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9. Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. Proof Complexity of Resolution-Based

QBF Calculi. In Proc. Symposium on Theoretical Aspects of Computer Science (STACS’15),

pages 76–89. LIPIcs, 2015.
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Abstract
Quantified Boolean Formulas (QBF) and their proof complexity are not as well understood as

propositional formulas, yet remain an area of interest due to their relation to QBF solving. Proof

systems for QBF provide a theoretical underpinning for the performance of these solvers. We define

a novel calculus IR-calc, which enables unification of the principal existing resolution-based QBF

calculi and applies to the more powerful Dependency QBF (DQBF).

We completely reveal the relative power of important QBF resolution systems, settling in

particular the relationship between the two different types of resolution-based QBF calculi. The

most challenging part of this comparison is to exhibit hard formulas that underlie the exponential

separations of the proof systems. In contrast to classical proof complexity we are currently short

of lower bound techniques for QBF proof systems. To this end we exhibit a new proof technique

for showing lower bounds in QBF proof systems based on strategy extraction. We also find that

the classical lower bound techniques of the prover-delayer game and feasible interpolation can be

lifted to a QBF setting and provide new lower bounds.

We investigate more powerful proof systems such as extended resolution and Frege systems. We

define and investigate new QBF proof systems that mix propositional rules with a reduction rule,

we find the strategy extraction technique also works and directly lifts lower bounds from circuit

complexity. Such a direct transfer from circuit to proof complexity lower bounds has often been

postulated, but had not been formally established for propositional proof systems prior to this work.

This leads to strong lower bounds for restricted versions of QBF Frege, in particular an exponen-

tial lower bound for QBF Frege systems operating with AC0[p] circuits. In contrast, any non-trivial

lower bound for propositional AC0[p]-Frege constitutes a major open problem.
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1. INTRODUCTION

Chapter 1

Introduction
In this chapter we will introduce the general background and give an overview of our contributions,

detailing the relevant chapters.

1.1 Background

Proof Complexity. Computational complexity is an important field in both theoretical and practical

computer science. The most studied topic is understanding the running time of algorithms. Proof

complexity is structured in a similar fashion. However, instead of algorithms, the focus is on proofs

and, instead of time, the main measure is proof size. Proof complexity is relevant to a wide range of

logics, but typically the focus is on propositional logic.

An area in logic that is linked to proof complexity is satisfiability solving (SAT). The SAT

problem is as follows: a statement with variables is written in purely propositional formal logic,

and it needs to be decided whether there is any consistent 0/1 assignment to the variables. SAT is

inextricably linked to non-deterministic polynomial-time decision problems (NP). The SAT problem

is the canonical NP-complete problem [42] and thus SAT is linked to long-standing complexity open

problems such as P vs NP (deterministic vs non-deterministic polynomial-time). The programs

that decide whether an instance of the SAT problem is satisfiable or not are called SAT solvers.

The idea is that since SAT is NP-hard, other NP decision problems can be feasibly transformed

into SAT problems. Therefore it makes sense from a practical point of view to focus specifically

on making fast and memory efficient SAT solvers. Modern SAT solvers such as MiniSat [51],

MapleCOMSPS [87] and Riss [89] compete on huge instances of SAT, with up to millions of

variables.

Resolution is a remarkably simple inference tool based on case analysis. It forms the main rule

of the resolution proof system, which is the best understood proof system. The motivation behind

so many investigations into resolution is that proof size in resolution corresponds to running time

for the most common type of SAT solvers.

From a proof complexity perspective, resolution is considered as a weak system, witnessed

by the wealth of proof size lower bounds (cf. [108] for a survey). Lower bounds in stronger proof

systems have been a part of ongoing investigations for many decades and bring about some of the

most important open problems in proof complexity.

Another important proof complexity connection is to complexity class problems. The famous

class NP, has an alternative natural definition in proof complexity [45]. Open complexity problems

such as NP vs coNP and NP vs PSPACE can be seen as natural proof complexity problems.

Finally, proof complexity is linked to ‘bounded arithmetic’. In complexity theory, first order

theories of arithmetic correspond to the levels of the polynomial hierarchy of complexity classes. A

1
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neat connection can be made with proof complexity. Propositional proofs can be translated to first

order formulas, where provability in bounded arithmetic translates to short size proofs. (see [15] for

a survey).

Quantified Boolean Formulas. There are strong links between formal logic and complexity. The

fact that SAT is NP-complete, means that NP as a whole can be studied just by investigating SAT.

Quantified Boolean Formulas (QBF), which augment propositional logic with Boolean quantifiers,

are important because they also have a strong relationship with another complexity class. Just as

propositional SAT is considered as the canonical NP-complete problem, QBF truth or falsity is

considered as the canonical PSPACE-complete decision problem, where PSPACE is the class of

all languages decidable in a polynomial amount of required memory. Furthermore, restrictions on

the quantifiers in QBF give rise to languages that are complete for the appropriate classes in the

polynomial hierarchy.

Consequently, the above properties make QBF very important in complexity theory. This also

gives it practical importance. Due to its PSPACE completeness, QBF can express formulas more

succinctly than SAT and thus applies to further fields such as formal verification or planning [14,104].

These advantages broaden the amount the computational tasks that we may wish to rewrite as QBFs

compared to that of propositional logic. We wish to advance understanding of algorithms that find

solutions to QBF problems by better understanding QBF proofs. This is similar to the approach in

propositional proof complexity to propositional satisfiability (SAT).

SAT solving has been found to be tremendously successful [91], despite the NP-hardness of the

underlying problem. QBF is seen as one of many possible “next steps” after SAT. Hence, due to the

successes of SAT solving, QBF has seen an increase in interest over the past 15 years. Currently,

many QBF solvers such as DepQBF [88], RAReQS [72], GhostQ [78], and CAQE [101], to name

but a few, compete on thousands of QBF instances. However, QBF solvers are still significantly

behind in terms of the performance compared to SAT solvers. QBFs introduce the additional

difficulty of having to deal with quantification, as well as solver-dependent differences in how. Two

separate paradigms exists in QBF solving. Firstly, QBF solvers can take the state-of-the-art Conflict

Driven Clause Learning (CDCL) technique from SAT solving, and use a ‘reduction’ rule to deal

with quantification. On the other hand, QBF solvers can take a different approach where quantifier

expansion can remove the quantification in order to use SAT-based reasoning on the formulas.

Prior to this thesis, a handful of proof systems existed for QBF. Much like how runs of existing

SAT solvers correspond to lengths of resolution proofs, modern QBF solvers correspond to QBF

resolution systems. CDCL style solvers, such as DepQBF, correspond to the QBF resolution system

Q-resolution (Q-Res) [77] and its variants. However for expansion based solvers, such as RAReQS,

a correspondence to Q-Res was not found. A basic expansion based proof system ∀Exp+Res
was developed for this reason [74]. In comparison to proposition resolution, these QBF resolution

systems were not well understood. Firstly, the relationship between CDCL style and expansion

proof systems were not properly understood. Secondly, QBF should present an additional source
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of difficulty, however there was a lack of QBF examples giving size lower bounds in proofs.

Propositional resolution has an important advantage here, it has a wealth of lower bound techniques.

In QBF there were only a few results [11, 36, 74, 116] based on ad-hoc methods, rather than general

techniques.

1.2 Contributions

We will highlight our main theorems and contributions in this section.

QBF Resolution. The first contribution is a better understanding of the relationship between CDCL

and expansion-based QBF solving. We do this through the framework of proof complexity. We

design a new system– IR-calc, that incorporates both CDCL and expansion-based proofs. IR-calc
is actually an improvement on an earlier system – ∀Exp+Res. The key improvement is that partial

expansion is used instead of full expansion. Since IR-calc uses a very simple improvement to

∀Exp+Res, it remains machine amenable. The hope is, that, by having a system like IR-calc that

unifies CDCL and expansion, solvers that operate in a similar way to IR-calc can be motivated.

Ideally, these would have the advantages of both types of solver.

Furthermore, towards this task we show that CDCL in QBF (QCDCL) and expansion have

mutual advantages. Indeed, there are formulas that have short proofs in expansion based proof

systems but not in QCDCL proofs and vice versa.

While CDCL and expansion is an insightful dichotomy to focus on, it is not the only source

of variation in QBF calculi. Q-Res has a number of improvements such as QU-Res [116], LD-
Q-Res [10, 119] and LQU+-Res [11]. These mainly deal with partially lifting some of the very

tight restrictions in Q-Res. We show that an improved IR-calc known as IRM-calc can capture the

additional power of one of these– namely LD-Q-Res.

We can summarize the calculi and their strengths in the Hasse diagram in Figure 1. The calculi

are arranged by their power to simulate other systems, marked in Figure 1 by a line. This means

that proofs can be transferred to the higher proof system (vertically higher in Figure 1) without a

super-polynomial blow-up in size. We actually find that these are the entire simulations due to the

existence of separations where we find a family of formulas with polynomial size proofs in one

system but only super-polynomial size proof in another.

These calculi also form the basis of an investigation into the more expressive logic of De-

pendency Quantified Boolean Formulas (DQBF) where the ordering of the quantifiers is made

explicit. QBFs form a special case of these, namely when the ordering is linear. The results of these

investigations find that most of these calculi are either incomplete or unsound in the DQBF setting.

However, our new calculus IR-calc is both sound and complete in DQBF due to its motivation from

first order logic.

DQBF is connected back again to regular QBF solving and proof systems. This manifests

as dependency schemes, which detect the dependencies in the linear order that are spurious, i.e.

whether the dependency can be removed and preserve soundness. This relates to a few of the calculi
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Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving
CDCL solving

new proof system

Fig. 1. Relative strength of QBF resolution calculi

that we have not mentioned here such as Q(D)-Resolution [111] which takes into a consideration

dependency scheme D. The QRAT proof system from [70] also appears to use a dependency

scheme in its reduction rule. These are omitted from the comparison because we believe dependency

schemes are an orthogonal approach worthy of its own separate full investigation.

Lower Bound Techniques. Lower bounds are important in proof complexity. They can be used

to highlight the relative strengths of the proof systems. There is also a vital practical importance

to solvers, especially where calculi are directly related. We typically care about super-polynomial

lower bounds, where a theorem cannot be proven in a proof that is bounded by some polynomial.

Since propositional logic is a sub-case of QBF, propositional lower bounds have an effect on

QBF lower bounds, indeed lower bounds in resolution count as lower bounds in QBF resolution

systems. This do not really illuminate on difficulty in QBF and do not provide separations between

the QBF resolution systems.

As discussed earlier, propositional resolution has many lower bound techniques. We find that

some of these classical techniques work in a QBF setting. The first of these is a two player game

between a Prover and a Delayer. This was adapted from a working technique for propositional

resolution [27–29]. A false QBF is chosen and the Delayer tries to score points while the Prover

tries to refute the QBF and end the game. The logarithm of the score corresponds to the proof size

in tree-like Q-Res and QU-Res.

Theorem 20. If QBF φ has a tree-like QU-Resolution proof of size at most s, then there exists a

Prover strategy such that any Delayer scores at most lgd s2e points.

We also show that feasible interpolation [80], which is one of the few examples of proof lower

bound techniques that uses circuit complexity, also works for certain classes of QBFs. Feasible

interpolation looks at implication formulas and allows interpolating circuits to be extracted from

the proofs in polynomial time. Hence any implication with only exponential-size interpolating

circuits must have exponential-size proofs. Feasible interpolation in a QBF setting differs from the

propositional setting because quantification allows more complicated formulas to be used as lower

bounds.
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Theorem 30. All QBF resolution calculi in Figure 1 have the feasible interpolation property.

However, not every technique can be lifted from propositional logic. An example would be the

most important technique from propositional resolution which is the size-width relationship [13].

This takes a second measure, the width, which is the maximum size of a proof line and shows

that the size grows exponentially in that measure. While size-width technique does hold in some

QBF tree-like calculi, this relation is refuted from holding in the main QBF systems, even using a

improved notion of existential width [22].

Theorem 42 (Beyersdorff, Chew, Mahajan, Shukla [22]). There is a family of false 3-PCNFs

with linear size Q-resolution proofs and linear width.

In addition to these lifted techniques, we introduce a new technique only available in QBF–

strategy extraction. This technique is rather remarkable and involves using lower bounds from

circuit complexity. In particular we use the class AC0 which is the class of problems expressible in

polynomial size circuits with bounded depth. We show that families of formulas can be generated

from hard functions for AC0.

Theorem 8. Let fn be a family of functions not in AC0, then there are formulas Q-fn that do not

have polynomial size proofs in QU-Res.

A link between circuit and proof complexity for propositional logic is conjectured, yet there are

very few examples of it materialising, feasible interpolation being another rare exception. In fact, we

see a connection between strategy extraction and feasible interpolation– with feasible interpolation

being akin to special case of strategy extraction.

QBF Lower Bounds. With the lower bound techniques mentioned above we can generate important

lower bounds, particularly separating formulas that have short proofs in one system but not in

another. We work towards the goal on completely separating the calculi in Figure 1. The first step is

to separate QCDCL and expansion-based solving.

Resolution is known to be directly related to the CDCL algorithm, which means that any

(super-polynomial) lower bound for resolution is also a lower bound for the CDCL algorithm. This

is similar in the QBF setting. Lower bounds for Q-Res roughly correspond to lower bounds in

QCDCL. On the expansion side of things, lower bounds for ∀Exp+Res correspond to lower bounds

in expansion solving.

We show that without the hybridisation introduced in IR-calc, the difference between QCDCL

and expansion solvers really exists via lower bounds. We find a family of QBF problems– QPARITY

that were hard for all QCDCL proof systems but could be proved easy in ∀Exp+Res (the converse

was already known [73]). The family of formulas essentially code that the parity function on a

subset of the variables is both true and not true– an obvious contradiction. However, the strategy

extraction technique shows that all Q-Res proofs must have size similar to the parity function

in bounded depth circuits, and hence using the parity lower bound result from Håstad [67] (cf.

Chapter 5, Theorem 7), all proofs must be exponential in size.
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Theorem 8. Any QU-Res refutation of QPARITY is of exponential size.

We continue to separate the known resolution systems and show every possible separation. To

do this we use the example from Kleine Büning et. al [77] and show a new lower bound for IR-calc.

This does not involve any general lower bound technique, but does use a counting on assignments

to universal variables.

Theorem 16. All proofs of KBKF in IR-calc have exponential size.

We fine-tune our hard examples to show separations for the advanced versions of the calculi. Along

with the strategy extraction lower bounds and previously known lower bounds we manage to

separate all the QBF resolution systems in Figure 1.

We can use our other techniques for more bounds. Our game technique from Theorem 20 can

be used to show a new lower bound for tree-like QU-Res. Feasible interpolation can show a new

lower bound for all the QBF resolution systems. This result uses the unconditional hardness of the

clique problem in monotone circuits.

Theorem 33. The CLIQUE-CoCLIQUE QBFs require exponential-size proofs in all the QBF reso-

lution proof systems of Figure 1.

Beyond QBF Resolution. While the initial focus of this work was on resolution and its relationship

to solving, proof complexity is much broader domain. Our extended goals are to see how our research

extrapolates outside of the typical settings, which are usually related to solving, and how it works in

wider proof complexity.

Resolution is actually considered as a weak proof system because it has known lower bounds. An

additional rule, known as extension, allows new extension variables to abbreviate more complicated

boolean functions. This gives phenomenal improvement, as the system becomes equivalent to one

of the most powerful propositional systems– Extended Frege (eFrege). In Tseitin transformations,

extension variables are used to encode arbitrary propositional formulas in Conjunctive Normal Form.

More generally, allowing the extension rule in proofs is known to shorten proof size drastically

for many examples. This makes extension variables also very interesting in the context of solving,

and indeed modern proof checking formats such as the ones from [69, 70] incorporate the use of

extension variables.

Extension can also work in QBF resolution [75], although how extension variables have to be

placed in the quantification order is not immediate. We use lower bounds to help shed some light on

this issue. We find that restrictively placing the extension variables in the innermost quantification

level, as in the weaker system, leads to lower bounds. This confirms an experimental observation by

Jussila et. al. [75] with a rigorous theoretical argument.

Theorem 52. Weak extended Q-resolution does not simulate extended Q-resolution.

Another way to go beyond resolution is to look at other styles of proof system. An example

would be the cutting planes proof system, which incorporates ideas from the NP-hard problem
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of integer programming. Instead of working with propositional formulas, it works with sets of

linear inequalities. The cutting planes system can be adapted for QBF refutation, by using the same

reduction rule as in the QBF resolution system– Q-Res.

Frege Systems. We find the same principle of adding the reduction rule to a proof system to be

generally applicable. The central proof systems under consideration here are Frege systems. Frege

systems are textbook style systems that operate on propositional lines with sound deduction rules.

Each Frege system defines its own axioms and rules, but all Frege systems are equivalent under

simulation. Frege can be augmented with extension variables to give the calculus eFrege. Frege and

eFrege are very powerful systems and finding lower bounds in these systems have been ongoing

problems for decades.

We introduce a new family of proof systems for QBF that utilise the rules of Frege and eFrege

systems– Frege +∀red and eFrege +∀red. These systems add the ∀-Red rule and we show that

they are sound and refutationally complete for QBF. A remarkable aspect of these systems is that

when adding the reduction rule, the strategy extraction theorem becomes applicable. The theorem

introduces a direct connection between circuit complexity and QBF Frege systems. Hence, circuit

size lower bounds can be turned into lower bounds for QBF Frege systems. In propositional proof

complexity such a connection has been conjectured but is not yet known.

Theorem 63 (Strategy Extraction). Given a false QBF Qφ and a refutation π of Qφ in eFrege

+∀red, it is possible to extract in linear time (w.r.t. |π|) a collection of polynomial size circuits D

computing a winning strategy on the universal variables of φ.

Furthermore, if we restrict the circuit complexity of the lines of Frege+∀red we extract circuits

of exactly of that complexity. This means that we can utilise the full range of conditional and

unconditional lower bounds in circuit complexity and find lower bounds and separations in QBF

proof systems. This also allows us to slightly extend the picture of proof systems with known

lower bounds further than when projected down to the propositional case. Bounded depth Frege

(AC0-Frege) systems do have lower bounds, however bounded depth Frege systems with mod p

gates (AC0[p]-Frege) do not. Since the strategy extraction theorem again holds for Frege systems,

this allows us find some very strong lower bounds for these systems which are still open in the

propositional case.

Corollary 13. There are exponential lower bounds and separations for the QBF proof system

AC0[p]-Frege+∀red for all primes p;

AC0-Frege can be tuned to individual depth bounds for d which is written as AC0
d-Frege. In

propositional logic there are no known separating formulas with constant depth. However we can

show this in QBF.

Corollary 21. There is an exponential separation of the hierarchy of constant-depth systems

AC0
d-Frege+∀red by formulas of depth independent of d.
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The circuit class TC0 adds threshold gates to AC0 circuits. We show a separation for the

corresponding Frege systems in QBF.

Corollary 19. There is an exponential separation of AC0[p]-Frege+∀red from TC0-Frege+∀red.

Although it would appear that the reduction rule creates an additional source of hardness, it

is sufficient to create a very strong calculus. For eFrege+∀red it was later shown [32] that lower

bounds could only come from eFrege lower bounds or strategy extraction lower bounds. In other

words lower bounds could not be found unless a breakthrough is made in propositional proof

complexity or a breakthrough is made in circuit complexity. The other direction also is true and we

provide that in this thesis.

Theorem 69. eFrege+∀red is not polynomially bounded if and only if there are PSPACE-functions

that do not have non-uniform polynomially bounded circuits or eFrege is not polynomially bounded.

A similar result works for Frege+∀red. The technique in [32] was to use a formalisation of our

strategy extraction theorem within the Frege calculus itself. This has larger implications for calculi

beyond Frege+∀red. Any QBF proof system simulating Frege+∀red (such as the proof system G

from [81]) would have the same difficulty in finding lower bounds.

1.3 Organisation

Part I contains background work that supplements the main content presented in later chapters.

Chapter 2 covers the preliminaries in propositional logic, SAT solving and proof complexity. In

Chapter 3 we look at the logic of Quantified Boolean Formulas as well as its own solving and

proof complexity. These sections also highlight important literature and the results therein. Further

discussions on related literature can be found in relevant chapters where appropriate.

The remaining chapters provide the main content of this thesis. Part II is titled “QBF Resolution”

and concerns itself with the modern QBF resolution systems and their improvements. Part III is

“QBF Proof Systems Beyond Resolution” and looks at stronger systems and their QBF counterparts.

In Chapter 4 we present a new calculus, IR-calc, which unifies concepts from both CDCL and

expansion-based solving in QBF. The calculus is shown to naturally simulate the base proof systems

from each solving technique. A stronger calculus IRM-calc is also shown to simulate more. The

simulations show the completeness of these systems. We show the soundness by strategy extraction–

that the witnesses of the universal variables that refute the formula can be calculated from the proof

in polynomial time.

In Chapters 5 and 6 we generate new lower bounds for QBF calculi. In fact, using these bounds

we show all possible separations for the resolution systems of QBF. Both new and old techniques are

used to generate and confirm the lower bounds. The main new technique is the strategy extraction

lower bound technique in Chapter 5. In this we show a new lower bound for QCDCL proof systems

using lower bounds from circuit complexity, and indeed we show that expansion based calculi are
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exponentially separated from all QCDCL systems. However, this does not give us all the lower

bounds, so in Chapter 6 we use the most well-known QBF lower bounds from [77].

In Chapters 7 through 9 we look at the standard techniques from propositional logic in the wider

QBF setting. Specifically in Chapter 7 we adapt the Prover-Delayer game from [27–29] for tree-like

QBF resolution systems. We use this to show some alternative proofs for lower bounds and show a

new lower bound. In Chapter 8 we adapt the feasible interpolation technique from [80,99], that uses

circuit lower bounds to show proof size lower bounds. In the QBF setting, we remark that there is a

similarity between this technique and the strategy extraction technique, namely they both use lower

bounds from circuit complexity. In the end of this section we show a connection between the two

techniques: for every feasible interpolation problem we can create a strategy extraction example

with the same proof size lower bounds. Not every technique can be adapted to QBF. In Chapter 9

we present from [22] that the size-width relation from Ben-Sasson and Widgerson [13] fails, unless

we use tree-like calculi.

In Chapter 10 we go beyond the QBF setting and study the more expressive Dependency QBF

(DQBF) language. The focus is still on QBF proof systems as we investigate all the QBF resolution

systems applied in a natural way to the DQBF setting. We find that only one of these proof systems

suffices in the DQBF setting; the IR-calc introduced in Section 4.

In Chapter 11 the lower bound from strategy extraction is used again to separate two improve-

ments on Q-resolution, each of which allows extension variables under different quantifier level

conditions. One system places all extension variables in the innermost quantification block, whereas

the stronger system allows extension variables to be placed in any block as long as they are right of

all variables they are defined on. Extension variables are especially important in proof complexity

because while propositional resolution is a fairly weak proof system with many known lower bounds,

extended resolution has no known lower bound and simulates even the most powerful systems.

In Chapter 12, we look at a slightly stronger system than resolution, namely the cutting planes

proof system. We find that the cutting planes proof system is both sound and complete for QBF

with one additional rule. The strategy extraction theorem and feasible interpolation result also holds

for this system.

The most important systems above resolution are arguably the Frege systems. In propositional

logic they have no known lower bound in general. We adapt a version of Frege called Frege+∀red

to work for QBFs and find a number of interesting properties that hold in it. The most important

result here is that we show the strategy extraction theorem again holds for Frege systems, and this

used to show lower bounds for important fragments of the system.
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Chapter 2

Preliminaries
We begin our investigation into QBF proof complexity by first looking at propositional proof

complexity. QBFs are relatively simple modifications of propositional formulas and there are

important concepts in propositional logic that apply also to QBF. In particular, many of the proof

systems in QBF take inspiration from propositional systems.

In complexity theory, complexity classes group problems according to their inherent difficulty.

There is a three-way connection between solving, proof complexity and complexity classes, which

we will discuss.

In this chapter we cover the main preliminaries for proof complexity. In Section 2.1 we introduce

the propositional logic notation. SAT solving and proof complexity are covered by Sections 2.2 and

2.3, respectively. In Section 2.5 we cover some important relations between logic and complexity.

2.1 Propositional Logic

Boolean Operations. The foundation of Boolean algebra is the set of Boolean constants {0, 1},
namely false and true respectively. From here, we can then start considering the common connectives

on these constants. The first connective we introduce is the binary connective→. This is the logical

implication symbol and p→ q means that if p is true q is also true. Formally this is given below.

p→ q =

0 p = 1, q = 0

1 otherwise

We define the connectives ¬,∨,∧ to mean negation, disjunction and conjunction respectively.

Negation considers when a proposition is not true, disjunction is a logical ‘or’ and conjunction is

a logical ‘and’. Formally they can be defined as below by using→, this allows us to inductively

describe propositional formulas using only→.

¬p = p→ 0

p ∨ q = (¬p)→ q

p ∧ q = ¬((¬p) ∨ (¬q))

p⊕ q = ((¬p) ∨ (¬q)) ∧ ((p) ∨ (q))

While it is useful in some instances to consider 0, 1,→ as the only operations and all others as

derived operations, in some instances due to the commutative nature of ∨ and ∧ we sometimes only

11
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consider 0, 1,∧,∨,¬ as the only connectives and exclude→. Note that (¬p)∨ q = p→ q. The last

element to establish the entire set of propositional formulas– is a set of countably infinitely many

variables {x1, x2, . . . }.

Definition 1. A formula is defined inductively. 0 is a formula. 1 is a formula. For every i ∈ N, xi is

a formula when xi is a propositional variable. If p and q are formulas then, (p→ q) is a formula.

The connectives follow an order of operations ¬,∧,∨,→,⊕. So a formula ¬x ∨ y ∧ ¬z is

equivalent to (¬x) ∨ (y ∧ (¬z)).

We introduce the notation A[x/y] indicating that in the formula A every occurrence of formula

y is replaced by formula x. The notation var(A) denotes the set of propositional variables that

are present in formula A, this can be defined inductively with the rules var(xi) = {xi}, var(0) =

var(1) = ∅, var(p→ q) = var(p) ∪ var(q).

An assignment to a propositional formula φ is a function α : var(φ) → {0, 1}. A satisfying

assignment is any assignment α to φ such that when every variable x in φ is replaced by α(x), φ

evaluates to 1. Equivalently, a model M is a subset of var(φ) such that the following assignment is

a satisfying assignment.

α(x) =

1 if x ∈M

0 if x /∈M

Conjunctive Normal Form. Since associativity holds for ∧ and ∨ we can consider unbounded

versions of these with arbitrary arity;
∧

and
∨

. Note that in the special case where we have the

empty disjunction we consider the formula to be equivalent to 0 and symmetrically where we have

the empty conjunction we consider the formula to be equivalent to 1.

Finally this gives us a way (although by no means a unique way) to express every propositional

formula by the commonly used conjunctive normal form (CNF) or disjunctive normal form (DNF).

We will see this below.

Literals are special kinds of formulas. We can represent all literals as li where l2i = xi and

l2i+1 = (¬xi) when xi is a propositional variable. In other words a literal is a propositional variable

or a negation of a propositional variable. The literals xi, ¬xi are complimentary to each other, so

¬¬xi is simplified to xi accordingly. In practice we use other letters to denote literals and variables.

A clause is a disjunction of literals. A term is a conjunction of literals. Because disjunctions are

commutative and idempotent, we can treat clauses as sets of literals, likewise with terms. A CNF is

a conjunction of clauses. A DNF is a disjunction of terms. Every formula is equivalent to a DNF

and to a CNF.

Circuits. We differentiate between a formula and circuit. A formula can be considered as a tree

with variable (or constant) leaves and connective nodes. We generalise this concept to a circuit

where we allow it to be a directed acyclic graph. Each node is a gate connected to an unbounded

number of input nodes.

12
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2.2 The SAT Problem

The SAT problem is the language of all propositional formulas Φ that have at least one satisfying

assignment; dually it can be seen as the set of all formulas that are not self-contradictory.

Given an assignment α on formula Φ, it can be checked in polynomial time (in the size of Φ)

whether α is a satisfying assignment. A description of any α can be expressed in polynomial size of

Φ, hence it provides a polynomial-size witness that can be checked in polynomial-time. Therefore

this is exactly what is needed to be in the class NP. The problem is that there may be exponentially

many assignments to var(Φ) and checking them all exhaustively would not be efficient.

The Cook-Levin Theorem [42] states that SAT is in fact NP-hard, which means that all other

NP problems are reducible to SAT. Since SAT is in NP, this means that SAT is NP-complete.

This is hugely important to the complexity classes and gives a canonical NP-complete problem.

This also has practical considerations, suppose we have a decision problem L in NP. By Cook’s

Theorem we know we can reduces instances of the L problem to instances of the SAT problem and

then run the best SAT solver to decide this. Satisfiability or more specifically unsatisfiability, has a

clear connection to semantic implication: p1, . . . pn � q if and only if p1, . . . pn,¬q is unsatisfiable.

Due to its NP completeness, SAT solvers are hugely competitive and consequently SAT solvers

can solve industrial instances with millions of variables.

The DPLL Algorithm. The base algorithm for SAT-solving is the DPLL algorithm [48] named

after Davis, Putnam, Logeman and Loveland. It is remarkably simple but forms the basis of even

modern SAT-solvers. The DPLL algorithm is an enhancement of the original DLL algorithm [49]

(cf. Algorithm 1).

As follows: the input is a CNF, which is presented as a set of clauses (with clauses themselves

being sets of literals), then branching occurs on the variable values until either the branch yields a

satisfying assignment of the formula, or the assignment contradicts the formula.

The DPLL algorithm (cf. Algorithm 2) improves on DLL by adding unit propagation and pure-

literal elimination. Unit propagation restricts assignments to those that satisfy unit clauses. Pure

literal elimination checks for variables that only occur as one polarity and removes all clauses that

contain them. These two concepts are applied iteratively each time after each branching procedure

until fix-point.

CDCL Solving. The DLL and DPLL algorithms use chronological backtracking, that is it back-

tracks to the previous variable only once they have searched both values of the current variable.

One way to avoid this is as follows: wherever DPLL reaches a contradiction, observe which

of the assigned variables resulted in the contradiction. The set of literals that correspond to these

assigned variables is known as the conflict set [50]. A non-chronological backtracking algorithm

may instead backtrack to the last decision variable in the conflict set.

Another way the same idea can be implemented is through Conflict Driven Clause Learning

(CDCL). For example, whenever we generate a conflict set P we observe that {¬l | l ∈ P} is an

13
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Algorithm 1 The DLL algorithm
function DLL(Φ)

if Φ = ∅ then
return 1

else if ∅ ∈ Φ then
return 0

else
Pick a as any variable that appears in Φ.
Φa=0 ← {D|D = C \ {a}, C ∈ Φ,¬a /∈ C}
Φa=1 ← {D|D = C \ {¬a}, C ∈ Φ, a /∈ C}
if DLL(Φa=0) = 1 then

return 1
else if DLL(Φa=1) = 1 then

return 1
else

return 0

Algorithm 2 The DPLL algorithm
function DPLL(Φ)

while Φ contains a unit clause {l} do
Φ← (Φ \ {l})|l=1

for every literal l that is pure in Φ do
Φ← Φl=1

if Φ = ∅ then
return 1

else if ∅ ∈ Φ then
return 0

else
Pick a as any variable that appears in Φ.
Φa=0 ← {D|D = C \ {a}, C ∈ Φ,¬a /∈ C}
Φa=1 ← {D|D = C \ {¬a}, C ∈ Φ, a /∈ C}
if DPLL(Φa=0) = 1 then

return 1
else if DPLL(Φa=1) = 1 then

return 1
else

return 0

14
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implicant of the original clauses. Once we backtrack we then also add this clause as if it were one

of the premises. This is called clause learning and has the advantage that it involves both search and

inference.

Practical Techniques. Modern propositional SAT solvers typically use CDCL solving. However

numerous other improvements are commonly put inside the solver. For example, data structures

make a huge practical difference, so it is usually inefficient to list every literal and its assignment in

each clause. Efficiency can be obtained by lazy data structures, which preserve the soundness of

the algorithm but whose data structures do not contain accurate information. Examples include the

Head and Tail data structure [118] and the Watched Literal data structure [92].

Branching in CDCL can also be guided by heuristics and there are many different examples

of such [90], including those that work with lazy data structures [92]. Variable selection can

also include restarts, and random restarts have been effective in countering the possibility of an

exponential time implementation [63]. Finally, while clause learning can help to improve speed,

unrestricted clause learning will eventually use up increasing amounts of memory, which in practice

is limited. In addition, this can also cause speed issues. The solution involves deletion of unnecessary

clauses.

2.3 Proofs

The concept of proof is a central idea in mathematics and logic. A proof is required to be correct,

in which case it is formally called sound. Proofs should also be easy to check, we do not want

exhaustive details that should be in the proof to be left to the reader.

In order to analyse proofs formally, and eventually from a complexity point of view, we need

to fix the frameworks that proofs can exist in. To do this proof systems are defined. Proof systems

dictate which strings constitute a proof of an element of a particular language (i.e. propositional

tautologies). Proof systems can be a line-based derivation or follow a more static structure.

As well as being sound and allowing proofs to be easily checked, a proof system needs to be

complete for a particular language by ensuring that every theorem has a proof. Typically there

are two kinds of completeness- firstly, implicational completeness requires that any semantic

implication of a set of statements Γ can be derived when we take Γ as a premise. Secondly,

refutational completeness only requires that the contradiction symbol (0 or sometimes the empty

clause) can be reached from an unsatisfiable set of formulas. A proof system that is implicationallly

complete is also refutationally complete. The converse is not always true, but refutational systems

are usually sufficient in practice for determining if an implication holds. For example, in classical

logic if Γ implies a then Γ ∪ {¬a} is contradictory.

Formally, a proof system [45] for a language L over alphabet Γ is a polynomial-time computable

partial function f : Γ? ⇁ Γ? with rng(f) = L.

The partial function f actually gives a proof checking function. Soundness is given by rng(f) ⊆
L and completeness is given by rng(f) ⊇ L. The polynomial-time computability is an indication of
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feasibility, relying on the complexity notion that if something is in polynomial time it is considered

feasible. Individual authors may wish to modify the definition of a proof system, particularly

changing the condition of it being polynomial time, but these variations are ignored in this thesis

and we will always require proofs to be checked in polynomial time.

Proof Complexity. From the definition of a proof system, we can start defining proof size. For a

proof system f for language L and string x ∈ L we define sf (x) = min(|w| : f(w) = x). Thus

the partial function sf tells us the minimum proof size of a theorem. We can overload the notation

by setting sf (n) = max(sf (x) : |x| ≤ n) where n ∈ N. We do not focus on the exact numerical

proof size, but how proof size behaves asymptotically. For a function t : N→ N, a proof system f

is called t-bounded if ∀n ∈ N, sf (n) ≤ t(n).

A proof system f is polynomially bounded if there is a polynomial p(x) such that sf (n) ≤
p(n). Cook and Reckhow [45] proved that NP = coNP if and only if there is a polynomially

bounded proof system of propositional tautologies, where coNP is the class of all languages whose

complements are in NP. A super-polynomial lower bound is an infinite family of formulas Φn where

there is no polynomial p such that the shortest proof of each formula is ≤ p(|Φn|). An exponential

lower bound is an infinite family of formulas Φn where there is an exponential function f = 2n
Ω(1)

such that the shortest proof of each formula is ≥ f(|Φn|).

Proof systems are compared by simulations. We say that a proof system f simulates g (g ≤ f ) if

there exists a polynomial p such that for every g-proof πg there is an f -proof πf with f(πf ) = g(πg)

and |πf | ≤ p(|πg|). If πf can even be constructed from πg in polynomial time, then we say that f

p-simulates g (g ≤p f ). Two proof systems f and g are (p-)equivalent (g ≡(p) f ) if they mutually

(p-)simulate each other. Figure 2 details the p-simulation relations between the main proof systems

in propositional logic. Note that every system below the dotted line has a known super-polynomial

lower bound.

A separation is where we demonstrate that a simulation cannot occur. Typically, to do this

we have to find a super-polynomial lower bound Φn in one proof system, but show that Φn has

polynomial-size proofs in the other.

Proof Systems for Propositional Logic. A line-based proof system operates with axioms and

rules to reach a conclusion. A proof π can be seen as a sequence of lines L1, . . . Ln where if φ

was the premise of the proof then φ ∧ L1 ∧ L2 ∧ · · · ∧ Li is semantically equivalent to φ for any

i : 1 ≤ i ≤ n.

Axiom lines are formulas that can be derived in any situation, these can take the form of

polynomial-time recognisable tautologies (not all tautologies are polynomial-time recognisable

unless P=coNP). Alternatively in some systems, particularly refutational ones, the whole of, or a

conjunct of the premise may be derived using the axiom rule, depending on the proof system.

Rules take one or more previous lines and use some (usually limited) recognition of semantic

implication to derive a new line. For example, in resolution, the resolution rule notices that if both

C ∨ x and D ∨ ¬x are lines before Li then φ ∧ L1 ∧ · · · ∧ Li � C ∨D.
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Truth Table

Tree Resolution Nullstellensatz

Resolution

Cutting Planes AC0-Frege

AC0[p]-Frege

Polynomial Calculus

PCR

Frege

Extended Frege

Fig. 2. A simulation Hasse diagram for propositional proof systems

Resolution, introduced by Blake [34] and Robinson [107], is a refutational proof system manip-

ulating unsatisfiable CNFs as sets of clauses, and clauses as sets of literals. The only inference rule

is C ∨ x D ∨ ¬x
C ∪D where C,D denote clauses and x is a variable. In other forms particularly

when Resolution operates on ordered multisets, factoring and exchange rules are used, but these are

unnecessary when the clauses are sets. A resolution refutation derives the empty clause ⊥.

The following observation underpins the key connection between SAT solving and proof

complexity.

Observation 1 If φ is input into the DLL algorithm and it returns 0 then φ has a tree-like resolution

refutation with the same or fewer number of lines as the total number of calls to DLL used in total.

Proof. We will construct a tree of partial assignments as the algorithm progresses and then compare

the assignments to the lines of a tree-like resolution proof. We start with the empty assignment

and add more values as we make recursive calls. When we call DLL(Φa=0) we add a = 0 to the

assignment and similarly we add a = 1 in the branch where we call DLL(Φa=1). We continue to

add these assignments in the respective branches.

Notice that each assignment must eventually contradict one of the clauses in φ. In order to

construct the refutation we mark each leaf with the clause it refutes. We then resolve where the

branches meet on the variable a that is split on, unless the variable does not appear in one of the

clauses. In that case we simply copy that clause without the variable (and pick arbitrarily if both

do not have the variable). The invariant we preserve by this process is that the assignment always

refutes the clause associated with it and since we end up with the empty assignment we must have

the empty clause at the end. ut
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One of the most general and important line-based systems are the Frege systems [45]. These

are based on axiom schemes of tautologies with additional sound rules to make it complete. In the

context here we only look at Frege systems as classical propositional proof systems, although Frege

systems can exist for other languages.

For now we will fix a complete connective set {→, 0, 1} for simplicity, but the set {¬,∨,∧, 0, 1}
is commonly used and this will be more appropriate later when talking about CNFs. Each Frege

system is defined with a finite number of propositional rules–

C1, C2, . . . Ck
D

where C1, C2, . . . Ck, D are propositional formulas in the variables x1, . . . xm and C1 ∧C2 ∧ · · · ∧
Ck � D (where � denotes classical truth functional semantic entailment). Nullary rules gives us

axioms D which requireD to be a tautology. We consider substitutions σ = f1, . . . fm/x1, . . . xm of

propositional variables x1, . . . xm to propositional formulas f1, . . . fm. We can denote a substitution

on formula D as σD. A proof consists of a sequence L1, L2, . . . Ln where Li has the requirement

that C1,C2,...Ck
D is a rule in the system and that there is some σ such that σC1, σC2, . . . σCk are all

previous lines in the proof and σD = Ln. A Frege system has an additional requirement that it

must be implicationally complete for the language (note that the language technically changes if we

change the connective set). An example of a Frege system is given in Figure 3.

1 x1 → (x2 → x1) ((x1 → 0)→ 0)→ x1

(x1 → (x2 → x3))→ ((x1 → x2)→ (x1 → x3))
x1 x1 → x2

x2

Fig. 3. A Frege system for connectives→, 0, 1

It was first shown in [45] that for a fixed connective set κ any two Frege systems p-simulate each

other, furthermore [103] extended this mutual p-simulation to systems with a different connective

set. This means that an exponential lower bound for one Frege system would show a lower bound

for all Frege systems. However, to this day, neither such an exponential nor super-polynomial lower

bound has been found.

This does not mean that Frege simulates every known proof system. There is a proof system

that is conjectured to be stronger than Frege– an improvement known as Extended Frege (eFrege).

Extended Frege takes a Frege system and allows the introduction of new variables that do not

appear in any previous line of the proof. These variables abbreviate formulas. The rule works by

introducing the axiom of v ↔ f1∧̄f2 for new variable v (not in appearing in f1 or f2).
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Because there is no known super-polynomial lower bound for Frege there is no known sepa-

ration between Extended Frege and Frege. Instead one might think of the analogous relation of

circuits versus formulas. Extended Frege is a very powerful system, it was shown [15, 79] that

any propositional proof system f can be simulated by eFrege + ||φ|| where φ is a polynomially

recognisable axiom scheme.

Sequent Calculi. An alternative to Frege systems are Gentzen systems. While Frege systems use

formulas as their lines, Gentzen systems use sequents.

Gentzen’s system LK is one of the first and best studied proof systems [61]. It operates with

sequents. Formally, a sequent is a pair (Γ ,∆) with Γ and ∆ defined as finite ordered multisets of

formulas. A sequent is usually written in the form Γ −→ ∆. In propositional logic Γ −→ ∆ is true

if every model for
∧
Γ is also a model of

∨
∆. The system can be used both for propositional and

first-order logic; the propositional rules are displayed in Fig. 4.

(−→)
A −→ A

(⊥-introduction)⊥ −→ (>-introduction)−→ >

Γ,A,B,∆ −→ Σ
(exchange-l)

Γ,B,A,∆ −→ Σ

Γ −→ Σ,A,B,∆
(exchange-r)

Γ −→ Σ,B,A,∆

A,A, Γ −→ Σ
(contraction-l)

A,Γ −→ Σ

Γ −→ Σ,A,A
(contraction-r)

Γ −→ Σ,A

Γ −→ Σ (weakening-l)
∆,Γ −→ Σ

Γ −→ Σ (weakening-r)
Γ −→ Σ,∆

Γ −→ Σ,A
(¬-l)¬A,Γ −→ Σ

A,Γ −→ Σ
(¬-r)

Γ −→ Σ,¬A
A,Γ −→ Σ

(•∧-l)
B ∧A,Γ −→ Σ

A,Γ −→ Σ
(∧•-l)

A ∧B,Γ −→ Σ

Γ −→ Σ,A Γ −→ Σ,B
(∧-r)

Γ −→ Σ,A ∧B
A,Γ −→ Σ B,Γ −→ Σ

(∨-l)
A ∨B,Γ −→ Σ

Γ −→ Σ,A
(•∨-r)

Γ −→ Σ,B ∨A
Γ −→ Σ,A

(∨•-r)
Γ −→ Σ,A ∨B

Γ −→ Σ,A A, Γ −→ Σ
(cut)

Γ −→ Σ

Fig. 4. Rules of the sequent calculus LK [61]

The full version of LK is known to be p-equivalent to Frege systems. However a weaker system

without the cut rule (see Figure 4) known as Cut-free Gentzen is known to be a complete calculus,

yet there is an exponential separation between the cut-free and full version.
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Cutting Planes. Not every line-based proof system uses propositional formulas as its internal lines.

A good example is the cutting planes proof system which uses linear inequalities.

A translation from CNF to a system of linear equalities that preserves satisfiability is necessary.

We will use θ to denote the translation.

– for a propositional variable x, θ(x) = x.
– for a propositional variable x, θ(¬x) = 1− x.
– for a clause C, where n is the number of literals in C, The inequality θ(C) =

∑
l∈C θ(l) ≥ 1.

– for a CNF F , θ(F ) = {θ(C) | C ∈ F} ∪ {x ≥ 0,−x ≥ −1 | x is a variable}.

The cutting planes proof system is refutational, its aim is to derive the contradiction 0 ≥ 1 from

a inconsistent set of linear inequalities. The rules of the cutting planes proof systems are presented

in Figure 5.

∑
k akxk ≥ a

∑
k bkxk ≥ b (Addition)∑

k(ak + bk)xk ≥ a+ b

∑
k ckxk ≥ c (Multiplication)∑

k dckxk ≥ dc∑
k qpkxk ≥ p (Division)∑
k pkxk ≥ d

p
q e

Fig. 5. Rules for the cutting planes proof system, d, q ∈ Z+

2.4 First-order Logic.

First-order logic is a more expressive language than propositional logic. In propositional logic,

atomic formulas can only be true or false, but in first-order logic we allow atomic formulas to be

contingent on first-order variables. This is done via predicates where the truth is solely dependent

on the values of a finite number of ordered first-order variable arguments. The number of arguments

of an individual predicate is known as the arity. When the arity is zero the formulas are equivalent

to propositions. In order to make further use of variables, variables can be quantified via universal

or existential quantifiers.

First-order Formulas. A first order term is either a variable or a function where each argument is

an first order term itself. Atomic formulas are predicates in which every argument is a term. Well

formed formulas are grammatically correct formulas. If φ is a well formed formula it must satisfy

one of the following conditions.

– φ is an atomic formula.
– ψ is a well formed formula and φ is ¬ψ.
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– χ and ψ are well formed formulas and φ is either χ ∧ ψ, χ ∨ ψ or χ→ ψ.

– ψ is a well formed formula x is a free variable in χ (it does not appear in any quantifier). and ψ

is either ∀xψ or ∃xψ.

A sentence is a well formed formula where every variable in the sentence is quantified.

First-order Semantics. The semantics of first-order logic were most famously formulated in-

ductively by Tarski [114], it follows very similarly to propositional logic but with the following

considerations for quantifiers.

– ∃xψ is true if and only if there is some value c for which ψ[c/x] is true.

– ∀xψ is true if and only if ¬∃x¬ψ is true.

A Decidable Fragment in First-order Logic. Determining whether a first-order logic formula

is true under all interpretations is not decidable, the best that can be done is under fragments of

first-order logic. One decidable fragment is the Bernays-Schönfinkel class also known as EPR
(a shortening of Effectively PRopositional). This class have formulas in prefix form Πφ, Π =

∃x1, . . . xn∀y1, . . . ym and φ does not contain quantifiers or function symbols (except for zero-arity

functions, which are constant symbols).

First-order Resolution. Proof systems for first-order logic and EPR exist. In Figure 6 we define

the first-order resolution of Robinson (FO-res) [106] for EPR. The system is a refutation system

for prefix formulas Πφ where φ is in conjunctive normal form (for first-order logic literals are

atomic formulas or their negations). By unifier of L(X) and L(Y ), we mean the first-order term

substitution θ to the universal variables of X and Y such that L(X)θ = L(Y )θ. σ is more general

than θ if there is another substitution ν such that ν applied to σ is equal to θ. The most general

unifier is the unique unifier that is more general than all other unifiers.

C ∪ {L(X)} D ∪ {¬L(Y )}
(Res)

(C ∪D)σ

Where σ is the most general unifier of L(X) and L(Y ) and C and D do not contain common
variables.

C ∪ {L(X1), . . . L(Xj)} (Fact)
(C ∪ {L(X1)})σ

C (Inst)
Cθ

Where σ is the most general unifier of L(X1), . . . L(Xj). θ is a term substitution for the universal
variables of C.

Fig. 6. Rules for Robinson’s FO-res for EPR
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While first-order logic uses a different machinery to that of QBFs, both use quantification

albeit in different ways. We will introduce Boolean quantification in Chapter 3 alongside QBFs

themselves. We will revisit the fragment EPR in Chapter 10.

2.5 Relationship between Logic and Complexity

Circuit Classes. Complexity theory aims to understand the inherent difficulty of various objects in

theoretical computer science. Computational complexity primarily looks at problems, languages

or tasks and the important objects are algorithms. For these complexity is usually measured by

running time, leading to the famous class P which includes all problems that have a polynomial time

algorithm. Other measures such as space (the amount of memory required) can also be considered,

leading to complexity classes such as PSPACE where polynomial space algorithms exist.

In Section 2.1 we defined and differentiated formulas and circuits and there are many ways to

measure complexity using these. For example, i) binary size of a circuit description ii) number of

gates needed iii) depth (longest directed path from an input node to an output node).

Like computational complexity, circuit complexity concerns itself with languages or problems.

In circuit complexity, these languages consist of boolean functions with multi-arity boolean domains.

The complexity classes usually concern themselves with the following question:

Can all the functions g in language L be found using a family of circuits c(g) (for each g) such

that the size/depth/other measure of c(g) is bounded by O(f(g)) where f is the growth function

and c(g) is subject to additional constraints?

This then brings up the question of uniformity versus non-uniformity. A uniform family of

circuits is a family that can be generated quickly by a computer program. Normally for family

{Cn | n ∈ N} we require a Turing machine M to output the circuit Cn (as a binary string) on input

1n in polynomial time. A non-uniform family does not have these restriction on circuits. While the

terminology is confusing, every uniform family is also non-uniform.

The class P/poly is the class of languages such that if L ∈ P/poly there is a non-uniform family

of boolean circuits {Ci | i ∈ N}, such that for every binary string |x| = i, x ∈ L if and only if

Ci(x) = 1. There is the additional important distinction that there is some polynomial p such that

|Ci| = O(p(i)).

The class AC0 is the smallest class from the AC -hierarchy, it is the class of languages that have

non-uniform polynomial-size circuits that are constant depth. In AC0 the circuits can only use NOT

gates and AND, OR gates of unbounded fan-in. With this restriction the majority function, which

asks whether the number of 1 bits outnumbers the number of 0 bits, is not in AC0 [67]. Allowing

threshold gates, which ask whether the number of 1 values are above a specified threshold, allows

new kinds of circuits. In the setting of non-uniform bounded depth polynomial-size circuits we use

the class TC0 when we have threshold gates of unbounded fan-in.

Another family of problems that are not in AC0 are the mod p functions, which test whether an

input’s sum value equals 1 mod p. The functions themselves can be added individually as gates to

get the AC0[p] class when bounded depth and polynomial.
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AC0 circuits can also be given individual depth restrictions, AC0
d is the class of functions that

can be represented by a family of polynomial size non-uniform circuits of depth at most constant d.

Finally we look at the class NC1, this class contains all functions that have logarithmic depth

non-uniform circuits where all gates have bounded fan-in.

Completeness. As discussed in Section 2.2, the SAT problem is NP-complete. This means that

all NP problems can be transformed into SAT in polynomial time, and that SAT itself is an NP

problem. This is not the only case of a logical problem being complete for a natural complexity

class. In Figure 7, we show some of these important connections that are related to this work.

Complexity Class Language Complete for Class
NP SAT

coNP TAUT
PSPACE QBF

NEXPTIME EPR

Fig. 7. Some important logics complete for complexity classes

First-order logic in general is not decidable, so one way to understand it from a complexity

point of view is to study decidable fragments such as EPR. It is known that the EPR problem in

general is not solvable in polynomial time and instead complete for non-deterministic exponential

time (NEXPTIME) [86].

PSPACE is the class of all problems that can be decided with a polynomial (in the size of the

input) amount of memory. The true Quantified Boolean Formulas (QBF) form a PSPACE-complete

language. The QBF logic will be our main focus for this thesis. In Chapter 3 we will discuss the

important preliminaries for QBF.
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Chapter 3

Quantified Boolean Formulas
Quantified Boolean Formulas (QBFs) express formulas from propositional logic more succinctly

and thus apply to further fields such and verification and planning. In Chapter 2 we introduced

important practical and theoretical aspects of propositional logic, in this chapter we do the same for

QBF.

In this chapter we study the preliminaries specific to QBF. We define the semantics of QBF in

Section 3.1, using both the standard and game semantics. In Section 3.2 we discuss the solving

techniques for QBF, including both CDCL and expansion techniques. We then introduce a number

of proof systems for QBF in Section 3.3.

3.1 Quantified Boolean Formulas

Quantified Boolean Formulas extend propositional logic with quantifiers ∀, ∃ [76]. The standard

semantics are that ∀x. Ψ is satisfied by the same truth assignments as Ψ [0/x]∧ Ψ [1/x] and ∃x. Ψ is

satisfied by the same truth assignments as Ψ [0/x] ∨ Ψ [1/x].

Bound and Free Variables. We now express what it means to be a bound variable in a QBF. This

can be described formally using set Bv(φ) for QBF φ, where every element is a bound variable.

This can be defined inductively as below. We let x denote any propositional variable.

Bv(0) = Bv(1) = Bv(x) = ∅, Bv(p→ q) = Bv(p) ∪ Bv(q)

Bv(∃x. Ψ) = Bv(∀x. Ψ) = Bv(Ψ) ∪ {x}

Similarly the set of free variables is given by Fv(Ψ). We let x denote any propositional variable.

Fv(0) = Fv(1) = ∅, Fv(x) = {x}

Fv(p→ q) = Fv(p) ∪ Fv(q), Fv(∃x. Ψ) = Fv(∀x. Ψ) = Fv(Ψ) \ {x}

In order to make manipulation of QBFs easier, we only allow QBFs Ψ where Fv(Ψ)∩Bv(Ψ) is

empty, so, in fact, Fv(Ψ) = var(Ψ) \ Bv(Ψ). We also avoid quantifying the same variable twice.

In both these cases we create new “fresh” variables to replace any duplicated ones. For example,

using the semantic expansion definition of QBFs, ∀y∃xφ = ∃xφ[0/y] ∧ ∃x′φ[1/y], we distinguish

x from x′ which is bound elsewhere.
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Closed QBF. A closed QBF is a QBF where all variables are bound (cf. Example 1). A closed QBF

must be either true or false, since if we semantically expand all the quantifiers we have a boolean

connective structure on 0, 1. Intuitively this gives a naı̈ve exponential time algorithm for finding

whether a QBF is true or false.

Example 1. ∃y(¬y ∨ ¬z) ∨ ∀x(z ∧ x) would not be a closed QBF because of the free variable z.

Instead in order to make this closed z needs to be quantified i.e. ∀z(∃y(¬y ∨ ¬z) ∨ ∀x(z ∧ x)).

Prenex QBF. A prenex QBF is a QBF where all quantification is done outside of the propositional

connectives. A prenex QBF Φ therefore consists of a propositional part φ called the matrix and a

prefix of quantifiers Π and can be written as Φ = Π · φ. When the propositional matrix of a prenex

QBF is a CNF, then we have a PCNF (cf. Example 2). We can feasibly transform any QBF into

prenex form by moving the quantifiers to the outside.

If we have that each variable is bound only once then this causes no issues. We then can

transform the matrix into a CNF using Tseitin variables, these Tseitin variables need to be quantified

and the quantifier of the new variable must occur to the right of all variables they depend on.

A prenex QBF without any variables in the prefix is just a propositional formula.

Example 2. ∀x(∃y∃z(y ∨ ¬z ∧ x)) ∧ (∀a∃b(x ∨ a ∧ ¬b)) is not in prenex form. However this can

be easily remedied by taking ∃y∃z and ∀a∃b to the left as ∀x∃y∃z∀a∃b(y ∨¬z ∧x)∧ (x∨ a∧¬b)
(∀x∀a∃b∃y∃z(y ∨ ¬z ∧ x) ∧ (x ∨ a ∧ ¬b) also works). This still is not a PCNF but (y ∨ ¬z ∧ x)

can be expanded to (y ∨ ¬z) ∧ (y ∨ x) and (x ∨ a ∧ ¬b) can be expanded to (x ∨ a) ∧ (x ∨ ¬b)
using distributivity rules. This gives the following PCNF:

∀x∃y∃z∀a∃b(y ∨ ¬z) ∧ (y ∨ x) ∧ (x ∨ a) ∧ (x ∨ ¬b).

Quantifier Order. Let Q1X1 . . .QkXk. φ be our prenex QBF, where for 1 ≤ i ≤ k Qi ∈ {∃,∀}
and Xi are pairwise disjoint sequences of variables. If x ∈ Xi, we say that x is at level i and write

lv(x) = i. We write lv(l) for lv(var(l)). In contrast to the level, the index ind(x) provides the

more detailed information on the actual position of x in the prefix, i.e. all variables are indexed by

1, . . . , n from left to right. We remark that if variables are permuted such that are still in the same

level, truth is still preserved.

QBF Game Semantics. Often it is useful to think of a closed prenex QBFQ1X1 . . .QkXk. φ as a

game between the universal and the existential player. In the i-th step of the game, the player Qi
assigns values to all the variablesXi. The existential player wins the game if and only if the matrix φ

evaluates to 1 under the assignment constructed in the game. The universal player wins if and

only if the matrix φ evaluates to 0. Given a universal variable u with index i, a strategy for u is a

function, which maps assignments of 0/1 values to the variables of lower index than u to {0, 1} (the

intended response for u). Therefore a QBF is false if and only if there exists a winning strategy for
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the universal player, i.e. if the universal player has a strategy for all universal variables that wins

any possible game [65] [5, Sec. 4.2.2] [95, Chap. 19].

The natural games semantics mean that QBFs are good at coding two-player games. Indeed,

“Connect4” can be neatly coded in QBF [60], in addition to subproblems in checkers [4].

3.2 QBF Solving

In comparison to SAT, in the case of the QBF problem, instead of asking whether a satisfying

assignment exists, we ask whether a closed QBF is true or false. We can also ensure every input

QBF is in prenex form. Instead of being NP-complete it has a connection to PSPACE. This

means that other PSPACE problems are reducible to QBF [95]. Note the PSPACE algorithm below

in Algorithm 3. Note that the function Simplify may vary on the exact solver used but always

performs both unit propagation and pure literal elimination. Likewise, the choice of l is intentionally

ambiguous as the heuristic used can be decided in each individual solver.

In order to verify that this algorithm uses only polynomial space we observe that the algorithm

calls other instances of itself but there can only be as many running instances as there are variables

in the prefix at any one time.

Algorithm 3 The QDPLL algorithm
function QDPLL(Q1X1, . . . ,QkXk, Φ)

Simplify Φ
if Φ = ∅ then

return 1
else if ∅ ∈ Φ then

return 0
else

Pick l as any literal whose variable x appears in X1.
if Q1 = ∀ and QDPLL(Q1X1 \ {x},Q2X2 . . . ,QkXk, Φ ∪ {{l}}) = 0 then

return 0
else if Q1 = ∃ and QDPLL(Q1X1 \ {x},Q2X2 . . . ,QkXk, Φ ∪ {{l}}) = 1 then

return 1
else

return QDPLL(Q1X1 \ {x},Q2X2 . . . ,QkXk, Φ ∪ {{¬l}})

Much like the relation between DPLL and resolution there is a relation between QDPLL and

QBF resolution. This is preserved when clauses-learning is added (QCDCL).

CEGAR Solving. Counterexample guided abstraction refinement (CEGAR) solving [41] is based

on the principle of quantifier expansion. However, full expansion would lead to an exponential blow

up every time. Instead, it queries winning strategies for the variables at the n+ 1th level in order to

find counteractive winning strategies at the nth level. An example of a CEGAR algorithm is given

in Algorithm 4.
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Algorithm 4 A CEGAR algorithm that outputs winning strategies
function CEGAR SOLVE(QX.Φ)

if Φ has no quant then
return (Q = ∃) ? SAT(φ) : SAT(¬φ)

ω ← ∅
while true do

α← (Q = ∃) ?
∧
µ∈ω Φ[µ] :

∨
µ∈ω Φ[µ]

τ ′ ← CEGAR solve(prenex(QX.α))
if τ ′ = NULL then

return NULL
τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X}
µ← CEGAR solve(Φ[τ ])
if µ = NULL then

return τ
ω ← ω ∪ {µ}

CEGAR solving uses a different paradigm than QDPLL. While traces of QDPLL algorithms

can be transformed in Q-Res, CEGAR has a relation to a different calculus known as ∀Exp+Res.

This calculus will be introduced and explained in Chapter 4.

3.3 Proof Systems for Quantified Boolean Formulas

Resolution Systems. Q-resolution by Kleine Büning, Karpinski, and Flögel [77] is a resolution-like

refutation system that operates on QBFs in prenex form where the matrix is a CNF. It uses the

propositional resolution rule on existential variables with a side condition that prevents tautological

clauses (for Figure 8 recall that ¬¬z = z for literals). We also forbid tautologies from being

introduced in the proof system via axiom. In addition Q-resolution has a universal reduction rule to

remove universal variables.

(Ax)
C

C ∨ x D ∨ ¬x (Res)
C ∨D

Ax: C is a non-tautological clause in the propositional matrix.
Res: variable x is existential and if literal z ∈ C, then ¬z /∈ D.

C ∨ u
C

C ∨ ¬u (∀-Red)
C

variable u is universal and all other existential variables x ∈ C are left of u in the quantifier
prefix.

Fig. 8. The rules of Q-Res [77]

Example 3. We wish to refute the following PCNF in Q-Res:
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∃x1∃x2∀y1∀y2∃x3(x1 ∨ y1 ∨ x3) ∧ (¬x1 ∨ ¬y1 ∨ x3) ∧ (¬x2 ∨ y2 ∨ ¬x3) ∧ (x2 ∨ ¬y2 ∨ ¬x3)

This QBF can be shown as false by a semantic argument, using the two-player game. As long

as the universal player plays y1 ← x1 and y2 ← ¬x2, then whatever the existential player sets for

x3 one clause gets refuted.

A refutation is given in Figure 9. Note that we cannot perform universal reduction on any of the

axioms. We first can resolve the x3 variables in every possible combination. The resulting clauses

unblock universal literals which can then be reduced. Finally we can use resolution to reach the

empty clause.

x1∨y1∨x3 x̄2∨y2∨x̄3 x2∨ȳ2∨x̄3 x̄1∨ȳ1∨x3

x1∨x̄2∨y1∨y2 x1∨x2∨y1∨ȳ2 x̄1∨x̄2∨ȳ1∨y2 x̄1∨x2∨ȳ1∨ȳ2

x1∨x̄2∨y1 x1∨x2∨y1 x̄1∨x̄2∨ȳ1 x̄1∨x2∨ȳ1

x1∨x̄2 x1∨x2 x̄1∨x̄2 x̄1∨x2

x1 x̄1

⊥

Fig. 9. An example of a Q-Res refutation

Q-Res has a number of augmentations. Long-distance Q-resolution (LD-Q-Res) appears

originally in the work of Zhang and Malik [119] and was formalized into a calculus by Balabanov

and Jiang [10]. It merges complementary literals of a universal variable u into the special literal u∗.

These special literals behave like universal literals in that they can be reduced. The issue comes with

the condition of merging. In particular, different literals of a universal variable u may be merged

only if ind(x) < ind(u), where x is the resolution variable. There are some restrictions on merging

given in Figure 11. LD-Q-Res uses the rules L∃R, ∀-Red and ∀-Red ∗ of Figure 10.

Example 4. We again use the same false QBF from Example 3:

∃x1∃x2∀y1∀y2∃x3(x1 ∨ y1 ∨ x3) ∧ (¬x1 ∨ ¬y1 ∨ x3) ∧ (¬x2 ∨ y2 ∨ ¬x3) ∧ (x2 ∨ ¬y2 ∨ ¬x3)

Here we will use L∃R from Figure 10. Recall that our resolution pivot must be to the left of our

merged universal variable, so we can use x1 or x2. We find examples of both that merge y1 and y2
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(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x} (Res)
C1 ∪ C2 ∪ U

We consider four instantiations of the Res-rule:
S∃R: x is an existential variable. If literal l ∈ C1, then ¬l /∈ C2. U1 = U2 = U = ∅.
S∀R: x is an universal variable. Otherwise same conditions as S∃R.
L∃R: x is an existential variable.
If l1 ∈ C1, l2 ∈ C2, if var(l1) = var(l2) = z then l1 = l2 6= z∗. U1, U2 contain only universal
literals with var(U1) = var(U2). ind(x) < ind(u) for each u ∈ var(U1).
If w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 = ¬w2, w1 = u∗ or w2 = u∗.
U = {u∗ | u ∈ var(U1)}.
L∀R: x is an universal variable. Otherwise same conditions as L∃R.

Fig. 10. The rules of Q-Res-based proof systems

respectively. Despite the restrictions on merged variables, y∗1 and y∗2 are indeed allowed in the same

clause when we resolve on x3. ∀-Red ∗ steps finalise the proof deriving the empty clause. Here is a

good example of the benefits of the merged variables– notice how the proof (given in Figure 12) is

considerably more compact compared to the proof in Figure 9.

QU-resolution (QU-Res) [116] removes the restriction from Q-Res that the resolved variable

must be an existential variable and allows resolution of universal variables. The rules of QU-Res
are S∃R, S∀R and ∀-Red. LQU+-Res [11] extends LD-Q-Res by allowing short and long distance

resolution pivots to be universal. However, the pivot is never a merged literal z∗. LQU+-Res uses

the rules L∃R, L∀R, ∀-Red and ∀-Red ∗.

Stronger Calculi. In addition to calculi that work with resolution, there are calculi that work with

Gentzen sequent systems. The central calculus here is the system G [81] which is the propositional

system LK with four additional rules that deal with boolean quantifiers:

∀-introduction

φ(ψ/x), Γ−→ ∆
(∀-l)∀xφ, Γ−→ ∆

Γ−→ ∆,φ(p/x)
(∀-r)

Γ−→ ∆, ∀xφ

and ∃-introduction

φ(p/x), Γ−→ ∆
(∃-l)∃xφ, Γ−→ ∆

Γ−→ ∆,φ(ψ/x)
(∃-r).

Γ−→ ∆,∃xφ

Where φ and ψ are arbitrary QBF and p is a boolean variable.

For i ≥ 0, Gi is a subsystem of G with cuts restricted to prenex Σq
i ∪ Π

q
i -formulas (QBF

restricted to i quantifier alternations) [43, 81].
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C,D are clauses without x, u or v literals, u, v are universal.

C ∨ x ∨ u D ∨ x̄ ∨ ūind(x) < ind(u)
C ∨D ∨ u∗

C ∨ x ∨ u D ∨ x̄ ∨ ūind(u) < ind(x)
no resolution on x

C ∨ x ∨ u∗ D ∨ x̄ ∨ ūind(x) < ind(u)
C ∨D ∨ u∗

C ∨ x ∨ u∗ D ∨ x̄ ∨ ūind(u) < ind(x)
no resolution on x

C ∨ x ∨ u D ∨ x̄ ∨ u∗ind(x) < ind(u)
C ∨D ∨ u∗

C ∨ x ∨ u D ∨ x̄ ∨ u∗ind(u) < ind(x)
no resolution on x

C ∨ x ∨ u∗ D ∨ x̄ ∨ u∗ind(x) < ind(u)
C ∨D ∨ u∗

C ∨ x ∨ u∗ D ∨ x̄ ∨ u∗ind(u) < ind(x)
no resolution on x

C ∨ x ∨ u∗ D ∨ x̄
C ∨D ∨ u∗

C ∨ x ∨ u∗ D ∨ x̄ ∨ v∗
C ∨D ∨ u∗ ∨ v∗

Fig. 11. Merging rules and restrictions

x1∨y1∨x3 x̄1∨ȳ1∨x3 x2∨ȳ2∨x̄3 x̄2∨y2∨x̄3

y∗1∨x3 y∗2∨x̄3

y∗1∨y∗2

y∗1

⊥

Fig. 12. An example of a LD-Q-Res refutation

Correspondence to Solving. With the exception of the powerful system G, the QBF proof systems

discussed in this chapter correspond roughly to versions of the QDPLL and QCDCL algorithm. This

means that Q-Res proofs can be extracted from runs of QCDCL solvers such as DepQBF. However,

CEGAR solving and other expansion based techniques do not have this relation. In Chapter 4 we

introduce expansion based proof systems that can deal with expansion based techniques.
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Chapter 4

Expansion-based Resolution Calculi
In Chapter 3, we introduced the QBF proof system Q-resolution and its improvements LD-Q-Res,

QU-Res and LQU+-Res. These form the QBF Conflict-Driven Clause-Learning (QCDCL) style

proof systems. However, many QBF solvers do not fit under the QCDCL style of solving– in

particular, expansion based solvers such as RAReQS [72], Ghost-Q [78] and CAQE [101].

Recently, a proof system ∀Exp+Res was introduced [74] with the motivation to trace expansion-

based QBF solvers [71]. ∀Exp+Res also uses resolution, but is conceptually very different from

Q-Res. Conceptually, the variants of Q-resolution correspond to solving QBF by search and

clause-learning. In contrast, expansion-based systems correspond to solving QBF by rewriting

quantifiers into Boolean connectives, such rewrites may be iterative and may require introduction

of fresh variables. Hence, the division between expansion-based systems and Q-resolution based

systems is naturally reflected in solving techniques.

In this chapter we create a new calculus IR-calc that naturally unifies the concepts in Q-Res
and ∀Exp+Res. The inspiration for this calculus comes from a known QBF connection to first

order logic [109], in particular the fragment EPR, also known as the Bernays-Schönfinkel class.

The rules of IR-calc simplify the rules of first order resolution [107] in way that is congruent with

the expansion based ∀Exp+Res. In this way IR-calc is a natural evolution of ∀Exp+Res that uses

the partial expansion of universal variables as an advantage.

We offer an additional improvement IRM-calc, which simulates IR-calc and LD-Q-Res. IRM-
calc roughly corresponds to IR-calc but introduces merged annotations to simulate the merged

universal variables in LD-Q-Res.

As with any calculi, we need to establish soundness. For this we use the two-player game

semantics for QBF given in Section 3.1. We show that any refutation in IRM-calc has a winning

strategy for the universal player. In fact, we show that such a strategy can be extracted in polynomial

time from the refutation. A similar technique is used for Q-Res [65] and LD-Q-Res [53].

Completeness of the calculi comes from their simulations of other complete calculi. IR-calc
simulates both Q-Res and ∀Exp+Res and IRM-calc simulates LD-Q-Res.

We organise this chapter in the following way. Firstly, we define the new expansion calculi

IR-calc and IRM-calc (Section 4.1), with examples (Section 4.2). We then show their soundness

by strategy extraction — a very desirable property in practise (Section 4.3), and show that they

simulate previously defined QBF resolution systems (Section 4.4), hence showing completeness.

Since these calculi simulate both expansion and reduction calculi, they help unify the two concepts

by looking at a single powerful concept: instantiation.

The work in this chapter appeared at the 39th International Symposium on Mathematical

Foundations of Computer Science Science [18].
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4.1 Introducing the Expansion Calculi IR-calc and IRM-calc

In contrast to the QBF resolution systems from the previous section the expansion calculi we will

consider here use only existential variables. Before giving the technical details, let us try to explain

the idea of expansion of universal variables.

Consider the QBF ∃x∀u∃y. φ(x, u, y). Expanding the universal variable u, this is semantically

equivalent to ∃x∃y0∃y1. φ(x, 0, y0) ∧ φ(x, 1, y1), where we need to create two fresh copies of the

existential variables right of u (in this case we create two copies y0 and y1, but keep x). In fact,

instead of just renaming the variable y to y0 and y1 it will be more convenient to record in the

annotation, which expansion caused the renaming. In our example, we would name y0 as y0/u and

y1 as y1/u to remember that we created the copies of y by expanding u.

In this way we expand all the universal variables in the QBF, which results in a purely ex-

istentially quantified formula. Of course, in general this will produce an exponential increase in

the formula size. However, in some cases it may suffice to expand a universal variable in just one

polarity and still preserve the falsity of the QBF. Consider the example ∀u∃x. (u ∨ x) ∧ (u ∨ ¬x),

where we can just expand u by 0 to obtain the false QBF ∃x0/u. x0/u ∨ ¬x0/u. We refer to [74] for

more background information on expansion.

This approach is in line with the workings of the highly competitive QBF solver RAReQS [72],

which gradually expands all universal variables to obtain a purely existential formula that is then

passed to a SAT solver. Proof theoretically, RAReQS corresponds to the calculus ∀Exp+Res [74],

introduced below. On a technical note, the solver also simultaneously expands the formula’s negation,

which enables proving true formulas.

We now start to set up the formal framework allowing us to define our new calculi. The

framework hinges on the concept of annotated clauses.

Definition 2.

1. An extended assignment is a partial mapping from the universal variables to {0, 1, ∗}. We

denote an extended assignment by a set or list of individual replacements i.e. 0/u, ∗/v is an

extended assignment.
2. An annotated clause is a clause where each literal is annotated by an extended assignment to

universal variables.
3. For an extended assignment σ to universal variables we write lrestrictl(σ) to denote an annotated

literal where restrictl(σ) = {c/u ∈ σ | lv(u) < lv(l)}.
4. Two (extended) assignments τ and µ are called contradictory if there exists a variable x ∈

dom(τ) ∩ dom(µ) with τ(x) 6= µ(x).

For extended assignments, we remark that this ∗ notation has nothing to do with the proof

complexity convention to map unassigned variables to ∗. Rather, a variable u will be mapped to

∗ if u∗ appears in some clause. This will made precise later. In contrast to extended assignments,

an assignment has range {0, 1}, as usual. To highlight the difference, we will sometimes refer to

assignments as 0/1 assignments.
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Further we define operations that let us modify annotations of a clause by instantiation.

Definition 3. For (extended) assignments τ and µ, we write τ ◦ µ for the assignment σ defined as

follows: σ(x) = τ(x) if x ∈ dom(τ), otherwise σ(x) = µ(x) if x ∈ dom(µ). The operation τ ◦ µ
is referred to as completion because µ provides values for variables that are not defined in τ .

The completion operation is associative and therefore we can omit parentheses. However, it is

not commutative. The following properties hold: (i) for non-contradictory µ and τ , we have

µ ◦ τ = τ ◦ µ = µ∪ τ . (ii) τ ◦ τ = τ .

We also need an auxiliary operation of instantiation, which completes the annotations of literals

in a clause by a partial (extended) assignment.

Definition 4. For an extended assignment τ and an annotated clause C, the function inst(τ, C)

returns the annotated clause
{
lrestrictl(σ ◦ τ) | lσ ∈ C

}
.

We are now ready to describe the expansion QBF systems.

The first of these is the calculus ∀Exp+Res from [74]. In Figure 13 we present an adapted

version of this calculus so that it is congruent with the new concepts presented here (semantically it

is the same as in [74]). The axiom rule for ∀Exp+Res simply downloads a clause by picking a total

0/1 assignment to the universal variables, applies it to the clause, and records the used assignment

in the annotations.

Note that τ is always a complete assignment to all universal variables. However, when appearing

as an annotation to an existential variable x, it is truncated to the universal variables left of x. This

is reflected in the notation restrictx(τ) (cf. Definition 2). For example, if we have a formula

∀u∃x∀v∃y. φ and τ assigns u and v to 0, then a clause u ∨ x ∨ v ∨ y from φ would be instantiated

to x0/u ∨ y0/u,0/v.

The resolution rule of ∀Exp+Res is just the propositional resolution rule. Note, however, that

the pivot annotations need to match exactly in both parent clauses. This makes sense, because in

our framework, different annotations formally lead to distinct variables.

In ∀Exp+Res, proofs can be easily split into two phases. The first consists only of axiom

downloads, removing all universal variables and annotating the existential variables. This is followed

by the second phase, consisting only of classical resolution steps on the new annotated variables, cf.

Section 4.2 for an example.

We now describe our first new system IR-calc. Like ∀Exp+Res it completely eliminates

universal variables and operates with annotated clauses. The main difference is that, unlike in

∀Exp+Res, where existentials are always annotated by all universals preceding them in the prefix,

the system IR-calc can deal with partial assignments. The calculus introduces clauses from the

matrix and allows to instantiate and resolve clauses; hence the name IR-calc. It comprises the rules

in Figure 14.

The axiom download rule is similar to ∀Exp+Res, but only annotates the existential literals

with those preceding universals which actually occur in the clause. For example, if ∀u∃x∀v∃y. φ
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(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
∪{τ(l) | l ∈ C, l is universal}

C is a clause from the matrix and τ is an assignment to all universal variables.

C1 ∪ {xτ} C2 ∪ {¬xτ} (Res)
C1 ∪ C2

Fig. 13. The rules of ∀Exp+Res (adapted from [74])

contains the clause x∨ v ∨ y we download it in IR-calc as x∨ y0/v, whereas in ∀Exp+Res we also

need to choose a value for u and could either download it as x0/u ∨ y0/u,0/v or x1/u ∨ y1/u,0/v.

The resolution rule is identical to ∀Exp+Res. Again, annotations in the pivot need to match

precisely, and for this reason we also adopt an instantiation rule, which can increase annotations in

the clause. This can enable further resolution steps. Again, in instantiation steps we need to truncate

the annotations to universal variables left of the annotated existential variable, as indicated by the

notation lrestrictl(σ ◦ τ) in Definition 4.

Unlike in the ∀Exp+Res system, IR-calc proofs are no longer separated into an annotation

and a resolution phase, but can mix instantiation and resolution steps in the proof by “delayed

instantiations” as and when they are needed. An example is contained in Section 4.2.

(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where the
notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 14. The rules of IR-calc

Note that in ∀Exp+Res, propositional variables are introduced so that their annotations assign

all relevant variables. In this way, each literal corresponds to a value of a Skolem function in a

specific point. In contrast, in IR-calc, variables are annotated “lazily”, i.e., it enables us to reason

about multiple points of Skolem functions at the same time. This is analogous to specialization of

free variables by constants in first-order logic (FO). Similarly, resolution in IR-calc is analogous to

resolution in Robinson’s FO resolution [107]. Chapter 10 and the recent paper [52] further explore
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Axiom and instantiation rules as in IR-calc in Figure 14.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ,C1)∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∨ bµ ∨ bσ (Merging)
C ∨ bξ

dom(µ) = dom(σ). ξ = {c/u | c/u ∈ µ, c/u ∈ σ}∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}

Fig. 15. The rules of IRM-calc

the connection between IR-calc and FO resolution. From the FO perspective, IR-calc appears to be

a very natural proof system.

Our second new system IRM-calc is an extension of IR-calc where we allow as annotations

extended assignments with range {0, 1, ∗}. The purpose of ∗ is similar to the role of ∗ in LD-Q-Res
(cf. the remarks in Chapter 3).

Axioms and instantiation rules of IRM-calc are handled as in IR-calc, which do not create ∗.
The annotation ∗ may be introduced by a new rule called merging. It merges two literals on the

same existential variable to one copy where all conflicting annotations produce ∗. For example, the

merge of x0/u,0/v,0/w and x0/u,1/v,∗/w produces x0/u,∗/v,∗/w.

The resolution rule is defined slightly differently, annotations of the pivot need not necessarily

match before application of the rule, but are matched “on the fly” while resolving (the resolution

rule is designed such that this matching is possible). More precisely, the resolution rule in Figure 15

uses pivot x, annotated as xτ∪ξ in the first parent clause and as ¬xτ∪σ in the second parent, where ξ

and σ are partial extended assignments with disjoint domain. Thus, by instantiating the first parent

with σ and the second parent with ξ we create a pivot xτ∪ξ∪σ with matching annotations and obtain

a sound resolution step. The resolution rule can now deal with ∗, but when ξ = σ = ∅ we have

exactly the resolution rule from Figure 14. Thus IRM-calc encompasses IR-calc.

IRM-calc is defined in Figure 15, an example is contained in Section 4.2.

Intuitively, a literal x0/u asserts that any interpretation of the Skolem function for x must

yield 1 whenever u = 0. Thus the clause x1/u ∨ x0/u asserts that for any value of the remaining

relevant universal variables, the Skolem function must yield 1 on u = 1 or on u = 0. Note that

this does not mean that the function has to be constantly 1. Merging enables compressing such

clauses. For instance, in IR-calc, to refute the clauses {¬x1/w, x0/u ∨ x1/u} one would apply

the instantiation rule to obtain {¬x0/u,1/w,¬x1/u,1/w, x0/u,1/w ∨ x1/u,1/w} and then proceed as in

classical propositional resolution. In contrast, IRM-calc enables merging the binary clause into the

unit clause x∗/u, which in turn gives a contradiction with the original clause ¬x1/w.
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∃e1∀u∃e2
e1∨u∨e2 ¬e1∨¬u∨e2

e1∨eū2 ¬e1∨eu2
ū u

¬e2

¬eū2 ¬eu2
ū u

eū2∨eu2

eu2

⊥

(a) An example proof in ∀Exp+Res

∀u1∃e2∀u3∀u4∃e5
u3∨¬e5

¬eū3
5

ū3

u1∨¬e2∨u3∨¬u4∨e5

¬eū1
2 ∨e

ū1ū3u4
5

u1∨e2∨u3∨u4∨e5

e
ū1
2 ∨e

ū1ū3ū4
5

ū1ū3u4ū1ū3ū4

¬eū1ū3u4
5¬eū1ū3ū4

5

ū1ū3u4ū1ū3ū4

¬eū1
2e

ū1
2

⊥

ū1ū3u4ū1ū3ū4

(b) An example proof in IR-calc

∀u1∀u2∃e3∀u4∃e5
u1∨¬e3∨u4∨e5

¬e0/u1
3 ∨e0/u1,0/u4

5

ū1ū4

e3∨¬u4∨e5

e3∨e
1/u4
5

u2∨¬e5
u4

e
0/u1,0/u4
5 ∨e0/u1,1/u4

5

e
0/u1,∗/u4
5

¬e0/u2
5

⊥

ū2

e
0/u1,0/u4
5 e

0/u1,1/u4
5

(c) An example proof in IRM-calc

Fig. 16. Proof examples

4.2 Proof Examples

We illustrate the expansion calculi from Section 4.1 with a few examples. For existential literal l

and universal variable u we write lu as a shorthand for l1/u and lū for l0/u.

Example 5. Figure 16(a) exemplifies a proof in ∀Exp+Res. In this case there is only one universal

variable u. The variable needs to be instantiated whenever a new clause is introduced into the

proof. In the case of the clause ¬e2 there are two options for instantiation. In the case of the two

other clauses only one of the instantiations is useful. Note that only e2 is annotated by u because

lv(e1) < lv(u).

Example 6. Figure 16(b) exemplifies a proof in IR-calc; most notably, ¬e5 needs to be annotated

only by ū3 when it enters the proof.

Example 7. Figure 16(c) shows an IRM-calc refutation, containing ∗ in an annotation of e5.

Example 8. Consider the (true) QBF ∃x∀uw∃b. (x ∨ u ∨ b) ∧ (¬x ∨ ¬u ∨ b) ∧ (u ∨ w ∨ ¬b).

In both calculi axioms yield (x ∨ b0/u), (¬x ∨ b1/u), and (¬b0/w,0/u). IR-calc enables deriving

(b0/u ∨ b1/u) from the first two clauses. IRM-calc further enables deriving b∗/u by merging.

Intuitively, (b0/u ∨ b1/u) means that the existential player must play so that for any assignment
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to w it holds that b = 1 if u = 0 or if u = 1. For instance, the player might choose to play b = 1

if w = 0, u = 1 and if w = 1, u = 0 (and otherwise b = 0). The clause b∗/u can be seen as a

shorthand for the clause (b0/u ∨ b1/u). Note that it would be unsound to derive the clause (b) (with

no annotation). This would mean that b must be 1 regardless of the moves of the universal player.

However, b needs to be 0 when u = w = 0 due to the axiom (¬b0/w,0/u).

Example 9. Consider again the QBF ∃x∀uw∃b. (x ∨ u ∨ b) ∧ (¬x ∨ ¬u ∨ b) ∧ (u ∨w ∨ ¬b) from

Example 8. If the third clause of the formula is changed to ¬b, the formula becomes false, which is

shown by instantiating ¬b to ¬b0/u and to ¬b1/u, using those to obtain x and ¬x by resolution and

deriving the empty clause.

Example 10. Consider the QBF ∃x∀u∃bc. (x ∨ u ∨ b) ∧ (¬x ∨ ¬u ∨ c) ∧ (¬b ∨ c) ∧ (¬c). The

following derivation is possible in IR-calc. Resolving x ∨ b0/u and ¬x ∨ c1/u yields b0/u ∨ c1/u.

Instantiating ¬b ∨ c by 0/u gives ¬b0/u ∨ c0/u, resolving this with the previous resolvent yields

c0/u ∨ c1/u. Refutation can be obtained by instantiation of ¬c once by 0/u and once by 1/u and

subsequent two resolution steps. In IRM-calc it is possible to obtain c∗/u by merging and resolve

that directly with ¬c, which yields ⊥.

4.3 Soundness and Extraction of Winning Strategies

The purpose of this section is twofold: to show how to obtain a winning strategy for the universal

player from an IR-calc proof, and, to show that IR-calc is sound. First we show how to obtain a

winning strategy for the universal player from a proof. From this, the soundness of the calculus

follows because a QBF is false if and only if such a strategy exists. We will then explain how to

extend this technique to IRM-calc.

The approach we follow is similar to the one used for Q-Res [65] or LD-Q-Res [53]. For this

approach to work for a QBF proof system P we need two properties:

1. The proof system P shall be closed under restrictions, i.e., if π is a P -proof of QX.Φ (where

Φ may contain further quantifiers) and α is an assignment to the variables X , then we can

efficiently construct from π and α a P -proof πα of Φ|α.

2. Restricting a proof π by an assignment to the leftmost block of existential variables to a proof

πα as in item 1, we can read off from πα a response for the universal player for the next round.

We therefore consider QBFs in the form Γ = ∃E∀U.Φ, where E and U are sets of variables and

Φ is a QBF (potentially with further quantification beginning with ∃). Suppose π is an IR-calc
refutation of Γ , and let ε be a total assignment to the variable block E. The assignment ε represents

a move of the existential player. We reduce π to a refutation πε of the restricted formula ∀U.Φ|ε. To

obtain a response of the universal player, we construct from πε an assignment µ to the variables U

such that reducing πε by µ gives a refutation of Φ|ε∪µ.

Now let πε,µ be the proof resulting from restricting πε by µ. The game continues with Φ|ε∪µ
and πε,µ. In each of these steps, two quantifier levels are removed from the given QBF and a
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refutation for each of the intermediate formulas is produced. This guarantees a winning strategy

for the universal player because in the end the existential player will be faced with an unsatisfiable

formula without universal variables.

We now implement this approach for IR-calc. We start with item 1, showing closure of IR-calc
under restrictions.

Lemma 1. Let π be an IR-calc refutation of Φ and let ε be a partial assignment of existential

variables from Φ. We can then construct from π a refutation πε of Φ|ε.

Proof. Let ε be a partial assignment to the existential variables of Φ and let π = (C1, . . . , Cm = ⊥).

We describe the construction of the restricted proof πε and simultaneously argue that it is a valid

refutation. For this we define inductively clauses C ′i such that

1. if C ′i 6= > then C ′i ⊆ Ci and C ′i has a valid IR-calc derivation in πε.
2. if C ′i = > then ε satisfies Ci, i.e., ε(x) = 1 for some xτ ∈ Ci.

We note that from these two conditions it follows that πε contains a refutation, because Cm = ⊥
and hence C ′m = ⊥, as ε does not satisfy Cm.

We now inductively construct C ′i and show the two items above.

Let Ci be derived by the axiom rule. If ε satisfies a literal l with lτ ∈ Ci for some annotation

τ we set C ′i = >. Otherwise we define C ′i = Ci \ {lτ | l is a literal falsified by ε and τ is an

annotation}.
If Ci is derived by instantiating Cj by τ and C ′j 6= >, then we set C ′i = inst(τ, C ′j). Obviously,

C ′i ⊆ Ci. If C ′i = > then also C ′j = > and ε satisfies Cj by inductive hypothesis. Hence ε also

satisfies Ci in the sense of condition 2.

Assume now that Ci was derived by resolution from Cj and Ck with pivot xτ ∈ Cj and

¬xτ ∈ Ck. We distinguish four cases.

In the first case we have xτ ∈ C ′j and ¬xτ ∈ C ′k. We perform the resolution step and set

C ′i = C ′j ∪ C ′k \ {xτ ,¬xτ}. We then have C ′i ⊆ Cj ∪ Ck \ {xτ ,¬xτ} = Ci, fulfilling condition 1.

In the second case we have xτ 6∈ C ′j and C ′j 6= >, and set C ′i = C ′j . Then C ′i ⊆ Cj \{xτ} ⊆ Ci,
fulfilling condition 1. (In the case of ¬xτ 6∈ C ′k and C ′k 6= > we analogously set C ′i = C ′k.)

The third case is xτ ∈ C ′j and C ′k = >. Then we set C ′i = >. We have to show condition 2.

By inductive hypothesis, ε satisfies Ck, hence ε satisfies some literal l ∈ Ck. Necessarily, l 6=
¬xτ , because otherwise ε falsifies xτ and thus xτ 6∈ C ′j , contradicting our assumption. Thus

l ∈ Ck \ {¬xτ} ⊆ Ci, which satisfies condition 2.

In the last case, C ′j = C ′k = >. We set C ′i = >. By inductive hypothesis, ε satisfies both Cj
and Ck, hence by soundness of the resolution rule also Ci.

Lemma 2. Similarly as in Lemma 1, we can show closure of IRM-calc under restrictions.

Proof. The proof is similar in structure, but we have to be careful of the following:

– We also need to consider the merge rule.
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– IRM-calc has an instantiation part to the resolution rule, so dummy instantiation steps may have

to occur in the reduced proof in place of resolution steps.

– We cannot instantiate ∗ annotations outside of the resolution rule, so we have to instantiate

instead by a constant (e.g. 0). This does not cause any invalid inferences as ∗ is more restrictive

than constants.

– Annotations may differ between the original and reduced proof on ∗, so the clauses in the

reduced proof may not be subsets of the clauses in the original proof. In order to make sure the

clauses in the reduced proof are smaller than the original, we inductively define an injection

from the reduced clause to the original.

– To define such an injection, it will be convenient to treat contraction of two identical literals to

one literal as a separate rule and not perform contraction automatically in the proof system. This

does not affect the complexity of the calculus. Contraction can also be thought of as a special

case of the merging rule.

Details of the reduction are shown in Figure 17. By induction on the derivation depth we show

that this construction yields a valid IRM-calc refutation πε of ∀U.Φ|ε.
The induction hypothesis states that any derived clause C ′ in the reduced proof corresponding

to clause C in the original proof has a valid derivation πC′ . Further, if C ′ is non-tautologous there

is an injection fC : C ′ → C, where fC(lσ
′
) = lσ and σ satisfies the following: dom(σ′) = dom(σ)

and for every c/u ∈ σ′ there is exactly one d/u ∈ σ where d = c or d = ∗. If C ′ is tautologous

then C is satisfied by ε.

The purpose of this injection is to ensure that in the reduced proof the clauses have at most

the number of literals in the original proof. This along with the condition on tautological clauses

ensures that the reduced proof is a refutation. The condition on fC regarding annotations allows

resolution to occur whenever the pivot literals are present.

Base Case. In the axiom step (A), the clause in the reduced proof either has some literals

removed, or is set to > when ε satisfies the clause.

Instantiation. An instantiation step (I) keeps the number of literals exactly the same, giving

rise to a bijection between literals in C and inst(σ,C).

Merging. Consider the first merge case (M1) in Figure 17. In the reduced clause the literals lτ

and lσ become lτ
′

and lσ
′
, respectively. Some ∗ in the annotations τ , σ might be 0 or 1 in τ ′ or σ′.

However, the domains of τ , τ ′, σ, and σ′ are all equal. The reduced proof will contain a merge of

lτ
′

and lσ
′
.

In order to satisfy the annotation condition, we note that wherever a ∗/u appears in ξ′, a ∗/u
will appear in ξ, since it either comes from a ∗ itself or a 0/1 conflict. Either the 0/1 conflict is

present in the original merge or there is a ∗ there by the condition from the induction hypothesis.

This means our condition is satisfied.

Now consider the second merge case (M2) in Figure 17. If the reduced clause contains only

one of the literals, say lτ
′
, the merge step is not performed in πε. The injection is constructed
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Rule Original proof step Proof step reduced by ε Construction of fD
leading to clause D & case condition

A
∨
l∈C,l∈∃ l

[τ ] ∨
l∈C,l∈∃,l/∈var(ε) l

[τ ]
fD(lτ ) = lτC is a clause in φ.

ε does not satisfy C.
τ falsifies all ∀ lit in C.

I
C∨

lτ∈C l
τ ◦ σ

C ′∨
lτ∈C′ l

τ ◦ σ
fD(inst(σ, lτ ))

= inst(σ, fC(lτ ))

M1

C = K ∨ lτ ∨ lσ
K ∨ lξ

K′∨lτ ′∨lσ′

K′∨lξ′
fD(x) =

{
fC(x), x ∈ K ′

lξ, x = lξ
′fC(lτ

′
) = lτ

fC(lσ
′
) = lσ

M2

C′=K′∨lτ ′

K′∨lτ ′
fD(x) =

{
fC(x), x ∈ K ′

lξ, x = lτ
′fC(lτ

′
) = lτ

∀lσ′ ∈ C ′, fC(lσ
′
) 6= lσ

M3
C′

C′ fD(x) = fC(x)∀lσ′ ∈ C ′, lτ 6= fC(lσ
′
) 6= lσ

R1
C1 C2

inst(ξ,K1) ∨ inst(σ,K2)

K′1∨xτ ◦ σ
′
K′2∨¬xτ ◦ ξ

′

inst(ξ′,K′1)∨inst(σ′,K′2)
fD(inst(β, lα)) =

C1 = K1 ∨ xτ ◦ σ

fC1(xτ ◦ σ
′
) = xτ ◦ σ

{
inst(β, fC1(lα)) lα ∈ C ′1
inst(β, fC2(lα)) lα ∈ C ′2

C2 = K2 ∨ ¬xτ ◦ ξ

fC2(¬xτ ◦ ξ′) = ¬xτ ◦ ξ

τ, σ, ξ pairwise disjoint
R2

rng(τ) = {0, 1}

C′1 C′2
inst(ξ′,C′1)

∀lα ∈ C ′1, fC1(lα) 6= xτ ◦ σ fD(inst(ξ′, lα))

ξ′(u) =

{
0 ξ(u) = ∗
ξ(u) else

= inst(ξ, fC1(lα))

R3 K ′1 ∨ xτ ◦ σ
′ >

>
fC1(xτ ◦ σ

′
) = xτ ◦ σ

Fig. 17. Transformation of IRM-calc proof steps under the restriction ε with conditions and
construction of the injection fD

straightforwardly: the literal lτ
′

in the new proof is mapped to the merged literal in the original proof

and all other literals remain the same. The third case (M3) is similar to the second, but simpler.

Merging does not affect the presence of a literal that is satisfied by ε.

Contraction. Contraction is a special case of merging, so the same argument applies.

Resolution. Consider the first resolution case (R1) in Figure 17. The function fD is an injection

due to the induction hypothesis, as well as the fact that we do not perform contraction in this

step. We need to show the required properties hold. Suppose, without loss of generality, lα
′ ∈ K ′1

and fC1(lα
′
) = lα. Since dom(α) = dom(α′) and dom(ξ) = dom(ξ′), then dom(α ◦ ξ) =

dom(α) ∪ dom(ξ) = dom(α′) ∪ dom(ξ′) = dom(α′ ◦ ξ′). This shows that the domains remain

the same under fD, which is one part of the condition. For the remaining part we consider two

cases; either u ∈ dom(α) or u /∈ dom(α), and we let c ∈ {0, 1}.
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For u ∈ dom(α) we have

c/u ∈ α⇒ c/u ∈ α′ ⇒ c/u ∈ α′ ◦ ξ′ and ∗ /u ∈ α′ ⇒ ∗/u ∈ α⇒ ∗/u ∈ α ◦ ξ.

Now suppose u ∈ dom(α ◦ ξ) and u /∈ dom(α). Then

c/u ∈ ξ ⇒ c/u ∈ ξ′ ⇒ c/u ∈ α′ ◦ ξ′ and ∗ /u ∈ ξ′ ⇒ ∗/u ∈ ξ ⇒ ∗/u ∈ α ◦ ξ.

Hence the inductive claim holds.

Consider now the second case (R2). Here C ′1 is simply instantiated, crucially the pivot literal

is missing from C ′1, so fD is an injection. In order to show the inductive condition, we suppose

again that lα
′ ∈ K ′1 and fC1(lα

′
) = lα. Since dom(α) = dom(α′) and dom(ξ) = dom(ξ′), then

dom(α ◦ ξ) = dom(α′ ◦ ξ′). Now let c ∈ {0, 1} and suppose u ∈ dom(α). As in (R1) we have

c/u ∈ α⇒ c/u ∈ α′ ⇒ c/u ∈ α′ ◦ ξ′ and ∗/u ∈ α′ ⇒ ∗/u ∈ α⇒ ∗/u ∈ α ◦ ξ.

Now suppose u ∈ dom(α ◦ ξ) and u /∈ dom(α). ∗/u cannot be in ξ′ because ∗ annotations

become 0. All 0/1 annotations remain the same. This satisfies the inductive condition.

Finally, consider the third case (R3), which has a tautological resolvent. By induction hypothesis

ε satisfiesC2, but ε cannot satisfy ¬x since this would prevent any x literal from appearing anywhere

in the reduced proof, such as the one we require for fC1(xτ ◦ σ
′
) = xτ ◦ σ. Hence ε satisfies K2 and

thus satisfies D.

We now proceed with item 2 of our general approach to strategy extraction, i.e., we show that

the strategy for the universal player on U can be read off from πε. In fact, we show a slightly more

general statement for arbitrary IR-calc proofs.

Lemma 3. Let π be an IR-calc refutation of a QBF starting with a block of universally quantified

variables U . Consider the set of annotations µ on variables U that appear anywhere in π. Then µ

is non-contradictory.

Proof. The proof proceeds by induction on the derivation depth. Let µC denote the set of annotations

to variables in U appearing anywhere in the derivation of C (i.e., we only consider the connected

component of the proof dag with sink C). The induction hypothesis states:

(i) The set µC is non-contradictory.

(ii) For every literal lσ ∈ C, it holds that µC ⊆ σ.

Base Case. Condition (i) is satisfied by the axioms, because we are assuming that there are no

complementary literals in clauses in the matrix. Condition (ii) is satisfied because all existential

literals are at a higher level than the variables of U .

Instantiation. Let u ∈ U and C = inst(c/u,C ′) in the proof π. By induction hypothesis, u

either appears in the annotations of all the literals lξ in C ′ or it does not appear in any of them. In

the first case, the instantiation step is ineffective. In the second case, c/u is added to all literals in C.
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By the induction hypothesis, u does not appear in any annotation of any clause in the sub-proof

deriving C ′, and hence C is the first clause containing u.

Resolution. Let C be derived by resolving xτ ∨ C1 and ¬xτ ∨ C2. Let u ∈ U . Consider the

following cases:

Case 1. c/u ∈ τ . By induction hypothesis, c/u appears in all annotations of C1, C2 and hence

in all annotations of the resolvent.

Case 2. u /∈ dom(τ). Then u does not appear as annotation anywhere in the derivation of either

of the antecedents and neither it will appear in the resolvent.

Remark 1. We can show that Lemma 3 also holds for IRM-calc.

Proof. To do this we add a third condition to the inductive claim.

(iii) ∗/u /∈ µC , for any u ∈ U .

Since ∗ is only introduced by the merging rule, we argue that we do not obtain any annotations

involving ∗/u for u ∈ U . This holds because by condition (i) there are never contradictory

annotations on u.

Therefore we obtain winning strategies. Given a QBF ∃E∀U.Φ and an assignment ε to the

leftmost existential block E, we construct an assignment to the universal variables U by collecting

all the assignments µ to U appearing in annotations in πε (or instantiations when we have the empty

clause instantiated immediately); any variable not appearing in πε is given an arbitrary value.

To obtain πε,µ, remove occurrences of U -variables from the annotations in the proof πε. This

yields a valid refutation because by Lemma 3 for each variable in U only a single-value constant

annotation can appear in the entire proof πε.

Theorem 2. The construction above yields a winning strategy for the universal player.

Proof. For any QBF Γ = ∃E∀U.Φ and assignment ε to E, the above construction provides an

IR-calc (IRM-calc) refutation πε,µ of Φ|ε∪µ. This process is iterated until no universal variables are

left in the formula. Hence we get an IR-calc (IRM-calc) refutation of whatever was left from the

matrix of Γ . Since an IR-calc (IRM-calc) refutation on a formula with no universal variables is in

fact a classical propositional resolution refutation, we are left with an unsatisfiable formula, i.e. a

formula with no winning move for the existential player. Hence, all the considered assignments

correspond to a game won by the universal player. Since this process works for any assignment

made by the existential player, it yields a winning strategy for the universal player.

The soundness of IR-calc (IRM-calc) follows directly from Theorem 2.

Corollary 1. The calculi IR-calc and IRM-calc are sound.

44



4. EXPANSION-BASED RESOLUTION CALCULI
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Fig. 18. The simulation order of QBF resolution systems

4.4 Completeness and Simulations of Known QBF Systems

In this section we prove that our calculi simulate the main existing resolution-based QBF proof

systems, doing so we add the new simulations shown in Figure 18, which in Chapters 5 and 6 we

show are the only remaining simulations. As a by-product, this also shows completeness of our

proof systems IR-calc and IRM-calc. We start by simulating Q-resolution, which is even possible

with our simpler calculus IR-calc.

Theorem 3. IR-calc p-simulates Q-Res.

Proof. Let C1, . . . , Ck be a Q-Res proof. We translate the clauses into D1, . . . , Dk, which will

form the skeleton of a proof in IR-calc. Below we describe how this translation works and we

repeat this in Figure 19.

– For an axiom Ci in Q-Res we introduce the same clause Di by the axiom rule of IR-calc, i.e.,

we remove all universal variables and add annotations.
– If Ci is obtained via ∀-reduction from Cj , then Di = Dj .
– Consider now the case that Ci is derived by resolving Cj and Ck with pivot variable x. Then

Dj = xτ ∨ Kj and Dk = ¬xσ ∨ Kk. We instantiate to get D′j = inst(σ,Dj) and D′k =

inst(τ,Dk). Define D′i as the resolvent of D′j and D′k. In order to obtain Di we must ensure

that there are no identical literals with different annotations. For this consider the set ζ ={
c/u | c/u ∈ t, lt ∈ D′i

}
and define Di = inst(ζ,D′i). This guarantees that we will always

have fewer literals in Di than in Ci, and we get a refutation.
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Q-Res rule IR-calc p-simulation

(axiom)
Ci

(axiom)
Di = {lrestrictl(τ) | l ∈ Ci, l ∈ ∃}

τ = {0/u | u is universal in C}
Cj (red)
Ci

Dj

Di = Dj

Cj = Kj ∨ x Ck = Kk ∨ ¬x
(res)

Ci

Dj = K′j ∨ xτ
(inst)

inst(σ,Dj)
Dk = K′k ∨ ¬xσ (inst)

inst(τ,Dk)
(res)

D′i = inst(σ,Dj) ∪ inst(τ,Dk)\{xτ ◦ σ,¬xτ ◦ σ}
(inst)

Di = inst(ζ,D′i)

ζ =
{
c/u | c/u ∈ t, lt ∈ D′i

}
Fig. 19. A table outlining the IR-calc p-simulation of Q-Res

We will prove inductively on the lines of the proof starting from the axioms, that the resolution

steps are valid, by showing that τ and σ are not contradictory and ζ does not contain contradictory

annotations.

Induction Hypothesis. For all existential literals l we have l ∈ Ci if and only if lt ∈ Di for

some annotation t. Additionally, if 0/u ∈ t for a literal u, then u ∈ Ci (where for a variable x, we

equivalently denote the annotation 1/x by 0/¬x).

Before proving the induction we argue that this yields the claim above. Assume for a contradic-

tion that τ contradicts σ. This means that for some universal variable u, both u and ¬u appear in

Ci, which is not allowed; similarly if ζ contains contradictory annotations.

We now show the inductive claim by induction on the proof length.

Base case: Axiom. lt ∈ Di if and only if l ∈ Ci by definition. As annotations falsify all universal

literals in the original clause, 0/u ∈ t for literal u implies u ∈ Ci.
Inductive step: ∀-Reduction. Suppose Ci is obtained via universal reduction from Cj . We have

lt ∈ Di iff lt ∈ Dj , iff l ∈ Cj . Since l is existential it is not reduced and l ∈ Ci. If 0/u is in t, by

inductive hypothesis we have u ∈ Cj . Further, u cannot be reduced in this step because it is blocked

by l; hence u ∈ Ci. If l ∈ Ci then l ∈ Cj , so by induction hypothesis there is some t such that

lt ∈ Dj , and hence lt ∈ Di. Assume now lt ∈ Dj and 0/u ∈ t. By inductive hypothesis we have

u ∈ Cj .
Resolution. Suppose that Ci is derived by resolving Cj and Ck over variable x, and Dj =

xτ ∨ K ′j and Dk = ¬xσ ∨ K ′k. Then lt ∈ Di iff lt
′ ∈ D′i iff lt

′ ∈ inst(σ,K ′j) ∪ inst(τ,K ′k) iff

lt
′′ ∈ K ′j ∪K ′k iff l ∈ Cj ∪ Ck\{x,¬x} iff l ∈ Ci (cf. Figure 19).

Without loss of generality, if 0/u ∈ t then there is some literal pt
′ ◦ σ ∈ D′i (with pt

′ ∈ Dj)

such that 0/u ∈ t′ ◦ σ. If 0/u ∈ t′ then u ∈ Cj by inductive hypothesis, and if 0/u ∈ σ then

u ∈ Ck, again by inductive hypothesis; hence u ∈ Ci. ut

Despite its simplicity, IR-calc is powerful enough to also simulate the expansion proof system

∀Exp+Res from [74].
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Theorem 4. IR-calc p-simulates ∀Exp+Res.

Proof. Let C1, . . . , Ck be an ∀Exp+Res proof. We transform it into an IR-calc proof D1, . . . , Dk

as follows. If Ci is an axiom from clause C and assignment τ we construct Di by taking the IR-calc
axiom rule for C and then instantiating with inst(τ, C). If Ci is derived by resolving Cj , Ck over

variable xτ , then Di is derived by resolving Dj , Dk over variable xτ . This yields a valid IR-calc
proof because lt ∈ Di iff lt ∈ Ci, which is preserved under applications of both rules. ut

∀Exp+Res rule IR-calc p-simulation

(ax)
Ci = {lrestrictl(σ) | l ∈ C, l ∈ ∃}

σ is a complete assignment that does not
satisfy C.

(ax)
D′i = {lrestrictl(τ) | l ∈ Ci, l ∈ ∃} (inst)

Di = inst(σ,D′i)

τ = {0/u | u is universal in C}
Cj = Kj ∨ xτ Ck = Kk ∨ ¬xτ

(res)
Ci

Dj = Kj ∨ xτ Dk = Kk ∨ ¬xτ
(res)

Di

Fig. 20. A table outlining the IR-calc p-simulation of ∀Exp+Res

We now come to the simulation of a more powerful system than Q-resolution, namely LD-Q-
Res from [10]. We show that this system is simulated by IRM-calc. Compared to Theorem 3, the

proof uses a similar, but more involved technique.

Theorem 5. IRM-calc p-simulates LD-Q-Res.

Proof. Consider an LD-Q-Res refutation C1, . . . , Cn. We construct clauses D1, . . . , Dn, which

will form the skeleton of the IRM-calc proof. The construction will preserve the following four

invariants for i = 1, . . . , n.

(1) For an existential literal l, it holds that l ∈ Ci iff lt ∈ Di for some t.
(2) The clause Di has no literals lt1 and lt2 such that t1 6= t2.
(3) If lt ∈ Di with 0/u ∈ t, then u ∈ Ci or u∗ ∈ Ci, likewise if lt ∈ Di with 1/u ∈ t, then

¬u ∈ Ci or u∗ ∈ Ci.
(4) If lt ∈ Di with ∗/u ∈ t, then u∗ ∈ Ci.

The actual construction proceeds as follows (also see Figure 21). If Ci is an axiom, Di is

constructed by the axiom rule from the same clause. If Ci is a ∀-reduction of Cj with j < i, then we

set Di equal to Dj . If Ci is obtained by a resolution step from Cj and Ck with j < k < i, the clause

Di is obtained by a resolution step from Dj and Dk, yielding clause K, and by performing some

additional steps on K. Firstly, we let θ = {c/u | c ∈ {0, 1}, c/u ∈ t, lt ∈ K} ∪ {0/u | ∗/u ∈
t, lt ∈ K}. Here θ is chosen because we cannot instantiate by ∗. We perform instantiation on K by

substitutions in θ, in any order, to derive K ′. After this, all annotations in K ′ have the same domain.

We merge all pairs of literals lσ, lτ ∈ K ′ with τ 6= σ (in any order) to derive Di.
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LD-Q-Res rule IRM-calc p-simulation

(axiom)
Ci

(axiom)
Di = {lrestrictl(τ) | l ∈ Ci, l ∈ ∃}

τ = {0/u | u is universal in C}
Cj (red)
Ci

Dj

Di = Dj

Cj = Kj ∨ Uj ∨ x Ck = Kk ∨ Uk ∨ ¬x
(res)

Ci = Kj ∪Kk ∨ U

Dj = K′j ∨ xτ∪σ Dk = K′k ∨ ¬xτ∪ξ
(res)

K = inst(ξ,K′j) ∪ inst(σ,K′k)
(inst)

K′ = inst(θ,K)
(merge)

Di

θ = {c/u | c ∈ {0, 1}, c/u ∈ t, lt ∈ K} ∪ {0/u |
∗/u ∈ t, lt ∈ K}
Merge is on all pairs of literals lσ, lτ ∈ K′ with τ 6= σ.

Fig. 21. A table outlining the IRM-calc p-simulation of LD-Q-Res

To show that this construction yields a valid IRM-calc refutation, we first need to prove the

invariants above. This proceeds by induction on i.

Base case (axiom). Because we do not remove or add any existential literals in the axiom

case, condition (1) holds. Likewise we do not create duplicates, so (2) holds. Any 0/1 annotation

corresponds exactly to the opposite literal appearing in the clause, by definition of the axiom rule,

hence (3) holds. As we do not obtain any ∗ annotations from axioms, (4) holds.

Inductive step (∀-reduction). Consider a ∀-reduction step from Cj to Ci on universal variable

u. Because we do not alter the existential literals in a ∀-reduction and the corresponding clause

Di in the IRM-calc proof remains unchanged, conditions (1) and (2) are satisfied by induction

hypothesis. For conditions (3) and (4) we note that Dj cannot contain any annotations involving u.

This holds because u would only appear as annotation on existential literals with level higher than

u. These cannot exist as they would be blocking the reduction by (1).

Resolution step. For this consider Cj , Ck being resolved in LD-Q-Res to obtain Ci as in Fig-

ure 21. As only the resolved variable is removed, which is removed completely due to condition (2),

Di fulfils (1). By induction hypothesis we know that there can be at most two copies of each variable

when we derive K. Their annotations have the same domain in K ′, because instantiation by θ

applies the entire domain of all annotations in the clause to all its literals. It then follows that all

copies of identical literals are merged into one literal in Di. Therefore (2) holds for Di.

To prove (3) consider the case where lt ∈ Di with 0/u ∈ t. The case with 1/u ∈ t is analogous.

We know that 0/u appearing in Di means that 0/u must appear in K ′ as merging cannot produce a

new annotation 0/u. Existence of 0/u in K ′ means that either ∗/u appears in K or 0/u appears in

K. No new annotations are created in a resolution step, so either ∗/u or 0/u must appear in one or

more of Dj , Dk. By induction hypothesis this means that u or u∗ appears in Cj ∪Ck, hence also in

Ci.
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To show condition (4), let lt ∈ Di with ∗/u ∈ t. Then either ∗/u is present in K ′, or 0/u and

1/u are present in K ′ and will be merged. In the first case it is clear that some ∗/u annotation

appears in K and thus in Dj or in Dk, in which case from (4) of the induction hypothesis u∗

must appear in Ci. In the second case it is possible that 0/u in K ′ was obtained from ∗/u in K.

Thus as already argued, u∗ must appear in Ci. If instead 1/u, 0/u are both present in K then they

must come from the original clauses Dj , Dk. If they both appear in the same clause Dj , then by

condition (3) it must be the case that u∗ appears in Cj and thus in Ci. If, however, they appear in

different clauses, then by (3) either of the clauses Cj , Ck contains u∗ or they contain literals over u

of opposite polarity. Both situations merge the literals to u∗ ∈ Ci .

We now show that these invariants imply that we indeed obtain a valid IRM-calc proof. We

only need to consider the resolution steps. Suppose xt1 ∈ Dj and ¬xt2 ∈ Dk where Cj and Ck are

resolved on x to get Ci in the LD-Q-Res proof. To perform the resolution step between Dj and Dk

we need to ensure that we do not have c/u ∈ t1, d/u ∈ t2 where c 6= d or c = d = ∗. Assume on

the contrary that ∗/u ∈ t1 and c/u ∈ t2. By (4) we have u∗ ∈ Cj , and by (3) some literal of u is

in Ck. But as lv(u) < lv(x) the LD-resolution of Cj and Ck on variable x is forbidden, giving a

contradiction. Similarly, if there is 0/u ∈ t1 and 1/u ∈ t2, then either we get the same situation or

we have two opposite literals of u in the different clauses Cj , Ck. In either case the resolution of

Cj , Ck is forbidden. Hence the IRM-calc proof is correct.

It is not difficult to see that the IRM-calc proof is indeed a refutation and all steps of the

construction can be performed in polynomial time, thus we obtain a p-simulation. ut

We use IR-calc and IRM-calc for our proof complexity investigation in the remaining chapters.

In particular, we show relevant lower bounds and separations in Chapter 6 and we show a connection

to dependency QBF (DQBF) in Chapter 10. We will continue the comparison of QCDCL and

expansion solving in Chapter 5.
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Chapter 5

Strategy Extraction: Lower Bounds for
CDCL Resolution Calculi
In Chapter 3 we introduced the CDCL-style QBF proof systems Q-resolution and its adaptations;

LD-Q-Res, QU-Res and LQU+-Res. Chapter 4 introduced ∀Exp+Res and the two new calculi

IR-calc and IRM-calc, which are expansion-based QBF proof systems. These seven calculi as well

as the tree-like version of Q-Res, give us all the QBF resolution calculi that are of part of our

investigation into the simulation order of QBF resolution.

We already know many simulations for QBF resolution calculi; many of the systems naturally

p-simulate each other by definition. There are other p-simulations such as the one in [74] and

those in Theorems 3, 4 and 5. In fact, in this chapter and Chapter 6 we show these are the only

simulations. The remaining relations are exponential separations where there are false formulas that

have polynomial-size refutations in one system, but require exponential size in another system. We

detail all simulations and separations in Figure 22.

This chapter further explores the dichotomy between CDCL-solving and expansion based

solving. We primarily explore the relation between Q-Res and ∀Exp+Res.

We exhibit a new method to obtain lower bounds to the proof size in QBF proof systems, which

directly allows to transfer circuit lower bounds to size of proof lower bounds. This method is based

on the property of strategy extraction, which is known to hold for many resolution-based QBF proof

systems.

The basic idea of our method is both conceptually simple and elegant: if we know that a family

ϕn of false QBFs requires large winning strategies, then proofs of ϕn must be large in all proof

systems with feasible strategy extraction. Now we need suitable formulas ϕn. Starting with a

language L — for which we know (or conjecture) circuit lower bounds — we construct a family of

false QBFs ϕn such that every winning strategy of the universal player for ϕn will have to compute

L for inputs of length n. Consequently, a circuit lower bound for L directly translates into a lower

bound for the winning strategy and therefore the proof size.

Carefully implemented, our method yields unconditional lower bounds. For Q-Res (and QU-
Res) it is known that strategy extraction is computationally easy [10]; it is in fact possible in

AC0 as we verify here. Using the hardness of parity for AC0 we can therefore construct formulas

QPARITYn that require exponential-size proofs in Q-Res (and QU-Res).

Conceptually, our lower bound method via strategy extraction is similar to the feasible interpo-

lation technique [80], which is one of the most successful techniques in classical proof complexity.

In feasible interpolation, circuit lower bounds are also translated into proof size lower bounds.
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However, feasible interpolation only works for formulas of a special syntactic form, while our

technique directly applies to arbitrary languages. It is a long-standing belief in the proof complexity

community that there exists a direct connection between progress for showing lower bounds in

circuit complexity and for proof systems (cf. [44]). For QBF proof systems our technique makes

such a connection very explicit.

Section 5.1 shows the new lower bound for QU-Res (and thus for Q-Res). We use a new

general technique that is widely applicable- strategy extraction. We illustrate this technique here

with an exponential lower bound for parity formulas in QU-Res. This provides a separation between

QU-Res and ∀Exp+Res. We then lift this lower bound to the long-distance systems LD-Q-Res
and LQU+-Res (Section 5.2).

The work in this chapter appeared at the 32nd Symposium on Theoretical Aspects of Computer

Science [19].

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

5

9
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strictly stronger (p-simulates,
but exponentially separated)

incomparable (mutual
exponential separations)

new results

expansion solving
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Simulation Separation Incomparable
1 [74] [74] 10 [74], Cor. 2
2 by def. [36] 11 [11]
3 Thm. 4 [74], Thm. 3 12 Cor. 6, Cor. 4
4 Thm. 3 Cor. 2 13 Cor. 7, Thm. 5
5 by def. [53] 14 Cor. 6, Cor. 4
6 by def. [116]
7 by def. Thm. 5, Cor. 6
8 Thm. 5 Cor. 4
9 by def. [11]

Fig. 22. The simulation order of QBF resolution systems
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5.1 Lower Bounds for Q-Res and QU-Res via Strategy Extraction

The lower bound argument hinges on strategy extraction, which is a widely used paradigm in QBF

solving and proof systems. We recall that QU-Res admits strategy extraction via a computationally

very restricted model, namely decision lists.

Definition 5 (decision list [105]). A decision list D = (t1, c1), . . . , (tn, cn) is a finite sequence of

pairs where ti is a term and ci ∈ {0, 1} is a Boolean constant. Additionally, the last term is the

empty term (equivalent to true). For an assignment µ, a decision list D evaluates to ci if i is the

least index such that µ |= ti, in such case we say that (ti, ci) triggers under µ.

Intuitively decision lists code a succession of “if-then-else” queries in order that return true/false

after a condition is satisfied. Winning strategies in form of decision lists can be efficiently extracted

from QU-Res proofs:

Theorem 6 (Balabanov, Jiang, Widl [10,11]). Given a Q-Res or QU-Res refutation π of QBF φ,

there exists a winning strategy for the universal player for φ, such that each of its strategies for the

universal variables are computable by a decision list of size polynomial in |π|.

Balabanov et al. use a different form than decision lists, but it is semantically equivalent. We

deem decision lists as more intuitive for our purposes. Note that that under our definition, a strategy

for a universal variable may take as input the outputs of strategy functions with a smaller index

(similarly as in the strategy construction by Goultiaeva et al. [65]).

The general idea behind our lower bound technique is as follows. First, we observe that we

can define a family of QBFs φf such that every winning strategy of the universal player must

compute a unique Boolean function f (Lemma 4). If we know that strategy extraction is possible

by a weak computational model, say AC0, we can carefully choose the Boolean formula φf such

that the unique winning strategy f cannot be computed by AC0 circuits. As the extracted strategy is

polynomial in the proof, this implies a lower bound on the proof size. Thus we immediately turn

circuit lower bounds to lower bounds for the proof size.

We will now implement this idea for the parity function PARITY(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn,

which is the classical example of a function not computable in AC0.1

Theorem 7 (Ajtai [1], Furst, Saxe, Sipser [59], Håstad [67]). PARITY /∈ AC0. In fact, every

non-uniform family of bounded-depth circuits computing PARITY is of exponential size.

We first observe how to construct a QBF that forces a unique winning strategy.

Lemma 4. Consider the QBF ∃x1, . . . , xn∀z. (z ∨ φf )∧ (¬z ∨¬φf ), where φf is a propositional

formula depending only on the variables x1, . . . , xn. Let f : 2n → {0, 1} be a Boolean function

that returns 1 iff φf evaluates to true. Then there is a unique strategy for the universal player for z,

which is z ← f .
1 The parity function determines if the number of true variables is odd (⊕ denotes exclusive-or).
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Proof. The strategy for z may only depend on the variables x1, . . . , xn and it must be so that the

matrix evaluates to false under the given assignment µ to the xi variables. By inspecting the matrix,

z must be set to 0 whenever φf evaluates to 0 and the other way around. ut

We will now use this idea specifically for the parity function. Consider the QBF

Φ = ∃X∀z∃T.(F+ ∧ F−)

where F+ is a CNF encoding of z ∨ PARITY(X) and F− encodes ¬z ∨ ¬PARITY(X). Both F+

and F− use additional variables in T . More precisely, for N > 1 define QPARITYN as follows. Let

xor(o1, o2, o) be the set of clauses {¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨ o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o},
which defines o to be o1 ⊕ o2.

Definition 6. Define QPARITYN as

∃x1, . . . , xN ∀z ∃t2, . . . , tN . xor(x1, x2, t2) ∪
⋃N
i=3 xor(ti−1, xi, ti) ∪ {z ∨ tN ,¬z ∨ ¬tN}.

Note that since we want to encode parity in CNF, i.e. a bounded-depth formula, and PARITY /∈ AC0,

we need to use further existential variables (recall that existential AC0 characterises all of NP).

Choosing existential variables ti to encode the prefix sums x1⊕· · ·⊕xi of the parity x1⊕· · ·⊕xN
provides the canonical CNF formulation of parity.

To use the lower bound of Theorem 7 we need to verify that QU-Res enables strategy extraction

in AC0. This holds as decision lists can be turned into bounded-depth circuits.

Lemma 5. If fD can be represented as a polynomial-size decision list D, then fD ∈ AC0.

Proof. Let S = {i | (ti, 1) ∈ D} be the indices of all pairs in D with 1 as the second component.

Observe that fD evaluates to 1 under µ iff one of the ti with i ∈ S triggers under µ. For each ti
with i ∈ S construct a function fi = ti ∧

∧i−1
l=1 ¬tl. Construct a circuit for the function

∨
i∈S fi,

which is equal to fD and is computable in AC0 as all ti are just terms. ut

We can now put everything together and turn the circuit lower bound of Theorem 7 into a lower

bound for proof size in QU-Res.

Theorem 8. Any QU-Res refutation of QPARITYN is of exponential size in N .

Proof. By Lemma 4 there is a unique strategy for the variable z in QPARITYN , which is the PARITY

function on N variables. From Theorem 6, there is a polynomial-time algorithm for constructing

a decision list DN from any QU-Res refutation of QPARITYN . DN must be a decision list

computing the parity function. Such decision list can be converted in polynomial time into a circuit

with bounded depth by Lemma 5. Due to Theorem 7 the bounded depth circuit and the decision list

computing parity must be of exponential size in N . ut

In contrast to this lower bound, the parity formulas are easy in ∀Exp+Res.
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Lemma 6. The formulas QPARITYN have polynomial-size ∀Exp+Res refutations.

Proof. Instantiate all clauses in both polarities of z, which generates the clauses xor(x1, x2, t
0/z
2 )∪⋃N

i=3 xor(t
0/z
i−1, xi, t

0/z
i ) ∪ {t0/zN } and xor(x1, x2, t

1/z
2 ) ∪

⋃N
i=3 xor(t

1/z
i−1, xi, t

1/z
i ) ∪ {¬t1/zN }.

Inductively, for i = 2, . . . , N derive clauses representing t0/zi ⇔ t
1/z
i . This lets us derive a

contradiction using the clauses t0/zN and ¬t1/zN . ut

Theorem 8 together with Lemma 6 immediately give the following separations.

Corollary 2. Q-Res and QU-Res do not simulate ∀Exp+Res, IR-calc, IRM-calc.

This also has consequences for the complexity of strategy extraction in ∀Exp+Res.

Corollary 3. Winning strategies for ∀Exp+Res cannot be computed in AC0. This even holds when

the system ∀Exp+Res is restricted to formulas with constant quantifier complexity.

Proof. The formulas QPARITYN have polynomial-size ∀Exp+Res refutations by Lemma 6. Hence

we cannot extract strategies in AC0 as these would compute parity. ut

Note, however, that strategy extraction for ∀Exp+Res and in fact even IRM-calc is in P due to

Theorem 2.

5.2 Extending the Lower Bound to LD-Q-Res and LQU+-Res

We now aim to extend the lower bound from the previous section to stronger QBF proof systems

using long-distance resolution. For this we cannot directly use the strategy extraction method from

the last section. In fact the formulas do not work as a lower bound as we show in Theorem 9.

However, we will slightly modify the parity formulas and then reduce the hardness of those in the

stronger systems to the hardness of QPARITY in Q-Res. As the modified formulas remain easy for

∀Exp+Res, these lower bounds imply many new separations between the proof systems involved.

We first show that short proofs exists in LD-Q-Res for QPARITY.

Theorem 9. There are O(N) length LD-Q-Res refutations of QPARITYN .

Proof. We can utilise long distance resolution to merge the polarities of the z literals.
xn∨tn−1∨¬tn z∨tn ¬xn∨¬tn−1∨¬tn xn∨¬tn−1∨tn¬z∨¬tn¬xn∨tn−1∨tn

xn∨z∨tn−1 ¬xn∨z∨¬tn−1 xn∨¬z∨¬tn−1¬xn∨¬z∨tn−1

z∗∨tn−1 z∗∨¬tn−1

We can inductively use z∗ ∨ ti, z∗ ∨ ¬ti to derive z∗ ∨ ti−1, z
∗ ∨ ¬ti−1 for 1 < i < n.

xi∨ti−1∨¬ti z∗∨ti ¬xi∨¬ti−1∨¬ti xi∨¬ti−1∨tiz∗∨¬ti¬xi∨ti−1∨ti

xi∨z∗∨ti−1 ¬xi∨z∗∨¬ti−1 xi∨z∗∨¬ti−1¬xi∨z∗∨ti−1

z∗∨ti−1 z∗∨¬ti−1
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And finally we can derive the empty clause.
x1∨x2∨¬t2 z∗∨t2 ¬x1∨¬x2∨¬t2 ¬x1∨x2∨t2z∗∨¬t2x1∨¬x2∨tn

x1∨x2∨z∗ ¬x1∨¬x2∨z∗ ¬x1∨x2∨z∗x1∨¬x2∨z∗

x1∨z∗ ¬x1∨z∗

z∗

⊥

The DAG-like nature of these proofs gives a linear size. ut

In order to separate LD-Q-Res and ∀Exp+Res we need a new set of formulas. For this we

consider a variant of the parity formulas. Let xorl(o1, o2, o, z) be the set of clauses {z ∨ ¬o1 ∨
¬o2 ∨ ¬o, z ∨ o1 ∨ o2 ∨ ¬o, z ∨ ¬o1 ∨ o2 ∨ o, z ∨ o1 ∨ ¬o2 ∨ o} (xorl defines o to be equal to

o1 ⊕ o2 if z = 0). The formulas LQPARITYN are constructed from QPARITYN by replacing each

occurrence of xor(. . . ) by two copies xorl(. . . , z) and xorl(. . . ,¬z), yielding

∃x1, . . . , xN∀z∃t2, . . . , tN . xorl(x1, x2, t2, z) ∪
N⋃
i=3

xorl(ti−1, xi, ti, z)

∪ xorl(x1, x2, t2,¬z) ∪
N⋃
i=3

xorl(ti−1, xi, ti,¬z) ∪ {z ∨ tN ,¬z ∨ ¬tN}.

It is easy to verify that the same arguments as for QPARITY in Section 5.1 also apply to LQPARITY,

yielding:

Proposition 1. The formulas LQPARITYN have polynomial-size ∀Exp+Res refutations, but re-

quire exponential-size Q-Res refutations.

We now want to show that LQPARITY is hard for LD-Q-Res by arguing that long-distance

steps do not help to refute these formulas. In the next two lemmas we will show that this actually

applies to all QBFs Φ meeting the following condition.

Definition 7. We say that z is completely blocked in a QBF Φ, if all clauses of Φ contain the

universal variable z and some existential literal l such that lv(z) < lv(l).

Lemma 7. Let Φ be a QBF and z be completely blocked in Φ. Let further C be a clause derived

from Φ by LD-Q-Res. If C contains some existential literal l such that lv(z) < lv(l), then z ∈ C,

¬z ∈ C, or z∗ ∈ C.

Proof. We prove the lemma by induction on the derivation depth. The base case is established by

the clauses in the matrix of Φ due to the condition that z must be in all matrix clauses and also that

all these clauses contain some existential literal that blocks z.
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The hypothesis is preserved by ∀-reduction because a literal over z cannot be ∀-reduced if the

clause contains an existential literal l with lv(z) < lv(l).

Consider now two clauses C1 = D1 ∨ x and C2 = D2 ∨ ¬x resolved into the clause C3. If

C3 contains some literal l such that lv(z) < lv(l), then one of C1, C2 must contain l and from

induction hypothesis it must also contain the variable z, which then appears in C3. ut

Lemma 8. Let Φ be a QBF such that z is completely blocked in Φ and let π be a refutation of Φ

such that the variable z is ∀-reduced as early as possible. Then the derivation of the empty clause

in π does not contain z∗ in any of its clauses.

Proof. Assume that we have a clause C in π that contains z∗. We will argue that C is not necessary

to derive the empty clause ⊥, i.e., there is no path in π from C to ⊥. Since z∗ does not appear in

any of the matrix clauses, there must be a resolution step where it is introduced. Consider any such

two clauses C1 = D1 ∨ x ∨ z and C2 = D2 ∨ ¬x ∨ ¬z resolved into C = D3 ∨ z∗. From the

assumption that ∀-reductions are carried out as soon as possible, in both clauses C1 and C2 there

must be some literals that block z and ¬z, respectively. From the conditions on LD-Q-Res, x or

¬x cannot be the blocking literal (it must be that lv(x) < lv(z) upon merging). This means that C

contains at least one literal b that blocks z∗.

Now we argue that b cannot be resolved away. For contradiction assume that there is a resolution

step of some C ′ and D on b where there is a path from C to C ′. Moreover, let that be the first

resolution step on b, i.e., b appears in all clauses on the path between C and C ′. From Lemma 7, the

clause D must contain a literal on the variable z. But this contradicts the conditions of LD-Q-Res
because resolution steps are not permitted on literals b with lv(z) < lv(b) if one of the antecedents

contains a merged literal z∗ and the other contains some literal on z. This means that C does not

participate in the derivation of the empty clause ⊥. ut

This enables us to prove the hardness of LQPARITY in LD-Q-Res.

Theorem 10. Any refutation of LQPARITYN in LD-Q-Res is exponential in N .

Proof. Any LD-Q-Res refutation π can be translated in polynomial time into a refutation π′ such

that ∀-reductions are carried out as soon as possible (such a refutation has clauses that are equal to

the clauses of π or some universal literals are missing). From Lemma 8, the derivation of ⊥ in π′

contains no occurrences of the merged literal z∗, hence any such clauses can be removed from the

refutation. Therefore π′ is in fact also a Q-Res refutation. Hence, π must be exponential in N due

to Proposition 1. ut

Theorem 11. There are O(N) length LQU+-Res refutations of LQPARITYN .

Proof. We simply derive the clauses in xor(o1, o2, o) from xorl(o1, o2, o, z) and xorl(o1, o2, o,¬z)
by resolving the clauses on z. In other words we can derive QPARITYN from LQPARITYN in an

O(N) length proof, then we use Theorem 9 and the fact that LQU+-Res simulates LD-Q-Res to

complete our short proof. ut
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Our next goal is to extend the lower bound for the parity formulas to the system LQU+-Res,

which enables both long-distance and universal resolution. For this we must again modify the

formula QPARITY, using a similar technique as in [11]. The trick is essentially to double the

universal literals so they form tautological clauses when resolved. This way resolution on universal

variables does not give any advantage.

We define formulas QUPARITYN from LQPARITYN as follows: replace the universal quantifier

∀z by two new quantifiers ∀z1∀z2 and replace all occurrences of the literal z by z1∨ z2 and likewise

of ¬z by ¬z1 ∨ ¬z2. This gives the formulas QUPARITYN

∃x1, . . . , xN∀z1, z2∃t2, . . . , tN .xoru(x1, x2, t2, z1, z2) ∪
N⋃
i=3

xoru(ti−1, xi, ti, z1, z2) ∪ xoru(x1, x2, t2,¬z1,¬z2) ∪

N⋃
i=3

xoru(ti−1, xi, ti,¬z1,¬z2) ∪ {z1 ∨ z2 ∨ tN ,¬z1 ∨ ¬z2 ∨ ¬tN},

where xoru(o1, o2, o, l1, l2) is the set of clauses

{l1 ∨ l2 ∨¬o1 ∨¬o2 ∨¬o, l1 ∨ l2 ∨ o1 ∨ o2 ∨¬o, l1 ∨ l2 ∨¬o1 ∨ o2 ∨ o, l1 ∨ l2 ∨ o1 ∨¬o2 ∨ o}.

It is clear that these formulas are false as the universal player should play both z1 and z2 as they

would z in QPARITY.

We will now assume that in an LQU+-Res refutation we ∀-reduce immediately. It is easy to

verify that this does not increase proof size (cf. also Proposition 1 in [11]). For QUPARITY we now

show an analogous result to Lemma 7.

Lemma 9. Let C be a clause in an LQU+-Res refutation of QUPARITYN where ∀-reduction steps

are performed as soon as possible. If C contains some existential literal l such that lv(z2) < lv(l),

then either z1, z2 ∈ C, or ¬z1,¬z2 ∈ C, or z∗2 ∈ C.

Proof. The proof is the same as for Lemma 7, except for the possibility of universal resolution

steps. As ∀-reductions are required to happen immediately, in our induction hypothesis we know

that a z1 literal can only occur together with the corresponding z2 literal. Therefore resolving on z1

removes this variable and merges the complementary z2 literals; hence we get the z∗2 literal.

The merged literals cannot be pivots, neither can z2. This holds because we know by induction

hypothesis that when z2 appears unmerged, then also z1 appears unmerged with the same polarities.

Hence resolving with z2 as the pivot would merge z1, which is illegal due to the index restriction.

ut

We now argue that neither long-distance nor universal resolution steps help to refute QUPARITY.

Lemma 10. Any LQU+-Res refutation of QUPARITYN does not contain any clauses with z∗1 or

z∗2 or any application of resolution on universal pivots.
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Proof. We first argue for z∗2 . Let z∗2 ∈ C. As we assume that ∀-reductions are performed immedi-

ately, the literal z∗2 is blocked by an existential literal l when z∗2 is created in C by a long-distance

resolution step. Then l cannot be removed from C by resolution as any clause with ¬l in it contains

a literal over z2 by Lemma 9. Also z∗2 cannot be removed via universal resolution. So the empty

clause can never be derived from any clause containing z∗2 .

Let us now argue for z∗1 and assume z∗1 ∈ C. If z∗1 is introduced into C by resolving clauses D1

and D2, the literals z1 and ¬z1 in D1 and D2, respectively, must be blocked by existential literals.

Therefore by Lemma 9, the clauses D1 and D2 also contain z2 and ¬z2, respectively. Hence also z∗2
is introduced into C and we get back to the previous case.

Finally, universal resolution steps cannot be performed when deriving the empty clause. For

universal resolution on z1, using again Lemma 9 together with the assumption of performing

∀-reductions as early as possible leads to the introduction of z∗2 , and we again get back to the case

above.

No resolution on z2 is possible as from Lemma 9 it would cause both literals of z1 to be merged,

which is illegal due to the index restriction in long-distance resolution over universal variables. ut

This immediately implies the hardness of QUPARITY for LQU+-Res because by the previous

lemma any LQU+-Res refutation of QUPARITYN is a Q-Res refutation, which by Theorem 8 is

exponential in size.

Theorem 12. QUPARITYN require exponential-size refutations in LQU+-Res.

As QUPARITYN still remains easy for ∀Exp+Res in a proof similar to Lemma 6 we get the

following separations.

Corollary 4. LQU+-Res does not simulate ∀Exp+Res, IR-calc, and IRM-calc.

In Chapter 6 we complete the remaining separations using a counting argument on the formulas

from [77], rather than the strategy extraction technique used here. On the other hand, we find that

strategy extraction can be used in a much wider context, this is explored in Part III.
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Chapter 6

Lower Bounds for Q-Res and Expansion
Calculi
While the strategy extraction technique from the last section is very effective for CDCL systems, it

does not yield lower bounds in expansion systems. For the strong system IR-calc we know that the

strategy extraction method on AC0 circuits is not directly applicable.

Therefore, to obtain such lower bounds, and separations in turn, we need to use different

techniques — and in fact different types of formulas. We obtain an exponential lower bound for

the well-known formulas KBKF of Kleine Büning, Karpinski and Flögel [77] in IR-calc. In the

same work [77], where Q-Res was introduced, these formulas were suggested as hard formulas for

Q-Res. In fact, a number of further separations of QBF proof systems builds on this [11, 53]. Here

we show in a technically involved counting argument that the formulas are even hard for IR-calc.

As IR-calc simulates Q-Res we obtain as a by-product a formal proof of the hardness of KBKF in

Q-Res.

KBKF was shown to be easy for long-distance Q-resolution [53] and thus via simulation does

not provide a lower bound for the stronger IRM-calc calculus. Instead we use the modified KBKFlq

formulas from [11], to show a lower bound for IRM-calc that build upon our result for IR-calc.

This chapter is organised in the following way. We first introduce the KBKF formulas and their

previous applications (Section 6.1). We then show a lower bound for IR-calc (Section 6.2) and then

extend this bound to even IRM-calc (Section 6.3).

The work in this chapter appeared at the 32nd Symposium on Theoretical Aspects of Computer

Science [19].

6.1 The QBFs of Kleine Büning, Karpinski and Flögel

We present a proof complexity analysis of a well-known family of formulas KBKF(t) first defined

by Kleine Büning et al. [77]. In this chapter we prove that the KBKF(t) formulas are hard for

IR-calc, which is stronger than Q-Res (Corollary 2). This provides the first non-trivial lower bound

for IR-calc, and further even separates the system from LD-Q-Res.

KBKF(t) has prefix ∃y0, y1,0, y1,1 ∀x1 ∃y2,0, y2,1 ∀x2 . . . ∀xt−1 ∃yt,0, yt,1 ∀xt ∃f1 . . . ft and

matrix clauses

C− = {¬y0} C0 = {y0,¬y1,0,¬y1,1}
C0
i = {yi,0, xi,¬yi+1,0,¬yi+1,1} C1

i = {yi,1,¬xi,¬yi+1,0,¬yi+1,1} for i ∈ [t− 1]

C0
t = {yt,0, xt,¬f1, . . . ,¬ft} C1

t = {yt,1,¬xt,¬f1, . . . ,¬ft}
F 0
i = {xi, fi} F 1

i = {¬xi, fi} for i ∈ [t].
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Let us verify that the KBKF(t) formulas are indeed false QBFs and — at the same time —

provide some intuition about them. The existential player starts by playing y0 = 0 because of clause

C−. Clause C0 forces the existential player to set one of y1,0, y1,1 to 0. Assume the existential

chooses y1,0 = 0 and y1,1 = 1. If the universal player tries to win, he will counter with x1 = 0, thus

forcing the existential player again to set one of y2,0, y2,1 to 0. This continues for t rounds, leaving

in each round a choice of yi,0 = 0 or yi,1 = 0 to the existential player, to which the universal

counters by setting xi accordingly. Finally, the existential player is forced to set one of f1, . . . , ft to

0. This will contradict one of the clauses F 0
1 , F

1
1 , . . . , F

0
t , F

1
t , and the universal player wins.

It is clear from this explanation, that the existential player has exponentially many choices and

the universal player likewise needs to uniquely counter all these choices to win.

Theorem 13 (Kleine Büning, Karpinski, Flögel [77]). A Q-Res refutation proof of KBKF(t)

that requires each resolution step to resolve with a positive existential unit clause (a clause that

contains exactly one existential literal which is positive) is at least of size 2t.

This kind of refutation is called a Q-unit-resolution refutation. The argument is as follows:

Proof. We take the induction hypothesis on 0 ≤ i ≤ t that any derivable existential unit clause

containing yt−i,c for c ∈ {0, 1} must contain a universal literal for every variable xj when 0 < j <

t− i and also requires a derivation with 2i existential unit clauses each containing xt−i if c = 0 or

¬xt−i if c = 1.

Base case: Positive literal yt,c only appears in clause Cct . In order to remove ¬fk literals they

must be resolved with one of the F 0
k or F 1

k clauses, either one will introduce a xi or ¬xi respectively,

which if i < t cannot be removed until yt,c is also gone. The corresponding xt−i is present in

the resolvent once all negative literals are removed (it must agree with Cct ), it can be reduced

immediately afterwards.

Inductive step: Any derivation of a positive existential unit clause containing yt−i,c must use

the clause Cct−i = {yt−i,c, (¬)xt−i,¬yt−i+1,0,¬yt−i+1,1} as this is the only possible source of the

positive yt−i,c. Clause Cct−i must be resolved with an existential unit clause which is required to

contain yt−i−1,0 or yt−i−1,1. Each of these contains every variable xj for 0 < j < t− i and requires

derivations the size of 2i−1. Each of these derivations will have a different xt−i+1 literal. So when

resolution is performed, to remove both negative literals, the size must be at least 2i. Note that in

each of these 2i unit clauses there must be a xt−i literal and it must always be the one that agrees

with the induction hypothesis as that is necessary to resolve with Cct−i. Afterwards only xt−i can be

reduced so the clause must contain a universal literal for every variable xj for 0 < j < t− i. ut

The essence of this lower bound generalises to an exponential lower bound for Q-Res and

eventually stronger calculi (Theorem 16). In contrast the KBKF(t) formulas have short proofs in

QU-Res and LD-Q-Res.

Theorem 14 (Van Gelder [116] ). KBKF(t) has polynomial-size proofs in QU-Res.

Proof. We can derive the unit clauses {fi} using universal resolution.
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{xi, fi} {¬xi, fi}
{fi}

With these we can resolve with C0
t or C1

t to derive {yt,0, xt} and {yt,1,¬xt} and by universal

reduction we derive {yt,0} and {yt,1}. Inductively we use {yi+1,0} and {yi+1,1} to derive {yi,0}
and {yi,1}.

{yi,0, xi,¬yi+1,0,¬yi+1,1} {yi+1,0}
{yi,0, xi,¬yi+1,1} {yi+1,1}

{yi,0, xi}
{yi,0}

{yi,1,¬xi,¬yi+1,0,¬yi+1,1} {yi+1,0}
{yi,1,¬xi,¬yi+1,1} {yi+1,1}

{yi,1,¬xi}
{yi,1}

Finally with y1,0 and y1,1 we can derive the empty clause.

{y0,¬y1,0,¬y1,1} {y1,0}
{y0,¬y1,1} {y1,1}

{y0} {¬y0}
⊥ ut

Theorem 15 (Egly, Widl [53]). KBKF(t) has polynomial-size proofs in LD-Q-Res.

Proof. First we can make the following derivations:

{yt,0, xt, f̄1, . . . , f̄t} {xt, ft}
{yt,0, xt, f̄1, . . . , f̄t−1}

{yt,1, x̄t, f̄1, . . . , f̄t} {x̄t, ft}
{yt,1, x̄t, f̄1, . . . , f̄t−1}

Next, we inductively derive the clauses

{yi,0, xi, x∗i+1 . . . x
∗
t , f̄1 . . . f̄i−1}, {yi,1, x̄i, x∗i+1 . . . x

∗
t , f̄1 . . . f̄i−1}

for decreasing i.

{yi,0, xi, ȳi+1,0, ȳi+1,1} {yi+1,0, xi+1, x
∗
i+2 . . . x

∗
t , f̄1 . . . f̄i}

{yi,0, xi,¬yi+1,1, xi+1, x
∗
i+2 . . . x

∗
t , f̄1 . . . f̄i} {yi+1,1, x̄i+1, x

∗
i+2 . . . x

∗
t , f̄1 . . . f̄i}

{yi,0, xi, x∗i+1 . . . x
∗
t , f̄1 . . . f̄i}

{yi,0, xi, x∗i+1 . . . x
∗
t , f̄1 . . . f̄i} {xi, fi}

{yi,0, xi, x∗i+1 . . . x
∗
t , f̄1 . . . f̄i−1}

{yi,1, x̄i, ȳi+1,0, ȳi+1,1} {yi+1,0, xi+1, x
∗
i+2 . . . x

∗
t , f̄1 . . . f̄i}

{yi,1, x̄i,¬yi+1,1, xi+1, x
∗
i+2 . . . x

∗
t , f̄1 . . . f̄i} {yi+1,1, x̄i+1, x

∗
i+2 . . . x

∗
t , f̄1 . . . f̄i}

{yi,1, x̄i, x∗i+1 . . . x
∗
t , f̄1 . . . f̄i}
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{yi,1, x̄i, x∗i+1 . . . x
∗
t , f̄1 . . . f̄i} {x̄i, fi}

{yi,1, x̄i, x∗i+1 . . . x
∗
t , f̄1 . . . f̄i−1}

And finally derive a contradiction.

{y0,¬y1,0,¬y1,1}
{y1,0, x1, x

∗
2 . . . x

∗
t }

{y1,0}
{y0,¬y1,1}

{y1,1, x̄1, x
∗
2 . . . x

∗
t }

{y1,1}
{y0} {ȳ0}

⊥ ut

6.2 A Lower Bound in IR-calc for the Formulas of Kleine Büning et al.

We move on to the IR-calc lower bound argument, firstly we use a key property of these formulas.

Syntactically, KBKF(t) are existential Horn formulas, i.e., they contain at most one positive

existential literal per clause. In fact, they even have a stronger property: C− is the only clause

without a head (a positive existential literal).

We will strengthen this in the next lemma by a simple modification such that now all clauses

have a head.

Lemma 11. We can transform every IR-calc refutation π of KBKF(t) into an IR-calc proof π′ of

y0 from G(t) = KBKF(t) \ {¬y0}. We perform this by:

1. deleting every instance of the axiom {¬y0}, and removing the steps where y0 is a pivot;
2. replicating all other steps, using the same rules, same pivots and same annotations when

instantiating.

Proof. The proof is immediate, observing that y0 cannot gain annotations and the only rules

applicable on y0 are resolution rules between the axiom {¬y0} and clauses containing y0. Thus

instead of the empty clause we derive {y0}. ut

After this transformation, which preserves proof length, we can focus on proofs of y0 from

G(t) = KBKF(t) \ {¬y0}. Exploiting that all axioms now contain exactly one positive literal we

show a number of invariants, which hold for all clauses in all IR-calc proofs of the formulas.

Let C be an annotated clause in an IR-calc proof of y0 from G(t). Then the following invariants

hold for C.

Invariant 1 C has exactly one positive literal yAh,a or fAh for h ≤ t (or y0 with no annotation). We

call this unique literal the head of C and use the indices h and a also in the following invariants to

denote its position as well as A for its annotation.

Proof. Invariant 1 as well as all further invariants is shown by induction on the number of steps to

derive C.

Invariant 1 holds in the base case as we no longer have {¬y0} present in the axioms.

For the inductive step we only need to consider the resolution case as annotations do not affect

the polarities of the literals.
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Suppose C is derived from resolving D1 and D2 with pivot z. Without loss of generality let z

be positive in D2. Then Invariant 1 holds for C as there are two positive literals between D1 and

D2, but the head z of D2 gets removed by resolution. ut

The next invariant states that when we order the literals in the clause by the prefix, the head,

that is the positive literal, appears leftmost. Note that item 3 is for the benefit of Section 6.3.

Invariant 2 Let j ∈ [t], b ∈ {0, 1}, and B be some annotation.

1. If yAh,a is the head of C and ¬yBj,b ∈ C then j > h.

2. If fAh is the head of C then there is no ¬yBj,b ∈ C.

3. If fAh is the head of C and ¬fBj ∈ C then j > h.

Proof. Invariant 2 holds in all axioms.

For the inductive step we only need to consider the resolution case as annotations do not affect

the indices of the literals. Let C be derived from resolving D1 and D2.

Assume first that the resolved variable is yEk,e in D2. By induction hypothesis we know that

yAh,a or y0 of C is the head of D1, but we can ignore the case of y0. If we have a negative literal

¬yBj,b ∈ C, then ¬yBj,b ∈ D1 or ¬yBj,b ∈ D2. If in D1 then j > h by Invariant 2 for D1. If in D2 then

j > k by Invariant 2 for D2. As ¬yEk,e ∈ D1 we get k > h again by Invariant 2 for D1. Therefore

j > h and Invariant 2 holds for C.

If the resolved variable is fEk ∈ D2 then by induction hypothesis we only add negative literals

¬fBb from D1 with b > k. In order to falsify the invariant we would need fAh ∈ D1 as the head, but

then we know h < k < b, satisfying the invariant. ut

The next two invariants explain how the annotation of the head determines all further annotations

in the clause.

Invariant 3 If positive literal fiτ ∈ C then the following two conditions hold: xi ∈ dom(τ) and

all literals in C have exactly the same annotations.

Proof. This is true in all axioms, and these annotations cannot be removed in the inductive step. We

can only alter the annotations uniformly by instantiation. Suppose we have that C is the resolvent of

D1 and D2. Using Invariant 2, any resolved variable is ¬fjτ ∈ D1 and must resolve with a clause

where all literals have the same annotations as well, hence C has the same annotation in every

literal. ut

Invariant 4 If yAh,a is the head of C and if ¬yBj,b ∈ C (or ¬fBj ∈ C), then A∪{a/xh} ⊆ B, where

all extra annotations in B are of the form ck/xk for k > h. In other words the head literal yAh,a
determines all annotations up to xh.

Proof. For the base case we only need to consider the axioms Cci with negative existential literals.

The head of Cci is yi,c and there are no universal variables in the clause of lower level than the head,
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hence its annotation A = ∅. The axiom is instantiated so that c/xi is added to the negative literals,

hence we satisfy the invariant.

For the inductive step, suppose first that C is derived from instantiation of clause D. By

Invariant 2 we know that yAh,a is the lowest level literal in the clause D. Any annotation involving xl
with l < h is therefore both added to A and to the annotations of all other literals.

Now suppose C is derived from resolving D1 and D2. Without loss of generality the pivot

appears positively in D2. We again use the fact that the head yAh,a of C is also the head of D1. If

negative literal ¬zB ∈ C comes from D1 then A ∪ {a/xh} ⊆ B by Invariant 4 for D1.

If, on the other hand, negative literal ¬zB ∈ C comes from D2, then we consider the nature of

the resolved variable. We first let the resolved variable be yEk,e in D2. Then E ∪ {e/xk} ⊆ B by

Invariant 4 for D2. However, as ¬yEk,e ∈ D1 then A ∪ {a/xh} ⊆ E ⊆ E ∪ {e/xk} ⊆ B. Likewise

for an annotation in B of level lower than lv(yh,a), it must be in E and hence in A.

If the resolved variable is fEk then E = B by Invariant 3, but since A ∪ {a/xh} ⊆ E we are

done. ut

Invariant 5 If ¬yBj,b ∈ C then for all k, h ≤ k < j there is ck ∈ {0, 1} such that ck/xk ∈ B.

Proof. Invariant 5 holds in the axiom case and is unaffected by instantiation.

Now suppose C is derived from resolving D1 and D2. Without loss of generality the resolved

variable is zE in D2. All literals in C that come from D1 already fulfil Invariant 5. Now we can

branch on the nature of variable z.

If zE = yEk,e then for the literals coming from D2 we use Invariant 4. Since ¬yEk,e ∈ D1 the

annotation E already contains all the necessary assignments for head yAh,a. But since E ∪ {e/xk} ⊆
B for any ¬yBj,b ∈ D2, then together with Invariant 5 for D2, these literals have the required

annotations for the new head yAh,a.

If the resolved variable is fEk , then we do not add or remove any y literals. Hence the induction

hypothesis is preserved. ut

Invariant 6 If ¬yBj,b ∈ C with j ≤ t, then there is no ¬yDk,d ∈ C such that B ∪ {b/xj} ⊆ D.

Proof. We start with the base case for which we consider the axioms. Invariant 6 holds, because C0

and all Ccj with j ≤ t are the only clauses with negative existential literals, these are all of the same

level.

For the inductive step there are two possibilities: either C is derived by instantiation or by

resolution. Suppose first that C is derived by instantiation of clause D. We know from Invari-

ants 2 and 5 and induction hypothesis that for any ¬yBj,b ∈ D and ¬yEk,e ∈ D with k > j there is

some c/xl ∈ B∪{b/xj} such that (1−c)/xl ∈ E and this conflict does not change by instantiation.

Now suppose C is derived from resolving D1 and D2. The important case is when the resolved

variable is yEk,e in D2. We need to check that if ¬yBj,b ∈ D1 and ¬yFl,f ∈ D2, then there is some

conflict in the annotations (by using Invariants 2 and 5 for C). By Invariant 6 for D1 we know that
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there is some c/xl ∈ B∪{b/xj} such that (1−c)/xl ∈ E. By Invariant 4 we haveE∪{e/xk} ⊆ F ,

hence (1− c)/xl ∈ F .

The case where the resolved variable is fEk is simpler. We do not add or remove any y literals

so the induction hypothesis is preserved. ut

y
0/x2,1/x4

5,0

¬y0/x2,1/x4,0/x5

6,0

¬y0/x2,1/x4,0/x5,1/x6,1/x7

8,1

¬y0/x2,1/x4,0/x5,1/x6,1/x7

8,0

¬y0/x2,1/x4,0/x5,1/x6,0/x7

8,1

¬f0/x2,1/x4,0/x5,1/x6,0/x7,0/x8

3

¬f0/x2,1/x4,0/x5,1/x6,0/x7,0/x8

1

Fig. 23. Structure of an example clause in an IR-calc refutation of KBKF(8)

In order to provide some intuition on the proofs of KBKF(t)\{¬y0}, we will illustrate how the

invariants allow us to study clauses as binary trees.

Example 11. Consider Figure 23. The literals are labelling a tree that branches on the variable index

and annotations. By Invariant 1 there is only one head of the clause and we place it at the root of the

tree. We branch by increasing the index i of the literals yi,c, which will make all negative literals

descendants of the root by Invariant 2. In bold we highlight Invariant 4. The remaining annotations

must be present by Invariant 5, but we have two choices for each annotation, plus a choice of c for

yi,c. We use these choices to construct a binary tree. Notice that none of the internal nodes produces

a literal: this is prevented by Invariant 6.

Hence the positive literal is the root and the negative literals are the leaves. We can imagine

instantiation of clauses to increase the bold part of the annotations and resolution on y literals to

merge two different trees on leaf and root to form a new tree.

We will now give the overall idea of our lower bound argument. For a clause C we define a

set Σ(C) of annotations associated with C. Our lower bound argument then rests on counting the

set Σ(C) as we progress through the proof. More precisely, we show that axioms have empty Σ

(Lemma 12) and that instantiation steps do not add any new elements to Σ at all (Lemma 15). In a

resolution step D1 D2
C , the set Σ(C) either equals Σ(D1) ∪Σ(D2) or grows by exactly one new

element (Lemma 16). In some sense, we only make progress in the proof in the latter case, and

we need exponentially many resolution steps of this kind. Putting everything together, we find that

by the end of the proof we must have collected all the exponentially many annotations in Σ(y0),

implying an exponential lower bound to the proof length (Theorem 16).

We now give the details of the formal argument. We start with the definition of Σ, which we

will first define for annotated variables and then for clauses.
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Definition 8 (Σ for variables).

1. We define Σ(y0) as the set of all complete assignments to variables x1, . . . , xt.
2. For yBj,b with dom(B) = {xi | i < j} we define Σ(yBj,b) = {X ∈ Σ(y0) | B ∪ {b/xj} ⊆ X}.

Invariant 6 ensures that if ¬yBj,b and ¬yDk,d appear together in a clause, thenΣ(yBj,b)∩Σ(yDk,d) =

∅.
3. For fBj with a complete assignment B, we define Σ(fBj ) = {B}, otherwise if B is not complete

we set Σ(fBj ) = ∅.

We now extend this definition to clauses, which we first classify into three types.

Definition 9. We class C a clause in the proof of G(t) as follows:

– Type 1 clause: The head of the clause is fAi .
– Type 2 clause: The head of the clause is yAh,a and there is some xj with j < h where xj is not

given a value in A.
– Type 3 clause: Any other clause. These will have head y0 or yAh,a where for all j < h, xj ∈

dom(A).

Definition 10 (Σ for clauses). Let C be a clause in an IR-calc proof of y0 from G(t).

1. When C is a type-1 or type-2 clause we set Σ(C) = ∅.
2. For a type-3 clause C with head y we set Σ(C) = Σ(y) \

(⋃
¬l∈C Σ(l)

)
.

Remark 2. For a type-3 clause C we have the following properties of Σ(C):

– We only remove an annotation when it was originally added from the presence of the head yAh,a
(or y0). This is true by Invariant 4.

– Unless for some 0 ≤ j ≤ t we have ¬fXj ∈ C, we only remove an annotation X at most once

from Σ(C). This holds by Invariant 6. If ¬fXj ∈ C for 0 ≤ j ≤ t, then X can be removed from

Σ up to t times in total by ¬fXl ∈ C.

An important fact is that for axioms we get empty Σ as we verify in the next lemma.

Lemma 12. For each clause C ∈ KBKF(t) \ {¬y0}, instantiated as an IR-calc axiom CB , we

get Σ(CB) = ∅.

Proof. For axiom C0 we first add all annotations to Σ, but then due to the presence of ¬y1,0 and

¬y1,0 remove all annotations starting with 0/x1 and 1/x1, respectively. This results in Σ(C0) = ∅.
Using C0

1 = {y1,0, x1,¬y2,0,¬y2,1} as an IR-calc axiom results in {y1,0,¬y0/x1

2,0 ,¬y0/x1

2,1 }.
Computing Σ of this clause, we first add all annotations starting with 0/x1, but then remove

all annotations starting with (0/x1, 0/x2) and (0/x1, 1/x2), yielding again empty Σ. Analogous

reasoning applies to C1
1 .

When using clauses C0
i , C

1
i with 2 ≤ i ≤ t as IR-calc axioms, we obtain type-2 clauses, which

have empty Σ by definition. The remaining clauses C0
t+i, C

1
t+i give rise to type-1 clauses, again

with empty Σ. ut
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It will be crucial for our lower bound argument to understand how Σ(C) changes when we go

through the clauses C in the proof. For this we first need two technical lemmas on the structure of

IR-calc proofs of KBKF(t) \ {¬y0}.

Lemma 13. In an IR-calc proof from G(t), a type-2 clause cannot be resolved with a type-3 clause.

Proof. Suppose we have a resolution step between a type-2 and a type-3 clause. We can deduce

that the resolved variable is yEk,e, otherwise one of the clauses is a type-1 clause.

The resolved variable has a complete annotation as, by Invariants 4 and 5, type-3 clauses have

them for literals ¬yEj,e. However, this means that, by Invariants 4 and 5, the head of the type-2 clause

also must have a complete annotation, contradicting our assumption. ut

Lemma 14. Let C be a type-2 or type-3 clause in an IR-calc proof from G(t). If ¬fBj ∈ C and

¬fBl /∈ C with j, l > 0, then there is an annotation of xl in B.

Proof. We proceed by induction on the number of lines to derive C. The base case is vacuously

true as all ¬fj literals get introduced in the same axioms.

For the inductive step, we distinguish whether C is derived by instantiation or by resolution. If

C is derived by instantiation of D we do not lose any annotation, so the hypothesis remains true. If

C is derived by resolving D1 and D2, the claim still holds if the resolved variable is different from

any fBl . If we resolve on fBl then D2 is a type-3 clause and by Invariant 3, xl appears in B and any

other annotation of a literal introduced by D2. ut

The next two lemmas are the key to our lower bound. We show first that the set Σ is not affected by

instantiation steps. In Lemma 16 we will then analyse how Σ changes in a resolution step.

Lemma 15. Suppose in an IR-calc proof from G(t) we instantiate clause D to get clause D′. Then

Σ(D) ⊇ Σ(D′).

Proof. If D is a type-1 clause it remains a type-1 clause under instantiation. Hence Σ(D′) remains

empty.

If D is a type-3 clause it has complete annotations in its head, and this is unchanged by

instantiation. Moreover, by Invariant 5, every ¬yBj,b ∈ D has a complete annotation, which again

is unaffected by instantiation. The only possible effect of the instantiation on type-3 clauses is

therefore that negative literals ¬fBj ∈ D receive a complete annotation, which means that the

assignment B is deleted from Σ(D′), thus Σ(D′) ⊆ Σ(D).

IfD is a type-2 clause then the only problem arises when instantiation makes the head annotation

complete, i.e., the clause turns into a type-3 clause. In this case we will show that Σ(D′) is empty,

hence Σ(D′) = Σ(D) = ∅. By induction on the number of lines we show:

Induction Hypothesis: Let D be a type-2 clause with head yAh,a that can be instantiated by σ to

get a type-3 clause D′. Then Σ(D′) is empty.

For the base case, we observe that instantiating any type-2 axiom always gives empty Σ by

Lemma 12. For the inductive argument we can ignore the case where D is derived by instantiation

as that instantiation could have been incorporated into σ.
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Let D now be derived by resolving two clauses D1 and D2. Assume without loss of generality

that D1 is a type-2 clause. By Lemma 13 the other clause D2 must be type-1 or type-2.

Suppose first that D2 is a type-1 clause with head fBj . Let D′1 be the instantiation of D1 by σ.

Since σ gives a complete assignment to the annotations of yBj,b in D it must also do so in D1. We

also observe that ¬fBj ∈ D1 becomes ¬fXj ∈ D′1 under σ. This will only have an effect when X

is complete, otherwise we can ignore this literal in terms of Σ. By inductive hypothesis we have

Σ(D′1) = ∅. The only result of the resolution step with D2 is the removal of the literal ¬fBj and

(by Invariants 2 and 3) potential replacement with other literals ¬fBk for k > j. In order for this to

have any effect on the inductive claim, there can be no other ¬fBl (for 1 ≤ l ≤ t, l 6= j) in D1 or

D2, nor can there be ¬yGl,u ∈ D′ such that G ⊂ B. Hence by Lemma 14, B contains annotations

for all xl with 1 ≤ l ≤ t, l 6= j. Further B contains an annotation of xj as D2 must contain such an

annotation by Invariant 3. Therefore B is a complete assignment to x1, . . . , xn. By Invariant 4 this

can only happen when D1 is a type-3 clause rather than a type-2 clause.

Suppose instead, D2 is a type-2 clause, and without loss of generality the resolved variable yEk
is positive in D2, i.e., it is the head of D2. Let D′2 be the instantiation of D2 by σ. Under σ the

resolved variable is yE
′

k . Since σ gives a complete assignment to the annotations of the yj,b literals

in D it must also do so in D2, i.e., D′2 is type 3. This holds since D2 is type 2 and therefore has a

negative literal; with Invariant 4 this implies that D′2 is type 3. By inductive hypothesis we therefore

have Σ(D′2) = ∅. When computing Σ(D′), the lack of the negative literal on the resolved variable

means we may have additional elements only from Σ(yE
′

k ) in Σ(D′). However, these were exactly

the assignments that were added by the head yE
′

k in D′2 and so we know — as Σ(D′2) is empty —

that we have the sufficient literals in D′ to remove all elements in Σ(D′). We do not lose any ¬fBj
literals in this case, so the inductive claim holds. ut

The next lemma is crucially important for the lower bound, it explains the conditions of new

elements being added to Σ.

Lemma 16. Let t denote disjoint union. Suppose in an IR-calc proof from G(t) we resolve D1

with D2 to get clause D, where the resolved variable is positive in D2.

If D1 is a type-3 clause that is resolved with the type-1 clause D2 with head fBj for j > 0

and there is no k > 0, k 6= j such that ¬fBk ∈ D1 nor ¬yEk,e ∈ D1 such that E ⊆ B, then

Σ(D) = Σ(D1) tΣ(D2) t {B} = Σ(D1) t {B}. Otherwise Σ(D) = Σ(D1) tΣ(D2).

Proof. In the first case, D1 is a type-3 clause and D2 is a type-1 clause. Then the resolution step

removes ¬fBj from the clause D1. The resolvent D must be a type-3 clause as all annotations

remain. Because there is no k > 0, k 6= j such that ¬fBk ∈ D1, we infer by Lemma 14 that B is

complete and B ∈ Σ(D). All other annotations remain in Σ(D).

If we otherwise resolve a type-3 clause D1 with a type-1 clause D2, but there is another

¬fBk ∈ D1, ¬yEk,e ∈ D1 such that E ⊆ B, or ¬fBk ∈ D2 (by Invariant 3 this will necessarily occur

if D2 is not a singleton), then the same assignments are added and deleted in Σ(D) as in Σ(D1)

hence Σ(D) = Σ(D1) = Σ(D1) tΣ(D2).
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Consider now the remaining cases. If we resolve a type-1 clause with a type-2 clause, then we

obtain a type-2 clause, hence Σ remains empty. Likewise, resolving two type-2 clauses results in a

type-2 clause and therefore again empty Σ. By Lemma 13, we cannot resolve type-2 with type-3

clauses.

Therefore the last case is when two type-3 clauses are resolved. Let D2 provide the positive

resolved literal yEk,e. Because yEk,e is the head ofD2, every annotationX ∈ Σ(D2) hasE∪{e/xk} ⊆
X . As ¬yEk,e ∈ D1, the sets of assignments Σ(D1) and Σ(D2) are disjoint. But also there is no

annotation Y ∈ Σ(D1) with E ∪ {e/xk} ⊆ Y because of the presence of ¬yEk,e in D1 and

Invariant 6. Therefore Σ(D) is the union of Σ(D1) and Σ(D2) because in our adding/removing

process we only get rid of instructions from yEk,e and ¬yEk,e which cancel, and keep all other

instructions. ut

We can now deduce that all proofs of KBKF(t) in IR-calc are of at least exponential size.

Theorem 16. All proofs of KBKF(t) in IR-calc have length at least 2t.

Proof. We will show that all IR-calc proofs of y0 from KBKF(t) \ {¬y0} are of exponential size.

By Lemma 11 each refutation of KBKF(t) can be transformed into one of these in polynomial

time. Hence each refutation of KBKF(t) must be of exponential size.

Consider now an IR-calc proof π = (D1, D2, . . . , Dm) of y0 from G(t) and define si =

|
⋃i
j=1Σ(Dj)|. By Lemma 12, the axioms all have empty Σ, hence s1 = 0. By Definition 10, the

set Σ(y0) contains all 2t complete annotations, therefore sm = 2t. Progressing in the proof from

the axioms to y0, we therefore build up the set Σ from an empty to an exponential-size set. If the

clause Di+1 is an axiom or derived by instantiation, then si = si+1 by Lemmas 12 and 15. For a

resolution step, we have si+1 ≤ si + 1 by Lemma 16. Therefore the proof π contains at least 2t

resolution steps. ut

Since IR-calc simulates (Theorem 3), we get as a corollary the hardness of KBKF(t) for

Q-Res as already stated in [77].

Corollary 5. All proofs of KBKF(t) in Q-Res are of at least exponential size.

As the formulas KBKF(t) are easy for long-distance and universal resolution [53, 116] we

obtain the following exponential separations.

Corollary 6. IR-calc neither simulates LD-Q-Res nor QU-Res.

Proof. The formulas KBKF(t) admit polynomial-size proofs in LD-Q-Res [53] and QU-Res [116],

and therefore by the known simulations (including those shown here) also in LQU-Res, LQU+-
Res, and IRM-calc. ut
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6.3 Extending the Lower Bound to IRM-calc

In the previous section we showed that IR-calc neither simulates LD-Q-Res nor QU-Res. The

stronger calculus IRM-calc simulates LD-Q-Res by Theorem 5. Therefore, in terms of the simula-

tion order (cf. Figure 22) the only question still open by now is whether IRM-calc also simulates

QU-Res. We will show here that this simulation does not hold. To do this we need formulas that

are hard for IRM-calc, but easy for QU-Res.

For this we use a modification of the KBKF(t) formulas from the last section. These modified

formulas were introduced in [11], where they are shown to be hard for LD-Q-Res. We will show

here that they are indeed hard for the stronger system IRM-calc.

Definition 11 (Balabanov, Widl, Jiang [11]). The formula KBKFlq(t) has quantifier prefix

∃y0, y1,0, y1,1 ∀x1 ∃y2,0, y2,1 ∀x2 . . . ∀xt−1 ∃yt,0, yt,1 ∀xt ∃f1 . . . ft and matrix clauses

C− = {¬y0}
C0 = {y0,¬y1,0,¬y1,1,¬f1, . . . ,¬ft}
C0
i = {yi,0, xi,¬yi+1,0,¬yi+1,1,¬f1, . . . ,¬ft} for i ∈ [t− 1]

C1
i = {yi,1,¬xi,¬yi+1,0,¬yi+1,1,¬f1, . . . ,¬ft} for i ∈ [t− 1]

C0
t = {yt,0, xt,¬f1, . . . ,¬ft} C1

t = {yt,1,¬xt,¬f1, . . . ,¬ft}
F 0
i = {xi, fi,¬fi+1, . . . ,¬ft} F 1

i = {¬xi, fi,¬fi+1, . . . ,¬ft} for i ∈ [t].

We first observe that these formulas remain hard for IR-calc.

Lemma 17. KBKFlq(t) require exponential-size proofs in IR-calc.

Proof. We define G(t) as KBKFlq(t)\{¬y0} and use exactly the same chain of arguments as in the

previous section to show that KBKFlq(t)\{¬y0} require exponential proofs of {y0}. We remark

that in the previous section we relaxed the invariants for G(t) more than was necessary, but these

are important for the KBKFlq(t) lower bound argument to go through. This shows that KBKFlq(t)

requires exponential-size proofs in IR-calc. ut

Remark 3. Note that from Section 6.2 Invariant 1 still holds as there are never two positive literals.

Invariant 3 holds as merging does not disrupt annotations as they are all identical. Invariant 4 also

holds because the role of the head does not change under merging.

We also introduce new invariants specifically for IRM-calc proofs.

Lemma 18. For any clause C in an IRM-calc proof of KBKFlq(t) the following holds:

A. If positive literal yτi,c ∈ C then for all j < i either xj ∈ dom(τ) or ¬fσj ∈ C for some σ.

B. If var(fi)
τ ∈ C then for all j > i either xj ∈ dom(τ) or ¬fσj ∈ C with dom(τ) = dom(σ)

and τ and σ differ only where ∗ appears.
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Proof. We prove these claims by induction on the number of lines. For the base cases it is sufficient

to observe that all the axioms have these properties.

For the inductive step, we first consider instantiation and merging steps. These keep literals and

elements already in the annotation domains, thus preserving Invariant A. For Invariant B, merging

may turn a constant value into ∗, but this is allowed and preserves the invariant.

We next consider resolution steps. For Invariant A, assume the head of one of the parent clauses

is yτi,c. We only have to consider the case when fj with j < i is the pivot. This means that we

resolve with a clause that contains a positive literal fσj . From Invariant 3 we infer xj ∈ dom(σ).

During the resolution step the head of the clause yi,c will be instantiated by xj which will give it an

annotation as j < i.

For Invariant B, we only need to consider a loss of an fj literal for j > i, which is the pivot

when var(fi)
τ is otherwise present. In this case we must resolve with a clause that contains a

positive fσj . By Invariant 3 we get xj ∈ dom(σ). During the resolution step var(fi)
τ will therefore

get annotated with the correct value for xj . ut

Theorem 17. KBKFlq(t) require exponential-size proofs in IRM-calc.

Proof. We can now show the lower bound for IRM-calc. The proof uses the same technique as

in [11]. There they showed that any LD-Q-Res refutation of KBKFlq can be transformed in

polynomial time into a Q-Res refutation. Instead we show here that any IRM-calc refutation of

KBKFlq can be transformed in polynomial time into an IR-calc refutation.

To do this we consider the ∗ annotations and the merge rule. Without applications of the merge

rule in IRM-calc we essentially have an IR-calc proof (the slight change in the resolution rule will

not matter). We therefore now consider exhaustively all the possible literals that can be produced by

merging.

1. A positive literal lτ with ∗/xj ∈ τ is introduced.
2. A negative literal ¬f τi with ∗/xj ∈ τ is introduced, where ∀j ≥ i, ∗/xj /∈ τ .
3. A negative literal ¬f τi is introduced, where ∗/xi ∈ τ .
4. A negative literal ¬f τi is introduced, where ∃j > i, ∗/xj ∈ τ .
5. A negative literal ¬yτi,c is introduced.

We will either show, that these are impossible or are not essential and can be removed in a

polynomial number of IR-calc steps.

1. It is impossible that there is a positive literal lτ with ∗/xj ∈ τ .

It is not possible to introduce a ∗ by merging as there are never two positive literals in a clause.

It is also impossible by resolution as we would need a positive pivot with a ∗/xj annotation. There

must be an earliest point in the proof where this occurs but by the well-ordering principle this is

impossible.

2. Literals ¬f τ1i and ¬f τ2i are merged in clause C to get ¬f τi where ∀j ≥ i, ∗/xj /∈ τ .
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This is possible, but here we show that we can transform this step into a number of steps that do

not require merging. If we start and repeat from the first time this appears, we can deal with 2 by

resolving ¬f τ1i and ¬f τ2i away before the merging. This is done by resolving twice with clause D

(which we will construct below) with f τ1i and f τ2i as pivots. The purpose of D is to resolve while

only adding literals that are there already and not introducing any new annotations. To construct

D we first observe that by Invariant 3, C has head yAh,b (or y0). For any j < i such that c/xj ∈ τ1

and (1− c)/xj ∈ τ2, either ∗/xj ∈ A, which is excluded by case 1, or h ≤ j. Therefore since one

∗ must be created for merging to occur, h ≤ j < i. Now consider all j ≥ i: there may exist cj
such that cj/xj ∈ τ , cj ∈ {0, 1} because we are not merging on these annotations. D is created

by repeatedly resolving axiom F cii with the set of axioms ∆ = {F cjj | j > i, cj/xj ∈ τ} in order

of increasing j. After this D will be a clause with a fσi head, which will be our pivot and contains

some literals ¬fσj , which will later be merged with literals from C. The fact that σ ⊂ τ1 and σ ⊂ τ2

means we can use fσi as a pivot literal resolving with ¬f τ1i and ¬f τ2i , and in fact we do both by

reusing D.

After resolving twice with D we remove ¬f τ1i and ¬f τ2i without instantiating the clause C.

There may be some additional literals ¬f τ1j and ¬f τ2j for j > i from resolving with D, but similar

literals must have previously existed in C by Invariant B. These possibly had ∗ annotations in C,

but 0, 1 values from D, so merging can make these the same as they were in C (but we will see

below that this is not needed as the remaining cases exclude this possibility). Thus we end up with a

subclause of C and thus shorten the remaining proof.

We repeat this until all literals of this form have been removed. We will look at the remaining

cases to observe that we actually already have an IR-calc refutation, as all the remaining cases are

impossible.

3. There cannot be a negative literal ¬f τi where ∗/xj ∈ τ and j = i.
4. There cannot be a negative literal ¬f τi where there is some j > i with ∗/xj ∈ τ .
5. There cannot be a negative literal ¬yτi,c where there is some j < i with ∗/xj ∈ τ .

In all the cases consider that later in the proof we must resolve this negative literal as part of

clause C with a clause D to remove that literal. D must now have the positive version of the literal,

but it must contain no annotation on xj .

For case 3, this is impossible as by Invariant 3 it must contain an annotation on xi. In case 4

we must have fσj ∈ D by Invariant B and so in the resolvent we have fσ
′

j . But since we instantiate

when we resolve and xj /∈ dom(σ), we get ∗/xj ∈ σ′ which takes us to case 3 again. In case 5 we

must have fσj ∈ D by Invariant B and so in the resolvent we have fσ
′

j . By Invariant 2 we have that

xj /∈ dom(σ), hence ∗/xj ∈ σ′ which takes us to case 3 again.

Therefore every IRM-calc proof of KBKFlq can be transformed in polynomial time to a IR-calc
proof. Hence IRM-calc inherits an exponential lower bound from Lemma 17. ut

In contrast, KBKFlq admits polynomial-size refutations in QU-Res as shown in [11]. Therefore

we obtain the following separation.
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Corollary 7. IRM-calc does not simulate QU-Res.

It is interesting to note that the short QU-Res refutations of KBKF given in [116] (cf. Theo-

rem 14) uses DAG-like structures, reusing derived clauses. In Chapter 7 we explore a new lower

bound technique and clarify that DAG-like proofs are required for short QU-Res refutations of

KBKF.
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Chapter 7

A Game Technique and Lower Bounds
in Tree-like QBF Calculi
In the previous sections we looked closely at the different QBF analogues to resolution calculi that

were structured as the usual directed acyclic graph (DAG), and explored a new technique– strategy

extraction for finding proof size lower bounds. In this section we will now concentrate on tree-like

QBF resolution calculi using a lifted version of the game-theoretic technique developed for classical

resolution.

This begins an investigation into lifting lower bound techniques from propositional to QBF

logic. In Chapters 8 and 9 this is continued, with different techniques. In this chapter we exhibit

a positive result, where the lower bound technique works very similarly in QBF as it did before,

although we see in Chapter 9 that not every technique can be easily lifted to QBF.

Inspired by this asymmetric Prover-Delayer game of [27–29], we develop here a Prover-Delayer

game which tightly characterises the proof size in tree-like Q-resolution. The general idea behind

this game is that a Delayer claims to know a model to a false formula, while a Prover asks for

values of variables until eventually finding a contradiction. In the course of the game the Delayer

scores points proportional to the progress the Prover makes towards reaching a contradiction. By an

information-theoretic argument we show that the optimal Delayer will score exactly logarithmically

many points in the size of the smallest tree-like Q-resolution proof of the formula. Thus exhibiting

clever Delayer strategies automatically gives lower bounds to the proof size, and in principle these

bounds are guaranteed to be optimal. In comparison to the game of [27–29], our formulation here

needs a somewhat more powerful Prover, who can forget information as well as freely set universal

variables. This is necessary as the Prover needs to simulate more complex Q-resolution proofs

involving universal variables and rules for them absent in propositional resolution.

In addition, we show that a slight modification of the game also characterises the proof size in

tree-like QU-resolution. QU-resolution is a stronger system than Q-resolution [116] (though it is

not known whether this also holds for the tree-like versions).

We illustrate this new technique with three examples. The first was used by Janota and Marques-

Silva [74] to separate Q-resolution from the system ∀Exp+Res defined in [74] (see Chapter 4

Figure 13). We use these separating formulas as an easy first illustration of our technique. Our

Delayer strategy as well as the analysis here are quite straightforward; in fact, a simple symmetric

game in the spirit of [100] would suffice to get the lower bound.

The second example are QPARITY formulas defined in Chapter 5, where they exemplify the

new lower bound technique based on strategy extraction. In this chapter we give a completely

74



7. A GAME TECHNIQUE AND LOWER BOUNDS IN TREE-LIKE QBF CALCULI

different proof for the hardness of these formulas in tree-like Q-resolution based on our game

characterisation. Unlike the proof in Chapter 5 our proof here is direct and does not depend on any

circuit lower bounds.

Our third example are the well-known KBKF-formulas of Kleine Büning, Karpinski and

Flögel [77]. In the same work [77], where Q-resolution was introduced, these formulas were

suggested as hard formulas for the system. In Chapter 6, the formulas KBKF were even shown to

be hard for IR-calc, a system stronger than Q-resolution. In fact, a number of further separations

of QBF proof systems builds on the hardness of KBKF [11, 53] (cf. also Chapter 6 for further

details and the formal proof). Here we use our new technique to show that these formulas require

exponential-size proofs in tree-like QU-resolution, which in contrast to the previous two examples

provides a new hardness result. This also has the interesting consequence that the formulas of Kleine

Büning et al. exponentially separate tree-like and dag-like QU-resolution, as they are known to have

short proofs in dag-like QU-resolution [116].

For the KBKF(t) formulas both the Delayer strategy as well as the scoring analysis are

technically involved. It is also interesting to remark that here we indeed need the refined asymmetric

game. The formulas KBKF(t) have very unbalanced proof trees and therefore we cannot use a

symmetric Delayer, as symmetric games only yield a lower bound according to the largest full

binary tree embeddable into the proof tree (cf. [28]).

Section 7.1 introduces the two-player game and the lower bound characterisation for Q-

resolution. Section 7.2 adapts the game and lower bound characterisation for QU-Res. We then

introduce our examples in the remaining sections. The hard formulas from Janota and Marques-

Silva [74] are used in Section 7.3. The QPARITY formulas from Chapter 5 are used in Section 7.4.

Finally a new lower bound using the KBKF formulas from Kleine Büning et al. [77] are used in

Section 7.5.

The work in this chapter appeared in the Journal of Computer and System Sciences [26] and at

the 9th International Conference on Language and Automata Theory and Applications [25].

7.1 Prover-Delayer Game

We present a two-player game along with a scoring system. The two players will be called Prover

and Delayer. The game is played on a fully quantified false QBF φ with CNF matrix. The game

proceeds in rounds and builds a partial assignment to the variables in the QBF, starting with the

empty assignment, i.e. in the beginning all variables are unassigned. In the course of the game the

Delayer gets points and tries to score as many points as possible. The Prover tries to win the game

by falsifying the matrix and giving the Delayer as small a score as possible.

Each round of the game has the following phases:

1. Setting universal variables: The Prover can assign values to any number of universal variables

that satisfy the following condition: A universal variable u can be assigned a value if every

existential variable with a higher quantification level than u is currently unassigned.

75



7. A GAME TECHNIQUE AND LOWER BOUNDS IN TREE-LIKE QBF CALCULI

2. Declare Phase: The Delayer can choose to assign values to any number of unassigned existential

variables of his choice. The Delayer does not score any points for this.

3. Query Phase: This phase has three stages, similar to the original game:

(a) The Prover queries the value of one existential variable x that is currently unassigned.

(b) The Delayer replies with weights p0 ≥ 0 and p1 ≥ 0 such that p0 + p1 = 1.

(c) The Prover assigns a value for x. If she assigns x = b for some b ∈ {0, 1}, the Delayer

scores lg( 1
pb

) points.

4. Forget Phase: The Prover can choose any number of assigned variables (without regard to how

they are quantified) in this phase. Every variable chosen by the Prover in this phase will lose its

assigned value and hence become an unassigned variable.

The Prover wins the game if any clause in φ is falsified. In every round, we check if the Prover has

won the game after each phase.

The game only applies to false QBFs, i.e. the falsity of the formula is given as a ‘promise’.

Intuitively, the Delayer claims to know a model for the false QBF, which the Prover tries to query.

Of course, as there is no model, the Prover can always win the game. The crux of the game is

therefore not who wins, but how many points the Delayer scores before the Prover finally exposes

the Delayer’s lie.

Before explaining the connection of the game to Q-resolution, let us try to provide some intuition

on the game semantics. The game can be seen as a procedural way of obtaining an assignment that

falsifies the matrix of the QBF. At every stage of the game, the Prover maintains a partially filled

vector with assignments to the variables in the formula. This vector can be seen by the Delayer

as well. Throughout the game, the Prover can never assign values to existential variables without

querying them and the Delayer can never assign values to universal variables.

The ‘Setting Universal Variables’ phase, where the Prover can assign values to universal

variables, mirrors the ∀-reduction rule of Q-Res. This intuition will become clear in the proof of

Theorem 18.

The Declare and Query phases are used to assign values to the existential variables. The Declare

Phase merely allows us to express simple strategies for the Delayer that still score sufficiently many

points. The Declare Phase is not integral to the characterisation, however it allows lower bound

arguments to be made concise by simplifying the states of the game. Note that any lower bound to

the score in a strategy that uses the Declare phase non-trivially also holds for an optimal strategy

where the Delayer does not use the Declare Phase at all.

The Query Phase is the most important phase of the game where the Prover obtains information

about existential variables from the Delayer in exchange for points. The Delayer replies with

weights so that the Prover is forced to concede points proportional to how much progress she

makes in the game towards a contradiction. The intuition behind the scoring system defined as log

of the inverse of the weights comes from the Shannon entropy and is made clear in the proof of

Theorem 18. Loosely speaking, the Delayer will charge points proportional to the size of the subtree
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in the shortest tree-like resolution refutation that the Prover enters by her choice. The query phase

therefore corresponds to resolution steps in the Q-Resolution proof.

In the Forget Phase, the Prover can choose and delete any variable assignments from the

assignment vector obtained so far. This phase is especially useful in preparing a universal variable

to be assigned a new value in the next round. To do so, the Prover chooses the universal variable

and all the existential variables with a higher quantification level that are currently assigned to lose

their assigned values. Once this is done, the universal variable can be assigned a new value in the

first phase of the next round of the game. This phase can also be used to prevent the Delayer from

abusing the Declare Phase to stop the assignment of universal variables.

The game ends when the assignment vector holds an assignment that falsifies a clause in the

matrix.

As a toy example, consider the following formula:

∃e∀u∃c1∃c2(u⇒ c1) ∧ (¬u⇒ c2) ∧ (e⇒ c1) ∧ (¬e⇒ c2) ∧ (¬c1 ∨ ¬c2).

We demonstrate a run of the game on the above formula along with the intermediate assignment

vectors. Let v denote the assignment vector. The vector v will contain assignments in the order

〈e, u, c1, c2〉. The game will end when v is an assignment that falsifies one of the matrix clauses.

The game starts with all variables unassigned and hence v = 〈−,−,−,−〉.

– Round 1:
• Setting universal variables: Prover assigns u = 1 and hence v = 〈−, 1,−,−〉.
• Declare Phase: Delayer declares c1 = 1 and c2 = 0. This satisfies all the clauses that do not

involve the variable e in them. v = 〈−, 1, 1, 0〉.
• Query Phase: The Prover queries the variable e. The Delayer replies with p0 = 0 and p1 = 1,

thus forcing the Prover to set e = 1 and hence v = 〈1, 1, 1, 0〉, for which the Delayer scores

lg 1 = 0 points. The assignment does not falsify the formula.
• Forget Phase: The Prover forgets the value of u, c1 and c2 while retaining the value of e.

Note that this is possible since e has a lower quantification level than u. Hence we get

v = 〈1,−,−,−〉.
– Round 2:
• Setting universal variables: Prover assigns u = 0 and we have v = 〈1, 0,−,−〉.
• Declare Phase: Delayer declares c2 = 1. The vector v = 〈1, 0,−, 1〉 now satisfies all clauses

that do not involve c1.
• Query Phase: Prover queries the variable c1. The Delayer responds with p0 = 1/2 and

p1 = 1/2. The Prover wins the game since both 〈1, 0, 1, 1〉 and 〈1, 0, 0, 1〉 falsify the

formula. The Delayer scores 1 point.

It is true that the Delayer can score more points by not declaring any assignments in the Declare

Phase. However, when showing lower bounds to the score obtained by the Delayer in an optimal

strategy, we use the Declare Phase merely to simplify presentation.

We will now show that our game characterises tree-like Q-Resolution.
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Theorem 18. If φ has a tree-like Q-Resolution proof of size at most s, then there exists a Prover

strategy such that any Delayer scores at most lgd s2e points.

Proof. Let Π be a tree-like Q-resolution refutation of φ of size ≤ s. Informally, the Prover plays

according to Π , starting at the empty clause and following a path in the tree to one of the axioms.

At a resolution inference the Prover will query the resolved variable and at a universal reduction she

will set the universal variable. The Prover will keep the invariant that at each moment in the game,

the current assignment α assigns exactly all literals from the current clause C on the path in Π , and

moreover α falsifies C. This invariant holds in the beginning at the empty clause, and in the end,

Prover wins by falsifying an axiom.

We will now give details and first describe a randomised Prover strategy, i.e. the Prover chooses

her answer to Delayer’s queries randomly. We will later derandomise the Prover and make her

strategy deterministic. Let the Prover be at a vertex in Π labelled with clause C. We describe what

the Prover does in the three stages: Setting universal variables, Query phase and the Forget phase.

Setting universal variables: If the current clauseC was derived in the proofΠ by a ∀-reduction
C∨z
C , then Prover sets z = 0. This is possible as the current assignment contains only variables from

C and all existential variables in C have a lower quantification level than z. Prover then moves

down to the clause C ∨ z. The Prover repeats this till arriving at a clause derived by the Resolution

rule (or winning the game). Analogous reasoning applies for ∀-reduction steps C∨¬z
C where Prover

sets z = 1.

Query phase: Prover is now at a clause inΠ that was derived by a Q-resolution step C1∨x C2∨¬x
C1∨C2

.

If the Delayer already set the value of x in his Declare phase, then Prover just follows this choice

and moves on in the proof tree, possibly setting further universal variables. She does this until she

reaches a clause derived by resolution, where the resolved variable x is unassigned. Prover queries

x. On Delayer replying with weights w0 and w1, the Prover chooses x = i with probability wi.

If x = 0, then Prover defines S to be the set of all variables not in C1 ∨ x and proceeds down to

the subtree under that clause. Else, she defines S to be all variables not in C2 ∨ ¬x and proceeds

down to the corresponding subtree.

Forget phase: The Prover forgets all variables in the set S.

For a fixed Delayer D, let qD,` denote the probability (over all random choices made within the

game) that the game ends at leaf `. Let πD be the corresponding distribution induced on the leaves.

For the Prover strategy described above, we have the following claim:

Claim. If the game ends at a leaf `, then the Delayer scores exactly α` = lg
(

1
qD,`

)
points.

To prove the claim, note that since Π is a tree-like Q-resolution proof, there is exactly one path from

the root of Π to `. Let p be the unique path that leads to the leaf ` and let the number of random

choices made along p be m. Then, we have qD,` =
∏m
i=1 qi where qi is the probability for the ith

random choice made along p. Since p is the unique path that leads to `, the number of points α`
scored by the Delayer when the game ends at ` is exactly the number of points scored when the
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game proceeds along the path p. The number of points scored by the Delayer along p is given by:

α` =

m∑
i=1

lg

(
1

qi

)
= lg

(∏
i

1

qi

)
= lg

(
1

qD,`

)
,

which proves the claim.

The Prover strategy we described is randomised. The expected score over all leaves ` is the

following expression:

∑
leaves `∈Π

qD,`α` =
∑

leaves `∈Π
qD,` lg

(
1

qD,`

)
.

By definition, the latter sum is exactly the Shannon entropy H(πD) of the distribution πD.

Since D is fixed, this entropy will be maximum when πD is the uniform distribution; i.e.,H(πD)

is maximum when, for all leaves `, the probability that the game ends at ` is the same. A tree-like

Q-resolution proof of size s has at most ds/2e leaves. So the support of the distribution πD has size

at most ds/2e and henceH(qD,`) ≤ lgds/2e.
If the expected score with the randomised Prover is ≤ lgds/2e, then there is a deterministic

Prover who restricts the scores to at most lgds/2e. Now we derandomise the Prover by just fixing

her random choices accordingly.

We remark that the Delayer actually does not play against the randomised Prover (hence the

Delayer cannot exploit that the Prover is randomised), but only against the deterministic Prover,

which we know must exist by the argument above. By the probabilistic method, this deterministic

Prover prevents every Delayer to earn more than lgds/2e points. ut

To obtain the characterisation of Q-resolution we also need to show the opposite direction,

exhibiting an optimal Delayer:

Theorem 19. Let φ be an unsatisfiable QBF and let s be the size of a shortest tree-like Q-resolution

proof for φ. Then there exists a Delayer who scores at least lgds/2e points against any Prover.

Proof. For any unsatisfiable QBF φ, let L(φ) denote the number of leaves in the shortest tree-like

Q-resolution refutation of φ. For a partial assignment a Let La(φ) denote the number of leaves in

the shortest tree-like Q-resolution derivation of any subset of A = {l | a(l) = 0} from φ.

The Delayer starts with an empty partial assignment a and changes a throughout the game. On

receiving a query for an existential variable x, the Delayer does the following:

1. Updates a to reflect any changes made by the Prover to any of the variables. These changes

include assignments made to both universal variables as well as existential variables.
2. Computes the quantities `0 = La,x=0(φ) and `1 = La,x=1(φ).
3. Replies with weights w0 = `0

`0+`1
and w1 = `1

`0+`1
.

We will prove the theorem by induction, but since an assignment may change multiple times

during a round we have to do induction on individual steps in the game (every time the assignment
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potentially changes) rather than rounds. This is fine as we still have a finite number of steps. We

show by induction on the number of steps left in the game that the delayer can score at least

lg(La(φ)) more points when a is the current assignment. Hence he will score lg(L(φ)) points in

total.

In the base cases, a falsifies a clause so lg(La(φ)) = 0 and the delayer can get no more points.

Let n be the number of remaining steps in the game. For the kth case Assume the statement is

true for all n < k. Now for n = k, consider an assignment a in the game where the Delayer can

play so that he guarantees himself at most d more points.

If the Prover forgets variables and arrives at a′ then d ≥ lg(La′(φ)) ≥ lg(La(φ)).

If the Prover then assigns universal variable u to 0 (without loss of generality) then the delayer

still has the same potential score d. The universal variable can only be assigned if a does not block

it, so universal reduction can be performed on the clause {u} ∪ {l | a(l) = 0} with no change in

the number of leaves. Hence d ≥ lg(La,u=0(φ)) ≥ lg(La(φ)).

In the Query phase if the Prover chose x = b where b ∈ {0, 1}, then the Delayer scores lg 1
wb

for this step alone. We use the induction hypothesis to conclude that the remaining rounds in the

game give the Delayer at least lgLa,x=b(φ). Hence d is at least

lg

(
1

wb

)
+ lgLa,x=b(φ) = lg

La,x=0(φ) + La,x=1(φ)

La,x=b(φ)
+ lgLa,x=b(φ)

= lg (La,x=0(φ) + La,x=1(φ)) ≥ lgLa(φ).

The theorem follows since for any binary tree of size s, the number of leaves is ds/2e. ut

7.2 Adaptation of the Game Characterisation to QU-Resolution

We extend our characterisation to the stronger system of QU-resolution and show that a small

modification to the two-player game tightly characterises the size in tree-like QU-resolution.

The only modification of the game for QU-resolution is in the query phase where the Prover may

also query any universal variable u not already assigned. The Delayer replies with weights p0 ≥ 0

and p1 ≥ 0 such that p0 + p1 = 1. The Prover then assigns a value for u and if she assigns u = b

for some b ∈ {0, 1}, the Delayer scores lg( 1
pb

) points. The “Setting the Universal Variable” stage

still remains with the same restrictions as before, since ∀-reduction is also present in QU-resolution.

For this modified game we can show:

Theorem 20. If φ has a tree-like QU-resolution proof π of size at most s, then there exists a Prover

strategy such that any Delayer scores at most lgd s2e points.

Proof. We use the same argument as in Theorem 18, i.e., the Prover follows the proof Π in reverse

order. Now the only addition is that Π may have resolution steps on universal variables. When this

occurs the Prover queries that universal variable as she would for existential variables.

The rest of the argument remains the same: a randomised Prover can choose the value of the

query variables according to the weights the Delayer gives, and the Delayer gets an expected score

80



7. A GAME TECHNIQUE AND LOWER BOUNDS IN TREE-LIKE QBF CALCULI

less than or equal to the Shannon entropy. A de-randomised Prover can therefore always force the

Delayer to get less than this score. ut

To complete the characterisation we show that the converse holds as well, similarly as in

Theorem 19.

Theorem 21. Let φ be an unsatisfiable QBF and let s be the size of a shortest tree-like QU-

resolution proof for φ. Then there exists a Delayer who scores at least lgds/2e points against any

Prover.

Proof. We adapt the proof of Theorem 19 and only list the changes here.

On receiving a query for universal variable u, the Delayer does the following, just as he would

for existential variables:

1. Updates a to reflect any changes made by the Prover to any of the variables. These changes

include assignments made to both universal variables as well as existential variables.
2. Computes the quantities `0 = La,u=0(φ) and `1 = La,u=1(φ).
3. Replies with weights w0 = `0

`0+`1
and w1 = `1

`0+`1
.

The induction now proceeds the same. In the inductive step, the same inequality lg
(

1
wb

)
+

lgLa,x=b(φ) ≥ lgLa(φ) is obtained and the characterisation therefore holds. ut

7.3 A Game Example on Formulas by Janota and Marques-Silva

We consider the following formulas studied by Janota and Marques-Silva [74]:

Fn = ∃e1∀u1∃c1
1c

2
1 · · · ∃ei∀ui∃c1

i c
2
i · · · ∃en∀un∃c1

nc
2
n :

n∧
i=1

(ei ⇒ c1
i ) ∧ (ui ⇒ c1

i ) ∧ (¬ei ⇒ c2
i ) ∧ (¬ui ⇒ c2

i ) ∧
n∨
i=1

(¬c1
i ∨ ¬c2

i )

These formulas were used in [74] to show that ∀Exp+Res does not simulate Q-resolution, i.e., Fn
requires exponential-size proofs in ∀Exp+Res, but has polynomial-size Q-resolution proofs. Janota

and Marques-Silva [74] also show that ∀Exp+Res p-simulates tree-like Q-resolution, and hence it

follows that Fn is also hard for the latter system.

Consider the original hardness proof of Fn for tree-like Q-resolution (or ∀Exp+Res as it was

described originally in [74]). It basically describes that there are exponentially many paths from

the axioms to the empty clause, each of which corresponds with an assignment to the universal

variables. As it is necessary that all assignments are included, the lower bound follows. We reprove

this result using our characterisation.

Let U = {u1, u2, . . . , un} be the set of all universal variables. In the following, we show a

Delayer strategy that scores at least n points against any Prover.

Declare Phase: The Delayer executes the declare routine in Algorithm 5 repeatedly till reaching

a fixed point (i.e., until calling the algorithm does not produce any changes to the current assignment).
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The intuition here is that the Delayer does not want to falsify any small clause as this can lead to the

Prover winning early.

Query Phase: For any variable queried by Prover, Delayer responds with weights
(

1
2 ,

1
2

)
.

For i ∈ [n], let Ti = {ei, c1
i , c

2
i }. Let C =

∨n
i=1(¬c1

i ∨ ¬c2
i ). Except for C, all other clauses

have only two literals. Note that our declare routine in Algorithm 5 simplifies which variable can

be queried and avoids having to specify a case-by-case response for the Delayer on the queried

variable.

Note that we only need to specify the Delayer strategy, who does not deal with universal

variables. Hence we do not have to give details on what happens in phase 1 (setting of universal

variables) and phase 4 (forget phase).

Lemma 19. Algorithm 5 never falsifies a clause that has only two literals.

Proof. Algorithm 5 declares values for either a variable ci or an ei. We look at each of these cases

below: Setting either c1
i or c2

i : Note that in the formula F , except for the clause C, the variables c1
i

and c2
i appear as positive literals and on the right hand side of implications. Hence setting either c1

i

or c2
i to 1 does not falsify any clause.

Setting an ei: Algorithm 5 declares a value for ei only when at least one of c1
i or c2

i has value 0.

Suppose w.l.o.g. that c2
i had value 0 before Algorithm 5 was executed. Then Algorithm 5 assigns

ei to 1. However, note that if ei was unassigned when Algorithm 5 was called, then it must be the

case that c1
i is not set to 0 (because otherwise ei would have been set in some previous execution of

Algorithm 5). Hence assigning 1 to ei does not falsify the clause (ei ⇒ c1
i ) because c1

i was either

true or unassigned before execution of Algorithm 5. ut

Lemma 20. If the Delayer uses the strategy outlined above, then for any winning Prover strategy,

the clause falsified is C.

Proof. Suppose the clause falsified was D. We will show that if D 6= C, then the Delayer did not

use our strategy. In other words we show the Delayer succeeds in delaying the contradiction until

all literals in C are refuted. We consider the following cases:

1. D involves variable ui for some i ∈ [n]:

Note that ui appears in clauses with either c1
i or c2

i . Since both c1
i and c2

i block ui, it has to

be the case that when ui was set by the Prover, the variables c1
i and c2

i were unassigned. Now

it is straightforward to see that if the Delayer indeed used the declare routine described in

Algorithm 5, then all clauses involving ui become satisfied after ui is set by the Prover.

Algorithm 5 Declare Routine
for all clauses (`1 ⇒ `2) in Fn do

if `1 = 1 then Declare `2 = 1.
if `2 = 0 and var(`1) /∈ U then Declare `1 = 0.
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2. D is (ei ⇒ c1
i ) or (¬ei ⇒ c2

i ):

Suppose w.l.o.g. that D = (ei ⇒ c1
i ). As a consequence of Lemma 19, it must be the case that

D was falsified because of the Prover choosing a value for either ei or c1
i . So we have two cases:

– Prover chose a value for ei to falsify D: So ei was unassigned just before the query phase

began. But if Algorithm 5 left ei unassigned, then this means ci is unassigned or c1
i 6= 0.

Hence if the Delayer indeed used Algorithm 5, D could not have been falsified.

– Prover chose a value for c1
i to falsify D: Following an argument just like the previous case,

if the Delayer indeed used Algorithm 5, then ci would be unassigned at the start of the query

phase only if ei = 0 or ei was unassigned. In both these cases D cannot be falsified by

choosing a value for c1
i . ut

Theorem 22. Delayer scores at least n points against any Prover strategy.

Proof. From Lemma 20, it is sufficient to show that any Prover strategy that falsifies C will give the

Delayer a score of at least n. C can be falsified only if all variables c1
i , c

2
i have been assigned to 1.

We observe that for any i ∈ [n], the Prover can get at most one of c1
i or c2

i to be declared for free by

setting ui appropriately. To assign the other ci to 1, the Prover can either query ci directly and set it

to 1 or query ei and set it appropriately. Both these ways give the Delayer 1 point. Hence for every

i ∈ [n], the Delayer scores at least 1 point. ut

With Theorem 18 this reproves the hardness of Fn for tree-like Q-resolution, already implicitly

established in [74]:

Corollary 8. The formulas Fn require tree-like Q-resolution proofs of size Ω(2n).

Note that this bound is essentially tight as it is easy to construct tree-like Q-resolution refutations

of size O(2n).

7.4 Game Example of QBFs Expressing Parity

We now provide a second example, QPARITY, defined in Section 5. There it demonstrated a

weakness of Q-resolution that could be exploited when the Herbrand function of a lone universal

variable is not in AC0. Here that function is PARITY(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn.

Before we use a novel lower bound technique based on strategy extraction, which transfers the

AC0 lower bound for PARITY from [67] to Q-resolution. Here we use our game characterisation to

prove the lower bound again. This proof is not dependent on any circuit lower bound.

For n > 1 define QPARITYn as follows. Let xor(o1, o2, o) be the set of clauses {¬o1 ∨ ¬o2 ∨
¬o, o1 ∨ o2 ∨¬o, ¬o1 ∨ o2 ∨ o, o1 ∨¬o2 ∨ o}, which defines o to be o1⊕ o2. Define QPARITYn as

∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
⋃n
i=3 xor(ti−1, xi, ti) ∪ {z ∨ tn,¬z ∨ ¬tn}.

Intuitively, these formulas express via the universally quantified z that there exists an input

x1, . . . , xn for which x1 ⊕ · · · ⊕ xn is both 0 and 1. Hence, for the universal player the only
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Algorithm 6 Declare Routine
1: if x1 and x2 are assigned and t2 is unassigned then
2: t2 ← x1 ⊕ x2

3: for i = 2 to i = n− 1 do
4: if ti and xi+1 are assigned and ti+1 is unassigned then
5: ti+1 ← ti ⊕ xi+1

6: if z is assigned and tn is unassigned then
7: tn ← ¬z
8: for i = n to 3 do
9: if ti and xi are assigned and ti−1 is unassigned then

10: ti−1 ← xi ⊕ ti
11: if x2 and t2 are assigned and x1 is unassigned then
12: x1 ← t2 ⊕ x2

13: if x1 and t2 are assigned and x2 is unassigned then
14: x2 ← x1 ⊕ t2
15: for i = 2 to i = n− 1 do
16: if ti and ti+1 are assigned and xi+1 is unassigned then
17: xi+1 ← ti ⊕ ti+1

way to falsify the formula is to play z as the opposite value of x1 ⊕ · · · ⊕ xn, which means he has

to compute the PARITY function. This is crucially exploited in Chapter 5 for the lower bound.

When playing our Prover-Delayer game on these formulas, the Prover queries xi and ti variables,

or can set the value of z. In setting the value of z she deletes all progress made on the ti variables,

but retains all the information on the xi variables.

Observe the Delayer has the luxury that if z is set at the beginning of the game he can answer

in a way that will never contradict the CNF at least until the value of z is changed. When z = 0

the Delayer is trying to build an assignment on the x variables that gives PARITY(x1, . . . , xn) = 1

and tries to make the t variables consistent with that. When z = 1 the Delayer is trying to build an

assignment on the x variables that gives PARITY(x1, . . . , xn) = 0 and is still trying to make the

t variables consistent with that. In fact, as long as the Delayer is playing in this way the Delayer

cannot lose.

We formulate this as a strategy below. Like in Section 7.3 we utilise a declare routine (Algo-

rithm 6) for the Delayer to simplify the analysis, with a similar objective: to satisfy a clause that is

one existential literal away from unsatisfiability. For this we need to look at all the parity equations

ti ⊕ xi = ti+1. Setting one variable might trigger further assignments. A detailed analysis is carried

out below.

Observation 23 Performing Algorithm 6 twice gives the same result as performing Algorithm 6

once.

Proof. Algorithm 6 breaks down into three parts:
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1. the first part is from line 1 to line 5. Each declaration here declares a ti and the index i increases

with each loop;
2. the second part is from line 6 to 10. Each declaration here declares a ti and the index i decreases

with each loop;
3. the final part is from 11 to 17 and declares xi where the t values are given already.

Observe that because part 1 increases the index in the loops and that ti is a precondition for ti+1,

the ti being defined propagates in increasing i. Suppose that tj was not defined when it was checked

as a precondition for defining tj+1 here. Then it will not be defined for the remainder of this part of

the algorithm since the check is passed. The equivalent happens for conditions not met in part 2.

Let us suppose tj is changed due to part 2, then it must be that tj+1 is defined and so no declare

happens from applying part 1 again. Therefore a declaration in part 2 cannot affect a condition in

part 1. This is likewise true vice versa.

It is impossible for a declared xj to trigger any condition in any other part of the algorithm as

any variable it triggers must be defined as a precondition. ut

After the declare routine, the strategy of the Delayer now becomes very simple. When queried

on any unassigned existential variable the Delayer sets p0 = p1 = 1
2 .

We now turn to the analysis.

Lemma 21. At most two xi variables are declared or assigned per turn.

Proof. Suppose on any given turn the variable xi is queried and therefore assigned a new value.

Then it cannot be the precondition of two different declarations since xi can only be a precondition

for ti or ti−1 in which case the other is required to be defined already as a precondition. As a result

of the declaration more tj variables can be declared, but only with consecutively increasing or

decreasing index (not both). It may or may not end with another xk being declared, but then as tk
and tk−1 must be assigned this cannot propagate.

Suppose on any given turn the variable ti is queried. This can be the precondition to two different

declarations, if these are tj variables these can propagate upwards or downwards. Eventually this

results in some xk being declared, but then as tk and tk−1 must be assigned this cannot propagate.

Therefore only two xk can be declared.

Now suppose the universal player changes the value of z. If there are xj and xk that are

unassigned with j < k then the declare phase from lines 1 to 5 may set a number of variables ti
increasing in i, satisfying all xor(ti−1, xi, ti). We also notice that this propagation must stop before

tj is reached, as xj is unassigned. Likewise from Algorithm 6, lines 6 to 10 a downward propagation

of ti variables may occur, satisfying the clauses from z ∨ tn, ¬z ∨ ¬tn and xor(ti, xi+1, ti+1).

However this stops before tk−1. No xi values can now be set as it requires ti−1 and ti to be assigned

and xi to be unassigned. This is impossible as the only unassigned xi values are for j ≤ i ≤ k but

there are no t variables assigned in between them. ut

Lemma 22. The game cannot end in the query phase.
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Proof. Suppose that the game ends in the query phase. Then there is some clause C in the matrix

of QPARITYn that is falsified by the assignment of literal l to 0 in the query phase. This means that

before the query phase all literals except l in C were refuted, but var(l) was unassigned. Either

C ∈ xor(x1, x2, t2), C = ¬z ∨ ¬tn, C = z ∨ tn or C ∈ xor(ti−1, xi, ti) for some i, 3 ≤ i ≤ n.

We use Algorithm 6 to show that if all other literals in C are defined then l cannot be unassigned.

Suppose C ∈ xor(x1, x2, t2). We use Lines 12, 14 and 2 to show that l cannot be x1, x2 or t2,

respectively. Then suppose C = ¬z ∨ ¬tn then l cannot be ¬z as only existential variables can be

queried but cannot be ¬tn due to Line 7. Now suppose C = z ∨ tn. Then l cannot be z as only

existential variables can be queried, but it cannot be tn due to Line 7. Finally suppose that for some

i, 3 ≤ i ≤ n, C ∈ xor(ti−1, xi, ti). Then we use Lines 10, 17 and 5 to show that l cannot be ti−1,

xi or ti, respectively. ut

It is also clear that the Prover cannot win simply by setting the universal variables. To do so she

must win on the clauses z ∨ tn or ¬z ∨ ¬tn, but tn must be unassigned after the universal variables

are set. Therefore the Prover must win in the declare phase.

Lemma 23. The Prover cannot win until all xi are assigned.

Proof. The Prover must win on the declare phase by Lemma 22. Now suppose the Prover wins on a

declare phase when some xj is unassigned. This must be triggered by either setting the universal

variables or by querying a variable.

Let us suppose that this change was triggered by setting the universal variable z. Then all ti
variables are unassigned at the start of the declare phase. From Lines 1 to 5 a number of ti variables

may be set, satisfying each corresponding xor(ti−1, xi, ti). We also notice that this propagation

must stop before tj as xj is unassigned. Likewise from Lines 6 to 10 a downward propagation of ti
variables may occur, satisfying the clauses from z ∨ tn, ¬z ∨ ¬tn and xor(ti, xi+1, ti+1). However

this stops before tj−1. So far no clause has been falsified. In the final section of the algorithm in

Lines 11 to 17 the only xi variable that can be declared is xj , which contradicts our assumption.

Now let us suppose the change was triggered by a queried or declared variable. If x1 is queried

then it cannot immediately contradict a clause but it can trigger a declaration of x2 or t2. Likewise

if x2 is queried then it cannot immediately contradict a clause but it can trigger a declaration of x1

or t2. If for i > 1, xi is assigned then it cannot immediately contradict a clause but it can trigger a

declaration of ti−1 or ti (but not both). If for i > 1, ti is set then it cannot immediately contradict a

clause but it can trigger a declaration of ti−1 or xi and xi+1 or ti.

Now suppose that ti+1 is declared in Line 5. It cannot cause a contradiction of xor(ti, xi+1, ti+1)

by definition. For xor(ti+1, xi+2, ti+2) observe that if xi+2, ti+2 were assigned then they were

assigned before the algorithm was executed by the previous declare phase. It now may trigger a

declaration of xi+1 or ti.

Now suppose that ti−1 is declared by Line 10, it cannot cause a contradiction of xor(ti−1, xi, ti)

by definition. For xor(ti−2, xi−1, ti−1) observe that if xi−1, ti−2 were assigned then they were

either both assigned before the algorithm was executed in the previous declare phase, or ti−2 is
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assigned by an upwards propagation earlier in the algorithm which means that the queried variable

this turn must have index j < i − 1, but since this ti−1 is declared as a result of downwards

propagation this j ≥ i− 1. This means we cannot get a contradiction here. It now may trigger a

declaration of xi+1 or ti.

tn will always be declared immediately after setting the universal variable.

Now suppose that xi+1 is declared by Line 12, 14 or 17, it cannot cause a contradiction in

xor(ti−1, xi, ti) (nor xor(x1, x2, t2)) by definition. It cannot trigger any more declarations. ut

We can now easily count the score of the Delayer for our strategy and combine the above

analysis into the following result:

Theorem 24. There exists a Delayer strategy that scores at least n2 points against any Prover in

the Prover-Delayer game on QPARITYn.

Proof. Each turn a variable is queried and by Lemma 21 at most two xi variables get assigned. The

Delayer always gets one point so gets at least n2 points before the game is finished as all the xi
variables must be set (Lemma 23). ut

Corollary 9. Every tree-like Q-resolution refutation of QPARITYn is of size at least 2n/2.

We remark that in this example we again use the ‘symmetric’ Delayer score scheme (1
2 ,

1
2),

which also corresponds to the information-theoretic intuition behind the game as the Prover learns

exactly the same from a parity variable being assigned 0 or 1. This also means that the lower bound

argument might be made with just the logical reasoning on the graph level (e.g., show that for any

assignment of x variables there is a set-up of t variables which creates a (unique) path from the

empty clause to one of (z ∨ tn) or (¬z ∨ ¬tn)). The Prover-Delayer game approach is a smart way

of showing that there is an exponential number of such paths.

7.5 Game Example of the Formulas of Kleine Büning et al.

In our third example we look at a family of formulas first defined by Kleine Büning, Karpinski

and Flögel [77]. The formulas are known to be hard for Q-resolution and indeed for the stronger

system IR-calc (Chapter 6). However, it is known that there exists short dag-like proofs in QU-

resolution [116]. In contrast, we use our characterisation to show that these formulas remain hard in

tree-like QU-resolution.

We defined the KBKF formulas in Section 6, however, we will use the original notation with an

upper and lower index. In the previous section we had to deal with annotations which we do not

have here.

C− = {¬y0}
C0 = {y0,¬y0

1,¬y1
1}

C0
i = {y0

i , xi,¬y0
i+1,¬y1

i+1} C1
i = {y1

i ,¬xi,¬y0
i+1,¬y1

i+1} for i ∈ [t− 1]

C0
t = {y0

t , xt,¬yt+1, . . . ,¬yt+t} C1
t = {y1

t ,¬xt,¬yt+1, . . . ,¬yt+t}
C0
t+i = {xi, yt+i} C1

t+i = {¬xi, yt+i} for i ∈ [t]
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The KBKF(t) formulas are then defined as the union of these clauses under the quantifier prefix

∃y0, y
0
1, y

1
1 ∀x1 ∃y0

2, y
1
2 ∀x2, . . . ,∀xt−1 ∃y0

t , y
1
t ∀xt ∃yt+1 . . . yt+t.

We now want to show an exponential lower bound on proof size for the KBKF(t) formulas

via our game. We will assume throughout that t > 2. Intuitively, the strategies here are similar to

the strategies described in the game semantics: the Prover is forced to set xi in increasing i while

the Delayer gets a choice of the weights of the values of y0
j , y

1
j and declares variables to avoid

contradictions. Unlike the semantic game, the variables are not queried in any fixed order. Instead

of setting y0
j , y

1
j for slowly increasing j and the contradiction being propagated forwards towards

the variables in the innermost block like the description above, a large j may be queried and a

contradiction may be propagated ‘backwards’ towards the variables in the outermost blocks. When

either y0
j = 0, y1

j = 0 the contradiction is propagated forwards towards the yt+i variables, and

when y0
j = 1, y1

j = 1 the contradiction is propagated backwards to latest yci = 0 variable. Recall

that setting both y0
j = y1

j = 1 only sets one of y0
j−1, y

1
j−1 to 1 depending on how xi−1 is set so

it is useful to the Delayer to make sure that setting y0
j or y1

j to 1 is worth less points than setting

y0
j−1 or y1

j−1 to 1, and likewise the Delayer wants the Prover to make less progress setting high j yj
variables to 0. Taking all of these into consideration a careful Delayer can set the right weights to

gain enough points whichever way the Prover makes progress, we give an informal description of

such a Delayer strategy.

Delayer strategy – informal description

We think of the existential variables of KBKF(t) to be arranged as shown in Figure 24.

y1
1 y

1
2 y1

t

y0 . . . yt+1 yt+2 . . . y2t

y0
1 y

0
2 y0

t

Fig. 24. Variables of KBKF(t)

At any point of time during a run of the game, there is a partial assignment to the variables of

the formula that has been constructed by the Prover and Delayer. We define the following:

Definition 12. For any partial assignment a to the variables, we define za to be the index of the

rightmost column (see Figure 24) where a assigns a 0 to one or more variables in the column. If no

such column exists, then za = 0.

For convenience, we will drop the subscript and just say z when the partial assignment is clear from

context. We usually mention the time during a run of the game at which we are referring to z instead

of explicitly mentioning the induced partial assignment. z is important for the Delayer strategy and

lower bound because it is the main measure of progress of the game. The idea behind the Delayer

strategy is the following: We observe that for all i < t− 2 and j ∈ {0, 1}, to falsify the clause Cji ,
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it is necessary that yji is set to 0, xi is set to j and both y0
i+1 and y1

i+1 are set to 1. The strategy we

design will not let the Prover win on clauses C0
i or C1

i for any i < (t− 2). We do this by declaring

either y0
i+1 or y1

i+1 to 0 at a well chosen time. Furthermore, we will show the following statements:

(1) When the game ends, z ≥ t and (2) After any round in the game, the Delayer has a score of

at least αz where α > 0 is a global constant. It is easy to see that the lower bound of Ω(t) for the

score of the Delayer follows from statements (1) and (2).

We now give the idea behind the declare routine and the weights. We will give details later.

Declare routine: The importance of the declare routine is to simplify the Delayer strategy for

the reader. Since KBKF is the most complicated example we present here, this is where the declare

routine benefits us the most. What is gained here is that we can simplify much of the information

needed from the current assignment for the Delayer query strategy to just information on z.

We will use the declare routine shown in Algorithm 7. This declare routine is designed specifi-

cally to make sure that the game does not end at a clause Cbi for any i < (t− 2) and that statement

(1) (at the end of the game z = t) holds. Note that line 13 of Algorithm 7 is very similar to the

idea behind the declare routine in Section 7.3, i.e., if in any round there is a clause C that has only

one existential variable y unassigned and C|y=b is unsatisfiable, then we declare y = ¬b in the

immediate declare phase.

We will give away values of variables y0
j and y1

j for all j < z for free in the declare phase in a

way that it neither ends the game, nor make any progress in the game. We first make sure that the

Prover cannot exploit an unassigned universal literal by using Lines 8,10 and 17 of Algorithm 7

so that if y0
j and y1

j are both set to 0 then at least one of y0
j+1 or y1

j+1 is set to zero . This allows

the Delayer to answer any query of xj to satisfy whichever of C0
j , C

1
j is not satisfied (but score no

points). Giving away the values of the these variables does not prevent the Delayer scoring enough

because the points are scored using the variables y0
j and y1

j for all j > z.

There are still some complications for the Delayer strategy; the Prover can set all universal

variables to 1 then query y0
t , y0

t−1, etc. until y0
1 , choosing 1 each time. Subsequently, the Delayer

will be forced to set y1
1 to 0, then y1

2 to 0 etc. until y1
t = 0. Then the Prover need only query the

variables in C1
t to get a contradiction. To counter such strategies, the Delayer declares y0

1 to 0

instead of allowing it to be queried for the usual score. This is achieved in line 14 of Algorithm 7.

It allows the value of z to increase, but in this case only by 1 and when some constant score has

already been achieved.

Scoring: At the start of the game, we have z = 0, and at the end, we will have z ≥ t. We will

make sure that z increases monotonically. So the higher the value of z, the closer the Prover is to

winning the game. Intuitively, the value of z is a mark of progress in the game for the Prover. Hence

our scoring is designed so that the Prover is charged for increasing the value of z.

At some intermediate round in the game, if the Prover queries variable y0
i or y1

i for some i > z,

our strategy charges a score proportional to (i− z) for letting the Prover set the variable queried to

0. However, in some cases, we will have to adjust this so that the Delayer scores more if the declare

phase immediately forces z to an even higher value. If the effect is not immediate the Delayer can
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force the Prover to change the universal variables by declaring a 0 at y1
i+1 or y0

i+1 depending on the

universal variables (see line 15 of Algorithm 7).

Delayer strategy – details

We now give full details of the Delayer strategy.

Declare Phase: The Delayer sets y0 to 0 in the declare phase of the first round.

Let F be the set of all existential variables that were chosen to be forgotten by the Prover in

the forget phase of the previous round. The Delayer first does the following “Reset Step”: For all

variables y in F that had value 0 just before the forget phase of the previous round, the Delayer

declares y = 0. This Reset Step keeps the state of the game simple.

After the reset step, the Delayer executes Algorithm 7 repeatedly until reaching a fixed point.

The notation y ← b means that the Delayer declares y = b if and only if y is an unassigned variable.

Also, we assume that z is updated automatically to be the index of the rightmost column that

contains a 0 (see Figure 24).

We observe the following about the reset step:

Observation 25 The reset step ensures that z always increases monotonically (when z is measured

at the beginning of each query phase).

Line 17 of Algorithm 7 gives us the following observation:

Observation 26 After the declare phase, for all i < z, the existential variables y0
i and y1

i have

been assigned a value.

Observation 27 For all i > z for c ∈ {0, 1}, if a line in Algorithm 7 potentially sets yci to 1 and

another line potentially sets yci to 0, the line that sets yci to 1 comes first.

Observation 28 For all i < t, if y0
i and y1

i are both set to 0 then at least one of y0
i+1 or y1

i+1 is set

to zero.

This holds because the Delayer does not allow y0
i and y1

i to be both set to 0 during the query

phase. This is also avoided in Algorithm 7 by Lines 8 and 10. However since z may change it

is possible, in conjunction with Line 14 , that after Line 17 both y0
z−1 and y1

z−1 equal 0 but by

definition some ycz = 0.

Query Phase: Let the queried variable be ybi . From Observation 26, it is easy to see that i ≥ z. We

have the following cases:

– If i > t, then the Delayer replies with weights w0 = 2z−t−1 and w1 = 1− w0.
– Else z ≤ i ≤ t. We have three cases:
• If z = i the Delayer replies with weights w0 = 0 and w1 = 1.
• If xi is unassigned, then the Delayer replies with weights w0 = 2z−i and w1 = 1− w0.
• Else xi holds a value. Then we have the following cases:
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Algorithm 7 Declare Routine
1: y0

z ← 1, y1
z ← 1

2: z′ := z
3: if yxzz 6= 0 or xz unassigned then
4: for all i > z do y0

i ← 1; y1
i ← 1

5: for i = 1 to z − 1 do
6: if xi is unassigned then
7: if y0

i = 0 then
8: y1

i ← 1
9: else if y1

i 6= 1 then
10: y0

i ← 1

11: for i = t− 1 to 1 do
12: for j = 0 to 1 do
13: if Cji is not satisfied with only one literal l that is unassigned then satisfy Cji with that

literal (if existential).
14: if z ≤ t− 2, xz+1 is assigned and either y0

z+2 = 1 or y1
z+2 = 1 then y1−xz+1

z+1 ← 0
15: if z 6= z′, xz assigned and yxzz = 0 then
16: if xz+1 unassigned then y0

z+1 ← 0 else y1−xz
z+1 ← 0

17: for all i < z do y0
i ← 0, y1

i ← 0

∗ If b = ¬xi, then the Delayer replies with weights w0 = 2z−i and w1 = 1− w0.

∗ Else b = xi and Delayer replies with weight w0 = 2z−j , where j is the largest index

such that ∀k : z < k ≤ j, xk is assigned and y1−xk
k = 1. Weight w1 = 1− w0.

Now suppose the queried variable is xi

– If y0
i = 1 or y1

i = 0 then the Delayer replies with weights w0 = 1 and w1 = 0.
– Else, If y1

i = 1 or y0
i = 0 then the Delayer replies with weights w0 = 0 and w1 = 1.

– Otherwise w0 = w1 = 1/2.

We now analyse the above Delayer strategy. We want to argue that as z increases so does the

Delayer score and that z increases sufficiently in total. We start with the following lemma:

Lemma 24. If the Delayer uses the strategy outlined above, then against any Prover, at the end of

the game on KBKF(t), z ≥ t (where z is defined as in Definition 12).

Proof. The Prover cannot win on the clause ¬y0 because the Delayer always sets y0 to 0. Suppose

the Prover wins on the clause Cbi for some i ∈ [t] and b ∈ {0, 1}. We first show the following claim:

Claim. At the end of the game we have z = i.

To prove the claim we note that i > z is impossible because there is a positive literal in every

Cbi clause, so in order to falsify Cbi some existential literal must be set to 0 and thus z ≥ i.
To show the claim we now argue for z ≤ i. The clause Cbi has positive literal ybi . Since Cbi was

falsified, the variable ybi must have been set to 0 permanently after some move in the game. We
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know that if at least one of y0
j , y1

j (for j ≤ z) is 0 then both the clauses containing the negative

literals are already satisfied. If both are already assigned to 1 it means that if xj−1 is assigned, then

y
xj−1

j−1 gets set to 1 by the declare phase, and this happens before any instruction to set it to 0 appears

by Observation 27. If xj−1 is not assigned, note that the universal player cannot declare it without

using the forget phase, we will come to this possibility later. If the universal player instead queries

xj−1 then by Observation 28 the Delayer can always respond without falsifying a clause.

If the universal player uses the forget phase to remove y0
j and y1

j and change a universal variable

xj−1 then y0
j and y1

j will be assigned by the end of the declare phase (because the Delayer redeclares

the variables, so z is retained after the forget phase), however at most one of them will be set to 1.

The declare phase sets all other literals before y0
z to 0, without a contradiction. Hence also z ≤ i,

which proves the claim.

To continue the proof of the lemma, we note that Algorithm 7 (Line 13) and the Delayer’s

response on universal variables prevents the clauses from being falsified in the immediate query

phase that follows. Hence we only consider the case where a clause is falsified in the declare phase.

We will show that setting yxii to 0 for i < t is not the winning move in a declare phase.

Otherwise, immediately before we have a different z and i = z + 1, where yxz+1

z+1 gets set to 0 in the

declare phase. This requires that both y0
z+2 = y1

z+2 = 1, but then by Observation 27, yxii will be set

to 1 immediately before, contradicting it getting set to 0. This means that the winning move can only

be done by declaring yxi+1

i+1 to 1 or y1−xi+1

i+1 to 1. Only yxi+1

i+1 can be set in the declare phase (because

the universal variable is essential), but this requires y1−xi+1

i+1 = 1 and yxii = 0. We can assume that

none of these were set in the previous query phase, as what is set in the previous query phase must

cause the yxi+1

i+1 to be set to 1 and, looking at the clauses, must be a higher level. Therefore in the

declare phase before that we must have y1−xi+1

i+1 = 1, yxii = 0 and yxi+1

i unassigned. So by Line 13,

y
xi+1

i+1 is set to 0 in that declare phase (and the Delayer will replace the 0 if the Prover chose to forget

it), therefore it cannot be declared to 1 in the next turn. ut

Remark 4. If the Prover chooses to assign 1 to an existential variable or assigns a queried universal

variable in the query phase on turn k, then by the beginning of the query phase on turn k + 1, the

value of z (index of the rightmost zero) increments by at most 1. For the increase by 1 it is required

that yxzz = 0 and that for all c ∈ {0, 1}, ycz+1 and ycz+2 are unassigned before the query phase on

turn k. If the Prover chose to assign 1 to the variable queried and it results in a change of z, then it

must cause any of y0
z+1, y1

z+1, y0
z+2 or y1

z+2 to be set to 1, incrementing z by at most one.

For all i ∈ [t], and z < t−1, let sz(yci ) denote the minimum (over all possible Prover strategies)

Delayer score when yci is assigned 1 by the Prover for the first time starting from a partial assignment

where the rightmost zero is in column z and every variable to the right of column z is unassigned.

Of note is that sz(yci ) for i > z + 1 does not depend on the values of y0
j , y

1
j for j ≤ i (apart

from giving a value to z) when the game is being played as described. This can be seen because the

Delayer does not base the scores on these values and these values cannot cause higher index values

to be declared to 1.
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Combining Observation 25 with the fact that at the start of the game z = 0, Lemma 24 implies

that the Prover increases z by at least t in the process of winning the game. We will now measure

the scores that the Delayer accumulates.

Lemma 25. For all z < t− 1 and i < t, each of sz(y0
i ) and sz(y1

i ) is at least 2t−i lg 2t−z

2t−z−1
.

Proof. Suppose in the first round, the Prover sets xi = 1. Since all existential variables of greater

level are unassigned she could then somehow set y0
i+1 = 1 at cost sz(y1

i+1). Subsequently, she could

still change all universal variables at level greater than lv(y0
i+1) and delete all existential variables

afterwards, and thus can get y1
i+1 = 1 at cost sz(y1

i+1) without deleting y0
z+1. At this point y1

z = 1

by the declare phase. This means sz(y1
i ) ≤ 2sz(y

1
i+1).

Suppose sz(y1
i ) 6= 2sz(y

1
i+1). Then it is cheapest for the Prover to query y1

i immediately. This

gives the Delayer lg( 2i−z

2i−z−1
) = 2i+2−2z−lg(22i+2−2z−2i+2−z) points. Instead the Prover could

query both y0
i+1 and y1

i+1 and this gives 2 lg 2i+1−z

2i+1−z−1
= 2i+ 2− 2z − lg(22i+2−2z − 2i+2−z + 1),

which is slightly cheaper. Hence sz(y1
i ) = 2sz(y

1
i+1).

Recursively sz(y1
i ) = 2t−isz(y

1
t ). Variable y1

t can be set to 1 by querying it or by querying all

variables in the next existential level. However, asymptotically it will be cheaper to query it directly.

Hence sz(y1
t ) = lg 2t−z

2t−z−1
. By symmetry, sz(y0

i ) = sz(y
1
i ) as at the beginning the Prover is free to

switch the polarities of all the universal variables with no cost. Note that the Delayer strategy on

universal variables prevents the universal player from switching the polarities of xi during the query

phase, so we can assume the Prover has to stick with her choices or use the forget phase. There is

no advantage to leaving the universal variables unassigned at the beginning and then querying them

later as the score only increases when the Prover chooses 0 for some existential variable on level i

and in that case the Delayer is defiant and does not allow the Prover to set xi to a value useful for

the Prover on that query phase. ut

We now know that during a run of the game, z increases from 0 to t. Now we show that the

Delayer scores Ω(z) points during any particular run of the game on KBKF(t) for large enough t:

Lemma 26. There exist constants t0 > 0 and α > 0 such that for all t > t0, at any point of time

during a run of the game on KBKF(t), the Delayer has a score of at least αz.

Proof. We will take the lemma as an inductive hypothesis on z. On the first turn the Delayer sets

z = 0 and the Delayer has zero points.

The value of z can change from the Prover picking a 0 in the query phase. In this case the

Delayer either scores j − z points when the 0 moves down to j + 1 − z in the declare phase or

scores i− z points otherwise. When z does not change in the declare phase, it is the only case where

the Prover is not forced to delete all the higher level existential literals and switch the universal

variable xi and so may get the z to be incremented by 1 at a cheaper cost than s(y0
z+2) (which will

be our lower bound when 1 is assigned by the Prover to an existential variable to force a change in

z). However this is not a problem as we only get this once per time z is changed, hence the Delayer

gets at least n2 points if z changes by n.
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As remarked earlier, the value of z can change by at most 1 if Prover chooses to assign 1 to a

queried variable. This can result from 1 being assigned after a query on ycz+1 or y1−c
z+1. In this case,

as y0
z+2 and y1

z+2 are unassigned, the cost of these are 1, so the Prover gets enough points. Now

we only need to look at the case where a y0
z+2 or y1

z+2 gets set to 1 and we start with unassigned

existential literals for higher levels than z. Here we know from Lemma 25 that the minimum cost is
1
42t−z lg( 2t−z

2t−z−1
). Note that t is the only variable in this expression since at any fixed point of time

during a run of the game, the value of z is fixed. This quantity can be written as f(x) = 1
4x lg( x

x−1)

where x = 2t−z . It is easy to see that the limit of f(x) as x tends to infinity is the constant 1
4 ln 2 .

This implies that f(x) ∈ Ω(1). So the Delayer gets Ω(1) points each time the Prover increments z

by 1. More precisely, using the definition of big-Omega, there exists constants t0 > 0 and α > 0

such that for all games played on KBKF(t) for a t > t0, the Delayer scores at least α points each

time the Prover increases z by 1. ut

Combining Lemma 24 and Lemma 26, we have:

Theorem 29. There exists a Delayer strategy that scores Ω(t) against any Prover in the Prover-

Delayer game on KBKF(t).

Combining Theorem 29 and Theorem 20, we obtain:

Corollary 10. The formulas KBKF(t) require tree-like QU-resolution proofs of size 2Ω(t).

As KBKF(t) are easy for QU-resolution [116], they therefore provide an exponential separation

between tree-like and dag-like QU-resolution by Corollary 10.

We will continue this investigation QBF lower bound techniques in Chapter 8 and 9.
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Chapter 8

Feasible Interpolation for QBF Resolu-
tion Calculi

In Chapter 5 and 7 we find two lower bounds techniques that work for QBF. In Chapter 7 we

introduce a game technique that works for tree-like Q-resolution. The strategy extraction technique

from Chapter 5 can be applied to DAG-like QBF resolution systems, but does not apply directly in

the expansion based systems such as ∀Exp+Res, IR-calc and IRM-calc. In this chapter, we present

a general lower bound technique that works for all QBF resolution systems including expansion

based systems.

The technique we present is feasible interpolation, which is a present technique in propositional

proof systems. Feasible interpolation works on true implication formulas A(p, q) → B(p, r)

(or, equivalently, false conjunctions A(p, q) ∧ ¬B(p, r)). By Craig’s interpolation theorem [47]

there is a interpolating formula C in the common variables p, such that A(p, q) → C(p) and

C(p) → B(p, r). While interpolation formulas always exist these may not be of polynomial

size [94].

A proof systemP is said to admit feasible interpolation, if for anyP proof ofA(p, q)→ B(p, r)

an interpolating circuit for some C(p) can be extracted from the proof in polynomial time. This

gives us a lower bound technique, if we know that a particular class of formulas does not admit

small interpolants (either unconditionally or under suitable assumptions), then there cannot exist

small proofs of the formulas in the system P .

In propositional logic, resolution and the cutting planes proof systems are shown to have the

feasible interpolation property [99]. In [21] it was shown that all QBF resolution systems have

feasible interpolation. Due to the simulations (cf. Figure 18, Section 4.4) it is only necessary to show

feasible interpolation for two systems LQU+-Res and IRM-calc. In this thesis we only present the

feasible interpolation technique for IRM-calc.

When feasible interpolation is lifted to the QBF setting it provides a greater opportunity for

lower bounds. Our second contribution is to use our feasible interpolation for IRM-calc for a new

unconditional lower bound. These new formulas Φn(p, q, r) are false QBFs that express that a

graph cannot both have and not have a k-clique. The clique problem is used as the interpolant

precisely because it only has exponential-size monotone circuits [3]. This means that if feasible

interpolation can extract monotone circuits in polynomial time, we get an exponential lower bound.

We show that IRM-calc has monotone feasible interpolation and thus the lower bound applies. This

result also applies in the other QBF resolution systems and thus the lower bound is general [21].
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Strategy extraction is an important part of QBF proof systems. We see results in strategy

extraction for IR-calc and IRM-calc in Chapter 4 and we use strategy extraction as a lower bound

technique for QU-Res in Chapter 5. We uncover a tight connection between feasible interpolation

and strategy extraction. Both feasible interpolation and strategy extraction transfer hardness from

circuit complexity to proof complexity. In this chapter we show that feasible interpolation problems

can be transformed into strategy extraction problems, where the interpolant corresponds to the

winning strategy of the universal player on the first universal variable. This clarifies that feasible

interpolation can be viewed as a special case of strategy extraction.

In Section 8.1 we present the proof for feasible interpolation for IRM-calc. A change needed to

adapt this proof for monotone feasible interpolation is given in Section 8.2. We use the monotone

feasible interpolation result to prove a lower bound in Section 8.3. Finally in Section 8.4, we discuss

the relationship between feasible interpolation and strategy extraction.

The work in this chapter appeared at the 43rd International Colloquium on Automata, Languages,

and Programming [21].

8.1 Feasible Interpolation for IRM-calc

In this section we show that feasible interpolation holds in IRM-calc. We adapt the technique first

used by [99] to re-prove and generalise the result of [80].

We first use a technical notation for annotated clauses in IRM-calc proofs.

Definition 13. For clauses C,D we write C � D if for any literal l ∈ C we have l ∈ D or l∗ ∈ D
and for any l∗ ∈ C we have l∗ ∈ D.

For annotations τ and σ we say that τ � σ if dom(τ) = dom(σ) and for any c/u ∈ τ we have

c/u ∈ σ or ∗/u ∈ σ and for any ∗/u ∈ τ we have ∗/u ∈ σ.

If C,D are annotated clauses, we write C � D if there is an injective function f : C ↪→ D

such that for all lτ ∈ C we have f(lτ ) = lσ with τ � σ.

Consider a false QBF sentence F of the form

∃pQqQr
[
A(p, q) ∧B(p, r)

]
,

where, p, q, and r are mutually disjoint sets of propositional variables, A(p, q) is a CNF formula

on variables p and q, and B(p, r) is a CNF formula on variables p and r. Thus p are the common

variables between them. The q and r variables can be quantified arbitrarily, with any number of

quantification levels. The sentence is equivalent to the following, not in prenex form

∃p
[
Qq.A(p, q) ∧Qr.B(p, r)

]
.
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Definition 14. Let F be a false QBF of the form ∃pQqQr. [A(p, q) ∧B(p, r)]. An interpolation

circuit for F is a boolean circuit G such that on every 0, 1 assignment a for p we have

G(a) = 0 =⇒ Qq.A(a, q) is false, and

G(a) = 1 =⇒ Qr.B(a, r) is false.

We say that a QBF proof system S has feasible interpolation if for any S-proof π of a QBF F of the

form above, we can extract from π an interpolation circuit for F of size polynomial in the size of π.

We say that S has monotone feasible interpolation if the following holds: in the same setting as

above, if p appears only positively in A(p, q), then we can extract from π a monotone interpolation

circuit for F .

As our main result, we show that IRM-calc has feasible interpolation.

Before proving the interpolation theorems, we first outline the general idea:

Proof idea Fix an IRM-calc-proof π of F . Consider the following definition of a q-clause and an

r-clause.

Definition 15. We call a clause C in π a q-clause (resp. r-clause), if C contains only variables

p, q (resp. p, r). We also call C a q-clause (resp. r-clause), if C contains only p variables, but

all its descendant clauses in the proof π (all clauses with a directed path to C in π) are q (resp.

r)-clauses. The annotations are not considered and can be from either set.

From π we construct a circuit Cπ with the p-variables as inputs. This will be topologically similar

to the directed acyclic graph of π: for each node u with clause Cu in the proof π, associate a gate

gu (or a constant-size circuit) in the circuit Cπ. In order to check the validity of the circuit we will

construct refutations for every assignment to p. These will be refutation entirely in q-clauses or

r-clause depending on the outcome of our circuit. We find these refutations in two steps. First, we

inductively construct, for any assignment a to the p variables, another proof-like structure π′(a).

Like the circuit Cπ these will also be topologically similar to π. For each node u with clause Cu
in the proof π, associate a clause C ′u,a in the structure π′(a). The purpose of π′(a) is to replace

rules that rely on p variables. Finally, we obtain π′′(a) from the structure π′(a) by instantiating p

variables to the assignment a and doing some pruning, and show that π′′(a) is a valid proof in S. We

then find that if Cπ(a) = 0, then π′′(a) uses only q-clauses and thus is a refutation of Qq.A(a, q),

and if Cπ(a) = 1, then π′′(a) uses only r-clauses and thus is a refutation of Qr.B(a, r). Thus Cπ
is the desired interpolant circuit.

More precisely, we show by induction on the height of u in π (that is, the length of the longest

path to u from a source node in π) that:

1. C ′u,a � Cu.
2. gu(a) = 0 =⇒ C ′′u,a is a q-clause and can be obtained from the clauses of A(a, q) alone

using the rules of S.
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3. gu(a) = 1 =⇒ C ′′u,a is an r-clause and can be obtained from the clauses of B(a, r) alone

using the rules of S.

From the above, we have the following conclusion. Let r be the root of π. Then on any

assignment a to the p variables we have:

(1) C ′r,a � Cr = �, so C ′r,a = �. Therefore, C ′′r,a = C ′r,a|a = �.
(2) gr(a) = 0 =⇒ � is a q-clause and can be obtained from the clauses of A(a, q) alone using

the rules of system S. Hence by soundness of S, Qq.A(a, q) is false.
(3) gr(a) = 1 =⇒ � is an r-clause and can be obtained from the clauses of B(a, r) alone using

the rules of system S. Hence by soundness of S, Qr.B(a, r) is false.

Thus gr, the output gate of the circuit, computes an interpolant.

When F has only existential quantification, π is a classical resolution proof, and this is exactly

the interpolant computed by Pudlák’s method [99]. The challenge here is to construct π′ and π′′

appropriately when the stronger proof systems are used for general QBF, while maintaining the

inductive invariants.

Theorem 30. IRM-calc has feasible interpolation.

As mentioned in the proof idea, for an IRM-calc proof π of F we first describe the circuit Cπ
with input p.

Proof. Construction of the circuit Cπ: The DAG underlying the circuit is exactly the same as the

DAG underlying the proof π. For each node u with clause Cu in π we associate a gate gu as follows:

u is a leaf node: If Cu ∈ A(p, q) then gu is a constant 0 gate. If Cu ∈ B(p, r) then gu is a

constant 1 gate.

u is an internal node: We distinguish four cases.

1. u was derived by either
(a) instantiation,
(b) merging.
In this case put a no-operation gate for gu.

2. u corresponds to a resolution step with an existential variable x ∈ p as pivot. Nodes v and w

are its two children, i.e.
node v︷ ︸︸ ︷
C1 ∨ x

node w︷ ︸︸ ︷
C2 ∨ ¬x

C︸︷︷︸
node u

.

In this case, put a selector gate sel(x, gv, gw) for gu. Here, sel(x, a, b) = a, when x = 0 and

sel(x, a, b) = b, when x = 1. That is, sel(x, a, b) = (¬x ∧ a) ∨ (x ∧ b). Note that all the

variables in p are existential variables without annotations.
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3. u corresponds to a resolution step with an existential variable x ∈ q as pivot. Put an OR gate

for gu.
4. u corresponds to a resolution step with an existential variable x ∈ r as pivot. Put an AND gate

for gu.

This completes the description of the circuit Cπ.

Construction of π′ and π′′: We construct a proof-like structure π′(a), which depends on the

assignment a to the p variables, the proof π of F , and the circuit Cπ. For each node u in π, with

clause Cu, we associate a clause C ′u,a in π′(a), and let C ′′u,a be the instantiation of C ′u,a by the

assignment a. We show (by induction on the height of u in π) that:

1. C ′u,a � Cu.
2. gu(a) = 0 =⇒ C ′′u,a is a q-clause and can be obtained from the clauses of A(a, q) alone

using the rules of system IRM-calc.
3. gu(a) = 1 =⇒ C ′′u,a is a r-clause and can be obtained from the clauses of B(a, r) alone

using the rules of system IRM-calc.

As described in the proof outline, this suffices to conclude that the circuit Cπ computes an inter-

polant.

At a leaf level: Let node u be a leaf in π. Then C ′u,a = Cu; that is, copy the clause as it is. Trivially,

C ′u,a � Cu. The gates give the correct values by definition.

At an internal node with instantiation: Let node u be an internal node in π corresponding to an

instantiation step by τ . And let node v be its only child. We know Cu = inst(τ, Cv).

Suppose lσ
′ ∈ inst(τ, C ′v,a). Then for some ξ′, lξ

′ ∈ C ′v,a, and lσ
′

= l[ξ
′ ◦ τ ]; hence σ′ is a

subset of ξ′ completed with τ . By induction we know that C ′v,a � Cv. We have an injective function

f : C ′v,a ↪→ Cv that demonstrates this. Let f(lξ
′
) = lξ. Hence lξ ∈ Cv for some ξ′ � ξ. So

lσ = l[ξ ◦ τ ] ∈ Cu. Since the annotations introduced by instantiation match, σ′ � σ. We use this

to define a function g : inst(τ, C ′v,a) → Cu where g(lσ
′
) = lσ. Now we find any lτ1 , lτ2 where

g(lτ1) = g(lτ2) = lτ and perform a merging step on lτ1 and lτ2 ; note that the resulting literal lτ
′

will

still satisfy τ ′ � τ . Eventually we get a clause which we define as instmerge(τ, C ′v,a, Cu) = C ′u,a

where this function is injective. We will use this notation to refer to this process of instantiation and

then deliberate merging to get � Cu.

Therefore C ′u,a � Cu.

If the node u is not pruned out in π′′(a), then C ′′u,a contains no satisfied p literals; hence neither

does C ′v,a. Therefore C ′′u,a is derived from C ′′v,a; this is a valid step in the proof system.

Because we only use instantiation and merging or a dummy step, C ′′u,a is a q-clause if and only

if C ′′v,a is a q-clause. Therefore the no-operation gate gu gives a valid result by induction.

At an internal node with merging: Let node u be an internal node in π corresponding to a merging

step. Let node v be its only child. We have

Cv = Dv ∨ bµ ∨ bσ

Cu = Dv ∨ bξ
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where dom(µ) = dom(σ) and ξ is obtained by merging the annotations µ, σ. That is, ξ =

AMerge(µ, σ) , {c/u | c/u ∈ µ, c/u ∈ σ} ∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}. Note that

µ, σ � AMerge(µ, σ).

Note that from the induction hypothesis, C ′v(a) � Cv, so there is an injective function f :

C ′v(a) ↪→ Cv. Suppose C ′v(a) contains two distinct literals bµ
′

and bσ
′

where f(bµ
′
) = bµ and

f(bσ
′
) = bσ. So C ′v(a) = D′v ∨ bµ

′ ∨ bσ′ . Then let C ′v,a = D′v ∨ bξ
′
, where ξ′ = AMerge(µ′, σ′).

Otherwise let C ′u,a = C ′v,a.

We first observe whenever we do actual merging, if c/u ∈ ξ′ then one of the following holds:

1. c/u ∈ σ′. Then c/u ∈ σ or ∗/u ∈ σ, and so c/u ∈ ξ or ∗/u ∈ ξ.

2. c/u ∈ µ′. Then c/u ∈ µ or ∗/u ∈ µ, and so c/u ∈ ξ or ∗/u ∈ ξ.

3. e/u ∈ µ′, d/u ∈ σ′, e 6= d, in which case ∗/u ∈ ξ.

Since all other annotated literals are unaffected, C ′u,a � Cu. We never merge p literals as they have

no annotations, so if C ′′u,a is not pruned away, then C ′′u,a is derived from C ′′v,a via merging.

In case we do not merge, there might be some bσ
′ ∈ C ′v,a with σ′ � σ, which is not removed

by merging. However σ′ � σ � ξ, so C ′u,a = C ′v,a � Cu. As C ′′u,a = C ′′v,a, this is a valid inference

step (in fact, a dummy step).

Because we only use merging or a dummy step, C ′′u,a is a q-clause if and only if C ′′v,a is a

q-clause, therefore the no-operation gate gu gives a valid result by induction.

At an internal node with p-resolution: Let node u in the proof π correspond to a resolution step

with pivot x ∈ p. Note that x is existential, as p variables occur only existentially in F . We have

Cv =

node v︷ ︸︸ ︷
C1 ∨ x

node w︷ ︸︸ ︷
C2 ∨ ¬x = Cw

Cu = C1 ∨ C2︸ ︷︷ ︸
node u

.

In the assignment a, if x = 0, then define C ′u,a = C ′v,a \ {x} and if x = 1 then define C ′u,a =

C ′w,a \ {¬x}. By induction, we have C ′v,a � Cv and C ′w,a � Cw. So, if x = 0, we have C ′u,a =

C ′v,a \ {x} � C1 � Cu. If x = 1, we have C ′u,a � C ′w,a \ {¬x} � C2 � Cu.

In this case gu is a selector gate. If x = 0 in the assignment a, then gu(a) = gv(a) and

C ′′u,a = C ′′v,(a). Since the conditions concerning gv(a) and C ′′v,a are satisfied by induction, the

conditions concerning gu(a) and C ′′u,a are satisfied as well. Similarly, if x = 1, then gu(a) = gw(a)

and C ′′u,a = C ′′w,a, and the statements that are inductively true at w hold at u as well.

At an internal node with q-resolution: When we have a resolution step between nodes v and w

on a q pivot to get node u, we have

Cv = xτ∪ξ ∨Dv Cw = ¬xτ∪σ ∨Dw

Cu = inst(σ,Dv) ∪ inst(ξ,Dw)

where dom(τ), dom(ξ) and dom(σ) are mutually disjoint, and rng(τ) = {0, 1}.
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In order to do dummy instantiations we will need to define a {0, 1} version of ξ and σ. So

we define ξ′ = {c/u | c/u ∈ ξ, c ∈ {0, 1}} ∪ {0/u | ∗/u ∈ ξ}, σ′ = {c/u | c/u ∈ σ, c ∈
{0, 1}} ∪ {0/u | ∗/u ∈ σ}. This gives us the desirable property that ξ′ � ξ, σ′ � σ.

Now resuming the construction of C ′, we use information from the circuit to construct this. If

gv(a) = 1, then we define C ′u,a = instmerge(σ′, C ′v,a, Cu). Otherwise, if gw(a) = 1, then we

define C ′u,a = instmerge(ξ′, C ′w,a, Cu). In these cases, we know by the inductive claim that C ′u,a
does not contain any q literals. Therefore C ′u,a is the correct instantiation (as ξ′ � ξ, σ′ � σ) of

some subset of Dv or Dw. Hence C ′u,a � Cu. Furthermore since gu is an OR gate evaluating to 1

and since C ′′u,a, an r-clause, can be obtained by an instantiation step, our inductive claim is true.

Now suppose gv(a) = 0 and gw(a) = 0. If there is no xµ ∈ C ′v,a such that µ � τ ∪ ξ, then

define C ′u,a = instmerge(σ′, C ′v,a, Cu). Else, if there is no ¬xµ ∈ C ′w,a such that µ � τ ∪ σ,

then define C ′u,a = instmerge(ξ′, C ′w,a, Cu). In these cases we know that C ′u,a is the correct

instantiation (as ξ′ � ξ, σ′ � σ) of some subset of Dv or Dw; hence C ′u,a � Cu. Furthermore,

since gu is an OR gate evaluating to 0, and sinceC ′′u,a, a q-clause, can be obtained by an instantiation

step, our inductive claim is true.

The final case is when gv(a) = gw(a) = 0 and xτ∪ξ1 ∈ C ′v,a for some ξ1 � ξ and ¬xτ∪σ1 ∈
C ′w,a for some σ1 � σ. Here, because dom(τ), dom(ξ) and dom(σ) are mutually disjoint, dom(τ),

dom(ξ1) and dom(σ1) are also mutually disjoint. Thus we can do the resolution step

C ′v,a = xτ∪ξ1 ∨D′v C ′w,a = ¬xτ∪σ1 ∨D′w
inst(σ1, D′v) ∪ inst(ξ1, D′w)

.

Since instmerge(σ1, D
′
v, Cu) � inst(σ,Dv) and instmerge(ξ1, D

′
w, Cu) � inst(ξ,Dw), we

can follow up inst(σ1, D
′
v)∪ inst(ξ1, D

′
w) with sufficient merging steps to get a clause C ′ � Cu; we

define this clause to be the clause C ′u,a. By the inductive claim, both C ′′v,a and C ′′w,a are q-clauses;

hence C ′′u,a is also a q-clause and is obtained via a valid resolution step.

At an internal node with r-resolution: When we have a resolution step between nodes u and v

on an r-literal, this is the dual of the previous case. ut

8.2 Monotone Interpolation

To transfer known circuit lower bounds into size of proof bounds, we need a monotone version of

the previous interpolation theorems, which we prove next.

Theorem 31. IRM-calc has monotone feasible interpolation.

Proof. In the previous section, we have shown that the circuit Cπ(p) is a correct interpolant for

the QBF sentence F . That is, if Cπ(p) = 0 then Qq.A(a, q) is false, and if Cπ(p) = 1 then

Qr.B(a, r) is false.
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However, if p occurs only positively in A(p, q) then we construct a monotone circuit Cmon
π (p)

such that, on every 0, 1 assignment a to p we have

Cmon
π (a) = 0 =⇒ Qq.A(a, q) is false, and

Cmon
π (a) = 1 =⇒ Qr.B(a, r) is false.

We obtain Cmon
π (p) from Cπ(p) by replacing all selector gates gu = sel(x, gv, gw) by the

following monotone ternary connective: gu = (x ∨ gv) ∧ gw where nodes v and w are the children

of u in π.

We also change the proof-like structure π′(a); the construction is the same as before except that

at p-resolution nodes, the rule for fixing C ′u,a is also changed to reflect the monotone function used

instead.

More precisely, the functions sel(x, gv, gw) and gu = (x ∨ gv) ∧ gw differ only when x = 0,

gv(a) = 1, and gw(a) = 0. We set C ′u,a to C ′w,a \ {¬x} if x = 1 or if x = 0, gv(a) = 1 and

gw(a) = 0, and to C ′v,a \ {x} otherwise.

We need to show that at the differing setting, the inductive statements relating the modified

C ′u,a, gu(a) and C ′′u,a continue to hold. The relation C ′u,a � Cu holds by induction. Now consider

the gate values.

We know by induction that gv(a) = 1 means that C ′′v,a is an r-clause and can be derived from

B(a, r) alone. When x = 0, C ′u,a = C ′v,a and the selector gate will output the value of gv(a)

which is a 1. Hence C ′′u,a is an r-clause. However observe that at this setting, gw(a) = 0, which

means by induction that C ′′w,a is a q-clause and can be derived using A(a, q) clauses alone via the

appropriate proof system. Thus by our assumption about p variables appearing only positively in A,

the clause C ′w,a does not contain ¬x. Thus we can safely assign C ′u,a = C ′w,a. This completes the

proof. ut

Notice that IRM-calc being a calculus with (monotone) feasible interpolation means that via a

transformation to IRM-calc, every calculus that IRM-calc p-simulates also have feasible (monotone)

interpolation. Namely, this means that the expansion calculi IR-calc and ∀Exp+Res have these

interpolation results. The same idea can be applied to the CDCL proof systems, it would suffice that

the most powerful CDCL system- LQU+-Res (refer to Figure 18 for simulation details) has feasible

(monotone) interpolation and indeed it is true as shown in [21], where both feasible interpolation

and feasible monotone interpolation was shown to be true in LQU+-Res in much that same fashion

as it is shown true for IRM-calc here.

8.3 New Exponential Lower Bounds for IRM-calc

We now apply our interpolation theorems to obtain new exponential lower bounds for a new class

of QBFs. The lower bound will be directly transferred from the following monotone circuit lower

bound for the problem CLIQUE(n, k), asking whether a given graph with n nodes has a clique of

size k.
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Theorem 32 (Alon and Boppana 87 [3]). All monotone circuits that compute CLIQUE(n, n/2)

are of exponential size.

We now build the QBF. Fix an integer n (indicating the number of vertices of the graph) and

let p be the set of variables {puv | 1 ≤ u < v ≤ n}. An assignment to p picks a set of edges, and

thus an n-vertex graph. Let q be the set of variables {qiu | i ∈ [n2 ], u ∈ [n]}. We use the following

clauses.
Ci = qi1 ∨ · · · ∨ qin for i ∈ [n2 ]

Di,j,u = ¬qiu ∨ ¬qju for i, j ∈ [n2 ], i < j and u ∈ [n]

Ei,u,v = ¬qiu ∨ ¬qiv for i ∈ [n2 ] and u, v ∈ [n], u < v

Fi,j,u,v = ¬qiu ∨ ¬qjv ∨ puv for i, j ∈ [n2 ], i < j and u 6= v ∈ [n].

We can now express CLIQUE(n, n/2) as a polynomial-size QBF ∃q.An(p, q), where

An(p, q) =
∧
i∈[n

2
]

Ci ∧
∧

i<j,u∈[n]

Di,j,u ∧
∧

i∈[n
2

],u<v

Ei,u,v ∧
∧

i<j,u6=v
Fi,j,u,v.

Here the edge variables p appear monotone in An(p, q).

Likewise co-CLIQUE(n, n/2) can be written as a polynomial-size QBF ∀r1∃r2.Bn(p, r1, r2).

To construct this we use a polynomial-size circuit that checks whether the nodes specified by r1

fail to form a clique in the graph given by p. We then use existential variables r2 for the gates

of the circuit and can then form a CNF Bn(p, r1, r2) that represents the circuit computation.

For r1, we have a variable riu for every variable qiu and we let the set of variables of r2 be

{tK | K ∈ An,k} ∪ {t}. For each clause K in An,k(p, q), we include an equivalence tK ↔
K[riu/qiu] in Bn,k(p, r, t), which we represent as a set of clauses. We also introduce clauses

for t ↔
∧
K∈An,k tK , i.e., t indicates whether the r variables encode a clique. Because we want

to represent the co-clique formula we also include ¬t in Bn,k(p, r1, r2), which yields the CNF

formula co-CLIQUE(n, k) = ∀r2∃r2.Bn,k(p, r1, r2).

Now we can form a sequence of false QBFs, stating that the graph encoded in p both has a

clique of size n/2 (as witnessed by q) and likewise does not have such a clique as expressed in the

B part:

Φn(p, q, r) = ∃p∃q∀r1∃r2.An(p, q) ∧Bn(p, r1, r2).

This formula has the unique interpolant CLIQUE(n, n/2)(p). But since all monotone circuits for

this are of exponential size by Theorem 32 and monotone circuits of size polynomial in IRM-calc
and LQU+-Res proofs can be extracted by Theorem 31, all such proofs must be of exponential

size, yielding:

Theorem 33. The QBFs Φn(p, q, r) require exponential-size proofs in IRM-calc.

Theorem 34 (Beyersdorff, Chew, Mahajan, Shukla ’15 [21]). The QBFs Φn(p, q, r) require

exponential-size proofs in LQU+-Res.
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8.4 Feasible Interpolation vs. Strategy Extraction

Recall the two-player game semantics of a QBF explained in Chapter 3. Every false QBF has a

winning strategy for the universal player, where the strategy for each variable depends only on

the variables played before. We now explain the relation between strategy extraction and feasible

interpolation. In Section 8.1 we studied QBFs of the form F = ∃pQqQr. [A(p, q) ∧B(p, r)] . If

we add a common universal variable b we can change it to an equivalent QBF

Fb = ∃p ∀bQqQr. [(A(p, q) ∨ b) ∧ (B(p, r) ∨ ¬b)] .

If F is false, then also Fb is false and thus the universal player has a winning strategy, including a

strategy for b = σ(p) for the common universal variable b.

Remark 5. Every winning strategy σ(p) for b is an interpolant for F , i.e., for every 0, 1 assignment

a of p we have

σ(a) = 0 =⇒ Qq.A(a, q) is false, and

σ(a) = 1 =⇒ Qr.B(a, r) is false.

Proof. Suppose not. Then there are two possibilities.

1. There is some a where σ(a) = 0 and Qq.A(a, q) is true. Then setting b = 0 would satisfy

Qr.B(p, r)∨¬b. ButQq.A(a, q)∨ b is also satisfied. Hence this cannot be part of the winning

strategy for the universal player.

2. There is some a where σ(a) = 1 and Qr.B(a, r) is true. This is the dual of the above. ut

This observation means that every interpolation problem can be reformulated as a strategy

extraction problem. We will now show that from proofs of these reformulated interpolation problems

we can extract a (monotone) Boolean circuit for the winning strategy on the new universal variable

b.

We now prove how to extract strategies for interpolation problems, first for LQU+-Res and

then for IRM-calc.

Theorem 35 (Beyersdorff, Chew, Mahajan, Shukla ’15 [21]).

1. From each LQU+-Res refutation π of Fb we can extract in polynomial time a boolean circuit

for σ(p), i.e., the part of the winning strategy for variable b.

2. If in the same setting as above for Fb, the variables p appear only positively in A(p, q), then

we can extract a monotone boolean circuit for σ(p) from a LQU+-Res refutation π of Fb in

polynomial time (in the size of π).

Theorem 36. 1. From each IRM-calc refutation π of Fb we can extract in polynomial time a

boolean circuit for σ(p), i.e., the part of the winning strategy for variable b.
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2. If in the same setting as above for Fb, the variables p appear only positively in A(p, q), then

we can extract a monotone boolean circuit for σ(p) from a IRM-calc refutation π of Fb in

polynomial time (in the size of π).

Proof. We can use exactly the same constructions as in Theorem 30. The b literals do not affect the

argument. ut

As a corollary, the versions Φbn(p, q, r) of the formulas from Section 13.4 also need exponential-

size proofs in IRM-calc and LQU+-Res.

If we were only concerned about lower bounds we could have used the strategy extraction

lower bound, however our approach of first showing the feasible interpolation result illuminates

the relationship between feasible interpolation (in both the propositional and QBF setting) and

strategy extraction. Another reason that we explored feasible interpolation is to properly compare

propositional lower bound techniques to their natural QBF analogues.

We revisit feasible interpolation in Chapter 12 in Part III where we see it work for a QBF

adaptation of the Cutting Planes proof system as it does in propositional logic. In Chapter 9 we

continue our investigation into lower bound techniques.
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Chapter 9

Size, Width and Space for Tree-like QBF
Calculi
In previous chapters we have looked at lower bound techniques that apply to QBF-resolution

calculi. While strategy extraction used in Chapter 5 is a new technique that works specifically in the

QBF-setting, older techniques still apply.

We have found that the game techniques from [27–29] work with slight adjustments (Chapter 7)

as do the feasible interpolation techniques from [80,99] (Chapter 8, Chapter 12). The most important

technique that works for propositional logic is arguably the size-width relation by Ben-Sasson and

Wigderson [13]. It links proof size and proof width in the resolution system, by showing that lower

bounds to size can emerge when lower bounds to the width are found.

In this chapter we review the work of Beyersdorff et. al [22], presented at the 33rd Symposium

on Theoretical Aspects of Computer Science where the size-width relation in QBF was investigated.

It was shown that, in order to understand width-relations in QBF resolution, existential width was

better to use. This is due to an example of false formulas that accumulate universal variables in

Q-Res proofs, but have short proofs due to reduction.

However existential width is not enough to give us the size-width relation. The crux of the

size-width relation proof from [13] fails due to the restrictions in Q-Res. Furthermore, there are

examples of formulas in Q-Res and tree-like Q-Res (Q-ResT) that violate the size-width relation,

even for existential width.

In [22] it was shown that tree-like ∀Exp+Res simulates tree-like IR-calc, furthermore the

simulation preserves width. Hence, that the two systems are equivalent. Since, after the axiom rules,

∀Exp+Res works the same as proposition resolution it was shown that the size-width relation holds

in tree-like ∀Exp+Res and hence tree-like IR-calc.

Section 9.1 covers the basic definitions of width and space and their relations to size and each

other in propositional proof complexity. In the remaining chapters we present the work from [22]

without proof. Section 9.2 introduces the notion of existential width for QBF and justifies its use.

Section 9.3 contains the negative results, that Q-Res does not have the size-width relation. However,

Section 9.4 contains a simulation in tree-like systems that make the size-width relation possible in

tree-like IR-calc and ∀Exp+Res in Section 9.5.

9.1 Width and Space

Width. The width of a clause C is the number of literals in C, denoted w(C). For a CNF F the

width is given by w(F ) = maxC∈F (w(C)). If we take any line-based proof system P that operates
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on lines that are clauses and then if we take a proof π, then w(π) = max(w(L) : L is a line in π),

and the width w(`P F ) = min{w(π) : π `P F}.
We can then present the famous result from Ben-Sasson and Wigderson for tree-like resolution

and resolution.

Theorem 37 (Ben-Sasson, Wigderson [13]). For all unsatisfiable CNFs F in n variables the fol-

lowing holds: S( ResT
F ) ≥ 2

w
(

Res F
)
−w(F ) and S( Res F ) = exp

(
Ω

((
w
(

Res F
)
−w(F )

)2

n

))
.

Note that the width does not change in a tree-like system compared to its dag-like version.

The size-width relation can generate exponential-size lower bounds. An example would be from

the famous formulas of Tseitin. The formulas are built on graphs and τ(G, f) =
∧
v∈V (G)

⊕
v∈e xe =

f(v) where f(v) is an odd-weight boolean function (in other words
∑

v∈V (G) f(v) = 1 mod 2).

The formulas τ(G, f) are always false because for them to be true the sum of the vertex degree

would have to be odd.

When the maximal degree of G is constant then the initial width of τ(G, f) is constant. The

width of proof is bounded below by the value of the expansion ofG which is given as expand(G) =

min |E(V ′, V \ V ′)| : V ′ ⊆ V, |V |3 ≤ |V
′| ≤ 2|V |

3 . It is known that expand(G) = Ω(|V |) for 3-

regular graphs, so we get a width lower bound and thus an exponential size lower bound.

Space. Proof space complexity was introduced in [54]. Space, informally, is the minimum amount

of computer memory that is simultaneously needed to refute a formula. Just as proof size is related

to running time of solvers, proof space has a relation to the memory required for solvers. This is a

fairly important relation, many solvers run out of memory instead of timing out and proof space

complexity gives us some theoretical framework for understanding how to prevent this.

Space can be measured in different ways. A configurational proof is a sequence of mem-

ory configurationsMi that contain clauses. A configurational proof is subject to the following

conditions:

– M0 = ∅
– Mi+1 =Mi ∪ {C} where C is an axiom, or

– Mi+1 =Mi ∪ {C} where C is obtainable from an inference on clauses inMi, or

– Mi+1 =Mi\{C}.

The Clause Space (CSpace) for configurational proof π is given by

CSpace(π) = max(|Mi| | Mi ∈ π).

The Clause Space for a resolution for a formula F and proof system P is

CSpace
(

P F
)

= min(CSpace(π)|π is a proof in system P ).
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The Total Space (TSpace) for configurational proof π is given by

TSpace(π) = max(
∑
C∈Mi

w(C) | Mi ∈ π).

The Total Space for a resolution for a formula F and proof system P is

TSpace
(

P F
)

= min(TSpace(π)|π is a proof in system P ).

Relations between space, size, and width are also explored (cf. also [31, 84]), establishing the

size-space relation for tree-like resolution, notice here we are using clause space:

Theorem 38 (Esteban, Torán [55]). For all unsatisfiable CNFs F the following relation holds:

S( ResT
F ) ≥ 2

CSpace
(

ResT
F
)
− 1.

The fundamental relation between space and width for full resolution was obtained in [6]; a

more direct proof was given recently in [56].

Theorem 39 (Atserias, Dalmau [6]). For all unsatisfiable CNFs F the following relation holds:

w( Res F ) ≤ CSpace( Res F ) + w(F )− 1.

There have also been improvements that allow for relations to total space.

Theorem 40 (Bonacina [35]). For all unsatisfiable k-CNFs F the following relation holds:

TSpace( Res F ) ≥ 1
16(w( Res F )− k − 4)2.

9.2 Width versus Existential Width

While width treats all variables equally in propositional logic, the notion of width is more compli-

cated in QBF, due to variables belonging to either universal or existential quantifiers. It was shown

in [22] that this notion breaks down any relation between width and space or size.

Proposition 2 (Beyersdorff, Chew, Mahajan, Shukla [22]).
For the false QBFs Fn = ∀u1 . . . un∃e0∃e1 . . . en.(e0) ∧

∧
i∈[n](¬ei−1 ∨ ui ∨ ei) ∧ (¬en) we

have S( Q-ResT
Fn) = O(n) and CSpace( Q-ResT

Fn) = O(1), but w( Q-Res Fn) = Ω(n).

The width lower bound itself comes from the accumulation of universal literals which cannot

be removed until the last step do to the restrictions on ∀-Red, notice that even if universal resolution

is allowed (as in QU-Res) then everything above still applies because no universal resolution rule

cannot be used.

In order to investigate a more robust version of width in QBF it was decided [22] that existential

width should be investigated, this counts the number of existential literals in a clause C and is

denoted by w∃(C). This definition also brings CDCL-based QBF calculi like Q-Res in line with

expansion-based QBF calculi like IR-calc, where the only literals present are existential.
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9.3 Negative Results: Size-Width, Space-Width Relations Fail in Q-Res

Proposition 3 (Beyersdorff, Chew, Mahajan, Shukla [22]). There are false sentences ψn, with

an existential literal b quantified at the innermost level, such that the sentence ψn|b=1 is false and

has a small existential-width proof, but ψn itself needs large existential width to refute in Q-Res.

These ψn formulas are based off of formulas from Bonet and Galesi [37] that we denote asBGn.

BGn is an unsatisfiable CNF over O(n2) variables with w(BGn) = 3 and w(` BGn) = Ω(n).

ψn is given as ∃x∃a∀u∃b. (a ∨ u ∨ ¬b) ∧ (¬a) ∧BGn(x).

The significance of this proposition is that it is a counterexample to a property of resolution that

was essential in the propositional DAG-like case of the size-width relation.

Theorem 41 (Beyersdorff, Chew, Mahajan, Shukla [22]). There exist false QBFs CR′n over

O(n2) variables, such that S( Q-ResT
CR′n) = nO(1), w∃(CR′n) = 3, CSpace( Q-ResT

CR′n) =

O(1), and w∃( Q-ResT
CR′n) = Ω(n).

The formulas CR′n are Tseitin transformations of a natural completion principle formula CRn

from [74]. Since tree-like space is at least as large as space, Theorem 41 also rules out the space-

width relation for general dag-like Q-Res proofs.

However, Theorem 41 cannot be used to show that the size-existential-width relationship for

general dag-like proofs fails in Q-Res, because CR′n have O(n2) variables.

Instead consider the following formulas φn, introduced by Janota and Marques-Silva [74]:

∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.∧
i∈[n]

(
(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧
∨
i∈[2n]

¬ci.

These were originally used to show that ∀Exp+Res does not simulate Q-Res; they have short

proofs in Q-Res but are hard for ∀Exp+Res and thus Q-ResT.

These formulas were used to disprove the size-width relation for Q-Res, but with a modification

to make the axiom clauses have constant width. Let φ′n denote the modified formula:

φ′n = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n∃x0 . . . x2n∧
i∈[n]

(
(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧ (1)

¬x0 ∧
∧
i∈[2n]

(xi−1 ∨ ¬ci ∨ ¬xi) ∧ x2n. (2)

Theorem 42 (Beyersdorff, Chew, Mahajan, Shukla [22]). There is a family of false QBFs φ′n in

O(n) variables such that S( Q-Res φ
′
n) = nO(1), w∃(φ′n) = 3, and w∃( Q-Res φ

′
n) = Ω(n).

These results demonstrate that the size-width relation fails in Q-Res and the same result can

also be applied to QU-Res. This is of great importance as it means that our investigation into proof
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complexity in QBF calculi does not have the main techniques from propositional logic. This also

highlights the importance of the other techniques that have shown to work in the QBF setting.

9.4 Simulations: Preserving Size, Width, and Space Across Calculi

While it has been shown that strong negative results occur for dag-like Q-Res, we will later see that

positive results hold for tree-like calculi. While we have seen investigations into tree-like Q-Res.

Other tree-like calculi such as tree-like versions of expansion-based calculi have not been discussed.

The most important observation is the following:

Lemma 27 (Beyersdorff, Chew, Mahajan, Shukla [22]). ∀Exp+ResT p-simulates IRT-calc
while preserving width, size, and space.

Lemma 28 (Beyersdorff, Chew, Mahajan, Shukla [22]). IRT-calc p-simulates Q-ResT while

preserving space and existential width exactly and size up to a factor of 3.

Proof (Proof Sketch). This uses the same simulation as given in [18]. This simulation was originally

for dag-like proof systems, but here it is checked that it works for tree-like systems.

As a by-product, these simulations enable us to give an easy and elementary proof of the

simulation of Q-ResT by ∀Exp+Res, shown in [74] via a more involved argument.

Corollary 11 (Janota, Marques-Silva [74]). ∀Exp+ResT p-simulates Q-ResT.

Using the previous lemmas, the following were shown:

Theorem 43 (Beyersdorff, Chew, Mahajan, Shukla [22]). For all false QBFs F , the following

relations hold:

1. 1
2S( IRT-calc F) ≤ S

(
∀Exp+ResT

F
)
≤ S( IRT-calc F) ≤ 3S( Q-ResT

F).

2. w( IR-calc F) = w( ∀Exp+Res F) ≤ w∃( Q-Res F).

3. CSpace( ∀Exp+ResT
F) = CSpace( IRT-calc F) ≤ CSpace( Q-ResT

F).

9.5 Positive Results: Size, Width, and Space in Tree-like QBF Calculi

We first observe that for ∀Exp+Res almost the full spectrum of relations from classical resolution

remain valid.

Theorem 44 (Beyersdorff, Chew, Mahajan, Shukla [22]). For all false QBFs F , the following

relations hold:

1. S
(
∀Exp+ResT

F
)
≥ 2

w
(
∀Exp+Res F

)
−w∃(F).

2. S
(
∀Exp+ResT

F
)
≥ 2

CSpace

(
∀Exp+ResT

F
)
− 1.

3. CSpace
(
∀Exp+ResT

F
)
≥ CSpace( ∀Exp+Res F) ≥ w( ∀Exp+Res F)− w∃(F) + 1.
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This comes quite easily, ∀Exp+Res can be seen as having two parts. A formula is expanded in

the axiom cases, and then resolution is performed. These two parts can be separated, which means

the resolution part performs exactly as it did in the propositional case, leading to all the previous

results.

Since ∀Exp+ResT and IRT-calc are simultaneously equivalent with respect to size, width, and

space (Theorem 43), all results from Theorem 44 transfer to IRT-calc.

Theorem 45 (Beyersdorff, Chew, Mahajan, Shukla [22]). For all false QBFs F , the following

relations hold:

1. S( IRT-calc F) ≥ 2
w
(

IR-calc F
)
−w∃(F)

.

2. S( IRT-calc F) ≥ 2
CSpace

(
IRT-calc F

)
− 1.

3. CSpace( IRT-calc F) ≥ w( IR-calc F)− w∃(F) + 1.

And finally returning to Q-Res a positive result exists there as well.

Theorem 46 (Beyersdorff, Chew, Mahajan, Shukla [22]). For a false QBF sentence F ,

S( Q-ResT
F) ≥ 2

CSpace
(

Q-ResT
F
)
− 1.

In summary it has been shown that the size-width relation does work as a lower bound technique

when using existential width but only for tree-like calculi. The reason the relation fails in DAG-like

Q-resolution can be summarised in the findings of Proposition 3, that the proof width is sensitive to

the variable restrictions.

With the importance of the width in propositional lower bounds. The failure perhaps explains

some of the difficulty in QBF proof complexity. We continue to look at QBF resolution systems in

Chapter 10, looking at applications to the broader DQBF problem.
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Chapter 10

Lifting QBF Resolution to DQBF
The logic of dependency quantified Boolean formulas (DQBF) [97] generalises the notion of

quantified Boolean formulas that allow Boolean quantifiers over a propositional problem. DQBF is a

relaxation of QBF in that the quantifier order is no longer necessarily linear and the dependencies of

the quantifiers are completely specified. This is achieved using Henkin quantifiers [68], usually put

into a Skolem form. DQBF is NEXPTIME-complete [7], compared to the PSPACE-completeness

of QBF [113]. Thus, unless the classes are equal, many problems that are difficult to express in QBF

can be succinctly represented in DQBF.

The aim of this chapter is to clarify which of the QBF resolution systems can be lifted to DQBF.

This is motivated both by the theoretical quest to understand which QBF resolution paradigms are

robust enough to work in the more powerful DQBF setting, as well as from the practical perspective,

where recent advances in DQBF solving [57, 58, 62, 117] prompt the question of how to model and

analyse these solvers proof-theoretically.

Our starting point is the work of Balabanov, Chiang, and Jiang [9], who show that Q-Res can be

naturally adapted to a sound calculus for DQBF, but it is not strong enough and lacks completeness.

Using an idea from [11] we extend their result to QU-Res, thus showing that the lifted version of

this system to DQBF is not complete either. On the other hand, we present an example showing

that the lifted version of LD-Q-Res is not sound, and this transfers to the DQBF analogues of the

stronger systems LQU+-Res and IRM-calc.

While this rules out most of the existing QBF resolution calculi already—and in fact all CDCL-

based systems (cf. Fig. 22, Chapter 5)— we show that IR-calc, lifted in a natural way to a DQBF

calculus D-IR-calc, is indeed sound and complete for DQBF; and in fact this holds as well for the

lifted version of the weaker expansion system ∀Exp+Res.

Conceptually, our soundness and completeness arguments use the known correspondence of

QBF and DQBF to first-order logic [109], and in particular to the fragment of EPR, also known

as the Bernays-Schönfinkel class, which like DQBF is NEXPTIME-complete [86]. In addition to

providing soundness and completeness this explains the semantics of both IR-calc and D-IR-calc
and identifies these systems as a special case of first-order resolution.

We give a definition of DQBF in Section 10.1. In Section 10.2, we show that QU-Res, LD-Q-
Res, LQU+-Res, IRM-calc all fail to be lifted up to DQBF, either via unsoundness or incomplete-

ness. However, in Section 10.3 we show that IR-calc lifted up to DQBF becomes the sound and

complete calculus D-IR-calc.

The work in this chapter appeared at the 19th Theory and Applications of Satisfiability Testing

International Conference [24].
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10.1 Dependency QBF

A Dependency Quantified Boolean Formula (DQBF) φ in prenex Skolem form consists of a

quantifier prefix Π and a propositional matrix ψ. Here we mainly study DQBFs where ψ is in

CNF. The propositional variables of ψ are partitioned into sets Y and X . Y is the set of universal

variables and X the set of existential variables. For every y ∈ Y , Π contains the quantifier ∀y. For

every x ∈ X there is a predefined subset Yx ⊆ Y and Π contains the quantifier ∃x(Yx).

The semantics of DQBF are defined in terms of Skolem functions. A Skolem function fx :

{0, 1}Yx → {0, 1} describes the evaluation of an existential variable x under the possible assign-

ments to its dependencies Yx. Given a set F = {fx | x ∈ X} of Skolem functions for all the

existential variables and an assignment α : Y → {0, 1} for the universal variables, the extension of

α by F is defined as αF (x) = fx(α � Yx) for x ∈ X and αF (y) = α(y) for y ∈ Y . A DQBF φ is

true if there exist Skolem functions F = {fx | x ∈ X} for the existential variables such that for

every assignment α : Y → {0, 1} to the universal variables the matrix ψ propositionally evaluates

to 1 under the extension αF of α by F .

QBF is a special case of DQBF. To see this, we use the sequence from left to right to assign to

every variable in the prefix a unique index ind : X ∪ Y → N, and make every existential variable x

depend on all the preceding universal variables by setting Yx = {y ∈ Y | ind(y) < ind(x)}.

10.2 Problems with Lifting QBF Calculi to DQBF

There is no unique method for lifting calculi from QBF to DQBF. However, we can consider ‘natural’

generalisations of these calculi, where we interpret index conditions as dependency conditions. This

means that when a proof system requires for an existential variable x and a universal variable y

with ind(y) < ind(x), this should be interpreted as y ∈ Yx. Analogously ind(x) < ind(y) should

be interpreted as y /∈ Yx. This approach was followed when taking Q-Resolution to D-Q-Resolution

in [9]. Balabanov et al. showed there that D-Q-Resolution is not complete for DQBF using the

following formula.

∀x1∀x2∃y1(x1)∃y2(x2) (3)

{y1, y2, x1} {¬y1,¬y2, x1}
{y1, y2,¬x1,¬x2} {¬y1,¬y2,¬x1,¬x2}
{y1,¬y2,¬x1, x2} {¬y1, y2,¬x1, x2}.

These are easily shown to be false, but no steps are possible in D-Q-Resolution, hence D-Q-

Resolution is not complete [9]. Consider now the following modification of this formula where the

universal variables are doubled:

∀x1∀x′1∀x2∀x′2∃y1(x1, x
′
1)∃y2(x2, x

′
2) (4)
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{y1, y2, x1, x
′
1} {¬y1,¬y2, x1, x

′
1}

{y1, y2,¬x1,¬x′1,¬x2,¬x′2} {¬y1,¬y2,¬x1,¬x′1,¬x2,¬x′2}
{y1,¬y2,¬x1,¬x′1, x2, x

′
2} {¬y1, y2,¬x1,¬x′1, x2, x

′
2}.

The falsity of Equation 4 follows from the fact that its hypothetical Skolem model would immediately

yield a Skolem model for Equation 3 using assignments with x1 = x′1, x2 = x′2. But there is no

such model because Equation 3 is false. However, since we have doubled the universal literals we

cannot perform any generalised QU-Res steps to begin a refutation. This technique of doubling

literals was first used in [11].

Now we look at another portion of the calculi from Fig. 22, namely the calculi that utilise

merging. As a specific example we consider LD-Q-Res and show that it is not sound when lifted to

DQBF in the natural way.

To do this we look at the condition of (L∃R) given in Fig. 10. Here instead of requiring

ind(x) < ind(u) as a condition for u becoming merged, we require u /∈ Yx. This is unsound as we

show by the following DQBF:

∀u∀v∃x(u)∃y(v)∃z(u, v)

{x, v, z} {¬x,¬v, z}
{y, u,¬z} {¬y,¬u,¬z}.

Its truth is witnessed by the Skolem functions x(u) = u, y(v) = ¬v, and z(u, v) = (u∧v)∨ (¬u∧
¬v). However, the lifted version of LD-Q-Res admits a refutation:

{x, v, z} {¬x,¬v, z}
{v∗, z}

{y, u,¬z} {¬y,¬u,¬z}
{u∗,¬z}

{u∗, v∗}
{u∗}
⊥

This shows that LD-Q-Res is unsound for DQBF. Likewise, since IRM-calc, LQU-Res and LQU+-
Res line-wise simulate LD-Q-Res, this proof would also be available, showing that these are all

unsound calculi in the DQBF setting.

10.3 A Sound and Complete Proof System for DQBF

In this section we introduce the D-IR-calc refutation system and prove its soundness and com-

pleteness for DQBF. The calculus takes inspiration from IR-calc which we introduce in Chapter 4,

which in turn is inspired by first-order translations of QBF. One such translation is to the EPR
fragment, i.e., the universal fragment of first-order logic without function symbols of non-zero arity

(we only allow constants). We broaden this translation to DQBF and then bring this back down to

D-IR-calc in a similar way as in IR-calc.

We adapt annotated literals lτ to DQBF, such that l is an existential literal and τ is an annotation

which is a partial assignment to universal variables in Yx. In QBF, Yx contains all universal variables

with an index lower than x, and this is exactly the maximal range of the potential annotation to x

literals. Thus our definition of annotated literals generalises those used in IR-calc.
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Definition 16. Fix a DQBF Π.ψ. Let τ be a partial assignment of the universal variables Y to

{0, 1} and let x be an existential variable. restrictx(τ) is the assignment where dom(restrictx(τ))

= dom(τ) ∩ Yx and restrictx(τ)(u) = τ(u).

Definition 17. We define instτ (C) to be the clause containing all the literals lrestrictvar(l)(σ), where

lξ ∈ C and dom(σ) = dom(ξ) ∪ dom(τ) and σ(u) = ξ(u) if u ∈ dom(ξ) and σ(u) = τ(u)

otherwise.

With these definitions at hand we can now define the new calculus D-IR-calc. Its rules are

exactly the same as the ones for IR-calc stated in Fig. 14, but with the relaxed notions of restriction

and instantiation as in Definitions 16 and 17 above.

Before analysing D-IR-calc further we present the translation of DQBF into EPR. We use an

adaptation of the translation described for QBF [109], which becomes especially straightforward in

the light of the DQBF semantics based on Skolem functions. The key observation is that for the

intended two valued Boolean domain the Skolem functions can be represented by predicates.

To translate a DQBF Π · ψ we introduce on the first-order side 1) a predicate symbol p of arity

one and two constant symbols 0 and 1 to describe the Boolean domain, 2) for every existential

variable x ∈ X a predicate symbol px of arity |Yx|, and 3) for every universal variable y ∈ Y a

first-order variable uy.

Now we can define a translation mapping tΠ . It translates each occurrence of an existential

variable xwith dependencies Yx = {y1, . . . , yk} to the atom tΠ(x) = px(uy1 , . . . , uyk) (we assume

an arbitrary but fixed order on the dependencies which dictates their placement as arguments) and

each occurrence of a universal variable y to the atom tΠ(y) = p(uy). The mapping is then

homomorphically extended to formulas in the obvious way, i.e. tΠ(¬ψ) = ¬tΠ(ψ), tΠ(ψ1∧ψ2) =

tΠ(ψ1) ∧ tΠ(ψ2), etc. The mapping satisfies the following.

Lemma 29. A DQBF Π · ψ is true if and only if tΠ(ψ) ∧ p(1) ∧ ¬p(0) is satisfiable.

For the purpose of analysing D-IR-calc, the mapping is further extended to annotated literals.

Given an annotation τ , we define a first-order substitution τ̄ = {uy 7→ τ(y) | y ∈ dom(τ)}. Thus τ̄

acts on uy in the same way as τ does on y. By a standard convention, it acts as the identity mapping

elsewhere. The extension of tΠ to annotated literals now additionally applies the substitution τ̄ to

the original result: tΠ(xτ ) = tΠ(x)τ̄ for an existential variable x.

First-order resolution. We aim to show soundness and completeness of D-IR-calc by relating it

via the above translation to a first-order resolution calculus FO-res. This calculus consists of 1)

a lazy instantiation rule: given a clause C and a substitution σ derive the instance Cσ, and 2) the

resolution rule: given two clauses C ∪ {L} and D ∪ {¬L}, where L is a first-order literal, derive

the resolvent C ∪D. Note that similarly to propositional clauses, we understand first-order clauses

as sets of first-order literals. Thus we do not need any explicit factoring rule. Also note that we

require the pivot literals of the two premises of the resolution rule to be equal (up to the polarity).
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Standard first-order resolution, which involves unification on the pivot, can be simulated in FO-res
by combining the instantiation and the resolution rule.

It is clear that FO-res is sound and complete for first-order logic.

Soundness. Our argument for the soundness of D-IR-calc is the following. Given π = (L1, L2,

. . . , L`), a D-IR-calc derivation of the empty clause L` = ⊥ from DQBF Π · ψ, we show by

induction that tΠ(Ln) is derivable from Ψ = tΠ(ψ) ∧ p(1) ∧ ¬p(0) by FO-res for every n ≤ `.

Because tΠ(⊥) = ⊥ is unsatisfiable, so must Ψ be by soundness of FO-res and therefore Π · ψ is

false by Lemma 29.

We need to consider the three cases by which a clause is derived in D-IR-calc. First, it is easy

to verify that D-IR-calc instantiation by an annotation τ corresponds to FO-res instantiation by

the substitution τ̄ , i.e. tΠ(instτ (C)) = tΠ(C)τ̄ . Also the D-IR-calc and FO-res resolution rules

correspond one to one in an obvious way. Thus the most interesting case concerns the Axiom rule.

Intuitively, the Axiom rule of D-IR-calc removes universal variables from a clause while record-

ing their past presence (and polarity) within the applied annotation τ . We simulate this step in FO-
res by first instantiating the translated clause by τ̄ and then resolving the obtained clause with the

unit p(1) and/or ¬p(0). Here is an example for a DQBF prefix Π = ∀u∀v ∀w ∃x(u, v)∃y(v, w):

{x, y,¬u, v}
(D-IR-calc)

{x1/u,0/v, y0/v}
{px(uu, uv), py(uv, uw),¬p(uu), p(uv)}

(FO-res) {px(1, 0), py(0, uw)}

Theorem 47. D-IR-calc is sound.

Completeness. Let Π · ψ be a false DQBF and let us consider G(tΠ(ψ)), the set of all ground

instances of clauses in tΠ(ψ). Here, by a ground instance of a clause C we mean the clause Cσ for

some substitution σ : var(C)→ {0, 1}. We use an important result on ground instances.

Theorem 48 (Herbrand’s theorem [39]). A first order formula ∀x1 . . . xnF (x1 . . . xn) withF (x1 . . . xn)

containing no quantifiers is unsatisfiable if and only if there is a finite set of ground instances whose

conjunction is unsatisfiable i.e. tij for 1 ≤ i ≤ n, 1 ≤ j ≤ m such that
∧

1≤j≤m F (t1j . . . tnj)

unsatisfiable in propositional logic.

By the combination of Lemma 29 and Herbrand’s theorem, G(tΠ(ψ)) ∧ p(1) ∧ ¬p(0) is

unsatisfiable and thus it has a FO-res refutation. Moreover, by completeness of ordered resolution

[8], we can assume that 1) the refutation does not contain clauses subsumed by p(1) or ¬p(0), and

2) any clause containing the predicate p is resolved on a literal containing p. From this it is easy to

see that any leaf in the refutation gives rise (in zero, one or two resolution steps with p(1) or ¬p(0))

to a clause D = tΠ(C) where C can be obtained by D-IR-calc Axiom from a C0 ∈ ψ. The rest of

the refutation consists of FO-res resolution steps which can be simulated by D-IR-calc. Thus we

obtain the following.

Theorem 49. D-IR-calc is refutationally complete for DQBF.
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Although one can lift the above argument with ordered resolution to show that the set

{tΠ(C) | C follows by Axiom from some C0 ∈ ψ} is unsatisfiable for any false DQBF Π · ψ, we

only know how to simulate ground FO-res steps by D-IR-calc. That is because a lifted FO-
res derivation may contain instantiation steps which rename variables apart for which a subse-

quent resolvent cannot be represented in D-IR-calc. An example is the resolvent {py(uv), pz(u′v)}
of clauses {px(uu), py(uv)} and {¬px(uu), pz(u

′
v)} which is obviously weaker than the clause

{py(uv), pz(uv)}. However, only the latter has a counterpart in D-IR-calc.

We also remark that in a similar way we can also lift to DQBF the QBF calculus ∀Exp+Res
from [74]. It is easily verified that the simulation of ∀Exp+Res by IR-calc shown in Section 4

directly transfers from QBF to DQBF. Hence Theorem 47 immediately implies the soundness of

∀Exp+Res lifted to DQBF. Moreover, because all ground instances are also available in ∀Exp+Res
lifted to DQBF, this system is also complete as can be shown by repeating the argument of

Theorem 49.

In this chapter we look at how resolution can be implemented beyond QBF. In the remaining

chapters we remain in QBF but look beyond the resolution calculus.
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11. EXTENSION VARIABLES FOR QBF RESOLUTION

Chapter 11

Extension Variables for QBF Resolution
Using extension variables to abbreviate possibly complex formulas is a well known and powerful

concept in proof complexity and solving. In Tseitin transformations, extension variables are used

to encode arbitrary propositional formulas in CNF. More generally, allowing the extension rule in

proofs is known to shorten proof size drastically for many examples. This makes extension variables

also very interesting in the context of solving, and indeed modern proof checking formats such

as RAT for SAT-solvers [69] and QRAT for QBF solvers [70] incorporate the use of extension

variables.

When augmenting the classical resolution system with the extension rule, allowing it to introduce

a new variable v to abbreviate a disjunction ¬x ∨ ¬y, we arrive at extended resolution [115], cf.

also [85]. Although resolution itself is considered a weak proof system with many known lower

bounds (cf. [108]), extended resolution is an extremely powerful system. Extended resolution is

equivalent to extended Frege [45,82], one of the strongest proof systems considered today. Showing

any non-trivial lower bounds for extended Frege constitutes an extremely challenging problem with

even hard candidate formulas currently lacking.

In QBF solving and proof complexity, using extension variables was first considered by Jussila

et. al. [75], where they augment Q-resolution to an extended Q-resolution system. In comparison to

the propositional case, extension variables in QBF present one additional challenge. We cite the

relevant passage from [75]:

“In adapting the extension rule to the QBF setting, the crucial question is where to ‘put’ new

variables, e.g., how defined variables are ordered with respect to variables that already occur in the

formula. It seems intuitive that new variables can only be existential. It is also clear that they cannot

be moved further out than the innermost variable on which they depend. In the experimental section

we show that we actually need this freedom to move defined variables as far out as possible. Keeping

them in the innermost existential scope, as for instance in the Tseitin encoding of a non-CNF QBF

formula, is insufficient.”

In this section, we explore this experimental observation with a rigorous theoretical argument.

For this we consider two systems: weak extended Q-resolution, where extension variables are

quantified at the innermost level, and extended Q-resolution, where extension variables are quantified

immediately after the innermost variable on which they depend. Our main result is an exponential

separation between these two versions. We show that QPARITY formulas (Chapter 5) have short

proofs in extended Q-resolution, but require exponential-size proofs in weak extended Q-resolution.

The lower bound uses the strategy extraction technique (Chapter 5). Here we show that weak

extended Q-resolution admits strategy extraction in AC0, i.e., from each refutation of a false QBF

we can extract a winning strategy for the universal player that can be computed by constant-depth
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circuits. This allows to transfer Håstad’s circuit lower bound for parity [67] to a proof size lower

bound for the QPARITY formulas in weak extended Q-resolution.

We divide this chapter as follows; Section 11.1 defines the two ways extension variables can

be added to Q-resolution, Section 11.2 shows that short proofs for QPARITY exist in extended

Q-resolution, however we see in Section 11.3, via a strategy extraction argument, that short proofs

do not exist in weak extended Q-resolution.

The work in this chapter appeared at the AAAI Workshop: Beyond NP 2016 [20].

11.1 Two Versions of Extended Q-resolution

(¬x ∨ ¬y ∨ ¬v), (x ∨ v), (y ∨ v)

where:
x, y are variables already in the formula
v is a fresh variable,
v is inserted into prefix as existentially quantified,
weak extension: insert v at the end of the prefix
general extension: insert v after x and y in the prefix

Fig. 25. Two versions of extension rule

Extended resolution for propositional resolution [115], enables adding clauses expressing the

equality v ⇔ (¬x ∨ ¬y), for a fresh variable v. We follow this idea in the context of Q-resolution.

Here, we need to decide the position of the fresh variable in the prefix. Two versions are considered;

a weak one and a general one.

Figure 25 defines the two forms of the extension rule, which gives us two flavours of extended

Q-resolution.

Definition 18. Weak extended Q-resolution is the calculus of Q-resolution enhanced with the

extension rule in its weak form.

Definition 19. Extended Q-resolution is the calculus of Q-resolution enhanced with the extension

rule in its general form.

Extended resolution and circuits. Semantically, introducing a fresh variable via the extension rule,

corresponds to defining v = x nand y. This enables expressing any Boolean functions in a circuit

form by a sequence of extension rules. Consider for instance x ∨ y. Introduce fresh variables xn

and yn to denote the negation of x and y, respectively, by setting xn = x nandx. Subsequently, use

those to define the final output o by setting o = xn nand yn.

In the following text, whenever it is obvious that a formula is expressible in a circuit form, we

omit the intermediate definitions. In particular, in proofs, we enable writing extension clauses where

x and y may be literals rather than just variables.
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For instance, the extension clauses x∨¬y ∨ v, ¬x∨¬v, y ∨¬v are realized by the introduction

of a variable xn corresponding to the negation of x, introduction of v via the extension rule and

finally replacing xn with ¬x by extra resolution steps.

11.2 Short Proofs for QPARITY in Extended Q-resolution

We show that QPARITY (Definition 6, Section 5) is easy for extended Q-resolution.

Theorem 50. The formulas QPARITYn have linear-size proofs in extended Q-resolution.

Proof. We define extension variable s2 = (x1 ∨ x2) ∧ (x̄1 ∨ x̄2). In clausal form this introduces

the following clauses:

s2 ∨ x̄1 ∨ x2 s2 ∨ x1 ∨ x̄2 s̄2 ∨ x1 ∨ x2 s̄2 ∨ x̄1 ∨ x̄2

For 2 < i ≤ n, we define extension variables si = si−1 ⊕ xi = (si−1 ∨ xi) ∧ (s̄i−1 ∨ x̄i).

In clausal form this introduces the following clauses:

si ∨ x̄i ∨ si−1 si ∨ xi ∨ s̄i−1 s̄i ∨ xi ∨ si−1 s̄i ∨ x̄i ∨ s̄i−1

The main part of this short proof is to show that we can easily substitute si for ti. We will show

this by induction on i. The shortness comes from the fact that sn literals are left of z. This allows us

to reduce z literals “early” and get a contradiction.

Induction Claim: Clauses si ∨ t̄i and ti ∨ s̄i (that show si = ti) are provable in O(i) size

proofs.

Base Case: Let i = 2,

s2∨x̄1∨x2 t̄2∨x̄1∨x̄2
s2∨t̄2∨x̄1

s2∨x1∨x̄2 t̄2∨x1∨x2
s2∨t̄2∨x1

s2∨t̄2

t2∨x̄1∨x2 s̄2∨x̄1∨x̄2
t2∨s̄2∨x̄1

t2∨x1∨x̄2 s̄2∨x1∨x2
t2∨s̄2∨x1

t2∨s̄2

Inductive Step: We assume from the induction hypothesis that we have for some i ≤ n, si−1∨ t̄i−1

and ti−1 ∨ s̄i−1.

Firstly we use the clauses that express si−1 = ti−1 to substitute si−1 for ti−1 .

t̄i ∨ x̄i ∨ t̄i−1 ti−1 ∨ s̄i−1 ti ∨ xi ∨ t̄i−1

t̄i ∨ x̄i ∨ s̄i−1 ti ∨ xi ∨ s̄i−1

t̄i ∨ xi ∨ ti−1 si−1 ∨ t̄i−1 ti ∨ x̄i ∨ ti−1

t̄i ∨ xi ∨ si−1 ti ∨ x̄i ∨ si−1

We can use that the clauses that define si and ti are structurally the same to derive si = ti.
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si∨x̄i∨si−1 t̄i∨x̄i∨s̄i−1

si∨t̄i∨x̄i
si∨xi∨s̄i−1 t̄i∨xi∨si−1

si∨t̄i∨xi
si∨t̄i

ti∨x̄i∨si−1 s̄i∨x̄i∨s̄i−1

ti∨s̄i∨x̄i
ti∨xi∨s̄i−1 s̄i∨xi∨si−1

ti∨s̄i∨xi
ti∨s̄i

Since we only add a constant number of clauses, the induction argument allows us to keep a

O(i) size proof up until sn ∨ t̄n and tn ∨ s̄n.

sn ∨ t̄n z ∨ tn
sn ∨ z

tn ∨ s̄n z̄ ∨ t̄n
s̄n ∨ z̄

Because sn is defined only on xi variables and so universal reduction is available

sn ∨ z
sn

s̄n ∨ z̄
s̄n

⊥

This completes the short refutation in extended Q-resolution. ut

11.3 Strategy Extraction and Hardness of QPARITY in Weak Extended Q-resolution

We now complement the upper bound from the previous section with a lower bound for the same

formulas in weak extended Q-resolution. The lower bound argument rests on strategy extraction

(see Chapter 5). The idea is to show that from refutations of false formulas it is possible to efficiently

extract winning strategies for the universal player.

Balabanov and Jiang [10] showed that Q-resolution allows strategy extraction in decision lists.

Here we show that the same remains true in weak extended Q-resolution. In comparison to [10] we

provide a simplified proof.

Theorem 51. Given a refutation π of QBF φ in weak extended Q-resolution, there exists a winning

strategy for the universal player for φ such that for each universal variable u of φ the winning

strategy can be represented as a Boolean function fu that is expressible as a decision list whose

size is polynomial in |π|.

Proof. We first review the proof of the strategy extraction theorem for Q-resolution and then explain

at the end how it applies to weak extended Q-resolution.

Let π = (L1, . . . , L`) be a resolution refutation of the false QBF Qφ and let

πi =

∅ if i = `,

(Li+1, . . . , L`) otherwise.
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We show, by reverse induction on i, that from πi it is possible to construct in linear time (w.r.t.

|πi|) a winning strategy σi for the universal player for the QBF formula Qφi, where

φi =

φ if i = 0,

φ ∧ L1 ∧ · · · ∧ Li otherwise,

such that for each universal variable u in Qφ, there exists a decision list Di
u computing σiu as a

function of the variables in Q left of u, having size O(|πi|).

The statement of the theorem corresponds to the case when i = 0. The base case of the induction

is for i = `. In this case σ` is trivial since φ` contains the line L` = ⊥, and we can define all the

D`
u as u← 0.

We show now how to construct σi−1
u and Di−1

u from σiu and Di
u:

– If Li is derived by resolution, then for each universal variable u we set σi−1
u = σiu and

Di−1
u = Di

u.
– Suppose Li is the result of an application of a ∀-Red rule on clause Lj , that is Lj = Li ∨ uc

with c ∈ {0, 1}, where u is the rightmost variable in Lj , and u0 stands for ¬u and u1 for u. Let

xu′ denote the variables on the left of u′ in the quantifier prefix of QBFQφ. Then we define

σi−1
u′ (xu′) =


σiu′(xu′) if u′ 6= u,

1− c if u′ = u and Li(xu) = 0,

σiu(xu) if u′ = u and Li(xu) = 1.

Moreover for each u′ 6= u we set Di−1
u′ = Di

u′ and we set Di−1
u as follows:

if ¬Li(xu) then u← 1− c;
else Du

i (xu).

We now check that for each u′, σi−1
u′ respects all the properties of the inductive claim.

It is clear that σi−1
u′ and Di−1

u′ are well defined and constructed in linear time w.r.t. |πi−1|. Also,

by construction Di−1
u′ computes σi−1

u′ .

To verify that σi−1 is a winning strategy for Qφi−1 we fix an assignment ρ to the existential

variables of φ. Let τi be the complete assignment to existential and universal variables, constructed

in response to ρ under the strategy σi. By induction hypothesis τi falsifies φi. We need to show that

τi−1 falsifies φi−1. To show this we distinguish again two cases.

If Li is derived by the resolution rule, then σi−1 = σi and τi−1 = τi. Hence by induction

hypothesis, τi falsifies a conjunct from φi. To argue that τi−1 also falsifies a conjunct from φi−1

we only need to look at the case when the falsified conjunct is Li. As Li is false under τi and Li is

derived by resolution, by soundness of the resolution rule one of the parent formulas of Li in the

application of the resolution rule must be falsified as well. Hence τi−1 falsifies φi−1.

Let now Li be derived by ∀-Red from Lj = Li ∨ uc for some j < i. In this case, our strategy

σi−1 changes the assignment τi only when τi made the universal player win by falsifying Li. As
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we set u to 1− c, the modified assignment τi−1 falsifies Lj . Otherwise, if τi does not falsify Li we

keep τi−1 = τi and hence falsify one of the conjuncts of φi−1 by induction hypothesis.

Let us now explain how the above applies to weak extended Q-resolution. Consider a refutation

π of a QBF Qxφ(x) in weak extended Q-resolution. We can view π as a Q-resolution refutation of

the QBFQx∃yφ(x) ∧ ψ(x,y), where suitable extension variables y together with their definitions

ψ(x,y) have been added.

We apply the argument above to construct decision lists computing a winning strategy for

QBFQx∃yφ(x) ∧ ψ(x,y). By definition of the ∀-Red rule, no y variables are present in ∀-Red

steps in π. Hence the decision list will also not use any of the extension variables and therefore in

fact compute a winning strategy for the original formula QBFQxφ(x). ut

This result enables us to show lower bounds for formulas that require hard strategies. An

example of such formulas are the QPARITY formulas. As observed earlier, the only winning strategy

of the universal player on the QPARITY formulas is to actually compute the PARITY function.

However, PARITY is the classic example of a function hard for bounded-depth circuits (and hence

by Lemma 5 for decision lists).

Using strategy extraction we can now immediately transfer this circuit lower bound to an

exponential lower bound in weak extended Q-resolution.

Theorem 52. Any refutation of QPARITYn in weak extended Q-resolution is of exponential size

and thus weak extended Q-resolution does not simulate extended Q-resolution.

Proof. The unique winning strategy for the variable z in QPARITYn is to compute x1 ⊕ · · · ⊕ xn.

By Theorem 51, there is a polynomial-time algorithm for constructing a decision list Dn from any

refutation of QPARITYn in weak extended Q-resolution. Such decision list can be converted in

polynomial time into a depth-3 circuit by Lemma 5. Hence, the refutation must be of exponential

size due to Theorem 7. ut
With the upper bound from the previous section we get an exponential separation.

This also has consequences for strategy extraction in extended Q-resolution.

Theorem 53. Extended Q-resolution has strategy extraction in P, but does not admit strategy

extraction in AC0.

Proof. Inspecting the proof of Theorem 51 it is clear that extended Q-resolution still has strategy

extraction in polynomial time, and in fact for the original formula not involving extension variables:

for this it suffices to perform the construction of the decision lists as in Theorem 51 and then replace

extension variables by their definition. To keep the size polynomial, this requires reusing definitions

of extensions variables and hence instead of formulas will lead to polynomial-size circuits. However,

the substitutions will increase the depth and not result in AC0 circuits.

To argue that extended Q-resolution does not admit AC0 strategy extraction we use again the

QPARITY formulas, which have short proofs in extended Q-resolution by Theorem 50, but require

exponential-size strategies by Theorem 7. ut
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Extended resolution is a powerful propositional system which can be lifted to QBF. We look at

proof systems of comparible strength and their QBF counterparts in Chapter 13. In Chapter 12 we

will look at proof system of intermediate strength between resolution and extended resolution.
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Chapter 12

A Cutting Planes Proof System in QBF
In Chapter 3 we presented the Q-resolution proof system from [77], this system takes a propositional

system– resolution [34, 107] and adds a simple reduction rule– ∀-Red that allows it to be complete

for QBF. We find that adding ∀-Red to a sound and complete propositional proof system P , gives a

sound and refutationally complete QBF proof system P +∀red. This will be explored further in

Chapter 13. In this chapter we focus on when P is the cutting planes proof system.

Cutting planes [46] is a proof system that works on linear inequalities with integer coefficients,

it can be considered to work for propositional logic by converting CNF formulas into an equisat-

isfiable set of linear inequalities. It has been shown that for CNF it is strictly more powerful than

propositional resolution and overall it is of intermediate strength between resolution and Frege.

Cutting planes and Resolution are the two primary systems that have the feasible interpolation

property [80,99]. This means for true implicational formulas an interpolating circuit can be extracted

in polynomial time from the proofs. This results can lead to a transfer of circuit complexity lower

bounds to proof size lower bounds. Indeed this gives us a lower bound for cutting planes [99].

As resolution can be adapted for the QBF setting, the cutting planes proof system can be adapted

for the QBF setting where the CNF matrix gets converted into a set of linear inequalities, this is the

CP+∀red system given in [23]. The design of this calculus resembles that of Q-Res and QU-Res
where propositional rules are obeyed and the universal reduction rule is added. The soundness and

refutational completeness for PCNF was shown in [23]. We can extend this to all quantified boolean

linear inequalities, which we do in this chapter.

Beyersdorff et. al. [23] provide a proof complexity investigation into CP+∀red. Firstly, CP+∀red
is shown to p-simulate Q-Res and QU-Res. Secondly, feasible interpolation is once again shown to

work in CP+∀red, just as it lifts in the resolution case (Chapter 8, [21]). This provides the clique-co

clique lower bound from Chapter 8. Thirdly, a strategy extraction technique is also shown for

CP+∀red. This is used to show a conditional mutual separation with the expansion based resolution

systems. In Chapter 5 we show that strategy extraction admits AC0 circuits for Q-Res, instead

CP+∀red has strategy extraction into a more general class of circuits– TC0. In this chapter we show

that CP+∀red does not have AC0 strategy extraction.

Section 12.1 introduces the Cutting Planes +∀red proof system from [23]. In this section we

also provide a new completeness argument that shows the refutational completeness for all false

quantified boolean linear inequalities. We see a selection of proof complexity results for CP+∀red
from [23] in Section 12.2, as well as a new result showing that CP+∀red cannot have AC0 strategy

extraction.

This chapter mainly reviews the work of [23] that appeared at the 37th IARCS Annual Confer-

ence on Foundations of Software Technology and Theoretical Computer Science.
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12.1 Cutting Planes in QBF

Definition 20 (CP+∀red proofs for inequalities [23]). Consider a set of quantified inequalities

F ≡ Q1x1 . . .Qnxn. F , where F also contains the Boolean axioms. A CP+∀red refutation π of F
is a quantified set of linear inequalitiesQ1x1 . . .Qnxn.[I1, I2, . . . , Il] where the quantifier prefix is

the same as in F , Il is an inequality of the form 0 ≥ C for some positive integer C, and for every

j ∈ {1, . . . , l},

– Ij ∈ F , or
– Ij is derived from earlier inequalities in the sequence (for example, Ik1 , Ik2 , with k1, k2 < j)

via one of the following inference rules:
1. Addition: From

∑
k

ckxk ≥ C and
∑
k

dkxk ≥ D derive
∑
k

(ck + dk)xk ≥ C +D.

2. Multiplication: From
∑
k

ckxk ≥ C derive
∑
k

dckxk ≥ dC, where d ∈ Z+.

3. Division: From
∑
k

ckxk ≥ C derive
∑
k

ck
d
xk ≥

⌈
C

d

⌉
, where d ∈ Z+ divides each ck.

4. ∀-red: From
∑

k∈[n]\{i}

ckxk + hxi ≥ C derive


∑

k∈[n]\{i}

ckxk ≥ C if h > 0,∑
k∈[n]\{i}

ckxk ≥ C − h if h < 0.

This rule can be used provided variable xi is universal, and provided all existential variables

with non-zero coefficients in the hypothesis have ind(y) < ind(xi). (That is, if xj is

existential and cj 6= 0, then j < i). Observe that when h > 0, we are replacing xi by 0,

and when h < 0, we are replacing xi by 1. We say that the universal variable xi has been

reduced.

Each inequality Ij is a line in the proof π. Note that proof lines are always of the form
∑

k ckxk ≥ C
for integer-valued ck and C. The length of π (denoted |π|) is equal to the number of lines in it, and

the size of π (denoted size(π)) is equal to the bit-size of a representation of the proof (this depends

on the number of lines and the binary length of the numbers in the proof).

We start with a set of linear inequalities φ and boolean quantifier prefix Π , The aim is to show

that Π
∧
φ semantically entails Π

∧
φ ∧ L1 ∧ · · · ∧ Ln where L1 . . . Ln are the inequalities that

represent the lines of a proof π in CP+∀red.

The soundness proof [23] of CP+∀red works from an inductive argument on i. The induction

hypothesis is Π
∧
φ � Π

∧
φ ∧ L1 ∧ · · · ∧ Li.

The base case is simple. In the inductive step, a line can be derived via a cutting planes rule or via

universal reduction. If Li+1 is derived via a cutting planes rule then clearly Π
∧
φ∧L1∧ · · ·∧Li �

Π
∧
φ ∧ L1 ∧ · · · ∧ Li+1.

Now suppose that Li+1 is derived by reduction, without loss of generality Li = Lj [0/u] for

some j < i and universal variable u.

Π
∧
φ ∧ L1 ∧ · · · ∧ Li
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≡ Π1∀uΠ2

∧
φ ∧ L1 ∧ · · · ∧ Li

≡ Π1∀uΠ2

∧
φ ∧ L1 ∧ · · · ∧ Li ∧ Lj

≡ Π1(Π2

∧
φ ∧ L1 ∧ · · · ∧ Li ∧ Lj)[0/u] ∧ (Π ′2

∧
φ′ ∧ L′1 ∧ · · · ∧ L′i ∧ Lj)[1/u]

≡ Π1Π2Π
′
2(
∧
φ ∧ L1 ∧ · · · ∧ Li)[0/u] ∧ (

∧
φ′ ∧ L′1 ∧ · · · ∧ L′i)[1/u] ∧ Lj [0/u] ∧ Lj [1/u]

Because Lj does not contain any variables in Π2 (or Π ′2), it can be quantified again over Π2

Π1∀uΠ2

∧
φ ∧ L1 ∧ · · · ∧ Li ∧ Lj [0/u] ∧ Lj [1/u]

So finally as a semantic consequence

Π
∧
φ ∧ L1 ∧ · · · ∧ Li+1.

Refutational completeness was shown for prenex CNF in [23], here we can show that in fact

refutational completeness holds for any set of quantified boolean linear inequalities.

Theorem 54. CP+∀red is refutationally complete for quantified boolean linear inequalities.

Proof. The key here is that we use the implicational completeness of cutting planes [64] to show

that certain lines can be derived that state that the substitution of universal variables with their

Herbrand functions will lead to a contradiction with the formula. Reduction can then be performed

and eventually we can arrive at the empty clause.

We use the fact that for φ a set of inequalities in x1, y1, . . . xn, yn, when ∀b,∃b are boolean

quantifiers and ∀by1∃bx1 . . . ∀byn∃bxnφ is false there is a winning strategy for the universal player

in the two-player game for quantified Boolean semantics. In other words for every yi there is a

Boolean formula Ci(x1, . . . xi, y1 . . . yi−1) that when all yi = Ci, φ is false.

We now consider the propositional formula

n∨
i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)) .

This is a semantic consequence of φ, so we can use the implicational completeness of cutting planes,

to derive it, however in cutting planes this must be represented as a set of linear inequalities. We can

then perform universal reduction on yn with both 0 and 1 granting us with the eventually semantic

consequence of Cn(x1, . . . , xn, y1, . . . , yn−1) 6= 0 ∨
∨n−1
i=1 (yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1))

and Cn(x1, . . . , xn, y1, . . . , yn−1) 6= 1 ∨
∨n−1
i=1 (yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)). Finally taking

these two together, the semantic consequence of
∨n−1
i=1 (yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)) can

be derived and we repeat this process until we arrive at the empty clause, hence CP+∀red is

refutationally complete. ut
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12.2 Proof Complexity Results of CP+∀red

We now look at the simulation results for the CP+∀red.

Theorem 55 (Beyersdorff, Chew, Mahajan and Shukla [23]). CP+∀red p-simulates QU-Res.

This comes from the simulation of resolution by the cutting planes proof system [46]. Like

QU-Res, CP+∀red also does not restrict propositional rules on universal variables, so this is why

the stronger system is simulated.

Theorem 56 (Beyersdorff, Chew, Mahajan and Shukla [23]). Q-Res and QU-Res cannot

simulate CP+∀red.

Theorem 57 (Beyersdorff, Chew, Mahajan and Shukla [23]). The expansion-based system

∀Exp+Res cannot simulate CP+∀red.

These naturally comes from the propositional separation.

Theorem 58 (Beyersdorff, Chew, Mahajan and Shukla [23]). If P/poly 6⊆ TC0 then CP+∀red
cannot simulate ∀Exp+Res.

The idea here is similar to the strategy extraction technique in Chapter 5. However it uses a

conditional lower bound to propose the existence of a circuit. The strategy extraction technique then

applies in the CP+∀red system.

Theorem 59 (Beyersdorff, Chew, Mahajan and Shukla [23]). [Strategy Extraction Theorem]

Given a false QBF ϕ = Q. φ, with n variables, and a CP+∀red refutation π of ϕ of size m, it is

possible to extract from π a winning strategy σu for each universal variable u ∈ ϕ, such that each

σu can be computed by Boolean circuits of (m+n)O(1) size, constant depth, with unbounded fan-in

AND, OR, NOT gates as well as threshold gates.

In particular, if ϕ can be refuted in CP+∀red in nO(1) size, then the winning strategies can be

computed in TC0.

We will see in Chapter 13 that ∀-Red rule and strategy extraction are tightly connected, this is

why we can get strategy extraction here.

We do not get polynomial time strategy extraction, however, in the weak model of AC0. To

show this, we define the family of false QBFs QMAJORITYn. The QBF expresses the false sentence

∃x1, . . . , x2n+1 ∀z MAJORITY(x1, . . . , x2n+1) 6= z.

To express this compactly with a CNF matrix, we use auxiliary variables tik for i ∈ [2n+ 1] and

0 ≤ k ≤ i, and inductively define tik = THRESHOLDk(x1, . . . , xi) by using tik = ti−1
k ∨(ti−1

k−1∧xi).

Therefore t2n+1
n+1 = MAJORITY(x1, . . . , x2n+1).

We define QMAJORITYn as the QBF with the prefix
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∃x1, . . . , x2n+1 ∀z ∃t10, t11, ∃t20, t21, t22, . . .∃t
2n+1
0 , t2n+1

1 , . . . , t2n+1
2n+1

and the CNF matrix

{ti0} i ∈ [2n+ 1]

{x1,¬t11} {¬x1, t
1
1}

{ti−1
i−1,¬tii} {xi,¬tii} {¬xi,¬ti−1

i−1, t
i
i} 2 ≤ i ≤ 2n+ 1

{xi,¬tik, t
i−1
k } {¬t

i
k, t

i−1
k , ti−1

k−1} 2 ≤ i ≤ 2n+ 1, k ∈ [i− 1]

{¬ti−1
k , tik, } {¬xi, tik,¬t

i−1
k−1} 2 ≤ i ≤ 2n+ 1, k ∈ [i− 1]

{z, t2n+1
n+1 } {¬z,¬t2n+1

n+1 }.

Note that this is a false prenex QBF with CNF matrix, and is of size Θ(n2).

Theorem 60. 1. Any proof system with polynomial time AC0 strategy extraction requires expo-

nential size proofs of QMAJORITY

2. QMAJORITY has polynomial-sized proofs in CP+∀red.

Proof. For the lower bound, note that the only winning strategy for the single universal variable z

is the function MAJORITY(x1, . . . , x2n+1) itself. By the results of [67], constant-depth circuits for

PARITY, and hence for MAJORITY, must be of size exponential in the number of variables. On the

other hand, if we have a proof of size S, and one can extract a winning strategy for the universal

player as an AC0 circuit of size polynomial in S. Therefore, if QMAJORITY has proof of size S,

then the winning strategy for the universal player, and hence MAJORITY, can be computed by a

polynomial size AC0-circuit in S. It follows that S must be exponential in n.

We now describe a CP+∀red proof for QMAJORITYn of length Θ(n2).

We aim to first derive inductively that tik = THRESHOLDk(x1, . . . , xi), for each i ∈ [2n+ 1]

and 0 ≤ k ≤ i, in a cutting planes derivation. To simplify the expressions, we use the notation

PSUMi to denote the partial sum
∑

j≤i xj . We write the implications and inequalities as follows:

forward direction backward direction

Implication tik → PSUMi ≥ k tik ← PSUMi ≥ k
Inequality −ktik + PSUMi ≥ 0 (i− k + 1)tik − PSUMi ≥ 1− k

We proceed by induction on i.

Base case: For i = 1, k is 0 or 1. At k = 0, the forward direction is the Boolean axiom x1 ≥ 0,

and the backward direction inequality 2t10 − x1 ≥ 1 is obtained by adding the Boolean axiom

−x1 ≥ −1 and twice the unit clause axiom t10 ≥ 1. For k = 1, both directions are the inequalities

corresponding to the axioms t11 ↔ x1.

Inductive Step: Now assume that i ≥ 2. The extreme values of k, namely k = 0 and k = i, are

easy and we deal with them first.

k = 0 : For the forward direction, we simply add all Boolean axioms xj ≥ 0 for j ≤ i together to

get PSUMi ≥ 0. For the backward direction, similarly, we add all Boolean axioms −xj ≥ −1 for

j ≤ i together to get −PSUMi ≥ −i, and then add (i+ 1) times the unit clause axiom ti0 ≥ 1.
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k = i : The forward inequality is derived as follows:

{¬tii, t
i−1
i−1}

−tii + ti−1
i−1 ≥ 0

−(i− 1)tii + (i− 1)ti−1
i−1 ≥ 0 −(i− 1)ti−1

i−1 + PSUMi−1 ≥ 0

−(i− 1)tii + PSUMi−1 ≥ 0

{¬tii, xi}
−tii + xi−1 ≥ 0

−itii + PSUMi ≥ 0

The backward inequality is derived as follows:

{tii,¬t
i−1
i−1,¬xi}

tii − t
i−1
i−1 − xi ≥ −1 ti−1

i−1 − PSUMi−1 ≥ 2− i
tii − PSUMi ≥ 1− i

1 ≤ k < i : Now we consider the intermediate values. The backward direction is a bit easier and

we do it first. It uses the inductively derived backward direction for i− 1.

We first derive inequalities for PSUMi−1 ≥ k → tik and PSUMi−1 ≥ k− 1 ∧ xi → tik and then

derive the inequality for PSUMi ≥ k → tik.

The derivation of an inequality for PSUMi−1 ≥ k → tik is as follows.

{tik,¬t
i−1
k }

tik − t
i−1
k ≥ 0

(i− k)tik − (i− k)ti−1
k ≥ 0 (i− k)ti−1

k − PSUMi−1 ≥ 1− k
(i− k)tik − PSUMi−1 ≥ 1− k

The derivation of the inequality for PSUMi−1 ≥ k − 1 ∧ xi → tik is as follows.

{tik,¬t
i−1
k−1,¬xi}

tik − t
i−1
k−1 − xi ≥ −1

(i− k + 1)(tik − t
i−1
k−1 − xi) ≥ k − i− 1 (i− k + 1)ti−1

k−1 − PSUMi−1 ≥ 2− k
(i− k + 1)tik − PSUMi−1 − (i− k + 1)xi ≥ 1− i

We can conclude with the following derivations.

(i− k)tik − PSUMi−1 ≥ 1− k
(i− k)2tik − (i− k)PSUMi−1 ≥ (i− k)(1− k) (i− k + 1)tik − PSUMi−1 − (i− k + 1)xi ≥ 1− i

((i− k + 1)(i− k) + 1)tik − (i− k + 1)PSUMi ≥ 1− k(i+ 1− k)

tik ≥ 0

(i− k)tik ≥ 0 ((i− k + 1)(i− k) + 1)tik − (i− k + 1)PSUMi ≥ 1− k(i+ 1− k)

(i− k + 1)2tik − (i− k + 1)PSUMi ≥ 1− k(i+ 1− k)

(i− k + 1)tik − PSUMi ≥ 1− k

133



12. A CUTTING PLANES PROOF SYSTEM IN QBF

The forward direction uses both the directions of the inductively derived inequalities for i− 1.

Recall that i ≥ 2 and 1 ≤ k ≤ i − 1. We need to derive tik → PSUMi ≥ k. The key to this is to

derive and then combine inequalities for tik → PSUMi−1 ≥ k − 1 and tik → xi ∨ PSUMi−1 ≥ k.

In order to show tik → PSUMi−1 ≥ k − 1 from our inductive hypothesis and the clause

¬tik ∨ t
i−1
k ∨ ti−1

k−1, we use the fact that ti−1
k → ti−1

k−1 is true. But first we must derive this fact from

the induction hypothesis. We start the derivation as follows:

(i+ 1− k)ti−1
k−1 − PSUMi−1 ≥ 2− k −kti−1

k + PSUMi−1 ≥ 0

−kti−1
k + (i+ 1− k)ti−1

k−1 ≥ 2− k

Now we equalise the coefficients on the left-hand-side by adding a multiple of an appropriate

Boolean axiom, and then a division rule yields −ti−1
k + ti−1

k−1 ≥ 0.

If i+ 1− 2k > 0, then we proceed as follows:

−ti−1
k ≥ −1

−(i+ 1− 2k)ti−1
k ≥ −(i+ 1− 2k) −kti−1

k + (i+ 1− k)ti−1
k−1 ≥ 2− k

−(i+ 1− k)ti−1
k + (i+ 1− k)ti−1

k−1 ≥ 2− (i+ 1− k)

−ti−1
k + ti−1

k−1 ≥ 0

Alternatively, if i+ 1− 2k ≤ 0,

ti−1
k−1 ≥ 0

−(i+ 1− 2k)ti−1
k−1 ≥ 0 −kti−1

k + (i+ 1− k)ti−1
k−1 ≥ 2− k

−kti−1
k + kti−1

k−1 ≥ 2− k
−ti−1

k + ti−1
k−1 ≥ 0

(At the last step, we may obtain 1 on the right hand side if k = 1. In that case, we further add

0 ≥ −1, which may be considered an axiom or may be derived by adding the two Boolean axioms

for any variable.)

Next we use the derived inequality −ti−1
k + ti−1

k−1 ≥ 0 to derive −tik + ti−1
k−1 ≥ 0.

−ti−1
k + ti−1

k−1 ≥ 0

{−tik, t
i−1
k , ti−1

k−1}
−tik + ti−1

k + ti−1
k−1 ≥ 0

−tik + 2ti−1
k−1 ≥ 0 −tik ≥ −1

−2tik + 2ti−1
k−1 ≥ −1

−tik + ti−1
k−1 ≥ 0

This, with the inductive hypothesis, lets us derive tik → PSUMi−1 ≥ k − 1.

−tik + ti−1
k−1 ≥ 0

−(k − 1)tik + (k − 1)ti−1
k−1 ≥ 0 −(k − 1)ti−1

k−1 + PSUMi−1 ≥ 0

−(k − 1)tik + PSUMi−1 ≥ 0
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As described earlier, we also need an inequality for tik → xi ∨
∑

j<i xj ≥ k. Under Boolean

conditions, the inequality −kti−1
k +

∑
j<i xj + kxi ≥ 0 suffices. We use an axiom clause along

with the inductive hypothesis to derive it.

{¬tik, t
i−1
k , xi}

−tik + ti−1
k + xi ≥ 0

−ktik + kti−1
k + kxi ≥ 0 −kti−1

k + PSUMi−1 ≥ 0

−ktik + PSUMi−1 + kxi ≥ 0

Now we combine the derived inequalities to obtain the inequality for the forward direction.

−ktik + PSUMi−1 + kxi ≥ 0

−tik ≥ −1

(1− k)tik ≥ 1− k
(1− 2k)tik + PSUMi−1 + kxi ≥ 1− k

−(k − 1)tik + PSUMi−1 ≥ 0

−(k − 1)2tik + (k − 1)PSUMi−1 ≥ 0

−k2tik + kPSUMi ≥ 1− k
−ktik + PSUMi ≥ 0

After Induction: With the induction part of the proof completed, we have shown that (n+1)t2n+1
n+1 −

PSUM2n+1 ≥ −n and −(n+ 1)t2n+1
n+1 + PSUM2n+1 ≥ 0 can be derived in a short proof of length

Θ(n2). (We use Θ(1) additional steps for both directions of each (i, k) pair.) We now complete the

refutation via universal reduction, which can be applied after eliminating the t variables; the partial

sums do not block the reduction. The first fragment below reduces z by setting z = 0, the second

one sets z = 1.

{z, t2n+1}
z + t2n+1

n+1 ≥ 1

(n+ 1)z + (n+ 1)t2n+1
n+1 ≥ n+ 1 −(n+ 1)t2n+1

n+1 + PSUM2n+1 ≥ 0

(n+ 1)z + PSUM2n+1 ≥ n+ 1

PSUM2n+1 ≥ n+ 1

{¬z,¬t2n+1}
−z − t2n+1

n+1 ≥ −1

−(n+ 1)z − (n+ 1)t2n+1
n+1 ≥ −(n+ 1) (n+ 1)t2n+1

n+1 − PSUM2n+1 ≥ −n
−(n+ 1)z − PSUM2n+1 ≥ −2n− 1

−PSUM2n+1 ≥ −n

−PSUM2n+1 ≥ −n PSUM2n+1 ≥ n+ 1

0 ≥ 1
ut

It was shown in [99] that monotone feasible interpolation holds for cutting planes. This result

was extended to CP+∀red in the same way that the resolution result was extended to Q-Res.
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Theorem 61 (Beyersdorff, Chew, Mahajan and Shukla [23]). CP+∀red for inequalities admits

monotone real feasible interpolation. That is, letF be any false quantified boolean set of inequalities

of the form ∃pQqQr.
[
A(p, q) ∧ B(p, r)

]
where A ∪ B also includes all Boolean axioms, and

where the coefficients of p are either all non-negative in A or are all non-positive in B. For any

S-proof π of F , we can extract from π a monotone real circuit C of size polynomial in the length l

of π and the number n of p variables in F , such that C computes a Boolean function, and on every

0, 1 assignment a for p,

C(a) = 0 =⇒ Qq.A(a, q) is false, and

C(a) = 1 =⇒ Qr.B(a, r) is false.

Such a C is called a monotone real interpolating circuit for F .

In Chapter 13 we apply the same reduction rule to Frege systems as we have done with cutting

planes and show further strategy extraction results.
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Chapter 13

Frege Systems for QBF
In Chapter 12 we saw that the cutting planes proof system can be augmented with a reduction rule

in a similar way to how Q-resolution [77] builds on resolution. A strategy extraction theorem is

present for both Q-Res and CP+∀red, in the complexity classes AC0 and TC0 respectively. In this

chapter we continue these ideas and provide a general method of transforming a propositional proof

system into a QBF proof system, by adding the universal reduction rule.

A. From Propositional to QBF: New QBF Proof Systems. We exhibit a general method how to

transform a propositional proof system to a QBF proof system. Our method is both conceptually

simple and elegant. Starting from a propositional proof system P comprised of axioms and rules,

we design a system P +∀red for closed prenex QBFs (Definition 21). Throughout the proof, the

quantifier prefix is fixed, and lines in the system P +∀red are conceptually the same as lines in

P, i.e. clauses in resolution, circuits from C in C-Frege, or inequalities in cutting planes. Our new

system P +∀red uses all the rules from P, and can apply those on arbitrary lines, irrespective of

whether the variables are existentially or universally quantified. To make the system complete, we

introduce a universal reduction rule that allows us to replace universal variables by simple Herbrand

functions, which can be represented as lines in P. The link to Herbrand functions provides a clear

semantic meaning for the ∀red rule, resulting in a natural and robust system P +∀red. Our new

systems P +∀red are inspired by the approach taken in the definition of Q-Res [77]; and indeed

when choosing resolution as the base system P, our system P +∀red coincides with the previously

studied QU-Res [116]. While our definitions are quite general and yield for example previously

missing QBF versions of polynomial calculus or cutting planes, we concentrate here on exploring

the hierarchy C-Frege+∀red of new QBF Frege systems.

B. From Circuit to QBF Lower Bounds: a General Technique. It is a long-standing belief that

circuit lower bounds correspond to proof size lower bounds, and clearly some of the strongest

lower bounds in proof complexity as those for AC0-Frege are inspired by proof techniques in circuit

complexity, cf. the survey of [12]. Here we give a precise and formal account on how any circuit

lower bound for C can be directly lifted to a proof size lower bound in C-Frege+∀red.

Conceptually, our lower bound method uses the idea of strategy extraction, an important

paradigm in QBF (Theorem 63). Semantically, a QBF can be understood as a game between a

universal and an existential player, where the universal player wins if and only if the QBF is false.

Winning strategies for the universal player can be very complex. We also find that the strategy

extraction theorem is implied by the existence of the reduction rule and is present in all our

C-Frege+∀red systems. Precisely, we show that from each refutation of a false QBF in a system
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C-Frege+∀red we can efficiently extract a winning strategy for the universal player in a simple

computational model we call C-decision lists. We observe that C-decision lists are easy to transform

into C circuits itself, with only a slight increase in complexity.

A direct transfer of circuit complexity to proof complexity is conjectured for propositional proof

complexity, but such a transfer has not be proved. In C-Frege+∀red we get an exact transfer. To

obtain a proof-size lower bound we need a function f that is hard for C. By strategy extraction,

refutations of Q-f in C-Frege+∀red yield C-circuits for f ; hence all such refutations must be long.

In fact, we even show the converse implication to hold, i.e. from small C-circuits for f we construct

short proofs ofQ-f in C-Frege+∀red. Our lower bound technique widely generalises ideas recently

used in Chapter 5 to show lower bounds for Q-Res and QU-Res for formulas originating from the

PARITY function.

C. Lower Bounds and Separations: Applying our Framework. We apply our proof technique

to a number of famous circuit lower bounds, thus obtaining lower bounds and separations for

C-Frege+∀red systems that are yet unparalleled in propositional proof complexity. In Figure 26 we

summarise the QBF Frege systems. Essentially we show three new important lower bound results.

Resolution

AC0-Frege

AC0[p]-Frege

TC0-Frege

Frege

eFrege

(a) A simulation Hasse diagram for
propositional Frege systems

QU-Res

AC0-Frege+∀red

AC0[p]-Frege+∀red

TC0-Frege+∀red

Frege+∀red

eFrege+∀red

(b) A simulation Hasse diagram for
QBF Frege+∀red systems

superpolynomial lower bounds for systems below

Fig. 26. A comparison of known lower bounds in Frege and Frege+∀red systems

C.(i) Lower Bounds and Separations for the QBF Proof System AC0[p]-Frege+ ∀red. We

observe the current picture for Frege systems in Figure 26(a). We see that the best lower bounds

are for the bounded depth Frege system– AC0-Frege. However AC0[p]-Frege which allows mod p
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gates has no known lower bounds. In QBF we can move this dotted line slightly higher to a lower

bound for AC0[p]-Frege+∀red as shown in Figure 26(b).

The seminal results of [102,112] showed that PARITY and more generally MODq are the classic

examples for functions that require exponential-size bounded-depth circuits with MODp gates,

where p and q are different primes. Using these functions, we define families of QBFs that require

exponential-size proofs in AC0[p]-Frege+∀red by strategy extraction.

C.(ii) AC0[p]-Frege+ ∀red and TC0-Frege+ ∀red are Separated. MAJORITY is another clas-

sic function in circuit complexity, for which exponential lower bounds are known for constant-depth

circuits with MODp gates for each prime p [102, 112]. Using our technique, we transfer these to

lower bounds in AC0[p]-Frege +∀red for all primes p. Carefully choosing the QBF encoding of

MAJORITY, we obtain polynomial upper bounds for the MAJORITY formulas in TC0-Frege+∀red,

thus proving an exponential separation between the two QBF proof systems AC0[p]-Frege+∀red

and TC0-Frege+∀red. Again, such a separation is wide open in propositional proof complexity.

To obtain separations of these proof systems, the exact formulation of the QBFs matters. When

defining the PARITY or MODq formulas directly from (arbitrary) NC1-circuits computing these

functions, we obtain polynomial-size upper bounds in Frege+∀red. However, when carefully choos-

ing specific and indeed very natural encodings, we can prove upper bounds for the MODq formulas

even in AC0[q ]-Frege+∀red, thus obtaining exponential separations of all the AC0[p]-Frege+∀red

systems for distinct primes p.

As mentioned before, lower bounds for AC0[p]-Frege (as well as their separations) are major

open problems in propositional proof complexity.

C.(iii) CNFs Separating the AC0
d-Frege+ ∀red Hierarchy. As a third example for our approach

we investigate the fine structure of AC0-Frege +∀red, comprising all AC0
d-Frege +∀red systems,

where all formulas in proofs are required to have at most depth d for a fixed constant d. In circuit

complexity the SIPSERd functions from [38] provide an exponential separation of depth-(d−1) from

depth-d circuits [66]. With our technique, this separation translates into a separation of AC0
d−3-Frege

+∀red from AC0
d-Frege+∀red, where the increased gap of size 3 comes from our transformation of

C-decision lists into C-circuits.

The SIPSERd formulas achieving these separations are prenexed CNFs, i.e. the formulas have

depth 2. While in propositional proof complexity the hierarchy of AC0
d-Frege systems is exponen-

tially separated [2, 83, 98], such a separation by formulas of depth independent of d is a major open

problem.

D. Characterisation of Frege + ∀red Systems with Strategy Extraction. In addition to the

unconditional bounds, we can yield conditional lower bounds based on complexity assumptions.

Indeed we find using strategy extraction that PSPACE * NC1 would show that Frege+∀red has a

lower bound. In fact this connection is two-way, we show that Frege+∀red can only be found from
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either lower bounds in Frege or lower bounds of NC1 in PSPACE. This is perhaps one of the most

important aspects of Frege+∀red since it essentially shows that strong QBF calculi will be difficult

to show lower bounds for.

In Section 13.1 we define the C-Frege+∀red systems and justify their soundness and complete-

ness. In Section 13.2 we show the strategy extraction theorem for C-Frege +∀red, a formalised

strategy extraction exists in C-Frege+∀red which we present in Section 13.3. In Section 13.4 we

show the lower bounds and separations for AC0[p]-Frege, in Section 13.5 we show the separations

of AC0
d-Frege+∀red systems. Finally in Section 13.6 we characterise hardness in Frege+∀red and

eFrege+∀red system.

The work in this chapter appeared at the 7th Annual Innovations in Theoretical Computer

Science conference [17].

13.1 Defining QBF Frege Systems

For the following we fix a circuit class C with some natural properties, e.g. closure under restrictions.

Definition 21 (C-Frege +∀red). A refutation of a false QBF Qφ in the system C-Frege+∀red is a

sequence of lines L1, . . . , L` where each line is a circuit from the class C, φ is a conjunction of C

circuits, Q is a quantifier prefix of all variables in φ, L` = ⊥ and each Li is either a conjunct in φ,

inferred from previous lines Lj using the inference rules of C-Frege or using the following rule

Lj
(∀red),

Lj [u/B]

where Lj [u/B] belongs to the class C, u is the innermost variable among the variables of Lj and

B is a circuit from the class C containing only variables left of u.

The formal justification why C-Frege+∀red is a sound and complete QBF proof system is given

in Theorem 62 below. However, let us pause a moment to see why adding the ∀red rule results

in a natural proof system C-Frege+∀red. Recall that we consider C-Frege+∀red as a refutation

system; hence we aim to refute false quantified C formulas. A standard approach to witness the

falsity of quantified formulas is through Herbrand functions, which replace a universal variable u by

a function in the existential variables left of u. These functions can be viewed as ‘counterexample

functions’. In Definition 21, B plays the role of the Herbrand function. Clearly, when restricting

formulas to a class C we should also restrict B to that class, and substituting the Herbrand function

into the formula should again preserve C.

Note that we are even allowed to choose different Herbrand functions B for the same variable

u in different parts of the proof. In general, this will be unsound (unless variables right of u are

renamed). However, it is safe to do if the line Lj does not contain any variables right of u.

It is illustrative to see how our construction compares to previously studied QBF resolution

systems. Choosing Res as our propositional proof system, which is an OR-Frege system, we obtain

Res +∀red. In Res +∀red the ∀red rule can substitute a universal u by either another variable or
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by a constant 0/1. In the former case, we simply obtain a weakening step. In the latter case, if u

appears positively in the clause then substituting u by 0 precisely corresponds to an application

of the ∀red rule in Q-Res, whereas substituting u by 1 results in the useless tautology >.2 As

Res +∀red can resolve on existential and universal variables, our system Res +∀red is exactly the

well-known QU-Res (with weakening).

We now proceed to show soundness and completeness of the new QBF systems.

Theorem 62. For every circuit complexity class C, the system C-Frege+∀red is a refutational QBF

proof system.

Proof. Res +∀red is complete as it p-simulates Q-Res, which is complete for QBF [77]. To obtain

the completeness for C-Frege+∀red we first use de Morgan’s rules to expand the formula into a

CNF. This is possible as, by definition, C-Frege is implicationally complete. Now we can refute the

CNF by Res +∀red. C-Frege+∀red p-simulates Res +∀red and hence C-Frege+∀red is complete.

Regarding the soundness of C-Frege+∀red, let (L1, . . . , L`) be a refutation ofQφ in the system

C-Frege+∀red and let

φi =

φ if i = 0,

φ ∧ L1 ∧ · · · ∧ Li otherwise.

By induction on i we prove that Qφ semantically entails Qφi, i.e. Qφ |= Qφi. Hence, at step i = `

we will immediately obtain that Qφ is false, since L` = {⊥} and Qφ` ≡ ⊥.

Since Qφ = Qφ0 the base case of the induction holds.

We show now that Qφ |= Qφi implies Qφ |= Qφi+1. By definition, φi+1 = (φi ∧ Li+1) and

Li+1 was either introduced by a C-Frege rule or by the ∀red rule. If Li+1 was introduced by a

C-Frege rule then φi |= Li+1, so φi |= φi+1 and clearly Qφ |= Qφi |= Qφi+1.

Suppose now that Li+1 was introduced by the ∀red rule, say Li+1 = Lj [u/B] with j ≤ i, u the

innermost variable among the ones in Lj and B relying only on the variables left of u. Moreover

suppose that Qφi = Q1x ∀uQ2yφi, then we have the following chain of equivalences

Qφi = Q1x∀uQ2yφi

≡ Q1x ∀uQ2yφi ∧ Lj

≡ Q1x
((
Q2yφi[u/0] ∧ Lj [u/0]

)
∧
(
Q2yφi[u/1] ∧ Lj [u/1]

))
≡ Q1x

(
Lj [u/0] ∧ Lj [u/1] ∧

(
Q2yφi[u/0]

)
∧
(
Q2yφi[u/1]

))
≡ Q1x

(
Lj [u/0] ∧ Lj [u/1] ∧ ∀uQ2yφi

)
≡ Q1x

(
Lj [u/0] ∧ Lj [u/1] ∧ Lj [u/B] ∧ ∀uQ2yφi

)
2 Note that, contrasting the usual setting of Q-Res [77], our definition of Res +∀red does not need to disallow

tautologous resolvents as these will always be reduced to >.
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≡ Q1x∀uQ2yφi ∧ Lj [u/0] ∧ Lj [u/1] ∧ Lj [u/B].

From this follows, by weakening, that

Qφi |= Q1x∀uQ2yφi ∧ Lj [u/B],

hence Qφ |= Qφi+1. ut

Clearly lower bounds on the complexity of C-Frege +∀red follow from lower bounds on

C-Frege. The lower bounds we show later will be of a different kind as they will be ‘purely for QBF

proof systems’ in the sense that they will lower bound the number of occurrences of the ∀red rule

in refutations.

13.2 Strategy Extraction

We introduce now the simple computational model of C-decision lists.

Definition 22 (C-decision list). A C-decision list is a program of the following form
if C1(x) then u← B1(x);

else if C2(x) then u← B2(x);
...

else if C`−1(x) then u← B`−1(x);

else u← B`(x),

where C1, . . . , C`−1 and B1, . . . , B` are circuits in the class C. Hence a decision list as above

computes a Boolean function u = g(x).

This definition generalises decision lists from [105], where the conditions Ci(x) are expressible

as terms and the decisions are expressed as constants. These changes are to reflect our new calculi.

We note that for many cases C-decision lists can be easily transformed into C-circuits.

Proposition 4. Let D be a C-decision list using circuits C1, . . . , C`−1 and B1, . . . , B`, such that

D computes the Boolean function g. Then there exists a circuit D′ ∈ C computing the same function

g, such that the size of D′ is linear in the size of D and

depth(D′) ≤ max

{
max

1≤i≤`−1
{depth(Ci)}, max

1≤i≤`
{depth(Bi)}

}
+ 2.

Proof. We have that

u ≡
∨̀
j=1

Cj(x) ∧Bj(x) ∧
∧
k<j

¬Ck(x)

 ,

where C` is a circuit computing the constant 1. ut

Balabanov and Jiang [10] proved a strategy extraction result for QU-Res. Here we generalise

that result to the full hierarchy of C-Frege+∀red QBF proof systems. This result is the main tool

we use to prove size lower bounds in such systems.
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Theorem 63 (Strategy Extraction). Given a false QBF Qφ and a refutation π of Qφ in C-Frege

+∀red, it is possible to extract in linear time (w.r.t. |π|) a collection of C-decision lists D computing

a winning strategy on the universal variables of φ.

Proof. Let π = (L1, . . . , Ls) be a refutation of the false QBF Qφ and let

πi =

∅ if i = s,

(Li+1, . . . , Ls) otherwise.

We show, by downward induction on i, that from πi it is possible to construct in linear time

(w.r.t. |πi|) a winning strategy σi for the universal player for the QBF formula Qφi, where

φi =

φ if i = 0,

φ ∧ L1 ∧ · · · ∧ Li otherwise,

such that for each universal variable u in Qφ, there exists a C-decision list Di
u computing σiu as a

function of the variables in Q left of u, having size O(|πi|).

The statement of the Strategy Extraction Theorem corresponds to the case when i = 0. The

base case of the induction is for i = s. In this case σs is trivial since φs contains the line Ls = ⊥,

and we can define all the Ds
u as u← 0.

We show now how to construct σi−1
u and Di−1

u from σiu and Di
u:

• If Li is derived by some Frege rule, then for each universal variable u we set σi−1
u = σiu and

Di−1
u = Di

u.

• If Li is the result of an application of a ∀red rule, that is
Lj

Lj [u/B]
, where u is the rightmost

variable in Lj , Lj [u/B] is a circuit in C using only variables on the left of u, and Lj [u/B] = Li.

Let xu′ denote the variables on the left of u′ in the quantifier prefix of Qφ. Then we define

σi−1
u′ (xu′) =


σiu′(xu′) if u′ 6= u,

B(xu) if u′ = u and Lj [u/B](xu) = 0,

σiu(xu) if u′ = u and Lj [u/B](xu) = 1.

Moreover for each u′ 6= u we set Di−1
u′ = Di

u′ and we set Di−1
u as follows:

if ¬Lj [u/B](xu) then u← B(xu);

else Du
i (xu).

We now check that for each u′, σi−1
u′ respects all the properties of the inductive claim.

I σi−1
u′ and Di−1

u′ are well defined. By construction Lj [u/B] is a formula in the variables x left of

u. This immediately implies that, for each universal variable u′, the strategy σi−1
u′ is well defined

and Di−1
u is also well defined. By induction hypothesis Di

u is a C-decision list, so Di−1
u is also a

C-decision list.
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I σi−1 and Di−1
u′ are constructed in linear time w.r.t. |πi−1|. This holds by inductive hypothesis

and the fact that computing ¬Lj(u/B) is linear in |πi−1|.

I Di−1
u′ computes σi−1

u′ . For u′ 6= u, by induction hypothesis, Di−1
u′ computes σiu′ . The same

happens, by construction, for u′ = u.

I σi−1 is a winning strategy for Qφi−1. Fix an assignment ρ to the existential variables of φ. Let

τi be the complete assignment to existential and universal variables, constructed in response to ρ

under the strategy σi. By induction hypothesis τi falsifies φi. We need to show that τi−1 falsifies

φi−1. To show this we distinguish again two cases.

If Li is derived by some Frege rule, then σi−1 = σi and τi−1 = τi. Hence by induction

hypothesis, τi falsifies a conjunct from φi. To argue that τi−1 also falsifies a conjunct from φi−1

we only need to look at the case when the falsified conjunct is Li. As Li is false under τi and Li is

derived by a sound Frege rule, one of the parent formulas of Li in the application of the Frege rule

must be falsified as well. Hence τi−1 falsifies φi−1.

Let now Li = Lj [u/B] for some j < i. In this case, our strategy σi−1 changes the assignment

τi only when τi made the universal player win by falsifying Li. As we set u to B(τi(x)), the

modified assignment τi−1 falsifies Lj . Otherwise, if τi does not falsify Li we keep τi−1 = τi and

hence falsify one of the conjuncts of φi−1 by induction hypothesis. ut

From the proof of the Strategy Extraction Theorem it is clear that the size of the C-decision

list computing the winning strategy extracted from the refutation π has size that is actually linear

in the number of applications of the ∀red rule in π. More precisely, the size of the C-decision list

computing the winning strategy for variable u corresponds exactly to the number of ∀red rules on u

in π.

13.3 Formalised Strategy Extraction

It can be shown [32] that each strategy extraction theorem (Theorem 63) for C-Frege+∀red can be

formalised in C-Frege itself.

Theorem 64 (Beyersdorff, Pich [32]). Let C be AC0, AC0[p], TC0, NC1, or P/poly. Given a

C-Frege+∀red refutation π of a QBF ∃x1∀y2 . . . ∃xn∀yn φ(x1, . . . , xn, y1, . . . , yn) where φ ∈ Σq
0 ,

we can construct in time |π|O(1) a C-Frege proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬φ(x1, . . . , xn, y1, . . . , yn)

for some circuits Ci ∈ C. (The depth of the C-Frege proof increases by a constant compared to the

depth of the C-Frege+∀red proof.)

We demonstrate an application from [32] of the Strategy Extraction Theorem to obtain normal

forms for C-Frege +∀red proofs. The authors show that any C-Frege +∀red refutation can be
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efficiently rewritten as a C-Frege derivation followed essentially just by ∀red rules. This result is

then used to show that in the ∀red rule it is sufficient to only substitute constants.

Theorem 65 (Beyersdorff, Pich [32]). Let C be AC0, AC0[p], TC0, NC1, or P/poly. For any

C-Frege+∀red refutation π of a QBF ψ of the form

∃x1∀y2 · · · ∃xn∀yn φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq
0 , there is a |π|O(1)-size C-Frege +∀red refutation of ψ starting with a C-Frege

derivation of
n∨
i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)),

from φ for some circuits Ci ∈ C, followed by n applications of the ∀red rule, gradually replacing

the rightmost variable yi by circuit Ci(x1, . . . , xi, y1, . . . , yi−1) and cutting the inequality yi 6=
Ci(x1, . . . , xi, y1, . . . , yi−1) out of the disjunction

∨n
i=1 (yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)).

An immediate consequence of Theorem 65 is the p-equivalence of C-Frege +∀red and its

tree-like version.

Corollary 12 (Beyersdorff, Pich [32]). Let C be AC0, AC0[p], TC0, NC1, or P/poly. Then C-Frege

+∀red is p-equivalent to tree-like C-Frege+∀red.

Finally we further simplify C-Frege +∀red so that every application of the ∀red rule only

substitutes constants 0/1 instead of general circuits. We denote the resulting system as C-Frege

+∀red0,1. This shows that C-Frege+∀red systems are indeed very robustly defined.

Theorem 66 (Beyersdorff, Pich [32]). Let C be AC0, AC0[p], TC0, NC1, or P/poly. Then, C-Frege

+∀red and C-Frege+∀red0,1 are p-equivalent.

13.4 Separations and Lower Bounds via Circuit Complexity

We now introduce a class of QBFs defined from some circuits Cn computing a function f . Choosing

different functions f , these formulas will form the basis of our lower bounds.

Definition 23 (Q-Cn). Let n be an integer and Cn be a circuit with inputs x1, . . . , xn. Let

t1, . . . , tm−1 be a topological ordering of the internal gates of Cn, and let the output gate of

Cn be tm. We define

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm(u↔ ¬tm) ∧
m∧
i=1

Gi,

where u↔ ¬tm ≡ (u ∨ tm) ∧ (¬u ∨ ¬tm) and Gi expresses as a CNF the function computed in

the circuit Cn at gate i, e.g. if node ti computes the ∧ of tj and tk then

Gi = ti ↔ (tj ∧ tk) ≡ (¬ti ∨ tj) ∧ (¬ti ∨ tk) ∧ (ti ∨ ¬tj ∨ ¬tk),
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similarly if gate i computes ¬, ∨, ⊕, MODp, Tk or some other Boolean function.

Informally, the QBF Q-Cn expresses that there exists an input x such that Cn(x) neither

evaluates to 0 nor 1, an obvious contradiction as Cn computes a total function on {0, 1}n. Using

these formulas together with the Strategy Extraction Theorem, we now establish a tight connection

between the circuit class C and C-Frege+∀red.

Theorem 67. Let C be one of the circuit classes AC0, AC0[p], TC0, NC1, P/poly and let (Cn)n∈N

be a non-uniform family of circuits where Cn is a circuit with n inputs. Then the following implica-

tions hold:

1. if the QBFs Q-Cn have C-Frege+∀red refutations of size bounded by a function q(n), then for

each n, Cn is equivalent to a circuit C ′n where C ′n is of size O(q(n)) and uses the gates and

depth allowed in C;

2. if (Cn)n∈N is a polynomial-size circuit family from C then the QBFsQ-Cn have polynomial-size

refutations in C-Frege+∀red.

Proof. Regarding (i), by the Strategy Extraction Theorem and Proposition 4, if the QBF Q-Cn
has a refutation in C-Frege +∀red of size S then a winning strategy for the universal player can

be computed by a circuit C ′n ∈ C of size O(S). We have that in Q-Cn the quantifier prefix looks

like ∃x1 · · · ∃xn∀u∃t. Now, by construction, u 6≡ Cn(x1, . . . , xn), hence a winning strategy for

the universal player must consist of playing u = Cn(x1, . . . , xn). This means that the circuit C ′n
computing the winning strategy for the universal player is equivalent to the circuit Cn and the size

bound follows.

Regarding (ii), let

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm(u↔ ¬tm) ∧ φn,

where φn is a formula depending on the circuit Cn. By definition, the ti are indexed w.r.t. a

topological ordering of the nodes of Cn.

We prove, by induction on i, that there exists a circuit Di ∈ C such that ti ↔ Di is derivable in

C-Frege with size polynomial in |Di|. Suppose that ti corresponds to a gate �(tj1 , . . . , tj`) with

fan-in `, where � could be an ∧,∨,¬,⊕,MODp, Tk, . . . from the gates allowed in the class C.

By the inductive property we know that tjk ↔ Djk is provable in C-Frege with proofs of size

polynomial in |Djk |. Moreover, C-Frege is able to prove

tj1 ↔ Dj1 · · · tj` ↔ Dj` ti ↔ �(tj1 , . . . , tj`)

ti ↔ �(Dj1 , . . . , Dj`)
.

Let then Di = �(Dj1 , . . . , Dj`). At the m-th step C-Frege proves that tm ↔ Dm, from which

follows that
tm ↔ Dm u↔ ¬tm

u↔ ¬Dm
.
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Since now u is universal and the innermost variable of u↔ ¬Dm, we can apply the ∀red rule and

get 0 ↔ ¬Dm, 1 ↔ ¬Dm, which leads to an immediate contradiction in the QBF proof system

C-Frege+∀red.

In particular, a Boolean function f is computable by polynomial-size C circuits if and only

if Q-Cn have polynomial-size C-Frege refutations for each choice of Boolean circuits (Cn)n∈N

computing f . Note that the circuits Cn are not necessarily circuits from the class C.

In the remainder of this section we apply Theorem 67 to a number of circuit classes and transfer

circuit lower bounds to proof size lower bounds. ut

Lower Bounds for Bounded-depth QBF Frege Systems. PARITY is one of the best-studied

functions in terms of its circuit complexity. With Theorem 67 we can immediately transfer circuit

lower bounds for PARITY to AC0[p]-Frege+∀red, regardless of the encoding for PARITY.

Corollary 13 (Q-PARITY lower bounds). Let Cn be a family of polynomial-size circuits com-

puting PARITY. For each odd prime p the QBFs Q-Cn require proofs of exponential size in

AC0[p]-Frege+∀red.

Proof. The exponential lower bound for the proof size in AC0[p]-Frege+∀red follows from Theo-

rem 67 and the fact that for each odd prime p any family of bounded-depth circuits with MODp

gates computing PARITY must be of exponential size [102, 112].

We highlight that non-trivial lower bounds for AC0[p]-Frege are one of the major open problems

in propositional proof complexity. We complement the lower bound in Corollary 13 with an upper

bound for arbitrary NC1 encodings of PARITY in Frege+∀red. ut

Corollary 14 (Q-PARITY upper bounds). Let Cn be a family of NC1 circuits computing PARITY.

Then the QBFs Q-Cn have polynomial-size proofs in Frege+∀red.

Proof. By a result of [93], PARITY can be computed by circuits in NC1. Hence if we consider a

family Cn of NC1 circuits computing PARITY then the polynomial upper bound in Frege+∀red

follows immediately from Theorem 67. ut

In fact, this upper bound can be improved to the QBF proof system AC0[2 ]-Frege+∀red, albeit

not for arbitrary NC1-encodings of PARITY, as it is not clear how these could be handled in bounded

depth. For this purpose, we consider explicit QBFs for PARITY, which can be built from its inductive

definition PARITY(x1, . . . , xn) = PARITY(x1, . . . , xn−1)⊕ xn. This leads to the QBFs

Φn = ∃x1 · · · ∃xn∀u∃t2 · · · ∃tn (t2 ↔ (x1 ⊕ x2)) ∧
n∧
i=3

(ti ↔ (ti−1 ⊕ xi)) ∧ (u↔ ¬tn),

where a↔ (b⊕ c) ≡ (¬a∨¬b∨¬c)∧ (¬a∨ b∨ c)∧ (a∨¬b∨ c)∧ (a∨ b∨¬c). This formulation

of Q-PARITY was considered in Chapter 5.
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Corollary 15. The PARITY-formulas Φn require refutations of exponential size in AC0[p]-Frege

+∀red for each odd prime p, but it have polynomial-size AC0[2 ]-Frege+∀red refutations.

Proof. The lower bound follows as in Corollary 13. For the upper bound we cannot use Theorem 67,

but need to give a more direct proof. Without loss of generality we can assume that our AC0[2 ]-Frege

+∀red system uses the connectives {∧,∨,¬,↔,⊕}.

Then it is easy to see, by induction on i, that Frege proves ti ↔ ⊕(x1, x2, . . . , xi) with a proof

of size linear in i. Hence, similarly to what was done in Theorem 67, we get

u↔ ¬⊕ (x1, x2, . . . , xn).

Then u is the rightmost variable; hence by the ∀red rule we have

1↔ ¬⊕ (x1, x2, . . . , xn) and 0↔ ¬⊕ (x1, x2, . . . , xn),

which gives an immediate contradiction. ut

In fact, we can further strengthen Corollary 15 and use Smolensky’s circuit lower bounds for

an even more ambitious separation of all AC0[p]-Frege+∀red systems. For this we consider the

function

MODp(x1, . . . , xn) =

1 if
∑n

i=1 xi ≡ 0 (mod p)

0 otherwise.

For r ≤ p− 1 let

MODp,r(x1, . . . , xn) =

1 if
∑n

i=1 xi ≡ r (mod p)

0 otherwise.

If we want to use MODp for a separation of AC0[p]-Frege +∀red and AC0[q ]-Frege +∀red for

different primes p, q, then MODp has to be encoded as a QBF in the language common to both proof

systems, which means that we cannot use MODp or MODq gates. As for PARITY, an arbitrary

NC1 encoding as in Corollary 13 will also not work (this would just give upper bounds in Frege

+∀red), so we need to devise again explicit QBF encodings for MODp. Such QBFs can be built

using the fact that MODp, that is MODp,0, can be defined for r 6= 0 by

MODp,r(x1, . . . , xi) = (MODp,r(x1, . . . , xi−1) ∧ ¬xi) ∨ (MODp,r−1(x1, . . . , xi−1) ∧ xi),

and for r = 0 by

MODp,0(x1, . . . , xi) = (MODp,0(x1, . . . , xi−1) ∧ ¬xi) ∨ (MODp,p−1(x1, . . . , xi−1) ∧ xi).
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Using variables sri for MODp,r(x1, . . . , xi) this leads to the QBFs

Θpn = ∃x1 · · · ∃xn∀u∃s0
1∃s1

1∃s0
2∃s1

2∃s2
2 · · · ∃s0

n · · · ∃sp−1
n (u↔ ¬s0

n)∧(s1
1 ↔ x1)∧(s0

1 ↔ ¬x1)∧∧
1<i≤n

0<r≤p−1

(
sri ↔ (sri−1 ∧ ¬xi) ∨ (sr−1

i−1 ∧ xi)
)
∧
∧

1<i≤n

(
s0
i ↔ (s0

i−1 ∧ ¬xi) ∨ (sp−1
i−1 ∧ xi)

)
.

Corollary 16. For each pair p, q of distinct primes the MODp-formulas Θpn require proofs of

exponential size in AC0[q ]-Frege+∀red, but have polynomial-size proofs in AC0[p]-Frege+∀red.

Proof. The exponential lower bound for the QBF proof system AC0[q ]-Frege+∀red follows from

Theorem 67 together with the result from [102, 112] that for distinct primes p, q any family of

bounded-depth circuits with MODq gates computing MODp must be of exponential size.

Regarding the upper bound, without loss of generality we can assume that our AC0[p]-Frege

system uses the connectives {∧,∨,¬,↔,MODp}. Then it is easy to see, by induction on i, that

AC0[p]-Frege proves

sri ↔ MODp(x1, . . . , xi, 1, 1, . . . , 1︸ ︷︷ ︸
p−r

),

with a proof of size linear in i. Hence, similarly to what was done in Theorem 67 and Corollary 15,

we get

u↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

).

Then u is the rightmost variable; hence by the ∀red rule we have

1↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

) and 0↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

),

which gives an immediate contradiction. ut

Another notorious function in circuit complexity is MAJORITY. Again we can transform circuit

lower bounds to proof size lower bounds for arbitrary encodings of MAJORITY.

Corollary 17 (lower bounds for Q-MAJORITY). Let Cn be a family of polynomial-size circuits

computing MAJORITY(x1, . . . , xn). Then for every prime p, the QBFs Q-Cn require proofs of

exponential size in AC0[p]-Frege+∀red.

Proof. The lower bound follows again applying Theorem 67 and the fact that MAJORITY requires

exponential-size bounded-depth circuits with MODp gates [102, 112]. ut

For general encodings, we can again show Frege+∀red upper bounds.

Corollary 18 (Q-MAJORITY upper bounds). Let Cn be a family of NC1 circuits computing

MAJORITY(x1, . . . , xn). Then the QBFs Q-Cn have polynomial-size proofs in the QBF proof

system Frege+∀red.
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Proof. By a result of [93], the function MAJORITY is computable in NC1 and henceQ-Cn are well

defined. The upper bound then follows from Theorem 67. ut

As for the MODp functions, we can improve on this upper bound by considering explicit QBF

encodings of MAJORITY, thereby even obtaining a separation of AC0[p]-Frege+∀red systems from

TC0-Frege+∀red.3 Explicit QBFs for MAJORITY can be defined using the following property of

the k-threshold function.

Tk(x1, . . . , xi) ≡ Tk(x1, . . . , xi−1) ∨ (Tk−1(x1, . . . , xi−1) ∧ xi). (5)

Using variables tik for Tk(x1, . . . , xi) this gives rise to the QBFs Ψn which is given by

∃x1 · · · ∃xn∀u∃t11 · · · ∃tnn/2(u↔ ¬tnn/2)∧
∧
i≤n

ti0∧ (t11 ↔ x1)∧
∧

k≤n/2
i≤n

(
tik ↔ ti−1

k ∨ (ti−1
k−1 ∧ xi)

)
.

Corollary 19. For each prime p the MAJORITY-based formulas Ψn require proofs of exponential-

size in the QBF proof system AC0[p]-Frege+∀red, but have polynomial-size proofs in TC0-Frege

+∀red.

Proof. The exponential lower bound from [102, 112] will give us the exponential lower bound w.r.t.

the size of Ψn in AC0[p]-Frege+∀red, since the size of Ψn is O(n2).

Regarding the polynomial-size proof of the QBF formula Ψn in TC0-Frege +∀red we can

proceed similarly as for PARITY in Frege. The crucial feature here is that Tk are, by definition of TC0,

in the language of TC0-Frege. Hence T (x1, . . . , xi) ≡ Tk(x1, . . . , xi−1) ∨ (Tk−1(x1, . . . , xi−1) ∧
xi) can be used to prove tjk ↔ Tk(x1, . . . , xj) and we can easily refute Ψn in TC0-Frege+∀red. ut

We note that a separation of AC0[p]-Frege from TC0-Frege constitutes a major open problem

in propositional proof complexity as we are currently lacking lower bounds for AC0[p]-Frege.

13.5 Lower Bounds for Constant-depth QBF Frege Systems

We now aim at a fine-grained analysis of AC0-Frege by studying its subsystems AC0
d-Frege. Our

next result is a version of Theorem 67, however, we need to be a bit more careful for circuits of

fixed depth d.

Theorem 68. Let (Cn)n∈N be a non-uniform family of circuits where Cn is a circuit with n inputs.

Then the following implications hold:

(i) if the QBFsQ-Cn have AC0
d-Frege+∀red refutations of size bounded by a function q(n), then

for each n, Cn is equivalent to a depth-(d+ 2) circuit C ′n of size O(q(n));

3 Clearly, such a separation already follows from Corollary 16 together with the simulation of AC0[p]-Frege+∀red by
TC0-Frege+∀red. Here we will prove the stronger result that all these systems are separated by one natural principle,
namely MAJORITY.
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(ii) if (Cn)n∈N is a family of polynomial-size depth-d circuits, then the QBFsQ-Cn have polynomial-

size refutations in AC0
d-Frege+∀red.

Proof. The proof of (i) follows the proof of the analogous statement of Theorem 67. The Strategy

Extraction Theorem in this case tell us that from refutations ofQ-Cn in AC0
d-Frege+∀red of size S

we can extract a winning strategy for the universal player that can be computed by AC0
d-decision

lists of size O(S). By Proposition 4, this means that the winning strategy can be also computed by

AC0
d+2 circuits and the size upper bound follows.

The proof of point (ii) follows the proof of the analogous statement of Theorem 67. That

proof will give us that Q-Cn has polynomial-size refutations in AC0
d+2-Frege +∀red. Here we

want to prove that Q-Cn has actually polynomial-size proofs in AC0
d-Frege+∀red. Without loss of

generality suppose that the last gate tm of Cn is an
∧

, that is

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm(u↔ ¬tm) ∧ (tm ↔
∧
j≤`

tij ) ∧ φn,

where each tij is an
∨

gate and φn is the encoding of the rest of the circuit Cn. We clearly have that

u↔ ¬tm tm ↔
∧
j≤` tij

u↔
∨
j≤` ¬tij

From which we obtain both

u ∨
∧
j≤`

tij ,

¬u ∨
∨
j≤`
¬tij .

Now we can proceed, similarly as in Theorem 67. By induction (on the depth of Cn) AC0
d-Frege is

able to substitute tij with Dij where Dij is an AC0
d−1-formula over the x1, . . . , xn variables starting

with an
∨

. More precisely by induction we can prove that AC0
d-Frege proves both

tij ∨ ¬Dij ,

¬tij ∨Dij .

Hence from our derivations follows that ¬u ∨
∨
j≤` ¬Dij , which is an AC0

d-formula only over the

variables u, x1, . . . , xn. Hence by the ∀red rule we get∨
j≤`
¬Dij .

We get first that
∧
j≤`(u ∨ tij ) and then we get

∧
j≤`(u ∨Dij ), which, again, is an AC0

d-formula

over the variables u, x1, . . . , xn. By the ∀red rule we get∧
j≤`

Dij .
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From these follows immediately a contradiction. ut

From Theorem 67 we obtain a wealth of lower bounds for Res +∀red.

Corollary 20. Let f(x1, . . . , xn) be a Boolean function requiring exponential-size depth-3 cir-

cuits and let (Cn)n∈N be polynomial-size circuits (of unbounded depth) computing f . Then the

QBFs Q-Cn require exponential-size refutations in AC0
1-Frege+∀red and hence, in particular, in

Res +∀red.

We now prove a separation of constant-depth Frege +∀red systems. For this we employ the

Sipser functions separating the hierarchy of constant-depth circuits. We quote the definition of the

SIPSERd function from [38]:

SIPSERd =
∧

i1≤m1

∨
i2≤m2

∧
i3≤m3

· · ·
⊙
id≤md

xi1i2i3...id ,

where
⊙

=
∨

or
∧

depending on the parity of d. The variables x1, . . . , xn appear as xi1i2i3...id
for ij ≤ mj , where m1 =

√
m/ logm, m2 = m3 = · · · = md−1 = m, md =

√
dm logm/2 and

m = (n
√

2/d)1/(d−1).

Corollary 21. Fix an integer d ≥ 2. Let (Cnd )n∈N be a family of polynomial-size depth-(d + 3)

circuits computing the function SIPSERd+3(x1, . . . , xn). Then the QBFs Q-Cnd need exponential-

size proofs in AC0
d-Frege+∀red, but have polynomial-size proofs in AC0

d+3-Frege+∀red.

Proof. The lower bound follows from Theorem 68 and from the result that for every d, SIPSERd+3

needs exponential-size depth-(d+ 2) circuits [66]. Regarding the upper bound, by construction Cnd
has depth d+ 3 and polynomial-size. Hence, by Theorem 68, the familyQ-Cnd has polynomial-size

proofs in AC0
d+3-Frege+∀red. ut

Note that the gap of size 1 in the circuit separation of [66] increases to a gap of size 3 in our

proof system separation, due to the transformation in Proposition 4. We highlight that in contrast to

Corollary 21 where our separating formulas are CNFs, a separation of the depth-d Frege hierarchy

with formulas of depth independent of d is a major open problem in propositional proof complexity.

13.6 Characterizing QBF Frege and Extended Frege Lower Bounds

We finally address the question of lower bounds for Frege +∀red or even eFrege +∀red. Our

next result states that achieving such lower bounds unconditionally will either imply a major

breakthrough in circuit complexity or a major breakthrough in classical proof complexity and vice

versa. (Notice that it might be much easier to obtain the disjunction than any of the disjuncts.)

Theorem 69. Let C be either P/poly or NC1. C-Frege+∀red is not polynomially bounded if and

only if PSPACE 6⊆ C or C-Frege is not polynomially bounded.4

4 By NC1 we mean non-uniform NC1. Note that by the space hierarchy theorem it is known that PSPACE 6⊆
uniform NC1, but this does not suffice for Frege+∀red lower bounds.
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Proof. Clearly if C-Frege is not polynomially bounded then C-Frege +∀red is not polynomially

bounded. If PSPACE 6⊆ C then let f be a Boolean function in PSPACE but not in C. Since QBF is

PSPACE-complete there exists a QBF Qwφ(w, x1, . . . , xn) with a CNF φ such that

f(x1, . . . , xn) ≡ Qwφ(w, x1, . . . , xn).

We define

Q-fn = ∃x1 · · · ∃xn∀u(u↔ Qwφ(w, x1, . . . , xn)),

which can be rewritten into formulas Θn in prenex form. Notice that the only winning strategy for

the universal player on bothQ-fn and Θn is to compute u = f(x1, . . . , xn). Therefore, the Strategy

Extraction Theorem together with f 6∈ C immediately implies super-polynomial lower bounds for

Θn in C-Frege+∀red.

The opposite direction was shown first in [32] and the argument is as follows. We assume that

C-Frege+∀red is not polynomially bounded. Then there is a sequence of true QBFs Qψn such that

¬Qψn do not have polynomial-size refutations in C-Frege+∀red. Let Qψn have the form

∀x1∃y1 . . . ∀xn∃yn ψn(x1, . . . , xn, y1, . . . , yn).

If PSPACE 6⊆ C, we are done. Otherwise, there are polynomial-size circuits Ci witnessing the

existential quantifiers in Qψn. That is, for any x1, . . . , xn, y1, . . . , yn

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ψn(x1, . . . , xn, y1, . . . , yn).

We claim that these are a sequence of tautologies without polynomial-size C-Frege proofs.

Otherwise, having ¬ψn, C-Frege can derive
∨
i yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1) by a polynomial-

size proof, and so as in Theorem 65, C-Frege+∀red can efficiently refute ¬Qψn. ut

We remark that we do have a separation between uniform NC1 and PSPACE, because uniform

NC1 ⊆ LOGSPACE and LOGSPACE 6= PSPACE by the space hierarchy theorem. Therefore,

choosing f ∈ PSPACE \ uniform NC1 and considering the prenex formulas Θn arising from Q-fn
we can infer the weaker result that Frege+∀red has no uniform short proofs of Θn.
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Chapter 14

Conclusion
In this thesis we introduce improvements to QBF proof complexity in the following areas:

1. We introduce new proof systems to better understand and characterise solving and complexity

in QBF and DQBF.

2. We introduce the most current QBF lower bounds and we complete the simulation/separation

structure of the main QBF directed acyclic graph (DAG) resolution systems.

3. We lift lower bound techniques from propositional to QBF logic, where we have particular

success in tree-like calculi. However for DAG like systems and QBF proof complexity in general

we find that a very different picture is emerging.

4. We exhibit a new interesting lower bound technique for QBF calculi of varying power– strategy

extraction.

New Proof Systems. Prior to this work, a handful of proof systems existed for QBF. The QCDCL

style proof systems Q-Res and each of its improvements LD-Q-Res, QU-Res and LQU+-Res
were defined. The foundational expansion-based calculus– ∀Exp+Res was developed due to its

relation to RAReQS and stronger calculi such as the sequent calculus G and the first order resolution

EPR were also known.

In Chapter 4 we built natural expansion based QBF proof systems– IR-calc and IRM-calc that

hybridised the quantifier handling in QCDCL and expansion based solving. Some progress towards

bringing the solvers together can be seen in the QESTOS solver [33] which uses DPLL conflicts to

generate the strategies used in CEGAR solvers. However, in IR-calc we added partial expansion

instead of full expansion, this is not yet fully implemented in practical solving.

IR-calc is also naturally applicable to DQBF and forms a sound and complete resolution calculus

D-IR-calc as seen in Chapter 10. There have been recent advances in DQBF solving [57,58,62,117].

We believe that D-IR-calc will be an important calculus when relating solvers to proof systems in

this area. DQBF is also related to dependency-schemes, which while not explored in this thesis are

increasingly prevalent in solving with solvers such as DepQBF. Indeed dependency schemes have

received recent interest from a theoretical point of view. Slivovsky and Szeider showed a sound

QBF resolution calculus that incorporates dependency schemes [111]. This was further adapted to

long-distance resolution [96]. The work by Beyersdorff and Blinkhorn [16] details the conditions

on making dependency schemes sound in proof systems.

In addition we introduced the P +∀red system (Chapter 13) which could also be seen as a

calculus that is of practical importance in the future. If we suppose SAT solving advances beyond

the resolution system to system P, then QCDCL solvers may correlate to P +∀red. In particular, we
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see CP+∀red in Chapter 12, where cutting planes is a useful system related to integer programming.

We also introduce a hierarchy of C-Frege+∀red systems, for the powerful Frege systems.

From C-Frege+∀red systems, we get a tighter grasp on the connections between QBF proof

complexity and circuit complexity. C-Frege+∀red systems naturally match to complexity classes C

both in description and in lower bounds, which is a connection not yet established in propositional

proof systems. Furthermore, formalisations of strategy extraction show that these systems charac-

terise hardness in Frege and circuit complexity, showing that lower bounds can only be obtained via

circuit complexity or propositional proof complexity.

New Lower Bounds. The states of lower bounds has improved significantly in QBF, previously

only a few lower bounds were known for QBF calculi:

– the KBKF formulas from [77] that show a lower bound for input Q-Res, two modifications of

the KBKF formulas were presented in [11] that mutually separate QU-Res and LD-Q-Res.

– the formulas from [73] that show a lower bound for ∀Exp+Res but are easy for Q-Res.

– any propositional lower bounds lifted as purely existential QBF.

We add a significant number of new lower bounds which are as follow:

– the QPARITY lower bounds for Q-Res, QU-Res (Chapter 5) and weak extended Q-Res
(Chapter 11), as well as their modifications for hardness in LD-Q-Res and LQU+-Res.

– more generally, theQ-Cn lower bounds which work for a range of C-Frege+∀red proof systems

(Chapter 13).

– the clique co-clique formulas which are genuine QBFs for the QBF calculi with the monotone

feasible interpolation property (Chapters 8 and 12).

– We also show that the KBKF formulas do indeed provide a lower bound to Q-Res because they

provide a lower bound to IR-calc (Chapter 6). KBKF also provides a lower bound to tree-like

QU-Res (Chapter 7). The modification of KBKF in [11] provide a lower bound to IRM-calc.

DAG versus Tree-like Calculi. In Chapters 4, 5 and 6 we show that in QBF resolution systems

we completely separate the simulation structure for DAG-like QBF proof systems. To show the

separations we used new techniques for QBF such as the strategy extraction technique (Chapter 5)

along with the examples of [77] (Chapter 6).

It is quite important to note that for the DAG like QBF systems the size-width relation fails.

This is a major technique in propositional proof complexity. Instead the stand-out success that led us

to many new lower bounds comes from connections to hardness in circuit complexity. This allows

us to look only at higher level properties of the calculi, which we believe is more illuminating on

sources of difficulty than the previous counting techniques in QBF proof complexity.

In addition to strategy extraction, the other technique that works for DAG-like QBF calculi is the

feasible interpolation technique, although we see that this can somewhat be seen as a special case of
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strategy extraction (Chapter 8). This so far is the sole case of a general lower bound technique that

lifts from propositional proof complexity to DAG-like QBF systems.

For tree-like QBF systems, we find that lower bound techniques generally do transfer from

propositional proof complexity. We see this in two examples: 1.) The game technique for Q-Res
and QU-Res (Chapter 7) 2.) The size-width relation for ∀Exp+Res and IR-calc. A similar game

technique for QBF was shown in [40], this was used on an ensemble of QU-Res systems with

oracles in the polynomial hierarchy.

Just as the DAG like systems have simulation and separations, these relations are also possible

in the tree-like cases. It is known that tree-like ∀Exp+Res and IR-calc are equivalent despite the

fact that they are strictly separated in DAG-like resolution. We also know all the simulations that

are present in the DAG-like case remain. However all other potential separations are unknown.

It is even possible that all the QBF resolution systems are equivalent on tree-like proofs. This is

important as the distinction between tree-like and DAG-like has practical relevance. Due to the

nature of DPLL solving, hard examples are likely to have tree-like traces. Therefore there are still

some important questions about how this affects expansion versus QCDCL solving. Since in the

tree-like calculi, ∀Exp+Res p-simulates IR-calc it also p-simulates Q-Res, and the converse is

still unknown, despite the fact DAG Q-Res does not simulate ∀Exp+Res.

Strategy Extraction. The most successful technique in QBF proof complexity is the strategy

extraction technique (Chapters 5,11,12 and 13). For false QBFs, the universal player is guaranteed

a winning strategy and this can be represented by a circuit. In strategy extraction for proofs this

circuit has to be extracted in polynomial time from the proof.

Strategy extraction is also possible in solvers. In some sense, strategy extraction is desirable in

solvers. Not only can the correctness of a solving instance be verified by a strategy, for QBF such as

those that relate to games the winning strategy may be just as important as the result. On the other

hand, we show that strategy extraction can lead to lower bounds, we show this in the case of proof

systems but the same is true for solvers.

Strategy extraction is possible in polynomial time for all the QBF resolution calculi (cf. Chapter 4

and [11]). The key to lower bounds in Q-Res and QU-Res is that it can be done in restrictive AC0

circuits of which super-polynomial lower bounds are known.

Strategy extraction has a strong relationship with the universal reduction rule and our new

P +∀red calculi. We find that even extended Frege systems augmented with the reduction rule

have strategy extraction in polynomial time (Chapter 13). This property can create conditional and

unconditional lower bounds.

Comparisons of strong proof systems for QBFs were made in [52], including comparisons

to IR-calc and IRM-calc. In [32] it was shown that strategy extraction characterises hardness

for strong systems such as Frege +∀red systems and beyond. This means that lower bounds for

stronger systems are limited by either propositional proof complexity or circuit complexity. The
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work by Beyersdorff et. al [30] shows further characterisations for even weaker systems, with a

third possibility of hardness by quantifier alternations.
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46. W. J. COOK, C. R. COULLARD, AND G. TURÁN, On the complexity of cutting-plane proofs, Discrete Applied
Mathematics, 18 (1987), pp. 25–38.

47. W. CRAIG, Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory, The Journal of
Symbolic Logic, 22 (1957), pp. 269–285.

48. M. DAVIS, G. LOGEMANN, AND D. W. LOVELAND, A machine program for theorem-proving, Commun. ACM, 5
(1962), pp. 394–397.

49. M. DAVIS AND H. PUTNAM, A computing procedure for quantification theory, Journal of the ACM, 7 (1960),
pp. 210–215.

159



14. CONCLUSION

50. R. DECHTER, Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition,
Artificial Intelligence, 41 (1990), pp. 273 – 312.
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75. T. JUSSILA, A. BIERE, C. SINZ, D. KRÖNING, AND C. M. WINTERSTEIGER, A first step towards a unified proof
checker for QBF, in SAT, J. Marques-Silva and K. A. Sakallah, eds., vol. 4501, Springer, 2007, pp. 201–214.
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