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ABSTRACT

Modern, high-throughput techniques for the acquisition of metabolomic

data, combined with an increase in computational power, have provided

not only the need for, but also the means to develop and use, methods for

the interpretation of large and complex datasets. This thesis investigates

the methods by which pertinent information can be extracted from non-

targeted metabolomic data and reviews the current state of chemometric

methods. The analysis of real-world data and research questions relevant

to the agri-food industry reveals several problems for which novel solutions

are proposed. Three LC-MS datasets are studied: Medicago, Alopecurus

and aged Beef, covering stress resistance, herbicide resistance and product

misbranding. The new methods include preprocessing (batch correction,

data-filtering), processing (clustering, classification) and visualisation and

their use facilitated within a flexible data-to-results pipeline. The resulting

software suite with a user-friendly graphical interface is presented, providing

a pragmatic realisation of these methods in an easy to access workflow.
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1. INTRODUCTION

Metabolites are the small molecules that result from metabolism, the chem-

ical reactions that occur within, and essentially govern, a biological organ-

ism. There two fundamental categories of metabolites, primary metabolites,

which are the compounds essential to life, growth and development, and

secondary metabolites, which are not de facto necessary for life, but play ad-

ditional, often important, roles [1]. Under these definitions the amino acids,

used in protein synthesis, would largely be considered primary metabolites,

whilst compounds such as nicotine and cocaine, which act to deter insects

from certain plant species, are an example of secondary metabolites [2, 3].

It has been suggested that somewhere between 200,000 and 1,000,000

different metabolites exist in the plant kingdom alone [4, 5], although the

exact source of this figure does remain somewhat vague. Whilst traditional

research has focussed largely on the analysis of individual elements, the

sheer number of metabolites shifts the ratio of known-to-unknowns heavily

in favour of the unknowns. The implication of this is that in the analysis

of a biological system as a whole, there is not only a vast amount of data

available, but the majority of that data are unidentified in terms of both

their name and function.

In the same way in which a life-form’s genome can be considered the

entire set of genes for that organism, the metabolome can be considered the

entire set of metabolites present in an organism and is the primary focus

of study in this thesis. The genome and the metabolome form two sides of

a much larger system, joined by the transcriptome, representing the set of

genes actually expressed, and the proteome, representing the proteins tran-

scribed and ultimately catalysing the chemical reactions of the metabolome.

The system is by no means feed-forward, the regulation of many genes for

instance, can be controlled through feed-backward post-transcriptional reg-

ulation at the translation phase [6] and certain control mechanisms only

become apparent “further down” the hierarchy at the metabolic level [7].
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Fig. 1.1: Omics techniques used to gather information from an organism on a gen-
ome level scale.

Insights into one aspect of the system can therefore provide important in-

formation about the others. This all brings us to the field of Omics, which

represents the use of bioinformatic statistical tools in the analysis of genomic,

transcriptomic, proteomic and metabolomic data. The complete hierarchy

is shown in Figure 1.1.

Modern high-throughput analyses have led to vast amounts of data be-

ing generated pertaining to organisms’ genes and transcription, as well as

the proteins and metabolites within their cells. Piecing back this informa-

tion into a coherent map of regulatory processes and pathways that we can

make use of is not a simple task. However, by doing so we can increase

our understanding of fundamental biological mechanisms that have direct

relevance to a large number of fields and research areas [8]. A great deal of

study into metabolic pathways and mechanisms has already been performed,

and there exist several databases with information on the coupling between

one metabolite and another, the catalysing proteins and the gene sequence

responsible.

In contrast to targeted “reductionist” studies, which seek to a deeper

understanding of individual aspects of a system [9], large scale metabolo-

mic analyses suffer from the fact that the identity of individual metabolic

species may not be known up-front. In metabolomics, compounds can be
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present at drastically different concentrations and there is no one method

that can comprehensively identify all metabolites within an organism [10].

A number of techniques have therefore been developed to detect different

ranges of metabolite identities and abundances. Two commonly applied

methods of viewing the metabolome are NMR and chromatography-coupled

MS. Chapter 2, presents an overview of these techniques and an up-to-date

review of the statistical tools available in dealing with the metabolomic data

obtained, ranging from data acquisition and preprocessing, through to iden-

tification and statistical analysis.

An important role of metabolomics is played in the field of agricultural

biotechnology. The agricultural industry has many challenges, not limited

to the growing population, changing climate, adaptation of pest species,

counterfeit produce and environmental damage of certain farming practices.

Metabolomics has many uses in both the assisting in the understanding of

biological processes, such as the impact of genetic modification [11], as well

the as identification of traits, such as source-species, in wine [12] or coffee

[13].

Chapter 3 will introduce three datasets with a basis in agriculture and

serves to highlights some of the issues encountered in metabolomics. The

first dataset concerns drought and disease stress in legumes. Legumes are an

important agricultural crop which act as both a human and a livestock food-

source and are particularly sensitive to the effects of drought. Drought-stress

resistance is impaired by coincident infection with the Fusarium pathogen.

Here leaf and root samples from Medicago truncatula are investigated using

LC-MS analysis. Several points of concern common to metabolic datasets

are highlighted and discussed. In particular there exists a large degree of

noise in the dataset, due to LC-MS “batch” effects, as well as natural bio-

logical variation. A number of “age-dependent” metabolites, whose concen-

tration fluctuates regardless of the plants condition are also present. Finally

a large number of metabolites are affected by stress, and a simple method

of exploring these is called for.

The second dataset concerns Alopecurus myosuroides, a common agricul-

tural weed affecting grain crops. A number of varieties of Alopecurus have

developed resistance to one or many modern herbicides. The investigation

of metabolites’ presence in plant samples may provide key biomarkers for

herbicide resistance, as well as potentially elucidating resistance mechan-
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isms. This dataset is again characteristic of non-targeted LC-MS data and

serves to reiterate several of the issues encountered with Medicago.

In the analysis of these two datasets it is found, in particular, that an

experimental drift over time is exhibited, an unintended but common arte-

fact encountered in LC-MS procedures. Standard correction methods using

quality control samples here manifest in being sub-optimal in mitigating

this drift. This sets the precedent for the Chapter 4, which presents a novel

drift correction method for LC-MS studies. A rigorous evaluation contrast-

ing different methods of correction is then performed using the available

datasets.

High throughput analyses are able to produce larger volumes of inform-

ation than can be manually analysed in a reasonable time-frame. A certain

amount of reliance is therefore placed on chemometric methods in order to

make sense of the data. That there is “no free lunch” in data analysis is

a fact which has been stated many times. It is one however, often presen-

ted as a disclaimer rather than as a problem to be tackled. In the course

of the analyses described here, it becomes apparent that the choice of al-

gorithms and parameters is largely subjective. The typical workflow applied

to metabolomic studies has been well documented and can be described as

a waterfall model, whereby each stage holds the previous in requisite.

Chapter 6 seeks to challenge this model, presenting an interactive soft-

ware suite designed to open up the metabolic workflow and present the user

with a means of rapidly changing the parameters of the previous stages of

analysis. A deterministic variety of k-means++ is presented and implemen-

ted, which is suited to the manual exploration of data. Visual methods of

comparing clustered data with known pathway information are described,

implemented and demonstrated using the Medicago and Alopecurus data-

sets.

The third and final dataset presents a NMR study of “28-day matured

beef”. From the dataset it is postulated that the 28-day maturation process

at a safe (cool) temperature can be emulated via a much shorter maturation

in a warm environment. This presents a potential classification problem,

identifying not only the storage-conditions of the beef during its maturation

period, but also discovering potential biomarkers which could be useful in a

field-test for mislabelled product.

The basic analysis of the Beef dataset indicates that whilst reasonable
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separation between groups can be achieved, there exists a certain overlap

between groups which cannot be easily resolved. Furthermore, no concise

set of biomarkers responsible for the separation are present. Chapter 7

explores the use of strongly-typed genetic programming (ST-GP) in the

analysis of the beef data. In contrast to other techniques GP offers a method

of classification based on the selection of a small subset of spectral features.

The addition of strong typing permits different types of data to be combined

in the decision tree, offering a method of determining both storage condition

and age from a single set of biomarkers.



2. CHEMOMETRICS APPLIED TO LC-MS AND NMR ANALYSIS

2.1 Introduction

Two of the foremost modern analytical chemical techniques include liquid

chromatography–mass spectrometry and nuclear magnetic resonance spec-

troscopy, each of which is capable of providing a large amount of information

about a chemical sample.

2.1.1 Mass spectrometry

Mass spectrometry (MS) has its roots in mass spectroscopy, whereby charged

ion rays were directed onto a photographic plate for viewing and the basic

principal remains unchanged. When changed particles in their gaseous state

are exposed to a magnetic field they are deflected by differing amounts,

dependant upon the mass and electronic charge of the particle. In MS the

sample is ionised and passed through an analyser, which uses a magnetic

field to separate the ionised particles by their mass-to-charge ratio, or m/z.

The particles are then detected by a detector, which records their quantity.

This produces a spectrum detailing the m/z values against abundance.

Modern ionisation techniques, such as electrospray ionisation (ESI) [14]

allow the introduction of liquid samples and mass separation and detection

techniques such as quadrupole [15] and orbitrap [16] allow for high resolu-

tion and acquisition times. Other techniques such as Fourier transform ion

cyclotron resonance (FTICR) [17] permit detection and mass separation to

occur concurrently.

2.1.2 Liquid chromatography

Chromatographic techniques aim to separate the chemical species within

a sample based on the chemicals’ rate of movement through a medium.

Liquid chromatography (LC) developed upon the theories developed in gas

chromatography (GC) [18], with the adaptation to support two liquid phases
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[19]. Unlike GC this allowed the separation of peptides, previously difficult

or impossible due to their breakdown under the high temperatures required

to maintain the gaseous state. In LC the sample is combined with a solvent

– the mobile phase – and passed through a column containing an adsorbent

material – the fixed phase. Due to the differing interactions between the

individual chemical species in the sample and the two phases, the chemicals

pass through the column at different rates.

The discovery of LC later led to the development of high performance

liquid chromatography (HPLC), or high-pressure liquid chromatography. By

reducing the particle size [20–22], higher pressures could be obtained which

permitted significantly faster elution times and experimental throughput.

2.1.3 LC-MS

Liquid chromatography separates compounds by retention time, tr, whilst

mass spectrometry separates compounds by the mass-to-charge ratio, m/z.

The mass spectrometer is also responsible for detection, typically recording

a measurement in the form of an induced charge, abundance or intensity .

The combination of LC and MS (LC-MS) produces a three dimensional

spectrum of rt × m/z × intensity . LC-MS is one of the foremost tools in

metabolomic studies. It is particularly advantageous as an analytical tool

due to its high analytical sensitivity and the ability is able to separate out

and provide information along two axes on thousands of compounds in a

single analytical run. LC-MS does however suffer from lower specificity and

reproducibility than other techniques, such as nuclear magnetic resonance

(NMR), with some compounds being “missed” due to ineffective ionisation

(MS) or rapid elution from the column (LC), and differences in retention

times being seen in different analyses of the same mixtures.

2.1.4 Nuclear magnetic resonance spectroscopy

NMR spectroscopy has a long history reaching back to the first successful

experiments in the 1940s, with applications in chemistry, biochemistry, phys-

ics, and medicine [23–25]. NMR spectroscopy provides information about

the physical and chemical properties of atoms within a sample by exploit-

ing the fact that atomic nuclei absorb and emit electromagnetic radiation

in the presence of a magnetic field at frequencies characteristic of the nuc-
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leus’ chemical environment. Biological applications of NMR spectroscopy

date back to 1957 when the first 1H NMR spectrum of a protein was pub-

lished [26]. In the early 1970s, the technique was first used to characterize

metabolism and has since become an essential tool in metabolomics [27, 28].

Although less sensitive than MS, NMR spectroscopy gives greater cov-

erage in comparison to other techniques used for the analysis of complex

mixtures, providing information about all metabolites with concentrations

above the limit of detection [29]. The reproducibility of NMR provides

substantial benefits in compound identification and quantitative analysis,

and recent advances in the technology, including higher field magnets and

cryogenically cooled probes that increase signal-to-noise ratios (SNR), mean

that sensitivity is becoming less of an issue. Furthermore, NMR is a non-

destructive technique and requires very little sample preparation, enabling

the analysis of samples in a chemical environment similar to that in which

they are naturally found [30].

2.1.5 NMR varieties

NMR spectroscopy can provide characteristic profiles of the metabolites

present in a sample that can be used as fingerprints in pattern recognition

procedures. By far the most common NMR technique used in metabolomic

studies is the 1D proton NMR or 1H NMR experiment, specific to hydrogen-

1 nuclei, which is the nucleus with the highest receptivity. One-dimensional

experiments are the most sensitive techniques and can be fast and simple to

perform. 1D NMR has been used in numerous profiling studies, but many

different types of 2- and 3-D NMR experiment also exist, providing informa-

tion about chemical shifts, J-couplings, and diffusion coefficients. Although

multidimensional techniques have the potential to provide more detailed in-

formation, this comes at the expense of significantly greater acquisition time.

These methods are often used to aid the identification of compounds, how-

ever, new developments are making metabolite fingerprinting by 2D NMR

a realistic aim. Additionally nuclei other than 1H can be explored, with
13C, 31P, and 15N being popular. A more detailed description of 2D and 3D

NMR, as well as the use of other nuclei, can be found in the complementary

paper [31].
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2.1.6 Analysis

Interpretation of individual spectra can provide structural information about

particular compounds, but statistical techniques are required to extract use-

ful information from multiple spectra. Technological developments have led

to a significant increase in the amount of data generated, with improved

methods providing greater spectra resolution and sensitivity. New techno-

logy, advances in methodology, and increased computer power have increased

the need to develop mathematical and statistical methods to analyse and

interpret the complex datasets acquired. This has resulted in developments

in the field of chemical informatics known as chemometrics.

Some of the statistical tools commonly used have been available for many

years. For example, principal components analysis (PCA) was devised well

over 100 years ago [32] but was originally restricted to two or three variables

owing to the complex calculations involved. In 1933, Hotelling [33] published

practical computing methods, although these could not be realized until the

advent of the modern computer. The early use of statistics could only cope

with ‘long and thin’ data matrices, i.e. a few variables for each of many

observations, where as modern analytical techniques typically record many

variables for few observations, giving ‘short and fat’ data matrices. The

first chemometric studies were performed in the early 1970s [34, 35] when

pattern recognition software was developed to determine chemical structure

from simple NMR spectra [36]. Since then, and particularly over the past

two decades, increased computational power has led to such tools being

readily accessible on the desktop computer. NMR and LC-MS chemometric

methods are now used in a wide range of applications including clinical

diagnostics [37–40], toxicology [41–43], food science and traceability [44–

49], monitoring genetic modification [11, 50, 51], predicting side effects of

pharmaceuticals [52, 53] and their environmental effects [54], and process

control [55, 56].

Targeted approaches in metabolomics seek quantitative information about

specific compounds. NMR is advantageous in that the relative concentration

of a chemical is directly proportional to the integrated peak area. After cal-

ibration to an internal standard, compounds within a sample spectrum can

be identified and quantified by comparison with reference spectra from pure

chemicals. Statistical analysis can then be used to interpret the results. Ob-

taining concentrations from LC-MS follows similar principles, though due to
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matrix effects – the interaction of the sample with the solvent – and differ-

ing ionisation potentials the relationship between the instrumental response

and chemical concentration is not as straightforward [57], as discussed in

Chapter 4.

In contrast to targeted approaches, non-targeted, or chemometric, ap-

proaches do not initially attempt to identify particular metabolites. In-

stead, statistical techniques and pattern recognition methods are used to

identify spectral features that show consistent trends or provide discrimin-

ation between classes. These features can provide a fingerprint for a meta-

bolic state to be used, for example, for disease diagnostics, and individual

features of interest can then be related to specific compounds and metabolic

pathways using database searches [58]. Figure 2.1 illustrates the difference

between the chemometric and quantitative approaches to metabolomics.

The traditional reductionist approach in biological research [9] divides

the overall system into successively smaller components and investigates the

effects of each on the biological system. The resources required for test-

ing and modelling individual components put constraints on the explorat-

ory research that can be conducted and imposes a reliance on prior know-

ledge. Non-targeted metabolomics offers a more holistic approach, providing

a snapshot of an organism’s metabolite composition that can be used to char-

acterize phenotypes in a high-throughput analysis. A recent method termed

targeted profiling attempts to combine aspects of targeted and non-targeted

methods [59]. Experimental spectra are compared with a database of known

metabolites to provide a more immediate source of information in terms of

metabolites and their concentrations rather than a peak list.

2.2 Data preprocessing

Changes in the experimental environment, sample preparation, instrumental

variation, and background noise can lead to unintended differences between

observations. For successful statistical analysis, sources of variation should

be controlled wherever possible and multiple spectra should be processed in

the same manner to prevent additional variation being introduced. Prepro-

cessing steps, applied in either the time domain or the frequency domain,

can reduce the impact of unwanted artefacts. Methods include noise removal

and baseline correction, the alignment of peaks to account for drift in peak
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(a) Metabolite identification

(b) Metabolite identification

Fig. 2.1: (a) Schematic illustration of the chemometric approach to metabolomics.
In this example, the spectra obtained from multiple blood samples are
processed using principal component analysis. After identifying signific-
ant differences, the most informative peaks in the spectra are identified
using a variety of methods. (b) Schematic illustration of the quantitative
approach to metabolomics. In this example, the biofluid spectrum is an-
notated and the compounds in the sample are identified and quantified.
This information is then used to perform multivariate statistical analysis
allowing the most important biomarkers and pathways to be identified.
(Reproduced from Ref. [27]. Copyright 2008, Elsevier.)
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positions between spectra, as well as normalization and scaling, which can

account for variation in the concentration of diluted samples and prevent

large peaks dominating the analysis. The aim is to prepare the data for

pattern recognition procedures and the term “pattern vector formation”,

coined in an early chemometric study [37], provides a good description.

2.2.1 Water removal

Water, abundant in biological systems, and typically used as an analytical

solvent, contains 1H, which can interfere with and obscure the intended tar-

get of analysis. In NMR this leads to a large water peak which can dominate

the rest of the spectrum. A variety of techniques have been proposed to re-

duce the effects of this peak, including presaturation, water suppression by

gradient tailored excitation (WATERGATE) [60], WET [61], and excitation

sculpting [62], each with their own advantages and disadvantages. Perhaps

the simplest approach however is simply to truncate the interfering water

region at around 4.77ppm [63], depending on the chemical environment,

during the data preprocessing stage.

Due to a second degree of separation along the m/z axis the solvent is

less of an issue in LC-MS, however, early column effluent, which may contain

a complex mixture of compounds is often discarded to simplify the dataset

and protect the mass spectrometer from contamination [64, 65]).

2.2.2 Apodisation

The observed (time domain) NMR signal generated by the oscillations in the

radiofrequency detection coil is referred to as the free induction decay (FID).

Various mathematical functions can be applied to the FID before Fourier

transformation and can dramatically increase the quality of the spectra ob-

tained [66]. These apodisation or window functions weight the decay in the

time domain in order to maximize the signal-to-noise ratio (SNR) in the

frequency domain. The line broadening introduced by apodisation can ac-

commodate minor peak shifts, but can introduce problems with overlapping

peaks, particularly with complex mixtures. There is generally a tradeoff

between noise reduction and resolution, although the application of separ-

ate functions for the real and imaginary parts of the FID has been proposed

as a method to improve both the SNR and the resolution [66]. An investig-
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ation of various apodisation functions in ultrafast 2D NMR also found that

sensitivity could be improved without significantly compromising resolution

[67]. The study found a Gaussian function to be particularly effective at

removing the distortions present in ultrafast spectra. The choice of function

can affect the results and the process of apodisation may require optimiza-

tion.

Whilst far more commonly seen in NMR studies, apodisation of the FID

is also applicable to studies involving Fourier transform ion cyclotron reson-

ance mass spectrometry (FTICR-MS). For example the software application

presented in [68] allows the comparison of raw LC-MS spectra and uses an

apodisation function prior to the the Fourier transform of the FID. Zhang

et al. have provided a detailed analysis of the effects different apodisation

functions on the FTICR-MS spectra of complex petroleum mixtures, noting

that apodisation, like for NMR, increased resolving power can be obtained

at the cost of lower dynamic range. Results are presented for a number of

window functions in the original paper [69].

2.2.3 Denoising

Thermal interference, magnetic field variations, instrumental instability, elec-

trical interference and the digitization of analogue signals can all contribute

to the presence of noise in both LC-MS and NMR spectra. Recent advances,

such as cryogenically cooled probes in NMR, higher column pressures in LC

and more advanced mass separation and detection in MS have helped to

reduce electronic noise, however most analytical instruments produce a sig-

nal even in the absence of an analyte [70]. Certain optimisations, such as

removal of the asymmetric ‘sinc wiggles’ that can appear owing to trunca-

tion of the FID can be performed [71], and the SNR can be improved by

increasing the number of scans, which should in theory incrementally reduce

the noise to zero. In practice however, random noise can be reduced, but

not eliminated owing to technical limitations and only a finite number of

scans being possible.

The point at which real-valued data falls below the noise level is gen-

erally referred to as the limit of detection (LOD) [70]. Very small random

fluctuations have been shown to cause significant variation in the cluster-

ing of otherwise identical spectra [72]. A careful choice of threshold, below

which the signal is set to zero, was shown to alleviate the problem in this
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case and produced almost perfect clustering in PCA. The choice of threshold

necessarily changes the variance between samples and this simple form of

noise reduction requires judgement to optimally reduce noise while retaining

real information.

The wavelet transform is another widely used technique that can be

used to reduce spectral noise [73, 74]. The spectra are represented by wave-

let functions, or wavelets, that are localized in both position (or time) and

frequency and the wavelet decomposition allows features to be considered at

different scales. Denoising is achieved by thresholding under the assumption

that the highest frequencies correspond to noise. In global thresholding,

a single threshold determined from the highest frequency wavelet coeffi-

cients is applied globally to all wavelet coefficients, whereas level-dependent

thresholding uses a different value for each wavelet level [75].

The two dimensional nature of LC-MS allows some additional scope for

noise detection, and therefore removal. For instance, a denoising algorithm

– matched filtration with experimental noise determination (MEND) – using

a matched filter to locate a vacant extracted-ion chromatogram (EIC) – a

trace along a particular m/z – has been suggested. After locating a matching

EICs the power-density spectrum for the noise can be calculated and used

to reduce the noise in the dataset [76]. A similar process involves the use of

a clustering method – density-based spatial clustering of applications with

noise (DBSCAN) – to identify noise by the elimination of features (not-

noise).

2.2.4 Baseline correction in NMR

Inappropriate sampling, phase correction, and the application of filters to

the FID can all contribute toward baseline distortion in NMR spectroscopy

and can be a major source of error in quantitative analysis [77]. Although

most can be avoided by setting the experimental parameters correctly, some

baseline offset is likely to remain. Furthermore, correction methods that re-

quire manual tuning of parameters are prone to variation between users and

can introduce bias in quantification. Many automated baseline correction

algorithms have been proposed for both 1D and 2D experiments. Errors

in the first point of the FID contribute to a constant baseline offset, and

while this can be easily corrected, errors in the sampling of the next few

points contribute to a baseline ‘roll’ that is significantly harder to resolve
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[78]. A variety of baseline correction algorithms has been developed both

within the time-domain, such as linear prediction to reconstruct the first few

points of the FID [79], and in the frequency domain, involving approxima-

tion and subtraction of the baseline. Accurate recognition of the baseline

is necessary for it to be modelled and filters are often applied to ensure the

estimated baseline passes through the centre of the data in noise regions,

but does not follow peaks [80]. Dietrich et al. [81] used a standard numeric

derivative for baseline recognition after smoothing with a moving average

filter. This can lead to small peaks being smoothed out, but more advanced

smoothing algorithms significantly increase computer time and can be pro-

hibitively slow with 2D spectra. However, the continuous wavelet transform

(CWT) provides good baseline smoothing without the computational ex-

pense of other algorithms [82].

Other methods fit the baseline in noise-only regions and then construct

a final baseline by connecting these fragments by straight lines [83]. Such

algorithms can have problems in signal-dense spectra such as those from

complex mixtures, destroying the line shape of high intensity peaks. To

overcome this, Chang et al. [84] combined the identification of signals us-

ing a high pass filter with Lorentzian line-shape modelling. An alternative

method, shown to be effective with crowded spectra, fits a curve to the low-

est intensities using a penalized smoothing algorithm and does not require

differentiation between noise and signal [85].

New baseline correction algorithms continue to be developed, often com-

bining or extending aspects of earlier methods. A combination of three

baseline recognition algorithms is used to provide well-recognized baseline

points from noise regions as well as ‘quasi-baseline points’ in the signal-dense

regions [86]. The sets of points are used in an iterative algorithm to provide

baseline correction that avoids the negative regions sometimes produced by

other methods. Recent algorithms are designed to handle spectra with large

numbers of peaks effectively and are therefore suitable for application to the

spectra of complex mixtures in metabolomics studies.

2.2.5 Alignment

In the case of NMR, chemical shifts result from nuclear spin transitions

occurring in magnetic fields. Chemical structure and molecular interac-

tions can change the chemical shift of a nucleus and the resulting spec-
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tral differences provide useful information and are the fundamental reason

for the use of NMR. However, changes in experimental conditions, such

as differences in temperature, pH, and ionic strength, lead to undesirable

chemical shift variation [87]. Shifts are perhaps even more commonplace

in chromatography-coupled MS techniques, where changes to the environ-

ment and contamination of the column over time alter the analytes’ affinity

with the sorbent surface and thus affect the elution time. Furthermore, the

masses recorded by the spectrometer are themselves not immune to shifting

[88], creating a shift along both m/z and t axes for chromatography coupled

mass spectrometry (XC-MS) spectra. While rigorous sample preparation

and experimental protocols allow environmental factors, such as temperat-

ure and pH, to be regulated, some variation in peak positions will remain.

Some column contamination is inevitable in LC-MS and the ionic strength

of an NMR sample cannot easily be controlled. Uncorrected peak shifts

have been shown to significantly affect multivariate analyses such as PCA

[89] and partial least squares discriminant analysis (PLS-DA) [90].

Two common procedures for automated peak alignment of both NMR

and LC-MS data include dynamic time warping (DTW) [91], originally used

in speech processing, and covariance-optimized warping (COW) – also called

correlation optimized time warping [92]. Both are pairwise alignment meth-

ods and require a target spectrum to be chosen as the reference to which

spectra are to be matched. DTW uses distance as a similarity measure

between two signals and is sensitive to differences in peak intensities [93],

which led to the use of the correlation coefficient in COW. COW performs a

piecewise alignment of data segments. However this is computationally ex-

pensive and can be sensitive to baseline distortion. To remedy this, a prior

peak-picking algorithm stage has been suggested as an alignment focal point

which can provide an effective and computationally less intensive alternat-

ive [94]. An approach requiring less manual intervention, the component

detection algorithm (CODA) has also been proposed to select areas of less

noise as the focus of the alignment [95]. Improvements over COW have also

been suggested. For instance a Bayesian approach, which simultaneously

corrects the baseline, has been demonstrated by the authors to outperform

both DTW and COW in terms of both correlation between spectra as well

as execution times [96].

As the direction in which individual peaks in spectra shift is disparate,
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local alignment procedures have been developed in which small regions of

the spectrum, containing at least one peak, are aligned individually. The

alignment of 1D spectra, such as those originating from 1H NMR are sim-

pler – though by no means simple – to align. The partial linear fit (PLF)

algorithm [97] fits close peaks together in order to keep multiplets together,

but can have problems with biological data [98]. Peak alignment using a

genetic algorithm (PAGA) optimizes the fit of each segment using the cor-

relation coefficient [99]. A segment size parameter needs to be specified

and some peaks can remain unaligned if the segments are too large or are

split at boundaries with small segments. The use of fast Fourier transforms

for rapid computation of cross-correlation improves the computational effi-

ciency of the algorithm, making it suitable for use with very large datasets

[100]. Segment sizes are refined using the recursive segment-wise peak align-

ment (RSPA) method of Veselkov et al. [90]. The method has been shown

to accommodate smaller peaks, as well as large peaks, better than other

widely applied alignment methods. Interval-correlation-shifting (icoShift) is

a similar segment-based algorithm [101] that can be combined with existing

methods such as RSPA and allows interactive segment selection. Figure 2.2

illustrates the alignment provided by the icoShift algorithm. Most alignment

methods rely on the choice of a suitable reference spectrum, which can be

that of a specified sample or calculated from multiple spectra, for example,

the average over all spectra to be processed. Variable reference alignment

allows the prerequisite for a common reference spectrum to be relaxed as

multiple spectra can be used as segment-specific target spectra. [98]. The

method identifies regions that are ‘most similar’, providing segment bound-

aries that can be input to procedures such as icoShift. A method specific

to LC-MS, which avoids the selection of a reference spectrum, estimates the

m/z and rt values and performs alignment based on this information [102].

Issues with peak shifts between spectra still exist, and Vu and Laukens

[103] provide a comparison of approaches to peak alignment. However, it

has been shown that metabolically relevant information may be present in

the peak shifts and that modelling these in pattern recognition gives only

slight reduction in the prediction ability of the model [104]. Giskeødeg̊arda

et al. [105] also showed that useful class information can be extracted from

both intensities and peak shifts.

It has also been suggested that the global information within the full
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Fig. 2.2: (a, b) Alignment of NMR spectra with the icoShift algorithm, using user-
defined intervals. (Reproduced from Ref. [101]. Copyright 2010, Elsevier.)

set of spectra can be useful to the alignment of local peaks. For instance

a Bayesian model which also estimates rt variability is able to make use

of complementary information of the entire spectrum for alignment [106],

although internal standards are required in order to predict the prior prob-

abilities in the dataset used. Another method suggested has been to use

supplementary information from tandem MS to identify the most certain

peaks, using nonlinear robust ridge regression to establish correspondence

[107].

Warping methods (i.e. those that shift the dimensional planes) have how-

ever been criticised. The warping affects the spectra at a systematic level

and thus cannot correct changes at the component level [108], for instance

where shifts are unique to a particular chemical species. Correspondence

algorithms have been suggested as a better alternative, and do not distort

the original data. However they are computationally complex and are more

sensitive to variation in the parameters, requiring additional optimisation.
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2.2.6 Binning

As an alternative to alignment, unwanted chemical shift variance can be

dealt with by binning the data, a method that can also account for variations

in peak width. In its simplest form, the spectrum is divided into equally

spaced bins over which the intensities are summed [109]. The method, also

known as bucketing, removes the effects of small shifts by reducing the res-

olution of the data and thereby decreases computational cost and simplifies

further analysis. However, the reduced variables do not necessarily cor-

respond to peaks, making the interpretation of multivariate analyses more

difficult. Furthermore, peaks can be split by bin boundaries creating addi-

tional variation and information can be lost owing to multiple peaks being

assigned to the same bin [110]. Custom bins have been used to improve

results, but this is a time consuming and somewhat subjective process, re-

quiring a degree of knowledge about the peaks in the spectra [59].

Nonequidistant or adaptive binning can also be achieved in automated

procedures [111]. This approach requires a reference spectrum to be cre-

ated by taking either average or maximal intensities over all spectra. This

reference spectrum is then smoothed using a non-decimated wavelet trans-

form before the minima are used to determine bin boundaries. The method

significantly reduces intraclass variation in comparison to uniform fixed-

length binning and allows regions containing only noise to be identified and

excluded from further analysis. The AI (adaptive intelligent) binning al-

gorithm also uses variable bin sizes, but avoids the need for a reference

spectrum by determining the bins in an iterative procedure [112]. Initially

a single bin covers the full spectral width, which is divided optimally to

produce two new bins. The process is repeated, recursively identifying new

bins by subdivision of existing bins, with a metric used to accept or reject

split bins. The AI binning algorithm is shown to outperform uniform (0.04

ppm) binning and use of the full spectra in terms of predictive accuracy.

An alternative way to avoid the problem of split peaks at bin boundaries

is to allow overlapping bins. A binning technique has been proposed that

uses Gaussian functions to weight the contribution of peaks according to

their distance to the bin centres [113]. The method is shown to be robust to

peak shifts, while retaining the information required for classification and

multivariate analysis.

An interesting comparison between spectral binning and wavelet denois-
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ing showed that PCA performed directly on the wavelet coefficients gave

better results than PCA on binned data when applied to a series of 2D

NMR spectra of proteins with different ligands present [114]. The wavelet-

PCA scheme is also found to detect outliers better, although this may be

due to shifts in frequencies bridging bin boundaries rather than the effects

of noise as standard equal length bins were used.

In the context of LC-MS, binning can be performed along individual

EICs, through the use of standard 1D binning methods. However binning

methods for use on 2D have also been proposed. The basic procedure is out-

lined in [115], and involves drawing “areas” around identified peaks. As for

1D binning drawbacks of this method have been noted. In particular peaks

may be split between different bins or multiple peaks may be combined into

the same bin [116]. The same is also applicable to 2D NMR. For instance,

the freely available software, rNMR [117], allows visualization of multiple

spectra and the rectangular regions of interest (ROI) can be considered 2D

bins.

2.2.7 Feature Extraction

Feature extraction involves the determination of values representing par-

ticular aspects of interest, such as the peaks of single compounds. The

line between binning and feature extraction is not always apparent. Non-

equidistant binning, for instance, could also be viewed as feature extraction,

rather than noise removal if the bins directly relate to peaks.

The Lorentzian spectrum reconstruction algorithm deconvolutes a 1D

spectrum into a series of Lorentzian functions [118]. The method first iden-

tifies peaks from the local minima in the second derivative so that peaks

appearing as shoulders as well as simple maxima are recognized. The para-

meters of the overlapping Lorentzian functions are then estimated to provide

a model for the spectrum that facilitates spectral assignments. A sim-

ilar feature extraction method has been implemented for 2D spectra. The

Lorentzian-like properties of NMR peaks are particularly suited to this and

are exploited to fit peaks in 1H–13C HSQC NMR in a 2D adaptive bin-

ning algorithm [119]. A modified Lorentzian is used to model the peaks

in a reference spectrum obtained as the median over all spectra to be pro-

cessed. The footprints of these modelled peaks form elliptical bins that can

be applied to the spectra in the dataset to provide variables for subsequent
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multivariate analysis. This method has been applied to the analysis of 1H-
13C HSQC spectra from rat brain tissue after intraperitoneal injection with

[U–13C]- glucose and from those injected with normal 12C–glucose. Here,

cross-referencing with the 13C and 1H chemical shift correlations obtained

for just 16 standard metabolites allowed 39 of the 105 peaks used in the

analysis to be associated with a known metabolite.

Xi et al. [120, 121] describe a method to assist the identification of

metabolites in a sample using a database of COSY and HSQC spectra from

known metabolites. Matches to the reference compounds are scored, allow-

ing for possible displacement of the peaks. The method has been shown

to be effective with defined mixtures of amino acids and complex biological

samples. The same authors have also demonstrated an automated peak

identification protocol for HSQC spectra. Although applied for the quan-

tification of known metabolites, the potential for use in metabolomics is

recognized.

Unlike binning methods that reduce the resolution of spectra and lose

information when overlapping peaks are incorporated into the same bin,

deconvolution can extract relevant information for each peak individually

or fit the spectral signatures (i.e. the set of peaks) obtained for reference

compounds. While integration over bins leads to errors in quantification

owing to overlapping peaks and is sensitive to baseline distortions, peak

shapes can still be fitted and the concentration of the compound determined

with reasonable accuracy [122].

Weljie et al. [59] fit a combination of Lorentzian peak shape models from

a database of known metabolites to the target spectrum and provide quan-

tification by comparison with an internal standard. The method, termed

targeted profiling, was compared to spectral binning using 45 custom bins

representing 11 compounds. The bins were manually adjusted to ensure

peaks and peak clusters occurred in the same bin for all spectra and that

peaks were not split between bins. They found the binned data to be more

sensitive to noise and artefacts related to water suppression and baseline

deviations. Results from PCA were found to be more consistent when us-

ing targeted profiling and binning was found to be particularly ineffective

with low-concentration compounds. Although targeted profiling greatly sim-

plifies interpretation of the results, the method is currently unrealistic for

non-targeted studies. With estimates of over 100,000 metabolites in humans
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alone, comprehensive profiling this way is not possible and methods that can

allow as yet unknown resonances to be considered in analyses are required.

Feature extraction in LC-MS, like binning, can be performed along indi-

vidual EICs. Use can be made of individual isotope patterns which can help

to locate specific peaks [123]. MEND, also used for denoising, identifies peak

by a gaussian peak shape combined with a matched filter [76]. A number of

software packages using use both free and proprietary algorithms have been

developed for the task of identifying LC-MS peaks, including XCMS [124],

MZMine [125], MetAlign [126] and Progenesis QI [127].

2.2.8 Normalization

Normalization is used to correct for differences in overall concentration in

order to make samples comparable with each other. In addition to variation

due to the amount of material in the samples, differences in factors such

as pulse calibration can cause inter-sample variation. If the data matrix is

arranged so that each row represents a spectrum with the variables (data

points, peaks, or metabolite concentrations) in columns, then normalization

is a row operation, in which each spectrum is multiplied by a constant. This

constant is often determined using an internal standard, a fixed volume of

which is added to each sample. Calibration standards should not interact

with the sample and have a resonance that does not overlap with those of the

sample. Internal standards however can be expensive [128] and alternatively

the spectral intensities can be adjusted to a reference peak within the sample,

which is expected to be the same for all samples, such as creatinine in urine

[129]. A simple form of normalization, termed integral normalization or nor-

malization to constant sum, ensures that the sum over all intensities is the

same for each spectrum [130]. Other, more complex normalization proced-

ures, such as probabilistic quotient normalization [131], have been developed

to overcome the artefacts introduced as the most abundant metabolites af-

fect the scaling of all metabolites. The scaling constant for each spectrum is

calculated by considering the distribution of the quotients of intensities in

comparison to those of a reference spectrum. Alternative methods include

histogram matching [132], adapted from methods used in image processing,

where the histogram is obtained as the number of signals within each in-

tensity range, and group aggregating normalization [133], in which samples

are normalized so that they cluster close to their group centres in PCA.
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2.2.9 Batch correction

As noted earlier, LC-MS can suffer from relatively poor reproducibility.

Shifts can not only occur along m/z and t axes, requiring complex align-

ment, but changes to intensity also occur. Proper care of the analytical run,

including cleaning, conditioning and calibration can reduce, but not elimin-

ate this issue [134]. Samples are often run in batches, interspersed with the

relevant cleaning and conditioning events. However, this can lead to other

sources of technical variation, such as differences in the operating condi-

tions under which the acquisitions of the individual batches are performed.

These issues are often remedied in the data-preprocessing stage, inclusion of

identical quality control (QC) samples provide a target by which the shift

in intensity can be monitored, and therefore corrected. A more detailed

overview of current practices and problems is given in Chapter 4.

2.2.10 Variable Scaling

As larger peaks naturally have greater variance than small peaks [130],

variance-based methods such as PCA can be dominated by high abundance

metabolites. Similarly, large variables will contribute more to distance met-

rics in cluster analysis. Mean-centring is a column operation in which the

mean value is subtracted to give each variable a zero mean. This removes the

offset between high and low abundance metabolites, but does not change the

variance, and is used in combination with variable scaling techniques [135].

For example, autoscaling, widely used in metabolomics, involves dividing the

mean-centred variable by the standard deviation, giving each variable unit

variance (uv-scaling). Variable scaling allows all variables to have equal in-

fluence in multivariate analysis, but can also scale up unwanted noise peaks.

Pareto Scaling, in which the standard deviation is replaced by its square

root, is frequently used as a less intensive scaling method as larger variables

are reduced more than smaller variables. Vast (variable stability) scaling

weights down the influence of variables with greater variance, giving greater

influence to variables that change less [136]. Other scaling techniques in-

clude range scaling, which uses the range over which a variable is observed

as a scaling factor, and level scaling that uses the mean.

In a comparison of scaling techniques, range and autoscaling were found

to give the most biologically sensible results in PCA [135]. Other methods
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were found to be too dependent on the mean or the fold change, and vast

scaling led to results that were difficult to interpret. Purohit et al. [137]

found that a generalized log transformation of the variables produced more

normally distributed data that was more suitable for multivariate analysis.

An additional parameter was introduced into this so-called Glog transforma-

tion to reduce the scaling of noise and shown to improve classification results

[138]. In comparison to autoscaling and Pareto scaling with NMR datasets,

Glog transformation is shown to give consistently better results. All scaling

techniques were found to give better separation in PCA-LDA in comparison

to unscaled data. However, results vary between studies and there is no

one-size-fits-all scaling technique.

2.2.11 Workflow

The choice of preprocessing techniques depends on the data, the focus of the

investigation, and the analysis methods to be used, and a single approach

will not be appropriate for all cases even within a particular technique [129].

Preprocessing steps may be applied to the raw (time-domain) data, if avail-

able, to improve the quality of the FID and hence the corresponding spectra,

or to the Fourier transformed (frequency-domain) data to directly correct for

artefacts in the spectra. The aim is always to reduce intersample variation

owing to effects unrelated to the biology and hence increase interpretability

of the results.

Preprocessing steps are normally performed before multivariate analyses

in order to obtain the best results from such methods. However, PCA

is a multivariate method used widely for data visualization and has been

exploited within preprocessing methods. For example, scaling constants for

normalization have been determined by minimizing the Euclidean distance

between each spectrum and its experimental group centre in PCA space

[133], and Stoyanova et al. [139] have used PCA to detect regions requiring

alignment.

The results of some techniques may depend on prior procedures, for

example, peak alignment may perform better after baseline correction [93]

and, while there is a predefined order to most techniques, this is not always

the case. For example, data can be denoised before binning or afterwards

by discarding noisy bins.
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2.3 Data Analysis

The analysis of complex mixtures requires the use of statistical methods in

order to extract meaningful information. This usually involves multivariate

techniques, but univariate methods can also identify individual variables

that differ significantly between groups and can be particularly useful in

targeted studies.

2.3.1 Univariate Approaches

Univariate analyses can be applied to each variable in the spectra separately.

Student’s t-test allows a hypothesis to be tested by comparing a test statistic

with Student’s t distribution and can be used, for example, to determine

whether two groups (populations) are significantly different from each other.

The t-test makes certain assumptions about the data, notably that the data

for the two populations follow a normal distribution. The t-test also assumes

that the groups are representative of a random sample of the population, and

that the data follow a continuous or ordinal scale. Despite these assumptions

it has been noted that the test itself is robust to all but large deviations from

these [140]. Whilst the t-test can be used for the two-group scenario, when

several groups are involved Analysis of variance (ANOVA) is used to test

differences in means. Assumptions of ANOVA follow those of the t-test:

that data follow a normal distribution and that variances for all groups are

similar. With so many variables, the probability of finding what appear to

be significant differences between groups increases dramatically and has led

to exploratory analyses being termed data dredging or fishing expeditions

[141]. A p-value of 0.05 means there is a 5% likelihood of obtaining such a

difference by chance, so that, with 1000 random variables, as many as 50

might be expected to appear significant owing to chance [30]. Adaptations

to p-values are often applied when multiple statistical tests are performed

on the same data set to reduce the high false positive rate [142, 143]. In

[144] the Bonferroni correction is used to reduce the false positive rate of the

t-test in an LC-MS studying comparing targeted vs non-targeted approaches

in the analysis of kidney transplant patients with good and impaired renal

function. However, in parametric tests such as the t-test and ANOVA,

assumptions are made about the distribution of the data, and p-values will

be meaningless if the assumptions are invalid. Although these tests are quite
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robust to non-normally distributed data, they are particularly sensitive to

outliers. Considering such reservations, the tests can be used to highlight

or corroborate variables that may be of interest. Verwaest et al. [145] use

the t-test for feature selection for input to a support vector machine (SVM)

learning algorithm and, in the reverse scenario, Nevedomskaya et al. [146]

use univariate tests to confirm or reject variables identified in multivariate

analyses.

Nonparametric methods remove the need for assumptions on the distri-

bution of the data. The Mann–Whitney U -test, for example, uses ranks

rather than the original data and has been applied to NMR data in a

targeted analysis to compare the levels of certain metabolites in patients

with malabsorption syndrome (MAS) with those of controls [147]. Pears et

al. [148] used univariate tests to determine the significance of metabolite

changes identified by multivariate analysis. In addition to the t-test, the

nonparametric equivalents of the t-test, the Kolmogorov–Smirnov test, and

of one-way ANOVA, the Kruskal–Wallis test, were used as well as an F -test

to compare the variance of the disease and control groups. Both multivari-

ate and univariate methods were able to classify the 1H NMR spectra in the

study.

Correlation may also be used as a univariate method, for example, to re-

veal metabolites associated with particular patterns over time. Associations

between different biochemical variables and 1H NMR spectra intensities were

investigated using the Spearman correlation coefficient in a study on dia-

betic nephropathy [149]. In an evaluation of preprocessing protocols, De

Meyer et al. [150] use Pearson correlation to assess how well the variables

obtained by different methods relate to metabolite concentrations derived

from standard chemical analyses.

2.3.2 Multivariate Approaches

The usefulness of querying individual variables in megavariate data sets has

been questioned [30, 151] owing to the high false positive rate associated

with multiple tests. Multivariate analysis of variance (MANOVA) extends

ANOVA to allow multiple dependent variables, which may or may not be

correlated. While ANOVA tests the significance of the difference in means

between two or more groups, MANOVA tests the significance of the differ-

ence between two or more vectors of means. However, megavariate datasets
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result in problems with singularity of the covariance matrix and assumptions

that are violated [152]. An alternative generalization, analysis of variance

simultaneous component analysis (ASCA) uses an approach similar to PCA

to separate the variance originating from different factors and their interac-

tions. The method has been applied to the analysis of metabolomics data,

including LC-MS and NMR [153–155]. Multilevel simultaneous component

analysis (MSCA) also allows confounded factors to be analysed separately.

MSCA has been shown to remove within-subject variation and thus allow

between group effects to be differentiated, facilitating biomarker discovery

in both LC-MS and 1H NMR [156, 157].

Multivariate methods allow combinations of variables to be considered

and may be used for data reduction and visualization or for discrimination

and classification. Unsupervised methods can be used in exploratory ana-

lyses to identify trends or clustering in the data, but do not attempt to

relate observations to a particular class label or response. Supervised meth-

ods, on the other hand, aim to associate input features with predetermined

categories and can suffer from over-fitting. With many more variables than

observations, it is possible to find discriminatory combinations for the avail-

able data that would not generalize and it is vital that supervised analyses

be validated.

2.3.2.1 Cluster Analysis

Cluster analysis is an exploratory data analysis tool. Although it can be used

in classification by associating a class with different clusters, it is primarily

an unsupervised method, used to divide data into groups, or clusters, so that

the degree of association is strong between members of the same cluster and

weak between members of different clusters. Clustering is described in more

detail in Chapter 5.

2.3.2.2 Principal Component Analysis

PCA is one of the most widely used multivariate techniques [158]. PCA

aims to reduce the dimensionality of the data to a few characteristic dimen-

sions for visualization and further analysis. This smaller set of variables,

or components, should retain the important information in the data, effect-

ively summarizing the data. Therefore, the principal components (PCs) are
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chosen so that each successive component accounts for maximal variance in

the data, not already explained by previous components. This is achieved

from the eigenvalue decomposition of the data covariance matrix [159]. The

eigenvector corresponding to the largest eigenvalue gives the coefficients in

the best 1D approximation to the data, the first PC. The coefficients, known

as the loadings, show how much each of the original variables contributes to

the PC. Better approximations are achieved using more components, with

the kth PC determined by the eigenvector corresponding to the kth largest

eigenvalue. Data reduction is achieved as most of the variance in the data

is explained by the first few PCs. The values of the new variables for each

observation are called scores and score plots for just the first two PCs are

often used for visualization.

PCA is an unsupervised method that can be used to identify patterns

in the data. If most of the variance in the data is due to interclass dif-

ferences then clustering according to class should be apparent in the first

few PCs. The loadings for the relevant PC can be used to determine the

original variables contributing most to any patterns or trends. However, no

information about the groups of interest is used to obtain the components

and it may be that most of the variance is related to other factors, or simply

noise. PCA can also be used to identify potential outliers that may skew

the results in further analysis. In fact, the sensitivity of PCA to outliers has

led to the development of more robust variants [160]. Just as the median of

absolute deviation about the median, or median absolute deviation (MAD),

provides a more robust estimator of scale than the standard deviation, the

use of a robust covariance matrix allows PCA to be less affected by out-

liers. A measure of robustness is provided by the ‘breakdown point’, which

gives the maximal number of outliers that can be tolerated as a percent-

age of the observations in the data set. This percentage decreases as the

dimensionality of the data increases, and with high-dimensional data, the

algorithms also become intractable. Alternative robust methods are based

on projection pursuit (PP), a statistical technique to find the directions onto

which the projected data maximize some condition, such as non-normality.

In the algorithm proposed by Croux and Ruiz-Gazen [161], these directions

are determined by maximizing a robust estimate of the variance. However,

this and similar algorithms can be inaccurate with the mega-variate data-

sets common in chemometrics, and various more stable algorithms offering
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improved computational efficiency, such as the GRID algorithm of Croux et

al. [162], have been reported since. Recently, Xu et al. [163] have proposed

a method termed outlier pursuit that is designed to identify rather than to

ignore outliers.

2.3.2.3 Sparse Principal Components Analysis

When PCA reveals patterns in the data associated with the research ques-

tion, the loadings for the relevant PCs can be used to determine the spectral

features responsible. However, the loadings often show that very many fea-

tures contribute similarly to the variance so that the results are difficult

to interpret in terms of metabolic changes. Sparse PCA provides modified

components that have few loadings with non-zero values. The SCoTLASS

method of Jolliffe and Uddin [164] includes additional constraints on the

coefficients when maximizing the variance. In addition to the constraint

that the squared coefficients should sum to one, the sum of the absolute val-

ues of the coefficients must also be less than a tuning parameter, t. There is

a trade-off between the percentage of variance explained and the sparseness

of the loadings and the algorithm is computationally expensive, which makes

multiple attempts to find the optimal value of t impractical and alternative

methods have been proposed. In the same way that variable selection is

used in linear regression to produce interpretable models, Zou et al. [165]

use a penalized least squares method (LASSO) to impose a constraint on

the coefficients to derive components with sparse loadings.

To avoid problems with poor performance due to structural dependencies

within the data that are unrelated to the patterns of interest, Allen proposed

a generalized principal components analysis (GPCA) [166]. A low-rank mat-

rix approximation is used to obtain a decomposition that directly accounts

for structural relationships with penalties used to promote sparsity. Non-

negativity constraints have also been introduced to improve interpretability

of PCA [167]. In comparison to standard PCA, non-negative principal com-

ponents analysis (NPCA) was found to be less sensitive to noise and to

give better feature extraction when applied to an NMR metabolic data set,

with peaks originating from the same compound appearing in the same PC

in NPCA, but not standard PCA [168]. Sparseness, known structural de-

pendencies, and non-negativity have been combined to give a sparse form of

GPCA termed sparse non-negative generalized principal components ana-
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lysis (SGPCA) and its use in metabolomic studies has been demonstrated

[169]. The method was found to provide better clustering of samples ac-

cording to biological relationships and results that were easier to interpret

owing to improved feature selection. Although less variance is explained

by the components than with either PCA or GPCA, SGPCA was found to

provide greater dimensionality reduction when accounting for the number

of features selected (i.e. better reduction per feature). However, the sparse

calculation does increase the computational power required.

2.3.2.4 Multiway Principal Components Analysis

Multiway techniques have been designed for use with multidimensional data,

such as batch processes for which the data can be arranged in a three-way

array (batch × variable × time). Multivariate analysis is performed by

unfolding the data array in a suitable way and then carrying out traditional

analyses such as PCA [170]. Examples of application to three-way arrays of

NMR data are given in Pedersen et al. [171].

In a study using 1H NMR to investigate metabolic relationships between

tissue types, standard PCA showed that the difference between the tissue

types exceeded the differences between individuals and therefore domin-

ated the analysis [172]. However, multiway principal components analysis

(MPCA) allowed the variance between the individuals to be assessed and

therefore metabolic correlations between different organs inferred.

2.3.2.5 Hierarchical Principal Components Analysis

Multiblock methods allow datasets from different techniques to be analysed

simultaneously. In contrast to variable concatenation, in which the data

sets are combined to give a single supermatrix, multiblock, or high-level

data fusion, involves two levels of multivariate analysis. The first stage is

performed on the individual data blocks to provide a scores matrix from

each experimental technique and the second is performed on the matrix

formed by concatenation of these scores. In one of the first applications

of multiblock PCA, Forshed et al. [173] combined NMR data with LC-MS

data to give enhanced between group separation. In addition to patterns

within individual blocks, multiblock hierarchical methods can reveal com-

mon trends across data blocks that could be obscured by other sources of



2. Chemometrics 46

variation with simple concatenation. By considering melon cultivars as dis-

tinct blocks in hierarchical principal components analysis (HPCA) with gas

chromatography—electron impact—time of flight mass spectrometry (GC-

EI-TOFMS) data, Biais et al. [174] were able to identify common traits in

the spatial localization of metabolites across cultivars as well as discrimin-

atory metabolites specific to individual cultivars. An extended HPCA that

combined data blocks for each cultivar obtained by GC-MS and by 1H NMR

showed correlations in the methods that could be used to aid identification

of metabolites. Figure 2.3 shows scores and loadings plots for the HPCA.

2.3.2.6 Supervised Principal Components Analysis

PCA can be combined with other techniques, such as LDA or regression,

to provide a supervised method. An alternative way to use PCA for clas-

sification and prediction was devised by Wold [175], in which separate PC

models are obtained for each class in the training data set and the fit of a

new observation is calculated for each class model. The observation is then

assigned to the class for which the model gives the best fit. If the fit to

every modelled class is poor (according to the residual variance), then an

observation need not be assigned. Such an observation may be an outlier or

may belong to a class that is not represented in the training data.

2.3.2.7 Discriminant Analysis

The aim of PCA is to find linear transformations that maximize variance,

which may not coincide with the best separation of groups. Linear discrim-

inant analysis (LDA) is a supervised technique that uses class information to

find linear transformations that maximize group separation. The between-

group scatter is maximized, whereas the within-groups scatter is minimized

to achieve a reduced dimensional subspace in which the groups are maxim-

ally separated [176]. However, when the features are collinear or the number

of dimensions exceeds the number of observations, LDA can have problems

owing to singularity of the scatter matrices and variable selection may be

necessary before LDA [177]. Alvarez et al. use ANOVA to select the LC-MS

variables to feed into LDA [178] whilst Imre et al. use forward stepwise

variable selection in their selection of a suitable group of N-glycans that can

be used to discriminate between cancerous/non-cancerous samples of the
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Fig. 2.3: Hierarchical PCA of GC-EI-TOFMS data from different sections of three
melon cultivars (Cézanne, Escrito, and Hugo). (a) Standard PCA. (b)
Multiblock HPCA super scores plot. (c) HPCA block scores plot. (d)
HPCA block loadings plot (the most influential metabolites, selected by
N-way ANOVA, are labelled). (Reproduced from Ref. [174]. Copyright
2009, Elsevier.)
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LC-MS data. With 1H NMR, Faule et al. [179] selected only the predomin-

ant peaks in the spectrum and showed that discriminant analysis applied to

these gave good separation between olive oils of different botanical origin.

In chemometric studies, discriminant analysis is often applied in combina-

tion with other techniques. PCA can be used for data reduction and LDA

used with the PC scores as variables to identify class boundaries (hyper-

planes). For example, PCA-LDA has been used to identify discriminatory

features in 1H NMR spectra from instant coffee samples [13] and sea bream

[180]. This method relies on PCA for initial feature selection, but important

indicators for a particular class may have low variance and be ignored by

PCA [180]. Barker and Rayens [181] show that partial least squares (PLS)

is a natural alternative and should provide better data reduction than PCA

when discrimination is the goal.

2.3.2.8 Partial Least Squares

The nonlinear iterative partial least squares (NIPALS) algorithm developed

by Wold [182] was originally used to calculate PCs without the need for the

covariance matrix, but was later adapted as an alternative to principal com-

ponents regression (PCR) for over-determined regression problems [181].

Partial least squares regression (PLSR) generalizes multiple linear regres-

sion without imposing the constraints of other methods, such as canonical

correlation analysis (CCA), so that more prediction variables (latent struc-

tures) can be extracted. PLS, sometimes referred to as projection to lat-

ent structures, allows a set of response variables to be modelled by linear

combinations of the independent (predictor) variables accounting for max-

imum variance and is able to handle noisy, correlated, and incomplete data

[183]. While PLSR models continuous predictor variables, PLS-DA, models

discrete classes and is a well-established and commonly used technique in

chemometric analysis.

Linear combinations of the predictor variables provide X-scores with

coefficients known as X-weights and multiplying just a few X-scores by the

X-loadings provides good approximations to the predictor variables. Sim-

ilarly, good approximations can be obtained for multivariate response vari-

ables, with associated Y -scores, Y -weights, and Y -loadings. The loadings

show the relationship between the scores and the original variables and the

weights show the exchange of information between the predictor variables
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and the response variables or ‘scores exchange’. Multiplying the X-scores

by the Y -weights gives good predictors of the response variables that can be

expressed in terms of a multiple regression model with coefficients that can

be used to identify the most discriminatory spectral features. Alternatively,

the variable importance in projection (VIP) score for each predictor can be

used to provide a summary of its importance to several latent structures

[184]. Shao and Li [185] compared PCA-LDA and PLS-DA for application

in the quality control of fruit and vegetables. They found that PLS-DA was

more useful for discrimination than PCA-LDA and performed well when

used with NMR data to predict firmness. PLS-DA can also be used as a

measure of separation, for instance [186] use PLS-DA to compare against a

novel LC-MS sample preparation technique, using cross validation over 100

iterations to obtain the classification error.

2.3.2.9 Orthogonal Partial Least Squares

Like PCA, the PLS model is obtained by maximizing variance and can

be difficult to interpret. A modification of PLS, termed orthogonal partial

least squares (OPLS), has been proposed, which separates the variance in the

model into two parts [187]. The first is the variation that is common to both

the data matrix and the response matrix and is therefore of most interest for

classification and prediction. The other part, the so-called structured noise,

is the variance specific to the datamatrix and not related to the response

matrix. Filtering out the uncorrelated noise leads to a model that is easier

to interpret and allows the structure of the noise to be analysed separately,

for example, using PCA. In classification, with a response matrix consisting

of zeros and ones indicating class membership, OPLS separates the within-

groups variance and the between-groups variance. The method can also

be applied to time series with time as the response to extract the variance

related to time [187]. OPLS has been combined with discriminant analysis

(OPLS-DA), for instance to identify metabolites resulting from traditional

Chinese preparations to be considered for further research [188].

An improved OPLS algorithm, O2PLS, not only includes the orthogonal

signal correction (OSC) filter that allows the variance specific to the data

matrix to be analysed separately, but also removes structured noise from

the response matrix [189]. When a single response vector is involved, the

two methods are the same. Variance specific to the response may result, for



2. Chemometrics 50

example, when pure standards cannot be obtained for various constituents

and separate analysis could be important in assessing the quality of the

prediction model. The O2PLS model is predictive in both directions.

A novel use of O2PLS, termed tO2PLS, proposed by Kirwan et al. [190]

operates on the transpose of the data matrix and therefore allows patterns

between samples rather than variables to be investigated. The study util-

ized the bidirectionality of O2PLS to find features in 1H NMR spectra,

which could discriminate between black bream exposed to the hormone 17β-

estradiol and control fish. The two experimental groups were considered in-

dividual data blocks and O2PLS used to separate the spectral features that

were common to both and those that were unique to one group. The method

was found to perform better than OPLS-DA, which separated groups but

failed to indicate specific features. The authors also suggest that the method

offers a form of automated preprocessing [190], as the OSC allows the influ-

ence of the mean spectra across both datasets to be eliminated, providing

an optimized form of centring and scaling.

An evaluation of OPLS models concluded that the method could be used

with 1H NMR spectra without reducing the resolution of the data by bin-

ning to account for variation in peak positions [104]. Simulations showed

that peak shifts only slightly reduced the prediction ability of the model

and the authors suggest that the method could be used to model the peak

shifts, thereby providing potentially useful information on physiochemical

variations in biofluids that are lost when realignment is used. However, it

has also been argued that OPLS can never outperform partial least squares

(PLS) and any improvement in performance must be due to ‘unfair’ differ-

ences in the comparison [191].

2.3.2.10 Partial least squares modifications

As with PCA, various modifications have been made to the PLS algorithm,

including several that introduce sparseness to provide a model that is more

easily interpreted. Lê Cao et al. [192] use the NIPALS algorithm with a pen-

alty based on the number of variables, to give a sparse partial least squares

(SPLS), which produces latent structures with few nonzero loadings. The

method has been used with 1H NMR spectra to detect potential geograph-

ical biomarkers for Salvia miltiorrhiza, or red sage, used widely in traditional

Chinese medicine for the treatment of cardiovascular and cerebrovascular
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diseases [193].

The relationship between PLS and LDA was investigated by Barker and

Rayens [181], who concluded that LDA would typically outperform PLS

whenever it could actually be implemented and noted that a version of

PLS-DA based on the between-groups variance would be better suited to

discrimination. Sabatier et al. [194] provided such an extension of PLS-DA

termed generalized partial least squares-discriminant analysis (GPLS-DA)

based on the eigenanalysis of a matrix equivalent to that of LDA. A more

general regularized method, regularised PLS (RPLS), includes penalties to

encourage sparsity or smoothness, but also adds constraints to account for

non-negativity and known data structures (such as ordered chemical shifts

in NMR spectroscopy) [195]. The method was demonstrated with simu-

lated and experimental NMR data and shown to increase computational

efficiency as well as provide better feature selection and prediction accuracy

in comparison to other PLS algorithms.

Interval partial least squares (iPLS) has been suggested as a method to

highlight important spectral regions in metabolomic analyses [196]. Spectra

are partitioned into equidistant intervals and the root mean squared error

of cross-validation (RMSECV) used to identify the regions that are most

relevant for prediction of the dependent variables by PLS. Subsequent op-

timization of the intervals provides a graphical means of variable selection,

highlighting important regions of the spectrum.

2.3.2.11 Canonical Correlation Analysis

CCA, also known as canonical variate analysis (CVA), is a statistical method

used to show relationships between two data matrices [197]. A linear com-

bination of variables is chosen from each data set such that the correlation

between the two data sets is maximized. These linear combinations are

the first canonical variates and the coefficients involved are the first ca-

nonical weights. Subsequent canonical pairs can be extracted whereby the

correlation is maximized subject to being uncorrelated with previous canon-

ical pairs. However, CCA can only be applied to full rank data matrices,

whereas rank deficient matrices often occur in chemometrics owing to highly

correlated variables.

Yamamoto et al. [198] demonstrate the connection between CCA and

PLS and show that a regularized canonical correlation analysis (RCCA)
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can be applied in metabolomics. In comparison to PLSR, they found that

RCCA required significantly fewer latent variables to obtain a good predict-

ive model. The PLS algorithm has been used within CCA by Nørgaard et

al. [199] in a method they call extended canonical variate analysis (ECVA).

No dimensionality reduction is required before analysis and the canonical

variates can be used in LDA for classification.

The same principle as used in iPLS has been applied to extended canon-

ical variate analysis (ECVA), resulting in iECVA, used with fluorescence

spectroscopy for the classification of breast cancer samples [200] and to re-

veal genotype-specific spectral regions in near infra-red (NIR) data [201].

Both iECVA and iPLS were applied to 1H NMR spectra to investigate the

metabolic effects of onion intake, and the same two dietary biomarkers were

identified by both methods [202].

2.3.2.12 Kernel Methods

A kernel function can be used to transform linear algorithms, such as PLS

and CCA, into nonlinear algorithms by replacing the dot product between

two vectors with a kernel function. This allows observations to be mapped

into a higher dimensional space in which they may be more easily separated,

without explicitly computing the mapping [203]. The use of kernel func-

tions can dramatically increase the computational efficiency of algorithms,

as shown by Yamamoto et al. [198] using a linear kernel used with CCA.

A kernel PLS (KPLS) algorithm was developed for data sets with many

observations and shown to be significantly faster than the classical PLS al-

gorithm [204]. A similar algorithm for dealing with the opposite case, i.e.

data sets with fewer observations than variables followed [205]. A variant

of OPLS – kernel orthogonal PLS (KOPLS), which uses a Gaussian kernel

function, has been shown to improve predictive performance, in both classi-

fication and regression examples, when used to model nonlinear relationships

between descriptor and response variables. The performance of multiblock

PLS-DA has been compared to Consensus OPLS-DA, a variety of KOPLS-

DA, in the analysis of LC-MS spectra [206]. The predictive performance

of the two multiblock models was noted to be similar although the results

of the kernel method were found to be more interpretable. The KOPLS

algorithm has been used with 1H NMR spectra to compare the metabolic

signatures of patients with overt and potential Celiac disease with controls



2. Chemometrics 53

[207]. The KOPLS provides a nonlinear data reduction step and classifica-

tion is conducted on the resulting scores using a SVM algorithm. The SVM

(support vector machine) algorithm is a supervised model that seeks the

hyperplane which optimally separates the target groups [208]. Primarily

used for classification, in addition to linear separation, SVMs allow data to

be transformed into higher-dimensional space using a kernel-function. The

support vectors can be seen as the subset points representing data most diffi-

cult to classify. Optimization of the kernel function parameter is nontrivial,

and an automated procedure using simulated annealing has been incorpor-

ated in the KOPLS algorithm [209]. The algorithm was tested with three

different NMR data sets and compared to a linear OPLS model [210]. The

prediction results obtained using the KOPLS algorithm were as good as, if

not better than those obtained with the linear algorithm, but the authors

acknowledge that OPLS may perform better with problems that are truly

linear if insufficient observations are available for training.

2.3.2.13 Evolutionary Computing

Evolutionary learning algorithms are techniques based on the process of

natural selection and are popular for solving optimization problems [211].

An initial population of random solutions is created as the first generation

and new solutions are produced from these using operations that mimic

reproduction and mutation. Solutions are evaluated using a fitness function

and the fittest survive to the next generation so that optimal solutions evolve

over a number of generations. In a genetic algorithm (GA), each possible

solution is encoded in a string (chromosome), often a binary string consisting

only of 0s and 1s, but other representations are possible. Forshed et al. [99]

use a GA to optimize the alignment of peaks in NMR spectra, whilst Yeo et

al. use a genetic algorithm for the calibration of LC-MS analysis parameters

in order to reduce the need for expert opinion, using the algorithm to select

parameters for peak resolution and k-means clustering, amongst others [212].

The large search space however is noted as a problem, and seeding the

process with a set of reasonable starting parameters is suggested. GAs can be

applied to classification problems, using the number of correct classifications

achieved on the training set as a fitness function. Johnson et al. [213] were

able to identify the regions in FT-IR spectra that allowed discrimination

between control and salt-treated tomato varieties. Genetic programming is
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also combined with other techniques, for instance it has been used for both

feature selection and feature construction of LC-MS data in order to reduce

data dimensionality and improve the performance of k nearest neighbours

(kNN) and naive Bayes (NB) classifiers [214].

In genetic programming (GP), the candidate solutions are composite

functions usually represented by tree structures [215]. Although the method

has been used successfully with 1H NMR spectra from brain biopsy extracts

to classify tumours [216], the size of the search space can result in very

long training times, and a two-stage GP has been proposed to overcome

this problem [217]. The first stage serves as a feature selection method

to provide a reduced search space for the second stage. Only variables

selected a number of times in trees giving at least 90% correct classification

are used in the second stage. This not only reduces the search space for

the problem, leading to faster convergence to an optimal classification rate,

but also reduces the risk of overfitting. The genetic algorithm (GA) revealed

marker resonances in 1H NMR spectra that were able to distinguish between

genetically modified barley and null-segregant lines. Although it has been

suggested that GP techniques are likely to be problem specific and will differ

significantly in performance with different data sets [218], the two-stage GA

has also been successfully applied in food authenticity studies [219, 220].

As evolutionary computing methods identify spectral features directly and

do not involve a transformation of the variables, as is the case with many

multivariate methods, the results are more easily interpreted.

2.3.2.14 Artificial Neural Networks

As evolutionary algorithms mimic the process of natural selection, artificial

neural networks (ANNs) are inspired by the processes in the brain. They

consist of a graph of interconnected processing units that act as virtual neur-

ons. The output from each neuron is typically a function of the weighted

sum of its inputs, where the weights are learnt from the data through either

supervised or unsupervised learning techniques (or some combination of the

two). There are a number of ANN algorithms governing how the data is pro-

cessed and, in chemometric applications, the model is often chosen based on

experience of what processes work [221]. In early applications to NMR data,

neural networks were trained to recognize the chemical shift patterns in 1H

NMR spectra of sugar alditols [222] and 13C NMR spectra of acyclic alkanes
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[223] and to locate cross-peaks in a 2D 1H NMR correlation spectroscopy

(COSY) spectrum [224]. More recently, ANNs have been applied to NMR

spectra to address a range of problems including classification of chemical

reaction types [225] and prediction of antioxidant activity in plant varieties

[226]. Studies have also used ANNs to predict retention times in LC/LC-MS

analysis. Radial basis functions, probabilistic neural networks, generalised

regression networks and multilayer perceptrons have been used to predict

the retention times (LC) of compounds based on their SMILES molecu-

lar descriptors [227, 228]. Like GAs, neural networks have been combined

with other analysis methods. For example, Rezzi et al. [177, 229] found

that sample classification of fish and olive oils using PCA and a probabil-

istic neural network gave better results and required fewer components than

PCA-LDA.

Self-organizing maps (SOMs) are an unsupervised form of ANN in which

the network attempts to approximate the distribution of the data. The data

are projected nonlinearly from the original variables onto a 2D map of the

network nodes. The data that are close in the original data space are also

close in the 2D reduced space. This provides a convenient method for visu-

alizing the data allowing any natural similarities and groupings to be recog-

nized. Kaartinen et al. [230] showed that clinically relevant classification

of plasma lipoprotein lipids could be achieved using SOM analysis of 1H

NMR spectra. However, this also highlighted some problems with the use

of SOMs, in that they do not perform well with small numbers of samples,

particularly when the data is not completely accurate. These problems may

be alleviated somewhat by reducing the number of variables by only using

the relevant part of the spectra.The sensitivity of SOMs has however led

to them being suggested as a means of outlier detection [231]. SOMs will

group observations based on the similarities of their spectra, but will also

highlight how well attached observations are to the group, with those falling

outside suggesting potential outliers.

2.3.2.15 Correlation-Based Techniques

The correlation between spectral features can be used to highlight connectiv-

ities, such as links between atoms sharing spin systems in the same molecule

as would be seen in two-dimensional NMR spectroscopy (TOCSY) spec-

tra, providing the motivation for statistical total correlation spectroscopy
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(STOCSY) [232]. Correlations are plotted as 2D contour maps, similar to

2D COSY plots and can also show biological covariance (e.g. molecules shar-

ing the same pathway) as well as negative correlations. Cloarec et al. [232]

applied STOCSY to 1H NMR spectra from different mouse strains to study

insulin resistance. They used OPLS to highlight ‘driver’ peaks and demon-

strated the effectiveness of STOCSY for the identification of the relevant mo-

lecules. STOCSY has been shown to provide both intramolecular and inter-

molecular correlations, providing the rationale behind cluster analysis stat-

istical spectroscopy (cluster analysis statistical spectroscopy (CLASSY)), an

unsupervised approach that uses correlation clustering to deconvolute spec-

tra from complex mixtures according to fold-change [233]. Local clustering

is used to identify peaks from the same molecule, and global clustering is

used to reveal metabolic networks. The correlation heat maps generated can

be used to aid biological interpretation of NMR data sets. The method was

illustrated with 1H NMR spectra from rat urine to model the development of

toxin-induced prancreatitis, which was shown to cause coordinated changes

in compounds with similar pathway connections. Figure 2.4 illustrates the

information flow in CLASSY analysis.

2.3.2.16 Validation

Unsupervised methods, such as PCA and cluster analysis, allow multivariate

data to be visualized and can be used in exploratory analyses without any

assumptions as to what patterns may emerge. For prediction or classifica-

tion, there are many powerful supervised methods that fit a model to the

data. However, it is often possible to obtain a model that provides a good

fit to the data, but is in fact over-fitted. When the number of variables,

d, exceeds the number of observations, n, the risk of overfitting is high and

some form of validation is extremely important. The rule of thumb given by

Defernez and Kemsley is that,when d > (n − g)/3 (where g is the number

of groups), over-fitting may well occur [234]. To assess a model’s predict-

ive power, it is necessary to apply the model to data that were not used

to obtain the model. The holdout method involves keeping back a propor-

tion of the observations for use as an independent test data set and fitting

the model to the remaining training data set. Shao and Li [185] use hold-

out cross-validation in the analysis of NMR data on sweetcorn kernel heat

treatment. They highlight the dangers of over-fitting when cross validation
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Fig. 2.4: Information flow of CLASSY NMR analysis. (a) shows spectral assign-
ments for 10 metabolites present in control rat urine. (b) shows the local
correlation clusters corresponding to each molecular structure. These local
clusters are related to each other by global hierarchical clustering (c).
Local clusters are differentiated from global clusters by enclosure within
diagonal blocks, resulting in a correlation block matrix. Local clusters are
assigned to a chemical structure by relating the chemical shifts and fine
structure of each cluster to the compound’s NMR spectrum. (Reproduced
from Ref. [233]. Copyright 2010, American Chemical Society.)
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(CV) is not used, as a 100% success rate on training data becomes 85% on

the test data. While the use of an independent test data set is desirable,

this needs to be large enough to give an accurate estimate of the prediction

error. However, the more data used to obtain the model are, the better

that model is likely to be, and therefore the holdout method requires suffi-

cient observations to be available. This is often not the case in chemometric

studies and various resampling methods are used, at the expense of greater

computational cost. In k-fold cross-validation, the data set is split into k

equal-sized sections. One of these sections is used as a test set and the

other (k − 1) sections are used together as a training set. This process is

repeated k times, each time leaving out a different section of the data and

the average error rate taken as an estimate of the model’s predictive ability.

Smaller test sets mean more training data are available for training, provid-

ing more accurate models, and the extreme case is when k = n, known as

leave-one-out (LOO) cross-validation. Although computationally expensive,

LOO has been shown to give a good, if slightly conservative, error estimate,

consistent with statistical theory [235].

Internal cross-validation is used during training, for example, to determ-

ine the number of latent structures to be used, and can help to distinguish

the structure in the data from the noise in order to prevent overfitting. Ex-

ternal validation allows a model to be tested on new data and is considered

mandatory to assess the predictive ability of a model [236]. Recommend-

ations from the standard metabolic reporting structures (SMRS) working

group strongly emphasize the necessity of proper validation for supervised

classification, described as an ‘inherently biased technique’. Rules of thumb

are given for the form of validation to choose when insufficient observations

are available for an independent test set: if n < 10, LOO is appropriate;

for n ≈ 30, k-fold cross-validation is appropriate and less computationally

demanding than LOO.

Hawkins points out that cross-validation involves the comparison of mod-

els; a complex model over-fits the data if a simpler model fits equally well

[235]. Adding irrelevant variables can make the prediction ability of the

model worse and can lead to wrong interpretation of the results. It could be

that completely different models provide the same level of discrimination,

but it is possible to check stability by comparison of the models obtained

for the k training sets during cross-validation [237]/ Tripathi et al. [238] use
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the term cross-validation to indicate that results of two or more analytic

techniques have been compared, in their case MS and NMR.

2.3.2.17 Future Perspectives

There are many different techniques available for chemometric analysis, and

new methods as well as modifications of existing algorithms, more suited to

the analysis of mega-variate data sets, are still being developed. The lack of

a common benchmark means that new methods are usually only compared

with traditional techniques or earlier versions of the same algorithm [239].

Fonville et al. [240] have suggested a nutrigenomic dataset, with two genomic

strains and two diet groups, as a benchmark for latent variable methods. In

the data, originally presented in Dumas et al. [241], the two diet groups

have very different variance structures that dominate PCA and overwhelm

genetic differences. The ability to discriminate between genetic strains could

provide a criterion for assessment. However, the definitive evaluation of any

technique must be its efficacy in providing novel biological insights. Our

existing knowledge of biological systems is likely to be biased toward easy-

to-identify compounds and networks so that the ability to reproduce known

results may not be the best indicator of performance [242]. While it is

unlikely that there will ever be a one-size-fits-all solution, a set of standard

procedures may help to identify which techniques are favourable in which

circumstances. Greater accessibility naturally leads to more evaluation of

methods under different conditions and, while there is no common repository

for techniques, an increasing number of research groups are now presenting

R and Matlab packages.

Multiblock methods, such as hierarchical PCA and PLS models, were

designed to improve interpretation when variables could be separated into

meaningful blocks [243], but can be used to combine multiple experiments.

In addition to methods that use the same multivariate method for analysis

of the individual blocks and for the higher level analysis of the scores, for

example, PCA-PCA, mixed-mode hierarchical methods, such as PCA-PLS,

can be employed. In PCA-PLS, the individual blocks undergo unsuper-

vised analysis by PCA and the scores for a varying number of components

can then be analysed by PLS. Various combinations of multivariate meth-

ods are possible for such data fusion and the blocks co-analysed may be

different NMR experiments or from different technologies. Forshed et al.
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[173] evaluated various methods for the integration of data obtained by 1H

NMR and LC-MS. The relationship between metabolite concentrations and

protein abundances was exploited in a two-stage approach using O-PLSR

[244]. Multiple correlations between metabolites and proteins were found

and related to the disease profile in a mouse model of prostate cancer. The

statistical approach used in methods such as STOCSY has also been exten-

ded to combine datasets from different experimental techniques. Statistical

heterospectroscopy (SHY) has been used to combine NMR and UPLC-MS

data sets and reveal toxin-disrupted metabolic pathways [234].



3. DATASETS

3.1 Medicago dataset: An LC-MS investigation into drought and

disease resistance in legumes

3.1.1 Introduction

Legumes are an important agricultural crop, which encompass a wide vari-

ety of vegetables including peas, beans and lentils. They act as a good

source of fibre and protein and can replace imported soya as a feedstock for

animals thereby reducing transportation, its associated costs and environ-

mental impact. In addition, their nitrogen fixing ability reduces the amount

of artificial fertiliser required and actively puts nitrogen back into the soil

for use by future crops [245].

Legumes are particularly sensitive to the effects of drought, which im-

pacts both the overall yield as well as the nitrogen fixing capability. This

is of particular significance in arid regions with little overall rainfall, as well

as regions where rainfall is inconsistent if plentiful. Climate change leading

to higher temperatures and drier conditions are likely to exacerbate this is-

sue further in the future [246]. Yield can also be affected by the presence

of the pathogen Fusarium oxysporum, which causes wilt in many crop spe-

cies worldwide, including legumes, the effects of which become even more

severe in the combined presence of other stresses [247]. Once established

the Fusarium pathogen is difficult to remove and, with most farmers unable

to support the cost of soil sterilisation, the only effective measure is crop

rotation, which puts further constraints on the amount of crop which can be

viably harvested [248, 249]. However, there is a wide range of tolerance in

existing crop varieties and it is hoped that by understanding the genes and

processes responsible for traits such as disease and drought resistance it will

be possible to select and breed for desirable attributes in future varieties

[250].



3. Datasets 62

3.1.1.1 Experimental procedure

Medicago truncatula, a model legume, was subjected to individual biotic and

abiotic stresses, and a combination thereof. A total of 150 plants were grown

comprising four experimental groups as follows:

C – Control group

D – Abiotic stress group – subject to drought

F – Biotic stress group – infected with the pathogen Fusarium oxysporum

B – Dual stress group – subject to both drought and infection with Fusarium

Medicago truncatula (Jemalong A17 genotype) seeds were planted in

350 ml pots containing a 3:1 mixture of perlite to sand by volume. Plants

were grown in a greenhouse at a temperature of 28 ◦C and humidity was

maintained using a fog system. Fusarium inoculation was carried out by

watering the plants with 50 ml of Fusarium inoculate. Drought plants were

subject to a 40% drought stress by weight of water, a proportion determ-

ined to be effective from a previous pilot study. Three plants (biological

replicates) were harvested from each experimental group at daily intervals

for 12 days. For the C and F groups 78 plants were harvested from days 1

to 12, whilst for D and B harvesting commenced one day later, from days

2 to 12 (72 plants), to allow uniform drying of the growth medium. Each

plant was removed carefully from its substrate/gauze to minimise damage.

The plant was shaken and gently washed to remove any bound substrate.

The plants were carefully dried before leaves were cut directly into beakers

of liquid nitrogen. Only healthy mature leaves were cut whilst dead or very

young leaves were discarded. After freezing, the material was recovered from

the nitrogen and stored in aluminium foil before freeze-drying for approx-

imately 48 hours. Lyophilised samples were then stored and transported for

metabolomic analysis at room temperature.

Prior to analysis each dried sample was initially ground carefully into

a fine powder using a pestle and mortar to preserve as much material as

possible. 5 mg ± 1 mg of ground sample was accurately weighed into a la-

belled 2 ml Eppendorf tube. To 5 mg of sample, 1 ml of extraction solvent

(1:1 (v/v) methanol:water) was added. Metabolites were extracted into the

solvent by shaking for 30 minutes. The solid material was then removed
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by centrifugation at 14,000 rpm for 10 minutes and the supernatant liquid

split into two 400 µl aliquots, of which one was used for LC-HRMS (Liquid

chromatography-high resolution mass spectrometry) analysis. The super-

natant to be analysed by LC-HRMS was diluted 4 fold using methanol :

water 1:1 In addition to the samples, an in-house reference was extracted

daily as a quality control measure. As the amount of material available

from experimental samples was very low the material for the QC samples

was sourced from a homogenised mixture of control samples collected from

a previous experiment following a similar design. This allowed the metabol-

ites likely to be present in the experimental samples to be included in the

QC samples without requiring the use of the limited experimental material

in order to create the QCs.

3.1.1.2 LC-HRMS parameters

One hundred and forty nine leaf samples were ultimately analysed – the

number being slightly lower than anticipated (150) due to plant death. Ex-

tractions were subject to both positive (+) and negative (–) mode LC-MS,

giving two datasets (L+, L–). LC-MS analysis was conducted in 7 batches

to which the samples were assigned randomly to ensure that no particular

batch was dominated by any particular experimental group or age-range.

The chromatography column used was an ACE 3Q 150 × 3 mm, 3 µm

(Advanced Chromatography Technologies, Aberdeen, UK.). Mobile phases

were 0.1% formic acid in water mobile phase A (MPA) and 0.1% formic acid

in acetonitrile mobile phase B (MPB). The gradient elution applied was

100% MPA for 5 minutes before increasing to 100% MPB over 15 minutes.

This was held for 10 minutes before reverting back to 100% MPA and held

for 2 minutes. Injection volume was 10 µl using a full loop injection, flow

rate was 0.4 ml/min and column temperature was 25 ◦C.

The MS used was a Thermo Exactive (Thermo Fisher Scientific, MA,

USA.) set at 50,000 resolution full width at half maximum (FWHM) (at 200

m/z) with an acquisition speed of 2 Hz. The column was conditioned before

sample analysis using 15 QC injections and then QCs were inserted between

every 6 experimental samples.
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Leaf (L)
184 observations (149 exp. & 35 QC)
1239 L– peaks 1681 L+ peaks

Tab. 3.1: A summary of the number of observations and peaks for the Medicago
dataset

3.1.1.3 Data preprocessing

The raw LC-MS data were pre-processed using Progenesis QI [127]. The

software aligned all MS spectra in the retention-time domain before applying

deconvolution and peak picking algorithms, providing a matrix of potential

metabolites against observations. The potential metabolites were initially

annotated by accurate mass m/z (between 80 and 1000) and retention time

(between 1 and 30 minutes) of their corresponding peak. In reality some of

these peaks may be due to erroneous peak detection or several peaks may

represent the same compound. Table 3.1 shows the number of observations

with the number of metabolites recorded for each dataset.

3.1.2 Initial analysis and discussion

3.1.2.1 Batch correction

PCA was carried out on each of the datasets (L–, L+). It is apparent

from the visualisations of the first two PCs that the variance between the

experimental observations is dominated by differences between the LC-MS

batches. The PCA scores plot for the first two PCs for L– is shown as an

example in Figure 3.1.

To include the effects of low-intensity metabolites in the analysis the

data were autoscaled. The differences between batches in the PCA plots

become even more prominent post-scaling (not shown). Whilst some exper-

imental differences – such as separation of the QC samples can be seen in

the plots the batch differences largely obscure the experiential differences.

In order to reduce the effects of the batch differences a batch correction

method, as outlined in [251] was performed on each of the datasets in turn.

A visualisation of this correction on a single variable (LN294) is shown in

Figure 3.2. It is important to note that this correction must be applied pre-

scaling. Since the correction involves dividing by the median line, dividing
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Fig. 3.1: PCA scores plot for the L– dataset. The data has not been scaled. Icons
and colours correspond to LC-MS batch: 1. �, 2.  , 3. N, 4. �, 5. #,
6. 4, 7. +. Peak variance of the data is dominated by batch variance,
highlighted by the clustering of peaks by batch across the first principal
component.
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by values close to zero, such as those typically present post-scaling, results

in extremely large values in the result, leading to large differences between

the within-batch variances, if not the averages.

For the L– dataset this correction was visually successful, with batch dif-

ferences no longer manifest in the both individual variable and PCA plots

and the differences between experimental groups becoming more apparent.

The PCA scores plot of the scaled data, post batch correction, for the ex-

ample dataset (L–) is shown in Figure 3.3.

However, this method was not able to correct for the batch differences

in the L+ dataset as shown in Figure 3.4. Several of the batches are “split”

along the first principal component (PC1), with part of the batch having

low scores for PC1 and the remainder having higher scores. One of the

implications of this is that the assumptions of standard statistical tests,

such as t-tests or ANOVA may be invalid, since they cannot be applied

to a binomial distribution. These problems with the QC correction form

the motivation for a the “background correction” batch correction method,

which is covered in more detail in Chapter 4.

Post batch correction (QC for the L– dataset and BG for the L+ dataset)

the variation due to experimental groups is more apparent. This is shown

in Figure 3.5.

3.1.2.2 Combined datasets

Since the two ion modes share the same set of observations it was possible

to combine the L– with the L+ dataset. This produced a larger dataset

(leaf-combined (L+/–)) sharing the same set of observations.

3.1.2.3 Basic analysis

Identifying peaks showing a response to the experimental conditions may

allow the identification of pathways displaying stress resistance. In order

to identify overtly responsive peaks, t-tests were conducted for each peaks,

contrasting the values for each of the experimental groups in turn, against

the control group. Several issues are apparent from the results:

• The temporal aspect is ignored. It would be expected that the first few

data-points to be similar in all groups, however, the peak showing the
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(a) Before

(b) After

Fig. 3.2: Visualisation of a single variable (L– #294) before and after QC cor-
rection. The Y axes show the peak intensity and the X axes show the
acquisition order. Samples are shown using different symbols and colours
across the X axes to denote the different batches (1-7). The correction
shows a clear effect, reducing the differences in intensity between samples
taken from different batches.
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Fig. 3.3: PCA scores plot for the L– dataset, post-batch-correction and autoscaling.
Icons and colours correspond to LC-MS batch: 1. �, 2.  , 3. N, 4. �, 5.
#, 6. 4, 7. +. Post-correction, the differences due to LC-MS batch are
no longer apparent.
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Fig. 3.4: PCA scores plot for the L+ dataset, post-batch-correction and autoscal-
ing. Icons and colours correspond to LC-MS batch: 1. �, 2.  , 3. N,
4. �, 5. #, 6. 4, 7. +. Post-correction using the “mean of the QC”
method, the differences due to LC-MS batch are still apparent across PC1
and PC2. Furthermore, several batches show a “splitting” of the samples
into two distinct groups across PC1 and PC2.
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Fig. 3.5: PCA scores for the L– dataset, post batch correction and autoscaling.
Icons and colours denote experimental group. �: Control group, N:
Drought group,  : Fusarium group, �: Dual-stress group. This figure
is the same as Figure 3.3, showing that whilst differences due to batch
are no longer apparent, the differences due to experimental group are now
manifest.
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Fig. 3.6: Plot showing the intensities for peak, LN150, which has the lowest t-test
p-value for the C against D comparison in the L+/– dataset. Time is
displayed along the x axis, for each of the experimental groups in turn.
The y axis denotes the ion intensity of for each sample. Whilst the low p-
value indicates differences between the samples from the C and D groups,
samples from the two groups do not noticeably deviate as time (X-axis)
increases.

strongest C-D separation (LN150, Figure 3.6) shows no strong trend

in either group, despite having more separation in the first few points.

• There is no fixed set of profiles that are obtained (i.e. the strongest

results do not, for example, all show increasing trends over time),

making interpretation of the results difficult.

• As a method using the mean and variance, the t-test is particularly

sensitive to outliers. This is of particularly significance in our dataset

which contains a noticeable degree of noise. This is exemplified in the

compound showing the strongest C-F compound, which possesses a

high t score primarily due to the presence of an outlier (not shown).

• In our data, strong correlation is observed between the C and F groups,

as well as the B and D groups. In the case of Drought-Fusarium

infection, a high score against control may be due more to drought

than combined stress.

Correlation and regression methods are able to account for the temporal

nature of the data. The Pearson correlation coefficient (PCC) measures the

correlation between two variables and is thus able to identify metabolites
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associated with particular patterns over time. Here the experimental ob-

servations are compared against “template patterns”. These templates are

constructed to identify variables showing correlation with time only under

the specified experimental conditions.

PCC measures correlation between two vectors (X and Y ). For n obser-

vations, the first vector (X = {X1, X2, ...Xn}) was set to the intensities of

the experimental observations, hence:

Xi = Ii (3.1)

Where Ii is the intensity of the ith observation. Each value (Yi) of the

second vector was set to the day of extraction (1–12) for observations in

the set of experimental conditions of interest (Q), and to 0 for all other

observations from the other experimental conditions:

Yi =

Ti if Gi ∈ Q

0 if Gi /∈ Q
(3.2)

Where Ti is the age of the ith observation in days, and Gi is its experi-

mental group.

Figure 3.7 demonstrates a template visually, showing the plot of a re-

sponse variable where Q = {D,B}. Four different values were tested for Q:

{D}, {D,B}, {F} and {F ,B}.
Both Pearson Correlation and PLSR regression were used as a means of

identifying variables of interest. In the case of PLSR, VIP scores were used

to quantify the role of each peak in the regression. Since VIP scores are

calculated across a number of components this was optimised to maximise

the predictive ability of the regression whilst avoiding overfitting. This op-

timisation was performed using LOO cross-validation in order to minimise

the root mean squared error of prediction (RMSEP). The plot of RMSEP

against number of components (not shown) suggests the ideal number of

components is 4, after which overfitting is seen and the predictive accuracy

of PLSR on the validation set falls.

Results were initially confounded by significant noise in the data, which

can be seen in the examination of individual time-series. Noise can be re-

duced in the dataset through the use of sample replicates, either biological

(i.e. different plants) or technical (i.e. multiple analysis of the same samples).
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Fig. 3.7: Plot showing a template profile to identify trends with linear correlations
with time in the D and B groups. The X-axis is denotes time, for each
experimental group in turn, whilst the Y-axis denotes an arbitrary intens-
ity value. The C and F values are fixed at 0, whilst the D and B values
mimic the time-value (X-axis) for their group.
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Fig. 3.8: Plot of the intensities for peak LN244, the variable with the highest cor-
relation with the D/B template. The X-axis denotes time, for each exper-
imental group in turn, whilst the Y axis denotes intensity (not unscaled).
Clear trends over time can be seen for the D and B groups, with less no-
ticable trends for the C and F groups. Contrast this with the template
itself, shown in Figure 3.7.

.

Simply averaging over the replicates however produced a noticeably erratic

time-profile and trend-based smoothing methods were employed to counter

this. These will be discussed in more detail in Chapter 5.

Variables in each dataset were ranked by their absolute correlation scores

of the above response patterns. As an example, Figure 3.8 shows the variable

with the strongest correlation (in both PLSR and Pearson regression) with

the D/B response template in the L+/– dataset. It is important to note

however, that correlation and regression only help to identify those variables

matching the pattern crafted in the response variables, which in this case is

a linear one. Non-linear or quadratic patterns may appear as less significant

or may be missed. Correlation nonetheless serves as a simple but useful

starting point to visualise the sort of patterns present in the data. The set

of top results for the correlation analysis is shown in Appendix A.

These parameters were found to offer the best smoothing without signi-

ficantly degrading the pattern seen in the individual variables. Figure 3.9

shows the scores plot for first two PLSR components, demonstrating how av-

eraging can clarify the results by contrasting the averaged and non-averaged

(“complete”) datasets.
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(a) Full L+/– dataset

●

●

●

●

●

●
●
●

●●
●

●

●

−10 0 10 20

−
20

−
10

0
10

20

Component 1

C
om

po
ne

nt
 2

(b) Averaged L+/– dataset (method = moving median, window width = 5)

Fig. 3.9: PLSR scores plots for the dataset for (a) all replicates and (b) averaged
across replicates. Icons and colours denote experimental group. �: Con-
trol group, N: Drought group,  : Fusarium group, �: Dual-stress group.
The average dataset provides a notably clearer set of results.
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3.2 Conclusions

There are a clear number of drought responsive peaks within the Medicago

dataset, with a large number of dual-stress responses following the same

pattern as the drought response. The standard analyses performed were

moderately effective at identifying a number of these peaks, they do how-

ever, suffer from a number of drawbacks. Primarily, the intensity profile

of the peak over time must be provided in, and in this case only a linear

response was tested. Whilst testing a set of linear correlations for the con-

ditions of interest did reveal a number of candidate biomarkers displaying

non-linear profiles, it is evident from manual examination of the dataset that

a number of others may have been missed. Furthermore, a high number of

drought-responsive compounds are present in the data, which complicates

the task of finding biomarkers to target for further analysis. For instance

14% (412 out of 2920) of the peaks in the combined leaf dataset show “sig-

nificant” correlation with a linear trend over time for the drought group

only (Q = D), where p ≤ 1.71× 10−5, which is equivalent to p ≤ 0.05 after

applying the Bonferroni correction to account for multiple-testing, where

n = 2920. Despite applying this correction the issue remains somewhat of

a “fishing expedition” and was performed largely by a manual inspection of

the data that confirmed that peaks showing these linear trends, did in-fact

exist. Chapter 5 attempts to redress some of these issues through the use of

unsupervised cluster analysis in order to determine common “patterns” of

metabolites in the data. Issues with noise and in accounting for “growth”

related variation seen in the control groups will also be addressed.

3.3 Beef dataset: Using 1H NMR to identify the storage conditions

of matured beef

3.3.1 Introduction - The case for Beef

In 2015 the EU produced 7.6 million tonnes of beef and veal set for human

consumption and the UK beef market alone was valued at £2.7 billion [252].

Post-slaughter, beef is aged to produce the desired flavour and tenderness,

with increased ageing time producing a stronger “beef” flavour. However,

longer-aged beef also commands a higher price; as beef is aged, weight loss

is to be expected from evaporation and additional costs are incurred as
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valuable refrigerated space is used [253]. This presents potential scope for

abuse, whereby short-aged beef produce is deliberately mislabelled as long-

aged and then sold at increased price.

The effects of ageing in beef samples have been previously studied in

[254] and [255]. Using H1 NMR the authors were able to identify 12 amino

acids and confirm earlier studies, showing increases in the concentrations of

all identified amino acids over the ageing period. The authors also compared

meat from carcasses hung using two methods (Achilles tendon and Pelvic

suspension) the latter of which has been reported to increase meat tender-

ness [256]. However, they reported that they did not detect any significant

difference in the metabolic composition in the meat obtained from each of

the methods.

The increase in amino acid composition over time is a potential indic-

ator of the duration of ageing and therefore presents an avenue by which

mislabelling could be identified. However, since chemical reactions generally

progress faster at higher temperatures a reasonable hypothesis is that in by

increasing the storage temperature protein breakdown can be accelerated to

the point where short-aged warm-stored meat becomes less dissimilar from

long-aged meat under proper (cool) storage conditions. The first goal of this

study is to investigate this hypothesis and attempt to identify a mechanism

whereby meat stored under two different storage conditions could be identi-

fied. This would allow premium “21 day matured beef” to be distinguished

from beef stored for a much shorter period under less than ideal conditions.

3.3.2 Materials and methods

The dataset consists of 361 NMR spectra for meat aged in three different

storage conditions between t = 1 and 28 days:

• Frozen (F) – stored at -20◦C

• Ambient, warm (W) – stored at room temperature 20◦C

• Ideal, cold (C) – stored in a refrigerated environment at 4◦C

Day zero (Z) samples are also present for meat at t = 0 which has not

yet been stored.
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3.3.2.1 Preprocessing

Data was split into bins using the adaptive binning procedure proposed

in [111] using the Metabolab tool-kit for Matlab. Using a 3 level wavelet

transform this resulted in a total of 1234 bins not categorised as noise.

3.3.3 Initial analysis and discussion

3.3.3.1 Scaled vs. unscaled data

Scaling has the potential to inadvertently amplify the effect of noise in the

dataset by bringing low-intensity noise peaks in line with the rest of the

data. However, the adaptive binning algorithm used has the advantage of

automatically detecting noisy areas of the NMR spectrum and discarding

them from the resultant binned data. Initial tests with scaled and unscaled

versions of the dataset, including PCA and PLS, indicate better separation

and discrimination between experimental groups for the scaled data. With

the exception of the early outlier detection noted below, all analysis was

carried out on data that was mean centred and scaled to unit variance.

3.3.3.2 PCA

The PCA analysis of the dataset, indicates three outliers emphasised in the

second principal component, observations #222, #223 and #224. These

outliers are all replicates from the same beef sample (S08-029333), rep-

resenting the warm storage group and with an age of 21 days. In a room

temperature environment it is possible that this beef sample became infec-

ted to a degree where its chemistry was significantly altered. These three

observations were discarded from further analyses in order that the study

concentrate on more subtle differences between storage groups. A fourth out-

lier, observation #353 was identified in the frozen group after auto-scaling

the data as outlined above and re-performing the PCA. Manual inspection

of the NMR spectrum for this sample indicates a significant difference in

the amplitude of many of its peaks, the reason for which is unknown and

could be due to a variety of factors, including biological and analytical. This

outlier was also discarded from the dataset so as not to confound further

analysis.

A PCA plot of the auto-scaled data with outliers removed is shown in fig-
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Fig. 3.10: Plot showing the scores along the first two components resulting from
PCA of the dataset. The four outliers were removed and the data scaled
to unit variance and mean centred prior to performing PCA. Separation
between the three experimental groups is apparent along both compon-
ents. Icons and colours denote experimental group. �: Day zero samples,
�: Frozen samples,  : Cold samples, N: Warm samples.
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Fig. 3.11: Plot showing the scores along the first two components resulting from
PCA of the dataset. The four outliers and all observations from the
frozen group were removed prior to PCA. The data was scaled to unit
variance and mean centred. Icons and colours denote experimental group.
�: Day zero samples,  : Cold samples, N: Warm samples.
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Fig. 3.12: Plots of intensities against age for a single variable (bin) of the beef
dataset. The bin is centred at 1.72ppm. The points denote the replicate
observations, with icons and colours signifying experimental group. N:
Warm,  : Cold, �: Day zero. The shaded regions highlight the intensity
range for each set (time and age) of replicates. It can be seen that there
is a region where the intensities of the peaks from the two experimental
groups overlap. For instance, the early warm-storage samples, and the
late cold-storage samples, highlighted by the two blue dashed lines.
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ure 3.10. It can be seen that the storage method is a dominant factor leading

to variation between observations. The difference between warm samples,

in contrast to the day zero samples, is obvious along the first principal com-

ponent. Separation of the cold-group samples is apparent along the second

principal component, and to a lesser degree along the first principal com-

ponent. The frozen storage group meanwhile shows heavy overlap with the

day zero samples. This pattern of changes fits well with prior expectations:

metabolic activity will increase with temperature. The greatest source of

variance along PC1 is due to the difference between the warm samples and

the day zero samples, whilst the greatest source of variance along PC2 is

due to the differences in the cold group. At −20 ◦C metabolic activity will

have slowed down significantly and little change from the starting position

occurs in the frozen group. After excluding the frozen group from the PCA

analysis the plot shown in figure 3.11 is obtained. Whilst the warm and cold

groups show differences, there remains some overlap between them, which

is most evident between the older (age 20-28) cold-group samples and the

younger (age 4-10) warm ones. Younger samples are naturally harder to

separate since they have deviated less from the day zero ones. These be-

haviours appear typical when individual variables are scrutinised. Figure

3.12, shows the intensity of bin #666 as an example, with the intensity of

the the samples plotted against age. Overlap between the intensities of the

two experimental groups can be easily be seen, for instance between ages

4-8 of the warm group and 18-22 of the cold group, among others. This

behaviour is somewhat unsurprising given the general increase in reaction

rates with temperature. A single biomarker representative of the storage

method could offer a fast chemical test to identify storage. However, un-

fortunately the existence of the overlapping region compromises the ability

to easily discern group from a single variable as almost all variables show

some region of overlap. This is emphasised further in the loadings plot,

which indicates that the separation which does exist between groups in the

plot is the compound effect of many variables, with no small group of bins

dominating the loadings.

3.3.3.3 SPCA

In order to determine if a smaller set of bins could be used to achieve a

separation between groups similar to the one seen for PCA, sparse principal
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Fig. 3.13: Sparse principal components analysis of the beef data, excluding the
frozen group and 3 outliers. Icons and colours denote experimental group.
�: Day zero samples,  : Cold samples, N: Warm samples. SPC1 ac-
counts for 0.32% of the total variance and SPC2 for 0.30%. Despite the
sparse constraint on the analysis, separation of the experimental groups
is still notable.
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(b) SPC2
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(c) PC1
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(d) PC2

Fig. 3.14: Plots showing how the two PCA methods differ in their loadings (ro-
tations) plots. The absolute values of the loadings have been taken for
readability. The top figures show the absolute loadings of SPCA, and
the bottom two of PCA. The SPCA loadings have are noticeably cleaner
than those of PCA. The variables with the highest loadings in both cases
remain similar.
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components analysis (SPCA) was performed. SPCA, previously described

in chapter 2, follows the general pattern of standard PCA but applies a

penalty to non-zero loadings. This has the effect of producing a result with

fewer variables contributing towards the model, which is arguably simpler to

understand. The number of variables per principal component is regulated

by a sparseness parameter, k =
∑

i(|vi|) where vi denotes the ith variable

used. In this case the parameter was chosen empirically to produce visu-

ally good results. A very sparse constraint (k = 2) resulted in reasonable

separation between groups, the scores plot for which can be seen in figure

3.13. This resembles the results of standard PCA, with the warm group

deviating along the first principal component, and the cold group along the

second. The loadings plots from the PCA and SPCA analyses are shown in

Figure 3.14. It can be seen that, unlike the standard PCA loadings how-

ever, SPCA produces a concise set of variables complementing the scores

plot, with a set of loadings dominated by a single spike, centred around

V666 = 1.72ppm (2-Hydroxybutyrate = 1.7). The second principal compon-

ent reveals a similar pattern, dominated by a spike centred around V486 =

3.85ppm (Inosine = 3.84, Adenosine = 3.8, Glucose = 3.8, Mannose = 3.84).

The bin at 1.72ppm was shown earlier in figure 3.12. This bin also

shows the highest correlation with time for the warm experimental group

samples (ppearson = 0.949). The bin at 3.85ppm, shown in figure 3.15,

conversely, has an intriguing pattern where older samples show an increase

in concentration in the cold group while showing a marginal decrease over

time for the warm group. However, these two variables alone are not able

to distinguish between the early warm and later cold-group samples.

3.3.3.4 Univariate testing

Performing t-tests on the binned data highlights 442 out of 1234 bins as

showing “significant” (p < 0.05) differences between samples of all ages in

the warm group against samples of all ages in the cold group. However, late

samples are easily distinguished and it is the late cold-group and early warm-

group samples for which discrimination is difficult. t-tests were performed

using different age ranges from these overlapping groups and potential bio-

markers such as the bin at 7.60ppm, shown in figure 3.16, were identified.

However, although these bins represent chemicals that are present (i.e. non-

zero) in one group but not the other, the peaks are of low intensity, which



3. Datasets 86

Fig. 3.15: Plots of intensities against age for a single variable (bin) of the beef
dataset. The bin is centred at 3.85ppm. The points denote the replicate
observations, with icons and colours signifying experimental group. N:
Warm,  : Cold, �: Day zero. The shaded regions highlight the intensity
range for each set (time and age) of replicates. This variable shows an
“inverted” profile, where the intensity of the cold group samples tend
towards exceeding the warm group samples as time (age) increases.
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Fig. 3.16: Plots of intensities against age for a single variable (bin) of the beef
dataset. The bin is centred at 7.60ppm. The points denote the replicate
observations, with icons and colours signifying experimental group. N:
Warm,  : Cold, �: Day zero. The shaded regions highlight the intensity
range for each set (time and age) of replicates. This variable shows one of
the most significant differences between the warm and cold experimental
groups, however, the low intensity of the variable suggests that this may
be an artefact of the detection method, with the intensities lying on the
border of the limit of detection.
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may be indicative of low chemical abundance. Thus it may not be possible

to identify them using all instrumental platforms. Furthermore, the disap-

pearance of these low intensity markers could be an artefact of the detection

method with a zero-intensity value simply meaning that the chemical con-

centration has fallen below the limit of detection, but not necessarily that

the chemical species is truly absent from the sample. In order to fully de-

termine these potential of these species as a biomarker further scrutiny of

their true concentrations over time would need to be performed using a more

sensitive method.

3.3.3.5 Classification

From the unsupervised PCA and SPCA analyses it can be seen that there are

notable distinguishing features between the warm and cold groups. However

almost always there exists some degree of overlap between the two groups.

It is possible that through a combination of two or more variables the groups

could be distinguished.

Due to the ratio of variables to observations in the dataset (i.e. nvars >>

nobs it is expected that supervised multivariate techniques may have the

effect of presenting an artificial bias in the results. However the visible

separation from PCA and SPCA suggests that there already exists a nat-

ural degree of separation between the experimental groups which warrants

further attention.

3.3.3.6 PCA-LDA

As a means of gauging the separation of the groups in PCA, LDA can be used

on the scores. To avoid overfitting, leave-one-out (LOO) cross-validation was

used. In this approach, one observation was left out of the analysis and the

PCA scores and LDA classification then made for the missing observation

and the classification added to the results. This was performed for all obser-

vations in turn. Table 3.2 presents the results as a confusion matrix. Whilst

the overall predictive accuracy is reasonable, at just under 87%, of the incor-

rect predictions 84% are warm group samples incorrectly predicted as cold

group ones. It can be seen that the set of warm group samples predicted in-

correctly are all 8 days or younger, whilst the cold-group samples predicted

incorrectly are all 25 days or older. This gives a more objective weight to the
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Fig. 3.17: PLSR scores plot for first two components of the Beef dataset. Icons
denote experimental group.  : Cold, N: Warm. Colours denote age. �:
Young (day 1), �: Old (day 28).

argument that short, ambient (warm) storage conditions can emulate longer

ideal (cool) storage conditions. This also suggests a more general pattern to

the individual inspection of variables seen earlier, in which which indicated

a certain “band” at which samples from both groups become difficult to

distinguish can be seen.

3.3.4 PLSR

PLSR was performed on the cold and warm group samples using the class

as the response matrix, where I = 0 and A = 1. The first two components
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Actual Predicted
Class Day W C (both)

W

1 0 6 6
4 1 5 6
5 0 6 6
6 2 4 6
7 2 4 6
8 5 1 6
11 6 0 6
12 6 0 6
13 6 0 6
14 6 0 6
15 6 0 6
18 6 0 6
19 6 0 6
20 6 0 6
21 3 0 3
22 6 0 6
25 6 0 6
26 6 0 6
27 6 0 6
28 5 0 5
(all) 90 26 116

C

1 0 6 6
4 0 6 6
5 0 6 6
6 0 6 6
7 0 6 6
8 0 6 6
11 0 6 6
12 0 6 6
13 0 6 6
14 0 6 6
15 0 6 6
18 0 6 6
19 0 6 6
20 0 6 6
21 0 6 6
22 0 6 6
25 1 5 6
26 1 5 6
27 3 3 6
28 0 6 6
(all) 5 115 120

(both) (all) 95 141 236

Tab. 3.2: Confusion matrix showing the PCA-LDA prediction results using LOO-
CV. The results presented are those of the validation set. Whilst most
predictions are correct, it can be seen that the predictions of the W
samples are typically incorrect for the early-day sample range (days 1-8),
whilst for the C samples, it is the the late-day samples (days 25-28) that
are typically predicted incorrectly.
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Fig. 3.18: RMSEP for LOO-CV of PLSR. The RMSEP is shown up the Y-axis,
with number of components displayed along the X. Lower RMSEP val-
ues indicate increased accuracy of prediction. It can be seen that whilst
the RMSEP of the training set decreases as the number of components
increases, the RMSEP of the validation set reaches a minimum at the
fourth component. An increasing number of components thereafter de-
crease the accuracy of the validation set predictions, indicative of over-
fitting the PLSR model to the training set.
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of the results are shown in figure 3.17. Although the separation between

the experimental groups appears to be quite good there remains a degree

of overlap between the two groups. A trend with age can also be observed,

whereby as the age of the samples increases the separation between groups

becomes more evident. The early samples in particular show a large overlap,

where up to approximately t = 5 for the warm-storage group and t = 14

for the cold group the two storage methods follow a similar trend along

the first two components. In order to identify the significant variables in the

classification VIP (variable importance in projection) scores were calculated.

Leave-one-out (LOO) cross validation was performed to produce a RM-

SEP (root-mean-squared error of prediction) plot in order to determine the

ideal number of components to avoid overfitting the data, in this case 4.

The plot is shown in figure 3.18. The 10 highest VIP scores correspond to

bins centred around 3 peaks, positioned at 5.91ppm, 7.60ppm and 8.71ppm,

in order of importance. The bin at 7.60ppm is the one previously identified

using univariate tests and has a mean intensity of less than 1% of the overall

mean.

3.3.5 Conclusions

A number of peaks have been identified which offer degree of separation

between our experimental groups of interest. However there remains a prob-

lematic subset of the observations which, in conjunction with the rest of the

observations, cannot be resolved by the standard discrimination methods

attempted. This creates a gap in which the use of other methods may be

attempted. Chapter 7 will explore the ability of strongly-typed genetic pro-

gramming in the classification of the data and the production of a succinct

set of variables responsible for the classification.

3.4 Alopecurus dataset: An investigation into the herbicide

resistance of Black Grass (Alopecurus myosuroides)

3.4.1 Introduction

Alopecurus myosuroides, commonly known as black grass, is a major weed

affecting cereal crops in Europe. The treatment for infestations has tra-

ditionally been the use of herbicides, primarily for economic reasons [257].
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As with many weed species, herbicide resistant varieties are becoming in-

creasingly prevalent and their presence has been reported throughout the

continent [258]. A number of different mechanisms of resistance have been

documented in the literature, including Acetyl-CoA (ACCase) inhibitors

[259], acetolactate-synthase (AS) inhibitors [260] and photosystem II (PSII)

inhibitors [261]. Target site resistant varieties such as these contain muta-

tions such that the binding of the herbicide to the target site is prevented,

although other mechanisms are also present in some weed varieties, including

changes to metabolism and sequestration of the herbicide [262]. Increasingly

under scrutiny are multiple herbicide resistant varieties, which utilise more

than one mechanism of action [261, 263].

Application of an ineffective herbicide entails unnecessary temporal, eco-

nomic and environmental costs. Early identification of the phenotype of the

invading species is therefore of high priority. The current study monitors

three varieties of black grass over a period of two weeks with an aim to loc-

ate type-specific biomarkers for herbicide resistance. Such biomarkers can

provide a potential means of quickly identifying the resistance capabilities

of an invading strain for farmers to use, as well as offer a potential locus for

further investigation into the resistance mechanism.

3.4.2 Experimental

The study involves three varieties of black grass (the experimental groups):

• Susceptible (non-resistant)

• Target site resistant (MHR)

• Multiple herbicide resistant (TSR)

Three biological replicates for each experimental group were harvested

at 4 different time points: 0, 4, 8 and 13 days, giving a total of 3×3×4 = 36

biological samples. The samples were then subject to LC-MS analysis. Fea-

ture extraction of the resultant spectra was performed using Progenesis QI,

giving a total of 3458 variables representing potential metabolites, hence-

forth referred to as “peaks”.
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3.4.2.1 Plant materials and growth conditions

MHR (Essex, UK.), TSR (Nottingham, UK.) and Susceptible (Rothamsted,

UK.) seed lines of A. Myosuoides were planted into 12 cm diameter terra-

cotta pots in a peat based compost (Petersfield, Cambridge, UK.) using 20

seeds per pot. Plants (n = 3 per seed line) were grown under controlled

glasshouse conditions at Fera Science Ltd. (Fera, North Yorkshire, UK).

There were 24 plants in total which contained 3 replicates for each line over

4 time points - Day 0 (pre-treated samples), Day 4 (post spray), Day 8 and

Day 12. After 3 weeks of growth, plants were sprayed at field rates with

Topik (an acetyl co A carboxylase inhibitor) and harvested directly into

liquid nitrogen cutting from just above the soil line.

3.4.2.2 Metabolite extraction method

Each frozen plant was lyophilised overnight and ground into a fine powder

using an A 11 basic analytical mill (IKA, Staufen, Germany). Five mg

± 0.1 mg of ground sample was accurately weighed into a labelled 2 mL

eppendorf tube. To 5 mg of sample, 1ml of extraction solvent (1:1 (v/v)

methanol: water) was added. Metabolites were extracted into the solvent

by shaking for 30 minutes. The solid material was then removed by centri-

fugation at 14,000rpm for 10 minutes at ambient temperature. To prepare

samples for profiling analysis by liquid chromatography–high resolution mass

spectrometry (LC-HRMS) the supernatant was diluted 9:1 with 1:1 (v/v)

methanol: water. An analytical QC sample was created by pooling 1 ml

from each final sample extract.

3.4.2.3 LC-HRMS profiling conditions

LC analysis was performed on an Accela 1250 High Speed LC system from

Thermo Fisher Scientific (Waltham, Massachusetts, USA). The analytical

column used was an ACE Excel AQ (Advanced Chromatography Techno-

logies, UK) 150 mm x 3 mm, 100 Å. MPA was 0.1% formic acid in HPLC

water, MPB was 0.1% formic acid in acetonitrile. A linear gradient elution

was applied over 10 minutes from 100% MPA to 100% MPB. The gradi-

ent was then held for 2 minutes at 100% MPB before re-equilibration with

100% MPA for a further 2 minutes. The LC flow rate was 0.4 ml/min and the

column temperature was 30 ◦C. Sample injection volume was 5 µl. The MS
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used was an Orbitrap Velos Pro hybrid ion trap high resolution mass spec-

trometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA) with a

mass resolution setting of 60,000 at m/z 200. Maximum injection time was

50 ms. Ionisation was by heated electrospray (HESI) with extracts analysed

in both positive and negative mode. The source heater temperature was set

to 450 ◦C with sheath gas set to 51 and aux gas at 16 (au, arbitrary units).

The capillary temperature was 370 ◦C. Sample analysis order was random-

ised using www.random.org and a pooled QC sample was injected every 6

injections to monitor system performance.

3.4.3 Initial analysis

The PCA plot for the first two principal components obtained for the black

grass dataset is shown in Figure 3.19, coloured according to age in (a) and

acquisition order in (b). Although the major source of variance is age,

separation also occurs due to the order in which the samples were acquired

by LC-MS, as can be seen along PC2. Differences in experimental group can

be seen in the third and fourth principal components (not shown), however

the variance due to acquisition order presents a cause for rectification of the

data. Performing a batch correction by fitting a linear model to the set of

QCs for each metabolite resulted in some, but not complete reduction of the

acquisition order trend as can be seen in Figure 3.20a .

www.random.org
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(a) Age.  : Day 0,  : Day 4,  : Day 8,  : Day 12

(b) Acquisition.  : First ...  ,  ,  ...  : Last

Fig. 3.19: Plot showing the PCA scores plot for the autoscaled Alopecurus data-
set, highlighted according to (a) sample age and (b) acquisition order.
Although age is the source of the major variance (PC1 = 27.7% of vari-
ance), the order in which the samples were acquired via LC-MS produces
the second major source of variance (PC2 = 10.4% of variance).
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(a) QC

(b) BG

Fig. 3.20: Plot showing the PCA scores plot for the autoscaled Alopecurus data-
set, corrected using (a) mean-of-the-QC and (b) background correction
methods. Icons and colours represent experimental group. �: Suscept-
ible, N: TSR, �: MHR. Experimental groups are notably more grouped
for the BG correction method.



4. BATCH CORRECTION

4.1 Introduction

Non-targeted metabolomic studies seek to analyse as wide a range of meta-

bolites as possible. The use of LC-MS for this purpose has found a wide

range of applications, including drug discovery [264], disease biomarker

discovery [265], pesticide [266] and herbicide [267] analysis in agriculture,

waste-water analysis [268] and the discovery of novel metabolites [269]. LC-

MS however suffers from lower reproducibility in comparison to other ana-

lytical techniques such as NMR spectroscopy [31, 270]. Many non-targeted

approaches focus on qualitative results, such as biomarker discovery, and the

need for reproducible and comparable results is imperative, especially when

differences between experimental groups are small. A number of factors can

cause differences in LC-MS response profiles between acquisitions. Many

of these relate to chromatographic aspects, such as retention time drift or

changes in peak shape [271], but changes in the response of the mass spec-

trometer can also be seen [272]. Most notable are the changes occurring

during the acquisition of a multi-sample experiment due to the gradual con-

tamination of the LC column. Whilst effective cleaning, conditioning and

calibration of the instruments can mitigate these problems to a degree, con-

secutive analysis of large numbers of samples has been shown to present

increasingly unacceptable variation [134]. Samples are therefore often run

in batches, interspersed with the relevant cleaning and conditioning events.

However, this can lead to other sources of technical variation, such as dif-

ferences in the operating conditions under which the acquisitions of the

individual batches are performed.

Further sources of variation may be introduced in the early stages of

data analysis. Although advances in methods of spectral alignment can

reduce the effects of retention time drift and changes in peak shape, such

methods do not always provide a complete solution in non-targeted studies
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involving thousands of potential metabolites. Spectral misalignment prior

to the peak-picking stage can result in the classic problems seen in spectral

binning, with differences between spectra being due to misaligned peaks

rather than true changes in intensity. A widely implemented solution to

these problems is the inclusion of quality control (QC) samples into the

study. During data acquisition the experimental samples are interspersed

with a set of identical QC samples, providing a fixed reference point from

which any instrumental variation can be tracked and later accounted for.

The QC samples should contain the same metabolites as are under scrutiny

in the study, being either a mixture of known laboratory grade analytes,

or a pooled sample from the experiment itself. The former allows easier

identification and quantitative analysis, whilst the latter allows as wide a

range of metabolites as is attainable to be evaluated and is naturally more

suited for non-targeted analysis. Should insufficient experimental samples be

available for pooled samples, biologically similar samples may also provide

reasonable QC data [273, 274].

At the very least QCs can be used to gauge the reliability of the meas-

urements for the individual metabolites. For example, in a GC-MS (gas

chromatography-mass spectrometry) study, Begley et al. (2009) [275] only

accept individual metabolites where the relative standard deviation (RSD)

of the QCs is less than 30%. In another study involving DIMS (Direct Infu-

sion Mass Spectrometry), Kirwan et al. (2013) [276] use a limit of 20% RSD

with the additional criterion that the distribution of the QC samples be

similar to that of the experimental ones. Other criteria have been proposed,

for example that QC values should lie within 15% of their mean [275, 277].

However, since many sources of variation pertinent to the sample meta-

bolites also apply to the QC metabolites, the function of the QC samples

can be extended to correct for variation, rather than just quantify it. To

do this a correction factor must be determined, for each metabolite and

sample. Van Der Kloet et al. (2009) [274] list several methods to achieve

this, although the general form of the correction follows Equation 4.1:

X ′p,b,i = Xp,b,i
Rp

Cp,b,i
(4.1)

Here Xp,b,i is the intensity of peak p for sample i within batch b, prior to

correction, and X ′p,b,i is the corrected value. Cp,b,i represents the correction
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factor and Rp represents a rescaling factor which allows the relative intensity

of the peak to be maintained. We refer to the set of correction factors, C,

for a particular peak as the trend for that peak. The simplest correction is

to divide a peak within a sample by the average intensity recorded for that

peak in the QC samples in the same batch as the sample, so that

Cp,b,i = Ap,b = average
J inQ(b)

(Xp,b,j) (4.2)

Here Q(b) represents the QC samples in batch b, and average represents

the averaging measure, which may be either the mean or the median. As

the mean is more sensitive, its use may provide benefits when the number

of observations is small, whereas the median offers a more robust measure,

useful in cases where experimental outliers may affect the mean.

In [274] the peak is rescaled to the average QC value for the first batch,

hence the rescaling factor is Rp = Ap,1, whilst in [251] it is suggested that

the average peak intensity across all samples and batches be used and thus

Rp = A(p, 1..Nb) where Nb is the number of batches. Since changes in

instrumental drift can be observed over time, per batch linear regression

allows a degree of within-batch dynamics to be accounted for. A linear

regression of QCs provides the correction factors:

Cp,b,i = βbi+ αb (4.3)

where αb and βb are the regression coefficients for batch b. Here, the

integer i, relates to the ith sample for which data were acquired. Other,

more advanced regression models including linear smoothers have also been

used [274, 278]. Dunn et al. (2011) [273] apply the LOESS (Local Regres-

sion) algorithm to generate the trend-line for the QC samples in a method

they term QC-RLSC (QC robust LOESS signal correction). LOESS is ad-

vantageous in that the data is modelled by a set of local polynomials, which

avoids the constraint that the data follow any one global model and is less

sensitive to errant data points [279]. The method requires optimisation of

a smoothing parameter α. Whilst QCs have been shown to provide an ef-

fective method for monitoring and correcting drift there has also been some

success involving non-QC correction methods. It has been demonstrated

that replicate measurements can be used to track experimental drift in lieu

of periodic QC samples in a study involving ICP-OES (Inductively Coupled
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Plasma Atomic Emission Spectroscopy) [280]. This naturally allows more

time to be dedicated to real sample analysis. The use of QC samples from

pooled replicates has also been questioned because of observed inconsisten-

cies between samples and pooled QCs [281].

Checking the performance of any model can however be difficult, and

it has been recognised that each dataset should be considered individually

in order to determine which methods should be applied [281]. Kirwan et

al. (2013) [276] demonstrate success using a variation of the QC-RLSC that

substitutes LOESS with a smoothing spline. Here the authors use RSD of

technical replicates to determine the algorithm’s effectiveness, as did Ran-

jbar et al. (2012) [281]. Other methods have been proposed which avoid

the need for technical replicates. Where QC samples are only used to de-

termine variation, rather than correct for it, the total distance between the

QC samples, or the RSD of the QC samples, can be used as a measure of

instrumental variation. The distance between QC samples in PCA has been

used to justify the idea that instrumental variation is not significant enough

to be of concern [282]. The predictive accuracy of PLS-DA on experimental

groups has also been utilised to determine the effectiveness of correction

[283]. One-way repeated measures ANOVA has been used to calculate un-

explained variation to determine the number of peaks for which the variance

is reduced on the QCs [281].

Here we explore data that is not amenable to QC correction due to

the nature of the drift. The effects and performance of QC and non-QC

correction methods are contrasted using these data. Previous studies have

focussed on reducing batch or acquisition order differences, using the RSD of

replicate samples as a method of gauging correction performance. Since we

form the trends used to correct the data from experimental samples in addi-

tion to the QC samples, use of this measure could result in real differences

between data points being erroneously removed. PLS classification has also

been used as a measure of performance, however changes in the data that

do not affect the classification rate cannot be detected. Here two evaluation

methods are employed, both of which provide a metric of performance on a

continuous scale. In addition to the mean relative standard deviation (RSD)

to measure the similarity of biological replicates we use PCA-MANOVA, a

combination of PCA and Multivariate Analysis of Variance (MANOVA), as

a second measure of performance.
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PCA-MANOVA allows us to ascertain whether experimental conditions

or LC-MS batch order are major sources of variation in our datasets and sub-

sequently whether our improved “background correction” method facilitates

a more robust determination of biological trends in our datasets.

4.1.1 Data analysis - Medicago L+ dataset

It can be necessary to discard certain data points, for instance to remove

noise peaks which present no useful information. Variables were removed

from the dataset where the median of the QC values was zero (i.e. when

50% or more of the QCs fail to show a value) to ensure that an accurate

trend could be obtained. Similarly, when determining the trend using non-

QC techniques, variables for which the median of all values was zero were

removed. All data analyses were carried out in R [284].

4.1.2 Assessment of performance

Performance was assessed using the mean relative standard deviation (RSD)

across all metabolites and replicates. For simplicity only replicate sets con-

taining at least 3 observations were used, and values approaching zero (iden-

tified by at least one of the 3 or more values being zero in the original data,

or containing all zeroes in the corrected data) were discounted. RSDs were

calculated using the equation for the RSD of a subset [285]:

RSD =
σ
¯̄x

(4.4)

where σ is the standard deviation of the 3 replicates and ¯̄x is the grand

mean for the metabolite. Our RSDs were calculated from the sets of bio-

logical replicates from plants exposed to the same experimental conditions

for the same timepoints. It should be noted that in comparison to technical

replicates, some differences are still to be expected even if a perfect batch

correction were to be performed due to natural biological variation between

the samples.

A combination of PCA and MANOVA was also used to judge the cor-

rection in terms of group separation. Data were mean centred and vari-

ables scaled to unit variance (divided by the standard deviation of the vari-

able) prior to PCA to prevent metabolites with larger intensities dominating
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the scores. MANOVA was used to provide an F statistic which shows the

between group to within group variance ratio:

F =
variance between groups

variance within groups
(4.5)

Comparison of the F value with the appropriate F distribution gives a

p-value for the significance of any difference between experimental groups.

We used MANOVA on the PCA scores (coordinates of the rotated variables)

for the first two principal components to quantify differences between ex-

perimental groups. This allowed the most apparent variations in the data

to be considered in the MANOVA test. With an ideal correction the highest

source of variation should be due to experimental groups rather than batch

differences. The groups considered in each test set are:

• control and drought groups

• drought and dual-stress groups

• grouping due to LC-MS batch

We compared the control and drought groups as differences were already

apparent in the uncorrected data and these should be retained by any cor-

rection method applied. Initial analysis showed little difference between the

drought and dual stress groups and a correction method that could reveal

these differences would be advantageous.

4.1.3 Correction Methods

The correction procedure involved the determination of the correction factors

Cp,b,i shown in Equation 1. This process was split into three stages. In the

first stage the observations used to calculate the trend were selected: this

could be based solely on the QCs, sets of replicates, or on all observations.

The second stage involved selecting the method to be used to calculate the

trend and in the third stage the observations to which the correction was

applied are selected, i.e. individual batches or the full dataset.

In this analysis, correction methods were tested using only the QCs, but

also using all observations (including QCs) to generate the trend, which we

refer to as background correction. Both methods were tested on batches

individually (batch-wise), and with the full dataset considered as one.
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4.1.4 Trend Functions

The different methods used to determine the trend in the second stage were

as follows:

Mean – The trend is set to the average of the samples, as in Equation 2.

Linear Regression – The trend is modelled via a linear regression of the

samples.

Moving Median – The trend is generated from the data using a simple mov-

ing average for smoothing. We used the median as analysis revealed

the moving mean resulted in unfavourable responses to individual high

or low values (including genuine experimental values and not just out-

liers). For the moving median the correction factor Ci is calculated as

the median of a moving window:

Cp,b,i = median(Xp,b,i−w..Xp, b, i+ w) (4.6)

where the Xp,b,i values used in the calculation are as defined for equa-

tion 1 and w is the window width.

Polynomial regression – Polynomial regression allows the data to be mod-

elled as a simple nth degree polynomial and requires the degree of the

polynomial n to be specified.

Smoothing Spline – The smoothing spline method fits a set of intersecting

polynomials to the data. The function is controlled by a smoothing

parameter λ, with larger values of λ leading to smoother functions

[286]. The smooth.spline algorithm from the R package stats [287]

was used to generate the smoothed spline.

LOESS – Combines multiple regression models and has previously been used

to determine the correction factors both on QCs and on the full data

set for DI-MS and LC-MS data [276, 288]. Like the smoothing spline,

LOESS is also controlled by a smoothing parameter.

4.1.5 Method parameters

Several methods used to account for non-linear drift require parameters to

be optimised. The window width w for the moving median, the degree n
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Method Parameter Value
LOESS Neighbourhood (α) 0.45
Batchwise LOESS Neighbourhood (α) 0.5
Moving median Window width (w) 5
Batchwise moving median Window width (w) 5
Polynomial Degree (n) 6
Batchwise polynomial Degree (n) 1

Tab. 4.1: Table showing correction method parameter values optimised in terms of
RSD of biological replicates

of the polynomial and the neighbourhood α that determines the smoothing

parameter in LOESS were optimised to give the lowest mean RSD for bio-

logical replicates. The optimised parameters are listed in Table 4.1. Note

that the correction using the batch-wise polynomial performed best with

a polynomial degree of 1, effectively making it a linear correction. The

smoothing spline was calculated using the R function smooth.spline with

the default parameter set, which optimises the parameter λ via generalised

cross validation in order to best fit the curve to the data [287].

4.2 Results and discussion – Medicago datasets

For each of the Medicago datasets, it is clear from the Principal Components

Analysis (PCA) of the scaled data that the majority of the variance is due

to batch differences rather than experimental groups. Figure 4.1a shows the

scores plot for the first two principal components for the L+ dataset. After

batch correction using the traditional “mean of the QCs” method, PCA

plots reveal that batch differences in the L–, datasets are clearly reduced,

with differences between the experimental groups becoming more apparent.

However, this method was not able to correct for the batch differences in

the L+ dataset as shown in Figure 4.1b. It can be seen that several of the

batches are “split” along the first principal component (PC1), with part of

the batch having low scores for PC1 and the rest having higher scores. One

of the implications of this is that the assumptions of standard statistical

tests, such as t-tests or ANOVA may be invalid. Closer inspection of the

L+ dataset reveals that a large degree of within-batch drift can be observed

for many metabolites, such as the example shown in Figure 4.2a. Initial

analyses of correction methods were also confounded by the presence of an
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outlier (drought, day 6, replicate 3), which was removed and the analysis

repeated.

The use of linear regression modelling of the QCs in each batch to de-

termine the trend appears to give improved results, as batch differences are

no longer the greatest source of variance in the PCA. However batch dif-

ferences are not eliminated and are now apparent along PC3. Furthermore,

the method creates a number of outliers due to intensities being divided by

very small numbers. This happens, for example, with metabolite #1283,

which is responsible for the majority of variance along PC2 in unscaled

PCA, and so is not restricted to peaks of low intensity. Patterns in the data

when viewed in order of acquisition also remain, with sudden changes in

the reported intensities within an individual batch that are not accounted

for by a linear model. For example in batch 6, metabolite #1459 shows a

drift in the experimental values different to that of the QCs (Figure 4.2a).

Such changes, which could have instrumental or analytical origins, lead to

a poor fit of the linear regression model. The average RSD of the biological

replicates, calculated across all variables and metabolites, shows that linear

regression of the QCs leads to a huge increase in variation (Figure 4.3). In

fact the greatest source of variance seen in PCA is now due to artefacts

introduced by the QC correction rather than to genuine differences between

experimental groups.

Figure 4.3 shows that methods which use all observations reduce the

batch variation more than methods based on the QCs alone. The compar-

atively poor performance of the QC based methods may be due to several

factors:

• It can be problematic to determine an accurate trend due to the vari-

ation in the recorded intensities of the QCs.

• Since the QCs are placed intermittently they are unable to account for

changes occurring at points between their placement

• The number of QCs is low in comparison to the total number of ob-

servations, providing less information from which an accurate set of

correction

factors may be determined.

Background correction methods, i.e. techniques based on all observations

(not just QCs), can follow the drift seen in the actual experimental samples



4. Batch correction 107

(a) Original

(b) QC-mean corrected

(c) Background corrected

Fig. 4.1: (a) The scores plot for the first two principal components of the scaled L+
dataset showing batch differences as a major source of variation. (b) The
scores plot after batch correction using the mean QC value, in which batch
differences are made worse. (c) The scores plot after batch correction
using the background correction method, in which batch differences are
no longer apparent.
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(a) QC trend (b) Background trend

(c) QC corrected (d) Background corrected

Fig. 4.2: Plots showing how two methods of correction affect a metabolite (L+
#3280) and batch showing strong within-batch drift. Plots (a) and (b)
show the values prior to correction, with the trend used for the two differ-
ent correction methods shown by the bold line. Figures (c) and (d) show
the values post-correction, with the bold trend-line at 1.0. The linear cor-
rection (c) shows a notable pattern in the results when compared with the
moving median correction in (d).
Diamonds indicate observations, with QCs highlighted by crosses. The
line indicates the correction factors forming the trend on which the cor-
rections are based.
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Fig. 4.3: The Mean Relative Standard Deviation (RSD) using various correction
methods. Lower values are indicative of greater coherence between sample
replicates and suggest improved correction. The working set represents the
original data with an outlier observation and metabolites approaching the
limit of detection removed, as described in the methods section. For each
method the results are shown for the optimised parameters. *Note that
the results using the linear regression of the QCs have been truncated and
the RSD is actually 193%. Calculation of QC-only based techniques using
the full dataset is not appropriate and is not shown. The working set is
not corrected and hence only one value is displayed in the graph.
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of interest, allowing the correction of metabolites where the concentration is

sufficiently different between QC and experimental samples. Figure 4.3 also

shows that performing a background correction separately on each batch is

more effective than ignoring batching and using all observations in a single

background correction step. The average reduction in RSD achieved using

batch-wise correction is 5.4%. The difference is most apparent in polynomial

correction, with the moving median being the least affected, possibly due to

the moving median’s ability to rapidly track abrupt changes in the general

flow of the data.

The best results, in terms of RSD between replicates, is achieved with the

batch-wise smoothing spline with a 14.4% reduction in RSD in comparison

to the working set (the original data with variables classified as “noise”

removed). The LOESS and the moving median correction methods both

gave an improvement of 9̃% in comparison with the original data.

The optimal parameters determined by RSD analysis are shown in Table

4.1. The correction methods were then evaluated using PCA-MANOVA.

Figure 4.4 shows the PCA-MANOVA F statistics for control-drought dis-

crimination are actually decreased by some batch correction methods in

comparison to uncorrected data. In particular, the moving median, which

gave good results in terms of RSD between replicates, gives a lower F stat-

istic for the between group to within group variance ratio than for the work-

ing set. However the control-drought groups separate well prior to batch

correction, with a p-value of 0.001 for the F -test. The p value of 0.003 for

the moving median shows the separation is still significant. The smoothing

spline methods, which also showed good separation based on RSDs, show

little difference in comparison to the uncorrected data, suggesting that, at

the very least, we can apply these corrections without significantly damaging

existing variations of interest.

Figure 4.5 shows the PCA-MANOVA results for the drought and dual-

stress groups. It can be seen that all correction methods give improved

separation of experimental groups in comparison to uncorrected data. In-

terestingly, the moving median methods provide the best separation, per-

forming considerably better than the smoothing spline methods. Figure 4.6

shows PCA scores plots before and after correction with the moving median.

The correction highlights a trend with plant age across PC1 with the older

plants showing increased separation with experimental group along PC2.
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Fig. 4.4: PCA-MANOVA results for the separation of control and drought experi-
mental groups after batch correction using various techniques. A larger F
statistic indicates a higher between-group to within-group variance ratio
and therefore improved correction. Where applicable the techniques have
been optimised to provide the lowest RSD across biological replicates. The
working set represents the original data with metabolites approaching the
limit of detection removed. The dotted lines show the critical F values of
3.85 for p = 0.05 and 6.65 for p = 0.01.
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Fig. 4.5: PCA-MANOVA results for the separation of drought and dual-stress ex-
perimental groups after batch correction using various techniques. A lar-
ger F statistic indicates a higher between-group to within-group variance
ratio. Where applicable the techniques have been optimised to provide the
lowest RSD across biological replicates. The working set represents the
original data with metabolites approaching the limit of detection removed.
The dotted line shows the critical F -value of 2.71 for p = 0.1.
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Fig. 4.6: PCA scores plots of Fusarium and dual-stress samples for three batches,
before and after background correction. The top plots show that obvious
batch differences in uncorrected data are not evident after correction. The
lower plots show the same data coloured according to experimental group
with darker colours indicating samples from later in the time series. For
the uncorrected data, PC1 accounts for 23.0% of the variance, and PC2
for 15.7%, whilst, for the corrected data, PC1 accounts for 10.2% and PC2
for 17.7%.
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PCA-MANOVA analysis of batch separation shows all correction meth-

ods provide a drastic reduction in batch differences, with only the uncor-

rected data having a significant F statistic. However, in some cases the

F statistic may be reduced by the splitting of batches into two clusters,

as shown in the PCA scores plot in Figure 4.1. Since the different met-

rics of success yield different results this suggests that different correction

techniques have their own merits and some may be more suited to certain

situations than others.

4.3 Concluding remarks

Where experimental drift occurs steadily throughout data collection, the

overall trend may be identified using QC samples. However, jumps between

batches require each batch to be treated individually and may result in in-

sufficient QC samples to characterize the within-batch drift. In such cases

improved correction may be achieved using a smoothed function of all ob-

servations within the batch to represent the trend. Background correction

can be more effective than standard QC correction and does not necessar-

ily require additional samples. Although the use of a batch-wise smoothing

spline to represent the experimental drift was found to reduce the differences

between biological replicates, all background correction methods evaluated

provided better discrimination between experimental groups than uncorrec-

ted data. The use of a simple moving average not only gave good reduction

in RSDs between replicates, but gave the highest between-group to within-

group variance ratio for the drought and duel-stress groups, so that more

complex smoothing methods may not be necessary. However, the moving

median was less effective for the drought and control groups, where separa-

tion was already apparent in the uncorrected data. Just as scaling improves

results in some situations and not others, different correction techniques

may be more suited to some situations than others with no single method

providing the optimal correction in all cases.



5. CLUSTERING METABOLOMIC TIME-SERIES

5.1 Introduction

The specific roles of individual genes or metabolites are sometimes repres-

ented within gene regulatory networks (GRNs) for genes or biochemical

pathways for metabolites. The relationships can be expressed as a graph,

with the nodes representing genes or metabolites and the edges representing

the interactions between them. Such networks were historically calculated

manually. For instance, M. Calvin mapped out the set of interactions now

known as the Calvin-cycle with the aid of paper chromatography in 1956

[289]. Whilst manual interpretation is feasible for studies involving small

numbers of metabolites, the large amount of data pertaining to modern,

non-targeted studies necessitates relationships to be identified computation-

ally.

The guilt-by-association (GBA) axiom is frequently noted in -omic ana-

lyses [290, 291]. The principle implies that elements, such as genes or meta-

bolites, performing similar functions or sharing the same mediators will nat-

urally exhibit similar behavioural patterns. In its simplest realisation, cor-

relation between metabolic concentrations or gene expressions can be used

to infer interaction. Although it has been noted that many elements in a

network do not in fact show similar behaviour [292], and that simple correl-

ation may produce false-negatives, or “missed” interactions [293] GBA has

nonetheless been demonstrated to extract valuable information from data.

In the context of Medicago, a study of HPLC-UV data, using a set of labelled

compounds used correlation analysis to determine the effect of yeast-based

elicitors in alfalfa [294]. A similar but non-targeted study of GC- and LC-MS

time-course data for 249 compounds also used correlation analysis to study

biotic and abiotic stress responses in Medicago truncatula [293]. Compounds

in this case were identified via comparison to known samples and existing

databases. Both studies empirically demonstrated metabolic interactions
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present only in the presence of chemical or environmental elicitors, allowing

context-specific pathways to be determined.

5.1.1 Cluster analysis

The Medicago dataset introduced in Section 3.1 contains 2920 potential

metabolites (peaks). A plot of the network of correlations between peaks,

overlaid on top of the PCA scores, is shown in Figure 5.1. This plot was

generated from the PCC matrices between each peak and every other. Four

matrices were generated in total, each using only the observations from one

experimental group at a time – C, D, F and B. The correlations plotted in

the figure are highlighted by the experimental group(s) in which they occur.

The correlation of 1000s of compounds can become unwieldy and will in-

evitably suffer from the multiple comparisons problem. However, from the

plot, several highly inter connected groups of compounds can be seen. Many

of these compounds, as noted in the Medicago studies noted above, show cor-

relations that are only elicited under certain experimental conditions. This

natural grouping sets the precedent for cluster analysis. As a complement-

ary method to the generation of correlation based networks, cluster analysis

can be used to analyse metabolomic data. This is a primarily unsupervised

approach and so avoids the so-called fishing expedition paradigm of multiple

univariate analyses. Clustering is used to divide data into groups or clusters

in which the association between members of the same cluster is strong and

the association between members of different clusters is weak. This serves

a variety of purposes. Data dimensionality is reduced, and so assists other

analyses either by reducing the search space to a discrete set of clusters, or

by acting as a method of data exploration in which the data is effectively

summarised to a set of common traits. Furthermore, for -omic datasets,

clustering can be used to highlight common relationships or potential func-

tionality between variables (metabolites or genes).

This chapter demonstrates the use of clustering on the Medicago data-

set, which was previously described in Chapter 3. In the context of this

dataset, clustering will be performed with an aim to identify sets of meta-

bolites showing stress responsive profiles. In addition to the identification

of potential biomarkers, a secondary objective is to test the hypothesis that

a data-driven comparison of the clusters, to databases of known metabolic

pathways, can identify specific pathways affected by the stress conditions.
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Fig. 5.1: A plot showing strong (r > 0.95) correlations between peaks. Blue lines
indicate strong correlation in between C samples, red between D samples,
green between F samples, and magenta between B samples. There are
noticeable regions of PCA space showing tight correlation of samples for
different experimental groups.
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For this analysis, it is assumed that that any data submitted this work-

flow has been suitably pre-processed. In the case of LC-MS data this neces-

sitates that feature selection and batch correction, previously discussed in

Chapter 4, have been performed. However, during the course of the cluster-

ing analysis a number of other processing stages, prior to the actual cluster-

ing algorithm, were found to greatly assist in improving the performance of

time-series clustering, which are summarised in the following workflow:

• Formation of the clustering vectors

Control correction

Trend-line generation

• Removal of interfering data

• Selection of a distance metric

• Selection of a clustering algorithm

• Selection or optimisation of algorithm parameters

5.2 Methods

5.2.1 Pre-processing

Effective feature selection, noise filtration, batch correction and data-scaling

are standard practices in non-targeted metabolomic studies. The exact im-

plementation of data-scaling is often analysis dependent. Clustering meth-

ods such as HCA and k-means can be particularly sensitive to scaling. Differ-

ences between large variables will contribute much more to distance metrics

such as the Euclidean distance and can obscure differences in smaller vari-

ables. It has been shown on NMR spectra that, without scaling, spectra

may simply cluster according to sample concentration rather than biology

[295]. However, other distance metrics, such as the Pearson distance1 are

insensitive to data scale.

For this chapter, the batch-corrected Medicago from Chapter 4 was used

as the input to this analysis. This data was scaled to unit variance and

mean centred (autoscaled).

1 1− r, where r is the PCC
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5.2.2 Input vector selection

Clustering algorithms use a set of nC input vectors (X1, X2, ..., XnC ). Either

these vectors are directly used by the clustering algorithm (e.g. k-means), or

the algorithm uses a distance matrix calculated from these (e.g. k-medians

and HCA). The purpose of the clustering algorithm is to assign each vector

to a set of one or more clusters (C):

Xi ∈ C (5.1)

In the usual case, each input vector represents an experimental obser-

vation, and the elements of each individual vector are defined as the set of

independent variables for that observation (j), hence:

Xj = {vj,1, vj,2, ..., vj,nP } (5.2)

Where vj,i is the ith variable of the jth observation and there are nP

variables and nO observations. The number of cluster vectors is therefore

equal to the number of observations, nC = nO.

In order to further the understanding of the metabolites, the data is

transposed such that clustering is performed on the independent variables –

the metabolites – rather than the observations. Hence, given the ith meta-

bolite, the cluster vector Xi represents the set of experimental observations

made on that metabolite:

Xi = {v1,i, v2,i, ..., vnO,i} (5.3)

Here the number of cluster vectors is then equal to the number of meta-

bolites and nC = nP .

5.2.3 Trend identification

For the purposes of clustering intensity data from an experiment containing

nG experimental groups, the observations from each experimental group

can be concatenated to form the input vectors as shown in the example

in Figure 5.2. The exact order of observations depends on the distance

metric but in most cases, such as with the Euclidean or Pearson metrics,

the order is unimportant, provided that it is the same for each input vector.

In the layout of the example vectors, and also in the Medicago dataset, each
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A A A A B B B B
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=

=

Fig. 5.2: Two sample clustering vectors (j = 1 and j = 2) from a hypothetical
dataset containing two metabolites (α and β), two experimental groups
(A and B ), two timepoints (am and pm) and two replicates per time-point
and experimental group. All samples are identified by a unique ID.
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observation comprises two or more biological replicates. The replicates are

biologically independent, and each replicate is from a different plant. Since

these replicates are independent, the comparison between samples is not

clear. In the example shown, the order of the replicates is ambiguous and

a change to the positions of any two replicates, for instance by swapping

samples #11 and #12 in the example figure, would be make no semantic

change. However, different results would be obtained.

A second issue, highlighted in Section 3.1, is that the analysis of the

Medicago dataset is confounded by the presence of noise in the data. Post

batch correction it is expected that this will be true for any dataset, as some

biological or technical noise will inevitably remain elusive to known correc-

tion methods. Sample replicates, either biological (e.g. different plants) or

technical (e.g. multiple analysis of the same samples) serve as a mechanism

by which noise can be both measured and reduced. By combining sample

replicates, later analyses are also simplified by removing the aforementioned

ambiguity in the order of the input vectors.

The simplest method of accounting for replicates is through simple av-

eraging:

τp,g,t = average
r=1..nR

(sp,g,t,r) (5.4)

Where sp,g,t,r represents the source data (peak p, group g, time t and

replicate r) and τp,g,t represents the final “trend”, with replicates accounted

for. The number of replicates is denoted by nR.

If outlier values are present in the data, the median may provide a more

robust measure of central tendency in comparison to the mean.

However, it is possible to apply a more advanced smoothing method to

account for, whilst still reducing, noise. Here a trend profile is generated

to obtain the set of smoothed points. An example trend is extending the

average to a moving average. For each time point in the trend τp,g,t, the

moving average considers all replicates within a pre-specified time window:

τp,g,t = average
r=1...nR,k=(t−w−1

2
)...t+w−1

2
)

sp,g,k,r (5.5)

The window width parameter, w, must be optimised to provide a smooth

trend without significantly compromising resolution. Other smoothing func-
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tions include modelling the data for each p and g and with a smoothing func-

tion fp,g, and then obtaining the result of this function for each individual

time point.

τp,g,t = fp,g(t) (5.6)

Example smoothing functions include polynomials, smoothing splines

[286] and LOESS [279].

From this, it is apparent that the trend profile elements τp, g, t can be

considered analogous to the batch correction factor, Cp,b,i previously dis-

cussed in Chapter 4. In this case, observation time (t) substitutes acquisition

order (i) and experimental group (g) substitutes batch number (b).

5.2.4 One vector per experimental group

While the input vectors can be sourced from the concatenated observations

of each experimental group, it is also possible to consider the observations

of each experimental individually. This focusses the study on general meta-

bolite trends as opposed to specific response profiles and has the potential

to be useful if the variety of response different profiles are too numerous to

cluster individually. In this method a clustering vector is created for each

experimental group, providing a nG different input vectors to the clustering

algorithm per peak. The number of input vectors is therefore nC = nG×nP .

5.2.5 Control correction

Changes in metabolite levels over time may not necessarily relate to the

experimental conditions of interest. When dealing with plant material over a

period of days it can be expected that a number of compounds will be growth

related and will show predictable trends with age. Such compounds are

clearly present in the Medicago dataset, such as the peak shown in Figure 5.3.

Other trends also present include fluctuations with environmental conditions

such as light or temperature. In the presence of a control group corrections

can be applied to account for these changes, providing a set of control-

relative changes. To correct the data in this fashion the trend of the control

group can be subtracted from the experimental groups:

s′p,g,t,r = sp,g,t,r − τp,c,t (5.7)
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Fig. 5.3: Plot showing L+ peak #984 (m/z = 217.068, retention time = 2.09 min,
tentative identification = D-ononitol). Whilst showing a strong upwards
trend with time for the experimental groups (D, F and B) the control
group (C) also shows an age related trend making the other trends hard
to interpret.

Here sp,g,t,r represents the intensity prior to control correction and s′p,g,t,r

represents the same value post correction. τp,c,t represents the trend of the

control group for the corresponding time point, t.

An advantage of control correction is in that it also allows truncation

of the input vectors via exclusion of control group samples, simplifying the

search space by reducing the number of possible response profiles.

5.2.6 Distance measures

In order to cluster data, a measure of similarity or dissimilarity between data

points is required. Euclidean distance and Pearson distance are popular

choices in relation to clustering time-course or expression profiles [296]. The

Pearson distance between two vectors x and y is defined as 1 − r, where r

is the PCC of x and y.

Qian et al. however note in [296] that taking a direct representation

of relationship between gene or metabolite levels could be considered an

oversimplification of real biological processes, since other factors are present

which are indicative of a relationship between trends over time. In the ori-

ginal paper the authors deal with gene expression and note that, in addition

to directly correlated profiles, there are cases of suppression, where one gene

inhibits the expression of another, as well as temporal delays in effects, since

time is required for transcription to take place. It is a reasonable hypothesis
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that these same assumptions hold true for metabolomic time series. Conver-

sion processes will increase the level of one metabolite at the cost of another,

and time is required for substrates to be transported and react. A distance

measure termed local clustering has been proposed to deal with these is-

sues, and accounts for these additional relationships [296]. The process is

described below, where a “variable” represents a gene or metabolite:

1. Normalise all variables (UV scale and centre)

2. Construct a “score matrix” M for each pair of variables, x and y

Mi,j = xiyj

Where xi and xj are the values at time-steps i and j for each

variable respectively.

3. Construct sum matrixes E and D:

Ei,j = max(Ei−1,j−1 +Mi,j , 0)

Di,j = max(Ei−1,j−1 −Mi,j , 0)

4. Find the match score, s

This is the maximal value from the matrixes E and D.

In addition to the match score s, this method allows determination of

the kind of relationship present: match scores originating from matrix D

are indicative of inverted (inhibitive) relationships, and off-diagonal match

scores indicate time-delayed relationships. Figure 5.4 presents an example

calculation and visualises how the process is able to account for time delayed

relationships.

The algorithm has been shown to be able to determine new relationships

between genes when tested using a simple clustering method on expression

profiles of the yeast cell cycle [296]. The proposed network topology was in

this case validated through a qualitative comparison to known relationships

in the literature, as well as the viability of newly discovered relationships.

The Qian metric does make the assumption that the time-course data oc-

curs in meaningful steps. As the frequency of measurement is increased the

delay between events will become more apparent and hence, events may not

be visible if the time-steps are prohibitively large. This is potentially partic-

ularly true for metabolomic studies, where time-scales may be on the scale of
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x 0 0 1 1 1 1 0 0 0 0

y 0 0 0 0 1 1 1 1 0 0

(a) Gene expression pro-
files x and y

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
Mi,j = xiyy

(b) Score matrix M

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0

0 1 2 2 2 1 0 0 0 0

0 1 2 3 3 2 1 0 0 0

0 1 2 3 4 3 2 1 0 0

0 0 1 2 3 4 3 2 1 0

0 0 0 1 2 3 4 3 2 1

0 0 0 0 1 2 3 4 3 2

Ei,j = max(Mi,jEi−1,j−1, 0)

(c) Sum matrix E

Fig. 5.4: Calculation of the match score s = 4 using the local clustering method for
two hypothetical variable profiles. Here it can be seen that the time delay
is accounted for by the procedure.
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2 minutes or less, in comparison to the time-scale of transcriptional events,

with the lower end of the time scales being around 10 minutes [297, 298].

A second potential issue is of genes or metabolites operating on different

scales, for instance whereby a sharp increase in one metabolite results in a

gradual increase or sustained generation of another due to the creation of

a non-consumed catalyst. Some problems with false positives are however

already evident, and it is likely that the more factors which are considered

the more the false positive rate will grow. Later research comparing true

to false positive rates at various s threshold settings for known genes in

yeast and Arabidopsis does suggest however that whilst the method iden-

tifies more interactions, the false positive rates are nonetheless better than

direct similarity measures such as the PCC [299].

Like Qian et al., Kiddle et al. notes that this process requires high quality

data and high temporal resolution. They also note however, that more

complex similarity measures are not actually suitable for use with simple

clustering methods such as k-means, due to a mean not being calculable

from the results. On the other hand more complex methods such as Hidden

Markov Models are computationally intensive and therefore unsuitable for

large datasets. They thus suggest an approach which combines the local-

clustering scoring method from Qian et al. with the affinity propagation

clustering method devised by Frey and Dueck, which will be discussed later.

This method was found to produce results with a significantly lower

cost-function when compared with k-centres [299]. In addition to indicating

coherence with genes identified in existing studies this combined method in-

dicated new potential links. One interesting discovery from this is of several

genes related to the circadian clock, which, from the time-course data is

highlighted by a particular 24 hour time cycle. Unfortunately this research,

like many others, suffers from a lack of real-world knowledge to compare the

results of their analysis to, making a true comparison of methods difficult.

5.2.7 Peak filtering

Since the clustering algorithm deals with only the trend, post-scaling, a

flat trend will in isolation be seen as an erratic line. These trends have

the potential to negatively impact the ability of the clustering algorithm to

identify genuine clusters. Early identification of such trends and exclusion

from from the clustering algorithm is a potential method of avoiding this
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issue.

A potential method to identify these trends is through a univariate t-test,

which requires the presence of control-corrected data. Since, post-correction,

the control group can be used as a example of a “flat” profile, the comparing

the data from each of the experimental groups can be compared in turn

against the control group in order to identify any changes of interest:

• The p value of a t-test comparing all data (time-points and replicates)

for each experimental condition in turn, against the same data for the

control group.

• Using the most significant (lowest p) of these values as the final signi-

ficance value pmin.

• If p > α, where α is the chosen confidence limit then the peak is

marked as “insignificant” and is excluded in the clustering algorithm.

5.2.8 Clustering methods

5.2.8.1 Hierarchical cluster analysis

For n observations, hierarchical cluster analysis (HCA) begins with n clusters,

each consisting of a single observation. Clusters are merged sequentially

according to a distance metric until a single cluster of all observations is ob-

tained. A dendrogram (tree diagram) obtained from the distances at which

the mergers take place allows the relationship between observations to be

visualized. HCA has been used in various metabolomic studies, for example,

to investigate similarities in the effects of different toxins on rats [109]. Here,

HCA not only identified organ-toxicity-specific differences but also showed

similarities between treatment groups that helped explain misclassifications

in kNN analysis. Hierarchical clustering has been used to characterize 1H

NMR spectra obtained from urine specimens from population samples across

the world [301] and, in an analysis of cocaine seizures, the clustering of 1H

NMR spectra due to minor components provided important information

about the origin of trafficked consignments [302].

5.2.8.2 k-means

The k-means is another commonly used clustering method, which assumes

that there are k clusters. k-means follows the principle that each observation
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is assigned to the cluster having the nearest centroid – i.e. that each cluster

contains the set of observations within its Voronoi space, where “Voronoi

space” partitions space into ”cells” containing the subset of space closest to

the nearest centroid. From an initial random partition, the observations are

reassigned in an iterative procedure, recalculating the centroids as clusters

are changed until no more reassignments take place. This attempts to min-

imise the following cost function:

arg min
A

∑
C∈A

∑
Xi∈C

||Xi − C̄||2 (5.8)

Here, A is the set of all clusters, C is a single cluster (set of observations),

Xi is a single observation and C̄ is the centre of cluster C. Whilst the

algorithm has seen optimisations in terms of computational performance

since its inauguration, the general premise of determining the configuration

of A is defined by Lloyd’s algorithm [303]:

1. Assign each observation to its nearest cluster centre

2. Redefine cluster centres as the centroid of their assigned observations

3. Repeat 1, 2 until the centres stabilise

k-means is parametrised in several ways. Notably the number of clusters,

k must be specified. The distance metric, ||Xi − C̄|| used to determine

dissimilarity between any two vectors must also be specified, and is typically

Euclidean. C̄ represents the cluster centre and, in k-means is typically

the mean of all samples within that cluster. However, it is not always

possible or logical to calculate the mean of a set of samples, for instance

with categorical data, and k-centres variations exist using other measures,

such as the median.

5.2.8.3 Message passing

Frey and Dueck present an alternative clustering algorithm which they term

affinity propagation (AP) [300]. Like median-based k-centres this algorithm

does not require the variables underpinning the observations to be directly

observable and only requires the similarities between individual observations

to have been established. Individual observations, termed exemplars, act as
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cluster centres . In AP each node is connected to every other node in a

graph. Two “messages” values are attached to each edge of the graph:

• Responsibility r(i, k) – sent from node i→ k – can be considered as

evidence supporting k as an exemplar for i

• Availability a(i, k) – sent from node k → i – can be considered as

evidence supporting whether i should select k as its exemplar

The process follows an iterative procedure which update the responsib-

ilities and availabilities. As incoming r values accumulate indicating a node

is being selected by other nodes as an exemplar, the outgoing a values of

that node increase, making it more likely to be selected as an exemplar by

undecided nodes. After a number of iterations the system reaches a stable

state and the final set of exemplars are extracted from the edges.

This algorithm is tested by the authors on clustering faces, DNA seg-

ments and other methods demonstrating that AP performs faster and with

a higher success rate than k-centres, based on true positive to false positive

ratios. Another advantage of AP is that it is able to handle asymmetric

similarities, when s(i, k) 6= s(k, i). While AP does not take a fixed number

of clusters as k-centres does it must be tuned to produce varying numbers

of clusters and more information on the sensitivity and ease of selecting this

tuning may be useful.

AP has been used to cluster NMR spectra in order to gain more insight

into the way fibre modifies the lipid profile of different subjects [154] and also

with LC-MS spectra in the identification of systemic response to ischemia

[304].

Whilst the methods mentioned so far assign each observation to a single

cluster, fuzzy clustering methods allow observations to belong to more than

one cluster. Proteins, metabolites and transcripts may be associated with

more than one function [305] so that discrete clusters may not give the best

representation. Fuzzy k-means produces a “membership matrix” containing

a set of weights for each observation showing the strength of association

to each cluster [306]. Fuzzy clustering has been used for the classification

of 1H NMR spectra obtained from cancer cell line extracts and from urine

samples of type 2 diabetes patients and animal models [307]. In comparison

to HCA, k-means, and PCA, the authors note fuzzy k-means clustering gave
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improved results and, unlike the other methods tested, allowed distinctions

to be made between subtypes in the cell line data set by exploring the

samples’ affinity with different groups. Similar results have been noted for

LC-MS studies. For instance on the use of temporal data in the analysis of

signalling networks [308].

5.2.9 Performance analysis

Clustered trend data can be rapidly plotted and visualised, offering a quick

indication into clustering performance. However in terms of more subtle

changes, a statistical metric of performance offers a quantifiable and ob-

jective measure which can be used to optimise the clustering procedure.

Potential metrics include the within cluster sum of squares (WCSS ), the

silhouette width (SW) and the Bayesian information criterion (BIC).

5.2.9.1 Within cluster sum of squares

k-means clustering aims to reduce the within cluster sum of squares, i.e. it

attempts to minimise WCSS with regards to equation 5.9:

WCSS = Σj∈CΣi∈j |xi − cj |2 (5.9)

Where C represents the set of k clusters, xi represents an observation i

in cluster j, and cj represents the centre of cluster j. The distance between

a point and its corresponding cluster centre is here defined by a distance

metric |x− y|.
A quick measure of clustering performance is to measure WCSS, with

lower values indicating a better fit of the clustering model to the data. This

value can be used to acquire a rough estimate as to an optimal value of

k. With increasing k a coinciding decrease in WCSS is to be expected.

However, at some point the decrease in WCSS “drops off”, with increasing

values of k offering little benefit in terms of reducing this value. This elbow

method can be used to estimate a reasonable value of k based on the location

of the drop-off.

5.2.9.2 Silhouette width

The determination of k using the elbow method is largely subjective. The

silhouette width is an alternate measure that can be used to more precisely
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gauge clustering performance. The silhouette width defines how well a point

fits into its assigned cluster in relation to how well it might fit into a different

cluster. This is described by equation 5.10:

si =
bi − ai

max {ai, bi}
(5.10)

Here, ai is a measure of how well i fits into its assigned cluster, and bi

is a measure of how well i fits into the next-best possible cluster. ai and bi

are given by the following equations:

ai = d(i, g(i)) (5.11)

bi = min
g 6=g(i)

d(i, g) (5.12)

d(i, g) represents the fundamental measure of how well an observation fits

into a given cluster. This is defined as the average distance, or dissimilarity,

of that observation from all other points in the same cluster:

d(i, g) = average
(j∈g)

|xi − xj | (5.13)

The silhouette width for any particular observation (si) lies in the range

−1..1, where values closer to 1 indicate better assignments and values below

0 indicate that the observation would be better suited to a different cluster.

The values of si can be averaged over a group of observations, such as an

individual cluster or the entire dataset, in order to determine how well that

group is clustered.

5.2.9.3 Bayesian information criterion

It is natural that a model with more clusters would be able to provide a

better fit to the data. An alternative performance metric is the Bayesian

Information Criterion (BIC). Unlike the silhouette width, BIC applies a

penalty for results with more clusters:

BIC = −2 ln(L) + k ln(n) (5.14)

Here k is the number of free parameters – i.e. the number of clusters –,

n is the number of observations, and L is the maximum likelihood function
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value.

5.3 Results – Medicago dataset

5.3.1 Trend identification

Several problems were encountered when generating trends over time using

an average of the replicates for each time-point with the Medicago data.

Notably, taking the mean average of the biological replicates suffers from

the presence of outliers in the dataset, whilst using the median is affected

by the low number of replicates (3 or less for Medicago) and produced an

excessively “jagged” profile.

In the case of the Medicago data a moving median was found to produce a

smooth trend based on visual inspection. More complex smoothing methods,

including polynomials and LOESS produced a trend which, whilst smooth,

resulted in a deviation of the trend from the data which was readily apparent

from visual inspection alone. The effectiveness of the moving median is

partly unsurprising since the same smoothing function also produced a good

trend during batch correction of the same data. This trend gave optimal

performance as measured by the RSD of replicates and the PCA-MANOVA

analysis of experimental groups cohesion given in Chapter 4, albeit for a

different function of time, using t = acquisition order instead of t = sample

age).

5.3.2 Control correction

The Medicago dataset contains a large number of age-related compounds,

with 1239 peaks showing significant linear correlation with age in the con-

trol group alone. Initial control correction carried out using the average of

the control-group replicates resulted in noise from the control group being

transferred into the other experimental groups.

Whilst the method used to obtain the trend for the control group may

be different to that used to account for the replicate samples the same

method (moving median, window width = 5) was found to be effective on

the Medicago data. Figure 5.5 shows the peak shown in Figure 5.3 after

control correction is applied. The relative increase of the B group is now ap-

parent. Based on a comparison of m/z to the MedicCyc database the peak
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was potentially identified as D-ononitol, a compound previously implicated

in the stress response [309, 310].

Fig. 5.5: Plot showing L+ peak #984 (m/z = 217.068, retention time = 2.09 min,
tentative identification = D-ononitol). After control correction an upwards
trend in the B group is now apparent.

5.3.3 Distance metric

The plant stress response shows the presence of time-delays in the data,

with noticeably fewer differences being present between the control and ex-

perimental groups in the first few days post-introduction of the stress con-

ditions. Relationships between metabolites are also likely to show delays.

The prompted the application of the Qian distance in the analysis of the

the Medicago dataset.

The distance measure is, however, difficult to select by inspection of

individual distances alone, and issues only become apparent once the the

distance measure is used as a means to cluster or form a correlation net-

work. Post-clustering it was found that a large number of Qian-indicated

correlations existed due to the presence of outlier values. Figure 5.6 shows

the results of k-means clustering combined with the Qian distance metric.

While time-insensitive measures such as Pearson or Euclidean will be ar-

tificially low in the cases where two metabolites possess an outlier at the

same-time point, this is a relatively rare scenario. Due to the nature of the

Qian distance metric however, two outlier values do not need to be at the

same time-point and thus a large number of outlier-based correlations are

presented. As such, several clusters are present, and can be seen in the fig-

ure, which possess erratic profiles with no distinct pattern in the peaks. In
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Fig. 5.6: Plots showing vectors clustered using k-means combined with the Qian
distance metric. The x-axes of the plots denote time, whilst the y-axes
denote intensity. Whilst several of the clusters display noticeable trends
over time, a number of clusters display noisy profiles due to the presence
of samples grouped together by spurious data-points.
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light of this, the standard Euclidean distance metric was favoured in further

analyses of the Medicago data. The Pearson metric meanwhile, is highly

trend-sensitive, and less able to distinguish profiles following similar trends

but at different magnitudes. Metabolites consistently above, or consistently

below the midpoint, for example, are presented by the Pearson distance as

similar.

5.3.4 Peak filtering

Initial clustering using all peaks of the L+/– dataset revealed a large number

of “noisy” clusters with no distinct pattern over time. Inspection of the

peaks within these clusters revealed a large number of “flat” trends. As

noted in the introduction, these trends are therefore not themselves noisy,

but appear to be noisy when taking their scaled values in isolation or using

metrics insensitive to scale.

To reduce the effect of adverse trends on the clustering, peaks were

filtered out of the Medicago data. Rather than discarding these peaks they

were placed into a separate group for later analysis, as they all share the

same “flat” profile.

Selecting a peak filtering method is a largely unintuitive problem. As

an ad-hoc method of measuring the effectiveness of various filters the peaks

were manually classified into three categories: interesting (those showing

noticeable trends over time), uninteresting (those appearing to have flat

trends over time) and unknown (those somewhere in-between).

A number of methods were tested, including measuring correlations over

time, the values of piecewise regression, PCA-MANOVA and Shannon En-

tropy. However using the t-test method described in the methods section

of this chapter produced reasonable results, achieving a 92% classification

rate of the interesting and uninteresting samples. This required a cut-off

point at which to classify peaks as “flat”, with p < 0.82 giving the best

performance. This value is problematic since it is unrelated to intuitively

interpretable values such as statistical significance (p < 0.05). The number

of time-points before which any change is seen in any experimental group

is likely to increase the p value beyond those normally expected. Using

p < 0.05 for instance, resulted in a large number of clearly flat profiles

entering the clustering algorithm. The effects of selecting only a certain

time-range of observations were also considered, however the performance
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increase in classification rate was not deemed to justify the added complexity

of the method.

5.3.5 Clustering method

The use of AP as a clustering method was hindered by the selection of the

initial parameters. Whilst other clustering methods also necessitate input

parameters, the time taken for the AP algorithm to converge made selection

of the parameter impossible given limited time. Due to its accessibility

and simplicity of configuration, the k-means algorithm was therefore used

to cluster the data. The selection of k in this algorithm was selected by

considering the silhouette width and BIC statistics of the resultant clusters.

In total, 25 clusters of peaks were generated, comprising 1311 peaks.

5.4 Conclusions

This chapter has presented a clustering workflow and described a method

of generating suitable input vectors for the clustering of time-course data.

Artefacts such as age-related profiles and flat-trends, which interfere with

cluster analysis have been identified and methods suggested to reduce their

impact upon the analysis. Peaks from a number of the clusters obtained in

this analysis have been proposed as the targets of further analyses. A num-

ber of problems have however been identified. Firstly, there are a large num-

ber of stages between data acquisition and performing the cluster analysis

itself. In this chapter it has been noted that problems with the configuration

of several of these stages, including the selection of the distance metric, and

the requirement of control correction and peak filtering, only became appar-

ent once the actual cluster analysis had been performed. A second issue is

that the clustering algorithm itself is computationally expensive. k-means

itself not only requires optimisation of k, but as the starting configuration is

random, multiple runs of the algorithm must be performed in order to obtain

adequate results. This compounds the first problem, limiting exploration of

the analysis parameters. The next chapter will present a software-mediated

dynamic workflow, whereby changes to early-stage pipeline parameters can

be explored in the latter stages. A less computationally expensive variety

of the k-means++ algorithm will also be presented, more suitable for rapid,

exploratory analysis.



6. METABOCLUST: SOFTWARE FOR TIME SERIES ANALYSIS

6.1 Introduction

The previous chapter introduced the use of clustering in the analysis of

metabolomic time series data and a number of stages of analysis prior to

clustering were addressed. The entirety of this workflow is presented below:

• Data acquisition – i.e. from LC-MS

• Peak picking – identify peaks and calculate intensities

• Outlier removal - removal of both bad peaks and bad observations

• Batch correction – correct for batch differences and instrumental drift

• Trend identification – Calculate the trends over time and consolidate

replicates

• Control correction – Account for changes in the control group

• Other corrections – e.g. scaling and centring

• Peak filtering – removal of “unclusterable” peaks

• Clustering – application of the clustering algorithm

• Optimisation – optimisation of the clustering algorithm

• Comparison to databases – comparison of clustered peaks to database

Given an arbitrary dataset, it is not immediately apparent which al-

gorithms and parameters should be used at each stage of analysis, or even

which stages needed to be performed. The “no free lunch” theorem [311]

suggests that it is unlikely that any one technique is suited to the exploration

of any and all datasets and a number of software tools have been developed

that permit a more exploratory analysis of metabolomic data, for example
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XCMS [124], XCMS Online [312] and MetaboAnalyst [313, 314]. Of these

programs some provide a graphical user interface (GUI), which can reduce

the learning curve required in order to obtain meaningful information from

metabolomic datasets.

Several existing tools provide a web based “thin-client” interface, which

are advantageous in that they facilitate access to users and are easier to

maintain. Disadvantages include the fact that they are technologically con-

strained with regards to the size of the dataset permitted and the level

of interaction they can provide, given the time taken to move the initial

dataset across the network. As such these applications typically favour a

direct input-to-report workflow, which can limit the ability to explore certain

methods and parameters.

In this chapter a graphically interactive software package for metabolo-

mic time series analysis is presented, and two case studies are used to demon-

strate its use. The software, named “MetaboClust”, takes into account some

of the limitations enforced by web-based interfaces and operates as a stand-

alone application, allowing fast, highly visual, interactive data exploration

and making use of clustering methods to investigate patterns in biological

time series data. This novel workflow is ideally suited to large untargeted

studies where the patterns of interest may not be known at the outset and

therefore the software provides visualisations at all stages of analysis and

allows the user to navigate quickly between clusters, features, metabolites

and pathways. The use of dynamic workflows allow the user to explore the

effects of potential data manipulations at stages further along their set of

planned changes. The overall objective of MetaboClust is to support the

user in creating and exploring time series trends, locating similar trends

and identifying the potential metabolic pathways they relate to.

During the development of this software it became apparent that the

speed or optimisation requirements of clustering algorithms such as k-means

of affinity propagation were not amenable to the rapid exploration of data. A

deterministic modification of the k-means starting configuration is therefore

also presented in this chapter, with a specific goal to facilitate rapid data

exploration.

The peak-picked data from the Medicago and Alopecurus datasets are

used as case studies to demonstrate the software. These were previously

discussed in Chapter 3.
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6.2 The Software

6.2.1 Implementation

The software was developed using Microsoft C# and the .NET framework,

which provides a library of reusable elements (the Framework Class Library)

and tools. In particular the Windows Forms library provides an out-of-the-

box means to interactively and iteratively develop a familiar user interface,

which has been ported to a number of operating systems and platforms. The

R.NET library is used to provide an in-process interoperability bridge to the

R script interpreter [315]. The inclusion of R [284] allows complex statistical

analysis to be performed, allowing users to incorporate their own methods

and providing easy access to the wide variety of algorithms developed for R.

A number of other mathematical functions, particularly the distance metrics,

make use of the system native Math.NET Numerics package [316].

The major components of a data-driven metabolomic analysis are presen-

ted in the UML diagram shown in Figure 6.2. These fall into four broad

categories:

• The experimental data – Intensity matrices, peaks and observations

• The configuration – Which algorithms have been applied and to where

• The annotation data – Compounds and pathways, and the annotations

placed upon the peaks

• The algorithms – The actual algorithms available, of which four types

have been identified

Of note here is the high degree of interdependency of various components.

Clusters can, for instance, be summarised as their constituent peaks, peaks

by their compounds and compounds by their pathways. Several features can

be also be reused, in particular trend algorithms are used in batch correction,

control correction and in the condensation of replicates. The design of the

software takes these features into account, allowing exploration along the

network of related elements, for instance, allowing the user to summarising

the relationship between an individual cluster, and the pathways represented

by the compounds annotated on its peaks.
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The flow of information between the stages of the clustering workflow is

presented in the flow chart shown in Figure 6.1. Whilst this is a largely feed-

forward process, poor results at one stage can necessitate revisiting earlier

analyses. The MetaboClust workflow is therefore designed to be as fluid as

possible, allowing the impact of various parameter selections on one aspect

to be immediately reflected in the others, allowing the user to prepare the

analysis in the order they see fit.

6.2.2 Workflow

6.2.2.1 Data import

Data is initially imported into a software “session” via a guided importation

wizard, which prompts the user to specify the dataset to be used in their

analysis. The session, shown to the bottom left of Figure 6.2, includes the

experimental data and the annotation data, comprising:

The intensity matrix – A data matrix with rows corresponding to observa-

tions and columns corresponding to integrated peak intensities.

Observation information – Details on experimental observations are required

if certain statistical analyses are to be conducted. These include the

the experimental group, time-point and replicate number of each ob-

servation.

Peak information – Details on peaks are optionally taken for later reference,

peak m/zs may be imported to allow to allow peak annotations to be

made based on m/z values.

Metabolite database – Information on metabolites is required for automated

annotation. Details of relevant metabolic pathways are required for

pathway analysis. The software is able to import databases in the

BioPAX pathway exchange format [317], in addition to providing the

data as a spreadsheet (CSV). Manual identifications (obtained for ex-

ample via XCMS or Progenesis QI) can be loaded to replace or aug-

ment the automated annotations.

Adduct database – For automated identification of LC-MS data a list of

potential ion adducts is required.
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The software accepts the data in CSV format due to wide support for

the format in existing conversion utilities and spreadsheet programs. Once

created this it is saved back to disk by the software into a native binary

format (MS-NRBF [318]) for speed of access.

When the session is loaded the algorithms are automatically read from

disk and the session configuration is populated with a few frequently used

statistics, such as t-tests.

6.2.2.2 Data exploration and pre-processing

PCA and PLSR can be performed in software in order to aid decisions on

the pre-processing methods selected.

6.2.2.3 Data correction

Following the workflow outlined earlier, MetaboClust provides four sets of

correction functions C:

• Scaling – CS(M,PS)

• Control – CC(M,CT )

• Batch – CB(M,CT )

• Trend – CT (PT ,M, F )

Here, PS and PT are algorithm-specific parameters and M is the input

matrix. The trend algorithm, CT also accepts a filter, F , defining an obser-

vation subset over which to obtain the trend. Whilst the algorithms have

different purposes in each case, these corrections share common requirements

– M and CT – and such can be visualised in similar manners by plotting

the input matrix M , with optional trend CT , adjacent to the output matrix

M ′.

Batch correction techniques have been discussed in Chapter 4 and follow

the general formula presented in equation 4.1. Control correction and trend

generation techniques were mentioned previously in Chapter 5. Scaling cor-

rection formulae are algorithm specific, and several were outlined in Chapter

2. As an example, in UV scaling a vector x is scaled as x′ = x/δ, where δ is

the standard deviation.
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6.2.2.4 Univariate analysis

MetaboClust incorporates a number of univariate analysis including univari-

ate statistics (e.g. the mean) and bivariate statistics (e.g. t-test, Euclidean

distance). These can be combined with the aforementioned observation fil-

ters on specific observations to provide a range of possible investigation

points, for instance to t-test an experimental group against control.

6.2.2.5 Clustering

The software offers several inbuilt clustering methods including HCA, affin-

ity propagation [300] and k-means.

As in all stages external R scripts can be implemented or existing ones

modified where more esoteric solutions are desired. In the previous chapter

the necessity of isolating specific peaks from the clustering algorithm was

noted. Filters on peaks can be specified during clustering to sequester peaks

that either interfere with the algorithm or are known to not be of interest.

6.2.2.6 Pathway analysis

Post-clustering the software permits the user to browse the potential com-

pounds and pathways implicated by the clustered data. This is accomplished

by backtracking from the clusters, to their assigned peaks, to their potential

metabolites, to their implicated pathways. It is possible to obtain a scores

relating the degree of overlap between a cluster and a pathway, based on

the number of compounds in the pathway, the number of those potentially

represented by peaks in the data, and the number of those peaks occuring

in the cluster. Clustering results can therefore be sorted by the degree of

overlap between clusters and pathways and the results visualised through

plots.

6.2.2.7 d-k-means++

Due to the random nature of the initialization step, k-means is non-deterministic

and can be highly sensitive to the initial starting conditions, resulting in

multiple runs of the algorithm yielding different results [319]. When large

numbers of observations and clusters are present this becomes increasingly

computationally expensive and may not be possible to achieve in a satisfact-

ory time. Another disadvantage of k-means-like procedures is that it requires
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the number of clusters to be stated up-front, in turn this may require yet

more runs of the algorithm to be performed if the number of clusters present

is initially known. In the case of clustering metabolites or genes this is often

the case.

For the purposes of rapid-clustering in software the d-k-means++ initial-

isation method is presented. Rather than selecting a random set of starting

centres the initial centres are selected following an iterative procedure:

1. Select a centre at the edge of the search space, for instance one showing

high Pearson correlation with time

2. Compute the squared distances D between each observation, Xi, and

the nearest cluster centre.

3. Select the furthest observation from any centre (Dmax) and assign as

a new centre

4. Repeat 2, 3 until k exemplars have been chosen or until Dmax falls

below a threshold Dstop

As this method gives more weight to the selection of observations furthest

from existing centres it therefore potentially results in better initial coverage

of the search space. A second advantage of this method is that it does

not require a cluster count, k, to be specified in advance. Instead cluster

generation can be ended when the search space is adequately covered, as

determined by the distance of the observation selected in the third step

(arg maxiDi) from any existing cluster centre being below the threshold

parameter Dstop.

This procedure is fundamentally similar to the k-means++ algorithm,

with differences being that k-means++ assigns the first centre based on a

random, uniform distribution, and selects subsequent observations using a

probability distribution, where the chance of an observation being selec-

ted proportional to D2
i /ΣjD

2
j . k-means++ is advantageous in that the first

“seed” point is intelligently selected based on existing information, and the

iteration steps maximise search space coverage. It is limited by its determ-

inistic nature however, in that repeating the algorithm can not yield better

results.
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Adduct Charge Mass Difference

-H −1 −1.00728
-2H −2 −1.00728
-H2O-H −1 −19.0184
+H +1 1.007276
+Na +1 22.98922
+K +1 38.96316
+NH4 +1 18.03382
+2H +2 1.007276

Tab. 6.1: Table of adducts used for m/z based peak annotation for our case study.
These represent a subset of the data found at [321].

6.3 Case study 1: Analysis of drought and disease in the model

plant Medicago truncatula

The purpose of this study is to identify metabolites in Medicago truncatula

responsive to the experimental conditions: D, F and B in relation to C. In

particular, the aim is to highlight potential key biological pathways associ-

ated with metabolites that are being elicited or suppressed under the stress

conditions.

6.3.1 Data import

The MetaboClust import wizard was used to input CSV files containing

the Medicago data and a list of 1847 compounds known to be present in

Medicago truncatula. This compound list was downloaded from the Medic-

Cyc database [320] and includes information for 407 pathways as well as

mono-isotopic masses for the metabolites. A further CSV file containing

mass and charge information for the eight possible adducts shown in Table

6.1 was also imported into the software. These 8 adducts represent a subset

of the data published by Kind [321], filtered to exclude infrequently occur-

ring adducts.

6.3.2 Exploration and pre-processing

It is already known that batch differences are present in the Medicago

dataset. PCA, conducted within the software, revealed notable differences

between LC-MS batches, with the between-batch variance overriding the
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variance between experimental groups. Signal correction using QC ion in-

tensities for each batch successfully resolved the batch differences in the

positive ion mode dataset. It was also immediately apparent from the

MetaboClust data correction visualization (Figure 6.3) that the negative

ion mode data was not amenable to this correction. PCA scores plots (not

shown) further demonstrate that batch differences are made worse by this

method. For the negative data, the “background correction” (Chapter 4

was therefore applied [322]. Figure 6.4 shows the software’s preview win-

dow, demonstrating the effectiveness of this correction method. After batch

correction, the data were scaled to unit variance and mean-centred, in order

that all features be given equal weight in further analysis. Invalid floating-

point values (NaN, resulting from division by zero errors during batch cor-

rection) were set to 0 following the recommendations outlined in [251].

Viewing the data also revealed that a large number of peak profiles

showed a trend over time in the control-group, likely to represent age-related

compounds. As the changes induced by the experimental conditions (D, F ,

and B) are of primary interest, age-related trends were accounted for by

control correction. Whilst the simplest method to account for a trend in

the control replicates would be to average over the replicates at each time

point, visualisation in MetaboClust shows that this method transfers noise

present in the control group to the other experimental data. Using the

moving average (as applied for batch correction) with a window width of 5

days was effective in accounting for the general trend of the control group

without transferring noise. Again, the median, rather than the mean, was

used in order to reduce the effect of outlier values present in the data.

The trend lines (clustering input vectors) were generated using the same

smoothing method applied to batch and control correction – a moving me-

dian across t for each experimental group, with a window width of w = 5.

6.3.3 Univariate statistics

As outlined in Section 5.3.4 “flat” profiles were identified via comparison

of the experimental group observations to the control group observations

using the rule p < α, where α was set to 0.82. This yielded a data subset

comprising 1577 peaks flat across all experimental groups and 1311 peaks

designated as inputs to the clustering algorithm.
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Fig. 6.3: Image showing the in-software preview displayed for a mean-of-the-QCs
batch correction. Variations in intensity (Y) between batches and along
the acquisition order axis (X) can be seen post-correction.
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Fig. 6.4: Image showing the in-software preview displayed for a moving median
batch correction (window width = 5) of a particular peak. The post-data
correction can be seen to be free of the changes in intensity (Y) with
acquisition order and batch (X) that are encountered if a linear correction
model is used.
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6.3.4 Clustering

Exploratory analysis revealed the differences in time profiles across the data-

set to have a continuous nature rather than forming discrete clusters, as can

be seen in the PCA plot of the input vectors shown in Figure 6.5. This is

confirmed by metrics for clustering performance, whose values are plotted

in Figure 6.6. As the number of clusters (k) increases, the silhouette width

performance statistic shows a rapid decrease in performance, with the best

clustering being performed for k = 2. The BIC performance statistic reveals

similar results. This makes the number of clusters largely subjective. Whilst

too many clusters makes the identification of common patterns difficult, too

few increase the complexity of individual clusters and thus fail to provide

usable information in terms of a coherent set of profiles.

We found the k-means++ algorithm with k = 25 produced good similarity

between the time profiles within clusters without having clusters that were

too similar to each other. The d-k-means++ algorithm produced similar

results, again with k = 25 (available in Appendix B. The average deviation

from the cluster centre for each metabolite was D = 2.15 for d-k-means++

in comparison to D = 2.11 for k-means, optimised over 1000 runs. The

closest 10% of metabolites have an average distance of Dclosest10 = 1.11

with k-means and Dclosest10 = 1.07 for d-k-means++. The metrics show that

differences between the two methods are small and we therefore favour the

d-k-means++ algorithm over the much slower k-means.

Whilst differences between the control and Fusarium groups were not

apparent for individual time-points, the cluster analysis revealed time pro-

files that differed between the two groups, for example clusters DK7 and DK8,

shown in Figure 6.7. Furthermore substantial differences between the pro-

files of drought and dual stressed plants were highlighted (e.g. clusters DK24

and DK25).

6.3.5 Pathway analysis

In the overview previously referenced (Figure 6.7), different response profiles

to the experimental conditions can be seen in the 25 clusters generated.

Cluster DK18 shows a group of compounds that increase in intensity over

time for the dual-stress group, whereas the profiles for both the drought and

Fusarium groups show a different behaviour, dropping in intensity beyond
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Fig. 6.5: PCA plot of the input vectors used in the clustering model. No dis-
tinct clustering is visually apparent. The trends were generated from the
Drought, Fusarium and Dual-stress group samples for each peak. Peaks
were filtered to exclude those not showing significant deviation from the
control group for any of the profiles based on min(t) < 0.082.
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Fig. 6.6: Results of various runs of the k-means clustering algorithm, displayed in
terms of two measures of performance: Silhouette width and BIC. The
average euclidean distance from the cluster centres is also shown for com-
parison. These results show decreasing performance with increasing k.
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t ≈ 8. DK18 contains 36 input vectors (i.e. 36 peaks), of which 15 possess

tentative compound identifications.

In-software analysis shows that the compounds potentially represented

by the peaks within this cluster are present in a number of different biological

pathways, with protein biosynthesis in the tRNA charging pathway hav-

ing the highest number of distinct compounds associated with this cluster.

Figure 6.8 shows the overlap between cluster and pathway as displayed in

MetaboClust. The compounds in the database for this pathway comprise the

set of 20 standard amino acids. The accumulation of amino acids in drought

stressed plants has been known for some time in the literature [323, 324] and

a recent study has suggested the application of free amino acid to wheat en-

hances drought performance [325], implicating the role of this increase as a

tolerance mechanism, rather than as an artefact of injury.

Cluster DK19 also shows a group of features with very similar time profiles

for the drought and dual-stress groups. This cluster comprises 87 features

and shows good overlap with the TCA Cycle pathway1. The database con-

tains 29 compounds for this pathway, of which 9 have tentative annotations

against peaks in the Medicago dataset. Some of these metabolites have been

tentatively assigned to more than one peak, giving a total of 16 profiles that

could be related to compounds in this pathway. Figure 6.10 shows how

the time profiles within a cluster that can be associated with a particular

pathway are highlighted in-software. Figure 6.11 shows that the converse

can also be visualised, i.e. that of all time profiles that could potentially be

associated with a particular pathway, those within the same cluster (and

therefore having a similar trend) can be highlighted.

6.4 Case study 2: Comparison of phenotypes of Alopecurus

myosuroides

6.4.1 Data importation

As no database specific to Alopecurus could be found, databases for several

different plant species were downloaded from the PMN database collection

[326] in addition to the Medicago database used in the first case study (avail-

able from MedicCyc [320]) to cover as many metabolites as possible. These

are shown in Table 6.2. All are available in the PathwayTools database

1 PWY-5913: TCA cycle VI (obligate autotrophs)
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Fig. 6.7: Screen-shot of the software showing the cluster explorer post-clustering in
thumbnail view. The 25 clusters are visually displayed by the plot of the
input vectors assigned to them. The input vectors are coloured according
to from which experimental group each element was selected from and are
sorted by experimental group and time. From left to right for each group
the coloured portions are: Left, red, drought group, days 2-13. Centre,
green, Fusarium group, days 1-13. Right, ochre, dual-stress group, days
2-13. The cluster centre is represented by the bold dashed line (purple).
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Fig. 6.8: Screen-shot of the software showing the overlap between the tRNA char-
ging pathway and cluster “18”. The plot in the bottom right shows the
trends of peaks assigned to cluster DK18, with peaks potentially repres-
enting compounds in the tRNA Charging pathway based on their tentative
annotations highlighted in bold-black.
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Fig. 6.9: Depiction of the citric acid cycle. The plots show the intensities of peaks
coincident to the named compounds based on their m/z. Intensities are
shown using their defined trend (a moving median) for drought-stressed
(D) plants between days 2 and 13, relative to control (C). Empty plots
signify that no matching peaks were found based on their m/z values.
Note that two pairs of compounds, citrate and D-threo-isocitrate, as well
as fumarate and aspartate, are isomers and therefore share the same plots
due to having the same m/z.
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Fig. 6.10: Figure showing the plot shown in the software for cluster #19. This
cluster comprises 87 input vectors for 87 peaks. The input vectors each
contain concatenated data from the three experimental groups and the
portions of each vector are coloured according to which group each data-
point comes from. The data for each vector are sorted in experimental
group and time order. From left to right for each group the coloured por-
tions are: Left, red, drought group, days 2-13. Centre, green, Fusarium
group, days 1-13. Right, ochre, dual-stress group, days 2-13. The cluster
centre is represented by the bold dashed line (purple).

format, which can be imported into MetaboClust. The Alopecurus data

itself, along with the adducts list were imported as CSV files.

6.4.2 Data pre-processing and exploration

Peak intensities were UV scaled and mean centred in software. Batch cor-

rection was not required as all data were acquired in one batch per ionisation

mode and, as no control group was available, no correction for age-related

effects was performed.

To explore the response profiles, t-tests were calculated for each peak

to compare the final two time-points between each pair of experimental

groups (M-T , T -S, S-M). Time profiles for two features shown to be

highly significant for the comparison of plants tolerant to multiple herbicides

with those tolerant to specific herbicides (M-T ) are shown in Figure 6.12

(p = 6.3e−8 and p = 3.5e−6). It is clear that the trends in the two profiles

are very different and in fact, several different trends result in a significant

difference between the final two time-points for these groups.
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Fig. 6.11: Screen-shot of the software showing the overlap between the “superpath-
way of glyoxylate bypass and TCA” pathway and cluster “19”. The plot
in the bottom right shows the trends of peaks potentially representing
compounds in the glyoxylate bypass/TCA pathway based on their tentat-
ive annotations. Peaks assigned to cluster “19” are shown in bold-black.

AraCyc 13.0 BarleyCyc 3.0 BrachypodiumCyc 3.0
CassavaCyc 5.0 ChineseCabbageCyc 3.0 ChlamyCyc 5.0
CornCyc 6.0 GrapeCyc 5.0 MossCyc 4.0
OryzaCyc 3.0 PapayaCyc 4.0 PoplarCyc 8.0
PotatoCyc 2.0 SelaginellaCyc 4.0 SetariaCyc 3.0
SorghumBicolorCyc 3.0 SoyCyc 6.0 SpirodelaCyc 1.0
SwitchgrassCyc 3.0 TomatoCyc 1.0 WheatACyc 1.0
WheatDCyc 1.0 MedicCyc*

Tab. 6.2: List of the databases used in our case study on Alopecurus. *With the
exception of the MedicCyc Medicago database, taken from [320] these
were downloaded from the PMN database collection available at [326]

.
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(a) Positive ion mode peak #721, p =
6.3E − 8

(b) Positive ion mode peak #691, p =
3.5E − 6

Fig. 6.12: Plot of time and experimental group versus intensity for two peaks (Pos-
itive ion mode peaks #721 and #691). Both of these peaks show sig-
nificant differences (p〈0.01) in a t-test comparing the intensities of the
the observations for first two time points (t ∈ {1, 4}) between the T and
M experimental groups. Whilst both peaks test as significant they have
markedly different trends over time.

6.4.3 Cluster analysis

Using the MetaboClust visualisation to determine the effectiveness of differ-

ent smoothing algorithms, taking the median of the replicates for each time

point was found to be sufficient to generate time profiles. In contrast to the

noisier Medicago dataset, with more time-points, a more complex smoothing

function was not required.

Attempts were made to optimize the number of clusters using the sil-

houette width (si) and Bayesian Information Criterion (BIC) clustering per-

formance measures. However, like for Medicago, both measures suggest the

strongest clustering performance for the lowest value of k = 2, with worsen-

ing performance for greater values of k. These results, shown in Figure 6.14

are again probably due to a lack of discrete clusters in the data. However,

visualization showed that differences between full time profiles (across all

experimental groups) were often due to differences in just one of the ex-

perimental groups. We therefore performed cluster analysis using separate

input vectors for each group. In this case, the BIC no longer shows a gradual
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Fig. 6.13: Screen-shot showing the trend line generation window. Using the median
of the replicates for each time point was found to produce a relatively
smooth trend.

decrease in clustering performance with k, but instead shows a second peak

in performance (after k = 2) at k = 10, as shown in Figure 6.15. This value

of k remains consistent with when the deterministic clustering d-k-means++

algorithm is applied instead of k-means.

6.4.4 Pathway analysis

A number of interesting patterns can be observed using the group-wise clus-

tering. For example, cluster 2 (Figure 6.16) includes profiles showing a

decrease with time. The pathway breakdown in Table 6.3 shows the associ-

ation of various pathways with cluster 2, with Brassinosteroid biosynthesis

showing the strongest degree of overlap. Brassinosteroids are known to be

an important class of hormonal regulators and have already been implicated

in plant stress response [327].
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(a) Average euclidean distance from cluster centre

(b) Average silhouette width

(c) BIC

Fig. 6.14: Plots showing three different clustering performance metrics as a function
of the number of clusters, k. The clustering algorithm used is k-means
with the one vector per peak.
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(a) Average euclidean distance from cluster centre

(b) Average silhouette width

(c) BIC

Fig. 6.15: Plots showing three different clustering performance metrics as a function
of the number of clusters, k. The clustering algorithm used is k-means
clustering with the one vector per experimental group per peak.
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Fig. 6.16: Image showing cluster 2.

Pathway Compounds Peaks

compounds not assigned to any pathway (57) (46)
brassinosteroid biosynthesis I (7) (23)
simple coumarins biosynthesis (6) (22)
plant sterol biosynthesis II (8) (20)
phenylpropanoid biosynthesis (8) (20)
suberin biosynthesis (7) (20)
... ... ...

Tab. 6.3: List of pathways, in order of the number of potential peaks in cluster 2.

Figure 6.17 (top) shows the time profiles that potentially represent com-

pounds in the brassinosteroid biosynthesis pathway with those that group

together in cluster 2 highlighted, i.e. all profiles in the targeted herbicide res-

istance (T ) group together with a few from the susceptible group (S) showing

a similar trend. Figure 6.17 (bottom) shows the same time-profiles but with

those that group together in a separate cluster (cluster 3) highlighted. This

includes most time-profiles associated with the multiple herbicide resistance

(M) plants together with a couple from the susceptible group.

6.5 Concluding remarks

The easy access to statistical information and interactive visualizations in

MetaboClust allow efficient and appropriate pre-processing, such as batch

correction and scaling, to be performed. The software allows the effects of

different pre-processing methods on data analyses to be explored. Various
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(a) Cluster 2

(b) Cluster 3

Fig. 6.17: Plot of the peak intensities for peaks potentially representing compounds
of the brassinosteroid biosynthesis pathway. Bold lines indicate the peaks
present in cluster 2 for (a) and cluster 3 for plot (b).

Fig. 6.18: Plot of the peak intensities for peaks potentially representing compounds
of the fatty acid activation pathway. Cluster 4, highlighted in red, indic-
ates a large number of peaks of the MHR set conform to this profile.
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statistical analyses can be conducted at different stages within the soft-

ware and the results easily visualised. In particular, time-profiles can be

produced for cluster analysis and may be generated separately for differ-

ent experimental groups or chosen to span multiple groups. The interactive

user interface provides an effective means to determine profile generating

and clustering methodologies.

Using the d-k-means++ variation in the MetaboClust software, we were

able to cluster the data for two different datasets into a number of meaning-

ful patterns (25 clusters for Medicago and 10 for Alopecurus), determined

both visually and through parameter optimisation within the software. The

deterministic nature of this method is particularly suited to the rapid ex-

ploration of analyses facilitated by the software. Not only were a set of po-

tentially interesting profiles yielded, but clusters were organised in a manner

indicative of the centre selection, with each cluster centre bearing the op-

posite profile to its predecessors. From the clusters we were able to identify

differences between groups that, due to their nonlinear trends, were not

identified using univariate statistics. In particular, a number of clusters dis-

playing unique dual-stress time profiles and disease-related responses were

identified in the Medicago data.

The pathway information sourced from external databases allows similar

response profiles for which metabolite assignments are available to be linked

to pathways of interest. Although the example pathways in both case studies

here were implicated by tentatively assigned metabolite annotations based

on accurate mass only, multiple tentative assignments were used to identify

the pathways and are supported by the literature. The same method can be

used with the time-profiles definitively assigned to metabolites and may also

suggest where further information should be sought, for example by using

standards to confirm identifications, thus saving time and money.

The software and source code are freely available for download on Bit-

bucket [328]. Results of the clustering, including those for the Alopecurus

dataset, can be found on the same web-page at https://bitbucket.org/m

jr129/metabolitelevels/downloads/ThesisResults.zip.

https://bitbucket.org/mjr129/metabolitelevels/downloads/ThesisResults.zip
https://bitbucket.org/mjr129/metabolitelevels/downloads/ThesisResults.zip


7. GENETIC PROGRAMMING

7.1 Introduction

The ability to make classifications based on chemometric data has a wide

range of applications and studies have frequently used computerised pattern

recognition methods [216, 329–331]. Several techniques are already avail-

able to classify the data, with discriminant function analysis, partial least

squares, and artificial neural networks being extremely popular [331]. These

methods do however lack a simple method of extracting the logic behind the

classification [216, 332]. This is especially the case when large, multivariate

datasets are employed and a combination of many variables influences the

classification. Genetic programming (GP) has been used as a tool which can

not only be used as a method to classify data, but also to identify the vari-

ables underpinning the basis on which the classifications have been made.

This is especially useful with data-sets such NMR or LC-MS, where the data

itself can ultimately be traced back to individual chemical species, providing

a real-world target for analysis or manipulation.

7.1.1 Genetic programming

GAs are an form of evolutionary computation that seek to optimise a search

heuristic by means of emulating the process of natural selection [211]. A pop-

ulation is created which consists of a set of individual solutions to a problem,

which evolve towards a more optimal solution. The solutions or “individu-

als” evolve from one generation to the next following similar principals to

those found in nature – through sexual reproduction, known as crossover,

and asexual reproduction, known as mutation. The best-performing indi-

viduals in the population are rewarded with a higher chance of reproducing

or surviving to the next generation than the worst-performing ones [215][p.

100], providing the evolutionary drive to produce “better” results.

GP is an offshoot of GA, popularised by Koza in 1992 [215, 216, 333],
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V1

3.2 Absolute value V3

Multiply Inverse

Add

(root) ●

● + ●

(● * ●) + ●-1

(3.2 * |●|) + V3
-1

(3.2 * |V1|) + V3
-1

Fig. 7.1: Example of a genetic programming tree, representing the equation (3.2 ∗
|V1|) + V −1

3 .

although the technique had seen recognition much earlier [334], for instance

in an adaptation of genetic algorithms in the manipulation of assembly code

in 1975 [335] and later in the development of logical expressions in 1981

[336]. GP extends GA in that the individuals of the population are them-

selves computer programs and are evolved to in order to find a program

that provides a good solution to the target problem. In contrast to GAs,

GP represents the individuals of the population as trees, rather than linear

structures. The branch-nodes of these trees represent functional operators,

such as add or divide, whilst the leaf-nodes represent values, such as con-

stants or input variables. As an example, the tree represented in Figure 7.1

can be seen to represent the equation (3.2 ∗ |V1|) + V −13 .

The process for evolving these trees proceeds similarly to that of GA.

Initially a population of randomly generated individuals is created. An

evaluation step then assigns a fitness value to each individual, calculated

by a specified fitness function. A selection function is then used to select

which individuals proceed into the next generation. There are a number of

different selection methods possible but the general case is that programs

with higher fitness have a higher chance of being selected. This allows the

best-performing programs to have an increased chance of passing on their

virtual DNA to the next generation. The selected individuals are finally

used to generate the next generation through the use of one or more breeding

operators, a wide variety of which are possible. [215][p. 99]

The mutation operator(Figure 7.2a) takes an existing individual and
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(a) Mutation (b) Crossover

Fig. 7.2: Depiction of breeding operators in relation to GP. 7.2a: Showing mutation
operator operating on a single node. 7.2b: Showing crossover operator
operating on two parents and producing two children.

modifies it to produce a new individual. In the case of GP, one or more

nodes are selected at random from the tree and replaced with a new, random

node.

The crossover operator (Figure 7.2b) takes two individuals and produces

two results that are each a combination of the two parents. One-point cros-

sover generates the child individuals by swapping the parent individuals over

at a single point: A node from each parent is selected at random and these

nodes, including the child-nodes, are swapped over to create two children

with characteristics of both parents.

Finally the clone operator produces an identical copy of an individual

and places it directly it into the next generation. This permits the concept

of elitism, whereby the best individuals of the population are maintained by

always cloning a fixed number of best performers into the next generation.

Similarly, a certain percentage of the worst-performing programs may always

be discarded without consideration for reproduction.

A disadvantage of standard GP is that the programs generated do not

necessarily reflect the abilities of a modern computer programming language.

An alternative method, termed grammatical evolution (GE) has been em-

ployed to artificial genomes consisting of sequences of byte-codons, which are

converted into a real programming syntax, such as Java, prior to evaluation.
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This is achieved through the use of a mapping operator, which selects the

code to insert for a particular codon based on a pre-defined set of Backus-

Naur-form (BNF) syntax rules [337]. An example BNF statement describing

an if-then-else statement in BASIC is shown here:

<statement> :== IF ( <condition> ) THEN ( <statement> )

ELSE ( <statement> )

The text in angle brackets (< and >) denote a “class” that is defined

elsewhere. Our if function is itself of <statement> class and hence one if

may nest another. The <condition> class could be defined as the following:

<condition> :== true

<condition> :== ( <condition> OR <condition> )

<condition> :== ( <number> >= <number> )

. . .

The defined set of classes and their meanings defined is dependent on

both the language and the problem to be solved.

In GE, the class definitions available to choose from for a particular

codon of the genome is dependent upon the type of input expected by the

mapping of the previous codons. An example of this is shown in Figure

7.3. This technique is advantageous in that not only can more complex

bodies of code be generated, but the genomes can be manipulated much like

traditional genetic algorithms, reducing computational time and increasing

simplicity. Invalid syntax cannot be generated providing the BNF rules are

correctly specified, for instance including the use of brackets in the defini-

tions to avoid ambiguities.

GE has however been criticised due to poor locality [338]. Locality

relates the sample space of the genotype to that of the phenotype. In the

case of GE a small change in the genotype may have a dramatic impact

on the phenotype – in this case both the code generated and the results of

running it [339]. This is due to the fact that if a single codon is changed

then for the set of cases where the BNF definition of the new function differs

from that of the old one, the mapping of all subsequent elements after this

codon will be changed. This problem increases the difficulty navigating the

fitness landscape, since small changes produce radically different programs

that are unlikely to succeed by chance alone.

A technique potentially on the border between GP and GE is Strongly-

Typed Genetic Programming (ST-GP) [340]. ST-GP follows a similar pat-
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Fig. 7.3: Depiction showing the translation of an arbitrary byte-based genome
through a set of BNF syntax rules into a compilable segment of code.
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tern to classic GP but places restrictions upon the arrangement of the logic

trees generated. Function inputs and their return values are “typed” with

a class, much like GE, and the output of a function returning a value of

a particular class must be paired to the input of function accepting that

same class. For instance a function node taking an integer input must be

connected to one providing an integer output.

In our classic-GP example shown in Figure 7.1 it can be seen that all

of the nodes essentially produce the same type; they all produce a real-

valued number, whether directly (3.2), from an input (V1) or as a result of

an operator (+)). Classic GP can therefore be considered a sub-case of ST-

GP where there is only one class of data and nodes can be simply selected

from a pre-defined list of possible definitions. ST-GP however, modifies

the tree generation routine to enforce the strong-typing, “class-matching”

constraint, which implies that all data are associated with a format (type),

such as integer or boolean, as well as the restriction that an input of one

type must be coupled to an output of the same type (strong-typed) [341].

To apply this to GP, during tree generation or modification child nodes are

selected such that their output type conforms to the input type expected

by the parent node. The example in Figure 7.4 shows the tree representing

the ternary operator “If”, which takes one Boolean input (a) and two Real

inputs (b and c). The output type of the If function itself is also Real,

being defined as b when a is true, and c when a is false. Like GE, this allows

the list of potential nodes to be represented as a set of BNF syntax rules

and the “tree” structure is clearly visible in Figure 7.3. Whilst this allows

a much broader feature set, the benefits of standard GP are none-the-less

retained: since the tree and underlying code are directly related, breeding

(mutation and crossover) operators can be finely tuned.

An additional benefit of strongly typed genetic programming (ST-GP)

over standard GP is the ability to perform multi-typed operations. The

second goal of this chapter is therefore to explore if this is beneficial in the

classification of our beef samples. Specifically we shall investigate whether

class – of factorial type – and age – of numeric type – can be determined

concurrently via an ST-GP algorithm and if this presents any benefit to the

classification.
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REAL
“when false”

REAL
“when true”

BOOLEAN
“condition”

REAL
“result”

FUNCTION
“if”

Fig. 7.4: Strong-typed If statement tree showing input types expected (bottom)
and output type produced (top).

7.2 Method

7.2.1 Data

This paper uses the beef dataset previously described in Section 3.3. The

dataset is truncated to only include the 119 samples from warm W and the

120 samples from the cold C groups.

7.2.2 Programming

The ST-GP framework was implemented in-house using C#. The imple-

mentation (named Evove), uses the .NET reflection library, which allows

programs to inspect their structure and modify their data at runtime. This

has the advantage over GP frameworks reliant on a text interpretation in

that reflection allows programs to be generated from the GP trees with

relatively little overhead in terms of computational expense. The use of

reflection also allows the functions to be automatically located and parsed

by the runtime, performing the majority of the construction for the GP al-

gorithm without the need for extensive user setup. The suite of functions

provided to the tree-nodes, as well as the fitness function, can be written in

any language supporting compilation to CIL, including C++ and Java.

7.2.3 Breeding operators

7.2.3.1 Mutation

In [342] the authors note that ST-GP was less successful than applying

standard GP to the inputs of pre-defined Java functions for the purpose of

generating competitive robot controllers. However, what may be considered



7. Genetic programming 173

a particularly harsh mutation operator is used in this case, whereby a node

to be mutated is selected at random and both the node and its child nodes

are regenerated. This is likely to have a significant impact on locality since,

much like GE, small changes to one part of the program can have dramatic

effects upon the rest – a change to the root node for instance, would re-

place the entire tree. For the purposes of our study we shall use instead a

“classic” GA mutation operator, whereby each node is mutated with a fixed

probability pnode and the child-nodes are not modified unless enforced by

the strong-typing constraints. Whilst functional changes, such as the sub-

stitution of a multiplication operator with a subtraction operator, can have

a non-trivial impact this mutation operator should be less intensive than

whole-tree replacement. This method does have the disadvantage however,

that the dynamic size and layout of GP trees contrasts with a linear GA

setup and an additional set of rules must be employed to deal with the

constraints enforced by ST-GP.

Here we allow a mutated node to be altered via one of four methods:

reordering, insertion and deletion, as well as standard replacement. The

exact mutation method used is selected at random, with all methods sharing

an equal chance of being selected. ST-GP constraints are maintained by

randomly regenerating child-nodes only when no alternative is possible: for

instance a change of input type from integer to text would necessitate

a regeneration of child nodes, whereas a change from integer to integer

would not.

The four mutation operators are thus:

• Iterate each node NA in the parent tree A

• Mutate NA with a random chance pn (if not mutated then go to the

next node)

• Select a random method of mutation from the following:

Replacement: Replace NA with a new, randomly generated node

NB

Retain child nodes NA as child nodes of NB where the child-node

types match the expected inputs of NB.

Discard all other child nodes of NB

Randomly generate any additional required child nodes of NB
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Reordering : SwapNA with a sibling nodeNB where type of(NA) =

type of(NB)

Insertion Insert a random nodeNB aboveNA where type of(NA) =

type of(NB) ∧ type of(NA) ∈ type of input(NB)

Deletion ReplaceNA with a random child ofNA, NB where type of(NA) =

type of(NB)

7.2.3.2 Crossover

We use the crossover operator noted in [340], with the added common point

constraint to ensure tree size does not exceed our set maximum.

• Select a random node NA in parent tree TA

• Select a random node NB in parent tree TB

where type of(NA) = type of(NB) (strong typing constraint)

∧depth of(NA) = depth of(NB) (common point constraint)

• Swap nodes NA and NB.

7.2.4 Parameter optimisation

There are a large number of parameters available for modification in a typical

GP setup and testing every combination would be an impossible task. The

figure shown in 7.5 presents the complete set of parameters available for

manipulation in a typical ST-GP simulation. Due to the large number the

entire set cannot be optimised on a reasonable time-scale and therefore most

were fixed to pre-selected values, with only the most significant parameters,

mutation and crossover rate, being optimised here. Excluding mutation and

crossover, the remainder of the parameters are detailed in Table 7.1.

Testing 10 values for 2 parameters would result in a 102 = 100 value test

matrix. Sampling methods can be used to determine an adequate coverage

of the parameter space given a fixed number of possible samples. In our

study we made make use of the “orthogonal sampling” method. Orthogonal

sampling is based on Latin Hypercube sampling, which splits the sample

space into a n × n square grid by partitioning each of the variables to be

measured into n segments. A set of samples of the parameter space is

then taken such that each segment, for each variable, is sampled once [343].
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Selection method : Selection method
Individuals per deme : int
Maximum tree depth : int
Number of elites : int
Stopping conditions [*] : Stopping condition
Breeding method : Breeding method
Number of demes : int
Migration operator : Migration operator
GP function set [*] : GP Function
Termination conditions [*]

Parameters

«interface»
Selection method

Fitness proportional

Tournament size : int

Tournament

«interface»
Stopping condition

Fitness value : Fitness

Stop after fitness reached

Number of rounds : int

Stop after rounds

Number of rounds : int

Stop after stagnation

Number of seconds : double

Stop after real time

Never stop

Function : Function

Stop after custom function

«interface»
Breeding method

Crossover method : I Crossover  method
Mutation method : I Mutation  method
Chance of crossover : double
Chance of crossover and mutation : double
Chance of mutation : double

Crossover and mutation

Common point

«interface»
I Mutation  method

«interface»
I Crossover  method

Node chance : double
Chance of insertion : double
Chance of reordering : double
Chance or replacement : double

Multiple point mutation

Chance of leaf : double

Single point mutation

«interface»
Migration operator

Number : int
Period : int

Circular migration

«interface»
Fitness

«interface»
GP Function

«interface»
Function

«interface»
Termination condition

Number of iterations : int

Terminate after program iterations

Number of milliseconds : double

Terminate after program time

Fig. 7.5: UML diagram showing the parameters available for modification in a typ-
ical ST-GP simulation, along with the dependencies of parameters upon
each other.
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Parameter Value

Number of individuals 200. We used the value given in [217] for a similar
task.

Selection method Fitness proportional.

Stopping conditions Varied

Fitness function Varied

Maximum evaluation time 1 second

Randomisation method Knuth variant [345, 346]

Breeding operators Crossover, mutation, crossover and mutation,
elitism

Breeding constraints Strong typing, maximum tree depth

Maximum tree depth 5 (about 25 nodes)

Number of elites 1

Crossover operator Common point, strong-typed

Crossover chance (Value optimised)

Mutation operator Per-node, strong-typed

Mutation chance (indi-
vidual)

(Value optimised)

Mutation and crossover
chance

Crossover chance * Mutation chance

Mutation of node chance 0.05

Mutation of node methods insert, reorder, replace (equal probabilities)

ST-GP Data types Double (rational), Variable index (integral),
Factorial (boolean), AgeAndClass (tuple of
factorial and double)

ST-GP Function set See appendix D

Tab. 7.1: Table of ST-GP parameters and their assigned values in our study.

Orthogonal sampling extends this by dividing the sample space again into a

set of m subspaces (where m < n), ensuring that each subspace is sampled

at an equal frequency. This offers an additional safeguard against areas of

the sample space being sparsely tested.

We used the orthogonal sampling method to devise a set of samples to

test the mutation × crossover sampling space, given a limit of 100 samples.

The set of samples was generated using the orthogonal sample script for

Matlab, published at [344]. Performance was measured as the fitness of the

class predicate (outlined below) with a stopping condition of rounds = 200

, averaged over 1 hour of repeated processing.

A Voronoi diagram of the parameter optimisation results is shown in
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Figure 7.6. The classification as a whole can generally be considered to be

an easy problem, with even the worst performing configuration obtaining

just under 85% accuracy in the classification of the validation set. The best

configuration correctly predicted 93.9% of the training set and 91.7% of

the validation set, generally suggesting that overfitting is not a substantial

problem. Using the best performer in the training set in order to avoid

bias, these results suggest the optimal parameters are 0.93 for the mutation

rate and 0.3 for the crossover rate. Whilst the crossover rate suggested is

somewhat low, it is apparent in the figure that higher crossover rates lead to

a general reduction of performance. These results complement an existing

extensive study into mutation and crossover, which suggests that crossover

acts merely as an extended form of the mutation operator, with mutation

giving the highest increase in performance [347] .

7.2.5 Fitness functions

Two varieties of the fitness function were tested: the class and age predictor

and the class predicate. The function listings are presented as BNF defini-

tions for C++, due to the language’s wide support. The complete function

listing is given in Appendix D and details the complete list of functions

available as nodes to the GP algorithm.

7.2.5.1 Class and age predictor

The class and age predictor (CA) seeks to predict both the class and age

of the observations. For the purposes of ST-GP age is defined as double.

The class is considered a boolean predicate where I = 1 and A = 0, which,

for the purposes of ST-GP is considered as boolean type. The combined

result of the prediction – the age and class object – is defined as being

of age and class type and comprises a tuple of age (double) and class

(boolean), as outlined in Figure 7.7.

The fitness function maps to the number of observations assigned into

the correct class, less a penalty based on the number of days out the age

prediction lies. Incorrect class predictions are a score of zero, per observa-
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(a) Training

(b) Validation

Fig. 7.6: Voronoi diagrams depicting the performance of the parameter values
tested. The crosses indicate the values tested, with the numbers below
indicating the dataset indicated below the image. The cells are shaded ac-
cording to the fitness values, with lighter colours indicate better perform-
ance (higher fitness). It can be seen that the performance of the training
and validation sets are similar, and both present relatively smooth fitness
landscape with optimal results towards the high-mutation, low-medium
crossover values.
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class and age

class : boolean
age : double

Fig. 7.7: UML diagram depicting the layout of the class and age structure.

tion.

fCA : {A,P} 7→

〈
argmin

(
AC

i = PC
i ,
|AA

i − PA
i |

maxnj=1A
A
j

)〉n

i=1

(7.1)

Here AA
i and PA

i represent the actual and predicted ages of the ith

element in each vector while AC
i and PC

i represent their classes. The class

equality operator (=) is defined as 1 for when the classes match, and 0

otherwise (i.e. a = b 7→ 1 − |a − b|). The angle brackets (〈〉ni=1) denote the

mean average of the set of predictions 1..n (i.e. 〈Xi〉ni=1 7→
∑

(Xi)
n
i=1/n).

The root function, root ca, maps each observation to 7→ PC
i and is

defined:

<root_ca> = <class_and_age>

Since the class and age structure is unique to the prediction the fol-

lowing functions are provided to the GP to yield and use this structure:

<class_and_age> ::= ( predictedClass = <double>,

class_and_age( predictedClass,

<double> ) )

<class_and_age> ::= ( predictedAge = <double>,

class_and_age( <bool>,

predictedAge) )

<bool> ::= predictedClass

<double> ::= predictedAge

The functions yielding class and age determine whether age or class is

predicted first whilst the functions yielding boolean and double are avail-

able to retrieve the predicted class or age for an observation once it has been

predicted, during the prediction of the other. Calling the retrieval functions

before the value is known returns 0.
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7.2.5.2 Class predicate

The class predicate (CR) seeks to predict the class for each of the test cases.

The fitness function is simply defined as the accuracy of the prediction or

the fraction of matching classes, fC :

fCR : {A,P} 7→
〈
AC

i = PC
i

〉n
i=1

(7.2)

To minimise the differences between the two predictors, excluding the

fitness function itself, all other features are identical.

7.3 Results and discussion

7.3.1 Prediction method

The mean classification rate, against generation, is shown in Figure 7.9. It

can be seen that the average training classification rate is noticeably higher

for the CR method than for the CA method. This may be unexpected given

that the CR fitness function is the classification rate, whilst the CA fitness

function also incorporates age into its fitness function. However, the average

accuracy of the validation set is almost identical for the two techniques,

averaging 90% for CR and 89% for CA. As ST-GP methods are inherently

stochastic, the Vargha Delaney A statistic provides a measurement of the

frequency with which one method will outperform another [348]. For our

ST-GP runs using the CR and CA methods, the A statistic indicates that in

56% of the cases CR will outperform CA in terms of classification accuracy.

Figure 7.10 provides insight into which observations are being incorrectly

classified by the two techniques, showing the average classification accuracy

of the validation set for each observation, over the generations, for each ST-

GP method. Regions of incorrect classification appear as dark bands in the

plot. The overlapping set of observations noted in Section 3.3 is clearly vis-

ible as two dark bands across the generational axis. Whilst getting “thinner”

as time goes due to the algorithm correctly predicting more the observations

at the edges of the bands, the ability to predict 6 observations located in

the band centres falls to 0% accuracy. These observations correspond to

4 replicates of warm-storage day 1 and 2 replicates of warm-storage day

5. A confusion matrix considering the observations predicted incorrectly

more than 50% of the time is shown in Table 7.3, alongside the results from
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the PLSR-LDA analysis presented earlier in Section 3.3. From this is can

be seen that both the CA and CR ST-GP methods achieve similar results,

with the late cold-storage (age = 27) observations in both cases being in-

correctly classified as warm-stored. PLSR-LDA meanwhile has a greater

tenancy to predict the early warm (age = 5) as cold. Interestingly the CA

classifier, having also predicted age, shows that rather than having incor-

rectly predicted the late cold samples as early warm ones, the samples are

instead predicted to be mid-range to late warm. The unexpected accuracy of

the age prediction may indicate age biomarkers independent of class. How-

ever, these predictions may be an artefact from an earlier stage of evolution,

since, according to the CA fitness function, there is no benefit to the clas-

sifier predicting age if it is unable to predict class. This second possibility

however, would require retention of unhelpful parts of the ST-GP-genome.

Another possibility is that the classifier is using the age to predict the class.

The function of the of the best predictor, however, shown in Figure 7.8,

indicates that the most effective algorithm favoured a class-first prediction.

7.4 Conclusion

Whilst the concurrent prediction of age with class was not found to confer

any additional benefit to the determination of storage conditions for the beef

data, ST-GP did allow a reasonably accurate determination of age with only

minor reduction (1%) in class prediction of the validation set. Whether a re-

duction of the fitness-function penalty exacted for age miscalculation could

remedy this discrepancy warrants attention in future work. Perhaps the

most beneficial factor of performing concurrent age prediction is in the in-

sight given into the incorrect predictions. It has been seen that, rather than

the incorrect predictions having been based upon the same set of “overlap-

ping” samples as PLSR-LDA (early-warm), the ST-GP predictor confused

late-cold with mid-to-late-warm.

Additionally, the use of GP allowed a greater number of the samples to be

classified correctly than PLSR-LDA with the additional benefit of selecting a

small number of variables with which the classification could be performed.

In addition to having a higher percentage accuracy, ST-GP was found to

predict class correctly for a different set of observations than PLSR-LDA,

suggesting that complementary methods could potentially be of use.
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Fig. 7.9: Comparison of class predictive accuracy between the CA and CR methods
for training (Tr) and validation (Val) data. The CR method provides
higher predictive accuracy than the CA method, with a difference of
around 1%.
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Fig. 7.10: Comparison of predictive accuracy of individual observations between the
CA and CR methods. Brighter regions (yellow) indicate higher average
predictive accuracy than darker (red) regions. Several “bands” of low
predictive accuracy can be seen. The corresponding experimental groups
for these regions are noted along the X-axis text.
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Actual Predicted
Age and class ID Age and class

C1 C1aa W13 C-1 W2 W18 W4
C1ac W13 C0 W4 C18 W4
C1ba W13 C1 W4 W18 W5

C25 C25ab W24 W10 W19 C17 W18
C26 C26ba W15 W11 C17 W17 W15

C26bb W17 W18 W13 W12 W17
C27 C27ba W8 W12 W18 W16 C14

C27bb W21 C15 W19 C17 W21
C28 C28ba W24 C31 C20 W27 W23
W1 W1ab C6 C4 C5 C8 C15

W1ac C6 C5 C7 C4 C5
W1ba W2 C2 W0 C8 C3
W1bb C28 W-4 C21 C24 C9
W1bc C15 C4 C2 C3 C3

W4 W4ab C13 C8 W7 W18 C9
W4ba C8 C18 C9 W8 W7
W4bc C27 W0 W21 C23 C12

W5 W5aa C11 C12 C13 C11 C9
W5ab C27 W15 C21 C24 C12
W5ac C11 C17 C10 C16 W9
W5ba C27 W13 C21 W23 C10
W5bc C13 W12 C10 C18 W14

W6 W6ba C13 W10 C13 C12 C11
W7 W7ab C28 W10 C21 C24 W6

Tab. 7.2: Table of actual and predicted values for the CA predictions (shown only
for cases incorrect in more than 50% of the runs). The second column
shows the unique sample ID.
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ID Class Age CA CR PLSR-LDA Total incorrect

W1ab W 1 × × × 3
W1ac W 1 × × × 3
W1ba W 1 × × × 3
W1bb W 1 × × × 3
W1bc W 1 × × × 3
W1aa W 1 · × × 2
W4ab W 4 × · × 2
W4ba W 4 × × × 3
W4bc W 4 × · × 2
W4aa W 4 · × · 1
W4bb W 4 · × × 2
W5aa W 5 × × × 3
W5ab W 5 × · × 2
W5ac W 5 × × × 3
W5ba W 5 × × × 3
W5bc W 5 × × × 3
W5bb W 5 · × × 2
W6ba W 6 × · × 2
W6aa W 6 · · × 1
W6ab W 6 · · × 1
W6ac W 6 · · × 1
W7ab W 7 × · × 2
W7bb W 7 · · × 1
W7ba W 7 · · × 1
W7bc W 7 · · × 1
W25ba W 25 · · × 1
C1aa C 1 × · × 2
C1ac C 1 × · × 2
C1ba C 1 × · · 1
C1bb C 1 · × · 1
C1ab C 1 · · × 1
C22bc C 22 · · × 1
C22bb C 22 · · × 1
C25ab C 25 × · · 1
C26ba C 26 × × · 2
C26bb C 26 × · × 2
C27ba C 27 × × · 2
C27bb C 27 × × · 2
C27ab C 27 · × · 1
C27bc C 27 · × × 2
C28ba C 28 × · · 1

Total 24 20 32

Tab. 7.3: Table of predictions for the CA, CR and PLSR-LDA predictors. For
CA and CR predictions are taken as incorrect when over 50% of the
trained programs failed to obtain the correct class classification in the
validation set. Only observations predicted incorrectly for at least one of
the predictors are listed. Incorrect predictions are denoted with a cross.
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The necessity of reporting the random number generator used in GP

studies has been previously reported [349]. The random number generator

used in this study is a variant of Donald Knuth’s original algorithm[345]

presented in [350, p. 283]. This offers a reasonable compromise between

computational speed and randomness. However, whilst still effective, this

variant is known to contain an error, not known at the time of writing, po-

tentially resulting in a lower random period than intended [351]. Given the

nature of GP this is unlikely to have a significant effect, as the primary con-

cern is that the search space is adequately covered, and the same generator

was used in all our tests, however further work would be required to confirm

this.

Perhaps the biggest drawback to ST-GP is the computational time re-

quired to execute the algorithm. As a stochastic method multiple runs

are required, taking over 1 day on a consumer laptop (Intel i3-2350M, 8Gb

RAM). In our particular case parallel execution performed more slowly than

serial execution, likely due to the need to marshal data at the processing

intersections, however by increasing population size faster convergence may

be accomplished, justifying the use of multi-core evaluation.



8. CONCLUSIONS

This thesis has explored the use of chemometric analysis in the understand-

ing of metabolomic data, identified problems and proposed solutions. This

chapter summarises the overall contributions, discusses their limitations,

and presents avenues for future research.

8.1 Individual contributions

In the field of metabolomics, new technologies and increased computational

power have provided both the need for, and means to develop, statistical

methods for the interpretation of large and complex datasets. In Chapter 2

an up to date review of the current computational technologies available to

chemometric analysis of metabolomic data was presented, with particular

attention to two of the most common and complementary techniques in

analytical chemistry, NMR and LC-MS.

As noted in the introduction1, the agricultural industry has many chal-

lenges. Several of these are exemplified with the datasets explored in this

thesis, including yield loss due to biotic and abiotic stresses (Medicago data-

set), herbicide resistance (Alopecurus dataset) and product misrepresenta-

tion (Beef dataset). Chapter 3 presented an analysis of these data using

several of the more common chemometric tools described in Chapter 2.

Although both the Medicago and Alopercurus analyses yielded a num-

ber of potential biomarkers, summarised in appendix A, some limitations

were encountered and discussed. Analysis of any experimental data can be

hindered by noise. In LC-MS-based metabolomic studies noise due to batch

differences is often present, usually as a major source of variance. This was

demonstrated to be the case for the Medicago dataset. Whilst traditional

batch-effect reduction methods rely upon the use of quality control samples,

Chapter 4 shows that these methods can, in certain circumstances, pro-

1 Chapter 1
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duce sub-optimal results or even exacerbate existing batch differences. A

novel, robust method of batch correction termed “background correction”

was therefore presented, using a profile generated from the samples in or-

der of LC-MS acquisition. In comparison to standard QC correction, this

method provided quantitatively good results in terms of the RSDs of rep-

licate samples. Furthermore, the PCA-MANOVA scores showed that differ-

ences between experimental groups were more pronounced post-correction

than for QC-based techniques, which is beneficial for further analyses. Cor-

rection of instrumental drift is ongoing research issue in the field of LC-MS

analysis. Recently, Wehrens et al. have applied correction methods, also

using the full set of experimental samples, to three datasets. These methods

have again shown to perform adequately in comparison to QC samples on

three datasets [352], with the authors advocating a possibility of reducing

the number of QC samples used in the analysis. It should be noted how-

ever, that both in this thesis and the paper by Wehrens et al., the datasets

contained replicate samples. Since replicate samples (including the QCs

themselves) may afford greater accuracy to full-data correction methods,

the accuracy of the method on datasets without replicates has yet to be

determined and, due to the use of replicates in determining the accuracy

itself, would likely prove a difficult task.

Post-batch-correction, the analysis of the stress datasets (Medicago and

Alopecurus), revealed a number of potential stress-responsive biomarkers.

However, both univariate and multivariate analyses produced results that

were difficult to interpret. In both cases, this was due to the large number

of resultant peaks providing no succinct set of targets for future analysis.

This was further complicated by the absence of a firm cut-off point above

which peaks could be classified as responsive to the experimental conditions.

In light of this, focus to the Medicago data was given in Chapter 5, which

introduced clustering as a means of dealing with a large number of variables

in an unbiased manner.

Clustering of metabolomic data was hindered by the presence of age-

related changes. The added combination of age-related metabolite time-

profiles made it difficult to identify the time-profiles mediated by the ex-

perimental conditions. Generation of a smoothed profile of the metabolite

intensities for the control group over time was shown to permit a control-

relative intensity matrix to be formed. The smoothing method avoided the
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transfer of excessive noise from the control samples into the other experi-

mental groups. Unlike a simple subtraction of trends this method permits

use of the full intensity matrix in future calculations. Generation of the

input vectors for clustering from a similar trend profile, calculated across

each experimental group, was demonstrated to be effective in order to both

increase the accuracy of the data by combining replicates and removed the

need to compare unpaired samples.

Metabolomic data is typically scaled to allow low-concentration but bio-

logically significant compounds to be detected. Even if data is not scaled,

distance metrics such as the Pearson Distance remain insensitive to scale

and produce the same results for scaled and unscaled data. The presence of

“flat profiles” therefore, can interfere with the clustering algorithm, since in

scale-free data, these become indistinguishable from noise. The use of the

full intensity-matrix obtained from the control-correction stage provided a

reference “flat” profile in the form of the control-corrected control group

samples. This profile, combined with a simple t-test was shown to be an

effective method of identifying these flat profiles. Discounting the identified

profiles from the clustering algorithm provided a more useful set of resulting

clusters.

Finally, it was suggested that the identification of multiple “tentatively

identified” metabolites within a cluster could be used to build up evidence

of pathway elicitation. Using this method several pathways were identified

from the data, which were supported by the existing literature.

One of the time consuming stages in analysis of metabolomic data such

as these is that the generation of the clusters from time-course profiles is not

a one step process. Notably, the set of parameters across the full pipeline is

not known up front to the researcher. A great deal of time is therefore lost

if it becomes apparent that the set of methods and parameters previously

used are not amenable to the current stage of analysis.

Chapter 6 suggests a dynamic software-driven workflow for the analysis

of metabolomic data. This is demonstrated with a working computational

analysis suite in which the effects of changes to parameters at one stage of

analysis can be visualised and their effects immediately determined further

down the line.

During visual analysis, the use of k-means clustering was found to either

produce qualitatively poor results, or took too long to optimise to facilitate
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rapid data exploration. As part of the software-mediated workflow, a modi-

fication of the probabilistic k-means++ algorithm was therefore developed

to select the most probable configuration. This gave results comparable to

optimised k-means, but without the computational overhead, making it well

suited to rapid visual exploration.

The initial analysis of the beef data indicated that beef stored in cool

(ideal) and warm (ambient) conditions presented a different set of metabol-

ite concentrations at different points in time. However, the presence of a

“crossover” point was noted. At this point short-aged beef, kept in ambient

conditions, could emulate “28 day matured” beef stored under ideal condi-

tions, with both sets of samples exhibiting highly similar chemical profiles.

Since this presents a window for product mislabelling, attempts were made

to determine whether the storage conditions of any given sample could be

identified. PLS-DA analysis gave reasonable classification results, though

however failed to determine the storage conditions of samples within a small

“early-ambient late-ideal” window. Furthermore, PLS-DA did not yield a

useful and concise set of metabolites responsible for the separation of exper-

imental groups, for instance, amenable to a rapid field test.

Strongly-typed-genetic-programming has been recently used in financial

trading [353] with good results, and, in the field of bioninformatics, to the

discovery of DNA motifs [354]. At the time of writing however, there are

no known applications of ST-GP in the field of metabolomics. Chapter

7 presented the use of strongly-typed-genetic-programming as a method of

overcoming the shortcomings of standard algorithms such as PLS-DA, noted

above. Here, the storage conditions of beef samples were determined con-

currently with the time for which they had been stored. The results of this

analysis suggested that there still remained a time-frame in which storage

conditions were indistinguishable, albeit with better results than PLS-DA.

The use of ST-GP was however able to yield additional information, pre-

dicting sample age concurrently with storage condition, whilst providing a

concise set of metabolites in the results.

The background correction method performed well on the Medicago data.

However additional work needs to be performed in order to assess its gener-

alisability. Whilst the algorithm does not consider QC samples to have any

special value, they were present in the data at regular intervals and may

have assisted in the generation of the trend. Hence, this study cannot con-
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clude that QC samples are not required. Any study comparing correction

with and without QC samples, nonetheless needs to address a variety of

datasets in order to separate QC-based differences from differences between

individually recorded data.

8.2 Future work

The generation of suitable clustering vectors requires good data. In the case

of the Medicago dataset, 3 replicates for 1 day intervals over a 12 day period

yielded a reasonable trend over time. However, for longer sampling intervals,

the purpose of the trend-generating function is not so clear. If the interval is

too long, the relationship between adjacent samples will not be present. In

these cases reliance on other methods, such as replicate averaging and more

complex outlier detection, would therefore be required. Additionally, while

the presence of a control-group was able to yield a control-relative intensity

matrix for Medicago, in the case of the Alopecurus data control correction

was not performed. Per-group input vectors were therefore used and found

to be effective in keeping the number of clusters manageable.

The accessibility of tools and algorithms to the experimental end-user

has become an increasing focus in bioinformatics [355, 356] and a number

of software packages which include a user-friendly interface have been de-

veloped to assist with data analysis in recent years (e.g. [124, 357, 358]). In

terms of the means of analysis, however, GUIs have been criticised in the

field of metabolomics for ultimately taking longer than script-based tools,

once users become familiar with the software [359]. However, they can as-

sist in the analysis of unknown data where a more exploratory approach

is required. It thus stands to reason that such visually driven workflows

are primarily of use in exploratory analysis where the user is not yet famil-

iar enough with the data they have acquired to justify using a predefined

workflow. However, such an exploratory analysis at, or soon after the point

of data acquisition, is often overlooked, especially by online tools requiring

extensive data upload and processing times. A GUI, by design, requires

user-presence and the visual workflow demands low computational cost in

order to be worthwhile and maintain user engagement. This in turn puts

constraints upon the algorithms selected. Existing tools are largely com-

prehensive, rather than use-case specific, requiring the user to design the
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workflow a-priori. In this thesis the analysis of metabolomic data specific

to time-course analysis has been extracted into a set of predefined stages,

from data acquisition to pathway analysis. User-engagement is additionally

considered and the use of methods amenable to give deterministic, rapid res-

ults as a preview of what more rigorous algorithms may accomplish. Whilst

the use of d-k-means++ was presented to facilitate this in our analysis, addi-

tional research would need to be conducted in order to guarantee similarly

near-optimal results with other datasets.

The ST-GP experiment presented here used only two classes of data

(boolean- and real-valued). Arguably, this is not reaching the full potential

of ST-GP and future research should address this by considering a wider

variety of data types. This would further permit a broader range of function-

ality to be explored since it is reasonable to hypothesise that better results

could be achieved by a richer function set. However, since the search space

grows exponentially with the number of functions, any additional research

on this matter would require more time, or, more preferably, additional

computational power, both of which incur their own associated costs.

The study of non-targeted metabolomic datasets is both a data-driven

and intuition-driven analysis. Whilst several statistical methods are avail-

able of determining an “optimal” set of results, there is no one-size-fits-all

solution. It was noted that both the computational cluster analysis pipeline

in Chapter 6 and the genetic-programming analysis described in Chapter 7

would serve better from increased computational power. Both methods re-

quire multiple iterations of the same procedures in order to optimise results,

either in terms of statistics such as silhouette width, or information criteria

for cluster analysis, or in terms of maximal fitness for genetic programming.

Repetitive iterations such as these are ideally suited to parallel systems such

as compute clusters. Future research may wish to explore this, not only in

the optimisation of individual clustering parameters, but potentially in the

entirety of the pipeline, reducing the need for the human mediator. Doing

this without falling back into a ”fishing-expedition” would inevitably present

a challenge.

Whilst clustering methods can provide results in and of themselves, they

are also highly suited to form part of a larger workflow themselves. Focusing

the analysis onto individual clusters can reduce the search space and thus

permit more computationally expensive analyses such as Bayesian network
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inference.

As with any data-driven analysis, the presence of additional data would

serve to strengthen any hypotheses made. The target of this thesis has

been metabolomic data sourced from LC-MS and NMR. In the analysis of

Medicago and Alopecurus a relatively simplistic m/z annotation method was

used. By improving the identification accuracy the accuracy of any pathway

predictions post-cluster analysis would also be improved.

The presence of more data could furthermore give weight to any res-

ults obtained and the application of concatenated datasets (for example

LC-MS+NMR) has seen use in several -omics studies [173]. Data-fusion

techniques, incorporating information from different fields, such as genomic

and proteomic data, have the potential to be highly useful. The Pathway

Tools databases used here incorporate information on mediating enzymes

and genes. Methods of combining results from transcriptomic and protein

profiling studies would present an avenue for future research that could yield

improved results. For the studies considered here, the presence of additional

data could serve to strengthen or refute the evidence in support of individual

metabolite or pathway elicitation.

This said, a noted problem in the validation of -omics studies is that

results are often compared to known values from the literature. Our know-

ledge of biological systems can be considered to be the set of the most overt

elements, which, as our very knowledge of their existence suggests, are un-

likely to possess the same features as those which have not been discovered.

Additional work is required to assess the ability of the methods discussed

here to elucidate these unknown unknowns.

Finally it should be noted that the analyses conducted have been primar-

ily hypothesis finding rather than hypothesis concluding. Many of the meta-

bolites and pathways named have only been tentatively identified. Addi-

tional work is required to confirm or reject the presence of any such ref-

erences and develop a deeper understanding of the underlying biological

processes.
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Appendix A

TABLES OF ELICITED PEAKS

FB DB D

Min

LN951 -0.381989349 LN294 -0.742223643 LN108 -0.485320135

LN886 -0.364821805 LN295 -0.736710805 LP848 -0.47708224

LN1032 -0.35521775 LN293 -0.733107218 LN224 -0.476269119

LN1026 -0.351240786 LN224 -0.716506101 LP832 -0.475621321

LN1018 -0.34909925 LP1499 -0.680140079 LP903 -0.471149449

Max

LN727 0.3841029 LN244 0.743798169 LN575 0.553468985

LP984 0.367566793 LN230 0.735670884 LN142 0.538512113

LP983 0.356894825 LN211 0.733185211 LN576 0.537729086

LP986 0.353871524 LN194 0.723249001 LN117 0.531880287

LP1010 0.351466818 LN292 0.64551783 LN118 0.530639408

F B

Min

LN956 -0.337424111 LN294 -0.460146432

LN437 -0.327765428 LN302 -0.45806947

LP1527 -0.322388165 LN295 -0.453685736

LP825 -0.317251024 LN304 -0.453421752

LN442 -0.311595774 LN291 -0.439784867

Max

LN727 0.52607581 LN244 0.551864543

LN574 0.508921974 LN230 0.541908398

LP904 0.498419817 LN211 0.525108256

LN963 0.460840356 LP964 0.516177345

LN149 0.443083785 LN540 0.491245881

Table of the peaks showing the strongest Pearson correlations with time for five com-

binations of experimental groups as outlined in Section 3.1.
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CLUSTERING OF MEDICAGO DATA

The tables on the following pages detail the results of clustering the Medicago

dataset using the d-k-means++ method. This results are for the combined

dataset, with “LN” denoting those peaks originating from the L– dataset

and “LP” those from the L+ dataset.
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Cluster 1 2 3 4 5 6 7 8 9
Count 78 22 30 25 4 70 25 47 44
Peaks LN108 LN134 LN42 LN102 LP2036 LN29 LN110 LN67 LN492

LN149 LN130 LN188 LN121 LP2035 LN32 LN814 LN116 LN1076
LN209 LN194 LN195 LN131 LP3157 LN74 LN896 LN162 LN1588
LN208 LN192 LN403 LN163 LP3587 LN76 LN893 LN312 LN1763
LN229 LN211 LN413 LN432 LN66 LN998 LN600 LP998
LN226 LN230 LN410 LN479 LN65 LN1070 LN599 LP1128
LN224 LN244 LN412 LN655 LN64 LN1261 LN678 LP1152
LN232 LN292 LN411 LN697 LN92 LN1367 LN686 LP1161
LN242 LN408 LN427 LN887 LN87 LN1369 LN754 LP1307
LN235 LN571 LN426 LN976 LN84 LN1366 LN762 LP1338
LN234 LN1030 LN544 LN992 LN147 LN1480 LN764 LP1346
LN243 LP964 LN611 LN1054 LN191 LN1720 LN785 LP1372
LN249 LP1042 LN1038 LN1294 LN328 LN1914 LN810 LP1381
LN248 LP1055 LN1148 LP984 LN415 LP883 LN866 LP1633
LN247 LP1396 LN1149 LP1027 LN430 LP1079 LN946 LP1815
LN258 LP1403 LN1184 LP1154 LN442 LP1109 LN933 LP1849
LN264 LP1473 LN1252 LP1162 LN438 LP1183 LN952 LP1976
LN270 LP1490 LN1253 LP1202 LN437 LP1250 LN950 LP1990
LN266 LP1503 LN1255 LP1203 LN444 LP1242 LN1031 LP2054
LN288 LP1960 LN1273 LP1275 LN464 LP2098 LN1057 LP2134
LN291 LP1968 LN1764 LP1420 LN651 LP2169 LN1066 LP2249
LN293 LP2033 LP130 LP2061 LP123 LP2168 LN1080 LP2266
LN295 LP577 LP2243 LP143 LP2429 LN1246 LP2310
LN294 LP706 LP2515 LP214 LP2987 LN1351 LP2363
LN304 LP1515 LP3311 LP218 LP3112 LN1470 LP2362
LN302 LP2569 LP211 LN1472 LP2546
LN301 LP2635 LP202 LN1629 LP2545
LN299 LP2897 LP204 LN1658 LP2535
LN307 LP2914 LP199 LN1894 LP2547
LN559 LP2912 LP205 LP664 LP2543
LN641 LP206 LP663 LP2538
LN706 LP196 LP693 LP2542
LN892 LP195 LP696 LP2532
LN1085 LP142 LP712 LP2539
LP745 LP201 LP1198 LP2534
LP859 LP193 LP1291 LP2552
LP855 LP190 LP1528 LP2548
LP849 LP188 LP1534 LP2585
LP848 LP191 LP1547 LP3241
LP857 LP192 LP2058 LP3248
LP948 LP194 LP2078 LP3260
LP1023 LP189 LP2242 LP3318
LP1378 LP484 LP2300 LP3671
LP1428 LP482 LP2342 LP3735
LP1433 LP476 LP2991
LP1442 LP658 LP3331
LP1443 LP656 LP3546
LP1451 LP710
LP1456 LP748
LP1464 LP759
LP1455 LP757
LP1465 LP784
LP1498 LP774
LP1502 LP825
LP1499 LP979
LP1545 LP1039
LP1552 LP1051
LP1574 LP1122
LP1580 LP1121
LP1565 LP1160
LP1577 LP1527
LP1573 LP1939
LP1578 LP1950
LP1561 LP1951
LP1562 LP1949
LP1553 LP1948
LP1591 LP1952
LP1593 LP1957
LP1588 LP2047
LP1596 LP2379
LP1597
LP1595
LP1557
LP1598
LP1600
LP2040
LP2113
LP2877
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10 11 12 13 14 15 16 17 18
76 83 75 39 8 77 63 68 36
LN9 LN81 LN90 LN57 LN540 LN433 LN99 LN14 LN322
LN198 LN80 LN97 LN465 LN658 LN519 LN148 LN53 LN390
LN197 LN88 LN137 LN656 LN867 LN574 LN133 LN30 LN852
LN193 LN86 LN212 LN675 LN884 LN592 LN152 LN77 LN1020
LN269 LN132 LN217 LN695 LP986 LN623 LN166 LN69 LN1190
LN282 LN246 LN222 LN941 LP983 LN625 LN213 LN120 LN1203
LN591 LN453 LN225 LN944 LP982 LN624 LN281 LN112 LN1229
LN824 LN496 LN236 LN943 LP1010 LN620 LN334 LN111 LN1267
LN900 LN495 LN257 LN935 LN619 LN512 LN127 LN1622
LN1023 LN560 LN262 LN961 LN631 LN663 LN125 LN1882
LN1333 LN578 LN268 LN957 LN644 LN719 LN156 LP701
LN1412 LN733 LN414 LN956 LN640 LN747 LN159 LP714
LN1444 LN740 LN469 LN965 LN666 LN753 LN167 LP751
LN1456 LN765 LN468 LN967 LN662 LN869 LN187 LP750
LN1475 LN790 LN483 LN1007 LN659 LN868 LN203 LP781
LN1569 LN786 LN672 LN1182 LN704 LN1006 LN200 LP765
LN1604 LN792 LN717 LN1189 LN701 LN1064 LN214 LP1034
LN1648 LN783 LN795 LN1395 LN707 LN1063 LN227 LP1059
LN1647 LN781 LN804 LN1486 LN727 LN1127 LN283 LP1191
LN1933 LN780 LN801 LN1612 LN729 LN1144 LN434 LP1308
LN1954 LN779 LN855 LN1807 LN766 LN1141 LN441 LP1299
LP18 LN858 LN853 LP107 LN767 LN1197 LN445 LP1367
LP17 LN850 LN870 LP153 LN791 LN1265 LN463 LP1517
LP90 LN864 LN924 LP220 LN891 LN1256 LN482 LP1646
LP93 LN885 LN942 LP660 LN890 LN1259 LN499 LP1647
LP94 LN899 LN1008 LP705 LN889 LN1258 LN501 LP1682
LP133 LN897 LN1011 LP860 LN904 LN1335 LN508 LP1683
LP315 LN926 LN1003 LP1923 LN898 LN1435 LN532 LP1905
LP367 LN969 LN1024 LP2039 LN927 LN1497 LN531 LP1906
LP505 LN989 LN1145 LP2221 LN963 LP1009 LN530 LP1908
LP554 LN986 LN1155 LP2225 LN980 LP1052 LN613 LP1911
LP480 LN982 LN1192 LP2369 LN1005 LP1057 LN618 LP2335
LP475 LN981 LN1250 LP2446 LN1004 LP1251 LN693 LP2469
LP653 LN1016 LN1373 LP2461 LN1017 LP1306 LN746 LP2746
LP685 LN1028 LN1477 LP2649 LN1071 LP1303 LN848 LP2768
LP846 LN1055 LN1476 LP2658 LN1073 LP1936 LN877 LP3442
LP1048 LN1065 LN1505 LP2867 LN1216 LP1984 LN920
LP1185 LN1101 LN1499 LP3368 LN1362 LP2093 LN918
LP1194 LN1180 LN1514 LP3496 LN1490 LP2099 LN913
LP1400 LN1204 LN1553 LP829 LP2198 LN934
LP1404 LN1205 LN1571 LP904 LP2317 LN929
LP1432 LN1551 LN1737 LP917 LP2396 LN1019
LP1482 LP732 LN1889 LP1040 LP2416 LN1132
LP1500 LP733 LN1899 LP1143 LP2650 LN1198
LP1504 LP735 LP687 LP1197 LP3054 LN1623
LP1508 LP731 LP831 LP1425 LP3053 LN1637
LP1636 LP730 LP1006 LP1448 LP3052 LP486
LP1792 LP729 LP1007 LP1575 LP3050 LP472
LP1818 LP746 LP1005 LP1937 LP3106 LP631
LP1841 LP755 LP1179 LP2111 LP3105 LP626
LP1843 LP761 LP1298 LP2118 LP3332 LP844
LP1855 LP756 LP1361 LP2116 LP3329 LP1076
LP1859 LP812 LP1383 LP2115 LP3330 LP1077
LP1866 LP818 LP1413 LP2137 LP3328 LP1068
LP2218 LP858 LP1416 LP2163 LP3325 LP1101
LP2264 LP873 LP1417 LP2162 LP3326 LP1097
LP2336 LP863 LP1427 LP2199 LP3374 LP1116
LP2457 LP919 LP1601 LP2219 LP3375 LP1126
LP2678 LP905 LP1606 LP2417 LP3372 LP1132
LP2692 LP954 LP1607 LP2424 LP3371 LP1131
LP3281 LP1016 LP1919 LP2425 LP3387 LP1330
LP3376 LP1030 LP2010 LP2430 LP3527 LP1512
LP3430 LP1021 LP2056 LP2463 LP3786 LP1526
LP3475 LP1037 LP2095 LP2485 LP1642
LP3509 LP1041 LP2100 LP2800 LP1652
LP3701 LP1046 LP2122 LP2799 LP2049
LP3769 LP1049 LP2154 LP2798 LP2184
LP3775 LP1063 LP2156 LP2796 LP2788
LP3778 LP1603 LP2182 LP2795
LP3795 LP2081 LP2214 LP2794
LP3807 LP2102 LP2209 LP2876
LP3810 LP2129 LP2215 LP2886
LP3818 LP2195 LP2339 LP2882
LP3820 LP2241 LP2467 LP2884
LP3824 LP2244 LP2464 LP2881
LP3825 LP2246 LP2885

LP2245 LP2878
LP2250
LP2253
LP2252
LP2419
LP2438
LP2594
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19 20 21 22 23 24 25
87 84 18 67 47 72 66
LN98 LN41 LN517 LN58 LN256 LN82 LN96
LN135 LN39 LN627 LN44 LN491 LN118 LN100
LN154 LN51 LN713 LN36 LN570 LN117 LN109
LN153 LN71 LN718 LN38 LN646 LN122 LN165
LN151 LN205 LN715 LN61 LN716 LN142 LN184
LN150 LN240 LN714 LN31 LN741 LN139 LN185
LN186 LN404 LN911 LN28 LN744 LN155 LN179
LN189 LN577 LN902 LN63 LN748 LN182 LN545
LN220 LN874 LN901 LN175 LN745 LN174 LN561
LN231 LN1048 LP835 LN173 LN763 LN171 LN589
LN245 LN1171 LP893 LN204 LN835 LN170 LN734
LN261 LN1339 LP1305 LN223 LN923 LN169 LN757
LN259 LN1345 LP1971 LN431 LN925 LN196 LN756
LN305 LN1353 LP2193 LN448 LN1079 LN201 LN822
LN300 LN1411 LP2192 LN486 LN1153 LN398 LN856
LN321 LN1432 LP2200 LN542 LN1230 LN423 LN876
LN504 LN1503 LP2197 LN557 LN1322 LN443 LN888
LN650 LN1606 LP2420 LN572 LN1400 LN515 LN997
LN667 LN1635 LN567 LN1548 LN510 LN1086
LN712 LN1649 LN732 LN1641 LN507 LN1115
LP881 LN1776 LN730 LN1705 LN566 LN1130
LP1376 LN1806 LN768 LN1944 LN576 LN1143
LP1377 LN1831 LN808 LP847 LN575 LN1159
LP1375 LN1871 LN812 LP889 LN603 LN1169
LP1382 LN1880 LN922 LP1213 LN607 LN1173
LP1379 LN1898 LN937 LP1232 LN602 LP740
LP1384 LN1907 LN1185 LP1226 LN601 LP753
LP1389 LN1947 LN1337 LP1205 LN617 LP845
LP1386 LP393 LN1492 LP1789 LN628 LP832
LP1385 LP374 LN1512 LP1802 LN679 LP836
LP1387 LP347 LN1734 LP1910 LN708 LP833
LP1392 LP314 LN1866 LP1935 LN731 LP842
LP1394 LP552 LP165 LP1944 LN831 LP853
LP1399 LP675 LP330 LP1954 LP474 LP907
LP1410 LP684 LP230 LP2140 LP676 LP906
LP1415 LP975 LP212 LP2175 LP690 LP903
LP1419 LP997 LP200 LP2176 LP742 LP952
LP1424 LP1167 LP249 LP2185 LP741 LP985
LP1431 LP1467 LP479 LP2208 LP762 LP1032
LP1435 LP1494 LP633 LP2207 LP764 LP1024
LP1438 LP1523 LP624 LP2217 LP795 LP1020
LP1429 LP1837 LP623 LP2216 LP777 LP1025
LP1445 LP1895 LP627 LP2895 LP823 LP1036
LP1444 LP1901 LP670 LP3094 LP824 LP1043
LP1450 LP1902 LP704 LP3298 LP843 LP1060
LP1441 LP2031 LP703 LP3297 LP1058 LP1106
LP1454 LP2150 LP816 LP3757 LP1089 LP1129
LP1452 LP2149 LP1104 LP1091 LP1176
LP1430 LP2223 LP1124 LP1080 LP1182
LP1457 LP2316 LP1123 LP1050 LP1180
LP1462 LP2319 LP1134 LP1135 LP1181
LP1460 LP2422 LP1133 LP1144 LP1211
LP1477 LP2427 LP1149 LP1141 LP1237
LP1478 LP2445 LP1146 LP1195 LP1300
LP1491 LP2516 LP1265 LP1208 LP1341
LP1544 LP2578 LP1397 LP1931 LP1535
LP1548 LP2588 LP1398 LP1938 LP1537
LP1551 LP2600 LP1481 LP1996 LP1539
LP1576 LP2679 LP2005 LP2002 LP1617
LP1563 LP2680 LP2004 LP2001 LP1985
LP1583 LP2757 LP2021 LP2019 LP2038
LP1581 LP2836 LP2020 LP2069 LP2059
LP1568 LP2899 LP2105 LP2068 LP2060
LP1579 LP2908 LP2605 LP2067 LP2112
LP1567 LP2928 LP2739 LP2070 LP2127
LP1558 LP3000 LP3802 LP2084 LP2555
LP1566 LP3012 LP3828 LP2083
LP1556 LP3037 LP2089
LP1560 LP3077 LP2090
LP1549 LP3080 LP2088
LP1559 LP3131 LP2087
LP1555 LP3145 LP2303
LP1554 LP3143
LP1564 LP3187
LP1590 LP3273
LP1587 LP3344
LP1594 LP3453
LP1609 LP3458
LP1612 LP3468
LP1659 LP3593
LP1661 LP3699
LP1662 LP3759
LP1660 LP3770
LP1664 LP3811
LP1666
LP1668
LP1669
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METABOCLUST USER GUIDE

C.1 System requirements

For large datasets, a 64-bit system with 8Gb RAM is recommended.

MetaboClust is dependent on the .NET framework. If you are running a

recent version of Windows it is more than likely that this is already installed

on your computer. If not you will need to download the installer version

(see below), or install the framework from one of the following URLs:

• Windows – download the Microsoft .NET from https://www.micro

soft.com/net/download

• Windows/Linux/Mac – download The Mono Project from http:

//www.mono-project.com/download/

C.2 Compiling from source

MetaboClust is written in C# using Visual Studio 2015. The source consists

of three projects, all of which must be downloaded:

https://www.microsoft.com/net/download
https://www.microsoft.com/net/download
http://www.mono-project.com/download/
http://www.mono-project.com/download/
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Project Relative path Contents Download

URL

MetaboliteLevels ./Metabolite

Levels/Metab

oliteLevels/

MetaboliteLe

vels.csproj

The main ap-

plication

https://bitb

ucket.org/mjr

129/metaboli

televels

MChart ./MChart/MCh

art/MChart.c

sproj

Charting lib-

rary

https://bitb

ucket.org/mjr

129/mchart

MGui ./MGui/MGui/

MGui.csproj

Helper library https://bitb

ucket.org/mjr

129/mgui

From the downloads page of each of the projects, select download repos-

itory. Unzip each of the downloads to a new folder on your disk. If any of

the above libraries show as missing make sure they are present in the correct

folder, or modify your solution to target the correct path.

MetaboClust also requires the following libraries. Initially these will

show as missing, but should be downloaded automatically by NuGet during

the first build. If you have disabled NuGet in VS2015 you will need to add

the libraries to the solution manually.

C.2.1 Running the source

Build and run the MetaboliteLevels project to start the application. Note

that due to optimisations being skipped, the application will run consid-

erably slower if the build mode is set to �debug� and/or a debugger is

attached.

• MathNet.Numerics

• RDotNet

• JetBrains.Annotations

C.3 Downloading binaries

If you are not compiling from source, download the application from https:

//bitbucket.org/mjr129/metabolitelevels/downloads. The downloads

./MetaboliteLevels/MetaboliteLevels/MetaboliteLevels.csproj
./MetaboliteLevels/MetaboliteLevels/MetaboliteLevels.csproj
./MetaboliteLevels/MetaboliteLevels/MetaboliteLevels.csproj
./MetaboliteLevels/MetaboliteLevels/MetaboliteLevels.csproj
./MetaboliteLevels/MetaboliteLevels/MetaboliteLevels.csproj
https://bitbucket.org/mjr129/metabolitelevels
https://bitbucket.org/mjr129/metabolitelevels
https://bitbucket.org/mjr129/metabolitelevels
https://bitbucket.org/mjr129/metabolitelevels
./MChart/MChart/MChart.csproj
./MChart/MChart/MChart.csproj
./MChart/MChart/MChart.csproj
https://bitbucket.org/mjr129/mchart
https://bitbucket.org/mjr129/mchart
https://bitbucket.org/mjr129/mchart
./MGui/MGui/MGui.csproj
./MGui/MGui/MGui.csproj
https://bitbucket.org/mjr129/mgui
https://bitbucket.org/mjr129/mgui
https://bitbucket.org/mjr129/mgui
https://bitbucket.org/mjr129/metabolitelevels/downloads
https://bitbucket.org/mjr129/metabolitelevels/downloads


Appendix C. MetaboClust User Guide 203

come in two flavours, Installer and Exe. MetaboClust is a stand-alone

application and should not require any special install, hence the Exe ver-

sion is fine. However, if a full installation is preferred, which includes the

.NET framework (if required), desktop and start-menu shortcuts and an

un-installer, the Installer version can be downloaded instead.

C.3.1 Running the stand alone version

After downloading and unzipping, launch MetaboliteLevels.exe to start the

application.

C.3.2 Running the installer

After downloading and unzipping, run Setup.exe and follow the on-screen in-

structions. The application will be installed using Microsoft ClickOnce – see

https://msdn.microsoft.com/en-us/library/t71a733d.aspx for troubleshoot-

ing and details. After the install you should be able to run the application

from your start menu, or by launching MetaboliteLevels.exe from the folder

you installed the application to.

Note

If an error message appears when you try to start the application, check

that the latest version of the .NET framework is installed and working.

https://msdn.microsoft.com/en-us/library/t71a733d.aspx
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C.4 Initial setup

When MetaboClust starts for the first time the initial setup screen shown

above is presented. This requires the following information.

Initial setup options

• Working directory – This is where the application stores its

data. By default this is the application’s home directory. The

default value should suffice in most case but can be changed (e.g.

if administrator permissions deny read-write access to that folder).

• Path to R – MetaboClust uses R to operate and needs to know

where R is located. Clicking the �select� button to the right

of the text box should automatically detect the location of R

and present a drop-down list of the versions of R available. If

MetaboClust cannot find an R installation, the path to R will

need to be specified manually. Pressing the �select� button (and

then, if required, the �browse� option) will prompt you to locate

the R installation. On Windows, R is usually located at C:

Program Files

R

R-x.x.x
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bin

x64, where x.x.x is the version. This folder can be identified by

the presence of the R library, R.dll.

• Pathway tools databases – MetaboClust uses Pathway Tools

databases to make identifications. If any databases are already

present on the system MetaboClust can be directed to them here.

If no databases are available the �select� button will offer a

default location which can be used to put the databases in when

you get some.

When you are done, click the �OK � button to commit the selections.

MetaboClust detects the presence of errors on most screens. The software

will check a connection to R can be established, and check to make sure

it has read/write access to the data folders. A greyed out �OK � button

indicates an error and a small red arrow should point in the direction of

anything amiss. Hover the mouse over the arrow for more details.

C.5 Loading data

Once the initial setup is completed the application will start on the data-

load screen shown above. The icon in the bottom right of the window

presents a drop down menu and the �edit paths and libraries� option here

will return you to the initial setup screen.
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C.6 Creating a new session

A MetaboClust “session” is a database of your data, annotations and ana-

lyses. You need to create a session before any analysis is performed. Select

�create a new session� on the data-load screen to create a new session. The

application will walk you through its creation.

Important note

Clicking the �show help� button (or in newer versions the icon) will

show a context sensitive help bar at the side of the screen containing

up-to-date details of the input fields. For inputs requesting files the

�show file format details� button within the help bar describes the

expected layout of input files.

Clicking the �Next� button progresses to the next stage of input. If

this greyed out a small red arrow will point to anything amiss. Hovering the

mouse over the arrow should describe the problem.

Loading data

• Template – Allows you to start from a previous setup. Normally

you will start with the �blank template�.

• Session name – For your reference only

• Data set

Source – If you have LC-MS data MetaboClust needs to

know how the adducts are formed. If the data is not sourced

from LC-MS, or automated annotations are not required, then se-

lect �Source = Other�, otherwise select the column mode. The

�Source = Mixed mode� option allows you to mix modes, but

your �peaks� file must then contain an extra column specifying

the mode of each peak ( �1 � or �-1 �).

Intensity matrix – The intensity matrix is a grid containing
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the recorded intensities, with 1 row per observation and 1 column

per variable (peak). Row and column headers must be provided

and must specify unique names for all observations and peaks. See

the help bar as described above for exact details.

Observation information – The observations matrix de-

scribes details about each observation, with one observation on

each row and one field of information in each column. Row headers

should contain the observation IDs as specified for the �Intensit-

ies� matrix and column headers should contain the field names.

Most fields are optional, but if you don’t specify them then some

features won’t work (for instance batch correction requires the

�batch� and/or �acquisition order� fields). Since the exact file

format may change with each release, please see the help bar in

the software itself for the list of fields (column headers) available.

Peak information – Like the observations matrix, this

provides details about each dependent variable. The software

refers to all dependent variable as peaks to avoid ambiguity with

other variables, such as algorithm parameters. Please see the help

bar for the list of fields available.

Alternate intensities – Sometimes another version of your

data may be available, such as one prior to noise removal or scal-

ing. The alternate intensities option allows this to be loaded in for

quick reference later. Aside from allowing you to view it, it will

have no effect on the actual analysis. This feature is not present

from version 1.2 as an unlimited number of intensity matrices can

be loaded from the file menu.

Condition names – If your experimental groups have unin-

tuitive names, such as “1”, “2” and “3” then this allows you to

map these to more a readable title.

• Conditions

Specify conditions – Details of the experimental groups can

be provided here. The conditions should be given as in your ob-

servation information file or, if present, your condition names file.

This information is not mandatory, but if specified the software

will be able to generate default statistics and filters (described
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later) for you. If you don’t specify the conditions these can still

be added manually later.

• Statistics

Auto-create statistics – You can choose to generate t-tests

for your experimental groups against control, as well as pear-

son correlations of your intensities for each group against time.

These options are not available if you didn’t specify the conditions

earlier. If you don’t do this, you can add the statistics manually

later.

Perform corrections – You can add the UV-scale and centre

data correction to your pipeline here. This and other corrections

can always be added or modified later.

• Compound libraries – These are the compound and pathway

libraries used for annotations and pathway analysis. One or more

of these must be selected to enable automated annotations. If

you don’t have any libraries on your system then the list will be

empty; see Section C.4 on how to specify a library folder.

Adduct libraries – These are the adduct libraries used for

automated annotations. There are two built into MetaboClust, All

and Refined. The All library contains all adducts listed at [321],

whilst the Refined library contains a common subset of these.

• Automated identification – This will annotate peaks with po-

tential metabolite identifications. The option will be unavailable

if required information is missing. If this is selected the �toler-

ance� must be specified, as well as the �annotation status� to

assign the automated annotations. These statuses are �tentat-

ive� (unconfirmed identity), �affirmed� (computationally con-

firmed) or �confirmed� (experimentally confirmed).

Peak-peak-matching – This annotates peaks with other

peaks based on m/z similarity and is primarily used to search

for related compounds.

Manual identifications – Manual identifications can be

loaded from disk. Again, see the help bar for the exact file format.
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The �annotation status� specified here will only be used if that

information is missing from the file itself.

When all the fields you wish to select are complete click the �OK � but-

ton to load the data. This may take a few minutes, especially if automated

peak-compound annotations are being performed. Saving the session will

avoid this delay in future.

C.7 Data exploration

Once you have created or loaded a session you will be presented with

the main screen, shown above. As there is no fixed set of steps in analysing

a dataset but a brief overview will be presented here. The images here are

taken from the analysis of the Medicago leaf data. This dataset comprises

184 observations and 2920 peaks, with four experimental groups (C, D, F ,

B), as well as QC samples. Peaks were automatically annotated using the

MedicCyc database [320].

C.8 Univariate statistics

Double clicking a peak in the list to the top-left of the window will present

a plot of the chosen peak should be displayed to the right. This is a useful

first step to ensure the data has loaded correctly.
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Graph controls

• Left or right click – Select point or series. Details on that point

will be displayed above the graph. Repeatedly clicking will cycle

through any overdrawn points.

• Left click and drag – Box-zoom

• Mouse wheel – Zoom in or out

• Middle click – Restore zoom and cancel selection

The �plot� button above the graph provides plotting options, in-

cluding exporting the plot to a file and toggling display of the legend.

To show more information about each peak, click the icon above

the peak list. Try showing one of the statistics:
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You should then be able to sort the column by that statistic, allowing

you to locate the most “significant” peaks:

Clicking �view as heatmap� will present a heatmap of the column. Note

that the peaks are ordered in the heat-map in the same order as the column,

so if you sorted the column first, the heat-map will be sorted as well and

will appear as a gradient.

To add univariate statistics, click the �stats� option from the tool-

bar, or select �Database/Workflow/Statistics� from the menu.
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Select �New� to create a new statistic.

Statistic fields

• Title – The title of your statistic. A name will be provided for

you if you don’t specify one. Clicking the icon provides space

to add detailed comments.

• Method – The statistic to calculate, click the button to the

right of the method to define your own methods.

• Parameters – If the method takes any parameters, enter them
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here. Multiple parameters are separated by commas. Clicking the

button next to the text-box displays the parameters as individual

inputs rather than a single-line text-box.

• Target – The intensity matrix to work on, from various stages

of your analysis. “origin” indicates the original intensity mat-

rix you loaded in and will be the only option until you perform

data-correction. Items marked with an asterisk designate dynamic

sources. Pre-version 1.2 only the latest two intensity matrices are

available, which are the latest set of observations ( �*final correc-

tion�) and trend ( �*final trend�).

• For or Compare – Selects the filter to input vector to the stat-

istic, defining the set of observations to use. Click the button

to define new filters.

• Against – Only available for bivariate statistics, specifies the

second input vector:

The corresponding time – The times corresponding to the

first input vector (e.g. to correlate intensity against time)

A different peak – The set of intensities corresponding to

the first input vector for a different peak (e.g. to find similar peaks)

The same peak – The set of intensities sourced from different

observations on the same peak (e.g. to contrast experimental and

control observations).

For instance to calculate the mean of the QC samples select �Method =

Mean� and �For = Group is Q�. The �Preview� box allows you to pre-

view the result of your calculation on individual peaks. Select �OK � when

you are done.

Click �OK � again to leave the �List editor�. Any new or modified

statistics will be recalculated. Edit the columns above the peaks list to show

your new statistic.
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C.9 Exploring annotations

The set of coloured icons above the list allows paging between the data-

base contents. If automated annotation was chosen when loading the data

try selecting the tab and viewing the annotations.

Double click an annotation to view it. Since annotations don’t have

graphs nothing will be displayed in the top-right, but the secondary list in

the bottom-left should update to reflect the selected annotation. Above the

secondary list select the �peak� tab to display the peaks associated with

the selected annotation. Double-click the peak which appears in the list to

plot the peak associated with the annotation.

Data exploration

Almost all of the data in MetaboClust can be explored in this way.

The primary list (top) selects items within the dataset, whilst the

secondary list (bottom) allows you to explore items within the context

of the primary selection. To select an item in the secondary list as the

primary selection, click its title above the list:

C.10 Multivariate statistics

An overview of your data can be obtained using PCA. Click the button

in the menu strip to launch the PCA window.

C.11 PCA

The PCA window presents a PCA plot of the dataset. The options to the

left control the method of PCA and the display of the scores.
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PCA controls

• Method – Switch between PCA and PLSR plots

• Source – Decide whether you are performing PCA on the obser-

vations or the variables (the peaks)

• View – Toggle between scores and loadings plots.

• Legend – Select what the colours on the graph represent

• Corrections – View your data with various corrections.a

• Input – Choose between performing PCA of all observations, or

just your trend line (useful for noisy datasets)1a

• Observations – Select a filter on the set of observations to explore

• Peaks – Select a filter on the set of peaks to explore

• View on main – Displays the selected peak or observation on

the main screen.b

• Mark as outlier – Applies an observation or peak filter, exclud-

ing the selected observation. 2b

• Next component – Views the next principal components

• Previous component – Views the previous principal compon-

ents

• Plot options – Displays the set of plot options, including toggling

display of the legend.

a Corrections and trends are defined from the main screen
b Requires an object in the plot to have been selected first

If your data was collected in batches for instance, click the Legend –

the Batch to colour the plot by batch.

Certain subsets of the data can also be selected, click the Observations

menu should show a list of observation filters, allowing you to filter on ex-
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perimental group. As when creating your statistic, if no filters are available

you can click �Observations/New filter...� to create a new filter. The same

can be done with peak filters by selecting �Peaks/New filter...�.

PCA can also be used for outlier removal. Click an observation in the

plot and select the mark as outlier button. A new filter will be created,

excluding that observation (or peak) from the dataset.

C.12 Data correction

Select �Correct� from the menu-bar of the main screen to open the cor-

rections list. It’s empty right now so click �new� to create a new one.

The data correction window presents a list of data-correction methods, as

well as trend generation methods. Data-correction methods, such as scaling

and centring act alone, whilst the trend-generators can be used to perform

batch correction and control correction.

Data correction options

• Title – As described in Section C.8.

• Source – As described in Section C.8.

• Method – As described in Section C.8.

• Parameters – As described in Section C.8.

• Source – As described in Section C.8.

• Operator – Only available for trend-based corrections. The cor-

rection takes the form x′ = f(x, t), where f is defined as / or

−. Generally a batch correction will use �divide�, and control

correction �subtract�.

• Filter – Only available for trend-based corrections. Selects the set

of points used to generate the trend

The preview window allows you to preview the correction on an indi-

vidual peak. For trend-based corrections the trend used will be highlighted
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to the left.

C.12.1 Examples

C.12.1.1 QC correction

Dividing by the mean of the QC samples in the batch is a fairly stand-

ard method of correcting for batch-differences in LC-MS, to use this select:

�Method = straight line across mean�, �Corrector = Batch�, �Operator

= Division� and �Filter = Group is Q�.

C.12.1.2 Background correction

To perform background correction, as described in Chapter 4 select �Method

= moving median�, �Corrector = Batch� and �Filter = All�. You will

need to enter the window width �w� parameter in this case. Experiment

with values to find one that looks good in the plot.

C.12.1.3 Scale and centre

Select �Method = UV scale and centre�. As a direct correction, rather than

a trend, there are no other options to choose. This correction should gener-

ally be performed after batch correction and therefore the �Source� para-

meter should point to the intensity matrix generated by your batch correc-

tion – QC or Background correction as described above.

C.12.2 Viewing corrections

Back on the main screen you will need to select your corrected dataset

before your changes can be viewed. Click �dataset� or the drop-

down list next to it to select your modified data. You can use the �*Final

correction� meta-option to always keep your display up-to-date with the

latest correction.

C.13 Trend line generation

You might have noticed the bold lines through 0 on your peak plots (or no

lines at all post-version 1.2). These are present because there is currently
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no trend line defined. Select �trend� from the tool-bar or �Database/-

workflow/trends� to define a trend.

You will be presented with a list much like the �correction� window.

(Pre-version 1.2 this will containing a �no-trend� entry, click �remove� to

get rid of it). Click �new� to create a new trend.

Trend options

The �New trend� options are largely the same as those described in

Section C.12.

C.13.1 Examples

C.13.1.1 Replicate removal

The simplest trend is the mean for each time-point. Select Method =

moving mean with value w = 1. (w is the window width for the mov-

ing mean – 1 simply indicates a window width of 1, effectively a mean of

replicates).

C.13.2 Viewing trends

Back on the main screen you will need to select your trend before your

changes can be viewed. Click �trend� or the drop-down list next to it to

select your modified data. You can use the �*Final trend� meta-option to

always keep your display up-to-date with the latest correction.

After selecting your trend any peaks you plot will use the specified trend.

C.14 Clustering

Clusters are created in the same way as corrections, statistics or trends.

Select the �Cluster� option from the tool-bar of the main window.

• Title – As described in Section C.8.
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• Method – As described in Section C.8.

• Parameters – As described in Section C.8.

• Peaks – Which peaks to cluster. Since some peaks can interfere

with clustering it can be good to filter them out. If you haven’t

got a suitable filter defined, select the icon next to the list.

• Distance – The distance metric to use. Whilst not used for ex-

ternally provided algorithms this is still used to calculate certain

statistics (next option).

• Parameters – Parameters to the distance metric, as described in

Section C.8.

• Statistics – Statistics to calculate for clusters

• Source – As described in Section C.8.

• Observations – The set of observations to use in the clustering

vectors

• One vector per experimental group – Normally one vector is cre-

ated per-peak, select this option to “split” the peaks into one

vector for each experimental group.

• Parameter optimiser – If the clustering algorithm takes parameters

this option can be used to optimise them using statistics such as

silhouette width or BIC.

Alternatively, selecting the �wizard� option from the main menu will

guide you through clustering using the d-k-means++ algorithm, which is a

deterministic variant of k-means developed for this software and useful for

rapid data exploration.

C.14.1 Viewing clusters

On the main screen click the �cluster� icon above the primary list to view

the clusters. Double click a cluster to plot it in the cluster plot area. Note

that clusters are always plotted using the vectors with which they were

created, so the �trend� and �dataset� visual options will have no effect
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on the cluster plot.

Clicking a vector within the cluster plot will select the peak associ-

ated with that vector as the secondary selection. Alternatively, select the

�peaks� tab from the secondary list to show a list of peaks assigned to the

selected cluster. Double clicking a peak in this list will plot the peak and

highlight it in the cluster plot.

If you want to see a quick overview of all clusters, then click the �View� and

�Popout� options above the list of clusters. By default each plot is scaled

to fit the plot area, so flat clusters may appear as noisy. To change this and

scale all clusters to the same Y-axis, change the plot options by going to the

�Prefs� window and setting the �Cluster� – �Y-axis range� to �Scale

to matrix�.

C.14.2 Metabolite and pathway exploration

With a cluster selected, clicking the �compounds� or �pathways� op-

tions will show compounds and pathways potentially highlighted by that

cluster. Double-clicking these compounds or pathways will highlight the

overlap between them and the cluster in the cluster plot. You can show or

hide the degree of overlap, or sort clusters by overlap, by selecting the

icon in the secondary list.

A reverse exploration can also be performed, selecting a �pathway� or

�compound� in the primary list will plot the trends of the peaks associated

with the pathway or compound in the cluster plot. (You can change the

�dataset� or �trend� in this case.) As for the clusters, selecting individual

trends will plot the actual peak. Selecting �clusters� in the secondary

list will show the clusters affected by peaks annotated with the pathway or

compound.

C.15 General options

• Show or hide observations from experimental groups – Click the group

icon in the main tool-bar to toggle group visibility, or select the
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�groups� icon.

• Rename groups, peaks, etc. – Select the �Database� menu to show

the database, then edit the group or peak. The groups database can be

accessed quickly from the �groups� icon in the tool-bar. Clicking

the name of the session in the top-right of the main screen allows you

to rename the session.

• Change display options – Select the icon from the tool-bar.

• Find out which files were used to create a session – Select �Help/Ses-

sion information� from the main menu

• Find an individual item – Click the �name� column of the peaks list

and select �filter� from the menu to search for individual items.

• Get an overview of the session, including peak and observation counds

– Select �View/Miscellaneous functions� and then �View statist-

ics� from the window that appears.

C.16 Known bugs

MetaboClust is beta software. A list of known bugs is maintained on the

download page. Please submit any bugs you find to this list.
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BNF FUNCTION LISTING FOR GP

The listing is given as a series of BNF definitions for C++. The unique ex-

pression Constant(min, max) represents a randomly generated constant of

the declaring type, between min and max, whose value is fixed once obtained.

*** ROOT ***

<root> ::= <class_and_age> // root function

*** CLASS_AND_AGE ***

<class_and_age> ::= ( predictedClass = <double>,

class_and_age( predictedClass,

<double> ) ) // predict class first

<class_and_age> ::= ( predictedAge = <double>,

class_and_age( <boolean>,

predictedAge) ) // predict age first

*** BOOLEAN ***

<boolean> ::= Constant(false, true) // constant

<boolean> ::= !<bool> // not

<boolean> ::= (<bool> && <bool>) // and

<boolean> ::= (<bool> || <bool>) // or

<boolean> ::= (<bool> ^ <bool>) // xor

<boolean> ::= (<double> == <double>) // equal to

<boolean> ::= (<double> < <double>) // less than

<boolean> ::= (<double> > <double>) // more than

<boolean> ::= (<double> >= <double>) // more than or equal to

<boolean> ::= (<double> <= <double>) // less than or equal to

<boolean> ::= (<double> != <double>) // not equal to

<boolean> ::= predictedClass

*** DOUBLE ***

<double> ::= Constant(0.0, 1.0) // constant
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<double> ::= (<double> + <double>) // add

<double> ::= (<double> - <double>) // subtract

<double> ::= (<double> * <double>) // multiply

<double> ::= (<double> / <double>) // divide

<double> ::= Sin(<double>) // sin

<double> ::= Cos(<double>) // cos

<double> ::= Tan(<double>) // tan

<double> ::= Max(<double>, <double>) // arg. max

<double> ::= Min(<double>, <double>) // arg. min

<double> ::= IEEERemainder(<double>, <double>) // remainder

<double> ::= data[<int>] // get variable

<double> ::= (data[<int>] / data[<int>]) // ratio of variables

<double> ::= ((data[<int>] + data[<int>]) / 2) // average of variables

<double> ::= predictedAge

*** INT ***

<int> ::= Constant(0, variable_count) // constant

<int> ::= ((int)<double>) // index from number
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LIST OF ABBREVIATIONS

d-k-means++ Clustering method based on k-means. 145, 150, 160, 165, 193,

197

k-means Clustering method. 127, 136, 144, 150, 190, 191

k-means++ Clustering method based on k-means. 136, 145, 150, 191

t-test Univariate statistic. 144

tr retention time. 22

B Experimental group of the Medicago study – both drought-conditioned

and Fusarium-inoculated. 62, 71, 74, 116, 132, 133, 146, 147, 209

C Experimental group of the Medicago study – unaffected plants. Experi-

mental group of the Beef study – cold stored. 62, 71, 74, 77, 90, 116,

146, 156, 172, 185, 186, 209

D Experimental group of the Medicago study – drought-conditioned plants.

62, 71, 74, 76, 116, 146, 147, 156, 209

F Experimental group of the Medicago study – Fusarium-inoculated plants.

Experimental group of the Beef study – frozen stored. 62, 71, 74, 77,

116, 146, 147, 209

L+ leaf-positive. 4, 9, 10, 63, 64, 66, 69, 102, 105, 107, 108, 123, 133, 197

L+/– leaf-combined. 66, 71, 74, 135

L– leaf-negative. 9, 63–68, 70, 105, 197

M Experimental group of the Alopecurus study – Multiple herbicide resist-

ant – a variety of herbicide resistant plant. 157, 159
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S Experimental group of the Alopecurus study – susceptible – a variety of

non-herbicide resistant plant. 157

T Experimental group of the Alopecurus study – Target site resistant – a

variety of herbicide resistant plant. 157, 159

W Experimental group of the Beef study – warm stored. 77, 90, 172, 185,

186

Z Day zero samples group of the Beef study. 77

Medicago truncatula A model legume. 115

1H NMR Variety of NMR specific to hydrogen-1 nuclei. 23, 32, 41, 42, 45,

46, 48, 50, 54, 55, 127, 129

ANN artificial neural network. 54

ANOVA analysis of variance. 40, 41, 46, 66

AP affinity propagation. 128, 129, 136

ASCA analysis of variance simultaneous component analysis. 42

autoscaled Scaled to unit variance and mean centred. 64

BASIC Beginner’s All-purpose Symbolic Instruction Code. 169

BNF Backus-Naur-form. 169, 171

CCA canonical correlation analysis. 48, 51, 52

CLASSY cluster analysis statistical spectroscopy. 56

CODA the component detection algorithm. 31

COSY correlation spectroscopy. 55, 56

COW covariance-optimized warping. 31

CSV comma separated value. 143, 146

CV cross validation. 56

CVA canonical variate analysis. 51
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CWT continuous wavelet transform. 30

DBSCAN density-based spatial clustering of applications with noise. 29

DTW dynamic time warping. 31

ECVA extended canonical variate analysis. 52

EIC extracted-ion chromatogram. 29, 35, 37

elicitor Substances that stimulate the formation of certain compounds in-

vivo. 115

ESI electrospray ionisation. 21

FID free induction decay. 27, 28, 39

FTICR Fourier transform ion cyclotron resonance. 21

FTICR-MS Fourier transform ion cyclotron resonance mass spectrometry.

28

FWHM full width at half maximum. 63

GA genetic algorithm. 54, 166, 167

GBA guilt-by-association. 115

GC gas chromatography. 21, 22

GC-EI-TOFMS gas chromatography—electron impact—time of flight mass

spectrometry. 46

GE grammatical evolution. 168, 171

GP genetic programming. 166–168, 171, 174

GPCA generalized principal components analysis. 44, 45

GPLS-DA generalized partial least squares-discriminant analysis. 51

GRN gene regulatory network. 115

HCA hierarchical cluster analysis. 127, 129, 144
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HPCA hierarchical principal components analysis. 46

HPLC high performance liquid chromatography. 22, 94

iPLS interval partial least squares. 51, 52

kNN k nearest neighbours. 54, 127

KOPLS kernel orthogonal PLS. 52

KPLS kernel PLS. 52

LC liquid chromatography. 21, 22, 94

LC-HRMS liquid chromatography–high resolution mass spectrometry. 94

LC-MS liquid chromatography–mass spectrometry. 21, 22, 24, 27, 29, 31,

35, 42, 46, 48, 49, 53, 54, 63–65, 68, 69, 98, 129, 146, 166

LDA linear discriminant analysis. 46, 48, 51

LN150 Leaf-negative peak #150, m/z = 279.0527967, rt = 2.059583333,

identify unknown. 71

LOD limit of detection. 28

LOO leave-one-out. 58, 72

MAD median absolute deviation. 43

MANOVA multivariate analysis of variance. 41

MEND matched filtration with experimental noise determination. 29, 37

MetaboClust Software package. 138, 141, 143, 153, 159, 163, 165, 201–203,
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MPA mobile phase A. 63, 94

MPB mobile phase B. 63, 94

MS mass spectrometry. 21–23, 33, 59, 63, 64, 94

MS-NRBF Microsoft .NET Remoting Binary Format. 143
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MSCA multilevel simultaneous component analysis. 42

NB naive Bayes. 54

NIPALS nonlinear iterative partial least squares. 48

NIR near infra-red. 52

NMR nuclear magnetic resonance. 21–24, 27, 28, 31, 35, 39, 41, 42, 44, 45,

49, 51, 54, 56, 59, 129, 166

NPCA non-negative principal components analysis. 44

OPLS orthogonal partial least squares. 49, 50, 52

OSC orthogonal signal correction. 49, 50

PAGA peak alignment using a genetic algorithm. 32

PC principal component. 42–44, 48, 64

PCA principal components analysis. 24, 31, 35, 38, 39, 42–45, 48, 49, 59,

64, 66, 82, 85, 101, 129, 143, 146

PCC Pearson correlation coefficient. 71, 72, 116, 123, 126

PCR principal components regression. 48

PLF partial linear fit. 32

PLS partial least squares. 50–52

PLS-DA partial least squares discriminant analysis. 31, 48, 51, 101

PLSR partial least squares regression. 48, 52, 143

QC quality control. 38, 63, 64, 66, 94, 95

RCCA regularized canonical correlation analysis. 51, 52

RMSECV root mean squared error of cross-validation. 51

RMSEP root mean squared error of prediction. 72
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ROI rectangular regions of interest. 35

RPLS regularised PLS. 51

RSD relative standard deviation. 99, 132, 189

RSPA recursive segment-wise peak alignment. 32

SGPCA sparse non-negative generalized principal components analysis. 44,

45

SMRS standard metabolic reporting structures. 58

SNR signal-to-noise ratio. 27

SPCA sparse principal components analysis. 82, 85

SPLS sparse partial least squares. 50

ST-GP strongly typed genetic programming. 171

STOCSY statistical total correlation spectroscopy. 55, 56

UML unified modelling language. 139

VIP variable importance in projection. 49, 72

WATERGATE water suppression by gradient tailored excitation. 27

XC-MS chromatography coupled mass spectrometry. 31
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[210] J. M. Fonville, M. Bylesjö, M. Coen, J. K. Nicholson, E. Holmes, J. C.

Lindon, and M. Rantalainen, “Non-linear modeling of metabonomic

data using kernel-based orthogonal projections to latent structures

optimized by simulated annealing,” Analytica Chimica Acta, vol. 705,

pp. 72–80, 2011.
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[316] C. Rüegg, “Math.net numerics,” 2015. [Online]. Available: https:

//numerics.mathdotnet.com/

[317] BioPAX.org, “Biopax : Biological pathways exchange,” 2014.

[Online]. Available: http://www.biopax.org/

[318] M. Corporation, “[ms-nrbf]: .net remoting: Binary format data

structure,” 2016. [Online]. Available: https://msdn.microsoft.com/e

n-us/library/cc236844.aspx

[319] S.-I. Ao and L. Gelman, Electronic Engineering and Computing Tech-

nology. Springer, 2010, vol. 60.

[320] E. Urbanczyk-Wochniak and L. W. Sumner, “Mediccyc: a biochemical

pathway database for Medicago truncatula,” Bioinformatics, vol. 23,

pp. 1418–1423, 2007.

[321] T. Kind, “Mass spectrometry adduct calculator,” 2010. [Online].

Available: http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/MS

-Adduct-Calculator

[322] M. Rusilowicz, M. Dickinson, A. Charlton, S. O’Keefe, and J. Wilson,

“A batch correction method for liquid chromatography–mass spectro-

metry data that does not depend on quality control samples,” Meta-

bolomics, vol. 12, pp. 1–11, 2016.

[323] A. G. Good and S. T. Zaplachinski, “The effects of drought stress on

free amino acid accumulation and protein synthesis in brassica napus,”

Physiologia Plantarum, vol. 90, pp. 9–14, 1994.

https://rdotnet.codeplex.com/
https://numerics.mathdotnet.com/
https://numerics.mathdotnet.com/
http://www.biopax.org/
https://msdn.microsoft.com/en-us/library/cc236844.aspx
https://msdn.microsoft.com/en-us/library/cc236844.aspx
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/MS-Adduct-Calculator
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/MS-Adduct-Calculator


BIBLIOGRAPHY 266

[324] S. Ramanjulu and C. Sudhakar, “Drought tolerance is partly related

to amino acid accumulation and ammonia assimilation: a comparat-

ive study in two mulberry genotypes differing in drought sensitivity,”

Journal of Plant Physiology, vol. 150, pp. 345–350, 1997.

[325] S. A. Hammad and O. A. Ali, “Physiological and biochemical studies

on drought tolerance of wheat plants by application of amino acids and

yeast extract,” Annals of Agricultural Sciences, vol. 59, pp. 133–145,

2014.

[326] “Plant metabolic pathway database (pnm/plantcyc),” 2016. [Online].

Available: http://www.plantcyc.org

[327] S. Clouse, “Brassinosteroids,” Current Biology, vol. 11, p. R904, 2001.

[328] M. Rusilowicz, “Martin rusilowicz,” 2015. [Online]. Available:

https://bitbucket.org/mjr129

[329] J. S. McKenzie, J. A. Donarski, J. C. Wilson, and A. J. Charlton,

“Analysis of complex mixtures using high-resolution nuclear magnetic

resonance spectroscopy and chemometrics,” Progress in Nuclear Mag-

netic Resonance Spectroscopy, vol. 59, pp. 336–359, 2011.

[330] E. Holmes, A. W. Nicholls, J. C. Lindon, S. Ramos, M. Spraul, P. Nei-

dig, S. C. Connor, J. Connelly, S. J. P. Damment, J. Haselden, and

J. K. Nicholson, “Development of a model for classification of toxin-

induced lesions using 1H NMR spectroscopy of urine combined with

pattern recognition,” NMR Biomed, vol. 11, pp. 235–244, 1998.

[331] G. G. Harrigan and R. Goodacre, Metabolic profiling: its role in bio-

marker discovery and gene function analysis. Springer, 2003.

[332] R. Goodacre, B. Shann, R. J. Gilbert, E. M. Timmins, A. C. McGov-

ern, B. K. Alsberg, D. B. Kell, and N. A. Logan, “Detection of the

dipicolinic acid biomarker in bacillus spores using curie-point pyro-

lysis mass spectrometry and Fourier transform infrared spectroscopy,”

Anal. Chem., vol. 72, pp. 119–127, 2000.

[333] A. Friedlander, K. Neshatian, and M. Zhang, “Meta-learning and fea-

ture ranking using genetic programming for classification: Variable

http://www.plantcyc.org
https://bitbucket.org/mjr129


BIBLIOGRAPHY 267

terminal weighting,” in Evolutionary Computation (CEC), 2011 IEEE

Congress on, Conference Proceedings, pp. 941–948.

[334] J. R. Koza, “Human-competitive results produced by genetic program-

ming,” Genetic Programming and Evolvable Machines, vol. 11, pp.

251–284, 2010.

[335] J. H. Holland, Adaptation in natural and artificial systems: An in-

troductory analysis with applications to biology, control, and artificial

intelligence. U Michigan Press, 1975.

[336] R. Forsyth, “Beagle - a darwinian approach to pattern recognition,”

Kybernetes, vol. 10, pp. 159–166, 1981.

[337] M. O’Neil and C. Ryan, Grammatical evolution. Springer, 2003, pp.

33–47.

[338] F. Rothlauf and M. Oetzel, On the Locality of Grammatical Evolution,

ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2006, vol. 3905, book section 29, pp. 320–330.

[339] T. Castle and C. G. Johnson, Positional effect of crossover and muta-

tion in grammatical evolution. Springer, 2010, pp. 26–37.

[340] D. J. Montana, “Strongly typed genetic programming,” Evolutionary

computation, vol. 3, pp. 199–230, 1995.

[341] B. Liskov and S. Zilles, “Programming with abstract data types,” in

ACM Sigplan Notices, vol. 9. ACM, Conference Proceedings, pp.

50–59.

[342] Y. Shichel, E. Ziserman, and M. Sipper, GP-Robocode: Using Ge-

netic Programming to Evolve Robocode Players, ser. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2005, vol. 3447, book

section 13, pp. 143–154.

[343] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of

three methods for selecting values of input variables in the analysis of

output from a computer code,” Technometrics, vol. 21, pp. 239–245,

1979. [Online]. Available: http://www.jstor.org/stable/1268522

http://www.jstor.org/stable/1268522


BIBLIOGRAPHY 268

[344] J. Jeronen, “Orthogonal sample,” 2010. [Online]. Available:

https://yousource.it.jyu.fi/∼jumijero

[345] D. E. Knuth, The Art of Computer Programming, Volume 2: Semin-

umerical Algorithms. Third edition. Addison-Wesley, 1997.

[346] Microsoft, “Random class,” 2016. [Online]. Available: https:

//msdn.microsoft.com/en-us/library/system.random.aspx

[347] D. R. White and S. Poulding, A rigorous evaluation of crossover and

mutation in genetic programming. Springer, 2009, pp. 220–231.

[348] A. Vargha and H. D. Delaney, “A critique and improvement of the CL

common language effect size statistics of McGraw and Wong,” Journal

of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,

2000.

[349] J. M. Daida, D. S. Ampy, M. Ratanasavetavadhana, H. Li, and O. A.

Chaudhri, “Challenges with verification, repeatability, and meaning-

ful comparison in genetic programming: Gibson’s magic,” in Pro-

ceedings of the 1st Annual Conference on Genetic and Evolutionary

Computation-Volume 2. Morgan Kaufmann Publishers Inc., Confer-

ence Proceedings, pp. 1851–1858.

[350] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C, 2nd ed. Cambridge Univiersity Press, 1992.

[351] ytosa and M. Corporation, “Visual Studio – System.Random serious

bug,” 2011. [Online]. Available: https://connect.microsoft.com/Visua

lStudio/feedback/details/634761/system-random-serious-bug

[352] R. Wehrens, J. A. Hageman, F. van Eeuwijk, R. Kooke, P. J. Flood,

E. Wijnker, J. J. Keurentjes, A. Lommen, H. D. van Eekelen, R. D.

Hall et al., “Improved batch correction in untargeted MS-based meta-

bolomics,” Metabolomics, vol. 12, no. 5, pp. 1–12, 2016.

[353] V. Manahov, “The rise of the machines in commodities markets: new

evidence obtained using strongly typed genetic programming,” Annals

of Operations Research, pp. 1–32, 2016.

https://yousource.it.jyu.fi/~jumijero
https://msdn.microsoft.com/en-us/library/system.random.aspx
https://msdn.microsoft.com/en-us/library/system.random.aspx
https://connect.microsoft.com/VisualStudio/feedback/details/634761/system-random-serious-bug
https://connect.microsoft.com/VisualStudio/feedback/details/634761/system-random-serious-bug


BIBLIOGRAPHY 269

[354] M. Belmadani, “MotifGP: DNA motif discovery using multiobjective

evolution,” Ph.D. dissertation, University of Ottawa, 2016.

[355] V. Sarpe and D. C. Schriemer, “Supporting metabolomics with adapt-

able software: design architectures for the end-user,” Current Opinion

in Biotechnology, vol. 43, pp. 110–117, 2017.

[356] H. R. Eghbalnia, P. R. Romero, W. M. Westler, K. Baskaran, E. L.

Ulrich, and J. L. Markley, “Increasing rigor in NMR-based metabolo-

mics through validated and open source tools,” Current opinion in

biotechnology, vol. 43, pp. 56–61, 2017.

[357] B. Jagla, B. Wiswedel, and J.-Y. Coppée, “Extending KNIME for

next-generation sequencing data analysis,” Bioinformatics, vol. 27,

no. 20, pp. 2907–2909, 2011.

[358] E. Afgan, D. Baker, M. Van den Beek, D. Blankenberg, D. Bouvier,
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