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Abstract 

The declining reserves of fossil fuel twined with an increasing concern about the environmental 

consequences of burning these fuels and rising carbon dioxide levels, means that a more 

sustainable replacement is required. Lignocellulosic biomass is an attractive candidate that has 

been shown to be the best sustainable alternative source to produce bioethanol for liquid 

transportation fuels. It has enormous availability, is renewable and cost-effective. As an 

agricultural residue, it does not compete with food production. However, lignocellulosic 

biomass of plant cell walls is composed mainly of cellulose, hemicellulose and lignin, which are 

extremely resistant to digestion. Converting this biomass to useful products of fermentable 

sugars for bioethanol production has met with little success as harsh pretreatment and costly 

enzyme applications are required. An arsenal of enzymes and a synergistic mechanism are 

required to deconstruct recalcitrant lignocellulosic biomass for an efficient production of 

lignocellulosic bioethanol. To achieve this goal, this study used transcriptomic and proteomic 

approaches with the objective of identifying new genes and enzymes involved in lignocellulose 

degradation. This revealed that the only one AA10 of Cellulomonas fimi was among the highest 

enzymes identified during the degradation of cellulose. Another other 20 hypothetical proteins 

co-expressed with CAZymes have been identified including a potentially exclusively new C. fimi 

β-glucosidase (PKDP1) that contains a PKD-domain and oxidoreductase predicted function of 

PQQ-domain. A naturally mutagenized C. fimi population also was screened from an adaptive 

evolution experiment involving exposure to a wheat straw environment. One of the strains in 

the adaptive population (Strain-6) showed a higher association with wheat straw biomass, which 

may be an indication of the strategy that being used by the adapted strain to tackle obstinate 

substrates to sustain growth. These results show many new enzymes would be revealed from 

the C. fimi repertoire in order to have a better enzymatic cocktails for lignocellulose breakdown. 

For the future, this encourages a deeper understanding of lignocellulose deconstruction 

mechanisms by an orchestra of multiple enzymes in a bacterial system. 
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1 Introduction 

1.1 WORLD’S TREND ON WATER-FOOD-ENERGY DEMAND 

The demand for water, food, and energy are predicted to increase by 40, 35, and 50 percent, 

respectively in the coming decades (1).  This leads to the deďate oŶ ͚resourĐe sĐarĐitǇ͛ ǁhere 

the scientific findings suggest that humanity has exceeded the planetary boundaries and is 

threatening its own safety (2). Water, food and energy resources are tightly interconnected, 

forming a policy nexus (3,4) that is being discussed all over the globe by policy makers and  

scientists looking for solutions  for sustainable development planning (Figure 1.1). 

 

 

Figure 1.1: The world’s treŶd deŵaŶd aŶd policǇ Ŷeǆus. 

It is predicted that by 2030 the world will need to produce around 50 per cent more food and 

energy, together with 30 per cent more fresh water, whilst mitigating and adapting to climate 

change. Illustration is reproduced from Beddington (5). 

 

1.1.1 Global resources insecurity and climate change 

Water is important for life and is a vital resource for the economy. It is also plays a fundamental 

role in the climate regulation cycle. Therefore, the management and protection of water 

resources is one of the keystones of environmental protection (4). Water insecurity caused by 

unmonitored development and environmental stress such as climate change may have a 

material impact on the economy. Climate change is the change in climate parameters such as 

regional temperature, precipitation, or extreme weather caused by increase in the greenhouse 
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effect. It is significantly impacted by agriculture due to increasing water demand, limiting crop 

productivity and reducing water availability in areas where irrigation is most needed (4). Several 

other sectors can also cause climate change; e.g. from burning activities by the release of CO2 

from fossil fuel combustion and an underestimated source of greenhouse gases (GHG) emissions 

that is anticipates from tropical deforestation (6–8). The term Greenhouse gases refers to gases 

that contribute to the effect by absorbing infrared radiation (heat). The greenhouse effect is the 

process where the greenhouse gases (water vapors, CO2, methane, etc.) in the atmosphere 

absorb and re-emit heat being radiated from the Earth, hence trapping warmth that causes 

global warming (9). Global climate change is linked to the accumulation of greenhouse gases 

which causes concerns regarding the use of fossil fuels as the major energy source. To mitigate 

climate change while keeping energy supply sustainable, one proposal solution is to rely on the 

ability of microorganisms to use renewable resources for biofuel synthesis. Figure 1.2(A) shows 

the percentage of global greenhouse gas emissions from a study conducted by 

Intergovernmental Panel on Climate Change (IPCC) from 2010 (10).  Electricity, heat production 

(25%) as well as agriculture, forestry and other land use (24%) contributed the most greenhouse 

emissions followed by transportation sector (14%). The increment production of GHG and black 

carbon emission are among the disadvantages of human activities that create a serious 

environmental concern. A study showed that the emission of CO2 is projected to be increased 

since 1750 towards 2050 (Figure 1.2(B)).  

 

Figure 1.2: Proportions of global greenhouse gas emissions by economic sectors (A) and the 

projection of CO2 emission (B).  

A) Six major economic sectors that use energy and produce GHG based on a global emissions 

study from 2010 reported in IPCC report, 2014 (10). B) Projection of global carbon dioxide 

emissions from fossil fuel burning since 1751 to 2012 (11).  
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Large scale tropical deforestation caused by burning activities in countries such as Indonesia as 

well as the burning of agricultural residues which occur particularly in developing countries e.g. 

in India and Vietnam cause toxic and severe air pollution (8). The National Aeronautics and Space 

Administration (NASA) revealed the severity of these activities from the satellite images taken 

from space (Figure 1.3). The maps revealed that stubble-burning was not widespread in 2000. 

However, the problem had grown alarmingly by 2002 and continues to be a major health hazard.  

 

Figure 1.3: Fires from open burning in India and Indonesia detected by NASA satellites. 

A) NASA satellite pictures reveal the evolution of paddy-stubble burning problem in Punjab, 

India since 2000. Each orange dot represents 1 sqkm2 area where significant fires were 

observed. Each map shows cumulative farm fires from Oct 1 to Nov 10, each year. Images are 

reproduced from an article in 2015 by Amit Bhattacharya (12). B) Fires in Sumatra, Indonesia 

deteĐted ďǇ NASA͛s Moderate ResolutioŶ IŵagiŶg Spectroradiometer (MODIS) sensor in 2013. 

Fires set for deforestation/land clearing in Indonesia triggered health warnings in Singapore and 

most parts of Malaysia. Images courtesy of Google Earth and NASA, reproduced from an article 

from The Economist (13). 
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The NASA images are clear proof that widespread crop burning has become a major contribution 

to air pollution and GHG emission specifically in Asian countries. These are among the examples 

that emission of CO2 and GHG contribute to the net carbon change in the atmosphere which 

trigger the climate instability and result in global warming (6). Black carbon emissions are a 

potential danger to human health and may cause premature deaths (14). The real scenarios are 

happening on the ground when the farmers burn fields to clear crop stubble left after harvest. 

However, as many farmers cannot afford to spend extra money to use a tractor and plough 

stubble into the earth to be decomposed, open-burning of the stubble became the fastest and 

cheapest option. To decompose the stubble, the farmers have to further invest in watering 

systems. As this process takes time, it is not favorably practiced. Furthermore, the quality of the 

stubble after being harvested using a machine is not usable as fodder and could not be recycled 

into cardboard (15).  

 

The International Energy Agency (IEA) are targeting a 50% reduction of greenhouse gasses by 

2050 (16). Several technologies for generating bioenergy to produce heat and power already 

exist, ranging from conventional solid wood heating installations for buildings to biogas 

digesters for power generation, to large-scale biomass gasifications, as well as the production 

of biofuels especially for transportation sector (16). Renewable sources for the generation of 

electricity and heat and can be produced from tidal and wind energies. However, these 

resources cannot be utilized as fuels; particularly liquid fuel for transportation. Therefore, the 

only way to produce sustainable renewable liquid fuels is through the use of renewable 

biological products to create biofuels. 

 

1.2 BIOETHANOL AS A BIOFUEL 

Biofuels are produced by the conversion of biomass into liquids or gases, such as ethanol, lipids 

as biofuel precursors, biogas, or hydrogen, via biological or thermal processes. Bioethanol 

(CH3CH2OH) is a liquid biofuel which can be produced from several different feedstocks. 

Bioethanol can be used as a chemical in industrial applications or as fuel for energy generation; 

neat or blended with gasoline or diesel fuels. Biofuels can be broadly divided into first 

generation and second generation. Briefly, first generation bioethanol is mainly produced from 

edible crop feedstock by fermenting starch or sugars. The issue with first generation fuels is that 

their use of food commodities adds stress to world food security in an unsustainable manner. 

Second generation biofuels are produced from woody, non-food (lignocellulosic) plant biomass 
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such as crop residues or dedicated biomass crops. This is achieved via several pretreatments 

steps of the biomass, enzymatic hydrolysis and fermentation of the resulting sugars.  

 

1.2.1 First generation of biofuel 

Currently, first generation biofuels are sourced from crops such as starch, sugar, vegetable oil 

as energy-containing molecules, or even animal fats processed by conventional methodologies. 

First generation biofuels offer benefits for reducing CO2 emission and can aid to improve 

domestic energy security. Biodiesel (bio-esters), bioethanol and biogas are the examples of the 

first generation biofuels that have been categorized by its ability to be blended with petroleum-

based fuels and combusted in existing internal combustion engines (17,18). The production of 

first generation biofuels is now commercially competitive with the largest ethanol producing 

countries, United States of America (USA) and Brazil being responsible for the production of 54 

x 106 and 21 x 106 m3 in 2011, respectively (19). However, the source of feedstock raised 

concerns on the possible impact on biodiversity and land use; besides the competition with food 

crops (17). The disadvantage with these first generation biofuels is that they compete for 

resources with food commodities, adding to the stress on world food security brought about 

the growing global human population. This apparent conflict greatly limits the amount and 

sustainability of the biofuels that can be produced. One way in which the food security issue can 

be avoided is by producing biofuels from the woody non-food parts of crops and other residues. 

 

1.2.2 Second generation of biofuel 

Second generation bioethanol can be produced by fermenting sugars from the lignocellulosic 

biomass of dedicated bio-energy crops e.g. miscanthus, or those from co-products such as cereal 

straw (20). Three major steps are involved in biomass-to-ethanol process; 1) biomass 

pretreatment and fractionation, 2) enzymatic hydrolysis of cellulosic fraction, and 3) 

fermentation of the derived sugars to ethanol. Many factors contribute to the overall costs of 

producing biomass derived ethanol, however, the feedstock cost has been reported to be 

among the highest (21). To reduce these costs, one of the possible ways forward is by making 

use of underutilised biomass materials such as wheat straw from agricultural farms. In England, 

there is a potential cereal straw supply of 5.27 million tons (Mt) from arable farm types; 3.82 Mt 

are currently used and 1.45 Mt currently chopped and incorporated (22). Approximately 10 Mt 

of cereals straw was generated from 3 million hectares of wheat, barley, and oats in 2015 

(23,24). Of this, 75% of straw is used for animal bedding, 23% is chopped and recombined into 
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the soil, and 2% is used for the mushroom compost. Wheat straw is an example of lignocellulosic 

biomass which comes from an agricultural by-product by harvesting the cereal grains. There 

could be up to 1.4 million tons of wheat straw per annum available for the potential sectors such 

as the biofuel industry in the UK alone (25). The variations in regional straw yields (t ha-1) have 

a great effect on the England supply of straw and the potential amount of bioethanol that can 

be produced. This shows that commercially competitive substrates are available. However, 

biomass digestibility is still a major challenge. Thus, a few approaches still need to be improved; 

1) to make biomass more digestible without compromising crops yield, and 2) to apply more 

effective pretreatments and enzymes for bioethanol conversion (26). 

 

1.3 LIGNOCELLULOSIC BIOMASS 

Lignocellulosic biomass is an attractive resource for fuel and biochemical production due to its 

abundance in nature. Waste biomass, the stalks of agriculture crops such as wheat and paddy, 

corn stover and wood can serve as raw materials. One of the attractions of woody plant biomass, 

or lignocellulose, is that it is rich in polysaccharides that can be converted into sugars for 

fermentation. However, one of the reasons that lignocellulose is abundant is because it is hard 

to break down into simple sugars due to its naturally durable structure. The plant cell wall is a 

structure characterized by a network of polysaccharides, structural proteins, and phenolic 

compounds. This network of polymers protects the plant against external stresses and provides 

structural and mechanical support to plant tissues. It is biochemically resistant mainly due to 

the presence of polyphenols  called lignin that serve as protection and natural barrier of the 

plant against hydrolytic enzymes produced by microorganism in nature (27). The chemical 

composition and mechanical properties make plant cell walls a rich source of chemicals and 

fermentable sugars for the production of biofuels as it is comprised of roughly 70% 

polysaccharides that can potentially serve as a source of fermentable sugars (28). Plant cell walls 

are classified as primary and secondary cell walls. Both are different in their physiological roles 

as well as their chemical composition. Primary cell walls are located around dividing and 

elongating cells which consists of a large proportion of polysaccharides (cellulose; 40-50%, 

hemicelluloses; 20-40%, and pectin; 20-30%). Secondary cell walls are made up of cross-linked 

hetero-matrix of cellulose, hemicelluloses, and lignin and are laid down on the interior of the 

primary cell walls (Figure 1.4). The relative abundant of these three polymers varies depending 

on the type of biomass (29).  
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Figure 1.4: Illustration of a plant cell walls.  

The features of the plant cell wall are shown.  Relative thickness of the cell wall layers, relative 

abundance and specific localization of the various cell wall components, such as pectin, 

cellulose, hemicellulose, lignin and protein are illustrated. Image is reproduced from 

Achuyathan et al., 2010 (30). 

 

1.3.1 Cellulose 

Cellulose is the main component of plant cell walls and the most abundant organic compound 

in terrestrial ecosystems. A linear cellulose polysaccharide consists of hundreds to over ten 

thousaŶd β-1,4 linked glucose units (Figure 1.5A). The cellulose chains aggregate into 

microfibrils via hydrogen bonding and van der Waals interactions shows in Figure 1.5B (31,32). 

These microfibrils are crystalline, non-soluble, and challenging for enzymatic saccharification. 

Consecutive sugars along chains in crystalline cellulose are rotated by 180 degrees, meaning 

that the disaccharide (cellobiose) is the repeating unit. Cellulose tends to contain both well-

ordered crystalline regions and disordered, more amorphous regions. While its recalcitrance to 
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enzymatic degradation may contribute problems, one big advantage of cellulose is its 

homogeneity. Complete depolymerization of cellulose yields just one product, glucose. Cellulose 

deconstruction is critical to ecosystem functioning and the global carbon cycle. Only selected 

lineages of fungi and bacteria have evolved the ability to efficiently degrade this highly 

recalcitrant substrate (33). 

 

 

Figure 1.5: Overview of cellulose structure. 

A) Cellulose chain (partial structure) consists of glucose monomers depicting an internal network 

of hydrogen bonds. The carbon numbering scheme is depicted on one glucosidic unit. Image is 

reproduced from Hemsworth et al., 2013 (34). B) SiŵplistiĐ sketĐh of a β-cellulose microfibril. 

Parallel cellulose chains aggregate into crystalline structures called microfibrils.  Illustration is 

reproduced from Horn et al. (35). 

 

1.3.2 Hemicellulose 

Hemicelluloses are a large group of polysaccharides found in the primary and secondary cell 

walls. Hemicelluloses are built up by pentoses (D-xylose, D-arabinose), hexoses (D-mannose, D-

glucose, D-galactose) and sugar acids (36). These are iŶĐludiŶg β-glucan, xylan, xyloglucan, 

arabinoxylan, mannan, galactomannan, arabinan and so on. The hemicelluloses found in cereal 

straws are largely represented as complex heteropolysaccharides with various degrees of 

ďraŶĐhiŶg of the β-1,4-linked xylopyranosyl main chain structure (37). Softwood contains mainly 

A) 

B) 
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glucomannans, while in hardwood xylans are most common. Hemicelluloses interconnect with 

other cell wall components through covalent bonds and secondary forces (38). Both the 

cellulose and hemicellulose can be broken down enzymatically into the component sugars which 

may be then fermented to ethanol. Multiple classes of enzymes are required for effective 

degradation of cellulose and hemicelluloses (39). The break down process involves enzymes like 

glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, endo- hemicellulases and 

others, the concerted action of which hydrolyze glycosidic bonds, ester bonds and remove the 

ĐhaiŶ͛s suďstitueŶts or side ĐhaiŶs. These iŶĐlude eŶdo-1,4-β-ǆǇlaŶase, β,-ǆǇlosidase, β-

ŵaŶŶaŶase, β-ŵaŶŶosidase, α-gluĐuroŶidase, α-L-arabinofuranosidase, acetylxylan esterase 

and other enzymes (40). 

 

1.3.3 Lignin 

While cellulose and hemicellulose are built from carbohydrates,  the random structure in the 

tridimensional network inside the cell which consists of lignin is built up by oxidative coupling of 

three major C6-C3 (phenypropanoid) units, namely syringyl alcohol (S), guaiacyl alcohol (G), and 

p-coumaryl alcohol (H) (41,42). Lignins are highly branched, substituted, mononuclear aromatic 

polymers in the cell walls of certain biomass, especially woody species, and are often bound to 

adjacent cellulose fibers to form a lignocellulosic complex (Figure 1.6). This complex and the 

lignins alone are often quite resistant to conversion by microbial systems and many chemical 

agents. The lignin-hemicellulose complex surrounds the cellulose with which it is bound through 

extensive hydrogen bonding to form a supramolecular structure that protects the cellulose and 

is the reason for biomass recalcitrance (30). Lignin is one of the most abundant natural polymers 

expected to play an important role in the near future as a raw material for the production of 

bio-products. Large amounts of lignin are produced each year by the pulp and paper industry as 

by-products of delignification. The amount of lignin in plants vary widely, and is normally in the 

range of 20-30% by weight (43). Lignin is an aromatic hetero-biopolymer role as the constituent 

of an internal cell wall in all vascular plants including the herbaceous varieties. In the plant cell 

wall, hemicelluloses serve as a connection between lignin and cellulose and gives the whole 

cellulose-hemicelluloses-lignin network structure more rigidity besides 20 different types of 

bonds present within the lignin itself (44). Owing to its cross linking, lignin in-situ is usually 

insoluble in all solvents, unless it is degraded by physical or chemical treatments.  
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Figure 1.6: Structure of lignin.  

Unlike most natural polymers, such as cellulose and starch, which consist of a single monomer 

and intermonomeric linkage, lignin is a network polymer made up by oxidative coupling of three 

major C6-C3 (phenylpropanoid) units with many carbon-to-carbon and ether linkages, such as 

β-O-4, 4-O-5, β-β, β-1, β-5, and 5-5͛ (45). It is covalently linked to polysaccharides, forming a 

lignin-hemicellulose network made up of benzyl-ether, benzyl-ester, and phenyl-glycoside 

bonds (44). Image is reproduced from Crestini et al., 2011 (46). 

 

1.4 LIGNOCELLULOSE DIGESTION IN NATURE 

Despite lignocellulose being a hard-to-digest structure, a range of animals and microbes can 

digest lignocellulosic biomass in nature. Animals such as termites (47,48), beetles (49,50) and  

marine wood borers (51,52) have evolved to live on a diet of lignocellulose. Microbes are the 

main source of lignocellulose digestion in these animal systems and also serve to turn over 

woody biomass in the environment. Filamentous fungi are major degraders of lignocellulosic 

biomass in the environment due to their ability to degrade lignin. This is mostly achieved 
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through the action of enzyme-mediated oxidative free radical attack of the lignin, exposing the 

polysaccharides for hydrolytic enzyme attack. Many biomass-degrading organisms secrete 

synergistic cocktails of individual enzymes with one or several catalytic domains per enzyme, 

whereas a few bacteria synthesize large multi-enzyme complexes (cellulosomes) which contain 

multiple catalytic units per complex (39,53). The cellulosomes present in obligate anaerobic 

microbes contain many catalytic units per individual complex, linked to a single carbohydrate 

binding module (CBM) bearing scaffoldin via cohesin–dockerin interactions (54,55). Although 

lignocellulolytic fungi such as Aspergillus, Penicillium, Schizophyllum, Trichoderma, 

Phanerochaete and Sclerotium species can secrete industrial quantities of extracellular 

enzymes, bacterial enzyme production can be more cost-efficient (56). 

 

1.4.1 Aerobic lignocellulolytic bacteria 

The rapid growth and multi-enzyme complexes with increased functionality and specificity 

ensure that the lignocellulolytic bacteria tolerate larger and more diverse environmental 

stresses during lignocellulose decomposition and occupy wider niches than filamentous fungi  

(57). A few bacterial species are currently known to degrade both cellulose and lignin. Among 

them are member of the genera Pseudomonas (order Pseudomonadales), Streptomyces, as well 

as Cellulomonas (order Actinomycetales) which are likely to employ extracellular laccases and 

peroxidases to attack lignin (42,58,59). With respect to recent trends in lignocellulose 

decomposition research, the broad studies conducted by scientists on laccases and peroxidases 

have identified that aerobic lignocellulolytic microbes exhibit free and complex enzymes synergy 

which require terminal or intermediate electron acceptors to support the decomposition under 

limited carbon source conditions (60).  

 

1.4.2 Glyosyl Hydrolases (GHs) 

In Nature, the enzymatic deconstruction of cellulose and hemicellulose is achieved by the 

orchestrated action of various carbohydrate-active enzymes (CAZymes), typically acting 

together as a cocktail with synergistic activities and modes of action (61) (see Figure 1.7). GHs 

are important enzymes that cleave glycosidic bonds that exist in cellulose and hemicellulose. 

The capacity of GHs are aided by polysaccharide esterases that remove methyl, acetyl and 

phenolic esters, permitting the GHs to break down hemicelluloses (62). Additionally, 

polysaccharides are depolymerised by the activity of polysaccharide lyases (PL) (63). 
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More recently, the action of lytic polysaccharide monooxygenases (LPMOs) has been shown to 

be critical for efficient cellulose hydrolysis by the oxidative cleavage of difficult to access glucans 

on the surface of crystalline cellulose microfibrils (64,65). Across the Tree of Life, the GH cocktail 

composition  varies significantly in composition depending on the kingdom of the cellulolytic 

organism, the evolutionary pressure, and the environmental niche of the cellulolytic habitats 

(61). Lignocellulose-utilising creatures secrete some GHs, however most benefitted from a 

mutualism relationship with their enzyme-secreting gut microflora, a particular example in 

termites. However, in shipworms the system consists of GH-secreting and LPMO-secreting 

bacteria that separate from the site of digestion, whereas, the isopod Limnoria solely relies on 

endogenous enzymes (51,52).  

 

 

Figure 1.7: Schematics of microbial mechanisms of lignocellulose degradation.  

Aerobic cell-free cellulase system employed by most of bacteria and fungi. Cellulose is digested 

via the synergistic interaction of individual GH and LPMO secreted enzymes. NR-, non-reducing 

ends; -R, reducing ends. Image is reproduced from Cragg et al. (51). 

 

1.4.3 Lytic polysaccharide Monooxygenase (LPMO) 

Lytic polysaccharide monooxygenases (LPMOs) are a type of enzyme which requires a reducing 

agent (either a small molecule reducing agent or cellobiose dehydrogenase), oxygen, and a 

copper (Cu) ion bound in the active site for activity (57,66,67). The glycoside hydrolases, pectate 

lyases, esterases and the new LPMOs are all often found as parts of multi-modular enzymes that 

contain substrate-targeting carbohydrate-binding modules (68). These enzymes are important 

for the decomposition of recalcitrant biological macromolecules such as chitin and plant cell wall 
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polymers (61,69). Since their discovery, LPMOs have become integral factors in the industrial 

utilization of biomass, especially in the sustainable generation of cellulosic bioethanol (70). 

LPMOs were originally designated as GH61 and CBM33, but now classified as Auxiliary Activity 

(AA) 9, AA10 and AA11 in the CAZy database (69,71,72). The reclassification of GH61 to AA family 

was based on the findings that although some GH61s appeared to have weak endoglucanase 

activity, enzymes from this group could enhance enzymatic depolymerization of cellulose into 

soluble sugars by GHs. The AA9 contains fungal enzymes and AA10 predominantly bacterial 

enzymes (73). 3D structural analyses of lytic polysaccharide monooxygenases of both bacterial 

AA10 (previously CBM33) and fungal AA9 (previously GH61) enzymes uncovered structures with 

b-sandwich folds containing an active site with a metal coordinated by an N- terminal histidine 

(68). LPMO are copper-containing enzymes (metalloenzymes) that depolymerize recalcitrant 

polysaccharides by breaking down the glycosidic bonds and direct oxidative attack on the 

carbohydrate polymer chains through a flat site with a centrally located copper atom (65). 

LPMOs cleave the polysaccharide chain by utilising the oxidative capacity of molecular oxygen 

to scission a glycosidic C-H bond. To break these bonds, LPMOs activate oxygen, in a reducing 

agent dependent manner, at a copper-containing active site known as the histidine brace 

(34,74,75). Working together with both canonical polysaccharide hydrolases and other electron 

transfer compounds, these enzymes significantly boost the deconstruction of polysaccharides 

into oligosaccharides. Consequently, they have real potential for improving the production of 

biofuels from lignocellulose sustainable sources. 
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1.4.4 Cellulomonas fimi ATCC® 484™ 

At a biochemical level, one of the best understood cellulose-degrading bacterial systems is 

derived from Cellulomonas fimi. C. fimi is a Gram-positive coryneform bacterium, a group which 

includes a range of cellulolytic facultative anaerobes. The C. fimi genome encodes an array of 

glycosyl hydrolases (GHs) and Carbohydrate Active Enzymes (CAZymes) with similar numbers 

(176 CAZymes) to those found in other cellulomonads (Cellulomonas Uda, Cellulomonas 

flavigena and Cellulomonas sp. CS-1) but it has a slightly lower number of CAZymes compared 

to other cellulase-secreting bacteria such as Fibrobacter succinogenes (190 CAZymes), 

Streptomyces coelicolor (268 CAZymes), Streptomyces bigichenggensis (276 CAZymes), and 

Streptomyces davawensis (337 CAZymes) (76). Despite the lesser number of CAZymes, previous 

studies  reported its proficiency and capability to utilize cellulose by expressing extracellular 

cellulases which include exoglucanases (39,77–80), and endoglucanases (80,81) towards 

digestion of diverse set of carbohydrates including crystalline cellulose, in vitro. From the 

reported studies, 30 structures of proteins from C. fimi are available in the Protein Data Bank 

(PDB) and 10 well-characterized enzymes have been fully reviewed in Universal Protein 

Resource (UniProt KB) database (see Table 1.1) regarding to the mode of action of their catalytic 

and carbohydrate-binding module of actions towards various of polysaccharides (82–85). C. fimi 

is still of interest due to significant gaps in knowledge with regard to its ability to digest 

recalcitrant lignocellulose. Interestingly, the C. fimi genome not reveal any homology to typical 

cellulosome components such as scaffoldins, dockerins or cohesins which exists commonly in 

facultative anaerobes enzymatic systems (86). This is in contrast with other reports where C. 

fimi was reported to haǀe a ŵutuallǇ eǆĐlusiǀe approaĐh ďǇ usiŶg ďoth ͞seĐreted-eŶzǇŵe͟ aŶd 

͞surfaĐe-eŶzǇŵe͟ strategies duriŶg Đellulose digestioŶ other thaŶ the reported ĐarďohǇdrate-

binding proteins (87,88). This characteristic was only found in two cellulolytic facultative 

anaerobes bacteria including C. fermentans (86).  
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Table 1.1: Characterized C. fimi proteins involving in polysaccharide degradation as listed in the UniProt KB database. 

Reviewed C. fimi characterized proteins as curated in the UniProt KB database accessed in April, 2017.  

UniProt 

ID 

UniProt 

Entry name 
Length Protein name 

Gene 

names 
Catalytic activity Protein family/CAZy References 

P14090 GUNC_CELFA 1,101 Endoglucanase C 
cenC 

Celf_1537 

Endohydrolysis of (1->4)-β-D-

glucosidic linkages in cellulose, 

liĐheŶiŶ aŶd Đereal β-D-glucans. 

CBM4. Carbohydrate-

Binding Module Family 4.  
(89–92) 

GH9. Glycoside Hydrolase 

Family 9.  

P50899 GUXB_CELFA 1,090 Exoglucanase B 
cbhB cenE, 

Celf_3400 

Hydrolysis of (1->4)-β-D-glucosidic 

linkages in cellulose and 

cellotetraose, releasing cellobiose 

from the non-reducing ends of the 

chains. 

CBM2. Carbohydrate-

Binding Module Family 2.  

(77,93,94) 

GH48. Glycoside Hydrolase 

Family 48.  

P50400 GUND_CELFI 747 Endoglucanase D cenD 

Endohydrolysis of (1->4)-β-D-

glucosidic linkages in cellulose, 

liĐheŶiŶ aŶd Đereal β-D-glucans. 

CBM2. Carbohydrate-

Binding Module Family 2.  (93) 

 GH5. Glycoside Hydrolase 

Family 5.  

P07984 GUNA_CELFI 449 Endoglucanase A cenA 

Endohydrolysis of (1->4)-β-D-

glucosidic linkages in cellulose, 

liĐheŶiŶ aŶd Đereal β-D-glucans. 

CBM2. Carbohydrate-

Binding Module Family 2.  
(39,89,95,96) 

GH6. Glycoside Hydrolase 

Family 6.  
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…ĐoŶtiŶued 

UniProt 

ID 

UniProt 

Entry name 
Length Protein name 

Gene 

names 
Catalytic activity Protein family/CAZy References 

P26255 GUNB_CELFI 1,045 Endoglucanase B cenB 

Endohydrolysis of (1->4)-β-D-

glucosidic linkages in cellulose, 

liĐheŶiŶ aŶd Đereal β-D-glucans. 

CBM2. Carbohydrate-

Binding Module Family 2.  

(81,97) 
CBM3. Carbohydrate-

Binding Module Family 3.  

GH9. Glycoside Hydrolase 

Family 9.  

P50401 GUXA_CELFA 872 Exoglucanase A 
cbhA 

Celf_1925 

Hydrolysis of (1->4)-β-D-glucosidic 

linkages in cellulose and 

cellotetraose, releasing cellobiose 

from the non-reducing ends of the 

chains. 

CBM2. Carbohydrate-

Binding Module Family 2.  
(93,98) 

GH6. Glycoside Hydrolase 

Family 6.  

Q7WUL4 HEX20_CELFI 496 

β-N-

acetylhexosa-

minidase 

hex20 

hex20A 

Hydrolysis of terminal non-

reducing N-acetyl-D-hexosamine 

residues in N-acetyl-β-D-

hexosaminides. 

GH20. Glycoside Hydrolase 

Family 20.  
(99) 

P54865 XYND_CELFI 644 

Bifunctional 

xylanase/ 

deacetylase 

xynD 
Endohydrolysis of (1->4)-β-D-

xylosidic linkages in xylans. 

CBM2. Carbohydrate-

Binding Module Family 2.  

(100–103) 

GH11. Glycoside Hydrolase 

Family 11.  
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…ĐoŶtiŶued 

UniProt 

ID 

UniProt 

Entry name 
Length Protein name 

Gene 

names 
Catalytic activity Protein family/CAZy References 

P07986 GUX_CELFI 484 
Exoglucanase/ 

xylanase 
cex xynB 

Hydrolysis of (1->4)-β-D-
glucosidic linkages in cellulose 

and cellotetraose, releasing 

cellobiose from the non-
reducing ends of the chains. 

 

CBM2. Carbohydrate-

Binding Module Family 2.  

GH10. Glycoside Hydrolase 

Family 10.  

(39,85,96,97,104–
109) 

Endohydrolysis of (1->4)-β-D-
xylosidic linkages in xylans. 

Q7WUL3 NAG3_CELFI 564 

β-N-acetylgluco-

saminidase/b-

glucosidase 

nag3 

nag3A 

Hydrolysis of terminal non-
reducing N-acetyl-D-

hexosamine residues in N-
acetyl-β-D-hexosaminides. 

GH3. Glycoside Hydrolase 

Family 3.  
(99) 

Hydrolysis of terminal, non-
reducing β-D-glucosyl residues 

with release of β-D-glucose. 
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1.5 AIMS OF THE PROJECT 

As discussed in 1.3, lignocellulosic biomass such as wheat straw is an attractive renewable and 

environmentally-friendly resource that could be used as a substrate for biofuel production. The rich-

sugar content of lignocellulosic polysaccharides may provide better options and tackle food 

insecurity concerns. However, there is a need to find new enzymes to improve the degradation of 

such heterogeneous and recalcitrance biomass. The novel findings of LPMOs involvement in 

polysaccharide oxidation during the digestion process enlighten the potential of more interesting 

related enzymes to be discovered. C. fimi is a well-studied microorganism because of its inherent 

function of cellulases in degrading cellulose but very few studies involve lignocellulosic biomass 

digestion. Its sequenced genome provides information of potentially more new enzymes for 

degradation on biomass to be explored. The aims of this study are: 

 

1. To characterise the transcriptomic response of C. fimi growing on wheat straw, sugarcane 

bagasse, Avicel and xylan (Chapter 3). 

 

2. To characterise the secreted proteome of C. fimi growing on these substrates in order to 

identify candidate proteins for further studies (Chapter 4). 

 

3. To clone, express and characterise recombinant target proteins (Chapter 5). 

 

4. To explore the response of C. fimi adaptive evolution by continuous subculture on wheat 

straw (Chapter 6). 
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2. General materials and methods 

 

2.1 CHEMICAL REAGENTS, SUBSTRATES, AND ORGANISMS 

 

2.1.1 Chemical reagents 

Reagents and chemicals described in this thesis were purchased from Sigma-Aldrich (Poole, UK), 

Fisher Scientific (Loughborough, UK), Melford (Ipswich, UK), New England Biolabs (USA), GE 

Healthcare (London, UK), Promega (Southampton, UK), Qiagen (West Sussex, UK), Expedeon 

(Swavesey, UK), Clontech Laboratories (USA), Invitrogen (Paisley, UK), Cambio (Cambridge, UK), 

Cambridge Biosciences (Cambridge, UK) and Agilent (USA).  

Oligonucleotide primers were synthesized and purchased from Integrated DNA Technology 

(Iowa, USA) and Eurofins Scientifics (Luxembourg).  

All buffers were formulated in ultrapure water (ϭϴ.Ϯ MΩ Đŵ-1) followed by filtration. Ultra-Pure 

Water was obtained with an Elga PureLab Ultra water polisher (High Wycombe, UK). All growth 

media were autoclaved prior use.  

 

2.1.2 Lignocellulose biomass 

The wheat straw used in the experiments was provided by a local Yorkshire UK farmer and was 

milled to 2 mm particles at the Biorenewable Development Centre (York, UK). 

The sugarĐaŶe ďagasse ǁas proǀided ďǇ the CosaŶ Mill ;Iďatѐ, SP, BrazilͿ. The raǁ ŵaterial, 

previously washed and roughly ground, was dried in a convection oven at 60°C for 24 h and 

further ground by knife milling into small pieces (625 mm x 188 mm avg.).  

The xylan referred to throughout this thesis was beechwood xylan and therefore primarily 

glucuronoxylan, purchased from Sigma-Aldrich. 

Phosphoric acid swollen cellulose (PASC) was prepared from Avicel (Sigma-Aldrich). Briefly, for 

every gram of Avicel used, 30 mL of 85% phosphoric acid was added. This was stirred for one 

hour, on ice, before 100 mL of acetone per gram of Avicel was added, filtered on a glass-filter 

funnel through MiraCloth® (Merck) and was washed three times with 100 mL ice cold acetone. 

This was washed again with 500 mL water until the pH was 6.5-7 and homogenized with a 

blender.
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2.1.3 Organisms 

The Cellulomonas fimi strain was purchased from American Type Culture Collection (ATCC), 

United States. Stock cultures of the bacterium were maintained at -80°C in NB medium 

containing 15% glycerol. Nutrient broth (NB) was inoculated with a single colony of C. fimi before 

the organism was transferred into basal medium in the experiment. NB was prepared by 

dissolving 13 g of NB powder in a final volume of 1 L of water. The solution was then autoclaved 

prior to use.  

Escherichia coli strains Gami™ ;DEϯͿ ;NoǀazǇŵesͿ, Stellar™ CoŵpeteŶt Đells (Clontech), SHuffle® 

and SHuffle® T7 (New England Biolab) were purchased for heterologous expression of proteins 

in bacteria. Aspergillus niger D15 was kindly received from Peter Punt (TNO, Netherlands) for 

heterologous expression of proteins in eukaryotes. 

 

2.2 MICROBIOLOGY METHODS 
 

2.2.1 Buffers 

Phosphate buffer saline was prepared to x10 concentration (NaCl 80 g/L, KCl 2 g/L, Na2HPO4 

14.4 g/L, KH2PO4 2.4 g/L) and diluted as necessary with H2O. After preparation the solution was 

pH adjusted to 7.3, autoclaved and stored at room temperature.  

 

2.2.2 Media for bacterial growth 

Cultures of C. fimi were grown on basal medium which contained: 1 g of NaNO3, 1 g K2HPO4, 0.5 

g KCl, 0.5 g MgSO47H2O and 0.5 g yeast extract per litre of medium, pH 7.0 (Hitchner and 

Leatherwood, 1980) at 30°C with shaking at 180-200 rpm. Medium which was supplemented 

with either glucose (added to the autoclaved medium), avicel, beechwood xylan, wheat straw 

or sugar cane bagasse to the final concentration of 2 g/L. 

 

2.2.3 Agar plate and slant preparation 

Agar plates were prepared by the addition of 1% agar to the media of choice before autoclaving. 

The agar was then allowed to cool, before the addition of antibiotics, if appropriate and poured 

into 9 cm petri dishes. 
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2.3 MOLECULAR BIOLOGY TECHNIQUES 

2.3.1 Gram-positive bacterial DNA extraction 

DNA was extracted from C. fimi grown cultures using a phenol-chloroform method adapted from 

Cheng and Jiang (110). From the 25 mL grown culture, supernatant was transferred into 50 mL 

centrifuge tube. Bacterial pellet was separated from culture supernatant from different time 

points by centrifugation at 4,000 x g for 15 min at 4°C. Supernatant was removed and the cells 

pellet were collected into 1.5 mL Eppendorf tube by resuspended in freshly made sterile lysis 

buffer (0.5 mL of 0.5 mM Tris-EDTA buffer, 1 mg/mL lysozyme) before being incubated at 37°C 

for 30 min in warm bath. 30 µL of 10% SDS and 10 µL of 20 mg/mL proteinase K were added and 

mixed well during the lysis process. The mixture was incubated for another 2 h at 37°C. 

After the lysis step, genomic DNA was isolated using a standard phenol/chloroform extraction 

followed by alcohol precipitation. For this step, 20 µL of 10% SDS and 130 µL of 5 M NaCl were 

added and mixed vigorously by hand. The extraction mixture was incubated for 30 min on ice 

before being centrifuge at 10,000 x g. Bacterial DNA that contained in the supernatant fraction 

was collected into 2 mL Eppendorf tube. For the purpose of protein removal, 700 µL of phenol 

was added into the supernatant and vortex before being centrifuge for 5 min at 10,000 x g. 

Supernatant was collected into a fresh Eppendorf tube and 700 µL of chloroform was added. 

The mixture was vortex and centrifuge at 5000 x g for 5 min. 

The supernatant was collected into a fresh 1.5 mL Eppendorf tube to precipitate the nucleic acid. 

For this purpose, 1/10 volume of 3 M of sodium acetate (NaAc) pH 5.2 and 1 volume of 

isopropanol were added to the mixture. The mixture was mixed gently by inverting the 

Eppendorf tube several times to clump the DNA before been centrifuge at 10,000 x g for 10 min 

at 4°C. After the centrifugation, supernatant was removed and DNA pellet was washed by adding 

500 µL of 70% cold ethanol. Sample was centrifuged again at 10,000 x g for 5 min at 4°C to 

remove the ethanol, and DNA pellet was air-dried for 2 h. To collect the DNA sample, 50 µL of 

nuclease-free water was added to the DNA pellet and resuspended by pipetting up and down. 

The DNA samples were kept at -20°C for further processing. For the culture purity confirmation, 

a prokaryotic universal 16S forward and reverse primers were used to amplify the 16S ribosomal 

RNA gene using Polymerase Chain Reaction (PCR). The resulting 16S of C. fimi DNA amplicons 

were sent to GATC Light-Run Sequencing Service (GATC, Germany).  
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2.3.2 Fungal cells A. niger disruption for DNA extraction 

Approximately 0.5 g of fungal biomass was harvested through Miracloth with 22-25 µm pore 

size (CalBiochem, Merck KGaA, Germany) after growth in shake flasks with an appropriate 

media either in nutrient agar (NA) or Potato Dextrose Agar (PDA). The fungal biomass was 

ground under liquid nitrogen using a pestle and mortar, before 500 µL Cetyltrimethylammonium 

Bromide (CTAB) extraction buffer was added, and the sample transferred to a 2 mL screw cap 

tube. To this, 800 µL of Phenol/Chloroform/Isoamyl alcohol (25:24:1) mix was added and 

vortexed briefly to precipitate the DNA within the sample, an equal volume of ice-cold 100% 

isopropanol was added and incubated for 1 hour. DNA was pelleted by centrifugation at 13,000 

rpm for 10 min and supernatant was removed without disturbing the pellet. The pellet was then 

washed with 80% ethanol, before being re-suspended in DNAse free water. The DNA samples 

were kept at -20°C before been used for PCR reaction as decribed in Section 2.3.3. 

 

2.3.3 cDNA synthesis 

cDNA was synthesised from RNA, that had been DNAse treated with Room Temperature Stable 

(RTS) DNAse kit (Mobio, UK) using the strandard protocol described by the manufacturer. cDNA 

synthesis was performed using SuperScript II Reverse Transcriptase (Invitrogen) kit and the 

standard protocol with 100 ng of random hexamers (Thermo Scientific) per 20 µL of reaction 

prepared. 

 

2.3.4 Polymerase Chain Reaction (PCR) 

PCR reactions were performed on a PTC-200 Peltier Thermal Cycler (MJ Research). Reactions 

were performed with Q5® High-FidelitǇ DNA PolǇŵerase ;NEB, UKͿ as per ŵaŶufaĐturer’s 

instructions. The PCR reaction mix and temperature cycling used are described in Table 2.1 and 

Table 2.2 for 20 µL reactions. 

 

Table 2.1: Polymerase chain reaction components. 

 

Component Volume Final concentration 

Nuclease free water To 20 µL N/A 

5x Q5® HF buffer 4 µL 1x 

10 mM dNTPs 1 µL 200 µM 

10 µM forward primer 1 µL 0.5 µM 

10 µM reverse primer 1 µL 0.5 µM 

Template  Depending the [DNA] Depending the [DNA] 

Q5® polymerase 0.2 µL 0.4 units 
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Table 2.2: Polymerase chain reaction thermocycling conditions. 

Primer annealing temperature was calculated using NEB Tm calculator 

(http://tmcalculator.neb.com/#!/) 

Step Temperature Time  

Initial denaturation 98°C 30 seconds 

Denaturation 98°C 10 seconds 

Annealing As determined for each primer 30 seconds 

Extension 72°C 30 seconds per kb 

Cycling 
Cycle between denaturation 

and extension 
29 cycles 

Final extension 72°C 10 min 

Hold 4°C N/A 

 

 

2.3.5  Agarose gel electrophoresis 

 

DNA fragments were separated by agarose gel electrophoresis. To prepare agarose gels 1% 

(w/v) agarose was dissolved, by microwave heating, in 0.5% Tris/Borate/EDTA (TBE) buffer. After 

cooling, 0.00005% ethidium bromide (EtBr) was added and the solution was poured into a cast 

and the well comb added. This was then left to set for 30 min, before being placed in an 

electrophoresis tank containing 0.5% TBE buffer and removal of the comb. Sample buffer 

(0.01%) was added to DNA samples and mixed with pipetting before being loading into each 

well, alongside a commercial DNA ladder. An electric current was then generated at 130 V for 

30 min by a BioRad PowerPac 3000 to migrate the negatively charged polynucleotides towards 

the cathode. After completion UV illumination was used to visualise DNA bands using a UVItec 

gel documentation system. 

 

2.3.6 Plasmid extraction 

Plasmids were purified from E. coli cells that had been grown overnight in 5 mL of LB, shaking at 

180 rpm in 37°C. Plasmids were extracted from these cells using QIAPrep Miniprep Kit (QIAGEN, 

USAͿ folloǁiŶg the ŵaŶufaĐturer’s iŶstruĐtioŶs. 
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2.3.7 PCR clean-up 

DNA froŵ PCR reaĐtioŶs ǁere purified aĐĐordiŶg to ŵaŶufaĐturer’s iŶstructions using Wizard 

PCR clean up kit and typically eluted into 30-50 µL nuclease-free water depending the final 

concentration desired. 

 

2.3.8 Nucleotide quantification 

DNA and RNA were quantified using NanoDrop 1000 Spectrophotometer (Thermo Fisher 

Scientific). 

 

2.3.9 Sanger DNA Sequencing 

DNA was sequenced by GATC Biotech (Germany) using LIGHTRun Sanger sequencing service. 

Sample sent for this service contained 5 µL of 80-100 ng of purified DNA in DNAse-free water 

along with 5 µM the appropriate primer. DNA fragments were sequenced using both forward 

and reverse primers to ensure complete coverage of the amplicon, reads were consolidated 

using BioEdit® software. 

 

2.3.10 In-Fusion™ cloning 

All ĐloŶiŶg ǁas perforŵed usiŶg CloŶteĐh’s IŶFusioŶ sǇsteŵ. This sǇsteŵ fuses the geŶe of 

interest and linearized vector by recognising 15 bp complementary regions at their ends. 15 bp 

overlaps on the gene of interest were added to the target gene, and destination the vector was 

linearised via PCR (Section 2.3.3). The cloning reaction was set up as per the manufactures 

instructions with 2 µL In-Fusion® HD Enzyme Premix, 2 µL PCR linearized vector, 1 µL PCR 

fragment and 1 µL Cloning Enhancer®, before being brought up to 10 µL with DNAse-free water. 

The reaction was then mixed, and incubated for 15 min at 37°C, followed by a 15-minute 

incubation at 50°C and placed on ice. The 2 µL of this reaction was then immediately use for the 

transformation of competent cells, whilst the remaining was stored at -20 °C. 
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2.3.11 DNA restriction digests 

TǇpiĐallǇ, a reaĐtioŶ ŵiǆ prepared for DNA digestioŶ ĐoŶtaiŶed ϳ μL of DNA saŵple, 5 U of restriĐtioŶ 

eŶzǇŵe, ϭ ǆ restriĐtioŶ ďuffer ;reĐoŵŵeŶded ďǇ ŵaŶufaĐturerͿ iŶ a total ǀoluŵe of ϭϬ μL. Saŵples 

were incubated for 60 min at room temperature as recommended by the manufacturer for the 

specific restriction enzymes being used. 

 

2.3.12 Transformation of competent cells 

Competent cells were thawed on ice, whilst 2 µL of In-Fusion® cloning reaction was pipetted into 

round-bottom 10 mL tubes. Once thawed, 50 µL of cells were gently mixed with the cloning reaction 

and the tubes left on ice for a further 20 min. The cells were then heat-shocked for 45 seconds by 

placing them in a water bath, pre-heated to 42 °C before placing them back in ice for 2 min. 

Commercial Super Optimal broth with Catabolite repression (SOC) medium (Invitrogen) warmed to 

37 °C, was then added to the transformation to a final volume of 500 µL. The cells were left to shake 

(180 rpm) at 37°C for an additional hour before 100 µL was spread onto an agar plate with an 

appropriate antibiotic. 

 

2.4 PROTEIN METHODS 
 

2.4.1 Bradford assay for protein quantification 

The protein concentration in solutions was measured by Bradford (111) assay, performed in 96-well 

plate format. Briefly, 300 µL samples diluted to be within the sensitivity range of the assay, were 

mixed with 10 µL of Quick-Start® Bradford Protein Assay solution (BioRad), and then absorbance 

was measured after 10-minute incubation at room temperature. Concentrations were then 

determined through the comparison of known protein concentrations of bovine serum albumin 

(BSA). 

 

2.4.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE experiments were performed using a discontinuous polyacrylamide gel system and 

sodium dodecyl sulfate (SDS) to denature the proteins, using a Mini-Protean Tetra cell apparatus 
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(Bio-Rad, USA). The resolving gel was composed of 10 mL of 1.5 M, Tris-HCl pH 9, 0.4 % (v/v) 

tetramethylethylenediamine (TEMED), 0.4 % (w/v) SDS, 4.2 mL H2O and 3.2 mL 40 % acrylamide/bis 

acrylamide. The gel solution was de-gassed and acrylamide polymerisation was induced by the 

addition of 0.1 mL 10 % (w/v) ammonium persulfate. The solution was quickly transferred into a 

pre-assembled gel apparatus and allowed to solidify. The stacking gel was composed of 5 mL 

stacking buffer (0.14 M Tris-HCl pH 6.8, 0.11 % (v/v) TEMED, 0.11 % (w/v) SDS) and 0.5 mL 40 % 

acrylamide/bis acrylamide. The gel solution was de-gassed and 0.05 mL 10 % (w/v) ammonium 

persulfate was added to aid gel polymerization. The solution was quickly transferred on top of the 

resolving solution in the pre-assembled gel apparatus, the well comb added and the gel was allowed 

to solidify.  

 

Protein samples were mixed with appropriate volume of 2X loading buffer composed of 100 mM 

Tris-HCl pH 6.8, 20% (v/v) glycerol, 4% (w/v) SDS, 0.2 M dithiothreitol (DTT), 0.2% (w/v) 

bromophenol blue, boiled at 95 °C for 5 min and loaded into the wells of the stacking gel, located in 

an assembled tank filled with running buffer (25 mM Tris pH 8.3, 192 mM glycine, 0.1% (w/v) SDS). 

ProteiŶ saŵples ǁere ruŶ aloŶgside ϭϬ μL pre-stained broad range protein marker to allow 

estimation of protein weights. Once the samples were loaded, gels were run at 100 V as samples 

moved through stacking gel and 200 V hereafter, until the marker eluted from the gel. To visualize 

the protein bands, the gel was washed twice with H2O and then stained with InstantBlue dye reagent 

;EǆpedeoŶ IŶĐ., USAͿ aĐĐordiŶg to the ŵaŶufaĐturer’s reĐoŵŵeŶdatioŶ.  

 

2.4.3 Western blotting 

Protein samples ran on the low-concentration of agarose gel (8% or less) were blotted on to a 

ŶitroĐellulose ŵeŵďraŶe ;ProtaŶ™ BAϴ5Ϳ usiŶg a TraŶs-Blot® wet transfer cell (Biorad) using a 

modified method. Wet transfer was chosen especially for large size of PKDP1 in order to minimize 

the prone to failure of blotting due to drying of the membrane using semi-dry transfer. A standard 

buffer for Tris/Glycine/SDS running buffer (25 mM Tris/190 mM glycine), with a low concentration 

of SDS (final concentration of 0.1%) to avoid the precipitation of protein in the gel that possibly 

hindering the transfer. An additional of methanol to a final concentration of 10% in the transfer 

buffer was to remove SDS and guard against protein precipitation. Transfer was done at 80 V for 20 

min. 
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Once blotted, the membrane was stained with 0.1 % (w/v) poncean S in 5 % (v/v) acetic acid to check 

all protein bands had transferred to the membrane. The membrane was then incubated with 

blocking buffer (5 % (w/v) skimmed milk powder in 1x Tris-buffered saline-tween (TBST) buffer (50 

mM Tris, 150 mM NaCl, 0.05 % Tween 20, pH 7.6)) for 75 min with gentle rocking. After blocking, 

the membrane was washed three times with 1x TBST buffer for 5 min with gentle rocking and then 

incubated with blocking buffer supplemented with anti-GST–Peroxidase Conjugate antibody (Sigma) 

at 1:10,000 dilution for 90 min. The membrane was then washed three times with 1x TBST buffer 

for 5 min with gentle rocking. Horseradish peroxidise (HRP) activity was detected using SuperSignal 

West Pico Chemiluminescent Substrate kit ;Therŵo SĐieŶtifiĐͿ aĐĐordiŶg to ŵaŶufaĐturer’s 

instructions.  

 

2.4.4 Protein concentration by centrifugation 

Protein solutions were concentrated via centrifugation using 20 mL Vivaspin20 10,000 MWCO 

(Sartorius) concentrators, with PES membrane. Samples were routinely spun in spin out bucket at 

4,000 x g until the desired protein concentration had been reached. 
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3 Growth and transcriptomic studies of 

Cellulomonas fimi  

 

3.1 INTRODUCTION 

The decomposition of plant cell wall polysaccharides is one of important metabolic processes 

occur in nature environment. Animals and microbes live in limited carbon sources have been 

evolved to efficiently degrade lignocellulosic substrates by depolymerization mechanisms using 

their enzymes (61). Cellulomonas fimi is a free-living, Gram-positive, non-spore forming, 

facultative anaerobic rod. Soil is most common habitat of C. fimi that was isolated from. In the 

Carbohydrate active enzyme (CAZy) database (76) has listed variety of sugar active enzymes 

produce by C. fimi with at least two cellobiohydrolases (Cel6B, and Cel48A), and four 

endoglucanases (Cel6A, Cel9A, Cel9B and Cel5A) depending on the carbon source being supplied 

(112,113). In addition, C. fimi also encoded numbers of xylosidases including 11 α-xylosidases of 

GH3 family, and 7 β-xylosidase of GH43 family. To date, total of 112 glycosyl hydrolases (GH) 

have been listed in CAZy identified in C. fimi. The cellulase system in C. fimi involved synergistic 

function which revealed by Mansfield and Meder (114). Given the capacity of this organism to 

grow efficiently with cellulose and xylan substrates and considering the complexity in chemical 

linkages within natural xylan, it is interesting to explore potentially new enzymes which may co-

express and concerted to depolymerization of more complex native lignocellulosic substrates 

such as wheat straw and sugarcane in C. fimi. Furthermore, the genome of C. fimi has recently 

been fully sequenced (86) and this bacterium habors at least 131 genes to encode CAZymes; 

either glycoside hydrolases, carbohydrate esterases, pectate lyases, and accessory protein of 

carbohydrate binding modules, excluding glycoside tranferases.  

 

RNA sequencing (RNA-seq) is a method transforming how transcriptomes are studied and 

provides a highly sensitive read-out of responses in a particular system at the genome-wide 

level. Bacterial transcriptome analyses have been empowered by the development of 

deoxyribonucleic acid (DNA) microarrays and high-density tiling arrays (115,116). These consist 

of hundreds of thousands of DNA oligonucleotide probes representing both DNA strands of a 

particular genome. The microarray approach has been largely used to study bacterial 

transcriptomes and the major advantage of tiling arrays is that they can be used to interrogate 

the boundaries of the entire set of transcripts in a cell without taking account of genome 
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annotation (117,118). Consequently, the discovery of many new RNA molecules e.g. regulatory 

small RNAs (sRNAs) benefited from this technical advance including the comprehensive 

transcriptomes of Bacillus subtilis (115), Halobacterium salinarum (119) and Escherichia coli 

(120).  

 

Although high-density tiling arrays were able to provide comprehensive information of 

transcriptome complexity in microbial cells without genome annotation, the array-based 

approach is limited by a high rate of noise background in the data due to signal saturation that 

leads to low dynamic range of detection, the incapacity to detect low copy number transcripts 

and cross-hybridization (121). The development of next-generation sequencing (NGS) and 

combination with mRNA enrichment methods have drastically increased the gene expression 

analytical capacity using high-throughput transcriptome sequencing techniques (122). The 

preference of this sequencing technique has been largely influenced by the cost and depth of 

sequencing (123). With regard to the conventional Sanger sequencing method, the main 

advantage offered by NGS methods is the cost-effective production of large volumes of 

sequence data useful for the identification on qualification of unusual transcripts even without 

early knowledge of a particular gene (124,125). Unlike a hybridization-based array approach, 

RNA-seq allows unambiguous mapping of transcripts to specific regions of the genome with 

single-base resolution with lower background noise (126). Beside, the accurate quantification of 

a transcriptome of known genes, RNA-seq also enables scientists to determine correct gene 

annotations, novel genes and RNAs, as well as expressed single-nucleotide polymorphisms with 

high levels of reproducibility (127–129). To date, four NGS systems are commercially available 

including the 1) Ion Torrent system, based on the use of a semiconductor-based sequencing 

technique; 2) the Illumina sequencing system, based on sequencing by synthesis; 3) the Roche 

454 system, based on the pyrosequencing; and 4) the SOLiD system, based on sequencing by 

oligonucleotide ligation and detection (118).  The first two techniques; Ion Torrent and Illumina 

sequencings have been attempted in the C. fimi RNA-seq work as presented in this chapter. 

 

Prokaryotic RNA consist of 95% to 99% ribosomal RNA (rRNA) and only the rest e.g tRNA is 

comprised of useful messenger RNA (mRNA). Moreover, the instability of mRNAs with very short 

half-liǀes aŶd the aďseŶĐe of a polǇ;AͿ tail at the ϯ͛-end make bacterial transcriptome analysis 

challenging. Several methods are being used to remove the unwanted fractions (rRNA and tRNA) 

from the entire RNA samples, iŶĐludiŶg, ϭͿ teƌŵiŶatoƌ ϱ͛-phosphate-dependent exonuclease 

treatment, and 2) strand-specific RNA-seq that mark the transcribed strand. Both methods have 
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been applied to C. fimi RNA samples in three separate experiments that revealed the most 

suitable method for this species.  

 

The teƌŵiŶatoƌ ϱ͛-phosphate-dependent exonuclease method is used to enrich the primary 

transcriptome by removing pƌoĐessed RNAs ǁith a ϱ͛-monophosphate end of unwanted strands 

e.g. rRNAs and tRNAs. Biotinylated probes by Ribo-Zero Epicentre® rRNA removal kits (Bacteria 

kit and Gram-positive kit) were tested that selectively bind rRNA and removed the unwanted 

transcripts. However, several drawbacks were identified when using this method and the quality 

of mRNA was compromised as the probes in the kits are not specifically matched to the rRNA 

strands of C. fimi. This becomes major problems with the GC-rich genome and gram-positive 

species such as C. fimi. However, the recently development of strand-specific RNA-seq analysis 

has improved the mRNA enrichment method by transcript marking approaches. The strand-

specific marking could be done either by orientation-dependent adaptoƌ ligatioŶ to the ϱ͛ aŶd 

ϯ͛ eŶds of the RNA tƌaŶsĐƌipt ďǇ RNA ligatioŶ, oƌ ďǇ ĐheŵiĐal ŵodifiĐatioŶs usiŶg ďǇ ďisulfite 

treatment (130) on RNA itself or dUTP incorporation on the second strand cDNA (131). The 

adaptor ligation approach was applied for the third attempt of C. fimi RNA-seq work to conserve 

the native total RNA from any destruction by chemical modification. Therefore, AnyDeplete, 

formerly known as Insert Dependent Adaptor Cleavage (InDA-C) technology from NuGEN® was 

used for targeted depletion of abundant transcripts i.e. rRNA using customized Gene-Specific 

Primers (GSPs) for this species. With these technologies, several bacterial RNA-seq studies 

demonstrated that bacterial transcription is not as simple as previously thought (118,132).  

 

Taking advance from the current method for samples preparation of RNA-Seq experiment and 

the prior knowledge of fully sequenced genome of C. fimi, differential gene expression in this 

species was explored between conditions and range of carbohydrate substrates during bacterial 

growth using transcriptomic studies. In this chapter, the transcriptional changes of C. fimi 

associated with exposure to five substrates (glucose, Avicel, beechwood xylan, wheat straw and 

sugarcane bagasse) in laboratory cultures were investigated using NGS RNA-seq technology with 

the aim to identify any co-expressed genes and novel lignocellulosic processing enzymes. 
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3.2 MATERIALS AND METHODS 
 

3.2.1 Experimental setup and growth study 

During the growth of C. fimi in shake flasks, samples were collected from 25 mL cultures, 

throughout the growth cycle, with three biological replicates for each of three days of culture. 

Growth was monitored by measuring OD600; to avoid interference from the insoluble wheat 

straw and sugarcane bagasse, all samples were spun down with quick and slow setting in a 

centrifuge (500 rpm, 30s) before being transferred into a cuvette and optical density (OD) 

measurement. Sterile culture supernatants were obtained by centrifugation and filtration (0.22 

µm). Proteins were desalted and concentrated using 10 kDa Amicon® Ultra-0.5 Centrifugal Filter 

Unit (UFC501024, Merck Milipore). 

  

Figure 3.1: Workflow of transcriptome analysis of C. fimi transcriptome grown on four types 

of carbon source.  
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3.2.2 Strain and growth conditions 

C. fimi ATCC® ϰϴϰ™ ǁas used thƌoughout this studǇ. Details of gƌoǁiŶg ĐoŶditioŶs eǆpeƌiŵeŶtal 

set up and bacterial biomass collection are outlined in general materials and methods (Section 

2.2.2). Cultures grown on glucose were also harvested at the same time point (day-3) as those 

for the other substrates conditions, 0.2% (w/v) of Avicel, beechwood xylan, wheat straw and 

sugarcane bagasse cultures. Care was taken to process the biomass as soon as possible, and all 

procedures were performed on ice, unless otherwise stated, with DEPC-treated solutions and 

sterile equipment to prevent RNA degradation. 

 

3.2.3 Total RNA extraction 

Total RNA was extracted from the bacterial pellet collected after 3-days of growth by 

centrifugation of 50 mL culture samples at 4000 x g for 15 min at 4°C. The cells were lysed initially 

with lysozyme for 30 min at 37°C and then RNA was extracted with TRIzol® reagent (Invitrogen). 

Total RNA was purified with Direct-Zol® columns (Zymo Research). The DNase treatment was 

performed using DNase RTS kit (MoBio), followed by an additional clean up step with RNA Clean 

and a Concentrator kit from Zymo Research. All RNA quality from three biological replicates of 

3-days cultures were assessed for the quality of RNA by using RNA ScreenTape assay using the 

2200 TapeStation system (Agilent Technologies). 

 

3.2.4 Enrichment of mRNA from total RNA 

For the RNA-Seq study, two different methods of mRNA enrichment were tested to reduce rRNA 

reads using kits from Epicentre® Ribo-Zero rRNA Removal Kits (Epicentre, Madison, WI, USA) 

and NuGEN-Ovation® Universal RNA-Seq system (NuGEN Technologies, Inc.; San Carlos, CA, 

USA).  
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3.2.5 rRNA depletion using Ribo-Zero rRNA Removal Kit (Bacteria) and Ribo-Zero 

Removal Kit (Gram-positive) 

For this mRNA enrichment, briefly, 5 µg of total RNA sample (with 3 technical replicates) of C. 

fimi was purified from ribosomal RNA using RiboZero™ Bacteria kit (Epicentre) following the 

ŵaŶufaĐtuƌeƌ͛s iŶstƌuĐtioŶs. For the first and second RNA-seq trials, the Ion-Torrent whole 

transcriptoŵe ĐDNA liďƌaƌies ǁeƌe pƌepaƌed aĐĐoƌdiŶg to the ŵaŶufaĐtuƌe͛s pƌotoĐol in 

collaboration with Dr. Debs Rathbone, Biorenewable Development Centre (BDC). Sequencing 

was performed using the ϯϭϴǀϮ™ Chip of Ion Torrent Personal Genomic Machine (PGM) One 

TouĐh™ SǇsteŵ.  

 

3.2.6 Selective cDNA synthesis for rRNA depletion using NuGEN-Ovation® Universal 

RNA-Seq System 

For the third attempt of RNA-seq work, the removal of rRNA by selective amplification and cDNA 

library preparation was performed according to the following NuGEN® protocol. Total of 300 ng 

intact RNA ǁas ĐoŵďiŶed ǁith ϯ μg of the ƌaŶdoŵ pƌiŵeƌs ;IŶǀitƌogeŶ; ϯ μg/μlͿ iŶ a fiŶal ǀoluŵe 

of ϭϭ μl. The ƌeaĐtioŶ ǁas incubated at 70° C for 10 min and placed immediately on ice. The 

ƌeŵaiŶiŶg ƌeageŶts ǁeƌe added to the ƌeaĐtioŶ iŶ a fiŶal ǀoluŵe of ϮϬ μl: ϭ× of fiƌst stƌaŶd ďuffeƌ 

(10×; Invitrogen), 10mM of DTT (0.1 M; Invitrogen), 0.5mM of dNTP mix (10 mM; Invitrogen), 

20 U of SUPERase-IŶ ;ϮϬ U/μl; AŵďioŶͿ aŶd ϮϬϬ U of SupeƌSĐƌipt III ;ϮϬϬ U/ μl; IŶǀitƌogeŶͿ. The 

first strand reaction was incubated at 25°C for 10 min followed by 55°C for 60 min and then 

placed on ice. The second strand was synthesized by adding 1x of second strand buffer (5x; 

Invitrogen), 0.2 mM of dNTPs (10 mM; Invitrogen), 40 U of E. coli DNA polǇŵeƌase I ;ϭϬ U/μl; 

NEB, Ipswich, MA, USA), 10 U of E. coli DNA ligase ;ϭϬ U/μl; NEBͿ, ϱ U of RNase H ;ϱ U/μl; 

IŶǀitƌogeŶͿ to the fiƌst stƌaŶd ƌeaĐtioŶ ;ϭϱϬ μl total volume). After 2 h at 16°C, the reaction was 

stopped ďǇ addiŶg ϭϬ μl of Ϭ.ϱ M EDTA aŶd puƌified usiŶg DNA CleaŶ & CoŶĐeŶtƌatoƌ™-5 

ĐoluŵŶs ;ZǇŵoReseaƌĐhͿ aĐĐoƌdiŶg to the ŵaŶufaĐtuƌeƌ͛s iŶstƌuĐtioŶs.  

For the Ovation® Universal RNA-Seq system, 0.5-1 mg of double-stranded DNA was used for 

library preparation in all samples (amplified from total RNA input of 100 ng). the cDNA was 

sheared (fragment size 100–500 bp) by sonication the Covaris S1 adaptive focused acoustics 

instrument (Covaris, Woburn, MA, USA) with duty cycle 5, intensity 3 and cycle/burst 200 for 

180 s according to ŵaŶufaĐtuƌeƌ͛s iŶstƌuĐtioŶs. The sheaƌed pƌoduĐts ǁeƌe puƌified aŶd 

concentrated with Agencourt AMPure XP beads (2x the reaction volume). The cDNA fragments 

were further treated following NuGEN® Ovation Prokaryotic RNA-seƋ SǇsteŵ kit͛s iŶstƌuĐtioŶ 
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for adaptor ligation which uses specific-designed primers selectively to avoid rRNA 

amplification. The cDNA then blunt-ended through an end-repair reaction and ligated to 

platform-specific double-stranded bar-coded adapters using library preparation kits from New 

England Biolabs (Ipswich, MA, USA). The end-repair, dA-tailing (for Illumina-based libraries), 

ligation of platform-specific adaptors and purification reactions required for library preparation 

and library amplification (10-30 cycles) steps were performed manually. 

 

3.2.7 Illumina Sequencing libraries 

The Leeds Institute of Molecular Medicine, Leeds, UK performed the RNA sequencing on an 

Illumina HiSeq platform. The final concentration of each bar-coded cDNA library (15 libraries) 

were standardized using elution buffer (Qiagen) and pooled in equimolar amounts of 12 nM to 

generate paired-eŶd ϭϬϬ ďp ƌeads iŶ the Đase of NuGEN͛s RNA-seq system. These were then 

diluted to a final concentration of 10 pM, and the remainder of clustering process was 

conducted, and the library pool was run in a single lane of Genome Analyzer IIx (Illumina, Inc) 

for 100 cycles of each pair-end read before were demultiplexed. One base-pair mismatch per 

library was allowed, and reads were converted to a FASTq file. 

 

3.2.8 Mapping 

Reads were initially mapped to ribosomal RNA sequences using Bowtie (133) with default 

settings. Reads that mapped to ribosomal sequences were excluded from further analysis. In 

the case of paired-end Illumina reads, both pairs were removed if either pair mapped to rRNA. 

Ribosomal RNA sequences were acquired from GenBank (134). Remaining reads were mapped 

to the genome using TopHat v.1.1.3 (135) against the US Department of Energy (DOE) Joint 

Genome Institute (JGI) database (136) for the genome of Cellulomonas fimi NRS 133, ATCC 484.  
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3.2.9 Transcript abundance and bioinformatics analysis 

Transcript abundance was determined from the TopHat alignment using a custom perl script 

and annotated transcripts from RefSeq. The annotated CDS to genes were then searched for 

carbohydrate active enzymes on CAZy database (www.cazy.org) and Blastp search for non-

redundant (nr) protein sequence using Blastp on National Center for Biotechnology Information, 

NCBI database (https://www.ncbi.nlm.nih.gov/).   

 

3.2.10 Differential expression analysis 

Differentially expressed transcripts were analyzed from Illumina sequenced data. Differential 

expression was assessed using transcript abundances as inputs to Blast2GO (137). The 

transcripts with an adjusted P>0.05 were considered to be differentially expressed. Transcripts 

called differentially expressed by pairwise differential expression analysis based on the software 

paĐkage ͞edgeR͟ ǁhiĐh ďeloŶgs to the BioĐoŶduĐtoƌ pƌojeĐt (138) featured in Blast2GO were 

separated into two groups: those upregulated and those downregulated in each sample 

condition. The analysis was performed on the Count per Million (CPM) of filtered reads, and 

were normalised using the package command. Differential gene expressions were then 

predicted between each set of conditions using an exact negative binomial test. Densities were 

fit to each group using R and were plotted against the density of all annotated RefSeq 

transcripts.  
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3.3 RESULTS 

3.3.1 Growth study of C. fimi utilizing different substrates 

To identify the best culture seeding condition, a pre-cultured C. fimi was first grown in rich 

nutrient broth for 19, 24, 28, and 44 hours. Samples taken at these time points represented 

different stages of growth and were used to inoculate cultures growing on glucose, Avicel, 

beechwood xylan, wheat straw and sugarcane bagasse in fresh minimal medium for a maximum 

of 100 hours depending on the substrates. This was done for a first assessment and comparison 

of the effectiveness of differently aged inocula to initiate growth on those substrates. 

Figure 3.2 shows that C. fimi could utilize glucose, beechwood xylan and milled wheat straw as 

a primary carbon source for growth. Rapid growth of C. fimi was observed on glucose and 

beechwood xylan with glucose as a better substrate for higher bacterial biomass. C. fimi was 

able to use wheat straw as a substrate but did not use it as efficiently as other substrates. 

However, there was little or no impact of using inoculum from different phases of growth and 

thus, the subsequent experiment was initiated using a 24-hour starter culture.  
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Figure 3.2: Growth profiles of C. fimi grown on different carbon sources initiated using 

differently aged inocula of seeding cells. 

Figure 3.2(A) shows C. fimi growth profile when grown on nutrient broth. In subsequent 

experiments, C. fimi was grown on either 0.2% (w/v) of glucose, beechwood xylan and wheat 

straw using B) 19-hour, C) 24-hour, D) 28-hour, and E) 44-hour inocula.  

E) 

D) C) 

B) A) 
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3.3.2 Total RNA extraction from C. fimi  

To assess changes in gene expression during growth on the various substrates, total RNA 

samples were isolated and purified for RNA-Seq analysis of the C. fimi transcriptome. The Day-

3 RNA from C. fimi culture grown on glucose, Avicel, beechwood xylan, wheat straw, and 

sugarcane bagasse were chosen for RNA-Seq analysis based on the optimum growth indicated 

in the preceding experiment. RNA was successfully extracted from C. fimi growing on all five 

substrates. The quality of starting materials of total RNA extracted from C. fimi was analysed by 

Agilent 2200 TapeStation® using standard RNA ScreenTape®. Figure 3.3 represents the 

electrophoretogram from the TapeStation®, which indicated a high quality of cleaned and 

concentrated total RNA. The two bands between 1000 to 3000 nucleotides represented the 16S 

and 23S prokaryotic rRNA. The intense bands on the electrophoresis gel and sharp peaks of 

rRNAs on the TapeStation® electropherogram (Figure 3.4) indicate a good quality and quantity 

of total RNA. The RINe number represents the ratio between both RNA peaks as classified in 

range 0 to 10, where 10 is the best quality. Total RNA from Avicel and sugarcane bagasse cultures 

obtained the best RINe value. Furthermore, RNA from the insoluble wheat straw culture had a 

higher quality compared to both soluble substrates cultures of glucose and beechwood xylan 

that showed the lowest RINe values of total RNA extracted. However, the low RINe number in 

some of the samples may result from overloading the RNA samples and polysaccharides carried 

over from the culture media.  

 

 

Figure 3.3: Electrophoretic analysis of RNA from C. fimi using TapeStation® with standard RNA 

ScreenTape® 

The quality of total RNA isolated from Day-3 C. fimi culture grown on five substrates; glucose 

(Glu), wheat straw (Ws), sugarcane bagasse (Scb), Avicel (Avi) and beechwood xylan (Xyl) in 3 

biological replicates analysed on the Standard RNA ScreenTape®. The first lane is a default 

standard RNA ladder.  
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Glu1                         27.8 ng/µL Glu2                        38.4 ng/µL Glu3                         27.1 ng/µL  
   

Avi1                          29.3 ng/µL Avi2                          48.1 ng/µL Avi3                          47.2 ng/µL 
   

Xyl1                          46.6 ng/µL Xyl2                          40.1 ng/µL Xyl3                          57.6 ng/µL 
   

Ws1                         31.1 ng/µL Ws2                           120 ng/µL Ws3                          44.7 ng/µL 
   

Scb1                        47.0 ng/µL Scb3                         56.6 ng/µL Scb3                         38.5 ng/µL 

Figure 3.4: TapeStation® Electrophogram of total RNA harvested from five substrates of Day-

3 C. fimi grown cultures. 

 A) Glucose, B) Avicel, C) Beechwood xylan, D) Wheat straw, and E) Sugarcane bagasse. 
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3.3.3 mRNA enrichment from total RNA 

 

3.3.3.1 mRNA enrichment by rRNA depletion 

Removing rRNA from the RNA samples is a crucial part of the RNA-Seq workflow. Three 

procedures have been tested for this work. The first two experiments were using Room 

Temperature Stable (RTS) DNase-I followed by Ribo-Zeƌo™ MagŶetiĐ Kit ;BaĐteƌia) and Ribo-

Zeƌo™ MagŶetiĐ Kit ;Gƌaŵ-Positive Bacteria), both from Epicentre®, respectively. The first two 

trials were unsatisfactory and showed the RNA samples were degraded and still contained high 

amount of ribosomal RNA due to unspecific rRNA probes. This resulted in low quality of RNA-

Seq data from both experiments. Figure 3.5(A) shows for the first experiment that most of the 

reads from the pooled three biological replicates mapped to the rRNA. For the second 

experiment (Figure 3.5B), about 10 to 40% of the reads still contained high amount of rRNA. 

Unfortunately, as much as 45 - 98% of the reads could not be mapped to the C. fimi genome due 

to the very low quality of degraded mRNA samples. 

 

3.3.3.2 RNA-Seq work and analysis using NuGEN® Ovation Univesal RNA-Seq System 

The third attempt at mRNA purification used AnyDeplete (formerly known as InDA-C) probes of 

NuGEN® Ovation Universal RNA-Seq System. The kit provided gene-specific primers to remove 

the rRNA and allowed complete downstream RNA processing of cDNA libraries samples prior to 

the sequencing work. The obtained data was normalized into Pileup Per Kilobase per Millions of 

reads (PPKM) value to define the number of sequence tags covering each base of the genome. 

This dataset was filtered to only accept the genes which were present in two replicates at an 

expression rate higher than 10 ppkm. Figure 3.5C indicates that the removal of rRNA was 

successful in most of the samples with the percentage of reads mapped to CDSs were in range 

of 57.0% - 82.6% except for RNA from glucose-grown culture which only about 4.01 - 7.47% of 

reads were mapped to CDS compared to the total reads. However, the sequencing depth and 

number of reads obtained from the sequencing is appropriate to represent the gene expression 

in glucose cultures for which more than one million reads were yielded from both replicates (1.2 

million reads for Glu1 and 1.8 million reads for Glu2 samples, respectively). 
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Figure 3.5: Histogram indicating quality of RNA-Seq results with percentages of the reads 

mapped to the genome including the rRNA genes, coding sequences genes and the unmapped 

reads. 

rRNA depletion was performed using A) Epicentre® Ribo-Zeƌo™ MagŶetiĐ Kit ;BaĐteƌiaͿ,  

B) Epicentre® Ribo-Zeƌo™ MagŶetiĐ Kit ;Gƌaŵ PositiǀeͿ, aŶd CͿ AŶǇDeplete™ geŶe speĐifiĐ 

primers from NuGEN® Ovation Universal RNA-Seq System. Abbreviations: Glu; Glucose, Avi; 

Avicel, Xyl; Beechwood xylan, WS; wheat straw, and SCB; sugarcane bagasse. Number after the 

substrate indicated the replication number. 
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3.3.4 The transcriptome of C. fimi growing on five substrates 

The C. fimi genome is 4.27 Mb in size with 3845 predicted genes (86). Transcriptomes were 

sequenced from replicated independent cultures under 5 sets of conditions after growth for 3 

days in the presence of glucose, Avicel, beechwood xylan, wheat straw and sugarcane bagasse 

as sole carbon sources in minimal media.  The induction of genes involved in polysaccharide 

deconstruction were monitored after 3 days of bacterial growth on a specific substrate. 

Statistical tests were applied to identify all genes which were significantly differentially 

expressed (p-value <0.05 for all tests) between five conditions studied. RPKM values were 

calculated for each of the three biological replicates. The results shown in this study are from 

the combined mapping scores, reads filtered and only inductions showing a significant score in 

statistical test are discussed.  

 

3.3.4.1 Expression of CAZy genes in C. fimi grown on polysaccharides and comparison 

with C. fimi grown on glucose 

Four classes of enzymes that mediate the degradation of plant cell wall carbohydrates are: the 

carbohydrate esterases (CEs), the polysaccharide lyases (PLs), the glycoside hydrolases (GHs), 

and the auxiliary activities (AAs). These enzymes are classified based on their primary amino acid 

sequence and related activity in the Carbohydrate Active Enzyme (CAZy) database 

(www.cazy.org). Analysis of C. fimi genome identified 10 CE-encoding genes representing 7 

families, 6 PL-encoding genes representing 3 families, 112 GH-encoding genes representing 41 

families, and 1 AA-encoding gene, representing 1 family. The family of AA encoded by the 

genome of C. fimi were formerly known as CBM33 which showed cleavage of crystalline chitin 

in an O2-dependent reaction. The AA family enzyme acts synergistically with hydrolytic 

cellobiohydrolases and endoglucanases and plays an important accessory role in enhancing 

lignocellulose degradation (139). RNA sequencing was performed on the Illumina HiSeq 

platform with 100bp of pair-end sequencing. The resultant reads were then filtered for rRNA 

contamination and trimmed. Percentage of CAZy-encoding genes were calculated for each 

treatment. The lowest and the highest CAZy-encoding genes expression were observed in 

glucose and Avicel cultures, respectively. After 3-days of C. fimi growth in each substrate, total 

percentage of CAZy families were identified (excluding accessory proteins (CBMs) and glycosyl 

transferases (GTs). The average percentage of CAZy-encoding genes from the total reads in 

glucose, Avicel, Xylan, wheat straw and sugarcane bagasse cultures were 1.1%, 4.7%, 3.3%, 

http://www.cazy.org/
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3.8%, 3.4%, respectively. Table 3.1 shows the experimental design of the RNA-seq experiments 

conducted with C. fimi, total reads of sequencing, total CAZy-encoding genes annotated and 

percentage of CAZy-encoding genes in each reads library.  

Table 3.1: Experimental design and number of reads generated by RNA sequencing of fifteen 

C. fimi RNA-seq samples with triplicates for each condition. 

Condition 

(Control/treatment) 
Replicate 

Reads after 

filtering 

CAZy-

encoding 

genes  

Percentage 

of CAZy-

encoding 

genes 

Percentage 

average of 

CAZy-

encoding 

genes 

Glucose (control) 1 1,402,015.2 7486.1 0.5 

1.1% Glucose (control) 2 1,378,212.3 5879.9 0.5 

Glucose (control) 3 1,012,883.1 27676.6 2.7 

Avicel 1 962,559.6 32215.0 3.4 

4.7% Avicel 2 962,532.1 35062.7 3.6 

Avicel 3 1,318,274.0 85589.7 6.5 

Xylan 1 957,821.4 31720.8 3.3 

3.3% Xylan 2 957,355.4 31368.4 3.3 

Xylan 3 958,524.6 31358.3 3.3 

Sugarcane bagasse 1 961,268.5 33455.7 3.5 

3.4% Sugarcane bagasse 2 955,487.1 32592.5 3.4 

Sugarcane bagasse 3 959,955.0 32987.7 3.436 

Wheat straw 1 957,893.5 31370.9 3.275 

3.8% Wheat straw 2 1,006,083.5 46762.2 4.648 

Wheat straw 3 960,710.7 31956.2 3.326 

 

3.3.4.2 Expression of Carbohydrate Active Enzyme (CAZy)-encoding genes 

Analysis of count data arising from RNA-seƋ ǁoƌk ǁas peƌfoƌŵed usiŶg BlastϮGo™, a staŶdaloŶe 

computer software designed to explore differential gene expression (DGE) based on the edgeR 

program (138). This analysis allows identification of differentially expressed genomic features 

(e.g. genes) in a pairwise comparison of two different experimental conditions. The software 

package edgeR (empirical analysis of DGE in R), implements quantitative statistical methods to 

evaluate significance of individual genes between two experimental conditions (treatment 
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against control). From the DGE analysis, 134, 85, 113, and 292 of C. fimi genes have been 

upregulated in Avicel, xylan, wheat straw and sugarcane bagasse culture of 3-days as compared 

to growth on glucose. The patterns of differential expression in terms of transcript abundance 

from each treatment were evaluated using pairwise comparison analysis. The results of which 

are presented in smear plots in Figure 3.6. Among the upregulated genes, the CAZy-encoding 

genes representing different GH, CE, AA, and PL families that were transcriptionally upregulated 

by log-fold change (logFCͿ ǁith чϬ.Ϭϱ false disĐoǀeƌǇ ƌate ďetǁeeŶ ĐoŶditioŶ of suďstrates are 

summarized in Table 3.2.  

 

Table 3.2: Number of upregulated CAZy-encoding genes for each comparison condition. 

CAZy-encoding genes were counted as present if their expression exceeded 1 RPKM in at least 

two of three biological replicates. 

Condition 

Upregulated CAZy- and accessory protein encoding genes 

Grand total GH  

families 

CE  

families 

AA 

family 

PL  

families 

GT 

families 

CBM 

families 

Avicel 

 
13 3 1 1 0 2 20 

Beechwood 

Xylan 
4 0 0 0 0 1 5 

Wheat straw 

 
10 0 0 1 0 1 12 

Sugarcane 

bagasse 

 

16 0 0 1 2 3 22 

 

The highest grand total of CAZy-encoding genes upregulated were in sugarcane bagasse culture 

(22 genes), and the lowest were in xylan culture (5 genes) compared to the other two substrates. 

The majority of upregulated CAZy-encoding genes were from GH families after 3-days incubation 

in all cultures. The highest number of carbohydrate esterases (CE1, CE2, CE3, and CE4) and the 

presence of one C. fimi auxiliary activity (AA10) were being identified to be significantly 

upregulated exclusively in Avicel-grown culture. The list of CAZy-encoding genes that had been 

upregulated in each substrate are presented in Table 3.4. 
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Figure 3.6: Differentially expressed transcripts between glucose and carbohydrate treatment 

after 3-days growth of C. fimi.  

Visualization by MA plots of transcript expression profiles show A) Avicel versus glucose. B) Xylan 

versus glucose. C) Wheat straw versus glucose. D) Sugarcane bagasse versus glucose. Log of the 

fold changes (logFC) on the y-axis versus the average of the log of the CPM on the x-axis. 

The plot visualizes the differences between measurements taken for two samples (substrate 

treatment against negative control; glucose), by transforming the data onto M (log ratio) and A 

;ŵeaŶ aǀeƌageͿ sĐales geŶeƌated ďǇ BlastϮGo™ softǁaƌe ďased oŶ EdgeR pƌogƌaŵ. TƌaŶsĐƌipts 

that are identified as significantly differentially expressed at most 0.5% FDR, colored in red.

 

 

 

 

 

 

A) 

B) 

C) 

D) 
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Table 3.3: The CAZy-encoding genes upregulated on each carbohydrate substrate using 

Differential Gene Expression (DGE) analysis. 

Pairwise comparison method was applied to individually filtered and normalized libraries against 

the negative control (glucose culture) by LogFC. The false discovery rate (FDR) was equal or less 

than 0.05. List of all upregulated CAZy-encoding genes in each library for A) Avicel, B) 

Beechwood xylan, C) wheat straw, and D) sugarcane bagasse are presented from the highest to 

the lowest order of fold-change. 

A) Upregulated CAZy-encoding genes on Avicel 

No. Protein name Protein domain Log2FC FDR 

1 Celf_0270 AA10, CBM2 7.927 0.006 

2 1,4-beta-cellobiosidase A CBM2, GH6 5.853 0.009 

3 Celf_0438 GH27, CBM13 4.485 0.008 

4 Celf_1754 CE2, CBM2 3.868 0.003 

5 Celf_3775 PL1 3.342 0.011 

6 Celf_1913 GH74, CBM2 3.241 0.002 

7 Celf_0374 GH11, CBM2, CE4, CBM2 3.054 0.027 

8 Celf_0045 GH9, CBM2 2.763 0.008 

9 Celf_0404 CE1, CBM2 2.663 0.005 

10 Celf_1329 CE3, CBM2 2.661 0.008 

11 Celf_0161 CBM50 2.156 0.003 

12 Celf_0862 GH26, CBM23 1.930 0.003 

13 Celf_2091 GH26 1.923 0.017 

14 Celf_1186 GH13 1.889 0.044 

15 Celf_1126 GH13, CBM48, GH13 1.809 0.004 

16 Celf_0376 GH5, CBM46 1.549 0.007 

17 Celf_3249 GH51 1.477 0.017 

18 Celf_0403 CBM2 1.366 0.039 

19 Celf_2053 GH3 1.319 0.027 

20 Celf_2718 GH36 1.131 0.032 

 

 

B) Upregulated CAZy-encoding genes on xylan 

No. Protein name Protein domain Log2FC FDR 

1 Celf_0161 CBM50 1.454 0.045 

2 Celf_2053 GH3 1.424 0.008 

3 Celf_0376 GH5, CBM46 1.196 0.031 

4 Celf_2232 GH13 1.156 0.044 

5 Celf_2718 GH36 1.119 0.019 
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C) Upregulated CAZy-encoding genes on wheat straw 

No. Protein name Protein domain Log2FC FDR 

1 Celf_1913 GH74, CBM2 2.102 0.033 

2 Celf_0161 CBM50 1.698 0.020 

3 Celf_1729 GH10 1.589 0.031 

4 Celf_2053 GH3 1.405 0.011 

5 Celf_0862 GH26, CBM23 1.401 0.032 

6 Celf_2232 GH13 1.316 0.022 

7 Celf_0376 GH5, CBM46 1.309 0.019 

8 Celf_1126 GH13, CBM48, GH13 1.239 0.048 

9 Celf_3440 PL11 1.221 0.046 

10 Celf_2714 GH13 1.123 0.032 

11 Celf_2624 GH16 1.107 0.020 

12 Celf_2718 GH36 1.064 0.029 

 

 

 

D) Upregulated CAZy-encoding genes on sugarcane bagasse 

No. Protein name Protein domain Log2FC FDR 

1 Celf_1729 GH10 2.148 0.002 

2 Celf_0067 GT2 2.122 0.010 

3 Celf_1913 GH74, CBM2 2.097 0.024 

4 Celf_1705 CBM4, CBM4, GH9 2.075 0.016 

5 Celf_0161 CBM50 1.696 0.014 

6 Celf_1482 GH43 1.683 0.048 

7 Celf_2232 GH13 1.671 0.002 

8 Celf_2053 GH3 1.587 0.003 

9 Celf_0862 GH26, CBM23 1.546 0.013 

10 Celf_3113 GH16, CBM13 1.540 0.005 

11 Celf_2726 GH3 1.514 0.041 

12 Celf_3440 PL11 1.453 0.012 

13 Celf_0376 GH5, CBM46 1.408 0.008 

14 Celf_0345 CBM2, PL11 1.383 0.044 

15 Celf_2624 GH16 1.333 0.003 

16 Celf_2714 GH13 1.314 0.008 

17 Celf_3249 GH51 1.277 0.025 

18 Celf_0398 CBM13, PL3 1.241 0.016 

19 Celf_1126 GH13, CBM48, GH13 1.220 0.039 

20 Celf_2784 GH31 1.200 0.003 

21 Celf_2718 GH36 1.097 0.018 

22 Celf_1719 GT4 1.035 0.012 
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3.3.4.3 Co-expression of upregulated CAZy- and non-CAZy encoding genes using 

differential analysis 

The co-expression of upregulated CAZy and non-CAZy-encoding genes were further investigated 

from the previous analysis of differential expression analysis. A Venn diagram was generated to 

explore the genes that were being co-expressed with CAZymes in particular substrate supplied 

during 3-days C. fimi growth. The Venn diagram in Figure 3.7 is depicting the overlapping 

expression of a total of 80 significantly upregulated CAZy- and non-CAZy encoding genes across 

the four substrates. The diagram revealed that 47 genes were exclusively upregulated on Avicel, 

22 genes were exclusively upregulated in sugarcane bagasse, 3 genes were commonly 

upregulated on Avicel and wheat straw, 1 gene was found to be expressed on Avicel, wheat 

straw and sugarcane bagasse, one gene was found to be expressed commonly in wheat straw 

and sugarcane bagasse, and 2 genes were commonly being upregulated in all conditions. The 

list of all co-expressed genes is presented in Table 3.5. 

 

 

 

Figure 3.7: Venn diagram of the CAZy- and non-CAZy encoding genes that were significantly 

upregulated in each condition. 

VeŶŶ diagƌaŵ ǁas geŶeƌated usiŶg VeŶŶǇ™ oŶliŶe softǁaƌe (140). The list of upregulated genes 

from RNA-seq dataset were taken from differential expression analysis. The numbers of non-

CAZy genes were indicated in the bracket. 
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Table 3.4: Identification of co-expressed genes which upregulated with CAZy-encoding genes 

from differential analysis of RNA-seq data. 

 

47 genes included exclusively in Avicel: 

Accession 

number 
Protein name/Gene ID 

CAZy/non-

CAZy 

Log2FC 

in 

Avicel 

YP_004451802.1 Celf_0270-AA10,CBM2 CAZy 7.9 

YP_004454685.1 CBM2,GH6-CBM2,GH6 CAZy 5.9 

YP_004451699.1 hypothetical protein Non-CAZy 4.7 

YP_004451968.1 Celf_0438-GH27,CBM13 CAZy 4.5 

YP_004452285.1 hypothetical protein Non-CAZy 4.4 

YP_004453792.1 Glucose/sorbosone dehydrogenases Non-CAZy 4.3 

YP_004451712.1 hypothetical protein Non-CAZy 4.3 

YP_004454900.1 Cellobiohydrolase A (1,4-beta-cellobiosidase A) CAZy 4.2 

YP_004452494.1 hypothetical protein Non-CAZy 4.0 

YP_004453614.1 hypothetical protein Non-CAZy 3.9 

YP_004453273.1 Celf_1754-CE2,CBM2 CAZy 3.9 

YP_004451816.1 NAD-dependent aldehyde dehydrogenases Non-CAZy 3.6 

YP_004451558.1 Cellobiohydrolase A (1,4-beta-cellobiosidase A) CAZy 3.6 

YP_004451719.1 hypothetical protein Non-CAZy 3.6 

YP_004454240.1 
ABC-type sugar transport system, periplasmic 

component 

Non-CAZy 
3.3 

YP_004455268.1 Celf_3775-PL1 Non-CAZy 3.3 

YP_004451697.1 T4-like virus tail tube protein gp19. Non-CAZy 3.3 

YP_004452793.1 Beta-1,4-xylanase CAZy 3.1 

YP_004453611.1 Cation transport ATPase Non-CAZy 3.1 

YP_004453744.1 Response regulator with putative antiterminator Non-CAZy 3.1 

YP_004454061.1 Alkaline phosphatase Non-CAZy 3.1 

YP_004451906.1 Celf_0374-GH11,CBM2,CE4,CBM2 CAZy 3.1 

YP_004453402.1 hypothetical protein Non-CAZy 3.0 

YP_004451716.1 hypothetical protein Non-CAZy 2.9 

YP_004451718.1 
Response regulator containing a CheY-like receiver 

domain 

Non-CAZy 
2.9 

YP_004453242.1 Membrane protease subunits Non-CAZy 2.8 
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YP_004451583.1 Celf_0045-GH9,CBM2 CAZy 2.8 

YP_004451910.1 Predicted glutamine amidotransferase Non-CAZy 2.7 

YP_004451700.1 hypothetical protein Non-CAZy 2.7 

YP_004453750.1 hypothetical protein Non-CAZy 2.7 

YP_004451934.1 Celf_0404-CE1,CBM2 CAZy 2.7 

YP_004452296.1 hypothetical protein Non-CAZy 2.7 

YP_004452851.1 Celf_1329-CE3,CBM2 CAZy 2.7 

YP_004453441.1 Endoglucanase CAZy 2.6 

YP_004451553.1 hypothetical protein Non-CAZy 2.4 

YP_004451551.1 hypothetical protein Non-CAZy 2.3 

YP_004451717.1 
Periplasmic component of the biopolymer transport 

system 

Non-CAZy 
2.3 

YP_004454228.1 
ABC-type sugar transport system, periplasmic 

component 

Non-CAZy 
2.3 

YP_004452262.1 hypothetical protein Non-CAZy 2.3 

YP_004451817.1 Uncharacterized protein conserved in bacteria Non-CAZy 2.3 

YP_004454543.1 FOG: PKD repeat (PKDP3, Celf_3039) Non-CAZy 2.2 

YP_004451696.1 Celf_0161-CBM50 CAZy 2.2 

YP_004454192.1 hypothetical protein Non-CAZy 2.1 

YP_004453261.1 Putative peptidoglycan binding domain. Non-CAZy 2.0 

YP_004454064.1 Citrate synthase Non-CAZy 2.0 

YP_004453417.1 hypothetical protein Non-CAZy 2.0 

YP_004451695.1 Uncharacterized protein conserved in bacteria Non-CAZy 2.0 
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22 genes included exclusively in Bagasse: 

 

 

Accession 

number 
Protein name/Gene ID 

CAZy/non-

CAZy 

LogFC in 

bagasse 

YP_004454623.1 Ribosomal protein L33 Non-CAZy 3.0 

2506047258 hypothetical protein Non-CAZy 2.7 

YP_004454257.1 
ABC-type sugar transport system, periplasmic 

component 

Non-CAZy 
2.4 

YP_004452237.1 
Response regulator containing a CheY-like receiver 

domain 

Non-CAZy 
2.2 

YP_004454008.1 Predicted membrane protein Non-CAZy 2.2 

YP_004452591.1 Uncharacterized conserved protein Non-CAZy 2.2 

YP_004453248.1 Celf_1729-GH10 CAZy 2.1 

YP_004452983.1 
ABC-type nitrate/sulfonate/bicarbonate transport 

systems 

Non-CAZy 
2.1 

YP_004454238.1 
ABC-type sugar transport system, permease 

component 

Non-CAZy 
2.1 

YP_004453278.1 PAS fold. Non-CAZy 2.1 

YP_004452977.1 Predicted amidohydrolase Non-CAZy 2.1 

YP_004454809.1 Predicted sugar isomerase Non-CAZy 2.1 

YP_004451605.1 Celf_0067-GT2 CAZy 2.1 

YP_004454258.1 
Ribose/xylose/arabinose/galactoside ABC-type 

transport systems 

Non-CAZy 
2.1 

YP_004454307.1 Predicted nuclease of the RecB family Non-CAZy 2.1 

YP_004453244.1 
ABC-type multidrug transport system, ATPase and 

permease components 

Non-CAZy 
2.1 

YP_004453224.1 Celf_1705-CBM4,CBM4,GH9 CAZy 2.1 

YP_004452213.1 Flagellar basal body-associated protein Non-CAZy 2.1 

YP_004452233.1 Methyl-accepting chemotaxis protein Non-CAZy 2.1 

YP_004454625.1 Ribosomal protein L31 Non-CAZy 2.0 

YP_004454601.1 Nitrate reductase gamma subunit Non-CAZy 2.0 

YP_004453234.1 Enoyl-[acyl-carrier-protein] reductase (NADH) Non-CAZy 2.0 
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3 common genes in Avicel and Wheat straw: 

Accession 

number 
Protein name/Gene ID 

CAZy/non-

CAZy 

LogFC 

in Avi 

LogFC 

in WS 

YP_004453442.1 Cellobiohydrolase A (1,4-beta-cellobiosidase A) CAZy 5.6 3.7 

YP_004451702.1 Phage tail sheath protein FI Non-CAZy 5.0 3.6 

YP_004451701.1 T4-like virus tail tube protein gp19. Non-CAZy 5.2 3.3 

1 common genes in Wheat straw and Bagasse: 

 

  

Accession 

number 
Protein name/Gene ID 

CAZy/non-

CAZy 

LogFC 

in WS 

LogFC 

in SCB 

YP_004454255.1 Sugar phosphate isomerases/epimerases Non-CAZy 2.2 3.0 

4 common genes in Xylan, Wheat straw and Bagasse: 

Accession 

number 
Protein name/Gene ID 

CAZy/non

-CAZy 

LogFC 

in Xyl 

LogFC 

in WS 

LogFC 

in SCB 

2506047404 hypothetical protein Non-CAZy 3.1 2.8 4.0 

YP_004452239.1 Response regulator Non-CAZy 2.1 2.1 2.6 

2506047552 Glycosyl hydrolases family 39. CAZy 2.0 2.1 2.4 

YP_004453519.1 hypothetical protein Non-CAZy 2.0 2.0 2.2 

1 common gene in Avicel, Wheat straw and Sugarcane bagasse: 

Accession 

number 
Protein name/Gene ID 

CAZy/non

-CAZy 

LogFC 

in Avi 

LogFC 

in WS 

LogFC 

in SCB 

YP_004453430.1 Celf_1913-GH74,CBM2 CAZy 3.2 2.1 2.1 

2 common genes in Avicel, Xylan, Wheat straw and Bagasse: 

Accession 

number 
Protein name/Gene ID 

CAZy/non

-CAZy 

LogF

C in 

Avi 

LogF

C in 

Xyl 

LogFC 

in WS 

LogFC 

in SCB 

2506047359 hypothetical protein Non-CAZy 7.8 7.4 7.5 10.4 

2506045288 
Mitochondrial domain of 

unknown function (DUF1713). 

Non-CAZy 
5.5 6.1 6.0 7.8 
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From the RNA-seq differential gene analysis, 47 upregulated genes were identified being 

expressed exclusively in Avicel-induced culture with Log2FC cut-off value.  From that total gene 

number, an AA10-encoding gene of C. fimi (Celf_0270) which also contains a CBM2 domain was 

significantly the most upregulated CAZy-encoding gene with 7.9 fold-change compared to the 

glucose-induced culture. From the same condition, 16 hypothetical proteins were found to be 

co-expressed with CAZymes including another two uncharacterized proteins conserved in 

bacteria. A glucose/sorbone dehydrogenase (YP_004453792.1) gene was also been found to be 

upregulated exclusively in Avicel-induced culture with a 4.3 fold-change compared to the 

glucose-induced culture. One out of five Polycystic Kidney Disease I (PKD)-domain containing 

proteins (Celf_3039) that consists of PKD domain, and a Fibronectin III (FN3) domain in its 

structure was significantly upregulated with 2.2 fold-change in the Avicel-induced culture. The 

comparison of differential gene expression for sugarcane bagasse- and glucose-induced cultures 

showed 22 genes were exclusively being upregulated during C. fimi growth on sugarcane 

bagasse. These include one hypothetical protein (Gene ID: 2506047258) and another 

uncharacterized conserved protein (YP_004452591.1) with 2.7 and 2.2 fold-changes, 

respectively. One of the CAZy-encoding genes also upregulated (2.1 fold-change) exclusively in 

this culture encodes a putative GH9 predicted to be a multimodular protein with two CBM4 

domains in its structure (Celf_1705).  

 

There were four common upregulated genes expressed in xylan, wheat straw and sugarcane 

bagasse culture including two genes encoding hypothetical proteins. Both of these protein-

encoding genes were expressed significantly higher in sugarcane bagasse culture than xylan, and 

wheat straw. The first gene (Gene ID: 2506047404) was upregulated 4-fold, and the second one 

(YP_004453519.1) was upregulated 2.2 fold. Two genes were upregulated in all four (Avicel, 

xylan, wheat straw and sugarcane bagasse) culture conditions. One gene was predicted to 

encode a hypothetical protein (Gene ID: 2506047359) with 10.4-fold change in sugarcane 

bagasse culture, which was also upregulated in Avicel, xylan and wheat straw cultures with шϱ 

fold-change. A GH74-encoding gene (Celf_1913) predicted to consist of a CBM2 domain was the 

only one CAZy-encoding gene which was upregulated on three common substrates, i.e. Avicel 

(3.2 fold-change), wheat straw (2.1 fold-change) and sugarcane bagasse (2.1 fold-change) 

cultures. 
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3.4 DISCUSSION 

There are no prior publications of transcriptomic data for C. fimi, and the work in this chapter may, 

therefore, represent the first such study. The response to growth on four polysaccharides, 

crystalline cellulose (Avicel) and plant cell wall hemicellulose (beechwood xylan), including two 

lignocellulose biomasses, ball-milled wheat straw and sugarcane bagasse were examined and 

compared against a glucose culture as an experimental control using a RNA-seq approach. The 

analysis presented here focused on identifiable carbohydrate active enzyme encoding genes, and 

those of unknown function showing co-expression with particular CAZyme genes in this study.  

 

The third day of C. fimi growth on glucose and four other substrates was chosen as the time point 

for investigation based on the growth profiles study described in Chapter 3.1. as C. fimi grows more 

slowly on complex substrates than on rich medium. The active growth of C. fimi was indicated during 

its exponential phase between second and fourth day of incubation, however, due to the lengthy 

growth of C. fimi in certain culture e.g. insoluble wheat straw, the third day of culture was chosen 

to harvest the RNA materials. In addition, the latter stage of the time courses of microbial growth 

especially on the complex polysaccharides was expected to contain the material most recalcitrant 

to degradation, and therefore may induce the expression of novel enzymes.  

 

The mRNA typically constitutes a very small fraction of the total RNA in bacterial cells and hence, 

rRNA subtraction is needed to allow enrichment of gene transcripts.  C. fimi is a gram-positive 

bacterium with high GC-based content (74%) in its genome, therefore, hybridization of biotinylated 

probes using magnetic beads were applied using Epicentre® Ribo-Zeƌo™ ƌRNA ƌeŵoǀal kit ;BaĐteƌiaͿ 

and Ribo-Zeƌo™ ƌRNA ƌeŵoǀal kit ;Gƌaŵ-Positive) for the first and second trials of mRNA 

enrichment.  

 

rRNA removal was eventually achieved through a capture-based method that relies on the synthesis 

of first and second strand cDNA using a primer mix called Gene-Specific Primers (GSPs) i.e. using the 

Ovation Prokaryotic RNA-seƋ SǇsteŵ ďǇ NuGEN™. The GSPs appƌoaĐh that is iŶtegƌated in the kit is 

designed to selectively enrich the mRNA portion of the bacterial total RNA. The selective specific 

primers were designed against C. fimi 16S and 23S rRNA sequences from database then capture with 

probes called AnyDeplete, formerly known as Independent Adaptor Cleavage (InDA-C) to remove 
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the rRNA sequences in the library preparation workflow just before the final amplification steps. 

This method was successfully applied to C. fimi RNA-seq samples while also preserving the mRNAs 

relative abundance for subsequent Illumina deep sequencing. The highest observed CAZy-encoding 

genes expression was from cultures growing on Avicel, and the lowest was in glucose culture. Low 

level of mRNA from the genes encoding enzymes involved in the degradation of complex 

carbohydrates including hemicellulose and chitin, were present when the bacterium is cultivated on 

glucose-based medium and the few that are expressed are likely involved in growth and 

metabolism. 

 

The highest percentage of CAZy-encoding genes was expressed in Avicel culture and this is in 

agreement with C. fimi’s well-known ability to degrade cellulose. On this substrate, the significantly 

highest fold-change was observed for AA10, the first LPMO found in C. fimi that previously was 

classified as carbohydrate binding module 33 (CBM33, now systematically called Auxiliary Activity 

10, AA10) (69,139). Vaaje-Kolstad et al. were first to demonstrate the oxidative activity to CBM33 

(141), which showed cleavage of crystalline chitin in an O2-dependent reaction (copper dependent 

oxygenase) (34). The presence of oxidoreductases has been reported in various cellulolytic bacteria 

and fungi, though an actual, physiological electron donor for LPMOs has not been unambiguously 

determined. The disruption of recalcitrant polysaccharide structures by an oxidative mechanism of 

action by AA10s provides an answer of how the initial attack on cellulose or chitin is effected 

especially by saprophytes (142). The oxidative function of AA10 works synergistically with hydrolytic 

cellobiohyrolases, endoglucanases and this significantly accelerates the degradation of 

polysaccharides into oligosaccharides (34,139). 

 

Glucose sorbone dehydrogenase (GSDH), Celf_2278 and Polycystic Kidney Disease (PKD)-containing 

protein (PKDP3), Celf_3039 are among the non-CAZy genes appear to be co-expressed and highly 

upregulated exclusively in Avicel culture with 4.3 and 2.2 fold changes, respectively. The GSDH has 

previously been annotated as PKD-containing protein (PKDP1) with the existence of a multimodular 

domain in its structure. The reannotation of genes in NCBI database to the non-redundant (nr) 

reference sequence (RefSeqͿ, this pƌoteiŶ has ϭϬϬ% aŶd ϳϵ% ideŶtities to a β-glucosidase of the C. 

fimi and C. cellasea genomes, respectively. Since this protein has not yet been characterized, for 

easy referral, it will be referred as PKD-domain containing protein 1 (PKDP1) here and in subsequent 
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chapters.  Both of these proteins (PKDP1 and PKDP3) share similarity in the PKD domains in their 

predicted structures, but differ in additional domain, i.e. pyrroloquinoline-quinone (PQQ), and 

protective antigen (PA14) domains exclusively in PKDP1, and Fibronectin type 3 domain (FN3) only 

in PKDP3. A detailed discussion of each domain of PKDP1 is presented in Chapter 5. Apart from 

predicted non-CAZy proteins that co-expressed with other CAZymes, there were 16 hypothetical 

pƌoteiŶs aŶd aŶotheƌ Ϯ ͚uŶĐhaƌaĐteƌized pƌoteiŶ ĐoŶseƌǀed iŶ ďaĐteƌia͛ also ďeiŶg upƌegulated ǁith 

шϮ fold-change exclusively in Avicel cultures.  It is an interesting observation as these proteins 

potentially may be involved and contribute to efficiency in cellulose depolymerisation, and further 

analysis on the predicted domain, protein localization, and pathway analysis by enrichment gene 

analysis could be investigated.  

 

GH9 (Celf_1705) and GH10 (Celf_1729) are CAZymes that the genes of which were being highly 

upregulated amongst 22 genes exclusively in sugarcane bagasse culture. In Celf_1705, there were 

three predicted domains; two domains of CBM4 and a catalytic domain of GH9. From the CAZy 

database, the two binding domains may be involved in binding to xylan, β-1,3/β-1,4/β-1,6-glucan 

and amorphous cellulose but not to crystalline cellulose. Based on Delmas et al. study (56), ball-

milled wheat straw contains approximately 37% cellulose, 32% hemicelluloses, and 22% lignin, 

whereas the untreated sugarcane bagasse has been estimated to consist of 35% cellulose, 25% 

hemicellulose, and lignin 22% by Zhu et al.͛s study in 2016 (27). Although celluloses have a high 

amorphous content that is usually more easily digested by enzymes, it is unclear whether the 

crystallinity index (CI) actually provides a clear indication of the digestibility of a cellulose sample 

(143). While in this case, Celf_1705 with double CBM4 domains may indicate that the lower 

percentage of hemicellulose (25%) in sugarcane bagasse may contribute to the higher expression of 

this enzyme as the matrix polysaccharide is easier to be penetrated compared to the cellulose 

fraction of the wheat straw that contains higher (32%) of hemicellulose.  

 

The putative Celf_1729 has only one predicted catalytic GH10 domain which has been classified as 

an endo-1,4-β-xylanase activity. Both enzymes, GH9 and GH10 were reported to be important 

especially for opening up the structure of lignocellulose biomass matrix. There was one hypothetical 

pƌoteiŶ aŶd aŶotheƌ ͚uŶĐhaƌaĐteƌized ĐoŶseƌǀed pƌoteiŶ͛ ideŶtified to ďe highlǇ upƌegulated oŶlǇ iŶ 

sugarcane bagasse culture. In cultures growing on xylan, wheat straw and sugarcane bagasse 



Chapter 3: Growth and Transcriptomic Studies of Cellulomonas fimi 

 

Results 

 

75 

 

cultures, two hypothetical proteins were detected to be co-expressed with CAZymes. Finally, the 

only putative GH74 (Celf_1913) gene identified in C. fimi which also has CBM2 in its structure was 

expressed in Avicel, wheat straw and sugarcane bagasse cultures, but absent in xylan-induced 

medium. GH74 has been predicted to be endoglucanase/xyloglucanase (144). In Celf_1913, there is 

a predicted domain of bacterial neuramidase 2 (BNR2) that may work as a sialidase, but this is 

unlikely to be the case as there is no known source of sialic acid in in sugarcane bagasse. This protein 

was also detected under the same specific condition in proteomic studies, which will be elaborated 

in the next chapter. As a conclusion, several uncharacterized predicted CAZy-encoding genes and a 

total of 20 hypothetical proteins with another 3 uncharacterized conserved proteins in bacteria that 

were being co-expressed with exhibited CAZymes, have been identified from this transcriptomic 

study. These proteins may need to be characterized to validate their involvement in lignocellulose 

break down mechanisms as they are potentially new CAZymes or processing enzymes from the 

Cellulomonas fimi repertoire.   
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4 Proteomic Analysis of the Secretome of 

Cellulomonas fimi 

 

4.1 INTRODUCTION 

C. fimi is a Gram-positive soil bacterium known for its ability to degrade cellulose and 

hemicellulose of plant cell walls (113). A significant array of carbohydrate active enzymes 

(CAZymes) is encoded in its genome (86).  Based on the information of characterized C. fimi 

proteins deposited in the universal protein knowledgebase (UniProt KB) (145) as well as the 

extensive database of CAZymes (www.CAZy.org) (76), the secretion of known proteins involved 

in the breakdown of plant cell walls polysaccharides by C. fimi has been identified (Table 4.1). 

Glycoside Hydrolase family 3 (GH3) has notably the highest number of members (11) in C. fimi 

but only one auxiliary activity family 10 (AA10) has been identified in the system. GH9 is a family 

of enzymes that may have an endoglucanase/cellobiohydrolase as well as endo-xyloglucanase 

activities. This group of enzymes was formerly known as cellulase type E. On the other hand, 

GH10 is a family of enzymes that have more specific activity of endo-xylanases which previously 

classified as cellulase type F (76). A similar number of GH9 and GH10 are encoded in the C. fimi 

genome indicating the ability of the bacterium to degrade cellulose and hemicellulose 

specifically from plant cell walls. 

 

Table 4.1: Known cellulase and xylanase families in Cellulomonas fimi. 

Families of CAZymes are from the CAZy database (http://www.cazy.org/Glycoside-

Hydrolases.html). The total GH number does not include pectin lyases. 

CAZy family 
CBM33 
(AA10) 

GH1 GH3 GH5 GH6 GH9 GH10 GH11 GH16 GH48 GH74 
Total 
GH 

C. fimi 1 1 11 3 4 4 5 1 3 1 1 109 

 

Although many of the plant cell wall polysaccharide degrading enzymes of C. fimi have been 

well-studied for decades (104,146), not much is known about the ability of C. fimi particularly as 

a lignocellulose degrader. The AA10 identified in C. fimi is predicted to be involved in redox 

mechanism (64) for degrading cellulose which suggests that C. fimi uses a combination of 

hydrolytic and oxidative cleavage mechanisms for  efficient biomass utilization.  
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Proteomic analysis is one of the methods to investigate the metabolic processes involved in an 

organism and has been improved over the last decades from qualitative identification of specific 

single proteins (147) to quantitative detection of hundreds to thousands of proteins by targeted 

shotgun proteomic technique using mass spectrometry (MS). Since the introduction of the MS-

based approach in the proteomic studies (148), it has evolved into an advanced and powerful 

tool for investigating multi-complex protein samples, for instance during biological processes. 

Prior to MS-analysis, protein samples are treated either by tagging the peptide either with or 

without chemical labelling. The protein labelling approach using a protein biomarker (149–151) 

or an isobaric tag (iTRAQ) (152–154) are among familiar techniques for targeted proteomic 

analysis. Despite of that, label-free quantification (LFQ) has gained popularity in recent years 

due to its uncomplicated procedure, high dynamic range and robustness of method. This 

technique has benefited from the sophisticated computational algorithms during the peptides 

analysis process (155).  

 

This chapter describes the application of the LFQ method to C. fimi secretome samples grown 

on soluble and insoluble substrates, which yielded high quality data. Proteomic analysis using 

LFQ has been applied to C. fimi secretome grown in Avicel, beechwood xylan, wheat straw and 

sugarcane bagasse cultures. Avicel is a commercially available microcrystalline cellulose, an 

insoluble linear polysaccharide comprised of β-(1,4) linked glucose monomers. Cellulose is the 

primary component of wood and considered the most abundant biopolymer in nature and is 

comprised of crystalline and amorphous parts. Another component of plant cell walls is 

hemicellulose with xylan as the major compound in plant cell walls of angiosperms (hardwood) 

and grasses. It is a heteropolymer that primarily consists of xylose, arabinose, galactose, 

glucuronic acid, either in glucuronoarabinoxylan or glucuronoxylan depending on the type of 

plant hemicellulose (37).  

 

In this study, two insoluble lignocellulosic substrates from agricultural residues were also used. 

The milled wheat (Tritium aestivum L.) straw and sugarcane (Saccharum sp.) bagasse are carbon 

biopolymers mainly composed of cellulose, hemicellulose and lignin. Both lignocellulosic 

biomasses are attractive substrates for second generation biofuel production, as they 

complement and augment wheat and sugar productions rather than competing with food 

production (156) which helps avoiding change in land use and expansion of agricultural areas to 

meet growing energy demands (157). However, like other sources of lignocellulosic biomass, 

they are heterogeneous in nature due to the range of cells types and tissues in their structures 

(27,158,159) which has implications for saccharification efficiency (160,161).  
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To investigate the secretome of C. fimi for degrading cell wall polysaccharide components and 

the potential in digesting lignocellulosic biomass, this bacterium was grown on different types 

of substrates (Avicel, beechwood xylan, untreated wheat straw and untreated sugarcane 

bagasse) as the sole carbon source to investigate the secretome of C. fimi for degrading cell wall 

polysaccharide components and the potential in digesting lignocellulosic biomass. The 

secretomes from shake flask cultures were compared using bioinformatics analyses and putative 

new CAZy that are involved in plant cell wall degradation have been identified using nanoLC-

MS/MS analysis. 
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4.2 MATERIALS AND METHODS 
 

4.2.1 Sample preparation 

During the growth of C. fimi in shake flasks, samples were collected from 25 mL cultures 

throughout the growth cycle, with three biological replicates for each three-day time points. 

Growth was monitored by measuring OD600; to avoid interference from the insoluble wheat 

straw and sugarcane bagasse, all samples were spun down in a centrifuge (500 x g, 30 s) before 

being transferred into cuvettes for OD measurements. For protein extraction, sterile culture 

supernatants were obtained by spin down the whole culture in 50 mL centrifuge tube, at 4000 

x g. The collected samples were filtered using 0.22 µm PES membrane filter. Proteins were 

desalted and concentrated using 10 kDa Amicon® Ultra-0.5 Centrifugal Filter Unit (UFC501024, 

Merck Milipore). 

 

Figure 4.1: Workflow for secretome analysis of C. fimi grown on four types of carbon source. 
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4.2.2 Protein quantification 

 

4.2.2.1 Bradford assay and SDS-PAGE protein gel 

Protein samples were taken as described in 4.2.1. The protein concentration in the supernatants 

was measured by the Bradford assay (111), performed in 96-well plate format. The detailed 

protocol is described in Section 2.4.1. The proteins secreted by C. fimi growing on five substrates 

were separated by sizes using SDS-PAGE and ran on Mini-Protean Tetra cell apparatus (Bio-Rad, 

USA). The detailed protocol is described in Section 2.4.2. 

 

4.2.3 Enzyme activity assays 

 

4.2.3.1 Qualitative plate activity assay 

Carboxylmethyl (CM)-cellulose and beechwood xylan hydrolysis were examined using Congo 

Red dye (162). Undiluted supernatants from the culture were loaded onto 1.5% Difco agar plates 

containing 0.2% CM-cellulose in 50 mM potassium phosphate, pH 7.0. The plates were 

incubated overnight at 30°C, and then flooded with 2 mg/mL Congo Red solution. After 15 min, 

the Congo Red was rinsed off with distilled water and the plate was washed with 5% acetic acid 

to produce a contrasting background and enhanced visualization of the clearance zones. The 

control of the experiment was carried out using denatured protein samples and uninoculated 

culture supernatant as the negative control. The plate was then photographed. 

 

4.2.3.2 Reducing sugar assay in protein solution 

The ability of an enzyme to cleave polysaccharides and produce products with reducing ends 

was assessed after incubating the enzyme with 0.2% of appropriate polysaccharide substrate in 

50 mM sodium phosphate at the desired pH and temperature. Unless otherwise stated, the pH 

used for assays was 7.0 and temperature 30°C. Before and after a set incubation time, 10 µL 

aliquots were mixed with p-hydroxybenzoic acid hydrazide (pHBAH), heated to 70°C for 10 min, 

and colour changes detected at 415 nm using a microtitre Tecan Safire2 plate reader (163). A 

stock solution of the appropriate monosaccharide diluted from 0.1 mg/mL to a 1 mg/mL was 

assayed to obtain a standard curve. One unit of exoglucanase/xylanase activity was defined as 

the generation of 1 nmol of sugar per min under these conditions. Glucose or xylose stock 

solution (1mg/mL) was serially diluted and assayed as the standard curve. 
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4.2.4 Label-free semi-quantitative proteomic analysis using mass spectrometry 

 

4.2.4.1 1D mini gel electrophoresis and tryptic digestion for GelC-MS of C. fimi 

proteomic samples from culture supernatants 

Samples from Day-3 C. fimi cultures grown on 4 substrates (Avicel, beechwood xylan, wheat 

straw and sugarcane bagasse) were collected for this analysis. Supernatant from the culture 

medium were concentrated 40 times using 20 mL Vivaspin20 10,000 MWCO (Sartorius) 

concentrators as described in Section 2.4.3. LC-MS/MS was performed to identify proteins in 

the supernatant fraction of the cultures. This analysis was performed by Mr. Adam Dowle of the 

Technology Facility at the University of York. A 26 µL aliquot of the concentrated protein solution 

was taken from each sample and replicates for analysis. Each sample aliquot was mixed with 4 

µL of x10 sample reducing agent (Novex NuPAGE, NP0004) and 10 µL of 4x sample buffer (Novex 

NuPAGE LDS, NP0007) before being heated at 70°C for 10 min. Heated samples were loaded 

onto the 10% gel (Novex NuPAGE 10% Bis-Tris Gel, NP0301BOX), with a blank (7.5 µL water 

mixed with 2.5 µL of 4x sample buffer) loaded between sample lanes. The sample was run into 

the gel in 800 mL of x1 running buffer (Novex NuPAGE MES SDS running buffer, NP000202) at a 

constant 200 V until the dye-front had fully run into the gel for about 6 min. Post running the 

gel was removed from the plastic cassette, washed with water and stained with SafeBlue protein 

stain (NBS-SB-1L). The gel was then destained with water for a 1 h before imaging.  

 

For the in-gel tryptic digest, stained gel bands were excised and cut into approximately 1 mm 

pieces before transferring into LoBind Eppendorf tubes. The gel slices were washed with 0.5 M 

triethylammonium bicarbonate in 50% acetonitrile/50% dH2O (v/v: 200 µL) for 20 min and 

repeated once. Supernatant was removed and gel slices were washed again with 200 µL 

acetonitrile once for 5 min followed by drying in the speedvac for 20 min at medium setting. The 

samples were reduced with 200 µL of dithioerythrietol (DTE) solution (1.5 mg/mL of 10 mM DTE 

in aqueous 0.5 M triethylammonium bicarbonate) and incubated at 56°C for 1 h. The gel pieces 

were cooled down to room temperature and the supernatant was removed. The gel pieces were 

alkylated with 200 µL iodoacetamide solution (9.5 mg/ml (50 mM) iodoacetamide in aqueous 

0.5 M trietylammonium bicarbonate) followed by incubation in the dark at room temperature 

for 30 min. Protein digestion was performed overnight at 27°C. Peptides were then extracted 

with 50% aqueous acetonitrile, dried in a vacuum concentrate and resuspended in 0.1% aqueous 

trifluoroacetic acid. 
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4.2.5 Mass Spectrometry Analysis of C. fimi proteomic samples from culture 

supernatants  

Prepared samples as previously described were loaded onto a nanoAcquity UPLC system 

(Waters) equipped with a nanoAcquity Symmetry C18, 5 µm trap (180 µm x 20 mm Waters) and 

a nanoAcquity BEH130 1.7 µm C18 capillary column (75 m x 250 mm, Waters). The trap wash 

solvent was 0.1% (v/v) aqueous formic acid and the trapping flow rate was 10 µL/min. The trap 

was washed for 5 min before switching flow to the capillary column. The separation used a 

gradient elution of two solvents (solvent A: 0.1% (v/v) formic acid; solvent B: acetonitrile 

containing 0.1% (v/v) formic acid). The flow rate for the capillary column was 300 nL/min Column 

temperature was 60°C and the gradient profile was as follows: initial conditions 5% solvent B (2 

min), followed by a linear gradient to 35% solvent B over 20 min, then a wash with 95% solvent 

B for 2.5 min. The column was returned to initial conditions and re-equilibrated for 25 min 

before subsequent injections.  

 

The nanoLC system was interfaced with a maXis LC-MS/MS System (Bruker Daltonics) with a 

CaptiveSpray ionisation source (Bruker Daltonics). Positive ESI-MS and MS/MS spectra were 

acquired using AutoMSMS mode. Instrument control, data acquisition and processing were 

performed using Compass 1.5 software (microTOF control, Hystar and Data Analysis, Bruker 

Daltonics). Instrument settings were: ion spray voltage: 1,400 V, dry gas: 3 L/min, dry gas 

temperature 150°C, ion acquisition range: m/z 50-2,200. AutoMSMS settings were: MS: 0.5 s 

(acquisition of survey spectrum), MS/MS (CID with N2 as collision gas): ion acquisition range: 

m/z 350-1,500, 0.1 s acquisition for precursor intensities above 100,000 counts, for signals of 

lower intensities down to 1,000 counts acquisition time increased linear to 1.0 s, the collision 

energy and isolation width settings were automatically calculated using the AutoMSMS 

fragmentation table, 5 precursor ions, absolute threshold 1,000 counts, preferred charge states: 

2-4, singly charged ions excluded. A single MS/MS spectrum with a 20 min gradient was acquired 

for each precursor and former target ions were excluded for 30 s. 

 

4.2.5.1 Spectra analysis 

The resulting spectra obtained from the LC-MS/MS analysis were searched against the 

Cellulomonas fimi ATCC® ϰ8ϰ™ seƋueŶĐe data. Peptide ŵatĐhes ǁeƌe filteƌed to aĐĐept oŶlǇ 

matches with an expect score of 0.05 or better. All identification was performed at the peptide 

level with protein assignments inferred from the peptides matched using Mascot program 

(Matrix Science LTd., version 2.4). This was locally run through the Bruker ProteinScape interface 
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(version 2.1). The search criteria were specified as follows; the instrument was selected as ESI-

QUAD-TOF, trypsin was stated as the digestion enzyme, fixed modifications as carbaniidomethyl 

(C), and variable modifications as oxidation (M). Peptide tolerance was 10 ppm, and MS/MS 

toleƌaŶĐe Ϭ.ϭ Da. Results ǁeƌe filteƌed thƌough ͚MasĐot PeƌĐolatoƌ͛ aŶd adjusted to aĐĐept oŶlǇ 

peptides with an expect score of 0.05 or lower. An estimation of relative protein abundance was 

performed as described by Ishihama et al. (164), whereby an exponentially modified Protein 

Abundance Index (emPAI) is used to estimate the absolute abundance of proteins in LC-MS/MS 

experiments. The emPAI offers approximate, label-free, relative quantification of the proteins 

in a mixture based on protein coverage by the peptide matched in a database search result. This 

index is defined in equation 1 where Nobservered is the total number of detected peptides, and 

Nonservable is the theoretical number of observable peptides. 

 

Equation 4.1: Exponentially modified Protein Abundance Index (emPAI) 

Protein Abundance Index (PAI) = Nobserved 

 Nobservable 

 

Exponentially modified PAI (emPAI) = 10PAI – 1 

 

In brief, the emPAI value reflects the fact that the amount of a protein present in a mixture 

relative to all other proteins in a mixture is best represented by the ratio of how much of the 

sequence of each protein is detected in an analysis, rather than by the number of peptides found 

for each protein (i.e. spectral count). The way emPAI values are calculated by the MScot program 

is based on an estimated value for Nobservable. To make the data more useful, the emPAI value for 

each protein was converted into a molar fraction percentage (MFP) value using the formula 

described by Ishihama et al. (164) as shoǁŶ ďeloǁ. The Σ ;eŵPAI) is the sum of all individual 

emPAI values from a single LC-MS run dataset.  

 

Equation 4.2: Molar Fraction Percentage 

Molar Fraction Percentage (mol %) =  emPAI   X 100 

                                          Σ ;eŵPAIͿ 

 

This value represents as a percentage how much of the total amount of protein in the sample is 

represented by a given protein. 
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The nucleotide sequence of each protein detected was retrieved and submitted to a Basic Local 

Alignment Search Tool (BLASTx) search (http://blast.ncbi.nlm.nih.gov). The highest ranking most 

matched BLAST hit was recorded for each protein. The UniProt identifier for each of the 

recorded BLAST assignments was obtained and recorded (http://www.uniprot.org). The UniProt 

identifier for each protein was used to select a suitable gene ontology term to allow protein to 

be grouped by function. If a protein was found to represent a glycosyl hydrolase (GH), 

polysaccharide lyase (PL), auxiliary activity (AA), or Carbohydrate Binding Module (CBM), the 

UniProt identifier for that protein was used to determine to which family the protein belonged 

to by searching the Carbohydrate-Active enzyme database (CAZy, http://www.cazy.org).  

 

4.2.5.2 Notes on Molar Fraction percentage (MFP) values 

There are often cases where a peptide is present in more than one protein in the database 

searched; in these cases, proteins with overlapping peptide sequences are grouped into families. 

Members in families contain at least one overlapping peptide sequence; in these cases, it is 

impossible to say from which protein the non-unique peptides are truly derived. As MFP values 

are calculated by dividing each individual emPAI value by the sum of all emPAI values in a 

sample, MFP values can only be used to make direct comparisons within that sample. The actual 

amount of protein one percent represents in each sample could be vastly different; therefore, 

differences must be discussed in terms of relative abundance.  

 

 

http://blast.ncbi.nlm.nih.gov/
http://www.uniprot.org/
http://www.cazy.org/


Chapter 4: Proteomic Analysis of the Secretome of Cellulomonas fimi 

 

Results 

 

85 

 

4.3 RESULTS 
 

4.3.1 Protein quantification 

 

4.3.1.1 Sodium Dodecyl-Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

C. fimi was grown in shaking flasks containing glucose (negative control), Avicel, beechwood 

xylan, wheat straw and sugarcane bagasse as the sole carbon sources. To assess the range of 

extracellular enzymes produced by C. fimi growing on different substrates, protein samples from 

the extracellular medium were harvested at Day-1, Day-2 and Day-3 of cultures and analysed. 

The first step was to visualise the protein profiles of C. fimi to determine how much protein was 

present in the supernatant of the cultures. Figure 4.1A shows an example for estimation of 

protein concentration in the samples using SDS-PAGE gels and Coomassie stain. The overall 

amount of protein after staining produced in wheat straw culture seems most comparable to 10 

mg of E. coli protein. This rough estimation would mean that 100 µL of concentrated protein 

supernatants from C. fimi cultures contained at least approximately 100 µg of protein for 

subsequent protein analysis.  

 

The profiles of secreted proteins by C. fimi during the 3-day time course in individual substrates 

were visualised on SDS-PAGE gels. Different patterns of protein bands were seen from cultures 

on different substrates in a reproducible manner across three replicates. Minimum amounts of 

proteins were secreted during day-1 and increased towards day-3 in all cultures. Culture 

supernatants of C. fimi grown in glucose showed very limited protein secretion for the whole 3-

day time course (Figure 4.2B). Contrarily, protein bands were observed on the gels after 

Coomassie staining with C. fimi supernatants from Avicel, xylan, wheat straw, and sugarcane 

bagasse cultures (Figure 4.2 C to 4.2F). Similar pattern of protein bands at a size range from 55 

– 100 kDa were detected from Avicel and xylan supernatant cultures, with relatively more 

protein in Avicel cultures from day-2 and day-3 based on intensity of the protein bands (Figure 

4-2C). However, from the xylan culture, unique protein bands appeared at higher molecular 

weight (130 – 200 kDa) that were not present at all in other culture samples. In the wheat straw 

and sugarcane bagasse culture supernatants, protein bands were visible approximately at 35 – 

130 kDa. Despite this, proteins ranging from 70 to 130 kDa were secreted to relatively higher 

levels in the wheat straw culture than in the sugarcane bagasse culture.  
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Figure 4.2: SDS-PAGE secretome profiles of C. fimi grown in 5 substrates. 

A) Coomassie stained SDS-PAGE gel with 3 replicates of wheat straw supernatant (lane 1 to 3) 

from day-3 culture of C. fimi compared against a range of known concentrations of E. coli protein 

extracts producing a series of standards (lane 4 to 7) for the approximation of protein content. 

E. coli protein standards were quantified by Bradford method at 3, 4.5, 6, and 10 µg of protein. 

Profiles from day-1, day-2, and day-3 of secretome from the C. fimi grown in B) glucose, C) Avicel, 

D) beechwood xylan, E) wheat straw, and F) sugarcane bagasse with 3 biological replicates. The 

first 3 lanes on each gel represented triplicates from day-1 of the culture, followed by 

suďseƋueŶt tiŵe poiŶts iŶ tƌipliĐates. FeƌŵeŶtas PageRuleƌ™ Plus PƌestaiŶed PƌoteiŶ Laddeƌ ǁas 

used to approximate protein size in a range of 15 to 100 kDa. 
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4.3.1.2 Bradford assay 

Protein concentrations of day-3 cultures showed significantly the highest protein secretion in 

wheat straw supernatant followed by Avicel culture and all other substrates which showed 

statistically no difference to each other. 

 

 

 

Figure 4.3: Protein concentration in the supernatant of day-3 C. fimi cultures grown on 

different substrates.  

Protein concentration was determined by Bradford assay (130). A range of serially diluted 

Bovine Serum Albumin (BSA) was used to generate a protein standard curve. The mean of three 

biological replicates ± SD is shown. Statistical analysis was performed using one-way ANOVA 

multiple comparisons test, *** P<0.001. 
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4.3.2 Enzyme activity assay 

 

4.3.2.1 Enzyme activity agar plate assay 

The activity of endo-/exo-glucanases and xylanases in the C. fimi supernatants from a 3-day time 

course were assayed on 0.2% (w/v) CM-Cellulose and xylan agar plates, respectively. Hydrolysis 

of these substrates on the agar plates were visualised by staining with Congo red with cleared 

zones providing a relative measurement of activity from the supernatants. All the culture 

supernatants samples had detectable enzyme activity against the substrates except the 

supernatant from the glucose culture, which only showed very faint clearing zones on CM-

cellulose substrate agar plate (Figure 4.4).  

 

To quantitatively determine enzyme activity from the plates, the approximate diameters of 

cleared zones were measured using ImageJ® software (165). Figure 4.5 shows the profiles of 

clearing zones produced by culture supernatants following the enzyme assay on plates during 

3-day time course. The diameters of clearing zones increased with time in all samples compared 

to the glucose control for each day of the samples were taken. Highest exo-/endoglucanase 

activity on CM-cellulose was observed at day-3 as indicated by the biggest diameter of clearing 

zone from supernatant of C. fimi grown in wheat straw (Figure 4.5A). The clearing zones 

produced from the maximum exo-/endoxylanase activity on day-3 of Avicel, wheat straw and 

sugarcane bagasse cultures were not significantly different from each other as shown in Figure 

4.5B. Minimum activity of exo-/endoglucanase was detected on the beechwood xylan substrate 

when incubated with the supernatant of C. fimi grown in the glucose culture.  
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Figure 4.4: Detection of polysaccharide-degrading enzymes from supernatant of C. fimi culture in nutrient agar plates containing substrates stained with Congo 

Red. 

CM-cellulose and beechwood xylan were used as substrates for the enzymatic reaction at a concentration of 0.2% (w/v), inoculated with 10 µL of each biological 

replicate from unconcentrated C. fimi culture supernatant grown on different carbon sources. The plates were incubated at 30°C for 2 days before being stained 

with Congo Red to detect hydrolysis of the substrates. 
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A) Agar plate substrate: CM-Cellulose 

 

 

B) Agar plate substrate: Beechwood xylan 

 

Figure 4.5: Identification of polysaccharide-degrading activities in C. fimi culture by the activity 

plate assay.  

Unconcentrated culture supernatants of C. fimi (10 µL) grown on different carbon sources from 

3-day time courses were loaded onto 0.2% (w/v) A) CM-cellulose, B) Beechwood xylan agar 

plates. The mean of three biological replicates ± SD is shown. Statistical analysis was performed 

using one-way ANOVA multiple comparisons test, *** P<0.001. 
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4.3.2.2 Reducing sugar assay of protein solution 

Biochemical analysis of the enzymatic activity was performed on C. fimi culture supernatants 

using p-hydroxybenzoic acid hydrazide (pHBAH) reagent which reacts with the reducing sugars 

and produces a colour that can be detected spectrophotometrically (163). Activity of cellulases 

releasing cello-oligomers during the breakdown of CM-cellulose was the highest in C. fimi 

supernatant grown in wheat straw but not significantly different compared to the other culture 

supernatants. In figure 4.6A, decreasing cellulase activity against CM-Cellulose was seen in C. 

fimi grown on the xylan over 3 days. In contrast, cellulase activity increased from day-2 and 

stayed high in cultures grown on Avicel, wheat straw, and sugarcane bagasse. The profile of 

xylanase activity during the 3-day time course was maximum on day-2 with significantly highest 

activity in wheat straw culture supernatants but decreased in day-3 in all culture supernatants 

(Figure 4.6B).  

A) CM-Cellulose reducing sugar assay  B) Beechwood xylan reducing sugar assay  

  

Figure 4.6: Cellulase and xylanase activity in C. fimi cultures grown on different substrates.  

A) Cellulase, and B) Xylanase activity in cultures grown in the presence of 0.2% (w/v) of individual 

substrates; Avicel, xylan, wheat straw and sugarcane bagasse culture supernatant activities 

were estimated by calculating the release of reducing sugar after incubation on 1% CM-cellulose 

or xylan for 1 hour with supernatants. The mean of three biological replicate ± SD is shown. 

Statistical analysis was performed using one-way ANOVA multiple comparisons test, * P<0.05. 
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4.3.3 Label-free semi-quantitative proteomic analysis 

 

Protein samples for this analysis were taken on the Day-3 of culture as described in Section 

4.2.4.1. The range and relative abundance of proteins in the C. fimi secretome grown on 

different substrates were evaluated using a label-free semi-quantitative proteomic approach as 

described under 4.2.4. From the analysis, approximately 30 unique peptides were identified for 

each secretome sample. This relatively small number of proteins is representative of a low 

complexity of the protein samples, which reflects the fact that only the secretome of C. fimi was 

examined which does not include intracellular proteins.  

 

The Venn diagram in Figure 4.7 illustrates the commonalities and distinctions between proteins 

identified in the different samples. The same number of distinct proteins (4 proteins) was 

secreted on the lignocellulosic substrates wheat straw and sugarcane bagasse, whereas the 

highest number of unique proteins was observed in xylan (16 proteins). In general, the proteins 

identified in wheat straw and sugarcane bagasse culture samples were similar, but there were 

major differences between wheat straw and Avicel, and wheat straw and xylan. Out of the total 

71 proteins identified, 12 were commonly secreted by C. fimi in all substrates.  

 

 

Figure 4.7: Distribution of extracellular proteins detected in day-3 C. fimi cultures. 

The Venn diagram represents 71 unique secreted proteins identified from 20 min gradient LC-

MS analysis of C. fimi grown on Avicel, beechwood xylan, wheat straw and sugarcane bagasse. 

The Venn diagram was built using an online web tool (140) 

(http://bioinfogp.cnb.csic.es/tools/venny/). 



Chapter 4: Proteomic Analysis of the Secretome of Cellulomonas fimi 

 

Results 

 

93 

 

4.3.4 Sequence-based analysis of the secreted proteins 

 

4.3.4.1 Functional distribution and localization of identified proteins from C. fimi 

secretome 

The LC-MS/MS protein dataset of the secretome of C. fimi cultivated for 3-days on Avicel, xylan, 

wheat straw, and sugarcane bagasse was further analysed using available online databases. 

Figure 4.8 shows that from a total of 71 proteins identified on either one of the substrates, 58% 

are classified as CAZymes including 44% categorized as glycosyl hydrolases (GHs) and/or CBMs. 

The only LPMO annotated in the CAZy database for C. fimi was also identified in this dataset (1% 

of the identified proteins). Nine proteins were classified as transport proteins, mostly 

extracellular solute binding protein family 1 and 5 representing 13% in the overall samples. A 

further 18% proteins were categorized as transmembrane and/or receptor proteins which also 

consists of carbohydrate receptor domains. Several hypothetical putative and unknown function 

proteins have also been identified (11%). A low level of 7% intracellular proteins, however, 

contributed to the C. fimi secretome. 

 

 

Figure 4.8: Functional classification of proteins secreted by C. fimi grown on Avicel, xylan, 

wheat straw, and sugarcane bagasse.  

The proteins identified and molar percentage quantified on all test substrates with an unused 

pƌoteiŶ sĐoƌe of ≥Ϯ ǁeƌe ĐoŶsideƌed foƌ ĐlassifiĐatioŶ. 
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4.3.4.2 Secretion pathways of extracellular C. fimi proteins 

A Venn diagram in Figure 4.9 shows the communalities and unique secretion pathways (classical 

secretion pathway using signal peptide, and non-classical secretory pathway (SP); lipobox signal 

pathway (LipoP1.0), Twin-Argine Translocation (TATfind), and Transmembrane Helices Hidden 

Markov Model (TMHMM)) characterized from all identified proteins of the secretome. From the 

total of 71 proteins, 60 proteins had a readily identifiable secretory signal with a cutoff value 

0.45 for the cleavage site threshold indicating the presence of a signal peptide. Only 3 proteins 

exclusively contained TMHMM, whilst 12 proteins were predicted not only to comprise a 

classical secretion signal but also having the alternative of Twin-Arginine Translocation (Twin-

Arg) or lipoprotein secretion (LipoBox) pathways.  

 

 

 

Figure 4.9: Venn diagram showing the predicted distribution of four secretion pathways 

among the 71 identified extracellular proteins of C. fimi. 

Predicted secretion pathways were identified using available database servers:  

Signal peptide, SignalP4.1 (http://www.cbs.dtu.dk/services/SignalP/);  

Transmembrane Helices (http://www.cbs.dtu.dk/services/TMHMM/);  

Twin-Arginine Translocation (http://signalfind.org/tatfind.html); and  

Lipoprotein translocation (http://bioinformatics.biol.uoa.gr/PRED-LIPO/input.jsp). 
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4.3.5 Principal Component Analysis (PCA) 

A multivariate analysis was performed to reduce the dataset dimensionality of the protein lists 

and to extract the highly correlated proteins from the results of the LC-MS/MS analysis. For this 

purpose, a Principle Component Analysis (PCA) was applied to build a correlation matrix of 

identified proteins using prcomp function in R software (RStudio®, Inc. Version 0.98.507). Table 

4.2 shows a set of a correlation matrix produced from the PCA where the proportion of variance 

is the total variance in each component. The first and second components were chosen to 

represent the total variation in the dataset that consist of 67% and 18%, respectively. The scree 

plot in figure 4.10 shows that two principle components (PCs) gave the highest percentage and 

therefore explained most of the variance among all the components which were thus taken into 

further analysis. 

 

Table 4.2: Importance of component variables from the C. fimi proteomic dataset analysed by 

Principal Component Analysis (PCA). 

 

  PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 0.1836 0.09505 0.05449 0.04468 0.04044 0.02067 

Proportion of 
Variance 0.6668 0.17871 0.05873 0.03948 0.03235 0.00845 

Cumulative 
Proportion 

0.6668 0.84553 0.90426 0.94375 0.97609 0.98454 

       

  PC7 PC8 PC9 PC10 PC11 PC12 

Standard deviation 0.01744 0.01439 0.01094 0.00889

7 

0.00844 2.72E-17 

Proportion of 
Variance 0.00602 0.0041 0.00237 0.00157 0.00141 0.00E+00 

Cumulative 
Proportion 0.99056 0.99466 0.99702 0.99859 1 1.00E+00 
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Figure 4.10: Scree plot from Principal Component Analysis (PCA) of proteomics from day-3  

C. fimi culture supernatants from growth in Avicel, beechwood xylan, wheat straw, and 

sugarcane bagasse. 

Variance explained by the top 10 principle components in 12 observations. Each circle 

represents the individual variance explained by the PC. The first two points (PC1) and (PC2) 

explained most of the variation in the observation and were hence selected to reduce the 

dimensionality of the dataset. 

 

The distribution of each unique protein identified in the analysis is shown in a biplot graph 

(Figure 4.11). The distribution between two principal components has revealed the variation of 

extracellular proteins secretion by C. fimi grown in four different substrates. Three biological 

replicates of each condition clustered tightly indicating a good reproducibility of the data as 

marked in the blue circles. Figure 4.11(A) shows the overview of all plotted data loadings, and 

Figure 4.11(B) is a stretched scale of the biplot graph for a clearer data exploration.  

 

Three types of endo-1,4-β-xylanases; 1) Prot17; Celf_3156, 2) Prot3; Celf_0574, and 3) Prot40; 

Celf_0088 stand out from the analysis. The first xylanase, Prot17 has high ordination in the Avicel 

and also sugarcane bagasse cultures, and the latter two xylanases (Prot3 and Prot40) were 

present in a larger number in the xylan culture. This distribution is shown by the arrows in figure 

4.11(A). Further examination of the PCA biplot showed that two different modules of CBM2 

were highly secreted in wheat straw culture labelled as Prot12 and Prot60. Two proteins, Prot1 

(exoglucanase) and Prot70 (cellobiohydrolase, CbhB), were directed at the negative ordinate of 

PC1 and PC2 specifically in the sugarcane bagasse culture that indicates low secretion of these 

proteins in sugarcane bagasse culture. All the identified proteins were further analysed for 

detailed predicted protein domain structure presented in the next section. 
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Figure 4.11: Biplot graph from PCA analysis of C. fimi proteomic dataset using two principal 

components. 

PCA analysis was performed to discover and summarize the pattern of intercorrelation of 

protein secretion among four different substrates supplied for C. fimi growth.  
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B) Rescale image from close distribution of extracellular proteins from C. fimi 
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4.3.6 Protein domain prediction 

To deepen the understanding of the types of proteins found in the C. fimi secretome, the 

annotation predicted protein sequences were scrutinised by BLAST searches and protein 

domain predictions. This was useful because the gene annotations provided were mostly taken 

automatically from the top BLAST hit and do not always give a clear indication of what a protein 

may do. This is particularly the case for C. fimi secreted proteins, which often have multiple 

domains. For example, a number of these proteins have multiple carbohydrate binding domains 

and glycosyl hydrolase domains in the same polypeptide, but the automated annotation 

software used will name it as the first BLAST hit, which will be to only one of these domains. 

Therefore, the Conserved Domain Sequence (CDS) of identified proteins in C. fimi secretome 

dataset was predicted using a protein alignment method in CDS NCBI Batch-Blast Database and 

the predicted protein sequences from the Cellulomonas fimi ATCC ϰ8ϰ™ geŶoŵe seƋueŶĐe. 

Protein domain predictions were also made using the CAZy database according to each protein 

family classification (Appendix A). 

 

Proteins that were identified from the PCA analysis were further examined for their predicted 

domain structures. The endo-1,4-β-xylanase (Celf_3156) labelled as Prot17 in the PCA biplot that 

was present only in Avicel and sugarcane bagasse cultures consists of a GH10 and CBM13 

domain. From the CAZy database, the GH10 domain has a predicted function as 1,4- or 1,3-β-

xylanase. A similar protein that contains a CBM13 proved to be able to bind xylan specifically 

through the arabinose residues. This has been demonstrated for the Streptomyces lividans 

xylanase A and arabinofuranosidase B. A putative sugar binding site contained in this protein 

has a conserved motif of Q-X-W that is present commonly in Ricin-B domains found in other 

xylanases (166,167). In addition, this domain also has the affinity to bind galacturonic acid 

(GalNAc) like a corresponding module of GalNAc transferase 4 in the same bacterium (76). 

However, the binding specificity of these protein modules (GH10 and CBM13) have not been 

established yet including for the one in C. fimi. 

 

The other two proteins annotated as endo-1,4-β-xylanases (Prot3 and Prot40) that were highly 

correlated with the arrows ordinated to the positive variance to the xylan substrate. The protein 

with the highest positive variance labelled as Prot3 (Celf_0574) comprises complex 

multidomains and was found significantly most abundant on beechwood xylan, equally 

abundant on wheat straw and sugarcane bagasse but absent from Avicel cultures. Six domains 

were predicted in this protein including two domains each of CBM22 and CBM9, and a single 
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domain each of carbohydrate esterase family 3 (CE3) and GH10. From the CAZy depository, the 

summary of predicted function of each domain in 1,4-β-xylanase (Prot3, Celf_0574) is presented 

in Table 4.3. 

 

Table 4.3: Summary of predicted domains found in 1,4-β-xylanase (Prot3, Celf_0574). 

FAMILY PREDICTED DOMAIN FUNCTION 

CBM9 This module is approximately 170 residues and has been found so far only in 

xylanases. The cellulose-binding function was demonstrated by Boraston et al. 

study (168) that binds to amorphous cellulose, crystalline cellulose, and the 

insoluble fraction of oat spelt xylan. 

CBM22 A xylan binding function has been demonstrated in several cases and affinity 

with mixed β-1,3/β-1,4-glucans (76). 

CBM NC Carbohydrate-ďiŶdiŶg ͞ŶoŶ-Đlassified͟ ŵodule that is Ŷot Ǉet assigŶed to a 
family. 

CE4 A characterized acetyl xylan esterase and been found to have an activity of 

chitin deactylase. The function of carbohydrate esterase (CE) is to catalyze the 

de-O or de-N-acylation of substituted saccharides (76).  

GH10 Endo-1,4/endo-1,3-β-xylanase 

 

The other endo-1,4-β-xylanase labelled as Prot40 (Celf_0088) has a simpler domain structure 

with single GH10 and CBM2 domains. This protein module has been identified on all five 

substrates but was significantly the highest in beechwood xylan cultures.  

 

The high level of Prot60 (Celf_0403) was detected on wheat straw, and it was present in Avicel 

and sugarcane bagasse cultures, but not identified in xylan culture. Based on the NCBI database, 

this protein is described as a CBM2 which is the only domain contained in this protein. CBM2 

domains are known to bind the crystalline cellulose and have been found in all Cellulomonas 

cellulase families with various domain combinations (86).  

 

Another CBM2 protein which was detected at higher level on lignocellulosic substrates 

compared to Avicel is Prot12 (Celf_1913). This protein has two other predicted domains in its 

structure which are a GH74 and a bacterial neuramidase 2 (BNR2) domain. GH74 is predicted to 

have a function of xyloglucanase (86), whereas additional BNR2 domain present in this protein 

is predicted of having a role as sialidase. The dual functions of this domain is predicted to be a 
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combination of carbohydrate binding and cleaving domain that may be common in microbes as 

observed in the sialidase from Vibrio cholerae (169). It is common not only to other bacterial 

and parasitic sialidases, but also to other glycosidases involved in pathogenesis (169). Copley et 

al. (170) detected a linear conserved motif of an Asp box in an α-hairpin from 3D protein folds 

in the BNR2 domain, which was shown to have significant structural similarity to a single hairpin 

in the immuno-globulin-like (Ig-like)-domain of chitobiase. The occurrence of this motif in a non-

homologous context is unknown but could be associated with the known O-glycosyl hydrolase 

activities of sialidases and chitobiases that occur frequently in proteins that act on, or interact 

with polysaccharides (170). The x-ray crystal structures of sialidase from Micromonospora 

viridfaciens showed an Ig-like fold that serves as a linker which is homologous to the galactose-

binding domain of a fungal galactose oxidase (169). 

 

A full list of CAZymes and other domain structure predictions of the above-described proteins 

and all identified proteins are summarized in Appendix A. Thirty-two proteins were annotated 

as CAZymes with various functions including glycosyl hydrolases, pectate lyases as well as 

carbohydrate-binding modules. NCBI-BLAST server was used to identify the similarity of proteins 

in C. fimi secretome against existing protein structures in Protein Data Bank (PDB). This search 

was carried out as one of the strategies to identify the best candidate proteins to further study 

using recombinant protein expression and characterization approaches.  

 

4.3.7 CAZymes secreted by C. fimi  

 

Using the C. fimi genome data, numbers of CAZymes including the GHs in C. fimi were predicted. 

A summary of well-studied and characterized CAZy-GHs in C. fimi are listed and compared for 

their secretion level in the four substrates supplied in the cultures by a heat map in Table 4.3. 

The available extensive information of cellulase and xylanase families in CAZy database 

(www.cazy.org) of C. fimi was used to analyse their presence on all four substrates in the C. fimi 

secretome obtained from the nanoLC-MS/MS study (Appendix B).  

 

4.3.8 Cellulases 

There were many known CAZymes expressed by C. fimi grown on the range of substrates used. 

Three cellulases, Cel6B/CbhA (Celf_1925), Cel5A/CenD (Celf_1924), Cel9B/CenC (endo-β-1,4-

glucanase C), and Cel48A (CbhB or CenE) were detected on Avicel, wheat straw, sugarcane 

bagasse but not in xylan. However, Cel6A/CenA (Celf_3184) was identified in all the cultures 

http://www.cazy.org/
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including the xylan and expressed to significantly highest levels in the Avicel culture. A cellulase 

enzyme that was exclusively found in wheat straw culture was Cel9A/CenB (Celf_0019). A new 

GH9 member of C. fimi in CAZy (Cel9C/D) was not detected in any C. fimi supernatants, whereas, 

Celf_1230 (Cel6C), a new member belonging to Cel6 family, was detected under all conditions 

with significantly highest levels on Avicel, followed by wheat straw and xylan, but was not 

present in sugarcane bagasse cultures. Three out of four GH6 proteins that belong to C. fimi 

were identified in this study, however, the fourth GH6 (Celf_0233) was not detected under any 

conditions. 

 

4.3.9 A LPMO, additional glucanases and potential xylanases 

From this analysis, a number of potentially uncharacterized β-glucanases were identified such 

as the AA10, GH3, GH16, GH18, and GH64. The AA10 protein, formerly classified as CBM33 in 

CAZy, is the only LPMO. This LPMO has been detected on wheat straw, sugarcane bagasse and 

at highest levels in Avicel cultures, but not in xylan cultures. Several GHs observed to be present 

exclusively in the xylan cultures were the GH3 (Celf_0583), GH16 (Celf_3113), GH18 (Celf_3161) 

and GH64 (Celf_3330). 

 

4.3.10 Xylanases 

Theoretically, xylanases may be present in xylan culture supernatants rather than in cellulose 

(Avicel/CM-Cellulose) supernatant. However, a few exceptions have been observed from C. fimi 

secretome in this study. Xyn10B (Cfx) was predominantly present in the xylan culture, also 

detected in wheat straw and sugarcane bagasse cultures, but absent in Avicel culture. 

Meanwhile, Xyn10C (XylC) was not present in any cultures except of Avicel. A recently 

characterized xylanase XynE/Xyn10 (Celf_3156) was not seen in xylan and wheat straw cultures, 

but identified in Avicel and sugarcane bagasse cultures (144,171). The only GH11 protein in C. 

fimi (Xyn11A) was found in xylan supernatant and also even at higher levels on all other 

substrates. 
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Table 4.4: Summary of detected cellulases and xylanases in C. fimi secretome grown 

on four types of carbon sources compared to the CAZy database of C. fimi enzymes 

(2017). 

CAZy 

FAMILY 

IDENTIFIED 

OF TOTAL 

PREDICTED 

PROTEIN 

NAME 
DESCRIPTION 

AV

I 
XYL WS SCB 

AA10 1/1 Celf_0270  
Chitin-binding domain 3 

protein  
    

GH3 1/11 Celf_0583  GH3 domain protein      

GH5 1/2 Celf_1924 GH5      

GH6 3/4 Celf_1230  
1, 4-β ĐelloďiohǇdƌolase 
(Cel6C) 

    

  Celf_1925 

Exoglucanase A 

(GH6/CelB) 

Cellobiohydrolase A 

(cbhA) 

 

  

  Celf_3184  
1, 4-β ĐelloďiohǇdƌolase 
(GH6) 

    

GH9 4/4 Celf_0045  GH9      

  Celf_1705  GH9      

  cenC/Cel9B Endoglucanase C      

  
Celf_0019 / 

CenB 
GH9      

GH10 3/5 Celf_0088  Endo-1,4-β-xylanase      

  Celf_0574  
Endo-1,4-β-xylanase 

(Xyl10B, XynC) 
    

  Celf_3156  Endo-1,4-β-xylanase      

GH11 1/1 Celf_0374  GH11      

GH16 1/3 Celf_3113  GH16      

GH48 0/1 N/D N/D     

GH74 1/1 Celf_1913  
Cellulose-binding family 

II  
    

Note: AVI; Avicel, XYL; Xylan, WS; Wheat straw, SCB; Sugarcane bagasse. 

N/D; Not detected 
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4.4 DISCUSSION 

C. fimi, a cellulolytic bacterium was grown on five different carbon sources over a 3-day time 

course. Glucose, Avicel, beechwood xylan, wheat straw, and sugarcane bagasse, respectively, 

were supplied to the medium. Glucose medium was used as a negative control as glucose should 

be taken up without further transformation. Avicel and xylan are distinct polysaccharides 

representing cellulose and hemicellulose fractions of secondary plant cell walls commonly used 

to characterise enzyme function and the latter two substrates represent complex lignocellulosic 

biomass from agricultural residues. From estimation of protein concentrations by Bradford 

colorimetric assay and polyacrylamide gels, it appears that different amounts of protein were 

secreted by C. fimi when growing on the five different substrates. A significantly higher amount 

of protein was detected in wheat straw and Avicel cultures towards day-3 of incubation. This is 

an unsurprising observation as C. fimi is a well-known cellulose degrader (86) and known to 

potentially digest more complex cellulose compounds such as lignocellulosic wheat straw (172). 

The different banding patterns of protein observed on the polyacrylamide gels indicate diverse 

profiles of digestive enzymes of particularly the cellulases (in range of 44.3 to 223.6 

nmol/mL/min) and xylanases (in range of 50.1 to 216.4 nmol/mL/min) which were produced in 

response to each substrate, which has also been observed in other cellulosic degradation studies 

(56,144). 

 

Increasing cellulase activity at later time points as identified by the reducing sugar assay from 

most of the cultures largely agreed with the plate enzyme activity assay. Bigger clearing zones 

over time were observed from all C. fimi cultures except the xylan cultures tested in the plate 

assay with CM-cellulose as the substrate. A significantly highest cellulase activity was detected 

from the wheat straw culture compared to the other substrates on day-3 showing a correlation 

between the clearing zones on plate activity assay as well as the amount of protein quantified 

in the Bradford assay. Cellulase activity was increased from day-1 to day-3 on Avicel, wheat 

straw, and sugarcane bagasse cultures suggesting that the cellulases/glycosyl hydrolases were 

present and recognized the substrates in synergistic mechanisms with Carbohydrate-Binding 

Modules (CBMs) which enabled the catalytic enzymes to progressively break down the 

polysaccharides (103,173,174). However, a decreasing pattern of cellulase activity was observed 

from day-1 to day-3 of C. fimi culture grown in xylan substrate. This implies the secretion of 

enzymes by C. fimi depending on the available substrate in the medium (113,139,175) as well as 

the recognition of decorated hemicellulose with polysaccharide side-chains in the 

hardwood/beechwood xylan such as arabinose and glucoronic acid (174,176). When the 
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degradation goes deeper into plant cell wall structure and the more complex hemicellulose-

cellulose matrix of the cell wall is reached, and limited xylanase activity to degrade crystalline 

cellulose occurred hence the reducing activity of cellulase was observed towards the end of 

incubation. 

 

A similar pattern of xylanase activity was detected in C. fimi secretome when grown on all four 

polysaccharide substrates except for undetected xylanase activity in the glucose culture (data 

was not shown). The low activity of xylanase degrading the polysaccharide at day-1 in all the 

cultures corresponded to hard-to-digest hemicellulose matrix being a recalcitrant substrate 

(63,177) or with the fact, that it takes some time to synthesize the enzymes to digest 

hemicellulose and to increase their levels from lower background expression. Xylose and other 

xylo-oligosaccharides were released at maximal level from all the cultures in day-2 (according to 

the reducing sugar assay) indicating xylanase activity and polysaccharide break down, with 

significantly highest activity in wheat straw cultures. The breakdown of xylan to reducing sugars 

of xylo-oligos was increased to about 2.3 times in day-2 compared to day-1 in wheat straw 

cultures (44.9 nmol/mL/min). However, it was not significantly different from the xylanase 

activity in sugarcane bagasse (1.3 times higher) and in Avicel (1.1 times higher) on the same day.  

 

It is curious that xylanase activity was also increased on Avicel grown culture but this may reflect 

the fact that xylan is usually accompanied by cellulose in nature and the bacterium has evolved 

to ͞look͟ foƌ oŶe iŶ the pƌeseŶĐe of the otheƌ (178,179). This activity also suggests that not only 

xylanase activity was detected during the assay but other bifunctional glucanases such as 

glycosyl hydrolase family 10 (GH10) in C. fimi secreted proteins such as cellobiohydrolases. This 

observation may suggest that GH10 may possess xylanase and cellobiohydrolase activity 

depending to the protein domains presence (180,181). However, Clarke et al. (182) revealed 

that xylan hydrolysis catalysed by a different type of C. fimi xylanase is mediated by a separate 

subset of multidomain enzymes to the xylanase containing distinct catalytic and cellulose-

binding domains. Those enzymes were encoded by multiple genes and some of the C. fimi 

xylanases are not solely acting on xylan but can also act as exoglucanase that hydrolyse cellulose 

(182). A similar characteristic has been observed in an aerobic bacterium, Pseudomonas 

fluorescens subsp., cellulosa (183) where separate sets of cellulase and xylanase are lacking in 

cross-specificity yet the xylanase is responsible for the hydrolysis of cellulose and xylan 

(182,184). From these publications, C. fimi may possible secrete some xylanases that could have 

multiple functions toward the polysaccharides of plant cell wall. On the other hand, the reduced 
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activity of xylanase was observed in all day-3 cultures which could also be a sign of carbon 

catabolite repression in the system where enzyme expression was inhibited by certain level of 

break down products from xylan (185,186). 

 

Biocomputational analyses of the polypeptides detected by nanoLC-MS/MS revealed that 88.7% 

of total identified proteins contained at least one of the secretion pathway characteristics (signal 

peptide, lipobox, twin-arginine translocation, or transmembrane helices, TMHMM) for the 

secretion to the outside of the cell (extracellular space) in C. fimi. Secreted proteins can be found 

in the presence of an N-terminal cleavable signal peptide sequence that is commonly around 15 

to 30 amino acids long. This unique region does not show high sequence similarity but sharing a 

hydrophobic core flanked by N- and C-terminal regions with conserved amino acids at the 

subsides of -3 and -1 positions (158,159). The program used was SignalP4.1 which predicts the 

presence and location of signal peptide cleavage sites in amino acids sequences from different 

organisms (gram-positive, -negative, as well as eukaryotes) (160). A class of secretory proteins 

known as leaderless proteins is also exported from the cell without signal sequences through 

non-classical secretion pathways such as cell surface shedding or inclusion in exosomes and 

other secretory vesicles. Therefore, the proteomic dataset was further analysed using non-

classical secretory pathway (SP) prediction database servers that are the lipobox signal pathway 

(LipoP1.0), Twin-Argine Translocation (TATfind), and Transmembrane Helices Hidden Markov 

Model (TMHMM).  

 

The LipoP1.0 server is a web-based server producing predictions of lipoproteins that 

discriminate between lipoprotein SPs, other SPs and N-terminal membrane helices particularly 

in Gram-negative bacteria (161). However, the LipoP1.0 server also has a good performance on 

sequences from Gram-positive bacteria (162). The TATFind software program is used to predict 

the TAT signal peptides which contain a highly conserved twin-arginine motif that allows for the 

secretion of folded proteins (163). Many prokaryotes use this pathway predominantly for the 

secretion of redox proteins, however, analyses of the predicted substrates in Dilks et al. (163) 

suggest that certain bacteria and archaea also secrete mainly non-redox proteins via the TAT 

pathway. The TMHMM database also used for prediction of transmembrane helices in proteins 

discriminates between solute and membrane proteins using membrane protein topology 

prediction with a method based on the Hidden Markov Model (164). A basic general method to 

locate the identified protein in the sample based on the bacterial genome sequence was also 

done by using the PSORTb 3.0 server for a prediction of gram-positive bacterial subcellular 

localization (165). 
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As much as 85% of total identified proteins (60/71 proteins) contained a signal peptide. Despite 

the presence of a signal peptide, prokaryotes also may possess several other additional 

alternative pathways such as twin-arginine translocation (TAT) and lipobox signal in bacteria 

(187,188). In prokaryotes, a class of secretory proteins known as leaderless proteins is also 

exported from the cell without signal sequences through non-classical secretion pathways such 

as cell surface shedding or inclusion in exosomes and other secretory vesicles (189). Taken 

together, this strongly suggests that a high proportion of discovered proteins in this study are 

extracellular proteins that are specifically secreted in response to the supplied substrates. The 

approximately 30 proteins identified in each sample replicate were considered a low number 

and is evidence of low complexity of the secreted enzyme cocktail with a minimum 

contamination of 7% from intracellular proteins (5 proteins). The remaining 11.3% of proteins 

showed unknown/multiple localization, or are present in the bacterial cytoplasm membrane.  

 

The most differentially expressed proteins in this multivariate proteomic analysis were 

described by PCA analysis of the 71 expressed proteins, illustrated in a biplot graph. In the graph, 

arrows indicate the best ordination of each protein showing high secretion in the presence of 

specific or multiple types of polysaccharide substrates. Several proteins have been discovered, 

amongst them a cellobiohydrolase (Cel6C), and an auxiliary activity enzyme family 10 (AA10). 

The Cel6C (Celf_1230) is a new member belonging to Cel6 family (190) and has only recently 

been biochemically characterized revealing additional endoglucanase activity (144). It is a 

cellobiohydrolase to unique C. fimi and has no close homologous in other actinobacteria as 

analysed by Blast search. Three out of four GH6s, (1) Celf_1230; Cel6C, (2) Celf_1925; CelB, and 

(3) Celf_3184; CenA/Cel6A) of C. fimi were identified on multiple substrates but were 

predominantly present in Avicel. This possibly reflected the mixed activity of enzymes on 

cellobiose as well as xylan (144). The fourth GH6 of C. fimi, Celf_0233 was not detected in any 

polysaccharide substrate used in this experiment and was also absent in CM-Cellulose and birch 

wood xylan cultures in the Wakarchuk et al. study (191). 

 

Four uncharacterized proteins that have sequence similarity to GH3, GH16, GH18 and GH64 

opened the opportunity for further exploration of C. fimi secretome in degrading cellulose and 

lignocellulosic polysaccharides. All four GHs were present exclusively in beechwood xylan 

cultures, which could be an indication of potentially novel xylanases from C. fimi. Yet, this is still 

to be confirmed by further characterizations as they were also detected in both supernatants of 

C. fimi when grown on CM-cellulose and birchwood xylan in the study of Warkarchuk et al. (144) 



Chapter 4: Proteomic Analysis of the Secretome of Cellulomonas fimi 

 

Discussion 

 

107 

 

which may indicate a synergistic activity of the enzymes in degrading plant cell wall 

polysaccharides.   

 

The sole LPMO of C. fimi is a copper-dependent AA10 that was formerly classified as CBM33. 

LPMOs catalyze the initial oxidative cleavage of recalcitrant polysaccharides after activation by 

an electron donor (142). The AA10 of C. fimi also contains a CBM2 domain. A recent study 

revealed the importance of specific carbohydrate binding domains for this particular LPMO as 

the deletion of the natural CBM2 in C. fimi AA10 and replacement with another CBM (CtCBM3a) 

from Clostridium thermocellum cellulosome scaffoldin CipA influenced the quantity of non-

oxidized sugars during polysaccharide break down. This demonstrates the relevant function of 

CBMs which can modulate the mode of action of LPMOs (64). 

 

The cellulases and xylanases of aerobic bacteria often have complex molecular architectures 

which consist of multiple CBMs, and occasionally several catalytic modules in addition to 

modules of unknown function (192). CBMs bind and attach the enzymes to the substrate of 

plant cell walls which brings the enzymes into close proximity and prolonged association with 

its recalcitrant substrate, hence increase the catalysis rate (64,103,174). A few C. fimi xylanases 

which are categorized as GH10 family containing CBMs have been identified in this proteomic 

study with different secretion level in different cultures including Celf_0088 (GH10, CBM2), 

Celf_0574 (CBM22, CE4, CBM22, GH10, CBMnc, CBM9), and Celf_3156 (GH10, CBM13). From 

these three xylanases, two (Celf_0088 and Celf_0574) were highly secreted in beechwood xylan 

cultures, whereas Celf_3156 was secreted in high amount only in Avicel and sugarcane bagasse 

cultures. 

  

The CBM2 domain in Celf_0088 works together with a catalytic domain of GH10 that degrades 

xylan and xylooligosaccharides by breaking down the glycosidic bonds. The CBM2 domain in this 

protein has been demonstrated in many cases  to have a cellulose-binding function 

(39,102,103,193). Gilkes et al. (194) have shown that mutation of xylanase 10A of C. fimi by 

removal of CBM2a from the protein reduces the hydrolytic activity on cellulose which indicates 

the important function of CBM2 to enhances the enzyme function. However, several CBM2 

ŵodules haǀe ďeeŶ shoǁŶ to haǀe affiŶitǇ to ŵiǆed β-ϭ,ϯ/β-1,4-glucans and may also bind to 

chitin or xylan (102). This may explain the detection of xylanase (Celf_0088) on Avicel as well as 

on wheat straw and sugarcane bagasse cultures. Additionally, McLean et al. (195) showed that 

CBM2 is one of the CBM families that recognizes different physical forms of prepared cellulose
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The protein Celf_0574 that consists of multicomplex structural domains showed the highest 

secretion level in beechwood xylan compared to the wheat straw and sugarcane bagasse 

cultures, and was not detected in the Avicel culture. This may be due to its high affinity toward 

the substrate with the presence of three xylan-binding modules (two domains of CBM22 and 

CBM9). The carbohydrate esterase (CE2) plays a role as acetyl xylan esterase that breaks down 

the ester bonds of polysaccharides. This observation is in agreement with the fact that the well 

characterized Xyl10B/XynC of C. fimi has a large xylanolytic substrate specificity and too much 

lesser extent cellulolytic activity with a very low secretion level in Avicel culture (195). 

Noternboom et al. (196) have shown consistent unique binding sites of CBM9 within xylan and 

amorphous cellulose architecture specifically to the reducing ends of sugars.  

 

In this study, an uncommon observation has been made; the lacking expression of a C. fimi 

xylanase (Celf_3156) in beechwood xylan and wheat straw cultures but its presence at high 

levels on the other two substrates (Avicel and sugarcane bagasse). The existence of CBM13 

domain alongside with GH10 domain has been characterised in several proteins of microbes 

that bind to monosaccharides of hemicellulose side chains such as galactose (Gal; C4 epimer of 

glucose), N-acetylglucosamine (GalNAc; an amino acid sugar derivative of galactose), and 

mannose (Man, a hexose sugar found in hemicellulose) (76). CBM13 was first identified in 

several plant lectins e.g. ricin which binds to galactose residues. However, in lectins this module 

binds to mannose, which is a major sugar found in softwood hemicellulose. Lectins are 

ubiquitous proteins of non-immune origin that bind reversibly and specifically to carbohydrates 

(197). In contrast to classical CBMs, lectins are carbohydrate-binding proteins typically not 

appended to enzyme domains (and thus not generally classified in CAZy). The primary role of 

lectins is molecular/cellular recognition and not enzyme targeting to substrate (197,198). 

 

As the source of xylan used in this C. fimi experiment was from beechwood (hardwood), the 

Celf_3156 may not have been highly induced to be secreted in the particular culture. A couple 

of studies have demonstrated that xylanase A and arabinofuranosidase B from Streptomyces 

lividans bind to xylan also containing Ricin B Lectin (199,200). However, the rest of CBM13-

protein containing domains in the CAZy have not yet been established for their binding 

specificity (71). In summary, three C. fimi endo-1,4-b-xylanases have been identified in different 

types of culture which provides an insight into the different mechanisms and strategies by 

particular xylanases. Each of them may bind and hydrolyze structurally different heteroxylans 

and xylo-oligosaccharides that are available in the different cultures. 
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Apart from the predicted GHs found in the C. fimi secretome from this study, several more 

proteins that are potentially involved in carbohydrate metabolism have been identified from 

their predicted domain structures. Four proteins that stand out for their remarkable domain 

arrangement and their secretion level in certain substrates are 1) Celf_2339; Fibronectin type III 

(FN3) domain protein, 2) Celf_1913; Cellulose-binding family II (CBM2) protein, 3) Putative 

hypothetical protein (Celf_0121); no domain identified, and 4) Celf_2278; Polycystic Kidney 

Disease (PKD)-domain containing protein.  

 

The FN3-domain protein, Celf_2339 is a large protein (210.72 kDa) with five repeats of the FN3 

domain that was secreted exclusively in the beechwood xylan culture. This protein shares 61% 

identity by over 2000 amino acids to the other FN3 proteins in the NCBI database from the Blast 

search. This revealed the high conservation of the FN3 domains that were found in many other 

actinobacteria and 11 non-redundant sequences of Cellulomonas database entries. The 

multidomain FN3 arrangement has also been observed in Clostridium thermocellum Cbh9A 

(Cthe_0413) where tandem FN3 domains have been shown to disrupt the surface of cellulose 

fibres (201). It is tempting to speculate that this protein could interact with polysaccharide 

substrates through the FN3 domains or may provide a scaffold for other secreted GHs (202) 

during the process of carbohydrate break down by C. fimi. 

 

The second protein of interest is annotated as cellulose-binding family II (CBM2), Celf_1913, 

which contains 918 amino acids and was identified predominantly in wheat straw and sugarcane 

bagasse, but not in beechwood xylan. This protein has 3 specific domains, apart from a CBM2 

there is a GH74 domain and a unique bacterial nuramidase 2 (BNR2) domain. The GH74 is 

classified as the only one GH74 in the C. fimi genome, which is still uncharacterized. The 

potential activities for the GH74 protein family including endoglucanase, oligoxyloglucan 

reducing end-specific cellobiohydrolase, and xyloglucanase activities. The BNR2 is a type of 

neuraminidase which is a virulence factor for many other bacteria including Bacteroides fragilis 

and Pseudomonas aeruginosa and usually associated with sialidase activity (169). The presence 

of this protein at a high level in lignocellulosic substrates triggered attention weather this 

unusual protein arrangement would contribute to enhance the recognition and digestion of 

lignopolysaccharides. 
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One of the putative uncharacterized proteins identified in C. fimi secretome is Celf_1021. This 

protein was found only in beechwood xylan culture. There is no single domain predicted to have 

similarity to this protein, however, based on bioinformatics exploration by a collaborator research 

group in Brazil, this protein has a predicted activity as chitinase based on the protein crystal 

structure and KEGG database analysis (203). However, the specific activity of this protein has not 

been characterized yet. 

 

The Celf_2778, a PKD-domain containing protein, (hereafter it will be referred to as PKDP1) has 836 

amino acids and consists of several major domains including pyrroloquinoline-quinone (PQQ) 

domain, glucose sorbone dehydrogenase (GSDH), polycystic kidney disease domain 1 (PKD1), and 

protective antigen (PA14) domain. Based on the sequence identity of 26% to PPQ-domain proteins 

of other microbes in NCBI database, the C. fimi PQQ domain has been predicted to serve as a 

cofactor for a number of sugar and alcohol dehydrogenases in a limited number of bacterial species 

(204). Most of the characterized PQQ-dependent enzymes have multiple repeats of a specific amino 

acids sequence but this is not obvious for this this particular protein. The GSDH domain may be 

involved in oxidation processes that have a role as electron acceptor to the NAD(P)-dependent 

substrate (205). To understand and exploit the potential LPMOs, understanding the source of 

electrons is fundamental to bacterial physiology for biomass processing (142).  

 

Another unusual domain in this protein is Polycystic kidney disease 1 (PKD1) domain which has also 

been identified in other microbial collagenases and chitinases (206). PKD1 has been fairly well 

studied and predicted potentially for protein-carbohydrate recognition (88). However, the specific 

role of this domain in carbohydrate metabolism particularly by C. fimi is still unclear. The third 

domain in this protein is a PA14 belonging to a GH3 superfamily domain and also has not been 

characterized yet. The PA14 domain may as well have a carbohydrate-binding function in 

polysaccharide digestion (207). In summary, the unique PKDP1 domains structure with a potential 

electron donor in PQQ domain at the N-terminus and a catalytic GH3 domain at C-terminus may 

suggest that this protein has a redox equivalent in its whole domain structure. This speculation 

warrants more evidence and characterization, therefore, the PKDP1 protein was selected for further 

study by recombinant protein production and characterization as presented in the next chapter. In 

conclusion, the study described in this chapter provides a more comprehensive and comparative 
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view of the capability of C. fimi in degrading cellulose, hemicellulose and the more complex and 

recalcitrant lignocellulosic biomasses of wheat straw and sugarcane bagasse. Several potentially 

new CAZymes have been identified and further characterization of these proteins would benefit a 

deeper knowledge and understanding especially of the mechanisms of lignocellulosic biomass 

degradation by this bacterium. Further investigation could be carried out to explore novel 

mechanisms to degrade lignocellulosic polysaccharides and the potential of C. fimi as lignin 

degrader. 
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5 Attempted Characterization of a Cellulomonas 

fimi PKD-Domain Containing Protein (PKDP1) 

 

5.1 INTRODUCTION 

5.1.1 Multidomain structure prediction of the C. fimi PKD-domain-containing 

protein, Celf_2278. 

Studies were focused on C. fimi because of its demonstrated ability to digest cellulose containing 

substrates, and the large number of CAZy genes present in its genome. Many of the more 

obvious glycosyl hydrolase genes from C. fimi have been previously characterised. In order to 

identify possible new enzymes active on lignocellulosic substrates, proteomic studies were 

undertaken, as described in the preceding chapter. A PKD-domain-containing protein (UniProt 

ID: F4H2Q6, Protein ID: Celf_2278) was identified as a protein of interest in the C. fimi genome, 

because of its interesting domain structure. Like many of the CAZymes in C. fimi, Celf_2278, 

hereafter referred to as PKD domain-containing protein 1 (PKDP1) has a predicted multi-domain 

structure.  

 

The predicted PKDP1 polypeptide is 836 amino acids long and has three identifiable protein 

domains. The N-terminal region shows sequence similarity to glucose/sorbone dehydrogenases, 

the central domain to polycystic kidney disease domains (PKD) that are typically involved in 

protein-protein or protein-carbohydrate interactions, and the C-terminal region shows 

homology to P14 domains that are found in some GHs such as glucosidases. PKDP1 has a 

predicted secretion signal at its N-terminus and as the protein is found in the extracellular 

medium, it is almost certainly an extracellular protein. This combination of features, and the fact 

that the PKDP1 is found in the proteome of C. fimi growing on lignocellulosic substrates suggests 

a potential role for the protein in lignocellulose degradation that might involve the generation 

and transfer of electrons for oxidative enzymes such as LPMOs. The C. fimi genome contains 5 

different PKD domain-containing proteins. In the proteomic analysis of C. fimi grown on 4 

lignocellulosic substrates, only 3 PKDPs were been identified (Table 5.1). The predicted domain 

structures of these proteins are presented in Figure 5.1. 
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Table 5.1: PKDPs of C. fimi detected in the proteomic analysis using nanoLC-MS/MS. 

 PKDP in C. fimi Avicel 
(Mol %) 

 

Beechwood 

xylan 
(Mol %) 

 

Wheat straw 
(Mol %) 

Sugarcane 

bagasse 
(Mol %) 

1 PKDP1; Celf_2278 0.95 0.91 0.7 0.72 

2 PKDP2; Celf_3038 n.d 0.29 n.d n.d 

3 PKDP3; Celf_3039 0.07 0.07 n.d n.d 

*n.d: Not detected 

 

A) Structural domain prediction of PKDP1, PKDP2, and PKDP3 

 

 

B) Specific hit of multidomain structure prediction of PKDP1 (Celf_2278) of C. fimi 

 

Figure 5.1: Predicted domain organization of PKD-domain-containing proteins of C. fimi. 

A) 3 different PKD-domain-containing proteins in Cellulomonas fimi ATCC 484 identified from C. 

fimi proteomic analysis. B) The detail of predicted conserved domains in PKDP1. The predicted 

domains were retrieved from amino acids sequences and blast search against NCBI Batch Web 

Conserve Domain (CD)-Search Tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). 

The domains were drawn to the closest approximate scale using Illustrator for Biological 

Sequences (IBS 1.0.1) (http://ibs.biocuckoo.org/). 

http://ibs.biocuckoo.org/
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5.1.2 Polycystic kidney disease I (PKD1) domain 

Polycystic kidney disease (PKD) domain was originally found as a translated product of the 

human polycystin-1 gene. PKD expression leads to a genetic disorder that presents as abnormal 

cysts that develop and grow in the kidneys (208,209). The human PKD1 protein is a glycoprotein 

with multiple transmembrane domains and a cytoplasmic C-terminal domain (210). A study by 

Hughes et al. indicates that polycystin is an integral membrane protein involved in cell-

cell/matrix interactions (210). Subsequently, PKD-like domains have been identified in many 

hydrolytic enzymes from marine bacteria, such as chitinases, cellulases and bacterial proteases 

(72,208,211–214). PKD-domains have also been found in archaeal surface layer proteins and 

glycoproteins (215). For example, two out of three domain types of surface layer proteins (SLPs) 

belonging to Methanosarcina were identified as PKD domains and it has been suggested that 

these proteins (that were adapted for cell surface functions and intercellular interactions in 

Archaea) later evolved to regulate cell-cell interactions in Metazoa (215). With advanced 

proteomics and enzymology approaches, more PKD domains have been found associated with 

single or multi existing, homologous or other domains, at the C-terminal domain of several 

proteases such as collagenase from Clostridium sp. and serine proteases from Vibrio sp. (216). 

 

From a protein structural point of view, PKD domains have a β-sandwich fold that is common to 

a number of cell-surface protein modules with a distinct protein family (209,217). 

Madhuprakash et al. studied the role of the PKD domain for chitinase A from a proteobacterium, 

Alteromonas sp. Strain O-7 (AlChiA) (72). The analǇsis ƌeǀealed that the ͞WDFGDG͟ sequence is 

a highly conserved unique domain region found within the PKD-domain (72) of this particular 

species. However, based on protein sequence alignment of five C. fimi PKDPs, this conserved 

sequence had a 100% match with the PKDP2 (Celf_3038) protein sequence of C. fimi, but not 

with other putative C. fimi PKDPs. Further investigation on multiple sequences alignments of all 

five putative PKDPs of C. fimi revealed another similar conserved sequence that is found in 

AlChiA and PKDP2, but the second and third amino acids, aspartate (D) and phenylalanine (F) 

differed from the original sequence (Figure 5.2). The structure of the PKD domain contains an 

Immunoglobulin (Ig)-like fold that has previously been shown to form the ligand-binding sites in 

cell-surface proteins (209).  

 

In the hydrolysis of crystalline chitin (an analogue to amorphous cellulose), the presence of a 

PKD domain in addition to chitin binding domain (ChtBD) is an added advantage during the 

hydrolysis process (211). Mutational studies carried by Orikoshi et al. revealed the important 
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role of PKD-domain in chitinase A from Alteromonas sp. Strain O-7 (AlChiA) (211). Two amino 

acids (W30 and W67) were deleted in the PKD-domain sequence which revealed that the 

domain is involved in the hydrolysis of powdered chitin by increasing hydrolysis efficiency. 

Furthermore, PKD- and Ig- domains were found to be linked between ChtBD and the catalytic 

domain in ChiC of Pseudoalteromonas sp. DL-6 providing further evidence for the involvement 

of this domain during the chitin hydrolysis (218).  

 

 

Figure 5.2: Partial Sequence alignment of five PKDPs of C. fimi. 

AͿ The ĐoŶseƌǀed seƋueŶĐe ͞W--GDG͟ aligŶed ǁith thƌee PKDPs ;PKDPϭ, PKDPϮ, aŶd PKDPϯͿ 

and the PKD-domain in proteins that are similar to AlChiA. B) The conserved sequence of 

͞WDFGDG͟ iŶ PKD-domain of AlChiA (72) has an exact match in the second PKD domain of 

PKDP2 (Celf_3038) of C. fimi. The full sequence alignment of all five C. fimi PKDPs is presented 

in Appendix C. 

 

A recent interesting study by Madhuprakash et al. (72) has shown an improvement in the 

catalytic efficiency of chitinase D from Serratia proteamaculans (SpChiD) in the degradation of 

insoluble chitin substrates as a result of fusing the auxiliary domains of either PKD-domain to 

the protein termini. The fusion of a PKD-domain to the C-terminal end of ChiD increased the 

overall catalytic efficiency of the fusion mutant ChiD-PKD by almost 2-fold. It has been suggested 

that PKD-domains may contribute to the flexibility of proteins and are important for effective 

A) 

B) 
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hydrolysis of crystalline chitin through an interaction between two aromatic residues and a 

chitin molecule (211). An earlier study of the Ig domain function in a psycrophilic chitinase from 

Moritella marina (MmChi60) was conducted by Malecki et al.in 2013 (219). Here the Ig-like 

domain was reported to give the protein a long reach over the chitin surface to increase the 

affinity between enzyme and substrate, particularly in cold environments (220). 

 

5.1.3 Protective Antigen (PA) 14 

Based on bioinformatics analysis, the annotation of Celf_2278 PKDP1 of C. fimi indicates that 

PAϭϰ ĐoŶseƌǀed doŵaiŶs haǀe a seƋueŶĐe ideŶtitǇ to ďaĐteƌial β-glucosidases. This domain is 

named PA14 after its location in the PA20 pro-peptide aŶd possesses a β-barrel architecture 

based on its crystal structure (204). The PA14 domain sequence is shared by a wide variety of 

bacterial and eukaryotic proteins but is not seen in any archaeal proteins (204,207,221–225). In 

the bacteria, this domain has also been found in glycosidases, glycotransferases, proteases, 

amidases, yeast adhesins, and also in bacterial toxins including anthrax protective antigen (226). 

The alignment of the PA14 sequence from PKDP1 reveals a conserved hydrophilic residues which 

indicate that PKDP1 may have a passive binding role despite also having a catalytic function 

within the GHs superfamily (204). The putative and characterized PA14-containing proteins are 

involved in carbohydrate binding and/or metabolism and include several glycoside hydrolase 

families including GH3 (207,224), GH10 (204), GH20 (204) and GH31 (223). Among several, the 

PA14-containing domains appear to be involved in adhesion and/or signaling, which is 

consistent with their ability to bind carbohydrate-containing ligands (207,221,222,224). 

 

β-glucosidases are classified in the carbohydrate active enzyme database as either GH1 or GH3 

(227) aŶd ĐatalǇse the hǇdƌolǇsis of β-glycosidic bonds existing in disaccharides, oligosaccharides 

aŶd alkǇl oƌ aƌǇl β-glucosides thereby preventing the accumulation of cellobiose which would 

involve in the inhibition of endo- and exoglucanases (228,229). Crystallographic structure and 

homology modelling of PA14 domains by mutational approaches using a deletion and insertion 

technique has shed light of the function of this domain. Larsbrink and co-workers have shown 

the importance of a PA14 domain insert in the recognition of oligosaccharides by the extension 

of the active-site pocket in GH31 enzyme of Cellovibrio japonicus (223). An insertion and deletion 

ŵutatioŶ eǆpeƌiŵeŶt of the PAϭϰ doŵaiŶ of aŶotheƌ tǇpe of β-glucosidase from rumen bacteria, 

the Bgǆaϭ ;β-gluĐosidase/β-ǆǇlosidase/α-arabinosidase) indicates that the multifunction activity 

of Bgxa1 is supported by the PA14 domain. This was shown by a comparison of reducing sugars 

released after birchwood hydrolysis by Bgxa1 and endoxylanase (Xyn10N8) was increased by 

168% compared to Xyn10N18 alone. The result suggests that Bgxa1 acts synergistically with a 
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cellulase for the saccharification of polysaccharides (224). The PA14 domain has been shown to 

be involved in conferring substrate specificity in Kluyveromyces marxianus Bgxa1 and mutations 

in this domain decreased activity towards small oligomers, but did not affect the activity against 

longer chain polymers (207). The result of this deletion is a much more open, flexible active site 

in Bgxa1 (224). From the Blastp result, the PA14 domain sequence in C. fimi PKDP1 has 59% 

sequence identity to glycosyl hydrolase family 39 (GH39) from Nonomuraea solani. Based on the 

CAZy database, the known activities of GH39 are a-L-iduronidase (EC 3.2.1.76) and β-xylosidase 

(EC 3.2.1.37). A further search in CAZy database has revealed another 3 predicted GH39 domain 

in C. fimi geŶoŵe ǁith pƌoteiŶ’s loĐus tags Celf_ϭ7ϰϰ, Celf_2981, Celf_3270. 

 

5.1.4 A multidomain of Glucose/Sorbone Dehydrogenese (GSDH) and 

Pyrroluquinone quinone (PQQ) dependent domain 

Another interesting predicted domain that is found in PKDP1 is a multidomain of 

glucose/sorbone dehydrogenase (GSDH). This multidomain is a complex consisting of a GSDH β-

propeller fold (Ylil) and a non-repeat pyrroloquinoline-quinone (PQQ) dependent domain (See 

Figure 5.3). Soluble glucose dehydrogenase (s-GDH; EC 1.1.99.17) is known to be a classical 

quinoprotein first identified in 1979 (230). s-GDH requires the cofactor pyrroloquinoline 

quinone (PQQ) to β-D-oxidize glucose to D-glucono-δ-lactone (231–236). PQQ is an aromatic 

heterocyclic anionic orthoquinone first identified as an enzyme cofactor in bacteria (237). In 

nature, PQQ (Figure 4.3) serves as an unconventional redox cofactor of membrane-associated 

dehydrogenases for a number of sugar and alcohol dehydrogenases in a limited number of 

bacterial species (204,205). 

 

 

Figure 5.3: Chemical structure of pyrroloquinoline quinone (PQQ). 

Atom nomenclature is indicated. Figure is reproduced from Oubrie, 1999 (232). 
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PQQ plays a significant role in quinoprotein dehydrogenases that oxidize numerous substrates, 

including D-sorbitol, D-gluconate and D-mannitol in the periplasm coupled to the respiratory 

chain (218). The oxidoreductase activity (GO:0016901) acts on the CH-OH group of the electron 

donor using quinone or similar compound as acceptor. This reaction may occur in the catalysis 

of a reduction-oxidation (redox) of CH-OH group acts as an electron donor and reduces a 

quinone or a similar acceptor molecule involving PQQ and glucose/sorbosone dehydrogenases 

(238). From the Blast search and sequence alignment on the NCBI database, the best 

characterised similar protein to the GSDH domain from C. fimi PKDP1 is a soluble glucose 

dehydrogenase (UniProt ID: P13650) with 23% identity at protein sequence level 

from Acinetobacter calcoaceticus (230,238). In the literature, the enzyme is a calcium-

dependent homodimer that oxidises glucose to gluconolactone, and uses PQQ as a cofactor. The 

reaction mechanism comprises a general base-catalyzed hydride transfer. This suggests that 

PQQ-dependent enzymes use a mechanism similar to that of nicotinamide and flavin-dependent 

oxidoreductases (232). Similar enzymes have also been found in other prokaryotes; glucose 

dehydrogenase from Sorangium cellulosum (239), aldose dehydrogenase from Escherichia coli 

(240), and the thermophilic archaeon Pyrobaculum aerophilum (241), and L-sorbosone 

dehydrogenase from Ketogulonicigenium vulgare (242).  

 

Recent studies in 2014-2015 have identified a novel eukaryotic PQQ-dependent oxidoreductase 

in a fungus: sorbone dehydrogenase from the basidiomycete Coprinopsis cinerea (CcSDH) 

belongs to a new auxiliary activity family in CAZy database (243,244). The biochemical 

characterization of CcSDH confirmed its PQQ-dependent activity; the enzyme strongly binds 

PQQ despite having a low amino acid sequence similarity with known PQQ-dependent enzymes. 

The discovery of a PQQ-dependent domain in CcSDH could form the basis for a new AA family 

in the CAZy database. This discovery also revealed the existence of many genes encoding 

homologous proteins in bacteria, archaea, amoebozoa and fungi. The phylogenetic tree of 

eukaryotic and prokaryotic quinoproteins shown in Matsumura et al.’s (243) work suggests that 

these quinoproteins may be members of a new family that is widely distributed not only in 

prokaryotes, but also in eukaryotes. 

 

In 2016, Kracher and co-workers demonstrated that glucose dehydrogenase (GDH) has an ability 

to reduce quinone molecules (142). GDH was tested together with an LPMO to investigate the 

electron mediating process, and the study showed that LPMO catalyses the initial oxidative 

cleavage of recalcitrant polysaccharides after activation by an electron donor (142). This study 
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showed that the quinone reductases have been implicated in the recycling of quinones during 

the production of extracellular oxidizers by wood-rotting fungi may well play a role in catalyzing 

LPMO action. This recent discovery of a PQQ-containing dehydrogenase which belongs to the 

family AA12 contains a cytochrome domain that possibly transfers electrons generated in its 

AA12 DH domain to an LPMO (142). Another relevant study by Garajova et al. (245) has 

investigated the ability of AA3_2 flavoenzymes from Pycnoporus cinnabarinus, to trigger 

oxidative cellulose degradation by AA9 LPMOs when secreted in lignocellulolytic culture. The 

results showed that glucose dehydrogenase and aryl-alcohol quinone oxidoreductases in the 

system are catalytically efficient electron donors for LPMOs, and display redox potentials 

compatible with electron transfer between partners as illustrated in Figure 5.4. 

 

Figure 5.4: Proposed scheme of fungal synergies for oxidative degradation of cellulose. 

Products of cellulose and lignin degradation are substrates for fungal dehydrogenases (CDH, 

GDH and AAQO) which provide electrons to LPMOs (Illustration is reproduced from Garajova et 

al.) (245). CDH; Cellobiose dehydrogenase, GDH; Glucose dehydrogenase, AAD; Aryl alcohol 

dehydrogenase, LPMO; Lytic Polysaccharide Monooxygenase. Red dots indicate di-

phenols/quinones serve as redox mediators. 

 

5.1.5 Aims of this chapter 

PKDP1 of C. fimi is a large protein with interesting multimodular domains, but with low sequence 

identity to other characterized PPQ-dependent proteins. However, based on literature searches, 

this protein looks like a unique enzyme from C. fimi that might be involved in 

oxidoreductase/dehydrogenase activity. The unusual structure on PKDP1 suggests that this 
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protein may possess a synergistically redox equivalent between the specific protein domains 

and/or in the system of cellulose degradation by C. fimi. The availability of extracellular electron 

donor(s) is needed for the oxidative attack on polysaccharides, and the GSDH-PQQ predicted 

domain in C. fimi PKDP1 raised interest in further investigating of this protein by heterologous 

expression and biochemical characterization techniques. Exciting new findings for LPMO 

enzymes and their role in cellulose breakdown has triggered this research to look for another 

potentially new auxiliary activity in C. fimi. To achieve this target, heterologous expression of 

PKDP1 has been carried out in Escherichia coli and Aspergillus niger expression systems. Due to 

the specific challenges encountered during attempted the cloning and expression of PKDP1, 

native protein isolation has also been attempted as a prelude to further biochemical 

characterization. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Isolation of native PKDP1 protein from supernatant and substrate-bound 

fractions induced with specific substrates in C. fimi culture 

Proteins from C. fimi-induced culture with Avicel, PASC and Cellobiose were collected from the 

supernatant and substrate-bound fractions at Day-3 and Day-7. The samples were concentrated 

from 50 mL to 1 mL prior the analysis by SDS-PAGE as described in Section 2.4.2. The supernatant 

and bound-fraction were separated using centrifugation as described in Section 4.2.1. To 

selectively extract biomass-bound proteins, 0.5 gram of biomass collected from the cultures was 

boiled in 10 mL of 0.2% SDS for 5 minutes. Protein was then collected by centrifugation at 4,000 

x g and the supernatant collected into a fresh 50 mL centrifuge tube. This was repeated three 

times, without heating, and with vigorous vortexing between each centrifuge step, to was the 

biomass of any remaining protein. Extracted protein was precipitated with five volumes of ice-

cold acetone overnight at -20°C, before being centrifuged at 4,000 x g and the resulting pellet 

was washed with 80% ice-cold ethanol. The ethanol-protein mix was then centrifuged again, 

and the supernatant removed and the pellet air-dried. The protein was then solubilized in 5 mL 

of ultrapure water and quantified using the Bradford assay (Section 2.4.1). 
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5.2.2 Weak anion exchange chromatography for native isolation of PKDP1 
 

A trial to isolate the PKDP1 was carried out based on the predicted isoelectric point (pI) value of 

5.65 using a weak exchanger that contains positively charged groups called diethyl-aminoethyl 

groups (DEAE) (GE Healthcare). The theoretical pI value of C. fimi PKDP1 was computed using 

online tool on ExPASy. C. fimi was grown on 3 separate substrates; Avicel, phosphoric acid-

swollen cellulose (PASC), and cellobiose to induce the C. fimi to secret the PKDP1 into the culture 

medium. The culture was grown in 50 mL autoclaved standard basal medium at 30°C and shaking 

at 180 rpm according to the procedure described in Section 2.2.2). The cell-free culture 

supernatant after 7 days was collected for PKDP1 protein isolation using a diethyl-aminoethyl 

groups (DEAE) column from GE Healthcare column as detailed elsewhere (246). The 

concentrated fraction was then desalted and buffer exchanged into 20 mM Tris pH 8.0 

containing 50 mM NaCl using a Zeba Desalt Spin column (Pierce Biotechnology). The desalted 

supernatant was purified through a 5-mL anion exchange DEAE column (GE Healthcare) using 

an Äkta 100 (GE Healthcare), equilibrated with 50 mM Tris pH 8.0, 50 mM NaCl. Proteins were 

eluted with a 0.05-1 M NaCl gradient in the same buffer at a flow rate of 1 mL/min and the 

elution was monitored through absorbance at 280 nm. Eluted fractions based on the peak of 

protein absorbance were analyzed by SDS/PAGE to confirm the presence of the desired native 

PKDP1 protein. 

 

5.2.3 Expression of C. fimi PKDP1 in prokaryotic expression systems 

Throughout this work, a number of methods for expressing PKDP1 protein in E. coli and isolating 

the native PKDP1 from C. fimi culture were evaluated in an attempt to obtain pure, soluble 

PKDP1 protein. Unless otherwise stated, suitable antibiotics were included at all stages of 

heterologous PKDP1 protein expression to preserve uniformity of the cultures, and to maintain 

plasmid selection pressure by using 30 µg/mL Kanamycin for E. coli strains BL21 and NEB SHuffle 

T7®, and the same concentration of these antibiotics with additional 20 µg/mL of Gentamycin 

for the ArcticExpress™ eǆpƌessioŶ host. 

 

5.2.4 Gene amplification and cloning 

In order to express the PKDP1 gene in E. coli, the coding sequence was amplified by PCR and 

cloned into pETFFP_3 expression vector (GST-tagged vector) to help protein solubility. The 

Strataclone subcloning kit (Agilent, #240205) and DNA ligase (NEB, #M0202) were used as a 

cloning method. The peptide tags used in this work to aid purification were maltose-binding 
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protein (MBP-tag), Glutathione-S-transferase (GST-tag), glutathione fluorescence protein (GFP-

tag), polyhistidine (HIS-tag) and Immuno-9 (Im9-tag). The plasmid vectors of all fusion protein 

constructs were created and kindly provided by Dr. Jared Cartwright (Protein Production 

Laboratory, Technology Facility, Department of Biology, University of York). The primers used 

are shown in Table 5.2. Plasmids containing the cloned PCR products were transformed into E. 

coli using a standard heat shock transformation step, after which bacterial colonies were 

formed. The correct sequence of the PKD gene was confirmed by agarose gel electrophoresis 

and Sanger DNA sequencing (LightRun, GATC). The plasmid DNA from these colonies was 

sequenced to verify that the intended gene had been inserted into the vector correctly in-frame 

and free from any coding errors incurred during amplification. A construct found to be wholly 

correct was taken forward for protein expression testing. 

 

Table 5.2: Primers used to amplify PKDP1 (Celf_2278) for cloning into pETFFP_3 

vector with various solubility tags. 

Primer Sequence 

Celf_2278F (forward) TCCAGGGACCAGCAATGGGGTTCTCCGAGTCGCTCG 

Celf_2278R (reverse) TGAGGAGAAGGCGCGTTATGGCCGCAGGCGGGTCGTC 

 

5.2.5 Expression of PKDP1 in E. coli strains 

From 5 constructs of PKDP1 created for solubility screening, the GST-tag construct was carried 

forward to further expression work. The GST-tag construct was transformed into 4 E. coli strains 

(BL21DE3, ArcticExpress™, SHuffle®, and SHuffle T7®). A fresh transformation was carried out 

for each protein expression experiment to minimise the potential for plasmid loss. Freshly 

transformed single colonies were used to inoculate starter cultures. These cultures were usually 

10 mL in size, contained in 50 mL centrifuge tubes and used Lysogeny-Broth (LB) broth as a 

growth medium following to the manufacturer recipe (Sigma-Aldrich, Poole UK). The cultures 

were grown overnight at 37°C (except ArcticExpress®, where cells were grown at 30°C) with 

shaking at 180 rpm. The cultures were grown until their optical density at 600 nm (OD600) had 

reached desired value of 0.6-0.8 OD. A first trial of PKDP1 expression was carried out at 10 mL 

scale. To eliminate antibiotic degrading enzymes which may have built up in the medium of the 

starter culture, cells from starter cultures were harvested by centrifugation at 4000 x g and 

resuspended in fresh 50 mL growth medium. The all resuspended cells were used as an inoculum 

for larger amounts of growth media up to 500 mL. Larger cultures were grown at 37 °C, shaking 

at 180 rpm until their OD600 had reached 0.6-0.8 OD. At this point cultures were induced to 
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express their plasmid encoded gene of interest by supplementing the growth media with 

isopƌopǇl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of either 0.5 or 1.0 mM to 

see if these concentrations would give a different effect in terms of protein expression. Once 

induced, cultures were then incubated at a different temperature to the growth phase, shaking 

at 180 rpm overnight after which cultures were chilled on ice, and their cells harvested by 

centrifugation at 4000 x g. The spent growth media was discarded and cell pellets were snap 

frozen in liquid nitrogen. Cells were stored at -80°C until processing. 

 

5.2.6 Larger scale expression culture of heterologous PKDP1 by E. coli ArcticExpress™ 

The expression of heterologous PKDP1 was performed in 500 mL Luria-Bertani (LB) medium 

inoculated with 10 mL overnight culture of ArcticExpress™ grown on LB broth with selected 

antibiotics of gentamycin (20 µg/mL) and kanamycin (30 µg/mL). On reaching an OD of 0.6, the 

culture was induced with 1.0 mM IPTG for an overnight incubation and shaken at 180 rpm at 

13°C. Cell pellets were resuspended to 1 g mL-1 with 20 mM Tris HCl pH 7.4 and 0.1 mM DTT. 

Sonication was carried out by ultrasonication for 3 x 30 s bursts at 4°C with 1 min interval using 

Viďƌa Cell VCϯ7ϱ ;Cell™ SoŶiĐ MateƌialsͿ. Cell lysates were fractioned into soluble and insoluble 

fractions by centrifugation at 15,000 x g for 25 min at 4 °C using a RC-5B centrifuge (Sorvall) 

equipped with an SS-34 rotor. If no purification was to be carried out these soluble and insoluble 

fractions were analysed by SDS-PAGE as described in Section 2.4.2. 

 

5.2.7 Purification of heterologously expressed PKDP1 

Heterologously expressed PKDP1 was purified using Glutathione-S-Tranferases (GSTrap FF, GE 

HealthCare) that prepacked with Glutathione Sepharose Fast Flow column for fast, convenient, 

one-step purification of glutathione S-transferase (GST) tagged proteins. Since the C-terminal of 

pIGF-pyrG vector also consists of His-tag, second purification column also been tested using 

HisTrap HP column, which was prepacked with Ni Sepharose High Performance and designed 

for simple, high-resolution purification of histidine-tagged proteins by immobilized metal ion 

affinity chromatography (IMAC). A polyhistidine tag is an amino acid motif in proteins that 

consists of at least five histidine (His) residues linked to the N- or C-terminus of the protein. A 

tag with six His residues was chosen because of its small size, strong metal ion binding, and 

ability to bind under denaturing conditions. Sepharose beads were washed twice with 10 x 

volume of binding buffer (1x PBS, pH 7.3) before incubation of the beads with cell lysate at 4°C 

for 2 h with end-over-end rotation. The bead mixture was then centrifuged at 500 x g, the 

supernatant collected (flow-through) and the beads washed three times with binding buffer by 
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centrifugation at 500 x g. Finally, elution buffer (50-80 mM Tris-HCl, 10 mM reduced glutathione, 

pH 8.0) was added and the mixture incubated at 4 °C for 10 min with end-over-end rotation 

before the eluted protein was collected by centrifugation at 500 x g. The flow-through, wash 

and eluates were analysed by SDS-PAGE and anti-GST immune-blotting to determine the 

presence and purity of the recombinant protein. The same method was applied for second 

purification trial of PKDP1 recombinant protein using His antibody column. 

 

5.2.8 Expression of C. fimi PKDP1 in an Aspergillus niger expression system 

5.2.8.1 Cloning of a codon-optimized C. fimi PKDP1 gene into pIGF-pyrG expression system 

The gene of C. fimi PKDP1 without the signal peptide sequence was codon-optimized by GeneArt 

(LifeTechnologies) for protein expression in A. niger. The full sequence of codon-optimized 

PKDP1 gene is presented in Appendix D. The gene was amplified by PCR using gene-specific 

forward and reverse primers (Table 5.3) containing HpaI/XbaI sites (underlined) respectively for 

cloning.  

 

Table 5.3: Primers used to amplify codon-optimized PKDP1 and add the tag sequence into 

(Celf_2278) for cloning into pIGF-pyrG A. niger vector.  

Primers were designed to incorporate overhangs for InFusion cloning, a molecular tag (histidine) 

for purification and the KEX2 cleavage site. 

Primer Sequence 

PKD_optF ϱ’ CTAAAGCAAGTCTAGAAAGCGCGGCGGTGGCTCTAGAGTCCCCGCCGGCT ϯ’ 
PKD_optR ϱ’ GTCGCGGTCGACGTTAACGTGATGATGATGATGATGGTTAACTTAGGGGCGGAGGCGG ϯ’ 

 

PCR reaction comprised 100 ng PKDdcp_Aniger_opt, 1× PCR buffer, 0.2 mM dNTPs, 0.2 μM of 

forward and reverse primers and 1 U Q5 HF DNA polymerase in a total of 25 μl ƌeaĐtioŶ ǀoluŵe. 

PCR was performed using an initial denaturation step at 98°C for 5 min, followed by 30 cycles of 

denaturation at 95°C for 1 min, annealing at 65°C for 1 min, extension at 72°C for 1 min and a 

final extension at 72°C for 5 min. PCR reaction products were analysed by gel electrophoresis 

(1% agarose). A gel-purified and HpaI/XbaI-digested DNA fragment from carrier vector PMA-RQ 

containing the C. fimi PKDP1 gene was cloned into the HpaI/XbaI linearized pIGF expression 

ǀeĐtoƌ ĐoŶtaiŶiŶg the pǇƌG seleĐtioŶ ŵaƌkeƌ geŶe eŶĐodiŶg the oƌotidiŶe ϱ′-phosphate 

carboxylase involved in the biosynthesis of uracil. The pIGF-pyrG plasmid was kindly provided 

by Prof David Archer, The University of Nottingham, UK). The A. niger strain D15 was obtained 
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from a collection belonging to Prof Simon McQueen-Mason. The generated pIGF-pyrG: PKDP1 

expression construct was transformed into A. niger as detailed in the Section 5.2.5. The cloning 

of PKDP1 was done in conjunction with Mrs Luisa Elias (CNAP, Department of Biology, University 

of York).  

 

5.2.9 PreparatioŶ of HutŶer’s trace eleŵents 

HutŶeƌ’s tƌaĐe eleŵeŶts ǁeƌe pƌepaƌed to the folloǁiŶg ĐoŵpositioŶs. Na2EDTA.2H2O; 50 g/L, 

ZnSO37H2O; 22 g/L, H3BO3; 11.4 g/L, MnCl24H2O; 0.506 g/L, FeSO47H2O; 0.5 g/L, CoCl26H2O; 0.16 

g/L, CuSO45H2O; 0.157 g/L, NH46Mo7O244H2O; 0.11 g/L. Trace elements were stored away from 

light at 4°C. 

 

5.2.10 Preparation of minimal media 

The minimal media contained KCl; 0.52 g/L, KH2PO4; 1.045 g/L, MgSO4; 1.35 g/L, NaNO3; 1.75 

g/L, aŶd Ϭ.ϭ ŵL HutŶeƌ’s tƌaĐe eleŵeŶts. 

 

5.2.11 Preparation of protoplasts 

A. niger protoplasts were prepared using a modified method from Yelton et al. (247). Siliconized 

1 L flasks containing 400 mL of minimal medium plus 4 mM filter-sterilized L-tryptophan were 

inoculated with 8 x 108 spores and shaken at room temperature for 18 h. The mycelium was 

harvested by filtration through Mira-Cloth (Calbiochem), washed with 0.6 M MgSO47H2O, and 

blotted with blue paper towels for 10 min, and weighed in a sterile 50 mL Falcon tube. The fungal 

biomass was suspended by vigorous mixing using vortex in filter-sterilized ice cold osmotic 

medium (1.2 M MgSO47H2O/20 mM MES, pH 5.8; 5 mL/g of mycelium), then transferred to a 

250 mL flask, and placed on ice. Filter-sterilized solutions of p-glucuronidase (0.2 mL/g of 

mycelium) and Novozyme 234 (20 mg/mL in osmotic medium; 1 mL/g of mycelium) were added, 

and the cells were incubated on ice for 5 min in the presence of filter-sterilized 100 mg BSA to 

lyse the fungal cell wall. The total lysate was incubated at 30°C shaking initially for 30 min at 80 

rpm, and then at 50 rpm.After two hours of incubation, 10 µL samples were viewed by 

microscopy at 30-minute intervals to monitor protoplast formation. Once protoplasts had 

become visible and detached from mycelium mass, they were purified through sterile 

polyallomer wool packed into two sterile 20 mL syringe barrels, with one tightly packed, and the 

other loosely.  
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The loosely packed syringe barrel was designed to filter out the larger fragments of mycelium, 

and the tightly packed to ensure that a minimal amount of mycelium fragments contaminated 

the collected protoplasts. The equipment was set up as in Figure 5.5. The protoplast mixture 

was poured slowly into the uppermost syringe barrel and allowed to pass through into the 

collection tube with gravity. The protoplast mixture was collected into 50 mL centrifuge tubes 

in 15 mL aliquots, and 30 mL of ice-cold NM buffer (1 M NaCl, 20 mM MES at pH 5.8) was added 

to each tube. These were then gently mixed by inversion and centrifuged at 2500 x g for 10 min 

at 4°C, after which the supernatant was discarded and the remaining pellet was carefully 

resuspended in 1 mL cold STC buffer (1.2 M sorbitol, 10 mM Tris base, 40 mM CaCl2 at pH 7.5) 

by gentle agitation (vigorous pipetting is likely to destroy the protoplasts). The protoplast 

mixture was recentrifuged at 2000 x g for 10 min at 4°C, before the supernatant was removed 

and the whitish pellet of protoplasts was resuspended in 1 mL of ice cold STC buffer. Protoplasts 

were counted using a haemocytometer as described in Figure 4.6 and diluted with ice cold STC 

to a concentration of 5 to 10x107 protoplasts per mL. 

 

 

 

Figure 5.5: Equipment setup for fungal protoplast collection.  
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Protoplasts were separated from mycelium mass of A. niger as illustrated above. Two syringe 

barrels were packed with polyallomer wool (glass-cotton wool), the uppermost barrel more 

loosely, and the protoplast mixture was allowed to pass through to the second barrel with 

gravity. The protoplasts were collected into 50 mL centrifuge tube chilled with ice. 

 

5.2.12 Fungal transformation 

Three microliter of vector (1 µg/µL) was mixed with 100 µL of freshly prepared protoplasts in a 

15 mL centrifuge tube and incubated at room temperature for 25 min. Then, 200 µL of 60% PEG 

solution (polyethylene glycol (PEG) 5000/10 mM Tris, 50 mM CaCl, at pH 7.5) was added drop-

by-drop using microtip of pipette, and the tube was continuously agitated gently by hand. A 

further 1.1 mL of PEG was added gradually with mixing before tubes were filled to 10 mL total 

volume using ice cold STC. The tubes were then centrifuged at 2000 x g for 10 min at 4°C, and 

the supernatant was discarded. Pelleted cells were resuspended in 300 µL STC. An aliquot of 

cells (100 µL) were spread onto sorbitol-containing minimal agar plates. The agar plates were 

prepared with 10 mL salt solution (KCl 26 g/L, MgSO47H2O 26 g/L, KH2PO4 76 g/L, trace elements 

10 mL/L), 6 g/L sodium nitrate, 10 g/L glucose, 218 g/L sorbitol, and 10 g/L agar, at pH 6.5. Plates 

were incubated at 20°C for three to five days until visible colonies were present. Colonies were 

transferred to fresh minimal media plates for three rounds of selection on LB agar plates without 

uridine which selects for the transformants. 
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5.2.13 Direct Colony Polymerase Chain Reaction (DCPCR) using DNA template from A. 

niger hyphae 

The DCPCR was adapted from AlShahni et al. (248) to verify the transformants after 3 times 

propagation generations. Hyphae of A. niger were picked after 2 days incubated at 30°C and 

dissolved in an alkaline Tris-NaCl buffer (10 mM NaCl, 10 mM Tris HCl pH 7.5, 1 mM EDTA). The 

prepared buffer was mixed with 2 µL of 1 M NaOH with 98 µL buffer to make a spore solution. 

The spores were grown on minimal agar slants for 2 days to have whitish hyphae. Freshly picked 

hyphae from a plate were resuspended into 100 µL solution before being boiled at 100°C for 10 

min. 1 µL of the solution with dissolved hyphae was added to a 10 µL PCR reaction using Q5® 

NEB standard PCR methods. Three internal forward primers were created for every 400 bp (see 

Table 5.4) and paired with one reverse primer contained HIS-tag colour-coded with red font); 

 ϱ’GTCGCGGTCGACGTTAACgtgatgatgatgatgatgGTTAACTTAGGGGCGGAGGCGGϯ’. These primers 

were used to confirm the recombinant of codon-optimized PKDP1 gene in the pIGF-pyrG vector. 

 

 

Table 5.4: Forward primers used for DCPCR of C. fimi PKDP1 gene in pIGF-pyrG vector. 

Primer Forward primer Expected size (bp) 

1 ϱ’ CGCCGGCGACCTCCACGTC ϯ’ ~1900 

2 ϱ’ FCCGGCTCCGCCACCGACTG ϯ’ ~1500 

3 ϱ’ FTCCGACCCCGACGGCGGCA ϯ’ ~900 

   

 

 

5.2.14 Expression trials in A. niger system 

The PKDP1 gene was expressed in 20 mL of ½ strength expression medium (75 g/L maltose, 30 

g/L peptone, 0.5 g/L NaH2PO4.H2O, 7.5 g/L MgSO4.7H2O, 0.04 g/L Tween 80, 10 g/L MES, and 0.5 

g/L). The pH of the medium was adjusted to 6.2 and autoclaved. 1 × 106/mL spores were counted 

using haemocytometer and grown in 2 L shake flasks with 500 mL working volume at 3 tested 

temperatures, 20°C, 25°C and 30°C for a 6-day time course at 180 rpm. Culture supernatant was 

separated from the mycelium by filtration through Miracloth (Calbiochem), centrifuged at 4,000 

g for 20 min, and clarified through filtration using filter funnel. 
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5.3 RESULTS 

 

5.3.1 Attempted isolation of PKDP1 from C. fimi cultures 
 

5.3.1.1 Growth on different substrates  

The protein in culture supernatant were concentrated and analysed on the SDS-PAGE gel as 

shows in Figure 5.6. Following the protein fingerprinting analysis, the spectra from the peptides 

were searched against 2 databases; the in-house database containing C. fimi PKDP1 sequence 

and also NCBI database. Most of the identified proteins were known to be related to the 

cellulose breakdown process and none of them matched the C. fimi PKDP1 which has predicted 

size of 86.5 kDa computed from ExpaSy, (online Bioinformatics tool). The protein bands 1 to 8 

gave the following results; 1) single match to C. fimi endoglucanase C, 2 and 3) no significant 

matches, 4) Man26A/multifunctional nuclease, 5) Endoglucanase C/peptidase and a single 

match to multifunctional nuclease, 6) a single match to exoglucanase B/Man26A, finally, 7 and 

8) were endoglucanase C. The isolation of PKDP1 from the Avicel inducing culture of C. fimi was 

unsuccessful, therefore, none of this work was taken forward for further analysis as all the 

identified proteins have been well-studied and characterized for their specific functions in 

cellulose degradation. 
  

 

Figure 5.6: SDS-PAGE analysis of protein extracted from supernatant and substrate-bound 

fractions induced by specific substrates in C. fimi culture.  

SDS-PAGE of A) day-3 and B) day-7 samples. Gels were loaded with 15 µL protein samples from 

C. fimi substrate-induced culture. Lane L, ladder (ThermoScientific Pre-stained PageRuler 

S26619), Lane 1, supernatant fraction of Avicel-induced culture. Lane 2, supernatant fraction of 

PASC-induced culture. Lane 3, supernatant fraction of cellobiose-induced culture. Lane 4, 

substrate-bound fraction of Avicel-induced culture. Lane 5, substrate-bound fraction of PASC-

induced culture. Lane 6, substrate-bound fraction of cellobiose-induced culture. Eight protein 

bands were selected for protein fingerprinting analysis from Day-7 samples.  

A) B) 
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5.3.1.2 Isolation trial of C. fimi PKDP1 using weak anion exchange chromatography  

Two protein peaks detected by absorbance using anion exchange chromatography based on 

predicted pI value of 5.65 at 280 nm are shown in Figure 5.7A. Protein that bound to the column 

was collected following the linear gradient elution. Six fractions from the elution were collected 

and analysed using SDS-PAGE (Figure 5.7B). Multiple bands were observed following SDS-PAGE, 

suggesting several proteins were bound to the column and the isolation step may not produce 

a pure single protein. Four bands were selected for protein fingerprinting; two bands were in 

range of estimated size of C. fimi PKDP1, and two smaller size of protein bands were chosen to 

identify if they can be excluded by the purification based on the ionic charges. The spectra from 

the peptides were searched against an in house database containing C. fimi PKDP sequence and 

also UniProt database. Result from the analysis showed that none of selected bands matched to 

C. fimi PKDP1. Band 1 to 4 were identified as follows; 1 and 2) Exoglucanase B; 3) Endoglucanase 

D; and 4) had no significant matches to any protein. The protein spectra of band 4 were further 

searched against non-redundant RefSeq of C. fimi transcriptomic database. This protein 

spectrum was matched as Cfi_0001.0003360 hypothetical protein (DUF4397). 



Chapter 5: Attempted Characterization of a Cellulomonas fimi PKD 

Domain-Containing Protein (PKDP1) 

Results 

 

131 
 

             

 

Figure 5.7: Weak anion exchange separation of extracellular proteins of C. fimi grown in Avicel 

for 7 days. 

A) The chromatogram of protein purification, B) SDS-PAGE gel loaded with 6 selected fractions 

of purified C. fimi extracellular protein from Day-7 Avicel-induced culture. Four protein bands 

indicated by red arrows were cut out for trypsinolysis digestion prior to protein identification.  

 

 

1 2 3 

4 5 6 

A) 

B) 
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5.3.2 Recombinant PKDP1 solubility study in E. coli BL21(DE3) 

The solubility screening for recombinant PKDP1 was carried out by cloning the PKDP1 protein 

gene into a TFFP of pET plasmid vector series which can be fused to the gene to generate C-

terminal fusions to improve the protein solubility (249). The backbone of these vectors was using 

pETFPP_0 comprised of HIS*3cProtease where the * site contains PstI mutation. The soluble-

tagged vectors screened in this work were pETFPP_1; Histidine (HIS-3cProtease-ORF), pETFPP_2; 

contains maltose-binding protein (HIS-MBP-3cProtease-ORF), pETFPP_3; contains Glutathione-

S-transferase (HIS-GST-3cProtease-ORF), pETFPP_4; contains Immuno-9 (HIS-Im9-3cProtease-

ORF) and pETFPP_5; contains glutathione fluorescence protein (HIS-GFP-3cProtease-ORF). The 

solubility screening for protein expression work using these plasmid vectors was using an E. coli 

strain BL21DE3. This work was performed by Dr. Jared Cartwright in Protein Production 

Laboratory, Technology Facility, University of York using a dot-blot technique (250). 

 

Among 5 solubility tags used for heterologous PKDP1 constructs, GST-tagged fusion protein 

(pETFPP_3) indicated the presence of soluble protein from a preliminary dot-blot analysis on 96-

well plates (data not shown). This protein construct was further analysed using SDS-PAGE 

(Figure 5.8A). An immunoblot assay using histidine antibody was performed but failed to show 

full-length protein in either the total or soluble extract (Figure 5.8B). The expression work was 

repeated using different E. coli strains as the expression host (a new line of BL21 DE3, Arctic 

Express®, NEB SHuffle® and NEB SHuffle®T7). The ArcticExpress® is an engineered E. coli strain 

derived from high performance Stratagene BL21-Gold cells to address the common bacterial 

gene expression hurdle of protein insolubility specifically by lowering the temperature following 

the induction for expression. The NEB SHuffle® and SHuffle T7® are chemically competent E. coli 

K12 cells engineered to export proteins containing disulphide bonds in the cytoplasm (251). The 

C. fimi PKD protein contains 2 potential disulphide bonds based on sequence prediction on 

DiANNA (http://clavius.bc.edu/~clotelab/DiANNA/), a web server for disulphide connectivity 

prediction (252). The western blot procedure was optimized in this study by slight modification 

of transfer buffer composition by increased the methanol concentration to 10% (v/v). Duration 

of blotting step on wet transfer also was increased to 30 min with 15 V current to help the 

blotting process of big fusion PKDP1 transfer onto the membrane. 

 

 



Chapter 5: Attempted Characterization of a Cellulomonas fimi PKD 

Domain-Containing Protein (PKDP1) 

Results 

 

133 
 

 

Figure 5.8: Protein gel analysis of PKDP1 expression samples following dot blot screening of C. 

fimi candidate proteins.  

A) SDS-PAGE; and B) anti-HIS Western immunoblot assay of GST-tagged fusion PKDP1 following 

induction using E. coli BL21 (DE3) with pETFPP_3 (GST-tagged vector) to help the solubility of 

the protein during the expression. Lane L, ladder (BioRad low range biotinylated protein 

standard (1610306). Lane 1, total protein fraction of expressed PKDP1 following induction. Lane 

2, soluble protein fraction of expressed PKDP1 following induction. 

 

5.3.3 Expression trial of C. fimi PKDP1 

The PKDP1 expression trials were conducted and compared using 4 E. coli strains; BL21DE3, 

ArcticExpress™, SHuffle® and SHuffle T7®. Each strain has its own properties which give it an 

advantage for heterologous expression. The expressed proteins from the trials were assessed 

and indicated the presence of full length of GST-tagged PKDP1 at 111 kDa on SDS-PAGE gel for 

E. coli BL21(DE3) on Figure 5.9(A), ArcticExpress™ oŶ Figuƌe ϱ.ϭϬ;A), SHuffle™ oŶ Figuƌe ϱ.ϭϭ;A) 

and SHuffle T7™ oŶ Figuƌe ϱ.ϭϮ;A)). Results of immunoblotting with the GST antibody indicate 

the protein clearly was expressed using BL21DE3 cells grown at 10°C following induction either 

by 0.5 mM or 1.0 mM IPTG. A faint immune-detection of GST-tagged PKDP1 bands was also 

observed from the BL21DE3 cells grown at 15°C and 20°C following induction at the point when 

the culture OD was 0.8 by adding 0.5 mM IPTG (Figure 5.9C). A comparable result was observed 

from the E. coli SHuffle® and SHuffle T7® with no protein bands detected in the insoluble protein 

fraction. Only one soluble protein band was poorly detected from SHuffle® cell at the highest 

screened temperature of 25°C following 0.5 mM IPTG induction. 
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On the other hand, the E. coli SHuffle T7® consistently produced soluble recombinant PKDP1 at a 

broad range of expression temperatures at 10°C to 25°C with either 0.5 mM or 1.0 mM IPTG 

induction. Immunoblotting indicated that the E. coli ArcticExpress™ ǁas aďle to express the soluble 

PKDP1 at expression temperatures of 10°C or 15°C after the post-induction step (Figure 5.10C). This 

strain did not show any detectable effect of different IPTG concentration of 0.5 or 1.0 mM IPTG. 

Based on the assessment of small scale expression trials, ArcticExpress™ strain was selected for 

larger expression of PKDP1. 
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E. coli BL21(DE3) 
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Legend of figures:  

Lane Temperature IPTG concentration 

L (Ladder) n.a n.a 

1 10°C 1.0 mM 

2 15°C 1.0 mM 

3 20°C 1.0 mM 

4 25°C 1.0 mM 

5 10°C 0.5 mM 

6 15°C 0.5 mM 

7 20°C 0.5 mM 

8 25°C 0.5mM 

+ (GST-tag empty vector, positive control) n.a n.a 
 

Figure 5.1: Protein gel analysis of expressed PKDP1 following induction in E. coli BL21 (DE3).  

(A) Soluble protein fraction on SDS-PAGE. (B) Insoluble protein fraction on SDS-PAGE. (C) 

Soluble protein fraction by anti-GST Western immunoblot assay. (D) Insoluble protein fraction 

on anti-GST Western immunoblot assay. Two transformants of E. coli BL21 (DE3) cells were 

selected to express PKDP1 in combination of temperature and IPTG concentration. 15 µL of 

protein samples were loaded onto the gel. 
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E. coli ArcticExpress™ 
 
 

Legend of figures:  

Lane Sample/Ladder Expression temperature IPTG concentration 

L Ladder n.a n.a 

1 Transformant-1 10°C 0.5 mM 

2 Transformant-1 10°C 1.0 mM 

3 Transformant-1 15°C 0.5 mM 

4 Transformant-1 15°C 1.0 mM 

+ GST positive control n.a n.a 

 

Figure 5.2: Protein gel analysis of expressed PKDP1 following induction in E. coli ArcticExpress™. 

(A) Soluble protein fraction on SDS-PAGE. (B) Insoluble protein fraction on SDS-PAGE. (C) Soluble 

protein fraction by anti-GST Western immunoblot assay. (D) Insoluble protein fraction on anti-GST 

Western immunoblot assay. A transformant of E. coli ArcticExpress™ cell was selected to express 

PKDP1 in combination of temperature and IPTG concentration. 15 µL of protein samples were 

loaded onto the gel. 
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E. coli SHuffle® (NEB) 
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Legend of figures:  

Lane Temperature IPTG concentration 

L (Ladder) n.a n.a 

1 10°C 1.0 mM 

2 15°C 1.0 mM 

3 20°C 1.0 mM 

4 25°C 1.0 mM 

5 10°C 0.5 mM 

6 15°C 0.5 mM 

7 20°C 0.5 mM 

8 25°C 0.5mM 

+ (GST-tag empty vector, positive control) n.a n.a 
 

 

Figure 5.1: Protein gel analysis of expressed PKDP1 following induction in E. coli SHuffle®. 

(A) Soluble protein fraction on SDS-PAGE. (B) Insoluble protein fraction on SDS-PAGE. (C) 

Soluble protein fraction by anti-GST Western immunoblot assay. (D) Insoluble protein fraction 

on anti-GST Western immunoblot assay. Two transformants of E. coli SHuffle® cells were 

selected to express PKDP1 in combination of temperature and IPTG concentration. 15 µL of 

protein samples were loaded onto the gel.  
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E. coli SHuffle® T7 (NEB) 

 

 Soluble fraction Insoluble fraction 

   A)  B)  

C)  D)  

 

Legend of figures:  

Lane Temperature IPTG concentration 

L (Ladder) n.a n.a 

1 10°C 1.0 mM 

2 15°C 1.0 mM 

3 20°C 1.0 mM 

4 25°C 1.0 mM 

5 10°C 0.5 mM 

6 15°C 0.5 mM 

7 20°C 0.5 mM 

8 25°C 0.5mM 

+ (GST-tag empty vector, positive control) n.a n.a 

Figure 5.2: Protein gel analysis of expressed PKDP1 following induction in SHuffle®T7. 

(A) Soluble protein fraction on SDS-PAGE. (B) Insoluble protein fraction on SDS-PAGE. (C) Soluble 

protein fraction by anti-GST Western immunoblot assay. (D) Insoluble protein fraction on anti-GST 

Western immunoblot assay. Two transformants of E. coli SHuffle T7® cells were selected to 

express PKDP1 in combination of temperature and IPTG concentration. 15 µL of protein samples 

were loaded onto the gel.  
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5.3.4 Larger Scale Expression and Purification of C. fimi PKDP1 using ArcticExpress™ 

cells 

 

5.3.4.1 Result of larger protein expression 

A larger culture was set-up to express and purify recombinant PKDP1 in ArcticExpress™ cells. To 

confirm the expression of PKDP1, the protein samples were analysed by SDS-PAGE and Western 

blot as described below. A full-length of GST-fused PKDP1 was expressed in the culture as 

indicated at ~111 kDa in the Figure 5.13(A). The solubility of protein samples was confirmed by 

anti-GST immune-detection Western blot showed in Figure 5.13(B). This protein was used for 

the purification step presented in the next section.  

 

 A) SDS-PAGE  B) Western blot 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5.1: Protein gel analysis of expressed PKDP1 following induction in E. coli 

ArcticExpress™ from 500 mL culture.  

The PKDP1 expression was induced using 1.0 mM of IPTG in pre-cooled shaker at 13°C. A) Soluble 

and insoluble protein fractions on SDS-PAGE. B) The corresponding Western Blot. Lane 1 and 

lane 2, Soluble (SOL) and insoluble (INS) fractions of expressed PKDP1 by ArcticExpress™, 

respectively. Lane 3 and lane 4, Soluble (SOL) and insoluble (INS) fractions of expressed 

pETFFP_3 empty vector by ArcticExpress™, respectively. Lane 5, Protein Ladder 

(ThermoScientific Pre-stained PageRuler S26619). 15 µL of protein samples were loaded onto 

the gel. 
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5.3.4.2 Result of protein purification by affinity column chromatography 

Since the PKDP1 was expressed with both oligo-histidine and GST affinity tags, both types of 

affinity columns were used in the trial to purify the expressed protein. Three attempts were 

made to purify recombinant PKDP1 using glutathione affinity chromatography, making use of 

the GST-tag. In all three cases, the recombinant protein failed to bind and was found in the flow 

through but not the glutathione eluted fractions, as confirmed by SDS-PAGE and Western 

analysis shown in Figure 5.14.  

 

A) SDS-PAGE   B) Western blot 
 

  

Legend of figures:      

Lane Fraction Step Column 

1 Flow through from first purification column Wash 1) GSTrap™ FF 5 mL 

2 Elution from second purification column Elute 2) GSTrap™ FF 1 mL 

3 Flow through from second purification column  Wash “ 

4 1st elution from third purification column Elute 3) HisTrap™ HP 1 ŵL 

5 2nd elution from third purification column  Elute “ 

6 3rd elution from third purification column  Elute “ 

7 4th fraction from third purification column Elute “ 

8 Flow through from third purification column Wash “ 

9 Wash residue from third purification column Final wash “ 

10 Positive control of GST-tagged protein supernatant  - n.a 

Figure 5.2: Protein gels analysis of affinity chromatography purification fractions of expressed 

PKDP1 in E. coli ArcticExpress™. 

A) SDS-PAGE and B) Western blot of protein samples from the flow through, purified fractions, 

and wash residue obtained by affinity column purification. Three purification trials were applied 

to the cell free extracts of soluble protein expressed by E. coli ArcticExpress™ usiŶg GST-affinity 

coluŵŶ chroŵatography. The GSTrap™ Fast Flow 5ŵL CV, GSTrap™ Fast Flow 1ŵL CV, and 

HisTrap HP column 1mL CV were used for all the purification trials.  
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5.3.5 Expression of codon-optimized recombinant C. fimi PKDP1 in Aspergillus niger  

A version of the PKDP1 coding sequence that had been codon optimised for A. niger was synthesized 

by GeneArt® (LifeTechnologies) and cloned into a pIGF vector (Appendix E) in order to produce the 

protein with an oligo-histidine (His-tag) at N-terminal for ease of purification. The codon-optimized 

C. fimi PKDP1 was cloned between XbaI/HpaI sites downstream of glucoamylase (gla A) open-

reading frame (ORF). A Kex2 (K R G G G) cleavage site was added between the gla A ORF and the 

gene of interest by PCR to enable the protein to be cleaved in vitro and secreted into the medium. 

 

Following PCR optimisation, a number of cloning strategies were used and the codon-optimized 

PKDP1 coding sequence was successfully sub-cloned into the pIGF vector in the E. coli. 

Transformation of the cloned DNA into Aspergillus protoplasts protoplasts was undertaken and 63 

colonies were recovered (Figure 5.15). The gene coding for the orotidine-5-phosphate 

decarboxylase (253) (pyrG, from Aspergillus oryzae) was used as a selection marker. After 

transformation of A. niger, cells were selected for uridine prototrophy, confirming integration of the 

plasmid into the chromosome. After purification of the transformants, release of the selective 

pressure for the integrated plasmid was achieved by propagating the clones twice on Aspergillus 

Minimal Medium (AMM) agar slants containing 10 mM uridine. The direct colony-PCR products 

were analysed on agarose gels to confirm the size of amplified regions (Figure 5.16). 

 

 

Figure 5.3: Colonies of A. niger transformed with codon-optimized PKDP1 in pIGF-pyrG vector on 

AMMN agar plates after 4 days of incubation at 30°C . 
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Figure 5.1: Confirmation of pIGF-pyrG:PKDP1 integrated in A. niger using direct colony PCR.  

All PCR reactions showed unspecific amplified bands apart from the positive control although 

3% of DMSO had been added. Lane 1, positive PCR reaction using forward and reverse primer 

to obtain the full size of pIGF-pyrG plasmid vector with expected size ~12 kB. However, the result 

on the gel shows off-target/unspecific binding of the primers during the PCR on this plasmid. 

Lane 2, PCR product using the first forward internal primer and reverse pIGF-pyrG primer 

(expected size ~1900 kB). Lane 3, PCR product using the second forward internal primer and 

reverse pIGF-pyrG primer (expected size ~1500 kB). Lane 4, PCR product using the third forward 

internal primer and reverse pIGF-pyrG primer (expected size ~900 kB). Lane 5, PCR product of 

positive control of wild type PKDP1 gene (expected size ~2.5 kB). 

 

L         1         2        3         4         5 
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A. niger carrying the transgene was grown in expression medium for 6 days at 3 separate 

incubation temperatures (20°C, 25°C, and 30°C). Figure 5.17 shows protein samples analysed by 

SDS-PAGE gel from day-1 to day-6 of the cultures. Lanes 5 and 6 represented the expressed 

protein from day-5 and day-6 cultures showing some faint protein smears at a range of 70-130 

kDa. To conclude this work, the protein samples were concentrated and analysed by SDS-PAGE 

(not shown). The protein band at approximate size between 70-100 kDa was cut out for protein 

identification by trypsinolysis and mass spectrometry. The result from protein identification 

matched to glucoamylase and succinyl-CoA ligase [ADP-forming] ß-subunit protein which 

belongs to A. niger. 

 
 

Figure 5.2: SDS-PAGE gels loaded with unconcentrated supernatant from cultures of A. niger 

expressing recombinant PKDP1.  

15 µL aliquots of culture supernatant were loaded onto the gel for 6-day time course’s on ½ 

strength expression media. A) Six protein samples from the culture representing each day, 

grown at 20°C. B) Six protein samples from the culture representing each day, grown at 25°C. C) 

Six protein samples from the culture of each day grown at 30°C. Lane 1, culture from day-1. 

Lane-2, culture from day-2. Lane-3, culture from day-3. Lane-4, culture from day-4. Lane-5, 

culture from day-5. Lane-6, culture from day-6. 
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5.3.6 Solubility of PKDP1 protein 

PKDP1 was first identified in the C. fimi proteomic study which was based on 

soluble/extracellular protein samples. However, based on the literature of characterized glucose 

dehydrogenases (GDHs), GDHs exist in two quite different types which are a membrane-bound 

(m-GDH) and soluble-glucose dehydrogenase (s-GDH) (232). A couple of m-GDH have been 

characterized such as D-glucose dehydrogenase of Gluconobacter suboxydans (254) and 

pyrroloquinoline quinone (PQQ)-containing quinoproteins of E. coli (255) whereas, a s-GDH 

domain that contains a pivotal  PQQ-containing quinoproteins that has been well described in 

Acinetobacter callcoaceticus (232,256).  

 

Primary information from SignalP (an online tool for protein signal peptide prediction) and 

UniProt database (http://www.uniprot.org/uniprot/F4H2Q6) shows that C. fimi PKDP1 protein 

is predicted to have a signal peptide at 1 to 36 amino acids sequence, but, the prediction in 

UniProt is based on the UniProtKB automatic annotation system without a manual validation. 

Therefore, further analysis has been carried out on the peptides sequence of PKDP1 to 

investigate protein characteristics including protein subcellular localization (PSORTb), 

transmembrane protein prediction (THMM), protein hydrophobicity plot (using ProtParam) and 

protein hydrophobicity scale (ProtScale) provided by Swiss Institute Bioinformatics 

Expert Protein Analysis System Resources Portal (SIB ExPASy).  

 

A prediction of C. fimi PKDP1 subcellular localization has been performed using the latest protein 

subcellular localizations (SCLs) database available online in PSORTdb 

(http://db.psort.org/browse/genome?id=9904). The database comprises 2 types of manually 

curated SCLs for proteins which have been experimentally verified (ePSORTdb), as well as pre-

computed SCL predictions for deduced proteomes from bacterial and archaeal complete 

genomes that available from NCBI (cPSORTdb). Table 5.5 shows the summary of pre-computed 

protein localization scores (0 to 10, where 10 is the best prediction) of C. fimi PKDP1 from the 

both curations in PSORTdb database. The final score of PKDP1 localization is 7.21 that 

consequents the unknown status for prediction of location indicated that PKDP1 may having 

multiple location of its secretion.  

http://www.uniprot.org/uniprot/F4H2Q6
http://db.psort.org/browse/genome?id=9904
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Table 5.1: Pre-computed score of C. fimi PKDP1 protein localization. 

Localization 
Cytoplasmic 

membrane 
Cell wall Extracellular Cytoplasmic 

Final 

score 

Score 7.21 1.45 1.34 0 7.21 

 

The analysis has been further carried out by a protein transmembrane prediction using the Trans-

Membrane Hidden Markov model (TMHMM) algorithm online tool available at 

(http://www.cbs.dtu.dk/services/TMHMM) (257). The TMHMM result suggests a possibility of 

PKDP1 having a Trans-Membrane Helix (TMH) in the N-terminal region at 7 to 29 amino acids (see 

Figure 5.18). However, a high score (0.92067) of N-best (the best score is 1) predicted that the first 

30 amino acids of PKDP1 could be a signal peptide. The N-best algorithm is the sum over all paths 

through the model with the same location and direction of the helices of protein domain 

architecture.  

 
Figure 5.3: Transmembrane prediction of PKDP1 using membrane protein topology prediction 

based on Transmembrane hidden Markov model (TMHMM) prediction server. 

 

The result shows a probability of a signal peptide at 1 to 6 amino acids, and a transmembrane helix 

located at 7 to 29 amino acids for PKDP1. The rest of the sequence is at the outside membrane (30 

to 836 amino acids sequence). The expected number of amino acids in the predicted TMH is 20.125. 

http://www.cbs.dtu.dk/services/TMHMM
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The score is larger than 18 and it is very likely to be a transmembrane protein or have a signal 

peptide. The expected number of amino acids in transmembrane helix in the first 60 amino acids of 

the protein is high but this result needs to be interpreted cautiously because of the possibility that 

TMH could be a signal peptide. Finally, the total probability of N-in described in the result is the total 

probability that the N-terminal is on the cytoplasmic side of the cell’s ŵeŵbraŶe. 

 

ProtParam (http://web.expasy.org/cgi-bin/protparam/protparam) computes various physico-

chemical properties that can be deduced from a protein sequence including Grand Average of 

Hydropathy (GRAVY) (258). The GRAVY number of a protein is a measure of its hydrophobicity or 

hydrophilicity. The two measures are combined in a hydropathy scale or hydropathy index (259). 

Hydrophathy is a characteristic of a protein and will have a relatively high hydrophaty index if the 

protein is particularly hydrophobic (more tendency to water) or hydrophilic (tendency of nonpolar 

substance to aggregate in aqueous solution and exclude water molecules). The GRAVY value for a 

peptide or protein is calculated as the sum of hydropathy value (259) of all amino acids, divided by 

the number of residues in the sequence. In essence, a GRAVY score is the relative value for the 

hydrophobic residues of the protein. The hydropathy values range from -2 to +2 for most proteins, 

with the positively rated proteins being more hydrophobic (260,261). From the analysis, the GRAVY 

score for PKDP1 is -0.142. The value implies a low probability of PKDP1 to have much hydrophilic 

region as the more positive the value the more hydrophobic are the amino acids in the protein. 

Hydrophobic proteins are likely to be membrane bound, and therefore difficult to solubilize.  

 

Finally, protein scale analysis estimates the hydrophobic regions profile produced by amino acid 

scale and using the proteomic tool available at http://web.expasy.org/protscale/. In this analysis, a 

PKDP1 hydrophobic plot was computed using a widely used and predefined scale by Kyte and 

Doolittle (259) for the detection of hydrophobic regions in proteins with a positive value. Several 

window size options for the analysis are available where Transmembrane domain characteristics 

could be identified with a window size of 19 for a calculated of hydrophobic value of just above 1.6. 

Figure 5.19 shows PDKP1 hydrophobicity plot where the standard cut-off scale for prediction of 

hydrophobic region is above 1.5. The hydrophobicity plot shows a correlation with previous 

TMHMM prediction where one short region of the amino acids at the N-terminal predicted contains 

several hydrophobic amino acids. 

 

http://web.expasy.org/cgi-bin/protparam/protparam
http://web.expasy.org/protscale/
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Figure 5.4: The Kyte and Doolittle (259) hydrophobicity plot of PKDP1 from C. fimi. 

A window size of 19 was used to compute the plot for a total of 836 amino acids of C. fimi PKDP1. 

Most of the proteiŶ’s peptide regioŶ is predicted to be non-hydrophobic with a standard cut-off 

score positive value of below 1.5. 

 

In summary, from four analyses that were performed on the PKDP1 protein sequence, including the 

prediction of signal peptide (SignalP and UniProtKB), subcellular protein localization (PSORTb), 

protein transmembrane prediction (TMHMM), and protein hydrophobicity analyses (ProtParam for 

GRAVY score and ProtScale for hydrophobicity plot), it was postulated that PKDP1 may have multiple 

location following of its secretion. PKDP1 has been predicted to have a signal peptide at its N-

terminal at 1-36 amino acids, however, from TMHMM analysis indicated that the stretch of signal 

peptide in PKDP1 may also act as a transmembrane region of the protein. Since the prediction of 

subcellular localization of PKDP1 remained to be unknown with a higher possibility to be in 

cytoplasmic membrane rather than secreted extracellularly, hydrophobicity property of PKDP1 has 

been examined. From ProtParam and ProtScale analyses, both results are in agreement with 

TMHMM and subcellular localization online database searches where the signal peptide of PKDP1 

does not guarantee that this protein is freely secreted from the cell, as the hydrophathy 

measurement score of the PKDP1 suggests the existence of hydrophobic region in the protein 

sequence. Therefore, it could be postulated that PKDP1 protein may have multiple localization after 

its secretion from the cell.  
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5.4 DISCUSSION 

The potential role of PKDP1 (Celf_2278) in the breakdown of polysaccharides has been 

investigated by bioinformatics means and requires confirmation through biochemical 

characterization. The production and purification of recombinant PKDP1 in both bacterial and 

fungal expression systems, and the isolation of PKDP1 in its native form from C. fimi has been 

attempted.  

 

5.4.1 Attempted isolation of native PKDP1 from C. fimi culture  

Avicel is crystalline cellulose that consists of polymers of pure glucose. Avicel was chosen as one 

of the inducing substrates as it was shown that the PKDP1 was secreted highest by mole 

percentage in the Avicel culture (0.034%) when compared to three other substrates; beechwood 

xylan (0.007%), wheat straw (0.016%), and sugarcane bagasse (0.012%) from the proteomic 

work. PASC is a pretreated Avicel with 85% phosphoric acid to produce phosphoric acid swollen 

cellulose which results in a more amorphous (less crystalline substrate). Cellobiose is a 

disaĐĐharide ĐoŶtaiŶs reduĐiŶg sugar of tǁo gluĐose ŵoleĐules liŶked ďy β-1-4 and is the repeat 

disaccharide of cellulose. From the comparison of protein secretion pattern of extracellular and 

substrate-bound fractions induced by 3 substrates between the day-3 and day-7 of cultures, 

higher protein secretion was detected on the day-3 in the supernatant fraction and lower levels 

during day-7. The secreted proteins in both cultures showed more affinity towards the substrate 

at the later time point where more protein bands were observed on day-7 of substrate-bound 

fractions. The opposite pattern of protein secretion was seen for C. fimi grown on cellobiose, 

where relatively lower amounts of protein were secreted in both supernatant and cellobiose-

bound fractions on the day-3, but increased by day-7. However, from the peptides identification 

of selected protein bands, none of the secreted protein was PKDP1. Another attempt to isolate 

native PKDP1 was using anion exchange chromatography. It is a form of ion exchange 

chromatography (IEX) that separates the proteins using a positively charged ion exchange resin 

with an affinity for the protein that having net negative surface charges. From a trial of isolation 

of PKDP1 usiŶg it’s prediĐted isoeleĐtriĐ poiŶt ;pIͿ ǀalue ;ϱ.ϲϱͿ, Đulture of C. fiŵi iŶduĐed ǁith 

Avicel was tried to be purified using DEAE column, however, been unsuccessful. Attempts to 

isolate native PKDP1 from C. fimi cultures were made, but the low levels of protein present made 

it impractical to purify sufficient protein for further studies. 
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5.4.2 PKDP1 expression in Escherichia coli 

E. coli is a well-established, quick and cheap, simple prokaryotic expression system. It became a 

preferred host strain for protein expression as it generally give high yields for the majority of 

proteins (251). Furthermore, E. coli offers a range of vectors and strains for optimum protein 

expression. However, in some cases proteins are not expressed in a soluble form due to lack of 

proper protein folding (262). To overcome this challenge, a fusion protein technique has been 

applied using 5 solubility tags (-His, -GFP, -GST, -MBP, and -Im9), and the resulting proteins 

screened using dotblot technique in the TF Laboratory.  

 

From the 96-wells plate dotblot expression screening, the most promising fusion protein 

construct for PKDP1 was the GST-tag. The protein was expressed in pETFPP_3 vector with the 

tag located at the N-terminus followed by the PKDP1. The use of GST (26 kDa) as a fusion tag is 

desirable because it can act as a chaperone to facilitate protein folding, and frequently the 

fusion proteins can be expressed as a soluble protein rather than in inclusion bodies. The use of 

GST-fusion proteins also can be used to enable protein purification by affinity chromatography 

and use of site-specific protease recognition sequences located between the GST moiety and 

the target protein (263). However, despite showing full length expression of PKDP1 on the SDS-

PAGE gel, the anti-GST immunoblot assay was failed to pick up any signal from the GST-fused 

PKDP1protein. This result could be explained because the PKD fusion-protein is very large (111 

kDa) and may not have transferred efficiently during the blotting procedure. In this prokaryotic 

expression work, PKDP1 expression was attempted using four E. coli strains and varying two 

expression parameters; the expression temperature after induction at 10-25°C, and the 

concentration of IPTG (0.5-1.0 mM). The four E. coli strains that were used in this work are listed 

in Table 5.4, which summarizes their advantages in protein expression. 
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Table 5.1: Summary of advantages of E. coli strains for protein expression 

E. coli strain Description and advantage Reference 

BL21 (DE3) 

(Agilent®) 

A good growth characteristic, among the fast growing 

bacteria and proven for simple culture handling. The 

utilization of the T7 RNA polymerase promoter to direct 

high-level expression is an advantage for this vector. 

(264) 

ArcticExpress® 

(Agilent®) 

Allows use of low-temperature cultivation strategy for the 

recovery of soluble protein by the help of E. coli 

chaperonins, which facilitate proper protein folding. 

Chaperonins bind and stabilize unfolded/partially folded 

proteins and lose activity at reduced temperatures. 

(265,266) 

SHuffle™  
(NEB) 

Uses the advantage of a protease deficient B strain 

(chemically competent E. coli B cells) engineered to form 

proteins containing disulfide bonds in the cytoplasm 

(251,267) 

SHuffle™ Tϳ 
(NEB) 

A T7 expression K12 strain that has an enhanced capacity 

to correctly fold proteins with multiple disulfide bonds in 

the cytoplasm. 

(268,269) 

 

The most promising results were achieved with low temperature expression in ArcticExpress® 

(BL21DE3). The lowest tested temperature with successful soluble protein expression was at 10-

15°C. Therefore, the PKDP1 gene was expressed at 13°C which was the middle point from the 

successful induction temperatures (10-15°C). By lowering the temperature during protein 

expression, the production rate of the protein was also significantly reduced, however the 

chaperonins present in the ArcticExpress® system confer improved protein processing at lower 

temperatures thus potentially increasing the yield of active, soluble recombinant protein. 

 

Varying IPTG concentrations did not show any significant impact on expression levels between 

0.5 or 1.0 mM, and therefore 1.0 mM IPTG was used. A larger culture for optimum expression 

condition was performed in a total of 1 L medium to produce enough protein for 

characterization work. Two affinity chromatography columns were used in the trial to purify the 

desired protein including GSTrap FF (GSH Sepharose) and HisTrap FF (Ni-NTA Sepharose). The 

Coomasie stained gels showed a full-length protein expression from the culture, and the right 

size of protein band (~111 kDa) was picked up by the GST-HRP antibody on western immunoblot 

assay suggesting a promising outcome.  
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Affinity chromatography is a conventional method used for protein purification where protein 

capture is performed through the molecular recognition between the tag and the ligand. 

However, in this experiment, the PKDP1 was ineffectively purified using this method. Shorter 

affinity peptides such as the polyhistidine tag (His-tag) used in this study is the most preferable 

option as they are less likely to interfere with the expression, structure and function of the target 

protein (270–272). Unfortunately, using this tag showed no improvement on PKDP1 protein 

solubility during the expression. Therefore, fusion protein approaches have been applied to aid 

soluble protein expression. Among five fusion proteins tested, Glutathione-S-transferase (GST)-

fused to the PKDP1 protein generated soluble protein although GST fusion is considered as a 

large co-expressed protein that corporates with the protein of interest. GST is a monomeric 

protein of 26 kDa (273,274). It acts as the ligand and also GST tag which acts both as a 

purification anchoring point as well as a stability/solubility enhancer (275,276). The elution 

condition for GST-fused/tag protein is mild because reduced glutathione can be employed as a 

competitive agent (274). However, if reducing condition are compromised, the fusion protein 

can undergo oxidation aggregation due to the presence of four cysteine residues exposed at the 

surface of GST tag (277).  

 

Consequently, fusion proteins with higher molecular weights than 100 kDa can lead to partially 

insoluble proteins (275) which mostly occurred in this work. As the diversity of proteins and their 

biochemical properties make the universal purification of proteins a challenge with most protein 

of interest usually lacking a suitable, specific and robust affinity ligand for capture on a solid 

matrix (278). Alternatively, the recent development of protein purification approach gives an 

option for the purification of fusion proteins which is based on inverse transition cycling (ITC). 

ITC which exploits the reversible soluble–insoluble phase transition behavior of the affinity tags 

and the desired fusion protein yield can be achieved with n ITC rounds (278). 
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5.4.3 PKDP1 expression in Aspergillus niger 

A. niger is a fungal strain that has high protein secretion capacity even for large proteins (279). C. 

fimi PKDP1 is predicted to have at least 5 disulphide bridges according to protein sequence analysis 

on DiANNA, an online tool that designed to work with Neural Network based on cysteine pairs 

scoring with 81% accuracy (252). The A. niger expression system offers an ability to correctly fold 

secreted proteins containing disulphide bridges, and for post-translational modification that may be 

needed before protein folding which helps for the solubility of the protein. The lack of success in 

getting PKDP1 expressed in Aspergillus was disappointing. 

 

Aspergillus sp. are recognized for their ability to secrete correctly folded extracellular proteins, but 

recent experience in the laboratory of Professors McQueen-Mason and Bruce indicate that the 

secretion of active proteins is not always achieved (280) as appears to be the case with PKDP1. A. 

niger is known to possess many endogenous proteases that lead to degradation of secreted 

proteins. However, the strain of A. niger used in these experiments has had most of these proteins 

deleted and this is unlikely to be the cause of the lack of PKDP1 expression.      

 

In conclusion, both native isolation and recombinant approaches have failed to bulk up PKDP1 

production for protein characterization, requiring further improvement to achieve the objective. 

The native isolation method could be enhanced by the addition of artificial electron acceptors that 

act as small molecule reductants (281) to reoxidize the cofactor (282). This strategy has been 

successfully applied during characterization of chitin-binding protein 21 (CBP21) in a chitin 

deacetylase from Aspergillus nidulans (141) to increase the solubility of longer chitin fragments by 

deacetylation. The presence of a reductant of ascorbic acid dramatically increased the efficiency of 

the reaĐtioŶ ǁhiĐh eŶaďled the ďreakdoǁŶ of large ĐrystalliŶe β-chitin particles by CBP21 alone and 

the release of a range of oxidized products (141). 

 

This is because the predicted glucose dehydrogenase and pyrroluloquinone-quinone domain (GDH-

PQQ) in the PKDP1 may acts as an oxidoreductase that possibly has some redox enzyme-based 

electron systems (232). This type of protein is unable to utilize oxygen as the electron acceptor and 

instead transfer the electrons to various natural and artificial electron cofactors (283). Since the 

PKDP1 redox cofactors are still unknown and the need of cofactors by most of CAZy of C. fimi is not 

a major requirement (86), several artificial cofactors could be tested in the medium such as the ions 
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(Ca2+, Cu2+), ascorbate, sulfur-containing species, gallic acid, or pyrogallol (142,239). Recombinant 

expression particularly of PKDP1 in both bacterial and eukaryote systems has proven to be difficult 

and several key challenges remain to be overcome.  

 

For the recombinant protein work, the predicted activity of PKDP1 as a putative β-glucosidase with 

two other interesting predicted domains is an advantage. The size of full-sequence multimodular 

PKDP1 protein is considered to be large (~86 kDa) compared to other commonly secreted 

recombinant proteins which are mostly in the range of 20-30 kDa. Additionally, many general 

limitations of E. coli as an organism for recombinant protein expression are well known including 

low production levels of soluble proteins and poor secretion ability (284). Therefore, it may be 

beneficial to express the individual domains of PKDP1 separately to study their activity. This is 

because it is generally easier to express a relatively smaller protein in any expression host (285). As 

an example from the literature, Li and the co-workers (286) have successfully expressed an active 

recombinant protein in Pischia pastoris of cellobiose hydrolase 3 (CBH 3) by its single domain 

separated from the other existing domains from Chaetaomium thermophilum. This suggests that a 

better expression rate can be achieved when working with protein which only have single catalytic 

domains, instead the more frequent three-domain proteins (comprised of a catalytic domain, linker 

and carbohydrate-binding domain) (286).  

 

A gene deletion approach could be used to characterise the ability of C. fimi to digest or grow on 

cellulose. Clustered regularly interspaced short palindromic repeats (CRISPR) are an efficient gene 

editing technique that could be implemented in C. fimi to delete the PKDP1 gene to establish a new 

strain. CRISPR-Cas9 was first established for use in eukaryotic systems (287–289) however, more 

recently, many initiatives to develop a method particularly for prokaryotic genes have been initiated 

(290,291) and present a promising approach to validate the molecular and metabolic functions of 

specific genes in bacterial systems. 
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6 Adaptive Evolution of Cellulomonas fimi by 

Continuous Subculture on Wheat Straw 

6.1 INTRODUCTION 

In nature, lignocellulose deconstruction is mostly accomplished by heterotrophic fungi and 

bacteria (27,61,292). With a few exceptions, most animals that degrade cellulose accomplish 

the tasks with the assistance of microbes resident in their digestive tracts (293). The 

recalcitrance nature of lignocellulosic biomass is still the bottleneck of modern conversion in 

second generation biofuel processes (160,294). Therefore, both industrial and academic 

researchers have attempted to develop more economic routes for biofuel production over 

the past decades (61,295–297). In the industrial process, the recalcitrance of lignocellulose 

biomass is overcome by extreme chemical and physical pre-treatments, which break open 

the complex lignocellulosic structure so that it is more accessible to enzymatic digestion. 

Hoǁeǀeƌ, these pƌetƌeatŵeŶt steps also geŶeƌate poteŶtial iŶhiďitoƌs of ŵiĐƌoďe͛s 

metabolism such as furan and furfural (297–299).  

 

A number of soil bacteria have been identified that are able to oxidise lignin. Cellulomonas 

fimi is a well-studied cellulolytic actinomycete and mesophilic bacterium found in soil and is 

well known for its cellulolytic capability (77,84,175,192,300). The full sequence of C. fimi͛s 

genome has been published recently revealing a wide range of putative and previously 

characterised Carbohydrate Active Enzymes (CAZy) (86). A wide range of Cellulomonas 

species have been found to have common occurrence in the various environments where 

cellulose decomposition occurs (112,301).  

 

Adaptive evolution studies generally investigate the adaptation of microorganisms in the 

presence of a restraint over a large number of generations in order to observe evolutionary 

processes in real time. Adaptive evolution experiments have been carried out by researchers 

involving a range of target metabolisms in single species, and coevolution in bacteria 

(139,302–306) as well as in fungi (307,308).  

 

A recent study has shown a successful adaptive evolution outcome, by generating a 

Streptomyces mutant strain which degrades cellulose using filter paper as a substrate (33). 

Yet, there has been no research to determine if any strains of bacteria including C. fimi have 
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the improved capability to digest plant cell wall components in complex lignocellulosic 

materials, such as wheat straw. Therefore, a research study was designed to investigate the 

growth of C. fimi on wheat straw in order to examine what adaptations might arise in 

response to this challenging substrate.  

 

In this study, an adaptive evolution approach has been applied to the wild type C. fimi ATCC 

ϰ8ϰ™ stƌaiŶ ďǇ peƌiodiĐ seƌial tƌaŶsfeƌ iŶto a fƌesh ďasal ŵediuŵ ǁith untreated chopped 

wheat straw as a sole carbon source. This was done by subculturing 6 populations of C. fimi 

every 7 days for 52-weeks. Comparison analyses between the wild type and 6 populations of 

adapted strains were performed by the measurement of the growth rate, carbon dioxide 

evolution (CER), cells association to the biomass by gDNA and protein extractions, biomass 

sugar analysis, and quantification of residual biomass after degradation by adapted strains. 
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6.2 MATERIALS AND METHODS 

6.2.1 Bacterial strain, media, and cultivation 

The strains used in this experiment were the ATCC 484 (wild type) and 6 strains Cellulomonas 

fimi derived from a 52-weeks (one year) continuous adaptive evolution experiment as 

described in the following section. Double-autoclaved chopped wheat straw, 2% (w/v), 

supplemented with basal medium at pH 7, was used in all experiments. The composition of 

basal medium is described as in Section 2.2.2. All cultures were incubated at 30°C. 

Continuous subculture was carried out using 250 mL flasks with a working volume of 50 mL, 

and incubated on a rotary shaker at 200 rpm (Landert Motoren AG, Switzerland).  

 

6.2.2 Strain construction 

The wild type of Cellulomonas fimi ATCC ϰ8ϰ™ ;AŵeƌiĐaŶ TǇpe Cultuƌe ColleĐtioŶ, USAͿ ǁas 

grown using 1x10-5 diluted stoĐk Đultuƌe spƌeaded oŶ Oǆoid™ ŶutƌieŶt agaƌ ;TheƌŵoFisĐheƌ 

Scientific) at room temperature for 5 days to obtain a single colony. The pure colony was 

isolated and grown in liquid nutrient broth for 7 days allowing the bacterial growth to reach 

to early stationary phase. The generation of lignocellulose-adapted C. fimi strains was 

accomplished by 52-weeks serial transfer. The stages of strain construction are illustrated in 

Figure 6.1. 
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Figure 6.1: Experimental design for adaptive evolution. 

i) A stock of wild strain was grown up in nutrient broth liquid culture before being streaked 

on an agar plate to obtain 6 pure single colonies. ii) Each pure colony was grown up in 

separate liquid culture. The experiment was initiated by transferring 1% (v/v) of cell biomass 

into 2% (w/v) autoclaved wheat straw in basal media. iii) Evolutionary adaptation 

experiments were started by transferring 1% (v/v) of each culture supernatant once weekly 

into fresh media for 52-weeks. iv) The purity of the grown cultures was checked on agar 

plates by streak plate technique in weekly basis. 16S genomic sequencing was carried out 

using universal prokaryotic 16S rRNA primer sequence and the whole C. fimi gDNA as a 

template by LightRun® sanger sequencing (GATC, Germany) to check culture integrity in 

quarterly period of time. v) Archives of strains were prepared in glycerol stock and kept at -

80°C freezer for long-term storage.  
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6.2.3 Analytical methods 

 

6.2.3.1 Cell growth profiles and relative growth rate 

Cell growth profiles were determined from readings of optical density (OD) at 600 nm using 

Cary-50Bio UV-Visible Spectrophotometer (Agilent, USA) and counts of colony forming units 

(CFU). The number of CFU was determined in triplicate by plating 50 µL of serially diluted 

(1x10-5) culture supernatant on NB agar, followed by 5-day incubation at 30°C. This step was 

repeated using a 4-day time course, and the relative growth rate of each strain was 

calculated according to Dalgaard et al. (309). 

 

6.2.3.2 Carbon dioxide evolution (CER) 

Carbon dioxide measurements were determined in a 4-day time course by measuring the 

pressure at time point 0 (T0) and time point 1 (T1) (the initial and the end of a temporary 2 h 

anaerobic condition incubation, respectively) using a digital pressure gauge (DG1, 

Rototherm). Anaerobic conditions were achieved for 2 h by replacing the sponge bungs on 

the ǁheatoŶ™ flasks ǁith ƌuďďeƌ ďuŶgs. CO2 released during the anaerobic period was 

collected into exetainer® bottles. The gas samples were measured by gas chromatography 

(GC) using an HP-5 column equipped with Flame Ionization Detector (FID) and quantified 

using standard carbon dioxide.  

 

6.2.3.3 Estimation of growth and bacterial residency by genomic DNA of C. fimi 

strains 

Genomic DNA (gDNA) was extracted using a phenol-chloroform method (310) and purified 

using Genomic DNA Clean & Concentrator™-25 (D4064, ZymoResearch USA) according to the 

ŵaŶufaĐtuƌeƌ͛s iŶstƌuĐtioŶs. The iŶsoluďle ǁheat stƌaǁ iŶ the Đultuƌe ǁas sepaƌated fƌoŵ 

liquid supernatant through a filtration process using 200 µm nylon mesh. A wheat straw 

biomass fraction of 0.5 g and liquid supernatant of 35 mL were collected into separate 50 mL 

tubes after the filtration process. The supernatant fraction was spun down by centrifugation 

at 4000 x g for 10 min to obtain the bacterial cell pellet. The cell pellet and biomass fractions 

were incubated at room temperature for 30 min at 37°C in 5 mL of 100 µg/mL lysozyme in 

Tris-EDTA (TE) buffer pH 7 for cell lysis. Following cell lysis, the sample was spun for 10 min 

at 4000 x g to achieve separation of the phases, before the aqueous layer was removed to a 
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fresh 15 mL centrifuge tube. To the aqueous phase, chloroform:isoamyl alcohol (21:1) was 

added and this was spun and the aqueous phase transferred to a fresh tube. Precipitation of 

gDNA was obtained by adding an equal volume of ice-cold 100% isopropanol and incubated 

for 1 h. After centrifugation at 4000 rpm for 10 min, the resulting supernatant was discarded 

without disturbing the gDNA-containing pellet. The pellet was then washed with 80% cold 

ethanol and air-dried before being resuspended in Ambion® DNAse free water 

;TheƌŵoFisheƌͿ. The ƋuaŶtifiĐatioŶ ƌesults oďtaiŶed ǁith ŶaŶodƌop™ ǁeƌe Đoŵpaƌed ǁith 

band intensities of high molecular weight gDNA visualized on ethidium bromide-strained, 1% 

(w/v) TAE agarose gels. Ten percent of the total corresponding eluate volumes were loaded 

onto the gels. 

 

6.2.3.4 Estimation of growth and bacterial residency by total protein 

Total protein content (expressed free protein, protein-bound to the biomass and 

intracellular proteins) of the culture was used as an indicator of growth on insoluble wheat 

straw material. Total protein was extracted in 50 mL centrifuge tubes by boiling 500 mg 

freeze-dried wheat straw in 10 mL of 0.2% SDS for 5 min to lyse all cells bound to the biomass. 

The protein supernatant was collected into a fresh 50 mL centrifuge tube by centrifugation 

at 4000 x g; this step was repeated two times without heating but with vigorous vortexing 

between each centrifugation step to wash the biomass and remove protein. Extracted 

protein was precipitated with five volumes of ice-cold acetone and incubated overnight at X 

-20°C before centrifugation at 4000 x g. The resulting protein pellet was washed with 80% 

ice-cold ethanol. The ethanol-protein solution was then centrifuged again at 4000 x g after 

which the supernatant was discarded and the protein pellet was air-dried before being 

solubilized in 5 mL of ELGA ultrapure water. Protein concentration was quantified using the 

Bradford assay (Section 2.4.1) and SDS-PAGE (Section 2.4.2), respectively. 
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6.2.4 Scanning Electron Microscopy (SEM) analysis of wheat straw samples 

The biomass-bound cells associated with the wheat straw were observed using a 

conventional SEM method (53). The isolated specimens of wheat straw fibres were obtained 

by filtration of wheat straw culture through 200 µm nylon mesh to separate the liquid and 

straw particles. Approximately, 300 µL level of wheat straw fibres in 1.5 mL Eppendorf tube 

were fixed with 2.5% glutaraldehyde in 100 mM phosphate buffer (pH 7.0) at 4°C. The fibre 

specimens were incubated on a rotator for 1 h before been immersed overnight at 4°C. After 

fixation, fibers were washed with phosphate buffer (3 x 20 min), followed by post fixation 

with 1% osmium tetroxide in phosphate buffer for 30 min to 1 h on ice. The fibers were 

washed again with phosphate buffer (3 x 20 min) before dehydration through a graded 

ethanol series (25, 50, 70, and 90%) once for each concentration for 20 min, and 3 times for 

10 min using 100% of ethanol. Dehydrated fibers were washed once with 100% tetrabutyl 

alcohol and dried by vacuum freeze drying. Hexamethyldisilazane (HMDS) was used in the 

critical-point of drying step to remove the excess of ethanol and allow the specimens to air 

dry in a dry atmosphere. Prepared specimens were then mounted on SEM stubs and sputter-

coated with gold plasma coater (SC-7640 Auto/Manual High Resolution Sputter Coater, 

Quorum Technologies Ltd.). Samples were viewed using a JSM-7600F SEM operating at 15 

kV (JEOL Ltd., Tokyo, Japan). The preparation of specimens and SEM visualization was 

undertaken by Ms Joanne Marrison, Dr Anna Simon and Dr Karen Hodgkinson in the Imaging 

and Cytometry Laboratory, Department of Biology, University of York. 
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6.2.5 Enzyme activity assays in culture supernatant 

The ability of enzymes to cleave polysaccharides and produce break down products with 

reducing ends was assessed according to Lever assay (163) that used p-hydrobenzoic acid 

(PAHBAH) solutions. PAHBAH reagent was prepared freshly on day of use by adding 0.761 g 

into 100 mL of 0.5 M NaOH. Preparation of sugars standard was done by pipetting into 1.5 

mL microtubes 0, 10, 20, 30, 40, and 50 µL of the 1 mg/mL standard of 1% glucose or xylose 

solutions, then each of the tube was made up to a final 50 µL volume with distilled water. 

Next, 950 µL of 50 mM pH 6.5 sodium phosphate buffer was added for a total volume of 1 

mL. These standards mixture of tubes were not incubated at 37°C.  

 

96-well plates were used by pipetting 150 µL of PAHBAH mix into each well, including the 

standard sugars wells. 100 µL of appropriate 1% substrate solution was added into fresh 1.5 

mL microtubes in duplicate (for T0 and T1 measurements) for each sample. 50 µL of enzyme 

preparation (culture supernatant) was added into the substrate solution and mixed by 

pipetting up and down, then immediately, 5 µL of enzyme-substrate mixture was transferred 

into 150 µL PAHBAH solution that been prepared earlier. This reaction gives an absorbance 

value for time 0 min (T0) as the negative control. Then, another reaction mixture was placed 

into 37°C waterbath, and incubated for 1 h. After 1 h of incubation, 100 µL of incubated 

enzyme-substrate mixtures were transferred into 150 µL PAHBAH mix. 5 µL of each diluted 

standard was transferred into 150 µL PAHBAH.  

 

All samples and standards were then incubated at 70°C for 10 min to terminate the reaction. 

To read the absorbance after the enzymatic reaction, 150 µL of sample was transferred into 

fresh microtitre plates and the absorbance was read at 405 nm Tecan Safire2 (Thermo Fisher) 

plate reader (163). From the glucose and xylose standard curves, the concentration of 

reducing sugars was calculated.  
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6.2.6 Compositional analysis of oligosaccharide from wheat straw degradation  

Sugars profiles after wheat straw degradation by C. fimi strains were determined by high 

performance anion exchange chromatography with pulsed amperometric detection (HPAEC-

PAD) (DIONEX ICS - 3000, UK) using a CarboPac PA20 column with a 50 mM NaOH isocratic 

system and flow rate of 0.5 ml min-1 at 30°C (27), after sequential hydrolysis using 

trifluoroacetic acid (TFA) following an alcohol precipitation (311). Five types of sugars 

including glucose, xylose, arabinose, galactose, rhamnose and three uronic acids; 

galacturonic acid, glucuronic acid and ferrulic acid were used as standards with mannitol as 

an internal standard. A standard curve was determined for each sugar and the trend line 

equation was used to calculate the amount of sugar content in g/L for each straw sample. 

The best fit line was calculated using Excel software. The linear equation obtained from the 

standard curve was used to find out the concentration of sample glucose in g/L.  

 

6.2.7 Quantification of lignocellulose biomass residual after degradation 

The degradation of wheat straw by C. fimi (wild type and 6 adapted strains) in liquid culture 

was determined using a mass balance method after 10 days of culture incubation. Three 

biological replicates of wheat straw cultures from each strain were weighed before and after 

the 10-days culture incubation. Biomass samples were collected by filtration through 200 µm 

nylon mesh and washed with 40 mL of water twice, followed by three washes with 40 mL of 

100% ethanol. The washed biomass samples were dried at 60°C for 2 days and then weighed. 

Results were compared against the negative control represented by wheat straw culture that 

had not been inoculated with the bacteria.  

 

6.2.8 Statistical analysis 

The mean of 3 biological replicates represents the standard deviation (SD) in each 

quantitative analysis. Statistical analysis was performed using one-way ANOVA multiple 

ĐoŵpaƌisoŶs test ǁith sigŶifiĐaŶt ǀalue of P ≤ Ϭ.Ϭϱ. 
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6.3 RESULTS 

Six independently inoculated lines of C. fimi were initiated from a single colonies of the wild 

type strain, grown on rich media in liquid culture and then transferred to shake flasks 

containing 50 mL of minimal medium supplemented with 2% w/v of chopped wheat straw 

as the main carbon source. Flasks were incubated with shaking at 180 rpm at 30°C for one 

week, at which time an aliquot of the cells was removed and used to inoculate a fresh flask 

of wheat straw media. Cells from each line were also archived as glycerol stocks at the same 

time as the weekly transfers. This process was repeated weekly for 12 months, at which point 

the growth of the adapted cell lines on wheat straw was compared to that of the starting 

wild type cells. 

 

6.3.1 Growth rates on wheat straw of C. fimi strains 

Growth profiles of C. fimi strains were monitored to measure the relative bacterial growth 

rate. Figure 6.2(A) shows the growth profiles of the wild type and 6 adapted strains of C. fimi 

in the wheat straw culture. All adapted strains showed a similar growth pattern and a 

comparable lag phase to the wild type in the first day of the culture except strain-4 and 

strain-5; these strains had a lag phase that was slightly faster or slower compared to the 

other strains, respectively. In all strains, exponential phase was reached slowly within 2 days. 

Strain-5 had the lowest OD throughout the incubation process, followed by the strain-6; the 

cell density in these two strains was significantly lower than the wild type throughout the 4-

day time course, as measured from the supernatant. In Figure 6.2(B), the estimated 

generation time and growth rate were calculated between day-1 and day-3 during the 

exponential growth phase for all the cultures. The histogram shows that the wild type, strain-

1, strain-3, and strain-5 had comparable growth rates; 0.0657 ± 0.04 h-1, 0.0641 ± 0.003 h-1, 

0.0639 ± 0.012 h-1, and 0.0594 ± 0.007 h-1, respectively. Meanwhile, the generation time of 

strain-6 was 2-fold lower than the wild type, which was represented as the lowest cells count 

from the medium supernatant (but not representing the whole wheat straw culture).   
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A) Growth profiles 

 

B) Growth rates and generation times 

 

Figure 6.2: Comparison of growth profiles between C. fimi wild type and adapted strain-1 

to strain-6 in 4-day time course.  

A) Growth profile of C. fimi strains over a 4-day time course. B) Growth rates and generation 

times calculated during the exponential phase of C. fimi strains grown in wheat straw 

medium. The mean of four biological replicates ± SD is shown.  
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6.3.2 Carbon Dioxide Evolution Rate (CER) of C. fimi  

The amount of carbon dioxide (CO2) gas released in this experiment was measured as an 

alternative to measuring culture medium OD, as this would not account for cells that were 

anchored to the insoluble straw substrate. Figure 6.3 shows the CER profiles by 7 strains of 

C. fimi over a 4-day time course. A statistical analysis was performed using a one-way ANOVA 

test to compare the CER between each strain and data are presented as the bar plots in 

Figure 6.4.  

 

On day-1 of incubation, strain-4 has the highest CER compared to the other 6 strains 

including the wild type. However, the CER of strain-4 dropped steadily throughout the 4 days 

of time course of the culture, which is statistically different to the other strains. The wild type 

showed a more rapid increase of CER from day-1 to day-2 of incubation compared to all six 

adapted strains of C. fimi. The CER of the wild type decreased immediately on the day-2 of 

incubation until the day-4 but was still significantly the highest compared to the other strains. 

Strain-1 and strain-3 exhibited a similar CER pattern where the CER of both strains increased 

from day-1 to day-2 and then started to drop to the lowest on day-3. Their CER remained 

unchanged in day-4. Strain-5 and strain-6 also possessed similar profiles; there was little 

change in the CER from day-1 to day-2, and both strains produced higher CO2 on day-3 before 

drastically decreasing on the day-4.  
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Figure 6.3: Carbon dioxide evolution rate (CER) for wild type and 6 adapted strains of C. 

fimi grown on wheat straw.  

Profiles of CER over a 4-day time course for C. fimi strains including wild type. The initial and 

final headspace pressure of the culture in the wheaton bottles during temporary anaerobic 

condition was measured using pressure gauge. CO2 released during the anaerobic period was 

collected into exetainer® bottles. The gas samples were quantified by gas chromatography 

(GC) using a HP-5 column, and detected using a Flame Ionization Detector (FID). The mean 

of four biological replicates ± SD is shown.  
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Figure 6.4: Carbon dioxide evolution comparison between C. fimi wild type and six 

independent one year-adapted strains over a 4-day time course.  

A) Carbon dioxide evolution from Day-1; B) Day-2; C) Day-3; D) Day-4 incubated culture. The 

mean of four biological replicates ± SD is shown. Results were statistically analysed by 

SigmaPlot 13 using One-way ANOVA of multiple comparisons test P<0.05.  
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6.3.3 Isolation of C. fimi Genomic DNA (gDNA) from supernatant and biomass 

fractions 

To provide an alternative measurement of the amount of cells from each line that were 

anchored to the straw biomass and in the culture medium, total genomic DNA of the wild 

type and adapted C. fimi strains were extracted from both supernatant and biomass-bound 

fractions using a standard phenol-chloroform method (312) after 4 days of aerobic culture 

incubation. From the supernatant fraction, most of the strains showed a similar amount of 

extracted DNA except the strain-3 gave significantly highest extracted gDNA (2323.7 ±75.2 

ng/mL). Whilst a high amount of gDNA was extracted from strain-5 (527.5 ± 56.7 ng/mL), 

strain-6 generated the most gDNA (1809.3 ± 35.8 ng/mL) from biomass-bound fraction 

compared of all strains (Figure 6.5B). The measurement was correlated by qualitative 

observation of high molecular weight bacterial gDNA on the TAE DNA agarose gels presented 

in Figure 6.5(C) and Figure 6.5(D). 
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Figure 6.5: Quantitative measurement and qualitative observation of gDNA 

isolated from Day-4 of the wild type and six population adapted strains of C. fimi 

from wheat straw culture.  

NanoDrop® measurement of isolated gDNA from supernatant (A) and biomass 

fractions (B) of wild type and six adapted strains of C. fimi culture in 4 biological 

replicates, respectively. The mean of four biological replicates ± SD is shown. Results 

were statistically analysed by SigmaPlot 13 using One-way ANOVA of multiple 

comparisons test P<0.05. C) and D) 1% agarose gel loaded with 15 µL of gDNA 

samples isolated from supernatant and biomass fractions of wild type and six 

adapted strains of C. fimi cultures in 4 biological replicates, respectively. 
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6.3.4 Total protein isolation from C. fimi culture supernatant and cell-bound to 

wheat straw 

Strain-3 and strain-6 were selected for total protein analysis for a comparison against the 

wild type as they showed the highest amount of extracted DNA in the supernatant and in the 

biomass-bound fractions, respectively.  

 

In the culture supernatant, there was no statistical difference observed in total protein 

concentration extracted in strain-3 and strain-6 compared to the wild type (Figure 6.6A) 

despite slight differences in the protein band intensity observed after SDS-PAGE (Figure 

6.6B). Nonetheless, protein bands observed on the SDS-PAGE gels showed some variance in 

the size and intensity of the protein bands suggesting a variation of proteins might be 

secreted into the supernatant during wheat straw degradation by the selected strains. 

 

However, in the biomass-bound fraction, the quantified total protein appeared to be strongly 

correlated with the intensity of protein bands on the gel. Total protein from strain-3 was 

significantly lower than the total protein from wild type, whereas strain-6 gave the highest 

total protein abundance compared to the wild type and strain-3. The SDS-PAGE gel showed 

a good reproducibility of the result from 3 biological replicates of the strain cultures. 
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A) Protein Bradford assay 

 

B) Protein SDS-PAGE gel 

 

Figure 6.6: Quantification of total protein isolated from supernatant and biomass fraction of 

wild type, strain-3 and strain-6 of 1-year adapted strains.  

A) Relative protein quantification using Bradford method. Mean of three biological replicates ± 

SD shown. Results were statistically analysed by SigmaPlot 13 using One-way ANOVA of multiple 

comparisons with post-hoc Bonferroni test *P<0.05, **P<0.01, ***P<0.001.  

B) SDS-PAGE loaded with 15 µL of total protein isolated from supernatant and biomass fractions 

in three biological replicates of each culture. Protein was extracted using standard alcohol 

precipitation (section 5.2.1) followed by the Bradford assay (Section 2.4.1). 
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6.3.5 Qualitative visualisation of C. fimi bound to wheat straw using Scanning 

Electron microscopy (SEM) 

Scanning electron microscopy (SEM) was used to visualize the morphological characteristics of 

the interaction of wheat straw and C. fimi cells after 4 days of degradation. In all SEM 

observations, the wheat straw fibres appeared to be a relatively thin and multi-layered with 

some irregularities on the fibre surface. Putative bacterial cells can be seen on the wheat straw 

surfaces in most specimens of the strains. Figure 6.7(A) to figure 6.7(G) show the biomass 

surface characteristics of the wild type, and strain-1 to strain-6, after incubation respectively. 

Strain-1 and strain-4 were perceived to have a similar abundance of the cells associated on the 

wheat straw surface, where cells were scattered on the surface on most of wheat straw particles 

observed as in figure 6.7(B) and figure 6.7(E), respectively. Strain-5 and strain-6 were observed 

to have most obvious differences, with a greater abundance of attached cells apparent in the 

images as compared to other strains including the wild type (Figure 6.7(F) and figure 6.7(G).  
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Figure 6.7(A): Surface images obtained by SEM on wheat straw after 4 days of aerobic 

degradation inoculated with the wild type of C. fimi in basal medium.  

Image 1 to 4 represent 4 different areas of wheat straw particles from replicate 1. Image 5 

to 8 represent 4 different areas of wheat straw particles from replicate 2. 

The magnification is shown with the scale bars on the images. 
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Figure 6.7(B): Surface images obtained by SEM on wheat straw inoculated with strain-1 of C. 

fimi after 4 days of aerobic degradation in basal medium. 

Image 1 to 4 represent 4 different areas of wheat straw particles from replicate 1. Image 5 to 8 

represent 4 different areas of wheat straw particles from replicate 2. 

The magnification is shown with the scale bars on the images. 
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C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7(C): Surface images obtained by SEM on wheat straw inoculated with strain-2 of 

C. fimi after 4 days of aerobic degradation in basal medium. 

Image 1 to 4 represent 4 different areas of wheat straw particles from replicate 1. Image 5 

to 8 represent 4 different areas of wheat straw particles from replicate 2. 

The magnification is shown with the scale bars on the images. 
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Figure 6.7(D): Surface images obtained by SEM on wheat straw inoculated with strain-3 

of C. fimi after 4 days of aerobic degradation in basal medium. 

Image 1 to 4 represent 4 different areas of wheat straw particles from replicate 1. Image 5 

to 8 represent 4 different areas of wheat straw particles from replicate 2. 

The magnification is shown with the scale bars on the images. 
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Figure 6.7(E): Surface images obtained by SEM on wheat straw inoculated with strain-4 of C. 

fimi after 4 days of aerobic degradation in basal medium. 

Image 1 to 4 represent 4 different areas of wheat straw particles from replicate 1. Image 5 to 8 

represent 4 different areas of wheat straw particles from replicate 2. 

The magnification is shown with the scale bars on the images. 
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Figure 6.7(F): Surface images obtained by SEM on wheat straw inoculated with strain-5 of 

C. fimi after 4 days of aerobic degradation in basal medium. 

Image 1 to 4 represent 4 different areas of wheat straw particles from replicate 1. Image 5 

to 8 represent 4 different areas of wheat straw particles from replicate 2. 

The magnification is shown with the scale bars on the images. 
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Figure 6.7(G): Surface images obtained by SEM on wheat straw inoculated with strain-6 of C. 

fimi after 4 days of aerobic degradation in basal medium. 

Image 1 to 4 represent 4 different areas of wheat straw particles from replicate 1. Image 5 to 8 

represent 4 different areas of wheat straw particles from replicate 2. 

The magnification is shown with the scale bars on the images. 
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6.3.6 Enzyme activity assay using culture supernatants 

In order to assess the relative soluble enzyme activity for each strain, aliquots of equal 

volume from culture supernatants were assayed for their ability to release sugars from either 

carboxmethyl cellulose (CMC) or xylan. The greatest amount of reducing sugar was observed 

after incubation on CMC from the wild type and strain-6 (Figure 6.8A). However, CMCase 

activity of the wild type and strain-6 were not statistically different to each other, with 13.16 

± 0.49 and 11.59 ± 0.77 nmol/mL/min respectively. Overall, this suggests that there was 

significantly lower CMCase activity in all strains versus the wild type except in strain-6. In 

terms of xylanase activity, enzyme activity on beechwood xylan was detected. (Figure 6.8B). 

Adapted C. fimi strains of strain-1, -2, -3 and -4 were observed to release similar amount of 

reducing sugars during the assay on xylan compared to the wild type. In spite of that, strain-

5 and strain-6 were significantly at best equivalent to the wild type with big error bars with 

strain-6 displaying the highest xylanase activity across all the C. fimi strains. 
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Figure 6.8: Comparison of CMCase and xylanase activity in culture supernatant of wild type 

and adapted strain-1 to strain-6 of C. fimi. 

A) CMCase activity, and B) Xylanase activity were determined by release of reducing sugars 

in response to incubation of CMCase and xylanase substrates, CM-cellulose and beechwood 

xylan, with C. fimi culture supernatants, respectively. One unit of enzyme activity was defined 

as the amount of enzyme required to liberate one nanomole per mililiter equivalent of 

reducing sugars per minute. Mean of four biological replicates ± SD shown. Result was 

statistically analysed by SigmaPlot13 using One-way ANOVA of multiple comparisons test 

P<0.05. 

 

A) CMCase activity 

 

B) Xylanase activity
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6.3.7 Polysaccharide content and composition 

The composition of plant cell walls after the degradation of wheat straw in liquid culture was 

assessed by mild trifluoracetic acid (TFA) digestion to release the monosaccharides from the 

non-crystalline polysaccharides in the biomass residue following growth of the adapted and 

wild type strains. Strain-3 and strain-6 were selected for this analysis because both strains 

showed the highest amount of extracted gDNA from the supernatant and biomass-bound 

fractions, respectively as presented in section 6.3.3. Figure 6.9(A) shows the profiles of 

components from hydrolyzed plant cell walls after the degradation by C. fimi strains grown 

on wheat straw. Statistical analysis was performed by a t-test pairwise comparison to the 

uninoculated wheat straw using a SigmaPlot 13 software (Figure6.9B). 

  

The quantities of glucose and galactose in biomass residues from growth with strain-6 were 

significantly higher than the uninoculated wheat straw (control), wild type and strain-3. 

Higher levels of glucuronic acid (GlcA) and galacturonic acid (GalA) were observed compared 

to the wild type and strain-3, however, they were not statistically different with the level of 

those monosaccharides in the negative control. Whilst significantly higher quantities of 

fucose and rhamnose were apparent from strain-6 compared to the negative control, 

comparable levels of the same monosaccharides were observed from the wild type and 

strain 6, and these two sugars are major components of the cell walls of C. fimi (313,314) and 

some of both sugars are likely to be derived from bacterial biomass. In comparison to the 

wild type, strain-3 and the control, strain-6 exhibits significantly the lowest quantities of 

xylose and arabinose. Mannose level from strain-6 (2.96 ±0.09 Mol %) was significantly the 

lowest compared to the uninoculated wheat straw and strain-3, however, it was very close 

level to the wild type (2.89 ± 0.17 Mol %).  

 



Chapter 6: Adaptive Evolution of Cellulomonas fimi by 

Continuous Subculture on Wheat Straw 

Results 

 

183 

 

A) Sugars composition of residual wheat straw after degradation by C. fimi strains 

 

B) Comparison between C. fimi strains of sugars composition of residual wheat straw 

after degradation 

 

Figure 6.9: Monosaccharide composition from the wheat straw degradation by wild 

type, strain-3 and strain-6 of C. fimi. 

A) The stacked column graphs represent concentration of 9 monosaccharides 

composition contained in degraded wheat straw by C. fimi strains. B) The clustered 

column graphs represent a comparison of the 9 sugars detected in wild type, strain-

3 and strain-6 of residual biomass to the uninoculated wheat straw (control). Results 

were statistically analysed using SigmaPlot 13 by a pairwise t-test against the 

negative control of uninoculated wheat straw. Three biological replicates represent 

± SD shown. P<0.05, ** P<0.01, *** P<0.001. 
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6.3.8 Quantification of residual wheat straw 

Figure 6.10 shows the total residual of wheat straw from the culture of the wild type and six 

C. fimi strains. The result was compared to the negative control represented by the wheat 

straw culture that not been inoculated with the bacteria. The overall quantification of 

biomass loss during the incubation of C. fimi strains in the wheat straw indicates a mass loss 

(approximately 10%) from total wheat straw supplied in the initial culture. However, in 

comparison between the wild type and six adapted strains of C. fimi, there was no significant 

difference in mass loss of the culture across all the strains.  

 

 

Figure 6.10: Mass loss of wheat straw after the degradation by C. fimi strains. 

The C. fimi strains were cultured with wheat straw as a sole carbon source in the basal 

medium for 10 days before the mass loss analysis was measured. The mean of four biological 

replicates ± SD is shown. Results were statistically analysed by SigmaPlot 13 using one-way 

ANOVA of multiple comparisons with post-hoc Bonferroni test, * P<0.05. 
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6.4 DISCUSSION 

Adaptive evolution is one of the established approaches for microbial adaptation (303,306,308) 

to promote higher fitness and to evaluate potential improved properties such as in degradation 

of plant biomass (193,308). Naturally mutagenised strains of C. fimi, a cellulolytic soil bacterium, 

were produced from 52-weeks continuous subculture in wheat straw medium, by a serial 

transfer method for every 7-days. In this experiment, six populations of C. fimi were evaluated 

for higher fitness in the wheat straw liquid culture. The strains were screened and compared to 

the wild type in order to get a better understanding of any changes during the adaptation period 

in wheat straw environment. Several properties were investigated including their growth 

characteristics, enzyme activities, and analysis of degraded wheat straw. 

 

All strains were able to utilize wheat straw as a sole carbon source for their growth until four 

days of incubation. Most of the strains including the wild type demonstrated a long lag phase 

which took about 24 h before starting the exponential phase, compared to well-studied bacteria 

such as E. coli growing in a rich medium, where the lag phase is short which around 15 to 20 min 

(315,316). The lag in C. fimi cultures may be due to the fact that the average generation time of 

soil bacteria ranges from 1 to 2 days (317). This indicates that C. fimi strains required time to 

adapt and exploit the novel environment (318) where there is a limited accessibility to the 

substrate, particularly in the lignocellulosic wheat straw. After four days of culture incubation, 

there is a decline in the cells number of all C. fimi strains, where a stationary phase was defined 

as the point at when the number of cell counts did not show a significant difference over 24 h 

after 3 days of incubation. This may be a response to the depletion of accessible saccharides 

from the wheat straw, especially in the hemicellulose and amorphous cellulose parts of plant 

cell walls. The difficulty to breakdown the amorphous part of the matrix in lignocellulose 

polysaccharides (225) also may leads to a rate-limiting steps in biomass degradation by bacterial 

cells (59).  

 

The generation time of strain-6 was 2-fold lower compared to the wild type as was estimated 

based on the cells density from the culture supernatant. Therefore, further analyses were done 

on the wheat straw biomass samples to have clearer ideas and investigate the physiological 

changes in the adapted strains compared to the wild type. The method of carbon dioxide 

evolution rate (CER) has previously been widely applied in ecotoxicological tests (319), 

investigation of microbial processes in soil (320), and waste water treatment (321).  
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This analysis was used to measure the aerobic respiratory and biodegradation rates by C. fimi 

strains during wheat straw degradation in liquid culture. All six adapted strains showed 

significantly lower CER compared to the wild type, except strain-4 in day-1. This observation was 

correlated with the faster growth of strain-4 compared to other strains during the lag phase in 

day-1 which may be a sign of rapid cells metabolism hence higher CO2 produced in the culture.  

 

Microbial metabolism evaluation by respiratory activity measurement maybe an ideal method 

for a soluble substrate culture (322); however, it also has several limitations (323,324). The CER 

principle needs to be carefully considered as C. fimi is a facultative anaerobic bacterium that can 

grow by producing energy by aerobic respiration in the presence of oxygen, but is also capable 

of switching to anaerobic respiration if oxygen is absent (39,86). Consequently, CO2 is measured 

by collecting the CO2 using a syringe into exertainer sample tubes. However, the liberation 

efficiency of CO2 from the liquid phase in the wheaton bottle and the subsequent trapping 

efficiency of CO2 into the exertainer tube may lead to lower measured biodegradation rates 

(325). This showed the dynamic digestion strategy of the bacteria depending to the 

environmental condition and substrate availability.  

 

The results from the CFU and CER measured strains growth characteristics specifically from 

culture supernatant lead to further exploration of the adapted C. fimi strains in biomass-bound 

fraction. The highest significant quantity of gDNA was isolated from the biomass-bound fraction 

of strain-6 in comparison of all strains including the wild type. The results of total protein 

extraction also imply a significantly higher association of strain-6 cells on the biomass than in 

the supernatant. The association of C. fimi strains on the wheat straw biomass was further 

investigated by a three-dimensional (3D) visualization of degraded wheat straw particles using 

Scanning Electron Microscopy (SEM). Images of degraded biomass from strain-5 and strain-6 

indicate that these strains were likely to have been clustered and clumped as a cells consortium 

oŶ the ǁheat stƌaǁ paƌtiĐles. These stƌaiŶs deŵoŶstƌated a ͚Đell-to-ďioŵass͛ adhesioŶ patteƌŶ 

that may be a part of a biomass-degradation mechanism that is dissimilar to other strains, which 

may be pƌoduĐiŶg ͚fƌee-foƌŵ͛ of eŶzǇŵe to degƌade the ďioŵass (53). This characteristic would 

be an advantage for plant cell wall recognition and binding for improvement of biomass 

degradation by cellulolytic bacteria (63,326).  
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Despite the variance in results between the wild type and strain-6 in terms of growth 

characteristics and variation of cell localization in the culture, the reducing sugar assay using 

CM-cellulose and beechwood xylan as the substrates did not show any significant difference 

between the two strains, indicating similar amounts of cellulase and xylanase activity in these 

strains, but values were significantly lower in the other strains. Two of the best studied cellulases 

of C. fimi are the CenA (endoglucanase) and Cex (the GH10 of bifunctional 

exoglucanase/xylanase) which both comprise carbohydrate binding-module family 2 (CBM2) 

(39,40). The function of CBM2 has been extensively studied and it was shown that this domain 

can acts synergistically with catalytic domain, and independently as non-catalytic domain in 

disrupting cellulose fibres (79,327). Consequently, this reaction results in the release of fine 

cellulose particles, however, without any detectable hydrolytic activity (79,103). 

 

The overall CMCase and xylanase activities measured by the release of reducing sugar after 

incubation with culture supernatant could be improved by more specific para-nitrophenol-

linked substrates (pNP)-assays. Examples of disaccharide and oligosaccharide substrates that 

could be used including pNP-β-glucose, -fucose, -galactose, as well as -cellotetraose and -

cellopentaose. By using pNP-subsrates in the assay, it may reveal the competency of each strain 

to break down a range of structurally different sugar polymers to monosaccharides residues, 

linkage position, or the chain length of the saccharified substrate (113). 

 

Analysis of the composition of non-cellulosic polysaccharides in the straw biomass after growth 

of the bacterial strains revealed decreases in the levels of xylose and arabinose, both of which 

are components of the complex arabinoxylans that make up much of the wheat straw 

hemicellulose (328). This indicates that substantial amounts of xylanase must be produced by C. 

fimi in agreement with the enzyme activity assays discussed above. Interestingly, the relative 

levels of rhamnose, fucose and galactose all went up during growth of C. fimi on wheat straw, 

indicating either that there was preferential hydrolysis of these components or that new sugars 

are appearing. Where the hemicellulose component of plant cell walls consists of heteroglucans 

(xyloglucans) which includes glucuronoxylans, these most abundant non-cellulosic 

polysaccharide in hardwoods may contain rhamnose and galacturonic acid (329). Furthermore, 

the cell walls of gram-positive bacteria comprises of a ~40% thick polymer called peptidoglycan 

that is heteropolymer consisting a rigid glycan chains and cross-lined with flexible peptide 

substituents (330). Several studies on Cellulomonas sp. have identified the cell-wall sugars in 

this species are including rhamnose, galactose, glucose, xylose, and inositol (313,314). 

 



Chapter 6: Adaptive Evolution of Cellulomonas fimi by Continuous 

Subculture on Wheat Straw 

Discussion 

 

188 

 

A commonly used method to measure and assess the rate and extent of biomass biodegradation 

was performed using a mass balance experiment after the wheat straw degradation by C. fimi 

strains. About 10% mass loss of the wheat straw was relatively quantified within 10 days of 

degradation by C. fimi strains. A comparable result was observed across all the adapted strains 

and the wild type showing there was significantly no difference in terms of biodegradation rate 

among all strains. The mass balance of materials is a relatively simple and straight forward 

approach where the initial biomass supplied in the culture and final dried biomass after the 

degradation was quantified. However, it should be noted that these measurements are 

complicated by the conversion of part of the biomass into bacterial mass, and this will lead 

potentially to a slight underestimate in the amount of wheat straw that has been degraded. 

 

Factors that can affect the rate of degradation such as nutrient supply, temperature, pH and 

moisture level have been kept consistent throughout the experiment, however, physiological 

factors of biomass e.g. the nature of biomass that can absorb moisture that lead to the alteration 

of material weight has proved to be a problematic in the method application. In addition, the 

degrading biomass also could disintegrate into smaller fragments hence causing difficulty in 

recovering the materials to determine the real weight loss in each sample. Crystalline cellulose 

is not present in uniform composition, and biomass residues also varied in their moisture 

content and particle size, therefore, method revision and optimisation was required. Wheat 

straw biomass can be first homogenized by sieve and separate to a similar preferable particle 

size (2 mm) and conditioned to a uniform moisture content by extracting the degraded wheat 

straw from the liquid culture using vacuum filtration through nylon mesh to remove the excess 

water. 

 

Complex configurations of heterogeneous polysaccharides in plant cell walls are recalcitrant to 

degradation (35,63). Microbes have been found to secrete specific carbohydrate active enzymes 

(CAZymes) to break down the plant cell wall structures (71,331). More than a decade ago, 

studies revealed that CAZy are often aided by non-catalytic proteins such as carbohydrate-

binding modules (CBMs) (87,88,174). The majority of CBMs contain members that target and 

play critical functions using diverse mechanisms in the recognition and cell attachment of plant 

cell wall components (193,195,332). The numbers of CBM families increased from 67 to 81 from 

2013 to 2017 and indicates that more CBM families with diverse roles could potentially be found 

in other plant degrading systems, such as in C. fimi.  
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The results of the growth study, CO2 evolution measurements and SEM observations indicate 

that strain-6 has evolved to bind more tightly to the biomass during growth. This hypothesis is 

supported by data indicating that the significantly highest quantity of bacterial gDNA and total 

protein were extracted from the biomass-bound fraction samples. Furthermore, high levels of 

monosaccharides (glucose, rhamnose and galactose) were detected from the compositional 

analysis of matrix polysaccharides using HPAEC following TFA hydrolysis from strain-6 samples. 

These sugars are potentially derived the breakdown of plant biomass and also the composition 

of bacterial cell walls (313). It could be an indicator of better breakdown of biomass and a sign 

of stronger adhesion of strain-6 onto the wheat straw.  

 

The increased of adhesion evidence of strain-6 could be an advantage that signifies a better 

capability to perceive the multi layers of hemicellulosic decorated polysaccharides that are 

masked by pectin components and lignin (63,195). The recognition of intact plant cell wall 

hydrophobic surfaces supports the CAZy to anchor and bind the crystalline cellulose and uronic 

acid sugars (223,333). This recognition step is an important as a primary progression in the 

microbial response to the plant cell walls that increase enzyme-substrate proximity (333). 

Nevertheless, a higher affinity towards the wheat straw, as seen in strain-6, suggests that this 

strain may present an interesting candidate that may be encoding hydrophobic surface 

interacting proteins in potential roles of enhancing lignocellulose degradation.  

 

These findings create more opportunities to further investigate the evolution of C. fimi strains 

during the adaptation of cellulolytic bacteria in degrading wheat straw. A molecular level of 

study with transcriptomic (305,334) and proteomic analyses may be beneficial to identify any 

new upregulated genes and protein expression involved in biofilm-, cell wall- and 

exopolysaccharide-related proteins, as well as lipoproteins (335) secretion in C. fimi strains. This 

data may provide clearer evidence of the evolutionary changes in microbial communities that 

may be driven by a set of abiotic factors (336,337), for example the limitation of carbon source 

in wheat straw culture aŶd as oŶe ŶoŶ ͞soĐial͟ adaptation strategies of microbes. Whole 

genome re-sequencing could provide an information of any single-Nucleotide-Polymorphism 

(SNP) (338) occurred during the wheat straw adaptation process in C. fimi. A CBM-linked assay 

(339) to test if more cellulose-binding proteins been expressed in C. fimi adapted strains than 

the wild type, may also hold potential. This research would contribute new knowledge which 

may fill the research gap about the biofilm formation (340,341), or new classes of CBMs and 

LPMOs expressed during wheat straw degradation the C. fimi. 
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7 Final discussion 

More efficient lignocellulosic hydrolyzing enzymes are currently in demand for the cost-effective 

pretreatment of substrates for biofuel production. Although there are many cellulose-degrading 

enzymes that have been functionally characterised from Cellulomonas fimi, it is hypothesized that 

there are still many important enzymes involved in plant cell walls and biomass breakdown to be 

explored from this recently genome-sequenced species. The overall objective of this study was to 

identify novel lignocellulose processing enzymes from C. fimi that could be of benefit for the 

production of biofuels from second generation feedstocks. 

 

For that purpose, a growth experiments were set up comprising in-vitro cultures supplemented with 

laboratory plant cell walls polysaccharides (Avicel and beechwood xylan) and two types of 

agricultural biomass (wheat straw and sugarcane bagasse). From the growth profiles analysis 

(Chapter 3), C. fimi was be able to thrive in such hostile conditions where the source of carbon is 

limited. The ability of C. fimi to grow on insoluble wheat straw and sugarcane bagasse is intriguing, 

as to date C. fimi has been tested to grow on different type of amorphous substrates such as 

carboxymethyl cellulose (CMC) (144,342) and phosphoric acid swollen cellulose (PASC) (342), hence 

growing C. fimi on naturally lignocellulose biomass in this work creates a new perspective of this 

microbe͛s lignocellulose-degrading potential. 

 

This study has explored, for the first time, the response of C. fimi growing on different type of 

polysaccharides using an RNA-seq method. The rRNA removal was the most crucial step prior to the 

sequencing work. In this work, several attempts of efficient rRNA removal revealed the challenges 

of dealing with a gram-positive, and the GC-rich genome of C. fimi. The differences of rRNA primer 

base, strand locations, and the different lengths of rRNA amplicons between gram-negative and 

gram-positive bacteria make the specificity of the probes to capture the unwanted sequence of 

rRNA in a particular strain a primary importance. A specifically suitable method that may be 

exclusive from strain to strain is crucial to provide strand information especially for highly GC-rich 

genes that may lack sufficient thymidine nucleotides for dUTP incorporation. 
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Until now, several RNA-seq studies have been published for species with a range of different GC-

contents, however, the RNA-seq work of C. fimi described here may have used the GC-richest strain 

(74%) so far, based on the available literature that evaluates rRNA depletion methods. In 

Giannoukos et al. study (343), strains tested for rRNA depletion methods were Prochlorococcus 

marinus, Escherichia coli, and Rhodobacter sphaeroides with 30%, 50%, and 69% GC-content, 

respectively. From the study, Ribo-Zeƌo™ kit fƌoŵ EpiĐeŶtƌe® has been proven to be the most 

efficient kit for mRNA enrichment of those species based on the degradation of processed RNA by 

ϱ͛-ϯ͛ eǆoŶuĐlease that speĐifiĐallǇ digests RNA speĐies ǁith a ϱ͛-monophosphate end. A different 

approach using a combination of MICROBExpress/Ovation rRNA removal method based on 

hybridization capture of rRNAs by antisense oligonucleotides followed by pull down through binding 

to magnetic beads has been tested by Peano and her co-workers in 2013 (344). This combination 

method has been proven to be suitable for RNA-seq of the whole transcriptome of Burkholderia 

thailandensis (67.7% of GC content) and produced a 238-fold mRNA enrichment, with more than 

90% transcripts sequenced. As for C. fimi, two trials using the degradation of rRNA approach failed 

to provide sufficient quality of mRNA materials for sequencing, and hence, there was inadequate 

transcripts coverage. However, by using a method similar to that used for B. thailandensis with gene-

specific primers, the unwanted rRNA was successfully diminished resulting in high quality mRNA and 

better coverage of the transcriptome library.  

 

In order to understand the regulation of components in the cells responding to the different types 

of substrates, a proteomic study through in-gel tryptic digestion followed by liquid chromatography-

tandem mass spectrometry (nanoLC-MS/MS) has been performed and presented in Chapter 4. By 

this approach, the joint analysis of the transcriptomic and proteomic data provides useful insights 

that may not be deciphered from individual analysis of mRNA or protein expressions. For that 

purpose, the differential gene expression (DGE) method was applied to discover, from successful 

RNA-sequencing, novel genes of C. fimi that are being co-expressed with CAZymes.  

 

From the analysis, the highest CAZy-encoding gene that exclusively expressed in Avicel culture has 

been identified as the only one auxiliary activity family 10 (AA10) of C. fimi. The enzyme was 

upregulated almost 10-fold change compared to the rest of other substrates. Among the list of co-

expressed genes that have been found to be upregulated in Avicel culture, Glucose sorbone 

dehydrogenase (GSDH), Celf_2278 and Polycystic Kidney Disease (PKD)-containing protein (PKDP3), 
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Celf_3039 are among the non-CAZy genes that appear to be co-expressed in the same condition. 

The proteomic study presented in Chapter 4 showed that the result from principal component 

analysis (PCA) was consistent with RNA-seq DGE outcomes as the outstanding genes (GSDH/PKDP1 

and PKDP3) were also detected in the C. fimi proteome. A better scope of low complexity of C. fimi 

secretome dataset is achieved where more than 80% of 71 unique proteins, identified in three 

biological replicates, were found to be extracellular proteins, based on existing tools using 

bioinformatics analysis compared to a similar study by Wakarchuk et al. (86) ;ǁheƌe the ͚leakage͛ of 

intracellular proteins contamination were significantly detected from over 600 total proteins of two 

biological replicates). An interesting finding observed from C. fimi secretome is that a significantly 

higher amount of protein was detected in wheat straw and Avicel cultures towards day-3 of 

incubation. This is an unsurprising observation as C. fimi is a well-known cellulose degrader and as 

such, may produce significantly higher enzymes during Avicel utilization. However, C. fimi could also, 

potentially, digest more complex cellulose compounds such as lignocellulosic wheat straw (172). 

 

Apart from AA10 and another 20 hypothetical proteins that are upregulated with other CAZymes, 

the GSDH of PKDP1 are among the more interesting proteins identified from the C. fimi 

transcriptome and secretome grown on Avicel. Protein domain prediction analysis has provided 

more information about predicted protein function and triggered further investigation of PKDP1 

pƌoteiŶ, ǁhiĐh has a pƌediĐted doŵaiŶ PAϭϰ as β-glucosidase. A site-directed mutagenesis 

experiment on chitinase A (ChiA) gene of Alteromonas sp. by Orikoshi et al. in 2005 uncovered the 

existence of PKD-domains that participate in the effective hydrolysis of powdered chitin (211).  

 

Another recent study by Suma and Podile (214) revealed several chitinases-accessory domains 

(including PKD domain) other than the catalytic GH18 domain (214) in Stenotrophomonas 

maltophilia chitinase (StmChiA and StmChiB) genes. Moreover, a study by Horn et al. (35) shows the 

presence of a PKD-domain in other naturally occurring CBM33-containing proteins, which are 

diverse in their module families but have been shown experimentally to contain a PKD-domain 

specific for the chitin substrate. Another domain in PKDP1 of C. fimi has 100% identity to β-

glucosidases and aligned to a C-terminal protective antigen 14 (PA14) domain, but the potential 

activity of this protein remains a mystery. Furthermore, the predicted oxidoreductase molecular 

function of the PQQ-superfamily protein domain in the multimodular PKDP1 protein structure 

makes this protein a more interesting candidate for further characterization.  
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Therefore, in Chapter 5, several attempts for heterologous expression in both prokaryote (E. coli) 

and eukaryote (A. niger) systems, as well as an attempt for a native isolation of PKDP1 from the 

culture media, were undertaken. In the recombinant protein expression trials, several methods have 

been used including the fusion-protein technique and a different expression hosts approach, 

however, the limitation of recombinant protein solubility remains a challenge and warrants further 

investigation and trials. A study in 1997 by Rajoka and Malik (345) revealed the responses of four 

Cellulomonas strains (C. biazotea, C. flavigena, C. cellasea, and C. fimi) in terms of β-glucosidase 

synthesis from different substrates (monosaccharides, disaccharides, Đelloďiose, CMC, ǆǇlaŶ, α-

cellulose, steam alkaline-treated wheat straw and bagasse) in culture media were significantly 

different. Furthermore, in all strains, β-glucosidase accumulated intracellularly and was mainly 

located in the periplasmic fractions of the cells. In most bacteria, β-glucosidase is synthesized but 

usually remains associated with the cell (345). This may be explained that product inhibition or 

iŶduĐtioŶ foƌ seĐƌetioŶ of β-glucosidase may be less effective. 

 

The adaptive evolution on C. fimi in Chapter 6 was performed to get a better understanding of any 

behavioural changes of the bacteria during the adaptation phase in a wheat straw environment. 

This is the first study to investigate the effect of naturally occurring mutagenesis to produce wheat 

straw-adapted strains from a 52-weeks continuous subculture in wheat straw medium, using a serial 

transfer method. In this experiment, six populations of C. fimi were evaluated for their adaptation 

to the wheat straw liquid culture. The investigation included an analysis of growth profiles and 

enzyme activities of each adapted strain, and an analysis of the resulting degraded wheat straw. 

Results from the adaptive evolution experiment indicate that strain-6 may have a better adhesion 

to the wheat straw biomass; this may be a preference that indicates a better capability by this strain 

to perceive the complex decorated hemicellulose of polysaccharides that are concealed by pectin 

and lignin components. This research provides a framework for the exploration of the evolution of 

C. fimi strains during the adaptation of cellulolytic bacteria in degrading wheat straw.  

 

A future study investigating the strain adherence to the biomass including a molecular level of study 

with transcriptomic (305,334) analysis would be interesting, and may be beneficial in the 

identification of any new upregulated genes. Furthermore, proteomic analysis may reveal protein 

expression involved in biofilm-, cell wall- and exopolysaccharide-related proteins, as well as 

lipoproteins (335) secretion in the adapted strain, which would improve our understanding of 
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synergistic mechanism between multiple enzymes and accessory proteins. Whole genome re-

sequencing could provide information of any single-Nucleotide-Polymorphism (SNP) (338) that 

occurred during the wheat straw adaptation process in C. fimi. Finally, a CBM-linked assay (339), to 

test if more cellulose-binding proteins are expressed in C. fimi adapted strains than the wild type, 

may also hold potential. In general, it seems that clearer evidence of the evolutionary changes in 

microbial adaptation may be driven by a set of abiotic factors such as the limitation of carbon source 

iŶ ǁheat stƌaǁ Đultuƌe, aŶd also as oŶe of ͚ŶoŶ-soĐial͛ adaptatioŶ stƌategies of ŵiĐƌooƌgaŶisŵs 

(336,337). Although the ability of the bacterium to completely degrade lignocellulosic biomass e.g. 

wheat straw and sugarcane bagasse was still not ascertained, the studies presented in this thesis 

have gone some way towards enhancing the understanding of collective actions in the bacterium 

for an effective biomass-degradation system that requires the synergistic action of a large number 

and type of enzymes. 
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Appendices  

Appendix A: Predicted structural domains of proteins identified in C. fimi secretome. 

Diagram of protein domains were redrawn using Illustrator for Biological Sequences (IBS 1.0.1) software available at http://ibs.biocuckoo.org/. 

*Due to limited space of layout, domains are not drawn to scale. 

 PROTEIN DESCRIPTION PROTEIN ID 
CAZy 

DOMAINS 
DOMAINS STRUCTURE 

1 Exoglucanase Exoglucanase GH10, CBM2 
 

2 
Membrane-flanked domain 

protein  
Celf_0568  NOT CAZY 

 

3 Endo-1,4-beta-xylanase  Celf_0574  

CBM22, CE4, 

CBM22, GH10, 

CBM9, 

CBM9 

 

4 
Glycoside hydrolase family 3 

domain protein  
Celf_0583  

CBM32, 

CBM11,CBM11, 

GH3  

5 

Phosphate ABC transporter, 

periplasmic phosphate-binding 

protein  

Celf_0591  NOT CAZY 
 

     
     

http://ibs.biocuckoo.org/
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Appendiǆ A Đontinued… 
     

6 Cellulose-binding family II  Celf_1754  CE2, CBM2 
 

7 Proteasome-associated ATPase  

Proteosome-

associated 

ATPase 

NOT CAZY 
 

8 
Extracellular ligand-binding 

receptor  
Celf_1830  NOT CAZY 

 

9 
Extracellular solute-binding 

protein family 5  
Celf_1843  NOT CAZY 

 

10 
Cobyrinic acid ac-diamide 

synthase  
Celf_1876  NOT CAZY 

 

11 SCP-like extracellular  Celf_0742  NOT CAZY 
 

12 Cellulose-binding family II  Celf_1913  GH74, CBM2 
 

13 Glycoside hydrolase family 5  
Celf_1924 

(CenD) 
GH5, CBM2 

 

14 
Cobyrinic acid ac-diamide 

synthase  
Celf_1938  NOT CAZY 
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15 Glycoside hydrolase family 16  Celf_3113  GH16, CBM13 
 

16 Alpha-N-arabinofuranosidase  Celf_3155  CBM13, GH62 
 

17 Endo-1,4-beta-xylanase  Celf_3156  GH10, CBM13 
 

18 Glycoside hydrolase family 18  Celf_3161  CBM2, GH18 
 

19 1, 4-beta cellobiohydrolase  
Celf_3184 

(CenA) 
CBM2, GH6 

 

20 
Mannan endo-1,4-beta-

mannosidase  
Celf_0862  GH26, CBM23 

 

21 
Extracellular solute-binding 

protein family 1  
Celf_3272  NOT CAZY 

 

22 
Glucan endo-1,3-beta-D-

glucosidase  
Celf_3330  GH64, CBM13 

 

23 Fatty acid desaturase  Celf_3356  NOT CAZY 
 

24 Lipoprotein  Celf_3360  NOT CAZY 
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25 Putative uncharacterized protein  Celf_2249  NOT CAZY 
 

26 
LPXTG-motif cell wall anchor 

domain protein  
Celf_3434  GH53, CBM61 

 

27 FG-GAP repeat protein  Celf_3440  PL11 
 

28 
Extracellular repeat protein, HAF 

family  
Celf_3445  NOT CAZY 

 

29 
Alpha-1,6-glucosidase, 

pullulanase-type  
Celf_1126  

GH13, CBM48, 

GH13  

30 
Peptidase S1 and S6 

chymotrypsin/Hap  
Celf_1127  NOT CAZY 

 

31 PKD domain containing protein  Celf_2278  NOT CAZY 

 

32 
Fibronectin type III domain 

protein  
Celf_2339  NOT CAZY 

 

33 
Cell surface receptor IPT/TIG 

domain protein  
Celf_3522  NOT CAZY 

 

34 NLPA lipoprotein  Celf_1210  NOT CAZY 
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35 Glycoside hydrolase family 9  
Celf_0019 

(CenB) 

GH9, CBM3, 

CBM2  

36 Glycoside hydrolase family 9  Celf_0045  GH9, CBM2 
 

37 1, 4-beta cellobiohydrolase  Celf_1230  GH6 
 

38 
Extracellular solute-binding 

protein family 1  
Celf_1290  NOT CAZY 

 

39 
Extracellular solute-binding 

protein family 1  
Celf_0084  NOT CAZY 

 

40 Endo-1,4-beta-xylanase  Celf_0088  GH10, CBM2 
 

41 Putative uncharacterized protein  Celf_0121  NOT CAZY 
 

42 Aminopeptidase Y  Celf_0132  NOT CAZY 
 

43 
Putative F420-dependent 

oxidoreductase  
Celf_1311  NOT CAZY 

 

44 
Integral membrane sensor signal 

transduction histidine kinase  
Celf_1318  NOT CAZY 
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45 Pectate lyase  Celf_1340  CBM13,PL3 
 

46 Alkaline phosphatase  Celf_2549  NOT CAZY 
 

47 Endo-1,3(4)-beta-glucanase  Celf_3773  GH81,CBM6 
 

48 Pectate lyase/Amb allergen  Celf_3775  PL1 
 

49 

Polynucleotide 

adenylyltransferase/metal 

dependent phosphohydrolase  

Celf_3793  NOT CAZY 
 

50 
Alpha/beta hydrolase fold 

protein  
Celf_2590  NOT CAZY 

 

51 Chitin-binding domain 3 protein  Celf_0270  AA10, CBM2 
 

52 TAP domain protein  Celf_0295  NOT CAZY 
 

 

53 Periplasmic binding protein  Celf_1453  NOT CAZY 
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54 
Putative ABC transporter 

substrate binding protein  
Celf_1461  NOT CAZY 

 

55 Putative uncharacterized protein  Celf_2704  NOT CAZY 
 

56 
Extracellular solute-binding 

protein family 1  
Celf_2729  NOT CAZY 

 

57 Triacylglycerol lipase  Celf_0369  NOT CAZY 
 

58 Glycoside hydrolase family 11  Celf_0374  
GH11,CBM2,CE4,

CBM2  

59 

Polar amino acid ABC 

transporter, inner membrane 

subunit  

Celf_1572  NOT CAZY 
 

60 Cellulose-binding family II  Celf_0403  CBM2   

61 Cellulose-binding family II  Celf_0404  CE1, CBM2 
 

62 
5'-Nucleotidase domain-

containing protein  
Celf_1653  NOT CAZY 
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63 
Putative RNA polymerase, sigma-

24 subunit, ECF subfamily  
Celf_0474  NOT CAZY 

 

64 Putative uncharacterized protein  Celf_0523  NOT CAZY 

 

 

65 
Peptidase S8 and S53 subtilisin 

kexin sedolisin  
Celf_0539  NOT CAZY 

 

66 Glycoside hydrolase family 9  Celf_1705  
CBM4, CBM4, 

GH9  

67 
Extracellular solute-binding 

protein family 5  
Celf_2906  NOT CAZY 

 

68 
Endoglucanase C 

(cellobiohydrolase B) 

cenC 

(Cbp120;CbhB;

CenE) 

CBM4, GH9 

(Cel9B) GH48, 

CBM2 

 

 

69 

Exoglucanase A 

(cellobiohydrolase A 

(CbhA;Celf_1925) 

cbhA 

celf_1925  GH6, CBM2 
 

70 

Exoglucanase B 4-β-

cellobiohydrolase B 

CBP120 (Exocellobiohydrolase B) 

cbhB 

celf_3400 

(cbhB/cenE) 

GH48/CBM2/ 

FN3  

71 Beta 1,4-xylanase  
Beta 1,4-

xylanase 

GH10 (Cellulase F) 

Cfx   
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APPENDIX B 

Appendix B: List of 71 proteins identified in C. fimi secretome grown in four types of carbon sources.   

 
UniProt 

Accession 
Protein Name CAZy 

A
v

ic
e

l 

B
e

e
ch

w
o

o
d

 

x
y

la
n

 

w
h

e
a

t 
st

ra
w

  

S
u

g
a

rc
a

n
e

 

b
a

g
a

ss
e

 Signal peptide 

or alternative 

secretion 

pathway 

Uncharacterized

/Potentially new 

CAZy in C. fimi 

1 β-1,4-xylanase Β 1,4-xylanase  
endo-1,4-β-xylanase 

(Cfx/Xyn10B) 
    Yes   

2 Celf_1925 Exoglucanase A (GH6/CelB) Cellobiohydrolase A (cbhA)     Yes   

3 Celf_3400 Exoglucanase B  
Cellobiohydrolase B 

(Cbp120;CbhB;CenE) (Cel48A) 
    Yes   

4 
Celf_0019 / 

CenB 
Glycoside hydrolase family 9  

endo-β-1,4-glucanase B 

(CenB;Celf_0019) (Cel9A) 
    Yes   

5 Celf_0045  Glycoside hydrolase family 9  GH9, CBM2     Yes  

6 Celf_0084  
Extracellular solute-binding protein 

family 1  
Not in CAZy database     Yes  

7 Celf_0088  Endo-1,4-β-xylanase  GH10, CBM2     Yes  

8 Celf_0121  Putative uncharacterized protein  Not in CAZy database     Yes 

Predicted as 

chitinase based 

on protein 

crystal structure 
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9 Celf_0132  Aminopeptidase Y  Not in CAZy database     Yes   

10 Celf_0270  Chitin-binding domain 3 protein  AA10, CBM2     Yes  AA10 of C. fimi 

11 Celf_0295  TAP domain protein  Not in CAZy database     Yes   

12 Celf_0369  Triacylglycerol lipase  Not in CAZy database     Yes   

13 Celf_0374  Glycoside hydrolase family 11  GH11, CBM2, CE4     Yes   

14 Celf_0403  Cellulose-binding family II  CBM2     Yes   

15 Celf_0404  Cellulose-binding family II  CE1, CBM2     Yes   

16 Celf_0474  Putative RNA polymerase Not in CAZy database     No   

17 Celf_0523  Putative uncharacterized protein  Not in CAZy database     No   

18 Celf_0539  
Peptidase S8 and S53 subtilisin 

kexin sedolisin  
Not in CAZy database     Yes   

19 Celf_0568  Membrane-flanked domain protein  Not in CAZy database     No   

20 Celf_0574  Endo-1,4-β-xylanase (Xyl10B, XynC) 
CBM22, CE4, CBM22, GH10, 

CBMnc, CBM9 
    Yes  
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21 Celf_0583  
Glycoside hydrolase family 3 

domain protein  
CBM32, CBM11, CBM11, GH3     Yes 

Wakarchuk et 

al., 2016  

22 Celf_0591  
Periplasmic phosphate-binding 

protein  
Not in CAZy database     Yes   

23 Celf_0742  SCP-like extracellular  Not in CAZy database     Yes   

24 Celf_0862  Mannan endo-1,4-β-mannosidase  GH26, CBM23     Yes   

25 Celf_1126  
Alpha-1,6-glucosidase, pullulanase-

type  
GH13, CBM48, GH13     Yes   

26 Celf_1127  
Peptidase S1 and S6 

chymotrypsin/Hap  
Not in CAZy database     Yes   

27 Celf_1210  NLPA lipoprotein  Not in CAZy database     Yes   

28 Celf_1230  1, 4-β ĐelloďiohǇdrolase ;Cel6CͿ GH6     Yes   

29 Celf_1290  
Extracellular solute-binding protein 

family 1  
Not in CAZy database     Yes   

30 Celf_1311  
Putative F420-dependent 

oxidoreductase  
Not in CAZy database     No   

31 Celf_1318  Integral membrane histidine kinase  Not in CAZy database     Yes   

32 Celf_1340  Pectate lyase  CBM13, PL3, CBM13     Yes   
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33 Celf_1453  Periplasmic binding protein  Not in CAZy database     Yes   

34 Celf_1461  Putative substrate binding protein  Not in CAZy database     Yes   

35 Celf_1572  Polar amino acid ABC transporter Not in CAZy database     No   

36 Celf_1653  
5'-Nucleotidase domain-containing 

protein  
Not in CAZy database     Yes   

37 Celf_1705  Glycoside hydrolase family 9  CBM4, CBM4, GH9     Yes  

38 Celf_1754  Cellulose-binding family II  CE2, CBM2     Yes   

39 Celf_1830  
Extracellular ligand-binding 

receptor  
Not in CAZy database     Yes   

40 Celf_1843  
Extracellular solute-binding protein 

family 5  
Not in CAZy database     Yes   

41 Celf_1876  Cobyrinic acid ac-diamide synthase  Not in CAZy database     No   

42 Celf_1913  Cellulose-binding family II  GH74, CBM2     Yes   

43 Celf_1924  Glycoside hydrolase family 5  
endo-β-1,4-glucanase D 

(CenD;Celf_1924) (Cel5A) 
    Yes   

44 Celf_1938  Cobyrinic acid ac-diamide synthase  Not in CAZy database     Yes   
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45 Celf_2249  Putative uncharacterized protein  Not in CAZy database     Yes   

46 Celf_2278  PKD domain containing protein  Not in CAZy database     Yes 
 Interesting 

predicted domains  

47 Celf_2339  Fibronectin type III domain protein  Not in CAZy database     Yes 
Potentially new 

xylanase 

48 Celf_2549  Alkaline phosphatase  Not in CAZy database     No   

49 Celf_2590  Alpha/β hǇdrolase fold protein  Not in CAZy database     No   

50 Celf_2704  Putative uncharacterized protein  Not in CAZy database     Yes   

51 Celf_2729  
Extracellular solute-binding protein 

family 1  
Not in CAZy database     Yes   

52 Celf_2906  
Extracellular solute-binding protein 

family 5  
Not in CAZy database     Yes   

53 Celf_3113  Glycoside hydrolase family 16  GH16, CBM13     Yes 
Wakarchuk et 

al., 2016  

54 Celf_3155  Alpha-N-arabinofuranosidase  CBM13, GH62     Yes   

55 Celf_3156  Endo-1,4-β-xylanase  GH10, CBM13     Yes  

56 Celf_3161  Glycoside hydrolase family 18  CBM2, GH18     Yes 
Wakarchuk et 

al., 2016  

57 Celf_3184  1, 4-β ĐelloďiohǇdrolase ;GH6Ϳ endo-β-1,4-glucanase A 

(CenA;Celf_3184) (Cel6A) 
    Yes   

58 Celf_3272  
Extracellular solute-binding protein 

family 1  
Not in CAZy database     Yes   
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59 Celf_3330  Glucan endo-1,3-β-D-glucosidase  GH64, CBM13     Yes 
Wakarchuk et 

al., 2016  

60 Celf_3356  Fatty acid desaturase  Not in CAZy database     No   

61 Celf_3360  Lipoprotein  Not in CAZy database     Yes   

62 Celf_3434  
LPXTG-motif cell wall anchor 

domain protein  
GH53, CBM61     Yes   

63 Celf_3440  FG-GAP repeat protein  PL11     Yes   

64 Celf_3445  
Extracellular repeat protein, HAF 

family  
Not in CAZy database     Yes   

65 Celf_3522  
Cell surface receptor IPT/TIG 

domain protein  
Not in CAZy database     Yes   

66 Celf_3773  Endo-1,3(4)-β-glucanase  Cfx, CBM6     Yes 
Wakarchuk et 

al., 2016  

67 Celf_3775  Pectate lyase/Amb allergen  PL1     Yes   

68 Celf_3793  
Metal dependent 

phosphohydrolase  
Not in CAZy database     No   

69 cenC/Cel9B Endoglucanase C  GH9     Yes   

70 Exoglucanase Exoglucanase  No match in CAZy database     Yes   

71 

Proteosome-

associated 

ATPase 

Proteasome-associated ATPase  Not in CAZy database     No   
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APPENDIX C 

 

Appendix C: Multiple sequences alignment of C. fimi PKD-domain containing proteins. 
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Appendix C continued... 
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APPENDIX D 

 

Appendix D: Sequence of condon-optimized C. fimi PKDP1 protein synthesized by GeneArt®. 

 
 

15ABMFFP_1711803.gb 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                      10         20         30         40         50             
LOCUS        CTAAATTGTA AGCGTTAATA TTTTGTTAAA ATTCGCGTTA AATTTTTGTT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                      60         70         80         90        100             
LOCUS        AAATCAGCTC ATTTTTTAAC CAATAGGCCG AAATCGGCAA AATCCCTTAT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     110        120        130        140        150         
LOCUS        AAATCAAAAG AATAGACCGA GATAGGGTTG AGTGGCCGCT ACAGGGCGCT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     160        170        180        190        200         
LOCUS        CCCATTCGCC ATTCAGGCTG CGCAACTGTT GGGAAGGGCG TTTCGGTGCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     210        220        230        240        250         
LOCUS        GGCCTCTTCG CTATTACGCC AGCTGGCGAA AGGGGGATGT GCTGCAAGGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     260        270        280        290        300         
LOCUS        GATTAAGTTG GGTAACGCCA GGGTTTTCCC AGTCACGACG TTGTAAAACG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     310        320        330        340        350         
LOCUS        ACGGCCAGTG AGCGCGACGT AATACGACTC ACTATAGGGC GAATTGGCGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     360        370        380        390        400         
LOCUS        AAGGCCGTCA AGGCCGCATT CTAGAGTCCC TGCCGGCTTC TCCGAGTCCC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     410        420        430        440        450         
LOCUS        TCGTCGCCTC CGTCCCCAAC CCCTCCGCTA TCGCCTTCAC CGCCGATGGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     460        470        480        490        500         
LOCUS        CGCATGCTCG TCACCCAGCA GTCCGGTCGC CTCCGCGTCC GGACCGCCGC  

 

 

            



Appendices 

214 

 

 ....|....| ....|....| ....|....| ....|....| ....|....|  

                     510        520        530        540        550         
LOCUS        TGGCACCCTC CTCGCCACCC CTGCCCTCGA TCTCGCCTCC CGCCTCTGCA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     560        570        580        590        600         
LOCUS        CCAACTCCGA GCGCGGCCTC CTCGGCGTCG CCACCGATCC CGATCCCGCC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     610        620        630        640        650         
LOCUS        ACCCGCGCCA TCTACCTCTT CTACACCGCC CGCACCGGCA CCAGCTGCCC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     660        670        680        690        700         
LOCUS        CACCTCCCAG GGCGGCACCC CCGCTGGCGC CCCTGTCAAC CGCGTGTCCC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     710        720        730        740        750         
LOCUS        GCTTCGTCCT CGGCGACGAT AACCTCGTCG ATCCCGCCTC CGAAACCGTC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     760        770        780        790        800         
LOCUS        CTCCTCGATG GTATCGCCTC CCCTGCCGGC AACCACAACG CCGGCGATCT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     810        820        830        840        850         
LOCUS        CCACGTCGGC AAGGATGGCT ACCTCTACGT CACCACCGGC GACGGCGGCT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     860        870        880        890        900         
LOCUS        GCGATTACCG CGGCGATTCC GGCTGCGGCG GTGATAACGA TGCCTCCCGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     910        920        930        940        950         
LOCUS        GATCGCAACG TCCTCCTCGG CAAGGTCCTC CGCGTCGATC GCACCACCGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     960        970        980        990        1000        
LOCUS        CGCTCCCGCC CCTGGCAACC CCTTCCTCGG CACCGGCACC GCCAGCTGCC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1010       1020       1030       1040       1050        
LOCUS        GCCTCGCCCC TGCCGCTCCC GGAACCGTCT GCCGCGAAAC CTTCGCCTGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1060       1070       1080       1090       1100        
LOCUS        GGCCTCCGCA ACCCTTTCCG CTTCGCCTTC GATCCCGATG CCTCCGGCAC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1110       1120       1130       1140       1150        
LOCUS        CGTGTTCCAC GTCAACGATG TCGGCCAGAA CGTCTGGGAG GAAATCGATC  



Appendices 

215 

 

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1160       1170       1180       1190       1200        
LOCUS        TCGGCACCCC TGGCGCCGAT TACGGCTGGC CCGTCCGCGA GGGCCACTGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1210       1220       1230       1240       1250        
LOCUS        GCCCAGACCG GCTCCGCCAC CGATTGCGGC GGTGCCCTCC CTGCCGGCAT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1260       1270       1280       1290       1300        
LOCUS        GACCAACCCC ATCCACGATT ACGGCCGCTC CACCGGCTGC GGCTCCATCA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1310       1320       1330       1340       1350        
LOCUS        CCGGCGGTGC CTTCGTCCCC GATGGCGTCT GGCCTGCCGC CTACGAGGGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1360       1370       1380       1390       1400        
LOCUS        GGCTACCTCT TCTCCGATTA CAACTGCGGT CGCCTCATGA TGCTCCGCGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1410       1420       1430       1440       1450        
LOCUS        TGGCACCCGC ACCGATGTCG CCACCGGCCT CGGCGCTGCC GTCCACCTCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1460       1470       1480       1490       1500        
LOCUS        AGTTCGGCCC CTGGTCCGGC ACCCAGGCCC TCTACTACAC CACCTACGCC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1510       1520       1530       1540       1550        
LOCUS        AACGGCGGCG AGATCCGCCG CTTGGCCTAC ACCGGAACCG CCAACCGCAC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1560       1570       1580       1590       1600        
LOCUS        CCCCACCGCC GCTCTCACCG CCTCCCCCAC CTCCGGCGCT GCCCCCCTCA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1610       1620       1630       1640       1650        
LOCUS        CCACCACCCT CGATGGCCGC GGTTCCTCCG ATCCCGATGG CGGCACCCTC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1660       1670       1680       1690       1700        
LOCUS        ACCTACCTCT GGCAGTTCGG CGACGGCACC CCCGATGCCA CCACCACCAC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1710       1720       1730       1740       1750        
LOCUS        CCCCACCGTC CAGCACACCT ACGCTGCCGG CACCTGGACC GCCACCCTGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  
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                     1760       1770       1780       1790       1800        
LOCUS        GCGTCCGCGA TCCCCAGGGC GCCACCTCCG CCGCTGTGAC CGCCCGCATC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1810       1820       1830       1840       1850        
LOCUS        ACCTCCGGCA ACACCGCCCC CACCGCCCAG ATCACCTCCC CCGCTGCCGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1860       1870       1880       1890       1900        
LOCUS        CGCTACCTTC GTCGTCGGCC AGACCTACAC CCTCTCCGGC AGCGCCACCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1910       1920       1930       1940       1950        
LOCUS        ATGCCCAGGA TGGCACCCTC CCCGGCTCCC GCCTCTCCTG GACCGTCGTC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     1960       1970       1980       1990       2000        
LOCUS        CGCGTCCACG ATCAGCACAC CCACCCGTTC CTCGGCCCCG TTACCGGCTC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2010       2020       2030       2040       2050        
LOCUS        CGCTGTCTCC TTCCAGGCCC CTGGCCCCGA GGATCTGGCC GCTGCCGCCA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2060       2070       2080       2090       2100        
LOCUS        ACTCCCACCT CCGCGTCACC CTCACCGCCA CCGACGCCCA AGGCGCTACC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2110       2120       2130       2140       2150        
LOCUS        ACTACCGTGA CCCGCGATTT CCTGCCTCGC CGCGTCGCCG CCACCCTCGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2160       2170       2180       2190       2200        
LOCUS        CACCTCTCCC GCTGGCCGCA CCCTGACCGT CAACGGCCAG ACCGTCACCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2210       2220       2230       2240       2250        
LOCUS        GCCCCACCAC CGTCACCAGC TGGGCCGGCT TCGATCTCCG CCTCACCGTC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2260       2270       2280       2290       2300        
LOCUS        CCCTCCCAGC GCGACGCCCA GGGCCGCACC TACGAGCTGG ATGGCTGGTC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2310       2320       2330       2340       2350        
LOCUS        CGATGGCTCC ACCGCCGCCA CCCGCACCTG GACCACCCCC GCCAGCTCCA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2360       2370       2380       2390       2400        
LOCUS        CCACCCTGAC CGCTACCCTC GGCCTCCGCG GCCTGCGCGC CGTCTACCAC  
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             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2410       2420       2430       2440       2450        
LOCUS        GATAACGCCG ATCTCACCGG CGCCACCGTC ACCCGCATCG ATCCCGCCGT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2460       2470       2480       2490       2500        
LOCUS        CGCCTTCGAT TGGGGCCTCG CCGCTCCCGT GTCCGGCATC GGCGCCGACA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2510       2520       2530       2540       2550        
LOCUS        CCTTCTCCGT CCGCTGGTCC GGCTCCGTCG TCCCCCGCTA CTCCCAGACC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2560       2570       2580       2590       2600        
LOCUS        TATACCTTCG CCACCACCTC CGATGATGGC GTCCGCCTCT GGGTCGATGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2610       2620       2630       2640       2650        
LOCUS        CACCCTGGTC ATCGATCAGT GGACCAACCA CTCTCGCCGC GTGGATACCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2660       2670       2680       2690       2700        
LOCUS        GCACCGTCGC CCTCACCGCT GGCCAGGCCG TCCCCATCGT CCTCGAGTAC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2710       2720       2730       2740       2750        
LOCUS        TTCGACGGCG TCCGCAACGC CGTGGCCGAG CTGCGCTGGT CCTCCACCAG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2760       2770       2780       2790       2800        
LOCUS        CCAGGCCTCC GAGATCGTCC CCACCACCCG CCTCCGCCCC TGAGTTAACC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2810       2820       2830       2840       2850        
LOCUS        TGGGCCTCAT GGGCCTTCCG CTCACTGCCC GCTTTCCAGT CGGGAAACCT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2860       2870       2880       2890       2900        
LOCUS        GTCGTGCCAG CTGCATTAAC ATGGTCATAG CTGTTTCCTT GCGTATTGGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2910       2920       2930       2940       2950        
LOCUS        CGCTCTCCGC TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGGTA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     2960       2970       2980       2990       3000        
LOCUS        AAGCCTGGGG TGCCTAATGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT  
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 ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3010       3020       3030       3040       3050        
LOCUS        AAAAAGGCCG CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC CCCCTGACGA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3060       3070       3080       3090       3100        
LOCUS        GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC CCGACAGGAC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3110       3120       3130       3140       3150        
LOCUS        TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT GCGCTCTCCT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3160       3170       3180       3190       3200        
LOCUS        GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3210       3220       3230       3240       3250        
LOCUS        AAGCGTGGCG CTTTCTCATA GCTCACGCTG TAGGTATCTC AGTTCGGTGT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3260       3270       3280       3290       3300        
LOCUS        AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3310       3320       3330       3340       3350        
LOCUS        GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA ACCCGGTAAG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3360       3370       3380       3390       3400        
LOCUS        ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG ATTAGCAGAG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3410       3420       3430       3440       3450        
LOCUS        CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3460       3470       3480       3490       3500        
LOCUS        GGCTACACTA GAAGAACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3510       3520       3530       3540       3550        
LOCUS        TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3560       3570       3580       3590       3600        
LOCUS        CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAAA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3610       3620       3630       3640       3650        
LOCUS        AAAGGATCTC AAGAAGATCC TTTGATCTTT TCTACGGGGT CTGACGCTCA  
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             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3660       3670       3680       3690       3700        
LOCUS        GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCATGAGA TTATCAAAAA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3710       3720       3730       3740       3750        
LOCUS        GGATCTTCAC CTAGATCCTT TTAAATTAAA AATGAAGTTT TAAATCAATC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3760       3770       3780       3790       3800        
LOCUS        TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3810       3820       3830       3840       3850        
LOCUS        TGAGGCACCT ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3860       3870       3880       3890       3900        
LOCUS        GACTCCCCGT CGTGTAGATA ACTACGATAC GGGAGGGCTT ACCATCTGGC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3910       3920       3930       3940       3950        
LOCUS        CCCAGTGCTG CAATGATACC GCGAGAACCA CGCTCACCGG CTCCAGATTT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     3960       3970       3980       3990       4000        
LOCUS        ATCAGCAATA AACCAGCCAG CCGGAAGGGC CGAGCGCAGA AGTGGTCCTG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4010       4020       4030       4040       4050        
LOCUS        CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG GGAAGCTAGA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4060       4070       4080       4090       4100        
LOCUS        GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC AACGTTGTTG CCATTGCTAC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4110       4120       4130       4140       4150        
LOCUS        AGGCATCGTG GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4160       4170       4180       4190       4200        
LOCUS        GTTCCCAACG ATCAAGGCGA GTTACATGAT CCCCCATGTT GTGCAAAAAA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4210       4220       4230       4240       4250        
LOCUS        GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA AGTTGGCCGC  
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             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4260       4270       4280       4290       4300        
LOCUS        AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4310       4320       4330       4340       4350        
LOCUS        TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4360       4370       4380       4390       4400        
LOCUS        TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4410       4420       4430       4440       4450        
LOCUS        ACGGGATAAT ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4460       4470       4480       4490       4500        
LOCUS        GAAAACGTTC TTCGGGGCGA AAACTCTCAA GGATCTTACC GCTGTTGAGA  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4510       4520       4530       4540       4550        
LOCUS        TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT CAGCATCTTT  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4560       4570       4580       4590       4600        
LOCUS        TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4610       4620       4630       4640       4650        
LOCUS        CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4660       4670       4680       4690       4700        
LOCUS        CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG  

 

 

             ....|....| ....|....| ....|....| ....|....| ....|....|  

                     4710       4720       4730       4740       4750        
LOCUS        ATACATATTT GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA  

 

 

             ....|....| ....|....| . 

                     4760       4770    
LOCUS        CATTTCCCCG AAAAGTGCCA C 
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Appendix E: pIGF-pyrG A. niger vector map 
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Abbreviations 

AA     - Auxiliary Activity 

BDC     - Biorenewable Development Centre 

BLAST    - Basic Local Alignment Search Tool 

BNR2     - Bacterial Neuramidase 2 

CAZy     - Carbohydrate Active Enzyme 

CAZymes    - Carbohydrate-active enzymes 

CBM     - Carbohydrate binding module 

CD     - Conserve Domain 

CDS    - Coding DNA sequence 

CER     - Carbon dioxide evolution rate 

CEs     - Carbohydrate esterases 

CFU     - Colony forming units 

CI     - Crystallinity index 

CO2     - Carbon dioxide 

cm    - Centimeter 

CPM     - Count per Million 

DEAE     - Diethyl-Aminoethyl 

DGE     - Differential Gene Expression 

DNA     - deoxyribonucleic acid 

ds cDNA    - double-stranded cDNA 

DTE     - dithioerythrietol 

DTT     - dithiothreitol 

emPAI     - exponentially modified Protein Abundance Index 

EtBr     - ethidium bromide 

FDR     - false discovery rate 

FID     - Flame Ionization Detector 

FN3       Fibronectin III 

GalNAc     - N-acetylglucosamine 
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GFP    - glutathione fluorescence protein 

GHG     - greenhouse gases 

GHs     - glycoside hydrolases 

GRAVY     - Grand Average of Hydropathy 

GSDH     - Glucose sorbone dehydrogenase 

GSPs     - Gene-Specific Primers 

GST     - Glutathione-S-transferase 

HMDS     - Hexamethyldisilazane 

h    - hour  

IEA     - International Energy Agency 

InDA-C     - Insert Dependent Adaptor Cleavage 

inDel     - insertion and deletion 

IPCC     - Intergovernmental Panel on Climate Change 

ITC     - inverse transition cycling 

iTRAQ     - isobaric tag 

LB     - Luria-Bertani 

LFQ     - label-free quantification 

logFC     - log-fold change 

LPMOs     - lytic polysaccharide monooxygenases 

µm    - micrometer 

min    - minute(s) 

MBP     - maltose-binding protein 

MODIS     - Moderate Resolution Imaging Spectroradiometer 

mRNA     - messenger RNA 

MS     - mass spectrometry 

NASA     - National America Space Association 

NB     - Nutrient broth 

NGS     - next-generation sequencing 

nr     - non-redundant 

OD     - optical density 
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PA14     - protective antigen 

PASC     - Phosphoric acid swollen cellulose 

PCA     - Principle Component Analysis 

PCR     - Polymerase Chain Reaction 

PDB     - Protein Data Bank 

PGM     - Personal Genomic Machine 

pHBAH     - p-hydrobenzoic acid 

PKD     - Polycystic Kidney Disease 

PL     - polysaccharide lyases 

PPKM     - Pileup Per Kilobase per Millions of reads 

PQQ     - pyrroloquinoline-quinone 

RefSeq     - reference sequence 

RNA-seq    - RNA sequencing 

rRNA     - ribosomal RNA 

RTS     - Room Temperature Stable 

s    - seconds 

SDS-PAGE    - Sodium dodecyl sulfate polyacrylamide gel 

SEM     - Scanning electron microscopy 

SLPs     - surface layer proteins 

SOC     - Super Optimal broth with Catabolite repression 

SP     - secretory pathway 

sRNAs    - small RNAs 

TBE     - Tris/Borate/EDTA 

TEMED     - tetramethylethylenediamine 

TFA     - trifluoracetic acid 

TMHMM    - Transmembrane Helices Hidden Markov Model 

UniProt KB    - Universal Protein Resource 
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