mohr-Coulomb Failure Envelope - Cohesionless

To determine whether the shear zones around the propagating fracture are triggering

sliding, τf can be determined from the magnitudes of the principal shear stresses σ1 and

σ2 (which are our σHmaxand σHmin, respectively) and the angle β.

β = π

2 − φ (6.4.1)

r = σ1 − σ2
2 (6.4.2)

sin(β) = τf
r

(6.4.3)

τf = σ1 − σ2
2 sin(β) (6.4.4)

Because the natural fractures are aligned with the X axis, this value τf can be compared

against the shear stress τxy to indicate fractures which may have slipped. Figure 6.4.5

plots positive values of τnf = τf − |τxy| as NF_STRS. Where these positive values cross

natural fractures (in light blue), the natural fracture is able to slip - whether or not this

happens may depend on the surrounding mechanics. This plot shows that while the

hydraulic fracture (in purple) has propagated towards the lower part of the model, the

upper part has not yet inserted a fracture.
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Figure 6.4.5: Slip Inducing Stress Prior to Branching - 14.01s

Figure 6.4.6: Slip Inducing Stress after Branching - 14.21s

Comparing Figure 6.4.5 with Figure 6.4.6, which shows the same area after the branch

fractures are inserted, the boundary of areas of positive τnf appear closely related to the

insertion location of the branch fractures. Figures 6.4.7 and 6.4.8 are LIC visualisations
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of the principal stress field, contoured by stress intensity factor σI (equation 4.4.9), and

make clear a discontinuity in stress intensity that is more pronounced in the upper part of

the model prior to branching. The principal stress directions also make a “V” shape in the

upper part of the model, differing from a smoothly curved transition to the vertical that is

expected in a homogeneous medium, and is demonstrated to a lesser extent in the lower

part of the model. Note that the range of σI varies in the first image between 1.67 MPa

and 34.7 MPa, and in the second from 2.95 MPa to 41.1 MPa.

Figure 6.4.7: Principal Stress Field prior to Branching

The output of this simulation was not at high enough frequency to examine the mechanics

of the fracture insertion in minute detail, and would warrant further study. In comparison

to the high friction, high cohesion simulations run in section 6.4.1, the effect of removing

cohesion is to put the natural fractures within the range of being affected by shear stress,

allowing slip.

High Cohesion-Frictionless It was expected that the results for these simulations would

be identical to those with both high friction and cohesion. The cohesion value was ex-
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Figure 6.4.8: Principal Stress Field after Branching

pected to be high enough to prevent movement of the fracture even in the absence of

friction. When α = 0, the failure envelope becomes a horizontal line at the selected

cohesion value, as illustrated in Figure 6.4.9. Movement on natural fractures becomes

possible if the shear stress exceeds τf , which is equal to the cohesion value C, 20 MPa

in this case. To exceed this value, the principal stress magnitudes would need to differ by

twice this value, or 40 MPa.
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Figure 6.4.9: Mohr-Coulomb Failure Envelope - Frictionless

However, comparing Figures 6.3.7 and 6.3.13, which differ only in the value of the friction

coefficient α, there are differences. The fracture propagates through the top of the natural

fracture region in Figure 6.3.7, but is arrested in Figure 6.3.13. The chance of the principal

stresses differing by more than 40 MPa seemed unlikely given the in-situ stresses of 4 and

5 MPa. However, the high fracturing pressure brought about by the small initial fracture

size did create large stress differences. The simulation was run with outputs at every

coupling (every 0.1s), which is low frequency in relation to the explicit timestep size. Of

the those low frequency outputs, the maximum difference in principal stresses magnitudes

was 34.7 MPa. It is quite possible that a difference of 40 MPa was exceeded in between

coupling steps.

Comparing the indicator of contact slip flag in the output, this reaches a maximum of 0.96

in the zero friction case, but only 0.66 in the high friction example. If the cohesion value

was exceeded between coupling steps, this flag could have reached 1, indicating slip.

Unfortunately the output for slip magnitude is reset between outputs.

Given that the friction parameter is the only difference between this and the high friction,

high cohesion examples in section 6.4.1, the difference between the two sets of results

will be attributed to exceeding the cohesion value during early fracturing. This could have

resulted in a minor permeability or mechanical difference that affected whether fracture

propagation. A further set of simulations with a larger starter fracture, and therefore lower

initial propagation pressure, may be less likely to show differences between high and

low friction values. The sensitivity of these simulations, and quite possibly field scale

fracturing, to minor changes in parameters is clear to see.

Frictionless and Cohesionless In this simulation, the natural fractures have no resis-

tance to sliding, and are unable to directly support shear stress along their length. That is;

they are unable to transfer stress between their two walls tangentially. However, they con-

tinue to exert a normal force, and the bending of a fracture wall is able to cause a shear
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stress on its opposite side. Similarly, the fracture opening under fluid pressure will bend a

fracture wall and bring about shear stress in the material behind it. Also, the fractures are

of finite length, so there may be some shear transfer through the rock continuum beyond

the ends of the fractures.

In this simulation, none of the above mechanisms of shear transfer appeared to have

a significant effect, and the propagating hydraulic fracture was arrested. Figure 6.3.14

shows the first natural fractures encountered by the hydraulic fracture have filled with

fluid, and the fracture has propagated out of the end of one fracture at a direction normal

to the maximum principal stress. This is very similar to the high permeability simulations

in section 6.4.1.

Shear stress can be seen on the opposite side of these fractures in Figure 6.4.10, which

shows the displacement vectors at each mesh node as well as the shear stress τxy contour

at 9.8 s. This is during the drop in pressure from initiation to propagation - in Figure 6.3.10

the minimum pressure can be seen at around 15 s. If this is considered to show three

layers, the primary displacement of the central layer is horizontal, due to the hydraulic

fracture opening in that direction. The displacement of the layers above and below is

consistent with the natural fractures opening; this is confirmed by the examination of the

apertures.

Figure 6.4.10: Shear XY and Displacement Vectors - Cohesionless Permeability B

The removal of friction and cohesion has an effect on the initiation pressure of the hy-

draulic fracture - Figure 6.3.9 shows this very clearly. The initiation pressure is reduced
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from 50.1 MPa in all the simulations with either high friction, cohesion or both, to 32.3

MPa. This can be explained in one way by considering the effect of the natural fractures

on the stiffness of the formation (Li et al. (2013)) - on a large scale, the natural fractures

act to reduce the effective Young’s modulus of the formation, and the orientation of the

fractures will effectively create an anisotropic Young’s modulus.

On a local scale, considering the ’layer’ containing the starter fracture; it has zero stiffness

in the X direction at the natural fracture boundaries. It is easier to open in that direction,

because it is not necessary to move the material on the other side of the fracture. This is

illustrated by examining a similar plot to 6.4.10 for the high friction, high cohesion case,

at a similar stage in fracturing. Figure 6.4.11 shows the material above and below the

natural fractures has moved with the central layer, due to the cohesion of the fracture. In

contrast, the frictionless example shows horizontal displacement only in the central layer,

and the vertical movement in the layers above and below has already been attributed to

the natural fractures opening under fluid pressure.

Figure 6.4.11: Shear XY and Displacement Vectors - High Cohesion Permeability B

The outcome of this simulation and the high permeability example of 6.4.1 are similar in

terms of fracture propagation direction, although examining the fluid pressure required to

both initiate and continue propagating the fractures highlights some important differences.

Figure 6.4.12 shows this frictionless, cohesionless simulation with a high friction, high

cohesion example at the same permeability, and a high permeability (case A in Table 6.2)

with the same contact properties. For the sake of brevity, these three examples will be
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enumerated as follows:

Identifier α C (MPa) k (case identifier in Table 6.2)

1 0 0 B

2 0.95 20e6 A

3 0.95 20e6 B

Table 6.7: Simulation Identifiers

Case 2 shows the same high initiation pressure as the other examples in these simu-

lations with strong contact properties, for example case 3, which is provided to enable

this comparison. It would be unexpected if the initiation pressure were dependent on the

natural fracture permeability, since the hydraulic fracture is not in communication with the

natural fractures until it begins propagating. Figure 6.4.13 shows a detail of Figure 6.4.12,

comparing cases 1 and 2 in Table 6.7.

Figure 6.4.12: Fluid Pressure Comparison - High Permeability
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Figure 6.4.13: Fluid Pressure Comparison - High Permeability

Comparing cases 1 and 2, both hydraulic fractures see a pressure drop as the fracture first

extends, both dropping to a similar pressures. For case 2 - the high permeability example

- during the initial pressure drop, the hydraulic fracture connects with the natural fractures.

These then dilate and increase in permeability while also building pore pressure. The

pressure drops again when the fracture begins to propagate from the end of the natural

fractures at around 21 s. The same process occurs in case 1. This fracture begins to

extend from 27 s, at a slightly higher pressure than case 2. The difference in fracture per-

meability between the two examples explains the difference in rate of pressure increase,

since neither natural fracture sees an aperture increase along its entire length until just

before the fracture extends. This shows that the permeability of the unopened natural

fracture affects the rate at which fluid can fill the fracture and increase the pressure.

Stress Anisotropy

These simulations were performed to assess the impact of increasing the differential in-

situ stress on scenarios such as those discussed in section 6.4.1, by reducing the mini-

mum horizontal stress. It was expected that propagation pressure would initially be lower,

but that vertical propagation could be affected because of the same reduced pressure in

the propagating fracture. Of particular interest was whether the expected lower propa-

gation pressure in a higher anisotropy setting would provide enough stress to continue

propagating vertically.

Figure 6.3.18 confirms the expected effect on propagation pressure; both cases initiated

and propagated at lower pressures than the reference case with σHmin =4.9 MPa. A
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linear relationship between initiation pressure and σHmin is confirmed by colinear slopes

of the three pressure history curves.

The difference between the two end of simulation images - Figures 6.3.16 and 6.3.15 -

were not expected. The fracture propagating under higher fluid pressure was arrested at

the lower boundary of the natural fracture set, while in the lower fluid pressure example,

the fracture continued to propagate both wings through all layers. The cause of the single

wing result of the 4 MPa simulation can be found by looking in detail at the path taken by

the lower wing. Figure 6.4.14 shows the offset fracture inserted at 12.1s. This is followed

by another fracture connected directly to the upper fracture soon afterwards, but the offset

becomes part of the main fracture path (Figure 6.4.15). This offset acts as a choke on

the lower wing, lowering flow rates and isolating the fluid pressure. Figure 6.4.16 shows

the fluid pressure isolation - the fracture continues to propagate in this direction. Once

the upper wing is clear of the natural fracture region, flow rates to the lower wing drop off

substantially and propagation downwards ceases.

Figure 6.4.14: Branch 4 MPa case, 12.1s
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Figure 6.4.15: Branch 4 MPa case, 12.2s
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Figure 6.4.16: Branch 4 MPa case Fluid Pressure, 12.8 s

6.4.2 Fracture Reorientation

The principal aim of these simulations were to assess the impact of introducing natural

fractures to the fracture reorientation examples in chapter 5. These simulations can only

be expected to provide a representation of what may occur under some very specific

natural fracture conditions. Chapter 2 describes the varied conditions that can lead to nat-

ural fractures, showing that the potential variation of parameters describing each natural

fracture set is enormous, and a comprehensive study is beyond the scope of this work.

Nevertheless, the interaction of a reorienting fracture with a natural fracture set of some

description is of interest.

The permeability assigned to the natural fractures is the same value used for “intermedi-

ate” permeability in other simulations in this chapter - case B in Table 6.2. In simulations

propagating a hydraulic fracture perpendicular to natural fractures (e.g. see 6.4.1), this

value was found to allow the fractures to take on fluid without arresting the hydraulic

fracture flow. In these examples, this was still the case, although the natural fractures sig-

nificantly affected the fracture path. A key difference between these simulations and the

vertical fracture propagation examples in 6.4.1 is the minimum horizontal stress, which

was 4 MPa in these simulations and 4.9 MPa in 6.4.1. The maximum horizontal stress

was 5 MPa in both cases.
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Single Natural Fracture Set Figure 6.3.19 shows that the fracture path has not reori-

ented to the vertical orientation expected. Observing the propagation of the hydraulic

fracture through the field of natural fractures yields some interesting discussion points.

One such point of interest occurs when the right hand wing begins an arc towards the

maximum principal stress direction, and encounters a natural fracture whilst oriented per-

pendicular to it. A detail from this simulation at time 36 s shows this about to occur in

an LIC plot (Figure 7.3.6). The position and orientation of the natural fracture is marked

in red, and it can be observed that the principal stresses are orthogonal to the natural

fracture when the hydraulic fracture approaches.

Figure 6.4.17: LIC plot- Hydraulic Fracture Arrest
The hydraulic fracture path is indicated with dotted yellow lines, and the natural fracture
with a solid red line.

The hydraulic fracture does not cross the natural fracture, although it is approaching at 90°

and the natural fracture has the same high friction and cohesion parameters to prevent slip
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as the vertical propagation simulations in 6.4.1. Examination of contact markers on the

interface confirm that the natural fracture fills with fluid and opens, rather than slipping due

to frictional forces being overcome. Figure 6.3.21 plots the fluid pressure at the injection

point through time, which at the time of contact with the natural fracture is 5.8 MPa. The

detail of fluid pressure history in the vertical propagation examples 6.3.10 shows that

those fractures were growing at a higher pressure, which is consistent with the lower

horizontal stress in this simulation.

This suggests that the propagation pressure was unable to create a high enough tensile

stress on the opposite side of the natural fracture to fracture it before fluid pressure could

open the natural fracture. Examination of the failure factor variable shows that an element

did fail on the opposite side of the natural fracture, however this is not a large enough

number of elements to trigger fracture insertion ( see section 3.6.2). This is an interesting

result when considered in the context of chapter 4, in which the treatment method focused

on reducing stress anisotropy by increasing the minimum horizontal stress σHmin. The

higher propagation pressure brought about by a higher σHmin, whilst reducing anisotropy,

can increase the likelyhood of natural fracture crossing.

Once the natural fracture has opened, it is flooded with fluid quickly and fracture propaga-

tion continues, providing another point of interest when it exits the natural fracture. Being

filled with fluid, the interface parameters are irrelevant, and the fracture will support no

shear stress along its length. Figure 6.4.18 is the same area as Figure 6.4.17 at a later

point in time. It shows the stress state immediately prior to the hydraulic fracture exiting

the natural fracture.
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Figure 6.4.18: LIC plot- Hydraulic Fracture Exit

The tip of the natural fracture is circled, and the stress discontinuity that the natural frac-

ture creates once filled is apparent. The difference in stress states on either side of the

natural fracture gives rise to a tensile force which is acting on one side of the natural

fracture only. The result is that the hydraulic fracture exits the natural fracture at a sharp

angle, without the gradual reorientation simulations in chapter 5. This process of being ar-

rested by the next natural fracture encountered, filling it and propagating at a sharp angle

continues. The combination of downward exits and travelling up the slope of the natural

fractures results in a net horizontal propagation of the right hand wing. The left hand wing

exits the natural fractures horizontally, and travels down the slope of the natural fractures.

Overall, the expected reorientation to vertical propagation does not occur.

Two Natural Fracture Sets The net path taken by the hydraulic fracture in this example

approaches the vertical orientation suggested by the in-situ stress field more closely than
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the single set case (see Figure 6.3.20).

A point of interest in this simulation is the propagation direction of the new fracture seg-

ments, which do not appear to “try” to curve towards the vertical after exiting the natural

fractures used as conduits (which are opened). This appears to be due to intersection

angle of the hydraulic fracture with the natural fracture. Figure 6.4.19 shows a detail of

the right hand wing of the fracture path, with a section of new hydraulic fracture geometry

marked with a blue ellipse.

Figure 6.4.19: Fluid Pressure - Two NF Sets

Two figures illustrate the process that has occurred. In Figures 6.4.20 and 6.4.21, prin-

cipal stress tensors are overlaid on the fracture geometry. Note that the tensors are

coloured according to Elfen convention, which is that the most compressive stress direc-

tion is coloured blue. In Figure 6.4.20, the direction of σHmax is quite varied. On the central

natural fracture itself the stress is normal to the fracture, while to the left it is oriented di-

agonally left, and on the right is for the most part vertical. Also of interest, in the region

between two natural fractures, marked in a blue circle, σHmax is aligned tangentially to

those fractures. The mechanics behind this stress state require closer investigation. The

fracture central to the green circle is opened after fluid propagates through the connected

fracture.
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Figure 6.4.20: Fracture Insertion, Two NF Sets, 16s

Figure 6.4.21: Fracture Insertion, Two NF Sets, 20s

Figure 6.4.21 shows the stress state after this fracture has opened; a recognisable, rela-
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tively symmetric pattern about the tip can be seen. This is due to the fracture being able

to open more symmetrically on both sides of the opened tip. Figure 6.4.22 compares a T

shape intersection at 90° case A (such as that examined in the single fracture set above)

with an inclined intersection case B. In the first case, the lower material on the lower side

of the horizontal fracture is unconstrained by pressure from the vertical fracture, but the

upper half is being compressed by fluid pressure in the vertical fracture. In case B, the

material on the upper right hand side of the horizontal fracture is less constrained by the

pressure from the inclined fracture, and will be easier to open than the left hand side.

This results in a stress pattern around the horizontal fracture which is similar to a hori-

zontal fracture opening in isolation, which in turn orients the principal stresses ahead of

it towards the horizontal. This mechanism appears to be the cause of the stress rota-

tions apparent in Figure 6.4.21, which result in the fracture travelling parallel to the natural

fracture set.

Figure 6.4.22: Intersection Angle Impact on Opening Preference

It is also worth noting that failure of the bond between fractures outside the stimulated

fracture (due to shear stress) was observed, and that this will have further altered the

stress field.

Figure 6.3.21 shows the fluid pressure required to propagate the fracture in both cases.

It is apparent that more energy was required to propagate through the single fracture

set than the two set case. This is probably due to a combination of factors. The first

is that the second fracture set was more closely aligned with the in-situ σHmax, so less

fluid pressure would be required to open those fractures if contacted by the hydraulic

fracture. The second is that the variety of intersections available to the hydraulic fracture

is higher in the two set case, which increases the chance of one of those intersections

being preferable. In both cases, the propagation pressure was less smooth than seen in

single fracture examples. This is presumed to be due to fluid travelling through a natural

fracture until coming to an impediment, which requires higher fluid pressure to continue

propagation. Impediments could be a smaller fracture at an obtuse angle to the current

principal stress direction, and/or unfavourable stress magnitudes or directions ahead of

the fracture tip.
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6.4.3 Impact of Shear Stress

Immediately obvious in Figure 6.3.22 is that the hydraulic fracture made contact with the

natural fracture sets, and used them as conduits owing to their high permeability. The

horizontal stress anisotropy was relatively unchanged in the space between the natural

fractures, and the fracture continued vertically on exiting each natural fracture. Figure

6.3.26, an LIC plot of the stress field at 31s, shows the vertical sections between the natu-

ral fractures ahead of each fracture tip. While it has already been seen that a snapshot of

the stress state is not necessarily indicative of the future path of a fracture (e.g. in chapter

4), in this case the fracture did travel in the vertical direction.

The hydraulic fracture contacted the natural fractures on the top right and bottom left of

the model, which appears to be related to the way the shear stress interacts with the

natural fractures. Considering the upper part of the fracture prior to contact with the

natural fractures, on the right hand side the maximum principal stress aligns tangentially

to the natural fractures. Conversely, on the left hand side, the stresses have rotated to be

normal to the natural fractures. Figure 6.4.23 is an LIC plot of the principal stress field at

31s demonstrating this. This shows the area between coordinates 488-511m in X, and

507-530 in Y (the origin being the bottom left corner of the model). Since the sign of the

shear stress is reversed on each side of the hydraulic fracture, it follows that the rotation

of principal stresses will be towards the alignment of the natural fractures on one side,

and away from them on the other. The effect is also visible in an LIC plot of a larger area,

in 6.3.26.
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Figure 6.4.23: Principal stress field at 31 s

As noted above, and seen elsewhere in this chapter, once contacted by the hydraulic

fracture, the alignment of the natural fractures can have a large influence on the fracture

path. In relation to interface friction, the prospect of the fracture crossing a natural fracture

is very low due to the angle the hydraulic fracture makes with the natural fracture. Using

Figure 6.1.3 as a guide, this example has an effective principal stress ratio of 1.667,

requiring a frictional coefficient above 0.8 to cross.

Figures 6.3.27 and 6.3.28 are of interest because they point out potential difficulties in

interpreting microseismic data from the field. Considering Figure 6.3.27, at this point the

hydraulic fracture has had no direct interaction with the natural fractures. Microseismic

events triggered by the shear stress zone indicate tensile failure at the tips of several

natural fractures extending some distance from the hydraulic fracture - up to 17m in the

zones of positive τxy (top left and lower right), and 10m in the zones of negative τxy. A

detail of some microseismic data is shown in Figure 6.4.24, with the microseismic event
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representations generated up until that point in time displayed concurrently.

Figure 6.4.24: Microseismic Events and Most Tensile Principal Stress

It is possible that the microseismic data captured would give the impression that a com-

plex, connected fracture network has been created in the example above, in contrast to the

single planar fracture that is the reality. A similar phenomenon was observed in Taleghani

and Olson (2013); they show reactivation of natural fractures which are close to but not

in communication with the hydraulic fracture. They observe that this reactivation would

generate microseismic events, and that shearing could increase the natural fracture per-

meability. These simulations have shown that an addition to shearing, the shear stresses

can induce tensile failure in the natural fractures.

6.4.4 Summary

Natural fractures are likely to be present in most shales in the field, and are critical to the

development of complex fracture networks. This chapter set out to examine the effects of

natural fractures on hydraulic fracture propagation, beginning with very structured simu-

lations. The impact of natural fracture permeability and interface properties were studied.

Fracture reorientation within arbitrary natural fracture sets was compared with earlier ex-

amples in a homogeneous medium. The potential effect of shear stress zones around a

propagating fracture on nearby natural fractures was found to be significant.
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Permeability variation simulations were run to establish a suitable intermediate per-

meability to use in subsequent simulations. Two values were selected, each of which

showed some characteristics of the high and low permeability cases. The value used for

the majority of later simulations was 1.7 E-10m2.

Fracture interface properties using the intermediate permeability were able to show hy-

draulic fracture branching by removing cohesion but retaining a high friction coefficient.

Frictionless interfaces without cohesion arrested the hydraulic fracture as expected. A

comparison between this result and a strong but highly permeable interface showed that

the frictionless example initiated at a lower fluid pressure due to a reduced lateral stiff-

ness. The permeability of the interfaces affected the time taken and pressure required to

exit the natural fracture.

The isolation of fracturing fluid was observed, and could provide a mechanism for frac-

turing fluid leakoff. Further simulations to investigate whether this fluid returns to the

hydraulic fracture when the pumped fluid pressure is reduced would be of some interest.

Limited investigations into the effect of stress anisotropy showed the expected behaviour

in terms of initiation and propagation fluid pressure, although the creation of an offset

fracture resulted in an unsymmetric fracture in the medium anisotropy case. Similarly to

the example showing branched fracturing in section 6.4.1, the exact cause of the offset

fracture requires more detailed analysis, with higher frequency output. In both simulations,

the hydraulic fracture continued propagating vertically through the natural fractures.

Fracture reorientation simulation results suggest that permeability should be taken into

account in defining a crossing criterion, such as that in Gu et al. (2011). Fluid filling a high

permeability natural fracture can dilate it and remove the impact of interface properties

before they are able to transfer stress across the interface.

A consequence of reducing stress anisotropy via treatments such as described in Soli-

man et al. (2010) was shown to be an increase in propagation pressure. This can in

turn increase the likelihood of a hydraulic fracture crossing a natural fracture, working

against the stated aim of increasing fracture complexity. The importance of being able to

model dynamic interaction between fluid and mechanics was demonstrated, in particular

in showing the importance of the interaction angle between hydraulic fracture and natural

fracture. This was observed to affect the way in which the natural fracture dilated, and

the subsequent effect on the propagation direction on exiting the natural fracture. A com-

parison of the two simulations found that propagation pressure was lower in the two set

example, primarily due to the second fracture set being more aligned with σHmax.

Chapter 5 showed that in single fracture experiments, stress reorientation was dominated

by the amount of stress anisotropy, and the length and orientation of the fracture. Smooth
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fracture paths which began in the direction of the original fracture invariably resulted, with

sharp reorientations predicted only under very high stress differentials (Figure 5.3.7 and

equation 5.4.4). These simulations highlighted that the complexity introduced to the stress

field by natural fractures can result in outcomes radically different than the predictions

made by single fracture models. In particular, sharp exits from the ends of natural fractures

were observed.

Future work could include detailed studies of fracture fluid isolation. In particular, whether

the fluid remains sealed after the well pressure is reduced. A better understanding of

branching could be obtained by setting up targeted simulations. The interface angle be-

tween hydraulic and natural fractures was shown on a qualitative basis to influence the

dilation of the natural fracture, and quantification of the mechanism would be of bene-

fit. The interface property simulations used extremes of each parameter; more moderate

values could provide further insight into natural fracture reactivation behaviour.
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Chapter 7

Shear Stress Reinforcement

7.1 Introduction

Chapter 6 highlighted in 6.4.3 the influence that shear stresses can have on unconnected

natural fractures, including inducing tensile failure. Other works have noted that shear

stress produced by an advancing hydraulic fracture can be favourable for enhancing frac-

ture complexity, as it can debond natural fracture cementation, or induce permeability

enhancing slip (Taleghani and Olson, 2013, Cheng, 2012).

Chapter 4 examined one method of influencing the stress state between fractures - direct

modification of the relative magnitudes of the principal stresses directly. This chapter

examines altering the stress state between fractures by using shear stresses to rotate the

principal stresses.

The areas of strongest shear stress in a single propagating hydraulic fracture, in a ho-

mogeneous medium as examined throughout this work, are near and either side of the

fracture tips. These can extend some distance from the fracture. As illustrated in 4.4.11,

the propagation of fractures in treatment designs such as those in chapter 4 is such that

these zones of shear stress act to cancel each other out if they are within range of each

other.

By placing fractures so that their zones of shear stress can reinforce rather than mitigate

each other, it may be possible to introduce larger changes in the stress state between

fractures than methods such as the TTSM. This could be measured by principal stress

rotation, or change in anisotropy ratio.
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7.2 Methodology

Horizontal Well A single well was simulated, with 5 perforations being simultaneously

exposed to the pumped fluid. Table 7.1 shows the parameters used for the initial simu-

lation - these were broadly identical to those used in chapter 5, although more fluid was

pumped to account for the larger number of fractures.

Inclined Well The well was inclined at 45° to the principal stress directions, with the dual

aim of reducing stress shadowing effects, and allowing zones of similarly signed shear

stresses to reinforce each other. The starter fractures were aligned with the maximum

principal stress direction, so that any direction change of the fractures could be attributed

to the stress change brought about by their propagation, rather than realignment to the in-

situ stresses (as examined in Chapter 5). Aside from the well orientation, the simulation

parameters were identical to the horizontal well. The perforations remained the same

distance from each other along the well, making them closer to each other in the horizontal

direction.

Parameter Value Unit

Young’s Modulus 32 GPa

Poisson’s Ratio 0.2

Reservoir Pore Pressure 0 MPa

Effective Stress XX 4 MPa

Effective Stress YY 5 MPa

Effective Stress ZZ 5 MPa

Porosity 0.01

Fracture Height (Layer thickness) 10 m

Initial Fracture Length 4 m

Fluid Volume 50 m3

Flow Rate 0.1 m3

s

Fluid Viscosity 1.67e-3 Pa.s

Perforation Spacing along wellbore 20 m

Table 7.1: Indicative Simulation Parameters
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7.3 Results

Geometry The geometry of the resulting fractures at 100 s are shown in figures 7.3.1

and 7.3.2 for the horizontal and inclined wells respectively. On each plot, a 10 m grid is

shown for comparison of scale.

Figure 7.3.1: Horizontal Well, 100s

Figure 7.3.2: Inclined Well, 100s
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Propagation Pressure A comparison of the fluid pressure during the first 200s of both

simulations is shown in Figure 7.3.3.

Figure 7.3.3: Fluid Pressure - Horizontal and Inclined Wells

Total Fracture Length The length of hydraulic fracture over the entire simulation is

shown (500s) in Figure 7.3.4.
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Figure 7.3.4: Total Fracture Length (m)

Stresses Figures 7.3.5 and 7.3.6 are LIC plots of the principal stress field for the inclined

and horizontal wells, respectively. Both images are coloured according to the stress in-

tensity σI (eqn 4.4.9).
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Figure 7.3.6: LIC plot - horizontal well

The stress anisotropy ratio σHmin
σHmax

is plotted for both wells in Figures 7.3.7 and 7.3.8.
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Figure 7.3.7: Stress Anisotropy, Inclined Well

Figure 7.3.8: Stress Anisotropy, Horizontal Well
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All of the above plots are at time=100 s.

7.4 Discussion

7.4.1 Geometry

The horizontal well geometry shows the classic signs of stress shadowing, which were

expected in this simulation. As each starter fracture began to grow, the outer fractures

were less constrained laterally on one side than the three interior fractures. The outer

fractures grew preferentially from both wings, in turn further stunting the growth of the

interior fractures. This pattern is clearly seen in Figure 7.3.1. Some curvature away from

the interior can also be seen, although this is not particularly pronounced.

In contrast, at fracture initiation, the starter fractures of the inclined well were relatively

unconstrained laterally. As they grew in length, the predicted shear reinforcement caused

the interior fractures to curve towards each other.

That is not to say that the inclined well’s interior fractures did not experience stress shad-

owing; they were effectively arrested once the tips became aligned vertically, and the

outside fractures continued to grow one wing each preferentially. Figure 7.4.1 shows the

geometry after 50 0s. It could be argued that from the geometric perspective an ideal

treatment of this type would pump enough volume to take the interior fractures to the

point of arrest, and stop there.

It is also worth noting that in these simulations, there was no fracture closure associated

with the curvature of the fractures originating in the inclined well. This phenomenon was

observed during fracture reorientation simulations, discussed in section 5.4.

These simulations were restricted to fracture growth only, and it follows that any predic-

tions about impact on production are only able to be made qualitatively. A generalisa-

tion regarding Darcy flow from low permeability reservoirs into hydraulic fractures can be

made, based on some previous simulations that are not presented elsewhere in this work.

Figure 7.4.2 shows the pore pressure measured along lines at three positions in relation

to a vertical fracture. The fracture was in a reservoir with 31 MPa pore pressure and a

permeability of 5 nD. The production pressure was just above 8 MPa. Considering, for

example, a region at which the pore pressure had dropped to 30 MPa, this formed a type

of ellipse around the fracture, with the widest point at its midpoint, and its narrowest ver-

tically above the upper tip. Figure 7.4.3 shows the pore pressure in the reservoir around

the fracture after 4.5 years. For the most part the “ellipse” had straight sides, narrowing

and becoming round at the tips.
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Figure 7.4.2: Darcy Flow into Vertical Fracture: Numerical solution at tip and center (5nD)

Figure 7.4.1: Inclined

Well Geometry at

500s

Allowing for some minor fluctuations in the elliptical region size

(for curvature), the generalisation of this shape forming around

each fracture can aid in discussing the merits of the inclined well

for production. A fracture pattern such as that in Figure 7.3.2

could on the one hand provide a means of extracting more gas

near the wellbore - at a distance dictated by the fracture curvature

- in comparison to the horizontal well. On the other hand, this

could be considered a constraint on the “reach” of the well into

the reservoir.

Fracture length increased in the inclined example more quickly

than the horizontal, continuing at the same rate once both sets

of interior fractures had been arrested - see Figure 7.3.4. This is

consistent with the interior fractures initially growing concurrently

in the inclined example, while the horizontal well sees the interior

fracture growth stunted early. Once the interior fractures in the

inclined example are arrested, the rate of growth of the exterior

wings is close in both examples.
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7.4.2 Propagation Pressure

Figure 7.3.3 demonstrates that a significantly higher pressure

was required to initiate fractures in the horizontal well than the

inclined well. This is due to stress shadowing - each starter fracture has to overcome

the additional lateral stress of the others to remain open. Similarly, the decline from ini-

tiation to propagation pressure was considerably slower for the horizontal well, and the

propagation pressure remained slightly higher throughout the simulation.

7.4.3 Stresses

The LIC plots in figures 7.3.5 and 7.3.6 show very clearly the difference in stress orienta-

tion between the two examples. The stress field of the horizontal well is typical of a stress

shadowed example; between the fractures the dominant principal stress direction has be-

come horizontal, and ahead of the stunted interior fractures, there are areas of rotation

which are due to the shear stress around the tips of the outer fractures. As discussed in

Chapter 4, this mode of stress magnitude change occurs via the lateral stresses directly

increasing σxx until it becomes σHmax.

The interior fractures originating from the inclined well have caused the stress field to

rotate significantly between them. Along the direction of the well, the principal stresses

are aligned with the well direction. This is nothing to do with interaction with a physical

well; the pipe elements representing the well are not part of the mechanical simulation.

Whether this is a positive outcome is debatable, since this stress field manipulation may

encourage any future fractures from the well to propagate parallel to the well. It could also

be argued that since this treatment allows closer initial spacing than the horizontal case,

additional fracturing may between the initial fractures may not be required. Also, once the

fractures are propped, the stress field changes may be mitigated by reduced apertures.

Shear stresses have probably been introduced around the well, which would warrant fur-

ther investigation with wellbore scale modelling. On the other hand, bearing in mind the

results from Chapter 6, the higher level of shear stress experienced in those zones could

have increased connectivity of natural fractures, or caused the unbonding of cementation

in sealed fractures, both potentially permeability enhancing effects.

Both figures 7.3.7 and 7.3.8 show the stress anisotropy ratio, σHmin
σHmax

. The far field value

is of 0.833. The results highlight the unsuitability of the metrics discussed in 4 for this

application. In that chapter, the metrics rank anisotropy values nearer to 1.0 above others

- in fact ignoring values below the far-field value. This is due in part to an isotropic stress

state being considered favourable to a highly anisotropic in the TTSM (Soliman et al.
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(2010)). Also, the mechanism through which the TTSM modifies the stresses can only

act in one direction - to increase the minimum horizontal stress. Increasing this past

the previous maximum horizontal stress by a large enough value to reduce the stress

anisotropy ratio appears to be difficult, at least under the conditions simulated in this

work. A more useful metric to compare these two cases would probably use the change

in stress anisotropy.

The anisotropy change is plotted for both simulations in figures 7.4.4 and 7.4.5. The

values shown are simply

δσ4 =
∣∣∣∣∣σ11,0
σ22,0

− σ11,t
σ22,t

∣∣∣∣∣ (7.4.1)

where the change in stress anisotropy, δσ4is plotted for values 0.1 and above. This does

show larger regions between the fractures, near the wellbore, in the inclined case. These

plots are interesting to compare to the LIC information, since the value is indicative of the

relative stress magnitude change rather than the orientation.

Figure 7.4.4: Change in Stress Anisotropy, Horizontal Well

Figure 7.4.5: Change in Stress Anisotropy, Inclined Well

The LIC plots highlight a failing of this metric; it can be seen in Figure 7.3.6 that the

principal stress directions have reversed along the direction of the horizontal well, yet this
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area is not represented in Figure 7.4.4. This shows that although the directions have

reversed, the ratio between them remains close to the original value of 0.833. A better

method of measuring the change in stress state should probably consider orientation as

well as magnitude. One visual method of doing this would be to contour the LIC plots

according to anisotropy ratio change.

7.4.4 Other Alternative Treatments

Alternative fracture treatments such as the TTSM aim to use the mechanical interactions

between fractures to ultimately enhance production, or increase operator efficiency. Wa-

ters et al. (2009) proposed one such treatment, known as the zipper-frac method. This

involves the stimulation of multiple lateral wells, in sequential but alternate stages, as il-

lustrated in Figure 7.4.6. Sequential stimulation would fracture Well1 heel to toe, followed

by Well2. In zipper fracturing, while one well is being prepared for fracturing by setting a

plug and perforating the wellbore, the other lateral is being stimulated. This operation can

be conducted efficiently from one drilling pad.

Rafiee et al. (2012) proposed a modification to the zipper-frac method, by staggering

the stages in each of the lateral wells so that each fracture propagating from one well is

between two fracture from the other, in a similar manner to the TTSM, but without the

operational issues involved in repeatedly moving the stimulation cluster.

Figure 7.4.7: Shear Stress Cartoon, Zipper Fracturing
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Figure 7.4.8: Shear Stress Cartoon, Alternate Zipper Fracturing

The zipper method places the shear zones of each fracture such that they act to miti-

gate each other, as illustrated in Figure 7.4.7. Alternate zipper fracturing, on the other

hand, should allow shear stresses from the each lateral to reinforce the fracture from the

other, illustrated in Figure 7.4.8. However, in both treatments, within each lateral the shear

stresses of the adjacent fractures are working against each other, and if stimulated simul-

taneously as proposed in Rafiee et al. (2012), subject to constraints on spacing due to

stress shadowing. Qiu et al. (2015) point out the difficulty that stress shadowing effects

can act to reduce stress anisotropy, and thus supposedly enhance fracture complexity,

whilst also acting to stabilise natural fractures - which acts against fracture complexity.

Studying the behaviour of these and other alternative treatments with Elfen TGR, and in

particular in the presence of natural fracture systems could provide insight into the partic-

ular strengths and weaknesses of these treatments.

7.4.5 Summary

The simultaneous stimulation of a well inclined at an angle of 45° to the maximum prin-

cipal stress direction was compared to that of a horizontal well. Fracture spacing was

such that in the horizontal well, significant stress shadowing was observed, resulting in a

region between the two outer fractures which was relatively inaccessible to the hydraulic

fractures. The fractures originating in the inclined well did not experience the negative

effects of stress shadowing until later in the simulation. During that time, the fractures

propagated evenly, and owing to the reinforcement of the shear stress zones ahead of

each fracture tip, curved significantly until lateral to the wellbore. Once the fracture tips

were aligned vertically, stress shadowing effects dominated the interior fractures, and the

exterior fractures propagated preferentially. It was proposed that future evaluations of

the treatment design would pump enough fluid to reach this point, providing a region of
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uniformly stimulated reservoir around the wellbore. In comparison to the horizontal well,

the stress shadowing effect was reduced, and the fractures initiated and propagated at a

lower fluid pressure.

The interaction of the shear stresses was by design, and as well as altering the fracture di-

rections, is likely to have caused significant damage to cemented natural fractures nearby,

based on results from the previous chapter, in section 6.4.3. Including natural fractures

in future simulations would be of particular interest. Utilising the shear reinforcement as

a pre-treatment to reactivate or debond natural fractures before a further treatment for

production could be of benefit. Simulation of production from the generated fracture ge-

ometry would allow quantitative evaluation of the production benefits (or otherwise) of

such a treatment.
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Figure 7.3.5: LIC plot - inclined well
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Figure 7.4.3: Darcy Flow into a Vertical Fracture - 5 nD reservoir, 4.5s

Figure 7.4.6: Sequential vs Zipper Fracturing

219



Chapter 8

Conclusions

This study focused on utilising an advanced numerical simulation framework to examine

particular aspects of hydraulic fracture stimulation in tight gas shales. Their ultra low per-

meability requires the application of advanced stimulation techniques to become econom-

ically recoverable. Although not a new concept, production from tight shales has become

big business in recent years, and literature regarding many facets of their properties, has

become available. A review of studies on shale mechanical properties, mineral makeup,

and properties related to fluid flow was presented.

The presence of natural fractures in brittle shales in particular is commonplace, and sev-

eral studies on natural fracture scale, abundance and orientation provide useful back-

ground information which is reviewed in Chapter 2. Most studies seem to agree that there

is no single rule for natural fracture properties in shales, and that modelling specific to the

particular play is essential. Several difficulties associated with characterisation of natural

fractures were discussed, and by extension the introduction of stochastic methods to mod-

elling natural fractures. A particularly interesting result of the literature review was a study

by Landry et al. (2014), which suggests that calcite filled natural fractures are permeable

enough to be considered fracturing fluid conduits in these extremely tight shales.

An overview of numerical modelling of this field was presented, with a summary of nu-

merous studies related to the many varied methods employed to simulate parts of this

complex system. The issue of scale is present throughout attempts to model this process;

from LBM simulations within pore space, to simulation of microseismic event generation

in reservoir scale field simulations.

The modelling framework employed by Elfen TGR, the commercial software employed to

undertake the simulations within this work, was presented in Chapter 3. The fundamental

governing equations in the mechanical and fluid sides of the coupled simulations, and

aspects key to managing the issue of scale, were described. In particular the localised
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adaptive remeshing makes fracture insertion possible without relying on element bound-

aries. It enables the finite element mesh to be as fine as possible where required - at

fracture tips and intersections- while being large enough to give realistic numbers of ele-

ments even in domains many kilometres in extent. Furthermore, a coarsening algorithm

is able to de-refine regions which once encompassed the fracture tip, but become fracture

boundaries later in the simulation.

The simulation work in this study began in Chapter 3 with the simulation of a treatment

designed to enhance fracture complexity, the Texas Two-Step Method (TTSM).

Key Outcomes of the work around TTSM included:

• The observation of fracture geometries consistent with numerical results in literature.

• The observation of unintuitive attractive fracture growth close range.

– This growth was predicted in previous literature, but not explained.

– The mechanism for this growth pattern was found and explained in detail.

• The introduction of basic metrics to evaluate the area of affected stress anisotropy.

Central to the improvement of fracture complexity is the reduction of stress anisotropy,

which is achieved by reinforcing the lateral stresses that each hydraulic fracture introduces

into the formation. This is proportionally larger than the increased longitudinal stress,

which results in the minimum horizontal stress increasing, reducing the stress anisotropy.

Several simulations were conducted to compare with literature on the effect of opening

two fractures at different spacings along the same well in sequence. The simulations

matched literature well.

Of particular interest was the phenomenon of attractive fracture curvature, which appears

to be in contradiction to familiar stress shadowing behaviour. The ability of the simulation

package to view the whole domain at any point in time allowed the cause of this attractive

fracturing to be identified: although described as incompressible, the Newtonian fracturing

fluid does have a stiffness parameter, which is lower than the fracturing medium. This

enabled preferential opening towards an open fracture, in turn affecting the stress rotation

ahead of the fracture tip and causing the fracture to curve towards the open fracture.

This effect was mitigated by distance from the open fracture, where the increased lateral

stresses promoted curvature away from the open fracture. The effect was not accounted

for in the literature, although some authors did postulate that it was due to shear stress

effects.
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The chapter also set out to identify a metric based on analysis of the full simulation field,

to describe the impact the combined lateral stresses had on the anisotropy between the

two fractures. The metric arrived at took into account the area affected per length of well

and arrived at a different spacing than the literature example being used for comparison.

Other differences, notably asymmetry in the stress anisotropy induced were noted. These

were attributed to the more realistic modelling capabilities of Elfen TGR, which was able

to account for the first fracture continuing to propagate due to residual pressure, and the

compressibility of the fracturing fluid. It was observed that the aim of reducing or reversing

the stress anisotropy could be achieved in two ways; by direct manipulation of the principal

stress magnitudes, or by rotating them. The TTSM was shown to use direct magnitude

manipulation, while the superposition of opposite signed shear stresses were noted to act

to reduce shear stress in the area between fractures.

Subsequent chapters addressed various issues associated with the key aim of the TTSM

- enhancing fracture complexity. Firstly, the behaviour of a fracture propagating in an

altered stress field was considered. The manner in which a fracture reacts to a field

rotated in relation to its own orientation was investigated in Chapter 5. Fracture complexity

is associated with interaction with natural fractures, the topic of Chapter 6. A short final

chapter proposed the second mechanism identified in Chapter 4 which could modify the

stress anisotropy - rotation via shear stress.

Chapter 5 aimed to answer the following questions:

• How does a fracture grow within a region of reversed stress anisotropy?

– Reorientation from the starter fracture orientation towards the maximum princi-

pal stress direction is expected.

• How do the following factors influence reorientation:

– Amount of initial stress anisotropy

– Initial fracture length

– Initial orientation relative to the stress field

Key findings of this chapter included:

• In all cases, fractures initiated tangentially to their own fracture walls

– This is in contradiction to the literature describing the TTSM

– Reorientation towards the maximum principal stress direction occurred smoothly
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• A drop in propagation pressure was observed during reorientation

• Under strong stress anisotropy, fracture choking could be observed in one wing

– It is currently unclear whether this is due to the fracture curvature, the observed

pressure drop, mesh artifacts, or another explanation

– Examination of the choking mechanism would be a good area for further study

• While varying initial fracture length, two particular lengths an order of magnitude

apart exhibited very similar curvature

– This is also unexplained, and would make an interesting topic for further inves-

tigation

Reorientation to align with the maximum in-situ principal stress direction occurred at dif-

ferent rates. As well as the fracture path and reorientation rate, the effect on opening

pressure was evaluated for all simulations. Measurement of the fracture orientation was

achieved by extracting the geometry of the fracture from the results, and measuring the

tip angle at every timestep in the simulation. This highlighted some significant noise in the

tip angle, a consequence of a slight mesh dependency in the fracture insertion algorithm.

The noise made it difficult to determine for certain when a fracture had reached its final

orientation. Smoothing of the data via a low pass filter helped somewhat.

Some examples of fracture closure in one wing were observed, and the effect was to

choke one wing, resulting in asymmetric growth of the fracture. It is unclear whether this

is a real effect or an artifact of the tip angle noise noted earlier; further study would be

warranted.

Simulations altering the stress anisotropy used quite a short starter fracture, which re-

sulted in high initiation pressures. The high initiation pressures made it difficult to estab-

lish a trend as the anisotropy was altered, and future work could include setting those

simulations up with longer starter fractures.

When varying the starter fracture length, two simulations an order of magnitude apart

in length both showed very close behaviours. Further investigation of this aspect would

be of benefit. The effect of the fracture orientation relative to the stress field was also

examined, again all cases began to propagate tangentially to the fracture orientation,

realigning smoothly with the principal stress field. Trends in reorientation rate were not as

clear in these simulations as others.

The need to consider reorientation in the presence of natural fractures was identified as a

prime candidate for future study.
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Chapter 6 aimed to evaluate the effect of natural fractures on the propagation of a

hydraulic fracture. The impact of natural fracture permeability and interface properties

were studied.

Findings of particular interest included:

• Natural fractures (NF) were observed taking fracturing fluid from the hydraulic frac-

ture (HF), and closing as HF propagation pressure dropped, retaining fluid.

– This is a possible mechanism for fluid leakoff, and further study could indicate

whether the fluid is retained when flowback fluid is removed from the system,

particularly when the HF is propped.

• The stress field within the NF set was observed to influence the propagation direc-

tion of the HF. For instance, sharp exits from natural fractures were seen; in contrast

to the results obtained in the previous chapter, in which reorientation of a single

fracture was studied without the influence of any natural fractures.

• It was shown that reducing stress anisotropy by increasing the minimum horizontal

stress (as per the TTSM) could act to reduce fracture complexity, by increasing the

likelyhood of a propagating hydraulic fracture crossing a given natural fracture.

• Shear stress around a propagating hydraulic fracture was shown to cause tensile

failure in adjacent, but unconnected, natural fractures.

– This has potential implications in the interpretation of microseismic data. Sim-

ulation of the microseismic events generated by the observed failures could be

misinterpreted as a highly stimulated region, whereas in fact no fracturing fluid

has reached the areas indicated. Discussions with experts in microseismology

would be of benefit, in order to discuss whether the simulated events would be

in fact interpreted this way.

– This result, in particular with the aforementioned input from microseismologists,

has been identified as a candidate for publication.

• Interesting branching behaviour was observed, which further studies could model

in more detail with targeted simulations. For instance, quantification of the fracture

dilation/interface angle relationship, could be of benefit.

• The simulations used extreme settings for natural fracture interface properties; more

moderate values could be used to provide further insight into fracture reactivation

behaviour.
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• Overall, the difference between results with natural fractures present, and those

without, highlighted the importance of taking natural fractures into account when

attempting to predict hydraulic fracture propagation.

Initial simulations were in a highly structured model; hydraulic fracturing perpendicular to a

set of natural fractures of uniform length. Suitable values for high and low natural fracture

permeabilities, and their influence on the hydraulic fracture propagation, were identified.

Intermediate permeability values were then identified which displayed some aspects of

each behaviour, and were used in subsequent studies of the natural fracture interface

properties.

Stochastically generated fracture sets were then added to a model used in Chapter 5, to

examine the effect of natural fractures on the reorientation rate. This was by no means

exhaustive, and as noted earlier, an in depth examination of reorientation rates in the

presence of natural fractures would be valuable work.

The examples considered in this work both resulted in heavily modified fracture paths.

The modifications that dilated natural fractures can make to the stress field were observed

and significant; hydraulic fractures were observed to exit natural fractures at sharp angles

brought about by tensile stresses induced on one side of the natural fracture.

The angle the hydraulic fracture had first contacted the natural fracture at was observed

to have an important effect on the exit direction from the natural fracture.

Finally, the chapter examined the impact that shear stresses induced by a propagating

hydraulic fracture could have on a set of natural fractures without coming into direct con-

tact. Simulations of microseismic events confirmed that that tensile failures, as well as

shear slippage could be brought about by those shear stresses. A possible implication of

this is that microseismic data could be interpreted as creating a complex fracture network

of hydraulically stimulated natural fractures due to the tensile events; whereas it can be

shown that the fractures are not in communication with the fracturing fluid at all. On the

other hand, the shear stresses can be considered a useful tool in weakening cemented

natural fractures and potentially opening new ones. The final, short, chapter conducted a

simulation designed to magnify such shear stresses.

Chapter 7 demonstrated an alternative treatment design based on observations from

simulations in previous chapters. It aimed to utilise the shear stresses which form around

a propagating fracture to improve the behaviour of simultaneous stimulation treatment.

In particular, a well inclined at an angle of 45° to the maximum principal stress direction

enabled the propagating fracture tips to interact in a way which is not possible using the

standard TTSM.
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The results were compared to that of a horizontal (stress-aligned) well. Some key findings

of this chapter include:

• The inclination of the well to the in-situ stresses was shown to result in reinforcement

of the shear stresses of adjacent fractures.

• The stress field was rotated by the reinforced shear stresses, resulting in fractures

propagating towards each other.

– This in contrast to TTSM, which directly affects the magnitudes of principal

stresses without modifying their direction significantly.

• The onset of stress shadowing effects were delayed significantly.

• Lower work was required to propagate the fractures to a given length.

• It was observed that given the results from Chapter 6, the increased shear stresses

could produce significant damage to existing natural fractures

– The treatment could potentially be utilised in industry as a pre-treatment, to

enhance conductivity of natural fractures prior to further stimulation

• Results from this chapter were identified as being suitable for publication.

Fracture spacing was designed so that in the horizontal well, significant stress shadowing

was observed, resulting in a region between the two outer fractures which was relatively

inaccessible to the hydraulic fractures. The fractures originating in the inclined well did not

experience the negative effects of stress shadowing until later in the simulation. During

that time, the fractures propagated evenly, and owing to the reinforcement of the shear

stress zones ahead of each fracture tip, curved significantly until lateral to the wellbore.

Once the fracture tips were aligned vertically, stress shadowing effects dominated the

interior fractures, and the exterior fractures propagated preferentially. It was proposed

that future evaluations of the treatment design would pump enough fluid to reach this

point, providing a region of uniformly stimulated reservoir around the wellbore.

The interaction of the shear stresses was by design, and as well as altering the frac-

ture directions, is likely to have caused significant damage to natural fractures nearby, as

the results in section 6.4.3 demonstrate. Including natural fractures in future simulations

would be of particular interest, as would investigation into employing the technique as a

precursor to more linear fracturing; utilising the shear reinforcement as a pre-treatment to

reactivate or debond natural fractures before a further treatment for production.

This proposed treatment design has potential for both improving fracture density during

simultaneous fracturing, and acting as a pre-treatment to improve conductivity of natural

fractures. Further study would be warranted, in particular:
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• Evaluation of gas recovery, using a production model with propped fractures.

• Simulation of interaction with natural fracture sets, quantifying conductivity changes.
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