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Abstract
Accurate and reliable registration of shapes and multi-dimensional point sets

describing the morphology/physiology of anatomical structures is a pre-requisite
for constructing statistical shape models (SSMs) and atlases. Such statistical de-
scriptions of variability across populations (regarding shape or other morpholog-
ical/physiological quantities) are based on homologous correspondences across
the multiple samples that comprise the training data. The notion of exact corre-
spondence can be ambiguous when these data contain noise and outliers, miss-
ing data, or significant and abnormal variations due to pathology. But, these
phenomena are common in medical image-derived data, due, for example, to in-
consistencies in image quality and acquisition protocols, presence of motion arte-
facts, differences in pre-processing steps, and inherent variability across patient
populations and demographics. This thesis therefore focuses on formulating a
unified probabilistic framework for the registration of shapes and so-called gen-
eralised point sets, which is robust to the anomalies and variations described.

Statistical analysis of shapes across large cohorts demands automatic gener-
ation of training sets (image segmentations delineating the structure of interest),
as manual and semi-supervised approaches can be prohibitively time consum-
ing. However, automated segmentation and landmarking of images often result
in shapes with high levels of outliers and missing data. Consequently, a robust
method for registration and correspondence estimation is required. A probabilis-
tic group-wise registration framework for point-based representations of shapes,
based on Student’s t-mixture model (TMM) and a multi-resolution extension to
the same (mrTMM), are formulated to this end. The frameworks exploit the in-
herent robustness of Student’s t-distributions to outliers, which is lacking in ex-
isting Gaussian mixture model (GMM)-based approaches. The registration ac-
curacy of the proposed approaches was quantitatively evaluated and shown to
outperform the state-of-the-art, using synthetic and clinical data. A correspond-
ing improvement in the quality of SSMs generated subsequently was also shown,
particularly for data sets containing high levels of noise. In general, the proposed
approach requires fewer user specified parameters than existing methods, whilst
affording much improved robustness to outliers.

Registration of generalised point sets, which combine disparate features such
as spatial positions, directional/axial data, and scalar-valued quantities, was
studied next. A hybrid mixture model (HMM), combining different types of
probability distributions, was formulated to facilitate the joint registration and
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clustering of multi-dimensional point sets of this nature. Two variants of the
HMM were developed for modelling: (1) axial data; and (2) directional data.
The former, based on a combination of Student’s t, Watson and Gaussian dis-
tributions, was used to register hybrid point sets comprising magnetic resonance
diffusion tensor image (DTI)-derived quantities, such as voxel spatial positions
(defining a region/structure of interest), associated fibre orientations, and scalar
measures reflecting tissue anisotropy. The latter meanwhile, formulated using a
combination of Student’s t and Von-Mises-Fisher distributions, is used for the reg-
istration of shapes represented as hybrid point sets comprising spatial positions
and associated surface normal vectors. The Watson-variant of the HMM facili-
tates statistical analysis and group-wise comparisons of DTI data across patient
populations, presented as an exemplar application of the proposed approach.
The Fisher-variant of the HMM on the other hand, was used to register hybrid
representations of shapes, providing substantial improvements over point-based
registration approaches in terms of anatomical validity in the estimated corre-
spondences.



v

Acknowledgements
The work presented in this thesis would not have been possible without the

support and guidance of a number of people, to whom I am greatly indebted.
To begin with, I would like to thank my supervisor Dr. Zeike Taylor, for pro-

viding me with this opportunity, and guiding me through these deep waters. His
patience, and trust in my abilities gave me confidence and helped me develop in-
dependence as a researcher. I am very grateful for his constructive advice, which
has always helped improve the quality of my work, and, for sharing his expe-
rience and knowledge, to help me overcome obstacles along the way. I would
like to thank my co-supervisor Prof. Alejandro Frangi for providing me with
an excellent work environment and opportunities to collaborate with numerous
researchers within the community. His guidance and advice helped me appreci-
ate the broader perspectives of research. My deep gratitude also goes to Dr. Ali
Gooya, for introducing me to the fascinating world of machine learning, provid-
ing me with inspiration when needed, and for the many hours spent together,
conceiving the work presented herein.

Working at CISTIB was a pleasure and privilege, and my deepest thanks go
to all my colleagues, for their enduring support these past few years. I thank
the software development team at CISTIB for their conscientious approach in as-
sisting me with various aspects of software development, and helping me hone
my skills as a programmer. Special thanks go to Christopher Noble, Edward
Cramphorn, Matthias Lange and Serkan Çimen, whose friendship made the past
few years all the more enjoyable, and for the numerous engaging conversations,
which were welcome distractions from academic matters.

Finally I would like to thank my family, for always being my home, and for
their unwavering faith in me, which gave me the strength and stability needed to
pursue my dreams.

This work was partially supported by the European Unions Seventh Frame-
work Programme (FP7/2007 2013) as part of the project VPH-DARE@IT (grant
agreement no. 601055) and by the Department of Mechanical Engineering, Uni-
versity of Sheffield.



vi

List of Publications

The work presented in this thesis was partially adapted from publications [1],
[3], [4], [5] and [6] listed below, with all permissions acquired.

1. Ravikumar, N., Castro-Mateos, I., Pozo, J.M., Frangi, A.F. and Taylor, Z.A.,
2015, March. 3D active shape models of human brain structures: application
to patient-specific mesh generation. In SPIE Medical Imaging (pp. 94142D-
94142D). International Society for Optics and Photonics.

2. Ravikumar, N., Noble, C., Cramphorn, E. and Taylor, Z.A., 2015. A con-
stitutive model for ballistic gelatin at surgical strain rates. Journal of the
mechanical behavior of biomedical materials, 47, pp.87-94.

3. Ravikumar, N., Gooya, A., Frangi, A.F. and Taylor, Z.A., 2016, March. Ro-
bust group-wise rigid registration of point sets using t-mixture model. In
SPIE Medical Imaging (pp. 97840S-97840S). International Society for Optics
and Photonics.

4. Ravikumar, N., Gooya, A., Çimen, S., Frangi, A.F. and Taylor, Z.A., 2016,
October. A multi-resolution t-mixture model approach to robust group-
wise alignment of shapes. In International Conference on Medical Image
Computing and Computer-Assisted Intervention (pp. 142-149). Springer
International Publishing.

5. Ravikumar, N., Gooya, A., Frangi, A.F. and Taylor, Z.A., 2017, Septem-
ber. Generalised coherent point drift for group-wise registration of multi-
dimensional point sets. In International Conference on Medical Image
Computing and Computer-Assisted Intervention (In press). Springer In-
ternational Publishing.

6. Ravikumar, N., Gooya, A., Frangi, A.F. and Taylor, Z.A., 2017, Group-
wise registration of point sets using Student’s t-mixture model for statistical
shape models. Medical Image Analysis (Under review).

7. Ravikumar, N., Gooya, A., Beltrachini, L., Frangi, A.F. and Taylor, Z.A.,
2017, Generalised coherent point drift for group-wise multi-dimensional
analysis of diffusion brain MRI data. Medical Image Analysis (Under re-
view).



vii

8. McGrath, D.M., Ravikumar, N., Wilkinson, I.D., Frangi, A.F. and Taylor,
Z.A., 2015. Magnetic resonance elastography of the brain: An in silico
study to determine the influence of cranial anatomy. Magnetic resonance
in medicine.

9. McGrath, D.M., Ravikumar, N., Beltrachini, L., Wilkinson, I.D., Frangi, A.F.
and Taylor, Z.A., 2016. Evaluation of wave delivery methodology for brain
MRE: Insights from computational simulations. Magnetic Resonance in
Medicine.

10. Çimen, S., Gooya, A., Ravikumar, N., Taylor, Z.A. and Frangi, A.F., 2016, Oc-
tober. Reconstruction of Coronary Artery Centrelines from X-Ray Angiog-
raphy Using a Mixture of Student’s t-Distributions. In International Con-
ference on Medical Image Computing and Computer-Assisted Intervention
(pp. 291-299). Springer International Publishing.



viii

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements v

List of Publications vi

List of Figures xi

List of Tables xvii

List of Abbreviations xix

List of Symbols xxi

1 Introduction 1

2 Background 4
2.1 The Human Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Dementia and Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . 5
2.3 Statistical Shape Models and Atlases . . . . . . . . . . . . . . . . . . 7
2.4 Thesis Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Thesis Structure and Outline . . . . . . . . . . . . . . . . . . 10

3 Shape Registration 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Probabilistic Mixture Models for Shape Registration . . . . . . . . . 15

3.2.1 Probability Distributions: Gaussian vs. Student’s t . . . . . . 16
3.2.2 Pair-wise Registration . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Group-wise Rigid Registration using Student’s t-Mixture

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3.1 Multi-Resolution Group-wise Rigid Registration . 26



ix

3.2.4 Group-wise Non-Rigid Registration using Student’s t-
Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Rigid Registration Accuracy . . . . . . . . . . . . . . . . . . . 38

3.3.1.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . 40
3.3.1.2 Clinical data . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Algorithm performance . . . . . . . . . . . . . . . . . . . . . 47
3.3.2.1 Degrees of freedom . . . . . . . . . . . . . . . . . . 47
3.3.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Non-Rigid Registration Accuracy . . . . . . . . . . . . . . . 50
3.3.3.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . 50
3.3.3.2 Clinical Data . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Statistical Shape Models 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Principal Component Analysis: SSM Generation and Model-fitting 61
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Registration of Generalised Point Sets 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Application 1: Pre-processing . . . . . . . . . . . . . . . . . . 79
5.2.2 Application 1: Algorithm Overview . . . . . . . . . . . . . . 81
5.2.3 Joint Probabilistic Model of Position, Orientation and

Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.4 Mixture Model for Axial Data: Primary Diffusion Axes . . . 86
5.2.5 Mixture Model for Directional Data: Surface Normals . . . . 88
5.2.6 Mixture Model for Fractional Anisotropy . . . . . . . . . . . 89
5.2.7 Rigid Alignment and Template Construction . . . . . . . . . 90

5.2.7.1 Application 1: Modelling Diffusion Data . . . . . . 90
5.2.7.2 Application 2: Modelling Surface Normals . . . . . 92

5.2.8 Non-rigid Registration . . . . . . . . . . . . . . . . . . . . . . 93



x

5.3 Application 1: Results and Discussion . . . . . . . . . . . . . . . . . 94
5.3.1 Rigid Registration Accuracy . . . . . . . . . . . . . . . . . . . 94
5.3.2 Model Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.3 Group Comparisons . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.4 WM Parcellation . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Application 2: Results and Discussion . . . . . . . . . . . . . . . . . 118
5.4.1 Registration Accuracy . . . . . . . . . . . . . . . . . . . . . . 118
5.4.2 SSM Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusions 129
6.1 Summary of Main Outcomes . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Limitations and Future Directions . . . . . . . . . . . . . . . . . . . 130

A Derivations for TMM-based group-wise rigid registration 133

B Derivations for HMM-based group-wise registration of generalised
point sets 137

C Supplementary Material 140

Bibliography 143



xi

List of Figures

2.1 Major brain regions and the CSF-filled ventricular system. . . . . . 4

3.1 (a) Plot depicting the influence of ν on the shape of t-distributions,
showing increasing similarity to overlaid Gaussian distribution
with increase in its magnitude. Maximum likelihood fits of uni-
variate Gaussian and Student’s t-distribution to uncorrupted data
(b) and data corrupted by random noise (c) overlaid on their re-
spective histogram distributions. . . . . . . . . . . . . . . . . . . . . 18

3.2 Schematic describes the registration process using mrTMM. The
inverted triangle represents the hierarchical coarse-to-fine proce-
dure used to up-sample the mean model (black points) at each res-
olution level. The mean model is iteratively aligned to the group
of shapes (set of coloured points at the bottom), at each successive
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 3D bunny data set: (a) decimated original surface mesh; sample (a)
cropped along: (b) yz-plane, (c) xz-plane and (d) xy-plane. . . . . . 33

3.4 Transformed bunny data set comprising four samples (black).
Samples (b-d) generated by rigidly transforming sample (a). All
samples corrupted by varying proportions of Gaussian noise
(green) and uniformly-distributed outliers (red). . . . . . . . . . . . 34

3.5 Raw DXA images from the femur data set overlaid with their re-
spective boundary masks. Red arrows indicate regions with over-
or under-segmented boundaries, which result in point sets with
varying degrees of outliers. . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Hippocampi automatically segmented from MR images of a
healthy subject (top row) and MCI patient (bottom row). Axial and
saggital view of segmentations overlaid on their respective raw im-
ages are shown in the left and centre columns respectively and the
surfaces generated from these are depicted in the column on the
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



xii

3.7 Experiment investigating capture range of registration methods.
Sample (a) original bunny point set, (b) point set in (a) rotated
by 60◦ about x-axis and −60◦ about y-axis, (c)point set in (a) ro-
tated by 60◦ about y- and z-axes and (d) point set in (a), rotated by
−60◦ about z-axis and 60◦ about x-axis. (e) point sets aligned using
mrTMM, (f) point sets after alignment using JRMPC and (g) point
sets aligned using pair-wise CPD. . . . . . . . . . . . . . . . . . . . . 42

3.8 MCI-hippocampi (first row), healthy-hippocampi (second row),
heart data set (third row) and femur data set (fourth row). First
column: Raw point sets prior to alignment; second column: es-
timated mean shapes; third column: aligned shapes; and fourth
column: aligned soft-correspondences (using mrTMM) . . . . . . . 43

3.9 Mean femur shapes estimated using: (a) GMM, (b) SpSSM, (c)
gCPD and (d) TMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Histograms of the degrees of freedom estimated for; (a) the syn-
thetic data set with noise and outliers (M=940), (b) femur data set
(M=160), (c) heart data set (M=320) and (d) set of hippocampi from
MCI patients (M=320), following alignment using mrTMM. . . . . 47

3.11 Convergence of TMM and mrTMM algorithms: (a) Synthetic
bunny data set containing significant outliers (refer to Table 1),
using M = 940 mixture components; (b) Heart data set, using
M = 2560 mixture components; (c) MCI-hippocampi data set, us-
ing M = 2560 mixture components; (d) Control-hippocampi data
set, using M = 2560 mixture components; and (e) Femur data set,
using M = 1280 mixture components. . . . . . . . . . . . . . . . . . 49

3.12 Synthetic 3D face data set registered using proposed TMM-NR. . . 50
3.13 Ventricles data set registered using TMM-NR. (a) Estimated mean

shape, (b)-(e) 4 raw point sets overlaid with registered mean
shapes. Arrows indicate regions of severe localised deformations
in some samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Correspondences estimated for two samples in ventricles data set
using TMM-NR (a,b,c,d) and TMM rigid (e,f,g,h). Arrows indicate
regions where the latter establishes invalid correspondences. . . . . 56



xiii

4.1 SSM generalization errors evaluated with respect to number of
mixture components (left column) and number of modes of
variation (right column). (a,b) MCI-hippocampi, (c,d) healthy-
hippocampi, (e,f) heart and (g,h) 2D-femur data set. Errors re-
ported in (a,c,e,g) were evaluated by retaining modes describing
95% of the total variation in the corresponding SSMs. . . . . . . . . 65

4.2 SSM specificity errors evaluated with respect to the modes of vari-
ation for (a) MCI-hippocampi, (b) healthy-hippocampi, (c) heart,
and (d) 2D-femur data sets. . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 First mode of variation for the 2D-femur data set (red) overlaid
on the estimated mean shape (black). SSMs were trained using:
gCPD (a,b), TMM (c,d), and mrTMM (e,f). Here λ1 denotes the
first eigenvalue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 SSM compactness assessed by plotting the cumulative sum of the
variation % (expressed by each eigenmode), against the number
of modes. (a) MCI-hippocampi, (b) healthy-hippocampi, (c) heart,
and (d) 2D-femur data set. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 First mode of variation for SSMs trained using mrTMM. Top row:
MCI hippocampi, bottom row: healthy hippocampi. In all cases
the overlaid surface mesh with visible edges represents the mean
shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 First mode of variation of the heart-SSM trained using mrTMM,
overlaid on the estimated mean shape (dark grey surface). . . . . . 72

5.1 Nifty-Reg used to propagate labels for WM regions of interest
from JHU-ICBM-DTI-81 atlas to each subject in AD, MCI and HC
groups. Images depict propagation of the corpus callosum label
from the atlas to subjects in AD, MCI and control groups. . . . . . . 80

5.2 Summary of steps involved in the proposed framework to jointly
register and cluster hybrid point sets comprising spatial positions,
fibre orientations and FA values, for a WM tract/ROI. Dashed box
outlines the two stages of the proposed algorithm. . . . . . . . . . . 81

5.3 Synthetic corpus callosum data set comprising: Sample (0), the
ground truth hybrid point set; and Samples (1-4), which are ro-
tated and modified versions of Sample 0. . . . . . . . . . . . . . . . 95



xiv

5.4 Model quality evaluated independently for AD, MCI and HC
groups, using M = 2000 and M = 1500 mixture components,
for the corpus callosum and cingulum respectively. Rows one and
two: Angular errors for fibre orientations (in radians) and RMSE of
FA for the corpus callosum; Rows three and four: Angular errors
for fibre orientations (in radians) and RMSE of FA for the cingulum. 98

5.5 Standard deviation of FA computed across subjects in the AD, MCI
and HC groups, mapped on to the mean templates estimated, us-
ing M = 2000 and M = 1500 mixture components for the corpus
callosum and cingulum, respectively. . . . . . . . . . . . . . . . . . . 99

5.6 Standard deviation of fibre orientations computed across subjects
in the AD, MCI and HC groups, mapped on to the mean templates
estimated, using M = 2000 and M = 1500 mixture components for
the corpus callosum and cingulum, respectively. . . . . . . . . . . . 100

5.7 Histograms of fibre orientation errors for each subject in AD, MCI
and HC groups, evaluated between established correspondences
and ground truth voxels. . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Histograms of root-squared-error (RSE) of FA for each subject in
AD, MCI and HC groups, evaluated between established corre-
spondences and ground truth voxels. . . . . . . . . . . . . . . . . . . 105

5.9 Comparison of corpus callosum mean FA distributions (indicated
by colour bars) in AD, MCI, and HC groups, estimated using TBSS,
VBM, and the proposed HMM approach. Top row: Mixture cen-
troids of the mean template estimated using HMM; Middle row:
Mean FA skeleton computed with TBSS; Bottom row: Mean FA
voxels computed with VBM. . . . . . . . . . . . . . . . . . . . . . . . 106

5.10 Comparison of cingulum mean FA distributions (indicated by
colour bars) in AD, MCI, and HC groups, estimated using TBSS,
VBM, and the proposed HMM approach. Top row: Mixture cen-
troids of the mean template estimated using HMM; Middle row:
Mean FA skeleton computed with TBSS; Bottom row: Mean FA
voxels computed with VBM. . . . . . . . . . . . . . . . . . . . . . . . 107



xv

5.11 Top row: Mean fibre orientations estimated for AD, MCI and HC
groups across the corpus callosum; Middle row: Mean corpus cal-
losum templates for each patient group, overlaid with the concen-
tration parameters κj estimated for each mixture component. Ar-
rows indicate regions showing increased fibre dispersion in AD
and MCI groups relative to HC; Bottom row: Histograms describ-
ing the distribution of κj values estimated for each patient group. . 109

5.12 Top row: Mean fibre orientations estimated for AD, MCI and HC
groups across the cingulum; Middle row: Mean cingulum tem-
plates for each patient group, overlaid with the concentration pa-
rameters κj estimated for each mixture component. Arrows indi-
cate regions of reduced fibre concentration in AD group compared
to MCI and HC.; Bottom row: Histograms describing the distribu-
tion of κj values estimated for each patient group. . . . . . . . . . . 110

5.13 3D histograms describing the combined distribution of mean FA
values and mean fibre concentrations κj , estimated across corre-
spondences established using HMM, for the corpus callosum (left
column) and cingulum (right column) regions. Arrows indicate
differences identified between patient groups. . . . . . . . . . . . . 111

5.14 Statistically significant reduction in FA (based on FDR-corrected
p-values), at corresponding spatial positions across the corpus cal-
losum, for: AD vs MCI, AD vs HC and MCI vs HC patient groups,
estimated using the proposed framework. Arrows indicate regions
showing substantial reduction in FA. . . . . . . . . . . . . . . . . . . 112

5.15 Statistically significant reduction in FA (based on FDR-corrected
p-values), at corresponding spatial positions across the cingulum,
for: AD vs MCI, AD vs HC and MCI vs HC patient groups, es-
timated using the proposed framework. Arrows indicate regions
showing substantial reduction in FA. . . . . . . . . . . . . . . . . . . 113

5.16 Axial view of WM volumes parcellated into 100 distinct regions
(using Watson-distribution based HMM) and overlaid on corre-
sponding FA images, for AD, MCI and HC subjects. . . . . . . . . . 114

5.17 Axial view of WM volumes parcellated and clustered into 10 ‘par-
ent’ regions depicted as surfaces, for 5 AD (top row), 5 MCI (mid-
dle row) and 5 HC (bottom row) subjects. . . . . . . . . . . . . . . . 116



xvi

5.18 Sagittal view of WM volumes parcellated and clustered into 10
‘parent’ regions depicted as surfaces, for 5 AD (top row), 5 MCI
(middle row) and 5 HC (bottom row) subjects. . . . . . . . . . . . . 117

5.19 Coronal view of WM volumes parcellated and clustered into 10
‘parent’ regions depicted as surfaces, for 5 AD (top row), 5 MCI
(middle row) and 5 HC (bottom row) subjects. . . . . . . . . . . . . 118

5.20 Two registered samples from ventricles data set: (a,b), (c,d) using
Fisher-HMM; (e,f), (g,h) using TMM-NR; and (i,j), (k,l) using gCPD
(non-rigid). Registered shapes (red) overlaid on their correspond-
ing raw samples (black) are shown in (a,c,e,g,i,k). (b,d,f,h,j,l) depict
correspondences estimated for both samples using each method. . 121

5.21 Mean ventricle shapes estimated with M = 1200 mixture compo-
nents using HMM (a,b), TMM-NR (c,d) and gCPD-non-rigid (e,f).
Blue arrows in (a) represent mean surface normals, black arrows in
(b,d,f) highlight separation between lateral ventricles preserved by
HMM but not afforded by TMM-NR and gCPD. . . . . . . . . . . . 122

5.22 SSM quality evaluated in terms of generalisation (a) and specificity
(b) errors computed with respect to the number of modes of varia-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.23 First mode of variation for ventricle SSM trained following regis-
tration using Fisher-HMM. λ represents the primary eigenvalue,
used to constrain the SSM. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.24 First mode of variation for ventricle SSM trained following regis-
tration using TMM-NR. λ represents the primary eigenvalue, used
to constrain the SSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.25 First mode of variation for ventricle SSM trained following regis-
tration using gCPD. λ represents the primary eigenvalue, used to
constrain the SSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.1 First mode of variation for ventricle SSM trained following regis-
tration using: (a,b) Fisher-HMM; (c,d) TMM-NR; and (e,f) gCPD. λ
represents the primary eigenvalue, used to constrain the SSM. Sep-
aration between the left and right ventricular bodies is clearly vis-
ible in (a,b) illustrating the advantage offered by the Fisher-HMM
registration framework over TMM-NR and gCPD. . . . . . . . . . . 142



xvii

List of Tables

3.1 Rigid transformations and degree of outliers used to generate
bunny data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 RMSE values computed between estimated and ground truth rota-
tions for 3D bunny data set. . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Intrinsic rotation errors evaluated in terms of radians (Rad.) and
degrees (Deg.) between estimated and ground truth rotations. . . . 41

3.4 Registration errors evaluated between the aligned soft correspon-
dences and the mean shape estimated for MCI-hippocampi data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Registration errors evaluated between the aligned soft correspon-
dences and the mean shape estimated for healthy-hippocampi data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Registration errors evaluated between the aligned soft correspon-
dences and the mean shape estimated for heart data set. . . . . . . . 44

3.7 Registration errors evaluated between the aligned soft correspon-
dences and the mean shape estimated for femur data set. . . . . . . 45

3.8 Run-time (minutes) for each data set aligned using TMM and
mrTMM with M mixture components. . . . . . . . . . . . . . . . . . 49

3.9 Non-rigid registration errors evaluated for the synthetic 3D face
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Non-rigid registration errors for brain ventricles data set. . . . . . . 52

5.1 Summary of rigid registration errors across 10 experiments using
synthetic corpus callosum data set. . . . . . . . . . . . . . . . . . . . 96

5.2 Model quality of Watson-HMM for the cingulum, assessed in
terms of the mean spatial position error evaluated across corre-
spondences and subjects, using the MSD metric, for each patient
group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Model quality of Watson-HMM for the cingulum, assessed as the
mean fibre orientation error evaluated across correspondences and
subjects, for each patient group. . . . . . . . . . . . . . . . . . . . . . 102



xviii

5.4 Model quality of Watson-HMM for the cingulum, assessed as the
average RMSE of FA evaluated over correspondences and aver-
aged across subjects, for each patient group. . . . . . . . . . . . . . . 102

5.5 Model quality of Watson-HMM for the corpus callosum, assessed
in terms of the mean spatial position error evaluated across corre-
spondences and subjects, using the MSD metric, for each patient
group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Model quality of Watson-HMM for the corpus callosum, assessed
as the mean fibre orientation error evaluated across correspon-
dences and subjects, for each patient group. . . . . . . . . . . . . . . 103

5.7 Model quality of Watson-HMM for the corpus callosum, assessed
as the average RMSE of FA evaluated over correspondences and
averaged across subjects, for each patient group. . . . . . . . . . . . 103

5.8 Interquartile ranges for mean FA values estimated using each ap-
proach for both WM ROIs. . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 Non-rigid registration accuracy using HMM for brain ventricles
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.1 Sensitivity of registration accuracy of gCPD to varying uniform
distribution weights w for the femur data set. . . . . . . . . . . . . . 140

C.2 Summary of generalisation and specificity experiments used to
evaluated SSM quality. . . . . . . . . . . . . . . . . . . . . . . . . . . 141



xix

List of Abbreviations

AD Alzheimer’s Disease
MCI Mild Cognitive Impairment
HC Healthy Control
CSF Cerebro-spinal Fluid
WM White Matter
GM Grey Matter
MRI Magnetic Resonance Imaging
DTI Diffusion Tensor Imaging
SSM Statistical Shape Model
PCA Principal Component Analysis
PDM Point Distribution Model
GMM Gaussian Mixture Model
TMM Student’s t-Mixture Model
mrTMM Multi-Resolution Student’s t-Mixture Model
FA Fractional Anisotropy
ICP Iterative Closest Point
CPD Coherent Point Drift
gCPD Group-wise Coherent Point Drift
EM Expectation-Maximisation
SpSSM Sparse Statistical Shape Model
JRMPC Joint Registration of Multiple Point Clouds
ML Maximum Likelihood
TMM-NR Student’s t-Mixture Model Non-Rigid
HD Hausdorff Distance
MSD Mean Surface Distance
PH Pulmonary Hypertension
HCM Hypertrophic Cardiomyopathy
HMM Hybrid Mixture Model
ROI Region of Interest
TBSS Tract-based Spatial Statistics
VBM Voxel-based Morphometry



xx

PDF Probability Density Function
WMM Watson Mixture Model
FMM Von-Mises-Fisher Mixture Model
RMSE Root Mean Squared Error
RSE Root Squared Error
IQR Inter-Quartile Range
FDR False Discovery Rate



xxi

List of Symbols

N Gaussian distribution
W Watson distribution
F Von-Mises-Fisher distribution
S Student’s t-distribution
{xki} = Xk Position vector of ith point in kth set
{Xk} = X Group of K point sets
{µµµj} = M Position vector of jth mixture model component in M

M Mixture centroids
P ?
kij Posterior probability of jth Student’s t-distribution
Pkij Posterior probability of jth mixture model component
{Tk} = T Group of K transformations
{νj} = Υ Group of all degrees of freedom in TMM
νj Degrees of freedom of jth TMM component
{πj} = Π Set of all mixture coefficients
πj Mixture coefficient of jth mixture model component
σ2 Variance
K Number of samples in a group
M Number of mixture model components
Nk Number of data points in kth set
D Dimension of the data
{M, σ2,Υ,Π} = Θ Set of unknown TMM parameters
{Θ,T} = Ψ All unknown parameters
{dki} = Dk Feature vector of ith hybrid point in kth set
{Dk} = D Group of K hybrid point sets
mp
j Mean position vectors of jth component HMM

md
j Mean orientations of jth component HMM

κj Concentration parameter of jth component of HMM
mf
j Mean scalar values of jth component HMM

σ2
p Variance of Student’s t-distributions in HMM
{mp

j , σ
2
p, νj} = Θp All unknown parameters of Student’s t-distributions in HMM



xxii

{md
j , κj} = Θn All unknown parameters of Watson/Fisher distributions in HMM

σ2
f Variance of Gaussian distributions in HMM
{mf

j , σ
2
f} = Θf All unknown parameters of Gaussian distributions in HMM

{nki} = Nk Direction vector of ith hybrid point in kth set
{Nk} = N Group of K samples comprising direction vectors
{fki} = Fk Scalar value of ith hybrid point in kth set
{Fk} = F Group of K samples comprising scalar values



1

Chapter 1

Introduction

Medical image analysis has evolved rapidly in the past few decades, with
the advent of sophisticated imaging techniques that provide non-invasive and
minimally invasive mechanisms for visualising internal organs, monitoring
growth and ageing, and tracking the progression of pathologies over time.
The large number of recent and ongoing multi-disciplinary healthcare research
projects, such as, the Alzheimer’s Disease Neuroimaging Initiative (adni-info.
org), International Consortium for Brain Mapping (ICBM, loni.usc.edu/
ICBM/), UK-Biobank (ukbiobank.ac.uk) and VPH-DARE@IT (vph-dare.
eu) projects, has led to the acquisition of a high volume of imaging and clin-
ical data. This has further popularised the use of probabilistic and statistical
techniques, to investigate variation in anatomy and physiology, across popu-
lations. Such techniques provide insight into natural and pathological varia-
tions observed across cohorts, and consequently, have become crucial tools for
computer-aided-diagnosis and computer-assisted-interventions. Statistical shape
models in particular, which characterise the variation in shape of an organ of in-
terest, across a population, have found widespread use in applications involving
image segmentation, classification, object detection and in silico virtual popula-
tion studies, among others. Statistical analysis of other medical image-derived
features related to; diffusion of water in soft tissue, bone mineral density and
blood flow, have also shown high potential, to be of practical value in a clinical
setting, in the near future.

A basic requirement for statistical analysis of shape and other medical image-
derived quantities is the notion of establishing correspondences, across the
data set to be analysed (i.e. data can be cross-sectional, comprising multi-
ple subjects, or longitudinal in nature for a single subject/across multiple sub-
jects). This involves identifying corresponding spatial positions across a group
of shapes/images, such that appropriate statistical analyses may be conducted

adni-info.org
adni-info.org
loni.usc.edu/ICBM/
loni.usc.edu/ICBM/
ukbiobank.ac.uk
vph-dare.eu
vph-dare.eu
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on comparable data. This is achieved by ’registration’, which involves estimat-
ing suitable affine or non-rigid transformations, warping the shapes/images to a
common reference frame, and subsequently, identifying distinct correspondences
that represent the same anatomical features, across all samples in the group.

Statistical shape models require segmentations of the organ(s) of interest from
medical images. These segmentations can subsequently be used to represent
shapes in various ways, prior to analysing the statistics of their variation across
a group. The most common of these, relies on point-based descriptions of shape
boundaries and this is employed throughout this thesis, due to its simplicity and
flexibility. While significant efforts have been made previously, to automatically
register shapes (represented as point sets) and establish correspondences, existing
approaches have typically required some degree of user intervention, to ensure
robustness in the process. Sensitivity to outliers in the data, and the correspond-
ing need to ensure the fidelity of input segmentations, is a key issue in this re-
spect. Such user intervention requirements, however, can be prohibitive when
large data sets are involved, such as those acquired within the aforementioned
imaging initiatives. The first main contribution of this thesis, therefore, is a prob-
abilistic framework for point set registration which is robust to data outliers, and
correspondingly amenable to automated shape analysis.

Statistical analyses of more complex medical image-derived features, such as,
measures characterising local water diffusion properties within soft tissues, for
example, also require registration of the associated structures/images, to identify
correspondences across the population of interest. While a large body of literature
exists on the use of image registration techniques for conducting such group-wise
analysis, few have approached this problem from the context of generalised point
set registration. The term generalised point sets is used to refer to data comprising
different types of information, obtained from different sources; for example, point
sets comprising voxel spatial positions, associated fibre orientations, and a scalar
measure reflecting tissue anisotropy. A probabilistic framework that enables au-
tomatic and robust registration of generalised point sets, to facilitate group-wise
statistical analysis of diffusion image-derived data in particular, forms the second
major contribution of this thesis.

The methods proposed herein are general and flexible with regard to their ap-
plicability in a variety of medical image analysis and computer vision problems,
and shapes and images of various anatomical structures are employed during
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development and testing. The focus throughout this thesis, however, is their ap-
plication in the statistical analysis of shapes and diffusion-derived quantities, ob-
tained from neuroimages. Images from both healthy subjects and patients diag-
nosed with mild cognitive impairment and Alzheimer’s disease are considered.
These data sets exhibit significant variability across subjects and patient groups
and serve to highlight the efficacy of the proposed techniques.
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Chapter 2

Background

2.1 The Human Brain

The human central nervous system (CNS) and, at its core, the brain, is the most
sophisticated and complex in nature, responsible for controlling all functions of
the body. The brain is partitioned into highly specialized regions, each with
unique structural and functional organisation. The significant variability in its
structural and functional attributes across populations, necessitates the construc-
tion of statistical models and atlases. Models such as these, incorporate region-
specific features from multi-modal data and describe the observed variability, in
order to improve our understanding of the complex relationship between brain
structure and function.

FIGURE 2.1: Major brain regions and the CSF-filled ventricular sys-
tem.

The brain volume is broadly classified into three regions, namely: the cere-
brum, cerebellum and brainstem. It is immersed in cerebro-spinal fluid (CSF),
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and encased within the skull for protection. CSF acts as a shock-absorber, pro-
viding protection to the brain from impact-induced trauma, and is responsible
for nourishing the latter’s constituent neuronal cells (neurons). This fluid is pro-
duced continuously at the choroid plexus, within central cavities known as the
lateral ventricles located inside the cerebrum. From here the fluid is circulated
through the third and fourth ventricles, out through the cerebral aqueduct, into
the space in between the brain and the skull, referred to as the sub-arachnoid
space. Here it is finally re-absorbed at the superior sagittal sinus (Nolte, 2002).
The images presented in Fig. 2.1 depict these major brain regions and constituent
structures of the ventricular system. The cerebrum comprises two hemispheres
connected by the corpus callosum, and is responsible for regulating both, higher
order functions such as speech and interpretation, and basic ones such as per-
ception and movement. It can be further categorized into the inner and outer
cortex. The latter is characterised by numerous folds, which increase the over-
all surface area and allow billions of neurons to be densely packed within the
brain. These folds are known as gyri and the grooves between successive folds
are called sulci. The outer cortex is primarily composed of neuron cell bodies,
collectively referred to as grey matter (GM), and is connected to the inner cortex
through long myelinated axons called white matter (WM). GM and WM repre-
sent the two constituent tissue types of the brain.

Located deep within the cerebrum in the inner cortex are the sub-cortical
structures, composed of grey matter. These include — the basal ganglia (com-
prising structures such as: caudate nuclei, putamen and globus pallidus) and
the limbic system (comprising structures such as: amygdali, hypothalamus and
hippocampi). Among these, the hippocampi, which are associated with mem-
ory, are of particular interest in the study of neurodegenerative disorders like
Alzheimer’s disease (AD).

2.2 Dementia and Alzheimer’s Disease

Dementia is a broad term used to classify a variety of neurodegenerative dis-
orders that result in impaired cognitive functions such as memory, speech and
reasoning, among others. AD is a neurodegenerative disease that is the most
common cause of dementia. Approximately 35 million people worldwide suffer
from various types of dementia, with high mortality rates due to a lack of effective
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treatment methods. According to the report published by the Alzheimer’s Asso-
ciation (Alzheimer’s Association, 2016), approximately 5.4 million people have
been diagnosed with AD as of 2016, in America alone. Mild cognitive impair-
ment (MCI), refers to a minor-to-moderate loss in cognitive function, and MCI
patients are generally at a higher of developing AD. The role of neuroimaging
and specifically, magnetic resonance imaging (MRI), in early diagnosis of MCI
and AD is of increasing relevance, with revised diagnostic criteria for the latter,
published by the National Institute of Ageing and Alzheimer’s Association, in
2011. These now recommend assessment of brain images and the use of image-
based biomarkers in clinical practice, to aid in the early diagnosis. MRI modali-
ties offer a non-invasive mechanism for detecting early signs of neurodegenera-
tion, and consequently, are central to identifying descriptive and discriminative
biomarkers.

A widely accepted imaging biomarker for AD is the quantitative evaluation of
brain tissue atrophy, typically in terms of loss in volume. This is particularly true
for brain structures such as the hippocampus, which has been proposed in nu-
merous studies (Frisoni et al., 2002), (Barnes et al., 2004), (Morra et al., 2009), (Le-
ung et al., 2010), as a potential biomarker. In addition to loss in volume, statistical
shape analysis has found use in identifying discriminative features to distinguish
AD patients from healthy subjects. For example, in (Shen et al., 2012) the authors
used SSMs to assess global volume and local shape changes in hippocampi, and
derived from these predictors to discriminate between AD patients and healthy
subjects. (Zhou et al., 2009) used a combination of statistical shape analysis and
permutation testing, to identify significant differences in hippocampal morphol-
ogy between AD patients and normal controls. In other studies, such as (Ferrarini
et al., 2006), SSMs have been employed to characterise localised shape changes in
the lateral ventricles, for the same purpose.

In addition to AD-induced pathological changes in GM structures, numer-
ous diffusion tensor imaging (DTI) studies have also reported significant abnor-
malities in brain WM regions. WM abnormalities have been quantified based
on localised changes to diffusion properties such as fractional anisotropy (FA),
observed across AD and MCI cohorts, relative to age-matched healthy subjects,
(Stricker et al., 2009), (Medina et al., 2006). In (Medina et al., 2006) the authors
report substantial overlap in regions with reduced FA between MCI and mild-
AD groups, and consequently infer that WM changes occur in MCI prior to the
development of AD. Regions affected by impaired WM integrity, were found to
be concentrated in the corpus callosum and cingulum, among others. Similarly,
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(Stricker et al., 2009) reported greater diminution of microstructural integrity in
late myelinating WM tracts (such as the cingulum and corpus callosum) than
in early myelinating tracts (like the corona radiata and cerebral peduncles) in
AD patients relative to healthy subjects. Statistical analysis of diffusion-derived
quantities across multiple subjects, and comparisons between patient groups are
potentially further pathways to identification of MCI and AD biomarkers. Such
analyses have also found use in longitudinal studies, investigating the onset and
progression of AD and other types of dementia.

2.3 Statistical Shape Models and Atlases

Statistical shape models (SSMs) and analysis of shape variations across a popu-
lation are important tools for a variety of medical image analysis applications.
SSMs describe the variation in shape of an object/anatomical structure of inter-
est, about a mean shape representative of the training population. The variation
about the mean is described by a reduced set of parameters referred to as the
modes of variation. Describing shape variability in this manner first requires
registration of the shapes of interest, to identify correspondences and normalize
them with respect to rotation, translation and scale. The latter is necessary to ex-
clude any global differences in pose from being incorporated into the SSM. Suit-
able dimensionality reduction techniques such as Principal Component Analysis
(PCA) are subsequently employed to describe the overall variation in shape ob-
served across the training population, with a reduced set of parameters. PCA is
a linear dimensionality reduction technique which constructs a low-dimensional
representation of the data, in a manner that maximally captures the variation ob-
served across the data set (Jolliffe, 2002). This amounts to identifying a set of
uncorrelated, mutually orthogonal basis vectors (or principal eigenvectors) by
eigen-decomposition of the covariance matrix, estimated from centred data. Sub-
sequently, the training data can be approximated using a linear combination of
the estimated basis vectors.

Structured (triangulated meshes) and unstructured point-based representa-
tions of shape are the most popular for constructing SSMs, due to their simplicity
and flexibility. The type of shape representation also influences the subsequent
choice of method for registering shapes and modelling shape variability. SSMs
trained by PCA using point-based representations are often referred to as point
distribution models (PDM), coined by (Cootes et al., 1995). Other forms of shape
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representation often employed for shape analysis include: Fourier shape descrip-
tors (Staib and Duncan, 1996), spherical harmonics (Gerig et al., 2001a), implicit
descriptions using signed distance maps (Leventon, Grimson, and Faugeras,
2000), and medial models (Styner et al., 2004). While early work in training PDMs
relied on manually specified landmarks delineating the shapes of interest, such
an approach is prohibitively expensive for large data sets, comprising 3D anatom-
ical structures.

(Hufnagel et al., 2007) proposed an automatic probabilistic approach to jointly
establish correspondences and align shapes of interest, by considering each shape
to be transformed observations of a Gaussian mixture model (GMM). Conse-
quently, a probabilistic view of correspondences (or soft correspondences) was
proposed rather than an exact on-to-one mapping (hard correspondences) be-
tween shapes, as with previous approaches. These soft correspondences were
subsequently used to train SSMs by PCA, as in previous approaches relying on
hard correspondences. In another study (Hufnagel et al., 2009) extended their ap-
proach to directly estimate the modes of variation from the GMM (removing the
need for performing PCA separately) in a unified fashion, within a maximum-a-
posteriori (MAP) framework. Such a generative approach helps address a limita-
tion of standard PCA-based SSM construction, allowing it to model missing data,
and provides a sound mathematical framework for modelling variation in shape.
Although employing PCA for SSM construction is an approximation, which as-
sumes the group of shapes to be normally distributed, it has been used success-
fully in a variety of applications and is of considerable practical value. In a recent
study (Gooya et al., 2015), a more sophisticated generative model based on mix-
tures of probabilistic PCA models was proposed, to automatically estimate the
modes of variation, within a Bayesian clustering framework. Such a formulation
is well-suited to modelling multi-modal shape distributions, and enables auto-
matic model selection, i.e. the optimal number of mixture components and modes
of variation are directly estimated during the clustering process. Additionally,
this approach enabled un-supervised classification of shapes, based on their ge-
ometry. Consequently, such an approach can be used to automatically identify the
optimal number of sub-groups for any given population of shapes and thereby
distinguish between natural anatomical variations in shape and those induced by
pathology.

Definition of a standardized reference co-ordinate system is essential for
analysing medical images across multiple subjects. For 3D brain images, one
such widely employed reference frame is the Talairach space, used to spatially
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normalize brain structures from multiple subjects’ images. It provides a mecha-
nism for constructing population-atlases describing morphological and physio-
logical variations of the brain, across large cohorts. Such atlases provide a sys-
tematic framework for identifying relationships between ageing and disease pro-
gression, and the observed inter-subject variations. Construction of such atlases
thus involves definition of a reference co-ordinate space and choice of a suitable
spatial transformation mapping each subjects’ image, from its native space to the
chosen reference space. Choice of the former and latter are typically tailored to
each application, which has resulted in a plethora of structural and functional
brain atlases in recent years. Various medical image analysis and clinical appli-
cations such as automatic segmentation of brain images, neurodegenerative dis-
ease classification, and image-guided neurosurgery, are facilitated through the
construction and application of suitable brain atlases.

Construction of structural and functional atlases of the human brain began
as early as 1992, when the International Consortium for Brain Mapping (ICBM)
was founded (Mazziotta et al., 2001). ICBM began formulating a voxel-based
4D (three spatial and one temporal) probabilistic atlas of the brain, incorporat-
ing data from multiple sources including imaging, DNA and lifestyle informa-
tion, across a large and diverse demographic of subjects. Initiatives of this ilk,
have naturally led to the construction of pathology- and demographic-specific
atlases, describing the progression of neurodegenerative diseases such as AD.
Statistical and probabilistic atlases are in general better representations of a pop-
ulation than are single templates or atlases, as they account for the inherent inter-
subject variability. Magnetic resonance images (MRIs) from 150 young adults
were acquired within the ICBM, co-registered to a common reference frame, and
used to construct the average ICBM-152 atlas (Mazziotta et al., 2001). The lat-
ter is widely used in a variety of brain mapping software tools such as SPM
(http://www.fil.ion.ucl.ac.uk/spm/) and FSL (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/). Other studies of note include; (Hammers et al.,
2003), who proposed a framework for constructing maximum probability at-
lases from T1-weighted MRIs of young adults; and (Fischl, Sereno, and Dale,
1999), (Lyttelton et al., 2007), who proposed surface-based atlases of the cor-
tex to adequately model variations in the complex folded structure of sulci and
gyri across multiple subjects. These were generated using surface-matching tech-
niques, rather than volumetric atlases estimated using image registration. Vari-
ous studies have also proposed techniques to generate region-specific (Hammers
et al., 2007), disease-specific (Thompson et al., 2001), and WM atlases (Mori et al.,

http://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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2008) (of its constituent fibre tracts). In the context of the latter, (Durrleman et
al., 2011) proposed a joint registration and atlas construction framework for WM
fibre bundles based on diffeomorphisms and currents, enabling statistical anal-
ysis of their variation across populations. A thorough review of conventional
and state-of-the-art neuroanatomical atlases and a discussion of expected future
trends in the field, is presented in (Evans et al., 2012).

2.4 Thesis Aims and Objectives

The primary aim of this thesis is to formulate an automatic and robust framework
for group-wise registration of generalised point sets, to enable statistical analysis
of shapes and other features of interest such as diffusion-derived quantities. Two
main objectives are defined to this end:

• Formulate an automated group-wise, probabilistic, shape registration
framework based on mixtures of Student’s t distributions, which corre-
spondingly affords robustness to data outliers.

• Design a general framework for joint registration and clustering of multi-
dimensional point sets, that comprise disparate data features such as posi-
tions, orientations and scalar quantities (such as derived from diffusion MR
data).

2.4.1 Thesis Structure and Outline

The work undertaken and the methods proposed in this thesis, in line with the
discussed objectives, are presented in chapters 3-5. Concluding remarks sum-
marising major findings and a discussion of the limitations and potential im-
provements for the presented work are outlined in Chapter 6.

A Student’s t-mixture model -TMM- based group-wise point set registration
framework, for rigid and non-rigid registration, is presented in chapter 3. A
multi-resolution extension (mrTMM) to the same is also outlined. The inherent
robustness of TMM and mrTMM to outliers in the data and their consequent in-
fluence on registration accuracy is evaluated and compared with state-of-the-art
GMM-based methods, using both synthetic and clinical data. Furthermore, the
advantages of mrTMM over single-resolution TMM, in terms of registration ac-
curacy and computational efficiency are also discussed.
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The proposed TMM-based registration techniques are used to construct SSMs
by PCA, using automated techniques to generate the requisite training segmen-
tations. The quality of the resulting models are evaluated in terms of general-
isation, specificity, and compactness, and compared with those obtained using
GMM-based methods, in chapter 4.

A hybrid mixture model for joint registration and clustering of generalised
point sets, comprising, multiple data features such as spatial positions, orienta-
tions and scalar measures, is presented in chapter 5. The proposed approach is
employed for multi-subject analysis of diffusion-derived quantities such as white
matter (WM) fibre orientation and fractional anisotropy (FA), across patients di-
agnosed with AD and MCI, and healthy subjects. Hypothesis tests investigating
significant variations in FA between patient groups are conducted. The potential
of the proposed framework to facilitate automatic region-of-interest analyses of
diffusion data across multiple subjects, and to parcellate their WM volumes into
homologous regions, is also discussed.

The contributions described in this thesis have been adapted from articles
published in peer-reviewed conference proceedings and journals. Specifically,
chapter 3 is a combination of the work presented in (Ravikumar et al., 2015),
(Ravikumar et al., 2016b), (Ravikumar et al., 2016a) and (Ravikumar et al., 2017
Under review[b]), chapter 4 is based on (Ravikumar et al., 2017 Under review[b])
and chapter 5 draws upon work presented in (Ravikumar et al., 2017 Under re-
view[a]) and (Ravikumar et al., 2017).
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Chapter 3

Shape Registration

3.1 Introduction

Registration of surfaces, curves or point sets and correspondence estimation is an
open problem in computer vision and medical image analysis and has received
significant attention over the past few decades. Early work in the field includes
the well known and widely used generalized Procrustes (GP) (Gower, 1975) and
iterative closest point (ICP) (Besl and McKay, 1992) algorithms and various ex-
tensions of the same, namely, soft-assign Procrustes (Rangarajan et al., 1997) and
EM-ICP (Granger and Pennec, 2002),(Hufnagel et al., 2008),(Hermans et al., 2011),
respectively. These techniques rely on point-based representations of shapes to
align and establish correspondences across the same. The main limitations of
the GP method are its requirement for correspondences to be determined prior
to alignment and high sensitivity to outliers (as the Euclidean distance is min-
imised between shapes). The conventional ICP algorithm relies on establishing
exact correspondences by identifying the closest point pairs in the shapes to be
aligned. Although such an approach is computationally very efficient, it is also
severely affected by the presence of outliers in the point sets being aligned as this
may lead to the estimation of incorrect correspondences and consequently sub-
optimal transformations. Additionally, ICP is also constrained by the need for
the two shapes to be well-aligned initially, to satisfy the assumption that closest
point pairs correspond to each other, a non-trivial problem in medical imaging
applications.

Subsequent approaches have employed different types of features for reg-
istration and adopted a probabilistic view of estimating correspondences, to
address the limitations of nearest neighbour based techniques (such as ICP).
In such approaches, correspondence for each point on one shape is formu-
lated as a weighted combination of all points on the other shape, where the
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weights/probabilities are derived from a probabilistic function of the pairwise
distances (typically the squared Mahalanobis distance) between the shapes.
These include: the robust point matching (RPM) method, which utilises
point/edge-based features, a soft-assign algorithm for establishing correspon-
dence, and deterministic annealing optimisation for rigid (Rangarajan et al., 1997)
and non-rigid (Chui and Rangarajan, 2003) point matching; deformable surface
registration algorithms based on currents (Vaillant and Glaunès, 2005),(Durrle-
man et al., 2007); and others that employ diffeomorphic transformations in com-
bination with local geometry descriptors such as integral volume (Gelfand et al.,
2005) and surface curvatures (Wang, Peterson, and Staib, 2003).

Probabilistic approaches to point set registration are of particular interest as
they are topology independent and are tailored to address the challenges of, dif-
ferent cadinalities (number of points), missing information and varying degrees
of outliers, common to medical-image derived point sets. In recent years, vari-
ous such methods have been formulated, including: coherent point drift (CPD)
(Myronenko and Song, 2010), a pair-wise method for both rigid and non-rigid
registration; joint registration of multiple point clouds (JRMPC) (Evangelidis et
al., 2014), which is analogous to a group-wise version of strictly rigid-CPD (i.e.
only rotation and translation estimated; does not estimate global scaling during
alignment); robust pair-wise point set registration using Gaussian mixture mod-
els (Jian and Vemuri, 2011), where the point sets are represented as independent
GMMs and are aligned by minimizing the L2-norm between them; and a variety
of GMM-based group-wise, rigid (Granger and Pennec, 2002),(Hufnagel et al.,
2008), (Gooya, Davatzikos, and Frangi, 2015) and non-rigid (Rasoulian, Rohling,
and Abolmaesumi, 2012), (Wang, Vemuri, and Rangarajan, 2006), (Chen et al.,
2010) registration methods. In the context of training SSMs, which is of partic-
ular interest in this thesis, the recent work of (Gooya, Davatzikos, and Frangi,
2015) is most relevant, as their method (sparse statistical shape models or SpSSM)
was shown to produce SSMs of higher quality than a conventional GMM-based
method, namely, EM-ICP, proposed by (Hufnagel et al., 2008). SpSSM employs
a symmetric Dirichlet prior for the mixture coefficients to enforce sparsity (spar-
sity level is a user specified parameter, sp = [0, 1]) and identify and prune out
mixture components with low probability in explaining the observed data. Such
an approach starts from a maximal mean model, with a high density of points
which are subsequently removed as the registration progresses and the probabil-
ity of model points drops below a threshold enforced by the specified sparsity
level. The pruning process for the removal of such model points is achieved via
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quadratic programming, using a generalised sequential minimal optimiser. Con-
sequently, the number of mixture components used for a given data set is selected
over a continuous rather than discrete search space.

The problem of automatic SSM construction has been tackled previously in
different ways, some of which include, pair-wise template-to-training set regis-
tration, population-based techniques and group-wise shape registration meth-
ods. The third class of approaches is well-suited to automatic SSM generation as
it combines the process of rigid shape alignment and correspondence estimation
in a unified framework, unlike population-based methods where these two steps
are often de-coupled. Furthermore, they can be imbued with inherent robust-
ness to outliers and missing information in the data, through suitable stochastic
formulations of the problem. In this chapter, we propose a Student’s t-mixture
model (TMM) based group-wise, rigid and non-rigid registration framework for
unstructured point sets, which exploit the robustness of t-distributions to outliers
and harnesses the generative property of probabilistic model-based registration,
to accommodate missing data. Most existing probabilistic point set registration
approaches employ conventional GMMs, as in (Hufnagel et al., 2008),(Rasou-
lian, Rohling, and Abolmaesumi, 2012) or mixture models that combine Gaus-
sian components with a weighted uniform distribution component designed to
model noise and outliers that may be present in the data, as in CPD (Myronenko
and Song, 2010) and JRMPC (Evangelidis et al., 2014). Although the latter have
been shown to outperform the former in the presence of outliers, one limitation
is their need for manual tuning of the weight that controls the influence of the
uniform distribution component relative to the Gaussian components. Conse-
quently, prior knowledge of the degree of noise and outliers present in the data
being registered is often necessary. As this information is typically unavailable,
a framework that is inherently robust to noise and outliers is highly desirable.
TMM-based methods potentially offer a solution, as demonstrated in two previ-
ous studies on pair-wise rigid (Gerogiannis, Nikou, and Likas, 2009) and non-
rigid (Zhou et al., 2014) registration. We proposed two variants of TMM-based
group-wise rigid registration recently, (Ravikumar et al., 2016b) and (Raviku-
mar et al., 2016a), (Ravikumar et al., 2017 Under review[b]), respectively. In
the former, a numerical approach (gradient-ascent optimisation) was adopted to
estimate the desired transformation parameters, while in the latter two studies
these were estimated analytically by deriving closed-form expressions for the
same. Furthermore, in (Ravikumar et al., 2016a) (Ravikumar et al., 2017 Un-
der review[b]), we outlined a multi-resolution extension to the TMM algorithm
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(mrTMM), which showed improvement in registration accuracy, computational
efficiency, and SSM quality relative to the single-resolution approach.

The first part of this chapter focuses on probabilistic rigid registration meth-
ods (i.e. transformation parametrised by 7 degrees of freedom in 3D: rotation,
scaling, and translation) for point sets using TMMs, as the main application of
interest is the automatic construction of SSMs from medical images. The latter
requires: independence to topology, ability to handle shapes with different car-
dinalities (varying point counts), robustness to outliers, ability to accommodate
missing information, and recover large rigid transformations in the presence of
significant variations in shape. Additionally, group-wise registration approaches
are of particular interest as they are able to estimate the desired similarity trans-
formations and establish correspondences in an unbiased manner — a limitation
of pair-wise approaches (such as conventional CPD) employed in a one-to-many
registration strategy. The latter class of techniques often do not account for any
outliers or missing data that may be present in the template shape, which can af-
fect the registration and correspondence estimation process and ultimately result
in SSMs of lower quality. The second part of the chapter outlines a group-wise
non-rigid registration framework based on TMMs, to enable accurate estimation
of correspondences for complex geometries showing significant, non-linear shape
variations across a group, and where rigid registration alone is inadequate.

3.2 Probabilistic Mixture Models for Shape Registra-

tion

Mixture models are a weighted linear combination of probabilistic components,
often used to approximate complex data distributions under the assumption that
the data are independent and identically distributed (i.i.d). By formulating a joint
distribution over both the observed and hidden latent variables, the distribu-
tion of the former can be approximated by marginalizing out the latent variables
(Bishop, 2006). They are often employed to cluster data using a frequentist ap-
proach such as maximum likelihood (ML) estimation, to identify the parameters
of the mixture model. ML estimation is achieved by expectation-maximisation
(EM) (Dempster, Laird, and Rubin, 1977) which alternates between two steps:
the E-step where the posterior probabilities (expectation of the latent variables),
which describe the responsibility of a mixture model component in explaining
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the observed data, are computed; and the M-step, in which the computed poste-
riors are employed to estimate the parameters of the mixture model components.
Together, mixture models and the EM algorithm form a powerful framework
widely employed in medical image analysis. Here they are used to formulate a
probabilistic, group-wise rigid registration framework capable of aligning shapes
(represented as point sets) to a common reference frame and establishing corre-
spondences in a manner independent of their topologies and discretisation (i.e.
number of points used to represent each shape), while being robust to outliers.
Group-wise point set registration using mixture models is analogous to clustering
data, except the data, i.e. points representing each shape in the group, are con-
sidered to be transformed observations sampled from the model. Consequently,
transformations that align the shapes are treated as model parameters.

3.2.1 Probability Distributions: Gaussian vs. Student’s t

The Student’s t-distribution S, a generalization of the Gaussian distribution, can
be expressed as an infinite mixture of (scaled) Gaussians, with identical means µµµ
but different covariances. t-distributions have heavier tails than Gaussians and
thus are inherently more robust when fitting to data containing outliers (Bishop,
2006). For the multivariate case (equation 3.1b), a t-distribution is derived by im-
posing a Gamma distribution G as a prior on the covariance ΣΣΣ 1 of a multivariate
Gaussian distributionN and marginalising out the scaling weights u drawn from
G. This is achieved by evaluating the integral shown in equation 3.1a.

S(x|µµµ,ΣΣΣ, ν) =

∫ ∞
0

N (x|µµµ,ΣΣΣ/u)G(u|ν/2, ν/2)du (3.1a)

S(x|µµµ, σ2, ν) =
Γ(ν+D

2
)

Γ(ν/2)(πνσ2)D/2[1 + ∆2

ν
]
ν+D

2

(3.1b)

∆2 =
(x− µµµ)T (x− µµµ)

σ2
(3.1c)

where ∆2 represents the squared Mahalanobis distance evaluated between the
observed data x and a t-distribution centred at µµµ with variance σ2, Γ represents
the gamma function and D the dimensionality of the data.

1Here and throughout this thesis we assume isotropic covariance i.e. ΣΣΣ = σ2I
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We assume isotropic covariance for the mixture model throughout our work
as there is no closed-form solution for the registration parameters, using a gen-
eral anisotropic covariance model (Horaud et al., 2011). Consequently, although
numerical optimization techniques may be adopted for the same, this leads to a
substantial decrease in computational efficiency. However, based on the results
reported in (Horaud et al., 2011), an anisotropic covariance model may improve
registration accuracy, particularly when the data is corrupted by anisotropic
Gaussian noise.

The t-distribution is parametrised by ν, which represent the degrees of free-
dom that control the shape of the distribution and its heavy-tails. In the limit
ν → ∞ the t-distribution tends towards Gaussian behaviour and the effect of
varying ν, for the univariate case, is further illustrated in Fig. 3.1 a. To demon-
strate the robust nature of t-distributions, univariate data sampled from a nor-
mal distribution and subsequently corrupted by the inclusion of random outliers,
were fitted with a Gaussian and Student’s t-distribution. The resulting probabil-
ity density function (pdf) estimates for both distributions are very similar for data
without outliers (Fig. 3.1 b). However, as illustrated by Fig. 3.1 c, the response of
the Gaussian distribution is heavily distorted for data containing outliers while
the t-distribution remains relatively unchanged and centred on the original, true
mean value.
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FIGURE 3.1: (a) Plot depicting the influence of ν on the shape of
t-distributions, showing increasing similarity to overlaid Gaussian
distribution with increase in its magnitude. Maximum likelihood
fits of univariate Gaussian and Student’s t-distribution to uncor-
rupted data (b) and data corrupted by random noise (c) overlaid

on their respective histogram distributions.

3.2.2 Pair-wise Registration

Coherent point drift (CPD) proposed by (Myronenko and Song, 2010) is a widely
used pair-wise point set registration technique, capable of recovering rigid, affine
and non-rigid transformations. CPD employs Gaussian radial basis functions to
parametrise non-linear transformations and the associated basis function weights
are estimated as parameters of the mixture model, by maximising the likelihood
function using EM. Rigid, similarity and affine transformations may also be es-
timated in a similar manner. As with other probabilistic registration methods,
CPD considers the problem of non-rigid point-set registration, one of probability
density estimation. Here the ‘moving’ point-set (i.e. the shape to be deformably
registered to the fixed or reference shape), is considered to represent the centroids
of a Gaussian mixture model (GMM) and is fit to the second point-set (considered
as data points) by likelihood maximisation, using the expectation-maximisation
(EM) algorithm.

p(x|yj, θ) =
1

(2πσ2)D/2
exp−

∣∣∣∣∣∣∣∣x−Ty
j

∣∣∣∣∣∣∣∣2
2σ2 (3.2a)
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p(xn|Y, θ) =
w

N
+ (1− w)

M∑
j=1

p(xn|yj, θ)
M

, 0 ≤ w ≤ 1; (3.2b)

The key assumptions in such an EM-based probabilistic pair-wise registration
method are, each data points {xn=1...N} = X defining the ’fixed’ point set, are con-
sidered to be independent and identically distributed (i.i.d), and a noisy observa-
tion generated from a Gaussian distribution centred at a point belonging to the
moving point-set. Equation 3.2a describes the likelihood of a point x (in the fixed
point-set), being sampled from a GMM-component centred at Tyj . T represents
the desired spatial transformation (which may be rigid, similarity, affine or non-
rigid) and D, the dimensionality of the point-sets. θ denotes the set of all model
parameters comprising centroid positions yj , variance σ2 and transformations
T. Equation 3.2b describes the conditional probability of x, assuming equally
weighted Gaussian components in the mixture model, with an additional uni-
form distribution component (specified by the first term in the equation), where
— N denotes the number of points in the ’fixed’ point-set {xn=1...N} = X; M the
number of GMM components or points in the ’moving’ point-set {yj=1...M} = Y;
w balances the influence of the Gaussian and uniform distributions in the mixture
model, to accommodate noise/outliers; and {σ2,T} = θ denotes the set of model
and registration parameters to be estimated.

The i.i.d assumption for the data, allows the joint log-likelihood across all
data points to be expressed as a product of the individual conditional proba-
bilities p(x|Y, θ), resulting in the log-likelihood function shown in equation 3.3a.
The desired transformations and model parameters, θ, can be estimated by max-
imising the log-likelihood function directly, using gradient-based optimisation
techniques. Or alternatively, using the EM algorithm θ may be estimated itera-
tively, by minimising the expected complete data negative log- likelihood func-
tion Q(θt|θt−1), as described by equation 3.3c. In this case, analytical solutions
exist for updating estimates of the model and transformation parameters, at each
EM-iteration. Q is also an upper bound of the negative log-likelihood function,
which is minimised instead of the latter as its solution is intractable. Here and
throughout this chapter superscript t denotes the current EM-iteration of the al-
gorithm.

p(X|Y, θ) =
N∑
n=1

ln p(xn|Y, θ) (3.3a)
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θt = arg max
θ

p(X|Y, θ) ≡ arg min
θ

Q(θt|θt−1) (3.3b)

Q(θt|θt−1) = −
N∑
n=1

M∑
j=1

p(yj|xn, θ
t−1) ln(p(xn|yj, θ)) (3.3c)

EM-based minimisation of Q(θt|θt−1) is achieved by iteratively alternating be-
tween two steps: the expectation (E)-step, where the previous iteration’s estimate
for the models parameters θt−1, are used to compute the posterior probabilities
of GMM components p(t)(yj|xn); and the maximisation (M)-step, which uses the
estimated posterior probabilities to minimise Q(θt|θt−1) (refer to equation 3.3c)
with respect to each unknown parameter, obtaining revised estimates for Tt, σ2

t .
The posterior probabilities estimated in the E-step represent the probability of
correspondence between a GMM centred at Tyj and an observed data point xn.
They give rise to the notion of soft-correspondences, characteristic of probabilistic
registration/clustering approaches. These posterior probabilities are computed
using Bayes’ theorem as:

(3.4)

E − step : p(yj|xn)

=
p(yj)p(xn|yj)

p(x)

=
exp

− 1
2

∣∣∣∣∣
∣∣∣∣∣xn−Ty

j

σ2

∣∣∣∣∣
∣∣∣∣∣
2

∑M
j=1 exp

− 1
2

∣∣∣∣∣
∣∣∣∣∣xn−Ty

j

σ2

∣∣∣∣∣
∣∣∣∣∣
2

+(2πσ2)D/2 wM
(1−w)N

In equation 3.4, p(yj) represents the mixture coefficients, which can be explic-
itly estimated at each M-step of the algorithm. CPD however, assumes equal
mixing probabilities for all Gaussian components in the mixture model. p(x) rep-
resents the marginal distribution of the data, obtained by summing the joint dis-
tribution over all j = 1...M mixture components. For the specific case of non-rigid
registration using CPD, revised estimates for the unknown model parameters θt

at the tth EM-iteration are obtained by minimising the form Q shown in equation
3.5.



3.2. Probabilistic Mixture Models for Shape Registration 21

(3.5)

M − step : Q(θt|θt−1)

= arg min
θ

1

2σ2

N∑
n=1

M∑
j=1

p(yj|xn, θ
t−1)||xn − (yj + v(yj))||

2

+
D

2
ln(σ2)

N∑
n=1

M∑
j=1

p(yj|xn, θ
t−1) +

λ

2
φ(v)

The non-rigid transformation in CPD, is defined as some initial position
(given by the moving point set), plus a displacement function v(yj), as shown
in equation 3.5. In (Myronenko and Song, 2010) the authors show that by regu-
larizing the norm of v, a spatially smooth displacement field may be estimated.
Regularization of this nature is akin to employing a prior on the displacement
field of the form p(v) = exp−

λ
2
φ(v), where φ(v) represents the regularization term

and λ controls the trade-off between registration accuracy and smoothness of the
deformation field. The last term in equation 3.5 represents such a regularisation
once incorporated into Q. A ’coherence’ constraint (equivalent to the regularisa-
tion used in motion coherence theory) is enforced on the estimated deformation
field in this manner, which forces points in close proximity to move together. By
expressing φ(v) in a Reproducing Kernel Hilbert Space (RKHS) using a Gaussian
kernel, the authors in (Myronenko and Song, 2010) showed that the function v(yj)
which minimizes the upper boundQ (refer to equation 3.5), can be expressed as a
linear combination of Gaussian radial basis functions. Correspondingly, the non-
rigid registration process involves iterative estimation of the basis function coef-
ficients as parameters of the mixture model, by minimising Q. In summary, the
E-step computes the posterior probabilities of the GMM components, the M-step
updates estimates for the model and transformation parameters, based on the
computed posterior probabilities. The algorithm iteratively alternates between
these two steps until a convergence criterion is reached.

3.2.3 Group-wise Rigid Registration using Student’s t-Mixture

Model

Group-wise point set registration using mixture models is analogous to clustering
data, except the data i.e. points representing each shape in the group, are con-
sidered to be transformed observations sampled from a central mixture model.
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Consequently, transformations that align the data are treated as model parame-
ters (similar to the mean, variance of Gaussian components in a GMM, for exam-
ple). As highlighted previously, Student’s t-distributions (or t-distributions) are
a robust alternative to Gaussian distributions when modelling data with outliers.
A variety of algorithms using GMMs for both pair-wise and group-wise point set
registration, have been proposed in recent years. There are however relatively
few studies that investigate the use of a mixture of t-distributions for the same.
TMMs have been used previously for clustering noisy data and shown to outper-
form GMMs due to their robust nature (Peel and McLachlan, 2000) (Svensén and
Bishop, 2005). Consequently, by formulating a t-mixture model (TMM) based
group-wise registration framework to approximate the joint probability density
of a group of point sets (representing shapes) and align them to a common refer-
ence frame, estimation of the desired transformations and soft-correspondences
(across the group of shapes) is achieved with correspondingly greater degree of
robustness to outliers. Such a group-wise framework allows for the unbiased es-
timation of a mean shape/mean model which is iteratively refined and aligned to
each sample shape in a group. The estimated transformations aligning the mean
model to each sample shape are subsequently used to robustly align all sample
shapes in the group and establish soft-correspondences.

For a training set of K shapes (k = 1...K), where {xki} = Xk represents the
ith point (i = 1...Nk) on the kth shape, we assume there exists a t-distribution
centred at Tkµµµj , from which it is sampled. Additionally, all points xki on all K
shapes in the group are assumed to be i.i.d. Henceforth subscript (j = 1...M) is
used to represent mixture components, {µµµj} = M represents the centroids of the
model M and {Tk} = T represents the similarity transformation, parametrised by
rotation Rk, scaling sk and translation tk, that aligns the mean model M to the kth

shape in the training set and Xk represents the set of all points on the kth shape in
the training set. The conditional probability of a data point being sampled from
a mixture component can thus be expressed as in equation 3.6a.

p(xki|Tk,µµµj, σ
2, νj) = S(xki|Tkµµµj, σ

2, νj) (3.6a)

p(xki|Tk,M, σ2,Υ,Π) =
M∑
j=1

πjS(xki|Tkµµµj, σ
2, νj) (3.6b)

The conditional probability density for any data point xki on a training shape
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being sampled from the M -component mixture of t-distributions can subse-
quently be formulated using the sum rule of probability, as shown in equation
3.6b. Here {νj} = Υ represents the set of all degrees of freedom parameters in
the mixture and πj = Π represents the set of all mixture coefficients. Next, as-
suming that all data points on a training shape are independent and identically
distributed (i.i.d) the joint probability density for all Nk points on the kth shape
can be expressed as the product of the individual conditional densities, as de-
scribed in equation 3.7a. Here {M, σ2,Υ,Π} = Θ represents the set of all model
parameters.

p(Xk|Tk,Θ) =

Nk∏
i=1

p(xki|Tk,Θ) (3.7a)

ln(p(X|T,Θ)) =
K∑
k=1

ln(p(Xk|Tk,Θ)) (3.7b)

T,Θ = arg max
T,Θ

ln[p(T,Θ|X)] (3.7c)

Finally the log likelihood function of the complete training set {Xk} = X can
be expressed in similar fashion assuming the K training shapes are i.i.d (equa-
tion 3.7b). The optimal set of unknown parameters denoted Ψ = {Θ,T} can
be interpreted as those that maximise the posterior probability given by equa-
tion 3.7c or conversely the log-likelihood in equation 3.7b. There is however, no
closed-form solution to maximising equation 3.7c and consequently, the condi-
tional expectation of the complete data log-likelihood Q (refer to equation 3.8b) is
maximised iteratively with respect to each of the unknown parameters Ψ using
the expectation-maximisation (EM) framework, based on Bayes’ theorem. Q is
derived (similar to (Peel and McLachlan, 2000)) by computing the conditional ex-
pectation of the complete data log-likelihood L (refer to equation 3.8a) and treat-
ing the membership of data points xki to mixture components, and the covariance
scaling weights of the latter, as latent variables {zkij} = Z and {ukij} = U respec-
tively. The likelihood function is derived as a product of the marginal density of
Z, the conditional density of U given Z, and the observed data X given Z and U.

(3.8a)L(Ψ) = ln(p(X,U,Z|Ψ))
= ln(p(Z|Ψ)) + ln(p(U|Z,Ψ)) + ln(p(X|U,Z,Ψ))

At the (t + 1)th EM-iteration the current conditional expectation of the com-
plete data log-likelihood, given the previous iteration’s estimate for the model
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parameters Ψt, is expressed as:

(3.8b)

Q(Ψt+1|Ψt) =
K∑
k=1

N∑
i=1

M∑
j=1

[
P t
kij

[
ln(πj)− ln(Γ(

νj
2

)) +
νj
2

ln(
νj
2

)

+
νj
2

[(ln(U t
kij)−U t

kij)+ψ(
νtj +D

2
)−log(

νtj +D

2
)]−D

2
ln(2π)− 1

2
ln(σ6)

+
D

2
ln(U t

kij)−
U t
kij

2
[1 +

(xki − Tkµµµj)
T (xki − Tkµµµj)

σ2
]

]]
,

where, Γ is the Gamma function, Pkij represents the posterior probability
of an observed data point xki being drawn from a mixture component centred
at µµµj with νj degrees of freedom and Ukij represents the scaling weights of the
equivalent Gaussian distribution (i.e. these are derived from the expression
of multi-variate t-distributions as an infinite mixture of scaled Gaussians as
discussed in section 3.2.1). The EM algorithm iteratively alternates between two
steps:

(1) In the expectation (E)-step, the product of the conditional expectations of
the two latent variables Z = {zkij} and U = {ukij}, are computed given an es-
timate of the unknown parameters Ψ. This results in a corrected set of poste-
rior probabilities P ?

kij (as shown in equation 3.9b), which represent robust corre-
spondence probabilities between points on each shape and the mixture centroids.
These are subsequently employed in the M-step to update estimates for the un-
known parameters Ψ. On the (t+ 1)th EM-iteration, the expectations of the latent
variables are computed as follows:

EΨ(t)(zkij|xki) = P
(t)
kij =

πjS(xki|Tkµµµj, σ
2, νj)

M∑
j=1

πjS(xki|Tkµµµj, σ
2, νj)

(3.9a)

EΨ(t)(ukij|xki, zkij = 1) = U
(t)
kij =

νj +D

νj + ∆2
kij

(3.9b)

EΨ(t)(zkij|xki)EΨ(t)(ukij|xki, zkij = 1) = P
?(t)
kij = P

(t)
kijU

(t)
kij (3.9c)

∆2
kij is the squared Mahalanobis distance, defined previously in equation 3.1c.

(2) The maximisation (M)-step involves estimation of the model and transfor-
mation parameters by maximising Q (refer to equation 3.8b) with respect to each
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unknown parameter, sequentially. Expressions for updating all parameters ex-
cept νj are derived analytically (shown in equations 3.10 - 3.16). Differentiating
Q with respect to νj results in a non-linear equation that is solved using an itera-
tive root finding technique such as Newton’s method, for each component in the
mixture.

µµµ
(t+1)
j =

K∑
k=1

Nk∑
i=1

P
?(t)
kij (s

−1(t+1)
k RT (t+1)

k (xk − t(t+1)
k ))
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k=1

Nk∑
i=1

P ?
kij

(3.10)
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(t+1) =
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ND

K∑
k=1

Nk∑
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M∑
j=1

P
?(t)
kij ‖xki − s

(t+1)
k R(t+1)

k µµµj − t(t+1)
k ‖2 (3.11)

In equations (3.11,3.13), N =
K∑
k=1

Nk∑
i=1

M∑
j=1

Pkij is the total number of data points

in the training set. From an implementation point of view it is important to note,
in equations (3.10,3.11), µµµ(t+1)

j and σ2
(t+1) are updated using current estimates for

the transformation parameters, i.e. Tt+1
k , which are updated prior to the mixture

model parameters Θ, at each EM-iteration. As there exists no closed-form expres-
sion to estimate νj=1..M = Υ, they are computed by solving equation 3.12 using
Newton’s method:
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(3.12)

The maximum likelihood estimate for mixture coefficients πj is given by:

π
(t+1)
j =

K∑
k=1

Nk∑
i=1

P
(t)
kij

N
(3.13)

The transformation parameters for each shape in the training set are estimated as
follows:

Rotation : R(t+1)
k = USVT (3.14)
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Scaling : s
(t+1)
k =

tr{
Nk∑
i=1

M∑
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P
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k )TRk}
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(3.15)

Translation : t(t+1)
k = d(t+1)

k − skRkm(t+1)
k (3.16)

In equation 3.14 U,V are unitary matrices estimated by singular value decompo-
sition of matrix Ck, computed as:

C(t+1)
k =

Nk∑
i=1

M∑
j=1

P
?(t)
kij (xki − d(t+1)

k )(µµµj −m(t+1)
k )T , (3.17)

and S is a diagonal matrix given by, S = diag(1, 1, det(UVT )), used to enforce
estimation of strictly orthogonal rotation matrices Rk, whilst avoiding reflections
(similar to (Gooya, Davatzikos, and Frangi, 2015)). In equations (3.15 - 3.17),
d(t+1)
k and m(t+1)

k represent weighted centroids/barycenters expressed as shown
in equations (3.18 - 3.19).
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m(t+1)
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j=1
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?(t)
kij µµµj
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M∑
j=1

P
?(t)
kij

(3.19)

Derivations for all parameters presented in equations (3.10 - 3.16) are included
in Appendix A. The EM algorithm is summarised by the pseudo-code presented
in Algorithm 1.

3.2.3.1 Multi-Resolution Group-wise Rigid Registration

Registration algorithms in general, often suffer from convergence to local min-
ima, resulting in sub-optimal solutions. In image registration, this has been ad-
dressed previously by adopting a hierarchical multi-resolution registration ap-
proach that operates in a coarse-to-fine fashion and thereby reduces the chances
of local minima entrapment (Rueckert et al., 1999). (Frangi et al., 2002) proposed
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Algorithm 1 TMM
Inputs: Group of shapes Xk=1..K, number of mixture
components M, max.iterations
Outputs: Set of similarity transformations Tk, aligned
soft-correspondences, mean shape M

1: INITIALIZATION
2: Initialize M, σ2 using K-means clustering, πj = 1/M and νj = 3.0
3: All πj = 1/M and νj = 3.0
4: procedure EM(Xk,M, σ2,Υ,Π,Tk) . EM initialized
5: while Iteration < max.iterations do
6: Compute P ?

kij = PkijUkij . E-step
7: Update Rk, sk, tk . M-step
8: Update M, σ2, Π and Υ . M-step
9: end while

10: return M, σ2,Υ,Π,Tk

11: end procedure

a multi-resolution non-rigid B-spline registration framework for automatic land-
marking (and correspondence estimation) of multi-object shape ensembles via
an atlas-to-training-set registration strategy, for the purpose of training SSMs.
Such an approach however, can be computationally expensive in the case of large
data sets and requires construction of an unbiased atlas. A group-wise multi-
resolution approach is novel in the context of point set registration and was pro-
posed in our recent work (Ravikumar et al., 2016a), although, a similar approach
(multi-scale EM-ICP) was proposed previously by (Granger and Pennec, 2002).
The main differences between multi-scale EM-ICP and our method are — (a) the
former is a pair-wise registration approach while mrTMM is group-wise. The lat-
ter consequently enables estimation of a mean shape, correspondences and trans-
formations, in an unbiased manner; (b) multi-scale EM-ICP assumes uniform pri-
ors on the matches while mrTMM revises estimates for the mixture coefficients
at each iteration; (c) in order to reject outliers, multi-scale EM-ICP chooses an ad-
hoc threshold on the Mahalanobis distance and assigns a null weight for model
points farther away, while no such threshold needs to be defined for mrTMM as it
is inherently robust to outliers, due to its constituent heavy-tailed t-distributions;
and (d) in multi-scale EM-ICP the ’scene’ point set is decimated at each scale (or
variance) and the latter is reduced with each iteration using an annealing scheme.
With mrTMM the ‘scene’ point sets are left untouched and the mean model’s den-
sity is increased adaptively at each successive resolution. While the former may
be suitable for pair-wise registration applications, it could lead to over-fitting of



28 Chapter 3. Shape Registration

FIGURE 3.2: Schematic describes the registration process using
mrTMM. The inverted triangle represents the hierarchical coarse-
to-fine procedure used to up-sample the mean model (black points)
at each resolution level. The mean model is iteratively aligned to
the group of shapes (set of coloured points at the bottom), at each

successive resolution.

the model in the context of group-wise registration, as the main benefit of the
approach arises from starting at a high scale, leading to substantial decimation of
the ’scene’ point set. Additionally, such an approach would reduce the degree of
shape variability captured by the SSMs trained following registration (the main
application of interest in this study). Consequently, mrTMM is more suitable for
our application.

By embedding the TMM-based registration framework within a multi-
resolution scheme (abbreviated as mrTMM), the influence of local minima during
registration is reduced. mrTMM begins with a low density mean model (i.e. few
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mixture components) which is iteratively refined and upsampled at each succes-
sive resolution, through a process of ‘adaptive sampling’ from the mixture com-
ponents. The transformations computed at each level are used to initialize the
subsequent resolution and the overall model variance is decreased at each suc-
cessive level by populating the mean model with new points. This reduction in
model variance at each successive resolution refines the estimated transforma-
tions and improves registration accuracy. ‘Adaptive sampling’ to increase mean
model density is achieved by imposing a multinomial distribution over the es-
timated mixture coefficients πj and generating random samples S from those t-
components in the mixture model that have a high probability in explaining the
observed data, i.e. sn new model points are sampled from the jth mixture com-

ponent, subject to the constraints
M∑
j=1

snj = S and
M∑
j=1

πj = 1. S is a user-specified

parameter and in this study we fixed Sr = M r−1, where r represents the current
resolution level, for all experiments (i.e. M is doubled at each successive resolu-
tion). The number of new model points sampled from each mixture component
is described by equation 3.20a. Random samples are drawn from a zero-centered
Gaussian distribution and an inverse χ2-distribution with νj degrees of freedom,
to generate new model points. This is because t-distributed random variables can
conveniently be expressed as shown in equation 3.20b, where µµµnj represents the
nth model point sampled from µµµj , the centroid of the jth mixture component.

p(snj |πj, S) =
S!
S∏
n=1

snj !

M∏
j=1

πj (3.20a)

µµµnj = µµµj +N (0, σ2)

√
νj

χ2(νj)
(3.20b)

Such a multi-resolution approach reduces the influence of local minima on
the registration process, which may be introduced during model initialisation
by k-means clustering (or similar processes) or during estimation of the model
parameters. The mrTMM framework is further described by Algorithm 2. The
schematic shown in Fig. 3.2 helps illustrate the up-sampling process, used to
increase the density of the mean model at each resolution level.
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Algorithm 2 mrTMM
Inputs: Group of shapes Xk=1..K, number of mixture

components M, max.resolutions, max.iterations

Outputs: Set of similarity transformations Tk, aligned

soft-correspondences, mean shape M

1: INITIALIZATION

2: Initialize M, σ2 using K-means clustering, πj = 1/M and νj = 3.0

3: procedure EM(Xk,M, σ2,Υ,Π,Tk) . EM initialized
4: while Resolution < max.resolutions do
5: while Iteration < max.iterations do
6: Compute P ?

kij = PkijUkij . E-step
7: Update Rk, sk, tk . M-step
8: Update M, σ2, Π and Υ . M-step
9: end while

10: Compute snj to be sampled from each µj
11: Adaptively sample M new model points
12: Re-initialize all πnewj = 1/Mnew and νnewj = 3.0, νoldj retained
13: return Mnew, σ2

old,Υ
new,Πnew,Told

k

14: end while
15: end procedure

3.2.4 Group-wise Non-Rigid Registration using Student’s t-

Mixture Model

The proposed TMM-based group-wise rigid registration framework (refer to sec-
tion 3.2.3), is extended to group-wise non-rigid registration, referred to as TMM-
NR. The non-rigid transformation is parametrised by Gaussian radial basis func-
tions, and formulated similarly to CPD, based on Motion Coherence Theory (as
discussed in section 3.2.2). As with group-wise rigid registration, the primary
difference between pair-wise CPD and the proposed approach lies in the assump-
tion that each shape in a group, is a transformed observation of the central mix-
ture model. With CPD and pair-wise approaches in general, the target shape is
typically considered to be a transformed observation of the ’moving’ shape, i.e.
the shape to be registered is considered to represent the centroids of a mixture
model. A similar approach for pair-wise registration of shapes using TMMs was
proposed previously, by (Zhou et al., 2014).
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In the proposed approach the desired non-rigid transformations are defined
with respect to the mean model M as: M + vk(M), where v is a displacement
function mapping the template to the kth sample in the group. Here the mean
model is defined by the centroids of the central TMM, as with its group-wise
rigid counterpart. Consequently, to ensure the mean model is unbiased and rep-
resentative of the group of shapes of interest, group-wise non-rigid registration
using TMMs is always initialised by its group-wise rigid counterpart. This aids
in recovering global differences in pose across shapes and also serves to initialise
the centroids µj = M and degrees of freedom νj of the TMM. This also helps
minimise the chances of local minima entrapment, during non-rigid registration.
As highlighted previously, in (Myronenko and Song, 2010) the authors show that
by regularizing the norm of v, a smoothness constraint is enforced on the dis-
placement field, which forces points in close proximity, to move together. Regu-
larization of this nature is akin to employing a prior on the displacement field of
the form p(v) = exp−

λ
2
φ(v), where φ(v) represents the regularization term and λ

controls the trade-off between registration accuracy and smoothness of the defor-
mation field. The prior on the displacement field is incorporated into the TMM,
resulting in a log-likelihood function expressed as equation 3.21a. Using vari-
ational calculus, (Myronenko and Song, 2010) show that the function v, which
maximises the data likelihood, can be expressed as a linear combination of radial
basis functions (refer to equation 3.21b). Consequently, to register the template
to the kth sample in each group, the likelihood function to be maximised with
respect to the basis function weights wkj = Wk, is expressed as shown in equa-
tion 3.21c, G represents the Gaussian kernel/Gram matrix. The gram matrix is

M ×M in size, with elements: G(µµµl,µµµm) = exp−||
µlµlµl−µmµmµm

2β ||2 . Here β represents the
width of the Gaussian kernel, which regulates the frequencies filtered out when
fitting to data (as the Gaussian kernel acts as a low-pass filter) and consequently,
controls the smoothness of the resulting deformation field. As defined previously
in section 3.2.3, Θ represents the set of all mixture model parameters. The basis
function weights to register the mean template to each sample in a patient group,
are estimated similarly to (Myronenko and Song, 2010).

(3.21a)ln p(X|Θ) =
K∑
k=1

Nk∑
i=1

ln
M∑
j=1

πjS(xki|vk(µµµj), σ2, νj) +
λ

2
φ(vk)

vk(q) =
M∑
j=1

wkjG(q− µµµj) (3.21b)
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Q(Θt+1,Wt+1
k |Θt,Wt

k) = − 1

2σ2
p

Nk∑
i

M∑
j

P ?t
kij‖xki − (µµµj + vk(µµµj))‖2 +

λ

2
WT

k GWk

(3.21c)

3.3 Results and Discussion

The methods proposed in this chapter, namely, rigid and non-rigid variants of
TMM and mrTMM, are validated using both synthetic and clinical data. The rigid
versions are compared with four state-of-the-art rigid point set registration meth-
ods: rigid-CPD, SpSSM, JRMPC and a group-wise GMM-based method (denoted
GMM) similar to EM-ICP proposed by (Hufnagel et al., 2008). Our implemen-
tation of GMM, however, explicitly estimates the variance of the mixture model
at each iteration as the registration progresses, while EM-ICP heuristically de-
creases the same with each successive iteration. The difference between GMM
and SpSSM lies in the estimation of the mixture coefficients. The former employs
classical maximum likelihood estimation, while the latter, uses a conjugate prior
and opts for Bayesian estimation. The original pair-wise, rigid CPD algorithm
(Myronenko and Song, 2010) is used for comparison with the synthetic data as
instances in the group are transformed and modified versions of the raw Stan-
ford bunny point set. For the clinical data however, we opt for a group-wise ver-
sion of CPD to enable direct comparison with the other methods. The non-rigid
TMM and mrTMM algorithms are compared with non-rigid CPD alone, as it was
shown to outperform various other point set registration techniques in (Myro-
nenko and Song, 2010) and has been widely employed in a variety of medical
image analysis applications.

The synthetic data set was generated using the 3D Stanford bunny point set 2.
It comprises of the original point set and three modified and transformed copies,
generated as follows: (1) original bunny point set was cropped along the xy-,
yz- and xz-planes to generate three distinct samples with missing information at
different spatial locations (depicted in Fig. 3.3(b-d)), (2) rigid transformations (i.e.
only translation and rotation) were subsequently applied to the cropped samples
and (3) all four point sets were finally corrupted by the addition of uniformly
distributed outliers and Gaussian noise to varying degrees. Table 1 describes the
degree of noise and outliers applied to each sample in both synthetic data sets

2The Stanford 3D scanning repository.
Available at: http://graphics.stanford.edu/data/3Dscanrep/
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FIGURE 3.3: 3D bunny data set: (a) decimated original surface mesh;
sample (a) cropped along: (b) yz-plane, (c) xz-plane and (d) xy-

plane.

and their corresponding ground truth transformations. The resulting data sets
are depicted in Fig. 3.4. The synthetic data were generated in this manner to
evaluate the ability of the proposed methods to accurately align shapes in the
presence of: (1) large rotational offsets with minimal overlap between samples,
(2) missing information and (3) varying degrees of outliers.
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FIGURE 3.4: Transformed bunny data set comprising four samples
(black). Samples (b-d) generated by rigidly transforming sample
(a). All samples corrupted by varying proportions of Gaussian noise

(green) and uniformly-distributed outliers (red).
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TABLE 3.1: Rigid transformations and degree of outliers used to
generate bunny data set.

Sample Nk Rg
k tgk (cm)

Gaussian
noise(%)

Random
outliers(%)

1 2420 - - 13 2.50

2 1883
x: 64◦,

y: 22.50◦

x: 0.20,
y: -0.30,
z: 0.50

9 4

3 1889
y: 50◦,
z: 20◦

x: -0.25,
y: 0.35,
z: -0.15

14 6

4 1658
z: 60◦,
x: 18◦

x: -0.10,
y: -0.50,
z: 0.40

11 5

Four clinical data sets were also used to validate the proposed rigid registra-
tion methods: (a) Femur: 2D set of (K =1000) femoral heads segmented auto-
matically from dual energy X-ray absorptiometry (DXA) images (depicted in Fig.
3.5), using Hologic Apex 3.2, a software frequently employed in the clinic. DXA
images and their segmentations were acquired in a previous study (McCloskey
et al., 2007); (b) Hippocampus_Ctrl: 3D set of hippocampi segmented auto-
matically from T1-weighted magnetic resonance (MR) images of healthy subjects
(K =50); (c) Hippocampus_MCI: 3D set as for (b), but acquired from patients
diagnosed with MCI (K =28) (examples shown in Fig. 3.6). For (b) and (c), MR
images were acquired as part of the VPH-DARE@IT project3 and the automatic
segmentation tool based on shape-constrained deformable models, was provided
by Philips Research Laboratories, Hamburg, Germany (Zagorchev et al., 2016);
and (d) Heart: 3D set of hearts comprising the epicardium and endocardium
for both left and right ventricles (K =30). Training segmentations for the heart
were generated from short-axis MR images of healthy subjects (K =10), patients
diagnosed with pulmonary hypertension (PH, K =10) and patients diagnosed
with hypertrophic cardiomyopathy (HCM, K =10), as part of a previous study
(Albà et al., 2014). With (d), samples from all three diagnostic groups were pooled
into a single data set and used to validate the proposed methods. This strategy
is adopted for the heart data set to assess the ability of the proposed methods

3http://www.vph-dare.eu/
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FIGURE 3.5: Raw DXA images from the femur data set overlaid
with their respective boundary masks. Red arrows indicate regions
with over- or under-segmented boundaries, which result in point

sets with varying degrees of outliers.

to accurately align and generate high quality SSMs in the presence of significant
pathology-induced variations in geometry across training shapes. Additionally,
the heart comprising both ventricles and the endo-/epi-cardium is used for val-
idation due to its topological complexity (i.e. not homeomorphic to a sphere), to
illustrate the independence of the proposed framework to topology. Shapes de-
rived from various clinical domains are used to validate the proposed methods,
to highlight the general and flexible nature of the probabilistic framework. Com-
parisons are made with the state-of-the-art in terms of rigid registration accuracy
for both synthetic and clinical data.

The publicly available synthetic 3D face data set (provided as part of the CPD
package, available at: https://sites.google.com/site/myronenko/

research/cpd), devoid of any synthetic outliers, is employed initially to as-
sess non-rigid registration accuracy of the proposed TMM-based method. This
data set comprises a ground truth face point set and 50 deformed versions of the

https://sites.google.com/site/myronenko/research/cpd
https://sites.google.com/site/myronenko/research/cpd
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FIGURE 3.6: Hippocampi automatically segmented from MR im-
ages of a healthy subject (top row) and MCI patient (bottom row).
Axial and saggital view of segmentations overlaid on their respec-
tive raw images are shown in the left and centre columns respec-
tively and the surfaces generated from these are depicted in the col-

umn on the right.

same. The former is non-rigidly registered to each deformed instance using the
proposed approach, the original pair-wise non-rigid CPD algorithm and a group-
wise variant of the CPD algorithm (gCPD). Hausdorff distance (HD) and mean
surface distance (MSD) measures are evaluated following registration, between
the registered and the original deformed face point sets, and used to compare the
proposed approach with the two variants of the non-rigid CPD algorithm.

One clinical data set, comprising complex geometries is also used to compare
the registration accuracy of TMM-NR, with non-rigid gCPD. 27 brain ventricu-
lar geometries containing — lateral ventricles, third ventricle, cerebral aqueduct
and fourth ventricle; segmented from T1-weighted MRIs of 9 AD, 9 MCI and 9
healthy Control subjects constitute the clinical data set employed. The body
of the lateral ventricles and the third ventricle were segmented similarly to the
hippocampi data sets (discussed previously), using the approach proposed in
(Zagorchev et al., 2016). The cerebral aqueduct and fourth ventricle meanwhile,
were segmented using a multi-atlas label propagation approach. Segmentations
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resulting from each approach was combined and point sets were automatically
extracted from these, using a marching cubes-based algorithm. Accurate group-
wise registration of the ventricles data set is very challenging as the samples ex-
hibit a very high degree of variability in geometry across samples. This is in
part due to significant enlargement of the lateral ventricles in AD and MCI pa-
tients, relative to Control subjects, as a consequence of tissue atrophy in the
surrounding grey and white matter. It is important to note that, the clinical data
sets were co-registered using group-wise (non-rigid) CPD and compared with
TMM-NR, rather than its pair-wise counterpart. This is because, the high degree
of variability in the clinical data sets, makes it difficult to choose one of the con-
stituent samples as the template (or ’moving’ point set), without significantly bi-
asing the results of subsequent registrations. Initial group-wise rigid registration
offers a solution to this issue, by first estimating a mean template, representative
of the shapes in each data set, whilst jointly correcting any differences in pose
between the samples. The estimated mean template is subsequently employed
for group-wise non-rigid registration, and deformed to match each sample in a
group, whilst simultaneously being revised itself (as done in the rigid registration
step). This process is followed using both methods, namely, group-wise CPD and
TMM-NR. The registration accuracy of these are subsequently compared using
the HD and MSD metrics, evaluated between the deformed templates and the
ground truth shapes.

3.3.1 Rigid Registration Accuracy

As ground truth transformations were available for the synthetic data set, regis-
tration accuracy was assessed by evaluating the root-mean-squared-error (RMSE)
(similar to (Evangelidis et al., 2014)) of the estimated rotation matrices, relative to
the ground truth rotations. RMSE was computed as described by equation 3.22a,
where ||·||F denotes the Frobenius norm and Rg

k and Rk represent the ground
truth rotation applied to the kth sample in the group and the corresponding ro-
tation matrix estimated for the sample, respectively. As the synthetic data set
is generated by rigidly transforming the bunny point set (denoted sample 1, re-
fer to Table 1), the estimated rotations for the remaining samples (relative to the
mean) are transformed to the coordinate frame of sample 1 to enable direct com-
parison with their corresponding ground truths. This is achieved by computing
the product of Rk=2,3,4 and the inverse of the rotation estimated for sample 1,
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denoted RT
1 in equation 3.22a. Additionally, the intrinsic distance between the es-

timated and ground truth rotations (Huynh, 2009) were also evaluated as shown
in equation 3.22b, for easier interpretation of the rotation errors (θerr), in terms
radians/degrees.

RMSE = ||Rg
k − RkRT

1 ||F (3.22a)

(3.22b)θerr = arccos

[
tr((Rg

k(RkRT
1 )T )− 1

2

]
Registration accuracy was also evaluated for all four clinical data sets, using

the HD and MSD metrics. These measures were evaluated as shown in equations
3.23a - 3.23b, where dmin(A,B) denotes the minimum distance for each point in
shape A to shape B. HD and MSD measures were computed between the aligned
soft-correspondences estimated for each sample in the group and the correspond-
ing mean shape estimated for the group. Alignment accuracy was evaluated in
this manner because — (a) registration errors evaluated between the estimated
soft correspondences and the original point sets would be difficult to interpret for
data containing substantial outliers (as in the case of the femur data set), as the
proposed methods would be robust to such outliers, thereby resulting in high HD
and MSD values, which would not reflect the improvement in registration qual-
ity achieved (relative to the state-of-the-art); (b) the aim of these experiments was
to assess the ability of the proposed methods to rigidly align a group of shapes,
in a manner robust to the presence of noise and outliers. Consequently, HD and
MSD measures evaluated between the soft correspondences (established for each
shape) and the mean shape estimated for each group, reflect the ability of the
proposed methods to accurately align a group of shapes to a common reference
frame; (c) these experiments were designed to complement subsequent ones eval-
uating SSM quality (refer to chapter 4), for SSMs trained using the estimated soft
correspondences, i.e. both sets of experiments evaluating rigid alignment accu-
racy and SSM quality, together reflect the quality of registration achieved using
the proposed approaches. For the data set of hippocampi, alignments were per-
formed independently for the healthy and MCI samples and consequently, regis-
tration accuracy was evaluated separately for the two hippocampi groups.

HD = max(max(dmin(A,B)),max(dmin(B,A))) (3.23a)



40 Chapter 3. Shape Registration

MSD = mean(mean(dmin(A,B)),mean(dmin(B,A))) (3.23b)

3.3.1.1 Synthetic data

Table 3.2 summarizes the alignment accuracy of each method investigated, for
the synthetic data. The RMSE values for each transformed sample (i.e. samples
(b-d) in Fig. 3.4) indicate that the proposed methods, TMM and mrTMM, achieve
significantly lower registration errors than CPD, SpSSM and GMM across all
three samples. Although JRMPC shows good robustness and achieves marginally
lower errors for samples 3 and 4 (relative to TMM and mrTMM), it is unable to
recover the rotation for sample 2 and results in significantly higher errors. The
number of model points (user-specified parameter) was set to 940, which is 50%

of the median cardinality of the synthetic data set, for each group-wise regis-
tration method investigated. In the case of CPD, a pair-wise approach, this is
determined by the number of points used to represent the ’moving’ point set.
As outlined previously in section 3.1, JRMPC and CPD require a user-specified
parameter that controls the weight of the uniform distribution component in the
mixture model and consequently the degree of robustness of the model to noise
and outliers. Values in the range of (0.1 − 0.9) were tested and the value return-
ing the lowest registration errors (reported in Table 3.2) was considered optimal
for the data set. Mean RMSE errors are computed across samples and used to
compare each registration method (using a paired sampled t-test, considering a
significance level of 5%). TMM and mrTMM achieve significantly lower errors,
highlighted in bold in Table 3.2.

TABLE 3.2: RMSE values computed between estimated and ground
truth rotations for 3D bunny data set.

Method Sample 2 Sample 3 Sample 4 Mean RMSE
CPD 0.1781 0.1021 0.1841 0.1548 ± 0.05

SpSSM 1.5133 0.0944 0.0700 0.5592 ± 0.83

GMM 1.2156 0.8260 1.2786 1.1067 ± 0.24

JRMPC 1.8541 0.0022 0.0011 0.6191 ± 1.07

TMM 0.0232 0.0260 0.0287 0.026 ± 0.003
mrTMM 0.0012 0.0031 0.0016 0.002 ± 0.001

The RMSE values presented in Table 3.2 and the intrinsic rotation errors in Ta-
ble 3.3 indicate that SpSSM and JRMPC are able to recover the applied rotations to
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TABLE 3.3: Intrinsic rotation errors evaluated in terms of radians
(Rad.) and degrees (Deg.) between estimated and ground truth ro-

tations.

Method Sample 2 Sample 3 Sample 4 Mean Error
Rad. Deg. Rad. Deg. Rad. Deg. Rad. Deg.

CPD 0.128 7.327 0.072 4.139 0.155 8.886
0.118
±

0.04

6.784
±

2.42

SpSSM 1.129 64.69 0.067 3.824 0.049 2.838
0.415
±

0.62

23.78
±

35.43

GMM 0.903 51.74 0.623 35.70 0.943 54.05
0.823
±

0.17

47.16
±

9.99

JRMPC 1.5103 86.53 5 ×
10−4 0.029 0.002 0.134

0.50
±

0.87

28.90
±

49.91

TMM 0.015 0.838 0.015 0.887 0.019 1.107
0.016
±

0.002

0.944
±

0.14

mrTMM 0.001 0.06 0.0024 0.139 0.001 0.066

0.001
±

5.8 ×
10−410−410−4

0.09
±

0.04

a high degree of accuracy for samples 3 and 4, but fail to do so for sample 2. This
may be attributed to the smaller capture range of group-wise GMM-based meth-
ods for this synthetic data set, in comparison to CPD and the proposed TMM-
based methods. Additionally, the failure of group-wise GMM-based methods to
recover the rotation applied to sample 2 may be due to the high degree of rotation
(> 60◦) applied about the x-axis. CPD is able to recover synthetic rotations to a
moderate degree of accuracy and shows good robustness to noise and outliers.
It is interesting to note that JRMPC was shown to outperform CPD in (Evange-
lidis et al., 2014) when the applied synthetic rotations were of lower magnitude
(maximum of 30◦). This supports our observation that although JRMPC shows
good robustness to noise and outliers, it lacks the ability to recover large rota-
tional offsets. This hypothesis was further validated by conducting an additional
experiment using the bunny data set where the cropped samples (refer to Fig.
3.3(b-d)) were rotated to larger degrees, without the inclusion of synthetic noise
and outliers. The proposed methods were able to recover rotations in the range
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of [−60◦, 60◦], applied along multiple axes, while CPD and JRMPC failed to do so.
This is visually described and verified by the images shown in Fig. 3.7.

FIGURE 3.7: Experiment investigating capture range of registration
methods. Sample (a) original bunny point set, (b) point set in (a)
rotated by 60◦ about x-axis and −60◦ about y-axis, (c)point set in (a)
rotated by 60◦ about y- and z-axes and (d) point set in (a), rotated by
−60◦ about z-axis and 60◦ about x-axis. (e) point sets aligned using
mrTMM, (f) point sets after alignment using JRMPC and (g) point

sets aligned using pair-wise CPD.

The proposed TMM-based methods offered substantial improvements over
GMM-based approaches in the synthetic data experiments, as they are more ro-
bust to noise and outliers, have a wider capture range for recovering rotational
offsets, do not require any prior knowledge of the degree of outliers present in
the data and correspondingly, require fewer user-specified parameters than CPD
and JRMPC. Rotation errors evaluated in terms of radians and degrees (Table
3.3) complement and are consistent with the RMSE values reported in Table 3.2.
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The proposed methods achieved significantly lower angular errors, evaluated be-
tween the estimated and ground truth rotations, relative to the state of the art.
Additionally, in the presence of significant outliers and large rotational offsets,
mrTMM offers substantial improvement over TMM in this regard.

3.3.1.2 Clinical data

FIGURE 3.8: MCI-hippocampi (first row), healthy-hippocampi (sec-
ond row), heart data set (third row) and femur data set (fourth row).
First column: Raw point sets prior to alignment; second column:
estimated mean shapes; third column: aligned shapes; and fourth

column: aligned soft-correspondences (using mrTMM)

Registration accuracy of the proposed methods was also compared with the
state of the art using clinical data. The raw point sets from each data set are shown
in Fig. 3.8 (a,e,i,m). Fig. 3.8 (b,f,j,n) depict the mean shapes estimated for each
group using mrTMM and Fig. 3.8 (c,g,k,o) and Fig. 3.8 (d,h,l,p) represent the
corresponding aligned shapes and soft-correspondences, respectively, for each
clinical data set. The significant level of outliers present in the femur data set is
evident in Fig. 3.8 (m), while Fig. 3.8 (n) demonstrates the ability of mrTMM
(similar result obtained for TMM as well) to estimate a valid mean shape in the
presence of such outliers. Alignment errors were quantified using the HD and
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MSD measures, presented in Table 3.4,3.5 for the hippocampi, Table 3.6 for the
heart and Table 3.7 for the 2D-femur data sets (where M represents the number
of mixture components used, for each method).

TABLE 3.4: Registration errors evaluated between the aligned
soft correspondences and the mean shape estimated for MCI-

hippocampi data set.

Method M
Hippocampus_MCI (K = 28)
HD (mm) MSD (mm)

gCPD 1280 3.32 ± 1.17 0.61 ± 0.16
SpSSM 1906 5.80 ± 1.11 0.80 ± 0.16

GMM 1280 5.60 ± 1.12 0.86 ± 0.20

TMM 1280 3.39 ± 1.25 0.62 ± 0.17
mrTMM 1280 3.30 ± 1.32 0.58 ± 0.16

TABLE 3.5: Registration errors evaluated between the aligned
soft correspondences and the mean shape estimated for healthy-

hippocampi data set.

Method M
Hippocampus_Ctrl (K = 50)
HD (mm) MSD (mm)

gCPD 1280 3.38 ± 1.06 0.62 ± 0.13
SpSSM 787 6.25 ± 1.32 0.94 ± 0.24

GMM 1280 7.56 ± 1.22 0.88 ± 0.22

TMM 1280 3.26 ± 1.02 0.62 ± 0.14
mrTMM 1280 3.25 ± 1.10 0.61 ± 0.14

TABLE 3.6: Registration errors evaluated between the aligned soft
correspondences and the mean shape estimated for heart data set.

Method M
Heart (K = 30)

HD (mm) MSD (mm)
gCPD 2560 17.51 ± 3.73 2.80 ± 0.66
SpSSM 2191 32.41 ± 9.96 4.10 ± 1.09

GMM 2560 32.41 ± 10.32 4.07 ± 1.17

TMM 2560 15.45 ± 3.96 2.80 ± 0.67
mrTMM 1280 15.74 ± 4.30 2.68 ± 0.62
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Statistical significance of the computed registration errors was assessed us-
ing a paired-sample t-test (considering a significance level of 5% ). The proposed
methods (TMM and mrTMM) and gCPD 4 were comparable in registration accu-
racy and outperformed SpSSM and GMM in experiments conducted using both
hippocampi and heart data sets. Significant improvements in accuracy are high-
lighted in bold in Table 3.4 and 3.5 for the MCI and healthy groups, respectively.
It should be noted however, gCPD requires an additional user-specified param-
eter (as with CPD), which controls the weight of the uniform distribution com-
ponent in the mixture model and by extension the degree of robustness of the
model to outliers. This parameter had to be tuned to identify the optimal value,
based on registration accuracy. Weights of 0.7 and 0.3 were found to produce the
lowest errors for MCI and healthy groups respectively, presented in Table 3.4 and
3.5. While for the heart data set, 0.5 was found to be optimal (errors presented
in Table 3.6). However, for these data sets, sensitivity of the registration accuracy
achieved by gCPD to the uniform distribution weights employed was modest, i.e.
no significant change in registration errors were observed by varying the weights,
as these data sets contained minimal noise/outliers. The proposed methods were
equally robust, showing marginal improvements in some cases, required fewer
user-specified parameters and consequently, are well suited for automation.

TABLE 3.7: Registration errors evaluated between the aligned soft
correspondences and the mean shape estimated for femur data set.

Method M
Femur (K = 1000)

HD (mm) MSD (mm)
gCPD 1280 34.07 ± 2.98 2.56 ± 1.09

SpSSM 1474 77.43 ± 4.37 3.16 ± 1.07

GMM 1280 78.20 ± 4.29 3.31 ± 0.99

TMM 1280 9.60 ± 4.82 2.23 ± 0.90
mrTMM 1280 10.04 ± 5.33 2.19 ± 0.92

Although the HD values reported in Tables 3.4 and 3.5 seem large for the
hippocampi, it is important to note that they were computed between the aligned
correspondences estimated for each sample and the mean shape estimated for
the corresponding patient group (i.e. MCI or healthy). Consequently, they reflect
the natural variation in hippocampal size present across samples in both patient

4As mentioned previously, gCPD is employed in place of JRMPC as the latter does not recover
global scaling across point sets.
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groups. Furthermore, these are primarily concentrated at anterior and posterior
ends of the hippocampi (and not in the central body).

FIGURE 3.9: Mean femur shapes estimated using: (a) GMM, (b)
SpSSM, (c) gCPD and (d) TMM.

However, with the femur data set, the proposed methods significantly outper-
formed all three GMM-based methods. This is attributed to the presence of sig-
nificant levels of outliers in the femur shapes, which result in, the estimation of
incorrect mean shapes (Fig. 3.9(a-c)), invalid correspondences, and consequently,
the large registration errors observed. TMM and mrTMM, however, are robust to
the presence of such outliers and are able to estimate valid mean shapes and cor-
respondences (as shown in Fig. 3.9(d) and Fig. 3.8(n,p)), achieving significantly
lower errors (summarized in Table 3.7), while requiring fewer user-specified pa-
rameters than gCPD. The change in registration accuracy achieved (using the fe-
mur data set) by gCPD for different values of the constituent uniform distribution
weight, and thereby its sensitivity to the same, was evaluated and is summarised
in Appendix C (Table C.1). These results indicate that for data sets containing
a high degree of outliers, the performance of gCPD is sensitive to the weights
chosen and thus requires tuning of the same for optimal results.

These experiments highlight the ability of the proposed approaches to re-
main robust to outliers and align groups of shapes to their respective mean
shapes, more accurately than their GMM-based counterparts (namely, GMM and
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SpSSM). They also complement subsequent experiments evaluating SSM quality
(refer to chapter 4), which reflect the accuracy of the correspondences estimated
for each sample within each group, using the proposed methods and the state-
of-the-art, i.e. more accurate correspondences result in improved preservation of
shape variation across a group and consequently more descriptive SSMs. Thus
both sets of experiments (i.e. evaluation of alignment accuracy and SSM quality)
together reflect the registration quality of the proposed methods, relative to the
state-of-the-art.

3.3.2 Algorithm performance

3.3.2.1 Degrees of freedom

To quantitatively describe the influence of the degrees of freedom (ν) associated
with TMM components on the robustness of the model to outliers, histograms
depicting the range of values estimated for the synthetic and clinical data sets
(following registration) are presented in Fig. 3.10 (a-d). For the synthetic data
set that contains a large proportion of noise and outliers (refer to Fig. 3.4 and
Table 3.1) and missing data, the values estimated are concentrated in the range
[2.1, 10] (as shown in Fig. 3.10 a), conferring a greater degree of robustness to the
registration process. A similar result is obtained for the femur data set (Fig. 3.10
b) as it contains numerous samples with over-/under-segmented boundaries.

FIGURE 3.10: Histograms of the degrees of freedom estimated for;
(a) the synthetic data set with noise and outliers (M=940), (b) fe-
mur data set (M=160), (c) heart data set (M=320) and (d) set of
hippocampi from MCI patients (M=320), following alignment using

mrTMM.
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The heart and hippocampi data sets in contrast, contain few outliers and con-
sequently, the values estimated for ν are distributed over a wider range, with
high values indicating that the corresponding t-components behave similar to
Gaussians (Heart: Fig. 3.10 c, MCI: Fig. 3.10 d). The flexible and robust nature
of TMM-based registration is consequently attributed to the independent estima-
tion of ν for each mixture component. Fig. 3.10 (c) indicates that although the
heart data set contains few visibly apparent outliers, the significant variation in
geometry across the group (as a result of pathology) results in the estimation of
low ν values for a greater number of mixture components, relative to the MCI-
hippocampi data set (containing few outliers and moderate variation in shape
across the group). This illustrates the role of ν in accommodating large variations
in shape, while ensuring robust and accurate registration.

3.3.2.2 Convergence

The convergence of the proposed algorithms (TMM and mrTMM) are assessed
based on the change in the mean shape, computed as dM = ||Mnew −
Mold||F/||Mold||F , across EM-iterations. This is illustrated by Fig. 3.11, where dM
is plotted against the number of iterations. dM was formulated in this manner in
order to define a common critical threshold/tolerance (10−3 was used for all ex-
periments) to assess convergence for all data sets, thereby improving automation
(and removing the need for identifying a unique threshold specific to each data
set). Alternative convergence criteria may also be adopted by monitoring the
change in, the log-likelihood, model variance or the estimated transformations,
across successive EM-iterations.
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FIGURE 3.11: Convergence of TMM and mrTMM algorithms: (a)
Synthetic bunny data set containing significant outliers (refer to Ta-
ble 1), using M = 940 mixture components; (b) Heart data set, using
M = 2560 mixture components; (c) MCI-hippocampi data set, using
M = 2560 mixture components; (d) Control-hippocampi data set,
using M = 2560 mixture components; and (e) Femur data set, using

M = 1280 mixture components.

TABLE 3.8: Run-time (minutes) for each data set aligned using TMM
and mrTMM with M mixture components.

Method
Bunny

(M = 940)
(K = 4)

Hippocampus_MCI
(M = 2560)

(K = 28)

Hippocampus_Ctrl
(M = 2560)

(K = 50)

Heart
(M = 2560)

(K = 30)

Femur
(M = 1280)
(K = 1000)

TMM 8 158 289 45 1471
mrTMM 5 95 167 30 320

In the case of mrTMM, convergence is assessed in this manner for each resolu-
tion level employed during registration. The plots depicted in Fig. 3.11 indicate
that the convergence of TMM and the first resolution of mrTMM are similar to
each other, for all data sets. Additionally, both TMM and mrTMM converge in
fewer iterations for both hippocampi data sets (Fig. 3.11 (c,d)), relative to the
remaining 3D data sets (Fig. 3.11 (a,b)). This is attributed to the presence of mini-
mal outliers and moderate variation in shape across samples. Conversely, for the
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synthetic bunny data set (Fig. 3.11 (a)), containing significant proportions of out-
liers and large rotational offsets, both TMM and the first resolution of mrTMM
require more iterations to converge, relative to the clinical data sets. However,
beyond the first resolution (with mrTMM), subsequent levels converge quicker
as evidenced by Fig. 3.11, improving computational efficiency as fewer iterations
are required at higher model complexities (or number of mixture components
M ). These results are further verified by the run-times reported in Table 3.8 for
all data sets, following alignment using TMM and mrTMM. From this we infer
that mrTMM consistently improves computational efficiency compared to TMM,
as fewer EM-iterations are required using the same number of mixture compo-
nents (M). The code was implemented in MATLAB (R2014a) and tested on an
Intel Xeon CPU (1.80GHz x 8) with 32GB RAM.

3.3.3 Non-Rigid Registration Accuracy

3.3.3.1 Synthetic Data

FIGURE 3.12: Synthetic 3D face data set registered using proposed
TMM-NR.

Non-rigid registration accuracy of the proposed approach, TMM-NR, was com-
pared with pair-wise non-rigid CPD and its group-wise variant (non-rigid
gCPD), using the synthetic 3D face data set. Non-rigid gCPD was implemented
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for the experiments conducted in this thesis (an additional contribution of the
presented work), to enable direct comparison with our approach (TMM-NR), and
to the best of our knowledge has not been presented in previous studies (although
a similar approach based on GMMs without a uniform distribution component,
was proposed in (Rasoulian, Rohling, and Abolmaesumi, 2012)). The raw point
sets overlaid with the registered ground truth face point set, are shown in Fig.
3.12 (for a few cases). The mean HD and MSD measures, used to quantify reg-
istration accuracy, are presented in Table 3.9, for both methods. As discussed
previously, statistical significance was assessed using a paired-sample t-test, con-
sidering a significance level of 5%. Significant improvements in registration ac-
curacy are highlighted in bold, in Table 3.9. These results indicate that TMM-NR
offers significant improvement over CPD and gCPD with regards to errors evalu-
ated using the HD metric. On the other hand, both TMM-NR and pair-wise CPD
were found to perform comparably, while outperforming gCPD, when compared
using the MSD metric. The two user-specified parameters responsible for con-
trolling the smoothness of the estimated deformation fields, were fixed for all
experiments involving synthetic data as follows: λ = 3 and β = 2.

TABLE 3.9: Non-rigid registration errors evaluated for the synthetic
3D face data set.

Method HD (mm) MSD (mm)
CPD 0.15 ± 0.30 0.002 ± 0.004

gCPD (non-rigid) 0.11 ± 0.13 0.01 ± 0.007

TMM-NR 0.007 ± 0.002 0.001 ± 2.98 ×10−4
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3.3.3.2 Clinical Data

TABLE 3.10: Non-rigid registration errors for brain ventricles data
set.

Method
Ventricles (K = 27)

M = 500 M = 800 M = 1200

HD
(mm)

MSD
(mm)

HD
(mm)

MSD
(mm)

HD
(mm)

MSD
(mm)

TMM
8.02 ±

2.95
2.20 ±

0.09
7.13 ±

2.48
1.91 ±

0.07
6.87 ±

2.25
1.78 ±

0.07

gCPD
(non-rigid)

7.00 ±
2.06

2.04 ±
0.11

6.74 ±
2.13

1.72 ±
0.10

5.54 ±
1.73

1.24 ±
0.14

TMM-NR
7.40 ±

2.03
2.09 ±

0.12
7.04 ±

2.18
1.68 ±

0.11
7.20 ±

2.09
1.20 ±

0.20

The registration accuracy of TMM-NR was also evaluated using clinical data and
compared with TMM-rigid and non-rigid gCPD. Registration errors for the ven-
tricles data set were evaluated between the raw point sets and the deformed mean
templates using the HD and MSD measures, presented in Table 3.10. The regis-
tered mean templates overlaid with their corresponding raw point sets (for a few
cases) are depicted in Fig. 3.13. These images indicate that for certain samples
(Fig. 3.13 (b,c,d,e)) exhibiting a high degree of localised deformations (denoted
by arrows), the proposed registration approach (and similarly gCPD) are unable
to accurately register the mean shape (Fig. 3.13 (a)). However, this is to be ex-
pected as the non-rigid transformation used in both methods enforces a global
smoothness constraint on the deformation field, which does not permit large lo-
calised deformations. The samples presented in Fig. 3.13 (b,c,d,e), were chosen
to highlight this limitation. Errors were computed for registrations performed
using M = 500, 800 and 1200 mixture components. Non-rigid registration using
both gCPD and TMM-NR were performed, keeping the associated registration
parameters for all experiments as follows: λ = 0.5, β = 0.5. These were empiri-
cally determined to be suitable for this data set.
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FIGURE 3.13: Ventricles data set registered using TMM-NR. (a) Esti-
mated mean shape, (b)-(e) 4 raw point sets overlaid with registered
mean shapes. Arrows indicate regions of severe localised deforma-

tions in some samples.
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Statistically significant results (evaluated using paired-sample t-tests as in sec-
tion 3.3.1.2) are highlighted in bold in the table. TMM-NR and gCPD consis-
tently outperformed TMM-rigid, for errors evaluated using the MSD metric, due
to the substantial non-linear variations in shape present across samples in the
ventricles data set. The registration accuracy of all three methods was compara-
ble in all experiments employing M = 500, 800 mixture components, based on
errors evaluated using the HD metric. gCPD achieved significantly lower HD
errors in comparison to both TMM-based methods, for M = 1200 mixture com-
ponents and lower MSD errors at M = 500 mixture components. Conversely,
for M = 800, 1200 mixture components, MSD errors were significantly lower for
TMM-NR, relative to the others. These conflicting results are attributed to the
presence of the posterior temporal horns of the lateral ventricles, in a limited
number of samples in the data set (as illustrated by Fig. 3.13 (b,c)). Consequently,
while gCPD attempts to establish correspondence in these regions, TMM-NR is
more robust in this regard, due to its constituent t-distributions. Therefore, the
correspondences established in these regions for some samples in the data set by
gCPD, are not homologous to the remaining samples missing this structure, i.e.
the established correspondences no longer represent the same anatomical feature.
This in turn is reflected by the relatively high HD error evaluated using TMM-
NR, compared to gCPD. Here, we define homologous correspondences as those
that represent the same anatomical feature, based on the assumption that, sam-
ples without visible protrusions for the posterior temporal horns, are considered
to lack these structures (rather than having very small posterior horns). The ab-
sence of these structures in some samples may be attributed to the pre-processing
steps involved in generating the point sets (i.e. segmentation, surface generation
and subsequent decimation of the surfaces). Consequently, the numerous corre-
spondences established by gCPD in these regions are considered to be incorrect.

Although no significant differences in registration accuracy were apparent
between TMM-NR and TMM-rigid methods, based on errors evaluated using
the HD metric, visual inspection of the correspondences established using each
method, highlight the advantage of the former over the latter. This is illustrated
by the images shown in Fig. 3.14, which shows TMM-rigid is unable to estab-
lish anatomically valid correspondences, in the presence of significant non-linear
variations in shape. This is particularly true for the gap present between the
bodies of the left and right lateral ventricles, which exists due to the presence of
thin membrane called the septum pellucidum. While TMM fails to preserve this
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separation between the left and right lateral ventricles (refer to Fig. 3.14 (f,h)),
TMM-NR and gCPD are marginally more successful in this regard. However, it
is important to note that both TMM-NR and gCPD also incorrectly estimated a
correspondences in this region. This limitation of both TMM-NR and gCPD is
addressed further in chapter 5. Additionally, correspondences estimated in the
anterior temporal horns of the left ventricle using TMM (refer to Fig. 3.14 (e,g)),
are less accurate, relative to TMM-NR (refer to Fig. 3.14 (a,b)) and gCPD.
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FIGURE 3.14: Correspondences estimated for two samples in ven-
tricles data set using TMM-NR (a,b,c,d) and TMM rigid (e,f,g,h).
Arrows indicate regions where the latter establishes invalid corre-

spondences.
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Although the performance of gCPD and TMM-NR was comparable in some
aspects, the latter required fewer user-specified parameters (uniform distribution
weight had to be tuned for the former; values ranging from 0.5 - 0.7 were found
to be suitable, producing similar errors). However, as with the preceding set of
registration experiments (discussed in section 3.3.1.2), the change in registration
accuracy with different weights, was found to be marginal (due to the presence
of minimal outliers in the ventricles data set). In light of these results, TMM-NR
is inferred to be well suited to automatic registration of a group of shapes ex-
hibiting complex and highly varied geometries. A major advantage of point set
registration approaches is their flexibility, as they are independent of the topology
of shapes to be registered. However, in certain scenarios this may represent a lim-
itation of such approaches as well. For example, in the case of the femur data set,
as there is no explicit constraint on the spacing of the points defining the femur
boundaries or enforcing them to preserve the topology of the shape (i.e. represent
a closed contour), registered point sets could have irregularly spaced points, lead-
ing to ambiguities when visualized as they may have gaps/open contours. Point
set registration approaches that take into account the local structure of neighbour-
ing points (Zheng and Doermann, 2006) or shape context (Belongie, Malik, and
Puzicha, 2002), are suitable solutions to this problem of conserving the topology
of shapes being matched. A similar issue is also encountered with complex 3D
geometries, as with the data set of brain ventricles (refer to Fig. 3.14), where we
found that both TMM-NR and gCPD failed to preserve the topology of the ventri-
cles, by maintaining the separation between the left and right ventricular bodies.
We address this issue by incorporating additional information describing the lo-
cal geometry of shapes (to help preserve shape topology following registration),
in the form of surface normal vectors, discussed further in chapter 5.

3.4 Conclusions

The rigid group-wise point set registration methods proposed in this chapter,
namely, TMM and mrTMM, were shown to outperform state-of-the-art GMM-
based techniques in terms of registration accuracy, using the synthetic data set.
Their performance with the clinical data sets however, was comparable to gCPD.
The proposed methods and gCPD consistently outperformed the other GMM-
based approaches investigated, across all clinical data experiments. Although
mrTMM offered significant improvement in registration accuracy over TMM on
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synthetic data, their performance was comparable in most experiments involving
clinical data. However, mrTMM also offered significant improvement in compu-
tational efficiency, achieving substantial reduction in execution times when reg-
istering all data sets, relative to TMM. Quicker convergence, without loss in reg-
istration accuracy is especially attractive for the analysis of large data sets.

The TMM-based non-rigid group-wise registration approach (TMM-NR) per-
formed comparably to, or better than, a group-wise variant of non-rigid CPD, and
pair-wise non-rigid CPD in terms of registration accuracy, using the synthetic 3D
face data set. Using clinical data, comprising ventricular structures generated
from AD, MCI and healthy cohorts, the proposed non-rigid group-wise regis-
tration approach (TMM-NR) performed comparably to non-rigid gCPD in most
cases and consistently outperformed TMM-rigid, in terms of registration accu-
racy. Improvements in registration accuracy offered by both rigid and non-rigid
formulations of the proposed framework in some cases, and their comparable
performance in others, relative to the state-of-the-art, is promising for their appli-
cation in a variety of computer vision and medical image analysis tasks, requiring
automatic robustness to outliers.
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Chapter 4

Statistical Shape Models

4.1 Introduction

‘Shape’ as defined by (Kendall, 1989), is the geometric information that remains
once an object has been normalized with respect to rotation, scaling and transla-
tion. Various methods to represent this information and analyse the statistics of
their variation across an ensemble of similar shapes have been proposed, some
of which include point- or mesh-based discretisation (Cootes et al., 1995), im-
plicit functions (signed distance maps) (Leventon, Grimson, and Faugeras, 2000),
spherical harmonics (SPHARM) based parametrisation (Brechbühler, Gerig, and
Kübler, 1995), (Gerig et al., 2001b) and medial shape representation (Pizer et al.,
2003), (Styner et al., 2003). Among these, point-based representations of shape
are the most prevalent for training SSMs using Principal Component Analysis
(PCA), due to their simplicity and independence to topology. The latter property
in particular is a desirable trait for anatomical structures, not afforded by some
techniques such as SPHARM for example, which only permit shapes of spheri-
cal topology. Medial models are ’skeleton-like’ representations which yield more
compact shape descriptions than landmark-based approaches but utilise surface
boundaries parametrised by SPHARM and consequently have identical topolog-
ical constraints. Choice of shape representation thus plays a central role in, de-
termining the variety of shapes that may be analysed, and in the selection of an
appropriate registration technique for correcting global differences in pose and
establishing correspondences.

Past approaches to automatic SSM generation have included: (1) a pair-wise,
template-to-training set (or one-to-many) registration strategy where an atlas is
non-rigidly registered to each training shape, thereby propagating the landmarks
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used to represent the atlas shape across the training set and establishing corre-
spondences (Lorenz and Krahnstöver, 2000), (Frangi et al., 2002); (2) population-
based techniques based on minimum description length (MDL) (Davies et al.,
2002), (Davies et al., 2010) or entropy (equivalent to MDL) (Cates et al., 2007),
which automatically estimate correspondences across training shapes by opti-
mizing an objective function dependent on model quality; and (3) group-wise
point set registration methods for jointly aligning a group of shapes and estab-
lishing correspondences across them (Hufnagel et al., 2008), (Gooya, Davatzikos,
and Frangi, 2015). A thorough review of various correspondence estimation ap-
proaches for training SSMs is provided in (Heimann and Meinzer, 2009). As dis-
cussed in the previous chapter, of particular interest in this thesis are the third
group of techniques, due to their inherent flexibility and ability to establish cor-
respondences in an unbiased manner. In contrast, population based techniques
often perform the registration (for global pose corrections) and correspondence
estimation steps, separately. While pair-wise registration approaches result in a
bias towards the chosen atlas, registered to each sample in the training set.

Based on these criteria, point-based representations of shapes and the TMM-
based group-wise registration framework discussed in the previous chapter are
employed for training SSMs, as the objective is to design a framework indepen-
dent of topology, automatic and robust to the presence of outliers. Adopting a
probabilistic view of correspondences, also helps account for uncertainties in the
registration process, not afforded by techniques relying on one-to-one mapping.
This is particularly crucial when automatic segmentation and point set generation
techniques are employed, to generate the requisite training shapes, as done in
this study. Additionally, point-based representation of shapes are computation-
ally less expensive than their implicit (signed distance functions) counterparts for
example, in relation to SSM construction and application.

Statistical shape models have found widespread use in a variety of medical
image analysis applications in recent years such as segmentation (Patenaude et
al., 2011), (Castro-Mateos et al., 2015), shape-based prediction of tissue anisotropy
(Lekadir et al., 2014), quantitative shape analysis and classification for computer-
aided-diagnosis (Styner et al., 2004), (Shen et al., 2012), (Gooya et al., 2015), to
name a few. Their primary challenge has persistently been the availability of
training sets of sufficient size, necessary to adequately describe anatomical shape
variability observed across different demographic and diagnostic populations. A
training set of segmentations delineating the structure of interest in medical im-
ages, is typically generated manually or semi-automatically, which is laborious
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and prohibitive when analysing 3D structures from large cohorts. In the past, var-
ious solutions have been proposed, such as merging pre-existing SSMs trained
from different cohorts (Pereañez et al., 2014), generating synthetic variations in
shape using deformable transformations (Koikkalainen et al., 2008) to enrich the
data set with a higher degree of variability, and employing automatic techniques
to generate the required training set of segmentations, which is of particular in-
terest in this study. The major challenges with this approach are the potential in-
clusion of outliers and the presence of missing information in the segmentations,
as a result of variable image resolution and quality, motion artefacts, pathology-
induced intensity inhomogeneities, among others. Consequently, in order to fa-
cilitate large-scale statistical shape analysis of anatomical structures using auto-
mated techniques for generating training shapes, a robust framework capable of
rigidly aligning such instances and establishing anatomically valid correspon-
dences across the same, is imperative. The TMM-based methods presented in the
previous chapter address these issues and are therefore used here to construct
SSMs by PCA. The quality of the resulting SSMs are quantitatively evaluated and
compared with the state-of-the-art, in this chapter.

4.2 Principal Component Analysis: SSM Generation

and Model-fitting

Following registration of a group of shapes using any of the methods discussed
in the previous chapter, the estimated posterior probabilities are employed to es-
tablish soft-correspondences, which in turn are used to train SSMs by PCA. The
resulting eigenvectors Φ ∈ RD×M×m (where m is the number of modes of vari-
ation retained), represent the principal axes of the shape space and eigenvalues
λn=1...m describe the proportion of the total variation in shape described by each
corresponding mode of variation. All SSMs trained in this study retained eigen-
modes that describe 95% of the total variation in shape across each correspond-
ing group. The process of fitting the trained models to new data involves two
steps: (1) mixture-fitting and (2) SSM-fitting. The former is first used to align the
new shape to the trained mean model and establish correspondences. This step
is analogous to pair-wise registration, where the learnt mixture model parame-
ters, apart from the variance, (i.e. mixture centroids, coefficients, and degrees of
freedom) remain fixed, as the trained mean model is iteratively aligned to the
test shape. Correspondence probabilities defined by posterior probabilities, are
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evaluated similarly to group-wise and pair-wise registration approaches, at each
EM-iteration. From these, soft correspondences v are estimated as shown in equa-
tion 4.1a, where P ?

ij represents the corrected posterior probabilities (as discussed
in section 3.2.3) estimated following alignment of the new shape to the mean
model and T represents the corresponding similarity transformation. The esti-
mated correspondences are subsequently projected to the trained SSM according
to equation 4.1b, to obtain estimates of principal component coefficients b. Here,
x represents the mean shape vector and v̄ represents the vector of estimated soft
correspondences. Vector b represents the set of parameters used to generate vari-
ations in shape and are used to reconstruct the new shape xnew, using equation
4.1c. To reduce the influence of noise on shape reconstruction, the estimated PCA
coefficients are constrained as: |bn|≤ 3

√
λn, where λn represents the eigenvalue of

the nth mode of variation.

v =

N∑
i=1

P ?
ijTxi

N∑
i=1

P ?
ij

(4.1a)

b = ΦT (v̄− x) (4.1b)

xnew = x + Φb (4.1c)

4.3 Results and Discussion

The quality of SSMs trained in this manner was assessed based on their general-
ity, specificity and compactness. The following clinical data sets were used in the
testing: Femur (K = 1000), Hippocampus_MCI (K = 28), Hippocampus_Ctrl
(K = 50) and Heart (K = 30) (described in the previous chapter). Generalisa-
tion and specificity errors were evaluated using the MSD metric, computed be-
tween the ground truth test shape and the corresponding model-predicted shape.
These measures were computed for models trained using: single- and multi-
resolution TMM, SpSSM, a group-wise variant of CPD, and GMM. We employ
our own implementation of group-wise CPD (gCPD) rather than JRMPC, as the
latter estimates strictly rigid transformations, rather than the desired similarity
transformations. Furthermore, gCPD is preferred to the original pair-wise ap-
proach to enable direct comparison with the other methods investigated. SpSSM
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and GMM are purely Gaussian-based and differ in the manner of estimation of
the mixture coefficients, while gCPD incorporates a uniform distribution compo-
nent in the mixture model. Together they represent a range of GMM-based, rigid,
group-wise point set registration techniques proposed in recent years, suitable
for assessing the advantage of the proposed TMM-based methods.

Generalisation quantifies the ability of SSMs to reconstruct unseen shapes i.e.
samples excluded from the training set. Compactness measures their ability to
describe variation in shape across a group, with a minimal set of parameters — i.e.
the fewest modes of variation. It can also formally be defined as the cumulative
sum of eigenvalues associated with the modes of variation. It is also crucial for
SSMs to generate anatomically plausible instances and, consequently, this is used
as a measure of their quality known as specificity.

To avoid over- or under-fitting to data, it is necessary to balance model com-
plexity with performance. To this end, we identified the optimal number of mix-
ture components (Mopt) for each clinical data set by conducting ten-fold cross
validation experiments, evaluating the quality of SSMs trained. For the general-
ization experiments, 10 unseen test shapes from the same cohort (as the train-
ing samples) were used for the femur data set. For the hippocampi, 10 test
shapes for both healthy and MCI groups were generated automatically from a
separate database of MR images (also acquired as part of the VPH-DARE@IT
project vph-dare.eu), using a different state-of-the-art segmentation tool based
on geodesic information flows (GIF parcellation) (Cardoso et al., 2015),(Prados
Carrasco et al., 2016). This method of validation for the hippocampi was selected
to evaluate the ability of the proposed framework to characterise unseen shapes
generated using a different protocol, to better emulate a real clinical scenario.
Finally, for the heart data set 10 unseen shapes were selected, comprising three
samples each from the PH and HCM patient groups respectively, and four from
the healthy cohort.

The quality of SSMs trained using the identified Mopt for each data set, were
also assessed with respect to the number of modes of variation by leave-one-out
full-fold cross validation. This second set of cross validation experiments evalu-
ates the quality of the trained models to characterise unseen shapes from the same
cohort as the training sets. It is important to note that, correspondences were es-
timated jointly across both training and test shapes in all experiments evaluat-
ing generalization with respect to the number of modes of variation. Specificity
and compactness were also assessed in this manner by leave-one-out full-fold
cross-validation. In the former case, two shapes were randomly sampled from

vph-dare.eu
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the trained SSMs (using progressively increasing number of eigenmodes) and
their mean surface distance to each left out case from the training set was com-
puted. Compactness was assessed by plotting the cumulative sum of the per-
centage of variation (computed using the estimated eigenvalues) described by
each eigenmode, against the modes of variation. Table C.2 in Appendix C further
describes the generalisation and specificity experiments conducted in order to as-
sess SSM quality. Generalisation and specificity errors (with respect to the num-
ber of modes of variation) were evaluated using the MSD metric, computed be-
tween (left-out) ground truth test shape and the corresponding model-predicted
shape, as stated previously, for the hippocampi and heart data sets. However,
for the femur data set, as a large number of samples contained significant pro-
portions of outliers, these measures were computed between the estimated cor-
respondences for each test shape (rather than the ground truth point set) and the
SSM-predicted shape. This was done as errors computed using the ground truth
point sets would be heavily skewed due to the presence of outliers and would be
difficult to interpret in order to compare the various registration methods inves-
tigated.
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4.3.1 Generalisation

FIGURE 4.1: SSM generalization errors evaluated with respect to
number of mixture components (left column) and number of modes
of variation (right column). (a,b) MCI-hippocampi, (c,d) healthy-
hippocampi, (e,f) heart and (g,h) 2D-femur data set. Errors reported
in (a,c,e,g) were evaluated by retaining modes describing 95% of the

total variation in the corresponding SSMs.

Generalisation errors were computed with respect to the number of mixture com-
ponents employed and, subsequently, the modes of variation of the trained SSMs
(using the identified optimal number of mixture components from the preced-
ing experiments). Fig. 4.1 summarises these results for each clinical data set. Fig.
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4.1(a) and (c) depict generalization errors evaluated with respect to the number of
mixture components, for the MCI and healthy hippocampi data sets, respectively.
The proposed methods perform comparably to GMM and gCPD while SpSSM
achieves marginally lower errors for the MCI data. However, for the healthy-
hippocampi, the proposed methods, GMM and gCPD outperform SpSSM and
perform comparably to each other. While mrTMM offers some improvement
over single-resolution TMM, as the training sets of hippocampi shapes contained
no visibly apparent outliers, both proposed methods showed no significant dif-
ference in performance compared to GMM and gCPD. SpSSM achieves signifi-
cantly lower errors than TMM for the MCI-hippocampi data set but shows no
significant difference to mrTMM. As noted previously, in cases where the train-
ing data contains few outliers, the constituent t-distributions of a TMM behave
similarly to Gaussians (due to estimation of large values for the associated de-
grees of freedom ν, as shown in Fig. 3.10(d)) and consequently SSMs trained
using both classes of techniques are found to be of comparable quality.

A similar result is obtained for the heart data set, which contained few visibly
apparent outliers, with gCPD, TMM and mrTMM significantly outperforming
GMM and SpSSM, as illustrated by the generalization errors presented in Fig.
4.1(e). The heart data set comprised of samples with significant variations in ge-
ometry as a result of pathology (due to PH and HCM), which may be interpreted
as missing information or outliers by the mixture model during registration (sup-
ported by the higher proportion of low ν values reported in Fig. 3.10(c), com-
pared to the MCI-hippocampi data set, Fig. 3.10(d)). Correspondingly, the lower
errors achieved by gCPD, TMM and mrTMM are inferred to result from their ro-
bust nature, while GMM and SpSSM, lacking this quality, result in sub-optimal
registration of the samples and by extension lower quality SSMs. Based on these
experiments, the optimal number of mixture components was identified to be
Mopt = 2560, for both hippocampi and heart data sets, using GMM, gCPD, TMM,
and mrTMM. With SpSSM a sparsity level of 0.1 was found to be optimal for
the hippocampi and heart data sets, resulting in Mopt = 1906 for the MCI group,
Mopt = 2702 for the healthy group, and Mopt = 2191 for the heart. Generalisation
errors evaluated with respect to the modes of variation for the MCI-hippocampi
(Fig.4.1(b)) show that while TMM performs comparably to GMM and SpSSM
(with some marginal improvement), mrTMM and gCPD significantly outperform
the same. A similar result is obtained for the healthy-hippocampi (Fig. 4.1(d)),
with gCPD, TMM and mrTMM all providing substantial improvements to GMM
and SpSSM. For the heart data set, (Fig. 4.1(f)) gCPD, TMM and mrTMM, once
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again offer marginal improvements over GMM and SpSSM.
Generalisation errors for the femur data set are presented in Fig. 4.1 (g) and

(h), evaluated with respect to the number of mixture components and the modes
of variation, respectively. As highlighted previously, the femur data set contained
multiple training samples with significant outliers which adversely affected the
quality of SSMs trained using the GMM-based approaches. Models trained us-
ing TMM and mrTMM on the other hand were robust to the presence of these
outliers, resulting in significantly lower generalization errors compared to the
state-of-the-art, when evaluated with respect to the number of mixture compo-
nents (Fig. 4.1(g)). Fig. 4.1(h) suggests that the quality of SSMs generated are
comparable across all methods, when evaluated with respect to the number of
modes of variation. These results indicate that the proposed methods are able
to reconstruct new shapes to a higher degree of accuracy. However, when cor-
respondences are jointly estimated across all training and test shapes (as done
with the generalization experiments evaluated with respect to the modes of vari-
ation) and SSM quality is subsequently evaluated by leave-one-out cross valida-
tion, the generalization-ability of the models is comparable across all methods.
As the former set of generalization experiments (evaluated with respect to the
number of mixture components), better emulate a real scenario, the improve-
ment in reconstruction accuracy offered by both TMM and mrTMM compared
to their GMM-counterparts, is compelling. Both TMM and mrTMM performed
comparably across all generalization experiments conducted, with mrTMM of-
fering marginal improvements in some cases.
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4.3.2 Specificity

FIGURE 4.2: SSM specificity errors evaluated with respect to
the modes of variation for (a) MCI-hippocampi, (b) healthy-

hippocampi, (c) heart, and (d) 2D-femur data sets.

The specificity errors presented in Fig. 4.2 (a), (b) and (c) show that models
trained using the proposed methods and gCPD achieve significantly lower er-
rors than GMM and SpSSM and are inferred to generate shapes with a higher de-
gree of anatomical plausibility, for both hippocampi, and the heart data sets. For
the femur data set, as noted previously, wrong correspondences estimated using
the GMM-based methods result in incorrect modes of variation. Consequently,
shapes sampled randomly from the trained SSMs are implausible, resulting in
the high specificity errors seen in Fig. 4.2(d). TMM, mrTMM and gCPD however,
are robust to the presence of outliers in the training set and consequently achieve
significantly lower specificity errors compared to the GMM and SpSSM. These re-
sults are consistent with those observed in the generalization experiments, indi-
cating the superiority of the proposed methods when dealing with data contain-
ing outliers. As with the generalization experiments, the specificity of the models
trained using TMM and mrTMM are similar. Although specificity experiments
conducted using the femur data set indicate that TMM, mrTMM and gCPD are
comparably robust and produce SSMs of similar quality, visual inspection of the
modes of variation (and correspondingly of the model-predicted shapes) high-
light the advantage of the proposed methods over gCPD, as illustrated by Fig.
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4.3. The presence of large proportions of outliers in the training samples ad-
versely affects the correspondences established using gCPD resulting in a mean
shape and modes of variation that contain points offset from the true bound-
ary of the femoral head (Fig. 4.3(a,b)). In comparison, both TMM and mrTMM
are able to suppress the influence of such outliers and establish valid correspon-
dences, resulting in plausible mean shapes and modes of variation (as shown in
Fig. 4.3(c-f)).

FIGURE 4.3: First mode of variation for the 2D-femur data set (red)
overlaid on the estimated mean shape (black). SSMs were trained
using: gCPD (a,b), TMM (c,d), and mrTMM (e,f). Here λ1 denotes

the first eigenvalue.
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4.3.3 Compactness

FIGURE 4.4: SSM compactness assessed by plotting the cumulative
sum of the variation % (expressed by each eigenmode), against the
number of modes. (a) MCI-hippocampi, (b) healthy-hippocampi, (c)

heart, and (d) 2D-femur data set.

Cross-validation experiments revealed that SSMs generated using SpSSM, gCPD,
and both proposed methods were equally compact, for the MCI-hippocampi (Fig.
4.4(a)), while GMM generated more compact models. However, based on the
generalization errors presented in Fig. 4.1(b) we note that improved compact-
ness of GMM is at the expense of reduced generalization ability and model speci-
ficity (Fig. 4.2(a)). With the healthy hippocampi data set, both GMM and SpSSM
produced models that were significantly more compact than gCPD and the pro-
posed methods (Fig. 4.4(b)), however, once again at cost of lower generalization
ability and model specificity (as illustrated by Fig. 4.1(d) and Fig. 4.2(b)). For
the MCI-hippocampi data set (containing K = 28 samples), up to 17 eigenmodes
were found to capture 95% of the total variation in shape found in the training
set, while the healthy-hippocampi set (containing K = 50 samples) required up
to 22 modes of variation. The heart data set (K = 30 samples), comprising in-
stances of healthy subjects and patients diagnosed with PH and HCM, required
up to 18 eigenmodes, using the proposed methods, with GMM and SpSSM gen-
erating more compact models (Fig. 4.4(c)). As with the hippocampi, although
GMM and SpSSM generated more compact models, they suffered from reduced
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generalisation-ability and specificity. The variation in shape across the 2D femur
data set containing K = 1000 samples was adequately captured by all methods,
within 30 modes of variation and a similar trend is observed as with the remain-
ing data sets, i.e. all three GMM-based methods produce more compact models
than TMM and mrTMM, at the cost of higher generalisation and specificity errors.

FIGURE 4.5: First mode of variation for SSMs trained using mrTMM.
Top row: MCI hippocampi, bottom row: healthy hippocampi. In all
cases the overlaid surface mesh with visible edges represents the

mean shape.

The first mode of variation for the MCI- and healthy-hippocampi data sets
are depicted in Fig. 4.5 and those for the heart are in Fig. 4.6. It is interesting
to note that the first mode of variation for the presented heart-SSM describes a
change in the shape and volume of the right ventricle, characteristic of pulmonary
hypertension. The presented SSMs in Fig. 4.5 and 4.6 were trained using mrTMM
and the optimal number of mixture components identified for each data set (refer
to section 4.3.1).
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FIGURE 4.6: First mode of variation of the heart-SSM trained using
mrTMM, overlaid on the estimated mean shape (dark grey surface).

The improvement in SSM quality achieved using TMM and mrTMM, when
dealing with noisy data, is demonstrated by the generalization and specificity
experiments conducted in this study. Their ability to automatically align shapes
in a robust fashion and reconstruct unseen shapes to a high degree of accuracy,
can find application in large-scale studies investigating shape and morphological
changes associated with pathological processes, as seen with dementia-related
hippocampal changes, pulmonary hypertension and hypertrophic cardiomyopa-
thy induced changes to ventricular morphology in the heart, among others. Ad-
ditionally, the proposed methods can find use in intra-operative guidance appli-
cations requiring robust and automatic pose correction. The proposed methods
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can also be employed to initialize a subsequent deformable registration step (dis-
cussed in the previous chapter), often necessary to capture soft tissue deforma-
tions common to surgical procedures.

4.4 Conclusions

Cross-validation experiments evaluating SSM quality indicate that the proposed
methods (TMM and mrTMM) are comparable to a state-of-the-art approach
(gCPD) for data containing few outliers, but outperform the same in the presence
of outliers (as in the femur data set). The proposed techniques outperform other
GMM-based methods investigated, namely, GMM and SpSSM, with regards to
generalisation and specificity, in the majority of experiments conducted. Addi-
tionally, although the performance of gCPD, TMM and mrTMM is comparable in
many cases, the former required tuning of the weight parameter controlling the
robustness of the model to outliers, for optimal registration and by extension SSM
quality. Although the sensitivity of registration accuracy and SSM quality to dif-
ferent weights employed with gCPD was marginal for data sets containing few
outliers (such as the hippocampi and heart data sets), it was more pronounced
for data containing significant proportions of outliers (as with the femur data
set). In contrast, TMM and mrTMM were automatically robust to missing data
and significant proportions of outliers in all cases, making them well-suited to
SSM generation, when automated techniques are used to generate the requisite
training sets. Both methods are, consequently, well suited to automatic shape
analysis of large cohorts.
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Chapter 5

Registration of Generalised Point
Sets

5.1 Introduction

Group-wise registration of multi-dimensional unstructured point sets comprising
different types of data such as: vector-valued (spatial positions, axial/directional)
and scalar-valued quantities, offers a unique perspective to addressing a variety
of applications in computer vision and medical image analysis. This is especially
true for circumstances where, spatial position alone, is inadequate as a descrip-
tor for accurate registration. In this chapter, a probabilistic approach for group-
wise registration of generalised point sets is proposed. This is achieved through
formulation of a hybrid mixture model (HMM), combining suitable probability
distributions to model disparate data features, within a cohesive framework. Two
variants of the HMM are presented: (1) for modelling axial data; and (2) suited
to directional data. Here axial data refers to vectors that are randomly oriented
along an axis, i.e. the orientation of the axis itself is the quantity of interest, rather
than any specific direction along the axis. As exemplar applications, the proposed
framework is employed for the joint registration and clustering of: magnetic res-
onance (MR) diffusion tensor image (DTI)-derived data, acquired from multiple
subjects, addressed by (1); and hybrid representations of shapes defined by spa-
tial positions of points, with associated surface normal vectors, addressed by (2).
The former is of particular interest in this chapter (henceforth referred to as Ap-
plication 1), while the latter serves to highlight the flexibility of the presented
work (referred to as Application 2). The generic nature of the proposed frame-
work is well-suited to registering other types of hybrid point sets comprising
discriminative features (such as principal curvatures, integral descriptors, vessel
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radii/diameters, etc.). High-dimensional feature vectors are in general, more de-
scriptive than spatial positions alone, and improve discriminative capacity when
establishing correspondences, due to the low probability of matching all features.

Magnetic resonance diffusion tensor imaging (DTI) has found widespread use
in studies investigating localised changes to structure and connectivity within
brain white matter (WM) and their potential as biomarkers for dementia and
other neurodegenerative diseases. DTIs are estimated from diffusion weighted
images (DWIs), which encode diffusion of varying strengths along different gra-
dient directions. MR DTI use a diffusion tensor model (Basser, Mattiello, and
LeBihan, 1994) that, under some assumptions, can be related to local tissue mi-
crostructure. They aid in voxel-wise quantification of diffusion characteristics,
which may be expressed in terms of principal eigenvectors and eigenvalues of the
estimated diffusion tensors. Tissue microstructure affects local diffusion proper-
ties. For example, water diffuses preferentially, parallel to the major axis of a
fibre bundle as opposed to perpendicular to it and, consequently, gives rise to the
sense of tissue anisotropy commonly observed in major WM tracts. Fractional
anisotropy (FA), a measure frequently employed to describe tissue anisotropy
(Pierpaoli and Basser, 1996), represents the degree of directional dependence in
diffusion at a specific voxel. The primary eigenvector of a diffusion tensor repre-
sents the preferred direction for the diffusion of water at any given voxel, and is
often interpreted as reflecting the local fibre orientation within tissue.

Region of interest –ROI-based– analyses have been used to assess changes
in local (Salat et al., 2005) and global (Cercignani et al., 2001) tissue diffusion
properties. A limitation of such approaches is the need for accurately delineating
ROIs across multiple patients’/subjects’ images. Consequently, they are affected
by low reproducibility, leading to discrepancies across studies. Tract-based spa-
tial statistics (TBSS) (Smith et al., 2006) and voxel-based morphometric (VBM)
approaches (Ashburner and Friston, 2000) are suitable alternatives that are fully
automatic and enable analysis of localised changes to FA and other diffusion mea-
sures, across the entire WM volume. The quality of non-rigid registration used
in VBM significantly influences the subsequent voxel-wise analysis. To overcome
this issue, (Smith et al., 2006) proposed the widely used TBSS approach, which
ensures that registration quality has less influence on subsequent statistical anal-
ysis of FA (and other diffusion-derived quantities). TBSS constructs an alignment
invariant mean FA skeleton following registration of subjects’ FA images to a tem-
plate. Neighbouring voxels located perpendicular to the skeleton are identified
for each subject, and the highest FA values (assumed to represent tract centres)
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are assigned to each skeleton voxel. The resulting projections to the skeleton en-
able statistical analysis across multiple subjects.

Alternative probabilistic techniques that jointly register and cluster WM fibre
trajectories (obtained from diffusion tractography), and which enable quantita-
tive analysis of diffusion measures over fibre pathways (rather than voxel-wise
quantification), have also been proposed. For example, registration of curves and
fibre bundles using diffeomorphisms and currents, and a statistical framework
to assess variability in geometry and fibre density across a population, was pro-
posed by (Durrleman et al., 2009), (Durrleman et al., 2011). (Maddah et al., 2008)
employ a Gamma mixture modelling framework to register fibre trajectories by
establishing probabilistic correspondences, and jointly cluster them into repre-
sentative fibre bundles. The authors also note therein, through use of a suitable
fibre tract atlas as a prior during the clustering procedure, correspondences may
be estimated across fibre trajectories obtained from multiple subjects, thereby
enabling statistical analysis of FA and other diffusion quantities across popula-
tions. In (Zvitia et al., 2010), the authors propose a combined adaptive mean shift
and Gaussian mixture model (GMM) formulation to jointly cluster fibre trajec-
tories into compact fibre sets, and subsequently register fibre sets obtained from
multiple subjects. The registration of two clustered fibre sets is formulated as a
problem of aligning two distinct GMMs, analogous to point set registration us-
ing GMMs (Jian and Vemuri, 2005). Similar approaches to clustering fibre trajec-
tories across a population, using spectral embedding, have also been proposed
(O’Donnell and Westin, 2007), facilitating the estimation of WM atlases and en-
abling automatic segmentation of major WM tracts. Such techniques are however,
dependent on the tractography algorithm employed to estimate fibre trajectories
and typically require user intervention.

Applications of the various methods described above have included, for ex-
ample, identification of relationships between mild cognitive impairment (MCI)
and Alzheimer’s disease (AD), and localised changes to WM diffusion charac-
teristics. For example, in (Zhang et al., 2007), ROI-based analysis was used to
identify significant reduction in FA in the cingulum for patients diagnosed with
MCI and AD, relative to healthy controls (HC). In (Medina et al., 2006), VBM was
used to identify significant reduction in FA, in posterior regions of the brain, for
MCI and AD patient groups. While, (Liu et al., 2011) used the TBSS-approach,
and found reduced FA in the cingulum, corpus callosal and inferior/superior
longitudinal fasiculus tracts, among others. As the cingulum and corpus cal-
losal regions have been of significant interest in previous studies investigating
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dementia-related changes to diffusion characteristics within WM, they are con-
sidered for Application 1, as an exemplar study for the proposed HMM-based
joint registration and clustering framework.

The proposed framework is employed to jointly register and cluster brain dif-
fusion MRI data, to enable statistical analysis of DTI-derived measures, as an
alternative to existing VBM- and TBSS-based approaches. The latter are based
on non-rigid registration of subjects’ FA images to a standard space to perform
such analysis. Instead, our approach uses group-wise non-rigid point set reg-
istration based on a hybrid mixture modelling framework, which approximates
the joint probability density of: (1) spatial positions (of voxel centroids within a
region/tract of interest), (2) the primary diffusion axes/fibre orientations, and (3)
fractional anisotropy, estimated at the voxels of interest. The proposed frame-
work is flexible and can be used to model other diffusion-derived data such as
mean/radial diffusivity, relative anisotropy, tensor-eigenvalues, etc. — a func-
tionality also afforded by TBSS. However, the proposed approach also enables
analysis of the variation in fibre orientations, across multiple subjects, which can-
not be done using TBSS. While VBM-based approaches allow for such analyses
through co-registration of DTIs acquired from multiple subjects, they are depen-
dent on the accuracy of non-rigid registration and the exact estimation of corre-
spondences, to ensure validity in the subsequent voxel-wise statistical analyses.
On the other hand, TBSS and our approach are less restrictive in this regard. In
the proposed approach, correspondence probabilities are estimated by approxi-
mating the joint probability density of position, fibre orientation and FA, which
are iteratively revised as the registration progresses. Consequently, three distinct
sources of information are leveraged to guide the registration of an unbiased,
study-specific atlas, onto each subject’s WM tract/region of interest. The evolv-
ing soft correspondences provide model-based estimates for the mean primary
diffusion axis and FA value (for a given population) at each component in the
mixture model and help mitigate any misalignment incurred during registration.

Additionally, VBM-based approaches employing DTI-registration are often
pair-wise in nature, requiring selection of a suitable reference template, not viable
in many pathological scenarios. Statistical analysis of fibre orientations across
multiple subjects and comparisons between patient groups was pursued in a
previous study (Schwartzman, Dougherty, and Taylor, 2005), using such an ap-
proach. DTIs from multiple subjects were spatially normalized to a reference
template and subsequently, Watson distributions were fitted by maximum likeli-
hood estimation, to the fibre orientations observed across a group, for each voxel,
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independently. This provided a measure of the mean orientation and dispersion,
observed across the group of subjects. A drawback of such an approach how-
ever, is the need to choose a single, appropriate template, for registration. All
subsequent registrations performed and correspondences estimated are biased
towards the chosen template.

In the context of Application 1, the proposed approach models the PDF of
primary diffusion axes (henceforth referred to as fibre orientations for brevity),
rather than the directions of the observed primary diffusion eigenvectors, which
tend to be random (as diffusion tensors are antipodally symmetric). Registration
of WM regions (defined by hybrid point sets comprising position, fibre orienta-
tion and FA) across subjects, is achieved using a group-wise rigid, and subse-
quent non-rigid point set registration approach, based on a HMM. Spatial po-
sitions (defined by voxel centroids) are modelled using a Student’s t-mixture
model (TMM), fibre orientations are approximated using a Watson mixture model
(WMM), while a GMM approximates the FA density. We chose to model the
distribution of FA using a GMM rather than a Gamma mixture model (which
would intuitively be a suitable choice) as GMMs are computationally efficient
to implement, since closed-form solutions exist for the associated model param-
eters, and it ensures that the FA values predicted at the established correspon-
dences, are Gaussian-distributed across subjects. The latter is useful for conduct-
ing subsequent statistical analyses. Only two previous studies (Billings and Tay-
lor, 2014), (Billings and Taylor, 2015), have attempted to model the joint density
of position and orientation, within a point set registration framework. In these
studies the authors proposed variants of the iterative closest point (ICP) registra-
tion algorithm for pair-wise rigid shape registration, called iterative most likely
oriented point registration (IMLOP) (Billings and Taylor, 2014) and generalized-
IMLOP (Billings and Taylor, 2015). Both methods model the joint PDF of points
and their associated surface normals using a combination of Gaussian and Von-
Mises-Fisher distributions, in an expectation maximisation (EM)-based mixture
modelling framework. We adopt a similar approach in this study, but favour
Student’s t-distributions in place of Gaussians for modelling positions, due to
the improved robustness to outliers of the former, re-formulate the approach for
group-wise registration (rather than pair-wise), and incorporate an explicit model
of FA distributions, as described. Furthermore, for Application 1 Watson distri-
butions are favoured over Fisher distributions as they are antipodally symmetric,
unlike the latter. Conversely, for Application 2, Fisher distributions are employed
(in place of Watsons), in combination with Student’s t-distributions, to model the
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joint PDF of points and their associated surface normals (similar to (Billings and
Taylor, 2014) and (Billings and Taylor, 2015)).

The primary motivation for the Watson-distribution based HMM framework
proposed herein, is to facilitate the statistical analysis of fibre orientations and
FA values across multiple subjects. In the proposed framework, the constituent
Watson distributions model in-plane and out-of-plane fibres for any given ROI,
with equal likelihood. Consequently, while the proposed method is suitable for
our application, for alternative applications that look to explicitly model indi-
vidual tracts and distinguish them from their neighbours, additional anatomical
constraints would be necessary. This is particularly true when modelling strictly
sheet-like structures as found in the heart for example.

Registration of hybrid point sets comprising positions and directional data
distributed on a unit sphere (as in Application 2 of interest in this chapter), is
useful for a variety of clinical applications. These include — computer-assisted
interventions and intra-operative guidance applications involving surface data,
as in hip replacement surgery (Mittelstadt, 2002), liver surgery (Clements et al.,
2008), neuro-surgery (Raabe et al., 2002), (Miga et al., 2003), etc.; registration of
surface data obtained from C-arm CT systems and Kinect depth-cameras (Rausch
et al., 2016), for full 3D knee surface reconstruction and motion correction, useful
for studies investigating the effects osteoarthritis on the weight-bearing capacity
of knees; registration of blood vessel geometries represented by centreline posi-
tions with associated direction vectors oriented along centrelines, and/or vessel
radii, useful for a variety of surgical planning (Selle et al., 2002) and navigation
applications (Lange et al., 2009), (Hayashi et al., 2016), among others.

5.2 Methods

5.2.1 Application 1: Pre-processing

MR-DWIs were acquired for 60 subjects (20 AD, 20 MCI, 20 HC), as part of
the prospective cohort, for the VPH-DARE@IT project (vph-dare.eu). All im-
ages used in this study were acquired using identical protocols: 2 diffusion-
weighted b-values, with diffusivity gradients applied along 32 directions; image
size of (240 × 240 × 120) slices, 2.5mm thick in the right-left, anterior-posterior
and inferior-superior directions, respectively. DTIs were estimated from these
for each subject using TORTOISE v 2.5.0 (Pierpaoli et al., 2010), which employs
state-of-the-art algorithms for motion and eddy current correction, correcting

vph-dare.eu
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B0 susceptibility induced EPI distortions and B-matrix re-orientation artefacts.
Tensor-fitting was then achieved using iRESTORE (Chang, Walker, and Pierpaoli,
2012), based on non-linear iterative least-squares. TORTOISE registers each sub-
ject’s DWIs to their corresponding T2-weighted structural MRI during the afore-
mentioned pre-processing steps. As the latter were acquired at resolutions of
(1.5×1.5×1.5mm), all estimated DTIs (and correspondingly, DTI-derived images)
were up-sampled relative to their raw DWIs. Finally, tensor-derived measures
such as the eigenvector and fractional anisotropy images were also estimated us-
ing TORTOISE.

FIGURE 5.1: Nifty-Reg used to propagate labels for WM regions of
interest from JHU-ICBM-DTI-81 atlas to each subject in AD, MCI
and HC groups. Images depict propagation of the corpus callosum

label from the atlas to subjects in AD, MCI and control groups.

The proposed framework is flexible and can consider the entire WM volume
as the region of interest, though at the cost of significant computational bur-
den. For the purpose of this study, we restrict our attention to two WM regions,
namely, the cingulum and corpus callosum. An atlas-based label propagation
approach was used to segment the WM ROIs from all subjects’ FA images. The
fractional anisotropy image of the JHU-ICBM-DTI-81 atlas 1 (Mori et al., 2008) -
(Hua et al., 2008) was non-rigidly registered to each subject’s FA image (follow-
ing an initial affine alignment), using Nifty-Reg v 1.3.9 (Ourselin et al., 2001),

1Available at: http://www.loni.usc.edu/ICBM/Downloads/Downloads_DTI-81.shtml
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(Modat et al., 2010), a deformable image registration algorithm based on cubic B-
splines. Following FA image registration, the segmented labels for the cingulum
and corpus callosum defined on the atlas (available along with the FA atlas), were
resampled to the space of each subject’s FA image. In this way, labels delineating
the cingulum and corpus callosum in the atlas image, were propagated to each
subject’s image, segmenting the ROIs (as illustrated in Fig. 5.1).

5.2.2 Application 1: Algorithm Overview

FIGURE 5.2: Summary of steps involved in the proposed framework
to jointly register and cluster hybrid point sets comprising spatial
positions, fibre orientations and FA values, for a WM tract/ROI.

Dashed box outlines the two stages of the proposed algorithm.

The steps involved in the proposed approach are summarised by Fig. 5.2. For
a group of k = 1...K subjects to be analysed (e.g. comprising control, MCI and
AD sub-groups), their tract segmentations, eigenvector and FA images were used
to construct hybrid point sets Dk, where each data point is a 7-dimensional vec-
tor denoted as dki = [xki,nki, fki]. Here xki represents the spatial co-ordinate, nki
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represents the primary diffusion eigenvector and fki denotes the FA value for
the ith voxel, in the kth subject’s image. xki are consequently, densely distributed
points within the volumes/ROIs. The resulting hybrid point sets were, subse-
quently, jointly registered and clustered by fitting an M -component hybrid mix-
ture model (comprising Student’s t, Watson and Gaussian distributions) to the
data. This was achieved over two stages (as depicted in Fig. 5.2): (1) Group-wise
rigid registration of the hybrid point sets Dk and mean template M construction;
and (2) Group-wise non-rigid registration, wherein the mean template estimated
in stage 1 was non-rigidly registered to each sample in a subject group. The set
of similarity transformations Tk estimated in stage 1, aligning the hybrid point
sets to the estimated mean template, initialise the subsequent non-rigid registra-
tion step (stage 2) by correcting global pose differences across the data set. Stage
2 of the algorithm estimates non-rigid transformations defined by basis function
weights Wk, mapping the mean template to each sample within a subject group.
In both stages of the algorithm, estimation of the desired registration parameters
was accompanied by the joint clustering of positions, orientations and FA val-
ues. The parameters to be estimated for each of the j = 1...M components of the
hybrid mixture model include: {mp

j , σ
2
p, νj} = Θp, which represent mean spatial

positions, their variance and the degrees of freedom, respectively, for the Stu-
dent’s t-distributions; {md

j , κj} = Θn, which represent the mean fibre orientations
and concentration around the means, respectively, for the Watson distributions;
{mf

j , σ
2
f} = Θf , which denote the mean FA values and FA variance, respectively,

for the Gaussian distributions; and πj which denote the mixture coefficients. The
estimated mean template M thus comprises positions, mp

j , orientations md
j and

FA values mf
j .

5.2.3 Joint Probabilistic Model of Position, Orientation and

Anisotropy

The problem of joint registration and clustering of hybrid point sets comprising,
multiple data features such as positions, orientations and scalar measures, is for-
mulated as one of maximum likelihood estimation, using a hybrid mixture model
(HMM). In the context of Application 1, the proposed HMM is used to approxi-
mate the joint PDF of spatial positions (of voxel centroids), fibre orientations, and
fractional anisotropy, derived from DTIs. By assuming voxel positions, fibre ori-
entations, and FA values to be independent and identically distributed (i.i.d), for
each subject and across multiple subjects, the joint PDF can be approximated as a
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product of the individual conditional densities (Bishop, 2006) for position, orien-
tation and FA. Consequently, by considering all data points dki = Dk, from all K
subjects, to be i.i.d. the conditional probability of an observation being sampled
from an M -component hybrid mixture model is given by equation 5.1a. Θp rep-
resents the set of model parameters associated with the Student’s t-distributions
S, used to model the distribution of voxel spatial positions; Θn represents the
parameters of Watson distributionsW (modelling fibre orientations); Θf denotes
the set of parameters of the Gaussian distributionsN (modelling FA); and πj = Π

represents the set of mixture coefficients, of the hybrid mixture model. Here and
throughout, subscript j = 1...M denotes mixture components and the choice of
distributions indicated earlier will be justified later in this Section. Using equa-
tion (5.1a) the log-likelihood function is formulated as shown in equation (5.1b),
which defines the cost function to be optimised with respect to the mixture model
parameters {Θp,Θn,Θf ,Π} = Ψ, to jointly register and cluster the hybrid point
set data Dk = D.

p(dki|Θp,Θn,Θf ) =
M∑
j=1

πjS(xki|Θp)W(nki|Θn)N (fki|Θf ) (5.1a)

ln p(D|Ψ) =
K∑
k=1

Nk∑
i

ln p(dki|Θp,Θn,Θf ) (5.1b)

P t
kij =

πjp(dki|Θt
p,Θ

t
n,Θ

t
f )

M∑
j=1

πjp(dki|Θt
p,Θ

t
n,Θ

t
f )

(5.1c)

Q(Ψt+1|Ψt) =
K∑
k=1

Nk∑
i=1

M∑
j=1

P t
kij

[
lnπj +Q(Θt+1

pj
|Θt

pj
) +Q(Θt+1

nj
|Θt

nj
) +Q(Θt+1

fj
|Θt

fj
)
]

(5.1d)

A tractable approach to maximising equation 5.1b is achieved using the
expectation-maximisation (EM) framework (Dempster, Laird, and Rubin, 1977),
which iteratively alternates between: the expectation (E)-step, which evaluates
the mixture component membership probabilities as shown in equation 5.1c (i.e.
posterior probabilities P t

kij), given an estimate of the model parameters Ψt, at the
tth EM-iteration; and the maximisation (M)-step, which uses the computed pos-
terior probabilities P t

kij to maximise the conditional expectation of the complete-
data-log-likelihood functionQ (refer to equation 5.1d), with respect to each model
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parameter, resulting in revised estimates Ψt+1. As shown in equation 5.1d, Q for
the hybrid mixture model can be expressed as a sum of contributions from each
distribution and corresponding data feature (i.e. position, orientation and FA),
denoted: Q(Θt+1

p |Θt
p), Q(Θt+1

n |Θt
n), Q(Θt+1

f |Θt
f ), respectively. The complete algo-

rithm for the proposed hybrid mixture model, to jointly register and cluster a
group D of hybrid point sets, is summarized in Algorithm 3. Subsequent sections
discuss each probability distribution and estimation of their associated parame-
ters, within the proposed framework, in more detail.
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Algorithm 3 Hybrid Mixture Model: HMM
Inputs: Group of hybrid point sets Dk=1..K, number of

mixture components M, max.iterations

Outputs: Set of HMM parameters {Θp,Θn,Θf} = Ψ, soft

correspondences

1: INITIALIZATION

2: Initialize M, σ2
p, σ

2
f using K-means clustering.

3: All πj = 1/M and νj = 3.0, κj = 1.0

4: procedure STAGE 1 EM: GROUP-WISE RIGID

REGISTRATION(Dk,Θp,Θn,Θf ,Π,Tk) . EM initialized
5: while Iteration < max.iterations do
6: Compute Pkij . E-step
7: Update Rk, sk, tk . M-step
8: Update Θp,Θn,Θf . M-step
9: end while

10: return M, σ2,Υ,Π,Tk

11: end procedure
12: Estimated mean template M, mixture coefficients Π and similarity transfor-

mations {Tk}k=1...K initialise Stage 2.
13: procedure STAGE 2 EM: GROUP-WISE NON-RIGID

REGISTRATION(Dk,Θp,Θn,Θf ,Π,Tk,Wk) . EM non-rigid initialized
14: while Iteration < max.iterations do
15: Compute Pkij . E-step
16: Update Wk . M-step
17: Update σ2

p, νj,Θn,Θf . M-step
18: mp

j remain fixed.
19: end while
20: Soft correpondences established using, Pkij,Θp,Θn,Θf , estimated follow-

ing convergence.
21: return Soft correspondences, Θp,Θn,Θf ,Π,Wk

22: end procedure

Algorithm 3 is described in the context of Application 1. It was also em-
ployed for Application 2, with minor modifications such as: employing Fisher
distributions (in place of Watson distributions) to model surface normal vectors,
and omitting the GMM component in the HMM (used to model scalar-valued
quantities).
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5.2.4 Mixture Model for Axial Data: Primary Diffusion Axes

In addition to modelling the spatial distribution of voxels defining ROIs, the pro-
posed approach also deals with axial data distributed over the S 2 sphere, i.e. fibre
orientations defined by primary diffusion eigenvectors. Although Von-Mises-
Fisher distributions are frequently used for clustering directional data, they are
unsuitable for axial data, as they lack of antipodal symmetry. Watson distribu-
tions on the other hand, are naturally suited to model diffusion data as they are
antipodally symmetric (i.e. the density is the same along an axis in either direc-
tion) and as the aim is to model the PDF of diffusion axes at corresponding spa-
tial locations, rather than any specific direction along the axes (Jupp and Mardia,
1989). They are fully defined by two parameters, namely, the mean/principal axis
(±md, about which the distribution is rotationally symmetric) and a scalar con-
centration parameter κ. The latter describes the degree of concentration about
the mean axis of the distribution, with high values indicating high concentra-
tion. The PDF of a Watson distribution with mean direction md and concentra-
tion κ is expressed as equation 5.2a, for axially symmetric 3D unit vectors ±n.
Here, M(·) represents the Kummer function. (Bijral, Breitenbach, and Grudic,
2007) proposed an efficient EM-based clustering framework for axial data, using
a WMM, employed in this chapter for Application 1, to cluster fibre orientations.

p(±n|md, κ) = M(
1

2
,
D

2
, κ)−1 expκ(mdT n)2 (5.2a)

p(N|Θn) =
K∑
k=1

Nk∑
i=1

ln
M∑
j=1

πjp(±nki|md
j , κj) (5.2b)

The joint likelihood of the diffusion eigenvectors ±nki = Nk observed across all
Nk points in all K shapes, given Watson distributions with mean directions and
concentrations {md

j , κj}j=1...M = Θn, is evaluated as shown in equation 5.2b. Here,
Nk = N denotes the set of all observed diffusion vectors across the entire popula-
tion. It is important to note at this point that, as the clustering of fibre orientations
was initially performed jointly with rigid registration of the hybrid point sets Dk,
the estimated rotations Rk at each EM-iteration, were applied to the current es-
timate of the mean fibre orientations md

j , prior to the evaluation of the posterior
probabilities Pkij , and concentrations κj , in the E- and M-steps, respectively (re-
fer to equations 5.3a - 5.3b). Additionally, for the estimation of md

j the inverse of
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the estimated rotations RT
k were applied to their corresponding sample’s diffu-

sion eigenvectors nki, to align the kth sample to the current estimate of the mean
template (refer to equation 5.3c).

(5.3a)Q(Θt+1
n |Θt

n) =
K∑
k=1

Nk∑
i=1

M∑
j=1

P
(t)
kij ln p(±nki|R(t)

k md(t)

j , κ
(t)
j )

(5.3b)Q(Θt+1
n |Θt

n) =
K∑
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Nk∑
i=1

M∑
j=1

[P
(t)
kij ln p(±nki|R(t)

k md
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k md
j
TR(t)

k md
j )]

md(t)

j −

K∑
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Nk∑
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P
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k nTkim
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j )RT (t+1)

k nki

||
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Nk∑
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P
(t)
kij(RT (t+1)

k nTkim
d(t)
j )RT (t+1)
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= 0 (5.3c)
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κ
(t+1)
j ≈ 1

2

 1− [
M ′(κj)
M(κj)

](t+1)D

[(
M ′(κj)
M(κj)

)2](t+1) − [M ′(κj)
M(κj)

](t+1)

 (5.3e)

Maximum likelihood estimates for the associated parameters are evaluated at
each M-step of the algorithm by maximising the expectation of the complete data
likelihood (equation 5.3a), with respect to md

j and κj , subject to the constraint
md
j
Tmd

j = 1 (Bijral, Breitenbach, and Grudic, 2007). This is achieved by maximis-
ing the Lagrangian form of Q shown in equation 5.3b. Mean directions md

j are
estimated numerically, using fixed-point iteration, to solve the non-linear equa-
tion (shown in equation 5.3c) obtained from differentiating Q (5.3b) with respect
to md

j . κj on the other hand is approximated (refer to equation 5.3e) using the
continued fraction representation for the ratio of, the derivative of the Kummer
function and the function itself, i.e. M ′(κj)

M(κj)
(equation 5.3d). In a recent study (Sra

and Karp, 2013) derived two-sided bounds for approximating κ, particularly use-
ful when dealing with high dimensional data. However, for 3D data (as in this
study) the approximation presented in equation 5.3e is sufficient (as noted by (Bi-
jral, Breitenbach, and Grudic, 2007),(Sra and Karp, 2013)). Better approximations
for κj may be obtained using numerical techniques such as Newton’s method,
however, at the expense of increase in computational burden. Derivations for all
WMM parameters are presented in Appendix B.
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5.2.5 Mixture Model for Directional Data: Surface Normals

Application 2 is concerned with modelling the joint PDF of point positions with
associated surface normal vectors (which are consistently oriented either outward
or inward). Such an approach is particularly useful when registering shapes with
complex topologies comprising, disjoint structures, holes, bifurcations (encoun-
tered with blood vessel geometries), etc. Consistently oriented surface normal
vectors represent directional data distributed over the S 2 sphere. GMMs and
TMMs, comprising Gaussian and Student’s t-distributions, respectively, are in-
appropriate for clustering such data and consequently, a mixture of Von-Mises-
Fisher (or Fisher) distributions, also defined over the spherical domain, is em-
ployed here. Fisher distributions are rotationally symmetric, unimodal and from
the general family of Langevin distributions (Jupp and Mardia, 1989). They are
fully defined by two parameters, namely, the mean direction (md, about which
the distribution is rotationally symmetric) and a scalar concentration parame-
ter κ, which is analogous to the precision of a Gaussian distribution. The latter
describes the degree of concentration about the mean direction of the distribu-
tion. High values for κ thus indicate high concentration along the mean direction
(Fisher, Lewis, and Embleton, 1987). A 3-D unit vector n is considered to be an
observation sampled from a Fisher distribution with mean direction md and con-
centration κ if its PDF is expressed as shown in equation 5.4a.

p(n|md, κ) =
κ

4π sinh(κ)
expκmdT n (5.4a)

p(N|Θn) =
K∑
k=1

Nk∑
i=1

ln
M∑
j=1

πjp(nki|md
j , κj) (5.4b)

(5.4c)Q(Θt+1
n |Θt

n) =
K∑
k=1

Nk∑
i=1

M∑
j=1

P t
kij ln p(nki|md

j , κj)

With GMMs and TMMs the error measure relating the observed data to cluster
centroids are defined using the Mahalanobis distance. This results in less accu-
rate estimates than the cosine similarity measure, used by Fisher mixture models
(FMMs), when dealing with directional data (Banerjee et al., 2005). FMMs are
well-suited to model such data and were chosen for their simplicity and compu-
tational efficiency. In the context of Application 2, the observed surface normal
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vectors nki = Nk, across a group of K shapes, are assumed to be rotated observa-
tions sampled from Fisher distributions with mean directions md

j and concentra-
tions κj . The joint PDF for all observed normal vectors across the group (denoted
Nk = N) is evaluated as shown in equation 5.4b.

(5.5a)Q(Θt+1
n |Θt

n) =
K∑
k=1

Nk∑
i=1

M∑
j=1

[P t
kij ln p(nki|md

j , κj) + λj(1−md
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Tmd
j )]
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Maximum likelihood estimates for the associated parameters are evaluated at
each M-step of the algorithm by maximising the form of Q shown in equation
5.5a, with respect to md

j and κj . While estimates for md
j are derived analytically,

similarly to (Banerjee et al., 2005), no such solution exists for estimating concen-
trations κj . Previous approaches employing FMMs have proposed empirically
determined approximations (Banerjee et al., 2005) and/or adopted numerical es-
timation techniques. In this study we use fixed point iteration to solve the non-
linear equation (refer to equation 5.5c) resulting from differentiating Q(Θt+1

n |Θt
n)

with respect to κj and equating to zero. As with WMMs discussed in the previous
section, md

j are estimated by optimising Q(Θt+1
n |Θt

n) subject to the constraint that
the mean directions should be of unit norm i.e. ||md

j ||= 1. This is achieved using
a Lagrange multiplier λj and maximising the Langrangian form of Q presented
in equation 5.5a, with respect to md

j . Revised estimates for the mean directions
md
j are thus evaluated at each M-step of the algorithm, as shown in equation 5.5b.

Derivations for all FMM parameters are presented in Appendix B.

5.2.6 Mixture Model for Fractional Anisotropy

The distribution of voxel-wise FA in WM ROIs across a population, is modelled
using a univariate GMM. GMM was chosen as the resulting model-predicted FA
values at the estimated soft-correspondences, across subjects, is guaranteed to
be normally distributed — a useful property for subsequent statistical analyses,
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as noted in (Smith et al., 2006). Additionally, GMMs are computationally effi-
cient, as analytical solutions exist for revising estimates of the associated model
parameters (mean mf

j and variance σ2
f of FA), at each EM-iteration. Assuming

the observed FA values fki at voxels in ROIs, across a group of subjects Fk = F
are i.i.d, the joint log-likelihood ln p(F|Θf ), is expressed as equations 5.6a, 5.6b.
Consequently, the conditional expectation of the complete data log likelihood Q,
maximised with respect to the model parameters associated with the Gaussian
distributions in the mixture, is given by equation 5.6c (only terms dependent on
mf
j and σ2

f are retained in Q). As GMM-based clustering of FA values is per-
formed jointly with the registration of tract shapes, and clustering of voxel posi-
tions and the associated fibre orientations, the influence of a Gaussian component
in the mixture model is automatically limited to its local neighbourhood. This
helps ensure that only voxels in close proximity to each other contribute signifi-
cantly to the estimation of mean FA values at each mixture component. Estimates
for the GMM parameters mf

j and σ2
f in the M-step of the algorithm are derived

analytically, as shown in (Bishop, 2006).
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5.2.7 Rigid Alignment and Template Construction

5.2.7.1 Application 1: Modelling Diffusion Data

The group-wise rigid point set registration framework based on Student’s t-
mixture model, proposed in chapter 3 is employed in the present study as an
initial step, to rigidly align WM ROIs (hybrid point sets representing voxel cen-
troid positions, fibre orientations and FA values), segmented from all subjects’
images, whilst simultaneously estimating a mean model. The latter is used sub-
sequently as a template for non-rigid registration (using TMM-NR, also discussed
in chapter 3). Rigid group-wise registration is preferred to a pair-wise approach
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as it enables estimation of a mean template and the desired similarity transforma-
tions in an unbiased manner. Rigid alignment also helps initialise the subsequent
non-rigid registration by recovering global differences in pose between samples,
and establishes soft correspondences across subjects.

The joint PDF of voxel positions xki = Xk, fibre orientations nki = Nk, and FA
fki = Fk, across all K subjects in a group (denoted, Xk = X, Nk = N, Fk = F),
is given by equation 5.7a (assuming they are i.i.d transformed observations of a
HMM). In equation 5.7a, Tk represents the similarity transformation (comprising
rotation Rk, scaling sk and translation bk), to align the positions mp

j defining the
mean template, to the kth sample in the group. The form of the objective function
Q to be maximised, to estimate the desired similarity transformations Tk = T
and mixture component parameters Θp, is given by equation 5.7b, as discussed
in chapter 3. Fibre orientations and FA are invariant to translation bk and scal-
ing sk, consequently, these transformation parameters are estimated identically
as in chapter 3. Although the former are rotationally dependent, the contribution
of orientation to the estimation of Rk is ignored, as the directions of diffusion
eigenvectors tend to be random, leading to ambiguity in the estimation of Rk.
Consequently, positions alone contribute to recovering rotational offsets across
samples. Rk is thus derived based on the spatial positions of the hybrid point
sets alone (as shown in equation 5.7b). However, following estimation of the
desired rotations Rk at each EM-iteration, the current estimate of the mean tem-
plate is transformed by rotating both spatial positions mp

j and their associated
fibre orientations md

j , to align it with the kth sample in the group. Additionally, it
is important to note that, while the fibre orientations and FA values are ignored
in the derivation of the desired transformation parameters, they are intrinsic to
the estimation of the posterior probabilities Pkij at each E-step of the algorithm.
Consequently, they drive the estimation of soft correspondences, which in turn
affect the transformations evaluated at each M-step of the algorithm.
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5.2.7.2 Application 2: Modelling Surface Normals

As discussed in the previous section, group-wise rigid registration of hybrid
point sets is achieved using the EM-based framework outlined in chapter 3.
While the Watson-variant of the proposed HMM, used to model axial data, ig-
nores the contribution of orientations to the estimation of rotations, this is not
the case for its Fisher distribution-based counterpart. In the context of the Ap-
plication 2, as the directional data (surface normal vectors) modelled is consis-
tently oriented, and rotationally dependent, estimation of the desired rotations
is driven by both spatial positions and their associated surface normal vectors.
Consequently, the joint PDF of spatial positions xki = Xk and their associated
normals nki = Nk, across K shapes in a group (denoted, Xk = X and Nk = N),
is given by equation 5.8a. Correspondingly, the form of Q to be maximised, to
estimate the desired similarity transformations Tk = T and mixture component
parameters Θp,Θn, is given by equation 5.8b. A similar approach to estimating
rotations based on both positions and surface normals was presented in (Billings
and Taylor, 2014) and (Billings and Taylor, 2015), although for pair-wise shape
registration.
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As unit vectors are invariant to translation bk and scaling sk, these transforma-
tion parameters are estimated identically as in chapter 3. Rotations meanwhile,
are computed by maximisingQ (equation 5.8b) with respect to Rk, and expressed
as shown in equation 5.8c. In equation 5.8c U,V are unitary matrices estimated by
singular value decomposition of matrix Ck, described by equation 5.8d, and S is
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a diagonal matrix given by, S = diag(1, 1, det(UVT )) enforcing strictly orthogonal
rotations, as discussed in chapter 3. Additionally, dk and mk represent weighted
centroids/barycenters evaluated as described previously in equations 3.18 - 3.19.

5.2.8 Non-rigid Registration

The mean shape/template estimated during the initial group-wise rigid regis-
tration step (discussed in section 5.2.7), is non-rigidly registered to each patient
group (AD, MCI and HC) independently (in the context of Application 1). As
discussed previously in chapter 3, the desired non-rigid transformations are de-
fined with respect to the template M as: M+vk(M) (considering spatial positions
mp
j alone), where v is a displacement function mapping the template to the kth

sample in the group. To register the template to the kth sample in each group,
the objective function to be maximised with respect to the basis function weights
wkj = Wk, is expressed as shown in equation 5.9, where G represents the Gaus-
sian kernel/Gram matrix. The basis function weights to register the mean tem-
plate to each sample in a patient group, are estimated similarly to (Myronenko
and Song, 2010).
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During the non-rigid registration step, the spatial positions of the template
remain fixed and are not updated in the M-step of the algorithm. As a result
the mean tract shape (representative of the entire population), estimated in the
group-wise rigid registration step of the algorithm, is retained. This is particu-
larly useful for performing subsequent inter-group comparisons (similar to the
role of a mean FA skeleton in TBSS), to identify corresponding spatial positions,
which exhibit significant changes in FA. However, the remaining parameters of
the mixture model, are revised at each M-step of the algorithm. Consequently, fol-
lowing convergence of the non-rigid registration, a group-specific estimate for the
mean fibre orientation and mean FA value at each point representing the template
is obtained. Although point set registration techniques are typically employed to
register 3D point sets (comprising only spatial positions) representing the sur-
face/boundary of an object, this study incorporates additional image-based fea-
tures (such as fibre orientations and FA values), that enable registration of dense
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point sets, defined by voxel centroids located at the boundary of, and within a
region of interest.

Non-rigid transformations are estimated in a similar manner for the Fisher-
variant of the HMM, employed in Application 2, to register hybrid point sets
defining surface boundaries (comprising spatial positions and associated surface
normals). However, the spatial positions of the mean template are revised at each
EM-iteration in this case, conversely to its Watson distribution-based counterpart,
used in Application 1.

5.3 Application 1: Results and Discussion

5.3.1 Rigid Registration Accuracy

Rigid registration accuracy of the proposed framework and the robustness of Stu-
dent’s t-distributions to outliers is assessed using synthetic data comprising point
sets containing positions, associated fibre orientations and FA values. The syn-
thetic data set was generated by rigidly transforming a corpus callosum hybrid
point set by varying amounts. Four distinct synthetic samples (Samples 1-4) were
generated in this manner from the original ground truth point set (referred to as
Sample 0), as illustrated by Fig. 5.3.
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FIGURE 5.3: Synthetic corpus callosum data set comprising: Sample
(0), the ground truth hybrid point set; and Samples (1-4), which are

rotated and modified versions of Sample 0.

The rigidly transformed point sets were also modified by the addition of vary-
ing proportions of random outliers (comprising positions, orientations and FA
values). Fibre orientations associated with the outliers were generated by nor-
malizing uniformly sampled 3D points and similarly, FA values were also uni-
formly sampled within the range [0.2 − 0.8]. The FA values associated with the
voxels of each modified hybrid point set were also varied by ±0.1, relative to
the ground truth point set. This was necessary in order to emulate real data as
FA values typically vary at corresponding anatomical locations, between sub-
jects. This process was repeated 10 times, to generate 10 unique synthetic data
sets (each comprising one ground truth and 4 modified, unique samples), which
were subsequently rigidly aligned using the proposed Watson-distribution based
HMM algorithm. Random rotations and proportions of outliers were generated
for each experiment, within the range of −30◦ to 30◦ and 2% to 5%, respectively.
Table 5.1 summarises the translations, and the axes about which rotations were
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applied to generate each sample in each experiment. The average rigid registra-
tion errors following alignment of the synthetic data sets (withM = 2000 mixture
components) using the proposed framework are also reported in Table 5.1.

Rigid registration accuracy was evaluated by — (a) computing the intrinsic
distance between the estimated and ground truth rotations (Huynh, 2009), as dis-
cussed previously in chapter 3 (refer to equation 3.22b); and (b) computing the
mean Euclidean distance (ED) between (transformed) samples 1-4 and sample 0
(averaged across all points); Table 5.1 summarises average rotation and Euclidean
distance errors (computed across all 10 experiments). Point-wise Euclidean dis-
tances are first evaluated between each modified sample (samples 1-4) and sam-
ple 0, and subsequently averaged across all points. The resulting mean Euclidean
distance is then averaged once again across all 10 experiments and is reported in
Table 5.1.

TABLE 5.1: Summary of rigid registration errors across 10 experi-
ments using synthetic corpus callosum data set.

Sample # Rotated
Around

Translations
(mm.)

Rotation Error
(degrees)

Euclidean Dist.
(mm.)

1 x,y
x=0.5
y=-0.4
z=0.6

0.06 ±
0.03

0.34 ±
0.15

2 y,z
x=0.4
y=0.3
z=0.5

0.05 ±
0.03

0.30 ±
0.16

3 z,x
x=0.6
y=0.2
z=-0.5

0.04 ±
0.03

0.23 ±
0.13

4 x,y,z
x=-0.2
y=-0.7
z=0.4

0.04 ±
0.03

0.25 ±
0.17

The average Euclidean distance errors reported in Table 5.1 indicate that the
proposed Watson-based HMM framework achieved very low errors (despite the
presence of random outliers) as all values are substantially lower than the voxel
size of the original eigenvector and FA image (refer to section 5.2.1), from which
the ground truth corpus callosum hybrid point set (sample 0) was generated.
Robustness to outliers may be attributed to the constituent t-distributions in the
HMM, modelling spatial positions. Similarly the proposed approach was also
able to accurately recover the applied ground truth rotations, resulting in very
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low rotation errors for all samples (as shown in Table 5.1), relative to the mag-
nitude of the rotations applied to generate the synthetic data set. The proposed
approach therefore, is inferred to successfully approximate the joint density of
position, fibre orientation and FA, for the synthetic corpus callosum data set.

5.3.2 Model Quality

The quality of the Watson-based HMM to model DTI-derived quantities was as-
sessed using clinical data, acquired from the VPH-DARE@IT prospective cohort,
described in section 5.2.1. Specifically, model quality was quantified by evaluat-
ing the similarity between the estimated correspondences (resulting from non-
rigidly registering the template to each sample in the group) and the nearest
neighbour voxels in the corresponding subject’s ground truth FA and eigenvec-
tor images. FA accuracy is quantified as the root mean-squared error (RMSE)
between the model-predicted and ground truth FA values, across all correspon-
dences, for each subject. However, these measures represent registration resid-
uals which describe the quality of correspondences established by the proposed
HMM (i.e. how well the HMM can model the observed DTI-derived data), and
only indirectly reflect ‘registration’ accuracy. In order to provide a more general
view of ‘registration’ accuracy, MSD measures (described in chapter 3) quantify-
ing spatial position errors were also evaluated between the registered mean tem-
plates and their corresponding ground truth hybrid point sets (Note: here MSD
values were evaluated between dense volumetric point sets). As discussed pre-
viously in section 5.1, correspondences established using the proposed approach
are probabilistic in nature and consequently, reflect the DTI-derived quantities of
voxels located in their local spatial neighbourhood. The group-wise average (for
each subject group) of FA RMSE was subsequently computed. The minimum arc
length (measured in radians) between two unit vectors is used to measure the
accuracy of local fibre orientation in a similar manner. As discussed in section
5.2.4, the proposed framework models axial data rather than directional data.
When computing fibre orientation errors, corresponding unit vectors between
the model-predicted and ground truth eigenvectors are first identified. This is
achieved by evaluating their scalar product and ensuring it is positive i.e. if the
dot product is negative, the antipodal counterpart of the model-predicted vector
is used instead. The resulting measure thus quantifies the angular error in fibre
orientation between the model-predicted correspondences and the ground truth
data, for each subject.



98 Chapter 5. Registration of Generalised Point Sets

FIGURE 5.4: Model quality evaluated independently for AD, MCI
and HC groups, using M = 2000 and M = 1500 mixture compo-
nents, for the corpus callosum and cingulum respectively. Rows one
and two: Angular errors for fibre orientations (in radians) and RMSE
of FA for the corpus callosum; Rows three and four: Angular errors
for fibre orientations (in radians) and RMSE of FA for the cingulum.

Results summarizing the ability of the proposed framework to model DTI-
derived quantities across all 60 subjects, are presented in Fig. 5.4 and Fig. 5.7
and Tables 5.2 - 5.7. Fig. 5.4 helps to visualise the spatial distribution of mean
registration errors across subjects within each patient group. Here, the RMSE
values of FA were computed by averaging across subjects in each group, at each
corresponding position (defined by the mean template). The depicted mean an-
gular errors were also averaged across subjects, quantifying the fibre orientation
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FIGURE 5.5: Standard deviation of FA computed across subjects in
the AD, MCI and HC groups, mapped on to the mean templates
estimated, using M = 2000 and M = 1500 mixture components for

the corpus callosum and cingulum, respectively.

accuracy at each corresponding position. In order to interpret these results and
provide a frame of reference, the standard deviation in FA across subjects for
each patient group, is also presented in Fig. 5.5, for both WM regions. The spa-
tial distribution of the variation in FA across subjects within each patient group,
was evaluated as follows — (a) the nearest neighbour voxel in the original hy-
brid point sets were first identified based on the spatial positions estimated for
each established correspondence point (for the corresponding sample); (b) the FA
values associated with the voxels identified for each subject, were in turn used to
compute the standard deviation about the mean FA, across subjects, within each
patient group; and (c) these values were subsequently mapped on to the mean
template estimated for the corpus callosum and cingulum, for easy comparison
with the registration errors plotted in a similar manner, as shown in Fig. 5.4.
Similarly, the standard deviations in fibre orientations about the mean, were also
evaluated across subjects, within each patient group, for both WM regions. These
are presented in Fig. 5.6. Here, the difference between the mean fibre orientation
estimated at each correspondence point and its nearest neighbour voxel in the
original hybrid point sets was evaluated as the minimum arc length (in radians)
between each other. This in turn was employed to compute the standard devia-
tion in fibre orientations and visualize their spatial distribution across both WM
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FIGURE 5.6: Standard deviation of fibre orientations computed
across subjects in the AD, MCI and HC groups, mapped on to the
mean templates estimated, using M = 2000 and M = 1500 mixture

components for the corpus callosum and cingulum, respectively.

regions.
Based on these results, the proposed HMM is inferred to establish valid cor-

respondences across patients, as the estimated fibre orientation and FA errors are
low across the majority of correspondences. Fibre orientation errors were con-
sistently < 0.2 radians across most correspondences for both WM ROIs (refer to
first and third row in Fig. 5.4). FA errors meanwhile, were < 0.15 and < 0.1

for the corpus callosum and cingulum, respectively (refer to second and fourth
row in Fig. 5.4), across all patient groups. For the former WM region, FA errors
below 0.15 were evaluated for, ≥ 90% of all established correspondences. While
for the latter, ≥ 93% of correspondences, had errors below 0.1. Fibre orienta-
tion errors were < 0.2, across ≥ 90% of correspondences estimated for both WM
ROIs, in all patient groups. Errors of this magnitude are considered reasonable
as the model-predicted FA values and fibre orientations evaluated at correspon-
dences, are based on the soft-assignment approach, using the estimated posterior
probabilities. Consequently, they reflect weighted averages of FA and fibre ori-
entations, of neighbouring voxels (rather than specific ones, as is the case with
approaches based on exact-correspondences). As FA variations of ≈ 0.1 may
occur due to partial volume effects at WM-GM and WM-CSF interfaces (Smith et
al., 2006), particularly when WM tracts/ROIs are very thin compared to the voxel
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size (often the case following dementia-related atrophy of brain tissue), this could
be an another contributing factor to the observed errors. Additionally, significant
variations in DTI-data, in a select few cases within individual patient groups, may
be another source of the high average errors evaluated, in a small proportion of
correspondences. These results are further supported by the standard deviations
of FA and fibre orientations depicted in Fig. 5.5 and 5.6, respectively, which high-
light the high degree of variation in FA and fibre orientations (across subjects),
respectively, relative to the corresponding errors evaluated, across both WM re-
gions.

These results are further verified by the histograms of errors in fibre ori-
entation and FA, presented in Fig. 5.7 and 5.8, respectively, summarising the
correspondence-wise errors evaluated for each subject in the population. In this
case, fibre orientation errors were computed as in preceding experiments, while
FA errors were evaluated as the root-squared-error (RSE) between the model-
predicted correspondences and closest ground truth voxels. In general, high er-
rors occur at only a few correspondences, across both the cingulum and corpus
callosum. Registration errors for the AD and MCI groups were higher than the
HC group, for both ROIs. This is attributed to the presence of varying degrees
of pathology-induced changes in a few subjects in these groups, verified by Figs.
5.7 and 5.8, and by computing region-wise mean and standard deviations of FA
and fibre orientation errors, presented in Tables 5.3 - 5.7.

Tables 5.2 - 5.7 report the average spatial position, fibre orientation and FA er-
rors evaluated across correspondences and subjects. Statistical significance of the
mean spatial position errors presented in Tables 5.2 and 5.5, was assessed across
experiments conducted using differing model complexities (i.e. different number
of mixture components), considering a significance level of 5%. Statistically sig-
nificant results are highlighted in bold. In Tables 5.4 , 5.7 the reported mean FA
errors were estimated by first computing the RMSE, this time averaging across
correspondences, and subsequently computing the mean RMSE across subjects.
Tables 5.3 and 5.6 summarise the mean angular error values, first averaged across
correspondences and subsequently across subjects. These alternate error mea-
sures are presented to assess model quality of the Watson-HMM across regions,
and complement the correspondence-wise errors presented in Fig. 5.4. From
Tables 5.2 - 5.7, the the number of mixture components required to adequately
characterise the entire population, was identified as M = 1500 and M = 2000,
for the cingulum and corpus callosum, respectively. The fibre orientation and FA
errors depicted in Fig. 5.4 were evaluated using these values. All subsequent
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experiments employed these model complexities identified, for each WM region.

TABLE 5.2: Model quality of Watson-HMM for the cingulum, as-
sessed in terms of the mean spatial position error evaluated across
correspondences and subjects, using the MSD metric, for each pa-

tient group.

# Mixture Components
Spatial Position Error: MSD (mm.)

AD MCI HC
500 0.87 ± 0.09 0.88 ± 0.08 0.90 ± 0.10

1000 0.76 ± 0.07 0.76 ± 0.06 0.79 ± 0.10

1500 0.71 ± 0.06 0.72 ± 0.06 0.73 ± 0.08
2000 0.69 ± 0.06 0.70 ± 0.05 0.71 ± 0.08

TABLE 5.3: Model quality of Watson-HMM for the cingulum, as-
sessed as the mean fibre orientation error evaluated across corre-

spondences and subjects, for each patient group.

#
Mixture Components

Mean Fibre Orientation Error (radians)
AD MCI HC

300 0.12 ± 0.11 0.09 ± 0.02 0.08 ± 0.01

600 0.11 ± 0.09 0.08 ± 0.02 0.07 ± 0.01

1200 0.10 ± 0.09 0.08 ± 0.02 0.06 ± 0.01

1500 0.10 ± 0.09 0.07 ± 0.02 0.06 ± 0.01

TABLE 5.4: Model quality of Watson-HMM for the cingulum, as-
sessed as the average RMSE of FA evaluated over correspondences

and averaged across subjects, for each patient group.

#
Mixture Components

Mean RMSE of FA
AD MCI HC

300 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01

600 0.07 ± 0.01 0.06 ± 0.01 0.07 ± 0.01

1200 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01

1500 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01
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TABLE 5.5: Model quality of Watson-HMM for the corpus callosum,
assessed in terms of the mean spatial position error evaluated across
correspondences and subjects, using the MSD metric, for each pa-

tient group.

# Mixture Components
Spatial Position Error: MSD (mm.)

AD MCI HC
500 1.11 ± 0.13 1.12 ± 0.10 1.08 ± 0.11

1000 0.97 ± 0.10 0.97 ± 0.08 0.94 ± 0.09

1500 0.90 ± 0.09 0.90 ± 0.07 0.87 ± 0.08
2000 0.85 ± 0.08 0.86 ± 0.06 0.82 ± 0.08

TABLE 5.6: Model quality of Watson-HMM for the corpus callosum,
assessed as the mean fibre orientation error evaluated across corre-

spondences and subjects, for each patient group.

#
Mixture Components

Mean Fibre Orientation Error (radians)
AD MCI HC

500 0.15 ± 0.20 0.11 ± 0.15 0.06 ± 0.01

1000 0.15 ± 0.20 0.11 ± 0.16 0.06 ± 0.01

1500 0.14 ± 0.19 0.10 ± 0.15 0.05 ± 0.01

2000 0.14 ± 0.19 0.10 ± 0.15 0.05 ± 0.01

TABLE 5.7: Model quality of Watson-HMM for the corpus callo-
sum, assessed as the average RMSE of FA evaluated over correspon-

dences and averaged across subjects, for each patient group.

#
Mixture Components

Mean RMSE of FA
AD MCI HC

500 0.12 ± 0.03 0.12 ± 0.02 0.10 ± 0.01

1000 0.11 ± 0.03 0.11 ± 0.03 0.09 ± 0.01

1500 0.10 ± 0.03 0.10 ± 0.03 0.08 ± 0.01

2000 0.10 ± 0.02 0.09 ± 0.03 0.08 ± 0.01
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FIGURE 5.7: Histograms of fibre orientation errors for each subject
in AD, MCI and HC groups, evaluated between established corre-

spondences and ground truth voxels.

Results in Fig. 5.7, 5.8 indicate that the proposed framework achieves low fi-
bre orientation and FA errors at each estimated correspondence, for all subjects
in the HC group (for both WM ROIs). The estimated correspondences were less
accurate for two cases in the AD group (for both cingulum and corpus callosum)
and for one case in the MCI group (only corpus callosum), which is attributed to
significant variation in fibre orientations and FA values in these cases and ROIs,
relative to the remaining samples in their corresponding patient groups. As dis-
cussed previously, this may be a result of varying degrees of pathology-induced
changes, in these cases, relative to the rest of their group. Consequently, the accu-
racy of the HMM when fitting to these few cases, is reduced. The proposed frame-
work however, established accurate correspondences for the remaining samples
in the AD and MCI groups, across both WM ROIs. The high deviations from the
mean fibre orientation errors estimated for these groups, in the corpus callosum
(Table 5.6), are thus attributed to the outlier subjects identified from the corre-
sponding histograms (Fig. 5.7). Similarly, for the cingulum, the high standard
deviations observed for the AD group, are attributable to the two subjects men-
tioned above. However, no apparent outliers were identified in the MCI group,
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based on the registration errors and by extension, the mean FA and fibre orien-
tation errors reported in Tables 5.4, 5.3, are low and consistent with their corre-
sponding histogram plots (Fig. 5.8 and Fig. 5.7).

FIGURE 5.8: Histograms of root-squared-error (RSE) of FA for each
subject in AD, MCI and HC groups, evaluated between established

correspondences and ground truth voxels.

The foregoing results suggest the proposed framework established valid cor-
respondences for both WM ROIs, across all subjects in the HC group and for the
majority of cases in the AD and MCI groups. This is indicative of the ability of
the proposed HMM to approximate the joint PDF of positions, fibre orientations
and FA values, across multiple subjects.



106 Chapter 5. Registration of Generalised Point Sets

5.3.3 Group Comparisons

FIGURE 5.9: Comparison of corpus callosum mean FA distributions
(indicated by colour bars) in AD, MCI, and HC groups, estimated
using TBSS, VBM, and the proposed HMM approach. Top row: Mix-
ture centroids of the mean template estimated using HMM; Middle
row: Mean FA skeleton computed with TBSS; Bottom row: Mean FA

voxels computed with VBM.

The ability of the proposed framework to identify significant differences between
patient groups was assessed by comparing each pair of patient sub-groups, in
terms of the variation in FA. These results were compared with those obtained
from the widely used TBSS approach. Un-paired two-sample T-tests, assuming
unequal variances, were performed to compare FA values at corresponding spa-
tial positions, between subject groups. The procedure proposed in (Benjamini
and Yekutieli, 2001) was used to correct for multiple comparisons, by controlling
the false discovery rate (FDR) for the set of hypothesis tests. The desired false
discovery rate was fixed at 1% for all experiments. The mean corpus callosum
templates estimated for each patient group using the proposed approach are pre-
sented in Fig. 5.9 (top row), which depict mean positions colour mapped with
their corresponding mean FA values. Fig. 5.9 (middle row) depicts the mean FA
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skeleton for the corpus callosum, estimated using TBSS, while mean FA voxels
estimated using VBM are presented in the bottom row.

FIGURE 5.10: Comparison of cingulum mean FA distributions (indi-
cated by colour bars) in AD, MCI, and HC groups, estimated using
TBSS, VBM, and the proposed HMM approach. Top row: Mixture
centroids of the mean template estimated using HMM; Middle row:
Mean FA skeleton computed with TBSS; Bottom row: Mean FA vox-

els computed with VBM.

TBSS estimates a mean FA image (by registering each subjects’ image to a
template), prior to generating the skeleton. The JHU-ICBM-DTI-81 atlas was reg-
istered to this mean FA image to segment the ROIs, and perform voxel-wise anal-
ysis (referred to as VBM). The FA skeleton voxels corresponding to the cingulum
and corpus callosum were extracted using the label propagation approach em-
ployed to generate the training data set of hybrid point sets (refer to section 5.2.1).
The difference in orientation observed in Fig. 5.9, between the mean corpus cal-
losum templates estimated by the proposed approach and TBSS, arises because
the latter registers each subject’s image to the MNI-152 atlas. Additionally, as the
MNI-atlas is of a higher resolution (voxel spacing of 1 × 1 × 1 mm) than the raw
FA and eigenvector images of each subject (refer to section 5.2.1), the resulting
template depicted in Fig. 5.9 (bottom row) is significantly denser than the tem-
plate estimated using the proposed approach. The mean templates and mean FA
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values estimated for the cingulum, using the proposed approach and TBSS are
presented in Fig. 5.10, top and middle row, respectively. Mean FA voxels for the
cingulum estimated using VBM are depicted in the bottom row. As the mean FA
skeleton estimated using TBSS is generated using a thinning and skeletonisation
process (Smith et al., 2006), the resulting template represents a structure analo-
gous to the centreline of the WM tracts, rather than the entire region of interest
(as with the proposed approach). Consequently, direct quantitative comparison
between the mean templates estimated using each method is difficult. The mean
FA distributions across templates are thus assessed visually, showing good over-
lap in the range and spatial distribution, for both the cingulum (Fig. 5.10) and
corpus callosum (Fig. 5.9). High mean FA values (≈ 0.5 − 0.6) are concentrated
in the body of the cingulum, in the HMM-, VBM- and TBSS-predicted templates.
For the corpus callosum, high mean FA values (≈ 0.7 − 0.8) are evaluated at the
genu, central body and splenium, using all three approaches (Fig. 5.9).

Interquartile ranges (IQRs) for the mean FA values estimated using each ap-
proach were also evaluated, to provide a quantitative means of comparing the
range of estimated FA values for both WM ROIs. This measure is adopted as it
provides a robust means of assessing dispersion in data. IQRs are summarised in
Table 5.8 for both WM ROIs, from which we infer that all three methods do in-
deed show similarities in the range of mean FA values estimated, for the corpus
callosum. Conversely for the cingulum, while VBM and the proposed approach
show similar IQRs, the ranges estimated for TBSS are lower. This is because TBSS
models the central skeleton of the ROI, and there is substantial variation in FA
between the center and peripheral regions of cingulum region. Consequently, the
variation in mean FA values in the skeleton voxels is lower in comparison to the
entire ROI (as modelled by VBM and HMM). This is further supported by the
colorbars depicted in Fig. 5.10, which show the minimum mean FA values esti-
mated using TBSS is 0.25, while for VBM and HMM it is 0.1, concentrated along
the boundaries.
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TABLE 5.8: Interquartile ranges for mean FA values estimated using
each approach for both WM ROIs.

Method
Corpus Callosum:
IQR of mean FA

Cingulum:
IQR of mean FA

AD MCI HC AD MCI HC
HMM 0.27 0.27 0.26 0.19 0.19 0.18

TBSS 0.20 0.21 0.21 0.08 0.08 0.09

VBM 0.21 0.21 0.21 0.14 0.13 0.14

FIGURE 5.11: Top row: Mean fibre orientations estimated for AD,
MCI and HC groups across the corpus callosum; Middle row: Mean
corpus callosum templates for each patient group, overlaid with the
concentration parameters κj estimated for each mixture component.
Arrows indicate regions showing increased fibre dispersion in AD
and MCI groups relative to HC; Bottom row: Histograms describing

the distribution of κj values estimated for each patient group.

In addition to estimating the mean FA value at each correspondence, the pro-
posed framework provides point-wise estimates of the mean fibre orientation and
degree of concentration (defined by κj , estimated for each mixture centroid - see
section 5.2.4) across subjects, as depicted in Fig. 5.11 and Fig. 5.12. As discussed
previously, the primary advantage of the proposed Watson-HMM framework is
its ability to model fibre orientations and facilitate their comparison across mul-
tiple subjects, not offered by conventional approaches such as TBSS and VBM.
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Furthermore, the proposed method does not require extraction of fibre trajec-
tories using tractography in order to model fibre orientations as it operates di-
rectly the raw DTI-derived eigenvectors, unlike state-of-the-art approaches such
as those proposed in (O’Donnell and Westin, 2007) and (Zvitia et al., 2010). Visual
inspection of these fibre concentration maps and their corresponding histograms
indicate increased dispersion in the genu and splenium of the corpus callosum
(specified by the arrows shown in Fig. 5.11), in the AD and MCI groups rela-
tive to HC. Group differences in fibre concentration are visually less apparent,
for the cingulum, although some reduction in fibre concentration in the central
body is visible for the AD group relative to MCI and HC (as indicated by the
arrows in Fig. 5.12). The histograms in Fig. 5.12, however, verify that there is
indeed increased fibre dispersion for the AD group, relative MCI and HC, across
the cingulum.

FIGURE 5.12: Top row: Mean fibre orientations estimated for AD,
MCI and HC groups across the cingulum; Middle row: Mean cin-
gulum templates for each patient group, overlaid with the concen-
tration parameters κj estimated for each mixture component. Ar-
rows indicate regions of reduced fibre concentration in AD group
compared to MCI and HC.; Bottom row: Histograms describing the

distribution of κj values estimated for each patient group.

In order to quantitatively assess the distribution of mean FA values and mean
fibre concentrations κj estimated using HMM, across the corpus callosum and
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FIGURE 5.13: 3D histograms describing the combined distribution
of mean FA values and mean fibre concentrations κj , estimated
across correspondences established using HMM, for the corpus cal-
losum (left column) and cingulum (right column) regions. Arrows

indicate differences identified between patient groups.

cingulum templates for each patient group, 3D histograms were computed, pre-
sented in Fig. 5.13. These plots show low FA values and low fibre concentrations
were estimated at a substantially higher number of correspondences, for the AD
group, relative to HC (as indicated by the arrows), for both WM ROIs. For the
corpus callosum, differences between MCI and HC are also visually apparent, al-
though to a modest degree, with the former showing a higher a number of points
with low FA values and low fibre concentrations, relative to the latter. Differences
between the MCI and HC groups are however, less apparent in Fig. 5.13 for the
cingulum. Based on these plots, there are no visually apparent differences in FA
and fibre concentration, between the AD and MCI groups, for both WM ROIs.
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These differences in mean FA values between patient groups are corroborated by
the hypothesis tests conducted, to identify significant group-wise differences in
FA.

Significant reduction in FA was observed (considering a significance level of
1%) across the corpus callosum (refer to Fig. 5.14) and cingulum (refer to Fig.
5.15), in the AD group relative to HC, and in the MCI group relative to the latter,
albeit to a lesser degree. Conversely, there was negligible reduction in FA in the
AD group relative to MCI, as expected, for both WM ROIs. TBSS on the other
hand, following multiple comparisons correction using FDR, showed no signifi-
cant reduction in FA, between any of the three groups. The differing results from
each method may be expected, given their different approaches to modelling the
ROI spatial domains: in TBSS, a mean FA skeleton representing the centre of the
tracts/ROIs is produced and used to compute voxel-wise statistics; in the pro-
posed HMM approach, the entire ROI is considered and, consequently, a higher
proportion of spatial positions (exhibiting significant reduction in FA between
groups) is identified.

FIGURE 5.14: Statistically significant reduction in FA (based on
FDR-corrected p-values), at corresponding spatial positions across
the corpus callosum, for: AD vs MCI, AD vs HC and MCI vs HC
patient groups, estimated using the proposed framework. Arrows

indicate regions showing substantial reduction in FA.

The proposed HMM, for the joint registration and clustering of data compris-
ing positions, orientations and scalar-valued features (such as FA), thus shows
promise for statistical analysis of diffusion derived measures, across multiple
subjects and patient populations. The flexibility of the approach, enables analy-
sis of various scalar-valued diffusion measures (although just FA was considered
in this study), similar to existing approaches such as TBSS and VBM. But, it also
permits analysis of local fibre orientation (defined by primary diffusion axes), a
capability not afforded by existing techniques. Although approaches based on
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clustering of fibre tracjectories enable such analyses, they require diffusion trac-
tography derived fibres, in order to do so. The present work ameliorates this
need and acts directly on the raw eigenvector images.

FIGURE 5.15: Statistically significant reduction in FA (based on
FDR-corrected p-values), at corresponding spatial positions across
the cingulum, for: AD vs MCI, AD vs HC and MCI vs HC patient
groups, estimated using the proposed framework. Arrows indicate

regions showing substantial reduction in FA.

The sensitivity and discriminative capacity of the proposed framework, in
comparison to existing approaches requires further investigation and validation,
which future work will look to achieve. Natural extensions to the proposed
framework include, whole WM volume analysis across multiple subjects, WM
parcellation and automatic region-of-interest analysis, to name a few. As dis-
cussed previously, the proposed approach can be employed to analyse the entire
WM volume across subjects, i.e. a priori definition of ROIs is not required, though
the computational burden at present is substantial. Such an approach, naturally
leads to the unsupervised parcellation of the WM into distinct clusters defined
by the centroids of the HMM, across multiple subjects. This in turn provides a
mechanism for automatic ROI-type analyses, as the generated clusters for each
subject, will correspond to similar WM regions in terms of spatial position, fibre
orientation and FA (or some other scalar measure of interest). Furthermore, by
employing a suitable prior/atlas containing pre-defined labels for WM tracts of
interest, the proposed approach could be employed for automatic tractography
segmentation (similar to (O’Donnell and Westin, 2007)). A preliminary study is
presented in the next section demonstrating the ability of the proposed HMM
to parcellate WM into 100 similar anatomical regions. The proposed approach
can also be employed to identify and track localised changes in WM over time,
for a single subject, resulting from the progression of neuro-degenerative disor-
ders such as dementia, for example. Although WM changes in the brain were
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considered in this study, the generic nature of the proposed framework, permits
its application to other organs exhibiting tissue anisotropy, such as cardiac diffu-
sion data, and modelling bone micro-architecture. The proposed approach thus
provides various avenues for future research, towards identifying morphological
changes between patient populations.

5.3.4 WM Parcellation

FIGURE 5.16: Axial view of WM volumes parcellated into 100 dis-
tinct regions (using Watson-distribution based HMM) and overlaid

on corresponding FA images, for AD, MCI and HC subjects.
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A limitation of ROI-type analyses as discussed previously, is the difficulty in en-
suring consistency and reproducibility, when delineating ROIs in multiple sub-
jects’ images. However, this may be addressed by jointly registering and clus-
tering the entire WM volume into distinct clusters, that represent equivalent
anatomical regions in all subjects. Such a framework is realised, using the pro-
posed Watson distribution-based HMM, by utilizing information from multi-
dimensional features comprising, positions, fibre orientations and FA values.
WM masks were generated from FA images of 5 AD, 5 MCI and 5 HC subjects
(from the same data set), by thresholding the images at 0.2 in order to exclude
GM and CSF voxels and reduce the effects of partial voluming (Smith et al., 2006).
The resulting voxels were considered to represent WM volumes. Subsequently,
hybrid point sets were constructed for each subject, as done previously by con-
catenating voxel spatial positions, their associated DTI-derived eigenvectors and
FA values (refer to section 5.2.2), and jointly registered and clustered using 100
mixture components. The estimated posterior probabilities were in turn used to
parcellate the WM volumes from all 15 subjects into 100 distinct patches (depicted
in Fig. 5.16).
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FIGURE 5.17: Axial view of WM volumes parcellated and clustered
into 10 ‘parent’ regions depicted as surfaces, for 5 AD (top row), 5

MCI (middle row) and 5 HC (bottom row) subjects.

Similarity between the parcellated WM regions across all subjects was as-
sessed visually as follows: (1) labels for all 100 regions were grouped into 10
parent clusters, by clustering (using the conventional k-means clustering algo-
rithm) the estimated mean templates (for each patient group) based on spatial
positions alone. This approach is adopted to group the identified children clus-
ters, based on spatial proximity, into larger regions for easier visual assessment;
and (2) labels assigned to each parent cluster were in turn fused to generate larger
patches. Surfaces were rendered for each ‘parent’ region, for better visualisation,
which showed anatomical similarities across all subjects (as illustrated by Fig.
5.17-5.19). The labels estimated initially (as in Fig. 5.16), may be constrained to
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known ROIs by choosing a suitable atlas with pre-defined labels, to initialise the
mean of the HMM, and subsequently, jointly registering and clustering the WM
volumes. These preliminary results suggest that the proposed framework shows
promise towards automatically delineating ROIs across multiple subjects’ im-
ages, useful for conducting subsequent statistical analyses of DTI-derived data.
However, further quantitative evaluation of anatomical similarity between the
identified regions is required, for thorough validation of the proposed approach,
which subsequent work could look to achieve.

FIGURE 5.18: Sagittal view of WM volumes parcellated and clus-
tered into 10 ‘parent’ regions depicted as surfaces, for 5 AD (top

row), 5 MCI (middle row) and 5 HC (bottom row) subjects.
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FIGURE 5.19: Coronal view of WM volumes parcellated and clus-
tered into 10 ‘parent’ regions depicted as surfaces, for 5 AD (top

row), 5 MCI (middle row) and 5 HC (bottom row) subjects.

5.4 Application 2: Results and Discussion

5.4.1 Registration Accuracy

The data set of brain ventricles employed in chapter 3 was used to assess the
registration accuracy of the Fisher-distribution based HMM framework. Point
sets along with their surface normals were generated from segmentations using a
marching cubes-based algorithm (ventricles were segmented as described previ-
ously in chapter 3) and registered using the HMM. The estimated surface normals
for each sample in the data set, were consistently oriented outwards (with respect
to the object surface), prior to registration. Registration accuracy was quantita-
tively assessed using the HD and MSD measures and statistical significance of the
results was evaluated using the paired-sample t-test (as done previously). These
results are summarised in Table 5.9, with significant improvements in accuracy
highlighted in bold. Comparison of the registration errors evaluated for HMM,
with point-based registration approaches, namely, TMM-NR and gCPD (refer to
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Table 3.10), indicates that the former achieved significantly lower MSD errors,
consistently, for M = 500, 800 and 1200 mixture components. Conversely, the
latter resulted in significantly lower HD errors. As discussed previously in chap-
ter 3), this difference in HD and MSD errors are due to the presence of posterior
temporal horns in a limited number of samples in the data set. Consequently,
while gCPD and TMM-NR (albeit to a lesser degree than gCPD) attempt to es-
tablish correspondence in these regions, HMM does not. This is attributed to
the higher discriminative capacity of point sets with associated surface normals,
and correspondingly of the HMM, enabling estimation of anatomically valid cor-
respondences. As the latter attempts to match both points and their associated
normals, registration and correspondence estimation is constrained to a greater
degree than point-based approaches. This is reflected by the relatively high HD
error evaluated for HMM, relative to gCPD and TMM-NR and conversely the
low MSD error of the former, relative to the latter. The advantage of HMM over
point-based registration approaches in this regard, is verified by visual inspection
of the correspondences estimated using each method (shown in Fig. 5.20).

TABLE 5.9: Non-rigid registration accuracy using HMM for brain
ventricles data set.

Method
Ventricles (K = 27)

M = 500 M = 800 M = 1200

HD
(mm)

MSD
(mm)

HD
(mm)

MSD
(mm)

HD
(mm)

MSD
(mm)

HMM
7.77 ±

2.83
1.92 ±

0.13
7.25 ±

3.00
1.58 ±

0.16
11.22 ±

5.98
0.60 ±

0.22

Correspondences estimated using HMM, overlaid on the original ventricle
point sets, are presented in Fig. 5.20 (a,c). Fig. 5.20 (e,g) and (i,k) depict the
corresponding samples registered using TMM-NR and gCPD, respectively. Black
arrows in these images indicate regions of the posterior temporal horns of the
ventricles (missing in the majority of samples in the data set), where, the latter
establish non-homologous correspondences. HMM on the other hand (Fig. 5.20
(a,c)) is robust in this regard and consequently, ensures greater anatomical va-
lidity in the estimated correspondences. The green arrows shown in Fig. 5.20
(g,k) highlight another region in the temporal horns, for a sample in the data set,
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where, HMM (refer to Fig. 5.20 (c)) affords significant improvement in the qual-
ity of correspondences established, over TMM-NR and gCPD. The images pre-
sented in Fig. 5.20 (b,d), (f,h), (j,l) depict the correspondences estimated for each
sample (discussed in the preceding set of images), using HMM, TMM-NR and
gCPD respectively. Arrows shown in these images highlight the ability of HMM
to preserve the separation between the left and right lateral ventricles, thereby
preserving the topology of the shapes, not afforded by TMM-NR and gCPD. This
limitation of point set registration approaches based on spatial positions alone,
was discussed previously in chapter 3 (section 3.3.3.2). This represents another
significant advantage of the former, over the latter, with respect to establishing
anatomically valid correspondences. Consequently, the HMM-based registration
approach incorporating surface normals as additional features, is inferred to im-
prove registration accuracy relative to the state-of-the-art point-based methods
(TMM-NR and gCPD).
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FIGURE 5.20: Two registered samples from ventricles data set:
(a,b), (c,d) using Fisher-HMM; (e,f), (g,h) using TMM-NR; and (i,j),
(k,l) using gCPD (non-rigid). Registered shapes (red) overlaid on
their corresponding raw samples (black) are shown in (a,c,e,g,i,k).
(b,d,f,h,j,l) depict correspondences estimated for both samples using

each method.
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5.4.2 SSM Quality

FIGURE 5.21: Mean ventricle shapes estimated with M = 1200 mix-
ture components using HMM (a,b), TMM-NR (c,d) and gCPD-non-
rigid (e,f). Blue arrows in (a) represent mean surface normals, black
arrows in (b,d,f) highlight separation between lateral ventricles pre-

served by HMM but not afforded by TMM-NR and gCPD.
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The ability of the HMM to preserve fine structural details, such as the separation
between the left and right lateral ventricles, not afforded by its point-based coun-
terparts, namely, TMM-NR and gCPD, was also assessed by visual inspection of,
the estimated mean ventricle shapes (Fig. 5.21), and correspondences established,
for a few samples in the data set (Fig. 5.20). The images presented in Fig. 5.21
clearly demonstrate the superiority of the HMM-based approach in this context.
Additionally, the mean surface normal directions estimated using this approach
are consistently oriented outwards, as expected, since the data set of ventricles
were pre-processed to ensure the same (as illustrated by Fig. 5.21 (a)).

FIGURE 5.22: SSM quality evaluated in terms of generalisation (a)
and specificity (b) errors computed with respect to the number of

modes of variation.

The quality of ventricle SSMs generated (by PCA), following group-wise reg-
istration using: HMM, TMM-NR and gCPD, was also evaluated to verify the
advantage afforded by the former, over point-based approaches (TMM-NR and
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gCPD). SSM quality was quantified in terms of generalisation (refer to Fig. 5.22
(a)) and specificity (refer to Fig. 5.22 (b)), by conducting leave-one-out full-fold
cross-validation experiments. Errors were evaluated with respect to the num-
ber of modes of variation, as done previously in chapter 4, using M = 1200

mixture components (for each method). HMM achieved lower generalisation er-
rors than TMM-NR and gCPD, as depicted in Fig. 5.22 (a). Consequently, SSMs
trained using HMM are inferred to generalise to unseen shapes more accurately
than those generated using point-based registration approaches. Specificity er-
rors meanwhile, were comparable across all three methods (refer to Fig. 5.22 (b)).
However, visual inspection of the modes of variation (refer to Figs. 5.23-5.25)
showed greater anatomical validity for those estimated following registration us-
ing HMM, relative to TMM-NR and gCPD, consistent with the registration results
discussed in the previous section.

FIGURE 5.23: First mode of variation for ventricle SSM trained fol-
lowing registration using Fisher-HMM. λ represents the primary

eigenvalue, used to constrain the SSM.

The ventricular surfaces depicted in Fig. 5.23, which represent the first mode
of variation of the SSM trained following registration using HMM, were gen-
erated using Poisson surface reconstruction (Kazhdan and Hoppe, 2013). This
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approach could be adopted as, the mean template estimated by the Fisher-HMM
contained consistently oriented surface normal vectors, and positions, a funda-
mental requirement of the algorithm (available at: http://www.cs.jhu.edu/
~misha/Code/PoissonRecon/Version9.01/), to reconstruct the surface of
the mean shape. Surfaces were reconstructed for improved visualisation alone.
For reference, the original point sets from which the surfaces were reconstructed,
are presented in Appendix C (Fig. C.1). All quantitative measures of SSM quality
were evaluated using the unstructured point sets sampled from the SSMs trained,
following registration using each method. Surfaces describing the first mode of
variation of SSMs, generated using samples registered by TMM-NR and gCPD
(depicted in Figs. 5.24-5.25), were reconstructed by estimating signed distance
maps (implicit surface representations) from the unstructured point sets. This
was achieved using a geodesic active contour-based level set propagation ap-
proach (similar to (Zhao, Osher, and Fedkiw, 2001)), which considers the desired
object boundary to represent the zero level iso-contour of the signed distance
function. This approach to surface reconstruction was necessary due to the lack
of orientation information distinguishing between the object’s interior and exte-
rior, required by the Poisson surface reconstruction algorithm. Although different
approaches to surface reconstruction were used (resulting in the different degrees
of surface smoothness visible in Figs. 5.24-5.25), the advantages identified for the
HMM-based approach over TMM-NR and gCPD, with respect to preserving de-
tailed anatomical features, were also reflected by the original unstructured point
sets (as seen in Fig. 5.21, for example). Both reconstruction techniques resulted in
accurate surface approximations to the raw point set data, and consequently, gain
in performance in this regard, is attributed primarily to the registration approach
employed.

http://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version9.01/
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version9.01/
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FIGURE 5.24: First mode of variation for ventricle SSM trained fol-
lowing registration using TMM-NR. λ represents the primary eigen-

value, used to constrain the SSM.

The first mode of variation estimated following group-wise registration of the
ventricle samples using: HMM, TMM-NR and gCPD, is presented in Fig. 5.23,
5.24, 5.25, respectively. Arrows depicted in these images indicate the ability of
the former to preserve the separation between the left and right lateral ventricles
as expected, while TMM-NR and gCPD fail to so. The incorporation of surface
normals as additional features to guide registration, using such an HMM, is con-
sequently, advantageous in circumstances where position alone is insufficient as
a descriptor. HMM-based registration using shapes represented as unstructured
point sets with associated surface normal vectors, is thus inferred to establish cor-
respondences with greater anatomical validity (particularly for shapes with com-
plex topologies) than state-of-the-art point based approaches, especially advan-
tageous in the context of generating statistical shape models (SSMs). The gain in
registration performance afforded by the Fisher-HMM, shows promise for appli-
cations which involve anatomical structures with subtle and intricate variations
in geometry, as encountered with vasculature in surgical navigation for example.
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FIGURE 5.25: First mode of variation for ventricle SSM trained fol-
lowing registration using gCPD. λ represents the primary eigen-

value, used to constrain the SSM.

5.5 Conclusions

Two variants of a hybrid mixture model (HMM) for jointly registering and clus-
tering generalised point sets comprising multi-dimensional features were pre-
sented in this chapter. The Watson-distribution based HMM was used to register
hybrid point sets comprising spatial positions, fibre orientations, and FA values,
derived from DTIs of multiple subjects. This approach was shown to model the
observed fibre orientations and FA values accurately for all subjects within the
HC group, for both WM ROIs, namely, the cingulum and corpus callosum. The
ability of the proposed framework to model DTI-derived quantities for the AD
and MCI groups was successful for the majority of cases, with two in the former
and one in the latter, resulting in high errors. The mean group-specific templates
estimated for the cingulum and corpus callosum, show comparable magnitudes
and spatial distributions of mean FA values, relative to the state-of-the-art TBSS
and VBM approaches. Group comparisons of FA values in the WM ROIs, using
the proposed approach, highlighted significant reduction in FA for the AD and



128 Chapter 5. Registration of Generalised Point Sets

MCI groups, relative to HC. The proposed method has potential for use in a va-
riety of applications involving statistical analysis of diffusion data. Its generic
and flexible nature also make it well suited to a variety of other computer vision
and medical image analysis tasks, such as: point set registration with the integra-
tion of surface normals, joint registration and clustering of geometries with as-
sociated vector fields (estimated from bio-physical simulations for example); and
texture mapping. This flexibility was demonstrated using the Fisher-distribution
variant of the HMM, to register unstructured point sets (representing shapes)
with associated surface normal vectors. Significant improvement in registration
accuracy was achieved for the data set of ventricles (comprising samples from
AD, MCI and HC subjects), relative to point-based state-of-art registration ap-
proaches. Furthermore, the Fisher-HMM preserved fine structural details and es-
tablished correspondences with greater anatomical validity, relative to its point-
based counterparts, namely, TMM-NR and gCPD (non-rigid). This was verified
by quantitative and qualitative evaluation of SSM quality, highlighting the ad-
vantages afforded by the former, relative to the latter. These advantages and the
fidelity and extensibility of the proposed framework is thus compelling, as a gen-
eral tool for multi-dimensional medical image analysis.
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Chapter 6

Conclusions

6.1 Summary of Main Outcomes

The focus of this thesis is on the formulation of a unified framework for automatic
and robust registration of generalised point sets, enabling statistical analysis of
shapes and other medical-image derived features of interest. Two specific ob-
jectives were outlined in this context: (1) developing a, group-wise, shape regis-
tration framework, able to accommodate: significant levels of noise and outliers,
missing data, large non-linear variations in geometry without any topological
constraints, and no prior information of homologous correspondences between
shapes; and (2) generalising the first contribution to handle multi-dimensional
unstructured point sets comprising disparate data features such as position, ori-
entation and scalar-valued quantities. These were accomplished through formu-
lation of a Student’s t-mixture model-based group-wise registration framework
and two variants of a hybrid mixture modelling framework combining: (1) Stu-
dent’s and Von-Mises-Fisher distributions; and (2) Student’s t, Watson and Gaus-
sian distributions; respectively, leading to the following outcomes:

• Group-wise registration using Student’s t-distribution (TMM) offers signif-
icant improvement in registration accuracy in the presence of substantial
proportions of outliers, relative to its Gaussian-based counterparts (chapter
3).

• Multi-resolution group-wise registration using Student’s t-distributions
(mrTMM) offers some improvement in registration accuracy, relative to
TMM, and substantial improvement in computational efficiency (chapter
3).
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• TMM and mrTMM require fewer user-specified parameters (when the
shapes being registered contain significant proportions of outliers) for ro-
bust registration, than the state-of-the-art and, correspondingly, promote
automatic analysis (chapter 3).

• TMM and mrTMM produce statistical shape models of higher or compara-
ble quality to the state-of-the-art (chapter 4).

• The Watson distribution-based hybrid mixture model (HMM) was able to
cluster DTI-derived data acquired from multiple subjects, enabling their sta-
tistical analysis across multiple subjects, and facilitating comparisons be-
tween patient groups (chapter 5).

• The Fisher distribution-based HMM employed to register hybrid point sets
comprising positions with consistently oriented surface normals, improves
registration accuracy, relative to conventional point-based approaches. It
helps preserve shape topology and detailed anatomical features in complex
geometries, while the latter are less successful in this regard.(chapter 5).

6.2 Limitations and Future Directions

The registration approaches proposed in this thesis, adopt a frequentist approach
(maximum likelihood estimation) wherein, the mixture model variables are re-
garded as a discrete set of parameters that maximize the likelihood of the data
being sampled from the model i.e. here uncertainties are expressed for the ob-
served data in terms of posterior probabilities. A limitation of such an approach is
the need for subsequent cross-validation experiments, to identify optimal model
complexity for each data set (i.e. the optimal number of mixture components).
Conversely, by adopting a Bayesian approach, model variables are regarded as
probability distributions that generate the observed data (i.e. uncertainties are
expressed over the variables), and optimal model complexity may be inferred
directly from the data (Bishop, 2006). This provides an elegant alternative to
conducting exhaustive cross validation studies to strike a balance between com-
plexity and accuracy. Additionally, maximum likelihood estimation is locally op-
timum and consequently requires good initial estimates for the model parame-
ters, while Bayesian approaches, through choice of suitable prior distributions
for model variables, are less sensitive in this regard.
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As highlighted in chapter 3, the non-rigid transformation (based on coherent
point drift (CPD), (Myronenko and Song, 2010)) parametrized by Gaussian radial
basis functions, employed in the proposed registration approaches, is insufficient
to capture large localized deformations and articulations. Various methods to
address this limitation include: non-parametric graph-matching based on Gaus-
sian processes (Serradell et al., 2012); locally-affine deformation models, which
permit up to 12 degrees of freedom at each point in the object being registered,
(Feldmar and Ayache, 1996), (Amberg, Romdhani, and Vetter, 2007), (Cagniart,
Boyer, and Ilic, 2010); and large deformation models that use shapes represented
as currents in combination with diffeomorphic transformations (Durrleman et
al., 2007), (Glaunes and Joshi, 2006), which ensure global consistency in the esti-
mated deformation field. Among the proposed approaches, the Fisher-variant of
the HMM (discussed in chapter 5) in particular, could benefit from incorporating
locally affine transformations defined over both point positions and associated
surface normal vectors. Locally defined transformations of this nature would
consequently, attempt to match both positions and surface normal orientations
in a local sense, facilitating large localized deformations. With such an approach
however, it is essential to regularise the local transformations estimated, in order
to preserve the global topology of the object.

Principal component analysis (PCA) is optimal in a least squares sense and
consequently, sensitive to outliers. Its fundamental assumption of Gaussian-
distributed data limits its applicability to groups of shapes that satisfy the same,
which is often not the case for anatomical structures. Non-linearities resulting
from significant variations in shapes and their representations, correspondingly,
require statistical techniques that can model such variations. Suitable approaches
include: Kernel-PCA (Twining and Taylor, 2001), where the orthogonal transfor-
mation of basis is performed on data mapped to a feature space (through choice of
a suitable non-linear mapping, such as, a Gaussian kernel function for example),
principal geodesic analysis (Fletcher et al., 2004), which describes shape varia-
tions on manifolds and is a generalization of PCA, mixtures of probabilistic PCA
models (Gooya et al., 2015), among others. The latter in particular, is a viable
extension to the proposed probabilistic registration framework, which would ad-
dress the limitations of standard-PCA based SSMs.

The Watson-variant of the hybrid mixture model (HMM) proposed in chapter
5, could be imbued with greater flexibility using, 5-parameter Bingham distribu-
tions or general 8-parameter Fisher-Bingham distributions in place of Watsons, to
model multi–fibre regions by fitting to orientation distribution functions (ODFs),



132 Chapter 6. Conclusions

obtained from high angular diffusion images. Extensions to the Von-Mises-Fisher
mixture model to accommodate antipodal symmetry, using a convex combina-
tions of Fisher distributions, have previously been used to model diffusion ODFs
(McGraw et al., 2006), (Kumar et al., 2008). The proposed approach could also
be extended to model the full diffusion tensor within a probabilistic setting, facil-
itating the construction of statistical models and enabling group-wise analyses,
of diffusion tensors (Fletcher and Joshi, 2007). Furthermore, the Watson-HMM
could be improved by reformulating it within a multi-resolution framework, sim-
ilarly to the approach described for shape registration (mrTMM) in chapter 3.
This would aid in the localized refinement of clusters, particularly useful when
considering large ROIs (such as the full WM volume), while retaining valuable
information regarding the membership of newly formed clusters, to parent clus-
ters, generated in the preceding resolution level. Such a framework is akin to hi-
erarchical clustering and could improve clustering accuracy and sensitivity, ben-
eficial to applications such as WM parcellation and automatic ROI-analyses of
DTI-derived data.
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Derivations for TMM-based
group-wise rigid registration

M-step update equations for t-mixture model parameters, presented in chapter 3,
section 3.2.3, equations (3.10-3.16), are derived by maximizing the complete data
log-likelihood Q with respect to each model parameter as follows:

• Estimation of TMM centroids µµµj at the (t+ 1)th EM-iteration:

Q(Ψt+1|Ψt) = −1

2

∑
k,i,j

P ?t
kij∆kij +O.T. (A.1a)

∆kij =
(xki − skRkµµµj − tk)T (xki − skRkµµµj − tk)

σ2
(A.1b)

O.T. summarizes terms in Q independent of µµµj .
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• Estimation of model variance σ2:

∂Q

∂σ2
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• Estimation of translation tk:
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Setting the first term as dk and the second term as mk (refer to equations
3.18 - 3.19) we get:

tk = dk − skRkmk (A.4e)

• Estimation of strictly orthogonal rotation Rk: Using the lemma outlined
in (Myronenko and Song, 2010), the optimal rotation matrix maximises
tr(CT

k Rk) where Ck represents a real covariance matrix (refer to equation
A.5d).

x̃ki = xki − dk, m̃kj = µµµj −mk (A.5a)

Using equations (A.4e) and (A.5a) we get:

Q(Ψt+1|Ψt) ∝
∑
i,j

P ?t
kij(x̃TkiRkm̃kj) (A.5b)
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Q(Ψt+1|Ψt) ∝
∑
i,j

P ?t
kij tr[m̃kj x̃TkiRk] (A.5c)

As equation (A.5c) must be maximised with respect to Rk,

Ck =
∑
i,j

P ?
kij x̃kim̃

T
kj (A.5d)

Rk = USVT , where U,V are unitary matrices computed by singular value
decomposition of Ck and S = diag(1, 1, det(UVT )) is a diagonal matrix that
prevents reflections.

• Estimation of scaling sk:
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• Estimation of degrees of freedom νj :
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O.T. summarizes terms in Q independent of νj .
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Equation A.7(b) is solved using Newton’s method to estimate the degrees
of freedom νj .
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Derivations for HMM-based
group-wise registration of
generalised point sets

• Derivations for the M-step updates (refer to equations equations (5.3c -
5.3e)) of the mean fibre orientation md

j and fibre concentration κj parameters
associated with Watson distributions in the HMM, presented in section 5.2.4
of chapter 5, are derived by maximizing the complete data log-likelihood Q
(refer to equation B.1a), with respect to each model parameter as follows:
(Here M(κj) denotes the Kummer function).

Q(Θt+1
n |Θt
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Nk∑
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generalised point sets

Substituting equation (B.1d) in (B.1b) results in a non-linear equation (B.2),
which is solved numerically by fixed-point iteration.

md
j =

K∑
k=1

Nk∑
i=1

Pkij(nTkim
d
j )nki

||
K∑
k=1

Nk∑
i=1
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d
j )nki||

(B.2)

Based on equation (B.1c), the ratio of the derivative of the Kummer function
to the function itself, is expressed as shown in equation (B.3a). As noted in
chapter 5, this ratio may be expressed as a continued fraction, as shown in
equation (B.3b). Consequently, using equations (B.3a) and (B.3b), the con-
centration parameters κj can be approximated as shown in equation (B.3d),
by solving the linear equation (B.3c) (similarly to (Bijral, Breitenbach, and
Grudic, 2007)).
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• Derivations for the M-step updates (refer to equations equations (5.5b -
5.5c)) of the mean direction md

j and concentration parameters κj , associated
with the Fisher distributions in the HMM, presented in chapter 5, section
5.2.5, are derived by maximizing the complete data log-likelihood Q (refer
to equation B.4a), with respect to each model parameter as follows:

(B.4a)Q(Θt+1
n |Θt

n) =
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Nk∑
i=1

M∑
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j

Tmd
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Differentiating Q with respect to κj and equating to zero (as shown in equa-
tion B.4e) and using the result presented in equation (B.4f), results in the
non-linear equation (B.4g). Subsequently, κj are estimated numerically from
equation (B.4g), by fixed-point iteration.
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Supplementary Material

TABLE C.1: Sensitivity of registration accuracy of gCPD to varying
uniform distribution weights w for the femur data set.

Femur (K = 1000,M = 320)
w = 0.1 w = 0.3 w = 0.5 w = 0.7

HD
(mm.)

MSD
(mm.)

HD
(mm.)

MSD
(mm.)

HD
(mm.)

MSD
(mm.)

HD
(mm.)

MSD
(mm.)

13.27 ±
3.56

2.56 ±
1.09

13.13±
3.49

2.54 ±
1.08

12.84 ±
3.42

2.53 ±
1.08

12.76 ±
3.50

2.51 ±
1.09

The results presented in Table C.1 indicate that weight values of w = 0.5, 0.7 for
the constituent uniform distribution component in gCPD, achieved significantly
lower registration errors than w = 0.5, 0.7, for the femur data set. These are high-
lighted in bold. For reference, using M = 320 mixture components, the proposed
TMM approach achieved significantly lower errors of: HD = 9.90±5.26 and MSD
= 2.17± 0.91, for the same data set.
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TABLE C.2: Summary of generalisation and specificity experiments
used to evaluate SSM quality.

Experiment Evaluation Method

SSM quality w.r.t
number of
mixture components

10-fold cross validation experiments conducted.
MSD metric was evaluated between ground truth test
shapes and SSM-predicted shapes.
Unseen test shapes were chosen either from
different cohorts (hippocampi); or from the same
cohort (heart and femur).
The chosen test samples for all data sets were ‘unseen’
shapes as they were not included in the training set,
during the initial registration step.

SSM quality w.r.t
number of
modes of variation

Full-fold cross-validation experiments conducted.
MSD metric was evaluated between ground truth test
shapes and SSM-predicted shapes for the hippocampi
and heart data sets.
MSD errors were evaluated between the correspondences
estimated for each test shape and the SSM-predicted
shape for femur data set.
Correspondences were estimated for all test shapes
together with the training set, during the initial
registration step.
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FIGURE C.1: First mode of variation for ventricle SSM trained fol-
lowing registration using: (a,b) Fisher-HMM; (c,d) TMM-NR; and
(e,f) gCPD. λ represents the primary eigenvalue, used to constrain
the SSM. Separation between the left and right ventricular bodies
is clearly visible in (a,b) illustrating the advantage offered by the

Fisher-HMM registration framework over TMM-NR and gCPD.
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