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Abstract

A good solution to human activity recognition enables the creation of a wide variety

of useful applications such as applications in visual surveillance, vision-based Human-

Computer-Interaction (HCI) and gesture recognition.

In this thesis, a graph based approach to human activity recognition is proposed which

models spatio-temporal features as contextual space-time graphs. In this method, spatio-

temporal gradient cuboids were extracted at significant regions of activity, and feature

graphs (gradient, space-time, local neighbours, immediate neighbours) are constructed

using the similarity matrix. The Laplacian representation of the graph is utilised to reduce

the computational complexity and to allow the use of traditional statistical classifiers.

A second methodology is proposed to detect and localise abnormal activities in crowded

scenes. This approach has two stages: training and identification. During the training

stage, specific human activities are identified and characterised by employing modelling

of medium-term movement flow through streaklines. Each streakline is formed by mul-

tiple optical flow vectors that represent and track locally the movement in the scene. A

dictionary of activities is recorded for a given scene during the training stage. During the

testing stage, the consistency of each observed activity with those from the dictionary is

verified using the Kullback-Leibler (KL) divergence. The anomaly detection of the pro-

posed methodology is compared to state of the art, producing state of the art results for

localising anomalous activities.

Finally, we propose an automatic group activity recognition approach by modelling

the interdependencies of group activity features over time. We propose to model the

group interdependences in both motion and location spaces. These spaces are extended

to time-space and time-movement spaces and modelled using Kernel Density Estimation

(KDE). The recognition performance of the proposed methodology shows an improvement

in recognition performance over state of the art results on group activity datasets.
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Chapter 1

Introduction

The overall philosophy of computer vision is to use the principles of pattern recognition to

enable the design and development of robust, effective algorithms for machine vision. Com-

puter vision addresses problems where the data is uncertain but often highly structured.

The highly structured nature of the data makes the task possible, whilst the uncertainty

adds a degree of difficulty to the task.

Given that visual data is often noisy and the approximate nature of vision techniques,

machine learning was a natural tool to aid in the development of computer vision tasks.

The addition of machine learning tools led to more data-driven ways of modelling param-

eters and henceforth learning more robust models. The introduction of machine learning

to computer vision introduced the ability to develop more sophisticated and flexible meth-

ods of learning that previously were not possible when decision techniques needed to be

explicitly engineered. For example, early work such as a general purpose neural network

algorithm [57] using back-propagation allowed a sophisticated and robust method of rec-

ognizing hand-written digits. A second example is [108], which used principle component

analysis (PCA) to produce a simple yet very efficient face recognition algorithm. Such

algorithms have been very influential and still influence work in the area to this date.

The early applications of machine learning methods made the great potential of learning

methods clear to researchers.

1.1 Human Activity Recognition

Human activity recognition is the problem of identifying and classifying different human

actions performed in a video sequence. An example of such a human action could be run-
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Chapter 1: Introduction

ning or jumping. A system can be trained on particular examples of an activity (training

set) and then tested on a particular example of an activity (test set). The aim of the

system is to identify the correct class of activity to which a video sequence belongs, or

more generally, to identify and understand what the human is doing in the video sequence.

Human activities can range from simple atomic actions such as walking or jumping,

to interactions between humans, e.g. shaking hands, or a particular type of movement

in sport, e.g. a serve in tennis. Since the range in complexity of an activity can vary

considerably, generally only a specific complexity of activity is focused upon. Ultimately,

the goal is to be able to recognize any human activity, in any possible scenario; although

this is a very difficult problem that researchers continue to address.

Considering only the simple atomic human activities such as walking or jumping, many

challenges still exist despite the seemingly simple nature of the activity. For example,

different people may walk very differently to others (intra-class variation), different people

may also perform different activities which may appear inherently similar, e.g. one person’s

run may be similar to another person’s jog. Other challenges that arise include: difference

in camera viewpoint or video from a moving camera, occlusion due to objects or other

humans in the scene, illumination changes, e.g. walking along a corridor passing a window,

and so on.

From a more practical viewpoint, building a human activity recognition system intro-

duces its own challenges. The main practical challenge is due to the sheer size of the data,

data of this nature is often referred to as “big data”. Consider a short video sequence with

a resolution of 640 × 480, at 25fps and 10 seconds in duration; this short video sequence

has 250 frames, each containing 307, 200 pixels, giving a total pixel count of 76, 800, 000.

Considering that a single dataset may contain hundreds of videos, this is a substantial

amount of data to store and process. Considering the amount of data for just a single

short video sequence, a human activity recognition algorithm must be efficient enough

such that the system can deal with a reasonably-sized dataset in a reasonable amount of

time.

One other interesting problem is of localizing activity within a video sequence. Lo-

calizing an activity is the ability to identify a region in the video sequence corresponding

to a certain instance of a human activity. Localizing human activities is far more useful

than classifying an entire video sequence as a particular class of activity and leads to a

more useful application of human activity recognition in real-world applications, e.g. vi-
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1.2 Thesis Overview

sual surveillance. For example, an unknown video (or video stream in real-time) can be

“searched” through for an instance of a particular activity which may or may not exist in

the video.

Many different techniques have been applied to the problem of human activity recog-

nition, most commonly the traditional bag of video words (BoW) pipeline where regions

of interest are extracted from the video sequence and then clustered to form region pro-

totypes. Each video sequence is classified using traditional statistical classifiers such as

support vector machines (SVM) according to which “region prototypes” the video se-

quence contains and how many of each “region prototypes” the sequence contains. Other

approaches to activity recognition exist such as motion primitives, dynamic models and

structural methods such as graph-based methods.

Solving the problem of human activity recognition opens up a world of potential new

applications. Example applications include visual surveillance, video retrieval tasks (on

video archives) and observing human patterns and behaviours for a better understanding

of human behaviours.

1.2 Thesis Overview

An overview of the thesis is provided as follows:

Chapter 2 provides an in-depth survey of the significant contributions to the field of

human activity recognition including group activity recognition and anomalous activity

recognition. This chapter also surveys the most significant contributions in the areas of

local features, short and medium term tracklets and BoW methodologies.

Chapter 3 presents a methodology for modelling simple human activities as contextual

graphs of space-time features using the graph Laplacian. In this work, spatio-temporal

activity regions were extracted, and features were modelled as similarity graphs across

space and time. In other graph based approaches to human activity recognition, limitations

were placed on the features due to issues representing and comparing the complex feature

graphs. To overcome the limitations of typical graph based methodologies, the Laplacian

representation of the graph was used, providing a vector-based representation of the graph

while maintaining its discriminative nature. A further distinction of the proposed method

is that the relationship between features was modelled; in the typical approaches to human

activity recognition using BoW, the contextual and relationship between features is often

ignored. While the results did not match those of the state of the art; it is suggested that
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Chapter 1: Introduction

this approach is better suited to more complex activities such as human interactions and

contextual group activities.

In Chapter 4, a new online activity monitoring approach is adopted based on form-

ing a dictionary of activities and assessing a new activity using detection theory. In this

approach, the original streaklines approach was extended to a block-based methodology;

where streakline flows were segmented using the EM algorithm under the Gaussian mod-

elling assumption. Segmented regions were then represented in the movement and loca-

tion space by their block-based streakflow and location models. PCA was then utilised to

project the principal streakline vector representing each moving region. The streakline rep-

resentation was extended to a multi-vector approach where each block is represented by its

magnitude and direction vectors in the polar coordinates space. Furthermore, a weighting

factor was introduced to balance the contribution of the magnitude and direction vectors.

A novel localisation methodology was introduced to account for the perspective distortion

in the scenes by only comparing activities with each other inside a dynamic window. A

further distinction of this methodology is that the dictionary of activities was generated

online, thus allowing for the methodology to be used in an online system; without requir-

ing offline training like some approaches. The proposed methodology also achieved state

of the art results for localising abnormal activities in crowded scenes.

In Chapter 5, a novel automatic method for group activity recognition is proposed

by modelling the inter-dependant relationship between features over time. In this work,

a model was proposed to describe the discriminative characteristics of group activity by

modelling the relationships between moving activity regions. The interdependent rela-

tionships of movements and locations were modelled using the symmetric KL divergence

between the moving regions at particular time instances. This differs from other works

in the area which only model the differences between longer term tracklets, and not the

differences in movement and space over the short to medium term. A new stationary

pedestrian detector was proposed to keep track of the stationary pedestrians by marking

the locations when the pedestrians stop moving. In addition to modelling the differences in

movement and location over time, the changes in such movement and location differences

where also modelled using Kernel Density Estimation (KDE). The use of KDE showed a

clear improvement over using conventional histograms. This differs from other methods

which usually only consider the differences in features at a particular time, and do not

model the changes in such differences over time. Experimental results on state of the art
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group activity datasets show a clear improvement over state of the art methodologies.

Finally, Chapter 6 provides a extended summary of the contributions of the thesis,

highlighting both the strengths and the weakness of the work. This chapter concludes

with suggestions for future research work.
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Chapter 2

Literature Review

This chapter provides a comprehensive literature review of human and group activity

recognition from video sequences. Firstly, human and group activity recognition will be

discussed on a high level, including the general problem, main challenges and its po-

tential applications. Following this, an in-depth review of the current literature will be

provided including discussions of state of the art methods and their strengths and weak-

nesses. Towards the end of this chapter, more specific human activity recognition tasks

will be discussed including human interaction recognition, group-based human activity

recognition and anomalous activity identification.

2.1 Human Activity Recognition

The overall aim of human activity recognition is to analyse and understand human motion

in a video sequence. Practicably, the goal is to categorize a video sequence or part of a

video sequence as a particular class of human activity. In this context, the class of human

activities can vary considerably from the simple to the much more complex. From simple to

complex, these include: gestures or “actoms”, simple actions/activities, human to human

interactions, human to object interactions and group activities. This literature review is

largely focused on recognizing human activities, human interactions and group activities.

A single instance of a human activity typically lasts a few seconds in duration, although

with periodic activities such as walking there may be no obvious end to the activity, and a

video sequence may consist of the same simple activity repeated several times. An example

of such a walking activity is shown in Figure 2.1. Further examples of human activities

including a gesture activity, tennis server activity and a surveillance scenario are shown
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in Figure 2.2.

Figure 2.1: Example of the walking activity from the KTH dataset [93].

a) Tennis serve activity [123]. b) Gestures [51]. c) Activity detection [117].

Figure 2.2: Examples of human activity recognition.

2.2 Main Challenges

Due to the complexity and large variability in human actions, human activity recognition

remains a very challenging task in computer vision. The main challenges in human activity

recognition are:

• Intra-class and inter-class variation of human activities - There are many

ways to perform a simple action, for example, people have may have very different

gaits, wear different clothing (e.g. different textures or fittings) and walk at different

paces. On the other hand, variations between classes of activities can also be prob-

lematic; different people may perform activities very different from one another. A

model of human activity recognition must be general enough to model all possible

examples of a particular activity yet discriminative enough to be able to distinguish

between types of activities.

• Viewpoint variation - The viewpoint of the human is rarely the same across

different scenes, for example, in one scene a person may be facing directly at the
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camera, whilst in another scene, the person might be side-on to the camera. The

other difficulty is the difference between aerial view and ground viewpoints; this is

a common scenario in a visual surveillance system where multiple cameras monitor

the same area.

• Illumination changes - Illumination may change a great deal between different

environments, or even in the same environment due to the scene being only partially

exposed to a certain lighting source. For example, scenes in an outdoor environment

have very different illumination properties to scenes indoors.

• Camera movement/jitter - When considering a static, fixed camera this is rarely

a problem; but in some real-world scenarios it may well be an issue, for example,

a surveillance camera attached to a large pole may suffer from some movement in

windy conditions. Another such example is video recorded from hand-held devices

such as camcorders or smart-phones. Generally, stabilization algorithms can reduce

the effects of camera movement, although of course no stabilization algorithm is

perfect in this regard and some artefacts may still propagate through and affect the

human activity model.

• Complex dynamic backgrounds - In real world scenarios, humans are rarely

alone in a scene and against plain, easily distinguishable backgrounds. Consider

a scene from a surveillance video of a shopping centre where many shoppers exist

surrounded by objects and other humans all moving in different directions - in this

case it is very difficult to distinguish and localize the movement of a single person.

• Partial or full occlusions - In a complex real-world scenario a person often walks

near, behind or along objects which occludes part or all of the human body. A

person may also be occluded by another human being; in this case there may be

some confusion as to which person is performing the activity.

• Noise and video compression artefacts - When videos are compressed, noise

and artefacts are naturally introduced to the videos. The video compression artefacts

present in the videos are not too much of an issue in activity recognition, especially

considering that many of the existing methods rely on low-resolution down-sampled

videos with spatio-temporal features that rely on smoothing the regions of significant

activity. Noise may be an issue in applications such as surveillance videos where the
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resolution is already low and digital zoom is heavily relied upon.

2.3 Potential Applications

Despite the challenges highlighted above, successfully recognizing human activities leads to

many potentially useful applications. Some examples of such applications are highlighted

below:

• Visual Surveillance - The increasing use of video surveillance technology leads

to a significant increase in the amount of video data and the need for visual analytic

software. Surveillance systems are now part of modern day life in towns and cities

across the world. Video analytics are helpful in such surveillance systems, especially

the use of human activity recognition. Such video analytics applicable to human

activity recognition could include detecting potential burglaries, thefts or scenes of

violence. More generally human activity recognition could be used for car park

surveillance (tracking pedestrians entering/leaving their vehicles) and monitoring of

sterile/“no-go” zones.

• Human-Computer Interaction - HCI is now commonplace in a wide variety of

modern technology systems, especially in video games and home entertainment sys-

tems. As modern technology becomes increasingly sophisticated, activity recognition

becomes an increasingly useful tool. For example, gesture recognition for control-

ling home entertainment systems (such as televisions), or activity understanding for

video game immersion.

• Video retrieval/search - Video archives have vastly increased in size in recent

years due to video sharing websites such as YouTube. Most videos in this context are

not annotated and are manually categorized by the uploader. With human activity

recognition, video archives could be automatically categorized based on their content

and even automatically annotated depending on the context. This leads to very

useful applications in video retrieval, especially for news and sport. For example,

automatically annotating a news broadcast or sports game means it is much easier

to retrieve particular events or happenings at a later date.

• Gesture recognition - Gesture recognition can be considered a sub domain of

activity recognition where the goal is to understand human gestures, that is the
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movements of body parts, especially the arms and hands. Gesture recognition is

heavily used for sign language recognition [48].

• Human behavioural understanding - Human activity recognition can be used

to better understand human behaviour and to detect patterns by understanding and

tracking humans in everyday scenarios. Such applications can be very useful for

driving research in other areas such as sociology and urban planning. For example,

in urban planning, shopping centres or town centres can be better designed if it is

better understood how humans use the area. In the sociology context, it can prove

useful as a study of “why humans do things the way they do”, and as more specific

studies of particular patterns of human behaviour.

2.4 General Human Activity Recognition Model

Recent research in the area of human activity recognition has largely focused on statistical

methods using spatio-temporal features. The typical model consists of spatio-temporal

interest-points which are detected in the video sequence and the local maxima becomes

the center point of a spatio-temporal region. Features are then extracted from the spatio-

temporal region (such as features based on optical flow or gradient values) and summarized

or histogrammed to form a feature descriptor. The feature descriptors are used to form

a codebook, typically followed by a “bag of visual words” model adapted from statistical

natural language processing. While methods based on spatio-temporal features are the

most common, other methods make use of other video features such as medium term

tracking, volumetric representations and graph-based features. A general overview of the

human activity recognition pipeline is shown in Figure 2.3.

2.5 Space-Time Approaches

Space-time approaches model a human activity as a 3D video volume in space-time or

by a set of features extracted from the video volume. Consider an image as a matrix

consisting of pixel intensity values representing the image, the 3D video volume is therefore

a concatenation of the 2D images in chronological order, i.e. along the temporal dimension.

A video sequence containing an execution of a human activity can therefore be represented

as a 3D XYT video volume.
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Figure 2.3: General model of human activity recognition.

Given a set of training videos, a 3D space-time volume is constructed modelling each

activity from the training set. Given the 3D space-time volume of the test activity, the

volume is compared with each activity model in the training data based on their similarity

in shape and/or appearance. In addition to the pure 3D volume representation (essentially

template matching), several variations of space-time representations exist. For example,

the activity may be represent as a series of features extracted from space-time regions

or as interest points extracted from the 3D space-time volume. The activity could also

be represented by trajectories, where interest points detected in the video sequence are

tracked over time.

Activities are recognized by matching the space-time volumes, trajectories or local

features. Matching can be performed by template matching as explained previously, by

neighbour-based matching where a portion of trajectories/local features are matched and

some may be discarded or by statistical modelling algorithms.

Volumetric methods involve recognizing activities by measuring the similarity between

two 3D space-time volumes. Instead of using the whole volume, some methods only

consider the foreground regions representing the human (silhouettes) or a stack of these

foreground regions. The silhouettes can be then be compared by tracking their shape

changes over time.

Bobick et al. [8] proposed one of the earliest activity recognition methods using tem-

plate matching. In this approach, each action was represented by a 2D template composed
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of a 2D binary motion-energy image (MEI) and a motion history-image (MHI). The MEI

is a 2D binary image which indicates where motion occurs and the MHI is an extension

describing the silhouettes motion over time. Examples of both the MEI and MHI are

shown in Figure 2.4. The main drawback of using MHIs is the overwrite scenario (or

self-occlusion); that is, where a motion is repeated over the same spatial space as a pre-

vious motion thus overwriting the original motion. The images are constructed by 2D

projections of the original 3D space-time volume. Two templates are compared using Hu

moments. In their approach they were able to recognize very simple activities such was

arm waving and sitting down. Their system was also applied in real-time to a children’s

play environment named “Kids-Room”.

Figure 2.4: Example of the motion energy image (MEI) and motion history image (MHI)

from [8]. Image from [8].

An extension of the previous MHI method was proposed by [3] to avoid overwrites. In

this method, four optical flow channels are used (horizontal and vertical components each

with positive and negative directions) to avoid self-occlusion of the person. These optical

flow channels were originally proposed in [31]. The optical flow vectors were also used

in [4] to derive a number of kinematic features. Features include, divergence, symmetry,

etc. PCA is applied to the features to determine the dominant kinematic modes.

One disadvantage of silhouette based methods is the difficulty in extracting robust,

accurate silhouettes from the space-time volume. A common approach to develop a more

robust silhouette is to apply the Radon (R) transform to the silhouette [114]. The R

transform provides a scale and translation invariant representation of the silhouette. R

transform is also used in [101] where a third dimension is used (time). A further repre-

sentation that may attenuate the typical disadvantages of silhouettes is using a contour
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based method. Such an example is in [98] where the human body is represented as a

star skeleton which describes the angles between reference lines of the joints, e.g. how far

the hand is from its reference line. Finally, [112] proposed combining both contour based

features and silhouette features for a more robust representation of human activities.

Schechtman et al. [97] estimated motion flows of a 3D space-time volume with appli-

cation to activity recognition. In this method, they computed a 3D space-time template

of the activity composed of space-time patches extracted at each location. Matching is

performed by matching space-time patches in the template video to patches in the test

video. Each local space-time patch represents a flow of a particular local motion in the

video. Each local patch adds a score to the system. The scores are aggregated to form

an overall correlation measurement between the template video and the test video. The

system was successfully able to recognize activities in the Weizmann dataset and on video

sequences from the 2004 Olympic Games, for example, pool dives.

Ke et al. [49] also used spatio-temporal volumes to model human activities. In this

method, hierarchical mean-shift is applied to the volume to cluster similarly colored vox-

els to obtain segmented spatio-temporal volumes. The volumes are deliberately over-

segmented and recognition is performed by searching over the volume for a portion of

the spatio-temporal segments that match those in the activity model. Their system was

successful in recognizing activities from the KTH dataset and also recognizing activities

in video sequences from a TV broadcast (tennis plays).

Rodriguez et al. [87] proposed to recognize human activities using space-time volumes

by synthesizing filters. In this method, maximum average correlation height (MACH) fil-

ters (common for image analysis) are extended to the 3D case, i.e. 3D space-time volumes.

For each activity class a single synthesized filter is generated from the video volumes.

Recognition is performed by applying the synthesized activity filter to the test sequence

and observing its response. The MACH filters were also extended to vector values using

the Clifford Fourier transform. The method was successful in recognizing activities on

both the KTH and the Weizmann dataset and also on their own dataset consisting of

simple activities. Examples of the 3D MACH filters are shown in Figure 2.5.

The main disadvantage of space-time volume-based representation is that much of the

data captured and modelled by the method is not salient; unlike spatio-temporal features

where only the most salient interesting regions are modelled. Another disadvantage is that

by using the entire video volume the computational complexity of the method generally
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Figure 2.5: Example of the 3D MACH filters applied to activity recognition from [87].

Image from [87].

increases quite significantly.

Baktashmotlagh et al. [6] applied non-linear stationary subspace analysis (NLSSA)

to activity recognition. HOG features were utilized to describe the video volume. Their

method relies on the fact that standard dimensionality-reduction techniques fail to account

for the fact that only part of the signal is shared across all classes. NLSSA overcomes

this issue by separating the stationary and non-stationary signal that is shared across

all videos. That is, modelling the parts that are shared across all videos. This method

removes the instant-specific information from the videos which usually introduces noise to

the classification. This approach was applied not only to activity recognition but also to

dynamic texture classification and scene recognition. The approach achieved better than

state of the art results on both the KTH and the UCF Sports dataset.

The methods discussed in this section use local features extracted from 3D space-time

volumes of a video sequence to represent an activity. The aim of these methods is to

extract local features that describe the characteristics of the activity. The features are

then matched across video sequences to recognize activities.

The approaches in this section have three important aspects: how and what features are

extracted, how the features are represented, and finally how the features are classified. The

approaches firstly detect and extract a number of local features capturing the motion of the

activity. Secondly, the local features are described using a feature descriptor and the local

features are combined either by the BoW paradigm (ignoring relations) or by considering

their spatio-temporal relationships in some way. Finally classification is performed, usually

using conventional statistical classification techniques such as SVM.

Zelnik-Manor et al. [123] proposed to learn dynamic events from video sequences using

local space-time features extracted at multiple scales. Histograms of gradient-based space-

time features are used to represent a video sequence. A simple statistical histogram-based
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measurement is used to measure the difference between behaviour in the video sequence.

Finally a clustering algorithm is applied to the histograms to recognize human activities.

Simple human activities performed outdoors were recognized such as playing basketball

or tennis.

Blank et al. [40] calculated local features for each frame in the video sequence. In this

method, they calculated appearance based features which are obtained via solutions to the

Poisson equation. The Poisson equation has shown to be very useful in extracting local

shape information, particularly for object recognition. Each video sequence is represented

as a set of features which are the weighted moments of the local features. This method

was successfully applied on the Weizmann data with good recognition results.

Several approaches have utilized the use of sparse-interest points (or sparse local fea-

tures) to recognize human activity. Well known previous local feature detectors for 2D

images include scale-invariant feature transform (SIFT) and the Harris corner detector.

The Harris detector was extended to the 3D case (space-time video volume) by [55].

In [55] they recognize human activities by extracting space-time interest points from video

sequences. The interest-point detector detects corners in the 3D space-time volume usu-

ally capturing types of non-constant motion patterns. They also proposed a new dataset

named the KTH dataset consisting of simple action videos. The new dataset was widely

adopted and is discussed in more detail in [55]. Following this work, many researchers

adopted the paradigm of extracting space-time interest points for activity recognition and

many more feature detectors were developed.

Dollar et al. [29] proposed a spatio-temporal feature detector based on extracting

cuboids at regions of significant activity. Their detector is based on detecting regions of

significant activity from a 2D Gaussian smoothing kernel along the spatial dimension and

a quadrature pair of 1D Gabor filters along the time dimension. The detector responds

strongest to regions which contain periodic motions such as waving. They evaluated

several different descriptors for the cuboids and found that a simple concatenation of

the brightness gradient values (followed by PCA for dimensionality reduction) achieved

the best performance. A codebook of cuboid prototypes is constructed by clustering the

cuboids using the k-means algorithm. Finally each activity is modelled by a histogram

of cuboid types detected in 3D space-time, ignoring any relationships between cuboids

(BoW paradigm). The method was used not only to recognize human activities (KTH

dataset) but also for facial expression recognition and mouse behaviours. Both the Dollar
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and Laptev detectors have been widely adopted in many approaches to human activity

recognition.

Rapantzikos et al. [85] extended the cuboid features to include color and motion infor-

mation. Liu et al. [62] proposed to prune cuboid features to choose the most significant,

robust features (both motion and static features). They utilized PageRank to mine the

most informative static features. Bregonzio et al. [14] also proposed a cuboid selection

method similar to [62].

More recently, Kumar et al. [54] used a simple optical flow based approach to human

activity recognition by using the optical flow vectors along the edges of the action per-

former. These vectors formed feature descriptors which were passed to a multi-class SVM

classifier. In their work, state of the art results were achieved (on the Weizmann and KTH

datasets) while maintaining a simple and efficient approach.

Niebels et al. [77] proposed a new method for activity recognition using the feature

detector proposed by Dollar [29]. Their method is a generative method using probabilistic

Latent Semantic Analysis (pLSA). pLSA is commonly used in text mining but in this case

has been used to model and recognize human activities. Features in the scene are placed

into categories depending on their posterior probability of being generated by an activity.

Their method was used to recognize simple actions from the KTH and Weizmann dataset.

Since the introduction of the cuboid detector and Laptev’s detector, many other feature

detectors and descriptors have been proposed. For example, Samanta et al. [91] proposed

using a 3D facet model to detect STIPs named “FaSTIP”. Williems et al. [118] proposed

using the determinant of a Hessian matrix as the saliency measure for feature detection

and Scovanner et al. [94] designed a 3D version of the classic SIFT descriptor. As explained

earlier, generally these methods are used as the first step in a BoW-style pipeline. However,

in using the BoW paradigm the spatial and temporal relationships between interest points

are ignored. The methods discussed so far do not utilize any spatio-temporal relationship

information among the features. Although such methods may prove very successful in

recognizing simple periodic activities, they struggle to recognize activities in more complex

scenes where the spatio-temporal relationships are much more significant.

Another issue with the BoW model is that the optimal number of “video words”

must be found. Liu and Shah [95] applied maximization of mutual information (MMI)

for visual word generation to automatically discover the optimal number of video word

clusters. Compared to methods such as k-means (the typical clustering method for BoW-
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based approaches), MMI is able to produce a higher level of word clusters, which are more

meaningful and more discriminative.

Dhar et al. [28] aimed to overcome the shortcomings of low-level features by intro-

ducing a Directive Local Binary Pattern (DLBP) feature which incorporates orientation

information with intensity differences of binary silhouette images. These features are then

further combined with Edge Orientation Histograms (EOH) to form a distinctive mid-

level feature representation. Experiments were performed on a range of videos containing

various moving humans and the outcomes of the method were encouraging.

Similarly, Abdelhedi et al. [1] used a mid-level feature approach by constructing a dis-

criminative model combining optical flow with Hu and Zernike moments. On the low level,

motion vectors are extracted by forming motion curvatures. Secondly, the Hu moment

and Zernik are determined which serve as a second feature vector of the activity. The

resultant feature were fed into an Artificial Neural Network classifier (ANN), with good

results on the Weizmann and KTH datasets.

In the approaches mentioned so far, spatio-temporal relationships between the spatio-

temporal interest points have been ignored, but recently, the spatial and temporal configu-

rations of regions has received an increasing amount of attention, especially for recognizing

more complex activities. These methods attempt to model the spatio-temporal relation-

ship between spatio-temporal interest points.

Savarasse et al. [92] proposed a method to include the spatio-temporal proximity in-

formation between the features. In this method, they measured feature co-occurrence

patterns from a local space-time region, constructing histograms called St-correlograms.

Similarly, Laptev [56] constructed space-time features by dividing a space-time volume

into grids. Spatio-temporal histograms were producing measuring how the features are

distributed in space-time by analysing which features fall into which grid. The method

was evaluated on both KTH dataset and scenes from movies with successfully results.

Finally, Lui et al. [61] also considered the correlations among features.

Ryoo and Aggarwal [90] introduced a method named spatio-temporal relationship

match (STR match). This method explicitly models spatial and temporal relationships

between features. The method aims to model the structure similarity between the video

sequences by considering the spatio-temporal relationships among spatio-temporal interest

points. The method was successfully able to recognize activities from the KTH dataset

and also able to recognize more complex activities such as human-to-human interaction
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activities. Examples of the STR match approach are shown in Figure 2.6.

Xu et al. [120] proposed a new hierarchical spatio-temporal model (HSTM) which used

a two-layer hierarchical classification model. The bottom layer aims to capture the spatial

relations in each frame, which the top layer utilises these learned features to characterise

temporal relationships across the video sequence. The main advantage of such a method

is that both the similarity in spatial and temporal context are well captured.

Wang et al. [113] also proposed a hierarchical approach, based on the existing human

memory model. In this case, a context-associative approach was used to recognise human-

object interactions. The system parsed high-level activities into consecutive sub-activities,

followed by building a context cluster to model the temporal relationships. A series of

similarity functions were used to define the retrievals over a contextual memory, similar

to the auto-associative characteristics of human memory.

Figure 2.6: Example of the STR match approach from [90]. Image from [90].

Niebles et al. [76] proposed a framework for modelling motion by considering the tem-

poral structure of the activities. Activities are represented as temporal compositions of

motion segments. The model encodes the temporal compositions together with appear-

ance motion models for each segment. Recognition is performed based on the quality of

matching the model according to the appearance motion model and motion segment com-

positions. The method successfully recognized activities from the KTH dataset achieving

state-of the art recognition results. They also introduced a new dataset consisting of com-

plex Olympic sport activities and evaluated their method on the new dataset with good

results.

Gaidon et al. [36] proposed to model activities as a sequence of atomic action units

called “actoms”. Actoms are semantically meaningful parts of an activity that are char-
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acteristic of the action in some way. The actom sequence model (ASM) represents the

activity as a sequence of histograms of actom features. ASM can be considered a tempo-

ral extension of the bag-of-features paradigm. One disadvantage of this method is that it

requires the manual annotation of actoms in the training set. The method was evaluated

on the challenging “Hollywood-2” dataset achieving state of the art results.

The space-time approaches that use local features have several advantages. Firstly,

background subtraction is not usually required. Secondly, the features are usually scale,

rotation and translation invariant. The main disadvantage of space-time local features is

the difficulty in modelling the structure between the local features. Due to the success of

the bag-of-features approaches in recognizing simple activities, this is not strictly an issue

for simple periodic activities. As datasets become more and more challenging modelling the

structure and spatio-temporal relationships between the space-time local features becomes

more and more important.

Trajectory-based approaches model the activity as a set of space-time trajectories.

The trajectories can be considered as a set of points in 2D or 3D space tracked over time.

The points could correspond to the positions of human joints, for example, when used in

conjunction with body part estimation to extract the joint positions of a person at each

frame. The points could also be the position of features obtained by tracking space-time

features over time.

Early work by [16] recognized human activities by representing them as trajectories

in phase spaces. A 3D body part model was used to track the joints of the person. The

3D XYZ body-part model at each frame was used to construct the trajectories in phase

spaces. The body phase spaces are a space where the axis relates to an independent part

of the body, e.g. knee-angle. An action corresponds to a set of points in the phase spaces.

Finally, the trajectories from the phase space are projected into 2D subspaces and the

projected trajectories are used to represent the activity. The most robust trajectories

from the 2D subspaces are used for activity recognition. This method was applied to

recognize basic ballet movements with marks attached to the person to track the joint

positions in time.

Rao and Shah [84] proposed to model human activities by extracting curvature pat-

terns from trajectories. They tracked the positions of the human hand by using skin

pixel detection on 2D images. The tracked position over time forms the trajectory curves

representing an activity. Learning was possible by constructing several action prototypes
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(trajectory curves) representing the human activities. The action prototypes are essen-

tially templates and can be matched to trajectory curves extracted from an unknown

(test) video. Their approach was successful in recognizing human activities in an office

environment. They also showed that their trajectories are view invariant, proof of which

is shown in the paper.

Several other methods use the tracking of 3D body parts for activity recognition, for

example [34] and [35]. In [98], activities are represented by joint trajectories in 4D space

(XYZT). Sheikh and Shah [98] used 4D XYZT trajectories to model human activities,

except this method was based on using moving cameras. The main issue with such joint

tracking methods is that robust joint tracking is still largely an unsolved problem in

computer vision. Early work such as [47] suggested that tracking of the joints alone (i.e.

human skeleton) is sufficient to model human activities.

Messing et al. [67] proposed to recognize human activities using the velocity histories

of tracked key-points. They use a generative mixture model (GMM) to model the human

activities. The velocity history feature is extended by combining the velocity history

information with other local feature information such as appearance, position and high

level semantic information. They also introduced a new high resolution challenging human

activity dataset focusing on activities of daily living. The method was evaluated on their

new dataset and outperformed other state of the art methods on their dataset. The

method also performs comparably to state of the art methods on the KTH dataset.

Aside from joint tracking, trajectories have also been used for modelling human ac-

tivities based on feature points. Sun [102] used SIFT-based trajectories to model human

activities. In this case, they also used contextual information in ascending levels of abstrac-

tion: a point based descriptor, trajectory transition descriptor and a trajectory proximity

descriptor.

Wang et al. [111] proposed a trajectory based method called dense trajectories which

works by performing tracking on dense patches extracted at multiple scales. Feature points

are sampled from a dense grid and tracked over time using a dense optical flow algorithm.

They also introduced the motion boundary histogram (MBH) feature descriptor based on

the derivatives of optical flow. An example of the dense trajectory sampling and MBH

descriptor is shown in Figure 2.7. The method was extensively evaluated on complex

datasets and outperformed state of the art methods. Jiang et al. [46] extended the dense

trajectories approach to use local and global reference points to model the motion of dense
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trajectories. One major drawback of dense sampling is the computational cost of comput-

ing the vast amount of trajectories. Another extension to dense trajectories was proposed

in [80] which aims to reduce the computational cost of the point tracking. In [80], a motion

boundary based dense sampling strategy is used which greatly reduces the number of tra-

jectories while preserving the discriminative power. They also introduce novel descriptors

which describe the spatio-temporal context of the motion trajectories. The method was

evaluation on the KTH, YouTube and HMDB51 databased and the method significantly

reduces the computation cost of the original dense trajectory approach without a reduction

in performance. The method also outperforms state of the art methods on these datasets

while using their spatio-temporal context descriptors.

Figure 2.7: Example describing the method of dense sampling from [111]. Image example

from [111]

The major advantage of space-time trajectories is that movements can be analysed in a

more descriptive way. However, in the case of 3D joint trajectories, a reliable low-level joint

estimation method is required. In the case of dense trajectories, the main disadvantage is

the computational complexity of extracting and tracking the dense feature points. This

is not a problem on smaller datasets comprising of simple activities, but is a problem on

large complex datasets; it also adds the limitation that real-time systems (and practical

real-world applications) are very difficult to develop whilst the computational complexity

of the method is so high.

2.6 Sequential Approaches

Sequential approaches recognize human activities by considering the activity as a sequence

of features. Given a set of sequential features, recognition is performed by analysing the

video for a certain sequence or part of a sequence corresponding to that activity. Sequential

approaches are divided into two main categories: example based approaches and state
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based approaches. Example based approaches describe classes of human activity by using

a training sample as a sequence of templates. That is; recognition is performed if the

sequence of action executions (features) can be found in a video sequence. On the other

hand, state-based approaches model the activity as a sequence of states with associated

probabilities. States in this context usually correspond to a particular feature or small

motion of an activity (gesture). Recognition is performed by calculating the probability

that a sequence is generated in a video.

Example-based approaches represent human activities as a template of action execu-

tions. Given an unknown video, the feature vectors extracted from the video are compared

to the template (example of action executions) and if the system observes a high similar-

ity between the template and the feature vectors then the unknown video is classified an

execution of that template. Since humans rarely perform activities at the same rate, any

sequential methods must account for the variation in execution rate of activities.

The dynamic time warping (DTW) algorithm, widely used in speech in speech process-

ing has been adopted for matching sequences of feature vectors for activity recognition.

Early work by Darrel and Pentland [27] proposed to use DTW for gesture recognition.

They modelled gestures as template images obtained from varying conditions. The corre-

lation scores between the image frames and the template images are modelled as a function

of time. The scores of the training videos are used to form the gesture template. The DTW

algorithm is used to match a new observation with the templates. The DTW algorithm

accounts for variation in the execution rate of the activities.

Gavrilla and Davis [38] also used the DTW algorithm to recognize human activities

by using 3D body part tracking and modelling. The aim of the method was to model the

skeleton of the human at each frame and model the variation in movement over time by

tracking. This method was also used for gesture recognition and gestures such as waving

were recognized. Yacoob and Black [121] treated the video as a set of signals describing

changes of feature values. Singular value decomposition (SVD) was used to decompose the

signals into a a set of eigenvectors which forms the activity basis. A test video is recognized

by calculating the similarity between the input and the activity basis by calculating the

coefficients of the activity basis. The method was successful in recognizing basic activities

such as walking.

Other example-based methods include [31], where activities were recognized from a

distance (where a human is approximately 30 pixels tall) by motion descriptors calculated
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at each frame. Recognition is performed by modelling the temporal difference per frame

similar to [121]. Similarly, [109] modelled activities in a similar way to [121] except they

explicitly modelled the inter and intra-personal executing rates. Lublinernman et al. [63]

proposed a method to recognize human activities by modelling them as a linear-time

invariant (LTI) system. The activities are represented by an LTI system which models the

changes in silhouette features over time.

The state-based approaches model the activity as a sequence of activity states. The

probability of the model generating a sequence of feature vectors is calculated using a

similarity measurement between the model and the video input sequence. Generally,

the probability is either modelled by the maximum likelihood estimation (MLE) or the

maximum posteriori probability (MAP) classifier. The most widely used state-modelling

techniques are Hidden Markov Models (HMMs) and dynamic Bayesian networks (DBNs).

Yamato et al. [122] proposed to model human activities using HMMs. In their work

they represented the features by converting binary foreground images into meshes. The

feature vectors are considered as an sequence of observations generated by the model.

Each activity is represented by a single HMM that corresponds to a particular sequence

of feature vectors. The parameters of the HMMs are trained and they are used to recog-

nize activities by measuring the similarity between the input (test) video and the HMMs.

Various activities such as tennis plays where successfully recognized using the system.

Other methods using HMMs were produced such as [9] where they recognized gestures as

2D trajectories from movements of the hand. Other such examples include [78] and [73].

Oliver et al. [13] introduced coupled HMMs (CHMM) to model human-to-human interac-

tions. CHMMs overcome the main disadvantage of the basic HMM which is that only one

state can be active at a single time therefore it is difficult to model complex (human-to-

human) activities. Natarajan and Nevatio [73] used coupled hidden semi-Markov models

(CHSMMs) which extended CHMMs to also model the duration of an activity at each

state.

Gao and Sun [37] modelled activities using a discriminative latent variable model using

human trajectories obtain from specific motion regimes. The trajectories are modelled us-

ing Hidden Conditional Random Fields (HCRFs). Their experiments show the superiority

of the model over traditional state models including HMMs.

Park and Aggarwal [79] used a DBN to recognize gestures between humans. DBNS are

an extension of HMMs in which multiple hidden nodes generate observations at each time
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frame. They model the gestures as a transition of nodes (poses) from each time frame to

the next. Each pose has a set of features corresponding to features obtained from body

parts. The features are obtained from describing the body parts, e.g. location of skin

regions and orientation of body parts.

In general, sequential approaches have the ability to model a complex sequence of

smaller actions which may be used to model more complex activities or gestures. The

state based methods are able to calculate the probability of an action occurring which

may be easily incorporated into other decision making systems. The disadvantage of

state-based methods is that it is difficult to generalize the algorithm well. For example, if

one state (part of an activity) is completely missing from a scene, (e.g. because of partial

occlusion) then it is difficult to recognize the activity. The other disadvantage of sequential

approaches is that a large number of training examples is required to be able to model the

variation of the activities.

2.7 Syntactical Methods

Syntactical methods model the activities as symbols, or more specifically as a string of

symbols where each symbol corresponds to an simple atomic activity or gesture. Context-

fee grammars (CFGs) and stochastic context-free grammars (SCFGs) have been widely

used to recognize activities. The rules imposed by CFGs lead to a natural high-level

description of the activity. The atomic activities are represented by features as described

in the earlier sections. Methods described in this section are often built upon the lower level

methods described earlier; to provide a more higher-level representation of the activity.

Ivanov and Bobick [44] proposed to use SCFGs for human activity recognition. They

modelled human activities as a set of simple atomic actions described using SCFGs. Moore

and Essa [69] extended this method to focus on multi-task activities.

The advantage of syntactical methods is that they are able to model well complex

activities which are formed from simple atomic activities. The main limitations of the

syntactical methods is that they are limited by the atomic actions they are composed of.

For example, if the video sequence does not contain the atomic actions in that particular

sequence then it is difficult to recognize such an activity. The other limitations is that it

is difficult to produce a set of production rules to cover all possible events. For example,

an unknown video may contain an activity for which there is no production rule. Finally,

the syntactical methods have the advantage of being able to be combined with a simpler
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approach (e.g. space time) to model complex activities or events.

2.8 Graph-based Methods

A graph is a data structure consisting of a set of ordered pairs (edges) of certain entities

called nodes. An edge is a connection from one point to another on the graph (between

nodes). The graph edges may also have an associated edge value, such as a symbol or

numerical attribute, for example, a cost or length. Graph-based techniques have been

proposed as a powerful tool for Computer Vision, especially in applications such as image

segmentation [64] and object matching [82].

In older works, graphs have rarely been used for the representation of human activities

due to the difficulty of modelling the human activities. Despite these difficulties, graphs

have been recently proposed to model human activities [15,17,32,106].

Brendel and Todorovic [15] proposed to model human activity using spatio-temporal

graphs. In their work, they define an activity in terms of temporal configurations of

primitive actions. The spatio-temporal graphs model the spatio-temporal relationships

between the activity parts; or more specifically, the nodes correspond to video segments (at

multiple scales), and the edges capture their spatio-temporal relationships. The method

was evaluated on both the Olympic and human interaction datasets with state of the art

results.

Ta et al. [103] modelled human activities using graphs composed of sets of spatio-

temporal interest points obtained using the Dollar detector [29]. Hyper graphs with 3 edges

are constructed to represent the activity. An example of localising activities using these

graphs are shown in Figure 2.8. Rather than trying to recognize activities by classifying

the entire sequence, this method searches the video (scene graph) for instances of the

model graph. This method has the advantage of not only being able to detect and localize

human activities but to detect multiple instances of activities occurring simultaneously.

The method was evaluated against the KTH and Weizmann datasets obtaining state of

the art results.

The main drawback of graph-based representation is that as the number of nodes and

edges grow, the complexity of the graph increase significantly. The second major drawback

is that basic operations such as sums cannot be performed directly on graphs making them

unsuitable for conventional pattern recognition classifiers.

An alternative to directly comparing graphs is to use graph embedding. Graph embed-
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Figure 2.8: Example of localising activities using the method proposed in [103]. Image

from [103]

ding converts the graph into a vector-based representation. Graph embedding offers an

alternative representation which solves many of the problems listed above (such as graph

matching), and allows basic operations to be performed on graphs. Once the graph is

embedded into a vector-based representation it is then suitable for conventional pattern

recognition approaches based on feature vectors and can be used by conventional statistical

classifiers.

Graph-embedding has been proposed for activity recognition [10,11,32,128]. In [32], a

graph is built using the locations of SIFT key-points. The graph models the humans shape

during the performing of the activity. They proposed a discriminative approach where the

graph is embedded as a feature vector based on a prototype set and the probabilistic graph

edit distance (P-GED). The method was evaluated on the KTH dataset and the results

do not match those of the state of the art methods.

Graph-embedding has also been proposed for human activities using the silhouettes of

the human body [107,128]. In [128] a co-occurrence matrices descriptor is introduced and

the shape manifold is learned using diffusion maps. Tseng et al. [107] also used silhouettes,

but the shape model is learned using a Adaptive Locality Preserving Projection (ALPP)

method and Large Margin Nearest Neighbour (LMNN) is utilized as the metric learning

method. The major disadvantage of silhouette-based methods is the difficulty in extracting

a robust silhouette automatically. Both methods achieve state of the art results on complex

human activity datasets.

A related theme to graph embedding is spectral clustering. Spectral clustering is the

study of the Laplacian representation of the similarity matrix of the data before clustering

in fewer dimensions (dimensionality reduction). Spectral clustering has been proposed

for the action recognition of insects [71]. In this method, the object is tracked in 3D

and features are constructed of the objects 3D movement followed by the application of a
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spectral clustering algorithm.

The main advantage of graphs is that they are able to capture complex visual patterns

and represent them as a smart structure of features suitably connected to each other.

Graphs are therefore a very powerful and flexible way to model the relationship between

spatio-temporal regions of activity, or relations between parts of the human body. As

activity recognition datasets continue to increase in complexity the relationship between

spatio-temporal regions of activity becomes far more important.

2.9 Human Interaction Recognition

In this section, human interaction recognition is discussed. Human interaction recogni-

tion is the recognition of interactions between humans (human-to-human interaction) or

between humans and objects. In the case of human-to-object interaction, the identifica-

tion of objects and motion is required along with simple activity recognition for robust

detection of the interaction.

Moore et al. [70] developed a system where object recognition is performed followed by

human activity recognition. That is, the object is recognized first and then the interaction

between the object and human is estimated. HMMs are used to characterize the actions.

A Bayesian network is used together with object and human activity recognition to classify

the activity. The approach was tested on various objects involving a single person and a

single object, e.g. a person picking up a book or a phone. Similarly, Peursum et al. [81]

proposed a Bayesian framework for labelling objects in an activity context. Their method

calculated an interaction signature for each object which is essentially a set of activity

recognition results involving the object. Similarly, [42] proposed a probabilistic model for

human interaction recognition. The Bayesian network integrates information from the

interaction with objects, e.g. appearance and human motion with the object to recognize

an activity. Ryoo and Aggarwal [88] used object recognition and motion estimation to

recognize human-object interactions such as stealing a suitcase. Finally, [89] proposed a

probabilistic extension from their earlier work to compensate for the failure of low-level

components.
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2.10 Group-based Activity Recognition

In this section, the recognition of group activities is discussed. Group activities are those

in which multiple persons perform activities as a group. For example, a group of people

walking or a group of people carrying an object. To recognize group-based human activ-

ities, a higher level representation must be introduced which can model the activity as a

composition of simpler activities, e.g. of multiple persons performing activities simultane-

ously. Most approaches in this area focus on a specific type of activity or activities in a

particular scenario.

Gong and Xian [39] used a variation of dynamic Bayesian networks to recognize group

activities. In their method, they were able to successfully recognize activities such as

loading or unloading trucks. Similarly, Zhang et al. [124] recognized group activities in a

meeting using DBNs, examples of such activities include giving a presentation and group

discussion. Similarly, [26] also used DBNs with a hierarchical structure to recognize similar

office activities. Ryoo and Aggarwal [89] developed a general representation for group

activity recognition. They proposed a description-based approach which models various

classes of group activities. They described the activities as a set of sub-events which

correspond to individuals performing activities. Their method successfully recognized a

range of group based activities including group based activities (i.e. marching) and group-

based interaction (e.g. fighting).

Several algorithms have focused on the use of tracklets/short term tracks for group

based activity recognition. For example, Ni et al. [75] recognised group activities using

localized causalities based on manually initialized tracklets. Lin et al. [60] used a heat-

map based algorithm for modelling human trajectories when recognising group activities

in videos. Chang et al. [18] used a probabilistic approach to group human activity by

forming various probabilities depending on the tracks between individuals using a multi-

camera system. Choi et al. [23] proposed a framework for analysing collective group

activities based on different levels of semantic granularity. Zhang et al. [125] addressed

the problem of group event recognition by computing histograms of different features

extracted from tracklets, representing localized movement in the video. Similarly, Cheng

et al. [20] modelled group activity as a framework composed of multiple layers and Gaussian

processes were used for representing motion trajectories.
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2.11 Anomalous Activity Recognition

In this section, the online detection of anomalous human activities will be discussed. Un-

like simple human activities, anomalous activity detection focused on detecting abnormal

behaviours in a video sequence; given the known, expected behaviour of the scene. In this

scenario, context is very important as what is considered abnormal may vary consider-

ably depending on the scene. Another important difference is that most human activity

recognition methodologies focus on the offline classification of a known set of activities,

unlike in abnormal human activity recognition where the abnormal activity is known, and

the algorithm must learn such abnormal activities online. A further difference is that

the anomalous activities generally occur with low probability with respect to the normal

activity.

The area of detecting abnormal activity from video sequences is a well researched area

of computer vision, with a wide variety of proposed methods. In complex, crowded scenes,

the general low-level approaches to feature representation are unreliable and the perfor-

mance of such methods tend to degrade due to factors such as scene clutter, occlusions

and general density of unsteady flow in the scene.

Recently, several notable methods for abnormal activity detection have been pro-

posed. [58] proposed a detector that accounts for both appearance and dynamics using a

set of mixture of dynamic texture models. [58] also introduced a dataset of densely crowded

pedestrian walkways which consists of non-staged, realistic anomalies such as bicyclists

and electric-vehicles. [105] proposed to model the optical flow using a spatio-temporal

Laplacian Eigenmap to extract different crowd activities from videos. The motion pat-

terns are clustered using k-means on the graph in the embedded space and a multivariate

Gaussian mixture model (GMM) is used to represent the regular motion patterns. [52]

modelled the motion patterns using GMMs using gradients as a 3D distribution. A dictio-

nary of activity prototypes was learnt by identifying statistically similar cuboids using the

KL-divergence between probabilistic models. Finally, GMM based Markov random fields

(GMM-MRF) were used in [72] for abnormal activity detection.

2.12 Conclusion

The main methods discussed in the literature review have been space-time approaches.

State of the art methods for complex human activity identification such as dense trajec-
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tories and graph based modelling provide very good results on state of the art complex

activity datasets. Although the results are very good on complex datasets, the recognition

of human activities is still largely focused on treating human activity recognition as a clas-

sification problem, i.e. video sequences are classified as a particular activity and activities

are not localized within the video sequence. The main future challenge is to develop or

adapt the methods to detect, localize and recognize complex human activities in real-world

scenes; particularly in crowded, unstructured scenes with a variety of background noises.

To conclude, this chapter has provided an in-depth literature review of human activity

recognition. Firstly, the general problem of human activity was introduced and its main

challenges were discussed. The usefulness of human activity recognition was discussed,

together with a list of potential application areas. Finally, the chapter concluded with an

in-depth literature review of state of the art methods for activity recognition.
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Chapter 3

Human Activity Recognition using

Graph Modelling

3.1 Introduction

In this chapter, we propose a graph-based methodology for human activity recognition.

Human activity recognition has been an area of significant research over the past decade,

mainly focused on simple, atomic human actions. The overall aim of human activity

recognition is to analyze and understand human movement in a video sequence. The goal

is to categorize a video sequence, or part of a video sequence as a particular class of human

activity. In the real world, different levels of human activity exist from the simple atomic

events to the more complex, which often require scene understanding. In this chapter,

we focus on the recognition and classification of simple human activities in staged video

sequences. A single instance of such a human activity typically lasts around a few seconds

in duration, although some activities may appear periodic/cyclic, for example walking,

where similar steps may be repeated several times.

The main body of research in the area of human activity recognition is largely focused

on statistical methods using spatio-temporal features. The typical activity recognition

pipeline begins by detecting spatio-temporal interest-points in the video sequence, then

representing such interest points using local features, and finally summarising the local

features as a feature vector or histogram. The feature vectors are then used to form a

codebook, typically followed by a ‘bag of visual words’ model adapted from statistical

natural language processing, where the features are clustered into groups (visual words)

followed by supervised classification.
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Many methodologies have been proposed for activity recognition using the ‘bag of

visual words’ approach. Zelnik-Manor et al. [123] proposed to learn dynamic events from

video sequences using local space-time features extracted at multiple scales. Blank et al.

[40] calculated local features (via Poission equation) for each frame in the video sequence.

The Harris detector was extended to the 3D case (space-time video volume) by Laptev

in [55]. In [55] they also proposed a new dataset named the KTH dataset consisting

of simple action videos. Dollar et al. [29] proposed a spatio-temporal feature detector

based on extracting gradient-based cuboids at regions of significant activity. Rapantzikos

et al. [85] extended the cuboid features to include color and motion information while

Liu et al. [62] proposed to prune cuboid features to choose the most significant, robust

features. Wang et al. [111] proposed a trajectory based method called dense trajectories

by performing tracking on dense patches of optical flow extracted at multiple scales. They

also introduced the motion boundary histogram (MBH) feature descriptor based on the

derivatives of optical flow.

More recently, the spatial and temporal relationships between activity regions has

received an increasing amount of attention, especially for recognizing more complex ac-

tivities. Savarasse et al. [92] proposed a method to include the spatio-temporal proximity

information between the features. With a similar motivation, Laptev [56] constructed

space-time features by dividing a space-time volume into grids, assessing features and

activities depending on their spatial-location.

In other methods, graph-based approaches have been proposed as a powerful tool for

modelling relationships between spatio-temporal interest points [15, 17, 32, 106]. Brendel

and Todorovic [15] proposed to model human activity using spatio-temporal graphs. In

their work, they define an activity in terms of temporal configurations of primitive actions.

The spatio-temporal graphs model the spatio-temporal relationships between the activity

parts; or more specifically, the nodes correspond to video segments (at multiple scales),

and the edges capture their spatio-temporal relationships. Ta et al. [103] modelled human

activities using graphs composed of sets of spatio-temporal interest points obtained using

the Dollar detector [29]. Hyper graphs with 3 edges are constructed to represent the

activity. Rather than trying to recognize activities by classifying the entire sequence,

this method searches the video (scene graph) for instances of the model graph. Graph-

embedding has also been proposed for activity recognition [10, 11, 32, 128]. In [32], a

graph is built using the locations of SIFT key-points. The graph in [32] models the
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humans shape during the performing of the activity. In [32] a discriminative approach

is proposed where the graph is embedded as a feature vector based on a prototype set

and using the probabilistic graph edit distance (P-GED). Graph-embedding has also been

proposed for human activities using the silhouettes of the human body [107,128]. In [128],

a co-occurrence matrix descriptor is introduced and the shape manifold is learned using

diffusion maps. A related theme to graph embedding is spectral clustering. Spectral

clustering is the study of the Laplacian representation of the similarity matrix of the

data before clustering in fewer dimensions. Spectral clustering has been proposed for the

action recognition of insects [71], where the objects were tracked in 3D and features were

constructed of the objects 3D movement followed by the application of a spectral clustering

algorithm.

In this chapter, we propose a human activity recognition methodology using graph

embedding. In this method, the most salient spatio-temporal interest points are selected

using a detection methodology, and spatio-temporal features are extracted around the

interest points. The spatio temporal relationships between the features are extracted by

representing the relationships via the Laplacian representation of the similarity feature

matrix. We also model the local neighbourhood features and the immediate neighbour-

hood of features to add contextual information. Eigen-decomposition is performed on the

Laplacian representation of the embedded graph, to obtain its principal eigenvectors and

eigenvalues.

The remainder of the chapter is organised as follows: Section 3.2 describes the motiva-

tion behind graphs for activity recognition, followed by an in-depth theoretical discussion

of the proposed methodology. Section 3.3 describes the experimental results on two human

activity datasets. Finally, Section 3.4 describes the conclusions of this research work.

3.2 Human Activity Recognition using Graph Modelling

A graph is a data structure consisting of a set of ordered pairs (edges) of certain entities

called nodes. An edge is a connection from one point to another on the graph (between

nodes). The graph edges may also have an associated edge value, such as a symbol

or numerical attribute, for example, cost or length. Graph-based techniques have been

proposed as a powerful tool for Computer Vision, especially in applications such as image

segmentation [115] and object matching [82]. Graphs are able to capture complex visual

patterns and represent them as a smart structure of objects suitably connected to each
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other. Graphs could therefore be used as a very powerful and flexible way to model the

relationship between spatio-temporal regions of activity, or model relations between parts

of the human body.

One drawback of graph-based representations is that as the number of nodes and

edges grows, the complexity of the graph increases significantly. A further drawback

with modelling activities as graphs is the graph matching problem1 As the complexity

of the graph grows, exact graph matching becomes computationally infeasible. In the

case of activity recognition, directly comparing graphs is unsuitable as the graphs are

prone to significant noise due to the intra-class variations of human activities. One other

major drawback of traditional graphs is that basic operations such as sums cannot be

performed directly on graphs, thus making them unsuitable as a tool in conventional

pattern recognition problems.

An alternative to directly comparing graphs is to use graph embedding. Graph em-

bedding aims to compute an embedded version of the graph, usually as a vector-based

representation. Graph embedding offers an alternative which solves many of the problems

listed above (such as the graph matching problem), and allows basic operations to be per-

formed on such graphs. Once the graph is embedded into a vector-based representation

it is then suitable to be used for conventional pattern recognition approaches based on

feature vectors and can be used by conventional statistical classifiers.

Graph embedding has been successfully used in applications such as optical character

recognition (OCR) [43] and brain state decoding [86]. Various approaches to graph em-

bedding exist such as decomposing the similarity matrix characterizing the graph by using

orthogonal decompositions such as SVD [41], quantum commute times [33] and prototype

selection [32].

A related theme to graph embedding is spectral clustering. Spectral clustering based

methods have been widely used in Computer Vision [74]. Spectral clustering is the study

of the Laplacian representation of the similarity matrix of the data before clustering in

fewer dimensions. Spectral clustering is commonly used for image segmentation [64,116],

but has also been used for event detection [83] and the detection of unusual activity [110].

1Exact (sub)graph matching is NP complete, although approximations may exist for some applications.
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Graphs for Human Activity Recognition

In previous research, graphs have seldom been used for the representation of human ac-

tivities due to the difficulties mentioned previously. Despite these difficulties, graphs have

recently been proposed to model human activities [15,103]. Graphs are able to produce a

model of higher representation power than traditional statistical methods and are able to

model the structure of localized movements in a much more structured and natural way.

Graphs also have the advantage of being able to describe the interdependence of several lo-

calized movements, which is often missing from conventional activity recognition method-

ologies. Graph-embedding has also been proposed for activity recognition [107,127,128].

Method Overview

Figure 3.1 outlines the key stages in the proposed activity recognition methodology. In

the following, each step is discussed in more detail.

Figure 3.1: Outline of the proposed method of modelling human activities as graphs

1) Input Video - The input dataset form a set of videos Mi...n where n is the number

of video sequences.

2) Interest Point Detection - An interest point detector is applied spatio-temporally

across the video sequences to extract the most salient interest points in the video

sequence.

3) Feature Extraction - Features are extracted (around the interest points) from each

video volume (Ii(x, y, t)) and a feature vector V i,j is formed for each spatio-temporal

activity region j in the sequence i.

4) Selecting Regions of Significant Activity - The m most significant regions of
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activity are selected for each video sequence. The number of selected regions m is fixed

across all video sequences in the dataset.

5) Constructing Similarity Matrices - A similarity matrix Ai is constructed for each

video sequence i, based on the feature vectors Vi,j of regions of significant activity. A

Laplacian matrix Li is constructed, from Ai.

6) Eigen-decomposition - Eigen-decomposition is performed on each Laplacian matrix

Li. The set of eigenvectors {φ1|φ2|...|φp} and eigenvalues {λ1, λ2, ..., λp} are extracted

from the similarity matrices, where p is the selected number of top rank (greatest

magnitude eigenvalues) eigenvectors.

7) Classification - The eigenvectors {φ1|φ2|...|φp} are concatenated for each video se-

quence and used for classification. Each video sequence i is categorized into a class

from a pre-determined set of human activity classes, for example, running or jumping.

The proposed method has some notable advantages over traditional ‘bag of words’

style approaches. Firstly, the interdependent relationship between regions of significant

activity are modelled, unlike traditional BoW-based approaches where the contextual and

interdependent relationships are largely ignored. Secondly, the proposed method uses sig-

nificantly fewer spatio-temporal features and much smaller feature vectors than traditional

methods, therefore its computational complexity is greatly reduced. Finally, due to the

nature of the proposed method, it could be combined with a traditional statistical method

to utilise the advantages of both methods to provide a more discriminant activity model.

Feature Extraction

The first step in the proposed methodology consists of the extraction of the space-time

features. Different methods have been proposed in the literature for extracting space-time

interest points (STIPs) and for the description of space-time patches. Due to different

detectors/descriptors been using in varying scenarios and pipelines, it is unclear if a single

detector and descriptor combination perform better for human activity recognition. Some

examples include the cuboid detector/descriptor [29] and Laptev’s STIP detector [55]

based on the Harris corner detector. Recent evaluation papers [96, 104] suggest that the

cuboid detector and descriptor achieves very good recognition rates on common datasets

and it is also computationally efficient. Due to this, the cuboid detector and descriptor

are chosen as the detector and descriptor for this work.
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The detector proposed by Dollar [29] uses separable linear filters which treats the spa-

tial and temporal dimensions independently. A 2D Gaussian smoothing kernel g(x, y;σs)

is applied along the spatial dimensions and heven and hodd are a quadrature pair of 1D

Gabor filters applied temporally. The response function is given by

R = (I ∗ g ∗ heven)2 + I(g ∗ h ∗ hodd)2 (3.1)

and the Gabor filters are defined as:

heven(t; , τs, σs) = − cos(2πtω)e−t
2/τ2s (3.2)

hodd(t; , τs, σs) = − sin(2πtω)e−t
2/τ2s (3.3)

where I is the image, ω is a temporal parameter, σs and τs are the spatial and temporal

scaling parameters, respectively. The authors in [29] suggest to use ω = 4/τ as the

number of parameters for the response function R is reduced to two. The two parameters

σs and τs correspond roughly to the spatial and temporal scales of the detector and can

be empirically selected depending on the resolution and nature of the video sequences.

The response function R will respond strongest to periodic motions such as hand waving.

The response function R will also induce a strong response at local regions where complex

motion patterns are present, such as corners for example. Regions without spatially-

distinguishable features and regions undergoing pure translation or motion of a constant

speed will induce a low response.

Following the detection of the space-time interest points, local features will be extracted

around the local maxima of R. One requirement of our approach is that a fixed number of

regions is required across all video sequences in the dataset. This is due to the requirements

of fixed-size graphs for comparison purposes, and also to minimize the computational

complexity of the graph by only selecting the most salient regions. In order to extract a

fixed number of cuboids for each video sequence, a threshold must be used on the response

R to limit the number of interest points detected. We define a threshold θ, then we extract

only the spatio-temporal interest points at points of R that satisfy R > θ. We begin by

setting θ, to a large value then slowly decrease θ until exactly n spatio-temporal interest

points are detected. Following this, the spatio-temporal cuboids are extracted around the

spatio-temporal interest points.

The cuboid descriptor, is a simple descriptor which is calculated by concatenating

gradient values obtained along the different directions (along x, y and t). Firstly, the
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spatio-temporal cube of pixels is smoothed at varying scales. Secondly, gradient values are

computed along the x, y and t dimensions. Finally, the gradient values are concatenated to

form a single vector of gradient values. Due to the length of the gradient vector, principal

component analysis (PCA) is applied on the vector to extract the essential representation

of the human activity and to reduce the dimensionality. Therefore each video sequence is

now represented by its set of feature vectors, extracted from the cuboids of spatio-temporal

interest points.

Similarity Matrix Representation

In this step, the proposed method aims to model the relationship between the feature

vectors by modelling the interdependent relationships between feature vectors using a

graph-based representation. In this work, we propose to represent the features using a

similarity matrix.

Consider the set of feature vectors X1...m consisting of m vectors, each feature vector

Xi representing a single spatio-temporal region of significant activity. Given the feature

vector Xi representing a descriptor for cuboid i, a similarity matrix A can be computed

by

A(i, j) = e−
‖Xi−Xj‖2

σ2 (3.4)

where σ is a scaling factor which is used to weight the similarity between characteristic

vectors. This results in a symmetric matrix where the values lie in the range [0, 1]. The

matrix models the interdependent relationship between each spatio-temporal region and

every other spatio-temporal region. ‖Xi −Xj‖2 models the difference between the cuboid

i and the cuboid j. If Xi and Xj are statistically very different, then the result of the

equation will be close to 1, comparatively if Xi and Xj are statistically similar, then the

result of the equation will be closer to 0. As the scaling factor σ increases, the result tends

to 1 and as the scaling factor σ decreases the result tends to 0. The values in the similarity

matrices may vary considerably between different activities, therefore an appropriate value

for σ must be carefully selected.

So far, only a single term (gradient) has been utilised to construct the similarity

matrix. It is possible to add further terms to the equation to obtain a more discriminative

representation of the activity in the video sequence. In the following we consider the

relative distance between regions of activity and contextual information from the local

spatio-temporal neighbourhood.
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To include the distance information in the model, each spatio-temporal region ex-

tracted has a location vector B = {x, y, t} or B = {x, y} (by considering the time as a

dimension), which can be used as an additional term to construct the adjacency matrix

A(i, j) = e
−‖Xi−Xj‖2

σ21
−‖Bi−Bj‖2

σ22 (3.5)

where the term
‖Bi−Bj‖2

σ2
2

models the relative distance between spatio-temporal regions. If

the regions are close in space-time, the result of the term will be small, comparatively if

the regions are far apart in space-time then the result will be large. As a consequence, if

regions are far apart in space-time and have very different gradient values then the result

of both terms will be much larger, comparatively, if regions are close in space-time and

are similar, the result of the terms will be much smaller. This is a complementary effect

as regions that are very different tend to be further apart in space-time and regions that

are similar tend to be closer in space-time. As a consequence of adding an additional term

to the equation, a second scaling factor is introduced σ2. The two scaling factors (σ1 and

σ2) must be carefully balanced to avoid one term becoming too dominant. σ1 will remain

the same empirically selected value, and σ2 will be chosen dependant on the dimensions

of the video space-time volume.

Modelling Spatio-temporal Contextual Information

The local neighbourhood of each region can provide some useful contextual information to

provide a more discriminative representation of the human activity. For example, neigh-

bouring cuboids may be part of the same localised activity. Similarly, neighbouring regions

may provide distinguishing characteristics that aren’t present in the detected cuboid. We

consider modelling the local neighbourhood in two ways: using the contextual information

from nearby cuboids in space-time and secondly by considering the immediate neighbour-

ing regions (not interest points) of the cuboid.

The local neighbourhood can be considered as the closest significant regions (cuboids)

in space-time. A visual example of the cuboids in space-time is shown in Figure 3.2. We

define the closest significant cuboids as those that are closest in space-time by considering

the Euclidean distance between cuboids. Given the location vectors of two regions of

significant activity P i = {xi, yi, ti} and P j = {xj , yj , tj} the distance can be calculated

by

dij =
√

(xi − xj)2 + (yi − yj)2 + λT (ti − tj) (3.6)
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Figure 3.2: Local spatio-temporal neighbourhood of the spatio-temporal region.

where λT is a scaling parameter to balance the difference in scales between space and time.

The value λT depends on the dimensions of the video volume for the given dataset as well

as the frame rate. For each region, the closest nxy neighbouring regions are found. Where

nxy is a fixed value across all the video sequences. Given these neighbouring regions, an

nxy × nxy adjacency matrix is calculated using the same equation (3.4), which will be

later combined with can be combined with the other matrices, for example, the feature

matrices.

Next, we consider the immediate neighbourhood of the region. The immediate neigh-

bourhood can be considered as regions immediately next to the original region, and of

equal size to the region. We consider six immediate neighbours: four along the spatial

dimensions - above, below, left and right; and two along the time dimension - before and

after in time. A visualisation of the immediate neighbourhood is shown in Figure 3.3.

Figure 3.3: Immediate neighbourhood of the spatio-temporal region.

For the immediate region, new regions are extracted around the significant region to

form new descriptor vectors Q1...7. Note that Q1 is the vector describing the original
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significant region of activity. A similarity matrix of size 7 × 7 is calculated for each sig-

nificant region in the same way as the local neighbourhood, using equation (3.4). By

modelling the immediate region, the nearby contextual information of local regions is con-

sidered, which would previously be ignored as such nearby regions would not be considered

significant. The immediate neighbourhood approach also aims to address the issue where

each human movement (or each moving part) can rarely be confined to a single region thus

modelling the immediate neighbours adds potential information regarding the before/after

movements or other movements in the similar space which may also be of interest.

Laplacian-based representation

So far, the features have been modelled independently as a similarity matrix. The simi-

larity matrix is one the simplest forms of graph representation, and a more discriminative

representation of the graph is possible by considering the graph Laplacian. We discuss

two potential representations of the graph: Combinatorial Laplacian and the normalized

Laplacian matrix.

The combinatorial Laplacian is often characterised as a more useful representation of

the graph than the similarity matrix as it produces a semi-definite matrix representation of

the graph. Given the similarity matrix constructed from equation (3.4) or equation (3.5)

and the diagonal degree matrix D, where the diagonal elements are simply the node

degrees D(u, u) = du; the Laplacian matrix can be defined as the degree matrix minus the

adjacency matrix

L = D −A, (3.7)

where matrix L is the resulting Laplacian matrix. This matrix then represents a discrete

version of the Laplacian in continuous space.

We also consider the normalized Laplacian matrix

L̂ = D−
1
2LD−

1
2 , (3.8)

Similarly to the combinatorial Laplacian representation, this produces a semi-definite rep-

resentation of the graph. Due to the normalisation, the eigen-decomposition of the matrix

means that the largest eigenvalue is 6 2, and all eigenvalues are 0 6 λi 6 2, where λ is

the eigenvalue. Considering this, we use the normalized Laplacian matrix as the matrix

representation.
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Eigen-decomposition of the Activity Matrix

The spectrum of the Laplacian matrix has proved useful to characterize the properties of

a graph and for extracting information from its structure. The spectrum of the graph is

obtained from the matrix representation using eigen-decomposition. Eigen-decomposition

will be performed on each Laplacian matrix L̂ computed as in equation (3.8).

The spectrum is useful as a graph representation as it is invariant under similarity

transform. This means that two isomorphic2 graphs may have the same spectrum. In this

case, this means that two isomorphic graphs with different orders of vertices may share

the same spectrum. This is a useful property because significant regions of activity are

rarely reproduced in the same order across different video sequences.

Consider the Laplacian matrix L̂ of size m×m, the eigen-decomposition is

L̂ = ΦΛΦT (3.9)

where Λ is a diagonal matrix of ordered eigenvalues (ordered by largest magnitude first)

and Φ is the matrix of eigenvectors (as columns).

The eigen-decomposition is therefore the set of eigenvalues {λ1, λ2, ..., λm} obtained

from Λ = diag(λ1, λ2, ..., λm) and the set of eigenvectors {φ1|φ2|...|φm} obtained from the

matrix Φ = (φ1|φ2|...|φm).

In our work, Singular Value Decomposition (SVD) will be used to obtain the eigen-

values and eigenvectors. SVD is a generalised method of eigen-decompositon that can be

applied to any (non-square) matrix whereas eigenvalue-decomposition can only be applied

to certain square matrices.

In the simplest case of a single feature matrix, represented as an m × m Laplacian

matrix L̂, the following steps are followed:

1. Eigen-decomposition (equation (3.9)) of the matrix L̂ to obtain the set of eigenvalues

{λ1, λ2, ..., λm} and eigenvectors {φ1|φ2|...|φm}.

2. The top keig eigenvectors are selected based on the magnitude of the top keig largest

eigenvalues. By selecting only the top keig eigenvectors, only the significant vectors

representing the activity are kept.

2Graphs which contain the same number of graph vertices connected in the same way are said to be

isomorphic.
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3. The eigenvectors {φ1|φ2|...|φkeig} are used to represent the human activity in that

particular video sequence.

In the case of a two term matrix composed of the cuboid features and the additional

distance term, the steps outlined above remain the same except the first step listed above

is replaced with the similarity matrix, as computed in equation 3.5.

When the second term in the similarity matrix involves either the local or contextual

information, the eigen-decomposition steps change. Given the nxy × nxy similarity ma-

trix N , representing the local or immediate neighbourhood information computed using

equation (3.4), the following steps are followed:

1. Eigen-decomposition of the matrixN to obtain the set of eigenvalues {λ1, λ2, ..., λnxy}

and eigenvectors φ1|φ2|...|φnxy} representing the local/immediate neighbourhood.

2. The top keig eigenvectors are selected based on the magnitude of the top keig largest

eigenvalues.

3. The eigenvectors {φ1|φ2|...|φkeig} are the selected eigenvectors used to represent the

local/immediate neighbourhood.

4. The eigenvectors {φ1|φ2|...|φkeig} are used in equation (3.5) as the 2nd (or 3rd if

distance is 2nd) term to construct the similarity matrix Â where the first and/or

second term remains the same as described above.

5. The new similarity matrix Â is used in equation (3.8) to obtain the Laplacian rep-

resentation, L̂.

6. Eigen-decomposition of the new matrix L̂ to obtain a new set of eigenvalues {λ1, λ2, ..., λm}

and eigenvectors {φ1|φ2|...|φm}.

7. The top keig eigenvectors are selected based on the magnitude of the top keig largest

eigenvalues. By selecting only the top keig eigenvectors, only the significant vectors

representing the activity are kept.

8. The eigenvectors {φ1|φ2|...|φkeig} are used to represent the human activity in the

video sequence.

By selecting only the top keig eigenvectors during the eigen-decomposition, the keig

eigenvectors should represent only the essential significant activity and serve as a more
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general, yet more discriminative model than selecting all possible eigenvectors. Further-

more, it can significantly reduce the dimensionality of the data, and thus reduce the

computational complexity.

Classification

For classification purposes, the eigenvectors resulting from the eigen-decomposition step

are concatenated by their natural ordering and classified using the k nearest neighbour

(kNN) algorithm. We use the Euclidean distance as the distance metric for kNN. The

distance between activity eigenvectors is simply the Euclidean distance between each set

of eigenvectors

Dij =

√√√√ keig∑
m=1

‖φm,i − φm,j‖
2 (3.10)

where keig is the number of eigenvectors, and φm,i is the mth eigenvector for video sequence

i.

One important consideration of the kNN algorithm is the selection of the number of

neighbours k. The best choice of k depends largely on the data; larger values reduce the

effect of noise in the classification but boundaries between the classes become less obvious.

Since the range of k is quite small in this context, it is possible to choose k depending on

the preliminary results. kNN has two useful properties relevant to our work; firstly, it is

non parametric, thus it makes no assumptions about the underlying data - this is useful

in this case where no theoretical assumptions are made about the underlying data, e.g.

Gaussian mixtures. The second is that kNN is a lazy algorithm; this means that it does not

use the training data to generalize and all the training data is kept. This is different from

methods such as SVM where some support vectors may be discarded without concern.

3.3 Experimental Results

In this section, we discuss the evaluation and experimental results of the proposed method-

ology of modelling human activities as graphs. The proposed methodology will be evalu-

ated against the two most common human activity recognition datasets: The Weizmann

and KTH datasets.

The Weizmann dataset consists of 90 low-resolution (180 × 144) video sequences in

various scenes performed by 9 actors with 10 natural actions - running, walking, skipping,

jumping-jack, jumping forward, jumping in place, gallop side-ways, waving two hands,
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waving one hand and bending. Each video sequence is approximately two to three seconds

long at 25 frames per second. Since the dataset is small and there is a lack of intra-class

training examples available, the leave-one-out cross validation approach will be used for

evaluation purposes.

The KTH dataset consists of 2391 video sequences, with approx 500 clips each of

six different human activities (walking, jogging, running, boxing, hand waving and hand

clapping) performed by 25 actors. Each actor performs an activity in four scenarios:

outdoors, outdoors with scale variation, indoors and indoors with scale variation. Each

clip is down-sampled to 160×120 and is an average of four seconds in length. The sequences

are divided into training and test sets as per the recommendations in [55].

Although both datasets consist of simple staged human actions, the KTH dataset is

a more challenging dataset due to the changes in scenes and scale variation. In both

datasets, the camera is static. The recognition results will be averaged over 50 runs of

the experimental results for both datasets and error bars will be shown on the graphs to

show the variability across the 50 runs. The results will be recorded in a confusion matrix.

The Weizmann dataset is used as the dataset for the parameter selection, given that the

Weizmann dataset is simpler, and both datasets are of roughly the same resolution and

contain similar activities.

Feature extraction and description is performed by the Dollar detector and descriptor

as described in Section 3.2. The Dollar detector extracts the most significant regions of

activity from each the video sequences. As described in Section 3.2, the detector consists

of two parameters corresponding roughly to the scale of the extracted regions of significant

activity. The two scaling parameters under consideration are σs and τs from equations (3.2)

and (3.3). In our work, the parameters are kept the same as in the original Dollar approach

[29] as these values produced the best results on the common activity datasets; therefore

σs = 3 and τs = 2.

As discussed in Section 3.2, a fixed number of cuboids will be extracted to be able

to construct graphs of a consistent size. On the Weizmann dataset, with the default

threshold value of θ = 2e−4 for the response function R from equation (3.1), the number

of detected regions of activity range from 18 to 600 dependent on the activity. The

results in [96] suggest that beyond the 100 most significant regions on such datasets, the

recognition results vary very little (±2%). In the typical BoW pipeline, some regions are

often disregarded and considered as outliers by the clustering steps. Figure 3.4 shows the
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Figure 3.4: Number of extracted cuboids from the Weizmann dataset using the default

threshold value of θ.

number of regions extracted with the default threshold, across all the video sequences in

the Weizmann dataset. Notably, most of the video sequences contain more than 50 cuboids

each while only 20% of the video sequences contain more than 100 cuboids. Considering

this, and due to the high variation in the number of regions of activity, only the 50 most

significant regions of activity are extracted. Only the 50 most significant regions, the

threshold value θ for the response function R from equation (3.1) of the detector must be

varied to extract the required 50 regions per video sequence. The variable thresholding

algorithm will start at the initial threshold value of θ = 2e−4, and increment the threshold

depending on the number of cuboids extracted. The code in algorithm 1 demonstrates the

variable thresholding as an algorithm.

Given the completion of the variable thresholding algorithm for each video sequence in

the dataset, exactly 50 spatio-temporal interest points are detected for each video sequence.

Following this, spatio-temporal cuboids are extracted around the region, as described in

Section 3.2. Examples of the response function, cuboid extraction and cuboid regions are

shown in Figure 3.5 to Figure 3.8 for different activities from the Weizmann and KTH

datasets. Notably, the response function visualised in the figures is stronger for activities

showing significant movement, and lower for areas where movement is limited. The ex-

tracted cuboid locations, corresponding to the strongest areas of the response function R,

show that the human activity is well captured by the interest points. Furthermore, more

cuboids are extracted for video sequences containing significant movement. The extracted

cuboids are shown as 2D regions which have been extracted by segmenting the cuboid-like
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Data: threshold θ, number of regions n

Result: 50 most significant regions of activity

initialization;

while n < 50 do

Extract number of regions n using response function R (from equation (3.1))

with threshold θ.;

Decrease θ by a factor of 1.1;

end

if n > 50 then

remove (n− 50) least significant regions of activity to obtain the 50 most

significant regions of activity;

end

Algorithm 1: Selecting the 50 most significant regions of activity using variable thresh-

olding.

region temporally. All cuboids in the examples show the activity regions containing the

significant activity from each video sequence, evidentiating different activities as shown by

the specific movements within their regions. One issue that is apparent from the examples

is that when activities are performed quickly, some of the cuboid slices contain no activity

as the activity has moved outside the spatial limits of the cuboids. Although this may be

a problem for some activities and limit the amount of activity captured, it may help to

distinguish between faster and slower activities such as between running and walking.

Following the extraction of the cuboids of significant activity, the feature descriptor

must be formed, describing the gradient values representing the spatio-temporal cuboid.

As described in Section 3.2, the features are represented by a vector of concatenated

gradients over the spatio-temporal region of activity. The feature vector is then reduced

in dimensionality using PCA. In the original Dollar paper [29], the length of the vector

as a result of the PCA dimensionality reduction is fixed at kpca = 100. To determine the

appropriate value for kpca for our methodology, we consider the difference in recognition

result as kpca is varied. Therefore kpca is varied between 10 and 200, while monitoring the

recognition performance on a subset of the original Weizmann dataset. Figure 3.9, shows

the recognition error as kpca is varied. It is clear from the figure that the optimum number

for kpca is indeed 100. Although the difference in the activity recognition results when

considering kpca = 20 and kpca = 100 is small, the reduction of the descriptor by a factor
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a) Cuboids (Bend) b) Feature Detection (Bend) c) Response function R (Bend)

d) Cuboids (Jump) e) Feature Detection (Jump) f) Response function R (Jump)

g) Cuboids (Run) h) Feature Detection (Run) i) Response function R (Run)

Figure 3.5: Examples of cuboid feature detection and extraction on the Weizmann dataset.
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a) Cuboids (Step) b) Feature Detection (Step) c) Response function R (Step)

d) Cuboids (Wave) e) Feature Detection (Wave) f) Response function R (Wave)

Figure 3.6: Examples of cuboid feature detection and extraction on the Weizmann dataset.

a) Cuboids (Box) b) Feature Detection (Box) c) Response function R (Box)

d) Cuboids (Clap) e) Feature Detection (Clap) f) Response function R (Clap)

g) Cuboids (Run) h) Feature Detection (Run) i) Response function R (Run)

Figure 3.7: Examples of cuboid feature detection and extraction on the KTH dataset.
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a) Cuboids (Jog) b) Feature Detection (Jog) c) Response function R (Jog)

d) Cuboids (Walk) e) Feature Detection (Walk) f) Response function R (Walk)

g) Cuboids (Wave) h) Feature Detection (Wave) i) Response function R (Wave)

Figure 3.8: Examples of cuboid feature detection and extraction on the KTH dataset.
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Figure 3.9: Recognition error as the length of the PCA vector k is varied.
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of 5 is not significant enough to greatly improve the performance of the proposed graph

method. Given kpca = 100, each video sequence is therefore represented by 50 features

vectors of length 100 each, where each vector summarises the gradient values for each

significant region of activity.

Given the 50 feature vectors for each video sequence, the gradient feature similarity

matrices can now be constructed as in equation (3.4), described in Section 3.2. An ap-

propriate scaling factor σ must be chosen to construct the similarity matrix. The scaling

factor σ from equation (3.4) is empirically chosen such that the activities with high vari-

ation between their regions and activities with very little variation between their regions

are both well represented by the similarity matrix. The changes in the recognition rates

for a subset of Weizmann dataset, when σ is varied between 10 and 100, is shown in in

Figure 3.10. It is clear from Figure 3.10 that the lowest recognition errors occur between

σ = 50 and σ = 90, and the lowest recognition error is obtained when σ = 50. Considering

this, σ is selected as 50. Examples of the similarity matrices for the bend and wave activity

are shown in Figure 3.11. Both activities appear reasonably distinct, and some intra-class

similarities are visible between the similarity matrices.
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Figure 3.10: Recognition error as the scaling factor σ is varied on a subset of the Weizmann

dataset.

As described in Section 3.2, the similarity matrix can be extended to include more

discriminant information by including the second localisation term to the model. For ma-

trices created using the additional local information as in equation (3.5), an additional

scaling factor is required σ2 to balance the gradient features and the localisation features.
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Bend activity Wave activity

Figure 3.11: Examples of the gradient feature similarity matrices for activities from the

Weizmann dataset.

The localisation features considered in this case for the second term are the spatial co-

ordinate vector B = {xi, yi} and the spatio-temporal coordinate vector B = {xi, yi, ti}.

Each of these vectors refer to the spatial and spatio-temporal location of the cuboid in the

video sequence.

Considering the simpler case, where B = {xi, yi} (spatial case). The possible range of

‖Bi −Bj‖2 from equation (3.6) can be derived from the resolution of the video sequence,

thus allowing a sensible σ2 to be chosen.

Considering the case of the Weizmann dataset, with a video resolution of xi = 144,

yi = 180, the maximum value resulting from ‖Bi −Bj‖2 is ≈ 2312, where the minimum

value is 0, and the average across all regions of significant activity in the Weizmann

dataset is ≈ 67.92. Considering this, the appropriate range of σ2 for each dataset can

easily be determined by its video resolution and frame rate. Given that the cuboids are

extracted in order temporally, we consider only including the spatial coordinate differences

as the second term. Figure 3.12 highlights the difference in when the second term is used,

composed of the spatial coordinate differences, and when σ2 is varied. From the plot it

is quite clear that the optimal value for σ2 is around 5000. Examples of the gradient

and location similarity matrices for the bend and wave activities are show in Figure 3.13.

There is a clear similarity present in the bend activity while the similarities in the wave

activity aren’t as clear.

To provide an even more discriminative model, the local neighbourhood of the signifi-

cant regions can also be modelled, as described in Section 3.2. The local neighbourhood
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Figure 3.12: Recognition error as the scaling factor σ2 is varied on a subset of the Weiz-

mann dataset.

Bend activity Wave activity

Figure 3.13: Examples of the gradient and spatio-temporal feature similarity (adjacency)

matrices for activities from the Weizmann dataset.
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can be modelled as a similarity matrix by either including neighbours which are the nearest

significant regions in space-time or the immediate neighbouring (not significant) regions of

the same size. The local neighbourhood models the nearest nlocal neighbours of the region

of significant activity as a similarity matrix, using equation (3.4). The nearest neighbours

are considered in space-time where the time component is weighted by λT as in equa-

tion (3.6). λT is set to 3 due to this working well in other work on this dataset using the

same distance metric. The parameter σ used in constructing the neighbourhood matrix

N as in equation (3.6) remains the same as the σ used to construct the main matrix; this

is because the main adjacency matrix A contains the same data (gradient values) as the

smaller matrix N just on a smaller scale, e.g. 11× 11 matrix instead of a 50× 50 matrix.

Therefore σ is set to 50 for the construction of the neighbourhood matrices. The number

of nearest regions (neighbours) nlocal for the matrix is difficult to choose based on any

theoretical basis other than that it cannot be too small, e.g. nlocal = 0 or it cannot be

too large nlocal = 50 (all regions included). Considering this, we vary nlocal and monitor

the change in recognition error to determine the appropriate value for nlocal. Figure 3.14,

displays the recognition error as nlocal is varied, on a subset of the Weizmann dataset. The

maximum sensible value of nlocal is determined as 11, given that beyond this number the

recognition error does not improve, and larger values of nlocal causes computational time

problems due to the increase in matrix sizes. From the plot in Figure 3.14, it is clear that

the value of nlocal with the lowest recognition error is 4, thus we choose nlocal = 4.

Examples of the local and immediate neighbourhood similarity matrices for the bend

and wave activity are shown in Figure 3.15 and Figure 3.16. For comparison purposes in

Figure 3.15 and Figure 3.16, we use matrices of size 11× 11 for both local and immediate

neighbourhood matrices. In these matrices, the differences between feature classes is not

as obvious as for the previous features (gradient and spatio-temporal features).

Next, eigen-decomposition is performed on the graphs. In the case of the gradient term

matrix or the gradient and spatial distance matrix, the eigen-decomposition is performed as

described in Section 3.2, where eigendecomposition is simply performed on the normalised

Laplacian matrix L̂ computed from the similarity matrix. The eigen-decomposition of the

feature Laplacian matrix results in a set of eigenvectors and eigenvalues representing the

activity sequence. One important consideration is the number of top keig vectors to retain,

representing the significant activity. Too few vectors will not provide a discriminant model

and be too generalised, while too many vectors will cause over-fitting to each sequence
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Figure 3.14: Recognition error as the number of local neighbours is varied on a subset of

the Weizmann dataset.

Bend activity Wave activity

Figure 3.15: Examples of the local neighbourhood similarity (adjacency) matrices for

activities from the Weizmann dataset.
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Bend activity Wave activity

Figure 3.16: Examples of the immediate neighbourhood similarity (adjacency) matrices

for activities from the Weizmann dataset.

and will not generalise well (while adding to the computational complexity). The value of

keig is chosen by varying the value of keig and noting the change in recognition error. We

vary the value of keig in the range of 5 to 50 for the standard feature graph, noting the

change in recognition error, which is shown in Figure 3.17. It is clear from Figure 3.17

that the best value of keig is 30, beyond this, the recognition rate does not improve, and

computational complexity increases; therefore keig = 30.
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Figure 3.17: Recognition error as the number of top eigenvectors keig is varied for the

feature graph; applied on a subset of the Weizmann dataset.

In the case of the local/immediate neighbourhood graphs, where the surrounding

spatio-temporal cuboid are utilised (described in Section 3.2), the eigen-decomposition

58



3.3 Experimental Results

steps change, as outlined in Section 3.2. Firstly, eigen-decomposition of the local/immediate

neighbourhood Laplacian matrix is performed, before combining with the gradient feature

matrix. Similarly to the gradient feature decomposition, we consider the appropriate value

for keig, the number of selected eigenvectors. The local neighbourhood graph is of size

11 × 11, therefore the eigen-decomposition of the Laplacian yields 11 eigenvectors. The

value of keig is varied between 1 and 11 and the change in recognition error is shown in

Figure 3.18. Clearly, the most appropriate value for keig in this context is 6, therefore

keig = 6. Similarly, we consider the appropriate value of keig for the immediate neigh-

bourhood graph, of size 7× 7. Once again, we vary the value of keig between 1 and 7, and

note the change in recognition error, shown in Figure Figure 3.19. Similarly to the local

graph, the most appropriate value for keig from Figure 3.19 6, therefore keig = 6 for the

immediate graph representation.

Given the set of eigenvectors representing the local/immediate Laplacian-based graph,

the eigenvectors are used as a second term in the construction of the feature matrix, as

described in Section 3.2. Similarly, when both the gradient and location terms are used,

the representation of the local/immediate cuboids becomes the third term.
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Figure 3.18: Recognition error as the number of top eigenvectors keig is varied for the local

neighbourhood graph; applied on a subset of the Weizmann dataset.

Given the set of significant eigenvectors, representing each activity graph, classification

is performed on the sets eigenvectors using kNN, as described in Section 3.2. The kNN

algorithm requires selecting the most appropriate value for the number of neighbours k.

In order to be consistent across the different activity graph representations and across
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Figure 3.19: Recognition error as the number of top eigenvectors keig is varied for the

immediate neighbourhood graph; applied on a subset of the Weizmann dataset.

different video sequence, the value of k remains constant across all the different activity

representations. To determine the most appropriate value for k, we vary the value of k

for the gradient graph representation representing a subset of video sequences from the

Weizmann dataset. The results of varying k is shown in Figure 3.20. From Figure 3.20,

is it clear that the most appropriate value for k is 5, therefore we use k = 5 across all

experiments.
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Figure 3.20: Recognition error as the number of nearest neighbours k is varied for the

feature graph; applied on a subset of the Weizmann dataset.

For the recognition tasks on the Weizmann and KTH datasets, we consider combining
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Table 3.1: Recognition results on the Weizmann dataset when compared to state of the

art approaches.

Approach Recognition rate(%)

Gradient feature graph 71.98

Gradient and space-time graph 75.10

Gradient and local neighbourhood graph 59.27

Gradient and immediate neighbourhood graph 59.23

Gradient, space time and local neighbourhood graph 61.25

Gradient, space time and immediate neighbourhood graph 62.18

Original Dollar approach [29] 87.18

Graph based approach using Dollar features [103] 100

State of the art approach based on BoW paradigm [59] 100

different activity graph representations for comparison: gradient feature graph, gradient

and space-time graphs, gradient and local/immediate neighbourhood graphs and gradient,

space-time, and local/immediate neighbourhood graphs. The recognition results on the

Weizmann dataset are evaluated by the recognition rate, using the leave-one sequence out

cross validation methodology. This evaluation protocol is consistent with other works [29,

59,103]. The confusion matrices in Figure 3.21, display the recognition rate across different

activities, for different feature representation. Notably, the gradient and space-time graphs

provide the best recognition results, whilst adding the neighbouring cuboids/regions to the

activity model does not improve the results. From these results, it is clear that the space-

time information is important for activity recognition and shows a clear improvement

in recognition results; meanwhile in this context, the neighbourhood information does

not seem to be as useful. Table 3.1 shows the resulting performance of the proposed

methodology on the Weizmann dataset, when compared to state of the art approaches.

The best result, obtained from the gradient and space-time graphs, does not match the

state of the art results, which are 100% on the Weizmann dataset.

Similarly to the Weizmann dataset, the recognition performance is evaluated on the

KTH dataset by using the leave-one sequence out cross validation methodology. The

confusion matrices are shown in Figure 3.22, displaying the recognition rate across the dif-

ferent activities. Notably, the gradient and space-time graph outperform the other graph

61



Chapter 3: Human Activity Recognition using Graph Modelling

a) Gradient features - 71.98% b) Gradient and space-time features - 75.10%

c) Local-neighbourhood features - 59.27% d) Immediate-neighbourhood features - 59.23%

Figure 3.21: Confusion matrices for the recognition results on the Weizmann dataset.

62



3.3 Experimental Results

representations. Similarly to the Weizmann dataset, the local and immediate neighbour-

hood graphs do not aid in the activity recognition performance, while the space-time

features improve recognition performance. Table 3.2 shows the resulting performance of

the proposed methodology on the KTH dataset, when compared to the state of the art

approaches. However, he best recognition result obtained by our methods (66.48%), does

not match state of the art methods on this dataset.

a) Gradient features - 66.48% b) Gradient and space-time features - 64.31%

c) Local-neighbourhood features - 59.70% d) Immediate-neighbourhood features - 60.07%

Figure 3.22: Confusion matrices for the recognition results on the KTH dataset.

Overall, the recognition performance when compared to the state of the art results is

disappointing. However, the majority of state of the art works rely on extracting signifi-

cantly more space-time features than the 50 in our work, increasing the time-complexity of

their methodology significantly. Furthermore, it is suggested that the proposed method-

ology of modelling relationships between cuboids would be better suited towards more

63



Chapter 3: Human Activity Recognition using Graph Modelling

Table 3.2: Recognition results on the KTH dataset when compared to the state of the art

approaches.

Approach Recognition rate (%)

Gradient feature graph 64.31

Gradient and space-time graph 66.48

Gradient and local neighbourhood graph 59.70

Gradient and immediate neighbourhood graph 60.07

Gradient, space time and local neighbourhood graph 62.15

Gradient, space time and immediate neighbourhood graph 62.45

Graph based approach using Dollar features [119] 90.60

State of the art approach based on BoW paradigm [92] 86.83

State of the art approach based on BoW paradigm [51] 95.33

complex activities, for example, interaction recognition or abnormal activities rather than

simple human activities, where the contextual information and spatio-temporal relation-

ships are not so significant for modelling the activity.

3.4 Conclusion

In this chapter, a graph based methodology was proposed by modelling the human activity

as contextual graphs. In this method, spatio-temporal gradient cuboids were extracted at

significant regions of activity, and feature graphs (gradient, space-time, local neighbours,

immediate neighbours) were constructed using the similarity matrix. Eigen-decomposition

was performed on the Laplacian representation of the similarity matrix, and the most

significant eigenvectors were used to classify the human activity using the kNN algorithm.

The proposed methodology was evaluated on the Weizmann and KTH human activity

datasets, although the results did not match those of the state of the art. However, in

this approach, the time-complexity of the methodology is reduced considerably compared

to others. Furthermore, this method models the connectivity between activity cuboids,

whereas the current state of the art approaches generally rely on clustering cuboids, and

do not consider contextual relationships between features. Given this, we suggest that

our approach may be better suited at detecting more complex activities, such as human

interactions, abnormal activities and contextual group activities.
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Anomalous Activity Detection

4.1 Introduction

While simple human activity is still useful for basic recognition tasks, a more complete

solution is required for activity analysis in complex real world scenes. Due to this, the

attention of research has moved on from simple human activities to detecting activities in

real-world crowded scenes. In particular, towards approaches which focus on the detection

and identification of uncharacteristic activities for a particular scene [50, 58, 105]. Such

attention has been brought towards anomalous human activity recognition due to the

variety of potential real-world applications, especially in the areas of surveillance and

security.

The focus of this research will be on the online detection of abnormal human activities.

More specifically, being able to detect abnormal behaviours in a video sequence given the

known expected normal behaviour for the scene. Given a certain context, there is a notion

of what is considered to be normal human activity, and conversely, abnormal activity.

The concept of an activity being defined as abnormal is heavily dependent on its context;

for example, a pedestrian walking down a high-street would be considered normal, but

a pedestrian walking across a busy motorway would be considered abnormal. In such a

detection system, the general (normal) behaviour is learnt, that is the typical observable

actions of persons or other moving objects in the scene. The anomalies can thus be

defined as the interesting (often uncommon) behaviour, in other words, events that do not

conform to the learnt patterns. Usually, abnormal activities occur with low probability

with respect to the probability of detecting normal trained activity. The area of detecting

abnormal activity from video sequences is well researched in computer vision, with a wide
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variety of proposed methods. In simple human activity recognition, the main recognition

pipeline began with low-level feature extraction, followed by some feature representation

(such as bag of words), followed by basic classification. In complex, crowded scenes, the

general low-level approaches to feature representation are unreliable and the performance

of such methods tend to degrade due to factors such as scene clutter, occlusions and general

density of unsteady flow in the scene.

One representation of activity modelling is based on longer-term object trajectories.

Modelling activities as object trajectories is usually done either by explicitly or implicitly

segmenting and tracking each object in the scene, and fitting models to the resulting

tracks [25, 45, 100]. Whilst these methods are reliable for open, uncluttered sparsely-

populated areas, they perform poorly in crowded scenes, especially when such pedestrians

are often occluded by other people, objects or by moving vehicles. A number of shorter-

term tracking methods have been proposed, such as modelling the motion as histograms

of optical flow [2,126] or as a mixture of probabilistic principal component analysis (PCA)

models [50]. Notably, a number of medium-term tracking methods have also been proposed

such as streaklines [65], which aim to model the medium-term flow of movement in crowded

scenes, without relying on long term tracks.

Recently, several notable methods for abnormal activity detection have been proposed.

[58] proposed a detector that accounts for both appearance and dynamics using a set of

mixture of dynamic texture models. Li et al. [58] also introduced a dataset of densely

crowded pedestrian walkways which consists of non-staged, realistic anomalies such as

bicyclists and electric-vehicles. Thida et al. [105] proposed to model the optical flow using

a spatio-temporal Laplacian eigenmap to extract different crowd activities from videos.

The motion patterns are clustered using k-means on the graph in the embedded space and

a multivariate Gaussian mixture model (GMM) is used to represent the regular motion

patterns. Basharat et al. [7] modelled the object motion patterns using a probability

density function (pdf) at each pixel to extract the speed and size of the tracks, then

unsupervised Expectation Maximisation (EM) was used to learn the tracks of every GMM.

Their proposed method successfully detected both local and global anomalies. Kratz

et al. [52] also modelled the motion patterns using GMMs except using gradients as a

3D distribution instead of optical flow. A dictionary of activity prototypes was learnt

by identifying statistically similar cuboids using the KL-divergence between probabilistic

models. Finally, GMM based Markov random fields (GMM-MRF) were used in [72] for
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abnormal activity detection.

A new online activity monitoring approach is adopted in this research based on forming

a dictionary of activities extracted by analysing the video information from a training

set and assessing a new activity using detection theory. During the training stage, the

movement in the scene is estimated by streaklines [65]. The trajectory based modelling

using streaklines [65] is used for localising and characterising human activity. Each distinct

moving region is then characterised statistically using GMMs by its motion and location

parameters, forming a dictionary of normal activities for the given scene. New activities are

detected in a second stage, where the scene is observed and all activities are extracted and

tested against the existing dictionary of activities. Any new human activity is compared

statistically using Kullback-Leibler (KL) divergence with the distributions of all learnt

activities from the dictionary. If the activity corresponds to one of those already recorded

in the dictionary, according to a threshold on the KL divergence, then its parametric

representation from the dictionary is updated accordingly. Otherwise, an alarm can be

triggered and a new human activity is added to the dictionary.

The rest of the chapter will be organised as follows: Section 4.2 provides an overview

of the proposed anomaly detection methodology. Section 4.3 describes the proposed ap-

proach to movement estimation, including streakline modelling. Section 4.4 describes the

activity representation via mixture of Gaussians. Section 4.5 describes the anomalous ac-

tivity detection stage while Section 4.6 describes the localisation of activities. Section 4.7

describes the experimental results and finally the conclusions are provided in Section 4.8.

4.2 Proposed Anomaly Detection Methodology

The proposed method is an online system designed to distinguish between normal and

abnormal behaviours in real-world video sequences. The proposed method could be applied

to any real-world video sequence, and the method should be able to distinguish between

normal and abnormal human behaviours in the given scene. The processing stages of the

proposed method are illustrated in Figure 4.1.

A more detailed overview of the method is provided below:

1. Video sequences input - The video sequence is provided as input to the pro-

posed method, defining what is considered normal in the training, and the unknown

behaviour in the testing.

67



Chapter 4: Anomalous Activity Detection

2. Motion estimation - Block matching or streaklines are used to estimate the motion

over several frames in the video sequences.

3. Histograms of motion flows - The motion will be segmented, firstly using a simple

algorithm to label connected components. Then, the number of distinct regions is

estimated by the number of peaks from the local or global histograms of flow vectors.

4. Motion segmentation - Using the number of peaks from the local/global his-

tograms of flow as the number of components, the expectation maximization (EM)

algorithm is applied to each region under the Gaussian modelling assumption. The

subsequent new regions are labelled accordingly. Each distinctly segmented region in

the previous step has its movement represented by a multi-variate Gaussian mixture

model.

5. Activity representation by GMMs - A dictionary of normal activities will be

constructed by using the KL divergence as a statistical measure of similarity between

the GMMs for the regions in the video sequence. KL Divergence will be computed

between the regions in the image and the dictionary of activities. If the divergence

is above a certain threshold, a new activity will be created in the dictionary. At each

iteration, if new regions are detected which consist of activities already present in

the dictionary, the parameters of the existing model (activity) will be updated.

6. Detecting anomalous activities - When new activities are detected in the test set

(anomalies), the frame number and spatial coordinates (location) will be recorded.

The frame number and location will be compared to the ground truth data to provide

numerical evaluation results.

Figure 4.1: Processing blocks for the proposed method of anomalous activity recognition.
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4.3 Movement Estimation

The first stage of the proposed approach consists of movement estimation. In our approach,

frames from the video sequence are divided into spatio-temporal blocks of a certain size.

We propose two methods of block-based movement estimation: optical flow estimation us-

ing block matching and a medium-term movement estimation method called streaklines.

We begin by discussing the optical flow approach, followed by some considerations and

issues which lead to a streaklines based approach. To begin, the local movement is esti-

mated for each pixel block, between two frames by using a generic optical flow estimation

method, for example the well known block matching algorithm, which is used extensively

in video coding. Block matching is a simple, yet effective motion estimation method which

is very commonly used in video compression [68]. Block matching attempts to find the

motion of image patterns corresponding to objects between two subsequent frames. More

specifically, each image frame is spatially divided into regions, often called macro blocks.

Each macro block in the current frame is compared to its corresponding block in the subse-

quent frame and its adjacent neighbours. After finding the best correlated block of pixels

from the subsequent frame, the difference between the coordinates of the pair of blocks

gives the displacement vector. This vector is associated to the movement of the area in

the scene corresponding to the given macro block of pixels. This process is repeated for

all macro blocks in the image. The search area for each macro block is an important

consideration and is dependant on the maximum amount of movement expected in each

macro block. Faster motion requires a large search window, but consequently as the search

window increases, the process becomes increasingly computationally expensive. The size

of the macro block is also an important consideration; too large and small motion patterns

are lost, too small and the computationally complexity required increases significantly, as

does the amount of noise. The matching of a macro block with another is done based on

the result of a cost function. The macro block that results in the least cost is typically

the one that matches closest to the current block. Various cost functions exist, the most

popular, and the one chosen for this application is Mean Squared Error (MSE).

MSE =
1

M

M−1∑
i=0

M−1∑
j=0

(Itij − It+lij )2 (4.1)

where M ×M is the size of the macro block and Itij and It+lij are the pixels i, j being

compared in the reference macro block for frame t to the macro block in the current frame
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t + l, where l is the number of frames skipped. Therefore a vector is obtained for each

macro block in the frame, where each vector stipulates the movement of the macro block

from the current frame to its subsequent reference frame. The set of motion vectors for the

whole frame is used to represent the motion between the reference frame and the current

frame. This process is repeated for all frames in the video sequence.

Modelling of Streaklines

One issue that arises from using optical flow alone is the difficulty in capturing unsteady

movement in crowded scenes. To alleviate this problem, we propose the use of streak-

lines [65]. Streaklines correspond to tracking fluid particles that have passed through a

particular location in the past. Streaklines provides a solution to non-smooth movement

based on a Lagrangian framework for fluid dynamics [65].

In fluid mechanics there are different vector field representations of flow:

• Streamlines, which are tangent to the velocity vectors at every point in the flow.

These correspond to traditional optical flow.

• Pathlines, which are trajectories that individual particles in a fluid flow follow.

These directly correspond to integration of optical flow over time.

• Streaklines, which represent the locations of all particles at a given time that passed

through a particular point.

For flows that are steady and unchanging, these three representations provide similar

results. When the flows are unsteady and changing over time, they are notably different.

First of all, in crowded dense scenes, streamlines (and similarly optical flow) will leave

spatial gaps in the flow and provide choppy transitions over time. Hence, it would not

provide smooth fluid-like flow for crowded videos. Pathlines overcome this problem by

filling the spatial gaps, but do not allow for detection of local spatial changes which is

critical in activity recognition based tasks. Furthermore, pathlines require L× (L− 1)/2

particles for L pathlines while streaklines only require L particles for the equivalent flow

representation. Since streaklines make use of a Lagrangian model for fluid flow, much of

these problems are alleviated; such a model is ideal to exploit the dynamic changes in

crowded scenes (where frequent changes in the flow are expected) whilst also filling spatial

gaps and providing a smooth transition of flow over time.
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To compute the streaklines, dense optical flow is computed from frame to frame using

the block matching method described above. Streaklines can be computed by initializing

a set of particles at every time instance in the field and propagating them over time and

in space using the optical flow field. This results in a set of paths, each belonging to

one point of initialization. To explain how streaklines are calculated let xpi (t), y
p
i (t) be

particle at time t, initialised at point p and frame i for i, t = 0, 1, 2, ..., T . Then, repeated

initialisation at p implies (xpi (i), y
p
i (i)) = (xp0(0), yp0(0)). Particle advection is achieved by

xpi (t+ 1) = xpi (t) + u(xpi (t), y
p
i (t), t)

ypi (t+ 1) = ypi (t) + v(xpi (t), y
p
i (t), t)

(4.2)

where u and v represent the velocity field of the optical flow. This produces a series of

curves, all starting at point p and tracing the path of the flow from that point in frame

i. For steady flow all these curves lie along the same path, but for unsteady flows the

curves vary in direction and shape, characteristic of pedestrian flow in crowded scenes.

This setup allows streaklines to propagate velocities, given by the instantaneous optical

flow Ω = (u, v)T at the time of initialization, along the flow like a material. To this end,

we can then define an extended particle i as a set of position and initial velocity

Pi = {xi(t), yi(t), ui, vi} (4.3)

where ui = u(xpi (i), y
p
i (i), i) and vi = v(xpi (i), y

p
i (i), i).

Similar streaklines will correspond to similar trajectories of particles from neighbouring

pixels. Unlike in [65] where streaklines are computed for each pixel, we associate each

streakline with a block of pixels of a fixed size by computing the marginal median as the

streakline estimate for each block of pixels.

We consider two different ways to represent the streaklines: single vector representation

and multi-vector representation. In the case of single vector representation, we apply

PCA on the streakline vectors in order to extract the principal eigenvector indicating the

direction of movement for each pixel-block. In the multi-vector streaklines approach, we

have several movement vectors which are in a smooth sequence. Therefore, for the single-

vector streaklines, we estimate a single movement vector for a block of pixels, spanning

several frames. For the multi-vector streaklines, we consider modelling the orientation

and magnitude independently. We consider defining a more intuitive space, in the polar

coordinate space, characterizing the orientation and intensity of local movement instead
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of the Cartesian coordinate space. For the multi-vector streaklines, we compose a feature

vector consisting of several orientation features and a single magnitude feature, spanning

several frames. It is expected that the multi-vector streaklines may perform better at

characterising individual movements in the scene, but may capture frivolous movements

that are not important characteristic feature of the activity at hand. On the other hand,

the single-vector streaklines may better define simple movements over several frames,

despite potentially losing smaller human movements.

4.4 Activity Representation Using Mixtures of Gaussians

Given the streaklines representing each spatio-temporal block of pixels, the video se-

quence is segmented into distinct moving regions. To begin, the motion is segmented

into inter-connected regions, considering 4 connected neighbouring blocks of pixels. The

inter-connected regions will be further segmented into distinct moving regions, each char-

acterised by multi-variate Gaussian mixture models, representing streaklines. GMMs have

widely been used as a parametric model of motion [7, 105]. A Gaussian mixture model Θ

is a weighted sum of K component Gaussian densities as given by

p(x|Θ) =
K∑
k=1

wkpk(x|µk,Σk) (4.4)

where x is a d dimensional streakline vector obtained from a set of streakline vectors

D = {xi, ..., xN} and N is the number of streakline vectors. wk is the mixture weight and

each pk is the Gaussian density for component k.

We consider in the following a multivariate Gaussian function for modelling the streak-

lines characterising a compactly moving region. Each component k is therefore a multi-

variate Gaussian density given by

pk (x|θk) =
1

(2π)d/2 |Σk|1/2
e−

1
2

(x−µk)tΣ−1
k (x−µk) (4.5)

with parameters θk = {µk,Σk} (mean and variance).

The complete GMM is parametrized by the mean vectors, covariance matrices and

mixture weights from all component densities. Each component density will represent a

specifically moving region in the video frame. Each distinct region in the frame will be

represented by the means and variances of the streaklines.
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We adopt two different approaches of movement segmentation for defining activities.

The first approach consists of global segmentation, where each GMM component corre-

sponds to a certain movement, defined irrespective of their location in the frame. This

means that several regions of movement from the frame may correspond to the same activ-

ity. For example, a pedestrian walking to the right in one part of the scene may correspond

to the same GMM component as a pedestrian walking to the right on the other side of the

scene. In the second approach, we adopt a local approach, where each region of movement

is defined locally. In this case, each interconnected region is considered a multivariate

GMM, where the GMM parameters are estimated from the streakline data. Each GMM

component corresponds only to the segmented regions inside that interconnected region.

While the global approach will produce fewer but spurious regions of activity, the second

approach will produce additional regions of movement, each of them compactly defined in

the space of the video frame.

The inter-connected regions are segmented using the label results obtained from apply-

ing the iterative Expectation-Maximization (EM) algorithm, under the GMM assumption.

Histograms of movement flow are generated for each inter-connected region (local) or for

the whole scene (global). The EM algorithm is initialised by using the set of initial pa-

rameters obtained from the histogram peaks (simply their values, an approximation of the

modes). The algorithm then iteratively updates the parameters (by repeating the E and

M steps), until convergence. The E and M step can be computed as follows:

E Step: Compute the membership weights by:

wik = p(i|xi, θ) =
pk(xi|zk, θk)αm∑K

m=1 pm(xi|zm, θm)αm
(4.6)

where xi is the motion vector for region i (component i), where the points lie in cluster k

and given that: 1 ≤ k ≤ K, 1 ≤ i ≤ N . And K is the number of mixture components.

z = {z1, ..., zK} is a vector of K binary indicator variables. z is a random variable

representing the identity of the mixture component that generated x. αm is the mixture

weight for component m. The membership weights reflect the uncertainty of vector xi and

parameters θ, about which of the K components that generated xi.

The weights are computed for all data points, and all mixture components using the

equation above.

M Step: The membership weights are now used to calculate new parameter values,

where the new mixture weight is:
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αnewk =

∑N
i=1wik
N

(4.7)

And the new parameters become:

µnewk =

∑N
i=1wikxi∑N
i=1wik

(4.8)

and

Σnew
k =

∑N
i=1wik · (xi − µnewk )(xi − µnewk )t∑N

i=1wik
(4.9)

After the new parameters have been computed, the M step is complete and the next

iteration can begin.

The algorithm ends when convergence is reached, or more specifically this is when the

log-likelihood computed after each iteration is no longer changing in a significant manner

(from one iteration to the next). The log-likelihood is defined as follows:

log l(θ) =

N∑
i=1

log p(xi|θ) =

N∑
i=1

(log

K∑
k=1

αkpk(xi|zk, θk)) (4.10)

where the complete set of parameters for the Gaussian function is given by θ = {α1, ..., αK , θ1, ..., θK}

and pk(xi|zk, θk) is the Gaussian density for component k.

Each distinct moving region is therefore represented by the parameters of the respective

Gaussian distribution. The segmentation is repeated across the entire video sequence for

either the local or global segmentation approach, leading to a set of streakline GMM

models characterising the movement in the scene.

4.5 Activity Detection using Statistical Relevance Criterion

The model described above leads to creating a set of streakline GMM models for the entire

scene. Each of these GMM models correspond to one component of the GMM model and

can be characterized statistically by its streakline statistics, corresponding to its mean

vector µi and covariance matrix Σi. Different activities will be detected by comparing

the GMM statistics using a statistical relevance criterion. For this purpose, we use the

Kullback Leibler (KL) divergence. KL divergence is a non-symmetric measure of the

difference between two probability distributions P and Q. The paper [53] describes the

general case in more detail. In the context of this work, the pdfs representing regions of

movement in the scene are modelled using GMMs. The KL divergence will indicate the
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changes from one region of movement to another in the scene, by measuring the statistical

similarity of differences in the movement. Significant differences in the KL divergence are

evidence of significant differences in the movement of various regions of the scene which

could suggest hard interactions, while smaller differences could indicate similarity in the

movement. However, the decision depends on the location of such moving regions with

respect to each other and the KL divergence is applied in this context as well.

Similarly, we could consider using the Jensen-Shannon Divergence, obtained from the

KL divergence. The Jensen-Shannon divergence has some notable differences, including

that it is already symmetric and it is always a finite value.

The KL divergence can be written as KL(f1, f2) for densities f1 and f2, and in general

form is given by

KL(f1, f2) =

∫
f1(x) log

f1(x)

f2(x)
dx (4.11)

For most densities, KL(f1, f2) is not available in closed form and needs to computed

numerically; one exception to this is if both densities are Gaussian distributions. KL

divergence for GMMs was used in human abnormality detection to distinguish between

normal and anomalous regions [52] and more generally to compute difference between

probabilistic models. In the research presented in this chapter, it will be used to compute

the difference between the Gaussian density functions of two regions in the video sequence.

The KL divergence between activity region Ai with mean vector µi and diagonal

covariance matrix Σi and activity region Aj with mean vector µj and diagonal covariance

matrix Σj is given by [30]:

DKL(Ai||Aj) = 0.5[log(det(Σj)/ det(Σi)) + tr(Σ−1
j Σi) + (µj − µi)′Σ−1

j (µj − µi)− d]

(4.12)

where d is the number of dimensions (i.e. dimension of the streakline vectors). From

observation of equation (4.12), one issue that may arise is when matrix ΣI is singular and

consequently its determinant is zero, so division by zero occurs. This can be alleviated by

simply setting Σi to a very small value when Σi is 0.

Equation 4.12 therefore provides the difference between the two probability distribu-

tions for streakflow models AI(t) and AJ(t).

One downside of using the standard KL divergence from Equation 4.12 is that it is not

symmetric. A symmetrised version of the KL divergence can be computed by:
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DSKL(Ai||Aj) =
1

2
[DKL(Ai||Aj) +DKL(Aj ||Ai)] (4.13)

Therefore, equation (4.13) will provide the difference between the two probability dis-

tributions for activities Ai and Aj , and a smaller value will indicate similarity in the

activities being observed.

Similarly, we can compute the Jensen-Shannon divergence for comparison by:

DJSD(Ai||Aj) =
1

2
[DKL(Ai||M) +DKL(Aj ||M)] (4.14)

where M = 1
2 [Ai +Aj ].

Equation (4.14) will be used later for comparing the performance of the symmetric KL

divergence to the Jensen-Shannon Divergence.

To begin the detection algorithm, we calculate the streakline Kullback-Leibler diver-

gence (SKL), according to equation (4.13), between the streakline distributions corre-

sponding to all pairs of moving regions identified in the scene.

Given such computations between streakline distributions, a new activity is decided

when we have:

KL(Ak,Aj) > Θ (4.15)

for k, j = 1 . . . , N , and where Θ is a threshold characterizing the novelty in the scene.

If equation (4.15) is fulfilled, then a new activity Ak is added to those recorded in the

dictionary of activities characterizing the scene. If equation 4.15 is not fulfilled then

we would have Ak ≡ Aj and the observed activity corresponds to one of the activities

currently recorded for that scene. In this case the parameters µj and Σj corresponding

to the activity Aj are updated. The parameters µj and Σj corresponding to the activity

Aj can be updated as follows:

µnewj =
µjNj + µkNk

Nj +Nk
(4.16)

Σnew
j =

ΣjNj + ΣkNk

Nj +Nk
(4.17)

where µnewj and Σnew
j are the new parameters for activity Aj , and µk and Σk are the

parameter of the new activity in the scene. Nj and Ni correspond to the total number of

blocks present for the activity.
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In the case of multi-vector streaklines, the KL divergence is split into two terms, one

for the orientation of local motion and another for its intensity. The magnitude of the

movement is indicated by the eigenvector corresponding to the highest eigenvalue, after

applying the PCA onto the vectors composing the streakline. Meanwhile, we consider the

orientation angles for all the displacement vectors which make up the streakline. Let Ao,k
be the orientation model for Activity k and Am,k be the magnitude model for Activity

k. Likewise, let Ao,j be the orientation model for Activity j and Am,j be the magnitude

model for Activity j. Then we define a new activity criterion:

koKL(Ao,k,Ao,j) + kmKL(Am,k,Am,j) > Θs (4.18)

for j = 1 . . . , N , where ko and km are weights in the range [0,1] for the orientation and

magnitude respectively such that ko + km = 1 and Θs is the threshold characterizing the

novelty in the scene.

When the streakline distributions for all regions in the entire training sequence have

been compared, the final dictionary of training activities can be defined as Dtrain =

{A1, ...,An} for these model assumptions. n is the number of activities identified from the

training set.

The KL divergence is calculated on the test set similarly, with the exception that the

models of the activities formed from the training set are no longer updated (but instances

of the activity may still be found in the test set). A separate dictionary Dtest is formed

comprising of new activities found in the test set. Dtest corresponds to new activities

which are potentially anomalous formed only from the testing set. Note that the same

threshold values θ and θs are used for both training and testing data.

4.6 Localisation of Activities

In the current approach, activity models are compared to other activity models identified

in the scene during the training stage, regardless of their spatial location in the scene.

This leads to an issue where if the scene contains strong perspective projection effects,

then models close to the camera may appear significantly different statistically to those

located further away, despite being a similar activity. Conversely, activities that are very

different may appear similar given the perspective projection effects on the activity, for

example, a cyclist towards the back of the scene may appear to have a similar statistical

model to a pedestrian walking close to the camera. Furthermore, by comparing with all
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activities in the scene, the current method does not consider that certain activities may be

constrained spatially, for example, pedestrians may only walk on a path, and not across

some grass area that is out of bounds. To alleviate these problems, we consider a method

which only compares activity models within a certain spatial window. Such a spatial

window must be dynamic to account for the perspective projection effect in the scene

and its influence on the recorded human activity models. In this localisation approach,

we define a dynamic distance model so that we can automatically adjust the size of the

spatial window depending on the distance from the camera.

Firstly, we split the image frame into blocks of identical size as previously used for

streakline estimation. For each block of pixels i we calculate the average of the movement

magnitude intensity, calculated from all activities recorded in that area of the scene:

Ωm,i =

∑Ni
j Am,j
Ni

(4.19)

where Am,j represents the magnitude model for the activity taking place in the area

corresponding to the block of pixels j and Ni represents all the activities identified in that

sector of the image. We also consider the mean activity for the entire frame:

Ωm =

∑N
j Am,j
N

(4.20)

where we consider all N activities identified during the training in the scene. The size of

the region which is considered for the localisation of the movement is given by the ratio

between the squares of the average movement magnitude in a certain area and the square

of the average movement in the entire frame:

D(i) = b
Ω2
m,i

Ω2
m

(4.21)

where b is a constant called base distance which weights the effect of local activity with

respect to the total activity in the scene. This is particularly relevant in scenes where the

perspective projection effect is strong and where the movement which is far away from the

camera appears as smaller in intensity. Finally we only compare the activity k from the

dictionary with a new activity if

|Cj −Ck| < D(i) (4.22)

where Cj is the center point location of new activity j and Ck is the center point location of

activity k from the dictionary. Consequently, the size considered for the area of localization
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will be larger for regions characterized by larger movements. Regions which are further

away, will be characterized by lower level of movement and consequently we would consider

smaller regions of localization for such regions.

A distinct advantage of only comparing activities with others that satisfy equation (4.22)

is that the computation time decreases significantly due to the significantly fewer compar-

ison required using KL divergence. For example, given 100 activities in the scene and 5

activities inside the dynamic window, only 5 comparisons are required compared to the

100 required without the localisation approach.

4.7 Experimental Results

In this section, we evaluate the effectiveness of our proposed observational human activity

identification methodology on state of the art datasets. The UCSD anomaly dataset [58]

consists of two scenes observing university campus walkways. separate training and test

sets, where it is assumed that normal human activity takes place in those video sequences

used for the training stage while the video sequences used during testing are analysed

for anomalous activities. The dataset consists of two scenes from a university campus:

ped1 and ped2. Ped1 shows a university campus scene where pedestrians walk along an

alley viewed under an oblique angle, the perspective distortion is quite strong, whilst in

ped2 a wide alley is observed, in which pedestrians walk parallel to the camera plane and

the perspective projection effects are minimal. Both scenes contain similar anomalous

activities during the testing stage, such as: cyclists, electric vehicles, skateboarders and

people walking in a different way (i.e. walking in a direction not observed in the train-

ing set, for example, across the grass). The anomalies are ground-truthed by the frame

numbers of the anomalies and by indicating the spatial locations of the anomalies. The

anomaly detection performance of the proposed method will be compared to that of the

ground-truth. We also further evaluate the proposed approach on the UMN dataset. This

dataset is simpler, consisting of staged group dispersing activities in an outdoor environ-

ment. Finally, we provide some observational experimental results on the i-LIDS Gatwick

dataset1. The i-LIDS Gatwick dataset consists of cameras observing activity at Gatwick

airport. Such scenes are very complex, and subject to many challenges such as pedestrian

density, occlusions, perspective distortion and the inclusion of a wide variety of complex

1https://www.gov.uk/guidance/imagery-library-for-intelligent-detectionsystems
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yet subtle activities.

Streaklines and Segmentation Evaluation

To begin, the single/multi-vector streaklines methodology is applied to the video se-

quences. The first consideration is the size of the spatio-temporal macro-block for the

streakline methodology. Note that the same size blocks will be used for both the block

matching approach and the streakline methods, to enable a fair performance evaluation.

Spatio-temporal blocks which are too large will not capture the essential motion repre-

senting the human activity, whilst blocks too small will incur too much noise and capture

very small movements that may be unnecessary and add unnecessary complexity to the

model. The macro block size M from equation (4.1), was set empirically after some testing

across the different datasets. A macro block size of M = 10 pixels was deemed appro-

priate for the UCSD and UMN datasets, considering the size of the pedestrians, cyclists

and electric vehicles which are observed in the analysed scenes. To increase the amount

of motion statistics, overlapping blocks are used. An overlap of half is used, providing

4 times the amount of statistics, essentially providing a streakline model for each 5 × 5

block of pixels. For the i-LIDS Gatwick dataset, we consider blocks of 20 × 20 pixels,

considering the higher video resolution of this dataset. Since the streakline vectors are

extracted over spatio-temporal blocks, the temporal window (streakline length) must be

considered. In this case, we set the length of the streaklines T to 10 frames for all datasets.

This provides reasonable medium-term flow coverage without causing the streakline tra-

jectory to degrade. A further consideration at this stage is the removal of noisy/erroneous

motion estimation vectors. To alleviate this, we use a simple threshold filter, removing

any vectors below an intensity streakline magnitude of 1, which is sufficient to remove

background noise and erroneous vectors. Later, when segmenting the moving regions, we

also consider removing any very small region, which could actually correspond to noise.

An example of the motion estimation using the block matching is shown in Figure 4.2a.

In this example, the motion of the pedestrians walking in different directions is well cap-

tured. The faster motion of the cyclist is well captured by the block matching and the

motion vectors are visibly larger (indicating quicker movement). In the example in Fig-

ure 4.2a there are a few erroneous vectors. Such erroneous vectors are due to the presence

of MPEG compression artefacts in the video and because of large smooth image areas.

These erroneous vectors will be removed by the threshold filter discussed above.
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After the motion estimation is complete, the connected components are segmented

and labelled. As described in Section 4.4, this is done by a simple algorithm which passes

through the image, segmenting the video into regions of specific movement. This step

is essentially an application of the well-known grass-fire algorithm in which objects are

segmented recursively, by checking the movement vector connectivity and their similarity

in the neighbourhood. At this stage, each labelled region may contain more than one

distinct behaviour, for example a cyclist and a pedestrian moving in opposing directions.

After the initial segmentation is completed, regions that are considered too small are

removed. In this case, regions smaller than 5 blocks in size are removed. This size was

chosen as regions smaller than 5 blocks do not represent any meaningful region of motion.

The motion that is represented by less than 5 blocks is almost always either noise (from

erroneous vectors) or is not relevant (e.g. small movement of the feet or a bag).

In the example in Figure 4.2c separate regions of motion are detected. In region 1

in Figure 4.2c, all pedestrian are walking in the same direction, therefore it is expected

that only one activity is detected in this region. In regions 3 and 5, there is only a single

activity as only one pedestrian is present in each region. In region 7, there are at least

3 different activities - the cyclist moving left, 2 pedestrians moving right, and a single

pedestrian moving left. Region 9 is slightly more complex, at least 2 separate activities

are expected, perhaps even 3. The pedestrian walking to the right will form one activity,

while the pedestrians walking to the left should form a second activity. However, given

that one of the pedestrians walking to the left in region 9 is walking at an oblique angle,

this may form a 3rd activity, depending on the individuals motion. Ideally, 3 different

activities should be detected in region 9.

Histograms of the movement vectors are generated for each movement region in the

image, obtained from the single streakline/block matching-based methodology of each re-

gion. Peaks are detected by way of detecting maximas in the histograms, i.e peaks that

are greater than their neighbours. The EM Algorithm is applied (under the Gaussian

modelling assumption) to each region of motion, defined by their inter-connected regions.

In the case of multiple histogram peaks (multiple modes), the number of peaks in the his-

togram is used for defining the number of Gaussian mixture components when initialising

the EM algorithm. As described in Section 4.4, we introduce the location parameters of

the region as an extra component into the EM algorithm to help improve the segmenta-

tion of the regions. By introducing such location parameters, emphasis will be placed on
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clustering blocks that are nearby in space, avoiding ‘broken’ regions and resulting in well

defined movement region boundaries.

As described in Section 4.4, we adopt two different approaches of movement segmenta-

tion for defining activities. The first approach consists of global segmentation, where each

GMM component corresponds to a certain movement. This means that several regions of

movement from the frame may correspond to the same activity. For example, a pedestrian

walking to the right in one part of the scene may correspond to the same GMM compo-

nent as a pedestrian walking to the right in the other side of the scene. In the second

approach, we adopt a local approach, where each region of movement is defined locally by

considering its location in the frame. In this case, each interconnected region is considered

as a multivariate GMM and each GMM component corresponds to the segmented regions

inside that interconnected region. Following on from the example above, the two pedes-

trian would correspond to two different GMMs. While the global approach will produce

fewer but spurious regions of activity, the second approach will produce additional regions

of movement, each of them compactly defined in the space of the video frame.

The expected (ideal) results for the histograms (from the segmented regions example in

Figure 4.2c): Region 1,3,5 with 1 peak each and Region 7 and 9 with 3 peaks each. From

the histograms in Figure 4.2b, it is clear that regions 1, 3 and 5 all have just a single peak

each as expected. In the case of region 7, 5 peaks are detected. It can be observed that

the cyclist is still visibly separated from the pedestrians. The cyclist has clearly moved

notably faster than the pedestrians. In the example of the segmentation in Figure 4.2d,

regions 1, 3 and 5 are no different from the original segmentation (single distinct regions

each). Region 7 is more complex - the cyclist is well represented and so is the pedestrian

moving to the right. The moving regions of the other two pedestrians are not represented

that well as distinct moving regions. This is not necessarily a problem as the main goal

is detecting the abnormal activity, which in this case would be the bicyclist. The smaller

regions on the edges of region 7 will also be removed at the next step. Region 9 is well

represented and 3 distinct regions are identified for each of the activities. Following the

segmentation, small regions (under 5 blocks in size) are removed in the same manner as

prior to segmentation. In this case, the regions around the bicyclist and the pedestrians

(in region 7) will be removed. This is beneficial as such regions do not represent any

meaningful parts of a moving object.

Given such segmentation, each moving region is represented by its multi-variate Gaus-
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a) Motion estimation b) Histograms of motion flow

c) Inter-connected regions (pre-segmentation) d) Moving regions (post-segmentation)

Figure 4.2: Example of the application of motion estimation, the corresponding motion

histograms and the moving region segmentation. Example sequence from ped2 of the

UCSD dataset.
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sian mixture model representation of the single or multi-vector streaklines, as described

in Section 4.3. Figure 4.3 shows an example of single-vector streaklines, multi-vector

streaklines and their corresponding segmentation results achieved on ped2 of the UCSD

dataset. It can be observed from Figure 4.3a and b, that both single and multi-vector

streaklines provide a good representation of the motion flow. The multi-vector streaklines

in Figure 4.3b provides a more detailed representation of the individuals’ motion when

compared to the single vector streaklines in Figure 4.3a. Furthermore, the movement of

the individual in the right portion of the scene is better captured by the multi-vector

streaklines. It can be observed from Figure 4.3c and d, that multi-vector streaklines pro-

vides better identification of the cyclist from centre left of the scene, when compared to the

result achieved with single vector streaklines. This suggests that the multi-vector streak-

lines may perform better at localising activities in the scene, but may capture irrelevant

movements that could degrade detection performance.

A further example of the streaklines and segmentation is shown in Figure 4.4. This

example is from ped1 of the UCSD dataset, where pedestrians are observed over a pathway

at an oblique angle showing strong perspective projection effects. In this example, several

anomalous activitivities, such as those corresponding to a cyclist, a peson pushng a cart

and a skater, can be observed. However, the cyclist in the bottom left of the screen is not

segmented separately in the single-vector segmentation in Figure 4.4c, while in Figure 4.4c,

the same cyclist is well segmented. This again demonstrates the potential advantage of

multi-vector streaklines for localising such activities. In Figure 4.5, the groundtruth is

shown for the anomalous activities corresponding to the same scene as shown in Figure 4.3

and Figure 4.4. The segmented regions shown in Figure 4.4d match those of the ground

truth (in Figure 4.5b) for both the cyclist and the person pushing a cart. The anomalous

moving region corresponding to the person from further end of the path, located in the

upper-right corner of the scene is merged with the moving region of a nearby pedestrian due

to the limited view and perspective distortion present in the scene. Merging such regions

may not be a problem if such a region is identified as anomalous regardless. Furthermore,

the segmentation previously presented in Figure 4.3d match closely to those of the ground

truth provided in Figure 4.5a. This is promising for the activity localisation results on

such datasets.

Given the streakline GMM models for each region, the next stage is comparing the

activities statistically using the KL divergence. During this stage, the parameters cor-
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a) Single-vector streaklines b) Multi-vector streaklines

c) Single-vector segmentation d) Multi-vector segmentation

Figure 4.3: Modelling movement using streaklines on a video sequence form the ped2

UCSD dataset.
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a) Single-vector streaklines b) Multi-vector streaklines

c) Single-vector segmentation d) Multi-vector segmentation

Figure 4.4: Modelling movement using streaklines on a video sequence form the ped1

UCSD dataset.

a) Ped1 UCSD dataset b) Ped2 UCSD dataset

Figure 4.5: Example of the groundtruth for anomalous activities from the ped1 and ped2

UCSD datasets.
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responding to the observed activities are compared to those representing the activities

recorded in the dictionary of activities during the training stage. In the following we

evaluate the results provided when using the polar coordinates by varying the threshold

Θs from equation 4.18 when deciding new activities. We compare the area under the

ROC curve (AUC) when varying the orientation component ko ∈ [0, 1] in equation (4.18),

whilst the magnitude component is km = 1 − ko. Figure 4.6a and Figure 4.6b, show the

results in activity detection and localisation, respectively, when increasing the weight of

the vector orientation and decreasing the weight of the movement amplitude, when using

multi-vector streaklines. For the detection performance, we assess the percentage of frames

where the anomalous activity is found, against the labelled ground-truth. For assessing

the localisation, the detected region of activity is compared to that of the corresponding

groundtruth mask (measured as a a percentage of detected pixels out of the groundtruth

labelled pixels). It is clear from Figure 4.6 that the best results are obtained when the

orientation weighting is ko = 0.7. This also suggests that a small improvement in the

results is expected when using polar coordinates over Cartesian coordinates as the best

results are obtained when the weighting between orientation and magnitude are not equal.

Next, we evaluate the effect of using localization when comparing activities only within

a certain neighbourhood as described in Section 4.6. To evaluate this, we consider the

difference in localisation result performance as the base distance b, from equation (4.21),

is varied in the range b ∈ [40, 150]. Figure 4.7 shows the localisation performance rate as

the base distance b is varied. Notably, there is a clear improvement when using a smaller

base distance over using the maximum base distance (b = 160+, no localisation). The best

results are obtained when the base distance is b = 90. This provides a 6% improvement

in localisation results when compared with using no localization (when b = 160+).

4.7.1 Anomaly Detection Evaluation

The anomalous activity detection by the proposed method is evaluated in three ways:

by monitoring visually the activities detected in the scene, by means of timing correctly

the activities by identifying the frames where they occur and by identifying the location

of the activity in the scene. For the UCSD dataset, ground-truth is provided by way of

frame numbers for the anomaly detection in the test set, and by a spatial ground-truth

mask indicating the location of the anomalous activities. The anomalous detection result

provided by our method are evaluated against these groundtruths to provide a numerical
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Figure 4.6: Evaluation of the AUC (area under the ROC curve) when varying the orien-

tation weighting ko for the UCSD dataset.
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analysis of the results.

To begin, we introduce a visualisation of the activities over time called the ‘Activity

Monitor’. Activity monitors are used to show the activities identified in the scene according

to their timing of occurrence in the video sequence. The first example of an activity

monitor is shown in Figure 4.8. For reference, the yellow colour are frames with activities

present and the red coloured frames indicate no activity present. For the bottom row

(groundtruth), the red ground-truth colour is used when no anomalous activity are present

in the scene and the yellow colour is used when anomalies are present in the scene. The

groundtruth indicates only certain anomalous activities, such as the presence of cyclists

or skaters, which should not be allowed in the scene. For reference, example frames from

test sequence 2 are shown in Figure 4.9. We can observe the appearance of a cyclist in

the scene in Figure 4.9b and the inclusion of the cyclist in Figure 4.9c.

Figure 4.8: Activity monitor for test sequence 2 of the UCSD ped 2 dataset.

a) Frame 1 b) Frame 95 c) Frame 149

Figure 4.9: Example frames from test sequence 2 of the UCSD ped 2 dataset.
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We can observe from Figure 4.8 that there is a single anomalous activity representing

the cyclist who enters the scene at around frame 93. The activity is correctly detected

by this method for the whole duration of the scene. Note that the cyclist is detected

before the ground-truth declares the anomaly; this is because a small portion of the wheel

is present and this triggers immediately the presence of an anomalous activity by our

method, where as the ground-truth is set such that a certain amount of the anomalous

region must be present in the scene before it is declared as anomalous. This indicates that

the method performs very well, even when the anomalies are small such as only a portion

of bicycle wheel being present. Our method could be changed such that the region must

be of a certain size before anomalies are detected; this would bring the detection results

in-line with the ground-truth. The normal activities in Figure 4.8, activities (1-6), are

representative of different types of walking activity - walking left, walking right and so

on. Activities 2-4 represent most of the walking in the scene. The walking activity is not

continuous, with frames where the activity is not present, as it can be observed for the

activities 2-4 from the activity monitor in Figure 4.8. This is not necessarily a problem, but

a more constant walking detection without the stagnation would be preferred. This could

be achieved by simply lowering the threshold for detecting new activities; but this would

change the sensitivity for detecting anomalies, therefore must be considered carefully.

In the second example, shown in Figure 4.11, two anomalies are present in the scene.

Once again, examples frames from the sequences are shown in Figure 4.10. In this example,

anomalous activities are clearly present in all 3 frames. For colour reference, the activity

monitor in Figure 4.11 is coloured as follows: the light blue colour are frames with activities

present and the darker blue colour are frames with no activity present. The red ground-

truth colour is used when anomalous activity is present in the ground-truth and the cyan

colour is used when anomalies are present in the scene. In this example, the cumulative

anomaly is also shown so that the result can be directly compared with the ground truth.

The cumulative anomaly represents the time where any anomalous activity is detected

by the method. The cumulative anomaly is shown to allow easy comparison between

the anomaly detection and the ground-truth. A bicyclist is already in the scene at the

beginning and leaves the scene at around frame 50-60. A second cyclist enters the scene

at around frame 19, and remains in the scene for the entire duration of the sequence. This

means that the ground-truth will always indicate an anomalous activity. In Figure 4.11,

the cyclists are detected entering and leaving the scene correctly. In this more complex
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case, the first and second cyclist aren’t always detected in the scene - this is because

at certain points the cyclists are severely occluded by pedestrians. Interestingly, a third

anomalous activity is detected. This activity is a variation of the first cyclists activity and

as the cyclists activity changes throughout the scene, the detection switches between the

initial cyclists activity and the other anomalous activity (both are detected in the activity

monitor, as it can be seen from Figure 4.11). Note that although the anomalous detection

of each cyclist is not perfect in this example, the cumulative anomaly is still correct as per

the ground-truth.

a) Frame 19 b) Frame 36 c) Frame 90

Figure 4.10: Example frames from test sequence 9 of the UCSD ped 2 dataset.
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Figure 4.11: Activity monitor for test sequence 9 of the UCSD ped 2 dataset.

Numerical Evaluation

In the following we provide the numerical evaluation results obtained when using the pro-

posed observational human activity identification methodology on three data sets: the

UCSD dataset, the UMN dataset and the i-LIDS Gatwick dataset. As previously men-
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tioned, the UCSD data set consists of two scenes from a university campus: Ped1 - where

the pedestrians walk along an alley viewed under an oblique angle and Ped2 - showing a

similar environment, but where the pedestrians walk parallel to the camera plane. Due

to the viewing angle of Ped1, the video representation of the scene under view is affected

quite strongly by perspective distortion. Ped2 also contains some perspective distortion,

but due to the pedestrians walking in parallel to the camera plane, it does not affect the

results to any measurable degree. The UMN dataset is simpler than the UCSD dataset,

consisting of staged abnormal activity where individuals behave normally followed by a

sudden dispersing/panic activity from the pedestrians in the scene. Three different dis-

persing activity scenes under different lighting conditions and environments with varying

number of individuals from the UMN dataset, are considered for the experiments. The

i-LIDS Gatwick dataset, as described earlier, consists of video sequences from cameras

observing Gatwick airport. The cameras observe scenes which are complex in nature;

under varying light conditions together with perspective distortion. The density of the

pedestrians in the scene also vary, and many of the activities shown in these videos are

complex.

We begin by discussing the numerical results of the proposed methodology on the

UCSD dataset. To evaluate the proposed method, we follow the evaluation scheme de-

fined by [58], where the performance of the method is examined by its detection and

localisation performance on both ped1 and ped2 of the UCSD dataset. The detection per-

formance is evaluated by determining if a given frame in the test set is correctly labelled

as anomalous activity according to the corresponding ground-truth. The localisation per-

formance is evaluated by determining if the segmented regions of the anomalous regions

matches those indicated by the ground truth segmentation masks. A correct localization

result is achieved when at least 40% of the pixels are correctly identified as part of a region

defined as corresponding to uncharacteristic movement in the scene [58]. We evaluate the

method by its true positive rate and false positive rate, both for detection and localisation

results. To compute such results, we evaluate our method on the whole UCSD dataset

as the threshold Θs is varied. The ROC (receiver operating characteristic) curve display-

ing the true positive rate against the false positive rate for the entire datasets, when the

threshold of the KL divergence from equation (4.18) is varied in the range Θs = [0, 5000].

The ROC curves for the results on the UCSD dataset are shown in Figures 4.12a and b

for temporal and localisation detection in Ped1, whilst the corresponding results for Ped2
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are shown in Figures 4.13c and d respectively. The ‘local/global optical flow’ methods

refers to the block matching based optical flow method with the local or global segmenta-

tion, respectively, described earlier in Section 4.3. The ‘single vector streaklines’ method

refers to the single-vector streakline methodology with local segmentation, while the ‘multi

vector streakline’ method refers to the multi-vector streakline methodology, with local seg-

mentation, polar coordinates and the localisation method described in Section 4.3. The

numbers in brackets refer to the area under the ROC curve (AUC), providing a measure

of performance across the range of sensitivities when the threshold is varied. Overall,

the streakline based methodologies outperform the local and global optical flow methods.

Interestingly, the multi-vector streaklines outperform the other methods at localisation,

while the single-vector streaklines perform better at detection results. This is expected as

earlier in this chapter it was noted that the segmentation of anomalies were notably better

when using multi-vector streaklines. It is suggested that the single-vector streaklines per-

form better at detection tasks due to the added complexity of the multi-vector streaklines

causing some confusion when individuals perform small complex movements which despite

being well captured by multi-vector streaklines (and lost in the single-vector model), do

not add any additional useful characteristic data to the abnormal activity model. Notably,

the overall results on ped1 are worse than those of ped2; this is expected due to the per-

spective distortion affecting ped1 and the limited view of the anomalous activities when

they take place towards the end of the path.

As previously discussed, we also evaluate the performance of the KL divergence in this

context by comparing the results of the methodology using KL divergence to the Jensen-

Shannon divergence and the traditional Euclidean distance. In this case, we use the single

vector streaklines on ped2 dataset and report the best obtained detection recognition rate

for each statistical measure in Table 4.1. The best performing statistical measure in this

case is clearly the symmetric KL divergence. Considering this, we continue to use the

symmetric KL divergence for the final experiments in this work.

Table 4.2 provides the results for the detection and localisation evaluation of the pro-

posed methods when compared with the state of the art. The best detection of unchar-

acteristic movements is obtained for the threshold where the minimum equal error rate

(EER) is lowest. The detection and localisation columns indicates the best performance of

the method (1-EER). Almost all the streakline results show a clear improvement in results

over the global/local optical flow. It is again clear from the table that the multi-vector
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streaklines generally perform better at localizing human activities, whilst the single-vector

streaklines are better at detecting the frames when the anomalous activities take place.

Notably, the polar coordinates and localisation show an improvement in results of the

multi-vector streaklines on both ped1 and ped2. A greater improvement is noted on ped1

(+6.6%) compared to ped2 (+0.5%) when localisation and polar coordinates are added;

this is expected due to the localisation methodology having a greater effect on ped1 where

the perspective distortion is far more prominent. The multi-vector streaklines perform

better at the localisation task than the state of the art methods on both ped1 (+10%

improvement) and ped2 (+0.8% improvement). The detection results are on par with

state of the art, although the methods that perform better at detection do not provide

their localisation results; suggesting that their localisation results are not on par with their

detection results.

Next, we evaluate the proposed methodologies on the UMN dataset [66]. This data set

consists of 11 video sequences of three different scenes. Each sequence follows the same

staged format, where the sequence begins with normal behaviour consisting of individuals

walking around, followed by an abnormal section where individuals run/panic in the scene.

The anomalies are therefore considered global events in the scene and do not require any

form of individual localisation. The sequences are on average around 20 seconds long,

where the normal section is usually longer than the abnormal section. The video sequences

have a resolution of 320 by 240 pixels, shot in a variety of scenes including outdoors with

good lighting and indoors with poor lighting. In these sequences, we learn the normal

activity by randomly selecting 20 frames from the normal portion of the sequences. Finally,

we test these models on the remainder of the frames. Examples of three frames where

anomalous behaviour is detected are shown in Figure 4.14. Note that all three scenes are

in different environments, under a different camera perspective with different lighting. In

Table 4.3, we provide the numerical performance results of our method by computing the

area under the curve (AUC). All state of the art methods currently perform extremely well

on the dataset; this is expected as the activities are simple and staged. Our results for both

single-vector streaklines and multi-vector streaklines are on par with those from state of the

art in Table 4.3, and in some cases show an improvement. Due to the slight differences in

evaluation protocols on this dataset, some variability in the results are expected, however

all of the detection performance results are already extremely high, limiting any potential

performance improvements.
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Finally, we provide some basic anomaly detection results on The i-LIDS Gatwick

dataset2. As mentioned earlier, the i-LIDS Gatwick dataset consists of video sequences

obtained from CCTV cameras placed around Gatwick airport. The resolution of the

video sequences is 720×576 pixels. The video sequences contain many complex activities,

with mixed crowd densities, together with many other difficult challenges such as floor

reflectance under changing lighting conditions and multiple occlusions. Given the lack

of groundtruth for abnormal activities on the dataset, we instead provide results from a

scene where ‘normal activity’ consists of walking out of the exit terminal and “abnormal

activity’ consists of walking against the flow. Our training data set contains 30 seconds

of video from the normal exit behaviour corresponding to persons leaving the terminal.

Our testing data set consists of 10 seconds of video containing a mix of normal behaviour

and pedestrians attempting to walk against the flow. The movement flow and the activity

segmentation, calculated from the streaklines is provided in Figures 4.15a and b for the

training stage and in Figures 4.16a and b for the test stage. The convergence of the streak-

line directions in the center-left part of the images from Figure 4.15a and Figure 4.16a

is produced by the perspective projection effect when streaklines are used. Their con-

verging direction indicates the direction of movement for the persons under observation.

The different activities are coloured differently in Figure 4.15b and Figure 4.16b. Two

persons carrying luggage trolley (coloured red), which are not present in the training set

are detected as a new activity in the test set, as it can be observed in the segmentation of

activities in the scene from Figure 4.16b. However, the individual pulling a suitcase to the

right of Figure 4.16b is detected as blue (normal walk left). Notably, other activity classes

are reasonably well separated considering the limited training data and complexity; for

example, pedestrians walking to the left without luggage group together to form one class

(visualised in blue), while individuals walking to the right form another class (visualised

in green). Furthermore, a single block forms another activity as seen in the right of the

image in Figure 4.16b. This single block would subsequently be removed when eliminating

very small regions corresponding to noisy optical flow or to movement corresponding to

movements which are not deemed as significant.

2https://www.gov.uk/guidance/imagery-library-for-intelligent-detection-systems
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(a) Localization ped1 (b) Detection ped1

Figure 4.12: ROC curves when varying the threshold Θs for local flow, global flow, single

and multi streaklines methods when applied to ped1 of the UCSD dataset.
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Figure 4.13: ROC curves when varying the threshold Θs for local flow, global flow, single

and multi streaklines methods when applied to ped2 of the UCSD dataset.

Figure 4.14: Frames from the UMN dataset, where anomalous behaviour has been identi-

fied.
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a) Training flow b) Training segmentation

Figure 4.15: Example of training data from the i-LIDS Gatwick dataset. Sequence from

the exit terminal shown.

a) Testing flow b) Testing segmentation

Figure 4.16: Example of testing data from the i-LIDS Gatwick dataset. Sequence from

the exit terminal shown.

Table 4.1: Detection results using different statistical measures on ped2 of the UCSD

dataset using single vector streaklines.

Statistical Measure Detection Rate (%)

Symmetric KL divergence 90.4

Jensen-Shannon divergence 81.1

Euclidean distance 56.3
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Table 4.2: Numerical anomaly results for the UCSD dataset.

Method
Ped 1 Ped 2

Detection Localisation Detection Localisation

(%) (%) (%) (%)

SF [66] 69.0 21.0 58.0 -

MPPCA [50] 60.0 18.0 70.0 -

MDT [58] 82.2 64.8 81.5 70.1

LE [105] 78.0 69.0 86.5 78.0

GMM-MRF [72] 85.1 - 95.1 -

Global Optical Flow 66.2 59.2 69.4 63.9

Local Optical Flow 64.7 62.4 72.3 70.2

Single Streaklines 77.9 62.2 90.4 70.3

Multi-vector Streaklines 76.6 72.5 81.0 78.3

Mutli-vector Streaklines with

polar coordinates and localisation
79.8 79.1 81.4 78.8

Table 4.3: Comparison in abnormal activity recognition results using the area under ROC

curve on the UMN dataset.

Method Scene 1 (%) Scene 2 (%) Scene 3 (%)

Cong et al. [24] 99.5 97.5 96.4

Shi et al. [99] 93.6 77.5 96.6

Thida et al. [105] 98.0 98.0 97.0

Single Streaklines 99.1 96.5 97.3

Multi-vector Streaklines 95.3 89.7 96.6
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4.8 Conclusions

In this chapter, we presented a new approach to observational abnormal human activ-

ity identification from real world video sequences. In this approach, both syntactical

and statistical modelling of short-to-medium level tracking is employed by using streak-

lines to represent the movement flows of individuals in the scene. Human movement was

segmented using the EM algorithm under the Gaussian Mixture Model assumptions. Seg-

mented moving regions were represented both in movement and location space by their

streakflow and location models. Two different approaches to streaklines are presented:

single-vector streaklines and multi-vector streaklines. In the single vector approach, PCA

is utilised to project the principal movement vector representing the movement over sev-

eral frames. In the multi-vector streakline approach, the magnitudes and directions of

the streakline are characterised by a single magnitude vector spanning multi frames and

multiple direction vectors. The magnitude and direction vectors are represented using

polar coordinates, where a weighting factor is introduced to balance the magnitude and

direction. Furthermore, a localisation methodology is introduced in order to account for

the perspective projection present in the scenes. In this approach, activities are only

compared with other activities within a given dynamic window, computed based on the

motion vectors and distance from the camera. A dictionary of activities is then generated

for the training data, recording statistics of both intensity and direction of movement as

well as the location coordinates of the moving region, characterizing the scene. During

the testing stage, the symmetric KL divergence is used to compare statistically the ob-

served movement with those recorded in the dictionary. While the single-vector streakline

approaches provided good results at detecting the new human activities, the multi-vector

streakline approaches performed better at spatially localizing such activities in the scene.

One issue with the current work is that complex activities in the scene are often

misunderstood or not captured at all. Furthermore, the interactions within pairs or groups

of people are not modelled and such a task is incredibly important for detecting abnormal

activities in complex scenes, where group activities are more prevalent than individual

atomic activities. Next, we propose to improve our methodology to detect complex group

activities in real-world environments.
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Chapter 5

Group Activity Recognition

5.1 Introduction

In this chapter we analyse the activity of groups of people and how individuals interact

with each other. Group activity recognition has attracted sufficient interest only recently,

despite being essential in defining the real intention and overall scene context of human

activities. The area of group activity recognition has a significant importance especially

for video surveillance among many other applications including semantic annotation of

videos and automatic video retrieval.

In comparison to human activity recognition, group activity recognition requires more

complex descriptions of the group as a whole in the context of the given scene. Some

methods assessing the activity of groups of people from video sequences have been re-

cently proposed, for example, Ni et al. [75] recognised group activities using localized

causalities based on manually initialized tracklets. Lin et al. [60] used a heat-map based

algorithm for modelling human trajectories when recognising group activities in videos.

Chang et al. [18] used a probabilistic approach to group human activity by modelling the

movement tracks between interacting individuals using a multi-camera system. Choi et

al. [23] proposed a framework for analysing collective group activities based on different

levels of semantic granularity. Zhang et al. [125] addressed the problem of group event

recognition by computing histograms of different features extracted from tracklets, rep-

resenting localized movement in the video. Similarly, Cheng et al. [20] modelled group

activity as a framework composed of multiple layers and Gaussian processes were used for

representing motion trajectories. These methods rely on either the training of a pedestrian

detector for each scene, or some manual initialization of tracklets. This is impractical in
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the real world, especially when pan-tilt-zoom (PTZ) cameras are used where the camera

and scene parameters may change. For example, panning and zooming would change

the perspective projection and the scene visible through the camera. Another issue with

the proposed methods is that each pedestrian in the scene is often treated as a single

entity represented by a tracklet, as opposed to considering that a single pedestrian may

be composed of several moving atomic events, as for example would be the case when an

individual is performing a more complex activity such as fighting. While some methods

such as in [20] aim to address this issue by using appearance feature. Such appearance

features are often too specific to the individuals and often over-fit the model to the in-

dividuals specific attributes such as body shape and clothing rather than modelling the

actual human activity recorded in the video sequence.

This chapter proposes an automatic method for group activity recognition by mod-

elling the inter-dependent relationship between features over time. Unlike in the other

methods described above, the proposed method does not rely on any manual initialisation

of tracklets and instead makes use of automatically extracted streakflows to represent the

movement of regions over several frames. The interdependency between moving regions

is represented by evaluating the relative movement and location of each moving region

with respect to all the others in the scene at a particular time instance. The dynamic

changes of the inter-dependency of the features are also modelled by considering the dif-

ferences between features over certain intervals of time. The change in interdependency

between moving regions is modelled over time by using Kernel Density Estimation (KDE)

to model the change of movement and location in time, for various participants to the

movement identified in the video sequence. The model also keeps track of the locations

of stationary pedestrians by marking the locations where they stop moving in the scene.

The proposed method also introduces a scaling procedure to compensate for the effect of

perspective projection in video sequences which is evident in the case of video recordings

by cameras of wide angle located at low heights, which is a very common occurrence in

video surveillance data.

The remainder of this chapter is organised as follows: Section 5.2 describes the mod-

elling of streakflows and location features used for representing moving regions. Section 5.3

describes the modelling of the inter-dependencies between the motion and location fea-

tures. Section 5.4 describes how the inter-dependencies between features are represented

over time using KDE and describes the classification of group activities. Section 5.5
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presents the comparative results for the proposed method and finally Section 5.6 draws

the conclusions of this research work.

5.2 Group Activity Modelling

The proposed methodology has several stages which are shown in the block diagram in Fig-

ure 5.1. To begin, the streakflows are extracted to represent medium-term flows of move-

ment. Following this, the streakflow is segmented using a scaling factor derived from the

initial segmentation estimation. After identifying and modelling the movement of people

in the scene, a mechanism detects those that stop moving. Each moving region identified

in scene is represented by their streakflows and location, modelled using Gaussian Mix-

ture Models (GMMs). The inter-dependent relationships between their movements and

locations, respectively, are modelled both at a given location point and by their dynamics

(over a certain time period). The changes in inter-relationship differences over time are

modelled using Kernel Density Estimation (KDE) and finally the activity sequences are

classified into group activity classes using Support Vector Machines (SVM). Each stage of

the proposed methodology is discussed in more detail in the forthcoming sections.

Streaklines Segmentation

Scaling 
according to 
perspective 
projection

Kernel 
Density 

Estimation 
(KDE)

Classification 
(SVM)

Detecting 
stationary 

pedestrians Movement

Modelling inter-dependant 
relationships of moving 

regions:

Location

Input 
Video

Figure 5.1: Overview of the proposed group activity recognition approach

The first processing stage consists of movement estimation via streakflow. As previ-

ously discussed extensively in Chapter 4, streakflows correspond to tracking fluid particles

that have passed through a particular location in the past and their modelling is based

on the Lagrangian framework for fluid dynamics [65]. The streakflows represent the fluid

like flow in a scene, enabling the filling of spatial gaps. Similarly to the approach applied

to crowded scenes in Chapter 4, small gaps are a common occurrence in group scenes,

particularly when pedestrians are passing one another and are briefly occluded. The
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streakflows are initialised as described in Chapter 4, by using a grid of particles which

are then moved along using the dense optical flow. The streakflow is then computed as

described in Chapter 4, assuming pixel similarity in eight-connectivity neighbourhoods.

One difference between the streakflow approach in Chapter 4 and the approach to group

activity is that we fit a first degree polynomial to the streakline in order to obtain a

smoothed representation of the streakline, where a single vector now represents the flow

over several frames.

One further issue with the earlier streaklines approach from Chapter 4 was that the

motion consistency over several frames was not considered. This was not an issue with

a single camera fixed on a particular scene, but when such methods are applied to real

world environment containing either hand-held or PTZ cameras, such approaches become

prone to noise from changes in camera parameters and camera movement.

In this approach, the consistency of the streaklines over several frames is considered

in order to obtain a more robust estimation of the movement of individuals in the scene.

Furthermore, poor estimations of movement will propagate errors through to the stationary

pedestrian detector stage, potentially causing false positives and may degrade the models

of the group activities. The motion consistency is checked by ensuring that the motion

is present in the scene across several sets of frames and not just across a single set of

frames. More specifically, motion must be present in the same region at least a certain

percentage of frames over a particular time, otherwise the motion is considered noise

and is subsequently removed. The percentage of frames defining the continuation of the

movement is defined empirically, as described in the experimental results section, and is

dependant on the amount of variation expected in human movement and the type of scene

under observation.

Similarly to Chapter 4, we make the assumption that each compact region of streak-

flows may contain several individual movements, which can be represented by clusters. The

Expectation-Maximization (EM) algorithm, under the Gaussian Mixture Model (GMM)

modelling assumption is used for segmenting and modelling each inter-connected region

as described in detail in Chapter 4. The space of clustering is defined jointly by both

movement and localisation, as given by the streakflows and their locations in the frame,

respectively.

One common issue with video sequences acquired with surveillance cameras is that the

movement flow may be affected by perspective distortion of the scene. The perspective
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distortion of the video sequences is often evident in the case of video sequences from

video surveillance cameras where wide-angle lens cameras are used, often located at low

to medium heights. Although the effects of perspective distortion are usually consistent

over the entire video feeds due to the prevalent use of fixed cameras, modern surveillance

systems often make use of pantiltzoom cameras (PTZ cameras) which have the ability

to pan, tilt and zoom over a wide area leading to changes to the perspective projection

modelling parameters in time. A dynamic perspective projection model system would be

required in the case of PZT cameras. As is the case with most group activity modelling

approaches from the literature, they require the manual annotation of the movement in the

scene. To address this, our approach to perspective projection correction is much simpler

using a two-step approach to movement segmentation using a dynamic scaling factor.

In the first step, the segmentation is performed in order to estimate the height of the

moving objects, which is used to derive a scaling factor. More specifically, the segmentation

is performed as described earlier in Chapter 4. The height of each moving region in a

particular interconnected area of the scene is recorded. A scaling factor is computed for

each moving region i as follows:

si = 1
2hm

(hi +

∑n
j=1 hj

n
) (5.1)

where si is the scaling factor, for the moving region i. hi is the height identified for

each moving region in the first step, j = 1, . . . , n are the segmented moving regions in a

given inter-connected region, hm is the predetermined overall mean height of all moving

regions. si is therefore considered to be the scaling factor between the average moving

region and the regions in the particular inter-connected area of the scene. The other

moving regions j = 1, . . . , n are used in the equation to add a robustness to the scaling

factor by considering that all moving persons in a particular interconnected regions are of

a reasonably similar height.

All movement streakflow vectors, defined by Mi for the region i are then scaled by the

motion scaling factor si:

M
′
i = siMi. (5.2)

This is repeated for all compact moving areas which are identified in the scene. The

flow vectors across all moving regions in the scene should now be scaled appropriately,

and the segmentation is then reapplied using the newly scaled motion flows. Each moving

region is finally represented by a GMM defined by its characteristic parameters defining
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its movement and location in the scene as described in Chapter 4.

A further issue addressed in this study is the modelling of individuals who become

stationary after they have moved through the scene. Unlike in manual tracklet models

where stationary pedestrians would be annotated, under the proposed optical flow detec-

tion and motion model persons would not be accounted for in the scene, individually. To

overcome this situation, we propose to identify when and where people stop moving in the

scene without the use of manual pedestrian labelling or manually initialised tracklets. The

proposed model is based on the principle that if a pedestrian who is moving in the scene

stops, then they are deemed stationary and their motion and location parameters should

be recorded until they begin moving again. More specifically, if no movement is present

in a particular region where motion was previously detected during p consecutive frames,

this indicates a person or a group of persons that are stationary at that moment. Such

stationary regions are characterised by their location and by zero motion. When move-

ment occurs again within a bounding box of the stopped pedestrian, the region is deemed

to be no longer stationary and the new emerging moving region in the area is activated in

the existing group activity model. Any movements of a person present near the edge of

the scene that subsequently moves out of the scene is identified and the respective moving

region is no longer considered. The robustness of the flow over several sets of frames as

described earlier in this section largely eliminates the potential for false positives caused

by any erroneous movement vectors in the scene such as from camera movement.

5.3 Modelling Interdependent Relationships of Moving Re-

gions

The key characteristics of group activities are often present in the interdependent rela-

tionship between the pedestrians/moving objects. In this work, the interdependent rela-

tionships are modelled by pairing each two moving regions identified in the scene and by

evaluating the features of their interdependencies. In this section, four distinct features

are presented for representing human group interactions: streakflow differences, streakflow

dynamics, location differences and location dynamics.

The interdependent relationships are calculated as relative differences in the move-

ment and location spaces. For modelling the movement we consider, as in Chapter 4,

streakflows. This aims to model the inter-dependant relationship of the movement for
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a group of people at a particular time instance. For example, if individuals in a group

exhibit similar streakflows in an activity such as running in a group, their probability

density functions characterising their movement will be similar, and consequently differ-

ences in their streakflow estimates would be close to zero. If individuals in a group exhibit

very different streakflows, for example as in the “Ignoring activity”, resulting in large dif-

ferences between the movement estimates of their component individual moving regions.

Kulback-Leibler (KL) is used to calculate statistical interdependencies between pairs of

moving regions found in the scene, as discussed and described in the previous chapter.

KL divergence is a traditional statistical measure of the difference between two probabil-

ity distributions. The generalised version of the KL divergence between streakflow model

AI(t) and streakflow model AJ(t), where I(t) and J(t) are two moving regions at time t is

given by:

DKL(AI(t)||AJ(t)) =

∫ ∞
−∞

p(AI(t)|x) ln

(
p(AI(t)|x)

p(AJ(t)|x)

)
dx (5.3)

by assuming Gaussian mixture models (GMM) for the features characterising the mov-

ing regions from the scene, the KL divergence can be computed in closed form between

streakflow model AI(t) with mean vector µI(t) and diagonal covariance matrix ΣI(t) and

streakflow modelAJ(t) with mean vector µJ(t) and diagonal covariance matrix ΣJ(t), where

I(t) and J(t) are the two moving regions at time t by [30]:

DKL(AI(t)||AJ(t)) = 0.5
[
log(det(ΣJ(t))/ det(ΣI(t))) + tr(Σ−1

J(t)ΣI(t))

+(µJ(t) − µI(t))′Σ−1
J(t)(µJ(t) − µI(t))− d

] (5.4)

where d is the number of dimensions, and in the case of streakflow models or location

models, d = 2. Equation 5.4 therefore provides a measure of the difference between the

two probability distributions for streakflow models AI(t) and AJ(t).

One downside of using the standard KL divergence from Equation 5.4 is that it is not

symmetric. A symmetrised version of the KL divergence can be computed by:

DSKL(AI(t)||AJ(t)) =
1

2

[
DKL(AI(t))||AJ(t)) +DKL(AJ(t)||AI(t))

]
(5.5)

where DKL(AI(t)||AJ(t)) is the KL divergence between the streakflow distribution of mov-

ing regions I(t) and J(t). Finally, the scaled differences between two streakflow models
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AI(t) and AJ(t) for moving regions I(t) and J(t) at time t can be computed by:

M(I(t), J(t)) = e−
DSKL(AI(t)||AJ(t))

σm (5.6)

where σm is a scaling factor for movement differences and DSKL(AI(t)||AJ(t)) is the sym-

metrised KL divergence between the streakline distribution of moving regions I(t) and

J(t) at time t.

M(I(t), J(t)) results in a difference value scaled within the range [0, 1] which models

the difference between the two streakflow models, each characterising the movement of

one region in the scene, associated to a moving person. For example, individuals moving

in completely different directions will have M(I(t), J(t)) = 0 whilst individuals exhibiting

similar movements (characterised by similar direction and speed) will have M(I(t), J(t)) =

1. The differences are computed by considering all pairs of moving regions in the scene

at a particular time t by using Equation (5.6). The differences are then concatenated to

form a vector representing the inter-dependant group relationship of the streakflows at a

particular time t.

Whilst the streakflow differences are a good representation of movement interactions

at a particular time instance, they fail to account for differences that may occur over the

medium term. For example, in a gathering group activity, movement over the medium

term may appear quite similar. On the other hand, movement in a fighting activity

may vary considerably in the medium term. To address this, we also model the dynamic

changes of moving regions over consecutive time intervals. To model the dynamic changes,

we compute the differences between moving regions over sets of frames by computing the

differences between all streakflow models at time t and all streakflow models at time t+n

in the given scene. The dynamic differences between two streakflow models AI(t) and

AJ(t+n) for moving regions I(t) and J(t + n) at time t and t + n respectively, can be

computed by:

M(I(t), J(t+ n)) = e−
DSKL(AI(t)||AJ(t+n))

σm (5.7)

This is similar to equation (5.6), except that the interdependencies in movement are

now calculated across the time, measuring the dynamics of movement in the scene. A vec-

tor of streakflow differences representing all the inter-dependant relationships of streakflow

models between the time instances t and t+ n is then formed.

The distributions of relative locations for the people from the scene, both moving or
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stationary, is modelled similarly by considering differences between the GMMs representing

the spatial-location of the moving regions. When considering modelling the location of

moving regions, the mean will approximate the centre of the region, whilst the variance will

provide some characteristics of the size and shape of the region. For example, groups of

persons who are close together will exhibit only small differences in location GMMs, while

individuals far apart will exhibit large differences in location GMMs. Furthermore, large

groups forming a single interconnected region will have different GMMs characteristics to

smaller groups due to the difference in the variance in their GMM models. Given two

location GMMs CI(t) and CJ(t) for moving regions I(t) and J(t) at time t, the differences

between their locations can be computed by:

D(I(t), J(t)) = e
−
DSKL(CI(t)||CJ(t))

σl (5.8)

where σl represents the characteristic scale parameter for locations. D(I(t), J(t)) provides

a value in the range [0, 1] which is the difference between the two location models. For

example, individuals characterised by moving regions I(t) and J(t) at time t, located

far apart, will have D(I(t), J(t)) = 0 whilst individuals very close together will have

D(I(t), J(t)) = 1. A vector representing all the inter-relationships of locations for the

group activity at time t is then formed accordingly.

Similarly to the streakflow model, the dynamics of changes in movements’ locations

over time can also be computed. Unlike in the previously proposed static model, now the

dynamics of relative movement and interaction within the group will be modelled. Changes

in location over the medium term may be significant. For example, when individuals are

performing a gathering group activity their locations tend to become closer together over

time, but such a group relationship may not be evident from the differences modelled at

single time instances.

Given two location GMMs CI(t) and CJ(t+n) for moving regions I(t) and J(t+ n) at

time t and t+n, respectively, the differences between their locations can be computed by:

D(I(t), J(t+ n)) = e
−
DSKL(CI(t)||CJ(t+n))

σl (5.9)

The dynamic changes of differences are computed by the differences between each

location of a centre of a moving region found at time t and any of those found at time t+n.

using equation (5.9). A vector of location differences, representing all the inter-dependant

relationships of location points between time t and t + n, is obtained. A visualisation of
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both the base model and the dynamics model for both motion and location is shown in

Figure 5.2.

Activity at time t

Region I
Region J

Activity at time t

Region I
Region J

Activity at time t+n

Region I

Region J

a) Differences model b) Dynamic model

Figure 5.2: Modelling the inter-dependencies of moving regions in both space and time.

One further issue that arises when computing such differences is that the rate of move-

ment change and rate of location change are not clearly characterised. For example, when

using differences alone, the differences between the movements of individual people, both

in time and space, taking part in the activities of running or walking may at first appear

quite similar. To overcome this, we consider the background as an additional region for

both the streakflow model and the location model. In the motion case, the background

object is defined as the GMM model comprising of all the motion in the scene that does

not belong to a moving region (often zero motion if the camera is stationary). In the

latter case, the location object is defined as the GMM representing the centre of the scene.

By adding the background model, the change in both motion and location relative to the

background is characterised, representing the absolute movement of people in the scene.

In the case of any camera movement, such a model would account for this. Given a streak-

flow background model AB(t), at time t the difference between the streakflow model AI(t),

for moving region I(t), at time t, and the background B(t) is computed as:

M(I(t), B(t)) = e−
DSKL(AI(t)||AB(t))

σm (5.10)

Similarly, given the centre point CB(t) defined as the location of background model B(t)

(centre of the scene) at time t and the location model CI(t) for moving region I(t) at time

t, the difference is computed as:

D(I(t), B(t)) = e
−
DSKL(CI(t)||CB(t))

σl (5.11)

Such differences are then computed between every region in the scene and the background

model B(t). Finally, the vector of differences in both cases are concatenated with the
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vector representing pairwise motion and location differences between the moving regions

in the scene.

5.4 Model Representation via Kernel Density Estimation

To model the change in feature relationships over the whole sequence, we propose to use bi-

variate Kernel Density Estimation (KDE), computed over the difference over time. KDE

will provide smoothing of the dynamics of feature changes over time increasing the robust-

ness of the group activity model. Firstly, we form two column matrices where the motion

or location inter-dependences for each pair of moving regions are represented along the first

column and their corresponding time instances are located along the second column. This

matrix representation is used for each feature (streakflow, streakflow dynamics, locations

and location dynamics), separately. Therefore each video sequence will be represented by

four two column feature matrices, where the feature is placed along one column and the

time is along the second column.

In this work, we propose to use the bi-variate KDE method proposed in [12] which

is based on using linear diffusion processes. In [12] they proposed an estimator which

built on existing ideas for adaptive smoothing by incorporating information from a pilot

density estimate. The KDE methodology from [12] assumes the kernel to be Gaussian

and uses an automatic method for selecting the appropriate bandwidth for the given data.

The use of KDE over traditional histograms has several key advantages, most notably

adaptive smoothing of the data which not only helps with the smoothing of noise but

provides smooth transitions between the models of the group activity features in time.

Secondly, the automatic bandwidth selection method allows for different granularity of

different features to be represented depending on the feature data. For example, some

activities may exhibit very small changes in feature differences over time whilst some may

have only large, well pronounced changes.

Using the bi-variate kernel density estimator, the data is sampled over a fixed grid size

of K ×K, given the normalized matrix data discussed above. A visual representation of

the matrix and KDE is shown in Figure 5.3. By using a fixed grid size, video sequences

of different lengths will be normalized in length. This helps to normalise the difference

in speeds at which the activities are performed. For example, a group gathering slowly

would be normalized and appear similar to a group gathering at a much faster pace. The

grid size is a important parameter in the density estimation as too small a grid would
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result in over-smoothed feature data and consequently important characteristics in the

relationship features may be lost. If the grid size is too large, then the data will appear

too sparse and the KDE would not model well the underlying pattern of the data. The

kernel for density estimation is assumed to be Gaussian. The bandwidth parameters of

the bi-variate Gaussian kernel are used to help control the smoothing effects of the kernel

density estimator.
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matrix

Difference
 value

Time
point

KDE

Figure 5.3: Example of the matrix representation and application of KDE

The densities computed over the fixed grid are used as the defining feature vector

representation for the group activity. Such densities are computed independently for each

feature, representing the relationships of the moving regions in the movement, movement

dynamics, location and location dynamics, respectively. Finally, the feature vectors rep-

resenting each activities are used to train a Support Vector Machine (SVM).

5.5 Experimental Results

The proposed approach has been evaluated on two state of the art group activity datasets

- the NUS-HGA dataset [75] and the new Collective dataset [22]. In both datasets, only

a single group activity is performed at any one time and sometimes, certain persons, who

are not part of the group activity are crossing the scene. In [75] the activities are pre-

segmented into separate video sequences whilst [22] contains video sequences where the

activities flow from one activity to the next. Examples of activities from both datasets

are shown in Figure 5.4. Both datasets contain perspective distortion to some degree, but

the perspective distortion of the new Collective dataset shown in Figure 5.4 c) and d) is
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significantly worse than of those in the NUS-HGA dataset in Figure 5.4 a) and b) due to the

low camera angle. Furthermore, note that, due to the proximity of the recording camera

and its settings, the pedestrians from the scene in the new Collective dataset generally

appear much larger than those in the NUS-HGA dataset. The video sequences in the new

Collective dataset are shot using a hand-held camera, therefore camera movement (and

therefore motion noise) may be significant.

a) Fighting (NUS) b) Gather (NUS) c) Queuing (Col) d) Chasing (Col)

Figure 5.4: Example activities from the NUS-HGA [75] and new Collective datasets [22]

For all experiments in this chapter we follow the same recognition outline. To begin,

the streakflows are extracted for each set of 10 frames and the moving regions are seg-

mented based on the streakflows in each inter-connected region. The streakflow models

and their respective location models are extracted for the moving regions identified in each

set of frames. The features of the moving regions are then modelled by the inter-dependant

differences between both the streakflow and location models between all moving regions

across a set of frames. Similarly, the inter-dependant differences between both the streak-

flow and location models between two consecutive sets of frames (dynamic model) are

also extracted. This is repeated for all sets of frames in the video sequences. Finally, the

vector of (motion or location) differences for each video sequence are used to form a two

column matrix with differences along the first column and the time instance along the

second column. Bi-variate KDE is applied on a fixed grid size using the data from each

motion/location feature matrix. The motion and location features are therefore repre-

sented by their probability density estimation (pdf) with difference in features along one

axis and time along the other obtained from applying the KDE. Finally, the pdf’s are

used as the final features to feed a classifier and make recognition decisions via a Support

Vector Machine (SVM) (with RBF kernel).
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Experimental results on NUS-HGA dataset

The NUS-HGA dataset [75] consists of six different group activities collected in five differ-

ent sessions, each session with different actors, different number of actors or at a different

time of day. The resolution of the video is 720× 576 at 25fps, and each activity sequence

is approximately 4 to 10 seconds long. In total there are 476 video sequences across the

6 activity sequences. As shown in Figure 5.4 a) and b), the scene is outdoors. The scene

varies somewhat by camera angle and lighting, and the tree visible in the centre of the

scene often casts a shadow over the scene as observed in Figure 5.4 a).

To begin, streaklines are extracted as described in Section 5.2 for blocks of size 14 ×

14 over 10 consecutive frames. The extraction of each set of streaklines are overlapped

temporally by 3 frames, for example, over frames 1-10, then 4-14, etc. The motion filter

described in Section 5.2 is placed over each 5 sets of frames, where motion must be present

in at least 3 out of 5 sets of consecutive frames. Since the streaklines are overlapped

temporally by 3 frames, the 5 sets of frames covers 22 frames whilst the the 3 sets of

frames covers 18 consecutive frames. This process ensure motion consistency over several

frames and aids in the removal of camera movement noise and in the removal of frivolous

human movements such as minor hand movements. The motion histograms described in

Section 5.2 are computed for each moving region and any entry in the histogram with a

height below 15% of the maximum bar height is considered to be noise and is subsequently

removed. This procedure ensures confidence by robustly estimating the human activity

movement, based on significant movement, while removing the erroneously defined moving

regions from further processing. The modes of the histograms are used as input to the EM

algorithm and the segmentation is performed as described in Section 5.2. Each moving

region is then represented by its streakflow mixture model and its location mixture model

as described in Section 5.2.

Figure 5.5 displays an example of the streakflows, motion histograms and an example

of the moving region segmentation for a fight activity from the NUS-HGA dataset. In this

particular activity (fighting), movement is very intense and quite chaotic. In Figure 5.5

b) the solid green bars correspond to peaks of the histogram, while the solid red bars are

entries which are removed due to their insignificance. In region 1 of Figure 5.5 c) - two to

three different movements are present which are reflected in the histograms in Figure 5.5

b). Region 2 from Figure 5.5 contains a single dominant movement in the region although

2 peaks are detected in the histograms in Figure 5.5 b). This is due to some erroneous
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a) Streakflows b) Histograms of flow

c) Inter-connected regions d) Moving regions after segmentation

Figure 5.5: Examples of streakflows, extracted from video sequences, showing group ac-

tivities in a scene from NUS-HGA dataset. Note in b) n refers to the number of histogram

peaks.

vectors being present. Despite this, the region is not included in the final segmentation

in Figure 5.5 d) due to its insignificance. Region 3 from Figure 5.5 c) contains a single

dominant movement as it can be observed that it is indicated by the histogram from

Figure 5.5 b). This is reflected in Figure 5.5 d) where only a single moving region is

segmented corresponding to region 3 from Figure 5.5 b). The small regions obtained in

region 1 of Figure 5.5 d) help characterise the smaller atomic events performed in the

group. Such movements are often lost when long term tracklets are used. Overall, the

moving regions are well segmented and represent the movements of the humans very well.

Following the initial movement segmentation, the motion in each moving region is

scaled according to the height of the region using equation (5.2). The segmentation is

then performed for the second time using the scaled motion. Examples of the motion and

segmentation after scaling is shown in Figure 5.6 for the run activity. Figure 5.6 shows an

example of the start and end of a run activity sequence from the NUS-HGA dataset. In
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Figure 5.6 a) and Figure 5.6 b) the intensity of the motion is consistent despite the evident

effects of the perspective distortion, present in the representation of certain persons in the

video sequence. The segmentation shown in Figure 5.6 c) and Figure 5.6 d) is consistent

with each other and the two groups of individuals running are well segmented across both

examples.

a) Streakflows at the start of the activity b) Streakflows at the end of the activity

c) Segmentation at the start of the activity d) Segmentation at the end of the activity

Figure 5.6: Example of streakflows and segmentation at the start and end of a running

activity sequence from the NUS-HGA dataset.

Following the second movement segmentation step, the stationary pedestrian detector

is applied as described in Section 5.2 where the number of prior frames p is set to 25. We

define the boundary parameter from Section 5.2 as 10% of the region size. Two examples

of detecting stationary pedestrians are shown in Figure 5.7 for the talking and gathering

activities. In Figure 5.7 a) and c) the pedestrians are still moving and therefore moving

regions are detected. In Figure 5.7 b) and d) the individuals have stopped but their regions

are still detected by the stationary pedestrian detector despite the fact that actually no

motion is present in the scene at that instance.

The next stage involves computing the streakflow differences, streakflow dynamics,

location differences and location dynamics as described in Section 5.3. The size of the

dynamic window for both streakflow dynamics and location dynamics is set to n = 2 sets
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a) Talk activity (moving) b) Talk activity (stopped)

c) Gather activity (moving) d) Gathering activity (stopped)

Figure 5.7: Example of the stopped pedestrian detection when applied to gathering and

talking activities from the NUS-HGA dataset. a) and c) show moving regions before

stopping and b) and d) show the detected regions when the pedestrians are stationary.
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a) Recognition accuracy as σm is varied b) Recognition accuracy as σl is varied

Figure 5.8: Recognition accuracy as the scaling parameters are varied for both streakflow

and location features.
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Figure 5.9: Difference in recognition accuracy when the background model is included.

of 10 frames each for the initial experiments. To begin, the scaling parameter σm is varied

for the streakflow differences and streakflow dynamics. Figure 5.8 a) shows the difference

in recognition accuracy as σm is varied for both the motion differences and the motion

dynamics. From Figure 5.8 a) it is clear that the best recognition result is obtained when

σm = 15 and σm = 17.5 for the streakflow differences and streakflow dynamics respectively.

Similarly, the the scaling parameter σl is varied for the location differences and location

dynamics. Figure 5.8 b) shows the difference in recognition accuracy as σl is varied for

both the location differences and the location dynamics. From Figure 5.8 b) it is clear

that the best recognition result is obtained when σl = 550 and σl = 650 for the location

differences and location dynamics respectively. Notably in Figure 5.8, the recognition

accuracy does not change significantly while the scaling parameters are varied. Therefore

the selected parameters are σm = 15 and σl = 550 for streakflow differences and location

differences, and σm = 17.5 and σl = 650 when streakflow dynamics and location dynamics

are used.

In the following we add the background as one of moving regions as described in

Section 5.3. Actually, in the video sequences analysed in here, the background represents

the dominant region, characterised by zero motion. The recognition accuracy with and

without the background model are shown in Figure 5.9. M dynam and M diff refer to the

motion dynamics and motion differences, respectively; while L dynam and L diff refer to

the location dynamics and location differences. A clear improvement in recognition results

is shown across all features when the background model is included. This demonstrates

the effectiveness of adding the background model to the differences and dynamics models.

The size of the dynamic window, which was set to n = 2 sets of frames in the previous

118



5.5 Experimental Results

5 10 15
90

92

94

96

98

100

Dynamic window size (num frame sets)

R
e

c
o

g
n

it
io

n
 a

c
c
u

ra
c
y
 (

%
)

Figure 5.10: Recognition result as the size of the dynamic window n is varied.

experiments, is now varied between a single set of frames and n = 15 sets of 10 frames

each. Figure 5.10 shows the recognition accuracy as n is varied for the combination of

dynamic models (streakflow and location). The best recognition result is obtained when

n = 13. Beyond n = 13, the result deteriorates as seen in Figure 5.10. It is suggested that

when n = 13 over n� 13 the result improves due to there being no significant change in

the motion/location features over only a few frames. As n increases, the motion/location

features become sufficiently different from the starting frames features such that these

better represent the dynamic changes in motion and location space. Therefore, we set

n = 13 is used for the following.

Following the computation of the streakflow differences, streakflow dynamics, location

differences and location dynamics, the data is represented over time using Kernel Density

Estimation (KDE) as described in Section 5.4. The data is represented by a 2 column

matrix over time as described in Section 5.4, where the feature is placed along one column

and the time is along the second column. KDE is applied over a fixed grid size using

the 2-column feature matrices as input data. The grid size parameter K is varied and

compared to histograms of the same size. The results of K being varied and its histogram

comparison is shown in Figure 5.11. Notably, K = 16 provides the best recognition

results. In Figure 5.11, the KDE results shows a notable improvement over the equivalent

histograms, demonstrating the effectiveness of KDE over histograms. In our experimental

work, there was no improvement in recognition results by using grid sizes larger than

K = 16. Furthermore, the computational complexity increases significantly when grid

sizes larger than K = 16 are used. Therefore, in our experiments, K = 16 and the KDE

approach is applied on the 2-column feature matrices as described above.

Examples of the density estimations and histograms for the motion differences are
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Figure 5.11: Recognition results as K is varied when using KDE and histograms.
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Figure 5.12: KDE and histograms representing the dynamics of the statistics of motion

differences in time.
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Figure 5.13: KDE and histograms for the dynamics of the statistics of relative positions

of moving regions with respect to each other.
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shown in Figure 5.12. The KDE plots show a clear smoothing effect in comparison to the

histograms. For the run and walk activities in Figure 5.12, the motion differences appear

quite similar, with motion differences close to 1 (indicating very similar motion difference

patterns in the case of walking and running activities). The ignoring activity shown in

Figure 5.12, shows a balance between motion that is substantially different, indicated by

a value of 0 in the movement difference function, and motion that is similar, indicated by

a value of 1 in the difference function. This is expected as the ignoring activity consists of

individuals moving in the same direction and individuals moving in very different directions

(ignoring each other). Similarly, the fight activity contains a balance between motion that

is substantially different and motion that is similar. Notably, the density of the movement

in the fighting activity is stronger than those in the ignoring activity. The densities

from the gathering activity also appear quite similar to those of the fighting and ignoring

activities, this is expected as some individuals will be walking in a similar direction to

gather whilst some will be walking in a different direction. Finally, the talk activity also

exhibits similar motion densities, this is largely due to the arm swinging and stepping

back and forth which is present in the talking video sequences.

Examples of the density estimations and histograms for the location differences are

shown in Figure 5.13. For the fighting activity in Figure 5.13 the location differences

imply that the moving regions are all in close proximity. Similarly for the talking activity,

the location differences in Figure 5.13 imply that the moving regions are standing very

close together. The location differences for the gathering activity in Figure 5.13 shows

a smooth transition from locations far apart (before gathering) at the start to locations

close together at the end (gathered together). In the histogram representation of the

gathering activity, the transition is still present, although it does not have the smooth

transition present in the KDE plot. The location differences for the ignoring activity is

well spread between large and small differences, this is because individuals are well spread

and constantly moving around. The location differences for the walk and run activity are

similar, with the locations appearing similar, this is expected as the walk and run activities

contain groups of individuals running together in compact groups.

Notably, the density estimations in Figure 5.12 and Figure 5.13 for the corresponding

activities are complementary. For example, while the fight, ignore and gather activities

appear quite similar from motion differences in Figure 5.12, their corresponding location

differences in Figure 5.12 are different. Such complementary features are extremely useful
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when the features are combined to build a more discriminative model.

For classification purposes, the density estimations for the different features are clas-

sified independently, and then combined to form an discriminant model as the motion

and location features are often complimentary as previously observed in Figure 5.12 and

Figure 5.13. For classification purposes, SVM are used with RBF kernel with parameters

C = 2.8284 and γ = 0.0019531. For all experiments, we follow the evaluation protocol

described in [75], where the NUS-HGA dataset is split into 5-fold training and testing and

the performance is evaluated by average classification accuracy. Firstly, the four features

(motion differences, motion dynamics, location differences and location dynamics) are used

independently. Recognition results of the activities are shown through confusion matrices

shown in Figure 5.14. The results of the dynamic features are notably better than the

differences features. The confusion matrices show that the motion features poorly rep-

resent activities that are well represented by the location features and vice versa. This

again shows the complimentary nature of the motion and location features. Notably, the

recognition result for the gathering activity is improved when the dynamic motion fea-

tures are sued over the motion differences. Similarly, the results of the talking activity are

improved when the dynamic location features are used over the location differences. The

motion and location differences are combined, and the results are shown in Figure 5.15 a).

Similarly, the motion and location dynamics are combined and the results are shown in

Figure 5.15 b). In both cases, the results are notably improved by combining the motion

and location features. Finally, the combination of all four features (motion differences,

motion dynamics, location differences and location dynamics) are shown in Figure 5.16.

In this case, there is a notable improved over the results in Figure 5.15 and an even greater

improvement when compared to the results of the individual features in Figure 5.14.

Comparisons of the results when compared to the state of the art are shown in Ta-

ble 5.1. The location features provide a better recognition result than the motion features

while the difference between the differences model for motion and location and the dynam-

ics of motion and locations are quite significant. The combination of all features provides

the best overall result (98%). Note that the group interaction zone method [21] does not

evaluate the method using the 5-fold training and testing as suggested in [75], therefore

slightly different results are expected from their method. In comparison to state of the

art, we achieve a clear improvement in results (+2%) despite using an automated method

unlike the other methods which all require manual annotation of tracklets or some form
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Figure 5.14: Confusion matrices showing the recognition results of the four features on

the NUS-HGA dataset.
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Figure 5.15: Confusion matrices showing the recognition results when the motion and

location features are combined when applied to the NUS-HGA dataset.
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Figure 5.16: Confusion matrices showing the recognition results when the combination of

all four features are used - 98%

Table 5.1: Recognition results on the NUS-HGA dataset

Method Result (%)

Localized Causalities [75] 74.2%

Group interaction zone [21] 96.0%

Multiple-layered model [20] 96.2%

Motion differences 86.2%

Location differences 87.1%

Motion dynamics 91.6%

Location dynamics 92.6%

Motion and location differences 94.5%

Motion and location dynamics 97.1%

Combined differences and dynamics 98.0%

of pedestrian detection training.

New Collective dataset

The new Collective dataset [22] consists of 32 video sequences with 6 collective activities:

gathering, talking, dismissal, walking together, chasing and queueing. Each video sequence

contains multiple instances of activities performed in an unspecified order. The video

sequences are recorded using hand-held camera kept at low height, relative to the scene,

when recording. Consequently, the resulting video recording is distorted by the perspective

projection effects besides the camera noise.
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(a) Streakflow with camera noise (b) Streakflow with motion filter applied

Figure 5.17: Example of the application of the motion filter on the new Collective dataset

To begin, streaklines are extracted for blocks of size 20× 20 pixels over 10 consecutive

frames and the streaklines are overlapped temporarily by 3 frames. The motion filter

described in Section 5.2 is placed over each 3 set of 10 frames, where motion must be

present all three sets of frames. An example of the application of the motion filter is

shown in Figure 5.17. The motion noise in Figure 5.17 a) is caused by camera shaking while

being manipulated by the person taking the recording. In Figure 5.17 b) it can be observed

that noise was completely removed by our filter. The two-step movement segmentation

is applied as described in Section 5.2. Figure 5.18 shows examples of the streakflows and

movement segmentation for the chasing and gather activities. The streakflows capture the

human movement well without any erroneous motion from the camera movement. In both

cases, the moving regions are well segmented, particularly in the chasing example where

the chaser and chasee are segmented separately despite forming one connected region

moving in the same direction.

The stationary pedestrian detector is applied as described in Section 5.2 where the

number of prior frames, used for defining the movement fluidity following the motion

detection, p, is set at 25. We define the boundary parameter from Section 5.2 as 15% of

the region size. Two examples of transitioning stationary pedestrians through different

activities are shown in Figure 5.19. In Figure 5.19 a) the pedestrians are moving together

for the gathering activity, while in Figure 5.19 b) the individuals have stopped. Note that

in Figure 5.19 b) the individuals are still detected by the stationary pedestrian detector.

Finally, in Figure 5.19 c) the individuals are moving again (performing the dispersing

activity) and the stationary regions are no longer recorded while the new moving regions

are detected.
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The next stage involves computing streakflow differences, streakflow dynamics, location

differences and location dynamics as described in Section 5.3. The scaling parameters σm

and σlare varied for both motion and location features respectively. Similarly to the NUS-

HGA dataset, the best recognition results are obtained when σm = 15 and σl = 450 for

both motion and location features respectively. The background model for both streakflows

and locations are added to the features as previously described in Section 5.3. The size

of the dynamic window n is set to n = 5. Unlike in the NUS-HGA dataset, each short of

sequence of activity is of an unknown length and therefore may be quite short, limiting

the size of the dynamic window n.

The features are represented over time by kernel density estimation as described in

Section 5.4, where the parameter for the size of the fixed grid is set to K = 8. A small K

would produce a very coarse representation of the movement or location dynamics, while

a too large K would provide a noisy data model, lacking the ability to generalise.

To compare with the state-of-the-art, we follow the recommended evaluation protocol

from [22] and divide the dataset into 3 subsets for 3-fold training and testing. Since the

data sequences contain an unknown quantity of activities of an unknown length; we split

the sequences during training by the start and end point of each activity, given by the

groundtruth dataset. This is different to [22], where they split the video sequence into

short sequences of a fixed length. This does not notably change the results as supervised

learning is performed, therefore the label of the activity at any given time is given in the

groundtruth of the dataset known during training. During testing, the sequences are split

again by the start and end point of each activity and each short sequence is then evaluated

in turn.

Confusion matrices of the results of our combined features compared to the approach

from [19] are shown in Figure 5.20. One observation about our confusion matrix in Fig-

ure 5.20 is that the queuing activity is not well classified since pedestrians that are sta-

tionary and do not move for the duration are not well represented, whilst in manually

annotated approaches the pedestrians are manually labelled from the beginning. Another

observation from Figure 5.20 is that we achieve improved overall recognition results when

the queuing activity is removed, and also greater consistency in the results across the other

activities. The confusion matrix of [19], poorly recognising the gathering and chasing ac-

tivities whilst our approach shows a clear improvement in recognising these activities.

Comparison of our recognition results when compared to state of the art are shown in
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(a) Streakflow (Chasing activity) (b) Segmentation (Chasing activity)

(c) Streakflow (Gather activity) (d) Segmentation (Gather activity)

Figure 5.18: Examples of streakflow and segmentation on the new Collective dataset

a) Gathering b) Talking b) Dispersing

Figure 5.19: Example of transitions between activities in the new Collective dataset,

including stopped pedestrian detection.

Table 5.2. The locations features outperform the motion features for both difference and

dynamic features. The difference in results between the difference features and the dy-

namic features are not significant, although the dynamic features perform slightly better.

Once again, the combination of motion and location features provide an improvement in

the results, and the combination of all features provide the best overall result. Although

our recognition result is slightly worse than that of [19], when the queuing activity is

removed our results are significant better. This is expected, as the queuing activity re-

lies heavily on the correct detection of the stopped pedestrians, and since the pedestrians

are often close together while queuing, our method does not perform so well. Finally,

we achieve such results without any complex pedestrian detection or manually annotated

tracks.
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Table 5.2: Recognition results on the new Collective dataset

Method Result (%)

Monte Carlo Tree Search [5] 77.7%

Collective activities [23] 79.2%

MIR [19] 80.3%

Motion differences 68.4%

Location differences 70.1%

Motion dynamics 69.6%

Location dynamics 72.1%

Motion and location differences 76.5%

Motion and location dynamics 78.4%

Combined differences and dynamics 79.7%
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Figure 5.20: Confusion matrices for the recognition results on the new Collective dataset

5.6 Conclusions

In this chapter, we present an automatic approach for group activity recognition. We

proposed a model to describe the discriminative characteristics of group activity by con-

sidering the relations between motion flows and locations of moving regions in the scene.

Streakflows were used to represent the movement flows of individuals in the scene. Human

movement was segmented using the EM algorithm under the Gaussian modelling assump-

tion. Segmented moving regions were represented both in movement and location space by
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their streakflow and location models. The interdependent differences of movements and

locations were modelled using the symmetric KL divergence between the moving regions

at a particular time instances. The dynamic differences between the moving regions were

modelled similarly, by considering the interdependent differences of movements and loca-

tions at different time instances. We also proposed a scaling method using the height of

regions as a scaling factor in order to compensate for the effect of perspective projection

in video sequences with perspective distortion. In addition, we also proposed a station-

ary pedestrian detector to keep track of stationary pedestrians by marking the locations

where they stop moving. Kernel Density Estimation (KDE) was used to model the inter-

dependant differences over time, showing a clear improvement over using conventional

histograms. Experimental results on the NUS-HGA dataset demonstrate the effectiveness

of our approach, showing a 2% improvement over state of the art methods. Further ex-

perimental results on the new Collective dataset also demonstrates the effectiveness of our

approach, showing competitive results compared to state of the art, without relying on

any pedestrian detection or manual annotation of tracks like other methods.
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Conclusions

In this chapter, a summary of the contributions will be provided, discussing the strengths

and weaknesses of the proposed activity recognition methodologies described in Chapters

3 to 5. This chapter will conclude with a discussion on the future directions of the work.

6.1 Contributions

In this section, the key contributions of the thesis to the field of human activity recognition

will be highlighted.

Graph Based Human Activity Recognition

In Chapter 3, a graph based methodology was proposed by modelling the human activ-

ity as feature-relationship graphs. In this work, spatio-temporal activity regions were

extracted, and features were modelled as similarity graphs across space and time. In

other graph based approaches to human activity recognition, limitations were placed on

the features due to issues representing and comparing the complex feature graphs. To

overcome the limitations of typical graph based methodologies, the Laplacian represen-

tation of the graph was used, providing a vector-based representation of the graph while

maintaining its discriminative nature. A further distinction of the proposed method is

that the relationship between features was modelled; in the typical approaches to human

activity recognition using BoW, the contextual and relationship between features is often

ignored. While the results did not match those of the state of the art; it is suggested that

this approach is better suited to more complex activities such as human interactions and

contextual group activities.
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The main drawback with the proposed approach is that a fixed number of cuboids were

extracted from each video sequence to ensure feature graphs of the same size. This leads

to an issue where some activities will naturally contain many more features than others;

which means some activities will be poorly represented by the proposed methodology. Fur-

thermore, the activity features are only modelled by their inter-dependent relationships;

therefore the feature vectors themselves are not well modelled.

Abnormal Activity Identification Using Streaklines

In Chapter 4, a new approach is presented for abnormal human activity identification in

crowded scenes. In this approach, a new approach to modelling activity regions was intro-

duced by modelling the medium term flow of distinct moving regions. In this approach, the

original streaklines approach was extended to a block-based methodology; where streakline

flows were segmented using the EM algorithm under the Gaussian modelling assumption.

Segmented regions were then represented in the movement and location space by their

block-based streakflow and location models. PCA was then utilised to project the princi-

pal streakline vector representing each moving region. The streakline representation was

extended to a multi-vector approach where each block is represented by its magnitude

and direction vectors in the polar coordinates space. Furthermore, a weighting factor was

introduced to balance the contribution of the magnitude and direction vectors. A novel

localisation methodology was introduced to account for the perspective distortion in the

scenes by only comparing activities with each other inside a dynamic window. The size of

the dynamic window was based on the magnitude of the motion vectors and approximate

distance from the camera. A further distinction of this methodology is that the dictio-

nary of activities was generated online, thus allowing for the methodology to be used in

an online system; without requiring offline training like some approaches. The proposed

methodology also achieved state of the art results for localising abnormal activities in

crowded scenes.

One issue with the current approach is that complex activities in the scene will be

ignored due to the block-based based streakline approach. For example, a large region

may be categorised as a runner rather than a walker, but if the individual is waving for

help then this would be ignored due to the granularity of the waving activity. Furthermore,

the interactions between pedestrians is not modelled in this methodology. Such a task is

highly important in abnormal activity recognition, where anomalous activities generally
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involve some form of human to human interactions.

Group based Activity Recognition

In Chapter 5, a novel automatic approach to group activity recognition was introduced. In

this work, a model was proposed to describe the discriminative characteristics of group ac-

tivity by modelling the relationships between moving activity regions. Unlike other meth-

ods which rely on manual annotation of tracklets; this method made use of the streaklines

grouping introduced in the previous chapter. In this work, the interdependent differences

of movements and locations modelled using the symmetric KL divergence between the

moving regions at a particular time instances. This differs from other works in the area

which only model the differences between longer term tracklets, and not the differences

in movement and space over the short to medium term. A novel scaling method was pro-

posed using the height of the regions as a scaling factor to compensate for the perspective

distortion. In addition, a new stationary pedestrian detector was proposed to keep track

of the stationary pedestrians by marking the locations when the pedestrians stop moving.

In addition to modelling the differences in movement and location over time, the changes

in such movement and location differences where also modelled using Kernel Density Es-

timation (KDE). The use of KDE showed a clear improvement over using conventional

histograms. This differs from other methods which usually only consider the differences in

features at a particular time, and do not model the changes in such differences over time.

Experimental results on state of the art group activity datasets show a clear improvement

of 2% over state of the art methodologies.

One drawback of the proposed method is that without manually tracking the pedes-

trians, it may become difficult to track stationary pedestrians when the scenes are more

complex. For example, when two or more pedestrians stop in a nearby area, the current

method may not prove sufficient in determining which pedestrians have stopped. A fur-

ther drawback of the proposed approach is that without long term tracks, the long term

movement and spatial changes are not well modelled by the method. This may become

an issue when group activities are performed over a longer time period, and where the

distinguishing characteristics are only present in the long term tracklets.
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6.2 Future Work

This thesis made several novel contributions to the field of human activity recognition.

Given these contributions, it is important that the works continues to improve and develop

to provide further applications in human activity recognition and advance the field of

computer vision further.

It is suggested that the graph based methodology introduced in Chapter 3 could be

improved by removing the limitation of the fixed number of cuboids/feature vectors per

activity graph. This would allow activities that have more motion/activity present to have

more features, while activities with fewer movements can be represented by fewer features.

A second suggestion could be to adopt a grid based approach by modelling the features

as graphs for each region in the grid. This could prove useful to provide a better model of

more localised activities. A further suggestion could be to model the features directly as

a feature graph as opposed to modelling their differences, and compare such graphs using

a graph matching methodology. This would allow features to be compared directly rather

than through a graph embedding approach.

While the streakline-based anomaly detection approach introduced in Chapter 4 pro-

duced state of the art results for activity localisation, the methodology can still be im-

proved further. One suggestion is to use a more robust method of segmenting activity

regions rather than the heuristic histogram approach adopted thus far. This should pro-

vide improved activity segmentation and therefore improve activity recognition results.

A further suggestion could be to improve the current method of generating the activity

dictionary. At present, the activity models are only compared statistically to distinguish

activity classes when a more robust method of determining initial activity classes could

be introduced to improve the overall robustness of the activity dictionary. A further sug-

gestion is to introduce new motion or appearance features into the feature pipeline to

improve the saliency activity model. Furthermore, such new features could also be fused

with other complimentary features, for example, motion and appearance features.

The group activity recognition approach introduced in Chapter 5 could be improved by

fusing the current approach with a long term pedestrian tracking approach. By adding the

tracking approach, the stationary pedestrians can be detected more robustly and the long

term changes in motion and location would also be modelled. A further suggestion is to

modify the proposed scaling methodology either by using a pedestrian detector (from the

long term tracking method) or by some depth estimation to determine the approximate
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distance of the pedestrians from the camera.
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