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Abstract
Vertical cavity surface emitting laser (VCSEL) structures have been grown by

both metal-organic chemical vapour deposition (MOCVD) and molecular beam

epitaxy (MBE). These incorporate 3 strained InGaAs / GaAs quantum wells placed

resonantly in a two wavelength long optical cavity, formed between AlAs / GaAs

quarter wave dielectric reflector stacks through which current is injected.

The reflection spectra of these stacks is studied in detail; the effects on the

laser threshold gain of absorption due to impurities and of errors in growth are

investigated. Methods of disruption of the AlAs / GaAs heterointerfaces have been

used to reduce the operating voltage. The completed designs use 200A intermediate

layers containing 30 or 50% aluminium or a superlattice graded region simpler than

that used in previous designs. The effectiveness acceptor dopants; Be in MBE, C and

Zn in MOCVD; is studied also. Modulation doping was employed to reduce the

effects of optical absorption.

Devices were fabricated into mesas by SiC14 reactive ion etching or defined

by proton implant isolation. MBE grown devices were resonant at wavelengths in the

range 950 to 1059mn with essentially constant (at —1020nm) eihhi transition

energies in the wells. A detailed study of the wavelength variation of threshold

current density th(A)) was made. A minimum of 366A.cnr2 was measured at

1018nm in mesa devices. A similar relation is found for ion-implanted devices but the

minimum is increased to 535A.cnr2 by incomplete isolation. Gain calculations,

including strain effects, are used to explain the Jth(X) variation.

Implanted devices offer superior c.w. performance due to reduced thermal and

ohmic resistances. The relative offset between the gain spectrum and cavity resonance

was examined for c.w. operation. It was found that carrier thermal effects limit the

output power rather than shifts in the offset.

The bias voltage of MOCVD grown devices is as low as 1.7V and the

threshold current is as low as 764A.cnr2. This is higher than for MBE grown devices

because of growth thickness errors and non-optimal alignment of the gain spectrum

and cavity mode. The uniformity in emission wavelength is ±1% over 80% of a 2inch

diameter wafer, offering suitability for very large uniform arrays.
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Chapter 1. Introduction

1. Introduction

The vertical cavity surface emitting laser (VCSEL) offers the possibility of

large 2-dimensional (2-D) arrays of coherent light sources /. Laser arrays have

applications in optical computing and offer the promise of new types of displays. The

low divergence circular beam profile of a device with circular geometry is more

efficiently coupled into an optical fibre than the elliptical output profile from a

conventional semiconductor laser with a stripe geometry. Integration with other

devices, for example optical thyristors 2 and transistors3, allows for large arrays of

optical processing elements, suitable for massive parallel processing.

VCSELs were first made in 1979 4 but operated at very large currents.

Improvement was slow for the next decade, until the use of epitaxially grown

dielectric Bragg reflectors as cavity mirrors5 allowed for lasers incorporating as little

as one quantum well in the active region. The small active volume in these devices

give rise to a low threshold current. This milestone in the history of the VCSEL

established the VCSEL as a viable device. In the few years since 1989 the growing

interest in the scientific community has produced approximately 1000 publications on

the subject of these devices; this is compared with approximately half a dozen in the

preceding ten years. So great has been the interest that there have been two feature

articles on the subject in the popular science magazine Scientific American6.

The work for this thesis started a few months after the publications by Jewell

et al. 7 and Lee et al.5, which presented results on the first low threshold

(<5000A.cm-2) microresonator devices. This work investigates many of the possible

variations on the AlGaAs / GaAs based device incorporating strained InGaAs active

quantum wells and epitaxially grown multilayer Bragg reflectors. The design of the

Bragg reflector stacks is examined in detail with particular attention paid to the effect

of absorption caused by dopant species (chapter 2) and disruption schemes of the

heterointerfaces to reduce the resistance (chapter 5). Gain spectra are estimated

(chapter 3) and used to explain wavelength variation of device operating

characteristics (chapter 8). Devices were grown by both MBE and MOCVD (chapters

4, 6 & 7) and a number of features are included to provide low power operation.

These include use of resonant periodic gain, various schemes of interface disruption

in the reflectors and modulation doping. Chapter 8 examines in detail the relation

between the gain spectra and device operation and thermal effects due to resistive

heating.
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Chapter 1. Introduction

1.1. Background topics

1.1.1. Semiconductor lasers

The possibility of stimulated emission of radiation was first suggested by

Einstein. However, it was not until 1960 that laser action was first demonstrated 8, this

was in the ruby laser which exploits transitions between states of Cr 3+ ions in an

Al203 crystal. Shortly after this in 1961 stimulated emission in semiconductors was

demonstrated9, 10. These early devices used no cavity so could not really be termed

lasers. With the advent of the dielectric waveguide laser" light could be confined to

the plane of the semiconductor junction. Partial mirrors could then be formed from

parallel cleaved semiconductor facets to form an optical cavity typically 500f.tm in

length. The reflectivity of each facet mirror is —0.3. This is the basis of the stripe

geometry laser (fig. 1.1) which has been the generic form of semiconductor lasers

over the last 30 years. Current is injected through a stripe contact to produce

population inversion in the semiconductor junction underneath. The optical mode is

confined to the junction plane by the dielectric variation in the semiconductor

heterostructure. Lateral optical confinement is provided by the absorbing material

outside of the stripe region (where there is no current injection), extra confinement

may be produced by etching a ridge loaded waveguide structure.

Stripe contact

ALLO,

TONIAM. 1.11/iWav„uicicontaining p-n junction
ng layer .

Laser output	
Optical mode

Fig. 1.1. Basic form of edge emitting semiconductor stripe laser.

The early demonstrations of stimulated emission required currents of the order

105A.cm-2 to reach threshold and were performed at liquid nitrogen temperatures

(77K). With further advances in materials technology, continuous wave (c.w.)

operation at room temperature (300K) was possible and by 1975 the room

temperature threshold current density of an AlGaAs laser operating c.w. was reduced

to 500A.cm-2 12. The semiconductor laser had now become a reliable compact

coherent light source.
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Chapter 1. Introduction

1.1.2. Common applications of optoelectronics

With the improvements in optical fibre technology the semiconductor laser

has become the basis of modern telecommunications systems. Using high modulation

speeds, very high data rates, typically 1Gbit.s- 1 which is sufficient for 16000

uncompressed telephone channels, may be sent down a single monomode fibre which

takes up very little space in cable trunking and costs around 5 pence per metre

(traditionally coaxial cables were used which employ large amounts of the semi-

precious metal copper). The cost of telecommunications has reduced, as much of the

major trunk system in Europe and the U.S.A. has turned to optoelectronics. Our

requirement for any resource often tends to grow as it becomes more available;

computer communications, fax machines, video telephony and cable T.V. have

continued to fill the increased capacity of the global network. We are far from the

bandwidth limits of the fibres (possibly several THz); higher modulation speeds may

be envisaged, by at least a factor of 10, and together with the use of wavelength

division multiplexing our lust for information may continue to be satisfied.

The semiconductor laser is the only form of laser to have found a secure place

in our homes. Philips developed the compact disc audio system in the early 1980's and

in its first decade it has become the primary audio storage medium for home

entertainment and for radio broadcasters. This is a result of the faithful reproduction

afforded by 16 bit digital sampling. The data rate required for sound of this quality is

1.4Mbit.s- 1 ; a 70 minute disc contains almost 6Gbits of information. To cram this

amount of information on a disc less than 5" in diameter, requires data to be stored in

areas of size comparable to the wavelength of light. An AlGaAs double

heterostructure laser operating at a wavelength of 780nm is used to read information

off a reflective pits pressed into the disc with tracks spaced by 1.6p.m. This was the

first widespread home use for epitaxially grown semiconductor heterostructures. The

compact disc system has proved very reliable and discs may still be played when they

are quite severely scratched.

There are a number of other uses for lasers. In many of these semiconductor

lasers are preferred due to their small size, low cost, and ease of operation. These

include applications in interferometry, pump sources for solid state lasers and

applications in computing.

A wide range of ra-v material systems are used for the production of

semiconductor lasers. Each allows operation in different areas of the optical

spectrum. Table 1.1 lists a number of these together with their applications.
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Chapter 1. Introduction

0

Material system Wavelength Application

AlGaAs / GaAs 750-->890nm

Solid state laser pumps.

Optical data storage (CDs).

General purpose infra red source.

InGaAs / GaAs 950-41100nm Low power sources.

Erbium fibre laser pump.

InGaAsP / InP 1.0—>1.7pm

Optical fibre applications in

transmission windows at 1.31Am and

1.551.1m.

I AlGaInAsP / GaAs 600—>700nm

Visible applications.

Polymer short haul fibres.

High temperature operation. 	 ,

Table 1.1. Material systems used for semiconductor lasers, output wavelengths

possible and typical applications.

1.1.3. Optics in computing

The possibility of an optical computer has long been awaited. Speed of light

transmission between processing elements and the fast nature of many optical

processes would allow computing at far higher speeds than using electronics.

We see some of the advantages of optics in fibre optic networking between

machines. Recently, studies were carried out under the EEC directive OLIVES", to

develop strategies for optical communication along bus planes in a computing system

to speed the transfer of information between processors and to memory. It is hoped

that this will increase the effectiveness of distributed processing architectures.

1.1.4. Neural and related architectures

The continued rapid progress of CMOS VLSI technology has made it difficult

for other technologies to compete. There is still much improvement to come with

further reduced gate lengths and integration moving towards the wafer scale. Any

competitor, not aimed just at niche markets, must offer some distinct advantage

which an increase in processing speed alone cannot overcome.

A planar optical processor based on active waveguide elements is unlikely to

offer any advantage in functionality over an electronic implementation since the

architecture is still confined to two dimensions. Implementations of array processors

and systems displaying artificial intelligence require very large amounts of data to be

transferred between processing elements and memory. In these non-serial or non-
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Chapter 1. Introduction

number crunching applications the limiting factor is the Von Neuman bottleneck / 4.

This is the limit of data which can be transferred between chips through a small

number of pins (no more than —300) and can prevent the internal processors from

operating at full capacity. In large chips, several millimetres across, even internal

communications can be limiting (The RC time constant of a metallic trace of length 1

varies as 12 whilst for free space transmission the delay varies as 1). There is also a

topological connection problem when working in a finite number of stacked 2D

interconnect planes.

By using light it is possible to propagate many signals in parallel through free

space without interference. For chip to chip communications this could consist of a

2D array of sources operating at GHz frequencies driven by a processor chip to which

they are bonded using solder bump flip-chip technology 15. A simple lens arrangement

or hologram can be used to image the array onto an array of detectors on a number of

other processors. Fig. 1.2 indicates a possible architecture.

Routing h?logram

2-1) detector array
	 2-D laser array

Fig. 1.2. High capacity optical interconnect between 2-D laser

array and 2-D detector array. A hologram may me used to refocus the sources onto

the detector array or may have a more complex routing function. Communication

may be inter- or infra-chip.

More interesting are architectures of the form shown in fig. 1.3. An input

pattern is imaged onto plane I which consists of an array of many pixels. A

mathematical function is applied to the optical signal falling on each pixel and the

output emerges from the other side of the plane, which then passes through free space

to a second plane 2. Between the two planes some form of beam steering is employed.

This could be a hologram or a collection of holograms and lenses/6,17.
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Neuron incorporating
weighted sum of incoming
values and non-linear function

Fig. 1.3. Proposed structure for optical computer.

Input

Holographically
steered interconnect

2

Chapter 1. Introduction

Neural planes

Any number of planes could be included to provide the desired function. The

simplest system uses pixels with linear transfer characteristics but this system may

only perform matrix multiplications and has no greater function than a single plane of

interconnect, except the signals may be amplified. If the pixels are non-linear the

system becomes much more powerful. A function as simple as a sigmoid function

(1.1) is sufficient, this is a weak threshold function which has an output value 0.5 for

an input x=x0.

1 
Y = 

1 — e
xo-x)/cr

The non-linear array processor is the basis of neural networks 18,19. Hidden

planes and feedback may be used to provide temporal dependence (memory). Such a

system operates in a similar way to the human brain at the neuron level. It can exhibit

some traits of artificial intelligence and is particularly well adapted to certain tasks

such as image processing and interpretation.

In a processing architecture containing active optical elements, it is usually

desirable to supply power so that the signal amplitude is not diminished between

elemental processes. This is more readily done electrically by using optoelectronic

devices than by using all optical processes. Semiconductor lasers activated by

phototransistors may be used to provide the non-linear function.
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1.2. Lasers for optical computing

The applications of optics in computing described in section 1.1.4 (array

processors and highly parallel chip to chip or on chip communications) require 2-

dimensional arrays of light sources. Lasers are preferred over LEDs because they are

more power efficient, when operated suitably above threshold, and provide coherent

emission which is desired for holography.

1.2.1. Conventional lasers

The semiconductor laser is conventionally based on the stripe geometry device

shown in fig. 1.1. Light emission occurs from the edge of devices cleaved from the

wafer. 1-D arrays may be made using a number of parallel stripes but the production

of 2-D arrays is more difficult. There are two ways of doing this in the stripe

geometry: (i) A conventional stripe laser with 45° reflectors etched to turn the emitted

light into the vertical direction20; (ii) Distributed feedback (DFB) or distributed Bragg

reflector (DBR) lasers with adapted gratings to couple light into the vertical

directionn. There is a variant on (ii); the surface emitting circular grating DBR

laser22. The cavity length required in the plane of the semiconductor wafer for these

structures is of the order 500gm. This limits the packing density of sources in an

array.

1.2.2. Vertical cavities

For a high density 2-D array of semiconductor lasers it is desirable to arrange

the laser cavity to be normal to the plane of the semiconductor wafer. The underlying

principle of operation of a vertical cavity surface emitting laser (VCSEL) is the same

as for a conventional edge emitting laser. Fig. 1.4. illustrates a laser with a vertical

cavity. Current is injected vertically into a p-i-n active layer of length L, cavity

mirrors with reflectivities Ri and R2. Device area on a chip is dependant on the area

into which current is injected. This can easily be smaller than 511m diameter, thus

allowing very large packing densities5.
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P-

Active region

V

Contact

Optical output

Fig. 1.4. Basic geometry of vertical cavity surface emitting laser.

For an electromagnetic wave travelling in through a region with gain g the
photon density p grows with distance x as (1.2).

p(x) poe(g—a)x
(1.2)

Where a is included to account for any optical loss mechanisms. The

threshold gain gth is therefore given by the familiar expression (1.3).

1	 1 
gth = a+ 	 • ln	 (1.3)

2LF RiR2

This is the gain at which losses due to the absorption a and the mirrors Ri and

R2 is overcome. F is the transverse confinement factor of the optical field in the

active layer.

The thickness of an epitaxially grown vertical active region is limited by

practical considerations to around 51.1m. Assuming a maximum optical gain of

103 .cm- 1 23, a confinement factor F=1.0 and assuming R1=R2=R we calculate the

necessary reflectivity R=0.61. This is easily provided by thin metallic reflectors above

and below the active region.

1.3. Development of the surface emitting laser

1.3.1. The story so far

The first surface emitting laser with a vertical cavity was produced in 1979 by

Soda et al. 4 This incorporates a 1.81Am GainAsP active region, requiring mirror

reflectivities of —85%. Metallic reflectors complete the cavity. The device operates at
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Chapter 1. Introduction

77K with a pulsed threshold current density of 44IcA.cm-2. The threshold current is

high because of the large active volume. Minor improvements produced a steady

reduction of the threshold. A shift to a wider bandgap material system, AlGaAs /

GaAs, was necessary to reduce the Auger recombination current at the high threshold

carrier concentration sufficiently to enable room temperature operation24,25.

To reduce the threshold current further required the reduction of the active

volume. In the limit we have a laser with single quantum well active region.

Considering such a laser with a single 100A active quantum well and again assuming

a maximum gain of 10 3.cm- 1 23. Using the threshold relation of (1.3) and assuming

identical top and bottom cavity reflectors, we find the necessary reflectivity for each

mirror is 0.999.

Specular metal reflectors, such as thick Au films, are limited in reflectivity to

—0.980 by the high absorption of the material. Dielectric optical materials, such as

semiconductors at photon energies below their bandgap, have a very low absorption

coefficient (-0.3.cm- 1 for pure GaAs26). At a dielectric discontinuity between two

compounds with different refractive index there is a reflection due to the change of

wave impedance. In the AlGaAs system the greatest reflectivity occurs for an AlAs /

GaAs interface which provides a reflectivity of —0.07 at wavelengths close to

1000nm. This is not very useful on its own but in a resonant (Bragg) multilayer

structure reflections from a number of interfaces may add in phase to produce a large

reflection. The low absorption coefficient means that the limit of reflectivity is higher

than for a metallic reflector. In chapter 2 we predict that, notwithstanding scattering

effects, the limiting reflectivity in an AlAs / GaAs Bragg reflector is 0.999 for an

absorption coefficient of 10.cm4 or 0.9999 at 1.0.cm4.

The first structure to use such reflectors was a novel distributed feedback laser

by Ogura et al. 27 in 1987. This employed lateral current injection into a reflector

stack to stimulate emission from within the reflector itself. The active volume in this

device is still rather large and the carrier injection scheme not very efficient. A

number of other structures from the group of Iga at the Tokyo Institute of technology

used epitaxially grown AlAs / AlGaAs Bragg reflectors 28 or plasma deposited Si02 /

TiO2 reflector stacks 29, but no significant improvements were made until the work of

Jewell et al. 7 and Lee et al.5 in 1989. Theirs was the first use of very high reflectivity

mirrors (R-0.999) which allowed very small active volumes. Lasing was obtained

from a single active quantum well5 allowing the threshold current density to be

reduced to 1800A.cm-2, more than a factor of five reduction from the previous lowest

value. 51.tm diameter devices operated at currents just over lmA. These new

structures made use of compressively strained In0 .2Ga0 . 8As / GaAs quantum wells

which have several points in their favour. (i) Compressively strained quantum wells
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exhibit enhanced optical gain in the TE polarization due to the splitting of the light

and heavy hole confined states", see chapter 3. (ii) The emission from InGaAs wells

is at —980nm, which is below the band edge of GaAs at 890nm; this means that the

substrate may be used to couple light out of the device, simplifying the contacting of

devices and the design of the upper reflector. (iii) The short wavelength emission

means that AlAs / GaAs multilayer reflectors may be used with little absorptive loss,

these employ the largest dielectric step possible in the lattice matched AlGaAs

material system. The VCSEL was now a useful device able to operate at low powers

at room temperature; operation at 77K was now of little interest.

One problem with epitaxially grown Bragg reflectors is that of high resistance.

This is a result of the band edge offset between semiconductors of different

composition which provides barriers to current flow (see chapter 5). The large

number of reverse biased heterointerfaces in a VCSEL structure meant that the bias

voltage for these early devices was often in excess of 15V. By disrupting these

interfaces the resistance may be reduced significantly. Geels et al. 31 (1990) employ a

superlattice grade of the mirror interfaces to reduce the threshold voltage to 4V. Other

refinements made in their design reduced the threshold current density to 600A.cm-2.

Over the next two years there were no further reductions in the threshold

current but many publications appeared concerning such things as theoretical and

fabrication issues. In 1992 Sugimoto et al. 32 used continuous grading of the interfaces

and by selective doping of the reflectors produced a low resistance structure with

minimal dopant induced absorption. This allowed a single well device to operate at a

threshold current density of 450A.cm-2.

13.2. In this thesis

In this work, using a simpler superlattice grading structure at the reflector

interfaces than Geels et al. 31 (section 5.3.2) and by modulation doping, VCSELs were

produced with threshold current densities of 366A.cm- 2. The structure incorporates

more highly strained quantum wells (23.5% In) than in previous VCSELs and devices

were available with cavity resonances covering a wide range of wavelengths 33. The

variation in cavity wavelength allowed a detailed investigation of the relative offset

between the resonance and quantum well ground state transition wavelength (see

chapters 6 and 8). Since this work there has been no report of further reduction of the

threshold current density to date (September 1993) by any authors.

All the high finesse structures mentioned above were grown by MBE. In this

work structures were also grown by MOCVD. There has been very little published

results on such devices grown using this process34; this is perhaps due to the generally

less predictable growth rates (see chapter 4). The different dopant species commonly
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available when growing by this process (see chapter 4) enable more effective doping

in the reflectors. Together with low oxygen incorporation when using purified growth

precursors35 it was possible to reduce the threshold voltage of devices to 1.7V which

is comparable to the lowest yet reported for structures with injection through the

reflectors36. The only such structure with a lower voltage operates at 1.5V 37, this

incorporates continuously graded reflectors which are much more difficult to grow in

a controlled manner than staircase graded ones (see section 5.3.2). The threshold

current of the MOCVD grown devices reported here was as low as 764A.cm- 2. This

is not as low as for the MBE grown devices because the absorption in the structures is

higher and there are errors in the layer dimensions of the structure, both of these tend

to reduce the finesse of the laser cavity (see chapter 3).

1.3.3. Trends in VCSEL development

VCSELs have advanced rapidly, particularly in the last four years. Table 1.2

lists the major advances in device technology. The threshold current density serves as

a useful indicator of this advancement. Fig. 1.5. shows graphically how the threshold

current has reduced over these years. Our expectations for future development are

discussed in the next section.

First named
author

Date
Published

Jth(77K)
A.cm-2

1th(300/0
A.cm-2

Comments

H.Soda4 Dec. 1979 44000 — First demonstration of VCSEL

H.Okuda38 Feb. 1981 40000 — —

K.Iga39 June 1983 15900 —

A.Ibaraki24 Feb. 1984 — 380000 First room temperature VCSEL

K.Iga25 Aug. 1984 — 162000 Un-alloyed reflector metal

K.Iga40 June 1985 — 98700 —

M.Ogura27 May 1987 — 10000 Novel distributed structure

T.Sakaguchi28 July 1988 — 28300t First use of epitaxial reflectors

J.L.Jewell 7 Aug. 1989 — 10200t 3 quantum well active region

Y.H.Lee5 Sep.1989 — 1800 Quantum well active region

R.S.GeelS31 Feb. 1990 — 600 3 wells, polyimide passivated

M.Sugimoto32 Feb. 1992 — 450 Uses modulation doped mirrors

T.Uchida41' Mar. 1992 455 — High reflectivity oxide mirrors

T.E.Sa1e33 Nov. 1992 — 366 This work

Table 1.2. Progress in VCSEL technology indicated by state of the art low threshold

current devices. t Not included in fig. 1.5.
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Fig. 1.5. Trends in the reduction of threshold current density. State of the art devices

are indicated by the minimum threshold value reported to date.

1.3.4. The future

It appears that the early progress in the reduction of threshold current has

slowed now that the VCSEL device is better understood. However by using increased

compressive strain in the active region and using a low loss cavity it should be

possible to reduce the threshold current density for a single well device below

100A.cm-2 within the next few years. A lOptm diameter device with smooth sidewalls

would have a threshold current of —40).LA. Smaller devices are possible but only with

the penalty of higher threshold current densities because of reduced optical

confinement and increased surface effects. Very small devices may not be able to

supply useful amounts of optical power unless as parts of much larger arrays. The use

of quantum wire and quantum box structures may allow further reductions in

operating current.

There are several developed commercial applications in which VCSELs could

be used. As arrays, they could serve as print heads in laser printers or as multi-track

readout heads from optical data storage media.

There is also the possibility of operating at other emission wavelengths than

available in the InGaAs / GaAs material system. Devices in the InGaAsP / InP system

were the first to be demonstrated3 but due to the inability to grow high reflectivity

(R-0.998) mirrors lattice matched to the substrate, low threshold current densities

have not been possible. This material system is compatible with low loss fibre

communications in the 1.31..tm and 1.551.tm bands, and the low angular divergence
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output from a circular aperture is more efficiently coupled into a fibre than the highly

elliptical far field pattern from an edge emitting laser. Use of hybrid or strain relieved

mirrors may allow devices for this purpose.

Deep-red emitters naturally have many practical uses. Apart from uses in high

density optical data storage and short haul polymer optic fibres, visible VCSELs may

be used for display applications. Examples of these include image projection systems

and lightweight helmet mounted head up displays. The latter will be useful for

controllers of complex systems, in particular pilots: the display mounted on the

helmet will always remain within the field of view. If sufficiently cheap such systems

will be of use to rally drivers and to sports aviators.

Visible VCSELs at 770nm wavelength were first produced in the AlGaAs

material system42. The human eye is not particularly sensitive at this wavelength but

unfortunately the AlGaAs system has an indirect bandgap26, i.e. is not suitable for

lasers, for compounds with a gap much narrower than this. The InAlGaP / AlGaAs

system may be used to produce lasers with emission at —620nm (and possibly to

shorter wavelengths) and it is still possible to make use of AlGaAs compounds for

reflectors. Schneider et al. (1993) have produced electrically injected VCSELs in this

system emitting at wavelengths as short as 639nm 43. The threshold current density

for these devices is 9500A.cm-2, this is rather high compared to InGaAs based

devices. Visible VCSELs are still in their infancy and significant improvements are

sure to come.
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2. Theory of Dielectric Reflectors
and VCSEL Cavities.

This chapter concerns the distributed Bragg reflectors required to provide high

reflectivities needed for the high finesse cavity of a low threshold current vertical

cavity surface emitting laser (VCSEL) (refer to chapterl). The variation of the

reflectivity with the number of layer pairs and the material absorption is discussed in

relation to the optical design of the device.

2.1. Bragg reflectors

2.1.1. Methods for calculation of reflection coefficient

The reflection coefficient of a multilayer dielectric stack may be found in

several ways. One is Yariv's method', based on coupled mode theory, which

introduces a coupling coefficient ic()) for the coupling per unit length of the

perturbed guide between the forward and reverse travelling waves. For a periodic

guide with alternate layers of index n1 and n2, the coupling constant is found to be

given by (2.1) and the reflectivity is found to be given by (2.2).

27r	 n22)	 3
10)— 1+

3	 A2

27r ( 2	 2)2	 — n.
n2 — ni

n
2

2	 I
(2.1)

R = tanh2	 L)	 (2.2)

The method used by McLeod2 is perhaps more appropriate being a discrete

method. It is thus applicable to numerical solution for finite structures. The following

is in essence that given in his book2 but extended to include imaginary refractive

indeces necessary to describe absorption losses. Consider a layer of dielectric material

b (see fig. 2.1). The layer is clad on either side by layers a and c. A transverse

electromagnetic wave at normal incidence propagates through the layer in the z

direction. By considering the electric and magnetic fields (E & H) at either side of the

layer using Maxwell's equations, a transmission matrix relating these fields is found

(2.3). kb is the phase propagation constant in the layer, ii,,ii,, the refractive index and no

the impedance of free space, b refers to the dielectric layer and j is the unit imaginary

number. ab is the linear absorption coefficient in the layer (Note: the figure usually

referred to is the power absorption coefficient which is twice this value).

3A.	 n2	
+ 4 ir 2	

ry
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2.1.2. Transmission matrix formulation
a

0
Z-->

Fig. 2.1. Transmission matrix is formed by solution of Maxwell's equation at

either side of layer b.

E(0))

(
cos(kbd + jabd) sin(kbd + jabd)

E(d)) 2 

3)
nb

(H(0))— inb	 +sin(kbd	 jabd) cos(kbd + jabd) II(d))( 

‘,110
27r

kb =
nbA,0	 (2.4)

For a multilayer stack a matrix M i is formed for each layer i and of thickness

di in the stack. So by considering the effect of all layers in stack of length L we have a

matrix M which relates the input and output fields (2.5-7).

L =Edi

E(0)) m I E(L))
H(0) )	 .1-1(L) )

ini2)m =nm i =(___
,1 m22	 (2.7)

The amplitude reflection coefficient of the stack r is found to be given by (2.8)

where the terms my are the elements of M, the Y's are addmittances and o and s refer

to the incident medium and substrate respectively. Note that the my are all strong

functions of wavelength.
r = Yoml 1 +1m12 n121 Ir5m22 

Y0M11 Y0M12 + m21 ± YsM22	 (2.8)

If we have a layer of index ni between layers of lower index o and s Then the

reflection from the front interface has a phase of n radians relative to the incident

wave due to the positive index step. At the rear interface the forward travelling wave
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is reflected with a relative phase of 0 as here there is a negative index step. If the

thickness of the layer is a quarter wavelength the two reflections add in phase at the

front interface due to the IC round trip phase delay for the second reflection. For a

stack with many alternate 1/4 wave (or more generally (n/2+1/4) wave: n integral)

thicknesses of low and high index, all interfacial reflections will add in phase and the

reflection coefficient will approach unity provided the absorption loss is negligible.

This stack constitutes a quarter wave Bragg reflector and forms the basis of the

VCSEL cavity mirrors.

For a Bragg reflector made from alternate quarter wavelength layers of

indeces ni and n2, the reflectivity R at the resonant wavelength of a stack with m-PA

non-absorbing dielectric pairs is given by (2.9). This is found to be a discrete form of

equation (2.1). This problem can also be thought of as an array of quarter-wave

transformers.

0 1	 2	 3	 2m-1 2m 2m+1

i<
X
* 

X, 
>I

4n1 4n2

Fig. 2.2. Schematic of quarter wave Bragg reflector incorporating m+ 1/2 pairs of
indices ni and n2.

(2.9)

Equation (2.9) is only valid at the resonant wavelength. At other wavelengths

the reflectivity will be less as the layers will not now be of quarter wave thickness and

reflections will not add in phase.

1 + 	
 (nij2m

nons n2

1 n12  ( n1 )2m

= 	 nc/is n2
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2.1.3. AlAs / GaAs reflector stacks

Let us consider quarter wave stacks made in the AlxGai_xAs material

thickness. For photon energies below the band gap the refractive indices of materials

in this system may be accurately found using a single oscillator Sellmeier equation

(2.10)3.

ko is the free space wavelength in p.m and the coefficients A, B, C and D are

given in table 2.1 3. Values from these equations agree well with the famous results of

Casey, Sell and Panish4,5. For wavelengths around 1.0pm the agreement is better than

0.01 in most cases.

GaAs AlxGai_xAs

A 10.9060 10.9060-2.92x

B 0.97501 0.97501

C	 0.27969 (0.52868-0.735x)2x�0.36

(0.30386-0.105x)2:x>0.36

D	 0.002467 0.002467.(1.41x+1)

Table 2.1. Sellmeier coefficients3 for refractive index calculation in AlxGai_xAs.

For the binary compounds AlAs and GaAs the index difference is large for a

semiconductor system. At a wavelength of 1.0pm the indeces are 3.508 and 2.999

respectively. Using these values Bragg reflectors have been modelled using the stack

dimensions given in table 2.2.

Table 2.2. Bragg stack dimensions for 1. Ohm operation

These are quarter wave thicknesses at a wavelength of 1.0gm. Using the

Sellmeier equations the transmission matrix for the complete stack M is calculated

numerically. These calculations are easily implemented on an IBM-PC compatible

computer, however for modelling some of the more complex structures reported later
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in this thesis a fast machine incorporating a numeric floating point co-processor is

essential. Considering r in the form:

r = Ark.ej4)	 (2.11)

Where R is the power reflection coefficient and 0 is the phase of the reflection

with respect to the top of the stack. Reflection spectra were computed, fig. 2.3 shows

examples for 51/2, 151/2 and 251/2 pairs. Both the substrate and superstrate layers are

GaAs. 0 is taken in the range -ir.>0�ic. In these calculations an absorption coefficient

of 1.0.cm- 1 (power) is considered in all layers.

Fig. 2.3. Reflection spectra from quarter wave AlAs/GaAs Bragg stacks with 5%2,

and 25%2 reflector pairs in GaAs.

It can be seen that as the number of reflector pairs is increased that the peak

reflectivity approaches unity asymptotically and the shape of the spectrum approaches

a square bandpass (in reflection) of 100nm bandwidth, centred on 1000nm. It is

perhaps more useful to compare these spectra on a probability scale which allows the

high reflectivities to be better compared (see fig. 2.4).
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Wavelength (inn)

Fig. 2.4. Reflectivity of AlAs/GaAs Bragg reflectors shown on probability scale.

Thus we see that to achieve a reflectivity in excess of 0.998 required for a

VCSEL (refer to chapter 1), approximately 25 AlAs / GaAs reflector pairs are

necessary. The bandwidth for high reflectivity is not as wide as it appears on a linear

scale e.g. for the 251/2 pair reflector R falls from a maximum of 0.9985 to 0.9970, an

increase in the reflection loss by a factor of two, over a bandwidth of 43.0nm.

The phase plots show that at the resonant wavelength there is a change of

phase with wavelength of approximately C=73.41m- 1 when measured in units of

radians. This figure has important implications for the resonance of short cavities and

will be referred to as the phase compensation, the meaning of which shall be seen

later.

2.1.4. Effects of absorption

The curves of figures 2.3 and 2.4 were calculated for a power absorption of

coefficient of 1.cm- 1 . The effect of this is to limit the maximum reflectivity which

can be obtained as is seen in the flattening of the spectrum for the 45% pair structure.

In a practical VCSEL structure absorption losses may be much larger due to high

dopant concentrations used and this will reduce the reflectivity which may be

provided by their reflectors 6. It is useful to compare the maximum reflectivity

obtainable from these stacks as a function of absorption coefficient. Fig. 2.5 shows

this relation. The loss L is the sum of absorption and reflection losses at the peak

reflectivity and is defined as (2.12).
L. 1— Rmax	 (2.12)
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Fig. 2.5. Graph of minimum loss of AlAs / GaAs Bragg reflectors with m+ 1/2 pairs,

plotted for power absorption coefficients of 0, 1.0, 10 and 100. cm-'.

The inclusion of absorption limits the maximum reflection obtainable. From

fig. 2.5 we see that the limiting reflectivity for a quarter wave AlAs /GaAs Bragg

reflector is given approximately by (2.13): where we find cc0=104.cm-1.

a
Rtn-> CO =	 (2.13)

oco

Thus for moderately doped material, reflectivities of 0.999 should be

reasonably obtainable.

Some designs for VCSELs have included as many as 45 pairs in the reflector

stacks7,8. Such large stacks are not beneficial and only complicate the material

growth, increase the ohmic resistance and reduce the laser efficiency.

For any particular value of absorption the limiting values of reflection of

equation (2.13) are not achievable in a practical laser structure since we must be able

to take light output through one of the mirrors. If the size of the Bragg stack is large

so that the limiting value of reflectivity is approached, most of the radiation lost from

the cavity will be lost in absorption in the reflector. Fig. 2.6 illustrates the variation of

output coupling efficiency with stack size and absorption coefficient. The output

coupling efficiency is the percentage transmission loss of the total mirror loss. The

graph illustrates how for low absorptions and short stacks most of the non-reflected

light is efficiently coupled to the output. As the size of the stack is increased

absorption loses begin to reduce the proportion of the total loss which is transmitted
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eventually reducing it to zero in very large stacks. Thus if the Bragg stacks are too

large the laser external quantum efficiency will reduce since this is dependant on the

output coupling efficiency. There is also a growth penalty on thick reflector stacks.

Table 2.3 summarises the results of fig. 2.6. by listing stack sizes for which the

coupling efficiency is reduced to 50% for the different absorption coefficients.

0	 10	 20	 30	 40	 50
Reflector Pairs (m)

Fig. 2.6. Effect of size of Bragg reflector on the optical output coupling efficiency of

the reflector.

a m_ R

1.cm- 1 32 99.989%

10.cm- 1 25 99.897%

100.cm- 1 18 99.090%,

Table 2.3. Limiting stack sizes in pairs (m) and corresponding peak reflectivities for

output coupling efficiency of 50%.

In these models we have not considered the effect of roughness in the reflector

layer interfaces. This will have the effect of scattering light randomly and reducing

the reflectivity. In the structures considered in this thesis roughness has not been a

problem.
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2. Design of laser structure

2.2.1. Reflector requirements

Upper reflecror

Cavity (I IMIIIMIIIIII=11.11111--Active material

Lower reflector
R2

I

f Light Emission

Fig. 2.7. Basic structure of VCSEL.

The basic laser structure is shown in fig.2.7. If we assume that a fairly modest

optical gain of 500.cm- 1 is obtainable from 100A quantum wells the gain per pass is

5x10-4. Using the threshold relation (1.3) with F=1 and assuming identical top and

bottom cavity mirrors we calculate the number of pairs of AlAs / GaAs (i.e. using the

highest index difference possible in the system) in the Bragg stacks required to

provide suitable cavity finesse for lasing (for the moment neglecting any resonant

placement of the gain material). The total growth thickness required to produce the

complete structure, i.e. thickness of Bragg reflectors plus cavity region containing

quantum wells spaced by half wavelengths (see next section), is calculated for

different numbers of wells. Identical AlAs / GaAs top and bottom reflectors were

assumed for the calculation. This function is plotted in fig. 2.8.
9.5

cn
9.0

0

8.5

0

rei.3

8.0

7.5
5

	

10	 15
	

20

Number of Quantum Wells

Fig. 2.8. Variation of total VCSEL device thickness with number of quantum wells.
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For a device containing a single quantum well the reflector stacks must be

thick to provide sufficient reflectivity to account for the small gain length (100A). For

3 to 14 wells there is little difference in the total device thickness which is in the

range 7.9 to 8.411.m. Outside of this range the structure is thicker since the increase in

cavity length cannot be offset by the removal of reflector pairs. A value of three wells

was chosen noting that more wells imply a larger active volume and hence a higher

threshold current since the same gain condition was assumed in each case. 1 or 2

wells do not allow sufficient margin for unaccounted losses and may require a much

higher gain at threshold if the mirror absorption is particularly high.

2.2.2 Resonant periodic gain

Consider an optical resonator comprising two highly reflecting parallel

mirrors and that a standing wave exists in the cavity so formed. For a high finesse

cavity with only a small amount of gain (as in a VCSEL). We consider forward and

reverse travelling waves E+ and E- of equal amplitude E0 and with propagation

constants 13(2.14).

= Eoe-1(fg-")

= E0e-1(-A-cti)

The net field is therefore:

E = E+ + E- =2E0e- jar cos(J)

The power density P in the standing wave is given by (2.16)

P = -1-nlgEE* = 2n1K,E02 cos2(13z)

(2.14a)

(2.14b)

(2.15)

(2.16)

This is spatially variant with a mean value of n J2OEPav and a maximum

value of 2Pay at antinodes situated at Pz=ma : m=0,1,2.... The power falls to zero at

nodes between midway between these points. Fig. 2.9 illustrates this.

0 2:12	 3A/2

Fig. 2.9 Standing wave resulting from counter-propagating waves in high finesse

optical resonator.

In a material with optical gain g, the intensity variation with distance due to

this gain is (2.17):
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dz
dP 

= gP = 2gPav cos2 (A)

If g is spatially variant also we may define an effective gain length G(2.18).

00
„ ,

G = g(z )—
P

aZ	 (2.18)
Pav-00

For a uniform gain g' extending over a length L, which is many or a whole

number of half wavelengths, the gain length is (2.19).

G=g'L	 (2.19)

If now we put the gain medium only in thin layers situated at the antinodes of

the standing wave by splitting it into m short segments of length /9,10, see fig. 2.10.

(2.17)

Active Material
g(z)

Fig. 2.10. Resonant periodic gain. Gain medium is spit into m short segments and
situated at positions of antinodes of the optical standing wave.

The spatial variation of gain is given approximately by (2.20)

lg'kz- Al2)

g(z) =Eg' 1.8(z - Al2)
i=1

The total gain length is the same (2.21)
L = ml

(2.20)

(2.21)

Performing the integral (2.18) we see that the gain length is now doubled

(2.22) over the case for a uniform gain medium.

G = 2g' L	 (2.22)

Alternatively placing the active layers at the nodes of the standing wave

produces a zero effective gain.

In conclusion: by placing the active material only at antinodes of the optical

standing wave in a high finesse laser cavity it is possible to double the effective

optical gain as compared with random placement (i.e. uniform gain medium over

complete cycles of the standing wave). Misplacement of the active material at nodes

of the standing wave results in zero net gain as there is no electromagnetic field to
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perturb the gain medium. Preferential placement of the gain medium in this way is

known as resonant periodic gain9-10,

We are fortunate in the case of the VCSEL in two respects. Firstly, due to the

short cavity in the vertical geometry it is possible to know exactly where the nodes

and antinodes of the longitudinal mode with the highest finesse will be situated; the

position of these will not change appreciably due to any changes in refractive index.

Secondly, since the epitaxial growth direction is along the axis of the vertical cavity,

it a relatively simple matter to form quantum wells which are thin compared to the

optical wavelength at the antinode positions. The quantization effects in quantum

wellsii result in reduced threshold carrier densities and combined with the small

active volume give rise to low threshold current densities (see chapter 1). By placing

the active material only where it is most needed we eliminate the effects of spatial

hole burning for the longitudinal mode (lateral hole burning effects 12 may still exist

however).

2.2.3. Details of full laser structure

For a three well device as described above the threshold condition is given by

R1 .R2=0.997 assuming a quantum well gain of 500.cm- 1 . Each mirror requires 23 or

more pairs. In order that a significant fraction of the output light is not lost through

the second mirror, it is desirable that one reflector be much more highly reflecting

than the other. To this end we chose the output reflector to have 23 pairs (R9.9976)

and the other to have 14.5 pairs plus a gold layer to augment the reflection

(R=0.9996). The reflectivity of a Au layer in air is approximately 0.98 at a

wavelength of 1000nm (Melles Griot data/3). We model this as a refractive index of

262. For a GaAs based device it is only possible to utilise a Au layer in this way when

using InGaAs wells; the bandgap being lower than that of GaAs allows light output to

be taken through the transparent substrate. The Au layer also forms an electrical

contact for current injection. The top and bottom Bragg reflectors are doped p and n

type respectively to form a p-i-n diode structure with the quantum wells in the

undoped cavity region. This is the basic structure behind the experimental part of this

thesis and is similar to that used by a number of other authorsI4,15.

Fig. 2.11 shows the standing wave detail of the electromagnetic field in the

laser structure where we have employed the advantages of resonant periodic gain.

Note that due to the phase of the reflection at the GaAs / AlAs interface, the quantum

wells are spaced by 1../2 from the first AlAs mirror layers. The complete cavity is N.

long, at 1000nm in GaAs this is 5701À. Also note the X/2 phase matching layer

required below the Au mirror.
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Fig. 2.11. Complete VCSEL structure showing detail of electromagnetic standing

wave and the quantum wells positioned at antinodes.

A two wavelength long cavity has only one longitudinal mode within the high

reflectance band of the Bragg reflectors. Consequently there can be only one

longitudinal lasing mode supported in this device. The lasing wavelength will

therefore be determined by the cavity and mirror dimensions rather than the

wavelength for maximum gain in the gain medium (the latter is generally true for

Fabry-Perot edge emitting lasers). There will be many transverse modes supported in

a cylindrical mesa etched device. These will be closely spaced, sub nanometer for

devices of 51.tm diameter16,17. Only those close in wavelength to the fundamental TE

mode will have sufficient gain to lase. Note that modes with significant TM

component will have reduced gain due to the strain effects in the active quantum

wells.

2.2.4. The effect of errors in growth thickness

Since the operating wavelength is determined by the cavity and mirror

dimensions, it is necessary to consider the effects of growth error on the cavity mode.

An error of ±10% in the thickness of a 100A quantum well will have a very small

effect (±-2.7nm, refer to fig. 3.12) on the transition energies but a general error in

growth rate will give a ±10% linear shift of the resonant wavelength i.e. ±10inn about

a 1000mn operating wavelength; this is significant when compared to the shape of the

quantum well gain spectrum.

It is also important to consider resonance shifts introduced by layer to layer

growth fluctuations caused by poor control of GaAs / AlAs deposition rates or by

monolayer fluctuations. Weber et al. consider the effect of error in a single layer of a

reflector18, here we consider the effect of error in all layers in the VCSEL. In the

following model we create VCSEL structures numerically with random errors in the
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thickness of the epitaxially grown layers. Fig. 2.12 illustrates these results. Each data

point on the graph is the result of 1000 randomly generated structures. Each layer in

the structure is subjected to a percentage error about the nominal value with a normal

distribution. There are three lines plotted, for error in all layers, error only in mirror

layers and error in cavity layer only; the cavity region is modelled as a single GaAs

layer. The results show the effect on the position of the cavity resonance caused by

the errors as the standard deviation of the shift of the resonant wavelength about the

nominal value, in all cases there is no significant shift of the mean value of the

resonance. The nominal structure is that described above (section 2.2.3) i.e. 2A, cavity

and 14 pair top and 23 pair bottom AlAs I GaAs quarter wave reflectors.

0	 1	 2	 3	 4	 5

Standard Deviation of Error (%)

Fig. 2.12. Variation of cavity resonant wavelength due to random layer fluctuations

From this figure it can be seen that for small percentage errors there is a linear

relation between the resonance shift and the growth error and that most important is

the error in the mirror layers. This is a result of there being many layers in the mirrors

and small errors in just one layer near to the cavity may produce large changes in the

phase of the reflection from the stack. For larger errors the shift increases super

linearly as phase compensation effects of the reflectors are limited (see section 2.2.5).

For errors in excess of 5% it becomes impossible to find a solution for some of the

structures generated as the resonance moves out of the high reflectance band of the

mirrors.
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2.2.5. Short cavity effects

It is noted that for errors in the cavity length the shift of the resonance is not as

large as would be expected in a resonator with fixed metallic reflectors. This is due to

the phase compensation effect of the dielectric mirrors (sec. 2.1.2). To understand this

we consider the condition for resonance of the cavity. Let the cavity have length 1 and

have mirrors with amplitude reflection coefficients ri d (Pi and r2e42. A quality factor

Q is assigned to the cavity, this is given by (2.23) and is very large over a very narrow

band if ri and /2 approach unity. The quality factor is a measure of the amplitude of

the standing wave in the cavity compared to the input power (from gain) required to

sustain it.

Q =
1	 1 

rir2e-M 1)2-2P1) 2 
1+ R1R2 [1- 2 cos(01 + - 213/]+41

(01 + 02-213)=0

(2.23)

(2.24)

Where 0 is the propagation constant of the wave in the medium of the cavity.

Fig. 2.13 shows the variation of Q with wavelength for the structure described above

for a number of absorption coefficients. The figure illustrates a small error in the

dimensions used giving a shift in the resonance of —0.12nm, or 0.012%, from the

nominal 1000nm. For low absorptions the linewidth of Q(1) is very narrow. The laser

will tend to operate where Q reaches a maximum and this occurs when the cavity

round trip phase reaches zero (modulus 27r) (2.24). Table 2.4 lists the values of Qmax
and the linewidths of Q(X) for the different absorptions. For absorptions of the order

10.cm- 1 the maximum is not seriously reduced but at 100.cm- 1 it is.

a QPIWYC
FVVHM linewidth

of Q(A.)

O. cm- 1 701 0.09nm

1.cm4 652 0.11m

10.cm- 1 401 0.17nm

100.cm- 1 82.7 0.81m

Table 2.4. Maximum values and FWHM linewidths of Q(A).
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Wavelength (nm)

Fig. 2.13. Q factor plotted against wavelength for VCSEL structure with 23 pair

bottom reflector 14.5 pair plus Au layer top reflector and 2A cavity for uniform

absorption coefficients of 1, 10 and 100.cm-1.

The threshold condition may now be rewritten as (2.25):

1 
Qmax(2.25)

e`gth-a -1

Where gth is the optical power gain coefficient and La is the active length.

Since the active length gthLa is short we have:

1 
gth 

2Qu L a	
(2.26)

m 

For a nominal resonance at 4, variation AA is caused by error in Ole 02, and I.

Considering an error in the cavity length: 1=10-FA/ a phase change due to a shift in

wavelength is needed to maintain resonance so that:

((pi + - 2/10 +	 + ex( a`.j-51- +	 2321) = 0 (2.27)
A.	 dA.	 dA,

,	 &p i ach ,2irne ,
2P.AL =

	

	 (2.28)
dA dA,

But it is found that, irrespective of any AO, sufficiently close to A..o the phase

compensation is (2.29):
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Thus:

aL'4' +
(2.3o)

2707,1

So for a short cavity, the proportional change in wavelength with cavity length

02,,Amaid) is reduced below the value of 1.0 expected in a cavity with metallic

reflectors. This is very useful as the cavity region must be grown at a lower

temperature than the rest of the structure to ensure high quality quantum wells.

Growth rates are temperature dependant and accuracy may be difficult to maintain

especially by MOCVD where there is no in situ feedback. Fig. 2.14. illustrates the

reduced shift for small cavity lengths by plotting the shift against error in cavity

length for 1X, 2X, 4X and a long cavity. These results were obtained by simulating

structures with random errors as in fig. 2.12. The structure with a short cavity and a

small number of quantum wells is more attractive as the shift in resonance due to

errors in the cavity may be reduced by up to 80% in the case of the 12t, cavity. For

large errors (>2% s.d.) the improvement is not so great as the extent of phase

compensation is limited.

25

20

0

rd 15

0
• r4

a.)

10

A

5

0
0	 1	 2	 3	 4	 5

Standard Deviation of Error (%)

Fig. 2.14. Variation of resonance wavelength with cavity error for different cavity

lengths. Each point represents 1000 randomly generated structures.
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If, due to errors in layer thicknesses, there is some shift in the resonant

wavelength from the nominal value we must consider the effect on Qmax due to the

variation of the mirror reflectivities with wavelength. Fig. 2.15 shows the variation

with wavelength of the maximum value of Q which can be obtained for a device

resonant at that wavelength. In this we assume that the reflectors are not in error but

we may find the effect of reflector error by displacing the curves along the

wavelength axis.

1000

0 0 0 0 0 0 0 0 0 0
CV CO CO 0 CV NI" CO Co 0
01 01 CD 05 0 0 0 0 0

Wavelength (nm)

Fig. 2.15. Wavelength variation of maximum obtainable Q considering displacements

of the resonant wavelength. The line at Q=333 corresponds to the threshold condition

for a quantum well gain of 500.cm-1.

For a quantum well gain of 500.cm- 1 the threshold condition is satisfied for

Q=333. For an absorption of 1.cm- 1 this may be satisfied over a bandwidth of 47.2nm

(±23.6nm). At 10.cm- 1 this is reduced by 30 % to 33.2nm (±16.6nm) and at 100.cm-1

the threshold condition cannot be met. In a laser using purely dielectric reflectors

these bandwidths would be much reduced but here the use of a Au contact layer

considerably broadens the high reflectivity band of the upper reflector. For the 2),

cavity resonance shifts of 23.6 and 16.6nm result from errors in cavity length of 5.5

and 4.2% respectively (see fig. 2.14).

2.2.6. Effect of absorption

Since the value of Qmax mentioned above determines the threshold gain it is

interesting to look at the effect of absorption on this value in more detail. Carriers are
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injected into the active region through the Bragg reflectors. These must therefore have

as low an ohmic resistance as possible to give low operating voltage and lasing

efficiency. As there are a large number of heterointerfaces in the reflectors, half of

which are reverse biased it is necessary to dope them to a high level so as to allow

efficient tunnelling across the junctions (see chapter 4), these impurities increase the

free carrier absorption. Figure 2.16. shows the proportional reduction in Qmax caused

by adding absorption to the structure. The value gmin is the minimum value of

threshold gain required in a structure with zero absorption and gth is the increased

value of gain required for an absorbing structure. Curves on the figure illustrate the

effect of placement of absorbing material.
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Fig. 2.16. Graph reduction in cavity quality with increasing absorption. Absorption

in all layers (—), mirror layers only (— —), interface layers only (— — — ),

reverse biased interface layers only (- - -

The solid line shows the effect of absorption in all layers; in this case an

absorption of 10.cm4 is sufficient to double the gain required for threshold. The

cavity region should be intrinsic and thus have a low absorption; the second line

shows this case of absorption only in mirror layers and here the absorption to double

the threshold gain is 20.cm- 1 . Since the high mirror doping is only useful in the

vicinity of the heterointerfaces where it increases the band bending for reduction the

tunnelling resistance (see chapter 5), it is sensible to only dope regions close to these

interfaces to a high level, the rest of the mirror can be doped to a much more lightly.

102
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The other lines in fig.2.11 therefore show the effect of only doping a 200A wide

region about the AlAs / GaAs interfaces, the first is for doping in all interfaces and the

second for doping only at the reverse biased interfaces. In these cases the absorption

can be increased to 80.cm- 1 and 160.cm- 1 respectively for a doubling in the threshold

gain over the lossless case. Since the absorption of GaAs at 1000nm for an acceptor

concentration of 10 18 .cm4 is estimated at 20.cm- 1 19the reduction in threshold gain

by modulation doping can be significant 20'21, i.e. a factor of two. Table 2.5

summarises these results.

,

Absorbing material located in a for double threshold gain

All layers

_

10.cm4

Mirror layers only 20.cm-1

200A layers at interfaces 80.cm-1

200A layers at reverse biased interfaces 160.cm4

Table 2.5. Absorption coefficients required to double threshold gain of otherwise

lossless laser for different placements of the absorbing material.

2.3. Conclusions

The basic optical design of a VCSEL has been produced with discussion on

the effects of absorption and growth thickness errors. The optical cavity is formed

between two multilayer Bragg reflectors of AlAs / GaAs: 23 pairs in the bottom

reflector and 14.5 pairs plus a Au contact layer in the top reflector. The optical cavity

is two wavelengths long at the resonant wavelength of 1000nm and incorporates 3

resonantly placed InGaAs quantum wells as the active layer. Light output may be

taken through the transparent GaAs substrate. This is similar to structures used by a

number of other authors1415.

Provided background absorption is below —20.cm- 1 the laser should perform

well with a threshold gain below 500.cm- 1 . Layer to layer thickness variations in the

reflectors will have to be below —5% to prevent excessive shift of the resonant

wavelength. Greater shifts result from errors in the cavity length and such errors are

more likely due to the reduced growth temperature for the cavity region (chapter4):

for a background absorption of 10.cm- 1 errors of ±16.6nm which results from

thickness a cavity thickness error of 4.2%. Short cavity effects are useful in reducing

such errors.
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UNIVERSITY
LIBRARY

Page 41



Chapter 2. Dielectric Reflectors

Absorption in high purity GaAs material is less than 0.3.cm 4 at 1000nm but

with the addition of impurities such as dopant atoms it will increase. Absorption has

the effect of reducing the reflectivity and perhaps more seriously the output coupling

efficiency of reflector stacks. By judicious placement of the dopant only where it is

absolutely necessary (at reverse biased hetero-interfaces) detrimental effects are kept

to a minimum20,21.
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3. Gain Calculations for Strained InGaAs /
GaAs Quantum Wells

This chapter discusses how the density of electron states and the population of

these states gives rise to optical gain. The optical gain spectra of strained InGaAs /

GaAs quantum wells for different carrier concentrations are calculated using a

simplified model of the valence band-structure using an infinite well approximation.

The model is used in later chapter 8 to explain the experimental results of chapters 6

and 7.

The application of mechanical strain to semiconductor materials alters the

band structure in a number of ways. Using strained layers such as InGaAs grown on

GaAs the band structure may be engineered to reduce the density of valence states

and produce lasing at lower carrier densities1,2.

3.1. Basic theory of optically assisted transitions

Optical gain and thus stimulated emission in semiconductor materials results

from the interaction of an electromagnetic field (e.m.) with particles in an excited

state. These particles are electrons (or holes).

3.1.1. Two level systems

Let us consider the possible transitions in a two level system with ground state

k and excited state m. There are three possible optically assisted transitions between

the two states. These are illustrated in fig. 3.1.

(a) Spontaneous emission, an excited electron falls to the lower state and

causes the emission of a photon.

(b) Stimulated emission, a photon triggers an excited electron to fall to the

lower state and produce a second photon coherent with the initial photon - an optical

amplification process.

(c) Stimulated absorption, this is the reverse process to (b), a photon promotes

an electron from the lower level into the excited state and in the process is absorbed.
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Fig. 3.1. Optically assisted processes in a two level electronic system with

states m and k: (a) Spontaneous emission; (b) Stimulated emission and

(c) Stimulated absorption.

The spontaneous emission rate depends on the probability of occupation of the

excited state and the probability of the lower state being vacant, thus the transition

rate Rspon is of the form of (3.1).

Rspon = AP m(1— Pk)	 (3.1)

Where pm and Pk are the occupation probabilities of the m and k states

respectively. A is the transition probability of an excited particle falling into a vacant

lower state.

The stimulated emission rate Rstim, responsible for laser action, similarly

depends on the same occupation probabilities but also on the density of photons p(co)

at the wavelength corresponding to the energy gap between the two states (3.2).

Rstim = BPm — POP(CO)	 (3.2)

Where B is the transition probability for stimulated emission.

The stimulated absorption rate Rabs is a similar process to stimulated

emission but in reverse, so will depend on the probabilities of occupancy and vacancy

in the lower and higher states respectively (3.3).

Rabs = BPk ( 1 — Pm)p(0))	 (3.3)

From balance of particles in steady state it is found that the constant B is the

same in equations (3.2) and (3.3). The net stimulated emission rate is therefore (3.4).

Rnet = Rstim — Rabs = PW(Pm — Pk)	 (3.4)

Thus the condition for net gain is given by equation (3.5) and is thus a non-

equilibrium state. The limiting value pm=pk is known as the transparency condition

because it is when the material becomes lossless to light at the frequency co.

Pm> Pk	 (3.5)

The transition rate w in a two level system, between two states m and k is

given by Fermi's Golden Rule 3 (3.6).

glirmk 12 
w=	 =Bp(co)	 (3.6)

2h2
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--
Where IHmk i

2
 is the Hamiltonian matrix element for the transition between

the two states m and k as given in (3.7a).

Tina = f um* .110.ukcIt
	

(3.7a)

H' = 11(r) cos
	

(3.'7b)

Where urn and uk are the Bloch functions of the two states and H' is the

perturbation Hamiltonian due to the electromagnetic field which is of the form given

in (3.7b). The matrix element is thus related to the overlap integral of the two Bloch

states.

In an electromagnetic plane wave of amplitude E0 the time invariant

perturbation H is of the form (3.8):

= eEo .r	 (3.8)

Where e is the electronic charge. Hence the Hamiltonian matrix element is

(3.9):

eEol(umirluk)1
	

(3.9)

In a medium with refractive index n the field E0 is equivalent to an energy

flux I(w) at the angular frequency w as given by (3.11):

1(co) = lE0nE02c	 (3.10)

Where c is the speed of light. And from (3.6) we find the transition rate w
(assuming the radiation is polarized in the direction of any particle wavevector):

w=I(w). ire2 1(141 1riuk )12

eonh2c
(3.11)

3.1.2. Transitions between states in a semiconductor

In a conventional semiconductor laser, the excited state corresponds to a

conduction band electron state and the lower state to a valence band electron state;

alternatively thought of as a state filled by a hole. The m—>k transition can be thought

of as an electron-hole recombination.
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Fig. 3.2. Illustration of approximate band structure for quantum well showing

energies relevant to k-selected transitions.

Let us consider the case of a quantum well. Fig. 3.2. shows the simplified band

dispersion curves for states in a GaAs type quantum well. Let us consider the ei to

hhi transition between the lowest electron and heavy hole states. We wish to consider

only vertical transitions which do not require any phonon interaction. In pure material

these 'k-selected' transitions should dominate4. Also only transitions between states of

the same quantum number (i.e. el—>hhi, e2—>hh2, el—>lhi etc.) where the matrix

element is significant will be considered.

We can assume pseudo-equilibrium conditions for electrons and holes

separately and assign conduction and valence Fermi functions k and fv (3.12).

Equation (3.4) now becomes (3.13) and the transition energy is given by (3.14)

1	 1
fc=	 , ;fv=	 ,	 (3.12a,b)

(Ee — Eft/ ))	 (Ey — Eft, ))
1+ exp[
	

1+ exp 	
kT

[
kT 

Rnet = BP( c0)(ic + —1)	 (3.13)

tro---Eg +Ec +Ev Etr	 (3.14)

The gain at photon energy Etr is dependant on the density of electron and hole

states at energies Ec and Ev: ne('d and nv(Ev). In a model quantum well the density

of states in each confined level is a constant 5 but in a strained well the bands are

strongly non-parabolic6 and the densities vary with energy. Thus we find the net

stimulated emission rate per unit volume (3.15).
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Rv
net — Its(Es),nv(Ev) 

2 I(Um 1 1. 1 14012 AM) 
(f 	 —1)	 (3.15)

E oh 
2
nc

If the electromagnetic wave propagates an elemental distance & through an
area A in a time (5t, the net stimulated photons Nnet in the volume is given by (3.16).

Sx. St. A	 (3.16)Nnet =41 iv

The stimulated photons are coherent with the original field and give rise to an
increase in intensity 51 (3.17) after travelling this distance.

31 = Nnetft	 (3.17)
A St

The optical gain per unit length at frequency co is defined as the relative

increase in intensity with distance and is therefore found to be (3.18):

(51 _  Rnet  fro
g(c°)= Th.T.c	 (0))

(3.18a)

nc(Ec).11),(4)  g=	
e2col(u,n I riuk)1

2

(fc + fv —1) (3.18b)g(co) 
conch

The transparency condition for transitions corresponding to frequency co (3.5)
can now be written as (3.19).

Efn—E.ffi > h.°	 (3.19)

The lowest energy transition occurs when hciEg. To calculate the gain

spectrum, we must know the density of states functions for electrons and holes and
these are dependent on the band-structure.

3.1.3. Spontaneous recombination

We must also consider spontaneous recombinations which cause a loss of
carriers in the absence of an optical field. It is found 3 that the spontaneous emission

coefficient A is:

A = 
n3

q
20)2
3 Kum kink )12	 (3.20)

rcoc h

From (3.1) we find the spontaneous emission rate for the semiconductor:

3 2

(° 
2

r 
pon (w) = nctiv 	n3 Kum ir luk )1

2 

fcfvs
7rEoc h

(3.21)
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The current density due to spontaneous emission in a well of width L is found

by integrating over all frequencies:

Computed spontaneous emission spectra of the form (3.21) may be found in a

number of references 7,8

3.2. Band structure of strained InGaAs quantum wells

3.2.1. Introduction to strain effects

An unstrained bulk semiconductor such as GaAs has a valence band structure

as shown in fig. 3•3 9• Note that there are two bands, the so called light and heavy hole

bands (lh and hh), degenerate at the zone centre. The hh effective mass is large (low
curvature).

Fig. 3.3. Valence band structure of unstrained bulk semiconductor such as GaAs.

A large hole mass is not desirable for laser operation as a large carrier density

(ntr) is required to move the valence Fermi level into the band to achieve

transparency. This relation (derived from equation (3.19)) is shown in (3.23) and fig.

3.4 shows the variation of n tr with effective hole mass mh assuming parabolic bands
and a constant electron mass me3.067m0.

kT  )3/2
ntr (Eg )= 2(27rh2	 *(Menh )

3/4
(3.23)
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hhrio

Fig. 3.4. Variation of transparency carrier density with mh, assuming parabolic

bands and a constant electron mass me=0.067mo.

For bulk GaAs me-0.48m0, giving a transparency density of 1.9x1018.cm-3.

The light hole effective mass of In 49. 2Ga0. 8As is 0.071m0. If we could make use of

this light hole massio, the transparency density would be significantly reduced to 4.3x

10 17.cm-3, a fourfold reduction.

A similar expression to (3.24) may be derived for the transparency carrier

density in a quantum well with a single parabolic band. For a more realistic well with

a number of occupied bands a general solution may not be derived analytically. In this

case the bulk model may be used for a practical comparison.

A large carrier density results in large radiative and non-radiative carrier

losses. Radiative carrier losses (spontaneous emission) tend to vary as n 2 . Important

non-radiative carrier loss mechanisms include the Auger processes; these vary as n3.

Increasing the carrier density therefore gives a superlinear increase in threshold

current. Low effective masses are therefore very attractive.

Application of a biaxial stress breaks the cubic symmetry of the lattice" and

splits the degeneracy at the zone centre by an energy S. With a biaxial compressive

strain the energy of the heavy hole band is raised and the light hole band is lowered in

the plane of the strain. In the perpendicular direction the reverse is true (fig. 3.5).
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k1-

0

Fig. 3.5. Band structure of biaxially strained bulk semiconductor. Heavy and light

hole bands are split by an energy S. Splitting for in-plane M and out ofplane (I)

directions are in opposite senses.

If we grow a thin epilayer of for example InxGai_xAs (lattice constant ac) on

a substrate such as GaAs which has a smaller lattice constant (as) then if the epilayer

is lattice matched it will be under a biaxial compressive strain in the plane of the layer

(fig. 3.6). If it is sufficiently thin we can assume that all of the strain is confined to the

layer. The in plane strain is therefore:

a, – Sc 
Ell = EAA- Eyy

•n•nnn,......nn•nn••nn•nn•nn,n•nn=111n•n-n-n

(3.24)

as

(a)
	

(b)
Fig. 3.6. Illustration of thin epilayer of lattice constant ac grown under biaxial

compression on substrate with lower lattice constant as. (a) Layer and substrate in

free state; (b) Strained layer epitaxially grown on substrate with capping layer

applied
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The perpendicular strain is given by:

EI = — —C12 (E_xx + eyy) = –2—C12 ell	 (3.25)

Where CH is the in plane elastic constant of the material and C12 is the

elastic constant for strain in the direction normal to the applied stress. For most

materials, the ratio C12/CH is approximately 1/2. It is useful to think of these strains

in terms of hydrostatic and axial components:

2(C11 – C12 ) _
evol = Exx +Eyy ÷Ezz =	 11	 (3.27)

Cl'

The hydrostatic strain Evoi causes the band gap to change by AEg (3.28) and

the axial strain Ea causes the lh hh splitting, S (3.29). Thus for an InGaAs well in

GaAs we find that the light and heavy holes are confined as shown in fig. 3.6.

AEg = a. Evoi
	

(3.28)

S = b.Eax	 (3.29)

Where the material parameters a and b are known as the deformation

potentials. For the InxGai_xAs system the deformation potentials in eV are given in

table 3.1, after Anderson et al.12

a
	

8.67-5.66x (eV)

b
	

1.7+0.1x (eV)

Table 3.1. InxGa I _xAs hydrostatic and shear deformation potentials12.

GaAs	 In GaAs	 GaAs
Fig. 3.7. Heavy hole, light hole and electron confinement in InGaAs quantum well

under biaxial compression lattice matched to GaAs.
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Fig. 3.7 illustrates the separate wells confining heavy and light holes due to
the strain induced deformation potentials. If we take the preferred value of bulk
valence band offset of 0.33, there is no confinement and well is type II for light holes.

There is a limit to the thickness of a strained layer which may be grown
epitaxially on a substrate before dislocations are formed. The model of Matthews and

Blakeslee" considers this critical layer thickness Lc as the thickness of strained
material which may be gown before there is sufficient strain energy to propagate
strain relieving misfit dislocations through the strained layer. The critical layer
thickness is given by equation (3.30).

b(1— vcos2 a)[L
Eil = 	  ln(=c-) +1]	 (3.30)

27d,c (1+ Ocos	 b

Where b is the dislocation length, a is the angle between the slip plane normal
vector and the Burgers vector of the dislocation, A is the angle between the slip plane

normal direction and its projection in the growth direction onto the interface plane of
the epilayer and v is the Poisson ratio. For InGaAs layers grown on the (001) plane of

GaAs misfit dislocations are found to occur in the (101) and (101) directions and the
slip plane is in the (111) direction 14. The dislocation is one atomic spacing in

magnitude hence the dislocation Burgers vector is 1/2as(101) and its magnitude b=as/'I
2. Note that the lattice constant is the thickness of two monolayers since there are two
sub-lattices; As and Ga. Fig. 3.8 illustrates the situation.

From this it can be seen that a=A=30°. Using this model the critical layer

thickness for InxGai_xAs grown on GaAs was calculated as a function of the indium
fraction x. This function is shown graphically in fig. 3.9 from which it is seen that the
critical layer thickness for In0 . 20Ga0. 80As on GaAs is 144A and for In0.30Ga0.70As
it is 85A. Layers grown thicker than Lc are found to be strain relieved by the presence

of many dislocations15. The crystal quality of such a layer is not adequate for laser
operation. It is possible to grow quality strained layers thicker than Lc under certain
conditions but dislocations form rapidly at the carrier densities required for lasing and

prevent useful operation16.
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Fig. 3.8. Illustration of dislocation formation in InGaAs on GaAs grown on the {100)

axis showing the angles a and A.
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Fig. 3.9. Critical layer thickness Lc for epitaxial growth of InxGa i_xAs on

GaAs as a function of the indium fraction x.
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3.2.2. Calculation of energy levels in InGaAs / GaAs quantum wells

The energy levels in a square potential well are readily estimated using the

Kronig-Penney model17. In a periodic square potential such as in a multiple quantum

well (MQW) with potential steps of size V, the energy levels are found to be given by

solutions of the equation (3.25). See fig. 3.10.
V+—
2 —

Potential
Energy 1 0 -
E

K	

Lw Lb

Fig. 3.10. Square spatial potential function for multiple quantum well with offset V.

cos(k[Lw + Lb ]) = In[Lw ± Lb] VL sin( ii)  + ( )h2	 b n	 cos ri	 (3.31)

Where:

2/3n—z*E 
n = {Lw + 4]	 (3.32)

h
Lw and Lb are the well and barrier widths, m* is the effective mass and E is

the energy. Since the wavenumber k is real for non-evanescent wavefimctions in the

MQW, the range of equation (3.32) is from -1 to +1. Fig. 3.11 illustrates a graphical

solution for this, the shaded regions indicate allowable bands for the value n and

hence for E.

_ V -
T

Fig. 3.11. Solution of equation (3.25) to find minibands in MQW.
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For a single quantum well Lb is allowed to tend to infinity. In this case the

crossings become infinitely steep and the minibands collapse to give single quantized

energies. For numerical calculations, a barrier width of 300A is used: this is large

enough to reduce the coupling between wells and allow the position of levels in a

single well to be calculated to an accuracy better than 101.ieV.

Programs using this method have been used to calculate the conduction and

valence band states for strained InxGai xAs / GaAs wells. These were based on

programs M.Lakrimi, J.Woodhead/8 and M.Reddy adapted to run faster and give

more accurate solutions.

Vbo 0.33 Valence band offset17

mhb 0.48m0 GaAs effective hole mass9

meb 0.067m0 GaAs effective electron mass9
ac 5.65325-0.40515x (A) InrGai_rAs lattice constant19
as 5.65325 A GaAs lattice constant9

a 8.67-5.66x (eV) Hydrostatic deformation potential12

b 1.7+0.1x (eV) Shear deformation -potential12
C11 12.25-3.61x In plane elastic constant/9
C12 5.7-0.85x Out of plane elastic constant/9

Egb
5.405 x 10-4 T2

1.519 (eV) GaAs bandgap9
204+ T

E
gW

Egb-1.53x+0.45x2+A

Egb-1.47x+0.375x2+A

Egb-1.24x+0.18x2+A

Egb-1.5837x+0.475x2+A

InxGai_xAs bandgap in well at: 300 K20

77 K20

20K19

4K20

4
•

AE ±SI2g
Strain induced shift for heavy (+) and

light (-) hole bands

mew (0.067-0.044x)m0 InxGai	 As effective electron mass19

mhhw (0.48-0.0 8x)m 0 InxGai	 As heavy hole effective mass19

_ mlhw_ (0.082-0.056x)m0 InxGai	 As light hole effective mass/9

Table 3.2. Material parameters used in Kronig-Penney model to find energy levels in

InGaAs / GaAs quantum wells. x is the indium mole _fraction in the well and T is the

temperature in K.
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A sequential seek routine using coarse energy steps is used to identify the

approximate position of minibands. A linear interpolation method is then used to

home in on the band edge energies to an accuracy of lOueV. The program searches

for electron, heavy hole and light hole states. The constants used in the calculations

are shown in table 3.2.

Fig. 3.12 shows the results from this model for single wells. The eihhi

transition energy is plotted against well width for various indium fractions. Also

shown on the figure is the Matthews and Blakeslee critical layer thickness".

Photoluminescence measurements at low temperature agree well with this model

18,21 . Fig. 3.13. Shows the confined levels in an 85A well for x---0.20. Note that a

valence band offset of 33% 18 implies that there is no confinement in the light hole

well and in further calculations we take the Ihi state to be bound at the GaAs band

edge.
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Fig. 3.12. Room temperature (300K) ejhhj transition energies in InGaAs / GaAs

single quantum wells as a function of well width and composition, calculated using
above model. Lc indicates the Matthews and Blakeslee critical layer thickness13.
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Light hole well

Fig. 3.13. Confined energies in an 854 x=0.25 well at 300K Note there is no light

hole confinement.

3.2.3. Sub-band dispersion curves
The solutions of the Kronig-Penney model above give the ground states of the

sub-bands in the InGaAs / GaAs well, i.e. for kx=ky=0. For finite in plane momentum

the sub-band dispersion in the presence of zero band interaction is proportional to k2.

Using the Luttinger-Kohn Hamiltonian 22 after O'Reilly and Witchlow 6, 11, by analogy

with a bulk strained semiconductor, the in plane dispersion is found to be

E hh1(k) Ehh1(0) (ri+r).k2
	

(3.33a)

E hh2(k) Ehh2(0) + (71-4-T).k2
	

(3.33b)

E Ihl(k) E 1121(0) + (Yi —).k2
	

(3.33c)

etc. for further valence bands. Where Ehbi(0) is

the ground state of the first heavy hole band as found above and similarly for the

second heavy hole and first light hole bands. For GaAs the values are23:

Ti = 6.854-; 	 2.58- h2	 (3.34)
2mo

The effective mass in the bands is:

mh/1 = 
mo	 (3.35)

Y)

Notice that the heavy hole band (spin 3/2 state) is effectively light hole like in

the plane of the well and the light hole band (spin 1/2 state) is effectively heavy hole

like in the plane of the well. Light effective masses such as this are measured for

transport in the plane by Reddy24.

Page 58



Chapter 3. Gain Calculatiors

From the Hamiltonian in the plane of the well H, we find the following

interactions between states with wave functions fm± and fn± , where ± refers to heavy /

light hole states6.

fm± I H I fn± = 0 ; m�n	 (3.36)

±2N1k( f,.ffn+)+ 1312 y( fm± Ifn+ )	 (3.37)

In an infinite well approximation the cross-correlations of the state

wavefunctions and the correlations with the derivatives in (3.37) are either zero or 1.

For the 85A x=0.20 InGaAs well we consider the hhi, hh2, hh3, and unbound 1111

states (see fig. 3.13). The following matrix gives the mixing of these states using the

infinite well approximation6,1I:

Ehhi(0)+ +)k2 	 0	 0	 Aak2—y

E f2÷

f3+

(-1.1

=
0	 Ehh2(0)+(y1 + —y)k2

0	 0

16151

0

Ehh3(0)+(yi + —y)k2

0

161h1

0

Elh1(0) +6'1-7)42

(3.38)

Where L is the well width. We find the eigenvalues E of the above equation

for finite values of k. Note that the hh3 band does not interact with the other bands

and the calculation is only a 3x3 problem. Fig. 3.14 shows the band dispersion

numerically calculated from this model for 85A InGaAs / GaAs for x----0.20 and

.x=0.25.

Note that the infinite well approximation overestimates the interaction away

from the band centre and the curves in fig. 3.14 diverge more than in the real case.

The general shape of the curves is correct and the agreement for k-�500.1.un4 is very

close. A full solution25,26 of the problem is too involved for this work.

Page 59



10

20

30

40

50
tan

60

70

80

90

100
0 200 400 BOO 800

k (pm-1)

(a)

0

10

20

30

40

50
tan

60

70

80

90

100
0 200 400 600 800

k (pm-1)

(b)

Chapter 3. Gain Calculations

Fig. 3.14. Valence band dispersion curves calculated for 854 InxGa j_xAs /

GaAs quantum wells using infinite well approximation described in the text: (a)

x=0.20; (b) x=0.25.

3.2.4. Compressive or tensile strain?

An epilayer with a lattice constant larger than the substrate will be under

biaxial compressive strain. As described above, this layer will exhibit a reduced hole

mass in the plane of the layer and a heavy mass in the perpendicular direction. If the

epilayer has a lattice constant smaller than that of the substrate it will be under biaxial

tensile strain. In this case the band splitting is in the reverse sense: i.e. the in-plane

hole mass will be heavy and the out of plane mass light. InGaAs on GaAs is

compressively strained so has a light in-plane mass. This will reduce the transparency

carrier density for an electromagnetic field polarized in the plane of the well1,2,10.

Thus in conventional edge emitting lasers the TE mode gain is preferentially

enhanced by the application of the strain and the TM mode gain is suppressed27,28.

InGaAs grown on InP may be either under tensile or compressive strain depending on

the indium fraction. For tensile material the out of plane mass is light and in an edge

emitting laser the TM mode gain is enhanced. Thus in the same way as compressive

strain may be used to lower the threshold current of an edge emitting laser, tensile

strain may be used also29,30.

For a surface emitting laser with a vertical cavity more than a few wavelengths

across, the electromagnetic field may be thought of as a plane wave propagating in

the vertical direction. Thus there are no out of plane field components and the

situation is equivalent to the TE mode in the edge emitting geometry. Compressive
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(k2 ±k2)
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(3.39)

o 
o a

k = —
nn •

2 n=1,2,3,4	 etc.x a (3.41a)
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strain may be used to enhance the gain of the optical mode and reduce the threshold

current. Tensile strain will only decrease the gain so is of no use.

3.2.5. Density of states in a two dimensional system

Consider a system where particles are confined to two dimensions (2D) x and

y. If the band structure is parabolic we can define an effective mass m* and the

particle energy above the ground state is given by (3.39). More generally (3.40)

applies for some function f(k2).

E = f(kI2 + ky2 )	 (3.40)

n= 1
n=2

Fig. 3.15 Particle confined to 2D box of side a in x and y directions. Lowest confined
states for m=0 are shown.

Consider states in a two dimensional box (or square) of side a (fig. 3.15);

these are quantized (3.41) in the orthogonal directions x and y.

m=1,2,3,4	 etc.	 (3.41b)
— a

Thus we may write (3.40) in the form:

E f($(n2 + m2 ))= f( 7k2a	 (3.42)

Where r is defined as:

r =lin2 + m2 (3.43)
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0
Fig. 3.16. State space for x and y mode numbers n and m, areas refer to number of

states. The shaded region gives the extra states from an increase in r of br.

Fig. 3.16 shows the state space of r; in an energy region E to E+ SE the shaded

region corresponds to the extra states. This has area A:

A= .'-5r	 (3.44)
2

Thus the density of states per unit energy range, per unit volume, N(E), in a

well of width L is given by (3.45). Note the extra factor of 2 for consideration of both

up and down spin states.

.dr 	 k 
NV) —

a2L dE ri(dEI dk)

For parabolic bands:

(3.45)

dk m*
- -	 (3.46)
dE n2

Thus the density of states in 2D for a constant effective mass is a constants:

N(E)= m *	 (3.47)IEL h2

Using (3.45) the density of states functions for holes in the two InGaAs wells

previously studied (85A, x-9.20 and x).25) are calculated from the valence sub-

band dispersion relations of fig. 3.14. These results are shown in fig. 3.17. notice that

at the band centre the hhi band has a low density of states corresponding to low

effective mass, but at higher energies the band mixing causes greater dispersion and

hence a higher density of states (compare with results of Corzine et al. 24). There is no

degeneracy in the band structure for electrons in bulk InGaAs so a constant effective

electron mass may be assumed for the quantum well.
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Fig. 3.17. Density of states functions for valence sub-bands in 85,41nxGai_xAs /

GaAs quantum wells: (a) x=0.20; (b) x=0.25.

3.3. Details of gain calculations

3.3.1. Matrix elements

For a strained semiconductor quantum well the matrix element of equation
(3.6) is given by (3.48).

Kum I'l'k 2 = 
if 2 	1

m2 (.02
	 (3.48)

Where My is the momentum matrix element for a transition between states in
the ith confined electron and thefth hole sub-bands. This is related to the momentum
matrix element of the bulk material Mo by (3.49)7.

My = -100/0 	- for heavy holes	 (3.49a)

My = -3-0010	- for light holes	 (3.49b)

Where the Oii are the spatial overlap integrals of the wavefunctions of the i'th

andfth states. Mo is given by (3.50) after Kaneil:

moEu (Eu +)
M0 = 	 (3.50) \	 (3.50)

6m(E' 2 A)e g 3

Where Egu is the unstrained band gap, m: is the effective mass in the bulk

material, A is the spin orbit split-off energy and m0 is the free electron mass.
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In these calculations it is reasonable to assume orthogonal wavefunctions i.e.

	

: i=i	 (3.51a)

	

i�j	 (3.51b)

In reality the Oli vary slightly with k since the bands are non-parabolic. Also

as noted by Yan32 et al. there is a correction factor to be applied to equation (3.50)

due to effects of the non-parabolicity. In this work simplifications have been made to

calculate the band structure, here we shall make a further simplification by putting:

031(
1 k 2

	

um irluk )1 = C :	 i=j	 (3.52a)

C01(
, 	%1

um Irjuk
2

11 = 0 : i�j	 (3.52b)

For some constant C. This is reasonable since co changes by less than 10%

over the range of interest. This is sufficient to find the shape of the gain spectra

suitable to explain the results obtained from VCSEL devices.

3.3.2. Calculations

With the density of states functions calculated in section 3.2.4 above we can

now use equation (3.18) to find the gain spectra g(o)). This is done at a number of

different carrier concentrations N. The carrier concentration for an intrinsic well is

related to the Fermi levels Efp and Efn as follows:

OD

N=Ef n .(E)f (E). dEE ci	 c	 (3.53)

Where the sum is over the sub-bands i at energies E, and similarly for the

valence band.

For the conduction band where we have assumed parabolic band structure the

relation is:

00

1+ expr Efr ]) dE — me kTEln(  1 N = me E .11(	 kT ' —	
(3.54)

LhLh2 1- El	 2	 i	 .i.c(Ei))

and for the valence band using a change of basis:

N = 
zl k 

fv(Ehhijiti(10)-dkKL	
(3.55)hhuhi 

We are now in a position to compute the gain curves numerically. The

procedure is:
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(i) Compute energy levels for quantum well of interest.

(ii) Calculate dispersion of valence bands using reduced Hamiltonian in

(3.38).

(iii) For any particular value of % calculate the carrier concentration N using

(3.49) and the valence band dispersion curves.

(iv) Solve (3.48) for Nto find Efn.
(v) Take each allowed transition in turn (i.e. e e2-4hh2, ei-->1111) and

for incremental values of k from zero, use the Fermi levels to evaluate the

Fermi functionsfc andfy for the transition between states at wavenumber k for

the carrier concentration N.

(vi) Use equation (3.18) directly to find g(Etr) where Etr=Eg+Ec(k)+Ev(k).

(vii) Continue to increment k and Repeat (v) and (vi) until the full gain

spectrum is found for energies of interest.

(viii) Repeat calculations for other transitions.

(ix) Calculate spontaneous current density by summing contributions over al%

bands as in (3.22).

(x) Repeat for different Efp to give a family of curves g(E) for various N.

3.3.3. Results of calculations

Gain calculations were made for a number of InGaAs / GaAs quantum wells.

Fig. 3.17 shows the results of these calculations for 85A wide wells of 20 and 25% In

plotted on a wavelength scale. Note that the gain is in arbitrary units because of the

simplification made in equation (3.52). In these graphs it was important to consider

the effect of band gap narrowing at high carrier concentrations. The bandgap shift in

eV AE for electron and hole carrier concentrations Nand P (in .cm-3) is given by33:

8( 1.61'g•	
1)=1 6 x10- N3+P3

For intrinsic wells N=P.

(3.56)
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(a) 20% In. Curves show gain at carrier densities of 0.76, 1.1, 1.6, 2.2, 3.1, 4.3, 5.8,

7.6 and 9.8x1018.cm-3.

200

150

/00

50

0

—50

—100

—150

—200 

	

	
960 980 1000 1020 1040 1060 1080 1100

Wavelength (nm)

(b) 25% In. Curves show gain at carrier concentrations of 0.60, 0.86, 1.2, 1.8, 2.5,

3.4, 4.6, 6.1 and 8.0x1018.cm-3.

Fig. 3.18 Optical gain spectra for strained InGaAs / GaAs quantum wells. (a) 854

well 20% and (b) 854 well 25% In. Main curves indicate e 'hi: 1 transitions. Curves to

shorter wavelengths indicate e2hh2 transitions.
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The curves of fig. 3.18 indicate that for the eihhi transition, band edge

transparency occurs at carrier densities of —1.5x10 18.cm-3 for the 20% In well and at

the slightly lower density of —1.4x10 18.cm-3 for the 25% well io. At low carrier

densities the peak of the gain spectra occurs at the band edge as would be expected in

an idealised well with a purely parabolic band structure. With increasing carrier

density carriers fill higher states in the well and holes begin to significantly populate

states around the hh2 sub-band edge. Holes in the hhi band at these energies

experience a much increased density of states due to mixing with the /hi and hh2

bands (see figs. 3.14 and 3.17). This increased density of states causes a second peak

to develop to short wavelengths in the gain spectra. Elsewhere (chapter 8) this has

been referred to as the 'state expansion peak' due to its origin. Note that at carrier

concentrations above 2.5x10 18 .cm-3 this forms the dominant peak in the gain

spectrum. A similar behaviour is observed in the spectra produced by Li et al. 7

Comparing the curves for the two indium fractions we note that the larger

separation of the hhi and hh2 for the higher (25%) indium fraction results in the light

hole like behaviour of the hhi band being maintained to higher energies. Whilst this

has little effect on the transparency density where higher energy states are not filled, it

does give rise to an enhanced differential gain for shorter wavelengths (as seen by

careful inspection of fig. 3.18). This also produces wider spectra for the 25% well

allowing a wider range of lasing wavelengths or shorter pulses from a mode-locked

laser to be obtained.

For deeper wells the e2hh2 and elhhltransitions are separated more. Thus in
the case of the 25% In well spontaneous emission would be reduced as the second

order transition would be suppressed. The only advantage of a well with low indium

fraction would be for a device requiring a very high threshold gain since the state

expansion peak rises higher for the 20% In well due to the increased sub-band

interaction.

The calculations performed here are rather crude in many respects but a totally

complete solution would be almost impossible. More exact models could be used but

are beyond the scope of this thesis. The simple models used here give a qualitative

feel for the gain spectra in strained InGaAs / GaAs quantum wells (see for example Li

et a!. 7). The spectra are used later (chapter 8) to provide a good explanation for the

variation between VCSEL devices with different cavity resonant wavelengths. The

spectra are also used to suggest improvements to the laser structures studied in this

thesis.
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Chapter 4. Growth and Fabrication.

4. Materials Growth and Device
Fabrication

4.1. Growth

The production of complicated semiconductor heterostructures, low in lattice

defects, as is necessary for optoelectronic devices, requires the use of epitaxial growth

techniques. There are two important growth processes available metal-organic vapour

phase epitaxy (MOCVD) and molecular beam epitaxy (MBE). These are described

below.

4.1.1. Metal-Organic Chemical Vapour Deposition (MOCVD)

mOCVD is also known as metal-organic vapour phase epitaxy (MOVPE). A

typical MOCVD growth reactor is shown in fig. 4.1.
RF induction heater

Reaction envelope
0	 0	 0 0

Vent

0 0	 Graphite
TMA	 susceptor

	  142	 Wafer

SiH4 AsH3

TMI
M°— H2

DEZ
	  H2

Bubbler
Mass flow controller

Fig. 4.1. Simplified diagram of MOCVD growth reactor.

The substrate wafer to be grown upon acts as a seed for the deposition of the

epitaxial layers. It lies on a graphite susceptor which is heated by an RF induction coil
to a temperature of 500 to 700°C, depending on the compound to be grown. The
growth is performed in a hydrogen atmosphere at a pressure between 100 and 700torr.

Growth results from the reaction of the products created when the growth precursors

decompose on contact with the hot substrate. The group V precursors are hydrides
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(e.g. arsine, AsH3) and those for group III are metal-organics (e.g. trimethylgallium

Ga(CH3)3 abbreviated to TMG). Silicon and zinc dopants are provided by silane and

diethylzinc. Table 4.1 lists all those used in the production of the VCSEL structures

studied here!.

Element
	

Precursor

Ga	 Trimethylgallium Ga(CH3)3

Al(CH3)3

AsH3

Al	 Trimethylaluminium1
As	 Arsine

In	 Trimethylindium In(CH3)3

SiH4Si	 Silane

b	 Zn	 Diethylzinc Zn(C71-15)7

Table 4.1. Metal-organic and hydride precursors used in the growth of doped InGaAs

and AlGaAs compounds.

The metal-organic vapours are produced by bubbling hydrogen gas through

the precursor compounds which are liquids. For quality growth and uniformity it is

important to have smooth laminar flow of vapour across the growth substrate.

Transport of precursors to the growth surface is by diffusion across the boundary layer

of the vapour flow. The basic reaction for the formation of GaAs is shown in (4.1).

This is an overall reaction, in reality it is much more complicated and involves

several reaction steps and there are several possible paths 2 . Other reaction products

are carried away with the vent gases.

heat
Ga(CH3 )3 + AsH3 ----->GaAs + 3CH4

There is some unintentional incorporation of carbon from decomposition of

the methyl group. For GaAs growth this can be low (-1x10 15 .cm-3) but for AlGaAs

compounds is much higher (typically 2x10 18.cm-3 for AlAs). The incorporated

carbon can be useful as a p-type dopant but for n-type material strong Si counter

doping must be used.

AlGaAs compounds are grown at 700°C whilst InGaAs quantum wells are

grown at a lower temperatures of 500 to 600°C for optimum crystal quality. The

growth rate is typically 2.5pm.hr-1.

(4.1)
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4.1.2. Molecular Beam Epitaxy (MBE)

RHEED screen

Effusion cells Al

Ga

As2

utter

High vacuum
reaction chamber

Load lock

Rotating wafer holder

Substrate wafer

RHEED source

Fig. 4.2. Schematic diagram of MBE growth reactor for growth of doped AlGaAs and

InGaAs compounds.

A typical MBE reactor is shown in fig 4.2 3. Growth materials are contained

separately in effusion cells in elemental form. Each cell contains a crucible with an

electrical heater which melts the charge of material (Al, Ga, As2 etc.). Molecules

evaporate off from the crucibles under the high vacuum condition maintained in the

reactor. The flux of molecules is controlled by varying the cell temperatures and

operating the shutters control which species are allowed to pass to the substrate. The

growth chamber is kept at very high vacuum typically 10- 10torr. After the chamber

has been opened up to atmosphere, it takes two weeks to pump the chamber to this

vacuum, out-gas to remove all contaminants and to bake and prepare the cells before

the reactor is ready to grow high quality materia1 4. At this pressure the mean free path

of a free molecule in the chamber is very long, thus molecules emitted from the

effusion cells typically undergo no scattering and travel directly towards the substrate

as a molecular beam. Group III and group V molecules arriving on the heated

substrate are adsorbed onto the crystal lattice and epitaxial growth results. Al, Ga, In

and As2 or As4 cells are used for the growth of AlGaAs and InGaAs compounds. Be

and Si cells provide p and n-type dopants. The substrate is rotated during growth to

reduce the effects of beam non-uniformity.

Be

As4
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Also shown in fig. 4.2 are: load-lock, this is used to transfer substrates in and

out of the reactor without having to open the chamber up to the atmosphere; resonant

high energy electron diffraction (RHEED) system, a phosphor screen displays the

diffraction pattern of a high energy electron beam diffracted by the growing layers on

the substrate, the diffraction pattern allows the quality of the crystal growth to be

monitored monolayer by monolayer.

AlGaAs compounds are grown at 600°C whilst InGaAs quantum wells are

grown at the reduced temperature of 540°C. The growth rate is typically 1.0iim.hr  1.

4.1.3. Other growth processes

Other growth processes include metal-organic molecular beam epitaxy

(MOMBE), chemical beam epitaxy (CBE) and liquid phase epitaxy (LPE). MOMBE

and CBE are closely related; they use a combination of metal-organic and hydride

precursors as used in MOCVD and solid sources, but in an ultra high vacuum MBE

systems. The process compromises both the advantages and disadvantages of MBE

and MOCVD growth. LPE relies on crystal growth from liquid melt 3. This is the

earliest epitaxial process and whilst able to produce high crystalline quality is not

suited to growth of VCSEL structures as abrupt interfaces cannot be grown and

growth is restricted to small (a few cm2) substrate areas.

LPE, CBE or MOMBE growth was not available for this work.

4.2. Comparisons of MBE and MOCVD

A full VCSEL structure requires some 7)..im of epitaxial growth (see chapter

2). The faster growth rate used in MOCVD means the structure can be easily grown in

a working day including the time needed to set up the reactor and perform routine

maintenance. By MBE the growth requires an extended working day to complete.

MOCVD reactors are much more easib servicec-. the growth chamber

opened for servicing and then used for growth immediately after being purged with

hydrogen. Reagents are stored away from the reactor in bottles and can be changed

between growth runs. As mentioned above an MBE reactor may not be used for

growth for two weeks after it has been opened up to atmosphere. This must be done

occasionally for maintenance and to replace spent or damaged effusion cells.

MOCVD is thus more suited to industrial use and reactors are available which can

grow on 12 or more 2" wafers simultaneously. There are some MBE machines

capable of growing on several wafers simultaneously.
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4.2.1. Layer thickness control and growth uniformity

In the absence of in-situ monitoring, MOCVD growth thickness is calibrated

by growing a test layer and measuring its thickness by X-ray diffractometry. However

the growth rate is affected by substrate temperature. As much as 15% reduction in

growth rate is seen by reducing the growth temperature from 700°C to 650°C. Small

fluctuations between growth runs and the lack of in situ monitoring give rise to a

variation of up to 5%. The VCSEL cavity region is grown at a lower temperature than

the reflector stacks since it contains InGaAs wells. A change in the deposition rate in

mid growth can make it difficult to achieve a longitudinal cavity resonance coherent

with minimum loss in the Bragg reflector stacks as required for low threshold devices.

The introduction of in-situ optical monitoring6, 7 could alleviate this problem and is

discussed briefly in 2.2.5.

Careful control of the susceptor angle is used to alter the condition of the

boundary layer of the laminar gas flow over the substrate wafer and hence the

deposition uniformity. Optimisation of this has produced a VCSEL layer with 80% of

the 2" diameter wafer having a cavity resonance wavelength ±10nm of 1010nm. This

corresponds to a ±1.0% layer thickness variation over this area (see fig. 4.3).
105

040
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1020
1000

90

98
990
1000

Fig. 4.3. Wafer map of MOCVD grown VCSEL structure QT421 showing uniformity

of resonance wavelength across the wafer.

This wafer is suitable for the production of large arrays of lasers with uniform

operating characteristics.

MBE crystal growth is monitored by RHEED oscillations8 and beam flux

monitors. This allows very accurate control of the growth thickness and hence the

resonant wavelength of VCSEL structures. At the wafer centre this can be controlled

to better than ±1%. The layer to layer control is even better than this: the relative error

1010
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in the thicknesses of the reflector stacks and the cavity region is imperceptible at all

positions across the wafer. Therefore a high finesse longitudinal cavity mode will

always be found.

The uniformity across the wafer has a paraboloid profile which is circularly

symmetric as a result of substrate rotation during growth. Fig. 4.4 illustrates this by

showing the uniformity across a typical 2" diameter wafer.

Fig. 4.4. Wafer map of MBE grown VCSEL structure RMB627 showing uniformity of

resonance wavelength across the wafer.

As the figure shows there is a variation ±6% in deposition thickness across the

wafer with increasing non-uniformity towards the wafer edge. This is very useful for

research purposes as it provides a wide variety of slightly different devices. It is not

desired for the production of large arrays of similar devices. Luckily by better design

of the effusion cell geometry the uniformity may be greatly improved. Bandgap

Technology Corp. claim to achieve ±0.2% variation across a wafer 9; this means that

all devices fabricated from it will be essentially identical. It also means that if there

are errors, all of the devices will work poorly.

4.2.2. Quantum well quality

Efficient low threshold laser operation requires the growth of a high quality

quantum well active region. This should be free from dislocations and impurities

which will capture carriers and promote non-radiative recombinations. When grown

epitaxially on GaAs, InGaAs is under a compressive biaxial strain (see section 3.2.1).

A strained quantum well below the critical layer thickness is in a metastable stateio

and if grown or processed at too high a temperature, thermal activation may cause it

to partially relax. At high growth temperatures indium will tend to desorb from the
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surface, but in MBE and MOCVD to prevent this, the growth temperature for the

cavity section is minimised.

The most useful technique for assessing the quality of quantum wells is low

temperature photoluminescence (PL). At low temperatures, typically 15K, the

absorption coefficient of the thick AlAs / GaAs Bragg reflectors to the Ar +-ion laser

pump is reduced and the reflector resonance is shifted away from the quantum well

emission wavelength. Thermal broadening of the emission is small so the linewidth is

indicative of the well quality (kT 1.3meV at 15K). Bright PL emission implies a

high radiative emission efficiency and thus a long carrier lifetime.

(a)
	

(b)
Fig. 4.5. 15K PL spectra from quantum wells in VCSEL structures showing the extent

of variation across the wafers: (a) MOCVD grown QT421; (b) MBE grown R1v1B627.

Typical PL spectra from MBE and MOCVD grown VCSEL structures are

shown in fig.. 4.5. These were taken at 15K using an Art-ion pump and a Fourier

transform spectrometer. The FWHM linewidth of PL from the MBE grown structure

RMB627 is 7 to 1 OmeV and from the MOCVD grown structure QT421 is 3meV in

the central part of the wafer increasing to lOmeV towards the periphery. The emission

from both samples is bright indicating high quality wells. The narrow linewidth

indicates material with a low density of recombination centres, including crystal

defects, the best quality material being in the centre of the wafer QT421. The material

is therefore suitable for the production of lasers.

There is variation in the PL spectrum across both wafers as a result of

variations in the growth thickness and material composition. For the MBE grown

layer the ±6% growth thickness variation also affects the quantum wells. This should

give rise to a ±5meV shift in the lowest transition energy. The variation is less than
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this, from these data we deduce a virtually constant indium fraction (±0.2% In) across

the wafer. In the case of MOCVD layers grown at 640°C one observes a rapid

deterioration of well quality in the downstream direction along the reactor. This is

due to depletion of TMI from the gas phase which results in a reduction in the In mole

fraction with distance, eventually to zero. By reducing the temperature to 510°C (the

minimum temperature for quality growth of GaAs) the best uniformity of In

composition is obtained. In this case, as for QT421, the variation in In fraction

indicated from PL measurements is 21.3—>23.2% (±1.0% In).

4.2.3. Resistance considerations

In MOCVD, Zn is used as the p-type dopant and Si as the n-type. C is

incorporated during AlGaAs growth which also acts as an acceptor. In MBE Be and

Si are used as dopants.

The interfaces of Bragg reflectors must be doped very highly to reduce the

series resistance by enhancing tunnel currents. Be does not dissolve to high

concentrations in Al rich compounds so the level of p-type doping by MBE is limited.

C and Zn allow much more effective doping of these structures although

incorporation of oxygen may reduce the effect of dopants by creating deep traps. This

is a particular problem in MOCVD grown AlAs where concentrations of 2x10 18.cm-

3 are typical. Use of fractionally distilled TMA/ allows particularly low incorporation

of 0 (5x10 17.cm-3) into AlGaAs layers grown by MOCVD and further reduction in

Bragg resistance. This is discussed more fully in chapters 5, 6 and 7. One

improvement to the MBE system would be to add a carbon effusion cell, but this is

not simple to do.

4.3. Fabrication of devices

Once the VCSEL structure has been grown it remains to define individual

devices and make contact to them. There are two basic options for the fabrication: i)

mesa isolation by etching and ii) implant definition. These are described in the

following.

4.3.1. Etched mesa isolation

Fig. 4.6 shows two methods of etching a mesa device. Wet chemical etches

(fig.4.6a) tend to undercut the etch mask by a distance similar to the etch depth. This

is not ideal for producing deeply etched (51m) small diameter devices, 20pm or

less.
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(a)	 (b)
Fig. 4.6. (a) Schematic of wet etched mesa showing undercut of the mask and

tapering of the mesa; (b) PIE etched mesa with vertical sidewalls.

Reactive ion etching (RIE) using SiC14 (fig. 4.6b) can produce etch depths in

excess of 1011m through AlAs / GaAs multilayers whilst maintaining smooth vertical

sidewalls, as shown in fig. 4.7, provided the etch is not interrupted and performed at a

controlled rate /J . For small devices a vertical dielectric waveguide is effectively

formed. A convenient etch mask is a metal film. For back surface emitting devices

gold contact pads may serve as this mask and also act to enhance the reflectivity of

the upper Bragg reflector stack (see section 2.2.3).

10PM	 20KV	 00	 009

Fig. 4.7. Scanning electron micrograph showing smooth vertical sidewalls

obtainable for VCSEL device of 5pm diameter etched to a depth in excess of

10pm using SiC14 PIE.

4.3.2. Implant defined devices

Ion implantation is a useful way of introducing foreign species into a

semiconductor lattice with a controlled depth profile 3. In this way dopants may be

introduced or insulating regions created. Implanted oxygen ions or protons knock
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atoms off of their lattice sites and create highly resistive regions with a large number

of carrier capture traps /2. A 200keV proton implant may be used to produce a current

blocking layer at a depth of —1.4gm in AlGaAs materials 13. In the VCSEL structures

studied here this corresponds to just above the active region in lower part of the p-

reflector. Thus current may be funnelled from large contact pads through small un-

implanted regions to confine injected carriers to a small device area 14 (fig. 4.8). This

allows small devices to be easily probed or wire bonded.

Contact Pad
	

Implant Mask

.1-r=
AL
ill

Current funelled through small active area

Fig. 4.8. Illustration of implant defined device showing funnelling of current from

large contact pad through small active area.

The optical field is effectively gain guided, i.e. may build up in regions where

there is gain but is attenuated in un-pumped regions /5. There is some evidence that

thermal lensing may produce waveguiding in this type of structure16,17.

4.3.3. Fabrication detail of mesa etched devices

This section describes the process steps used to fabricate mesa etched devices.

For further information on processing and cleanroom practice refer to Williams18.

Fig. 4.9 shows a simplified view of the masks used to pattern the devices. Circular

devices are arranged in I x I mm arrays as shown, between which there is space for a

100gm wide square grid.
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Fig. 4.9. Diagram of masks used to pattern devices. Device diameters of 80, 50, 20,

10, 5, 2 and 1 pm and 5x5 arrays of 5pm devices are included on a 100ttm pitch.

Light grey squares indicate 80tim square pads included on a separate masking level.

Between lmm arrays of devices, a 100tim wide rear grid contact is aligned.

The n-type contact is made to the substrate side of the wafer. One can make

use of a grid pattern to enable fabricated samples to be cleaved into pieces as small as

1mm2 without having to re-apply contacts. Devices are aligned above the square

windows in this contact to allow light emission through the substrate.

An ohmic contact is formed by degenerately doping the surface of the

semiconductor so that there is no potential barrier preventing the flow of majority

carriers between the semiconductor and metal 318. This is usually achieved by

evaporating the contact metal along with a dopant metal. The dopant is then diffused

into the surface by annealing at an elevated temperature. For GaAs the n-type contact

requires a higher annealing temperature so must be deposited first. Once a suitable

piece of material has been cleaved from the wafer the substrate side is patterned with

the grid contact. This is done by a lift-off process after evaporating metal. A Ni /

AuGe / Ni / Au recipe is used. The contact is annealed to 450°C to diffuse in Ge and

form the contact.

The devices are then defined on the grown side of the wafer. They must be

accurately positioned above windows in the n-contact. Thus it is necessary to transfer

the grid pattern to the opposite side of the sample. fig. 4.10 shows how this is done.
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U.V. Exposure
Mask
Thin glass slide
Grid contact=SI

Sample
Photoresist ---Photoresist

U.V. Exposure

Mask
Photoresist
Sample
Grid contact

----Thin glass slide
Patterned resist

Etched alignment grid
Sample
Grid contact

Fig. 4.10. Method by which rear contact grid pattern is transferred to front

face of sample: (a) Expose resist pattern onto glass slide; (b) Use pattern on glass

slide to align to patterned slide and expose resist on front surface; (c) Etch

pattern onto front surface.

The sample is fixed substrate side down to a thin (100Am) glass slide using

dental wax and is coated with photoresist. This arrangement is turned upside down

and the grid pattern mask is aligned to the contacts on the substrate side of the

sample. A ultra-violet (UV) exposure is made and, after developing, an aligned copy

of the grid pattern is left in the photoresist on the glass slide. The sample may now be

turned over and the mask re-aligned to the patterned resist. A second UV exposure is

made and, after developing, the grid pattern has now been successfully transferred to

the front surface. It is possible to pattern the remaining resist for the lift-off of device

contacts but because of the handling received in the above processes it is usually

contaminated and scratched by this stage of the processing. The sample is given an

etch for 3 seconds in a 1:1:1 mixture of CH3COOH : HBr : KCr207. This is a non-

selective etch which will etch approximately 1000A into the exposed semiconductor

surface and leave a permanent grid pattern to allow accurate positioning of devices.

We may now remove the old resist and spin on some clean.

Before patterning the resist for device definition it is necessary to remove the

edge beading. This is a result of the spinning process used to apply the resist. Fig.

4.11 illustrates how the bead is given an intense 'UV overexposure and then developed

away.
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U.V. Exposure11111111 mask
	 	  Photoresist

	  Sample
	 -Glass slide

Edge bead

(a)

Fig. 4.11. Removal of edge beads. (a) Overexposure of bead using aluminium foil

mask and (b) even resist coating left after development.

The sample is now ready for definition of devices. The pattern of device

mesas is produced in the resist in alignment with the grid pattern etched into the

surface. By removing the edge beads it is possible to get very intimate contact

between the mask and resist which gives much improved resolution of lithography; 2

pm diameter contact pads may be routinely produced using this technique. The

registration between front and back contact patterns should be better than 20).1m: the

design of the mask allows for errors of this magnitude. Contact metal is deposited

over the resist and lift-off performed to leave circular pads. The contact recipes used

were Au / Zn / Au and Cr / Au the latter being used for un-annealed contacts. Un-

annealed contacts are preferred for minimal optical absorption in the upper reflector

stack.

The sample is now ready for SiC14 RIE using the un-annealed contact pads as

an etch mask. At least 0.512m thickness of contact metallization is required since there

is some erosion of the metal during RIE. The typical etch depth was 3.5—>4.01.un; this

is to a level slightly into the bottom Bragg reflector. Au / Zn / Au contacts were

annealed to 400°C after etching. Un-annealed Cr / Au contacts perform well due to

the doping in excess of 10 19.cm-3 of the capping layer of the VCSEL structures.

4.3.4. Passivation of mesa etched devices.

It was not possible to probe or bond directly to devices smaller than 201.1m

diameter using the equipment available. It is therefore desirable to put larger contact

pads over the device mesas to allow for easier contacting. This requires an insulating

layer to prevent the pad from shorting out to the substrate. It is desirable to have such

a passivating insulator around the mesa to prevent the erosion of AlAs layers in a

moist atmosphere. There are two basic options for passivation, regrowth and polymer

layers.

Selective regrowth of current blocking layers of GaAs by LPE or MOCVD

may be used to provide a high resistance coating around the devices and a planar

coating on which contact pads may be placed19.
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Polyimide is a polymer coating specially developed to provide a smooth

planar coating of surface relief features. It is a simple to process to apply the

polyimide coating. Fig. 4.12 illustrates the process steps involved in passivating and

applying contact pads in this way.

(a)
02 R.I.E.

‘1,	 ‘1, ‘1, \It 4, \It
	 Exposed contact

(c)
Exposed contact pad

_terngd photoresist

Mesa

(e)

Fig. 4.12. Process steps to passivate VCSEL mesa devices and apply large contact

pads: (a) Polyimide is spun onto the sample to planarize the surface. (b) Photoresist

dots are produced over the mesas to pattern an evaporated aluminium etch mask (c)

The polyimide is etched using 02 R1E to expose the mesas. (d) After curing the

polyimide the aluminium is dissolved away. (e) Pattern of contact pads formed in

resist. (fi Contact metal evaporated and lift-off petformed to leave pads.

The polyimide is applied over the etched devices and spun to produce a thin

layer (fig. 4.12a). It is then given a soft-bake at 150°C for one hour to solidify the

coating. Usually two applications were necessary because of the deep mesa etch. To

contact the devices, vias must be etched through the polyimide and aluminium is a

suitable etch mask for the production of these. An aluminium layer is evaporated onto

the sample. Lift-off is used to pattern the layer to create windows above the devices

(fig. 4.12b). Alignment of this pattern may be difficult if the polyimide coating is

thick and poor alignment can give rise to leakage paths down the side of the mesa and

an increase in the device operating current. It proved difficult to perform lift-off of

the aluminium since the surface was not completely planar which resulted in a very
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thin resist coating above the mesa centres. A 350°C bake is performed to complete

the imidization process before 02 RIE is used to remove the exposed polyimide

above the mesas, the aluminium acting as an etch mask (fig. 4.12c). The aluminium is

then removed by dissolving in a concentrated NaOH solution (fig. 4.12d). Now the

vias are formed and contact pads may be applied. A resist pattern is produced (fig.

4.12e) which is used to lift-off Au metallization evaporated onto the sample and to

leave the completed contact pads (fig. 4.120. Fig. 4.13 shows a photograph of a

completed array of devices passivated with polyimide and with contact pads applied.

A variation on this process was first used by Geels et a120.

Fig. 4.13 Photograph showing square contact pads applied over polyimide

passivated VCSEL devices. The pads contact circular device mesas underneath

through etched via holes.

4.3.5. Implant defined devices

Using implant to define devices can improve the device performance. Current

funnelling, as shown in fig. 4.8, gives a reduced series resistance. This means that the

thermal power dissipated per unit current supplied will be less. Further, the extra

surrounding semiconductor material will provide better heatsinking as compared to

the etched device.

To provide current funnelling into the active region of the VCSEL structures

studied, here a current blocking region should be at a depth just above the bottom of

the p-reflector; which lies at a depth of around 21.im. This is quite deep for an implant

so light ions with a high kinetic energy are required to penetrate this distance. Protons

are the lightest ions (atomic weight = 1). Implanted into an AlGaAs crystal they

knock atoms off their lattice sites and create semi-insulating material 12. 200keV H+
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ions have a range of 1.4gm in GaAs 13: the implant profile is approximately gaussian

with a standard deviation a, of 0.2gm. In gold the ions have a range d of 0.76gm with

a=0.2gm13. The ions have a lateral spread of order a, which means that the current

blocking layer will extend slightly under the mask.

A thickness of d+30 is required to stop 99.9% of the ions. The implanted

region will effectively produce very little damage deeper than 2.0gm thus stopping

just short of the active region. Using Au as an implant mask, a 1.36gm thickness is

required to stop all but 0.1% of the ions. In the devices studied here a thickness of 1.0

gm was used. Although this will only stop 88% of the ions the remainder will be of

much lower energy and have a reduced range in the semiconductor. The damage due

to these ions will thus be limited to the uppermost layers of the p-type Bragg reflector.

From published results on a similar structure21 an ion dose of --3.0x10 13 .cm-2 was

seen to be adequate to provide adequate current blocking without serious degradation

in laser operation from ion damage. The effects of ion dose are examined most

closely in section 7.7.

200keV proton implant

Gold implant mask

Upper reflector

Active region

Lower reflector

	 Substrate

80 gm square
/ Au contact pad

	 hnplanted region

Fig. 4.14. Stages in fabrication of implant defined devices. Fabrication begins as for

etched mesa devices: (a) Thick gold dots are used as a mask for a 200kelf H+

implant; (b) 80,um square contact pads are deposited, these are centred over the un-

implanted regions; (c) Mesas are etched by PIE using the contact pads as a mask.

The devices are now complete.
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Device fabrication starts in the same way as for mesa etched devices. The

process steps are shown in fig. 4.14. Contacts are lain down as before but for the top

contact a thickness of 1.01.im is required. The top contact acts as the implant mask as

described above. Implantation was performed at the ion beam facility at the

University of Surrey. The implant leaves circular current funnels of 2 to 80).im

diameter to define devices which must be isolated from each other. 80gin square Cr /

Au contact pads were deposited over the devices using lift-off to pattern them. These

pads are used as an etch mask for a 3.5 p.m deep SiC14 RIE to isolate the devices

within 80p.m square mesas. The large pads allow even the smallest active region to be

easily probed.
Cr / Au Contact Pad

Isolation Implant

jr Light Emission	 Light Emission
; Light Emission

Fig. 4.15. Use of high dose implant to isolate neighbouring devices and form a fully

planar array of VCSELs.

Rather than etch mesas, it would be possible to perform multiple implants 22 to

produce a fully planar VCSEL array n. Fig. 4.15 shows how this may be done: After

formation of the square contact pads the sample is returned to the ion implanter for a

multiple energy proton implant of high dose. This produces highly insulating material

between the devices and effectively isolates them. No etching is required and the

planar surface makes it much easier to address the devices by depositing metal traces

which may be supported on a thin insulating layer of silicon nitride or polyimide. Vias

connect the traces to the underlying contact pads.
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5. Resistance Considerations for Bragg
Reflectors

This chapter discusses the transport of carriers across heterointerfaces in the

AlAs / GaAs Bragg reflector stacks. The use of intermediate layers and superlattices

to grade the interfaces and reduce the resistance to carrier flow is examined. The

effect of grading on the optical reflectivity is also investigated.

5.1. Heterointerfaces
Consider a basic AlAs / GaAs dielectric reflector stack consisting of alternate

quarter wave AlAs and GaAs layers. The AlGaAs system forms type I superlattices,

that is wells are formed for both holes and electrons in the low bandgap material. The

band structure of an AlAs / GaAs stack is shown in fig. 5.1, note that each

heterointerface is associated with large (compared to kJ) offset in both the valence
and conduction bands, AEc, AEv (data from Adachi review').

Conduction band
	 AlAs	 GaAs

Valence band

Fig. 5.1. Band structure of undoped AlAs / GaAs Bragg reflector].

In a typical VCSEL current is injected into the active region through the

epitaxially grown reflector stacks. They are thus doped to form a p-i-n diode. The

addition of dopant causes the Fermi level to lie close to the band edge in the doped

regions and causes band bending to occur in the vicinity of the interfaces. Fig.5.2

shows the effect on the bands in a full VCSEL structure under zero bias. Notice how

in the p-type reflector, the bands are bent in the vicinity of the heterointerfaces so that

Fermi level lies close to the valence band over much of the stack. A similar situation

for electrons exists in the n-type reflector.
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Fig. 5.2. Diagram of band edges in a full VCSEL structure for small forward current

showing potential spikes created at heterointetfaces in the Bragg reflectors.

(a)
	

(b)

Fig. 5.3. Conduction band edge for one pair of interfaces in n-type reflector stack:

(a) Under zero bias showing depletion regions formed into higher bandgap material,

(b) Under bias junction 1. is under a reverse bias V1 and junction 2. is under a

forward bias V2.

Consider one of the n-type heterointerfaces (fig. 5.3): before the junction is

made the Fermi level is close to the conduction band in both materials due to the high

density of ionised donors. As the junction is made electrons flow from the AlAs into

. the GaAs where the electron affinity is larger and the Fermi level is at a lower energy.

The AlAs thus becomes depleted near to the interface and on the GaAs side

accumulation occurs. This movement of charge gives rise to the band bending needed

to align the Fermi levels. The Fermi level cannot move far into the conduction band

as the density of conduction states is very large, thus the depth of accumulation is

limited. The separation of the Fermi level Ef from the conduction band edge E c, away

from the interface, is given by (5.1).

Ec –Ef = kT ln(—
Ne
	(5.1)

Nd
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Where /sic and Nd are the effective density of conduction states and density of

donors respectively. A similar relation applies for the valence band in p-type material.

The relevant parameters for GaAs at 300K are given in table 5.1 2. From these values

the separation is calculated for n and p-type GaAs at room temperature. Fig. 5.4.

shows this relation.

Arc
	 4.7x1017.cm-3

7.0x1018.cm-3

Table 5.1. Effective density of conduction and valence states in GaAs

at 300K after Sze2.
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Fig. 5.4. Separation of Fermi Level From conduction band edge in n-type GaAs and

separation from valence . band edge in p-type GaAs. Values for 300K

For a junction doped to a concentration of a few 10 18 .cm-3 the Fermi energy

is close to the band edge. This means that the potential barrier Mc' for carriers

approaching junction I. of fig. 5.3 is almost AE c since the density of states above the

band edge is very large effectively preventing the Fermi level from moving into the

band. This is similar to an MOS diode in accumulation mode2.
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Considering for the moment the n-type junctions, the treatment is the same for

the p-type interfaces but with the potentials and charges reversed. As fig. 5.5b shows,

we consider a depletion region of width xd, constituting a net positive charge +Q in

the AlAs (5.2). This is balanced by an accumulated negative charge of equal

magnitude —Q in the GaAs, which is considered to lie in a very thin layer where the

conduction band bends close to the Fermi level.

0

Fig. 5.5. Depletion region at n-type heterointerface. When the junction is made

electrons from the higher bandgap material flow into towards the lower bandgap and

it becomes depleted to a depth xd. Diagrams show spatial distribution of (a)

Potential energy of electrons at the band edge, (b) Carrier density p, (c) Electric field

F, (d) Built in voltage and (e) Intrinsic potential 40.

The Poisson equation (5.3) relates the built in potential V profile to the spatial

charge density p.

(5.2)Q = eNdxd

(32V	 PeNd
= —	 = 	 :0 � x � xd

dx2	 EoEr	 EoEr
(5.3)
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Integrating once and applying the boundary condition that no fields exist

outside of the junction region, we find the electric field profile F(x) (5.4), see fig.

5.5c.

dV eNd iF = --= --kx xd ):0 � x � xd	(5.4)
dx eoe,

Integrating once more and applying the boundary condition Rxd)=0, we find

the built in potential distribution V(x) (5.5), see fig. 5.5d.

V = eNd  ( 
X2 + 2xxd — x2d ):0 .� x .� xd	(5.5)

2e0Er

The energy band profile for electrons can now be found by superimposing the

potential V on the profile before the junction is made 0(x), which is due to the

variation in electron affinity. This is shown in fig. 5.5d. From the condition V(0)=4Ec
we find the depletion width xd for the heterointerface is given by (5.6) and similarly

for the valence depletion in the p-type reflector.

x
d 

_
— 

11 2E0  AEEr	 (5.6)
eNd c

Here we assume that the entire band offset exists across the depleted region.

Note that the refractive index er refers to the depleted higher bandgap material. Using

this equation the depletion width is calculated as a function of dopant density for both

n and p-type heterointerfaces between AlAs and GaAs at a temperature of 300K (fig.

5.6). The AlAs relative dielectric constant was taken as 10.06 1 • From fig. 5.6 one can

see that at a dopant concentration of 2.0x10 18.cm-3 the depletion widths are

approximately 180A in the n-type junction and 100A in the p-type junction.
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Fig. 5.6. Variation of depletion width at AlAs / GaAs heterointelface with donor

(acceptor) concentration in n-type (p-type) junction.

5.2. Heterojunctions Under Bias

5.2.1. Tunnel currents through reverse biased interfaces

Consider one pair of layers in the AlAs / GaAs reflector stack. Fig. 5.3a shows

such a pair under zero bias. When a bias V is applied, each junction is subject to a

potential difference. For each such pair of layers in the stack there are two p-p or n-n

heterojunctions, one of which is under a forward bias and one under reverse bias.

Carrier flow across a junction is by one of two mechanisms: tunnelling through the

potential spike or thermal emission over the barrier. The barrier to carrier flow in

junction 1 of fig. 5.3b is large compared with kT and is not reduced under the reverse

bias. The thermionic current will therefore be small and the electrical resistance will

be very large unless the depletion width is sufficiently narrow to allow significant

current to tunnel through the potential spike occurring at the depleted region. Junction

2 however presents no barrier to electrons travelling from the depleted AlAs region

under the forward bias and thus offers a very low resistance to current flow.

In order to achieve a low series resistance in the VCSEL device it is necessary

to ensure a significant tunnelling probability through the reverse biased junctions in

10000
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(a) Zero bias.	 (b) Reverse bias.
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the reflector stacks. This is done by doping to a sufficient level to give narrow

depletion layers.

Fig. 5.7. Depletion width xd at n-type heterointe7face (a) under zero bias and (b)

under finite reverse bias illustrating the effect on tunnel distance xr

Under reverse bias V the depletion width of the heterojunction xd widens as

the junction potential increases (5.7) but the tunnelling distance x t is reduced (5.8).

Fig. 5.7 illustrates this.

2£ E
Xd -	 ° r (AEc + V)

eN d

3ci . xdowil_k__Trirc )	 (5.8)
Where xdo is the depletion width under zero bias. This relation is shown in

fig. 5.8.

(5.7)
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1.0

0.8

0.6

X t /X d o
0.4

0.2

0.0
0.0
	

0.5
	

1.0
	

1.5
	

2.0
	

2.5
	

3.0

V /AEc

Fig. 5.8. Variation of tunnel distance x t with applied bias V in a reverse biased

heterointeiface.

As will be seen in section 4.3, the bias across each reflector pair can vary from

0.1 to 2.0 times the band offset at the current densities of interest (1000A.cnr 2), so a

significant narrowing by 20 to 70% of the depletion width may be expected. This will

increase the tunnel probability equivalent to an incyease in doping by a. fa.ctot 1 5 to

10 see fig. 5.6.

X--->

Fig. 5.9. Approximated barrier for estimate of heterointetface tunnelling.

We shall approximate the junction potential spike by a square barrier of height
4Ec and of width xt as shown in fig. 5.9. The transmission probability T of an

electron incident on the barrier with energy E above the band edge is found using

Schrtidinger's equation3, the solution of which is given in (5.9).
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T = 1[1 + tAk sinh(xt 112mn(AEc — E) I h2	 )1
2
 A4E(AEc —	 (5.9)

,

AEc
1.1x : x�.0.45

0.43+0.14x :x>0.45	 1

AEI,
0.147x :x0.45

0.046-0.015x+0.143x2 :x>0.45

Eg

11.424+1.247x : x�0.45 '
1.900+0.125x+0.143x2 :x>0.45

mitimo
0.067+0.083x : x�0.45

0.32-0.06x : x>0.45

nit% 0.62+0.14x

Er 13.18-3.12x	 1

Table 5.2. Material constants for compounds M the AlxGai_xAs system after AdachIl.

Using the relation of (5.9) and the AlxGai_xAs material constants from table
5.2, the tunnel probabilities are calculated as a function of doom` concentratiorr for

both p and n-type heterojunctions. The results of these calculations are shown in fig.

5.10. The different curves show the effect of varying x for AlxGai_xAs I GaAs
interfaces. The incident carriers are considered to have an energy 1.0meV above the
band edge.

Fig. 5.10 indicates that the transmission probability of majority carriers

through p-type heterojwiction spikes is generally higher than for n-type
heterojunctions doped to the same concentration. This difference is due to the large
offset in the conduction band in the AlGaAs / GaAs system. Reducing the aluminium
. fraction on the wide gap side of the interface increases the tunnel probability T by

reducing the potential step due to the band offset. T is to a first approximation

proportional to the conductance of the interface.
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Fig. 5.10. Variation of tunnel probabilities with donor and acceptor concentrations

for n and p type reverse biased GaAs / AlxGa i_xAs heterojunctions with x=0.0-->1.0.

From (5.9) we see that T also depends on the carrier mass. Thus for n-type
GaAs / AlxGai_xAs interfaces with x>0.45 we see little variation in T with x as the
electron mass in the X-valley reduces with increasing x, compensating for the
increase in band offset.

Note that by MBE it is a simple matter to dope AlAs and GaAs with silicon to
produce n-type material with carrier concentrations in excess of 1 x10 19 .cm-3 . The
usual acceptor dopant for MBE growth is Be which has limited solubility in materials
with a high Al fraction4. It is therefore difficult to achieve active acceptor

concentrations in excess of 2x10 17 .cm-3 in AlAs using Be. For p and n-type AlAs /

GaAs Bragg stacks doped with acceptors to 2x10 17.cm-3 and with donors to 2x

10 18 .cm-3 the transmission probabilities through the reverse biased interfaces are of
similar magnitude being 2.5x10-3 and 5.8x10-3 respectively.

.5.2.2. Split junctions

For a heteroj unction with a wide depletion region and high resistance:

,12m„AEc >> 1
xd

1
h2

The tunnel probability in this case approximates to:

(5.10)

£
T r-t, exp(-2xd 112mnAEe j= exp 	 nAE2Ecor 

e	
16m 

h2eND 1	
(5.11)

Page 99



Co duction band

Chapter 5. Resistance Considerations

Thus for a heterointerface we may expect the conductivity due to the tunnel
current an to vary with the band offset as:

Where A is a constant and may be found from (5.11). If we split the junction
into two smaller discontinuities each with a band offset of V24Ec by introducing an

interfacial layer of an intermediate AlGaAs composition, as shown in fig 5.11, we
expect the new tunnel conductance to be on.

an oc exp(—AEc	 (5.12)
A

Venceban

Fig. 5.11. Heterointerface between AlAs and GaAs layers may be split into two

junctions of smaller band offset by the introduction of an intermediate AlGaAs layer.

1 (—AEcIaT2ocy. exp
2A

	

	
(5.13)

)

Note the prefactor of V2  as there are now two junctions in series. The ratio of

these two is:

CYT2 = lexp —AEc	 (5.14)
07'1	 2A

The assumption (5.10) above is equivalent to tlEc>>A thus:

aT2 >> an	 (5.15)

Thus for a high resistance heterointerface, splitting the junction into two
smaller interfaces will significantly reduce the resistance. The two smaller junctions
must be separated further than the extent of the depletion width for the above to be
valid. More generally, splitting the junction into a number of smaller steps to produce
a staircase grading of the interface will reduce the resistance still further. If the
junction is split such that the band offsets of the individual smaller junctions are
similar in magnitude to or smaller than kT then the thermionic current will start to

become significant and a further reduction in resistance will be evident. In the limit of
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many junctions we approach a continual grade where there is no interface

discontinuity.

5.3. Experimental

A number of mirror test structures were grown by both MBE and MOCVD. p-

and n-type structures were doped with various impurities and with different

concentrations. The effect of disrupting the discontinuity due to the band offsets was

investigated by using interfacial layers of intermediate composition and by using

superlattice grading. Electrochemical (Polaron) profiling was used to indicate the

depth profile of the effective concentration of dopant incorporated into the structures.

This measurement is made by eroding the semiconductor in an electrolyte and

measuring the depletion capacitance at the exposed surface. It has a number of

limitations; it does not reliably profile certain p-type structures and the measurement

resolution deteriorates significantly with the depth profiled.

5.3.1. MOCVD Grown Reflectors

Alx
	 Type A

0

Alx 0.3
	 Type B

0

Fig. 5.12. Bragg reflector designs used in MOCVD grown test structures. Type A is

the basic reflector design and type B incorporates 200A intermediate layers for the

reduction of series resistance.

MOCVD grown reflectors were grown to two designs. Type A (see fig. 5.12)

is the basic AlAs / GaAs reflector with abrupt interfaces. Type B is a staircase type

reflector as described in section 5.2.2 with 200A intermediate layers of AlxGai_xAs

at the AlAs / GaAs interfaces s. All of the structures were doped uniformly throughout

the structure and were grown upon a conducting substrate at a temperature of 700°C.

The n-reflectors were doped --2x10 18.cm-3 (for details see table 5.3) with Si and the

p-reflector 2x10 18.cm-3 with Zn. Note that the AlAs layers also contain C at a

concentration of approximately 2.0x10 18.cm-3 from the decomposition of the metal

organic precursor. These layers were grown using TMA direct from the manufacturer

(see growth chapter) which generally contains water contamination. If subject to no
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further processing oxygen from this moisture is incorporated into the AlAs layers to a

concentration of 2—>3x10 18.cm-3. Oxygen acts as a trap and reduces the effect of

active dopants. The effects of reducing the oxygen contamination are investigated

later in section 5.3.7.

Devices were made for resistance measurements in the following way: an

ohmic back contact was formed on the substrate side of the sample. Ohmic contact

pads were formed on the front (grown) side of the sample. Mesas were then wet

etched through the reflector layers to complete the devices (see chapter 4) as shown in

fig. 5.13.
Top ntact

Conducting substrate

Rear contact/

Fig. 5.13. Etched mesa device for measurement of current-voltage characteristic of

reflector stacks.

Current voltage measurements were made under pulsed conditions using 0.5gs

pulses at 18gs repetition rate. The use of short pulses eliminates the effects of ohmic

heating and allows true comparison between reflectors with quite different

resistances. A summary of the reflectors measured appears in table 5.3, also shown in

the table are the voltages dropped at a pulsed current of 20mA for 501.1m diameter

mesas. Fig. 5.14. shows the 1-V relationship for these reflectors normalised per

reflector pair.

Layer No. I	 Do 'ant No. pairs Voltage (V) Type Voltage / pair

QT287 2.0x10 18.cm-3 n 14 1.4 B 0.10

QT255 2.0x10 18.cm-3 p 15 3.0 B 0.20

QT252 3.0x10 18.cm-3 n 10 2.9 A 0.29

QT303 _ 1.5x10 18.cm-3 n 19 9.12 A 0.48

Table 5.3. Summary MOCVD grown Bragg reflectors together with voltage drops at

20 mA for pulsed measurements undertaken on 50tun diameter mesas.
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Fig. 5.12. Pulsed I-V measurements undertaken on Bragg reflectors in table 5.3.

For the n-type reflector it is seen that the splitting of the heterobarriers into

two smaller barriers by the inclusion of the intermediate layer has reduced the bias

voltage needed to pass a current of 20mA (a typical operating current) by a factor of

nearly 3 compared to the best type A reflector. It is also noted that the stepped

reflectors have a more linear I-V response. For a typical reflector for use in a VCSEL

comprising 24 pairs, the voltage is reduced from 7.0 to 2.4V by the inclusion of the

interfacial layers. Comparing the two n-type type A reflectors, the effect of increasing

the donor concentration from 1.5 to 3.0x10 18.cm-3 is seen in a reduction in the

voltage drop by a factor of 1.7 from 0.48 to 0.29V per pair for a current of 20mA.

The p-type reflector drops a voltage of 0.2V per pair at 20mA and exhibits an

almost linear I-V response similar to the n-type structure with stepped interfaces. No

separate p-type type A reflectors were gown for direct comparison with QT255 but

for a full VCSEL structure consisting of 15 pair p-type top reflector active cavity

region and 24.5 pair n-type lower reflector, both being type A reflectors, the bias

voltage across a 50t.tm diameter mesa for a current of 20mA is 30V; this is the

structure QT233 discussed in section 6.1. This indicates that the bias per pair for the

p-type reflector pair is some 2V (allowing 9V drop across the n-type reflector and IV

diode potential). The type B structure therefore offers a significant improvement

5.3.2. Ideal low resistance reflectors

For minimal resistance we would ideally produce continuous grading of the

aluminium fraction across the interface region 5,6. Fig. 5.15a illustrates this situation;
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the interface region becomes depleted to align the Fermi levels and there is no abrupt

junction to carrier flow. In a structure which can be grown in a more controlled way

(see following text) (fig. 5.15b) the interface is composed of a number of

compositional steps (e.g. 10). The band edge at the interface now consists of 10 small

heterointerface spikes with a band offset of 57meV (n-type) or 17meV (p-type) which

can pass a significant thermal current and have thin depletion regions for low tunnel

resistance.
Conduction Band

1 -LI Li Li  _t t_

Valence Band

(a)
	

(b)
Fig. 5.15. (a) Continual grading of the AlAs / GaAs heterointetface and its effect on

the band edge, (b) approximation to continual grading by stepped interface.

In an MOCVD growth reactor it is usual to set up channels in the gas DOW

equipment which are optimised for the growth of a particular alloy composition,

GaAs or AlAs for example 7. By opening both of these channels simultaneously an

intermediate AlxGai_xAs compound may be grown, x will depend on the relative

growth rates of the binaries. In the absence of more channels the only way to produce

a finer staircase or continual grading is to adjust the individual channel flow

conditions during growth. Growth rates may be unpredictable for reset conditions

giving rise to shifts in the reflector centre wavelengths. Shifts such as this can

dramatically reduce the cavity finesse and prevent the possibility of lasing (see

chapter 2). This problem may be overcome by in-situ optical monitoring of the stack

dimensions during growth with feedback to adjust the metal-organic gas flows. The

installation of the necessary equipment was prohibitive for use in this work but has

been used successfully by others8.

A similar situation precludes the inclusion of continual grades in MBE grown

structures. The elemental sources Al, Ga, As, and In are contained within effusion

cells. The temperature of each cell controls the flux of atoms from the cell. Motorised

shutters provide on-off control of atoms from each cell. With Al, Ga and As shutters

open an intermediate AlxGai..xAs compound is grown, the composition depending on
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the relative group III fluxes and hence on the cell temperatures. Ramping of the cell

temperatures can give a continuous grade but the thermal mass of the cell is quite

large and does not allow accurate control of the growth. A multilevel staircase as in

fig. 5.15b may be produced by interrupting the growth to allow resetting of the cell

temperatures for each composition. Due to the complexity of the VCSEL structure

this is not an ideal solution: a four level staircase structure has been used by Lee et

aL9

One advantage of MBE as is a result of the slow growth rate (P.111..tm.hour1)

and accurate cell shutter control; these factors allow monolayer growth control. A

short period superlattice incorporating just two alloy compositions may be used to

give an effective grading of the interface from the close coupling of wells in the

superlattice. Fig. 5.16a shows a superlattice used in several VCSEL designs 101/. Fig.

5.16b&c show the operation of the cell shutters during the growth of the superlattice.

2 18 4 16 6 14 8 12 10 10 12 8 14 6 16 4 20 2

Distance in Monolayers
(a)

ON -

Ga

OFF-

ON —

Al

OFF-

(c)

Fig. 5.16. (a) Short period superlattice to produce effective grading of AlAs / GaAs

interface, the dotted line illustrates the position of the superlattice mini-band edge.

(b) operation of Ga effusion cell shutter during growth of the superlattice. (c)

corresponding Al cell shutter operation.
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An alternative superlattice design developed during this work 12 is given in fig.

5.17. This superlattice utilises the A10 . 5Ga0. 5As compound grown when both group

III shutters are open. The wells of this superlattice are shallower so coupling between

them will be stronger. This will reduce the tunnelling resistance of the interface. Note

carefully the cell shutter operations. Compared with the design of fig. 5.15 many

fewer shutter operations are required as only one element is switched at any one time.

This will reduce the wear on the shutters and extend their limited life. Reflectors

incorporating this superlattice were grown, these are discussed in section 5.3.4.

-

Aix

o-	 - _

2 10 4 6	 10 2 10 2 10 6 4 10 2

Distance in Monolayers
(a)

ON 1

Ga

OFF

ON 1

Al

OFF
(c)

Fig. 5.17. (a) Improved short period superlattice to produce effective grading of AlAs

/GaAs interface, the dotted line illustrates the position of the superlattice mini-band

edge. (b) operation of Ga effusion cell shutter during growth of the superlattice. (c)

corresponding Al cell shutter operation.

5.3.3. Modulation doping

The addition of large dopant concentrations to GaAs has a significant effect

on the optical absorption coefficient at energies below the bandgap. In very pure

GaAs at 1.01_tm wavelength, the absorption coefficient is less than 0.3.cm 4 . For

impurity concentrations below 1 x10 19.cm-3, which covers the range of interest of
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this thesis, free carrier absorption is insignificant at this wavelength. Absorption

arises from optically induced band to band transitions involving band tail states. The

absorption is determined experimentally in references 198 and 225 in the Blakemore

review13. This data is summarised in fig. 5.18.

1 0 17
	

1018
	 0 1 9

Dopant Concentration (.cm 3)

Fig. 5.18. Optical absorption at 1.012m in doped GaAs at 300K as a function of donor

and acceptor concentration, data from Blakemore13.

As described in section 2.2.6 absorption coefficients in excess of 10.cm-1

begin to significantly reduce the optical finesse of the VCSEL cavity. A dopant

impurity concentration of 10 18.cm-3 produces absorption of this order. To reduce the

overall absorption in a Bragg reflector we can reduce the doping in parts of the stack

away from the interfaces. The depletion region for an AlAs / GaAs interface doped to

a concentration of 2.0x10 18.cm-3 extends 100A at p-type and 180A at n-type

interfaces. High dopant concentrations outside these regions have little effect on the

transport across the interfaces and can be reduced by an order of magnitude or more

with little effect on the total stack resistance 11,14. Calculations in section 2.2.6 show

the improvement to the cavity finesse when the dopant is confined to a 200A layer.

Forward biased heterointerfaces in the stack have low resistance even if the depletion

width is large, thus it is possible to reduce the dopant in these regions also. Fig. 5.19a

illustrates the doping profile required in both stepped and superlattice graded

reflectors. Note that the superlattice need only be included at the reverse biased

interfaces. Fig. 5.19b shows the same doping schedule applied to a staircase type

reflector.
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NJ

Distance	 Distance

(a)	 (b)

Fig. 5.19. Modulation doping of Bragg reflectors. The doping concentration N is kept

low to minimise optical absorption except in the vicinity of reverse biased

heterointetfaces where it is large to aid tunnelling. In this figure carrier flow is from

left to right, current flow depends on carrier polarity.

SL denotes superlattice grading region.

5.3.4. P-type MBE grown reflectors

Two p-type test reflectors were grown by MBE using superlattice grading of

the upper interfaces and modulation doping as shown in figs. 5.17 and 5.19. The

structures were grown on a p-type buffer layer on an n-type substrate at a temperature

of 600°C. Mesa devices were fabricated for resistance measurements as for the

MOCVD mirrors in section 5.3.1 except in this case the lower contact is formed

above the p buffer layer as shown in fig. 5.20. I-V measurements were made as before

using 0.5iis pulses. Table 5.4. summarises the details of the two structures and the

voltage drop required for a 50pm diameter device to pass 20mA.

Top p-contact
\

n-type substrate

Fig. 5.20. Etched mesa device for resistance measurement of p-type Bragg reflector

grown on n-type substrate.
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RMB607 RMB637

High Na 5x1018.cm-3 1x1019.cm-3

Low N11 5x1017.cm-3 1x1018.cm-3

No. Pairs 15 15

Voltage (V) 4.05 2.25

Voltage /pair 0.27 0.15

Table 5.4. Summary of data for p-type superlattice Bragg reflectors grown by MBE,

voltages are for pulsed measurements at 20mA on 50/.Lm diameter mesas. The high

and low acceptor concentrations refer respectively to the values used in the region of

the superlattice and the remainder of the structure.

30

1400
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0
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0.0	 0.1	 0.2	 0.3

Bias Voltage (V/pair)

Fig. 5.21. I-V measurements on MBE grown p-type Bragg reflectors incorporating

superlattice grading regions at the reverse biased heterointetfaces (0, 0 pulsed V

dc.). RA113637 is doped to twice the concentration of RA/113607, see text.

Full I-V data for these 5011m diameter mesa etched reflectors are presented in

Fig. 5.21. At a current of 20 mA the voltage per pair is reduced by a factor of nearly 2

from 0.27 to 0.15V by a doubling of the acceptor concentration. The decrease is even

more dramatic when lower currents are compared. This decrease indicates that

tunnelling is the dominant transport mechanism in these reflectors.

Measurements presented in fig. 5.21 were for a reverse bias across the graded

interfaces and a forward bias across the abrupt ones. It is interesting to note that with

the bias polarity reversed these reflectors pass a current ofjust 0.25mA at a voltage of
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10V. This is because the lightly doped and un-graded interfaces are now reverse

biased and present a large barrier to carrier flow. This is evidence in support of the

tunnelling model and the methodology of the design improvements made to the basic

Bragg reflector.

Acceptor concentrations much in excess of 1 x10 19.cm-3 are not feasible in

these reflectors. It should be noted that the voltage drop of RMB637 is not much

lower than that of QT255 which is the p-type MOCVD grown reflector with

intermediate interface layers. The acceptor concentration of QT255 is approximately

1 x10 18.cm-3 an order of magnitude lower than in R1MB637. The reason for this is

suggested in a paper by Kopf' et al. The very large resistance noted in reflector stacks

grown by MBE results from the choice of acceptor dopant. Be is used almost

universally as it evaporates cleanly producing a directional molecular beam, so is

ideal for putting in an effusion cell. Unfortunately during growth at a temperature of

600°C it diffuses rapidly in AlAs towards the growing crystal surface. At an AlAs /

GaAs interface the accumulated Be will incorporate into the GaAs increasing the

doping level in the vicinity of the junction but in the side of the AlAs the acceptor

concentration will be very low, it is in this side where the depletion region forms. By

compositional profiling of MBE grown reflector stacks Kopf et al. 4 claim that the

solubility limit of Be in AlAs is 5x10 17.cm-3 even when the doping level is as high as

5x10 19.cm-3 . Data is also presented by Kopf4 showing that no redistribution of Si (at

3x10 18 .cm-3) or C (at 2x10 19.cm-3) dopants were detected in reflector stacks.

Electrochemical profiling of the structures reported in this thesis support this view,

whilst the resolution of the measurement cannot give very detailed depth information,

it can be seen that the doping concentration in the stack falls to 2x10 17.cm-3 in

places.

An obvious solution to this problem would be to use C as a dopant, this

requires a more sophisticated source than Be but is a planned improvement for the

Sheffield III-V growth facility. MOCVD grown structures utilising C and Zn acceptor

doping support the use of alternative dopants, active incorporation levels up to 3x

10 18.cm-3 (value from Electrochemical profiling) can readily be achieved.

Kiinzel et al. 15 suggest that reducing the MBE growth temperature from the

typical value of 600°C to 350—>450°C prevents diffusion of Be and allows acceptor

concentrations in excess of 10 19.cm-3 to be obtained. Our preliminary experiments

on simple type A reflectors indicate that this is not the case or that the dopant does

not become active. Minimum resistance is obtained for p-type reflectors grown at 600

°C, the highest growth temperature used.
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5.3.5. N-type MBE grown reflectors

The n-type reflector for the MBE grown laser was of the simpler design

incorporating single 200A thick intermediate layers of A10 . 5Ga0. 5As at the interfaces

similar to the MOCVD grown reflectors described in section 5.3.1. The simpler

design was chosen as the resistance of an n-reflector will be less than that of a similar

p-reflector due to the full incorporation of Si dopant compared with Be as described

above. R1v1B638 is a test reflector of this design. It consists of 23 pairs grown by MBE

on an n-type substrate. The structure was doped uniformly with Si to a concentration

of 1 x10 18.cm-3 . Modulation doping was not deemed necessary as the absorption

caused by donors is much less than that by acceptors (see fig. 5.18). Mesa devices

were fabricated from this structure as described in section 5.3.1. Pulsed I-V

measurements were performed on them. Fig. 5.22 gives the results of these

measurements for a 501.im diameter mesa. For a current of 20mA the voltage drop per

pair in the reflector is 0.4V which is 9.2V for the complete reflector. This is high

compared with the similar MOCVD grown structure. This could be partly due to the

different intermediate layer used. It should be possible to reduce the resistance to a

similar level by increasing the dopant concentration by a factor of 2—>5.

0.0	 0.1	 0.2	 0.3
	

0.4	 05
Bias Voltage (V/pair)

Fig. 5.22. Pulsed I-V measurements on R1vIB638 n-type Bragg reflector by MBE

incorporating single Ala 5Ga0 5As intermediate interface layers.

5.3.6. Full VCSEL structure grown by MBE

For the full VCSEL structure grown by MBE (RMB627) the reflector designs

of RMB607 (15 pairs p-type superlattice graded) and RMB638 (23 pairs n-type with
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single intermediate interfacial layers) were grown on either side of an undoped cavity

region containing InxGai_xAs active quantum wells. An earlier design (RMB369)

essentially the same but uses only abrupt AlAs / GaAs interfaces with no intermediate

layers or grading region in the reflectors. Fig. 5.23 shows the results of I-V

measurements conducted with 0.5pis pulses on 50pm diameter reactive ion etched

mesas. Polaron profiling indicates that the minimum active doping concentrations in

the n and p reflectors are below 2x10 18 .cm-3 and 2x10 17.cm-3 respectively

C)

"i/lag,

a)

10
3

i0 2

1 0
/

10
o

10
—i $1_111 

RMB627

RMB369

0
	

2	 4	 6	 8	 10 12 14

Bias Voltage (V)

Fig. 5.23. Pulsed I-V measurements on MBE grown VCSEL structures. RMB369

incorporates simple abrupt AlAs / GaAs hetero interfaces, whilst R1vIB627 uses

superlattice graded and stepped interfaces.

The I-V relation of RM13627 can be predicted from the test structures

RMB607 and RMB638 if an allowance of 1V is made for the p-i-n diode drop. The

difference between the resistance of the two lasers is dramatic. RMB627 lases with a

threshold current as low as 366A.cm-2 at a bias of 7.8V. At the same current density

the simpler structure RMB369 is under a bias greater than 27V and actually fails

catastrophically within a few seconds, even under pulsed conditions and so will not

lase. At a bias of 10V RMI3627 passes 50 times the current of RMB369 illustrating

the clear advantage of the improved design.
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5.3.7. Improved MOC'VD reflectors

The p and n-type Bragg reflectors described in section 5.3.1 were re-grown

with the improvements of modulation doping and reduced oxygen contamination. The

two structures are both of the type B design incorporating 200A Alo3Ga07As

intermediate layers and were grown at 700°C. To reduce the concentration of oxygen

traps in the AlGaAs material the TMA source was fractionally distilled to remove

alkoxyl contaminants and dried using a trimetal melt16.

The n-type reflector, QT408, comprises 23 pairs uniformly doped to a level of

1.6x10 18 .cm-3 with Si, as determined by electrochemical profiling, and was grown

on an n-type substrate. The p-type reflector, QT409, consists of 15 pairs grown on a p-

type substrate. The Zn doping was modulated to reduce the resistance without

introducing unnecessary dopant: the details of this are described more fully in section

7.2. The interfacial layers contain a Zn concentration of 2.0x10 18 .cm-3, the

concentration being reduced away from the interface to 5.0x10 17.cm-3 in the GaAs

and to zero in the AlAs. Note that C is incorporated to a level of 2.0x10 18 .cm-3 in the

AlAs from the decomposition of TMA so no Zn doping is required in this layer.

Electrochemical profiling indicates a near uniform acceptor concentration of —2.0x

10 18 .cm-3 throughout the stack; although this cannot reveal very fine detail.
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Fig. 5.24. D.C. I-V from QT408 and QT409 p and n-type reflectors grown using low

oxygen containing TMA and incorporating modulation doped interfaces.
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As in preceding sections wet etched mesas were fabricated and I-V

measurements performed on 501Am diameter structures. Fig. 5.24 shows the results of

d.c. I-V measurements. Note that due to the very low resistance of these reflectors

there is no noticeable difference between the d.c. and pulsed measurements (not

shown) as there is little heating. It is apparent that much less bias is required for these

structures as compared to those of section 5.3.1. This difference is thought to be

largely due to the difference in oxygen content which in the previous structures tends

to reduce the effective dopant concentration.

r--
Layer	 I	 Type Pairs Voltage (V)

0.67

Voltage / Pair

0.029

..

QT408 n 23

QT409 p 15 0.66 0.044

Table 5.5. Details of improved MOCVD Bragg stacks grown using low oxygen

aluminium source. Voltage drops are measured on 50pm diameter mesas at 20mA

dc., pulsed measurements are very similar due to low ohmic heating effect.

Table 5.5 summarizes the results for currents of 20mA. At this current the

improvements obtained are reductions in bias of: for the n-type reflector by a factor of

3.4 from 0.10 to 0.029V/pair and for the p-type reflector by a factor of 4.5 from 0.20

to 0.044V/pair. It is likely that, at these voltages, the contact resistance (not

measured) is significant. These structures are clearly much improved by the reduction

in oxygen contamination and in the case of the p-reflector also from the increased

doping in the region of the intermediate A10. 3Ga43. 7As layer (although this cannot be

seen in the electrochemical profile). These improved reflector structures were later

used to produce the full VCSEL structure QT421, the major topic of chapter 7.

5.4. Optical Considerations

Before producing a laser, it is sensible to consider the effect of the inclusion

of interfacial layers on the phase and amplitude of the reflectivity of a Bragg stack.

The addition of regions with different refractive index will complicate the reflection

of electromagnetic fields at the interfaces and it is important to asses this to ensure

that the laser threshold condition may still be met (equation (1.3)). The reflectivity

spectrum of a Bragg reflector is similar to a Fourier transform of the variation of the

refractive index with optical distance (see chapter 2). Therefore if the thickness of an

interfacial layer or grading region is small compared to the wavelength of light in the
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material (2850A for 1.0pm radiation in GaAs) the effect on the reflectance will be

small.

Using the RCAD simulation package /7 the reflectivity of the various modified

AlAs / GaAs interfaces is calculated. Fig. 5.25 shows these interfaces and the

reflectivities and the phase of the reflection compared to the A--=0 plane at 1.0gm

wavelength. As might be expected the reflection is reduced by up to 16% and the

phase delayed by up to 5.77radians (33°) by the disruption of the interfaces. The

reflection coefficient is effectively a coupling constant K between forward and reverse

waves in the stack, an reduction of 16% in this value implies that the stack should be

increased in length by 16% to retain the same reflectivity.

Distance z --->

(a)

Distance z -->

(b)

Distance z -->

	

R5. 106x 10-3	0=-0.577

	

R=5.030x10-3	0=-0.401

	

R=5.515x10-3	0=-0.474

(d)
Fig. 5.25. Reflectivity and phase for modified AlAs / GaAs interface profiles.
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For optimum stack reflectivity the stack dimensions must be adjusted so that

the reflectivities of the modified interfaces add in phase. Again using RCAD I7 the

phase angles are adjusted to zero at the x=0 plane by adjusting the dimensions. Fig.

5.26 shows the optimised dimensions for the four stack designs previously described.

4p o plane	 Distance (A)

Fig. 5.26. Optimised stack dimensions for modified reflectors for 1.0itm operation;

(a) basic quarter wave reflector (b) Stack with 30% Al intermediate layers (c) Stack

with 50% Al intermediate layers (d) Stack with superlattice grading offig. 5.17.

The reflectivity spectrum of a 241/2 pair AlAs / GaAs reflector as in fig. 5.26a

is shown in fig. 5.27. Also shown is the spectrum of the modified stack of fig. 5.26c

including A10. 5As0 . 5As intermediate layers. It is apparent that the spectrum of the

reflector with stepped interfaces is slightly narrower as a result of the altered phase of

internal stack reflections. On a linear scale the peak reflectivity seems not to change,

table 5.6 lists the peak reflectivities and the reflection losses of 241/2 and 151/2 pair

reflectors of the four designs in fig. 5.26.
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Fig. 5.27. Reflectivity spectra of 24/2 pair AlAs /GaAs Bragg reflectors centred at

1.0,um with abrupt interfaces and with A10 . 5Ga0. 5As intermediate layers

Intermediate
Layer

_
24% pairs	 . 15% pairs

R	 j	 1-R R	 I	 1-R

None 0.9980 1.962x10-3 0.9792 2.078x10-2

50% Al 0.9965 3.512x10-3 0.9684 3.163x10-2

30% Al 0.9967 3.340x10-3 0.9695 3.052x10-2

Superlattice _	 0.9977 2.284x10-3 0.9768 2.323x10-2

Table 5.6. Peak reflect ivities and losses of Bragg reflectors of differing designs.

It is seen from this table that the peak reflectivities are indeed little changed,
0.15% for 241/2 pair reflector and �1.08% for the 151/2 pair reflector. The losses are
increased by a factor of 1.78 in the worst case. This is not a catastrophic reduction in
performance and can be regained by the addition of a few extra reflector pairs.

0.8
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6. Results of Experiments on MBE Grown
Devices.

This chapter is concerned with the experimental measurements made on the
MBE grown VCSEL structure RMI3627. It presents I-V, L-I and other measurements
made under pulsed and c.w. conditions on devices defined by reactive ion etching of
mesas and by proton implant.

Fie, 6.1. Full layer structure of RgI3627 MBE grown VCSEL.

Fig. 6.1 shows the full layer structure of RMB627 1• The structure
incorporates many of the points made in the previous chapters and the following
sentences describe the nominal intended design prior to growth. The structure is
intended to operate at a wavelength X=1000nm. The undoped cavity region comprises

three strained 85A In0.22Ga0.78As quantum wells spaced 1:5, X/2 in a 2X long GaAs

cavity to coincide with the antinodes of the optical field in the cavity; the wells are
predicted to have an eihhi transition at 101 mm at room temperature. The cavity.
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region is bound by the upper and lower dielectric cavity reflectors grown to the
following designs.

(a)
	

(b)
Fig. 6.2 Doping detail of reflector stacks showing increased dopant concentration in

the region of the reverse biased mirror interfaces for the reduction of resistance.

The reflector stacks are similar to those used in the test structures RMB607

and RMB638 described in section 5.3. The lower reflector consists of a 231/2 pair
AlAs / GaAs stack with 200A intermediate A10 .5Ga0. 5As layers for the reduction of
interface resistances. It is doped n-type with Si to a nominal concentration of

Ix 10 18.cm-3. The stack dimensions are designed for maximum reflectivity as

described in section 5.4.
The upper reflector consists of a 15 pair AlAs / GaAs stack with variable

period AlAs / A10.5Ga0.5As / AlAs superlattice grading at the upper, reverse biased,
heterointerfaces. The stack is doped p-type with Be to a nominal concentration of
5x 10 17.cm-3 with increased doping of 5 x 10 18.cm-3 in the vicinity of the graded
interfaces. Inclusion of superlattice grading and modulation doping is necessary to
achieve an acceptable resistance whilst maintaining efficient optical reflectivity (refer
to chapter 5). As in the case of the lower reflector, the dimensions are designed for
maximum reflectivity.

The structure was grown on a double polished Si doped GaAs substrate which
Was rotated during growth. The reflector stacks were grown at a temperature of
600°C, this was reduced to 540°C for the cavity region which was found to provide

optimal growth conditions for the strained quantum wells.
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6.2. Material Assessment

Before devices were fabricated from the grown wafer, photoluminescence and

photoreflectance measurements were made to asses whether the growth had been to

the design and also to identify areas of the wafer suitable for making devices.

6.2.1. Photoreflectance

The photoreflectance spectrum was measured at several points across the

wafer using a monochromated white light system. Fig. 6.3 shows a typical reflectance

spectrum measured from this layer. The high reflectance band of the Bragg reflectors

is clearly visible as is the dip in reflectance caused by the cavity mode. Fig. 6.4.

shows the spectrum for the ideal structure as calculated by the RCAD prograrn 2. The

measured spectrum is similar to that calculated for the ideal structure and shows the

cavity mode centred in the high reflectivity band of the Bragg reflectors.

1.0 -
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0.8

0.7
-p-	 .--4 0 6›.
...."
0 0.5a)

.....0 0.4
c4

0.3

0.2 -
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0.0	 	
850 900 950 1000 1050 1100 1150

Wavelength (nm)

Fig. 6.3. Photoreflectivity spectrum measured at a point on the wafer RA/113627.
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Fig. 6.4. Calculated photoreflectivity spectrum for the VCSEL structure shown in

fig. 6.1.

There is a variation in material growth thickness across the wafer as a result of

the geometry of the effusion cells used in the VGV80 MBE reactor. The substrate is

rotated during growth so the variation is circularly symmetric and has a paraboloid

profile. All layer thickness vary in the same proportion across the wafer so that the

reflectivity spectrum is found to maintain its shape but shift bodily at different points

on the wafer. Fig. 6.5. shows a contour plot of the position of the cavity resonance

across the wafer derived from reflectance measurements. The resonant wavelength

varies from 940 to 1060nm, with slower variation in the centre of the wafer where the

growth is thicker. This constitutes a ±6% thickness variation about the nominal value

of 1000nm.
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Fig. 6.5. Variation of cavity resonant wavelength in nm across the grown VCSEL

wafer RMB627 determined by reflectance measurements.

6.2.2. Photoluminescence

Photoluminescence (PL) measurements can give useful information about the

InGaAs quantum wells. Emission from an optically excited well is detected at an

energy a few meV below the eihhi transition energy. Bright narrow linewidth

emission indicates good quality wells. For a VCSEL sinichre, room temperature PL

measurements are not feasible due to the presence of the Bragg reflectors. At low

temperatures however the absorption of the stacks to the excitation light (514nm Ar+

ion laser) and their reflectivity at the luminescence wavelength are much reduced and

good PL measurements may be made.

Fig. 6.6. shows typical PL spectra taken from the layer at a temperature of

approximately 15K. Emission is seen at an energy of 1.294-1.299eV with a FWIIM

linewidth of 7 to lOmeV. There is little change across the wafer except right at the

edge of the grown area where a dimmer emission at higher energy is detected.
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Fig. 6.6 Low temperature (15K) photoluminescence emission from RM13627 VCSEL

structure illuminated with argon ion laser. The lower energy peak is from the centre

of the wafer where the slightly thicker quantum well causes a reduction in the

confined energies as compared to the other peak from a point further towards the

wafer edge.

The uniform emission energy and narrow linewidth across the wafer indicates

high quality strained quantum wells with few dislocations. All three wells mu.st be

essentially the same as only one peak is detected. The high energy emission detected

at the wafer edge is a result of a much thinner growth thickness right at the edge. The

quantum wells are subject to the same variation in growth thickness as the other

layers in the stack. An emission energy of 1.296eV corresponds to a well with an

indium fraction of 23.5% assuming an 85A well (see section 3.2.2). This is slightly

greater than the intended fraction of 22.0%. If the ±6% thickness variation is applied

to the well, we would expect a variation in emission energy of ±4nm across the wafer.

Since no change larger than this is detected we can assume that there is no significant

variation in the indium fraction across the wafer. At room temperature the eihhi

transition in these wells should occur at 1024nm 3.

6.2.3. Processing

The assessment measurements above have shown that the growth has been

close to the design. The predicted room temperature transition energy of 1024nm lies

well within the variation in cavity resonance. Assuming an optical gain bandwidth of

30nm, we might predict that devices fabricated from the annular segment of wafer

Page 125



Chapter 6. MBE Grown Devices Experimental.

with resonant wavelengths in the range 994-1024nm would work efficiently. Devices

outside of this area may operate but with higher threshold currents.

Fig. 6.7. Figure showing material selected for fabrication of devices. Devices on Q1

were defined by etching and polyimide passivation was applied to those on piece 111.

Devices on Q4 were defined by proton implant.

Fig. 6.7 shows areas of the wafer selected for processing. Quarters Q1 and Q4

were processed, each quarter exhibiting the full range of variation over the wafer.

Devices on Q1 were reactive ion etched in SiC14 to produce mesas with a nominal

height of 3.5gm and those in piece #1 were further processed by passivation with

polyimide and large contact pads were applied. Devices on Q4 were defined by a

200keV H+ implant at a dose of 2x10 13 .cm-3 and isolated on large mesas by reactive

ion etching. Full details of the fabrication were given in chapter 4.

6.3. Experimental Method
Current-voltage (I-V) and current-light (L-I) measurements were made on

individual devices. In addition output emission spectra were recorded. Contact was

made to devices as shown in fig. 6.8. The fabricated sample is fixed down to a part

metallized glass slide using conductive paint. The majority of the devices on the chip

lie above transparent glass which allows the emission of light Needle pointed probe

tips are brought into contact with the metal on the slide to make the cathode contact

and with the top contact of individual device mesas to make the anode contact. The

probes allow contact to devices of 20p.rn diameter and larger to be made directly.
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Device mesa

S ple	
7r be tip

	 1 

Metallized slide

VA

A
Moveable p orm	 Light Output

Fig. 6.8. Method by which contact is made to fabricated VCSEL devices.

Ballast Resistoi

Fig. 6.9. Full experimental system for characterising VCSEL devices. Details are
given in the text.

Fig. 6.9. shows the full experimental system which is assembled on an optical
table for mechanical stability. The devices and probes sit on a moving platform 1

which has fine x-y position control. This allows individual devices to be positioned
within an accuracy of a few microns. The devices are imaged by an objective lens 2

1, 11 1-1 11 17

ass slide
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onto a vidicon camera 3 which shows the device being probed on a monitor screen.

Light output from the device passes through an opening in the platform and is

collected by a second objective lens 4. The output is reflected by a mirror 5,

collimated by a simple lens at 6 and refocused 7 onto the slits of a 0.5m grating

monochromator 8 which has a maximum resolution of 0.1A. This is controlled by a

personal computer (PC) which also records the signal detected at the output by a

cooled (77K) Ge detector 9. Standard lock-in techniques are used to improve the

sensitivity; the mechanical chopper 10 operates at around 220Hz. A 50/50 plate

beamsplitter 11 re-directs half of the optical signal; this is focused onto a power meter

12 sensitive to powers down to lOnW.

The measurements of power were scaled using the wavelength calibration data

supplied with the power meter. System losses were quantified by measuring the losses

of a laboratory laser directed through the system along the same path as light from a

VCSEL device.

DC measurements were made using a microprocessor controlled current /

voltage source and measurement unit. The resistance of the leads and probes was

measured and taken into account. To remove the detrimental effects of ohmic heating

on devices with a large operating voltage, many of the measurements were made

under pulsed conditions. Pulses of up to 50V in amplitude and as short as 200ns were

supplied by a pulse generator. Current and voltage were monitored on an

oscilloscope. The current is determined from the voltage dropped across a suitable

ballast resistor, typically l00. The power meter has a slow time constant of the

order of is so may be used to measure average output power when pulses with

repetition rates of several lcHz are applied.
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6.4. Measurements on etched mesa devices

6.4.1.1-V measurements

1o4

2	 4	 6	 8	 10	 12
	

14
Bias Voltage (V)

Fig. 6.10. I-V measurements on 5012m diameter VCSEL devices RIVIB627Q1#2. The

two curves show the results of pulsed and dc. measurements.

Fig. 6.10 shows the results of pulsed and d.c. I-V measurements on 50i.tm

diameter etched mesa devices from Q1#2. At low bias voltages the current is

dominated by the diode but at voltages much larger than 1.0V the resistance of the

Bragg reflectors begins to limit the current flow. At the typical current density for

threshold in a VCSEL (1—>21cA.cm-2) the bias voltage under pulsed conditions is 9.5

--->11.5V. This characteristic could be predicted from measurements on the test

reflector structures RMB607 and RMB637 (section 5.3). Ohmic heating causes a

reduction in the device resistance under D.C. operation (at —8V bias), the condition of

thermal runaway is approached at the current densities described above. D.C.

measurements are discussed further in section 6.4.3.

Pulsed measurements

6.4.2. L-I measurements

Devices were probed using the experimental set-up described above and

current pulses were applied. The output power was measured on the pi.W power meter
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and scaled according to the calibration factors which had been previously determined.

Typical current light characteristics of two 501am devices are shown in fig. 6.11. All

pulsed measurements described here were conducted with 430ns long pulses with an

181.ts repetition period.

0 50 100 150 200 260 900 950 400 	 20 40 80 80100120140180180200
Current (mA)	 Current (mA)

Fig. 6.11. Pulsed current light measurements on two typical 50iim diameter devices

(a) device operating at 1009.42nm. (b) device operatirig at 104/.55nm.

The devices all gave little output at currents below a threshold value, followed

by a superlinear increase in output power at higher currents as is typical of laser

operation. Observation of the output spectrum close to the lasing threshold reveals a

narrow mode (FWHM <5A). With increasing current the device begins to heat during

the length of the current pulse and chirping of the output occurs. Fig. 6.12 shows the

output spectrum and how it develops with increasing current. The spectrometer

resolution for these measurements was 2A. The modal structure is thought to arise

from interaction with Fabry-Perot modes in the substrate which are spaced by 3.56A.
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OBS 984 985 988 987 988 989 970
Wavelength (urn)

Fig. 6.12. Output lasing spectra of device at different pulse currents.

The far field pattern as viewed on a phosphor card is seen to narrow
considerably when threshold is reached indicating the transition from amplified
spontaneous to coherent stimulated emission (fig. 6.13).

(a)

•

(b)
Fig. 6.13. Far field pattern as viewed on phosphor card (a) below threshold the

output is very dim and diffuse. (b) Once threshold is reached the output narrows

considerably and a small bright spot is seen.

A large number of devices were examined and all those tested were found to
lase. There was a large variation in threshold currents from device to device as is seen
from table 6.1.
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Device No . Ith ( nA)
,

Jth(A-cm-2) ndiff(%) (nm)
3 25 1273 11.7 965.3
4 18 917 9.7 978.3
5 18 917 11.5 979.5
6 19 968 13.0 982.9
7 39 1968 10.4 1041.3
9 10 509 10.4 1024.0
10 22 1120 8.9 1038.9
11 32 1630 7.0 1034.1
12 17 866 9.1 1033.8
13 12.5 637 9.2 1026.5
14 7.5 382 10.9 1020.6
15 10 509 10.5 1013.2
16 11 560 6.1 1006.6
17 12 611 13.5 999.4
18 16 815 10.8 982.7
19 22 1120 9.9 973.8
20 22 1120 7.12 964.8
21 18 917 12.5 988.2
22 26 1324 11.8 963.2
23 28 1426 10.2 961.8
24 27 1375 11.1 958.1
25 42 2139 10.7 950.3
26 9.0 4508 - 1020.6
27 7.2 367 - 1017.8
29 11.0 560 18.0 1009.4
30 11.0 560 13.0 1005.8
31 9.7 494 9.9 1020.3
32 9.3 474 13.4 1023.8
33 11.3 576 13.4 1027.9
34 8.2 418 14.9 1014.8
35 8.6 438 15.1 1008.1
36 35 1783 14.8 1041.5

Table 6.1. Operating parameters of 5011m diameter VCSEL devices from

RMB627Q1#2

The wavelengths in the above table are peak emission wavelengths measured

for 60mA current pulses. The lasing wavelength corresponds directly with the cavity

resonance wavelength as seen in the photoreflectance spectrum and thus shows the

same systematic variation across the wafer. The differential quantum efficiencies ileff

has an average value of 11.28% with a standard deviation between devices of 2.54%.

There appears to be little correlation between the efficiency and either cavity
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wavelength or threshold current. It is therefore likely to be a function of local defects
in devices and quality of fabrication which is rather variable between devices.

Lasing Wavelength(nm)

Fig. 6.14. Variation of threshold current with lasing wavelength for 5011m diameter

VCSEL devices.

A distinct relation is evident between the threshold current and operating
wavelength. This is illustrated in fig. 6.14. Minimum values of threshold current
(below 10mA) are obtained at wavelengths around 1020nm which is close to the
lowest transition energy as determined by PL (1024nm). At shorter wavelengths
devices operate with increased thresholds, e.g. 20mA at 973nm. There is similarly an

increase at longer wavelengths but this is much more rapid; the threshold has risen to
20mA at a wavelength of 1036nm. The shape of the Ith(X) curve relates directly to the
gain spectra of the InGaAs quantum wells (chapter 3.). This is discussed in detail in
chapter 8. A relation of this form is reported for external cavity edge emitting lasers
in the InGaAsP / InP material system by O'Gorman & Levi4'5.

Some scatter around the fitted line is evident on the data in fig. 6.14. This
results from the following:

(i) Devices with contacts damaged during fabrication or probing.
(ii) Isolated regions of the wafer with large amounts of crystal defects which

may cause scattering in the reflector stacks or non-radiative recombination in the
active quantum wells.
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(iii) Fabry-Perot effects in the un-coated substrate which are wavelength

dependant (the substrate mode spacing is 3.56A at a wavelength of 1.0iim).

Thus the line is drawn towards the lowest data as these indicate achievable

results for undamaged devices made on good areas of the wafer.

The lowest threshold current measured for a 501Am diameter device was

7.2mA for a device operating at 1018nm at a bias of 6.8V. This corresponds to a

current density of 366A.cm-2 or 122A.cm-2 per quantum well/. The previous lowest

reported threshold current densities for a VCSEL devices, at any wavelength, were

450A.cm-2 for a device incorporating a single well 6 and 600A.cm-2 for a three well

structure7. The best single well stripe geometry lasers operate at cuttent densities as

low as 56A.cm-2 for an InGaAs / GaAs single quantum well structure8; this is at the

theoretical limit for two dimensional structures as defined by Yariv 9. Most of the

reported high quality VCSEL structures operate at currents in the range 1-->2kA.cm-2
10,11,12.

6.4.3. D.C. operation

Due to the very large ohmic resistance of the Bragg reflector stacks the c.w.

operating range is severely limited. At a current of 20mA d.c. the bias voltage across a

50iim device is 9.7V only 1.2V of which exists across the diode, the remainder is the

ohmic loss and results in heating of the device. The d.c. 1-V measurements are shown

in fig. 6.10. and show the thermal runaway which occurs at currents above 20mA

where the elevated temperature causes a drop in device resistance. The optical gain

deteriorates at elevated temperatures and many devices will not lase under d.c. bias.

Fig. 6.15. shows the L-I characteristic of a 5011m and a 201...= device operating c.w.

(a)
	

(b)

Fig. 6.15. Continuous wave L-I response of etched VCSEL devices (a)20pm diameter

and (b) 50,um diameter.
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The threshold current of the 501..tm device is 10.0mA under pulsed operation.

The increased temperature of the active region from ohmic heating causes this to rise

slightly to 10.6mA when operated c.w. Note that only devices with resonant

wavelengths close to the minimum value of ./th(A), 1018nm, may operate c.w. due to

the effects of heating. The uneven nature of the L-I response is due to variation of the

cavity wavelength as the device heats up. Fabry-Perot modes in the substrate cause

feedback into the lasing mode (3.56A spacing).

With increasing temperature the gain and quantum efficiency are severely

reduced as the Fermi function broadens so that carriers move to higher states within

the quantum wells and escape 13,14. For devices with a 10mA threshold current the

maximum output is achieved at a current of 20mA. At higher currents the output

reduces rapidly towards zero. By 30mA there is very little output and many devices

fail catastrophically.

1017	 1018	 1019	 1020	 1021
Wavelength (nin)

Fig. 6.16. c. w. output spectra of 50jim diameter mesa etched device.

The c.w. output spectra at a number of currents (fig. 6.16) illustrate the effect

of heating on the output wavelength. A non-uniform temperature profile develops

across the device cross section as it heats and gives rise to an average shift in the

cavity resonance of 0.282nm.mA- 1 . A number of modes are seen to develop

indicating filamentous operation15 in areas where the cavity wavelength corresponds

to a substrate mode. Fig. 6.17. illustrates this: at low currents the temperature profile
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is almost uniform and a single mode may resonate; at higher currents the temperature
profile varies markedly across the device diameter and lasing may occur in a number
of localized areas where the cavity resonance corresponds to substrate resonances.

(a) Low Current
	

(b) High Current

Fig. 6.17. Temperature profiles and filamentation.

Spectra of 20gm diameter devices were also measured. Fig, 6.18 shows these.
As for the larger 501.1m device, a shift in the emission wavelength occurs as the
current is increased and the device heats but, due to the smaller size, the temperature

profile is more uniform so only one peak is ever seen in the output spectrum. The
shift in this case is 0.823nm.mA- 1 and is larger because the current density for lmA
is larger in the smaller device and outweighs the reduced thermal resistivity (see
section 8.2.3). The spectrum for 4.5mA is interesting as it indicates a local minimum
in the light output as the cavity resonance shifts from one substrate mode to the next.
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1016 1017 1018 1019

Wavelength (nrn)

Fig. 6.18. c. w. output spectra of 20pm diameter mesa etched device.

6.5. Polyimide passivated devices

Gold contact pad

Polyirnide
1111111 	

pper reflector

//' 1104141Letvit,akage path

wer reflector

Substrate

Fig. 6.19. Diagram ofpolyimide passivated etched mesa device showing leakage path

down side of mesa caused by misalignment and damage to the via etch mask
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Devices in the piece of wafer RMB627Q1#1 were passivated with polyimide

and had 80pun square contact pads applied as described in chapter 4. This allows

contact to be made to the smaller mesa etched devices.

There is a small amount of misalignment and during lift off some tearing of

the aluminium mask used to etch vias takes place. This means that there are leakage

paths down the side of the mesas which are much more significant in the case of

small mesas (fig. 6.19).

6.5.1. Resistance measurements

2	 4	 6	 8	 10
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16
Bias Voltage (V)

(a)

2
	

4	 6	 8	 10
	

12
	

14
	

16

Bias Voltage (V)

(b)
Fig. 6.20. (a) dc. and (b) pulsed I-V measurements on various size VCSEL devices

passivated with polyimide.
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Fig. 6.20 shows the results of d.c. and pulsed measurements on varying

sizes of device. Results for the 501.im diameter devices are very similar to those for

un-passivated devices showing that the devices are essentially the same and that the

polyimide offers little thermal benefit Smaller devices do not suffer from heating

effects until higher current densities (see section 8.2) are reached as can be seen from

the bias voltages at which thermal runaway occurs. These are the points where the

resistance reduces substantially due to excessive ohmic heating. Individual devices

show significant variation from these curves as the amount of leakage from device to

device varies.

6.5.2. Pulsed L-I measurements

L-I responses of a number of devices were measured under pulsed conditions.

Devices with diameters of 80, 50, 20, 10 and 512m were tested as well as 5x5 arrays of

51..im diameter devices. Fig. 6.21 shows responses for a selection of devices of

various sizes and table 6.2. lists the results for the devices examined.

Fig. 6.21. Selection ofpulsed L-Is for polyimide passivated mesa etched devices of
diffërent sizes. Results for 50, 20, 10 and 51Lm diameters are shown.
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Device Position
Square Row Diameter (gm) Ith(mA) Jth(A.cm-2) X (nm)

(8,3) 5 50 30 1527.9 966.2
(8,3) 5 20 5.8 1846.2 966.2
(8,3) 4 10 3.3 4201.7 966.2
(8,3) 5 5 1.44 7333.9 966.2
(8,3) 6 50 20.5 1044.1 966.2
(8,3) 6 20 5.4 1718.9 966.2
(8,3) 6 10 4.1 5220.2 966.2
(8,3) 6 5 1.93 9829.4 966.2
(8,3) 6 5x5x5 18 3666.9 966.2
(10,5) 1 50 68 3463.2 942.3
(10,5) 1 20 15.0 4774.6 942.3
(10,5) 1 10 4.0 5093.0 942.3
(10,5) 1 5 3.77 19200.4 942.3
(5,3) 1 50 18 916.7 985.5
(5,3) 2 20 6.7 2132.7 985.5
(5,3) 2 10 2.7 3437.4 985.5
(5,3) 1 5x5x5 16.5 3361.3 985.5
(4,3) 8 50 12.6 641.7 990.0
(4,3) 8 20 3.7 1177.7 990.0
(4,3) 6 10 3.2 4074.4 990.0
(4,3) 8 5x5x5 19 3870.6 990.0
(4,3) 8 5 1.02 5194.8 990.0
(6,4) 3 50 21 641.7 970.8
(6,4) 3 20 4.8 1527.9 970.8
(6,4) 3 10 1.9 2419.2 970.8
(6,4) 5 5 1.4 7130.1 970.8
(6,4) 2 5x5x5 21.5 4379.9 970.8
(6,4) 5 50 25 1273.2 970.8
(6,4) 4 20 5.2 1655.2 970.8
(6,4) 5 10 3.7 4711.0 970.8
(7,1) 8 50 20 1018.6 981.6
(7,1) 7 20 5.5 1750.7 981.6
(7,1) 6 10 3.5 4456.3 981.6
(7,1) 7 5x5x5 17 3463.2 981.6
(9,6) 1 50 58 2953.9 941.7
(9,6) 1 20 12.2 3883.4 941.7
(9,6) 1 10 4.7 5984.2 941.7
(9,6) 1 5x5x5 75 15278.9 941.7
(2,5) 8 5 0.79 4023.4 981.5
(2,1) 8 5x5x5 14 2852.0 1011.5

Table 6.2. Results for polyimide passivated devices from R11413627Q1#1.
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The first two columns of table 6.2 indicate the position of the device on the

chip RMB627Q1#1. Wavelengths of the 50gm devices were measured at a current of

60tnA except where the threshold current is higher, as in section 6.4.2: wavelengths

of . smaller devices are estimated from their position on the chip in relation to

measured 5012m devices. The threshold current densities for the different size devices

are plotted as a function of wavelength in fig. 6.22. Note that there is a lot of scatter

on the data as a result of the large leakage currents in some devices.

20000 	 ...e...................„...........,4.....A

5000

0 4000

" 3000

2000

1000

o• • • • ' • • • • ' •	
940 950 960 970 980 990 1000 1010 1020

Wavelength (nm)

Fig. 6.22. Variation of threshold current density with wavelength for polyimide
passivated VCSEL devices of varying diameters: 50gm (0), 20,um (V), 10,um (0), 5g

m (0) and 5x5x5gm arrays (4).

The curve for 50i.un devices is a portion of that shown in fig. 6.14 for un-

passivated devices. There are no devices on piece #2 operating at wavelengths longer

than 1012nm. The general relation evident from the curves is that smaller devices

have larger threshold current densities /L. this is a result of losses such as surface

recombination, optical scattering from the sidewalls and leakage which scale

proportionally with device diameter so are more significant in smaller devices.

Diffraction losses mean that the gain required in a small device will be larger.

It is observed that the curves in fig. 6.22 diverge at shorter wavelengths so that a 51.tm

15000

10000

6000
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device operating at 950nm has a threshold current density 8.5 times that of a 5011m
device whereas at 1020nm the difference is only a factor of 6.8. This indicates that
there is greater gain compression away from the exciton at shorter wavelengths. This
is discussed in more detail in chapter 8.

6.5.3. D.C. Measurements

Current (mA)

0.20 -
0.18
0.16 -
0.14 -

Fren 0.12
0

• 

0 ..1 800

• 0o..(3):

00:0020

0 5	 10 15 20 25
Current (mA)

(a)	 (b)
Fig. 6.23. c.w. L-1 response of polyimide passivated VCSEL devices (a)20ttm and (b)

50 pm diameter.

Fig. 6.23 shows c.w. L-I responses from typical 50 and 20).tm devices. Smaller
devices did not operate reliably c.w. The current for maximum output is tabulated in

table 6.3. The response of these larger devices is similar to the un-passivated devices,
however it is thought that passivated devices, especially smaller ones will last longer
as moisture will be prevented from reaching the deliquescent AlAs layers. Un-
passivated devices are of limited practical use since arrays may not be easily
contacted.

Size (gm) Imax(mA) Jmax(A.em-2)

50 20 1018

20 7 2228

Table 6.3. Currents for max light out for passivated etched VCSEL devices.
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6.6. Ion Implanted devices

RMI3627Q4 was patterned with 1 p.m thick Ti / Au dots as an implant mask. A

dose of 2x10 13 .cm-2 200keV H+ ions16 were implanted into the sample to define

devices, as described in chapter 4. The dose was selected from results presented by

Orenstein et An ; too low a dose will result in a leaky implanted region, too high and

lattice damage will result in carriers being captured by traps (see also section 7.7.2).

8011m square contact pads were applied. Neighbouring devices were isolated

by reactive ion etching to a depth of 3.51.tm using the contact pads as an etch mask.

6.6.1. I-V measurements

Fig. 6.24. Results of d.c. I-V measurements on implant defined devices: (a) on current

scale; (b) shown as apparent current densities the effects of leakage and heating are

seen more clearly.

Fig. 6.24 shows the results of d.c. I-V measurements on the implanted devices.

At high current densities the device heats sufficiently to achieve thermal runaway and

a region of negative differential resistance is reached. From the figure it is seen that

smaller devices may operate at much higher current densities before this condition is

reached. This illustrates that the smaller devices receive more effective heatsinlcing;

this is discussed in more detail in chapter 7. Also it is noted that smaller devices

appear to have a smaller areal resistance; this is due to the effects of leakage through

the implanted region which are more significant in the case of small active areas.
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Fig. 6.25. Pulsed I-V on implanted devices.

Fig. 6.25 shows the results of 1-V measurements made under pulsed
conditions so to remove the heating effects. The line labelled 011m is for a device
which had no implant mask. The current flowing through this indicates the size of the
leakage current through the implanted areas. The current density through a 51.un
device appears to be approximately 20 times larger than that through a 50 gm device
under the same bias (true for voltages in excess of 6V). The difference is thought to
be mainly due to this leakage.

6.6.2. Pulsed L-I characteristics
Devices were tested under pulsed conditions as for the etched devices. The

difference from etched devices is immediately obvious on examining the L-I

response. Fig. 6.26 shows the response of a typical 50gm device from the implanted
sample for 430ns pulses at 181.ts repetition. The maximum light output is obtained for
560mA pulses. After being driven with 1.4A pulses there is no noticeable degradation

in the performance.
The response of two mesa etched devices are also shown in the figure for

comparison. Device #29 is the best mesa etched device found, #31 is a more typical
device. Maximum light output is detected at around 200mA and devices are
permanently damaged or destroyed when 300mA pulses are applied.
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Fig. 6.26. Pulsed L-I response of 50pm diameter implant defined device (—), also
shown are the responses of two etched mesa type devices (—).

Square Row Ith(nA) Jth(nA) A,(nm)

(1,1) 8 185 9422 1058.7
(1,2) 8 145 7385 1054.1
(1,3) 8 105 5348 1050.6
(1,4) 8 85 4329 1045.8
(1,5) 8 40 2037 1040.9
(1,6) 8 24 1222 1035.1
(1,7) 8 24 1222 1029.1
(1,8) 7 13 622 1024.1
(1,9) 2 14 713 1019.0
(1,9) 8 12 611 1016.8

(1,10) 8 11 560 1008.9
. (1,10) 2 10.5 535 1013.8
(1,11) 8 12 611 1001.8
(1,12) 8 15.5 789 994.1
(1,13) 6 17 866 985.4
(1,14) 8 22 1120 977.1
(1,15) 6 25 1273 969.8
(1,16) 7 33 1681 960.4

Table 6.4. Summary of results for measurements on 50tun diameter implant defined •

devices.
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The results of probing a number of devices across the sample are tabulated in

table 6.4. The variation of threshold current with lasing wavelength is shown in fig.

6.27.

o 0 0 0 0 0 0 CD CD 0
CD r• CO 0)	 CV cl .1.

CD CD Oct Ca 0) 0 0 0 0 0

Lasing Wavelength(nm)

(a)

0 0 CD CD 0 0 cD 0 0
co cn	 cv CD	 . Lc->

CD CD CD o o o o

Lasing Wavelength(nm)

(b)
Fig. 6.27. (a) Plot showing variation of threshold current with lasing wavelength for

implant defined VCSEL devices (—). Also shown is the relation for mesa etched

devices (—) for comparison. (b) Plot showing extended range of data.
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As the figure shows, threshold current varies with wavelength in a similar way

to mesa etched devices. The minimum threshold current is now 50% higher as a result

of current leakage through the current blocking layer. The difference is less obvious

away from the minimum where the leakage is less significant. The minimum

threshold current measured was 10.5mA at a wavelength of 1013.8nm, which

corresponds to a current density of 535A.cm-2 or 178A.cm-2 per quantum well. The

bias voltage at this current is 5.0V. As fig. 6.26 above shows the increased threshold

is far outweighed by the improved power handling capacity of the device.

6.6.3. Smaller Devices

Smaller ion implanted devices were tested also. The results of pulsed I-V

measurements is given in table 6.5. Operating wavelength is estimated from 50gm

diameter devices in the vicinity.

Square Row Diameter (Jim) Ith(mA) Jth(A.cm-2) ',ono +

(1,8) 6 10 14 17825 1025.1
(1,8) 8 5 12 61115 1023.9

( 1 ,9) 7 20 16 5093 1017.2
(1,9) 7 10 11.5 14642 1017.2
(1,7) 8 20 16 5093 1029.1
(1,7) 8 10 16 20372 1029.1
(1,7) 7 5 6 30558 1029.7
(1,8) 6 20 18 5370 1025.1
(1,6) 7 20 40 12732 1035.7
(1,6) 7 10 16 20372 1035.7
(1,6) 7 5 13 66208 1035.7
(1,9) 7 5 5 25465 1017.2

(1,10) 8 20 7 2228 1008.9
(1,10) 8 10 13 16552 1008.9
(1,10) 8 5 9 45837 1008.9
(1,4) 8 10 20.5 26101 1045.8
(1,4) 8 5 11 56023 1045.8

•(5,1) 8 20 41 14961 —
(5,1) 8 10 20 25465 —
(5,1) 8 5 14 71301 —
(1,4) 7 20 57 18144 1046.3
(1,3) 8 10 30 38197 1050.6

(1,11) 8 20 5.8 1846 1001.8
(1,11) 8 10 7 8913 1001.8
(1,11) 8 5 5 25465 1001.8

Table 6.5 continued overleaf..

Page 147



Chapter 6. MBE Grown Devices Experimental.

Table 6.5 continued.

(1,12) 8 20 6.8 2165 994.1
(1,12) 8 10 6.4 12732 994.1
(1,12) 8 5 5.3 26993 994.1
(1,13) 7 20 6.3 2005 976.4
(1,13) 7 20 8.7 2769 976.4
(1,13) 7 5 4.5 22918 976.4
(1,14) 8 20 9.5 3024 977.1
(1,14) 7 10 5.3 6748 977.8
(1,14) 6 5 7.0 35651 978.5
(1,15) 5 20 7.5 2387 970.7
(1,15) 6 10 8.0 10186 969.8
(1,15) 2 5 6.5 33104 973.5
(1,16) 7 20 9.5 3024 960.4
(1,16) 7 10 12.5 15915 960.4
(1,16) 7 5 10.5 53476 960.4

Table 6.5. Summary of results of pulsed measurements on 20, 10 and 5pm diameter

implant defined devices on Rilif3627Q4. I* Wavelengths are estimated from

neighbouring 50pm devices.

Fig. 6.28 shows pulsed L-I response of different diameter devices situated

within 1 mm of each other on the chip and operating close to 977nm. Note that the
threshold current decreases with device size but does not scale with area as there is a
leakage of 3->5mA through the implanted region which limits the minimum
threshold current. This indicates that the ion dose should be increased for better

isolation and that the mesa area should be made smaller for smaller active diameters.
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Fig. 6.28. Pulsed L-1 response of 5, 10, 20 and 504..tm diameter implant defined

devices operating at wavelengths near 977nm. The effects of leakage through the

implanted region are demonstrated by the minimum threshold of -5mA.

The threshold data of table 6.5 are plotted as a function of wavelength in fig.

6.29 together with the data for 501am diameter devices from table 6.4. There is a large

amOunt of scatter on the data so it is difficult to draw lines through them. However it

is apparent that the minimum threshold current is limited to -5mA due to leakage and

that the shape of the curve is changed for smaller diameters. The minimum appears to

be flattened and occurs at around 985nm rather than 1018nm for 501.tm devices. This

could indicate that the threshold gain is higher for the smaller diameters due to

increased optical losses. This is discussed in chapter 7.
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Fig. 6.29. Plot showing dependence of threshold current on lasing wavelength of ion-

implanted devices of various dimensions. Data taken from tables 6.4 and 6.5. Device
diameters are: (0—) 50,um, (0– –) 20pm, (•-- - –) 10gm and (V—) 51.1m.

Lines are drawn towards lowest data.

6.6.4. D.C. L-I characteristics

From I-V data presented in fig. 6.4 it is noted that the bias voltage required to

pass a d.c. current of 10mA through a 5011m device is reduced from 7.5V in the case

of an etched mesa device to 4.6V in the case of an implant defined device. This

results from the funnelling of current into the same active area from a much larger

mesa. Combined with the reduced thermal resistance resulting from the extra

semiconductor material in the mesa, this should allow c.w. operation to be achieved

at much higher currents.

Fig.6.30 shows the L-I plot of a 50gm device. On the same diagram the output

of a mesa etched device is also shown, not to the same vertical scale.
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Fig. 6.30. c. w. L-I response of implant 50pm defined and mesa etched devices (to

different vertical scales) illustrating increased power handling of the implanted

device. The two devices operate at different wavelengths.

Maximum optical power is detected at a current of 60mA, three times the

value in mesa etched devices. There is still significant output at 75mA where the

power supply used reaches its current limit. In contrast with the catastrophic failure of

the mesa device at 30mA, the implanted device undergoes no detectable permanent

damage at the maximum current and the same L-I curve may be traversed an arbitrary

number of times.

Devices smaller than 501..im diameter also work reliably c.w. as is shown by

the L-I curves in fig. 6.31 which also shows 20, 10 and 51.im devices as well as 5x5

arrays of 51.im devices operating. All of these devices operate close to the wavelength

for minimum pulsed threshold current (i.e. —1018nm), the variation with resonant

wavelength is discussed in section 6.6.5. The currents for maximum light output are

tabulated in table 6.6. Notice that the smaller devices can handle higher current

densities but the leakage through the implanted region is much more significant so the

threshold current densities appear to be large. A leakage current of 5mA is assumed

for calculation of the effective current density through the active region at maximum

light output.
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(e)
Fig. 6.31. c.w. L-I curves for implant defined devices of different diameters:

(a) 50,um. (b) 20iim, (c) 10Am, (d) 5,um and (e) 5x5 arrays of5[0,1 diameter devices.

(d)
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Diameter (gm) I for Lmax J for Lmax 3 (deduced)

50 60mA 3056A.cm-2 2801A.cm-2

20 26mA 8276A.cm-2 6684A.cm-2

10 17mA 21645A.cm-2 15279A.cm-2

5 11mA 56022A.cm-2 30558A.cm-2

5x5x5 31mA 6315A.cm-2 5296A.cm-2

Table 6.6. Currents for maximum light output _from various sized implant defined

devices. The third column shows the apparent current density at this condition which

is large due to leakage currents. The final column is the calculated current density

through the active region assuming a leakage current of 5mA.
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Fig. 6.32. c.w. lasing spectra from 501 un diameter implant defined device showing

development of the narrow lasing mode from the spontaneous emission.
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Fig. 6.33. C. w. lasing spectra from 50pm diameter implant defined device at higher

currents showing effects of heating in the wavelength red shift and development of

multiple modes.

The much improved reliability afforded by implantation allows a more

detailed study of lasing spectra to be made. Fig. 6.32 shows how the development of

the narrow lasing mode from the broad band spontaneous emission for a typical 5012m

device. The development of the spectrum at higher currents is shown in fig. 6.33: with

increasing current the device heats and we see a red shift in the emission wavelength

and the development of multiple modes as a non-uniform temperature profile

emerges. The shift in the output is much less than for etched devices (0.282nm.mA-1)

and is 0.152nm.mA- 1 in the device centre and 0.090nm.mA4 at the device periphery.
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(a)	 (b)
Fig. 6.34. Spectra for 20,um diameter implant defined device; (a) showing

development of narrow mode at threshold, (b) development above threshold showing

red-shift due to heating.

Fig. 6.34. shows spectra for a 201.un device showing reduced shift compared to

the etched mesa device (0.823nm.mA- 1 ) of 0.380nm.mA- 1 in the device centre and

0.280nm.mA- 1 at the device periphery.

6.6.5. Variations of c.w. operating characteristics in devices with different
resonant wavelengths.

Due to the improved thermal performance of the ion-implant defined devices,

they may be operated to much higher direct currents. This means that devices other

than those with minimum threshold currents are able lase c.w. Fig. 6.35 shows c.w. L-

I response of eight implanted 50 p.m diameter devices with various cavity resonances

in the range 990.4 to1059.9nm. These wavelengths are determined under 60mA

pulsed conditions and correspond closely to OmA d.c. values before the device has

heated above the ambient temperature.
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Fig. 6.35. c.w. L-I response of 50p.m diameter ion implanted devices with cavity

resonances (at OmA) in the range 990.4 to 1059.9nm. (a)-)(f) show progression of the

response with increasing resonant wavelength.

It is seen from this figure that the threshold current Ith varies in a similar

manner to that for pulsed operation with a minimum of -12mA at around 1020nm.

With ohmic heating of the device, the gain is eventually limited and a maximum
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output power P0 is reached. The current at which this occurs 'max tends to increase

with wavelength due to the relative alignment of the cavity mode (which is

temperature and hence also current dependant) and the gain spectrum. In the same

way, the current at which the coherent output power falls to zero /0 also increases

with wavelength. Due to the relative position of /th and 'max, there is a maximum

value offmax. These effects will be discussed in more detail in chapter 7. Table 6.7

lists the parameters described in this paragraph for the a number of devices including

those described in fig. 6.35.

4nni)
-

Pmax(mW) Imax(mA) Io(mA) Ith(mA)

986.9 0 - - >100

990.4 0.19 39 55 22

995.1 0.40 41 60 18

1003.7 0.73 42 66 14

1010.2 1.17 48 74 14

1017.8 1.30 50 80 12

1024.8 1.08 50 75 13

1025.4 1.38 53 82 15

1028.4 1.65 57 86 13

1031.7 1.43 56 86 15

1036.1 1.12 56 83 18

1040.2 1.32 60 89 22

1044.9 1.02 60 85 27

1049.0 0.93 62 84 34

1054.4 0.65 64 82 36

1056.0 0.63 68 89 42

1059.9 _	 0.23 86 100 66

Table 6.7. Summary of information for c.w. operation of 50/lin diameter ion

implanted devices. Cavity wavelengths are measured under a pulsed current of 60mA

and correspond to OmA dc. values. Ith is the threshold current, Pmax the maximum

power output and 'max the current at which this is measured. Io is the current at

which the coherent emission falls to zero.

The data in table 6.7. is presented graphically in figs. 6.36 and 6.37. In the

first of these graphs the currents Ith, 'max and /0 are plotted as a function of cavity

wavelength. The envelope of c.w. operation is determined by the area between the
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lines Ith and It,. The minimum threshold is shifted slightly to 1025nm from the

minimum observed under pulsed operation. And to long wavelengths the threshold

current is reduced, this occurs since heating effects cause shifts in the resonance

wavelength and gain spectrum which bring them into better alignment1819.

990 1000 1010 1020 1030 1040 1050 1060
Wavelength (nm)

Fig. 6.36. Variation of current parameters for c.w. L-I response of 50iim diameter

implant defined devices. Ith is the threshold current, P,,7 the maximum power

output and /max the current at which this is measured. Io is the current at which the

coherent emission falls to zero. The grey line show the function I th(2) for pulsed

operation.

A line is fitted through the data in fig. 6.37 which shows the variation of the

maximum output power as a function of cavity wavelength. There is some scatter on

the data due to differences between devices; the fitted line indicates a maximum at

1028nm of 1.4mW. The maximum output falls to zero at 987 and 1066nm where

excessive heating prevents lasing. The operating range would be increased and the

maximum output power be increased, particularly to shorter wavelengths, if the

device resistance could be further reduced so that there was less heating. Similarly in

smaller devices where effects of heating are reduced we would expect a wider

operating range.
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Fig. 6.37. Variation of the maximum output power Po with cavity resonance posiiion

for implant defined devices operating c. w.
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7. Results of Experiments on MOCVD
Grown Devices.

This chapter presents the experimental measurements made on the MOCVD

grown VCSEL structures QT233 and QT421. Much of what is said in the previous
chapter concerning experimental methods and material assessment applies equally to
this chapter. QT233 was an early design so is mentioned only briefly in section 7.1.
for comparative purposes. QT421, being of a much more mature design, constitutes

the major part of this chapter, QT233 being included to show illustrate improvements
made in the layer structure and growth process.

x24
AlAs 853.2

24 pairs
n-Brogg .

715.3

n-buffar

u-substrala

Fig. 7.1. Full layer structure of QT233, MOCVD grown VCSEL. Dimensions are

given in units of A.

Fig. 7.1 shows the full layer structure of QT233. It is intended to operate at a

wavelength of X=1000nm. It is of a much simpler design than the structures RMB627 .

and QT421. It incorporates 3x85A In0.22Ga0.78As quantum wells spaced by A../2 as
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in RMB627. The upper and lower cavity reflectors are of the simple design described

as type A in section 5.3.1.

The lower reflector consists of a 23 V2 pair AlAs / GaAs stack. No intermediate

layers are included at the heterointeifaces, so the layer thicknesses are quarter

wavelengths. It was doped n-type with silicon to give a carrier concentration of 3x

10 18.cm-3 in the GaAs layers, reducing to lx10 18.cm-3 AlAs layers, the difference

being due to the p-type counter-doping by C as a result of decomposition of TMA

during the growth of AlAs (see section 5.3.1).

The upper reflector consists of a 15 pair AlAs / GaAs stack also of the simple

quarter wave design. This was doped p-type with zinc to a concentration of lx

1018.cm-3. Impurity concentrations were determined by electrochemical profiling.

The structure was grown simultaneously on two Si doped GaAs substrate

wafers which had sawn back surfaces. The reflector stacks were grown at a

temperature of 700°C whilst the cavity region and quantum wells were grown at the

lower temperature of 650°C.

7.1.2. Assessment

The reflectivity spectrum was measured at the centre of the upstream wafer. It

is similar to that calculated for the ideal structure except it shows a cavity resonance

slightly offset from the centre of the mirror high reflectance band. The growth reactor

interior had not been suitably optimised for uniform deposition thickness giving rise

to a large variation across the two wafers, fig.7.2 shows the map of the position of the

cavity resonance across the upstream wafer. There is no clear single resonance

detectable on the downstream wafer indicating variable or turbulent gas flows during

growth.

The uniformity of the resonance wavelength is ±I% around an average value

of 995nm over approximately 50% of the wafer. There is more variation to the upper

left side shown in fig. 7.2. where the resonance is not measured.
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Fig. 7.2. Map of the cavity resonance wavelength variation in nm across the upstream

wafer QT233.

Fig. 7.3. shows a typical photoluminescence spectrum measured at 15K from

the upstream wafer of QT233. It exhibits a broad peak of 30meV FWI-IM at an energy

of 1280meV. This corresponds to an indium fraction of 25.0% (determined from

model in section 3.2.2) and a 300K transition at 1038nm1.
10

1250	 1300	 1350
	

1400
Energy (meV)

Fig. 7.3. Typical photoluminescence spectrum from QT233 upstream wafer.

Mesa etched devices were fabricated from a suitable piece of the upstream

wafer with a resonance close to 1000nm (see chapter 4 for fabrication details). The
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relative alignment of the cavity resonance and quantum well transition is not optimum

but should allow reasonable lasers to be made (see fig. 6.14).

7.1.3. I-V Measurements
102

10 1

10'

10 -3
0 5 10 15 20 25 30 35 40 45

Bias Voltage (V)

Fig. 7.3. Pulsed and c. w. I-V measurements on 504urn diameter devices from QT233.

Fig. 7.3. shows the results of pulsed and d.c. I-V measurements made on 50p.m

diameter devices. As the graph shows the bias required to pass a current density of

lkA.cm-2 is 30V under pulsed conditions and 18V d.c. Device heating causes thermal

runaway and negative differential resistance at 19V where the current flowing is

10mA or 5101cA.cm-2-

7.1.4. L-I measurements

501.im diameter devices were driven with 800ns pulses. Output spectra were

measured for current pulses of varying amplitudes and are shown in fig. 7.4. At low

currents little output is detected. Above 20mA a broad emission of several

nanometers linewidth becomes evident. This is thought to be amplified stimulated

emission (ASE) filtered by the cavity resonance mode. At 50mA a narrow mode

develops, with a FWHM linewidth of approximately 0.5nm (equivalent to the

spectrometer resolution). This grows rapidly with increasing current illustrating laser

operation. Heating during the 800ns pulse causes a broadening of the spectrum at

higher currents.
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Fig. 7.4. Output spectra from 5011m diameter device from QT233 driven with 800ns

current pulses of various amplitudes. A narrow mode becomes evident at 50mA, this
eating causes chirp during the pulse width.broadens at higher current as h

Fig. 7.5. shows the L-I response derived from the spectra of fig. 7.4. From this

a threshold current of 65mA is deduced. This corresponds to a current density of

3310A.cm-2. From fig. 7.3 it can be understood that these devices cannot operate c.w.

as ohmic heating would take the device well into the region of negative differential

resistance and thermal runaway. These measurements represent the best devices

available on the wafer; the quantum well quality over much of the area is very poor

and most devices did not work at all.

1000 1015

BOO

.• 600

a

0 400

.c1
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Fig. 7.5. L-I response of 50pm diameter device from QT233 driven with 800ns pulses.

Data is deducedfrom fig. 7.4.
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Fig. 7.6. Full layer structure for QT421 MOCVD grown VCSEL. Dimensions are

given in units °fit

The full growth structure of QT421 is shown in fig. 7.6. As for RMB627 and

Q'T233 it is designed to operate at a wavelength X=1000nm and so has a similar

undoped active cavity region. This comprises three 85A In0.22Ga0.78As quantum
wells spaced by X/2 in a 2X thick region of GaAs.

The structure was grown in two separate growth runs. First the lower reflector

stack was grown. Two double polished Si doped GaAs wafers were used as substrates.

The reflector was grown at a temperature of 700°C. Preliminary assessment was
carried out on the wafers before the downstream wafer was returned to the reactor for
the growth of the remainder of the VCSEL structure; i.e. quantum wells and cavity
region and the upper reflector stack The top reflector was again grown at a
temperature of 700°C and the quantum wells and cavity region were grown at the
reduced temperature of 510°C to prevent desorption of the indium phase (see chapter
4). A separate monitor piece of substrate was included in each growth run to enable
mesas for I-V measurements to be fabricated and electrochemical profiling to be .

performed, both destructive tests, on the top and bottom reflectors individually. As

Page 167



-nI...., -

-n/•.

Chapter 7. MOCVD Grown Devices Experimental.

described in chapter 4 the AlAs layers were grown with TMA which had been

fractionally distilled within the growth system and left to settle for several weelcs2.

Commercial supplies of TMA are contaminated with oxygen and, if used directly for

growth, gives rise to a concentration of oxygen in the grown AlAs of 2—>3x

1018.cm-3. Oxygen acts as a trap in AlGaAs compounds reducing the effect of

doping; this is particularly important in the vicinity of the reflector heterointerfaces.

Use of the distilled TMA allows the oxygen concentration incorporated in AlAs to be

significantly reduced to 5x10 17.cm-3. The interior geometry of the growth reactor

had been altered from that used in QT233 to provide more uniform gas flows and

hence a more uniform deposition rate over the wafer. In particular the susceptor angle

was reduced to from 1.00 to 0.5°.

The reflector stacks are those described in section 5.3.7. The lower reflector is

a 231/2 pair AlAs / GaAs stack with 200A intermediate A10 . 3Ga0 . 7As layers for the

reduction of interface resistances2,3. It is doped n-type with Si to a mean

concentration of 1.6x1018.cm-3.

1

Mx 0 3
01 ---1—

C (x1018.cni32).01 

_El	

oi

2.

Zn (x1018.cni3)0.5
o

Distance

Fig. 7.7. Doping detail of upper (p-type) reflector. Carbon is incorporated from

decomposition products of TM4 and zinc is intentionally addedfrom TMZ

. The upper reflector is a 15 pair AlAs / GaAs stack of similar design. It

incorporates 200A intermediate A10 . 3Ga0.7As layers and is doped p-type. Modulation

doping as shown in fig. 7.7 is used to achieve minimal optical loss for a structure with

low resistance. The AlAs layers need no intentional doping as the residual C doping

of ---2x10 18.cm-3 from TMA decomposition products is sufficient. The GaAs layers

are doped with Zn to a level of 5x10 17.cm-3. The intermediate layers and the

material immediately surrounding them is zinc doped to 2x10 18.cm-3. The

electrochemical profile of this stack indicates a constant doping level of lx1018.cm-3

but this measurement cannot reveal any detail finer than a few 100A.
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7.3. Material Assessment
As for the structures mentioned previously, photoluminescence and

photoreflectance measurements were made to identify areas of the wafer suitable for

the fabrication of devices.

7.3.1. Photoreflectance

The photoreflectance spectrum was measured at a number of points across the

wafer. Fig. 7.8 shows a spectrum measured at a point close to the centre of the wafer.

The shape of the spectrum is similar at different points across the wafer indicating

that thicknesses of individual layers vary in sympathy. There is little wavelength

variation across much of the wafer.

0.9

1.0

Fig. 7.8. Photorejlectance spectrum measured close to the centre of the MOCVD

grown VCSEL structure QT42I.

As can be seen from the spectrum, the main cavity resonance, identified in fig.

7.8, is not in the centre of the high reflectance band. This might cause problems by

reducing the cavity finesse at the resonant wavelength. The high reflectance band

appears broader than for previous structures indicating an offset in the periods of the

two reflector stacks. Simulation of the structure using the RCAD 4 program identifies

the layer thicknesses to an accuracy better than 0.5%, these are given in table 7.1. The

calculated spectrum for a structure with these dimensions is shown in fig. 7.9.
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Ideal Value
r-

As Grown Error
Period of upper
reflector stack

1548A 1500A -3.2%

Period of lower
reflector stack

1548A 1548A 0%

Cavity length 5750A 4257A +7.4%
Resonant

wavelength
1000nm 1010 +1%

Table 7.1. Layer thicknesses of QT421 at a point close to the wafer centre compared

to ideal values.

0.0 	
850 900 950 1000 1050 1100 1150

Wavelength (nm)

Fig. 7.9. Calculated photoreflectance spectrum to fit spectrum measured in centre of

wafer QT42 I

As the table shows the bottom reflector was grown very close to the design. A

photoreflectance measurement was made in the clean room on the lower reflector

before the growth of the cavity and top reflector. This reveals a high reflectance band

centred at 998.7nm at the wafer centre and is agreement with the figures in the table.

The top reflector was grown slightly too thin. The cavity region was grown 7.4% too

thick as it proved difficult to calibrate the growth rate for the reduced temperature.

The error in the cavity resonance is only +1.0% since the phase compensation (see

section 2.2.5) of the reflectors reduces the error. The lower reflector retains a high

reflectivity over a relatively broad band (20nm) as a result of absorption in its layers,

which tends to flatten the reflectivity spectrum. The upper reflector, although it is
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centred some way from the cavity resonance, still has a high reflectivity at the

resonant wavelength as it is augmented with a gold layer in fabricated devices. This

layer broadens the high reflectivity band considerably. The complete structure is only

slightly worse than the ideal having a estimated gain for threshold of 441.cm-1

compared with 346.cm4 for the ideal structure (see chapter 8).

As suggested above, the uniformity of the cavity wavelength across the wafer

is excellent. Fig. 7.10 shows a contour map derived from photoreflectance spectra

taken at points across the wafer. The resonance lies between 1000 and 1020nm over

approximately 80% of the wafer. This is a ±1% variation about 1010nm and is

achieved by optimisation of the growth reactor interior for uniform gas flows.
115

040
1030

1020

1000
90

98
990
1000

Fig. 7.10. Contour map showing variation of cavity resonance wavelength in nm

across the wafer QT421.

1010
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Fig. 7.11. 15K PL spectra taken from wafer QT421. Lines 1 and 2 indicate variation

of narrow linewidth emission detected from central region of the wafer. Line 3 gives

an example of the broader emission detected close to the wafer's edge.

Low temperature (15K) photoluminescence measurements were made at a

number of points across the wafer to determine the quality and indium fraction of the

quantum wells. Fig. 7.11 shows typical PL spectra taken at three of these points.

Except right at the edge of the wafer, the PL emission is in a single peak at an energy

ranging from 1.300 to 1.320eV depending on the position and is bright with a FWHM

linevvidth of 1 OmeV or less. Over much of the wafer (80%) the variation is 1.302 to

1.310eV with a FWHM of —3meV. Table 7.2. summarises this data and gives the

corresponding eihhi transitions calculated for room temperature, also listed are the

well indium fractions assuming 85A wells (determined as in section 3.2.2).

The well compositions estimated from the PL results are very close to the

desired value of 22% indicating lowest energy transitions occurring at wavelengths in

the range 1005 to 1022nm. These wavelengths are close to the cavity resonant

wavelengths. From the data collected on MBE grown devices in the previous chapter

and from the estimates of gain spectra made in chapter 3 one would predict that a

large fraction of the wafer would produce devices with low threshold currents.

Devices made from regions of the wafer where the cavity resonance and eihhi

transition are coincident should operate with the lowest threshold currents. Over •
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much of the wafer the cavity resonance is to the short wavelength side of the eihhi

transition; this is the preferred side for minimal increase in threshold current.

_.
Across Wafer Central Region

15K PL energy 1.300--->1.320eV 1.302-÷1.310eV

Linewidth FVVHM �.10meV -3meV

X (300K) 1005.5-31021.8nm 1013.1-31020.0nm

In (%) 21.3-323.2% 22.2-323.0%

Table 7.2. PL results from QT42I. The estimated indium fractions assume 851 well

widths. The wavelengths are the estimated lowest e11217 1 transitions at room

temperature.

7.4. Processing
Much of the wafer QT421 is suitable for producing devices. The better

devices would be expected to come from the uniform area of the wafer where the

cavity resonance lies in the range 1000 to 1020nm. The wafer was cleaved into

quarters as shown in fig. 7.12. Both parts of Q4 were fabricated into etched mesa

devices by reactive ion etching using SiC14 to a depth of 3.51.tm. A 200keV proton

implant5 was used to define devices in Q1 which had been divided into several pieces

so that different implant doses6 in the range 3x10 12 .cm-2 to 1x10 15 .cm-2 could be

used for each. Further details of the fabrication are given in chapter 4.

Fig. 7.12. Quarters of wafer QT421 selected for processing.
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7.5. Measurements on etched mesa devices

The experimental apparatus and method is the same as previously used for

MBE grown devices and is described in section 6.3.

7.5.1. I-V measurements

Pulsed and d.c. I-V measurements were made on 5012m diameter etched mesa

devices. Fig. 7.13. Shows the results of these measurements on both logarithmic and

linear scales.

1	 2	 3	 4
	

5	 0	 1	 2
	

3
Bias Voltage (V)
	

Bias Voltage (V)

Fig. 7.13. Pulsed and dc. I-V measurements made on 5Ottm diameter mesa etched

devices from QT421Q4 shown on (a) logarithmic and (b) linear scales.

As the graphs show the bias for a current density of lkA.cm-2 (19.6mA) is

less than 2V (1.95V) for both d.c. and pulsed operation. There is little difference

between the two curves at this current density indicating little detrimental heating

effect. Even at 100mA or 5.1kA-2, the limiting current of the supply equipment, d.c.

operation is still possible without permanent damage to the device.

7.5.2. Pulsed	 measurements

Devices were tested under pulsed conditions. 430ns pulses were applied with

an 181.ts repetition period. Output was monitored on the j.tW power meter as in 6.4.2.

Fig. 7.14 shows current light responses for two typical 501Am diameter devices. The

device driven to higher currents delivers a maximum peak output power of 46mW at

a current of 340mA.
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Fig. 7.14. Pulsed current light measurements on two typical 501.tin diameter devic.es

from QT421 (a) device operating at 1012.1nm, (b) device operating at 1010.9nm.

All devices more than —8mm away from the wafer edge operate as lasers with

the characteristic superlinear increase in light output with increasing current above a

threshold value. The threshold current of most devices is close to 20mA with a

minimum value of 15mA. Table 7.3 summarises the results for 50).tm devices from

different locations across the sample. Wavelengths are determined from the

maximum spectral output at a pulsed current of 60mA.

Due to the good wafer uniformity, the range of wavelengths is rather narrow;

997 to 1022nm. There are some devices closer to the edge of the wafer with shorter

cavity wavelengths but these do not operate. There are two reasons for this: (i) Indium

desorption close to the wafer edges gives very shallow wells which provide little

carrier confinement; (ii) Rapid changes of growth thickness with lateral distance close

to the wafer edge reduces the finesse of the optical cavity. Device number 19 (table

7.3) is close to the wafer edge and there is considerable growth thickness variation

across its 501.1m diameter so it operates in several wavelength modes simultaneously.

All other devices tested operate at a single wavelength in the absence of d.c. heating

effects, the spectrum of a more typical device is shown in fig. 7.15. The linewidth for

60 mA pulses is —0.5mn as is a result of chirp caused by device heating during the

pulse.
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Number Square Ith(mA) Jth(A-cm-2) 1 (1m1) neff(%)
1 (11,6) 19 968 1017.8 -
2 (1,5) 15 764 1020.2 -
3 (13,5) 18 917 1012.1 16.0
4 (2,5) 22 1120 1020.2 12.8
5 (3,5) 28 1426 1020.4 11.1
6 (4,5) 28 1426 1020.6 13.2
7 (5,5) 26.8 1365 1020.9 16.0
8 (6,5) 27.5 1401 1021.4 14.0
9 (7,5) 27.5 1401 1021.3 13.2
10 {8,5) 27.0 1375 1021.3 12.8
11 (9,5) 50 2546 1021.1 2.1
12 (10,5) 24.8 1263 1020.3 16.5
13 (11,5) 18.6 947 1018.5 13.2
14 (12,5) 23 1171 1017.2 19.3
15 (13,5) 25.7 1309 1010.9 21.4
16 (14,5) 18.8 957 1005.3 18.1
17 (15,5) 24 1222 997.0 9.1
19 (15,5) 23 1171 985->995 -
20 (15,5) 29.3 1492 999.6 15.2
21 (14,5) 25 1273 1002.1 17.3
22 (14,5) 20.5 1044 1003.2 20.6
23 (14,5) 22.4 1141 1003.9 18.1
24 (14,5) 26 1324 1005.0 19.7
25 (14,5) 21.2 1080 1007.4 16.9
26 (13,5) 17.2 876 1008.7 14.4
27 (13,5) 23 1171 1009.8 17.3
28 (13,5) 22.8 1161 1012.1 20.6
29 (12,5) 22 1120 1013.7 18.9
30 (12,5) 20 1019 1014.9 14.8
31 (11,5) 22.6 1151 1017.5 15.2
32 (11,5) 23.6 1202 1019.1 16.9
33 (15,5) 29.5 1502 999.1 14.4

Table 7.3. Summary of results of pulsed L-I measurements on QT421Q4#1 50gm

diameter etched mesa VCSEL devices.
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10231018 1019
.

1020 1021 1022
Wavelength (rim)

Fig. 7.15. Output spectrum of typical 50,um diameter device (number 5) operating

under pulsed conditions. Emission is in a single narrow line which is broadened

slightly due to chirp during the 430ns pulse.

The variation of threshold current with wavelength is shown in fig. 7.16.

Compared with the MBE grown devices (see section 6.4.2), there is little variation in

the cavity wavelength (997-41022nm) between the working devices and there is a

comparable variation in the eihhi transition (1005—>1022nm). So for most devices

the transition and cavity resonance likely to be within lOnm of each other. By

comparison with the MBE grown devices one would expect that these devices would

also operate with low threshold currents. Referring to the curve in fig. 6.14, the

variation in threshold currents is expected to be small and is what we observe in fig.

7.16. There appears to be little wavelength dependence of threshold current but a

large scatter of the data around a value of 20mA. This scatter is a result of variation in

the relative wavelengths of the cavity and lowest transition, which gives rise to

thresholds in the region 15 to 30mA. The minimum value of 15mA, or 764A.cm-2,

indicates that devices fabricated from the part of the wafer close to this device

possess the optimum alignment of quantum well transition and cavity resonance

wavelengths. The threshold voltage of this device is 1.7V. Devices fabricated on parts

of the wafer where the quantum well quality is poor, either due to defects or indium

desorption near the wafer edges, have increased thresholds or do not lase. The

differential quantum efficiency whas an average value of 15.48% and the variation

between devices has a standard deviation of 3.86%. This efficiency is 1.37 times that
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measured for devices fabricated from the layer RMB627. The improvement is likely

to be due to the higher quality quantum wells in the structure QT421. The narrow

linewidth of the PL emission suggests that the non-radiative lifetime of carriers in this

layer is much higher which will result in higher quantum efficiency. The standard

deviation between devices is a similar proportion of the mean value for both layers

3000

nr"
2500 E

2000 g

U.

1500 11

1000

10
995 1000 1005 1010 1015 1020 1025

Wavelength (nm)

Fig. 7.16. Variation of threshold current with wavelength for 50,um diameter

MOCVD grown VCSEL devices.

7.6. c.w. operation

7.6.1. c.w. L-I measurements

At a current of 20mA, which is above threshold for many of the devices, the

bias voltage across a 50gm diameter device is 1.96V. This is considerably less than

for other structures reported in this thesis. The ohmic heating is therefore much

reduced, allowing an extended c.w. operating range.

Devices were driven c.w. using a microprocessor controlled current source

measurement unit. No external heatsinking was used. Fig. 7.17 shows L-I responses of

two typical 50gm devices. As for the MBE grown devices described in chapter 6,

oscillations are observed in the light output as the current is variee. This is due to a

thermally induced shift with current of the cavity resonance past the almost static

Fabry-Perot modes in the substrate. The period of the oscillations is longer than for

devices from RMB627 as the low resistance of the mirrors means that the heating is

considerably reduced. Anti-reflection coating of the lower surface of the surface of

the substrate should remove these oscillations7.
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Fig. 7.17. c. w. L-I response of two typical 50pm diameter devices.

Note that for both devices a maximum light output is obtained at a current of

—55mA, giving maximum output powers of 2.8mW and 3.6mW. The threshold

currents measured are 17mA & 19mA and are the same as the values measured under

pulsed conditions. The bias voltages at threshold for these devices are 1.86V and

1.93V. The current source is limited to 100mA output; at this current there is still

some light output and no permanent deterioration of the device performance occurs;

i.e. the curves in the figure may be traversed an arbitrary number of times without

significant change. These threshold voltages are comparable with the lowest reported

for VCSELs with current injection through the reflector stacks8,9,10, except for one

structure operating at 1.5V for a structure employing continuously graded

reflectors".

201Am diameter devices were also measured. A typical L-I response of one of

these is shown in fig. 7.18.

3.0

0.0
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Fig. 7.18. c. w. L-1 response of a typical 20,um diameter device.

For this device we measure a threshold current of 5.2mA (1655A.cm-2). The

L-I response is similar in form to those for the larger devices but the oscillations are

more pronounced. This is possibly due to the reduced number of transverse modes in

the smaller diameter mesa. A maximum output of 0.61mW is detected at a current of

16mA. Excessive heating has reduced the stimulated emission to zero at a current of

23mA.

The limiting currents for maximum light output from these devices are

summarised in table 7.4. As expected the smaller device is limited at a higher current

density because it has a larger periphery in proportion to its area (see chapter 8).

Diameter (pm) I for Lmax J for Lmax

50 55mA 2801A.cm-2

20 •	 16mA 5093A.cm-2

Table 7.4. Current for maximum light output for 50 and 20,um diameter etched mesa

devices from QT421.

7.6.2. Lasing spectra and thermal parameters

For a number of different currents the c.w. lasing spectra of a 50gm diameter

device were measured. Fig. 7.19 shows how the output spectrum develops with

increasing current. From the spectra in fig. 7.19a the output appears to be confined to

modes spaced in wavelength by —0.36nm. This corresponds to the Fabry-Perot (FP)

mode spacing in a 400vim GaAs cavity, 3.56A to be exact, which corresponds to the
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substrate thickness. At currents below 30mA (-1500A.cm- 2) only one peak is

observed in the spectrum, this indicates a small temperature variation, less than

0.70°C, across the device (see section 8.2). At higher currents a non-uniform

temperature profile develops and multiple peaks may be observed. At currents where

FP mode switching occurs, the light output passes through a local minimum as the

cavity resonance passes through a substrate anti-resonance.

17.5mA.
n 

VD CO Z.- CO 03 0 •r-I 0)	 .41 If) CO 0-

cv 02 02 02 02 CO CO CO CO CO Cr) CO CO

0 000  0 00 0 0 0 00 0

02	 CO	 LO	 O	 1`.-	 CO	 03
- •-n
0 0 0 0

• 0

• 0 0

•

 0- ••1	 •nI	 I	 .1n1

Wavelength (nm)
Wavelength (nm)

(a)	 (b)
Fig. 7.19. c. w. lasing spectra from 501.1m diameter device. (a) low current regime

showing selection of substrate Fabry-Perot modes and (b) higher currents.

In the region 18—>61mA the following thermal parameters are measured from

the above graph:

= 0.056nm.mA -1	 (7.1)

Bias voltages of 1.9V and 2.6V were measured at currents of 18mA and 61

mA respectively. The shift with power is therefore:
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A

dP
= 0.0243nm. m W-1

201,1m diameter devices were also investigated. Fig. 7.20 shows c.w. lasing

spectra of a typical 20pm device. The threshold current of this device is —4.0mA.

(7.2)

1012	 1013	 1014	 1015

Wavelength (nm)

Fig. 7.20. c.w. lasing spectra from 20pm diameter device.

• As for the 50pm device the 20gm device output jumps between Fabry-Perot

modes in the substrate as the drive current is increased. Due to the smaller size, the

temperature profile is more uniform across the device and the output is single moded

below 12mA (-3800A.cm-2).

In the region 4.5-412.0mA the following thermal parameters are deduced:

a = 0.210nm.mA-1	 (7.3)
al.

Bias voltages of 2.45V and 3.56V were measured at currents of 4.5mA and

12.0 mA respectively which are 35% higher than for the larger device. The difference
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arises due to current spreading effects in the lower reflector 12. The shift with power is

therefore:

dA
= 0.0497nm. mW

-1

dP

These parameters are studied in more detail in chapter 8.

7.6.3. Far field patterns

The low operating voltage of these devices means that they do not suffer

permanent degradation when driven with direct currents of up to 100mA (within the

time scale of the measurements). Thus we can examine the far field modal structure

which appears quite stable when driven with a stable current source. An air-clad

semiconductor pill-box optical resonator, such as the mesa etched devices studied in

this thesis, is transversely multimoded if the diameter is more than about half the free

space wavelength. Thus a 5011m diameter device operating at 1.01.un will be heavily

overmoded and a certain amount of transverse mode hopping would be expected to

take place13.

Fig. 7.21 shows the far field output patterns of the device for which the output

spectra are shown in fig. 7.19. These are detected by a sensitive vidicon camera and

photographs taken from the monitor screen. The pictures are slightly squashed in the

vertical direction by an artefact of the camera and monitor system.

Below threshold the light emission is spontaneous, so is very diffuse and

cannot be detected by the camera. Once threshold is reached a narrow beam develops

(fig. 7.21a) and it is found that at higher currents all appreciable light output is

contained in a cone with a half angle of approximately 4.5°. Close to threshold the

amplitude variation is uniform in 0 and appears to approximate to a radial sin20/02

variation14. The half angle at 50% maximum intensity for the central lobe is -1.8°

and the first null is at 2.8°. This corresponds to a TE01 type transverse mode in the

cavity, the lowest supported mode. The effective emitting aperture calculated for this

beam profile is 20.51.Lm where we assume a uniformly illuminated diameter d which

produces beam with a central lobe half angle of 0=sin- 1 (A/d) 14. This indicates the

existence of a filament with a diameter approximately 40% that of the mesa, possibly

as a result of thermal lensing effects.

(7.4)
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(e) 30.48mA	 (f) 33.40mA

Fig. 7.21. Far field patterns of 50pm device operating c.w. as detected by

a vidicon camera Profiles at currents of (a) 17.80mA, (b) 17.90mA, (c) 19.88mA, (d)

22.74mA, (e) 30.48mA and (0 33.40m.A. The angular extent of the pictures is

approximately 10'.

With increasing current mode hopping occurs rapidly. For a current increase

of just 0.1mA, a higher order mode is seen (fig. 7.21b). At higher currents a large
variety of other modes appear (fig. 7.21c,c1,e,f), these are often mixed so the structure
is difficult to determine. Once the output has switched to a different substrate FP
mode the TE01 mode is seen to reappear close to the local minimum in light output

(fig. 7.21e). With further increase in current, switching through higher modes occurs

again.
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(b) 5688mA

(d) 72.00mA

(fi 75.13mA

(17) 80.73mA

N 80.81mA	 0) 82.19mA

Fig. 7.22. Far field output modes of 50pm device at high direct currents. (a)

50.38mA, (b) 56.88mA, (c) 71.34mA, (d) 72.00mA, (e) 74.17mA, (/) 75.13mA, (g)

79.75MA, (h) 80.73mA, () 80. 81m.4 and 6) 82.19mA.

At much higher currents, in excess of 50mA, the far field patterns become

considerably more distinct; a selection of which are shown in fig. 7.22: This may be

due to thermal lensing effects 10'15 which tend to select single modes in preference to

mixed modes. From photographs taken of the output patterns it was noticed that many

of the patterns are symmetrical about axes at 45° to the horizontal. These lines
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correspond to the (100) directions in the semiconductor crystal lattice. This indicates
some inhomogeneity in the crystal lattice giving rise to increased optical gain or
reflectivity for polarizations along the polar lattice directions.

It appears that transverse mode hopping occurs to keep the output wavelength

close to a substrate FP mode. As the cavity heats and the modes within it shift in
wavelength, the ones closest in wavelength to a substrate mode will tend to lase. The
spectra in fig. 7.21 show some evidence of a fine structure which could be evidence
of multiple transverse modes.

7.7. Ion implanted devices

7.7.1. Fabrication of devices
Ion implanted devices were fabricated from quarter 1 of QT421. The full

quarter wafer was processed and 1.0tim thick Cr / Au pads were applied as the
implant mask. It was then cleaved into 11 pieces labelled a to k as shown in fig. 7.23.
Pieces a, b, e, g, h, i, j, & k were implanted with 200keV II+ ions with doses ranging
from 3x10 12.cm-2 to 1 x10 15.cm-2. Table 75 identifies the proton dose implanted
into each of the samples. These samples should allow the implant dose for optimum
VCSEL performance to be identified.

Fig. 7.23. QT421Q1 showing chips cleavedfrom the quarter waferfor proton

implant.

801.tm square Au / Zn / Au contact pads were applied over implanted devices.
Neighbouring devices were isolated by a 3.5gm deep SiC14 reactive ion etch using the

pads as a mask The contacts were then annealed to 400°C to diffuse in the Zn.
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Sam Ile Dose ions .enr	 11
a 3x1012
b 1x1013
e 1x1015

g 3x1013	 1
h lx1014
i 3x1014 i
j 1x1014	 111
k

- -	
3x1013

Table 7.5. Proton implant doses delivered to samples cleavedfrom QT421Q1.

7.7.2. I-V measurements

D.C. I-V measurements were made on the implant defined devices on the

pieces of QT421Q1. Devices ranging from 51.tm to 801.1m diameter as well as 5x5

arrays of 5iim devices were available on the chips. Fig. 7.24. shows the result of these

measurements.

Fig. 7.24. D-C I-V measurements on ion implanted devices from QT421, continued

over page.
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Fig. 7.24. D.C. I-V measurements on ion implanted devices from QT421 implanted

with doses from 3x1012.cm-2 to Ix1015.cm-2 on various diameter devices (a) Opm,

(b) 5,um, (c) 10pm, (d) 20pm, (e) 50tun and (0 80pm.

Comparing the I-V results for an implant dose of 3 x 10 12.cm-2 we see little

difference between the currents flowing in the different sizes of device. This means

that there is effectively no current blocking in the implanted region for this dosage.

Increasing the implant dose, differences begin to emerge as ion damage takes place.

Looking at the curves for a Op.m device, i.e. no implant mask was used, we see

that a dose of —1 x 1014.cm-2 is required to produce a significant blocking resistance6;

the leakage under a 2V bias is reduced to 0.4mA which is 2% of the threshold current
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of a 50gm diameter device. For implants of 3x 10 14 .cm-2 and above, the leakage at

12V is less than 5nA and is probably more dependant on surface currents outside of

the mesa, which are fabrication dependant, rather than the implant dose.

For a 50ptm device we notice that increasing the implant dose above lx

10 14.cm-2 requires an increase in the bias required to maintain the same current. This

is because the current blocking layer is effectively widened as the implant dose is

increased. This causes a pinch off effect of the conduction channel in the upper

reflector which reduces the effect of current funnelling (this is discussed in more

detail in section 8.4). For this size of device, an implant dose of 1x10 14.cm-2 gives an

acceptable compromise between low leakage and low resistance.

For smaller, non-implanted areas more serious effects may arise. There is

some sideways straggle on the position of implanted protons which tends to produce

some implant under the peripheral region of the implant mask and into the active

area. Thus at excessively high implant doses the diameter of the current funnel may

be reduced unduly. For example; in a 51.1m device implanted with lx 1015.cm-2

protons, the reduction in fimnel diameter reduces the current flowing at 12V to 0.812A

which is an apparent current density of just 4.1A.cm-2.

For small diameters the effect of funnel narrowing must be considered; rather

than use a high implant dose it would be better to reduce leakage current by reducing

the area of the mesa.

7.7.3. L-I measurements.

A number of devices from each of the ion-implanted samples of QT421 were

probed. Current pulses were applied and the light output monitored. No evidence of

lasing was found for any of the devices. From PL and photoreflectance data, these

samples should have produced viable lasers. However it was noticed that the

spontaneous emission intensity for the same drive current tended to decrease for

devices implanted with higher doses. This indicates that the quantum well active

region has been damaged by the implant. This could occur if the implant mask were

slightly thinner than that used for the MBE grown devices examined in chapter 6. A

reduction of 0.211m, which is the standard deviation of the implant range 16, could

make a significant difference to the number of ions getting through the mask. There

was no material available to repeat the fabrication of these devices.
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8. Discussions

This chapter discusses the experimental results presented in the previous two

chapters. Comparison is made between devices grown by MBE and MOCVD and

between mesa etched and ion-implant defined devices. Comparison with theoretical

models and reference to the literature is also made.

8.1. Threshold Conditions

8.1.1. Effect of growth variations

This thesis has presented data on low threshold VCSEL devices. Material

grown by both MBE and MOCVD produces devices capable of operating at threshold

currents below 800A.cm-2, for structures incorporating three InGaAs / GaAs quantum

wells. But as was shown in fig. 6.14 there is a wide variation in threshold currents

between devices situated at different positions across the wafer, which depends on the

operating wavelength and hence the epitaxial deposition thickness.

For most semiconductor device applications variations in epitaxial layer

thickness up to ±10% give little variation in the device performance. Typical epitaxial

growth processes, such as MBE or MOCVD, will have ±5% variation in deposition

thickness across a substrate. However for resonant optical devices with a vertical

cavity the variation will give rise to a corresponding ±5% variation in the wavelength

of resonant modes (the effects of material dispersion are second order). That is a

variation of ±50nm for a 1000nm nominal resonance. This is large compared to the

extent of the gain spectrum of a quantum well at low carrier concentrations (2x

10 18.cm-3), see chapter 3. Variation of the quantum well width is less significant, the

same ±5% change in the thickness of an 85A In0 .22Ga0. 78 / GaAs well produces a ±

2.7nm variation in the eihhi transition about the nominal 1011.4nm provided the

composition is not affected. This is insignificant compared to the resonance shift.

To provide lasers for commercial applications it would be necessary to specify

the operating wavelength within lOnm or better. Thus to achieve good yield it is

necessary to specify the growth thickness accurately and have high uniformity growth

(±1% for ±10nm specification). Uniform operating wavelength implies a small

variation in the threshold current, which is desirable. The MBE grown wafer

RMB627 has a variation of ±6% in the growth thickness across the wafer; this is not

fundamental to MBE growth and is a result of the geometry of the effusion cells in the

reactor used to grow this layer. Bandgap Technology Corp. ] claim to achieve ±0.2%

uniformity across a 2" wafer by MBE growth. The MOCVD grown layer QT421

shows ±1% variation over 80% of the grown wafer (the edges are very non-uniform
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and not of any use), this is achieved by optimisation of the interior of the growth

reactor for uniform and laminar gas flows. QT233, in contrast, was grown before the

reactor had been refined and is considerably less uniform. The down-time for

servicing is generally less for an MOCVD reactor than for an MBE machine used for

the same purpose.

8.1.2. Effect of non-uniformities on threshold condition

The variation across the wafer RMB627 is, for research purposes, actually an

advantage as it allows us to probe throughout the quantum well optical gain spectrum.

The single high finesse cavity mode fixes the lasing wavelength which is in contrast

to edge emitting Fabry-Perot lasers where the device lases at the wavelength at which

the gain is maximum and equal to the threshold gain. The systematic variation in

thickness gives cavity resonances over the range 940-41060nm whilst the confined

eihhi transition, as deduced from the low temperature PL measurements, is almost

unchanged at 1022±2.0mn corresponding to an indium fraction of 23.5%. The

threshold gain (gth) is estimated to be —287.cm- 1 using the models in chapter 2. The

variation of the threshold current with wavelength (fig. 6.14) indicates the variation

with wavelength of the current density required to maintain a constant (approximately

as losses in the cavity are weakly wavelength dependant) optical gain gth• In an

attempt to model this variation, the gain spectra for an 85A I110 .235Ga0 . 765As / GaAs

well were calculated at 300K for a number of carrier concentrations using the model

of chapter 3. These are shown in fig. 8.1.

The spectra of fig. 8.1 indicate that transparency is reached at a carrier

concentration of approximately 1.4x10 18.cm-3 at a wavelength of 1055nm for the

eihhi transition. There is a particularly large shift in the this wavelength from the PL

emission indicating that the quantum well bandgap has been under-estimated in the

model, the spectra thus need to be shifted to —1020nm. Transparency for the e2hh2

transition is reached at 5.0x10 18.cm-3 at a wavelength of 965nm but this transition is

of little concern for the devices described here. With increasing carrier concentration

the bandwidth for positive gain increases as carriers fill higher energy states within

the well. At around 2.4x10 18.cm-3 the population of states around the hh2 band edge

becomes significant. It is here that the density of states in the hhi band begins to

increase significantly. This results in an enhanced gain for transitions to these states

thus we see the emergence of a peak in the spectrum 15nm to the short wavelength

side of the lowest energy transition. At higher carrier concentrations this peak

becomes the dominant feature. This shall now be referred to as the state expansion

peak. Similar spectra are calculated by Li et al.2
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Fig. 8.1. Gain spectra calculated for 851 In0 . 235Ga0. 765As / GaAs quantum well at

300K. Gain is in arbitrary units. Curves are shown for carrier concentrations of 0.69,

0.83, 0.99, 1.19, 1.42, 1.69, 2.01, 2.38, 2.80, 3.29, 3.85, 4.49, 5.20, 5.99, 6.87, 7.84

and 8.90x1018.cm-3. Curves show relations for both eihhi and e2hh2 transitions

which are clearly identifiedfrom their wavelength.

flow does the Jth(A) relation of fig. 6.14 arise from the gain spectra? We may

construct a surprisingly similar curve from the modelled spectra if we assume the

threshold gain to be 6 units on the arbitrary scale of fig. 8.1. From the spectra in the

figure we see that the threshold condition (g=6) is first reached at a carrier

concentration (nth) of 1.7x 1018.cm-3.
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Fig. 8.2. The lower curve shows gain spectra for the VCSEL quantum wells at carrier

concentrations of 2.0 and 3.3x10 18.cm-3. The points at which the curve intercept the

g=6 line indicate resonance wavelengths of lasers which will be at threshold at these

concentrations. These points are projected up to give the relation of gth(2) shown in

the upper curve.

Looking at the curve for n=2.0x10 18 .cm-3 in fig. 8.1 we note that it intersects

the line g=6 twice, once at 1060mn and again at 1042nm. This means that lasers

resonant at either of these wavelengths will be at the threshold condition for this

carrier concentration. Fig. 8.2 shows how these two points are projected onto a plot of

nth() 0 . Since we do not yet know T we do not know the corresponding current density.

Using the full family of spectra in fig. 8.1 the curve nth(A) relation of fig. 8.2 is

completed. Fig. 8.3 shows the relation for threshold gains of g=6 and g=24 for both

the e jhhi and e2hh2 transitions. Note that the An�0 transitions are 'not allowed since

there is no wave function overlap.
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Fig. 8.3. Dependence of threshold carrier concentration with cavity resonance

wavelength for VCSEL devices assuming threshold gains of (a) 6 and (b) 24.

Relations for ejhhj and e2hh2 transitions are shown.

The nth(A) relation for the eildzi transition assuming g=6 bears a number of

similarities to the Jth(A) relation measured for devices from the layer RMB627; there

is a wavelength for minimum threshold with a rapid increase towards longer

wavelengths. Operation to longer wavelengths is allowed due to bandgap

renormalization with increased carrier concentration. At shorter wavelengths than the

minimum the threshold increases more slowly and an inflexion occurs —20nm from

the minimum value. The operating wavelength range increases with carrier

concentration as higher energy states are filled. The inflexion is a result of the

increased density of states at higher energies in the hh I band. The n=2 transition is

not within the cavity resonance range of the devices studied here. As described above

the main discrepancy is a wavelength shift probably due to an error in the quantum

well bandgap renormalization.

In the absence of an optical field (such is the case below threshold) the carrier

concentration n is related to the current density J by the rate equation of (8.1).

dn	 J  
+

n
+R n (n)+ Cn

3
(8.1)

dt	 eNdw T SP°

Under steady state the equation is equal to zero. N is the number of quantum

wells and dw is their width. Rspon is the spontaneous recombination rate and tends to.

vary as Bn2. It can be calculated in a similar way to g(n) (see chapter 3). B is typically
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1 0- 10cm3 s- 1 3 corresponding to a lifetime of 1 Ons for n=1 x 1 0 1 8 .cm-3, however

other losses are generally much more significant. In the case of the VCSEL it is likely

that the effect of spontaneous recombination will be reduced by photon recycling

within the high finesse cavity. The non-radiative recombination lifetime is a result

of impurity and surface states in the vicinity of the well and is independent of carrier

concentration. For a typical quantum well the non-radiative lifetime is in the range of

a few 100ps to a few nanoseconds and is likely to be the dominant recombination

mechanism at low to medium carrier concentrations. The final term C is the Auger

coefficient concerning a variety of three body recombination processes 3. It is a

thermally activated process dependant on the bandgap and is a significant loss

mechanism in long wavelength (1.611m) lasers. For a laser operating at a wavelength

of 1.04m, C is of the order 10-30cm6.s- 1 3, corresponding to a lifetime of his for n=1

x 10 18 .cm-3 or lOns for n=1 x10 19.cm-3 . It is clear that T is an important carrier loss

mechanism and, especially at low carrier concentrations, is likely to be dominant. We

shall therefore use the simplified equation (8.2).

j neNtw
(8.2)

This equation concerns recombination of carriers within the well. They may

also be lost by thermal activation out of the well into the barrier. This loss mechanism

is small if the band offsets are many kT but if the barriers are low or the temperature

is elevated the lifetime may be reduced further 4,5,6. This is not considered here but is

mentioned elsewhere in relation to the c.w. operating characteristics.

A fit is attempted between the experimental and modelled data by providing a

shift in wavelength and assuming a carrier lifetime as in (8.2). Fig. 8.4 shows this fit

obtained for a -25nm shift and assuming a lifetime of 900ps. The inclusion of Auger

and radiative terms in the relation for the carrier lifetime does not improve the fit.

This indicates that the lifetimes associated with these process are significantly larger

than for carrier concentrations less than 5x 10 18.cm-3 so may be ignored. The fit to

the long wavelength side of the minimum is very good, this illustrates the effects of

bandgap renormalization of the form (8.3).

AA.= Rn1
hc

Where the renormalization coefficient R=3.2x104eV.cm 7.

(8.3)
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Fig. 8.4. Fit of model to experimental relation Jth(A) obtained by wavelength shift -

25nm and assuming a non-radiative lifetime 'r of 900ps. The fit is not improved by

considering the higher order effects of Auger and radiative recombinations.

The shape of the experimental curve indicates that a threshold condition g=6

is of the right order; i.e. minimum threshold may be reached before the development

of the state expansion peak in the gain spectrum which relates to an increased density

of states. The operating range of the devices and the position of the inflexion in the

curves are in good agreement between model and experiment. Similar Jth(X) relations

are measured for InGaAsP based external cavity lasers by O'Gorman & Levis".

The discrepancy between the two curves could result from the use of an

infinite well model. This tends to overestimate the interaction between the valence

bands at large wavenumber leading to an overestimate of the density of states in the

hhi band at energies close to the hh2 band edge. At room temperature there is

significant population of these states at transparency, hence the carrier concentration

in this regime of the model (around 2x10 18.cm-3) is overestimated. In the real case

transparency is probably around 1.0x10 18.cm-3, which would reduce the minimum

point of the modelled Jth(A) curve to around 400A.cm-2. This would agree with a

900ps lifetime.
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8.1.3. Devices requiring higher gain for threshold
Figure 8.3 also shows the %('A) relation for a threshold gain of 24 units on the

arbitrary scale if fig. 8.1. As the figure shows, the operating range for devices for n<6

x10 18 .cm-3, equivalent to Jth<2400A.cm-2, is reduced from 975—>1078nm for g=6

to 1002—>1078nm (or 974—>1050nm applying the -25nm corrective shift). This is a

27nm reduction in the tuning range to short wavelengths. The minimum threshold is

increased to 2.8x10 18.cm-3 (1120A.cm-2) but more importantly the minimum has

become flatter and is shifted to shorter wavelengths by —30nm. This is a result of the

emergence of the state expansion peak in the gain spectrum.

Compare the curves of fig. 8.3 to those in fig. 6.29 which shows the Jth(A)

relation for implanted devices of varying sizes. The curve for 50p.m devices is shifted

upwards from that for etched devices owing to leakage of 3—>5mA through the

implanted region which is not completely isolated. Data for smaller diameter devices,

for example 5gm, lie on much flatter Jth(A) curves (partly due to the increased effect

of leakage) with minima close to 985= as opposed to 1018nm for 50pm diameters.

Comparing to fig. 8.3 we see the similarity to the curve for g=24. Thus it appears that

a 5pm diameter implant defined device requires of order 2 to 5 times the gain to

reach threshold than does a 50pm device10. The increased loss of smaller devices

results from increased diffraction from a smaller aperture and the increased

absorption from sideways straggle implant damage. It is also likely that the implant

damage produces recombination centres which would act to reduce the lifetime of

carriers in the active region. The effect of this will be more pronounced in small

devices.

8.1.4. Figures of gain

From modelling in chapter 2, figures of Qmax (see equation 2.25) are

calculated for the structures RMB627 and QT421 using the structural dimensions

determined from photoreflectance measurements and absorption values dependant on

the doping profiles. Table 8.1 shows these results along with the values of gain

required from the three quantum wells for threshold. Use of resonant periodic gain

(see section 2.2.2) is assumed which enhances the effective gain by a factor of two.
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QM= gth

RIV1B627 . 342 287.cm-1

QT421 222 441.cm-1

QT421 intended 283 346.cm-1

Table 8.1. Values of On= and threshold gain for VCSEL structures studied here.

Growth errors in QT421 caused a reduction in Qmax .from 283 to 222.

The higher gth for QT421 results from the higher average doping

concentration throughout the mirror stacks and from the relative errors in the mirror

and cavity growth thicknesses. The threshold values in table 8.1 are for broad area

devices where there are minimal edge losses. If we assume this is the case for 50)..tm

devices then we would predict that g=6 is approximately a gain of 287.cm 4 and that

51..im implanted devices have a threshold gain in the region of 500—>1500.cm- 1 . On

the gain spectra of fig. 8.1, 501.im devices from QT421 would operate at g=9.3. This

should give slightly higher thresholds than RMB627 and a more flattened minima in

the Jth(A) curve. The experimental data for QT421 covers a rather limited range of

wavelengths (998—>1022nm) and there appears to be little overall trend (fig. 6.15),

the picture is further complicated by a variation in indium fraction and well quality

across the wafer. For a very simple comparison if we assume a constant ag/an for the

minimum threshold and the same 900ps lifetime we would predict from RMB627 a

minimum threshold current density of 562A.cm- 2 for this structure. The minimum

measured is 764A.cm-2; it is unlikely that a device close to the optimum wavelength

has been found and the absorption losses could well be larger than assumed. The

prediction is reasonable considering the crudity of the model.

8.1.5. Design of quantum well

. Above we have only considered the use of 85A In0 .235Ga0.765As / GaAs

wells as used in the structure RMB627. It is worth considering other well widths and

indium compositions to see if the quantum well design could be improved. In the

following figures we consider a cavity with the same finesse and the same carrier

lifetime as R1vIB627 and calculate the Jth(A) relation as before. In fig. 8.5 we see the

curves for gth=6 and 24 for 85A wells with In fractions of 20 and 25%. Table 8.2

summarises the main differences.
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Fig.8.5. Jth(2) relations calculated for VCSEL structures incorporating 85,4 quantum

wells with (a) 20% and (b) 25% Indium. The right hand axis shows the threshold

currents for 50iun diameter devices. A carrier lifetime of 900ps is assumed.
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20% In
,

25%In 

1	 gth gth=24 gth=6 gth=24

nth(min) 1.81x1018 2.72x10 18 1.53x10 18 2.81x1018

J(min) 722A. cm-2 1088A. cm-2 612A. cm-2 1122A. cm-2

Tuning range for

J=2000A.cm-2

81.8nm 60.1nm 95.6= 71.3nm

Table 8.2 Comparison oPth(A) relations for 85A quantum wells incorporating 20

and 25% indium.

The first observation is that for higher indium fractions the curves are shifted

to longer wavelengths since the quantum wells are deeper. The curve for the n=1

transition is broadened and lowered slightly for low loss lasers. This will give benefits

only for high finesse resonators. The n=1 and n=2 transitions are separated further

and the n=2 is suppressed with increasing In. The curves are flatter bottomed for In

rich wells giving a higher yield of low threshold devices from a typical wafer. In

reality the carrier lifetime will increase in a deeper well as thermionic emission from

the well is reduced. This will make the high indium fraction well even more

attractive. The same effect is produced by putting aluminium in the barrier materia15.

Note the kinks in the curves of fig. 7.5; these result when the differential gain is low

such as beside a rapidly growing peak, the effect of bandgap renormalization is more

significant at these points and produces an effective negative differential gain.

In fig. 8.6 we show similar curves for quantum wells of 70 and 100A width for

In0 .235080 . 765As / GaAs wells. Again we assume a carrier lifetime of 900ps and a

cavity finesse equivalent to gth=6 in the above case. Adjustments are made for the

change in active length. Table 8.3 summarises the major differences.
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Fig. 8.6. Jth(A) relations calculated for VCSEL structures incorporating 75 and 1004

quantum wells with 23.5% Indium. The right hand axis shows the threshold currents

for 50pm diameter devices. Carrier lifetime of 900ps is assumed

.	 , Transition 70A

_

looA

n th(m in)

,

n=1 1.94x1018 1.32x1018

n=2 7.08x1018 4.14x1018

Jth(min) n=1 640A.cm-2 619A.cm-2
n=2 2331A.cm-2 1946A.cm-2

Tuning range for n=1 95.7= 94.3nm

J=2000A.em-2

Table 8.3. Comparison ofJth(A) relations for 70 and 1004 quantum wells

incorporating 23.5% indium.

The shape of the Jth(A) relation changes little with well width. For the

narrower well the curves are shifted to shorter wavelengths as the confinement

increases. Also the splitting of the bound states increases moving the n=2 transition to

even shorter wavelength which has the effect of suppressing it. The tuning range for

the two widths of well is virtually the same. There is little difference in the minimum

points since the effect of a change in active length on the gain requirement is offset by

the effect of the change in active volume on the current density. The minimum is

approximately 3.5% lower in the case of the wider well. Therefore it is marginally

more advantageous to use a wider well but one must be aware to keep clear of the

critical layer thicknessii. 85A is about the widest well that is suitably far from the

critical condition for 23.5% In.
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8.2. Thermal Modelling

The surface emitting lasers described in this thesis are limited in output power

by the ohmic heating effects of current injection. The major source of heating,

particularly in the case of MBE grown devices, is a result of the reverse biased

heterointerfaces in the Bragg reflectors. The second heat source is due to the p-i-n

diode formed about the optical cavity. This drops approximately 1.0V in forward bias.

The external differential efficiency above threshold is —20% so at least 0.8V of this

bias is comprised of a thermal source in the active region. This is most significant in

the case of the MOCVD grown devices from QT421 where the threshold voltage is

below 2V. The design of the reflector stack has a critical effect on the ohmic

resistance and was discussed in detail in chapter 5. The effect of bulk resistivity in-

between heterointerfaces and in the substrate is likely to be small in comparison.

8.2.1. A simple thermal model

Here we attempt to produce a thermal model of the of the device. We shall

approximate a mesa etched device as a circular disc shaped heat source of diameter d

on a semi-infinite GaAs substrate as shown in fig. 8.7.

liv14111"n- n°- Inv
'4.S/Aviiima#1."

Fig. 8.7. Approximation used for thermal model of mesa etched VCSEL device;

circular disc heat source of diameter d at uniform temperature AT above temperature

at boundary of semi-infinite substrate medium of thermal conductivity a.

• The substrate thickness is 8 times the diameter of the large 5011m devices so

the semi-infinite model should be acceptable. In reality, the thermal conductivity of

the mesa is not infinite so a temperature profile will develop across the diameter d.

If the disc is a source of thermal power P and rises to a temperature AT, which

we shall approximate as uniform, above that far from the device, then the solution to

the problem is analytic and given by equation (8.3)12.

AT =
2da
	 (8.3)
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Where cy is the thermal conductivity of the substrate. For GaAs at 300K
=0.45W.cm- 1 .°C- 1 13.

A temperature rise produces a change in the refractive index An and in the
dimensions of the semiconductor material Al due to the thermal expansion coefficient
a, at 300K (8.4) 14•

	= no (1+ 4.5 x 10-5 AT)	 (8.4a)

	

1
—
dl

= 5.5 x 10-6 .K-1	 (8.4b)
1(3T

Where the temperature T is in degrees Kelvin and no is the original value of
refractive index. For a GaAs based Fabry-Perot resonator of length 1 the wavelength of
the Nth mode is given by equation (8.5).

a	 nl

—N = 2N

This is caused to shift with temperature as (8.6).

dA,	 d(n 1 n ) d(11	 1 )
N ANo(	

o	 o  
= 'N0505 x 10 5 .K 1	(8.6)

dT

Where o refers to the original conditions. It is reasonable to assume similar

temperature variations for AlxGai..xAs compounds; thus for a VCSEL resonator all
layers in the structure will be affected likewise and a shift as in (8.6) is expected_

For a structure resonant at 4=1000nm we expect a shift of (8.7).

dA,
0= .0505nm.° C-1	 (8.7)

dT

A temperature rise of a few degrees in the temperature of a device will be

readily detectable as a shift in the wavelength of the emission spectrum.
For a VCSEL device the thermal power dissipated is almost equal to the

electrical input since the power conversion efficiency is low (and is almost zero
below threshold). Thus at a current density J we expect a temperature rise above the
ambient of AT (8.8)

P	 id

	

AT = —.V.J 
8a	

(8.8)
2da

Where V is the bias voltage. Thus AT at threshold should increase in

proportion to the device dimensions.

8.2.2. Results for etched mesa devices

Fig. 6.16 shows the c.w. output spectrum from a 50gm diameter etched mesa

device from RMB627 at a number of different currents. The spectra show a red shift

(8.5)
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in the output with increasing drive current as well as an increase in the number of

lasing modes. This was described in 6.4.3 as the development of filaments across a

temperature profile. Increasing the current from 11 to 19mA corresponds to A

P=62.4mW and gives a wavelength shift of 1.5nm towards the periphery of the device

and 3.0nm towards the device centre. Using (8.7) we calculate the temperature rise as

29.70—>59.41°C and the thermal impedance OT/aP=0.476—>0.952°C.mW 4. Table 8.4

shows the results for 50 and 20gm diameter devices from both RMB627 and QT421

layers. From these values an effective thermal conductivity aeff is calculated using

equation (8.8), this is also shown in the table.

50gm 20gm

Al 1.5—>3.0mn 2.88nm
1

At 8mA 3.5mA

AP 62.4mW 36.5mW

AA/M 0.1 88-40.375nm.mA- 1 0.823run.mA4

AT/Al 3.723—>7.426°C.mA-1 16.29°C.mA-1

AT/AP 0.476-->0.952°C.mW-1 1.564°C.mW-1

oeff 0.105—>0.210W.cm-1.°C-1 0.160W.cm-1.°C-1

(a)

50gm 20gm

A.I. 2.1-->2.7tun 1.48—>1.67nm

el 43mA 7.5mA

AP 98.4mW 31.7mW

AVAl 0.048—>0.063nm.mA-1 0.197-->0.223mn.mA-1

AT/AI 0.095—>1.248°C.mA-1 3.908-->4.409°C.mA-1

AT/AP 0.422—>0.543°C.mW4 0.925—>1.043°C.mW-1

oeff 0.237—>0.184W.cm-1. °C- 1 0.240—>0.270W.cm-1.°C-1

(b)

Table 8.4. Thermal parameters for etched mesa VCSEL devices under c. w. operation.

Devices from; (a) RA/18627 and (b) QT421.

Note that the active region has finite thermal conductivity and the assumption

that the temperature rise is uniform is not valid. For 5Own diameter devices we

deduce an effective thermal conductivity oeff of 0.105—>0.210W.cm- 1 .°C.4 . This is

somewhat less than the thermal conductivity of GaAs (0.45W.cm- 1 .°C- 1 ) for two
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reasons: i) The thermal source is more distributed than is estimated in fig. 8.7 so there

are extra thermal impedance terms which have not been considered, in particular the

thermal resistance for heat flow down through the mesa; ii) The heterointerfaces in

the Bragg reflectors have a high resistance due to potential spikes impeding the

passage of electrons. Electrons play a part in the distribution of thermal energy so

preventing their flow reduces the thermal conductivity. It is not necessary to use a

more complete model since we may use the effective conductivity measured above in

further calculations.

For the smaller 201.im diameter devices we calculate an effective thermal

conductivity aer-0.160W.cm4 .°C.- 1 . This is very close to the average value

(0.158W.cm- 1 .°C.-1 ) for 501.tm devices. This validates the model described above. As

predicted the specific temperature rise dT/al varies in proportion to the diameter d

which implies that smaller mesas can handle higher power densities15.

Now considering the QT421 devices. For 50pm devices the shift per mit

current is reduced by a factor 6.0 compared with RMB627 devices. This is largely due

to the large reduction in series resistance afforded by the highly doped reflectors

reducing the threshold voltage from 7.8 to 1.9V for the two devices studied here.

Comparing the thermal impedances (AT/AP) of the two devices reveals a reduction by

a factor of 1.75 in the centre of the devices. The thermal mass of the QT421 device

indicates an average effective thermal conductivity of 0.211W.cm- 1 .°C.- 1 . This

increased conductivity may be due to increased charge carrier conductance through

the Bragg reflectors or a reduced mesa height This may explain the more uniform

temperature profile evident in the output spectra as the ratio of minimum to

maximum shifts of the output modes: for 50jim devices the ratio of maximum to

minimum shifts is only 1.3 compared to 2.0 for RMB627 devices.

For 20pim devices from QT421 we calculate a slightly larger average value of

ceff(0.255W.cm4 .°C.4 ) than for the larger device. This indicates a more distributed

thermal source than for the RMB627 devices. This would be the case if the resistance

of the lower reflector, which is not fully etched, becomes more significant as a heat

source. In this case significant power is dissipated in areas away from the mesa, the

effect of which is to reduce the amount of heating particularly for small devices.

8.2.3. Implanted devices

The geometry of the implant defined devices is somewhat different. The

current flow is funnelled through the top reflector so heating is more distributed and

there is more semiconductor around the device to aid conduction. Fig. 8.8 shows a

device with active diameter d in a square mesa of side a. For the devices studied here

cr=801.im.
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Etched square mesa
a

	 	
Implanted
area

A

Active region

Fig. 8.8. Geometry of implant defined devices. Active diameter d lies within a square
mesa of side a. Funnelling of the current I is indicated by the curved lines

Dimensional analysis may be used to analyse the problem. If we consider the
important parameters as a, d, a and dT/dP we can form two independent

dimensionless groups (8.9).

ad 
9

9T1dP	 —	
(8. )

a

By comparison with (8.3) we see that the solution is of the form (8.10)

dT 1
dP = 2dcr	 a\	

(8.10)

For some functionf Limits for f are defined by comparison with (8.3) and by

considering an infinite mesa (8.11). A similar treatment of the problem is made by

Nalcwaski & Osinski16.

f(1) 1
	

(8.11a)

f(x –+ 0) = C
	

(8.11b)

For some constant C<1. A 50 p.m device occupies only 30% of the 80pm mesa

so for this and smaller devices we take the infinite mesa approximation (8.12).

dT C
(8.12)

dP 2da

C will depend on the device geometry so we shall refer to it as the shape

factor.

8.2.4. Results for ion implanted devices

The table 8.5 presents thermal data for ion-implanted devices from RMB627.

We note that, for 5011m devices, the ratio of maximum to minimum shifts is reduced

from 2.0, in the case of etched mesa devices, to 1.7. This indicates that the

temperature profile in the ion-implanted devices is more uniform 'as a result of the
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large surrounding mesa. However for 20iim etched devices only one mode is evident

in the output spectrum, indicating the possibility of thermal lensing effectsn,/8.

The ratio of thermal masses for 20 and 501im devices is 2.36 for

measurements at the device centres. The ratio of diameters is 2.50. This suggests that

equation (8.12) is valid. By comparing with data for etched mesa devices we

determine that the shape factor C is 0.49 (as determined from 50iim devices, a similar

value of 0.44 is determined from 2011m devices). Also shown in table 8.5 is the

reduced effective thermal conductivity aeff/C.

50gm 20p.m

LU 1.9—>3.2nm 1.4—>1.9nm

AI 21mA 5mA

AP 133.7mW 31.5mW

AVAI 0.090—>0.152nm.mA4 0.280—>0.380nm.mA4

AT/Al 1.78—>3.01°C1 5.54—>7.52°C.mA-1

AT/AP 0.281--*0.474°C.mW-1 0.880—>1.119°C.mW-1

Geffr 0.211-->0.356W .°C4 .cm4 ) 0.223—>0.284V .°C-'C .cm-

Table 8.5. Thermal parameters for RlvfB627 ion-implanted devices.

By comparing the temperature rise with current for the etched and implanted

devices we see another advantage of the implanted geometry in addition to the shape

factor. This ratio is 2.47 which is 1.23/C or 1.23 times the difference due to C alone.

Considering the change of electrical power with current, which is equivalent to a

voltage Vp (8.13) we can explain this difference.

dP ,	 Tr
(8.13)

di	 dI

For the etched mesa device the differential slope resistance is effectively zero

abOve threshold hence Vp is the bias voltage of 7.8V (fig. 6.10). For the implanted

device around 22.5mA (mean current) the bias voltage is 5.3V and the differential

slope resistance is 42C1 giving Vp=6.24V (fig. 6.20). The ratio of these two is 1.25

accounting for the difference noted above.

Thus as well as a reduced thermal mass (by a factor 1/C=2.01) the implanted

device operates at lower voltages since the effect of current funnelling19 in the

implanted mesa (fig. 8.7) reduces the device resistance. This would give an

improvement of 1.47 but the etched device is approaching the thermal runaway.
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condition where the differential resistance is zero hence the change of power with

voltage is reduced and the ratio is reduced to 1.25 (1.23 is the measured value).

8.3. Operating power range

8.3.1. Ohmic heating effects

When operating under c.w. conditions the effects of ohmic heating are most

severe. As the temperature of the device rises the Fermi distributions of electrons and

holes is broadened. This has two effects; i) the population of low energy states is

reduced as carriers are thermally excited into higher states. These lower states are

important for lasing transitions, thus the optical gain is reduced. ii) Carriers with

increased thermal energy can be thermionically ejected out of the quantum wells and

lost to other recombination mechanisms. This results in a reduced carrier

concentration for the same drive current. This is a thermally activated process and

around room temperature increases rapidly with temperature 6. Similarly other

thermally activated recombination processes such as Auger3 are increased and in the

same way can reduce the carrier concentration. Both of these effects, i) and ii), result

in a reduced optical gain. These effects vary exponentially with temperature and thus

with current.

Fig. 8.9. L-1 response expected from VCSEL device operated c.w. The regimes of

operation (1-6) are described in the text.

Under c.w. operation we would expect an L-I response as shown in fig. 8.9 as

a result of ohmic heating. The regimes of operation (1-6) are described in the

following:

Close to threshold 1 the familiar linear relationship 2 is expected. As the

current is increased the power dissipated in the ohmic heating sources will increase

and the device performance will begin to be affected. With increasing temperature in

the active region the optical gain of the quantum wells will drop. The carrier.

concentration will rise to maintain the threshold gain and consequently the current
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available to produce light output is reduced as the current due to non-radiative
recombinations increases4,20, as illustrated in fig. 8.10. This is manifested in a

reduction in the differential quantum efficiency seen as a reduction in slope of the L-I

curve 3. At higher currents the increase in the loss mechanisms begins to outweigh

the increase in current and the light output reaches its maximum value 4. With further

increase in current the output falls as the losses increase ever more rapidly 5.

Eventually the non-radiative losses become so large that the threshold condition

cannot be maintained 6. At currents higher than this there is no net stimulated

emission.

Fig. 8.10. Illustration of variation of radiative and non-radiative currents with device

temperature. With increasing temperature increasing carrier loss mechanisms require

a larger fraction of the drive current ID to maintain threshold and the current

available for light emission is reduced

8.3.2. Thermal model for size effects
Assuming a linear increase in device temperature AT with current (this is

reasonable since under c.w. conditions the forward voltage is almost constant above

threshold) we would expect the temperature of the active region at which we measure

maximum light output to be constant for devices fabricated from similar material. Let

this temperature be ATmax above ambient conditions, i.e. room temperature —22°C,

and let it occur at a current density Jmax in a particular device. From section 8.2. we

would expect a relation of the form (8.14).

J = 
8cr,A Tn. oc —1

(8.14)
CrdVth d

Where C=1 for etched mesa devices and 041.49 for implant defined devices.

Thus Jmax should scale with 11d.

8.3.3. Results for devices of varying size
Fig. 8.11 shows the relation Jmax(11d) for ion-implanted and mesa etched

devices from RMB627. Data is from tables 6.3 and 6.6. Note that it is necessary to
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adjust the ion-implanted data to account for a 5mA leakage current through the
implanted area. This current is assumed not to contribute to heating since it is
distributed over a large area. The adjusted data and data for mesa devices lie very

close to straight lines the slope of which are given in (8.15).

Fig. 8.11. (a) Variation of current density for maximum light output for VCSEL

devices from RA/113627,- V ion-implanted devices raw data and • adjusted to account

for leakage, 0 mesa etched devices. (b) Data for large devices on expanded scale.

.4,70x = 152kA.cm-2 .iimid - ion implanted	 (8.15a)

Jmax= 46.2k4.cm-241nild - mesa etched	 (8.15b)

This confirms equation (8.14). The ratio of the two slopes is 3.29 this means
that the output of implant defined devices is limited at a value 3.29 times that in
etched mesa devices of the same active diameter. From 8.2.2 and 8.2.4 we have (AT/4

P)etchedl(AT/4P)impiantecr2.01 for the device centre. This is the factor 1/C in

equation (8.12). There is also a change in bias voltage VetchediV implanted- 1.59. The
product of these two ratios is 3.20 equal to ..Imax(etchedlimax(implanted) within
experimental error.

For mesa etched devices from QT421 we plot corresponding data for
maximum light output on fig. 8.12. A line is fitted through the data; the fit is not as
good as for RMB627 devices, possibly due to distributed heating effects il mentioned
in section 8.2.2 or to material variations between devices. The slope of this line is
given in (8.16).
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Fig. 8.12. Variation of current density for maximum light output for mesa etched

VCSEL devices from QT421.

/max = 115kA.cm-2 .timl d - mesa etched	 (8.16)

This is 2.5 times the current density as in RMB627 devices. There is a factor

of 6.0 difference between the values of 4T/AI for these structures. This indicates a

limiting temperature rise for maximum output 2.5/6.0=42% of that in the MBE grown

structure.

Thermal runaway is not a problem for the smaller devices hence the

differential resistances of the two devices scale with the bias voltages. We may

therefore use the bias voltage V in place of the term Vp of equation (8.12).

We can calculate tiTmax (8.17):

a T r
AT.= = (31 'max
	

(8.17)

For RMB627, using results for 501Am devices, we calculate ATmax=148°C

(etched), 165°C (implanted). Thus the active region temperature for maximum light

output is approximately 178°C in the device centre.

Similarly for QT421 etched devices we calculate ATmax=85°C corresponding

to an active region temperature of 107°C. It is unclear why this temperature is so

much lower than for RMB627 devices. One explanation might be that the maximum

temperature rise in the device is not the limiting one i.e. in a device in which the

centre is heated by Armax the edges are at a lower temperature and filaments may

still lase there. However we calculate similar temperatures for etched and implanted

devices of RMB627, which have different temperature profiles, suggesting that this is

not the case. From 8.1 we remember that QT421 has a higher threshold gain. As the

temperature rises it is conceivable that gain compression increases also. This would

mean that the threshold current for a laser with higher threshold gain will rise faster

with temperature and give a reduced 4Tmax. Scott et al. 6 calculate a value of ATmax
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=75°C for similar structures but note that it will be much increased if the active

region is clad by larger potential barriers.

8.3.4. Pulsed operation

For a current step dissipating power P applied at time 1=0 from (8.12) we

would expect the device temperature to rise with time as shown in equation (8.18).

AT (1_ e_t/r) C
(8.18)

P	 2do-
For some time constant T. If now the pulse length is t then (8.18) describes the

maximum temperature rise of the device during the pulse. If the pulse is short

compared with the time constant we may approximate (8.19).

Pt C	 dT	 Pt
Ai ——•=(— • —	 (8.19)

2da dP)

Where Pt is the pulse energy and the c.w. thermal impedance is as previously

determined. From Fig. 6.11 we see that for 50gm diameter RMB627 devices driven

by 0.43gs pulses a maximum light output is obtained. Table 8.6 presents this

information and equation (8.19) is used to calculate the time constant t assuming

ATma,e---150°C as found above.

Etched Implanted

0.474°C.mW-1(AT/AP)cw 0.952°C.mW-1

'mar light 200mA 560mA

V MITI' lifYht 15V 10V

P 3.0W 5.6W

Lt 6.5nJ 16.3nJ

Pt 1.29pi 2.41gJ

I' 8.2gs 7.6gs

Table 8.6. Figures used to calculate thermal time constant tfor 50pm diameter

RM13627 VCSEL devices.

A value of 'm8gs is calculated for both etched and implant defined devices.

Thus the assumption that the pulse length of 0.43gs is short was correct. The values

of Pt in the table give the pulse energy for maximum light output for any short pulse.

The value Lt is the maximum output pulse energy. Thus an implant defined device is

able to supply optical pulses 2.5 times the energy of those from an etched mesa

device.
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Similarly for etched 501.1m devices from QT421, data from fig. 6.14a we

estimate r766.81As. A faster thermal response would be consistent with inoroctood

thermal conductivity. Notice that the maximum optical pulse is 3.0 times that for

etched devices from RMB627 despite the reduced value of Armax. This is a result of

the lower bias resistance. This is summarised in table 8.7.

Etched

(AT/4P) 0.543°C.mW1

'max light 340mA

V mtvc light 7.3V

P 2.5W

Lt 19.8nJ

Pt	 . 1.07P

I 6.811s

Table 8.7. Figures used to calculate thermal time constant Zfor 50,um diameter

QT421 mesa etched VCSEL devices.

Electrical gain switching has been successfully observed in VCSELs by

Hasnain et al22. The spectral linewidth of 22ps pulses is almost transform limited

because the cavity resonance is not readily chirped by changes in the index of the thin

quantum wells. The maximum pulse energy, as determined above, will limit the

output of gain switched devices. Picosecond pulses are useful for pumping solid state

lasers with high thresholds and for making use of optical non-linearities. They may be

used to excite solitons in optical fibres for which low chirp is also required.

8.3.5. Wavelength dependence of operating range

In operation, VCSEL devices heat up due to the flow of current through the

reflector layers; a number of effects result. The cavity resonance mode shifts to longer

wavelengths due to changes in the refractive index and the device dimensions. The

bandgap of the semiconductor material shrinks causing the optical gain spectrum also

to shift to longer wavelengths. The relative positions of the cavity resonance and the

gain spectrum will determine the laser output for a given carrier injection.

Other important effects include the carrier loss mechanisms. (i) Thermionic

emission of carriers from the quantum wells at elevated temperatures increases the

current required to maintain the carrier concentration required for threshold. The

effect of this is more severe in shallower quantum wells 4,23. (ii) Auger

recombinations tend to follow an Arrhenius thermal activation law; the recombination
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rate can increase very rapidly with temperature 3. (ii) For a given carrier concentration

n, the gain g(n) will tend to fall as the temperature rises. The Fermi distribution of

carriers in the conduction and valence band states broadens with increasing

temperature; this tends to decrease the proportion of carriers in lower energy states

which are important for lasing, so the gain falls. The effect of a reduction in g(n) is to

cause n to rise to maintain the threshold condition and the result is in an increased

spontaneous recombination current (varies as n2). The effect of (i)-(iii) is to reduce

the current available for conversion to light output.

For etched devices from RMB627 the effects of resistive heating are so severe

that only those with the smallest pulsed threshold currents (cavity resonance close to

1018nm) are able to lase c.w (see section 6.4.3). Thermal reduction of the gain limits

the maximum output to 0.35mW at —20mA. This is a power conversion efficiency of

0.22%.

For ion implanted devices the reduced heating effects, afforded by the lower

ohmic and thermal resistances 19, allow higher operating currents and thus higher

output powers. For example, a power of 1.65mW is produced at a current of 60mW

(section 6.6.4). This corresponds to a power conversion efficiency of 0.46%, an

improvement by a factor of 2.1 over etched mesa devices. The larger operating range

means that devices with less well positioned cavity resonances may operate c.w. In

section 6.6.5, measurements on a number of devices identified the c.w. operating

range as devices with cavity resonances from 987 to 1066tun. A minimum c.w.

threshold of 12mA was identified for devices resonant at —1020nm (resonant

wavelength measured under pulsed conditions). This is compared with a minimum of

10.5mA at 1014nm under pulsed conditions. The maximum c.w. light output is

1.4mW (as determined from the curve fitted through data) for a cavity resonant at

1028nm. The wavelength difference observed between the minimum threshold and

maximum light output conditions is due to the red shift with temperature of the gain

spectrum with respect to the cavity resonance23. This improves the alignment

between the gain spectrum and cavity resonance for devices resonant at wavelengths

longer than —1014iun.

This change in alignment also causes a reduction in the threshold current for

devices resonant at long wavelengths; for example the device resonant at 1059.9nm

has a c.w. threshold current of 66mA, the corresponding pulsed value is —200mA. The

reduction is less for devices closer to the minimum threshold. The reverse happens at

short wavelengths, i.e. the c.w. threshold current is higher than under pulsed

conditions (see fig. 6.36).

In order to clarify these data we can adjust for the effects of shifts in the cavity

resonance and gain spectrum. This leaves only the thermal effects due to the loss
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mechanisms (i)-(iii) above. From equation (7.7) we have the wavelength shift of the

cavity mode (7.20).

(3A. FP — 0.0505nm.° C-1	 (8.20)
dT

The bandgap of GaAs varies with the temperature in Kelvin T as (8.21) 14,

from which we find the shift per unit temperature (8.22).

E g = 1.519 
5.405 x 10-4T2  

(eV)	 (8.21)
T + 204

dE,
° = 5.405x 10-

4 (408 + T)Tr
2 keV.IC-1 )	 (8.22)

dT	 (T + 204)

At room temperature (300K) the shift is -0.4519meV.°C- 1 . Assuming a

similar shift for the dependence of bound transitions in InGaAs / GaAs quantum wells

we calculate the shift in the gain spectrum. The transition wavelength Air

corresponding to an energy Efr is given by equation (8.23).

(At,.	 At,. dEt,.
(8.24)

dT	 Etr dT

Using the figure for GaAs we find that for a transition at 1000nm (1.24eV) the

shift is 0.3644nm.°C4 . The relative shift is therefore (8.25):

dA3Afr dAFp— = —	 — 0.3139m.° C-1	 (3.25)
d7' dl' dl'

From table 7.5 we find the device temperature rise with current is on average

2.4°C.mA- 1 . Combining this with (3.25) the relative shift with current is (3.26).

0.7534nm.mA -1	(3.26)

Using this figure the measured data is adjusted to give effective values of

wavelength taking into account the relative shifts of cavity mode and gain spectrum.

This is shown in fig. 8.13.
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The threshold data now lie much closer to the line for pulsed data, with a

minimum at —1010nm. At wavelengths longer than 1020nm the threshold is seen to

increase much more rapidly than under pulsed conditions. This indicates the true

effect of temperature on the threshold current20,24 (see right hand axis in fig. 8.13).

The current at which the output falls to zero /0 tends to increase with wavelength

because the resonance is moving closer to the gain peak situated at —1020mn. This

reaches a limit at 990= where it joins the 1th curve. The region between these two

curves gives the c.w. operating range for the devices. This envelope relates only to

devices of this size made from the same material. For devices with a lower resistance

or more effective heatsinking the envelope will be widened ant the value of Ith will

correspond more closely to the pulsed value.

Fig. 8.14 shows the relation between the peak output and the current 'max at

which it occurs. The low current end of this graph indicates devices resonant at short

wavelengths. Heating causes the gain spectrum to shift away from the resonance so

the output is limited at a low value. As the wavelength moves closer to the gain peak

the maximum output increases until, for cavities resonant at wavelengths longer than

200
80

180 -CS0
70 160

60	 140	 "t:'
a)

50	 120
0

100
pi 40

80	 a,
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0
950 900 970 980 990 1.000 ta t<12<1 I:33'31.31W

Wavelength (nm)

Fig. 8.13. Variation of current parameters for c.w. L-1 response of 50 fun diameter

implant defined devices. The wavelength scale is adjusted to account for relative

shifts of the cavity resonance and gain spectrum with temperature. l th is the threshold

current, Pmax the maximum output power and Imax the current at which this is

measured 10 is the current at which the coherent emission falls to zero. The grey line

shows the function lth(A) for pulsed operation.
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1028nm (where the temperature rise at the peak is 130°C), temperature begins to limit

the maximum available gain and we note a drop in the maximum output. If the

temperature did not limit the gain the curve would continue to rise.

Temperature Rise (°C)

80 100 120 140 160 180 200

Fig. 8. 14. Variation of maximum output Pmaxfrom implanted 50 4im diameter lasers

from R1v1B627 with current 'max' indicating the reduction due to excessive heating.

Fig. 8.15 provides a summary of the operation of these devices. Fig. 8.15a

shows a device operating at a short wavelength: at 1 the gain is below threshold so

there is little light output. As the current is increased the gain increases until threshold

is reached, somewhere below 2. With increasing current the gain spectrum is

continually moving to longer wavelengths, so the peak gain must increase to maintain

the threshold gain gth at the cavity resonance. This requires an increasing proportion

of the current and eventually 4 the threshold can no longer be maintained. There is

also a reduction in the gain at elevated temperatures 5.

Fig. 8.15b shows a device operating at a long wavelength: at low currents 1 the

cavity resonance lies outside the gain spectrum. With increasing current the spectrum

shifts into better alignment with the resonance due to the increase in temperature and

to bandgap renonnalization; the threshold condition is then reached 2. The

improvement in the wavelength alignment continues to improve 3 and the threshold

carrier density is reduced. Eventually 4, 5 and 6, thermal effects begin to increase the

threshold carrier density and limit the light output, even in devices in which the

wavelength alignment continues to improve.
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Cavity resonance

gl
(b)

0	 0
0	 0

Fig. 8.15. Diagrams illustrating the effect of shifts in the gain spectrum (left) on the

current light response (right), the shift in the cavity resonance is small in comparison

and ignored for clarity. (a) device operating to the short wavelength side of minimum

threshold current; (b) device operating to long wavelength side of this point.

There have been a number of studies on the subject of the wavelength

alignment between the optical gain spectrum and the FP resonance in

VCSELs5,23,25,26, 27. Choquette et al. 25 observe a monotonic increase with current of

the spontaneous emission emitted laterally from a VCSEL, even above la. They argue

that this must imply a continued increase in the maximum gain available: i.e. Pmax is

limited by wavelength alignment effects rather that a reduction in the maximum gain.

This is not entirely true since the spontaneous emission will vary as n2, whilst the

transparency density varies as (k7)3/2 (3.23). Thus we would expect the spontaneous

emission to increase as T3 if the gain remains unchanged. Measurements presented

here (fig. 8.14) confirm that the gain is limited at device high temperatures and we

cannot continue to get increased light output by going to longer and longer

wavelengths.

Young et al. 23 examine the use of a gain offset to increase Pmax and study the

temperature variation due to tuning of the threshold current in these structures;

however they do not specify the offset needed or examine the limits of operation.

From the data presented here we find a maximum output power of 1.4mW for

a devices resonant at 1028nm. The minimum pulsed threshold current occurs for

devices resonant at 1014nm; a difference in wavelength of only 1.4%. The maximum

output power here is reduced to 1.2mW, a reduction of 14%. Therefore the design of
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a structure for maximum peak power requires a structure little different from that for

minimum threshold current, and the maximum output power in this case is only 14%

less. The difference in these specifications is less than likely growth errors (see

chapter 4). In most practical situations, the linear part of the L-I response is more

important than the peak value; better performance in this part of the spectrum

requires devices with minimum threshold.

Scott et al. consider the effects of carrier loss mechanisms, in particular

thermionic emission from the wells and leakage currents, and, using a thermal model

for mesa etched devices, predict accurately the c.w. L-I response of devices operating

at different ambient temperatures. They also predict the improvements of using higher

confinement barriers in the quantum wells. This identifies a major factor in limiting

the gain and hence maximum output power as carrier escape from the wells.

8.4. Reflector resistance

8.5.1. General comments

The problem of resistance has already been discussed in detail in chapter 4.

The conclusions here were that the band edge discontinuities at heterointerfaces in an

AlAs / GaAs reflector stack cause an excessive resistance even when very highly

doped. To reduce this it is necessary to disrupt the interface by including layers of

intermediate composition or using a superlattice grade. The effects of this on the

reflectivity are small, especially if doping to high concentrations is only included in

the vicinity of the interfaces. The problems of solubility of Be in AlGaAs were

highlighted. By using Zn and C p-type dopant in MOCVD and also by reducing the

concentration of 0 traps, devices were produced with threshold voltages as low as

1.8V (15mA pulsed threshold), this is comparable to the lowest reported for devices

with current injection through the mirror stacks, except for continuously graded

structures. The reduction of resistance reduces the bias voltage required for operation;

this increases the power conversion efficiency and increases the operating range of

the devices since the temperature rise due to the current flow is reduced.

8.5.2. Ion implanted devices

Ion implanted devices were successfully made from the MBE grown structure

RMB627 (section 6.6). The current blocking layer so produced (section 4.3.5) allows

current to be funnelled from a large contact pad into a smaller active diameter. The

increased size of mesa gives a reduction in resistance. At threshold the bias voltage

for a 50ium active diameter was reduced19 from 7.5V in the case of etched mesa -

device to 4.6V in a proton implanted device. Further to this reduction in bias, there is
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also a reduction in the thermal resistance 16 (8.2.3). Both of these improvements allow

operation to higher currents.
Implant mask

- Implant mask

Implant mask

Fig. 8.16. Current flow in ion implanted devices. (a) A device implanted with 3x

1012.cm-2 200keV protons, there is little isolation in the implanted region and much

current leaks through it. (b) Device implanted with dose of —1x10 14.cm-2, there is

little leakage through the implanted region and current is funnelled effectively into

the intended active area. (c) Device with excessive implant dose, >1x10 15.cm-2 ions,

current blocking layer is thicker and lateral conduction channel in upper reflector is

narrowed There is also a similar pinch off of the active diameter.

Only one ion dose was used for the RMB627 devices (2x 10 13 .cm-2); this was

an estimated optimum value 28. In section 7.7 a number of samples from QT421 were

Active layer
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prepared and implanted with doses in the range 3x10 12 .cm-2 --> lx 10 15 .cm-2. None

of these operated as lasers but useful I-V measurements were made. The conclusions

of these measurements include: The lowest dose used (3x10 12.cm-2) provides very

little isolation, as shown in fig. 8.16a. A dose of —1 x10 13 .cm-2 is required to reduce

the current flowing by a factor of two. A dose of 1 x10 14.cm-2 reduces the leakage

through the implanted region to 2% of the threshold of a 501im device which is

0.4mA (fig. 8.16b). Higher doses improve the isolation and reduce the leakage

through the 801.1m square mesa below 5nA. But the device resistance continues to

increase for what is a rather insignificant reduction in operating current. This is

illustrated in fig. 8.16c. The implanted protons create insulating material at a depth

d=0.76gm with a vertical and lateral straggle of a41.21.tm 29. At an implant dose of 1

x 10 15 .cm-2 the ion damage is equivalent to the current blocking created by an ion

dose of 1 x10 13 .cm-2 at a distance of 2.3a from the mean implant depth (using the

normal distribution). The thickness of the current blocking layer is therefore increased

to almost 1.0gm in this case. This produces an increase in the resistance of the

current funnel by pinching off the conducting region in the top reflector. A similar

lateral narrowing of the active diameter occurs from the lateral straggle.

From this we conclude that the optimum implant dose for 200keV protons 30 is

in the tinge 3x10 13 .cm-2 to 1 x10 14 .cm-2. To reduce leakage in smaller active

diameters it is better to reduce the mesa size than to increase the implant dose.

Increased implant doses are likely to increase carrier losses from the active region and

create absorption centres, particularly for small active areas.
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9. Conclusions and Further Work

9.1. Conclusions of this thesis

9.1.1. Introduction

The theory of operation of vertical cavity surface emitting lasers (VCSELs)

has been studied in detail in this thesis. The results of these studies were used to

design VCSEL structures which were subsequently grown by MOCVD and MBE. The

operating characteristics of fabricated devices were investigated and the become the

subject of further theoretical study.

The basic design of the structures incorporates three strained InGaAs active

quantum wells placed resonantly in a GaAs optical cavity two wavelengths long. The

cavity is formed between AlAs / GaAs multilayer Bragg reflectors with reflectivities

of —0.998. The use of strained InGaAs quantum wells gives emission at wavelengths

longer than the GaAs band edge so output may be taken through the transparent GaAs

substrate; strain effects alter the band structure to reduce the transparency carrier

density.

9.1.2. Reflectivity issues

In chapter 2 the reflectivity spectra of the multilayer reflectors is calculated

and their effects on the optical gain required for threshold is considered. It is found

that an absorption coefficient of 10.cm- 1 in all layers of the laser is sufficient to

require double the threshold gain of that for a device made from lossless material.

This absorption corresponds to dopant concentrations of the order 10 18.cm-3. If, by

modulation of the doping, the absorption is confined only to thin regions around the

heterointerfaces in the reflector stacks which are subject to a reverse bias, then the

absorption may be increased to 160.cm- 1 for the same increase in gain at threshold.

The effects of growth errors in the thickness of reflector layers is considered.

Random layer to layer variations with standard deviation up to 5% may be tolerated.

However, offsets between the upper and lower reflector centre wavelengths and the

cavity dimension can significantly reduce the laser performance. This is more

noticeable in higher quality structures (see fig. 2.1.5). Offsets of this type may, in part,

give rise to the increased threshold current of the MOCVD grown device QT421 as

compared to the MBE grown structure.

9.1.3. Resistance considerations

Chapter 5 considers the ohmic resistance of the reflectors. AlAs / GaAs

interfaces present large potential barriers to the flow of carriers into the higher

bandgap material (AlAs) due to the large conduction and valence band offsets.
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Thermionic emission over these will be small so the resistance will be large unless

the dopant concentration is large enough so that band bending in the vicinity of the

interface narrows the depletion width sufficiently to allow a significant tunnel current

to flow through the potential spike created.

In practice it was not possible to dope the interfaces sufficiently to reduce the

bias across a working device to an acceptable level. A complete VCSEL structure

with abrupt reflector interfaces will drop more than 10V at threshold. Any voltage in

excess of 1V acts purely as a thermal source. By splitting the interface discontinuity

into smaller junctions it is possible to reduce the resistance considerably. For

example; an n-type reflector grown by MOCVD incorporating abrupt interfaces drops

a voltage of 0.29V/pair for a current of 20mA through a 50gm diameter mesa. By the

inclusion of a 200A intermediate layer of A10 . 3Ga0 . 7As, the bias is reduced to

0.10V/pair. This is reduced even further to 0.029V/pair in low oxygen containing

material.

MBE grown reflectors make use of 50% Al intermediate layers in the n-type

reflectors; p-type mirrors incorporate a superlattice grade. The superlattice attempts to

provide a continual grade of the miniband edge throughout the junction. A design

making use of AlAs / A10 . 5Ga43 . 5As / GaAs layers was used. This structure presents

less strain on the fragile MBE effusion cell shutters and provides more strongly

coupled quantum wells than the binary compound superlattices used by other groups.

Be is used as an acceptor in MBE growth. It has a solubility limit of around 5x

10 17.cm-3 in AlAs so it is difficult to achieve low resistance p-type reflectors. The

bias at threshold for 501.1m diameter mesa etched devices is 7.5V. This is reduced to

4.6V in implant defined devices by the use of a current funnel.

In MOCVD C and Zn act as acceptors. P-type concentrations in excess of 2x

10 18.cm-3 are readily achievable in all AlGaAs compounds. With the use of low

oxygen containing precursors and by modulation doping, it was possible to produce

mesa etched devices with current injection through the full reflector stacks, which

have threshold voltages as low as 1.7V (Note that 1V of this is the p-i-n diode forward

bias voltage). It should be possible to reduce this voltage further by including more

intermediate layers to achieve a more gradual grade in the reflector interfaces.

9.1.4. Effects of gain spectra

In the MBE system used for this work (VGV80), there is a paraboloidal

variation in deposition thickness across the wafer. This is due to the geometry of the

effusion cells. Devices with cavity resonances in the range 950 to 1059nm result from

this variation. The eihhi transition in the In0 .235Ga0 . 765As quantum wells is

essentially unchanged at —1020nm ±2nm because of the weak relation of this energy
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to the well width. The variety of devices allowed a detail study to be made of the

relation between the relative alignment of the cavity resonance (which determines the

lasing wavelength) and the optical gain spectrum. The function relating the variation

of the threshold current density with lasing wavelength Jth(A) was determined

experimentally. This has a minimum of 366A.cm-2, the lowest threshold current

density reported for a VCSEL device, and is measured for devices operating at

1018nm, which is close to the eihhi transition. A gradual increase in threshold

current is observed to shorter wavelengths as the gain spectrum broadens with

increased carrier concentration. To longer wavelengths operation is also permitted

because of bandgap renormalization effects.

A simple model incorporating strain effects is used to predict the gain spectra

of the quantum wells. These are used to derive a J th(A) relation; best fit to the

experimental data is achieved assuming a 900ps non-radiative carrier lifetime and

ignoring density dependant recombination mechanisms. The model predicts a

flattening of the minimum in the Jth(A) relation for devices requiring a high threshold

gain. This is observed to be the case for small diameter etched mesa devices.

Ion implanted devices show a similar wavelength relation. The minimum

value of threshold is increased to 535A.cm- 2, in this case, by incomplete isolation of

the implanted region. A higher implant dosage (-1x10 14.cm-3 200keV 1-1± ions) is

necessary to reduce the leakage current. The thermal and ohmic resistances of these

devices are greatly reduced; and the current for maximum light output is increased by

a factor of three when that for compared to etched devices.

The effects of relative alignment of cavity mode and gain spectrum are

particularly important for c.w. operation. Thermal heating causes bandgap shrinkage

at high currents and the output power of devices resonant at short wavelengths is

limited by the shift of the gain spectrum away from the cavity mode. For devices

resonant to the long wavelength side of the eihhi transition, heating causes the

alignment to improve and we observe that the threshold current under c.w. operation

is lower than the value measured under pulsed conditions. However, at elevated

temperatures the available gain is limited by the reorganisation of the carrier

population and by an effective reduction of the non-radiative carrier lifetime. This

means that the maximum output power of devices is ultimately limited by an

increasing threshold current with increasing device temperature. Maximum output is

obtained for devices resonant at 1028nm (measured for device at room temperature).

This is only a 1% difference from the wavelength required for minimum threshold

current.
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9.1.5. Thermal model

A simple thermal model was developed for the dissipation of heat from mesa

and implant defined VCSEL devices. There is good agreement between the model

and experimental data. The model accurately predicts that the effects of heat are

reduced in smaller devices; i.e. smaller devices may handle a larger current density.

Since loss mechanisms related to edge effects give an increased threshold current

density in smaller devices, the optimum device size is probably a 10 to 201.tm

diameter device.

9.1.6. MOCVD grown devices

The MOCVD grown devices described have threshold current densities as low

as 764A.cm-2. This is higher than for the MBE grown devices because of errors in the

growth thicknesses and non-optimal alignment of the gain spectrum and cavity

resonance mode. The wafer these devices were fabricated from shows a uniformity of

±1% in the cavity resonance wavelength over 80% of its 2 inch diameter.

Consequently it is suitable for the fabrication of very large arrays of uniform devices.

The low threshold voltage of these devices (as low as 1.7V) allows for low

power consumption and reduced thermal heating effects.

9.2. Further work

In the introduction (chapter 1) a number of applications for VCSELs and laser

arrays were mentioned_ Much development is required to integrate devices into such

systems. Here I shall only point out more immediate issues for the improvement of

isolated devices.

The VCSEL devices produced during this work have been very successful.

This is due to the growers ability to faithfully reproduce design specifications

considered important for high performance. These specifications were determined

from the theoretical analysis in this work. A margin of error was allowed in the

design. The high quality of the interfaces in the epitaxially grown reflectors is evident

in the low threshold current densities obtainable. This suggests that single quantum

well devices may operate at even lower current densities, perhaps below 200A.cm-2,

with no major changes in the design strategy.

As investigated in chapter 8, an increased In fraction in the quantum wells

should produce lower threshold current devices. In deeper wells the hh2 and Ihl

bands are removed further from the hhl ground hole state. This gives a reduced

density of valence states over a larger energy range and reduces the carrier density •

required for transparency. Indium fractions up to 35% should be possible. Carriers are
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better confined to deeper wells so improving the high temperature and high power

operating range. Similarly growth on non-polar crystallographic axes (e.g. (111) or

(211)) may be used to provide increased splitting by altering the heavy and light hole

masses.

From results on test reflectors it should be possible to reduce the threshold

voltage of MBE grown mesa etched devices below 4V and below 2.5V for ion-

implanted devices.

MOCVD grown devices already operate at very low voltages. Better control of

layer thickness, perhaps with the provision of in-situ optical monitoring, should allow

threshold current densities more comparable with values obtainable with MBE grown

material. Finer grading of the interfaces will allow reduced threshold voltages.

Existing devices should operate at —1.4V in the ion-implanted geometry.

Further modelling could be performed to include a more accurate solution of

the InGaAs quantum well band structure. Other simplifications made in the gain

calculations of chapter 3 could be reviewed to provide a better fit to the

experimentally determined Jth(A) relation and allow a more educated design

methodology. Most of the theoretical models presented in this thesis should be

transferable to similar devices in other material systems.

Modelling could be performed on the effects of the relative offset between the

gain spectrum and cavity resonance to predict the c.w. performance. This should take

into account self heating effects which will depend on the reflector resistance. A more

complex thermal model could consider the effects of current spreading in ion-

implanted devices and examine the development of thermal lenses.

Devices in other materials systems are another interesting diversion. In

particular InGaAsP based devices lattice matched to GaAs allow visible emission at

red to orange wavelengths. Bragg reflectors may be constructed from AlGaAs

compounds. Much learned in this thesis should be applicable to these new devices

and high efficiency two-dimensional visible laser arrays should be possible in the near

future. As mentioned in the introduction these have obvious display applications.
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