

Investigation of Immunity Related Genes in a Disease Host Using Applied Bioinformatics

By:

Ashraf Mohamed Ahmed

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Under the supervision of Professor David Hornby

The University of Sheffield Faculty of Science Department of Molecular Biology and Biotechnology

June 2017

Acknowledgement

I would like to express my sincere gratitude to my supervisor Prof. David Hornby for the continuous support of my Ph.D. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D. study.

I am grateful to Dr. Qaiser Sheikh for enlightening me the first glance of research and for the support, advice and guidance throughout my entire course of study especially in the first year.

My sincere thanks also goes to Prof. Richard Pleass for the provision of the badger's raw data, Liverpool life science UTC for supporting mealworm genome sequencing and Dr. Roy Chaudhuri, who provided me an opportunity to access the bioinformatics research facilities. Without their precious support it would not be possible to conduct this research.

I thank my fellow lab colleagues in for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we have had in the last four years.

Last but not the least, I would like to thank my family: my wife and to my children for supporting me spiritually throughout writing this thesis and my life in general.

Summary

The economic burden and the health risks of bovine tuberculosis have led to an ongoing political and scientific debate on the control of the disease in badgers, perceived to be the main carrier, responsible for spreading the infection among cattle. Although culling of badgers has already been introduced in some parts of Britain, its efficacy remains unclear. Moreover, the implementation of alternative strategies, such as vaccination illustrate the need for a deeper understanding of the badger's immune system. In addition, there is also a need to develop additional models and systems for studying the complexity of the immunological response in host organisms: simple organisms, including many flies and beetles are becoming increasingly popular in this respect.

The first aim of this thesis is to obtain the nucleotide sequence of the badger transcriptome from peripheral blood cells, and to profile the immunity related genes, through critical evaluation of bioinformatics data extracted from public domain databases. In the second part of the thesis, the introduction of the yellow mealworm beetle, *Tenebrio molitor*, is developed through initiation of a genome sequencing project. It is hoped that this simple organism will provide insight into immune challenge and support the annotation of immune-related genes from more complex organisms, including the badger as well as providing an accessible model organism that is easy to manipulate in simpler laboratory environment such as schools.

The sequencing of both the badger transcriptome from peripheral blood cells and the *T. molitor* genome generated large data sets. The transcriptome analysis resulted in the identification of 15967 transcripts related to 698 known immunity genes in different mammals. 1825 transcripts were found to match genes involved in tuberculosis pathogenesis.

Ш

It is believed that, these findings will improve our understanding of future attempts to both prevent and treat bovine tuberculosis.

The determination of the *T. molitor* genome will facilitate and improve its use as a model organism to study infections. The genome data have been deposited and assembly of an annotated genome, although incomplete, is currently best described as "work in progress".

Abbreviations

AHVLA	Animal Health and Veterinary Laboratories Agency
APCs	Antigen presenting cells
BCG	Bacillus Calmette–Guérin vaccine
BGI	Beijing Genomics Institute
BLAST	NCBI Basic Local Alignment Search Tool
Blastn	BLAST nucleotide sequences
Blastp	BLAST protein sequences
bp	Base-pair
bTB	Bovine Tuberculosis
cDNA	Complementary DNA
СМІ	Cell-mediated immunity
COG	Clusters of Orthologous Groups database
DCs	Dendritic cells
DEFRA	Department for Environment, Food & Rural Affairs
dNTPs	Deoxynucleotides
ESTs	Expressed sequence tags
GB	Gigabyte
GO	Gene Ontology
IFN-γ	interferon gamma
IKB	Immunome Knowledge Base
IL	interleukin
KEGG	Kyoto Encyclopaedia of Genes and Genomes
LPS	Lipid polysaccharide
LTT	Lymphocyte transformation test
МНС	Major histocompatibility complex
mRNA	Messenger RNA
N50	A statistical measure of average length of a set of sequences
NCBI	National Centre for Biotechnology Information
ncRNA	Non-coding RNA
NGS	Next generation sequencing technology
NK	Natural killer cells
NR (nr)	Non-redundant database
nt	Nucleotide
NT	NCBI nucleotide database
RBCT	Randomised badger culling trail
RNA	Ribonucleic acid
RNA-Seq	RNA sequencing
rpm	Revolutions per minute
snRNA	small nuclear RNA
SKA	Sequence Read Archive of NCBI
TNF	I umour necrosis factor
tKNA	transfer KNA

Table of Contents

Acknowl	edgement	. 11
Summar	y	
Abbrevia	ations	. V
1 Intr	oduction	. 2
1.1	The economic burden of bTB	. 2
1.2	Badgers as bTB carriers	. 3
1.2.	1 Badger Biology	. 3
1.2.	2 Tuberculosis in Badgers	. 4
1.2.	3 Routes of bTB transmission	. 5
1.3	An overview of the mammalian immune system:	. 6
1.3.	1 Pathogenesis: Cellular progression of infection	. 6
1.3.	2 Innate immunity	. 8
1.3.	3 Adaptive immunity	10
1.3.	4 Major histocompatibility complex class I and II	11
1.3.	5 Humoral Immune Response	12
1.3.	6 Cellular immune response	13
1.4	Immune response to TB and bTB	14
1.4.	1 Intradermal route	14
1.4.	2 Endobronchial route	14
1.4.	3 Response to vaccination	15
1.4.	4 Mycobacterium and Macrophages	15
1.4.	5 Cell-mediated immune response in mycobacterial infection	16
1.5	Current control strategies of bTB in badgers	17
1.5.	1 Badger culling	17
1.5.	2 Badger and cattle vaccination	18
1.6 transn	Contemporary experimental and computational approaches to understanding the nission of TB	20
1.6.	1 Gene transcription	21
1.6.	2 Transcriptome analysis	27
1.6.	3 Advantages of transcriptome analysis	29
1.6.	4 Limitations of transcriptome analysis	31
1.6.	5 The principles of RNA-Seq technology	32

	1	1.6.6	5	Advantages of RNA-Seq technology	. 33
	1.7		Tran	scriptome assembly and annotation	. 34
	1	L. 7 .1	L	Assembly	. 34
	1	L.7.2	2	Annotation	. 35
	1.8		The	Mealworm (Tenebrio molitor) as a prospective model organism for schools	. 35
	1	L.8.1	L	Definition of model organisms	. 35
	1	L.8.2	2	Characteristics of model organisms	. 37
	1	1.8.3	3	The use of model organisms in the teaching of Science	. 37
	1	L.8.4	1	The need for another model organism	. 39
	1	L.8.5	5	The yellow mealworm beetle, (Tenebrio molitor), as a model organism	. 40
	1	L.8.6	5	Research applications of T. molitor	. 41
	1.9		Т. т	olitor genomic DNA sequencing	. 43
	1	L.9.1	L	T. Molitor genome sequencing via Illumina platform	. 44
	1.1	0	Aim	s and Objectives	. 48
2	Ν	Mate	erials	and Methods	. 51
	2.1		Mat	erials and methods for transcriptome analysis	. 51
	2	2.1.1	L	NCBI Basic Local Alignment Search Tool (BLAST+)	. 51
	2	2.1.2	2	Galaxy platform	. 52
	2	2.1.3	3	Kyoto Encyclopaedia of Genes and Genomes (KEGG)	. 52
	2	2.1.4	1	Gene Ontology (GO)	. 53
	2	2.1.5	5	Clusters of Orthologous Groups database (COG)	. 53
	2	2.1.6	5	Immunome Knowledge Base (IKB)	. 53
	2	2.1.7	7	Clustal Omega	. 54
	2.2		Mat	erials and methods for mealworm genomic DNA extraction	. 55
	2	2.2.1	L	Chemicals	. 55
	2	2.2.2	2	Solutions	. 56
	2.3		Basi	c Molecular Biology protocols	. 56
	2	2.3.1	L	Genomic DNA extraction	. 56
	2	2.3.2	2	Confirmation of the genomic DNA extraction by agarose gel electrophoresis	. 57
3	Т	Fran	scrip	tome assembly and annotation	. 59
	3.1		Expe	erimental pipeline and Sequencing platform	. 59
	3	3.1.1	L	Experimental (mRNA isolation and sequencing) pipeline as described by BGI:	. 59
	3	3.1.2	2	Assembly pipeline RNA sequencing and <i>de novo</i> assembly	. 60
	3	3.1.3	3	Output statistics and bioinformatics	. 62
	3.2		Dist	ribution of sequence lengths	. 63
	3.3		Tran	scriptome Similarity, Functional and Pathway annotation	. 64

3.3.1	Transcriptome annotation	64
3.3.2	NCBI annotation	65
3.3.3	B E-value distribution:	65
3.3.4	Species similarity distribution	66
3.3.5	Sequence similarity distribution	67
3.3.6	6 COG Function	68
3.3.7	Gene Ontology	69
3.3.8	Pathway annotation KEGG	72
3.1	Quality Control using BLAST sequence alignment tool	74
3.2	Using the transcriptome as a searchable database for MHC genes sequences	78
3.2.1	Nucleotide BLAST search (tabular format)	80
3.2.2	Nucleotide alignment (Query-anchored)	82
3.2.3	Protein sequences BLAST search (tabular format)	84
3.2.4	Protein alignment (Query-anchored)	85
3.2.5	A comparison between the badger and the giant panda	89
3.3	Using the most abundant transcripts to build a phylogenetic tree	90
3.3.1 read	The construction of a phylogenetic tree using the transcript with most about 5 90	undant raw
3.3.2	Construction of a phylogenetic tree using the transcript with the highest F 92	PKM value
3.3.2 3.3.3	 Construction of a phylogenetic tree using the transcript with the highest F 92 Building a phylogenetic tree using the longest transcript sequence 	PKM value
3.3.2 3.3.3 3.4	 Construction of a phylogenetic tree using the transcript with the highest F 92 Building a phylogenetic tree using the longest transcript sequence Discussion 	PKM value 93
3.3.2 3.3.3 3.4 3.4.1	 Construction of a phylogenetic tree using the transcript with the highest F 92 Building a phylogenetic tree using the longest transcript sequence Discussion General description 	PKM value 93 93 93
3.3.2 3.3.3 3.4 3.4.1 3.4.2	 Construction of a phylogenetic tree using the transcript with the highest F 92 Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams 	PKM value
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees 	PKM value 93 93 93 93 94 94 95
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts 	PKM value 93 93 93 93 94 96 97 98
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2 3.4.2 4 A co	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome 	PKM value 93 93 93 93 96 97 98 98
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2 3.4.2 4 A co 4.1	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome 	PKM value 93 93 93 93 96 97 98 98 102 103
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.3 3.4.4 4 A co 4.1 4.1.1	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome Results The major differentially regulated transcripts 	PKM value 93 93 93 93 94 95 97 97 98 102 103 105
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2 4.1 4.1.1 4.1.1	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome Results The major differentially regulated transcripts Gene ontology for differentially expressed transcripts 	PKM value 93 93 93 93 96 97 97 98 102 103 105
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2 4 A co 4.1 4.1.1 4.1.2 1.1.1	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome Results The major differentially regulated transcripts Gene ontology for differentially expressed transcripts 	PKM value 93 93 93 93 94 95 97 97 98 102 103 105 107 109
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2 4 A co 4.1 4.1.1 4.1.2 1.1.1 4.1.3	 Construction of a phylogenetic tree using the transcript with the highest F 92 Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome Results The major differentially regulated transcripts Gene ontology for differentially expressed transcripts KEGG pathways for differentially expressed transcripts Difference in expression of bTB related transcripts 	PKM value 93 93 93 93 96 97 97 98 102 103 105 107 109 109
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2 4 A co 4.1 4.1.1 4.1.2 1.1.1 4.1.3 4.2	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome Results The major differentially regulated transcripts Gene ontology for differentially expressed transcripts KEGG pathways for differentially expressed transcripts Difference in expression of bTB related transcripts 	PKM value 93 93 93 93 94 95 97 97 98 97 98 102 103 105 107 109 110 114
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 3.4.2 4 A co 4.1 4.1.1 4.1.2 1.1.1 4.1.3 4.2 5 Imm	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts mparison between male and female transcriptome Results The major differentially regulated transcripts Gene ontology for differentially expressed transcripts KEGG pathways for differentially expressed transcripts Difference in expression of bTB related transcripts Discussion 	PKM value 93 93 93 93 93 96 97 97 98 102 103 105 107 109 110 114 120
3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.2 4 A co 4.1 4.1.1 4.1.2 1.1.1 4.1.3 4.2 5 Imm 5.1	 Construction of a phylogenetic tree using the transcript with the highest F Building a phylogenetic tree using the longest transcript sequence Discussion General description Venn diagrams Phylogenetic trees MHC transcripts MHC transcripts Results The major differentially regulated transcripts Gene ontology for differentially expressed transcripts KEGG pathways for differentially expressed transcripts Difference in expression of bTB related transcripts Discussion Immunity related and bTB specific transcripts 	PKM value 93 93 93 93 93 96 97 97 98 102 103 105 107 109 110 110 114 120

	1	.1.2	NCBI Non-redundant database annotation of immunoglobulins	123
	5	.2.1	Swiss-Prot database annotation of immunoglobulins	125
	5.3	Im	munoglobulin variable regions	126
	5	.3.1	NCBI Non-redundant database annotation of variable genes' transcripts	126
	5	.3.2	KEGG annotation of Variable genes	127
	5.4	Ge	nes involved in the bTB pathway	128
	1	.1.3	NR annotation of TB related transcripts	129
	5	.4.1	KEGG pathway	130
	5	.4.2	Constructing a phylogenetic tree using key transcripts in bTB infection	133
	5.5	Dis	cussion	139
6	N	lealwo	orm (<i>Tenebrio molitor</i>)	145
	6.1	Ge	nomic DNA extraction	148
	6.2	Me 149	ethodology used to determine the nucleotide sequence of genomic DNA from T r 9	nolitor
	6.3	Pr€	liminary sequencing data	150
	6	.3.1	Data files description	150
	6	.3.2	Sequence size for each sample	151
	6.4	Me	ealworm (<i>T. molitor</i>) extracted genome BLASTN search results	151
	6.5	Us	ing short read to draw a phylogenetic tree	153
	6.6	Dis	cussion	155
	6	.6.1	Extracted DNA Quality	155
	6	.6.2	Quality of the "raw" sequence data	155
	6	.6.3	Data significance	156
	6	.6.4	Sequence alignment and phylogenetic tree	156
7	D	iscussi	on	159
	7.1	An	alysis of the badger transcriptome	159
	7.2	Da	ta from the immune component of the badger's transcriptome	163
	7.3	Ge	nder differences in gene expression	164
	7.4	Im	plications for the evolution of the European Badger	165
	7.5	Th	e data from the mealworm	166
	7.6	Lin	nitations and proposed work	168
8	R	eferen	ces	171
	8.1	KE	GG Pathways	187
	8.2	BL	ASTN output (tabular)	193
	8.3	BL	ASTN output (pairwise)	198
	8.4	BL	ASTP output (tabular)	228

8.5	BLASTP output (pairwise)	235
8.6	Number of annotations per gene of IKB database	
8.7	Phylogenetic trees	294
8.7.	.1 HLA class II gene	294
8.7.	.2 NRAMP1	295
8.7.	.3 TLR8 gene	296

Figures and Tables

Figures

Figure 1.1: Routes of excretion and the risk of transmission of Mycobacterium bovis infection from
tuberculosis infected badgers (Corner et al., 2011)6
Figure 1.2: Levels of immunological response in mammals. Adapted from (Turvey and Broide, 2010b)
Figure 1.3: (A) "The transcription process is initiated when the enzyme RNA polymerase binds to a DNA template at a promoter sequence. (B) During the elongation process, the DNA double helix unwinds. RNA polymerase reads the template DNA strand and adds nucleotides to the three-prime (3') end of a growing RNA transcript. (C) When RNA polymerase reaches a termination sequence on the DNA template strand, transcription is terminated and the mRNA transcript and RNA polymerase are released from the complex." Adapted from Clancy, (2008)
transcriptome (Wang et al., 2009)
Figure 1.6: Tenebrio molitor larvae (Kupferschmidt, 2015)
Figure 1.7: DNA fragments are generated by shearing and joined to a pair of oligonucleotides in a
forked adapter configuration. The ligated products are amplified using two oligonucleotide primers,
resulting in double-stranded blunt-ended fragments with a different adapter sequence on either end
(adapted from Bentley et al., 2008))45
Figure 1.8: Formation of clonal single molecule array. DNA fragments are denatured and single
strands are annealed to complementary oligonucleotides on the flow cell surface. A new strand
(dotted) is copied from the original strand and the original strand is then removed by denaturation.
The adapter sequence is annealed to a new surface bound complementary oligonucleotide, forming

a bridge and generating a new site for synthesis of a second strand (shown dotted). (Adapted from
Bentley et al., 2008))
Figure 2.1: Search and alignment parameters used in BLAST+ and Clustal Omega
Figure 3.1: Experimental pipeline which mainly involves: mRNA isolation, cDNA synthesis and
Illumina sequencing (BGI)
Figure 3.2: The distribution of reads per sequence length
Figure 3.3: E-value distribution of the annotated transcripts in NCBI non-redundant database 66
Figure 3.4: Species similarity distribution in NCBI non-redundant database
Figure 3.5: Sequence similarity distribution in NCBI non-redundant database
Figure 3.6: COG functional annotation
Figure 3.7: Number of transcripts representing each GO function70
Figure 3.8: Distribution of transcripts on different GO terms
Figure 3.9: Number of transcripts in the main KEGG pathways73
Figure 3.10: Venn diagram illustrating shared and unique transcripts annotated in databases of Nr,
Swiss-Prot, COG and KEGG74
Figure 3.11: Two sequence alignment using online NCBI blastn application: MHC class I antigen
partial sequence75
Figure 3.12: Two sequence alignment using online NCBI blastn application: MHC class II antigen
partial sequence
Figure 3.13: Two sequence alignment using online NCBI blastn application: Interferon gamma 77
Figure 3.14: Query nucleotide sequences extracted from NCBI database
Figure 3.15: Query nucleotide sequences extracted from NCBI database
Figure 3.16: Nucleotide alignments with a 100% identity score
Figure 3.17: Nucleotide alignments with E-value = 0
Figure 3.18: A section of the nucleotide alignment between a MHC class one (query) and the badger
transcripts
Figure 3.19: Aligned transcripts NR annotation during transcriptome assembly and annotation
(yellow cells indicate sequences previously annotated as MHC genes from the badger)
Figure 3.20: Protein alignments with 100% identity score
Figure 3.21: Protein alignments with an E-value = 0
Figure 3.22: An example of an alignment of a protein query sequence (MHC class I antigen) and 10
transcripts from the transcriptome database
Figure 3.23: List of the transcripts that achieved and alignment with all 25 query protein sequences
Figure 3.24: An alignment of one query sequence (AFR54067.1) and two transcripts where (*)
represents conserved sequence, (:) conservative mutations, (.) semi-conservative mutations, and the
space () for non-conservative mutations
Figure 3.25: A phylogenetic tree model using the most abundant raw read (ID: CL4057.Contig1_All)
in the badger transcriptome
Figure 3.26: A phylogenetic tree model using the transcript with the highest FPKM value
(Unigene65050_All) in the badger transcriptome
Figure 3.27: A phylogenetic tree model using the transcript with the longest amino acid sequence
(CL3144.Contig26_All) in the badger transcriptome
Figure 4.1: Numbers of differentially expressed transcripts (FDR \leq 0.001) in male badger's
transcriptome compared to the female transcriptome with fold change cut-off of \pm 1.5 104
Figure 4.2: the expression levels of differentially expressed transcripts in male transcriptome
compared to the female transcriptome. The expression level was presented as Log2 of male FPKM /
female FPKM ratio

Figure 4.3: Gene Ontology annotation of differentially expressed transcripts. GO biological process
(blue), GO molecular function (red) and GO cellular components (green)
Figure 4.4: KEGG pathway for differentially expressed transcripts110
Figure 4.5: Differential expression of bTB related transcripts for male compared to female badger
illustrated on KEGG pathway of tuberculosis. Upregulated (red) and downregulated (green) 113
Figure 4.6: The effects of sex hormones on the modulation of immune responses of macrophages
and dendritic cells to tuberculosis. Adapted from (Nhamoyebonde and Leslie, 2014)
Figure 5.1: Venn diagram of distribution of the annotations among four databases
Figure 5.2: NCBI Non-redundant database annotation of immunoglobulins
Figure 5.3: Swiss-Prot database annotation of immunoglobulins
Figure 5.4: NCBI Non-redundant database annotation of variable genes
Figure 5.5: KEGG annotation of Variable genes
Figure 5.6: NR annotation of TB related transcripts130
Figure 5.7: bTB pathway (KEGG), (*) Genes with no matching transcripts. (#) Genes with the
receptors only found in the transcriptome sequences. (Kanehisa et al., 2016)
Figure 5.8: A phylogenetic tree of the VDR gene135
Figure 5.9: A phylogenetic tree of DC-sign gene137
Figure 5.10: the position of the badger in the order Carnivora from three sections of the
phylogenetic trees of HLA class II, NRAMP1 and TLR8 genes138
Figure 6.1: The analysis of genomic DNA extracted from T molitor, using the Bioline I Genomic DNA
extraction kit followed by 1% agarose gel electrophoresis. Lane 1 (HL1) DNA Hyperladder I (lanes 2-6)
X ul Extracted DNA (7) the wash buffer flow-through and lanes 8 and 9 whole lysate148
Figure 6.2: A graph showing the distribution of trimmed read lengths for the forward strand (R1),
reverse strand (R2) and singlet (R0) reads. Note that it is common for a small number of reads to
consist of mostly adapter-derived sequence, so it is expected that the distribution will show a long
tail151
Figure 6.3: a gene phylogenetic tree for 18S ribosomal RNA sequence from different beetles of the
order Coleoptera

Tables

Table 1.1: Comparative genomics of splicing levels in human and mouse adapted from (Lee and Ric),
2015)	25
Table 2.1: Chemicals	55
Table 2.2: Solutions	56
Table 3.1: Total raw and clean reads generated by sequencing	62
Table 3.2: Number of aligned sequences for each sample including contigs, unigenes and the mean	I
length of each group	63
Table 3.3: Number and percentage of transcripts annotated in each database	65
Table 3.4: The most abundant MHC transcripts in the badger transcriptome and in the giant panda	
transcriptome	89
Table 4.1: Table of 10 most upregulated transcripts and their annotation in male badger	
transcriptome compared to the female transcriptome1	.06
Table 4.2: Table of most 10 downregulated transcripts and their annotation in male badger	
transcriptome compared to the female transcriptome1	.06
Table 4.3: Most downregulated bTB related transcripts in the male badger	11

Table 4.4: Most upregulated bTB related transcripts in the male badge	. 111
Table 5.1: Number of transcripts with (immun-) term in each database annotation	. 120
Table 5.2: Immunity genes with the most abundant number of annotation found using IKB	. 122
Table 5.3: Number of annotations for immunoglobulin in each database	. 123
Table 5.4: most abundant immunoglobulins in the transcriptome	. 123
Table 5.5: IKB immunological classification of transcripts involved in bTB KEGG pathway	. 129
Table 5.6: IKB Genes without matching sequences in the transcriptome	. 129
Table 6.1: summary of the read counts before and after adapter and quality trimming for all the	
samples. Percentage of the reads remaining after adapter and quality trimming are is shown in	
brackets	. 150
Table 6.2: The most common insect species that were found to have sequence alignment with	
mealworm's query sequences. Species from the same order (Coleoptera) are highlighted in yello	w.
	. 153

Chapter I

1 Introduction

The British Badger culling programme started in 2013 in several areas of southwest of England and Wales, in order to control the spread of bovine tuberculosis (Ares, 2014). However, the controversy surrounding the programme itself from an animal rights perspective, and the actual benefits of its implementation, became a debate long before that. Alternative solutions were suggested, including vaccination of both badgers and cattle. However, culling still continues to this day with no clear outcome agreed by both sides of the debate.

Bovine tuberculosis (bTB) infection is endemic in the badger population, which is recognized as a reservoir of infection for cattle and domestic animals in the UK and the Republic of Ireland (Corner et al., 2011). Establishing the identity of the reservoir of the pathogen (*Mycobacterium bovis*) is essential in order for any plan of eradication to be successful (Gormley and Collins, 2000).

1.1 The economic burden of bTB

Although bTB is a zoonotic disease with a significant health impact in developing countries in particular, the problem of zoonosis seems to be rare in the developed world; even in countries with large infected cattle populations such as the UK (Michel et al., 2010). Bovine tuberculosis is known for its economic impact on the cattle industry both in the UK and globally. According to the UK Department for Environment, Food and Rural affairs report on bTB impact assessment (2011), the disease is one of the major challenges facing the farming industry today: the cost of such a burden was estimated at £90 million, and nearly 25,000 cattle were slaughtered in 2010. Control of the disease in cattle can be particularly challenging when wildlife becomes an integral part of the epidemiological system (DEFRA, 2011).

Internationally, the most significant wildlife reservoirs of bTB for cattle are considered to be the white-tailed deer (*Odocoileus virginianus*) in northern America, the Cape buffalo (*Syncerus caffer*) in South Africa and the brush-tail possum (*Trichosurus vulpecula*) in New Zealand (de Lisle et al., 2002). However, there are many other potential mammalian hosts, some of which may be capable of onward transmission (Delahay et al., 2002).

1.2 Badgers as bTB carriers

1.2.1 Badger Biology

Standard biological classification places the badger (*Meles meles*) under the family "*Mustelidae*", which also includes weasels, otters and ferrets (Corner et al., 2011). Badgers are social animals that live in groups in underground burrows called setts; and in highly populated areas a single sett can host a family of 8-20 animals of both sexes and different ages (Delahay et al., 2000). Each sett comprises nesting chambers that are interconnected by tunnels that spread over many metres with multiple entrances. These setts protect the animals from extreme weather and predators beside their main use for resting and breeding (Rogers et al., 2003). Badgers are nocturnal animals that are also territorial and territory boundaries are maintained by bodily secretions like urine, faeces and secretions from inter-digital glands (Corner et al., 2011). Although the *Mustelidae* family is carnivorous, badgers have diverse dietary preferences with seasonal variation depending on food availability (Cleary et al., 2009). Their diet includes invertebrates, insects, amphibians, small mammals and decaying carcasses, as well as fruits, cereals and vegetation (Cleary et al., 2009). However, they can show highly specific feeding behaviours where diet is composed mainly of one type, such as earthworms in south-west England (Kruuk et al., 1979)

1.2.2 Tuberculosis in Badgers

Tuberculosis infected badgers in England and Ireland were first reported in 1971 (Murhead and Burns, 1974) and since then infected badgers have been found widely. Badgers have, since then, been considered to be the main wildlife reservoir that spreads *M. bovis* infection among cattle in the UK (Woodroffe et al., 2005) and Ireland (Griffin et al., 2005).

Badgers are not the only wildlife species that can acquire bTB infection as surveys have shown in south-west England (Delahay et al., 2001). Other wild mammals can carry the infection as well; however, the prevalence is lower in such cases, with milder lesions (Neal and Cheeseman, 1996).

The Eurasian badger (*Meles meles*) is one of the main sources of infection. The progression of the disease in cattle can cause reduced productivity and premature death, which makes disease control particularly challenging in the cattle population. In recent years, there has been growing interest in the prospective utilisation of farm husbandry and biosecurity measures to reduce the risk of bTB transmission (Krebs et al., 1997).

1.2.3 Routes of bTB transmission

Despite the fact that the exact processes by which cattle become infected with the bacteria has yet to be completely understood and characterised; it is generally assumed that inhalation is the main route of infection. Intra-tracheal inoculation with a single colony forming unit of *M. bovis* is sufficient to cause infection (Dean et al., 2005).

As a consequence, combined with the difficulties associated with laboratory culture *of M. bovis*, positive results from diagnostic methods provide a risk alert, but do not guarantee certainty in respect of transmission.

There is strong evidence that airborne infection is likely to be an important route for transmission of bTB amongst badgers. However, clinical samples from live badgers have shown that *M. bovis* bacilli can be isolated from sputum, faeces, urine, bite wounds and draining abscesses. This suggests that the increased opportunities for transmission of bTB to cattle occur either via direct contact with badgers (aerosols) or through material contaminated with badger secretions and excretory products such as urine, saliva and blood (Delahay et al., 2005).

The levels of increased risk of transmission of bTB through various routes, in accordance with the stage of infection are shown in **Figure 1.1** (Corner et al., 2011).

Figure 1.1: Routes of excretion and the risk of transmission of Mycobacterium bovis infection from tuberculosis infected badgers (Corner et al., 2011)

1.3 An overview of the mammalian immune system:

1.3.1 Pathogenesis: Cellular progression of infection

Pathogenesis is a term that defines a series of interactions between the microbe and the host, from the initiation of infection to the development of disease and the appearance of signs and symptoms. bTB is a respiratory and an immuno-pathological disease in which *M. bovis* bacilli enter the host through uptake by alveolar macrophages, and the formation of lesions is a result of cell-mediated immunity to the presence of *M. bovis* bacilli (Corner et al., 2011). Once the bacteria are systemic within the badger, *M. bovis* bacilli are engulfed by macrophages through phagocytosis. The bacilli then acquire

protection from extracellular bactericidal factors by the phagosome membrane. Mycobacteria have the ability to inhibit the fusion of lysosomes with phagosomes and thus protect themselves from intracellular destruction by acidification. The immunological response is then initiated through the complex interaction of numerous cell types, leading to the development of a cell-mediated immune (CMI) response that in turn, leads to the formation of granuloma around infected macrophages. The granuloma is a protective response which serves to localise the infection and to prevent further dissemination by the interactions of immune cells and cytokines (Robinson et al., 2012).

The body is constantly exposed to pathogens and in order to defend itself and the immune system has evolved to protect it against infection. The first line of defence against pathogens is the anatomical and physical barriers, which include the skin, the cilia of the lungs and lysozyme in tears, and these prevent the entry of some pathogenic organisms into the body. Viruses, bacteria, parasites and fungi must penetrate these shields to cause an infection or an infestation (Bradford, 2012). In the human body, the first barrier against infection is the skin even though it only stretches up to two square meters only, whereas the area covered by other epithelial and mucous membranes that line the digestive, respiratory and reproductive systems is two hundred times that of the skin (Sompayrac, 2012). Many pathogens are able to evade these anatomical and physiological barriers, and this is where the adaptive immune system is of a paramount importance. The immune system comprises two major components: (1) innate immunity and (2) adaptive immunity **(Figure 1.2).**

Figure 1.2: Levels of immunological response in mammals. Adapted from (Turvey and Broide, 2010b)

1.3.2 Innate immunity

The innate immune response provides organisms with a rapid means of combating pathogens: within minutes of exposure, a protective inflammatory response is generated. The innate immune system relies on a limited number of receptors referred to as pathogen recognition receptors (PRRs) to detect invading pathogens, but compensates for this limited number by targeting conserved microbial components that are shared by large numbers of pathogens (Turvey and Broide, 2010a). The innate immune system also plays a vital part in activating the adaptive immune response and is composed of both cellular and humoral elements. A number of both hematopoietic cells and nonhematopoietic cells are involved in the innate immune response, including the blood macrophages, dendritic cells, mast cells, neutrophils, natural killer (NK) cell and NK T cells. Non-hematopoietic cells also play a role in innate immunity, including the skin and epithelial cells lining the respiratory, gastrointestinal, and genitourinary tracts. Innate immunity also has a humoral component that consists of well-characterised components, such as complement proteins, lipid polysaccharide (LPS) binding protein, C-reactive protein and antimicrobial peptides working to enhance the effect of these cellular defenses (Turvey and Broide, 2010a).

The major phagocytic cells of the innate immune system are neutrophils, macrophages and monocytes. Neutrophils destroy pathogens by engulfing them in intracellular vacuoles, where they are exposed to toxic molecules such as nitric oxide and degradative enzymes (Kennedy and DeLeo, 2009). Macrophages and monocytes are also highly phagocytic for microbes and particles that have been marked for clearance either through opsonisation by antibodies and/or complement (Bradford, 2012). Monocytes and macrophages also play vital roles in the adaptive immune response by ingesting microbial antigens, processing them into peptide fragments, and presenting them to T cells (Chaplin, 2010).

Dendritic cells are potent antigen-capture and -presenting cells that play a key role in the initiation and regulation of the adaptive immune response and they are the most potent antigen presenting cells (APCs). Dendritic cells (DCs) are present in most tissues of the body and concentrated in the secondary lymphoid organs (Lambrecht and Hammad, 2009). APCs express class I and II major histocompatibility complex (MHC) molecules that are required for recognition of processed antigen by the T cell receptor and accordingly

DCs are important in initiating the adaptive immune response by migrating from the site of infection to regional lymph nodes where they present pathogen-derived antigen to CD4+ T cells. Activated DCs express co-stimulatory molecules essential to T cell activation and can instruct the differentiation of naive CD4+ T cells into T helper cells, which can lead to clonal expansion and migration of T cells to B cell areas to assist with antibody production (Gallucci et al., 1999).

1.3.3 Adaptive immunity

In order to mount an effective immune response and unlike the innate immune response, the adaptive immune system is based on antigen exposure by both B cells and T cells (Turvey and Broide, 2010a). In contrast to the limited number of pathogen receptors used by the innate immune system, the adaptive immune system has an extremely diverse, randomly generated repertoire of receptors that are encoded by genetic elements that somatically rearrange to assemble antigen-binding molecules with great specificity for individual, unique foreign structures (Chaplin, 2010). Although the diversity in receptors enables adaptive immunity cells to recognise virtually any foreign antigen, this part of the immune system requires a relatively long period of antigen exposure before mounting a response due to clonal expansion of antigen-specific T and B cells. However, the benefit of this key feature is that it produces long-lived cells that persist as memory cells until a second exposure with their specific antigen, where they rapidly re-express effector functions and therefore it manifests an immune memory, which contributes to a more effective host response against specific pathogens following a second encounter (Bradford, 2012).

The major role of the T-cell in the adaptive immune response is to identify and destroy infected cells, and is responsible for cell-mediated immunity. T cells can recognise peptide fragments of antigens that have been taken up by APCs through phagocytosis. The immune system has evolved to enable T cells to recognize foreign antigens through recognizing self-components and foreign peptide molecules on the surface of APCs. MHC molecules are cell surface glycoproteins that bind peptide fragments of proteins that have either been synthesized within the cell i.e. endogenous antigens (class I MHC molecule) or ingested by the cell and proteolytically processed i.e. exogenous antigens (class II MHC molecules) (Chaplin, 2010).

1.3.4 Major histocompatibility complex class I and II

MHC molecules are cell surface proteins that are involved in adaptive immunity and histocompatibility. Class I MHC molecules are cell-surface heterodimers consisting of a highly polymorphic transmembrane polypeptide chains (Bradford, 2012). The main functions of class I MHC molecules are the presentation of peptide antigens to CD8+ cells and serving as inhibitory ligands for NK cell receptors (Li and Jevnikar, 2015). Class II MHC molecules are expressed on a number of immune cells, including B cells, DCs, monocytes and macrophages. They can bind a large repertoire of antigenic peptides which makes them most effective in presenting antigenic proteins of extracellular pathogens, such as most bacteria, parasites, and virus particles that have been released from infected cells to CD4+ T helper cells (Bradford, 2012).

Although MHC class I and class II are generally considered to have separate functions, these molecules most likely have a common evolutionary history. It is difficult to predict

how specificity is achieved in immune recognition because on one hand it is believed that only specific peptides from pathogens are recognized by T cells and on the other hand a single MHC molecule may in principle bind more than a million different peptides (Trowsdale and Knight, 2013).

1.3.5 Humoral Immune Response

Many of infectious bacteria multiply in the extracellular spaces of the host body, and most intracellular pathogens spread the infection by moving from cell to cell through the extracellular fluids. The extracellular spaces are protected by the humoral immune response. The humoral response involves the production of antibodies by B cells any thereby the destruction of extracellular microorganisms and prevent the spread of intracellular infections through extracellular fluids. The activation and differentiation of B cells into antibody-secreting plasma cells is initiated by the presence of antigens and facilitated by helper T cells. Antibodies can neutralize pathogens by preventing them from entering host cells through binding to specific surface molecules. Neutralization by antibodies is important in preventing bacterial toxins from entering cells (Janeway, 2005). Antibodies also protect against bacteria that multiply in the extracellular fluids mainly by facilitating engulfment of the pathogen by macrophages that are dedicated to destroying ingested bacteria. The process is called opsonisation and it involves the recognition of the antibodies that are bound to the pathogen surface antigens by phagocytic cells. Moreover, antibodies binding the surface of a pathogen can activate complement proteins that recruit phagocytic cells to the site of infection, and the terminal components

of this complement system can lyse certain microorganisms directly by forming pores in their membranes (Janeway, 2005).

1.3.6 Cellular immune response

Cellular immune response or cellular-mediated immunity (CMI) is an immune response to an antigen that involve phagocytosis, cytotoxic T-lymphocytes and the release of cytokines. CMI is mainly triggered by pathogens that survive in phagocytes and pathogens that infect non-phagocytic cells. It plays a major role in removing virus-infected cells, and contributes in the immune response against fungi, protozoans, and intracellular bacteria. It also plays a major in fighting cancer and transplant rejection (Janeway, 2005).

Mechanism of CMI involves the activation of antigen-specific cytotoxic T-lymphocytes that are capable of inducing apoptosis in cells displaying fragments of foreign antigen on their surface. Cells that are infected with intracellular bacteria or viruses and tumor display such foreign epitopes on their surfaces. Moreover, CMI involves the activation of macrophages and natural killer cells, enabling them to destroy intracellular pathogens as well as the stimulation of cytokines secretion, which influence the function of other cells involved in immune responses.

Generally, CMI occurs in three common phases: (a) Binding of the cytotoxic cells to the target cells, (b) Release of cytokines and (c) Lysis of the target cell. T-lymphocytes bind to their target cells that display class I MHC or through specific antibodies and receptors. Binding of the cytotoxic T-lymphocytes to the target "abnormal" cells is crucial for the induction of cell apoptosis. The union of two types of cells induces the T-lymphocyte to secrete cytokines, perforin and other cytolytic enzymes into the target cell. Perforin can

induce the formation of pores in the cell membrane which allow the movement of remain of cytotoxic components causing cell death and disintegration into small membrane bound vesicles (Janeway, 2005).

1.4 Immune response to TB and bTB

Although CMI plays a major role in the response to mycobacterial infection, other immune responses are also of importance and will be also discussed in terms of the type of response according to route of infection and the disease progression.

1.4.1 Intradermal route

The main cells involved in protective CMI are the macrophages and the T-lymphocytes as shown by early studies of the response of badgers infected experimentally with *M. bovis* by the intradermal route using the lymphocyte transformation test (LTT) with the *M. bovis* strain bacillus Calmette–Guérin (BCG) as the stimulating antigen, and also using the intradermal tuberculin test together with an enzyme-linked immunosorbent assay (ELISA) (Corner et al., 2011). There was a spectrum of immunological responses observed through different stages of the disease. The main observed pattern in the early stage there was a well-developed CMI response with increased LTT responses and a positive skin test, while in the late stage had an elevated levels if antibody production and CMI responses were depressed (Corner et al., 2011).

1.4.2 Endobronchial route

According to Lesellier *et al.*, (2008) a number of immunological studies of badgers infected experimentally with *M. bovis* by the endobronchial route have demonstrated strong

responses starting 3 weeks post-infection to bovine purified protein derivative (PPD-B) *M. bovis*-specific single antigen (CFP-10). However, no CMI or antibody response was detected against ESAT-6, a target specific antigen in most other species (Corner et al., 2011). Moreover, a group of well-known immuno-stimulatory antigens in infected cattle (e.g. MPB70, Rv3019c, Rv3873, Rv3878 and Rv3879) were not recognized by experimentally-infected badgers (Lesellier et al., 2008) which suggests that infected badgers recognize a limited or different repertoire of antigens compared with other species (Corner et al., 2011).

1.4.3 Response to vaccination

Intradermal BCG vaccine can elicit lymphocyte proliferative responses *in vitro*. However, such responses were only obtained after repeated injections of BCG (Southey et al., 2001). Low CMI responses were also reported in other species including white-tailed deer and ferrets vaccinated with subcutaneous BCG injections, which suggests that badgers response to vaccination is mainly innate to lower the bacterial load before initiating a T lymphocyte mediated response (Corner et al., 2011). An immunological tolerance to environmental mycobacterial antigen, which occurs due to repeated exposure in badgers, can cause a delay in detecting adaptive immune responses until the bacterial load (vaccine doses) reach a minimum threshold level, i.e. a BCG dose dependant CMI responses in badgers (Lesellier et al., 2006).

1.4.4 Mycobacterium and Macrophages

Macrophages are the primary targets for mycobacterium infection and the host resistance is highly dependent on the macrophages' capacity to produce reactive nitrogen

and oxygen compounds, TNF and interleukins (Cassidy and Martineau, 2014). After being ingested by macrophages, mycobacteria have the ability to downregulate the expression of cathepsin G, a macrophage lysosomal protease with known antimicrobial properties, during early stages of mycobacterial infection (Rivera-Marrero et al., 2004)). This process is accompanied by an increase the expression of more acidic cathepsins, such as cathepsin B and D, which are weak proteases that can benefit the mycobacteria by contributing in tissue liquefaction and cavity formation in process called cathepsin switch (Cassidy and Martineau, 2014). Apoptosis plays an important role in the macrophages innate response against mycobacteria, and evasion of alveolar macrophage apoptosis is a virulence-associated phenotype in mycobacteria. Mycobacteria can delay the onset of apoptosis in infected macrophages through controlling intracellular prostaglandin E2 synthesis and thereby allowing more time for intracellular mycobacterial replication which infect more cells once the macrophages death occurs (Behar et al., 2010).

1.4.5 Cell-mediated immune response in mycobacterial infection

Recent studies have demonstrated that the adaptive cell-mediated response of cattle is quite similar to that of the human especially at the genomic level where genes encoding cytokines are known to play a role in regulating the immune responses in humans are present in cattle, including cytokines not found in mice (e.g., IL-26) (Waters et al., 2011). Cell-mediated immune responses are predominant in mycobacterial infections. Studies have shown that CD4⁺ T cells produce Th1 cytokines, such as gamma interferon (IFN-γ), in response to mycobacterial antigens and that the cytolytic activity of CD8⁺ cells toward infected macrophages is important (Kennedy et al., 2002). The Protective cell mediated immunity against tuberculosis is dependent upon the interaction of T cells with infected macrophages. CD4⁺ T-cell sub-population respond to infection principally through the production of cytokines such as gamma interferon (IFN- γ) which are considered to be involved in the activation of macrophages (Kennedy et al., 2002).

The release of IFN- γ is an important function of the CMI response to mycobacterial infection in human and cattle and it is widely used for tuberculosis diagnosis (Vordermeier et al., 2002). However, unlike rodents human and bovine immunity to the disease is less dependent on antigen specific IFN- γ activation of macrophages and more dependent on cytotoxic immune cells. The role of IL-21 and other key regulatory factors for maintenance and induction of IFN- γ (IL-12, IL-18, IL-23, and IL-27) and NK cell function in protective immunity to TB is an important avenue of investigation in the efforts to develop a vaccine for humans and cattle (Waters et al., 2011).

The sub-population of CD8⁺ T cells is also involved in the production of IFN-γ in a low level during the course of infection (Serbina and Flynn, 1999). The important role of CD8⁺ cells in early stages of infection is their ability to act as cytotoxic T lymphocytes which may not only be involved in the lysis of specific target cells, but may also release molecules, such as granulysin, which have been shown to directly kill mycobacteria (Stenger et al., 1998).

1.5 Current control strategies of bTB in badgers

1.5.1 Badger culling

The risk of bTB transmission from badgers to cattle can be reduced locally by culling, which has been implemented recently in the UK. Despite the evidence of a beneficial

reduction in bTB incidence rate in the neighbouring Republic of Ireland, after a similar culling programme was implemented (Olea-Popelka et al., 2009), there is still an ongoing debate that culling would not make a significant contribution to bTB control in the UK. This is based on a cost benefit analysis carried out by the Independent Scientific Group on Cattle (ISG) after evaluating data from the randomised badger culling trail (RBCT) (Robinson et al., 2012). Although the repeated culling across accessible land (Proactive badger culling) has reduced bTB incidence in cattle by 23% inside the targeted areas, it has also increased the incidence rate by 25% in the surrounding areas due to the disturbance in badger colonies and migration. Similarly, Reactive Culling, which involves culling in the areas close to farms where recent cases of bTB are reported, has also increased the incidence rate by 20% (ISG, 2007). Although badger culling appears to be an effective interim approach in reducing transmission of bTB to cattle in the cull area, it is unsustainable in the long term from both ethical and economic perspectives (Jenkins et al., 2010) as the public and scientific opposition to culling continues to grow.

1.5.2 Badger and cattle vaccination

Current research has provided evidence that vaccination can be used as an additional tool in any bTB control programme. However, there are still some areas of uncertainty about implementing a vaccination campaign, as more technical information on choosing a strategy of whether tackling the disease in high endemic areas should be started before low prevalence ones or whether or parenteral versus oral vaccination. There is also a limited understanding of the duration of immunity, and whether vaccination reduces *M*. *bovis* elimination from badgers that are already infected, and the excretion patterns of vaccinated badgers that subsequently become infected. The most important point in the search for an efficient vaccination strategy, is determining the effects of badger vaccination on the incidence of bTB in cattle (Robinson et al., 2012).

The development of successful strategies to eradicate bovine tuberculosis in cattle and badgers requires a comprehensive knowledge of all of the epidemiological factors controlling the persistence of the infection in both host species, as well as the mode of transmission and a thorough understanding of the obstacles hindering success. The implementation of a local control strategy based on culling is limited by the number of badgers removed versus the total number of infected, and the proportion of the targeted area compared to the whole area affected. Research has yet to be completed in the field of vaccine efficiency and delivery. However, it is hoped that this will contribute to a more effective eradication of bovine tuberculosis on a national level (Gormley and Corner, 2013). Current bTB control strategies focus on vaccination of both badgers and cattle to achieve control and subsequently eradication of the disease. However, there are obstacles in the way of the large-scale use of injectable vaccine in badgers and the delivery mechanisms of oral vaccine in both badgers and cattle (Chambers et al., 2014). Although computer models have shown that maintaining a regular badger vaccination programme can theoretically reduce bTB incidence in cattle (Smith et al., 2012), there is no direct experimental evidence of reducing bTB transmission between badgers and cattle and vice versa (Chambers et al., 2014)

The optimisation of an oral bTB vaccine requires more research on the delivery options and exact mechanisms of its interaction with the badger's immune system. Without this knowledge the timescale and the production of effective and affordable vaccine remains uncertain especially when vaccination of cattle is currently prohibited under European legislations as the ultimate endpoint of using BCG vaccine in cattle without trade restrictions may not be achieved before 2023 (Chambers et al., 2014).

1.6 Contemporary experimental and computational approaches to

understanding the transmission of TB

In order to understand disease mechanisms in a comprehensive manner, the combination of systems biology and bioinformatics is currently proving to be a very powerful research approach. Bovine tuberculosis infection can spread from cattle to humans and some domestic animals, which, in addition to the economic burden of the disease, has provided the impetus for the development of a new management strategy, as more traditional approaches seem to be making relatively slow progress. Understanding the fundamental disease mechanism together with the badger's ability to tolerate the infection on a subcellular and genomic level, might prove accessible to contemporary bioinformatics research tools.

In the last few years, bioinformatics has become fully embedded in the methodology of research in Biotechnology, through its focus on biological information management, data interpretation and future, including predictive methods. One of the recently developed

bioinformatics approaches is transcriptomics, which deals with the study of mRNA and non-coding RNAs generated by a cell or population of cells that share specific physiological functions. In contemporary, multidisciplinary research projects, global transcriptome analysis and profiling is commonly the first technology to be applied (McGettigan, 2013). Transcriptomics can generate information about which genes are expressed, at what level and can also provide information about different transcript isoforms

1.6.1 Gene transcription

"Gene expression, the process necessary to transmit information from genetically encoded information into functional processes within a living organism, is where it all starts. Basic principles are followed, which have proved so successful that they are used by prokaryotes and eukaryotes alike." (Persson and Mueller, 2015).

In the central dogma of molecular biology (DNA makes RNA makes protein) transcription is the step that precedes protein synthesis (translation), where DNA serves as template for the synthesis of RNA, catalysed by the enzyme RNA polymerase. In eukaryotes, the newly synthesised mRNA is subsequently released into the cytoplasm to be translated into protein by ribosomes (Latchman, 2005).

Generally, transcription takes place in three steps initiation, elongation and termination. Initiation occurs when the enzyme RNA polymerase binds to a promoter region of a gene. This binding signals the DNA to unwind allowing the enzyme to read the bases of a single DNA strand and create a complementary mRNA strand. Elongation refers to the addition of nucleotides to the mRNA strand directed by the complementary bases with addition of Uracil (U) instead of Thymine (T) to the growing RNA strand. Termination of transcription occurs when RNA polymerase reaches a termination signal in the gene sequence. The mRNA molecule is then detaches from the complex and undergoes further maturation before release into the cytoplasm (Latchman, 2005). The stages are shown diagrammatically in Figure 1.3.

Figure 1.3: (A) "The transcription process is initiated when the enzyme RNA polymerase binds to a DNA template at a promoter sequence. (B) During the elongation process, the DNA double helix unwinds. RNA polymerase reads the template DNA strand and adds nucleotides to the three-prime (3') end of a growing RNA transcript. (C) When RNA polymerase reaches a termination sequence on the DNA template strand, transcription is terminated and the mRNA transcript and RNA polymerase are released from the complex." Adapted from Clancy, (2008).
In order for a eukaryotic mRNA molecule to be translated into an amino acid sequence it must first undergo additional processing, usually before it can be released into the cytoplasm. The processing may include mRNA editing, splicing and polyadenylation (Latchman, 2005). These processes allow not only mRNA maturation but also for a single gene to be used in the production of more than one protein. mRNA editing allows the change of some nucleotides in the sequence which as a consequence lead to the production of different forms of the translated protein. An example of this phenomenon is given the human APOB protein which has two different forms as a result of a premature stop signal during mRNA nucleotide editing (Severi and Conticello, 2015). Polyadenylation in a process by which a tail of adenine bases is added to the 3" end of mRNA sequence. Polyadenylation signals the end of mRNA, involved in mRNA export from the nucleus and protects mRNA from hydrolytic enzymes that might break it down in the cytoplasm. Splicing involves the removal of introns which are non-coding short regions of the RNA sequence that separate the coding exons from each other (Latchman, 2005). As a result of splicing the mature mRNA arises by re-joining the remaining exons (the coding regions) to form an mRNA transcript for subsequent translation into a protein.

1.6.1.1 Alternative mRNA splicing and its impact on protein diversity

The discovery of the discontinuity of eukaryotic genes with protein coding and non-coding segments was one of the most unanticipated findings in molecular biology, and later it has become clearer with advances in genome sequencing that splicing often parallels the complexity of an organism (Jacquier, 2009).

As an example of the complexity that results from the alternative splicing is the similarity of human and mouse genomes with almost the same number of genes, however, alternative pre-mRNA splicing occurs in more than 95% of human genes, compared with 63% of mouse genes **table 1.1**. This diversity significantly expands the form and function of the human proteome which can serve many regulatory functions, from sex determination and diversity of neuronal wiring in the fruit fly to determination of the physiological function of membrane-bound receptors in the mammalian nervous system (Lee and Rio, 2015).

	Human	Mouse
Genome size	3,300 MB	3,300 MB
Protein-coding genes	22,180	22,740
Multiexonic genes (percentage with 2+ isoforms)	21,144 (88%)	19,654 (63%)
Isoforms (average number per gene)	215,170 (3.4)	94,929 (2.4)
Average number of unique exons per	33 (26)	22 (15)
gene(median)		
Average number of unique introns per multiexonic	28 (21)	19 (12)
gene (median)		
Genes (all)	63,677	39,179
Isoforms (all) (average number per gene)	215,170 (3.4)	94,929 (2.4)

Table 1.1: Comparative genomics of splicing levels in human and mouse adapted from (Lee and Rio, 2015).

RNA splicing takes place in a large ribonucleoprotein structure known as the spliceosome which is composed of five small nuclear ribonucleoproteins that recognise and assemble on each intron to ultimately form a catalytically active spliceosome (Will and Luhrmann, 2011). The human gene contains approximately eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that the majority of human genes produce at least two alternative mRNA isoforms (Lee and Rio, 2015) (Figure 1.4). Alternative splicing can arise as a result of several different mechanisms including RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Errors in splicing and mutations in splice sites and splicing factors however rare may still can be linked to a number of diseases including cancer (Severi and Conticello, 2015).

Figure 1.4 : Alternative splicing event and the resultant proteins (Cooper and Hausman, 2009).

1.6.1.2 Transcriptome complexity

Until recently, the description of a transcriptome was fundamentally limited to the characterization of the transcription products of known annotated genes i.e. mRNA, and stable non-coding RNAs such as tRNA and snRNA. However, the sequencing of entire eukaryotic genomes had paved the way to the development of more techniques to determine and catalogue their transcribed sequences and to study the regulation of transcription on a large-scale functional approaches (Jacquier, 2009).

These technologies have revealed that the transcription landscape in higher eukaryotes is more complex than previously had been predicted **(table 1.1)**, with a high proportion of transcripts originating from intergenic regions that were previously thought to be silent or in antisense to genes. The unanticipated level of complexity has led to the fact that the transcripts are not restricted to well-defined functional genes (Jacquier, 2009).

Unlike the genome, the transcriptome is more dynamic and variable depending on cell type and function. It also changes in accordance to physiological states such as growth or pathological conditions such as infections. Transcriptome profiling is an indicator of gene capability of generating different mRNA and protein isoforms through mRNA maturation and splicing and it can also indicate the magnitude of gene expression in terms of number of mRNA copies under different conditions.

1.6.2 Transcriptome analysis

The transcriptome is the entire set of transcripts present in a living cell or group of cells together with the relative abundance of each transcript at a defined developmental stage

or under a specific set of physiological conditions (Wang et al., 2009). Understanding the transcriptome is crucial for interpreting some of the functional elements of the genome and uncovering the molecular components of cells and tissues, and for understanding physiological and pathological development processes (Wang et al., 2009).

Amongst the more common aims of applied transcriptomics are: to classify all different groups of transcripts, such as mRNAs and non-coding RNAs in a given cell or tissue; to establish the transcriptional structure of genes, in terms of their start sites, 5' and 3' ends, splicing patterns and other post-transcriptional modifications and to measure the change in expression levels of each gene during physiological development and under different stress conditions such as disease (Wang et al., 2009).

Transcription is the first key regulatory step of gene expression that can fill the gap between genome expression and cell function. Furthermore, transcriptome analysis mirrors genome expression dynamics, as the transcription patterns are highly specific for each type of cells despite the fact that all cells of a given organism, share the same set of genes (Dong and Chen, 2013). Transcriptomics studies have widened our view field in understanding the structure and function of non-protein-coding RNA (ncRNA) and their rule in gene regulation (Mattick, 2005). As an example for the magnitude of ncRNA, over 93% of the human genome is transcribed into RNA (Carninci et al., 2005) and only 2% is from protein coding region (Green and Chakravarti, 2001). The development of next generation sequencing technology (NGS) has enhanced our understanding of RNA biology, and through that enhancement, the application of transcriptomics has been

expanded (Dong and Chen, 2013). Methodology improvement, particularly of the NGS technology, has led to a higher throughput and resolution level of transcriptome analysis studies, and has produced large amounts of data and correspondingly greater levels of biological information (Wang et al., 2009).

1.6.3 Advantages of transcriptome analysis

A variety of technologies have been developed to study and measure the transcriptome, including hybridization-based and sequence-based techniques. Hybridization-based approaches normally involve hybridizing fluorescently labelled cDNA with customised microarrays or commercially synthesized high-density oligo microarrays (Clark et al., 2002). However, the hybridization approaches have some limitations, which include: dependence upon existing knowledge about genomic sequence and a limited dynamic range of detection due to both background and saturation of signals. Moreover, comparing expression levels across different experiments is often difficult and can require complicated normalization methods (Okoniewski and Miller, 2006).

In contrast to microarray technologies, sequence-based methods can directly determine the cDNA sequence. However, most sequencing techniques are based on Sanger sequencing technology which is rather expensive, and has a number of limitations with short sequences where a significant proportion of the short tags cannot be distinctively mapped to the reference genome. Furthermore, only a portion of the transcript is analysed and isoforms are usually impossible to differentiate from each other. This

disadvantage limits the use of traditional sequencing technology in annotating the structure of transcriptomes (Wang et al., 2009).

In recent years, the development of high-efficiency DNA sequencing technology (NGS) has provided novel methods for both transcriptome mapping and quantification. This method, known as RNA-Seq (RNA sequencing), has significant advantages over existing approaches and is predicted to revolutionize the approach in which eukaryotic transcriptomes are analysed, for example, RNA-Seq has generated consistently high value data for mammalian transcriptome analysis (Mortazavi et al., 2008).

Transcriptome sequencing can provide an inexpensive, rapid approach to access gene sequences, gene expression patterns and provides a quantitative measure of gene expression in different species, regardless of the availability of a reference genome. These advantages can be attributed to the smaller size and the reduced complexity of the transcriptome compared to the whole genome. The successful application of RNA sequencing in combination with *de novo* transcriptome assembly, has facilitated the classification of new genes in a wide range of biochemical pathways. Despite the development in sequencing technologies, however, considerable challenges remain in the processing and analysis of transcriptome sequence data (Gongora-Castillo and Buell, 2013). Some of these challenges are discussed in the limitations of transcriptome analysis section.

1.6.4 Limitations of transcriptome analysis

The achievements in transcriptomics are largely attributed to the high volume of genome research and the desire to obtain functional information to add value to genome data. This has been matched by phenomenal levels of innovation in omics technologies, especially the improvements in NGS technology and its simultaneous reduction in cost. However, like other technology, NGS needs improvements to reduce the bias introduced by RNA amplification and library construction and also to reduce the cost for low input RNA-seq. Further, the optimisation of experimental design and bioinformatics analysis are both required for more efficient and accurate transcriptome characterisation (Dong and Chen, 2013).

Despite these limitations NGS techniques have emerged to be the most dominant genomics technology due to their cost and uses compared to Sanger sequencing (Morozova and Marra, 2008). The applications of RNA-seq techniques in the field of genomics have included genome annotation, gene expression profiling and ncRNA profiling (Morozova and Marra, 2008). NGS approaches have also been used in determining DNA sequences associated with epigenetic modifications of DNA and histones to profile DNA methylations, posttranslational modifications of histones, and nucleosome positions on a genome-wide scale (Callinan and Feinberg, 2006).

1.6.5 The principles of RNA-Seq technology

RNA-Seq technology is based on deep-sequencing methods, which generally involve the conversion of a population of RNA sequences to a library of cDNA fragments, with adaptors attached to one or both ends (Wang et al., 2009).

Figure 1.5: RNA-Sequencing, RNAs are converted into a library of cDNA fragments through either RNA fragmentation or DNA fragmentation. Sequencing adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from each cDNA using high-throughput sequencing technology. The resulting sequence reads are aligned with the reference genome or transcriptome (Wang et al., 2009).

cDNA molecules are then sequenced (either with or without amplification) in a high-

throughput approach to acquire short sequences from one end (single-end sequencing),

or both ends (pair-end sequencing). Depending on the DNA-sequencing technology used, the read size is typically in the range of 30-400 bp. After sequencing, the resulting cDNA fragments are either aligned to a reference genome or reference transcripts which enables characterisation of expression profiles (Figure 1.5). *De novo* assembly is performed when the reference genomic sequence is not known to produce a genomescale transcription map which can illustrate both the transcriptional structure and level of expression for each gene in the sequence (Wang et al., 2009).

1.6.6 Advantages of RNA-Seq technology

Even though RNA-Seq is an emerging technology that seems to be constantly undergoing efficiency and yield related improvement; it already presents a number of advantages over contemporary technologies. RNA-Seq technology is particularly suitable to apply in non-model organisms that do not have reference genomic sequence. The reason for that advantage is that RNA-Seq is not limited to aligning the transcripts to a known DNA sequence (Vera et al., 2008).

RNA-Seq technology can detect variations in the transcribed regions of the genome (Morin et al., 2008). The technology also has a wider dynamic range of expression levels over which transcripts can be detected, i.e. RNA-Seq has no upper quantification limit when compared to DNA microarrays which has a limited sensitivity to gene expressed at low or very high levels (Mortazavi et al., 2008). RNA-Seq has also shown a high accuracy in quantifying expression levels as measured using quantitative PCR (Nagalakshmi et al., 2008).

Further advantages of RNA-Seq include: high technical and biological reproducibility levels, very low background signal interference and the technique does not include cloning steps and therefore less RNA samples are required (Cloonan et al., 2008) and when compared to Sanger EST sequencing or DNA microarrays, RNA-Seq offers better single-base resolution and gene expression levels at much lower cost (Wang et al., 2009).

1.7 Transcriptome assembly and annotation

In bioinformatics, genome annotation is the term that describes two distinctive processes. Structural gene annotation is the process of identifying genes intron–exon structures. Whereas, functional genome annotation is the process of attaching meta-data such as gene ontology terms to structural annotation.

1.7.1 Assembly

A successful annotation is achieved only after comprehensive transcriptome assembly has been completed. There are several statistical summaries that can be used to benchmark the contiguity and completeness of an RNA-Seq experiment. The most important statistic is Scaffold and Contig N50 but other assembly statistics are useful as well (e.g. the average gap size of a scaffold and the average number of gaps per scaffold (Yandell and Ence, 2012). Generally, the existing genomic data are standard, draft assemblies that meet minimum requirements for submission to public databases. However, a high-quality draft assembly (which is 90% complete) is still a better aim for annotation (Chain et al., 2009). A transcriptome assembly with a N50 scaffold length that is gene-size (half of the assembled readings are complete genes) is an accepted annotation target. These 50% of the assembled genes together with the remaining fragments will give a decent resource for subsequent analysis (Ye et al., 2011). It is recommended to perform more shotgun sequencing when the assembly is incomplete or if the N50 scaffold length is too short as achieving high-quality assembly reads became more efficient in recent genome projects (Husemann and Stoye, 2010).

1.7.2 Annotation

The "Annotation pipeline" is a general term that is used to refer to the different tools and programs that assemble and compute data, and use it to create the primary genome annotation. The process is intrinsically complex and it mainly focuses on annotating protein-coding genes. Annotation pipelines vary in their working details, magnitude and accuracy but still have the common core features. The pipeline is commonly divided into two phases. In the first computational phase the expressed sequence tags (ESTs) and protein-coding genes are aligned to the reference genome or evidence-based gene predictions are generated. In the second annotation phase the collected data are organised and combined into gene annotations (Yandell and Ence, 2012).

1.8 The Mealworm (*Tenebrio molitor*) as a prospective model organism for schools

1.8.1 Definition of model organisms

"Model organisms are usually defined as non-human species that are extensively studied in order to understand a range of biological phenomena that might not be easily researched in advanced organisms, with the hope that data, models and theories generated will be applicable to other organisms, particularly those that are in some way more complex than the original" (Leonelli and Ankeny, 2013). This definition focuses on the use of model organisms for the primary purpose of research and development, and they play a key role in both drug discovery and testing, in the Pharmaceutical Industry.

One of the earliest systematic experiments, using a model organism, is the use of *Pisum sativum*, by Gregor Mendel during his pioneering work on the "rules" of inherited characteristics (Smýkal et al., 2016). Later, *Drosophila* species were pivotal in the investigation of the harmful effects of radiation at the cellular and genetic level (Lamb and Smith, 1969). Famously, the Guinea Pig Latin name, is cited as the proxy for the test organism in drug trials in particular. However, guinea pigs are used much less frequently today compared with mice and zebra fish, for example. A particular model organism is chosen for experimental work when it closely matches the system under investigation, often in man. However, in Mendel's case, pea plants provided him with a phenotype (plant height) that would unequivocally "report" on the relationship between genotype and phenotype, which is a relationship that he believed would apply across all eukaryotes. Today, plant biologists generally use *Arabidopsis thaliana* as the model organism of choice for exploring the fundamentals of plant physiology.

With the widespread introduction of genome sequencing during the 1990s, traditional model organisms became some of the earliest targets for genome sequencing. Yeast (*Saccharomyces cerevisiae*) and *E.coli* were sequenced alongside the release of the first draft of the human genome sequence, with *Drosophila* and *Arabidopsis* following soon after. It is true to say that the genome sequence will be available for almost all model organism employed as proxies for a more complex organisms.

1.8.2 Characteristics of model organisms

The selection of specific living organisms as experimental models is usually determined by the remit of the experimental investigation. With this in mind, the "simpler" model organisms, such as *E.coli*, yeast and fruit flies have been mainly utilised for the investigation of fundamental biological phenomena, such as metabolism, eukaryotic cell division and embryonic developmental respectively (see for example, Rosenblueth and Wiener, 1945). These organisms grow and divide rapidly, and large populations can be obtained both rapidly and economically, assuming the relevant laboratory facilities are to hand. As the questions become more complex or perhaps more "human", especially in the evaluation of drugs, it is not uncommon to utilise primates for the most critical comparative studies. Of course, over the last 20 years in particular, efforts have been made to keep the use of animals in research to a minimum on ethical grounds.

1.8.3 The use of model organisms in the teaching of Science

Laboratory classes were popularised by John Dewey at the turn of the 19th century and have become embedded in the curriculum of high schools worldwide who teach subjects like Chemistry, Physics and Biology. It is primarily in Biology that living organisms have been employed for traditional dissection classes, simple microscopy and for demonstrations of evolution. However, as part of a project designed to bring a more contemporary flavour to school Science: one which captures the existing curriculum and introduces genome biology, this Chapter is aimed at developing the darkling beetle, *Tenebrio molitor* for such a purpose. In considering which organism to choose, some of the above criteria were incorporated. However, additional criteria were considered and these are discussed below prior to the experimental section, in which the meal worm (which will be used interchangeably with T. molitor) is developed as a focus for educational experimental biology. One final important point is that this insect should be seen not as a fully understood organism, but one for which many questions still remain, some of which can be asked in suitably designed, schools-led research projects.

Schools, unlike professional research laboratories, are generally "closed for business" for between 10 and 20 weeks per year, imposing major logistical constraints on the choice of a model organism. Plants need regular watering and a regulated light source, bacteria require specialised growth, sterilisation and disposal facilities, mice are relatively expensive, relatively slow to breed, fish are relatively high maintenance and experimental use of both of the latter organisms requires ethical approval. In contrast, insects like drosophila and locusts offer many advantages for school science, except that they are prone to flying around: making their management more "hands-on". Flightless insects, such as beetles are amongst some of the most diverse species on Earth, and moreover, in most Northern Hemisphere countries fishermen use insect larvae as bait. Hence, inexpensive supplies of larvae such as the meal worm are readily available from pet shops or angling suppliers (angling is the most popular individual sport in the UK) across the UK (and the USA, for example). Importantly, meal worm larvae require minimal "life support". A small tray of meal worm will complete the life cycle in around 4 weeks, provided simply with bedding and a few pieces of cut fruit or vegetables. Since they are flightless, meal worm larvae and adults are extremely low maintenance, and can be kept at a wide range of room temperatures with little impact on viability. These features are combined with the more typical, favourable characteristics associated with a model organism including small adult size, a relatively short life span, rapid development, availability of supply and tractability (Bolker, 1995).

1.8.4 The need for another model organism

Since the completion of the human genome project in 2000, the significantly reduced cost and growth in the number of genome sequencing facilities worldwide, has led to a significant increase in the number of model organisms, rather than an experimental consolidation of existing organisms. The argument made here for developing the meal worm (or indeed beetles in general), is primarily made in order to provide access to a living organism that straddles school science and frontline research in a manageable, lowcost way.

Genetic screening using model organisms has proved to be a powerful and valuable approach for over 100 years (in fact the "sanctity" of man possibly influenced the early pioneers of experimental anatomy, including Aristotle). Many remarkable studies using model organism have helped to understand the fundamental principles of vertebrate evolution, which includes resistance to infection (Abnave et al., 2014). Moreover, the main recommendation for model organism work, as stated by Jenner and Wills (2007) is to broaden phylogenetic sampling, to minimize bias in the sample of characteristics that are represented by the chosen models. Our general understanding of phenotypic evolution is therefore better served by deliberately choosing new models with traits that enable them to provide independent illumination of evolutionary developmental biology conceptual themes (Jenner and Wills, 2007).

1.8.5 The yellow mealworm beetle, (*Tenebrio molitor*), as a model organism

In considering the development of the mealworm beetle (Tenebrio molitor) as a new model organism, it is important to provide some wider contextual information. T. molitor is one of the largest known beetles that feeds on plant products and stored food (typically in a warehouse setting), causing considerable damage to such produce, in terms of total mass, quality and nutritional value. The beetle eats and then contaminates food produce with bodily waste and dead larvae (Siemianowska et al., 2013). Each female T. molitor lays around 300-500 eggs: each egg hatches in 4- 17 days, growing to a 3mm long larva (Figure 1.6) that reaches an average full size of (25-35mm long and 200mg in weight). The full grown larvae are used in both animal feed and increasingly as a dietary component of the human food chain in some parts of the world (Aguilar-Miranda et al., 2002). Mealworm larvae have a relatively long life span, compared with other beetles: under optimum moisture and temperature, they can survive for up to around six months, followed by 5-6 days of a dormant pupal stage (Siemianowska et al., 2013). More than 20,000 species of Tenebrionidae have been identified and described in different parts of the world (Liu and Wang, 2014). The dried, live larvae of the mealworm beetle are most commonly used as food for birds and other domestic pets (Barker et al., 1998). However, there is considerable interest in developing the meal worm for wider human consumption.

Figure 1.6: Tenebrio molitor larvae (Kupferschmidt, 2015).

1.8.6 Research applications of *T. molitor*

A growing number of researchers have used *T. molitor* as an experimental system for studies in biology, biochemistry, evolution, immunology and physiology, owing to its relatively large size, ease of handling, and orthodox genetics (Lee et al., 2015). However, despite this work, a coherent physiological and genetic "profile" of this beetle is lacking (Liu and Wang, 2014), and such information could form the basis of a school-wide programme of directed research.

T. molitor has a particular advantage as a candidate model system for the study of pathogens, since the larvae can be maintained at body temperatures between 25 °C and 37 °C (de Souza et al., 2015). On the other hand, other model organism such as *Drosophila melanogaster* (fruit fly) and *Caenorhabditis elegans* are unable to tolerate this temperature range (Desalermos et al., 2012). Direct inoculation by injecting the pathogen

directly into the *T. molitor* larvae (facilitated by the limited movement of the larvae) make this insect much more favourable than *C. elegans* (Merkx-Jacques et al., 2013). Similar arguments can be made for beetles such as the wax worm. It seems clear that beetles such as *T. molitor* offer some distinct experimental advantages in contemporary biological research: the area of infectious disease research and antimicrobial screening is one clear example.

1.8.6.1 *T. molitor* in immunological research

This thesis provides an introduction to the analysis of those genes involved in the transmission of bTB in cattle (Chapters 1-4), Despite the lack of comparative information regarding the infected versus uninfected badger transcriptomes, an analysis of the immune related genes, reveals a level of complexity that would benefit from investigation in a model system. It is the long term aim of this work, that the meal worm may provide insights into immune responses to infectious disease that may help us understand events in more complex organisms including cattle and man.

T. molitor larvae are known to exhibit a population density-dependant immune response, where lower mortality rates are observed at higher larval density compared to isolated larvae (Barnes and Siva-Jothy, 2000). Studies were also conducted to test the innate immunity responses and its "energetic cost" to *T. molitor* (Moret and Siva-Jothy, 2003) and also to examine the adaptive immune response to repeated exposure to pathogens. In this work, Moret and Siva-Jothy (2003) showed that larvae were found to produce a sustained, antimicrobial response despite that fact that invertebrates do not have acquired immunity. The limited availability of genetic data on *T. molitor*, make it

extremely difficult to provide a molecular framework for these and similar observations, even by drawing on comparative data from *Drosophila melanogaster*, again arguing in favour of the use of a related species such as *T. molitor* larvae, from which significant amounts of haemolymph can be extracted, to help elucidate the mechanisms underlying pathogenic microbe recognition (Park et al., 2010). To date this area of research has revealed the presence of a number of pattern recognition proteins, serine proteases, serpins and antimicrobial peptides and examined how these molecules affect innate immunity (Park et al., 2011).

The difference in gene expression in response to bacterial intoxication by *Bacillus thuringiensis* Cry3Aa Protoxin led to sequencing of *T. molitor* transcriptome, which represents the largest genetic sequence dataset of the organism to date (Oppert et al., 2012a). Other experiments tested the survival of antimicrobial peptides-resistant *Staphylococcus aureus* in response to *T. molitor* as an insect model which led to the suggestion that increased survival of antimicrobial peptides-resistant bacteria almost certainly poses problems to immune-compromised hosts (Dobson et al., 2014).

1.9 T. molitor genomic DNA sequencing

The development of efficient, large-scale and relatively inexpensive DNA sequencing technology has begun to impact significantly on Biological research in the last decade in particular, making DNA sequencing routine in many fields, including forensics, agriculture different aspects of medical and non-medical research (Rosenstein, 2014).

Obtaining the complete sequence of the *T. molitor* genome will greatly enhance our ability to associate genes and mutations with traits and diseases similarly to the process of developing the rat as a model organism and to take full advantage of the wealth of physiological variation among strains and mutants using a map of the genetic variation (Lindblad-Toh, 2004).

The recently published *T. molitor* transcriptome (Oppert et al., 2012b) and mitochondrial genome (Liu and Wang, 2014) offer an opportunity for developing the mealworm as a model organism. *T. molitor* is a valuable model host but its full potential and tolerance has yet to be studied, and the sequencing of *T. molitor* genome could allow the production of different mutants, and contribute to studies on host response to infection (de Souza et al., 2015) just as it has done wlewhere in Biological research.

1.9.1 *T. Molitor* genome sequencing via Illumina platform

"Illumina" sequencing is dependent on solid phase amplification of random DNA fragments followed by sequencing-by-synthesis, by adding fluorescent dNTPs (Fox et al., 2009) to facilitate detection. All "Illumina" sequencing workflow routines are composed of four basic steps that begin with DNA sample preparation, cluster generation, sequencing and data analysis.

1.9.1.1 Sample preparation

There are number of different procedures available for the preparation of genome samples by fragmentation (e.g. nebulization, hydro-shear or sonication). All preparation methods incorporate the addition of adaptors to the ends of the DNA or cDNA fragments,

through reduced cycle amplification (Figure 1.7), additional motifs are introduced, such as the sequence binding site, indices and regions complementary to the flow cell oligonucleotide adapters (Mardis and McCombie, 2017).

Figure 1.7: DNA fragments are generated by shearing and joined to a pair of oligonucleotides in a forked adapter configuration. The ligated products are amplified using two oligonucleotide primers, resulting in double-stranded blunt-ended fragments with a different adapter sequence on either end (adapted from Bentley et al., 2008)).

1.9.1.2 Clustering

Clustering or cluster generation is a process where each fragment molecule is isothermally amplified. The technology involves attachment of a short DNA fragment to a solid surface called a flow cell. The flow cell is a glass slide with lanes. Each lane is a channel coated with a lawn composed of two types of oligo-nucleotides. Hybridisation is enabled by the first of the two types of oligo-nucleotides on the surface where oligonucleotides are complementary to the adapter region on the fragment strands. The attached DNA fragments are PCR amplified to create clusters at a very high density (>10 million DNA clusters per lane) on the surface of the transparent sequencing flow cell. (Fox et al., 2009). A polymerase creates complements of the hybridised fragments then the double stranded molecules are denatured and the original templates are washed away. The strands are clonally amplified through bridge amplification (Figure 1.8).

Figure 1.8: Formation of clonal single molecule array. DNA fragments are denatured and single strands are annealed to complementary oligonucleotides on the flow cell surface. A new strand (dotted) is copied from the original strand and the original strand is then removed by denaturation. The adapter sequence is annealed to a new surface bound complementary oligonucleotide, forming a bridge and generating a new site for synthesis of a second strand (shown dotted). (Adapted from Bentley et al., 2008)).

In this process the strands fold over and the adapter regions hybridise to the second type of oligonucleotides on the flow cells. DNA Polymerases generate the complementary strands generating double stranded bridges. Each bridge is then denatured resulting in two single stranded copies of the molecule that are tethered to the flow cell. The process is repeated over and over and occurs simultaneously for millions of clusters resulting in clonal amplification of all the fragments. After bridge amplification, the reverse strands are cleaved and washed off leaving only the forward strands. The 3" prime ends are blocked to prevent unwanted priming. "Solid-phase amplification can produce 100–200

million spatially separated template clusters (Illumina/Solexa), providing free ends to which a universal sequencing primer can be hybridized to initiate the sequencing reaction (Metzker, 2010).

1.9.1.3 Sequencing

Sequencing begins with the extension of the first sequencing primer to produce the first read. With each cycle fluorescently tagged nucleotides compete for the addition to the growing chain (Toh et al., 2017). However, only one nucleotide is incorporated based on the sequence of the template. After the addition of each nucleotide, the clusters are excited by a light source and a characteristic fluorescent signal is emitted. This proprietary process is called "sequencing by synthesis" and the number of cycles determines the length of the reads. The emission wave length along with the signal intensity determine the base call. For a giving cluster all identical strands are read simultaneously and hundreds of millions of clusters are sequenced in a massively parallel process. The sequencing process is repeated for multiple cycles. Amplified fragments representing a cluster are then sequenced and imaged with each reaction step. The system uses dNTPs containing fluorescently labelled 3" reversible terminators, each emitting a different fluorescence signal (Fox et al., 2009).

1.9.1.4 Data analysis

The sequencing process generates millions of short reads representing all the original DNA fragments. Sequences from pooled sample libraries are separated according to the unique indices introduced during sample preparation stage. For each sample reads with similar stretches of base calls are locally clustered and forward and reversed reads are

paired creating contiguous sequences. The contiguous sequences are then either aligned back to a reference genome for variant identification or independently assembled into a genome.

1.10 Aims and Objectives

Understanding the badger's immunological response to bTB might hold the answer to a new treatment or immunisation strategy for cattle and other affected domestic animals as well as zoonosis. It might also help in exploring the human disease and help in developing more potent vaccine or genetic therapy.

In that prospect, this research is more of an exploratory nature to delve deeper into the immunological components that appear to give the badger a unique tolerance to bTB.

In that sense, the main aim of the study is to find out the immunological components of the badger's transcriptome and their phylogenetic relations to other mammals, which may hold some answers of the evolution of the badger's immune system.

The extensive research in immunological responses of mealworm to pathological stress, the flexibility of its use and handling in the laboratory and low cost of maintenance, as well as the known transcriptome and mitochondrial DNA, have made the mealworm an appropriate candidate for genomic DNA sequencing to facilitate its future applications as a model organism for schools other educational institutions as well as a candidate for studying the basic immunological responses for bacterial infections including bTB.

In that prospect, sequencing *T. molitor* genome will set a platform for expanding the current spectrum of model organisms for better understanding of disease and infection as well as to reduce the margin of limitations and error.

The main objectives of this research are:

- To analyse the badger's transcriptome and identify its components.
- To draw a phylogenetic relationship between the badger and other mammals using sequence alignment and phylogenetic tree construction tools.
- To identify the immunity related transcripts involved in bTB pathogenesis using KEGG pathway for a tuberculosis as a reference
- To extract high quality genomic DNA from *T. molitor*, and from this obtain the nucleotide sequence for its genome.

Chapter II

2 Materials and Methods

This chapter is divided into two main sections: the first one describes the bioinformatics approaches for badger transcriptome analysis and the second is dedicated to molecular biology methods relating to the mealworm genomic DNA extraction.

2.1 Materials and methods for transcriptome analysis

The transcriptome data were obtained following isolation of peripheral blood cells at the Animal Health and Veterinary Laboratories Agency (AHVLA) in London. The total RNA was extracted from healthy bTB free animals. All subsequent RNA-seq work was contracted out to the Beijing Genomics Institute (BGI), who also provided a preliminary annotation document. Further analysis was performed using the following databases and software:

2.1.1 NCBI Basic Local Alignment Search Tool (BLAST+)

BLAST (Altschul et al., 1997) is one of the more popular software choices for searching and aligning biological sequence data. BLAST takes a nucleotide or protein sequence as input and compares it with a database of nucleotide or protein sequences respectively. BLAST can translate nucleotide sequences as needed; therefore, BLAST can search a nucleotide query against a protein database or a protein query against a nucleotide database. BLAST uses heuristics to accelerate searches. BLAST also provides statistics that estimate the likelihood of a match occurring by chance (Boratyn et al., 2013). BLAST search was used in conjunction with other tools and platforms (Clustal omega and Galaxy) to draw alignments of several immunity transcripts derived from the badger, and to construct phylogenetic trees for both badger and mealworm.

2.1.2 Galaxy platform

Galaxy platform is a web-based environment in which users can perform genome related computational analyses and importantly, all search details and parameters are automatically tracked for later inspection (Cock et al., 2015). Galaxy was used in data analysis in order to convert the transcriptome sequence data (FASTA) files into a searchable database (makeblastdb), to facilitate the subsequent BLAST+ searches. Galaxy utilises BLAST+ command-line applications (Camacho et al., 2009) through a user-friendly graphical interface.

2.1.3 Kyoto Encyclopaedia of Genes and Genomes (KEGG)

KEGG is a knowledge base for the systematic analysis of gene function, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogues for all completely sequenced genomes, together with some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved sub-pathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions (Kanehisa and Goto, 2000). KEGG was use to extract the KEGG pathway for bTB and the list of genes involved in tuberculosis pathogenesis.

2.1.4 Gene Ontology (GO)

The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. (Ashburner et al., 2000).

2.1.5 Clusters of Orthologous Groups database (COG)

COGs are groups of three or more orthologue genes, which means that they are direct evolutionary counter-parts and are considered to be part of an 'ancient conserved domain'. A COG is defined as three or more proteins from the genomes of distant species that are more similar to each other than to any other protein within the individual genome. COGs can be used to predict the function of homologous proteins in poorly studied species and can also be used to track the evolutionary divergence from a common ancestor, hence providing a powerful tool for functional annotation of uncharacterized proteins (Tatusov et al., 2000).

Although they were not directly used in the analysis, GO and COG helped in grouping and classification of transcripts involved in immunity and tuberculosis pathway according to their GO terms and COG functional groups.

2.1.6 Immunome Knowledge Base (IKB)

IKB is a dedicated resource for immunological information. IKB contains information for human immunome genes and proteins, phylogenetic trees and evolutionary information

for immunome orthologs, ortholog groups for metazoan immunome, and variation data on genomic, transcriptomic and proteomic level. IKB integrates three previous databases, Immunome, ImmTree and ImmunomeBase with additional data (Ortutay and Vihinen, 2009).

IKB was used as a reference database to extract all the immunity related transcripts form the badger transcriptome annotation data files based on the 983 genes classified as immunity-related in the IKB database.

2.1.7 Clustal Omega

"Clustal Omega is a multiple sequence alignment tool, which can align (in a virtual sense) a large number of protein sequences quickly while delivering accurate and robust alignments. The accuracy of the package on smaller test cases is similar to that of the highquality alignment software. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases" (Sievers et al., 2011). Clustal Omega was accessed via EMBL-EBI web service interface (McWilliam et al., 2013). Along with BLAST+ Clustal Omega was used to align sequences and construct phylogenetic trees. Figure 2.1 shows the parameters used in BLAST+ and Clustal Omega searches via the EMBL-EBI website.

In addition to the above databases and platforms, others were used more infrequently to

Blast+:

Database: UniProtKB mammals/ Program: blastp/ Matrix: BLOSUM62/ Expectation value threshold: 1e-5/ Dropoff: 0/ Gap open: -1/ Gap extend: -1/ Filter: F/ Sequence range: START-END/ Gapalign: true/ Compositionbased statistics: F/ Align views: 0/ Translation table: -1/ Sequence type:protein Clustal Omega:

Program: clustalo/ Version: 1.2.4/ Output guide tree: false/ Output distance matrix: false/ Dealign input sequences: false/ mBed-like clustering guide tree: true/ mBed-like clustering iteration: true/ Number of iterations: 0/ Maximum guide tree iterations: -1/ Maximum HMM iterations: -1/ Output alignment format: Clustal/ Output order: aligned/ Sequence Type: protein

Figure 2.1: Search and alignment parameters used in BLAST+ and Clustal Omega

address specific features and characteristics (e.g. full sequence) or functions of some

transcripts e.g. UniProt (2017)

2.2 Materials and methods for mealworm genomic DNA extraction

This section describes chemical, enzymes and other materials used in conducting the experiments. A description of the protocols and standard molecular biology methods used is also included.

2.2.1 Chemicals

All chemicals used were of molecular biology grade

Material	Provider
5x DNA Loading Dye	QIAGEN
Agarose	Bioline
DNA Hyperladder I	Bioline
ISOLATE Genomic DNA Mini Kit	Bioline

Table 2.1: Chemicals

2.2.2 Solutions

Buffer	Composition
TAE (Tris-Acetate-EDTA) buffer 50X	750 ml of 2.67 M Tris base
stock)	57.1 ml of 17.4 M glacial acetic acid
	100 ml of 0.5 M EDTA (pH 8.0)
	Adjust the solution to a final volume of 1 L
Ethidium Bromide Stock solution	25.4 mM (10 mg/ml of deionized distilled Water)

Table 2.2: Solutions

2.3 Basic Molecular Biology protocols

2.3.1 Genomic DNA extraction

Mealworms were obtained from a pet shop and stored in a -80°C freezer for at least 24 hours before DNA extraction in order to obtain a more consistent powder when grinded. Approximately 50-60 mg of the powdered worm used for the extraction using ISOLATE Genomic DNA Mini Kit according to the following steps:

- 1- The powdered sample was placed in a 1.5 ml tube and 400 μ l of lysis buffer and 25 μ l of proteinase were added and mixed immediately by vortexing then incubated at 50°C in an incubator fitted with a rocking platform for continuous mixing for about 3.5 to 4 hours until the sample was completely dispersed.
- 2- The mixture was centrifuged at 10000x g (12000 rpm) for 1 minute and the supernatant was transferred to another 1.5 ml tube. 200 μ l of binding buffer were added and mixed immediately by vortexing for 15 seconds.

- 3- The sample was then transferred to a spin column with a 2 ml collection tube and centrifuged at 10000x g (12000 rpm) for 2 minutes. The filtrate was discarded and then column was washed twice with 700 μl Wash buffer with a centrifugation at 10000x g (12000 rpm) for 1 minutes each time.
- 4- To remove all traces of ethanol the sample was centrifuged for 2 minutes at a maximum speed and the collection tube was discarded. The column was placed in a 1.5 elution tube and 200 µl of Elution buffer were added directly to the spin column membrane and incubated at room temperature for 1 minute. The eluted DNA was collected by centrifugation at 6000x g (8000 rpm) for 1 minute.

2.3.2 Confirmation of the genomic DNA extraction by agarose gel electrophoresis

1 g agarose was dissolved in 100 ml TAE buffer by carefully boiling in a microwave oven When the solution had cooled down to about 60° C, 5 µl of ethidium bromide stock (10 mg/ml) was added to make a final concentration of 0.5 µg/ml. The solution was stirred to disperse the ethidium bromide, and then poured into the gel template. The comb was placed at one side of the gel (about 5-10 mm from the end of the gel) and the gel left until it solidified then it was placed in the tank and TAE buffer was added to just cover the agarose.

After loading the DNA samples and DNA marker electrophoresis was performed at 100 volts for one hour. Gel-separated DNA was stained with ethidium bromide and visualised under ultraviolet light.

Chapter III

3 Transcriptome assembly and annotation

This chapter explores the transcriptome derived from peripheral blood cells taken from live badgers as a first step towards identifying its molecular composition and its coding potential. Transcriptome sequencing, assembly and annotation was performed by BGI (China) and a description of sequencing platform and assembly pipeline and annotation process will be described in addition to a quality control assessment and an analysis of the male/female difference in expression and it significance in the light of bTB infection . This is the first step in building a platform for future genome sequencing. Here is a description of the results of the whole transcriptome assembly and its annotation using different databases.

3.1 Experimental pipeline and Sequencing platform

3.1.1 Experimental (mRNA isolation and sequencing) pipeline as described by BGI:

The steps for the experimental pipeline are shown schematically in **Figure 3.1**. After the total RNA extraction and DNase I treatment, magnetic beads coupled to oligo-dT were used to enrich for polyA-mRNA from the total RNA. mRNA was then mixed with the fragmentation buffer and broken down into short fragments. cDNA was synthesized using the mRNA fragments as templates. Short fragments were purified and resolved with EB buffer for end reparation and single nucleotide A (adenine) addition. After this, the short fragments were connected with adapters. The suitable fragments were selected for PCR amplification as templates. During the quality control (QC) steps, Agilent 2100 Bioanaylzer and ABI StepOnePlus Real-Time PCR System were used in quantification and qualification
of the sample library. Finally, the library was submitted to sequencing via Illumina HiSeq[™] 2000. The steps involved in sequence determination using the Illumina platform will be described in more detail in chapter I.

Figure 3.1: Experimental pipeline which mainly involves: mRNA isolation, cDNA synthesis and Illumina sequencing (BGI).

3.1.2 Assembly pipeline RNA sequencing and *de novo* assembly

The fluorescent image data output from Illumina sequencing instruments is transformed by base calling into sequence data, which are referred to as raw data or raw reads and stored in a text (FASTQ) format. The filtering of raw reads was required, as sequences produced from sequencing instruments of this type contain non-clean reads, which contain adapters, and sequences of unknown origin or low quality. If left, these data will negatively impact on downstream bioinformatics analysis. Therefore, non-clean raw reads were discarded:

- If they are still attached to adaptors.
- If the reads have unknown nucleotides in the sequence larger than 5% of the total length.
- If the percentage of low quality bases in the sequence is more than 20% of the total length.

3.1.2.1 Assembly:

De novo assembly of the Transcriptome was carried out with Trinity[,] a short reads assembling program (Grabherr et al., 2011). Trinity combines three independent software modules: Inchworm, Chrysalis, and Butterfly, applied sequentially to process large volumes of RNA-seq reads. Trinity partitions the sequence data into many individual de Bruijn graphs, each representing the transcriptional complexity at a given gene or locus, and then processes each graph independently to extract full-length splicing isoforms and to tease apart transcripts derived from paralogous genes. Briefly, the process works as follows:

Inchworm Assembles the RNA-seq data into the unique sequences of transcripts, often generating full-length transcripts for a dominant isoform, but then reports only the unique portions of alternatively spliced transcripts.

Chrysalis Clusters the Inchworm Contigs together and constructs complete de Bruijn graphs for each cluster. Each cluster represents the full transcriptional complexity for a

61

given gene (or sets of genes that share sequences in common). Chrysalis then partitions the full read set among these disjoint graphs.

Butterfly then processes the individual graphs in parallel, tracing the paths that reads and pairs of reads take within the graph, ultimately reporting full-length transcripts for alternatively spliced isoforms, teasing apart transcripts that correspond to paralogous genes.

3.1.3 Output statistics and bioinformatics

Originally, two samples of blood were taken from one **male (identifier Q828)** and one **female (identifier Q381)** badger. The sequencing process generated over 118 million raw reads from each sample. After removing the adaptors and non-clean reads, a total of 108,193,588 and 105,901,706 high quality, "clean" reads were obtained for the two samples Q828, Q381 respectively **(Table 3.1)**

Samples	Total raw reads	Total clean reads	Total nucleotides	clean	GC %
Q828	121,818,354	108,193,588	9,737,422,920		54.09%
Q381	118,836,262	105,901,706	9,531,153,540		51.88%

Table 3.1: Total raw and clean reads generated by sequencing

After assembly, the total number of sequences produced for annotation was 238,295 transcripts, with a total nucleotide length of 305,341,024 bp and an average length of 1281 nucleotides: more than 50% of transcripts are over 2720 nucleotide long **(Table 3.2)**. In the table, a **contig** is defined as any sequence produced by two or more overlapping

reads, and a <u>unigene</u> as a hypothetical gene represented by a cluster of similar transcripts that are thought to be isoforms in the *de novo* transcriptome assembly.

	Sample	Total Number	Total Length(nt)	Mean Length(nt)	N50
Contig	Q828	320,860	90,046,338	281	382
	Q381	433,526	115,082,292	265	334
Unigene	Q828	215,117	247,701,860	1151	2636
	Q381	274,052	289,728,809	1057	2625
	All	238,295	305,341,024	1281	2720

Table 3.2: Number of aligned sequences for each sample including contigs, unigenes and the mean length of each group

3.2 Distribution of sequence lengths

The length of transcripts (Figure 3.2) was distributed between a minimum of 300bp and

3000bp. Over 50% of the transcripts were in the length range of 300bp to 600bp while

13% were \geq 3000 and 36 were in the range between > 600bp and < 3000bp.

Figure 3.2: The distribution of reads per sequence length.

3.3 Transcriptome Similarity, Functional and Pathway annotation

3.3.1 Transcriptome annotation

Sequence similarity, functional annotation and pathway similarity search for the assembled transcripts resulted in annotation of (39%) 95,245 transcripts with significant

similarity with their correspondent genes in published-online databases. 38% (90,719) of the total transcripts were annotated by sequence similarity using a BLAST search of a Non-redundant (nr) database, 27% (65,384) in Swiss-Prot, 29% (69,924) were matched with 259 KEGG pathways, 23% (57,098) to COG function and 13% (32074) to GO terms (Table 3.3).

Database	NR	NT	Swiss-	KEGG	COG	GO
			Prot			
Number of genes annotated	90,719	16,330	65,384	69,924	57,098	32,074
Percentage of genes annotated	38.07%	17.15%	27.44%	29.34%	23.96%	13.45%

Table 3.3: Number and percentage of transcripts annotated in each database

3.3.2 NCBI annotation

In total, 95,245 unigenes were annotated in all databases and 95% (90,719) of all annotated unigenes were identified by sequence similarity alignment in the NCBI nonredundant database. These transcripts were statistically grouped in terms of e-value distribution, the similarity of the sequences to their closest match from the database and also the top matching hits in terms of organismal similarity.

3.3.3 E-value distribution:

The E-value threshold was < 1E-5 and according to E-value distribution the alignments were divided into: Higher end homology from 0 to <1.0E-100 (39%), moderate 1.0E-100

to 1.0E-30 (30%) and lower end homology ranged from 1.0E-30 to 1.0E-5 above which any alignment is insignificant. A detailed distribution of the transcripts according to E-value is shown in the histogram **(Figure. 3.3)**

Figure 3.3: E-value distribution of the annotated transcripts in NCBI non-redundant database

3.3.4 Species similarity distribution

Over 70% of the transcripts matching hits belong to five mammals including *Ailuropoda melanoleuca* (the giant panda) with 25%, *Mustela putorius furo* (the ferret) 20%, *Canis lupus familiaris* (the dog) 16%, *Homo sapiens* (human) 4.4%, *Sus scrofa* (the wild boar) 2.3% and *Bos taurus* (the cow) 2.3%. Other species combined represented 29% of the total annotation (Figure 3.4).

Figure 3.4: Species similarity distribution in NCBI non-redundant database

3.3.5 Sequence similarity distribution

Over 70% of the alignment achieved similarity greater than 80% between the badger blood transcripts and the corresponding genes in the database. Whereas less than 30% achieved a similarity range between 17% and 80% as shown in **Figure 3.5**.

Figure 3.5: Sequence similarity distribution in NCBI non-redundant database

3.3.6 COG Function

Searching the COG database for domain based alignments led to annotation of 57,089 reads and revealed their cellular function classification as shown in (Fig. 3.6). After setting the E-value threshold at 1.0E-5, the homologically significant matches in the COG database were clustered into functional classes, and the cluster (Translation, ribosomal structure and biogenesis) has the highest representation with 13.7% of the total transcripts and (General function) cluster has 13.3% of the transcripts representation. The lowest clusters represented are (Nuclear structure, Extracellular structures and RNA processing and modification) with less than 0.6% combined (Figure 3.6).

Figure 3.6: COG functional annotation

3.3.7 Gene Ontology

According to the sequence alignment and homology, the total number of GO terms that correspond to all unigenes is 1,028,340. In general, most of the GO term annotations represent biological processes with 499,918 (about 48.6%) GO terms, whereas cellular

components represent 37.2% with 382,212 GO terms, and lastly molecular function with 14.2% with 146,210 GO terms (Figure 3.7). For all GO combined: cell, cell part, binding and cellular process have the highest representation with over 70,000 GO term each while virion, virion part, protein tag, chemorepellent activity, carbon utilization and nutrient reservoir activity have the lowest number of GO terms with less than 10.

Figure 3.7: Number of transcripts representing each GO function

The distribution of transcripts according to the three groups of GO terms is shown in details in the **figure 3.8**.

Number of transcripts

Figure 3.8: Distribution of transcripts on different GO terms.

3.3.8 Pathway annotation KEGG

The mapping of assembled transcripts with pathway annotation to KEGG database resulted in assigning those reads to 259 pathways. Among the mostly represented pathways Metabolic Pathways have 9.97% (9930), Focal adhesion 7.61% (7582), Amoebiasis 7.17% (7136), ECM-receptor interaction 5.94% (5918), Protein digestion and absorption 5.65% (5623), RNA transport 4.17% (4158), Regulation of actin cytoskeleton 4.02% (4001), Pathways in cancer 3.88% (3862) and Herpes simplex infection 3.22% (3209).

In addition to the major pathways represented by the transcripts in the **figure 3.9** there are other 239 pathways shown in the **Appendix** including some infectious diseases pathways like influenza A, measles, toxoplasmosis and tuberculosis.

Figure 3.9: Number of transcripts in the main KEGG pathways

In general, there are more transcripts annotated by all four databases combined (9806) than transcripts annotated in one or two or three database as shown in Venn diagram **(Figure 3.10)**. NR has the majority of transcripts annotated in an independent database (8800) whereas COG has the lowest (34).

The pattern in this is approximately consistent with other Venn diagrams in other transcriptome analysis studies and will be further discussed in the discussion section

Figure 3.10: Venn diagram illustrating shared and unique transcripts annotated in databases of Nr, Swiss-Prot, COG and KEGG.

3.1 Quality Control using BLAST sequence alignment tool

In order to check the quality of the acquired transcriptome a BLAST search was performed against some of the badgers mRNA sequences available in the NCBI database. To date, there are 20-deposited partial sequences of badger's mRNA in the NCBI database that represent three genes; MCH class I antigen, MCH class II antigen and Interferon gamma. The first comparison was between a transcript which is a partial sequence (399bp) of MHC class I antigen and a partial sequence of mRNA of the same gene (975bp) published by (Sin et al., 2012). The comparison show that the transcript in hand is 89% identical to that of the same organism currently available in public databases (Figure 3.11). The variability in the number of class I sequences in *M. meles* is intermediate compared to other carnivores (Sin et al., 2012).

			Max score	Total score	Query cover	E value	Ident	Accession		
Meles n	neles N	/IHC class I antigen (Mem	e-MHCI) mRNA, Meme-N	MHCI*04 allele, partial cds	515	515	100%	3e-142	89%	JQ425430.1
Meles Sequer	mele Ice ID:	es MHC class I antig : gb JQ425430.1 Len	en (Meme-MHCI) mi gth: 975 Number of Ma	RNA, Meme-MHCI*04 tches: 1	1 allele	, partia	l cds			
Range	1: 553	to 948 <u>GenBank</u> <u>Graphi</u>	cs	Vext	Match	Previou	is Match			
Score	to/57	Expect	Identities	Gaps	Strand					
515 DI	15(57	0) 30-142	354/399(89%)	3/399(0%)	Plus/Pl	us				
Query	1				60					
Sbjct	553	CGCGCAGAAACCCCCAATA	CACACGTGACCCGCCACCCC	ATCTCTGACCGTGATGTCACC	612					
Query	61	CTGAGGTGATGGGCCCTGG	ACTTCTACCCTGCAGAGATC	ACCCTGACCTGGCAGAGGGAT	120					
Sbjct	613	ĊŦĠĂĠĠŦĠĊŦĠĠĠĊĊĊŦĠĠ	ACTTCTACCCTGCGGAGATC	ACCCTGACCTGGAAGCGAGAT	672					
Query	121	GGAGAGGACCAGACCCAGG	ACACAGAGCTTGTGGAGACC	AGGCCTGCAGGAGATGGAACC	180					
Sbjct	673	GAAGAGGACCTGACCCAGG	ACACAGAGCTCGTGGAGACC	AGGCCTGCAGGAGATGGAACC	732					
Query	181	TTCCAGAAGTGGGCGGCTG	TGGTTGTGCCCTCTGGAGAG	GAGCAGAGATACACATGCCAT	240					
Sbjct	733	TTCCAGAAGTGGGCGGCTG	TGGTGGTGCCTTCTGGACAG	GAGCAGAGATACACATGCTAT	792					
Query	241	GTGCAGCATAAGGGGCTGC	CTGAGCCCATCACCTTGAGT	ТӨӨААӨССАССТССТСССАСС	300					
Sbjct	793	GTGCAGCATGAGGGGCTGT	CTGAACCCATCACCCGGAGA	TGGGAGCCACCTCACACC	849					
Query	301	ATCCCCATCATGTGGATCA	ттестеесстеестстссте	ĢCAGTCACTGTGGTGGTTGGA	360					
Sbjct	850	ATCCCCATCACATGGATCA	ТТGCTGGTCTGGTTCTCCTG	 GTGGTCATTGCAGTGATTGGA	909					
Query	361	GCTGTGATCTGGAGGAAGA	AGCGCTCAGGAGGAAAAGGA	399						
Sbjct	910	GCTGTGATCTGGTGGAAGA	AGCGCTCAGGAGAAAAAGGA	948						

Figure 3.11: Two sequence alignment using online NCBI blastn application: MHC class I antigen partial sequence

The second comparison (Figure 3.12) was between a partial sequence (96bp) of MHC class II antigen DQ beta chain from the transcriptome and a partial sequence (697bp) of the same mRNA from the NCBI public database by (Sin et al., 2011). The two sequences were 100% identical.

Description						Max score	Total score	Query cover	E value	Ident	Accession	
Meles meles MHC class II antigen DQ beta chain (Meme-DQB) mRNA, Meme-DQB*02 allele, partial cds 174								174	100%	2e-40	100%	HQ908096.1
Meles meles MHC class II antigen DQ beta chain (Meme-DQB) mRNA, Meme-DQB*02 allele, partial cds												
Sequer	ice ID	: gb HQ908	096.1 Len	igth: 697 Number of M	latches: 1							
					_	North Match						
Range	1: 24	to 119 GenE	<u> 3ank</u> <u>Graphic</u>	<u>s</u>	▼	Next Match 🔺 Pr	revious M	latch				
Range Score	1: 24	to 119 GenE	Bank <u>Graphic</u> Expect	<u>s</u> Identities	▼ Gaps	Next Match 🔺 Pr Strand	revious M	latch				
Range Score 174 bi	1: 24 ts(19	to 119 <u>GenE</u> 92)	Bank Graphic Expect 2e-40	<u>s</u> Identities 96/96(100%)	Gaps 0/96(0%)	Next Match 🔺 Pr Strand Plus/Plus	revious M	latch				
Range Score 174 bi Query Sbjct	1: 24 ts(19 1 24	to 119 Gent 22) ATGGCACTO ATGGCACTO	Bank Graphic Expect 2e-40 GTGGATCCCCA	S Identities 96/96(100%) GAGGCCTCTGGACAGCAGCT IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Gaps 0/96(0%) TGTGATGGCGATCTTGGT TGTGATGGCGATCTTGGT	Next Match A Pr Strand Plus/Plus GGTG 60 GGTG 83	revious M	latch				

Figure 3.12: Two sequence alignment using online NCBI blastn application: MHC class II antigen partial sequence

The last comparison (Figure 3.13) was between a partial sequence (204bp) of interferon

gamma from the transcriptome and a partial sequence of the same mRNA in NCBI

database (501bp) submitted by (Zhou et al., 2014)

Description	Max score	Total score	Query cover	E value	Ident	Accession
M.meles mRNA for interferon gamma, partial	369	369	100%	1e-98	100%	<u>Y11647.2</u>

M.meles mRNA for interferon gamma, partial

Sequence ID: emb[Y11647.2] Length: 501 Number of Matches: 1

Range	1: 184	: Match 🔺 Previous Match						
Score			Expect	Identit	ies		Gaps	Strand
369 bi	ts(40	8)	1e-98	204/20	04(100%)		0/204(0%)	Plus/Plus
Query	1	GAGAGTGA			GCCAAATTGTCTCC			A 60
Sbjct	184	GAGAGTGA	СААААСААТСА	TTCAAA	GCCAAATTGTCTCC	ttctA	ACTTGAAACTGTTTGA	A 243
Query	61	AACTTTAA	AGATAACCAGA		AAAGGAGCATGGAT		CAAGGAAGACATGCT	r 120
Sbjct	244	AACTTTAA	AGATAACCAGA	tcattc.	AAAGGAGCATGGAT	ÁĊĊĂŦ	CAAGGAAGACATGCT	T 303
Query	121	GTCAGGTT		GCAGCA	GTAAGCGGGAGGAC		TAAGCTGATTCGAAT	T 180
Sbjct	304	GTCAGGTT	CTTCAATAGCA	GCAGCA	STAAGCGGGGAGGAC	tttċt	TAAGCTGATTCGAAT	363
Query	181	CCCGTGAA	TGATCTGCAGG	TCCAG	204			
Sbjct	364	ĊĊĊĠŦĠĂĂ	rgatctgcago	TĊĊĂĠ	387			

Figure 3.13: Two sequence alignment using online NCBI blastn application: Interferon gamma

3.2 Using the transcriptome as a searchable database for MHC genes sequences

MHC are one of the major regulators of cell-mediated adaptive immune response. On average, there is a 10% difference between any two unrelated Individuals in the diversity of MHC combinations, which provide a protective function against pathogens. For an organism, the repertoire of MHC is polygenic, co-dominantly expressed from both sets of inherited alleles and highly polymorphic (Janeway, 2005). Moreover, the evidence of antigenic peptide splicing which can combine peptides from different proteins resulting in increased MHC antigen diversity (Vigneron et al., 2004) and low MHC diversity may pose a threat to the organism's pathogen resistance and on the long term the species survival (Zhu et al., 2007).

Here is an attempt to extract the MHC transcripts from the badger's transcriptome that correspond to 20 RNA-seq sequences in NCBI database and comments on their abundance and significance comparing to that of the giant panda and the effect of that on the whole immune response to infection.

The web-based platform Galaxy (Cock et al., 2015) was used in data analysis. Galaxy utilises BLAST+ command-line applications (Camacho et al., 2009a) through a user-friendly graphical interface. The first task performed was the conversion of the badger's transcriptome sequences data (FASTA) files into a searchable database (makeblastdb) followed by extraction of the badger's MCH class I and II RNA-seq genes sequences

78

(FASTA) from NCBI. Both nucleotide and protein sequences were combined into two

query sequences lists (Figures 3.14 and 3.15)

JQ425440.1 Meles meles MHC class I antigen (Meme-MHCI) pseudogene mRNA, Meme-MHCI*PS03 allele, partial sequence JQ425439.1 Meles meles MHC class I antigen (Meme-MHCI) pseudogene mRNA, Meme-MHCI*PS02 allele, partial sequence JQ425438.1 Meles meles MHC class I antigen (Meme-MHCI) pseudogene mRNA, Meme-MHCI*PS01 allele, partial sequence JQ425432.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*06 allele, partial cds JQ425433.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*07 allele, partial cds JQ425431.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*05 allele, partial cds JQ425430.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*04 allele, partial cds JQ425429.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*03 allele, partial cds JQ425428.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*02 allele, partial cds JQ425427.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*01 allele, partial cds HQ908107.1 Meles meles nonfunctional MHC class II antigen (Meme-DQB) pseudogene mRNA, Meme-DQB*PS01 allele, partial sequence HQ908099.1 Meles meles MHC class II antigen DR alpha chain (Meme-DRA) mRNA, Meme-DRA*02 allele, partial cds HQ908098.1 Meles meles MHC class II antigen DQ alpha chain (Meme-DQA) mRNA, Meme-DQA*02 allele, partial cds HQ908097.1 Meles meles MHC class II antigen DQ alpha chain (Meme-DQA) mRNA, Meme-DQA*01 allele, partial cds HQ908096.1 Meles meles MHC class II antigen DQ beta chain (Meme-DQB) mRNA, Meme-DQB*02 allele, partial cds HQ908095.1 Meles meles MHC class II antigen DR beta chain (Meme-DRB) mRNA, Meme-DRB*04 allele, partial cds HQ908094.1 Meles meles MHC class II antigen DR beta chain (Meme-DRB) mRNA, Meme-DRB*03 allele, partial cds HQ908093.1 Meles meles MHC class II antigen DR beta chain (Meme-DRB) mRNA, Meme-DRB*02 allele, partial cds HQ908092.1 Meles meles MHC class II antigen DR beta chain (Meme-DRB) mRNA, Meme-DRB*01 allele, partial cds Y11647.2 M.meles mRNA for interferon gamma, partial

Figure 3.14: Query nucleotide sequences extracted from NCBI database

```
AFR54067.1 MHC class I antigen, partial [Meles meles]
AFR54066.1 MHC class I antigen, partial [Meles meles]
AFR54065.1 MHC class I antigen, partial [Meles meles]
AFR54064.1 MHC class I antigen, partial [Meles meles]
AFR54063.1 MHC class I antigen, partial [Meles meles]
AFR54062.1 MHC class I antigen, partial [Meles meles]
AFR54061.1 MHC class I antigen, partial [Meles meles]
AFR54060.1 MHC class I antigen, partial [Meles meles]
AFR54059.1 MHC class I antigen, partial [Meles meles]
AFR54058.1 MHC class I antigen, partial [Meles meles]
AFR54057.1 MHC class I antigen, partial [Meles meles]
AFR54056.1 MHC class I antigen, partial [Meles meles]
AFR54055.1 MHC class I antigen, partial [Meles meles]
AFR54054.1 MHC class I antigen, partial [Meles meles]
AET36883.1 MHC class II antigen, partial [Meles meles]
AET36881.1 MHC class II antigen, partial [Meles meles]
AET36880.1 MHC class II antigen, partial [Meles meles]
AET36875.1 MHC class II antigen DR alpha chain, partial [Meles meles]
AET36874.1 MHC class II antigen DQ alpha chain, partial [Meles meles]
AET36873.1 MHC class II antigen DQ alpha chain, partial [Meles meles]
AET36872.1 MHC class II antigen DQ beta chain, partial [Meles meles]
AET36871.1 MHC class II antigen DR beta chain, partial [Meles meles]
AET36870.1 MHC class II antigen DR beta chain, partial [Meles meles]
AET36869.1 MHC class II antigen DR beta chain, partial [Meles meles]
AET36868.1 MHC class II antigen DR beta chain, partial [Meles meles]
```

Figure 3.15: Query nucleotide sequences extracted from NCBI database

Traditional megablast was used to perform BLAST search to find highly similar sequences

(Megablast is used for intra-species or closely related species) with e-value cut-off point

of 1e-05. Both forward and reverse strands of the query sequences were searched against the database with no restriction in the maximum number of hits.

3.2.1 Nucleotide BLAST search (tabular format)

The blast results were first tabulated to obtain a general visualisation of the data in hand. The initial observations of this alignment are:

The total number of achieved alignments between the query sequences and the transcriptome database is 195 **(Appendix)** with an identity percentage range between 76% and 100%. The e-value range of the alignments was between 0.0 and 4.00e-14.

From the total alignments 6 query NCBI sequence achieved a 100% identity with 19

transcripts (Figure 3.16). 49 aligned transcripts with 18 query sequences came up with an

E-value of 0 (Figure 3.17).

Query Seq-id	Subject seq-id	Identity %	Alignment length	E-vlue	Query seq. length	Subject seq. length	Sequence classification
JQ425440.1	Unigene117550_All	100	83	2.00E-36	848	171	MHCI
JQ425440.1	Unigene12618_All	100	83	2.00E-36	848	171	MHC I
JQ425440.1	Unigene26995_All	100	73	8.00E-31	848	126	MHC I
JQ425439.1	Unigene117550_All	100	84	7.00E-37	932	171	MHC I
JQ425439.1	Unigene12618_All	100	84	7.00E-37	932	171	MHC I
JQ425439.1	Unigene26995_All	100	73	9.00E-31	932	126	MHC I
JQ425432.1	CL1150.Contig22_All	100	110	3.00E-51	975	360	MHC I
HQ908107.1	Unigene4377_All	100	96	1.00E-43	680	96	MHC II
HQ908107.1	CL4065.Contig4_All	100	96	1.00E-43	680	96	MHC II
HQ908107.1	CL4065.Contig2_All	100	96	1.00E-43	680	96	MHC II
HQ908107.1	CL4065.Contig1_All	100	96	1.00E-43	680	96	MHC II
HQ908098.1	CL10050.Contig2_All	100	582	0	615	582	MHC II
HQ908098.1	CL10050.Contig1_All	100	582	0	615	582	MHC II
HQ908096.1	Unigene4377_All	100	96	1.00E-43	697	96	MHC II
HQ908096.1	CL4065.Contig4_All	100	96	1.00E-43	697	96	MHC II
HQ908096.1	CL4065.Contig2_All	100	96	1.00E-43	697	96	MHC II
HQ908096.1	CL4065.Contig1_All	100	96	1.00E-43	697	96	MHCII
HQ908092.1	CL13896.Contig1_All	100	96	1.00E-43	822	96	MHCII
Y11647.2	Unigene54563_All	100	204	7.00E-104	501	204	Interferon Gamma

Figure 3.16: Nucleotide alignments with a 100% identity score

Query Seq-id	Subject seq-id	Identity %	Alignment length	E-vlue	Query seq. length	Subject seq. length	Sequence classification
JQ425440.1	CL1150.Contig16_All	90.12	506	0	848	972	MHCI
JQ425439.1	CL1150.Contig16_All	90.04	562	0	932	972	MHCI
JQ425439.1	CL1150.Contig4_All	89.09	550	0	932	702	MHCI
JQ425438.1	CL1150.Contig16_All	90.8	848	0	900	972	MHCI
JQ425438.1	CL1150.Contig4_All	91.31	587	0	900	702	MHCI
JQ425432.1	CL1150.Contig16_All	92.08	972	0	975	972	MHCI
JQ425432.1	CL1150.Contig4_All	93.28	699	0	975	702	MHCI
JQ425433.1	CL1150.Contig16_All	94.44	972	0	975	972	MHCI
JQ425433.1	CL1150.Contig4_All	98.71	699	0	975	702	MHCI
JQ425431.1	CL1150.Contig16_All	91.98	972	0	975	972	MHCI
JQ425431.1	CL1150.Contig4_All	92.7	699	0	975	702	MHCI
JQ425430.1	CL1150.Contig16_All	93.44	975	0	975	972	MHCI
JQ425430.1	CL1150.Contig4_All	93.87	702	0	975	702	MHCI
JQ425429.1	CL1150.Contig16_All	95.16	972	0	975	972	MHCI
JQ425429.1	CL1150.Contig4_All	98	699	0	975	702	MHCI
JQ425428.1	CL1150.Contig16_All	94.32	546	0	543	972	MHCI
JQ425428.1	CL1150.Contig4_All	92.49	546	0	543	702	MHCI
JQ425427.1	CL1150.Contig4_All	93.59	546	0	543	702	MHCI
JQ425427.1	CL1150.Contig16_All	93.04	546	0	543	972	MHCI
HQ908107.1	Unigene57188_All	97.18	674	0	680	795	MHC II
HQ908107.1	Unigene67843 All	97.23	650	0	680	651	MHC II
HQ908107.1	Unigene75449_All	97.28	551	0	680	774	MHC II
HQ908099.1	CL2981.Contig3_All	99.27	688	0	691	762	MHC II
HQ908099.1	CL2981.Contig1_All	99.27	688	0	691	762	MHC II
HQ908099.1	Unigene42913 All	99.67	603	0	691	603	MHC II
HQ908098.1	CL10050.Contig3 All	99.67	615	0	615	765	MHC II
HQ908098.1	CL10050.Contig2_All	100	582	0	615	582	MHC II
HQ908098.1	CL10050.Contig1_All	100	582	0	615	582	MHC II
HQ908097.1	CL10050.Contig3_All	91.73	617	0	615	765	MHC II
HQ908097.1	CL10050.Contig2_All	91.61	584	0	615	582	MHC II
HQ908097.1	CL10050.Contig1_All	91.61	584	0	615	582	MHC II
HQ908096.1	Unigene57188_All	99.7	674	0	697	795	MHC II
HQ908096.1	Unigene67843_All	99.85	650	0	697	651	MHC II
HQ908096.1	Unigene75449_All	97.28	551	0	697	774	MHC II
HQ908096.1	Unigene75450_All	85.32	654	0	697	774	MHC II
HQ908095.1	Unigene27967_All	94.83	774	0	822	774	MHC II
HQ908095.1	Unigene75450_All	94.6	741	0	822	774	MHC II
HQ908095.1	CL4065.Contig3_All	96.64	684	0	822	693	MHC II
HQ908094.1	Unigene27967_All	99.22	774	0	822	774	MHC II
HQ908094.1	Unigene75450_All	97.17	672	0	822	774	MHC II
HQ908094.1	CL4065.Contig3_All	97.17	672	0	822	693	MHC II
HQ908094.1	Unigene75449_All	84.09	773	0	822	774	MHC II
HQ908093.1	Unigene27967_All	99.48	774	0	822	774	MHC II
HQ908093.1	Unigene75450_All	97.62	672	0	822	774	MHC II
HQ908093.1	CL4065.Contig3_All	97.62	672	0	822	693	MHC II
HQ908093.1	Unigene75449_All	83.44	773	0	822	774	MHC II
HQ908092.1	Unigene27967_All	96.51	774	0	822	774	MHC II
HQ908092.1	Unigene75450_All	92.31	741	0	822	774	MHC II
HQ908092.1	CL4065.Contig3 All	94.79	672	0	822	693	MHC II

0
0

The percentage of identity for the alignments with E-value=0 is in the range between 83%

and 100%. The alignment lengths were between 506 and 975 bases.

Only one query sequence (ID: HQ908098.1 MHC class II antigen DQ alpha chain) achieved both an alignment with 100% identity and E-value=0 with two transcripts (ID: CL10050.Contig1 All, CL10050.Contig2 All).

3.2.2 Nucleotide alignment (Query-anchored)

The tabulated alignment was also converted into an alignment (query-anchored format).

Due to the large data file only one example of the alignment is mentioned below (Figure

3.18). The reset of the alignments can be viewed in the (Appendix).

Example:

Query= JQ425440.1 Meles meles MHC class I antigen (Meme-MHCI) pseudogene mRNA,

Meme-MHCI*PS03 allele, partial sequence. Length=848bp

Figure 3.18: A section of the nucleotide alignment between a MHC class one (query) and the badger transcripts

On average, 10-17 alignments were achieved between each query sequence and transcripts from the badger transcriptome database. Most of the first hits in the alignments for each query were with transcripts that have been previously annotated as the badger's own in NCBI blast search (during transcriptome assembly).

The remainder alignments were with closely related mammals like the ferret (*Mustela putorius furo*) or extensively studied (for economical or conservational reasons) mammals such as panda (*Ailuropoda melanoleuca*), cow (*Bos taurus*), horse (*Equus caballus*), Californian sea lion (*Zalophus californianus*), olive baboon (*Papio anubis*) and marmoset (*Callithrix jacchus*) as shown in the **(Figure 3.19).**

Subject seq-id 🚽	NR-annotation
CL10050.Contig1_All	MHC class II antigen DQ alpha chain, partial [Meles meles]
CL10050.Contig2_All	MHC class II antigen DQ alpha chain, partial [Meles meles]
CL10050.Contig3_All	PREDICTED: SLA class II histocompatibility antigen, DQ haplotype D alpha chain-like [Ailuropoda melanoleuca]
CL1150.Contig1_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig13_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig14_All	hypothetical protein PANDA_022308 [Ailuropoda melanoleuca]
CL1150.Contig15_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig16_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig17_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig18_All	MHC class I antigen [Ailuropoda melanoleuca]
CL1150.Contig2_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig22_All	PREDICTED: LOW QUALITY PROTEIN: popy Class I histocompatibility antigen, A-1 alpha chain-like [Papio anubis]
CL1150.Contig23_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig24_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig3_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig4_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig5_All	MHC class I antigen [Bos taurus]
CL1150.Contig7_All	MHC class I antigen [Ailuropoda melanoleuca] >gi 163636633 gb ABY27208.1 MHC class I antigen [Ailuropoda melanoleuca]
CL1150.Contig8_All	hypothetical protein PANDA_022308 [Ailuropoda melanoleuca]
CL13896.Contig1_All	MHC class II antigen DR beta chain, partial [Meles meles]
CL1793.Contig2_All	PREDICTED: MHC class I polypeptide-related sequence B-like [Equus caballus]
CL1793.Contig3_All	PREDICTED: MHC class I polypeptide-related sequence B-like [Equus caballus]
CL1793.Contig5_All	PREDICTED: MHC class I polypeptide-related sequence B-like [Equus caballus]
CL1793.Contig7_All	PREDICTED: MHC class I polypeptide-related sequence B-like [Equus caballus]
CL2981.Contig1_All	PREDICTED: HLA class II histocompatibility antigen, DR alpha chain-like [Ailuropoda melanoleuca]
CL2981.Contig3_All	PREDICTED: HLA class II histocompatibility antigen, DR alpha chain-like [Ailuropoda melanoleuca]
CL4065.Contig1_All	MHC class II antigen DQ beta chain, partial [Meles meles]
CL4065.Contig2_All	MHC class II antigen [Zalophus californianus] >gi 22023813 gb AAM89234.1 MHC class II antigen [Zalophus californianus]
CL4065.Contig3_All	MHC class II antigen DR beta chain, partial [Meles meles]
CL4065.Contig4_All	MHC class II antigen [Zalophus californianus] >gi 22023813 gb AAM89234.1 MHC class II antigen [Zalophus californianus]
CL7631.Contig3_All	MHC class I antigen, partial [Meles meles]
Unigene117550_All	PREDICTED: patr class I histocompatibility antigen, A-126 alpha chain-like, partial [Callithrix jacchus]
Unigene12618_All	PREDICTED: patr class I histocompatibility antigen, A-126 alpha chain-like, partial [Callithrix jacchus]
Unigene26995_All	hypothetical protein PANDA_022308 [Ailuropoda melanoleuca]
Unigene27967_All	hypothetical protein PANDA_022308 [Ailuropoda melanoleuca]
Unigene42913_All	MHC class II antigen DR alpha chain, partial [Meles meles]
Unigene4377_All	MHC class II antigen DQ beta chain, partial [Meles meles]
Unigene54563_All	interferon gamma [Mustela putorius furo]
Unigene57188_All	MHC class II antigen [Zalophus californianus] >gi 22023813 gb AAM89234.1 MHC class II antigen [Zalophus californianus]
Unigene67843_All	MHC class II antigen DQ beta chain, partial [Meles meles]
Unigene75449_All	MHC class II antigen [Zalophus californianus] >gi 22023813 gb AAM89234.1 MHC class II antigen [Zalophus californianus]
Unigene75450_All	MHC class II antigen DR beta chain, partial [Meles meles]
Unigene81593_All	MHC class II antigen, partial [Meles meles]

Figure 3.19: Aligned transcripts NR annotation during transcriptome assembly and annotation (yellow cells indicate sequences previously annotated as MHC genes from the badger)

3.2.3 Protein sequences BLAST search (tabular format)

Search criteria for protein sequence BLAST included the use of traditional BLASTP to compare a protein query to a protein database with e-value cut-off point of 1e-05 and a scoring matrix of BLOSUM90 (which is used to compare highly related and less divergent sequences). BLOSUM only accepts a mutation in the protein primary structure if it is commonly found in conservative substitutions in nature.

The total number of achieved alignments between query sequences and transcripts is 248. The Identity percentage observed fell in a range of between 37% and 100%. The e-value range was between 0.0 and 8.00e-13.

Five alignments between two query NCBI sequences and the transcriptome database showed a 100% match (Figure 3.20) and only seven alignments with seven query sequences produced an e-value of 0 (Figure 3.21) i.e. the probability of the alignments arising by chance is zero.

Query Seq-id	Subject seq-id	Identity %	Alignment length	E-vlue	Bit score	Query seq. length	Subject seq. length	Sequence classification
AET36874.1	CL10050.Contig2_All	100	194	3.00E-146	423	205	194	MHC II
AET36874.1	CL10050.Contig1_All	100	194	3.00E-146	423	205	194	MHC II
AET36883.1	Unigene42913_All	100	81	8.00E-54	177	81	201	MHC II
AET36883.1	CL2981.Contig3_All	100	81	3.00E-53	178	81	254	MHC II
AET36883.1	CL2981.Contig1_All	100	81	3.00E-53	178	81	254	MHC II

Figure 3.20: Protein alignments with 100% identity score

Query Seq-id	Subject seq-id	Identity %	Alignment length	E-vlue	Bit score	Query seq. length	Subject seq. length	Sequence classification
AFR54060.1	CL1150.Contig16_All	88.58	324	0	618	325	324	MHC I
AFR54059.1	CL1150.Contig16_All	85.19	324	0	596	325	324	MHC I
AFR54058.1	CL1150.Contig16_All	84.88	324	0	593	325	324	MHC I
AFR54057.1	CL1150.Contig16_All	86.73	324	0	604	325	324	MHC I
AFR54056.1	CL1150.Contig16_All	89.81	324	0	625	325	324	MHC I
AET36870.1	Unigene27967_All	98.84	258	0	554	258	258	MHC II
AET36869.1	Unigene27967_All	99.22	258	0	557	258	258	MHC II

Figure 3.21: Protein alignments with an E-value = 0

3.2.4 Protein alignment (Query-anchored)

The tabulated protein alignment was also converted into a query-anchored alignment

format as in the example (Figure 3.22).

Database: BLAST Database, 127,401 sequences; 28,354,467 total letters

Query = AFR54067.1 MHC class I antigen, partial [Meles meles], Length=180

Query_1 SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD 60 1 CL1150.Contig4 All 3 SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD 62 CL1150.Contig16_All 6 SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD 65 CL154.Contig12 All THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR -- VDRAKPQALWMATVDAQYWE 59 2 THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR -- VDRAKPQALWMATVDAQYWE CL154.Contig11_All 2 59 CL154.Contig24 All 54 THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR--VDRAKPQALWMATVDAQYWE 111 CL154.Contig19_All 54 THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR --VDRAKPQALWMATVDAQYWE 111 CL154.Contig27_All 41 THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR - - VDRAKPQALWMATVDAQYWE 98 CL154.Contig23_All 41 THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR--VDRAKPQALWMATVDAQYWE 98 CL154.Contig2_All 41 THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR --VDRAKPQALWMATVDAQYWE 98 CL154.Contig1_All 41 THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSR--VDRAKPQALWMATVDAQYWE 98 Query 1 QQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYSQHSYDGA 120 61 CL1150.Contig4 All 00TRGIKETTOTYRRSLNNLRGYYNOSAAGSHTFONMYGCDVGPDGRLLRGYROFAYDGA 122 63 CL1150.Contig16_All 66 RQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDGA 125 CL154.Contig12_All TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ 117 60 CL154.Contig11_All TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ 60 117 CL154.Contig24 All 112 TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ 169 CL154.Contig19_All 112 TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ 169 CL154.Contig27 All 99 TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ 156 CL154.Contig23 All 99 TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ 156 CL154.Contig2 All 99 TETOKORAWAKVOOVETWTVMGYHNOS-TGMHSTORMFGCEIREDGH-THSFWOFGFDGO 156 TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ CL154.Contig1 All 99 156 121 DYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERWRNYVEGTCVEWLGRYLENGKESLL 179 Query_1 CL1150.Contig4_All 123 DYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESLL 181 CL1150.Contig16_All 126 DYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESLL 184 CL154.Contig12 All 118 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 177 CL154.Contig11_All 118 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 177 CL154.Contig24_All 170 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 229 CL154.Contig19_All 170 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 229 CL154.Contig27_All 157 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 216 CL154.Contig23_All 157 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 216 157 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 216 CL154.Contig2 All 157 DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT 216 CL154.Contig1 All

Figure 3.22: An example of an alignment of a protein query sequence (MHC class I antigen) and 10 transcripts from the transcriptome database.

The 25 protein query sequences (NCBI) achieved 248 alignments with 42 transcripts from

the badger transcriptome database. 10 of the alignments achieved were with transcripts

previously annotated as badger MHC sequences genes. The remainder alignments were

with closely related mammals like the ferret (Mustela putorius furo) or extensively studied

(for economical or conservational reasons) mammals such as panda (Ailuropoda

melanoleuca), dog (Canis lupus familiaris), and Californian sea lion (Zalophus

californianus) as shown in the (Figure 3.23).

Subject seq-id 🛛 🔽	NR-annotation
CL10050.Contig1_All	MHC class II antigen DQ alpha chain, partial [Meles meles]
CL10050.Contig2_All	MHC class II antigen DQ alpha chain, partial [Meles meles]
CL10050.Contig3_All	PREDICTED: SLA class II histocompatibility antigen, DQ haplotype D alpha chain-like [Ailuropoda melanoleuca]
CL1150.Contig13_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig15_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig16_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig17_All	MHC class I antigen, partial [Meles meles]
CL1150.Contig18_All	MHC class I antigen [Ailuropoda melanoleuca]
CL1150.Contig4_All	MHC class I antigen, partial [Meles meles]
CL12484.Contig1_All	HLA class II histocompatibility antigen, DO alpha chain precursor [Mustela putorius furo]
CL12484.Contig2_All	PREDICTED: HLA class II histocompatibility antigen, DO alpha chain-like [Ailuropoda melanoleuca]
CL12484.Contig3_All	MHC class II antigen DO alpha [Canis lupus familiaris]
CL154.Contig1_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig11_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig12_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig13_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig14_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig15_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig16_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig17_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig19_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig2_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig20_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig21_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig23_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig24_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig27_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL154.Contig33_All	class I histocompatibility antigen, GOGO-C0203 alpha chain-like protein [Mustela putorius furo]
CL2981.Contig1_All	PREDICTED: HLA class II histocompatibility antigen, DR alpha chain-like [Ailuropoda melanoleuca]
CL2981.Contig3_All	PREDICTED: HLA class II histocompatibility antigen, DR alpha chain-like [Ailuropoda melanoleuca]
CL5174.Contig1_All	hypothetical protein PANDA_002284 [Ailuropoda melanoleuca]
CL6815.Contig2_All	PREDICTED: HLA class II histocompatibility antigen, DO beta chain-like [Ailuropoda melanoleuca]
CL6815.Contig3_All	PREDICTED: HLA class II histocompatibility antigen, DO beta chain-like [Ailuropoda melanoleuca]
CL6815.Contig4_All	major histocompatibility complex, class II, DO beta [Mustela putorius furo]
CL6815.Contig5_All	PREDICTED: HLA class II histocompatibility antigen, DO beta chain-like [Ailuropoda melanoleuca]
CL6815.Contig6_All	major histocompatibility complex, class II, DO beta [Mustela putorius furo]
Unigene27967_All	hypothetical protein PANDA_022308 [Ailuropoda melanoleuca]
Unigene42913_All	MHC class II antigen DR alpha chain, partial [Meles meles]
Unigene57188_All	MHC class II antigen [Zalophus californianus] >gi 22023813 gb AAM89234.1 MHC class II antigen [Zalophus californianus]
Unigene67843_All	MHC class II antigen DQ beta chain, partial [Meles meles]
Unigene75449_All	MHC class II antigen [Zalophus californianus] >gi 22023813 gb AAM89234.1 MHC class II antigen [Zalophus californianus]
Unigene75450 All	MHC class II antigen DR beta chain, partial [Meles meles]

Figure 3.23: List of the transcripts that achieved and alignment with all 25 query protein sequences

An example of an alignment using Clustal Omega (Sievers et al., 2011) between the first query sequence (AFR54067.1, a partial sequence of MHC class I antigen) and two transcripts is shown in the **(figure 3.24)** to visualise the differences in the sequences and to show different types of mutations found.

CLUSTAL O(1.2.4) multiple sequence alignment

AFR54067.1 CL1150.Contig4_All CL1150.Contig16_All	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG AGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG ***********************************
AFR54067.1 CL1150.Contig4_All CL1150.Contig16_All	PEYWDQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYSQH PEYWDQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQF PEYWDRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQF *****:**: ******* *** ****************
AFR54067.1 CL1150.Contig4_All CL1150.Contig16_All	SYDGADYIALNEDLRSWTAADTAAQITQRKWEDAGEAERWRNYVEGTCVEWLGRYLENGK AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAGEAERYRNYVEGTCVEWLGRYLENGK AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAGEAERYRNYVEGTCVEWLGRYLENGK :******:*****************************
AFR54067.1 CL1150.Contig4_All CL1150.Contig16_All	ESLLR ESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWKRDEEDLTQDTELVET ESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRPA *****
AFR54067.1 CL1150.Contig4_All CL1150.Contig16_All	GDGTFQKWAAVVVPSGEEQRYTCHVQHKGLPEPITLSWKPPPPTIPIMWIIAGLALLAVT

Figure 3.24: An alignment of one query sequence (AFR54067.1) and two transcripts where (*) represents conserved sequence, (:) conservative mutations, (.) semi-conservative mutations, and the space () for non-conservative mutations.

3.2.5 A comparison between the badger and the giant panda

A comparison of the most abundant MHC transcripts in the badger and panda transcriptomes (Du et al., 2015a) in the **(Table 3.4).** The comparison is based on the abundance of the transcripts despite the annotation of the sequence in terms of the closest matching in the public databases, providing it is in the MHC gene family. The data are expressed as the total number of fragments (reads) per kilo-base of gene length per million reads of the transcriptome (FPKM). The data show that the total abundance of badger MHC transcripts is 4936.818 FPKM, which is about 2.5 times more than that of the giant panda (1995.43 FPKM).

Badger	Transcript	FPKM	Giant Panda	Transcript	FPKM
i ranscript iD	Length		Transcript ID	Length	
CL1150.Contig13_All	1363	1467.8917	asmbl_17923	1012	22.47
CL1150.Contig15_All	1385	1106.5719	asmbl_17924	2228	26.63
CL1150.Contig16_All	1435	671.4784	asmbl_17925	2257	55.28
CL1150.Contig4_All	1187	582.748	asmbl_42999	336	14.59
CL1150.Contig18_All	2627	277.4338	asmbl_43000	1024	16.42
Unigene27967_All	1466	250.1088	asmbl_43001	1408	4.31
CL10050.Contig1_All	1750	185.9091	asmbl_43002	1029	15.11
CL7631.Contig3_All	559	67.2444	asmbl_43007	193	3.16
Unigene62040_All	269	60.309	asmbl_49924	2383	12.4
Unigene42913_All	1020	53.2618	asmbl_49925	4142	15.09
CL4065.Contig2_All	3331	50.9938	asmbl_49929	455	1.96
CL1150.Contig6_All	251	44.5692	asmbl_55085	320	1744.82
CL10050.Contig2_All	954	33.539	asmbl_75564	2816	27.39
CL13896.Contig1_All	508	25.0588	asmbl_77939	2947	1.41
CL7631.Contig1_All	556	22.8955	asmbl_77940	1870	2.14
CL4065.Contig1_All	3796	20.1605	asmbl_77941	508	3.55
CL12484.Contig3_All	627	10.459	asmbl_92419	125	27.35
CL11221.Contig2_All	492	6.1853	asmbl_92575	104	1.35
Total	23576	4936.818	Total	25157	1995.43

Table 3.4: The most abundant MHC transcripts in the badger transcriptome and in the giant panda transcriptome

3.3 Using the most abundant transcripts to build a phylogenetic tree

In this section, transcripts with the highest raw reads, highest FPKM value and the longest amino acid sequences were used to build three phylogenetic trees using BLAST+ (Camacho et al., 2009b) and Clustal Omega (Sievers et al., 2011) from European Bioinformatics Institute (EMBL-EBI) web services (McWilliam et al., 2013).

The nature of the transcripts will be also discussed in terms of the conservative regions nature and whether they can be classified as highly conserved sequences.

The transcript with most abundant raw reads (CL4057.Contig1_All), transcript with highest FPKM value (Unigene65050_All) and transcript with the longest amino acid sequence (CL3144.Contig26_All) were chosen to build a tree.

3.3.1 The construction of a phylogenetic tree using the transcript with most abundant raw reads

The query sequence (ID: CL4057.Contig1_All, sequence length: 514 aa) was aligned with highest identical blast search results and a phylogenetic tree was drawn using Clustal Omega as in (Figure 3.26)

Figure 3.25: A phylogenetic tree model using the most abundant raw read (ID: CL4057.Contig1_All) in the badger transcriptome

Sequence (CL4057.Contig1_All) annotation in the BLAST search is the cytochrome c oxidase subunit I (COI), a key component in the mitochondrial electron transport chain. The gene is used as a "DNA barcode" to identify species. Although the sequence tends to be conserved among members of the same species, it has a fast enough mutation rate that enables distinction between closely related species where more than 2% sequence divergence cab be detected (Hebert et al., 2003).

The graph shows a degree of distinction within the *Mustelidae* family among the subfamilies such as *Mustelinae* (ferrets) and *Melinae* (badgers) and also on the species level within the subfamily which tend to be less diverse. This model agrees with multigene

phylogeny of the *Mustelidae* by (Koepfli et al., 2008a). However, it does not reflect the chronical evolution and divergence of the species.

3.3.2 Construction of a phylogenetic tree using the transcript with the highest FPKM

value

Transcript (Unigene65050_All) has the highest FPKM value (38044.2458) in the transcriptome annotation data. A phylogenetic tree using this transcript is shown in the

(Figure 3.27).

Figure 3.26: A phylogenetic tree model using the transcript with the highest FPKM value (Unigene65050_All) in the badger transcriptome

The query sequence (Unigene65050_All) has a length of (141 aa) and is annotated as

Haemoglobin subunit alpha (HBA). The length of HBA gene in mammals is about 142 aa

including human, panda, cow and badgers.

In this example, using a single gene to draw a phylogenetic (gene) tree does not necessarily represent the actual evolutionary pathway of a species (whole genome) tree.

3.3.3 Building a phylogenetic tree using the longest transcript sequence

In the transcriptome data files (FASTA), the query sequence (CL3144.Contig26_All) has the longest amino acid sequence with 4719 aa. A BLAST search followed by a Clustal Omega alignment and tree formation is in the **(figure 3.28)**.

tr[F7GDM4]F7GDM4_MONDO 0.23167 Monodelphis domestica tr[A0A091EJM3]A0A091EJM3_FUKDA 0.15759 Fukomys damarensis sp[E9Q555]RN213_MOUSE 0.07235 Mus musculus tr[F1M0R1]F1M0R1_RAT 0.07904 Rattus norvegicus tr[A0A0A0MTR7]A0A0A0MTR7_HUMAN 0.0101 Homo sapiens tr[K7BP41]K7BP41_PANTR 0.01103 Pan troglodytes tr[F7G5Q7]F7G5Q7_MACMU 0.01922 Macaca mulatta tr[A0A096NTC0]A0A096NTC0_PAPAN 0.01991 Papio anubis tr[A0A0D9S4D0]A0A0D9S4D0_CHLSB 0.01378 Chlorocebus sabaeus tr[L5KL35]L5KL35_PTEAL 0.15624 Pteropus alecto tr[W5NS77]W5NS77_SHEEP 0.13353 Ovis aries tr[F6YJA2]F6YJA2_HORSE 0.1003 Equus caballus tr[J9NYP9]J9NYP9_CANLF 0.10247 Canis lupus familiaris CL3144.Contig26_All 0.04973 Query sequence tr[M3YKY8]M3YKY8_MUSPF 0.04734 Mustela putorius furo

Figure 3.27: A phylogenetic tree model using the transcript with the longest amino acid sequence (CL3144.Contig26_All) in the badger transcriptome

The query sequence annotation E3 ubiquitin-protein ligase RNF213 suggests a protein involved in angiogenesis and vascular development. The function of the sequence is predicted in the transcriptome annotation as well as similar sequences from other mammals based on the well-known sequence from human genome.

3.4 Discussion

3.4.1 General description

To my knowledge, this is the first attempt to analyse the composition of any transcriptome from the European badger. The data appear to be of high quality compared

with other published blood transcriptome studies e.g. giant panda blood transcriptome (Du et al., 2015b). A large volume of data (about 3.52GB) has been generated using next generation (RNA-seq) technology. The quality criteria are discussed below, together with the interpretation of the sequencing results in an overall Biological context.

Although sequence-quality checks are performed at the sequencing service provider (BGI) some of the transcripts were aligned to similar single sequences of RNA available on the NCBI database in order to provide an independent assessment. From 20 RNA sequences of MHC class I and II antigens and interferon gamma, it was found that two of the transcripts scored 100% similarity and one achieved 89%. The similarity score is limited by the number sequences available on public databases and might not be statistically significant. However, still two out of the three aligned transcripts are identical despite possible differences in techniques and sequencing bias.

The annotation generated from different databases provide different perspectives on the sequencing data in terms of similarity to known genes, functionality and the predicted roles the sequenced transcripts play in physiological and pathological pathways.

After assembly, 95,245 transcripts were found to have significant similarities in six databases. In the NCBI non-redundant database, all the significant similarities between each two sequences were under the E-value of E \leq 1.0E-5 and above which the alignments considered insignificant. Over 70% of the alignments showed a similarity of \geq 80% between the transcripts and the aligned sequences. More than 70% of the aligned sequences match those of genes from six mammals: *Ailuropoda melanoleuca* (giant panda), *Mustela putorius furo* (ferret), *Canis lupus familiaris* (Dog), *Homo sapiens*

94

(human), *Sus scrofa* (wild boar) and *Bos taurus* (cow). Other species combined represented 29.05% of the total annotation.

Recent studies suggest that increasing taxon sampling can enhance phylogenetic accuracy and resolution (Flynn et al., 2005) and more informative characters are required to confidently resolve close species relationships when studying phylogenetic relationships (Fulton and Strobeck, 2006). In that sense, even though the transcriptome data places the badger under the class "Mammalia" the spectrum of species that emerge as closest matches, indicate the need for more similar transcriptome and genome sequencing. However, when considering the availability of data at the time of transcriptome annotation, the European badger (M. meles) still holds its position within the superfamily "Musteloidea" and the family "Mustelidae" which can be attributed to the sequenced ferret (Mustela putorius furo) transcriptome (Bruder et al., 2010).

Similarly, over 45% of the annotated transcripts places the badger under infraorder "Arctoidae" of the order "Carnifora" which can be explained by the extensive research on the endangered giant panda (Ailuropoda melanoleuca) whose mitogenome (Peng et al., 2007), genome (Angelia et al., 2010) and transcriptome (Du et al., 2015b) have been sequenced. Moreover, the family "Ursidae" has been characterized by rapid radiation events, making phylogenetic inference of the species relationships difficult, and thus, often contentious (Fulton and Strobeck, 2006) and this may also affect the taxonomic relationship between the two families "Mustelidae and Ursidae".

A search in Cluster of Orthologous Groups (COG) database was performed In order to uncover the homologous relationships of the transcriptome to the well-known conserved

95
domains. Most of the transcripts were matched to the major groups of (Cellular Processes and Signalling), (Information Storage and Processing) and (Metabolism). However, there were also some transcripts classified as "Poorly Characterized" including 22,329 transcripts under "General function prediction only" and 11,305 transcripts under "Function unknown" categories.

Transcripts were also mapped against all known GO terms to obtain a consistent description of all their corresponding genes and gene products, which may facilitate the future update of their characteristics and functions. In total, the 62 GO terms have 1,028,340 corresponding transcripts and the majority of transcripts (499,918) are assigned to "Biological Processes" GO terms, 382,212 transcripts to "Cellular components" and 146,210 transcripts to "Molecular functions". KEGG pathway annotation led to the association of 69,924 transcripts to 259 biological pathways including those of biomolecules metabolism, drug metabolism and pathological pathways such as cancers and infection.

3.4.2 Venn diagrams

The distribution of annotated transcripts among databases and the number of shared annotated transcripts appears to be database-dependent rather than a function of the nature of the annotated transcripts in a non-target gene study. In another word, a database that basically depend on annotation based on simple sequence similarity like NR would normally produce more annotations than one that is manually curated (Swiss-Prot), pathway specific (KEGG) or COG which compare orthologs and paralogs of genes. A similar distribution pattern was observed in other transcriptome analysis studies of animals like the panda (Du et al., 2015b) or even trees like *Hevea brasiliensis* (Para Rubber Tree) (Fang et al., 2016).

3.4.3 Phylogenetic trees

Three transcripts were used to construct three different phylogenetic trees as shown in the results. These transcripts were the most abundant in terms of raw reads, assembled transcript and the longest assembled protein sequence in the transcriptome analysis.

A phylogenetic (evolutionary) tree is a representation of the evolutionary relationships among a set of organisms known as taxa. The tips of the tree represent groups of descendent taxa (species) and the nodes on the tree represent the common ancestors of those descendants. Two descendants that split from the same node are called sister groups.

All three examples showed that the closest relative sequence of the query transcript sequence is either from the same animal (M. meles) or a member from the same family (*Mustelidae*).

Using sequences with highly conserved regions such as haemoglobin alpha subunit and cytochrome c oxidase might be useful in comparing deep phylogenies among close species. However, caution is required when interpreting the chronological order of speciation and divergence. Such an approach might provide satisfactory results in distantly related taxa, but suffers from a number of issues when dealing with evolutionary relationships at shallow time depths (Nater et al., 2015).

It is important to recognise that if the phylogenetic tree is computed from data coming from a single gene (gene tree) is sometimes different from a whole-genome tree (species tree). One of the important factors that cause this difference is genetic polymorphism in the ancestral species (Pamilo and Nei, 1988). Even under standardised alignment parameters different genes provide different levels of speciation leading to formation of different trees. This could be useful in studying the evolution of a single gene and its variants but also could be distracting when studying a whole organism despite the fact that the alignments presented here consistently showbadger or ferret is the closest because this is in part true but is also a consequence of the sequences deposited and searchable in the database.

It has been shown that a combination fossil record, observation, ecological and biological studies in addition to multi-genic phylogeny can describe the classification of a family such as Mustelidae and the position of a species such as the European badger in that family (Koepfli et al., 2008b). Nevertheless, these data still show a relative degree of similarity in accord with the multigene phylogeny of the Mustelidae study (Koepfli et al., 2008b) in respect of species divergence.

3.4.4 MHC transcripts

On investigating the abundance of MHC genes in the badger transcriptome, the sequences data files for both nucleotide and protein were converted into a searchable database. 20 nucleotide sequence and 25 protein sequence achieved respectively 195 and 248 alignments with nucleotide and protein sequences from the transcriptome database. The aligned transcripts were previously annotated (during transcriptome assembly by

BGI) as MHC class I, class II and interferon gamma from several mammals including badger (*Meles meles*) and other closely related or more studied mammals.

MHC genes are highly diverse both within species and among species populations of mammals and the confirmation that alignment of the MHC query sequence with transcripts that have been previously annotated as MHC transcripts, is a possible indicator for both similarity and diversity of badgers MHC transcripts. However, one of the limitations of searching a local database (transcriptome) is that it gives an overly significant e-value as it is calculated within the local database, in another word, it calculates the chances of the alignment occurring by chance with other transcripts.

The identity range of the first hits in the protein alignment is between 74% and 100% which, despite the length of both query and subject sequences, showed regions of highly conserved sequences which showed the intra-species similarities and few regions of less conserved regions witch may reflect the diversity of MHC genes. However, this would require corroboration by sequencing the full length gene of interest.

Comparing the abundance of MHC transcripts between badger and giant panda blood transcriptomes can provide a crude measure of the differences, as the two experiments are different to some extent in terms of different living conditions of both animals (laboratory controlled vs captivity) which might affect the level of exposure to environmental pathogens. Moreover the experimental design (number of samples, pipeline, statistical analysis, etc.) may also affect the outcome. Despite this, the use of FPKM may overcome some the obstacles in the experimental differences as it not just

calculate the crude number of transcripts for a given gene but also gives more statistical sense by dividing that number by the actual length (in kilo-base) of that gene then by million fragments mapped.

In this respect, comparing the highly abundant MHC transcripts from both mammals showed that the badger has higher expression levels of both classes of MHC genes. Although, this result may require further experimental investigation it may reflect the findings of some researches where MHC genes diversity is much lower in this endangered species (Zhang et al., 2015) and diversity of MHC genes in the giant panda was relatively lower than other vertebrates (Zhu et al., 2007).

Chapter IV

4 A comparison between male and female transcriptome

Biological differences between males and females can affect susceptibility to mycobacterial infection, and these differences may provide valuable insight into the components that constitute an effective immune response to this pathogen (Nhamoyebonde and Leslie, 2014). Infectious diseases rarely affect males and females equally. As a general rule, females present a more-robust immune responses to antigenic challenges, such as infection and vaccination, than males (Griesbeck et al., 2015). Sex hormones have diverse effects on many immune cell types, including B cells, T cells, neutrophils, dendritic cells, macrophages, and natural killer cells (Fish, 2008). In badgers, differences in disease prevalence between males and females may affect differences in the physiological impact of infection and may also have significant effects on pathogen persistence within the host population (Tomlinson et al., 2013). It has been suggested that the resilience of female badgers to the negative effects of bTB infection may favour its persistence. Females not only exhibited enhanced survival, but also continued to reproduce successfully, whilst excreting bacteria. This suggests that infected females may play a pivotal role in the maintenance of infection in social groups, particularly through transmission to their cubs (Tomlinson et al., 2013).

In this chapter, the over-arching differences in transcription in terms of a whole transcriptome and also for a limited subset of immune/bTB related transcripts, are explored. The most significantly affected transcripts are discussed, and a small number of

examples of immunologically important pathways with up/down regulated genes were also included.

Fragments per kilo-base per million or FPKM is a normalized count for the sequencing depth (million): sequencing runs with greater depth will have more reads mapped to each gene. FPKM is also normalized for the length of the original gene (expressed in kilo-bases), as longer genes will have more mapped transcripts. The female transcriptome was used as a reference for the comparison, i.e. up regulated transcripts means that they are expressed at higher levels in male and down regulated transcripts means that they are expressed at lower levels in the female badger. The fold change (FC), or difference in expression was calculated as a log2, i.e. positive FC for up regulated and negative FC for down regulated transcripts. The false discovery rate (FDR) which calculates the expected proportion of difference in a comparison (between male and female transcripts counts in this case) that is false, thereby ensuring that the differences in expression are statistically insignificant.

4.1 Results

As mentioned above, male and female FPKM were compared. 2690 transcripts were found to be upregulated in the male badger and 18691 transcripts were downregulated (**Figure 4.1**). A lower FC threshold of \pm 1.5 was applied to highlight a significant expression level difference (Hausen et al., 2015). The FDR (Benjamini and Hochberg, 1995) cutoff value was set to \leq 0.001 as used by most studies of this kind. In (**Figure 4.2**) the majority

of differentially expressed transcripts were in the region of 5 to -5 FC which represents log2 of the male FPKM/Female FPKM.

Figure 4.1: Numbers of differentially expressed transcripts (FDR \leq 0.001) in male badger's transcriptome compared to the female transcriptome with fold change cut-off of ± 1.5.

Figure 4.2: the expression levels of differentially expressed transcripts in male transcriptome compared to the female transcriptome. The expression level was presented as Log2 of male FPKM / female FPKM ratio.

4.1.1 The major differentially regulated transcripts

Tables 4.1 and 4.2 show top 10 upregulated and down regulated transcripts and their

annotation in male badger transcriptome when compared to the female transcriptome.

	Transcript Nr-annotation FC FDR				
1	Eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked, isoform CRA_c [<i>Mus musculus</i>]	15.18	2.5E-205		
2	Lysine (K)-specific demethylase 5C [Bos taurus]	14.54	1.3E-97		
3	Probable ubiquitin carboxyl-terminal hydrolase FAF-Y [<i>Bos taurus</i>]	13.97	2.4E-157		
4	PREDICTED: eukaryotic translation initiation factor 1A, Y- chromosomal-like [<i>Papio anubis</i>]	13.32	8.9E-29		
5	Lysine -specific demethylase 6A [Mustela putorius furo]	13.28	8.7E-41		
6	Probable ubiquitin carboxyl-terminal hydrolase FAF-Y [<i>Bos taurus</i>]	12.95	2.6E-45		
7	PREDICTED: ATP-dependent RNA helicase DDX3X isoform 3 [Saimiri boliviensis boliviensis]	12.93	4.7E-256		
8	Environmental lipopolysaccharide-responding gene protein [<i>Macaca fascicularis</i>]	12.25	7.1E-17		
9	PREDICTED: synaptonemal complex protein 3-like [Sus scrofa]	12.21	2.0E-20		
10	Tetratricopeptide repeat protein [Canis lupus familiaris]	12.21	1.4E-30		

Table 4.1: Table of 10 most upregulated transcripts and their annotation in male badger transcriptome compared to the female transcriptome.

	Transcript Nr-annotation	FC	FDR
1	PREDICTED: uncharacterized protein LOC101053426 [Saimiri boliviensis boliviensis]	-14.88	2.5E-99
2	Immunoglobulin heavy chain variable region subgroup 1 [<i>Felis catus</i>]	-14.61	6.0E-162
3	Immunoglobulin lambda light chain variable region [<i>Homo sapiens</i>]	-13.78	1.8E-40
4	Immunoglobulin G heavy chain variable region [Homo sapiens]	-13.58	3.1E-37
5	Immunoglobulin heavy chain [Homo sapiens]	-13.49	3.1E-37
6	Immunoglobulin heavy chain variable region [Homo sapiens]	-13.43	3.4E-30
7	Immunoglobulin kappa light chain V-J region [Equus caballus]	-13.15	1.3E-29
8	Hypothetical protein [Trypanosoma cruzi strain CL Brener]	-13.02	5.3E-34
9	Nucleolar RNA-binding protein [<i>Trypanosoma cruzi strain CL</i> Brener]	-12.87	3.8E-28
10	Hypothetical protein PANDA_022421 [Ailuropoda melanoleuca]	-12.85	9.3E-24

Table 4.2: Table of most 10 downregulated transcripts and their annotation in male badger transcriptome compared to the female transcriptome.

4.1.2 Gene ontology for differentially expressed transcripts

Gene Ontology (GO) is an international standardized gene functional classification system which offers a dynamic, updated and controlled vocabulary, and a strictly defined ruleset to comprehensively describe the properties of genes and their products in any organism. GO has three ontologies: biological process, molecular function and cellular component. The basic unit of GO is the GO-term. Every GO-term belongs to a type of ontology. GO functional analysis provides a functional classification and annotation for differentially expressed genes as well as GO functional enrichment analysis for differentially expressed genes. GO functional classification annotation provides a gene list and gene numbers for each GO term.

GO functional enrichment analysis (Figure 4.3) provides GO terms that are significantly enriched in differentially expressed genes, showing which differentially expressed genes are connected to their respective biological functions. The analysis firstly maps all differentially expressed genes to GO terms in the database (http://www.geneontology.org/), calculates gene numbers for every term then finds significantly enriched GO terms in differentially expressed genes comparing to the database background.

Figure 4.3: Gene Ontology annotation of differentially expressed transcripts. GO biological process (blue), GO molecular function (red) and GO cellular components (green).

1.1.1 KEGG pathways for differentially expressed transcripts

Individual genes often cooperate with each other to fully express their biological functions. Pathway-based analysis helps to further understand the biological functions associated with specific genes. KEGG is the major public pathway-related database (Kanehisa et al., 2008) operating in this analysis space. Pathway enrichment analysis identifies significantly enriched metabolic pathways or signal transduction pathways in differentially expressed genes comparing with the whole genome background. A pathway with an FDR score of \leq 0.05 is called significantly enriched in a group of differentially expressed genes (Nhamoyebonde and Leslie, 2014). There were 83 significantly enriched KEGG pathways where FDR \leq 0.05 and an example is shown in **(Figure 4.4).**

KEGG pathways

Figure 4.4: KEGG pathway for differentially expressed transcripts.

4.1.3 Difference in expression of bTB related transcripts

There were 117 transcripts that encode candidate genes involved in the bTB pathway, with a significant difference in expression levels between male and female badgers. 77 transcripts were downregulated in the male badger. Immunoglobulin heavy chain variable regions annotated as genes from human and cats were the main down regulated transcripts in the male badger **(Table 4.3)**

Nr-annotation	log2 (Male RPKM / Female RPKM)
immunoglobulin heavy chain variable region subgroup 1 [Felis catus]	-14.6079
immunoglobulin G heavy chain variable region [Homo sapiens]	-13.576
immunoglobulin heavy chain [Homo sapiens]	-13.4881
immunoglobulin heavy chain variable region [Homo sapiens]	-13.4288
immunoglobulin heavy chain variable region subgroup 3 [Felis catus]	-12.589
immunoglobulin heavy chain variable region [Homo sapiens]	-12.4574
immunoglobulin heavy chain variable region [Homo sapiens]	-12.1266
immunoglobulin heavy chain variable region subgroup 3 [Felis catus]	-11.9554
immunoglobulin heavy chain variable region [Homo sapiens]	-11.7744
immunoglobulin heavy chain variable region subgroup 1 [Felis catus]	-11.4248

Table 4.3: Most downregulated bTB related transcripts in the male badger

40 transcripts were upregulated in the male badger. The most upregulated transcripts

(Table 4.4) correspond to TB pathway related genes from different species.

Nr-annotation	log2 (Male RPKM / Female RPKM)
PREDICTED: nuclear transcription factor Y subunit gamma isoform 3 [<i>Equus</i> caballus]	2.1209
PREDICTED: interleukin-23 subunit alpha [Canis lupus familiaris]	2.3726
PREDICTED: galectin-3-like [Oreochromis niloticus]	2.3844
PREDICTED: HLA class II histocompatibility antigen, DO alpha chain-like [Ailuropoda melanoleuca]	2.3909
PREDICTED: bcl2 antagonist of cell death-like [Ailuropoda melanoleuca]	2.6656
PREDICTED: toll-like receptor 2-like [Ailuropoda melanoleuca]	2.8286
immunoglobulin mu heavy chain [Pteropus alecto]	3.0128
PREDICTED: LOW QUALITY PROTEIN: complement receptor type 1-like [<i>Equus</i> caballus]	3.7766
IgM heavy chain VH1 region precursor [Homo sapiens]	8.7529
PREDICTED: hypothetical protein LOC467582 [Pan troglodytes]	11.5732

Table 4.4: Most upregulated bTB related transcripts in the male badge

Differential expression of bTB related transcripts was also illustrated in the KEGG pathway of tuberculosis (Figure 4.5), providing a clearer picture of the involvement of differentaily expressed transcripts at different stages of disease. The pathway shows transcription upregulation in genes involved in the JAK-STAT signalling cascade in the male badger. The JAK-STAT cascade is involved in nuclear transcription of genes involved in inflammatory response to an infection and antigen processing and presentation. The Figure 4.5 also shows a down regulation of transcripts involved in MAPK signalling cascade which affects cell proliferation and proinflammatory cytokine production. There was also a downregulation of transcripts involved in (NOD)-like receptor signalling cascade which is important in the regulation of the host innate immune response (Franchi et al., 2009). There was also a dowonregulation of several transcripts involved in phagcytosis and phagosome-lysosome fusion.

Figure 4.5: Differential expression of bTB related transcripts for male compared to female badger illustrated on KEGG pathway of tuberculosis. Upregulated (red) and downregulated (green)

4.2 Discussion

Gene-expression variation may play a significant role in gender-specific health disparities, probably through upregulating or downregulating genes within physiological pathways. Males and females could have gender-specific transcriptional or translational regulation, leading to differential mRNAs or protein products for some genes (Zhang et al., 2009). Sex-biased gene expression has been observed in a number of mammals including humans, in different tissues that are thought to be phenotypically similar, including the brain were it involves about 2.5% of all expressed genes (Trabzuni et al., 2013). Similar observations were also recorded in cell lines were gender-specific differential expression in lymphoblastoid cell lines in male and female human were studied (Zhang et al., 2007). In animal models, genes in the pathway of bone development were shown to be differentially expressed between the male and female of mice (Huang et al., 2014). Sexual dimorphism is a term used to describe the difference in characteristics - other than sexual organs – such as body size, shape and colour between male and female of the same species. Transcriptome analysis has showed that sexual dimorphism in gene expression was much greater than previously recognized as thousands of genes showed sexual dimorphism in liver, adipose, and muscle where the sexually dimorphic genes were also found to be highly tissue-specific (Yang et al., 2006). In this chapter, 12.6% of transcripts were found upregulated in the male badger and 87.4% transcripts were downregulated when compared to the female badger. The highest 10 upregulated transcripts were found to be involved in cellular functions such as protein synthesis and folding, vesicular trafficking, cytoskeletal assembly and regulation of cell growth and apoptosis which may be attributed to many physiological and environmental factors that can cause this sexbiased expression such as levels of sex hormones and growth hormones as shown in other studies that showed sex-differences in gene expression can be dependent on the hormonal status (Jansen et al., 2014). Whereas, the 10 most downregulated transcripts in the male badger are of unknown specific function (No. 8 and 9 in table 4.2) or of critical regulators of immunity, stress responses, apoptosis differentiation and cell signaling. In general, topographical classification of the highest 10 differentially expressed transcripts in both tables has showed that upregulated transcripts encode more often, intracellular functions, in particular in the cytoplasm; whereas down regulated transcripts generally encode integral membrane proteins, which may reflect the source of the transcriptome data: human peripheral blood cells (Jansen et al., 2014).

However as stated by (Schurch et al., 2016): "It is worth recalling that identifying a gene as significantly differentially expressed does not necessarily equate to identifying it as biologically significant and that it is important to consider both the magnitude of the measured fold change and existing biological knowledge alongside the statistical significance when inferring a biological significance for the results of gene expression difference experiments" (Schurch et al., 2016).

Gender is one variable that influences innate and adaptive immune responses to foreign and self-antigens in infections, malignancies and as a response to vaccination. It shows distinctions in innate and adaptive immune responses where specific immunological sexbiased responses are present throughout life and are sex-hormone independent, whereas others appear only after the age of puberty which may suggest that both genes and hormones are involved (Klein and Flanagan, 2016). In infectious diseases, human males tend to be more susceptible to some infections such as Ebola, hepatitis B and tuberculosis whereas females are more susceptible to other infections like malaria, influenza and toxoplasmosis (Klein and Flanagan, 2016).

In humans, mycobacterial infection tends to be gender biased and males exhibit a higher prevalence of tuberculosis infection even if confounding factors, such as social and economic factors, awareness, exposure and are taken into account in epidemiological studies (Neyrolles and Quintana-Murci, 2009). In other mammals such as brush-tail possums, bTB prevalence is often substantially higher in males than in females (Nugent et al., 2015). In cattle, males tended to show higher prevalence rates for bTB (Moiane et al., 2014). Female badgers are more resilient to established bTB infection than male badgers, with longer survival times following the detection of bacterial excretion (Tomlinson et al., 2013).

The majority of immune cells express specific receptors for sex hormones and are responsive to changes in hormone levels. Females pose a more-robust set of immune responses to antigenic challenges, such as infection and vaccination, than males. Sex hormones have diverse effects on many immune cell types, including dendritic cells, macrophages, B cells, T cells, neutrophils and natural killer cells (Figure 4.6) (Nhamoyebonde and Leslie, 2014).

Although it cannot be anticipated whether the observed differential expression between male and female badgers is a direct result of the hormonal effect, and despite the fact

that these data were from uninfected animals, some of the expression levels difference were consistent with the biological differences between the sexes and their susceptibility to tuberculosis model by Nhamoyebonde and Leslie (2014) in the **figure 4.6**.

Figure 4.6: The effects of sex hormones on the modulation of immune responses of macrophages and dendritic cells to tuberculosis. Adapted from (Nhamoyebonde and Leslie, 2014)

As suggested by the KEGG pathway for tuberculosis infection in macrophages and

dendritic cells, there was an observed downregulation of the tumour necrosis factor

superfamily, member 2 (TNFA), Toll-like receptor 4 (TLR4), mitogen-activated protein

kinases (MAPK). However, there was a mixed set of expression levels amongst the FC receptors, Interleukins and an upregulation of nitric oxide synthase activity (NOS), unlike the findings in this **figure 4.6**. This differences in expression may lead to differences in the capability of detection and elimination of mycobacterial cells from the host body through phagocytosis, bactericidal action and granuloma formation.

There was also upregulation of interferon gamma receptor 2 (IFNGR2) and downregulation of interferon gamma receptor 1 (IFNGR1) and interleukin 8 (CXCL8) which might affect the migration of macrophages and neutrophils to the site of infection.

In conclusion, the results of the transcriptome analysis and expression difference show some consistencies with some aspects of the observed patterns of the body responses to tuberculosis, despite the fact that the studied animals are bTB. It is also consistent with the epidemiological and observational findings in which males are found to be more prone and less resistant to TB and bTB infection. Taking gender and the influence of sex hormones into account may help in improving our understanding of the immune response required to prevent and control tuberculosis.

Chapter V

5 Immunity related and bTB specific transcripts

This chapter describes the immunity related transcripts in terms of numbers and classes of the immunity genes they represent. It also illustrates some of the key genes that play a potential role in the immune response to infection and the evolutionary relatedness of the badger to other mammals as revealed by a bioinformatic analysis. Finally, it also describes the key genes in the bTB pathway (as per KEGG) and the matching transcripts from the analysis of transcriptome data from the badger.

5.1 Immunity-related transcripts

Several search criteria were applied to extract the immuno-components of the badger's transcriptome. After transcriptome assembly and annotation, a basic (crude) search was performed using the prefix (immun-) as a search term in the four databases and the numbers are shown in the **Table 5.1** below.

Database	NR	Swiss-Prot	COG	KEGG
Number of annotations	358	194	0	266

Table 5.1: Number of transcripts with (immun-) term in each database annotation

The distribution of the annotations among four different databases is shown in the Figure

5.1

Figure 5.1: Venn diagram of distribution of the annotations among four databases

From the **figure 5.1** Eight transcripts were found annotated only in the NR database (suppressive immunomodulating factor, putative [*Trypanosoma cruzi marinkellei*], immunodominant antigen [*Trypanosoma cruzi strain CL Brener*], PREDICTED: immunity-related GTPase family M protein 1-like [*Canis lupus familiaris*], immunoglobulin superfamily, DCC subclass, member 4-like [*Bos taurus*], and leukocyte immunoglobulin-like receptor B2 [*Halichoerus grypus*]). A single transcript was found to be annotated only in Swiss-Prot database (Immunoglobulin lambda-like polypeptide 5 OS=Homo sapiens GN=IGLL5 PE=2 SV=2). Three transcripts were found to be annotated only in KEGG (as human immunodeficiency virus type I enhancer-binding protein and autoimmune regulator) and no transcripts were found annotated in COG database alone.

A more thorough search was performed using the immunity genes list from the IKB database (Ortutay and Vihinen, 2009) as search queries. The search has shown the number of transcripts in all databases align with each gene of **893** immunity genes. Of the 11724 annotations found the 20 most abundant are shown in **table 5.2**, with a comprehensive list of annotations for each gene given in the **appendix**.

Gene	Full name	Number of
		annotations
WAS	Wiskott-Aldrich syndrome protein.	421
MME	membrane metallo-endopeptidase.	295
CD22	CD22 molecule.	295
CD2	CD2 molecule.	273
TMC8	EVIN2.	187
IL12RB1	interleukin 12 receptor, beta 1 isoform 1 precursor.	171
TRAF3	TNF receptor-associated factor 3 isoform 1.	151
LYST	lysosomal trafficking regulator.	128
KIT	v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene	126
	homolog isoform 1 precursor.	
CD19	CD19 antigen.	112
CD44	CD44 antigen isoform 5 precursor.	109
CD46	CD46 antigen, complement regulatory protein isoform 12	107
	precursor.	
ADAM17	ADAM metallopeptidase domain 17 preproprotein.	106
C4B	complement component 4B preproprotein.	97
RFX1	RFX1 regulatory factor X1. 97	
ITGA5	TGA5 integrin alpha 5 precursor. 88	
DKC1	dyskerin.	88
CD5	CD5 molecule.	87
BLNK	B-cell linker.	86
STAT3	84	

Table 5.2: Immunity genes with the most abundant number of annotation found using IKB

5.2 Immunoglobulins

Members of the immunoglobulin family, an important component of the immune system

in identifying and tagging foreign antigens for subsequent neutralization, were identified

in each database. The number and annotation of immunoglobulins in the badger transcriptome are shown in **the table 5.3** for three data bases.

Database	NR	NT	Swiss-Prot
Number of immunoglobulin related transcripts	289	460	170

Table 5.3: Number of annotations for immunoglobulin in each database

The most abundant annotations of immunoglobulins and immunoglobulin receptors

were also extracted and shown in the **table 5.4** below.

Gene	Full name	Number of
		annotations
IGSF8	immunoglobulin superfamily, member 8.	48
LAIR1	leukocyte-associated immunoglobulin-like receptor 1 isoform a precursor.	11
LILRB2	leukocyte immunoglobulin-like receptor, subfamily B, member 2 isoform 1.	10
LILRB3	leukocyte immunoglobulin-like receptor, subfamily B, member 3 isoform 2.	10
VPREB1	immunoglobulin iota chain preproprotein.	7
LILRA5	leukocyte immunoglobulin-like receptor subfamily A member 5 isoform 1.	5
FCGR3B	low affinity immunoglobulin gamma Fc region receptor III-B precursor.	4
IGJ	immunoglobulin J chain.	4
LILRA6	leukocyte immunoglobulin-like receptor, subfamily A, member 6.	4
IGSF2	immunoglobulin superfamily, member 2.	3
LILRA2	A2 leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2.	
CADM2	immunoglobulin superfamily, member 4D.	1
PILRA	paired immunoglobulin-like type 2 receptor alpha isoform 1 precursor.	1
KIR2DL4	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic	1
	tail, 4 isoform a.	
KIR3DL2	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic	1
	tail, 2 precursor.	
IGHG2	immunoglobulin gamma-2 heavy chain.	1

Table 5.4: most abundant immunoglobulins in the transcriptome

1.1.2 NCBI Non-redundant database annotation of immunoglobulins

The figure 5.2 below shows the number of immunoglobulin sequences from different

mammals that aligned with transcripts from the badger's RNA-seq data. Sequences from

the family Carnivora are the highest in terms of number of alignments and sequence similarity.

Figure 5.2: NCBI Non-redundant database annotation of immunoglobulins

5.2.1 Swiss-Prot database annotation of immunoglobulins

Using SWISS-PROT (Bairoch and Apweiler, 2000) which is a manually curated protein sequence database can provide a high level of annotation such as the description of the function of a protein with a minimal level of redundancy. In that sense it is naturally that most stored sequences are the most studied ones (human and model animals) and the similarity shown in **the figure 5.3** is mostly driven by function rather than the animal source of that sequence

Figure 5.3: Swiss-Prot database annotation of immunoglobulins

5.3 Immunoglobulin variable regions

Because of the importance of the immunoglobulin variable regions for recognition and binding of the antigens, the corresponding sequences of the variable genes from the transcriptome data files were extracted, yielding 75 reads that were annotated in different databases as follows:

5.3.1 NCBI Non-redundant database annotation of variable genes' transcripts

Most of the variable genes transcripts of the badger are similar to those of human and primates' **figure 5.4** and carnivorous animals with four transcripts unaligned with any known variable gene sequence.

Figure 5.4: NCBI Non-redundant database annotation of variable genes

5.3.2 KEGG annotation of Variable genes

Most of the badger's variable genes transcripts were found to be highly similar to sequences from dog, rhesus monkey, cow and other mammals with exception of 14 sequences that could not be mapped to any KEGG pathway **Figure 5.5**

Figure 5.5: KEGG annotation of Variable genes.

5.4 Genes involved in the bTB pathway

Using KEGG pathway for tuberculosis as a reference, 1825 transcripts were extracted from the transcriptome sequencing data that correspond to 147 of the 183 genes that are involved in the bTB pathway from early infection until cell death. Some of the transcripts were found to encode several signalling protein receptors, but not the signalling proteins themselves. The IKB immunological classification of the transcripts involved in bTB

pathogenesis is shown in the table 5.5.

IKB Immunological function	Number of transcripts		
Phagocytosis	5		
CD molecules	23		
Chemokines and receptors	30		
Cellular immunity	12		
Humoral Immunity	13		
Antigen processing and presenting	20		
inflammation	25		
Complement system	6		
Transcription factors	6		

Table 5.5: IKB immunological classification of transcripts involved in bTB KEGG pathway.

However, number of genes that are involved in bTB pathogenesis were found to have no

matching transcripts in the badger's RNA-seq. These genes include interleukins,

interferons and transforming growth factors (table 5.6).

IL6	interleukin 6 (interferon, beta	IFNA13	
	2)		interferon, alpha 13
IFNA1	interferon, alpha 1	IFNA14	interferon, alpha 14
IFNA2	interferon, alpha 2	IFNA16	interferon, alpha 16
IFNA4	interferon, alpha 4	IFNA17	interferon, alpha 17
IFNA5	interferon, alpha 5	IFNA13	interferon, alpha 13
IFNA6	interferon, alpha 6	IFNA21	interferon, alpha 21
IFNA7	interferon, alpha 7	IFNB1	interferon, beta 1, fibroblast
IFNA8		TGFB2	transforming growth factor, beta
	interferon, alpha 8		2
IFNA1		TGFB3	transforming growth factor, beta
0	interferon, alpha 10		3

Table 5.6: IKB Genes without matching sequences in the transcriptome.

1.1.3 NR annotation of TB related transcripts

NR annotation of bTB related transcripts shows that the most similar sequences are from

another mustelid (ferret) and two other carnivores (giant panda and dog) Figure 5.6.

Figure 5.6: NR annotation of TB related transcripts.

5.4.1 KEGG pathway

Host genes involved in KEGG pathway for both *M. tuberculosis* and *M. bovis* infection pathway (Kanehisa et al., 2016) were used to extract transcripts for those genes from the

badger's annotated transcriptome. According to KEGG pathway for tuberculosis pathogenesis there are 183 genes involved in encoding cellular and nuclear receptors, intracellular signalling molecules and signalling cascades. All the genes involved in bTB pathway found matching transcripts with exception of Mincle (Macrophage-inducible C-type lectin receptor) which has not been detected in the transcriptome. For IL-6 (Interleukin 6), INF α (Interferon alpha) and INF β (Interferon beta) only transcripts encode cellular receptors were found in the badger's transcriptome **Figure 5.7**.

Tuberculosis pathway can be viewed more clearly on http://www.genome.jp/kegg/ reference entry for tuberculosis is hsa05152.

Figure 5.7: bTB pathway (KEGG), (*) Genes with no matching transcripts. (#) Genes with the receptors only found in the transcriptome sequences. (Kanehisa et al., 2016).

5.4.2 Constructing a phylogenetic tree using key transcripts in bTB infection

"Genetic factors play a major role in determining differential susceptibility to infection and disease outcome. Genetic variation in an increasing number of genes (e.g., NRAMP1, HLA class II, VDR, DC-SIGN, TLR8) has been found to be associated with complex susceptibility to pulmonary TB" (Neyrolles and Quintana-Murci, 2009).

Natural resistance-associated macrophage protein 1 (NRAMP1) polymorphisms have been found to be associated with susceptibility to tuberculosis in cattle (Liu et al., 2017). However, a systematic review on HLA class II genes can highly vary in their role against tuberculosis infection even within the same species (Oliveira-Cortez et al., 2016). Vitamin D receptor (VDR) polymorphisms and vitamin D deficiency are also associated with tuberculosis susceptibility in humans (Lee et al., 2016). DC-sign protein (encoded by CD209 gene) is a pathogen-recognition receptor expressed on the surface of immature dendritic cells (DCs) and involved in initiation of primary immune response through binding mannose containing antigens bacterial cell surface (Tanne and Neyrolles, 2010) and thereby considered one of the early systematic responses to tuberculosis. TLR8 genetic polymorphisms are associated with susceptibility to mycobacterial infection and

the severity of clinical manifestation by affecting phagocytosis in monocytes (Lai et al.,

2016).

Here we use BLAST+ and Clustal Omega (through EMBL-EBI) to draw phylogenetic trees

using transcripts of these genes with standard search criteria of the animal orthologs.

Both input criteria for BALSTP and Clustal Omega are shown below.

Blast+

Database: UniProtKB mammals/ Program: blastp/ Matrix: BLOSUM62/ Expectation value threshold: 1e-5/ Dropoff: 0/ Gap open: -1/ Gap extend: -1/ Filter: F/ Sequence range: START-END/ Gapalign: true/ Compositionbased statistics: F/ Align views: 0/ Translation table: -1/ Sequence type:protein

Clustal Omega

Program: clustalo/ Version: 1.2.4/ Output guide tree: false/ Output distance matrix: false/ Dealign input sequences: false/ mBed-like clustering guide tree: true/ mBed-like clustering iteration: true/ Number of iterations: 0/ Maximum guide tree iterations: -1/ Maximum HMM iterations: -1/ Output alignment format: Clustal/ Output order: aligned/ Sequence Type: protein

Species		Family	Order	Class	
	splO42392-21VDR_CHICK 0.05347 Red junglefowl	Phasianidae	Galliformes		
	trlanangg71031anangg7103 TINGU 0.04127 White throated tinamou	Tinamidao	Tinamiformos	Aves	
	triAnAng1///W/IAnAng1///W/I NIPNI 0.0/031 Crested ibis	Threskiornithidae	Polocaniformos	(birds)	
	triE6T9M0IE6T9M0_HORSE.0.04574_Horse	Fauidae	Perissodactyla	(Birde)	
	tr/H0\/6\/2/H0\/6\/2 CA\/PO 0.07279 Guinea nig	Caulidao	Dedentie		
	trlG5BWD3IG5BWD3_HETGA_0.05631 Nakod molo rat	Heterocenhalidae	Rodentia	Mammalia	
	triA0A091D876IA0A091D876 EUKDA 0.03242 Damaraland mole rat	Bathuorgidao			
	triO4E.IV8IO4E.IV8 MOUSE 0.00227 House mouse	Muridaa			
	spIP48281IVDR_MOUSE 0	wuridde			
	trIQ3U0J7IQ3U0J7_MOUSE 0.00046				
	trlG3V744IG3V744 RAT 0.00071 Brown rat				
1744	spIP13053/VDR RAT 0.00165				
	trlA0A061IMB5IA0A061IMB5 CRIGR 0.02204 Chinese hamster	Cricotidao			
	trll3NBE3ll3NBE3 ICTTR 0.03072 Thirteen-lined ground squirrel	Sciuridae			
	tr/W5QDL3/W5QDL3 SHEEP 0.06101 Sheep	Bovidae	Artiodactula		
	splQ28037/VDR BOVIN 0 Cow	Dovidad	Artiouactyra		
	tr G5E5J5 G5E5J5 BOVIN 0				
	tr L8HYJ2 L8HYJ2_9CETA 0.00452 Domestic yak				
	sp A3RGC1 VDR_PIG 0.02884 Wild boar	Suidae			
	tr K9IXR2 K9IXR2_DESRO 0.04915 Common vampire bat	Phyllostomidae	Chiroptera		
	tr L5MDG6 L5MDG6_MYODS 0.00947 David's myotis	Vespertilionidae			
	tr G1NUD9 G1NUD9_MYOLU -0.0001 little brown bat				
	tr S7Q1E8 S7Q1E8 MYOBR 0.0107 Brandt's bat				
	tr M3X4E3 M3X4E3_FELCA 0.02593 Cat	Felidae	Carnivora		
	tr/J9NXL4/J9NXL4_CANLF -0.00324 Dog	Canidae			
	triF1PKD9[F1PKD9_CANLF 0.00324	Haridaa			
	trig1M555/G1M555_AILME_0.0039 Giant panda	Ursidae			
	CL6840 Contin2 All 0 00E17 Query seguence Redger				
	triM3XMW6IM3XMW6_MUSEE.0.0042_Correct	Mustelidae			
	tril 8V9M2II 8V9M2 TLIDCH 0.02663 Chinese tree shrew	Tunaiidao	Coondontia		
	triG3SY52IG3SY52_LOXAE 0.04145_African bush elephant	Flenhantidae	Prohoscidea		
	triH0WS55IH0WS55_OTOGA 0.03543 Northern greater galago	Galagidae	Primates		
	trlE7G4G4IE7G4G4_CALUA 0.03128_Common marmoset	Callitrichidae	1 minutes		
	splQ95MH5IVDR_SAGOE 0.00593 Cotton-top tamarin				
	trlG7PHP7IG7PHP7 MACFA 0 Crab-eating macague	Cercopithecidae			
	trIG7N6T1IG7N6T1 MACMU 0.00217 Rhesus macaque				
	tr A0A096N4R7 A0A096N4R7 PAPAN 0.00244 Olive baboon				
	tr F7HFI3 F7HFI3 MACMU 0 Rhesus macaque				
	trjA0A0D9R2M3jA0A0D9R2M3 CHLSB 0.00085 Green monkey				
	tr/H2NH30/H2NH30_PONAB 0.00919 Sumatran	Hominidao			
	tr/Q5R8V3/Q5R8V3 PONAB -0.00132 orangutan	nominidae			
	tr]G3RK17 G3RK17 GORGO -0.00092 Western lowland gorilla				
	tr M3Z9T4 M3Z9T4_NOMLE 0.00249 Northern white-	Hylobatidae			
	tr G1S8A8 G1S8A8 NOMLE -0.00249 cheeked gibbon	The second state of the second state of the			
	trIB6ZGT0 B6ZGT0_HUMAN 0.00147				
	tr F1D8P8 F1D8P8_HUMAN -0.00059 Human				
	triB4DRV7[B4DRV7_HUMAN 0.03133	Hominidae			
	tr K7BXK6 K7BXK6_PANTR 0 Common chimpanzee	nommuae			
	spIP11473-2IVDR_HUMAN 0 Human				
<u></u>	sp P11473 VDR HUMAN -0.00059				

Figure 5.8: A phylogenetic tree of the VDR gene

Figure 5.8 In this example a Blastp search of the orthologs of VDR gene was performed and 50 aligned sequences where then used to build a phylogenetic tree (gene tree) using Clustal Omega. The 50 orthologs were from 3 species of birds and 38 species of mammals including the badger. These species were originated from 25 families which came from 11 orders from both classes (birds and Mammals). The "tips" of the tree branches represent the taxa in the study. These taxa include taxonomic levels of species, families, orders and classes.

In the other **figure 5.9** DC-sign transcript was used to build a gene phylogeny using 50 orthologs from 33 species divided into 19 families and 8 orders mammals.

Figure 5.9: A phylogenetic tree of DC-sign gene

Similar results were obtained for HLA class II, NRAMP1 and TLR8 orthologs **Figure 5.10** where species share the same ancestor gene but with different "adaptive radiation" levels which led to speciation (appearance of different species) and different homologs of the gene within the same species.

NRAMP1

CL2921.Contig2_All -0.01112 Query sequence Badger tr G9KP23 G9KP23_MUSPF 0.01423 Ferret tr U6D6M0 U6D6M0_NEOVI -0.00331 American mink Mustelidae tr M3VYE4 M3VYE4_FELCA 0.0373 Cat Felidae	tr J9NSD7 J9NSD7_CANLF 0.03017 tr F1P9P2 F1P9P2_CANLF 0.00363 Dog sp Q9XT74 NRAM1 CANLF 0.00939	Canidae	a
tr/M3VYE4/M3VYE4_FELCA 0.0373 Cat Felidae	CL2921.Contig2_All-0.01112 Query sequence Badger tr G9KP23 G9KP23_MUSPF 0.01423 Ferret tr U6D6M0 U6D6M0_NEOVI-0.00331 American mink	Mustelidae	rnivor
trib2GXD/jb2GXD/_AILME -0.00/31	tr M3VYE4 M3VYE4_FELCA 0.0373 Cat Felidae		Ü

TLR8

tr M3WT64 M3WT64_FELCA 0 tr B2BE52 B2BE52_FELCA 0	Felidae (cat	ts)	
tr A0A1B1RVB2 A0A1B1RVB2_NYCPR 0.00 tr F1PEB2 F1PEB2_CANLF 0.00364	214 raccoon dog	Canidae (dog	s)
tr D2H0T0 D2H0T0 AILME 0.03189 Giant p	panda L	Jrsidae (bears)	
Unigene14881_All 0.01859 Query sequenc	e Badger		
tr U6CZ46 U6CZ46_NEOVI 0.00792 Americ	an mink	22	
tr G9KTJ7 G9KTJ7_MUSPF -0.00034 tr M3XTY8 M3XTY8 MUSPF 0.00034	ret	e	

Figure 5.10: the position of the badger in the order Carnivora from three sections of the phylogenetic trees of HLA class II, NRAMP1 and TLR8 genes

5.5 Discussion

This chapter provides an *in silico* characterisation of the coding potential of the badger transcriptome, as a platform for characterising and investigating the immune component of the assembled transcriptome. A pilot search has shown that 15967 annotations in four databases are related to the search term (immun-), however, when a more thorough gene-by-gene search was performed using the IKB immunome database as a reference, and it showed that 698 genes out of 893 immunity genes in the database have corresponding transcripts in the badger transcriptome (11724) annotations. 195 genes from IKB show no match in the available data.

A total of 919 transcripts annotated as immunoglobulins in three databases reveal a similarity to immunoglobulin genes from a number of mammals; mainly *Ailuropoda melanoleuca* (Giant panda), *Mustela putorius furo* (Ferret), *Canis lupus familiaris* (Dog) and *Homo sapiens* (Human). Swiss-Prot annotation of immunoglobulin transcripts showed over 84% similarity of the transcripts to human immunoglobulins, in terms of predicted function.

Venn diagrams are commonly used to visualize the overlap between data sets, including differential gene expression data under various condition and genes or transcripts annotation in different databases. NR database contains sequences from both, noncurated and curated databases including non-reviewed sequences submitted from individual laboratories and large-scale sequencing projects deposited in GenBank and non-reviewed section of Uni-Prot. Thereby NR has the highest number of annotated

sequences both independently (8 annotations) or shared with other databases. Swiss-Prot is a manually annotated, non-redundant protein sequence database with over 500,000 manually annotated, curated and reviewed protein sequence. If we compare the number of deposited sequence in Swiss-Prot to that of Genbank alone (200,877,884

nucleotide sequence on April 2017) we find that the number of annotations in GenBank for any given sequence is higher. This can be useful for preliminary investigation of a sequence source or closest similar organism. However, in order to obtain a higher level of annotation such as description of the function of a protein, its domain structure and post-translational modifications then Swiss-Prot will have the advantage over the NR database. The COG database is a tool for identifying ortholog and paralog proteins and classifying those proteins into identifiable clusters according to protein function i.e. protein grouping rather than direct identification of the sequences and thus show less independence in annotation. The KEGG pathway is a tool to assign sequences to their known or predicted metabolic pathway utilizing genomic and non-genomic data (e.g. drug and disease effects) and thereby it is another useful yet less independent database where primary annotations are performed through NCBI blast searching. Similar Venn diagram distribution patterns were also found in the swamp buffalo transcriptome analysis (Deng et al., 2016) and giant panda blood transcriptome analysis (Du et al., 2015) which might explain that the difference in number of annotations among databases is more dependent on the characteristics of the database itself (such as availability of similar sequences or the level of annotation and classification in each database) rather than the significance of sequence in question.

For the 75 transcripts that match variable genes, NR and NT annotation showed a similarity to *Mustela putorius furo* (Ferret), *Canis lupus familiaris* (Dog), *Files catus* (Cat) and *Homo sapiens* (Human). However, KEGG annotation showed that 14 transcripts could not be mapped to any known pathway which may indicate a different spectrum of antigen binding capabilities of the badger's immunoglobulins to foreign antigens. Some mapped to pathways from *Bos taurus* (Cow) and *Monodelphis domestica* (Opossum). Both mammals can acquire bTB infection.

KEGG pathway annotation for both *M. bovis* and *M. tuberculosis* infection suggests that 183 mammalian genes are involved in the pathogenesis of the disease. 1825 transcripts were extracted that correspond to 147 of those 183 genes that are involved in bTB pathway from early infection until cell death. Some transcripts were found to match genes that encode receptors for signalling proteins but not the proteins themselves for the remaining 36 genes in bTB pathway. Only subunits of IL-6 receptors (IL6R, IL6ST) and INF α and INF β receptors (IFNAR1, IFNAR2) were found in the annotated transcriptome. Production of interferons occurs mainly in response to infection and the inability to detect their presence in the transcriptome might be explained by the fact that the animals were kept all their lives in a (disease-free) controlled environment. Mincle is essential in detection of microbial glycolipids and it has been found that Mincle-dependent macrophage activation is regulated by IL-4 which has a strong downregulation of the mRNA expression of Mincle (Hupfer et al., 2016). 24 transcripts were annotated as IL-4 and signal transducer and activator of transcription 6 which might explain the undetected presence of Mincle transcripts.

A phylogeny is a "tree", which estimates the "historical" connections between species or genes that they carry. Five different transcripts were used to construct gene phylogenies compared to other fifty animals from different classes and orders. "Gene" trees represent the evolutionary history of the genes included in the study and provide evidence for gene duplication events, as well as speciation events by including different homologs in a gene tree and clustering orthologs to demonstrate the evolutionary history of the gene orthologs.

The phylogeny was built using only molecular data with no regard to morphological, behavioural or any other type of data and only single transcripts were used, which may neglect some important inputs drawn by non-coding sequences or the whole genome. However, the phylogenetic trees generated by those transcripts managed to some extent place the badger in the right position in terms of gene speciation i.e. within the Mustelidae family. Although these trees show the approximate speciation process which led to the emergence of species, families and orders they do not show the exact chronological order for the evolution of these taxa.

Gene trees showed that phylogenetics can add biological meaning to the data. It is important to keep in mind that a single line on the phylogeny is in fact a population, and populations can have genetic variation. These gene variations represented as paralogs which resulted from duplication of homologs within the genome and orthologs which are defined as evolutionary counterparts derived from a single ancestral gene in the last common ancestor of the given two species (Koonin and Galperin, 2003). The genetic variations within the population can affect the outcome of the phylogeny when single sequence is used to build the tree. Some immunity genes are highly polymorphic and different hosts usually have different genotypes and thereby recognize different spectrums of pathogens. However, even with such variability it is still possible to produce this phylogeny.

Chapter VI

6 Mealworm (*Tenebrio molitor*)

"Model organisms have always played a leading role in genetic research, starting with Mendel's experimentation with pea plants in the 19th century. Today, geneticists continue to rely on these organisms, especially when investigating questions of gene expression, function, and mutation. Interestingly, even simple organisms can reveal much about the molecular basis of disease; in fact, the simple structure, short life span, and easy manipulability of these species make it particularly amenable to ongoing use in the research environment." (Adams, 2008). Thereby, a model organism can be defined as an organism appropriate for studying a specific disease or phenomenon owing to its relatively short lifetime in addition to characterized genome, well known biology and ease of accessibility for laboratory studies (Hedges, 2002).

"The phylogeny and timescale of life are becoming better understood as the analysis of genomic data from model organisms continues to grow. As a result, discoveries are being made about the early history of life and the origin and development of complex multicellular life" (Hedges, 2002). Insects were among the first animals on land, and the diversity and distribution of the current living insects has often been described as "astonishing". Within excess of one million species, insects are the most diverse organisms in the history of life, both in the number of species and the variety of structures and behaviours (Grimaldi and Engel, 2005). In comparison to the number of insect species which is estimated at over 950,000, the diversity of their genome size remains poorly understood when compared to all vertebrates and not just mammals (over 66,000 species), with sparse and sporadic sampling of a few selected insect orders and with many

orders unrepresented or underrepresented in genome databases. The sizes of insect genomes are estimated to range from 91 to 7,752 megabase. (Hanrahan and Johnston, 2011). In terms of genome size, the closest insect to *T. molitor* is *Tribolium castaneum* (the red flour beetle) from the same family "Tenebrionidae" and it has a genome size of 160 megabase (Richards et al., 2008). On the other hand, the size of the fully sequenced genome of Drosophila melanogaster (the fruit fly) is estimated at 120 megabase (Adams et al., 2000). Understanding the difference in genome sizes between these two species provides one justification for widening the genomic pool of model organisms to be analysed by sequencing. In the case of the mealworm genome, the availability of the mitogenome and transcriptome make the task easier. As previously mentioned, the other advantages of using the mealworm beetle as a model organism, include its use in immunological research, which will be substantially enhanced with the availability of a sequenced genome. On the negative side of course, simple, model organisms are perhaps easier to understand, but provide less transferable information, owing to their specialised features: and in this respect, the mealworm is not an exception. However, acknowledging that all model organisms have limitations, the opportunity to derive the sequence of the mealworm genome, seems on balance worthwhile, in particular in respect of its use in a wider educational setting, as discussed below.

The ease of managing the mealworm in teaching and research laboratories, (as has been observed with school students at the Liverpool Life Sciences University Technical College (UTC)., has provided invaluable support for extending the knowledge base of this organism, using genomic technology. Moreover, the significant and experimentally

convenient, amounts of protein extraction that can be obtained from a single insect, further support the case for making this insect an addition to the list of model organisms. Advantages and disadvantages of common animal models are frequently under discussion and the two main disadvantages of using models are the evolutionary distance from human and the issue of manipulating a small flying insect or its embryo (Wheeler and Brandli, 2009). Although not essential for a school-based research organism, simple - manipulations, the mealworm is much easier to handle, dissect and generally maintain, compared with other known insect models such as the fruit fly. The fact that the mealworm is evolutionary distant to human more than other mammalian or vertebrate models is not a real hindrance when it comes to teaching fundamental aspects of Biology. On the contrary it might be easier to use an insect model to avoid conflicts in respect of ethics, religion, etc.

The cost of purchase (around £14 per kg of mealworms) and maintenance, and the level of sophistication in mealworm "husbandry" is relatively low. Simple experiments such as total protein and DNA extraction and UV light exposure to observe the morphological changes such as pigmentation have been performed at Liverpool UTC by students aged 14-16 years old which provides a promising opportunity for attracting young people to science, and also helps lay the foundations for their subsequent career or educational opportunities.

6.1 Genomic DNA extraction

Mealworm larvae were obtained from a local supplier (any general pet shop will suffice) and after removal of dead organisms and rinsing in water to remove debris, were dried on paper towels before freezing at -80°C and storing for at least 24 hours before DNA extraction. This method improved the consistency of extraction compared with grinding the larvae directly. Typical mealworm larvae weigh around 150 mg, and 50 mg of homogenised larvae were used for genomic DNA extraction using an ISOLATE Genomic DNA Mini Kit (see M and M, give section no.).

Figure 6.1: The analysis of genomic DNA extracted from T molitor, using the Bioline I Genomic DNA extraction kit followed by 1% agarose gel electrophoresis. Lane 1 (HL1) DNA Hyperladder I (lanes 2-6) X ul Extracted DNA (7) the wash buffer flow-through and lanes 8 and 9 whole lysate.

6.2 Methodology used to determine the nucleotide sequence of genomicDNA from T molitor

In view of the specialised techniques employed, the description of the sequencing experiments are included in this Chapter and not Chapter 2. Mealworm DNA samples prepared as above, were used to generate three DNA Illumina paired-end libraries with different insert sizes for sequencing and downstream genome assembly. The "Illumina" method is one of the most common methods used to sequence whole genomes. Genomic DNA was sheared using the Covaris S2 sonicator and used as input material for the TruSeq Nano DNA LT Sample Prep Kit. The libraries were purified throughout using AMPure XP bead clean at a ratio of 1:1.6 sample to beads. Following 6 cycles of amplification libraries were purified using AMPure XP beads. Each library was quantified using Qubit. Basecalling and de-multiplexing of indexed reads was performed by CASAVA version 1.8.2 (Illumina) to produce sequence data, in FASTQ format. The raw FASTQ files were trimmed to remove Illumina adapter sequences using Cutadapt version 1.2.1. The reads were further trimmed to remove low quality bases. If both reads from a pair passed this filter, each was included in the R1 (forward reads) or R2 (reverse reads) file. If only one of a read pair passed this filter, it was included in the R0 (unpaired reads) file **Table 6.1.**

Library	Raw reads	Trimmed reads (%)	Paired (R1/ R2) reads	Single (RO) reads (%)
Sample_2_350	153,873,144	153,405,605 (99.70)	76,513,117	379,371 (0.25)
Sample_3_550	136,112,914	135,963,239 (99.89)	67,921,367	120,505 (0.09)
Sample_2_3000	130,794,224	130,180,043 (99.53)	64,895,761	388,521 (0.30)

Table 6.1: summary of the read counts before and after adapter and quality trimming for all the samples. Percentage of the reads remaining after adapter and quality trimming are is shown in brackets.

6.3 Preliminary sequencing data

The primary results received to date are the raw reads of the genome (25GB of data) which represent sequencing data from three genomic DNA samples. The number of sequences produced ranges between 130-153 million short reads each.

6.3.1 Data files description

For paired-end sequence data, there are three sequence file types (Figure 6.2). The files labelled R1 and R2 contain the corresponding paired-end sequences. The singlet files contain sequences whose pair has been removed due to poor sequence quality or adapter contamination. If a sample has been sequenced several times, there will be several sets of sequence files in the sample directory. These will need to be concatenated before downstream analysis.

6.3.2 Sequence size for each sample

Red line indicates median length

Box indicates interquartile range

Whiskers indicate minimum and maximum read lengths

Figure 6.2: A graph showing the distribution of trimmed read lengths for the forward strand (R1), reverse strand (R2) and singlet (R0) reads. Note that it is common for a small number of reads to consist of mostly adapter-derived sequence, so it is expected that the distribution will show a long tail.

6.4 Mealworm (T. molitor) extracted genome BLASTN search results

The received data files incorporated three repeat sequencing experiments on the genomic DNA. Each library comprises three raw reads: R1 (Forward reads), R2 (Reverse reads) and R0 for single reads, all in FASTQ format. FASTQ files were converted to FASTA format using Galaxy platform (Afgan et al., 2016) in order to choose an unbiased selection of short reads for a BLASTN search.

A 1000 short reads were randomly selected from each file for the three sequencing samples making the total short reads around 9000 with a nucleotide length range from 45 bp to 125 bp per short read. The BLAST? search was optimised for highly similar sequences only (megablast) within the class Insecta (taxa ID: 50557) to avoid any interference or noise caused by the input sequences, as short input sequences have higher chance to align with sequences from organisms other than insects.

The percentage of short reads that were found to matching sequences are around 10-20%, i.e. for each 1000 short reads only 100-200 were found to have alignments in the public databases. This is probably attributed to the relatively "strict" search parameters employed, and the availability of sequences from similar organisms in the database, and of course the nature of query sequence themselves.

55% of the total observed alignments are with sequences from *T. molitor* with identity range between 90-100%. The sequences of T. molitor were from mitogenome, satellite repeats and other sequences such as antifreeze protein.

If we consider species diversity in the observed alignments, we find that over 80% of the alignments were with sequences from beetles (Coleoptera) order including mealworm, red flour beetle genome (2008) and Asian long-horned beetle genome (McKenna et al., 2016). The rest of the alignments are from different insect orders including flies (Diptera) and bees (Hymenoptera) among other orders **(Table 6.2)**.

Order	Family	Genus	Species
Coleoptera	Tenebrionidae	Tenebrio	<i>T. Molitor</i> (Mealworm)
Coleoptera	Tenebrionidae	Tribolium	<i>T. castaneum</i> (Red flour beetle)
Coleoptera	Boridae	Synercticus	Synercticus spp.
Coleoptera	Cerambycidae	Anoplophora	A. glabripennis (Asian long-horned beetle)
Coleoptera	Silphidae	Nicrophorus	N. vespilloides (Burying beetle)
Coleoptera	Eucnemidae	Anischia	Anischia bicolor
Coleoptera	Cerylonidae	Mychocerus	Mychocerus spp.
Coleoptera	Scarabaeidae	Onthophagus	Onthophagus vinctus
Diptera	Tephritidae	Bactrocera	B. latifrons (Solanum fruit fly)
Hymenoptera	Formicidae	Dinoponera	D. quadriceps (Ants species)
Diptera	Drosophilidae	Drosophila	Drosophila busckii (Fruit fly species)
Lepidoptera	Saturniidae	Samia	Philosamia cynthia ricini (Silkmoth)
Hemiptera	Machaerotidae	Pectinariophyes	Pectinariophyes reticulata
Phthiraptera	Pediculidae	Pediculus	Pediculus humanus corporis (Body louse)
Hymenoptera	Formicidae	Monomorium	M. pharaonic (Pharaoh ant)
Diptera	Drosophilidae	Drosophila	Drosophila ficusphila (Fruit fly species)
Diptera	Tephritidae	Rhagoletis	Rhagoletis zephyria
Hemiptera	Cicadellidae	Ulopa	Ulopa reticulate

Table 6.2: The most common insect species that were found to have sequence alignment with mealworm's query sequences. Species from the same order (Coleoptera) are highlighted in yellow.

6.5 Using short read to draw a phylogenetic tree

A short read (HISEQ: 115:C6KP7ANXX/ 18S Ribosomal RNA) was selected after showing

an alignment with multiple insects in blastn to build a gene phylogenetic tree (Figure 6.3).

Species	Family	Order
Anamorphus-sp. 0.02964 Indalmus-lineellus 0.01354 Anthonomus-grandis 0.02457 Rhinocyllus-conicus 0.00512 Limnobaris-t-album 0.02823 Trichodes-umbellatarum 0.00031	Endomychidae Curculionidae Cleridae	Coleoptera
Trichodes-favarius 0.00022 Callimerus-sp. 0.00344 Neohydnus-sordidus 0.00712 Tenebrio-molitor 0.00842	Tenebrionidae	
Probaticus-sp. 0.00105 Pedinus-quadratus 0.00128 Tentyria-rotundata 0.00146 Microtelus-asiaticus 0.0017		
Colobothea-aleata 0.0098 Monochamus-alternatus 0.00665 Clytus-arietis 0.00281	Cerambycidae	

Figure 6.3: a gene phylogenetic tree for 18S ribosomal RNA sequence from different beetles of the order Coleoptera.

Using a partial sequence of 18S ribosomal RNA gene which has a highly conserved

function among species can draw a relatively well-ordered species tree which congregate

beetle species into their families under the order Coleoptera as shown in the (figure 6.3).

6.6 Discussion

6.6.1 Extracted DNA Quality

Genomic DNA samples were submitted for sequencing at the Liverpool University Genome Centre, and were relatively free from interfering contaminants having been and purified as described in **Chapter II** In order to circumvent the inhibition of downstream, enzymatic processing. A gel image of all samples, following analytical agarose gel electrophoresis provides a reasonable assessment of sample purity and integrity, and was used to "quality control" samples before submitting to sequencing. Genomic DNA was visible as a single prominent band >12 Kb (resolution diminishes significantly above fragment sizes in excess of 10kb). Samples with significant levels of degraded DNA were excluded (If more than one band or a smear was observed, the DNA may be degraded or contain components that might impair library preparation.) A low level of RNA usually appeared as a smear on gels, despite the use of RNAse, however, it did appeared not to significantly interfere with sequencing. Purified DNA was dissolved in nuclease-free TE buffer for short and long term storage.

6.6.2 Quality of the "raw" sequence data

Although the current sequencing data are still non-assembled, the quality of raw reads was interrogated and tested using three adapter trimming programs (by the service provider): Sickle, EAUtils and Cutadapt which has been extensively used by sequencing providers (Martin, 2011).

6.6.3 Data significance

To my knowledge this is the first attempt to obtain the nucleotide sequence the mealworm genome. Although the data in hand are raw data, theyare suitable for submission to The Sequence Read Archive (SRA) of the NCBI database (Wheeler et al., 2008) to allow public access, free annotation and use. The availability of a *T. molitor* genome sequence, will facilitate the wider use of mealworm beetle in immunological research and go a long way in developing the insect as a new model organism.

6.6.4 Sequence alignment and phylogenetic tree

Around 9000 short reads from all the sequencing data FASTQ files were used in a sequence alignment search. The read lengths was in the range between 90 to 125 nucleotides. A highly constrained search was performed where BLASTN was limited to insects sequences in the database,s and only those sequences with an identity index of 95% or more. From each data file around 23% were found to show an alignment via NCBI blastn. Around 99% of the alignments were to satellite DNA from *T. molitor. Tenebrio molitor* contains an unusually abundant and homogeneous fraction of satellite DNA, which constitutes up to 60% of its genome (Davis and Wyatt, 1989). The remaining aligned sequences came from T. molitor mitochondrial DNA and other insects including species of beetles and fruit flies.

The E-value was in the range of 1e-58 to 9e-5 for the observed alignments. Most of the aligned sequences with high E-value were those of conserved genes from other insects (e.g. *Bactrocera latifrons:* basic-leucine zipper transcription factor D gene) or *T. molitor* specific sequences (e.g. *Tenebrio molitor:* antifreeze protein BST1 (BST1) gene). The

identity score in both examples were 94% and 100% respectively, which may indicate that however the E-value was at the high end, it is still identical to well-known conserved genes from other insects or the mealworm's own gene sequences. The identical alignments (i.e. 100%) were from *T. Molitor* mitochondrial genome (Liu and Wang, 2014) and ribosomal RNA genes and DNA satellite repeats (Davis and Wyatt, 1989) which may be helpful in a school based blastn searches for confirming the identity of the DNA under investigation (say by a PCR experiment).

Although there was considerable difficulty experienced in assembling the data in hand, on a genome level a simple NCBI blast search could be used to answer simple questions in a school environment, where students can take "ownership" of the project and learn about the importance of DNA sequencing and the value of sequence alignments in modern biological research. In this case a single or multiple short sequences could be used to answer questions such as "to what organism does this sequences belong?" and "how similar is this sequence to others from other organisms?" and the significance of sequence similarity in understanding evolution by using a partial sequence as shown in the phylogenetic tree of 18S ribosomal RNA sequence.

The demand for animal protein is expected to rise by 70–80% in the next five decades and mealworm is a suggested as a more sustainable source of protein (Adams, 2008). Simple lifecycle, protein extraction, DNA sequencing and bioinformatics experiments can help to draw young people's attention and acceptance for this possible futuristic food.

Chapter VI

7 Discussion

7.1 Analysis of the badger transcriptome

De novo transcriptome assembly can provide large amounts of data from which it is possible to build a preliminary platform for a future, total genome sequencing programme. These large data sets have become much easier to generate as a result of the simplification and cost reductions in NGS technology. Furthermore, the data we have obtained in this study, can be also used in further studies to explore the immune components of the badger's transcriptome, which represents another step in understanding the tolerance exhibited by the badger to infectious diseases such as bovine tuberculosis. However, in such a scenario it would be desirable to perform a parallel programme of sequencing of the blood transcriptome derived from an infected animal. Whilst this was an initial aim of this thesis, insurmountable logistical barriers prevented this work from being undertaken.

In comparison with the giant panda (*Ailuropoda melanoleuca*) transcriptome analysis (Du et al., 2015) the Illumina sequencing experiment produced approximately **3.52 Gb** of "clean" sequence data, which was assembled into **238,295** transcripts using a *de novo* transcriptome assembly without access to a reference genome. This compares with **92,598** for the panda. The average length of the assembled transcripts was **1281bp** with **N50** over **2720bp** long. The mean length of the panda transcripts was **1626 bp** with **N50** of **2842 bp**. The number of annotated transcripts for the panda was **38,726** whereas **95,245** of badger's transcripts were annotated using BLAST searches against public

databases. These annotated transcripts will provide a valued resource for improving the sequencing and annotation of the badger's complete genomic DNA. The rationale behind the using the giant panda to compare with the badger is that the panda was the closest mammal to badger in terms or RNA sequence similarity and sequence function prediction in the transcriptome annotation. Moreover, the comparison was between two peripheral blood transcriptome analyses data which might eliminating the tissue expression level difference bias as it would be difficult to compare two different tissue transcriptomes from two animals. Eckalbar et al., (2013) achieved similar improvement through reannotation of the genomic DNA of the green anole lizard by transcriptome sequencing.

E-value distribution in the NR database showed that 39% of the aligned transcripts exhibit a highly significant homology (<1.0E-100) whereas for the panda's transcriptome, about 44% of the transcripts have similar homology. Over 70% of both badger and panda transcripts achieved a similarity of 80% or more. The most important observation in this comparison is that, despite the panda's genome and mitochondrial DNA being sequenced, the NR alignment of the panda's transcripts give only 51% identity to the panda as the closest match, whereas for the badger 70% of the transcripts where aligned to five mammals with their genome already sequenced.

The GO annotation was performed to explore the assembled transcriptome and the results reflected a functional diversity of the transcripts in the three main categories of GO terms. The GO annotation seems consistent with similar results from a GO comparison of giant panda and polar bear blood transcriptomes by et al., (2015).

The mapping of assembled genes with pathway annotation to the KEGG database resulted in assigning those reads to 259 pathways compared to 324 KEGG pathways identified from the panda's transcriptome. Among the highest representation are metabolic pathways, at 97% (9930), Focal adhesion 7.61% (7582), Amoebiasis 7.17% (7136), ECMreceptor interaction 5.94% (5918), Protein digestion and absorption 5.65% (5623), RNA transport 4.17% (4158), Regulation of actin cytoskeleton 4.02% (4001), Pathways in cancer 3.88% (3862) and Herpes simplex infection 3.22% (3209). In addition to the major pathways represented by the transcripts in **Chapter III** there are other 239 pathways shown in the **appendix** including some infectious diseases pathways like influenza A, measles, toxoplasmosis and tuberculosis.

A search in the Cluster of Orthologous Groups (COG) database was performed, in order to uncover the homologous relationships of the transcriptome to well-known conserved domains. Most of the transcripts were matched to the major groups of (Cellular Processes and Signalling), (Information Storage and Processing) and (Metabolism). However, there was also some transcripts classified as (Poorly Characterized) which includes 22,329 transcripts under (General function prediction only) and 11,305 transcripts under (Function unknown) categories.

A phylogenetic (evolutionary) tree is a representation of the evolutionary relationships among a set of organisms known as taxa. It is important to recognise that if the phylogenetic tree is computed from data derived from a single gene (gene tree) is sometimes different from a whole-genome tree (species tree). One of the important factors that cause this difference is genetic polymorphism in the ancestral species (Pamilo

and Nei, 1988). Even under standardised alignment parameters different genes provide different levels of speciation leading to formation of different trees. This could be useful in studying the evolution of a single gene and its variants but also could be misleading when studying a whole organism despite the fact that our alignments always show badger or ferret is the closest because that's in part true but is also what is available in the database.

MHC genes are highly diverse both within species and among species. The identity range of the first hits in the protein alignment is between 74% and 100% which, despite the length of both query and subject sequences showed regions of highly conserved sequences which revealed the intra-species similarities and few regions of less conserved regions, which may reflect the diversity of MHC genes. However, this can perhaps be more easily observed through sequencing the full length of the gene of interest. In a comparison of the abundance of MHC transcripts it was found that the badger has higher expression levels of both classes of MHC genes. Although, this result may require further experimental investigation, it may reflect the findings of other work where MHC genes diversity is much lower in this endangered species (Zhang et al., 2015) and the diversity of MHC genes in the giant panda was relatively lower than other vertebrates (Zhu et al., 2007).

7.2 Data from the immune component of the badger's transcriptome

The search using the IKB immunome database (Ortutay et al., 2007) as a reference for immunity-related genes, revealed that **698** out of IKB's **893** immunity genes have **11724** annotations and **195** have no match to the badger's transcriptome.

The total **919** annotations of immunoglobulins in three databases do show a similarity to genes from different mammals; mainly: giant panda, ferret, dog and human. Swiss-Prot annotation of immunoglobulin-related transcripts showed over **84%** similarity of the transcripts to human immunoglobulin in terms of predicted function. Immunoglobulin heavy and light chains are composed of constant and variable regions and the aminoterminal variable or V domains of the heavy and light chains together make up the V region of the antibody and confer upon it the ability to bind specific antigen(s) (Janeway, 2001). The **75** transcripts that matches the variable genes by annotation, showed a similarity to *Mustela putorius furo* (Ferret), *Canis lupus familiaris* (Dog), *Files catus* (Cat) and *Homo sapiens* (Human). However, KEGG annotation showed that **14** transcripts could not be mapped to any known pathological pathway and that some mapped to pathways from *Bos taurus* (Cow) and *Monodelphis domestica* (Opossum). Both mammals can acquire bTB infection.

KEGG pathway annotation for both *M. bovis* and *M. tuberculosis* infection inside their hosts showed that **183** mammalian genes are involved in the pathogenesis of the diseases. **1825** transcripts from the badger were found to correspond to **147** of those **183** genes that are involved in bTB pathway from the early infection until cell death.

Interestingly, only sequences encoding the subunits of IL-6, INFα and INFβ receptors were found in the annotated transcriptome. Production of interferons occurs mainly in response to infection, and the inability to detect their presence in the transcriptome might be explained by the fact that the animals had been maintained for their life course in a (disease-free) controlled environment. The Mincle receptor is essential for the detection of microbial glycolipids, and it has been found that Mincle-dependent macrophage activation is regulated by IL-4, which leads to a strong downregulation of expression of Mincle mRNA (Hupfer et al., 2016). 24 transcripts were annotated as IL-4 and signal transducer and activator of transcription 6 which might explain the undetected presence of Mincle transcripts.

A phylogeny is a "tree", which estimates the "historical" connections between species or genes that they carry. Five different transcripts were used to construct gene phylogenies compared to other fifty animals from different classes and orders. "Gene" trees represent the evolutionary history of the genes included in the study and provide evidence for gene duplication events, as well as speciation events by including different homologues in a gene tree and clustering orthologues to demonstrate the evolutionary history of the gene orthologues.

7.3 Gender differences in gene expression

Transcriptome analysis has showed that sexual dimorphism in gene expression was much greater than previously recognized, since thousands of genes showed sexual dimorphism in liver, adipose, and muscle where the sexually dimorphic genes were also found to be highly tissue-specific (Yang et al., 2006). Over 12% of transcripts were found upregulated in the male badger while 87% of transcripts were downregulated when compared to the female badger.

Although it cannot anticipated whether the observed differential expression between male and female badgers is a direct result of the hormonal effect, and despite the fact that these data were from uninfected animals, some of the expression levels difference were consistent with the biological differences between the sexes and their susceptibility to tuberculosis

7.4 Implications for the evolution of the European Badger

The phylogenetic gene-trees were constructed using molecular data with no regard to morphological, behavioural or any other type of data. In the construction of gene trees only transcripts were used, which may neglect some important inputs drawn by noncoding sequences or the whole genome. However, the phylogenetic trees generated by those transcripts managed to some extent place the badger in the appropriate (by consensus) position in terms of gene speciation i.e. within the Mustelidae family. Although these trees show the approximate speciation process which led to the emergence of species, families and orders they do not show the exact chronological order for the evolution of these taxa.

Gene-trees showed that phylogenetics can add biological meaning to the data. It is important to keep in mind that a single line on the phylogeny is in fact a population, and populations can have genetic variation. These gene variations represented as paralogs

which resulted from duplication of homologues within the genome and orthologues which are defined as evolutionary counterparts derived from a single ancestral gene in the last common ancestor of the given two species (Koonin and Galperin, 2003). The genetic variations within the population can affect the outcome of the phylogenetic conclusion when single sequence is used to build the tree. Some immunity genes are highly polymorphic and different hosts usually have different genotypes and thereby recognize different spectrums of pathogens. However, even with such variability it is still possible to produce this phylogeny.

Moreover, the limited availability of sequenced data from other related mammals can also contribute to the position of badger in the evolutionary timeline. However, it is still possible to make a reasonable, albeit tentative, judgement from such high quality data. The anatomical records place the Eurasian badger within the mustelid subfamily where it is closely related to the hog badger (Marmi et al., 2006), and this could be either sustained, shifted or changed when the whole genome is sequenced. In conclusion, whilst the transcriptome data point to the position of the badger, the definitive position must await the publication of the badger genome.

7.5 The data from the mealworm

The characteristics and the ease of handling of the mealworm make it a suitable choice as a model organism in biological and evolutionary research, which in turn made obtaining the full genomic data of the organism an experimental priority (Liu and Wang, 2014).

To my knowledge this is the first attempt to sequence the mealworm genome. Although the data in hand are at this stage "raw" data, they will shortly be submitted to The Sequence Read Archive (SRA) of NCBI database (Wheeler et al., 2008) to allow public access and free annotation and use.

As previously mentioned in the introduction, the mealworm has a number of advantages that support its selection as another model organism. Phenomena ranging from variable temperature tolerance to the ease of induction of infection can be easily investigated and combined with a full omics based approach. The availability of the *T. molitor* genome will facilitate the use of mealworm beetle in immunological research and in developing the insect as a new model organism for as yet, undetermined areas of Biology. As a very attractive by-product of this work, we have been able to succeed in making this model organism a suitable choice as a model organism for introducing school students to Systems Biology. This development well also help widening the spectrum of available model organisms leading to an increase in experimental variability and a decrease in bias.

Although there was some difficulty encountered in assembling the data in hand on a genome level: a simple NCBI blast search could be used to answer simple question in a school environment where students can own the project and learn about the importance of DNA sequencing and sequence alignment significance in modern biological research. In this case single or multiple short sequences could be used to answer questions like "to what organism does this sequences belong?" and "how similar is this sequence to others from other organisms?" and the significance of sequence similarity in understanding
evolution by using a partial sequence as shown in the phylogenetic tree of 18S ribosomal RNA sequence.

In addition, the demand for animal protein is expected to rise by 70–80% in the next five decades and mealworm is a suggested as a more sustainable source of protein (Adams, 2008). Simple lifecycle, protein extraction, DNA sequencing and bioinformatics experiments can help to draw young people's attention and acceptance for this possible futuristic food.

7.6 Limitations and proposed work

Current transcriptome analysis data alone do not provide an explanation for the mechanism, by which badgers develop a tolerance to bTB, or indeed what makes them effectively transmit the disease to other animals within the badger population or among farms. Moreover, the current data do not provide a prevention or treatment strategy for both wild and domestic animals. However, it still can be argued that these data can contribute to long-term future work such as genome sequencing. Furthermore, the available data encourage a further investigation of the badger immunome through a transcriptomic comparison between healthy and bTB infected animals.

The observed similarity between the badger's bTB-related transcripts that aligned to KEGG pathway of both bTB and Human tuberculosis would encourage a prospective study of the difference in the key genes in bTB in badgers, cow and human. The available transcriptome-immunome would facilitate designing further experiments (e.g. isolation and amplification of specific proteins to study their interaction with the pathogen). Moreover, the identification of some variable regions genes with no mention of their annotation in the public databases could be a platform for further research to find if they play a role that is unique to the badger's immunoglobulins through specific binding to mycobacterial antigens. This can be achieved through a variety of techniques used in antibody research including monoclonal and polyclonal antibody production and phage display research.

Simultaneous RNA sequencing (also known as dual RNA-seq) of both mycobacteria and badger can be another approach to study the changes in gene expression in both organisms along with interactions among the products of those genes during the course of infection. However, dual RNA-seq for bTB should be carefully planned in terms of the sequencing time and whether a repeated sequencing is required for different stages of the disease. Such a procedure could be relatively expensive in an infectious disease that exhibits variable manifestation varying from active to latent tuberculosis.

Single-cell transcriptome analysis which another economical approach that can yield a high-throughput, high-resolution transcriptomic analysis of cell states and dynamics (Liu and Trapnell, 2016). Single-cell transcriptome analysis has the possibility of shedding the light on macrophages behaviour during the course of infection and their possibility to override the phagosome/lysosome fusion inhibition effect induced by mycobacteria and if that is achieved by over expression of certain genes and nuclear receptors.

169

References

8 References

- 2008. The genome of the model beetle and pest Tribolium castaneum. *Nature,* 452, 949-955.
- 2017. UniProt: the universal protein knowledgebase. *Nucleic Acids Research,* 45, D158-D169.
- ABNAVE, P., CONTI, F., TORRE, C. & GHIGO, E. 2014. What RNAi screens in model organisms revealed about microbicidal response in mammals? *Frontiers in Cellular and Infection Microbiology*, 4, 184.
- ADAMS, J. 2008. C. elegans: Model organism in the discovery of PKD. *Nature Education*, 1, 196.
- ADAMS, M. D., CELNIKER, S. E., HOLT, R. A., EVANS, C. A., GOCAYNE, J. D., AMANATIDES, P. G., SCHERER, S. E., LI, P. W., HOSKINS, R. A., GALLE, R. F., GEORGE, R. A., LEWIS, S. E., RICHARDS, S., ASHBURNER, M., HENDERSON, S. N., SUTTON, G. G., WORTMAN, J. R., YANDELL, M. D., ZHANG, Q., CHEN, L. X., BRANDON, R. C., ROGERS, Y.-H. C., BLAZEJ, R. G., CHAMPE, M., PFEIFFER, B. D., WAN, K. H., DOYLE, C., BAXTER, E. G., HELT, G., NELSON, C. R., GABOR, G. L., MIKLOS, ABRIL, J. F., AGBAYANI, A., AN, H.-J., ANDREWS-PFANNKOCH, C., BALDWIN, D., BALLEW, R. M., BASU, A., BAXENDALE, J., BAYRAKTAROGLU, L., BEASLEY, E. M., BEESON, K. Y., BENOS, P. V., BERMAN, B. P., BHANDARI, D., BOLSHAKOV, S., BORKOVA, D., BOTCHAN, M. R., BOUCK, J., BROKSTEIN, P., BROTTIER, P., BURTIS, K. C., BUSAM, D. A., BUTLER, H., CADIEU, E., CENTER, A., CHANDRA, I., CHERRY, J. M., CAWLEY, S., DAHLKE, C., DAVENPORT, L. B., DAVIES, P., PABLOS, B. D., DELCHER, A., DENG, Z., MAYS, A. D., DEW, I., DIETZ, S. M., DODSON, K., DOUP, L. E., DOWNES, M., DUGAN-ROCHA, S., DUNKOV, B. C., DUNN, P., DURBIN, K. J., EVANGELISTA, C. C., FERRAZ, C., FERRIERA, S., FLEISCHMANN, W., FOSLER, C., GABRIELIAN, A. E., GARG, N. S., GELBART, W. M., GLASSER, K., GLODEK, A., GONG, F., GORRELL, J. H., GU, Z., GUAN, P., HARRIS, M., HARRIS, N. L., HARVEY, D., HEIMAN, T. J., HERNANDEZ, J. R., HOUCK, J., HOSTIN, D., HOUSTON, K. A., HOWLAND, T. J., WEI, M.-H., et al. 2000. The Genome Sequence of Drosophila melanogaster. Science, 287, 2185-2195.
- AFGAN, E., BAKER, D., VAN DEN BEEK, M., BLANKENBERG, D., BOUVIER, D., ČECH, M., CHILTON, J., CLEMENTS, D., CORAOR, N., EBERHARD, C., GRÜNING, B., GUERLER, A., HILLMAN-JACKSON, J., VON KUSTER, G., RASCHE, E., SORANZO, N., TURAGA, N., TAYLOR, J., NEKRUTENKO, A. & GOECKS, J. 2016. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. *Nucleic Acids Research*, 44, W3-W10.
- AGUILAR-MIRANDA, E. D., LÓPEZ, M. G., ESCAMILLA-SANTANA, C. & BARBA DE LA ROSA,
 A. P. 2002. Characteristics of Maize Flour Tortilla Supplemented with Ground
 Tenebrio molitor Larvae. *Journal of Agricultural and Food Chemistry*, 50, 192-195.

ALTSCHUL, S. F., MADDEN, T. L., SCHÄFFER, A. A., ZHANG, J., ZHANG, Z., MILLER, W. & LIPMAN, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*, 25, 3389-3402.

ANGELIA, M. R. N., GARCIA, R. N., CALDO, K. M. P., PRAK, K., UTSUMI, S. & TECSON-MENDOZA, E. M. 2010. Physicochemical and Functional Characterization of Cocosin, the Coconut 11S Globulin. *Food Science and Technology Research*, 16, 225-232.

ARES, E. H., O. 2014. Badger Culling: TB Control Policy. In: (SGS), D. E. A. S. O. H. (ed.).

- ASHBURNER, M., BALL, C. A., BLAKE, J. A., BOTSTEIN, D., BUTLER, H., CHERRY, J. M., DAVIS, A. P., DOLINSKI, K., DWIGHT, S. S., EPPIG, J. T., HARRIS, M. A., HILL, D. P., ISSEL-TARVER, L., KASARSKIS, A., LEWIS, S., MATESE, J. C., RICHARDSON, J. E., RINGWALD, M., RUBIN, G. M. & SHERLOCK, G. 2000. Gene Ontology: tool for the unification of biology. *Nat Genet*, 25, 25-29.
- BAIROCH, A. & APWEILER, R. 1996. The SWISS-PROT Protein Sequence Data Bank and Its New Supplement TREMBL. *Nucleic Acids Research*, 24, 21-25.
- BARKER, D., FITZPATRICK, M. P. & DIERENFELD, E. S. 1998. Nutrient composition of selected whole invertebrates. *Zoo Biology*, 17, 123-134.
- BARNES, A. I. & SIVA-JOTHY, M. T. 2000. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. *Proceedings of the Royal Society B: Biological Sciences*, 267, 177-182.
- BENJAMINI, Y. & HOCHBERG, Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)*, 57, 289-300.
- BENTLEY, D. R., BALASUBRAMANIAN, S., SWERDLOW, H. P., SMITH, G. P., MILTON, J., BROWN, C. G., HALL, K. P., EVERS, D. J., BARNES, C. L., BIGNELL, H. R., BOUTELL, J. M., BRYANT, J., CARTER, R. J., CHEETHAM, R. K., COX, A. J., ELLIS, D. J., FLATBUSH, M. R., GORMLEY, N. A., HUMPHRAY, S. J., IRVING, L. J., KARBELASHVILI, M. S., KIRK, S. M., LI, H., LIU, X., MAISINGER, K. S., MURRAY, L. J., OBRADOVIC, B., OST, T., PARKINSON, M. L., PRATT, M. R., RASOLONJATOVO, I. M. J., REED, M. T., RIGATTI, R., RODIGHIERO, C., ROSS, M. T., SABOT, A., SANKAR, S. V., SCALLY, A., SCHROTH, G. P., SMITH, M. E., SMITH, V. P., SPIRIDOU, A., TORRANCE, P. E., TZONEV, S. S., VERMAAS, E. H., WALTER, K., WU, X., ZHANG, L., ALAM, M. D., ANASTASI, C., ANIEBO, I. C., BAILEY, D. M. D., BANCARZ, I. R., BANERJEE, S., BARBOUR, S. G., BAYBAYAN, P. A., BENOIT, V. A., BENSON, K. F., BEVIS, C., BLACK, P. J., BOODHUN, A., BRENNAN, J. S., BRIDGHAM, J. A., BROWN, R. C., BROWN, A. A., BUERMANN, D. H., BUNDU, A. A., BURROWS, J. C., CARTER, N. P., CASTILLO, N., CATENAZZI, M. C. E., CHANG, S., COOLEY, R. N., CRAKE, N. R., DADA, O. O., DIAKOUMAKOS, K. D., DOMINGUEZ-FERNANDEZ, B., EARNSHAW, D. J., EGBUJOR, U. C., ELMORE, D. W., ETCHIN, S. S., EWAN, M. R., FEDURCO, M., FRASER, L. J., FAJARDO, K. V. F., FUREY, W. S., GEORGE, D., GIETZEN, K. J., GODDARD, C. P., GOLDA, G. S., GRANIERI, P. A., GREEN, D. E., GUSTAFSON, D. L., HANSEN, N. F., HARNISH, K., HAUDENSCHILD, C. D., HEYER, N. I., HIMS, M. M., HO, J. T.,

HORGAN, A. M., et al. 2008. Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry. *Nature*, 456, 53-59.

BOLKER, J. A. 1995. Model systems in developmental biology. *BioEssays*, 17, 451-455.

- BORATYN, G. M., CAMACHO, C., COOPER, P. S., COULOURIS, G., FONG, A., MA, N.,
 MADDEN, T. L., MATTEN, W. T., MCGINNIS, S. D., MEREZHUK, Y., RAYTSELIS, Y.,
 SAYERS, E. W., TAO, T., YE, J. & ZARETSKAYA, I. 2013. BLAST: a more efficient
 report with usability improvements. *Nucleic Acids Research*, 41, W29-W33.
- BRADFORD, C. M. 2012. The role of citrullination of central nervous system proteins in multiple sclerosis. Ph.D, Sheffield Hallam University.
- BRONNER, I. F., QUAIL, M. A., TURNER, D. J. & SWERDLOW, H. 2009. Improved Protocols for Illumina Sequencing. *Current protocols in human genetics / editorial board, Jonathan L. Haines ... [et al.]*, 0 18, 10.1002/0471142905.hg1802s62.
- BRUDER, C. E., YAO, S., LARSON, F., CAMP, J. V., TAPP, R., MCBRAYER, A., POWERS, N., VALDIVIA GRANDA, W. & JONSSON, C. B. 2010. Transcriptome sequencing and development of an expression microarray platform for the domestic ferret. BMC Genomics, 11, 251-251.
- CALLINAN, P. A. & FEINBERG, A. P. 2006. The emerging science of epigenomics. *Human Molecular Genetics*, 15, R95-R101.
- CAMACHO, C., COULOURIS, G., AVAGYAN, V., MA, N., PAPADOPOULOS, J., BEALER, K. & MADDEN, T. L. 2009a. BLAST+: architecture and applications. *BMC bioinformatics* [Online], 10. Available: http://europepmc.org/abstract/MED/20003500
- http://europepmc.org/articles/PMC2803857?pdf=render
- http://europepmc.org/articles/PMC2803857
- http://www.biomedcentral.com/1471-2105/10/421
- http://www.biomedcentral.com/1471-2105/10/421/abstract
- http://www.biomedcentral.com/content/pdf/1471-2105-10-421.pdf
- http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=EBI&pubmedid=20003500&acti on=stream&blobtype=pdf
- http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=EBI&pubmedid=20003500

http://dx.doi.org/10.1186/1471-2105-10-421 [Accessed 2009].

- CAMACHO, C., COULOURIS, G., AVAGYAN, V., MA, N., PAPADOPOULOS, J., BEALER, K. & MADDEN, T. L. 2009b. BLAST+: architecture and applications. *BMC Bioinformatics*, 10, 421.
- CARNINCI, P., KASUKAWA, T., KATAYAMA, S., GOUGH, J., FRITH, M. C., MAEDA, N.,
 OYAMA, R., RAVASI, T., LENHARD, B., WELLS, C., KODZIUS, R., SHIMOKAWA, K.,
 BAJIC, V. B., BRENNER, S. E., BATALOV, S., FORREST, A. R., ZAVOLAN, M., DAVIS,
 M. J., WILMING, L. G., AIDINIS, V., ALLEN, J. E., AMBESI-IMPIOMBATO, A.,
 APWEILER, R., ATURALIYA, R. N., BAILEY, T. L., BANSAL, M., BAXTER, L., BEISEL, K.
 W., BERSANO, T., BONO, H., CHALK, A. M., CHIU, K. P., CHOUDHARY, V.,

CHRISTOFFELS, A., CLUTTERBUCK, D. R., CROWE, M. L., DALLA, E., DALRYMPLE, B. P., DE BONO, B., DELLA GATTA, G., DI BERNARDO, D., DOWN, T., ENGSTROM, P., FAGIOLINI, M., FAULKNER, G., FLETCHER, C. F., FUKUSHIMA, T., FURUNO, M., FUTAKI, S., GARIBOLDI, M., GEORGII-HEMMING, P., GINGERAS, T. R., GOJOBORI, T., GREEN, R. E., GUSTINCICH, S., HARBERS, M., HAYASHI, Y., HENSCH, T. K., HIROKAWA, N., HILL, D., HUMINIECKI, L., IACONO, M., IKEO, K., IWAMA, A., ISHIKAWA, T., JAKT, M., KANAPIN, A., KATOH, M., KAWASAWA, Y., KELSO, J., KITAMURA, H., KITANO, H., KOLLIAS, G., KRISHNAN, S. P., KRUGER, A., KUMMERFELD, S. K., KUROCHKIN, I. V., LAREAU, L. F., LAZAREVIC, D., LIPOVICH, L., LIU, J., LIUNI, S., MCWILLIAM, S., MADAN BABU, M., MADERA, M., MARCHIONNI, L., MATSUDA, H., MATSUZAWA, S., MIKI, H., MIGNONE, F., MIYAKE, S., MORRIS, K., MOTTAGUI-TABAR, S., MULDER, N., NAKANO, N., NAKAUCHI, H., NG, P., NILSSON, R., NISHIGUCHI, S., NISHIKAWA, S., et al. 2005. The transcriptional landscape of the mammalian genome. *Science*, 309, 1559-63.

- CHAIN, P. S. G., GRAFHAM, D. V., FULTON, R. S., FITZGERALD, M. G., HOSTETLER, J., MUZNY, D., ALI, J., BIRREN, B., BRUCE, D. C., BUHAY, C., COLE, J. R., DING, Y., DUGAN, S., FIELD, D., GARRITY, G. M., GIBBS, R., GRAVES, T., HAN, C. S., HARRISON, S. H., HIGHLANDER, S., HUGENHOLTZ, P., KHOURI, H. M., KODIRA, C. D., KOLKER, E., KYRPIDES, N. C., LANG, D., LAPIDUS, A., MALFATTI, S. A., MARKOWITZ, V., METHA, T., NELSON, K. E., PARKHILL, J., PITLUCK, S., QIN, X., READ, T. D., SCHMUTZ, J., SOZHAMANNAN, S., STERK, P., STRAUSBERG, R. L., SUTTON, G., THOMSON, N. R., TIEDJE, J. M., WEINSTOCK, G., WOLLAM, A., DETTER, J. C., CONSORTIUM, G. S. & JUMPSTART, H. M. P. 2009. Genome Project Standards in a New Era of Sequencing. *Science*, 326, 236-237.
- CHAMBERS, M. A., CARTER, S. P., WILSON, G. J., JONES, G., BROWN, E., HEWINSON, R. G.
 & VORDERMEIER, M. 2014. Vaccination against tuberculosis in badgers and cattle: an overview of the challenges, developments and current research priorities in Great Britain. *Veterinary Record*, 175, 90-96.
- CHAPLIN, D. D. Overview of the immune response. *Journal of Allergy and Clinical Immunology*, 125, S3-S23.
- CHAPLIN, D. D. 2010. Overview of the immune response. *Journal of Allergy and Clinical Immunology*, 125, S3-S23.
- CLANCY, S. 2008. DNA transcription. *Nature Education*, 1, 41.
- CLARK, T. A., SUGNET, C. W. & ARES, M. 2002. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. *Science*, 296, 907-910.
- CLEARY, G. P., CORNER, L. A. L., O'KEEFFE, J. & MARPLES, N. M. 2009. The diet of the badger Meles meles in the Republic of Ireland. *Mammalian Biology Zeitschrift für Säugetierkunde*, 74, 438-447.
- CLOONAN, N., FORREST, A. R., KOLLE, G., GARDINER, B. B., FAULKNER, G. J., BROWN, M. K., TAYLOR, D. F., STEPTOE, A. L., WANI, S., BETHEL, G., ROBERTSON, A. J., PERKINS, A. C., BRUCE, S. J., LEE, C. C., RANADE, S. S., PECKHAM, H. E., MANNING, J. M., MCKERNAN, K. J. & GRIMMOND, S. M. 2008. Stem cell transcriptome profiling via massive-scale mRNA sequencing. *Nat Methods*, 5, 613-9.

COOPER, G. M. & HAUSMAN, R. E. 2009. The Cell: A Molecular Approach, ASM Press.

- CORNER, L. A., MURPHY, D. & GORMLEY, E. 2011. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. *J Comp Pathol*, 144, 1-24.
- DAVIS, C. A. & WYATT, G. R. 1989. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor. *Nucleic Acids Research*, 17, 5579-5586.
- DE LISLE, G. W., BENGIS, R. G., SCHMITT, S. M. & O'BRIEN, D. J. 2002. Tuberculosis in free-ranging wildlife: detection, diagnosis and management. *Rev Sci Tech*, 21, 317-34.
- DE SOUZA, P. C., MOREY, A. T., CASTANHEIRA, G. M., BOCATE, K. P., PANAGIO, L. A., ITO,
 F. A., FURLANETO, M. C., YAMADA-OGATTA, S. F., COSTA, I. N., MORA-MONTES,
 H. M. & ALMEIDA, R. S. 2015. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. *Journal of Microbiological Methods*, 118, 182-186.
- DEAN, G. S., RHODES, S. G., COAD, M., WHELAN, A. O., COCKLE, P. J., CLIFFORD, D. J., HEWINSON, R. G. & VORDERMEIER, H. M. 2005. Minimum infective dose of Mycobacterium bovis in cattle. *Infection and Immunity*, **73**, 6467-6471.
- DEFRA 2011. Bovine TB Eradication Programme for England *In:* COMMUNICATIONS, T. (ed.). LONDON: Department for Environment, Food and Rural Affairs.
- DELAHAY, R. J., BROWN, J. A., MALLINSON, P. J., SPYVEE, P. D., HANDOLL, D., ROGERS, L.
 M. & CHEESEMAN, C. L. 2000. The use of marked bait in studies of the territorial organization of the European Badger (Meles meles). *Mammal Review*, 30, 73-87.
- DELAHAY, R. J., CHEESEMAN, C. L. & CLIFTON-HADLEY, R. S. 2001. Wildlife disease reservoirs: the epidemiology of Mycobacterium bovis infection in the European badger (Meles meles) and other British mammals. *Tuberculosis (Edinb)*, 81, 43-9.
- DELAHAY, R. J., DE LEEUW, A. N., BARLOW, A. M., CLIFTON-HADLEY, R. S. & CHEESEMAN,
 C. L. 2002. The status of Mycobacterium bovis infection in UK wild mammals: a review. *Vet J*, 164, 90-105.
- DELAHAY, R. J., SMITH, G. C., WARD, A. I. & CHEESEMAN, C. L. 2005. Options for the management of bovine tuberculosis transmission from badgers (Meles meles) to cattle: evidence from a long-term study. *Mammal Study*, 30, S73-S81.
- DENG, T., PANG, C., LU, X., ZHU, P., DUAN, A., TAN, Z., HUANG, J., LI, H., CHEN, M. & LIANG, X. 2016. De Novo Transcriptome Assembly of the Chinese Swamp Buffalo by RNA Sequencing and SSR Marker Discovery. *PLOS ONE*, **11**, e0147132.
- DESALERMOS, A., FUCHS, B. B. & MYLONAKIS, E. 2012. Selecting an Invertebrate Model Host for the Study of Fungal Pathogenesis. *PLoS Pathog*, 8, e1002451.
- DÉSERT, C., MERLOT, E., ZERJAL, T., BED'HOM, B., HÄRTLE, S., LE CAM, A., ROUX, P.-F., BAEZA, E., GONDRET, F., DUCLOS, M. J. & LAGARRIGUE, S. 2016. Transcriptomes of whole blood and PBMC in chickens. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics*, 20, 1-9.
- DIAZ-SANCHEZ, S., HANNING, I., PENDLETON, S. & D'SOUZA, D. 2013. Next-generation sequencing: The future of molecular genetics in poultry production and food safety1. *Poultry Science*, 92, 562-572.

- DOBSON, A. J., PURVES, J. & ROLFF, J. 2014. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host. *Evolutionary Applications*, 7, 905-912.
- DONG, Z. & CHEN, Y. 2013. Transcriptomics: Advances and approaches. *Science China Life Sciences*, 56, 960-967.
- DU, L. M., LI, W. J., FAN, Z. X., SHEN, F. J., YANG, M. Y., WANG, Z. L., JIAN, Z. Y., HOU, R., YUE, B. S. & ZHANG, X. Y. 2015. First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome: a resource for novel gene loci and immunogenetics. *Molecular Ecology Resources*, 15, 1001-1013.
- ECKALBAR, W. L., HUTCHINS, E. D., MARKOV, G. J., ALLEN, A. N., CORNEVEAUX, J. J.,
 LINDBLAD-TOH, K., DI PALMA, F., ALFOLDI, J., HUENTELMAN, M. J. & KUSUMI, K.
 2013. Genome reannotation of the lizard Anolis carolinensis based on 14 adult
 and embryonic deep transcriptomes. *Bmc Genomics*, 14.
- FANG, Y., MEI, H., ZHOU, B., XIAO, X., YANG, M., HUANG, Y., LONG, X., HU, S. & TANG, C.
 2016. De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by
 Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree). Scientific
 Reports, 6, 33151.
- FIELD, L. A., JORDAN, R. M., HADIX, J. A., DUNN, M. A., SHRIVER, C. D., ELLSWORTH, R. E.
 & ELLSWORTH, D. L. 2007. Functional identity of genes detectable in expression profiling assays following globin mRNA reduction of peripheral blood samples. *Clinical Biochemistry*, 40, 499-502.
- FISH, E. N. 2008. The X-files in immunity: sex-based differences predispose immune responses. *Nat Rev Immunol*, 8, 737-744.
- FLYNN, J. J., FINARELLI, J. A., ZEHR, S., HSU, J. & NEDBAL, M. A. 2005. Molecular
 Phylogeny of the Carnivora (Mammalia): Assessing the Impact of Increased
 Sampling on Resolving Enigmatic Relationships. Systematic Biology, 54, 317-337.
- FOX, S., FILICHKIN, S. & MOCKLER, T. C. 2009. Applications of Ultra-high-Throughput Sequencing. In: BELOSTOTSKY, D. A. (ed.) Plant Systems Biology. Totowa, NJ: Humana Press.
- FRANCHI, L., WARNER, N., VIANI, K. & NUÑEZ, G. 2009. Function of Nod-like Receptors in Microbial Recognition and Host Defense. *Immunological reviews*, 227, 106-128.
- FULTON, T. L. & STROBECK, C. 2006. Molecular phylogeny of the Arctoidea (Carnivora): Effect of missing data on supertree and supermatrix analyses of multiple gene data sets. *Molecular Phylogenetics and Evolution*, 41, 165-181.
- GALLUCCI, S., LOLKEMA, M. & MATZINGER, P. 1999. Natural adjuvants: endogenous activators of dendritic cells. *Nat Med*, 5, 1249-55.
- GONGORA-CASTILLO, E. & BUELL, C. R. 2013. Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence. *Natural Product Reports*, 30, 490-500.
- GORMLEY, E. & COLLINS, J. D. 2000. The development of wildlife control strategies for eradication of tuberculosis in cattle in Ireland. *Tuber Lung Dis*, 80, 229-36.
- GORMLEY, E. & CORNER, L. A. L. 2013. Control Strategies for Wildlife Tuberculosis in Ireland. *Transboundary and Emerging Diseases*, 60, 128-135.

- GREEN, E. D. & CHAKRAVARTI, A. 2001. The human genome sequence expedition: views from the "base camp". *Genome Res,* 11, 645-51.
- GRIESBECK, M., ZIEGLER, S., LAFFONT, S., SMITH, N., CHAUVEAU, L., TOMEZSKO, P.,
 SHAREI, A., KOURJIAN, G., PORICHIS, F., HART, M., PALMER, C. D., SIRIGNANO,
 M., BEISEL, C., HILDEBRANDT, H., CÉNAC, C., VILLANI, A.-C., DIEFENBACH, T. J., LE
 GALL, S., SCHWARTZ, O., HERBEUVAL, J.-P., AUTRAN, B., GUÉRY, J.-C., CHANG, J.
 J. & ALTFELD, M. 2015. Sex Differences in Plasmacytoid Dendritic Cell Levels of
 IRF5 Drive Higher IFN-α Production in Women. *The Journal of Immunology*, 195, 5327-5336.
- GRIFFIN, J. M., WILLIAMS, D. H., KELLY, G. E., CLEGG, T. A., O'BOYLE, I., COLLINS, J. D. & MORE, S. J. 2005. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. *Prev Vet Med*, 67, 237-66.
- GRIMALDI, D. A. & ENGEL, M. S. 2005. *Evolution of the insects,* Cambridge U.K. ; New York, Cambridge University Press.
- HANRAHAN, S. J. & JOHNSTON, J. S. 2011. New genome size estimates of 134 species of arthropods. *Chromosome Res*, 19, 809-23.
- HAUSEN, J., OTTE, J. C., STRÄHLE, U., HAMMERS-WIRTZ, M., HOLLERT, H., KEITER, S. H. & OTTERMANNS, R. 2015. Fold-change threshold screening: a robust algorithm to unmask hidden gene expression patterns in noisy aggregated transcriptome data. *Environmental Science and Pollution Research*, 22, 16384-16392.
- HEBERT, P. D. N., RATNASINGHAM, S. & DEWAARD, J. R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society B: Biological Sciences*, 270, S96-S99.
- HEDGES, S. B. 2002. The origin and evolution of model organisms. *Nat Rev Genet,* 3, 838-849.
- HENIKOFF, S. & HENIKOFF, J. G. 1992. Amino acid substitution matrices from protein blocks. *Proceedings of the National Academy of Sciences of the United States of America*, 89, 10915-10919.
- HUANG, Y., ZHU, X., WANG, L., LIU, X., LU, L., GU, W. & JIAO, Y. 2014. Genome Wide Analysis of Sex Difference in Gene Expression Profiles of Bone Formations Using sfx Mice and BXD RI Strains. *The Scientific World Journal*, 2014, 11.
- HUPFER, T., SCHICK, J., JOZEFOWSKI, K., VOEHRINGER, D., OSTROP, J. & LANG, R. 2016.
 Stat6-Dependent Inhibition of Mincle Expression in Mouse and Human Antigen-Presenting Cells by the Th2 Cytokine IL-4. *Frontiers in Immunology*, 7, 423.
- HUSEMANN, P. & STOYE, J. 2010. r2cat: synteny plots and comparative assembly. *Bioinformatics*, 26, 570-571.
- ISG 2007. The scientific evidence. Independent Scientific Group on Cattle TB. London: DEFRA.
- JACQUIER, A. 2009. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. *Nat Rev Genet*, 10, 833-844.
- JANEWAY, C. 2001. *Immunobiology : the immune system in health and disease,* London ; New York, NY, US, Garland Pub.
- JANEWAY, C. 2005. *Immunobiology : the immune system in health and disease,* New York, Garland Science.

- JANSEN, R., BATISTA, S., BROOKS, A. I., TISCHFIELD, J. A., WILLEMSEN, G., VAN
 GROOTHEEST, G., HOTTENGA, J.-J., MILANESCHI, Y., MBAREK, H., MADAR, V.,
 PEYROT, W., VINK, J. M., VERWEIJ, C. L., DE GEUS, E. J., SMIT, J. H., WRIGHT, F. A.,
 SULLIVAN, P. F., BOOMSMA, D. I. & PENNINX, B. W. 2014. Sex differences in the
 human peripheral blood transcriptome. *BMC Genomics*, 15, 33.
- JENKINS, H. E., WOODROFFE, R. & DONNELLY, C. A. 2010. The Duration of the Effects of Repeated Widespread Badger Culling on Cattle Tuberculosis Following the Cessation of Culling. *PLoS ONE*, **5**, e9090.
- JENNER, R. A. & WILLS, M. A. 2007. The choice of model organisms in evo-devo. *Nat Rev Genet*, 8, 311-9.
- KANEHISA, M., ARAKI, M., GOTO, S., HATTORI, M., HIRAKAWA, M., ITOH, M.,
 KATAYAMA, T., KAWASHIMA, S., OKUDA, S., TOKIMATSU, T. & YAMANISHI, Y.
 2008. KEGG for linking genomes to life and the environment. *Nucleic Acids Research*, 36, D480-D484.
- KANEHISA, M. & GOTO, S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Research*, 28, 27-30.
- KANEHISA, M., SATO, Y., KAWASHIMA, M., FURUMICHI, M. & TANABE, M. 2016. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Research*, 44, D457-D462.
- KENNEDY, A. D. & DELEO, F. R. 2009. Neutrophil apoptosis and the resolution of infection. *Immunologic Research*, 43, 25-61.
- KLEIN, S. L. & FLANAGAN, K. L. 2016. Sex differences in immune responses. *Nat Rev Immunol*, 16, 626-638.
- KOEPFLI, K.-P., DEERE, K. A., SLATER, G. J., BEGG, C., BEGG, K., GRASSMAN, L., LUCHERINI, M., VERON, G. & WAYNE, R. K. 2008a. Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. *BMC Biology*, 6, 10-10.
- KOEPFLI, K.-P., DEERE, K. A., SLATER, G. J., BEGG, C., BEGG, K., GRASSMAN, L.,
 LUCHERINI, M., VERON, G. & WAYNE, R. K. 2008b. Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. *BMC Biology*, 6, 10.
- KOONIN, E. V. & GALPERIN, M. Y. 2003. Sequence evolution function : computational approaches in comparative genomics, Boston, Kluwer Academic.
- KREBS, J. R., INDEPENDENT SCIENTIFIC REVIEW, G., GREAT BRITAIN. MINISTRY OF AGRICULTURE, F. & FOOD 1997. Bovine tuberculosis in cattle and badgers : report to the Rt. Hon. Dr. Jack Cummingham, MP, London, Ministry of Agriculture, Fisheries and Food.
- KRUUK, H., PARISH, T., BROWN, C. A. J. & CARRERA, J. 1979. The Use of Pasture by the European Badger (Meles meles). *Journal of Applied Ecology*, 16, 453-459.
 KUPFERSCHMIDT, K. 2015. Buzz food. *Science*, 350, 267-269.
- LAI, Y.-F., LIN, T.-M., WANG, C.-H., SU, P.-Y., WU, J.-T., LIN, M.-C. & ENG, H.-L. 2016. Functional polymorphisms of the TLR7 and TLR8 genes contribute to Mycobacterium tuberculosis infection. *Tuberculosis*, 98, 125-131.

- LAMB, M. J. & SMITH, J. M. 1969. Radiation-Induced Life-Shortening in Drosophila. *Radiation Research*, 40, 450-464.
- LAMBRECHT, B. N. & HAMMAD, H. 2009. Biology of Lung Dendritic Cells at the Origin of Asthma. *Immunity*, 31, 412-424.
- LARKIN, M. A., BLACKSHIELDS, G., BROWN, N. P., CHENNA, R., MCGETTIGAN, P. A., MCWILLIAM, H., VALENTIN, F., WALLACE, I. M., WILM, A., LOPEZ, R., THOMPSON, J. D., GIBSON, T. J. & HIGGINS, D. G. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics*, 23, 2947-2948.
- LATCHMAN, D. S. 2005. *Gene regulation : a eukaryotic perspective,* New York, Taylor & Francis.
- LEE, J. H., JO, Y. H., PATNAIK, B. B., PARK, K. B., TINDWA, H., SEO, G. W., CHANDRASEKAR, R., LEE, Y. S. & HAN, Y. S. 2015. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor. *Frontiers in Physiology*, 6, 180.
- LEE, S.-W., CHUANG, T.-Y., HUANG, H.-H., LIU, C.-W., KAO, Y.-H. & WU, L. S.-H. 2016. VDR and VDBP genes polymorphisms associated with susceptibility to tuberculosis in a Han Taiwanese population. *Journal of Microbiology, Immunology and Infection*, 49, 783-787.
- LEE, Y. & RIO, D. C. 2015. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annual Review of Biochemistry, 84, 291-323.
- LEONELLI, S. & ANKENY, R. A. 2013. What makes a model organism? *Endeavour*, 37, 209-212.
- LESELLIER, S., CORNER, L., COSTELLO, E., SLEEMAN, P., LYASHCHENKO, K., GREENWALD, R., ESFANDIARI, J., SINGH, M., HEWINSON, R. G., CHAMBERS, M. & GORMLEY, E. 2008. Antigen specific immunological responses of badgers (Meles meles) experimentally infected with Mycobacterium bovis. *Veterinary Immunology and Immunopathology*, 122, 35-45.
- LI, X. C. & JEVNIKAR, A. M. 2015. *Transplant immunology*.
- LINDBLAD-TOH, K. 2004. Genome sequencing: Three's company. Nature, 428, 475-476.
- LIU, K., ZHANG, B., TENG, Z., WANG, Y., DONG, G., XU, C., QIN, B., SONG, C., CHAI, J., LI, Y., SHI, X., SHU, X. & ZHANG, Y. 2017. Association between SLC11A1 (NRAMP1) polymorphisms and susceptibility to tuberculosis in Chinese Holstein cattle. *Tuberculosis*, 103, 10-15.
- LIU, L.-N. & WANG, C.-Y. 2014a. Complete mitochondrial genome of yellow meal worm(Tenebrio molitor). *Zoological Research*, 35, 537-545.
- LIU, L. N. & WANG, C. Y. 2014b. Complete mitochondrial genome of yellow meal worm (Tenebrio molitor). *Dongwuxue Yanjiu*, 35, 537-45.
- LIU, S. & TRAPNELL, C. 2016. Single-cell transcriptome sequencing: recent advances and remaining challenges. *F1000Research*, *5*, F1000 Faculty Rev-182.
- MAHMOOD, K. H., ROOK, G. A. W., STANFORD, J. L., STUART, F. A. & PRITCHARD, D. G. 1987. The immunological consequences of challenge with bovine tubercle bacilli in badgers (Meles meles). *Epidemiology & Infection*, 98, 155-163.

- MARDIS, E. & MCCOMBIE, W. R. 2017. Whole-Genome Sequencing: Manual Library Preparation. *Cold Spring Harbor Protocols*, 2017, pdb.prot094615.
- MARMI, J., LÓPEZ-GIRÁLDEZ, F., MACDONALD, D., CALAFELL, F., ZHOLNEROVSKAYA, E. & DOMINGO-ROURA, X. 2006. Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia. *Molecular Ecology*, 15, 1007-1020.
- MARTIN, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011, 17.
- MATTICK, J. S. 2005. The functional genomics of noncoding RNA. Science, 309, 1527-8.
- MCGETTIGAN, P. A. 2013. Transcriptomics in the RNA-seq era. *Current Opinion in Chemical Biology*, 17, 4-11.
- MCKENNA, D. D., SCULLY, E. D., PAUCHET, Y., HOOVER, K., KIRSCH, R., GEIB, S. M., MITCHELL, R. F., WATERHOUSE, R. M., AHN, S.-J., ARSALA, D., BENOIT, J. B., BLACKMON, H., BLEDSOE, T., BOWSHER, J. H., BUSCH, A., CALLA, B., CHAO, H., CHILDERS, A. K., CHILDERS, C., CLARKE, D. J., COHEN, L., DEMUTH, J. P., DINH, H., DODDAPANENI, H., DOLAN, A., DUAN, J. J., DUGAN, S., FRIEDRICH, M., GLASTAD, K. M., GOODISMAN, M. A. D., HADDAD, S., HAN, Y., HUGHES, D. S. T., IOANNIDIS, P., JOHNSTON, J. S., JONES, J. W., KUHN, L. A., LANCE, D. R., LEE, C.-Y., LEE, S. L., LIN, H., LYNCH, J. A., MOCZEK, A. P., MURALI, S. C., MUZNY, D. M., NELSON, D. R., PALLI, S. R., PANFILIO, K. A., PERS, D., POELCHAU, M. F., QUAN, H., QU, J., RAY, A. M., RINEHART, J. P., ROBERTSON, H. M., ROEHRDANZ, R., ROSENDALE, A. J., SHIN, S., SILVA, C., TORSON, A. S., JENTZSCH, I. M. V., WERREN, J. H., WORLEY, K. C., YOCUM, G., ZDOBNOV, E. M., GIBBS, R. A. & RICHARDS, S. 2016. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. *Genome Biology*, 17, 227.
- MCWILLIAM, H., LI, W., ULUDAG, M., SQUIZZATO, S., PARK, Y. M., BUSO, N., COWLEY, A. P. & LOPEZ, R. 2013. Analysis Tool Web Services from the EMBL-EBI. *Nucleic Acids Research*, 41, W597-W600.
- MERKX-JACQUES, A., COORS, A., BROUSSEAU, R., MASSON, L., MAZZA, A., TIEN, Y. C. & TOPP, E. 2013. Evaluating the pathogenic potential of environmental Escherichia coli by using the caenorhabditis elegans infection model. *Applied and Environmental Microbiology*, 79, 2435-2445.
- METZKER, M. L. 2010. Sequencing technologies [mdash] the next generation. *Nat Rev Genet*, 11, 31-46.
- MICHEL, A. L., MULLER, B. & VAN HELDEN, P. D. 2010. Mycobacterium bovis at the animal-human interface: a problem, or not? *Vet Microbiol*, 140, 371-81.
- MOIANE, I., MACHADO, A., SANTOS, N., NHAMBIR, A., INLAMEA, O., HATTENDORF, J., KÄLLENIUS, G., ZINSSTAG, J. & CORREIA-NEVES, M. 2014. Prevalence of Bovine Tuberculosis and Risk Factor Assessment in Cattle in Rural Livestock Areas of Govuro District in the Southeast of Mozambique. *PLOS ONE*, 9, e91527.
- MORET, Y. & SIVA-JOTHY, M. T. 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. *Proceedings of the Royal Society B: Biological Sciences*, 270, 2475-2480.

- MORIN, R. D., BAINBRIDGE, M., FEJES, A., HIRST, M., KRZYWINSKI, M., PUGH, T. J.,
 MCDONALD, H., VARHOL, R., JONES, S. J. M. & MARRA, M. A. 2008. Profiling the
 HeLa S3 transcriptome using randomly primed cDNA and massively parallel
 short-read sequencing. *Biotechniques*, 45, 81-+.
- MOROZOVA, O. & MARRA, M. A. 2008. Applications of next-generation sequencing technologies in functional genomics. *Genomics*, 92, 255-264.
- MORTAZAVI, A., WILLIAMS, B. A., MCCUE, K., SCHAEFFER, L. & WOLD, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Meth*, **5**, 621-628.
- MURHEAD, R. & BURNS, K. 1974. Tuberculosis in wild badgers in Gloucestershire: epidemiology. *Veterinary Record*, 95, 552-555.
- NAGALAKSHMI, U., WANG, Z., WAERN, K., SHOU, C., RAHA, D., GERSTEIN, M. & SNYDER, M. 2008. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. *Science*, 320, 1344-1349.
- NATER, A., BURRI, R., KAWAKAMI, T., SMEDS, L. & ELLEGREN, H. 2015. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data. *Systematic Biology*, 64, 1000-1017.
- NEAL, E. G. & CHEESEMAN, C. 1996. *Badgers,* London, Poyser.
- NEYROLLES, O. & QUINTANA-MURCI, L. 2009. Sexual Inequality in Tuberculosis. *PLOS Medicine*, 6, e1000199.
- NHAMOYEBONDE, S. & LESLIE, A. 2014. Biological Differences Between the Sexes and Susceptibility to Tuberculosis. *The Journal of Infectious Diseases*, 209, S100-S106.
- NUGENT, G., BUDDLE, B. M. & KNOWLES, G. 2015. Epidemiology and control of Mycobacterium bovis infection in brushtail possums (Trichosurus vulpecula), the primary wildlife host of bovine tuberculosis in New Zealand. *New Zealand Veterinary Journal*, 63, 28-41.
- OKONIEWSKI, M. & MILLER, C. 2006. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. *BMC Bioinformatics*, **7**, 276.
- OLEA-POPELKA, F. J., FITZGERALD, P., WHITE, P., MCGRATH, G., COLLINS, J. D., O'KEEFFE, J., KELTON, D. F., BERKE, O., MORE, S. & MARTIN, S. W. 2009. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. *Preventive Veterinary Medicine*, 88, 178-184.
- OLIVEIRA-CORTEZ, A., MELO, A. C., CHAVES, V. E., CONDINO-NETO, A. & CAMARGOS, P. 2016. Do HLA class II genes protect against pulmonary tuberculosis? A systematic review and meta-analysis. *European Journal of Clinical Microbiology & Infectious Diseases*, 35, 1567-1580.
- OPPERT, B., DOWD, S. E., BOUFFARD, P., LI, L., CONESA, A., LORENZEN, M. D., TOUTGES, M., MARSHALL, J., HUESTIS, D. L., FABRICK, J., OPPERT, C. & JURAT-FUENTES, J. L. 2012a. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin. *PloS one*, 7.
- OPPERT, B., DOWD, S. E., BOUFFARD, P., LI, L., CONESA, A., LORENZEN, M. D., TOUTGES, M., MARSHALL, J., HUESTIS, D. L., FABRICK, J., OPPERT, C. & JURAT-FUENTES, J. L. 2012b. Transcriptome Profiling of the Intoxication Response of Tenebrio molitor Larvae to Bacillus thuringiensis Cry3Aa Protoxin. *PLoS ONE*, 7, e34624.

- ORTUTAY, C., SIERMALA, M. & VIHINEN, M. 2007. Molecular characterization of the immune system: emergence of proteins, processes, and domains. *Immunogenetics*, 59, 333-348.
- ORTUTAY, C. & VIHINEN, M. 2009. Immunome Knowledge Base (IKB): An integrated service for immunome research. *BMC Immunology*, 10, 3-3.
- PAMILO, P. & NEI, M. 1988. Relationships between gene trees and species trees. *Molecular Biology and Evolution*, 5, 568-583.
- PARK, J.-W., KIM, C.-H., RUI, J., KEUN, H., RYU, K.-H., CHAI, J.-H., HWANG, H.-O., KUROKAWA, K., HA, N.-C., SÖDERHÄLL, I., SÖDERHÄLL, K. & LEE, B. 2010. Beetle Immunity. In: SÖDERHÄLL, K. (ed.) Invertebrate Immunity. Springer US.
- PARK, S. H., JIANG, R., PIAO, S., ZHANG, B., KIM, E.-H., KWON, H.-M., JIN, X. L., LEE, B. L. & HA, N.-C. 2011. Structural and Functional Characterization of a Highly Specific Serpin in the Insect Innate Immunity. *The Journal of Biological Chemistry*, 286, 1567-1575.
- PENG, R., ZENG, B., MENG, X., YUE, B., ZHANG, Z. & ZOU, F. 2007. The complete mitochondrial genome and phylogenetic analysis of the giant panda (Ailuropoda melanoleuca). *Gene*, 397, 76-83.
- PERSSON, P. B. & MUELLER, M. 2015. Transcription. Acta Physiologica, 215, 159-160.
- QUAIL, M. A., SMITH, M., COUPLAND, P., OTTO, T. D., HARRIS, S. R., CONNOR, T. R., BERTONI, A., SWERDLOW, H. P. & GU, Y. 2012. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. *BMC Genomics*, 13, 341-341.
- ROBINSON, P. A., CORNER, L. A. L., COURCIER, E. A., MCNAIR, J., ARTOIS, M., MENZIES, F. D. & ABERNETHY, D. A. 2012. BCG vaccination against tuberculosis in European badgers (Meles meles): A review. *Comparative Immunology, Microbiology and Infectious Diseases*, 35, 277-287.
- ROGERS, L. M., FORRESTER, G. J., WILSON, G. J., YARNELL, R. W. & CHEESEMAN, C. L.
 2003. The role of setts in badger (Meles meles) group size, breeding success and status of TB (Mycobacterium bovis). *Journal of Zoology*, 260, 209-215.
- ROSENBLUETH, A. & WIENER, N. 1945. The Role of Models in Science. *Philosophy of Science*, 12, 316-321.
- ROSENSTEIN, J. 2014. The Promise of Nanopore Technology: Nanopore DNA sequencing represents a fundamental change in the way that genomic information is read, with potentially big savings. *Pulse, IEEE*, **5**, **5**2-54.
- SCHURCH, N. J., SCHOFIELD, P., GIERLIŃSKI, M., COLE, C., SHERSTNEV, A., SINGH, V.,
 WROBEL, N., GHARBI, K., SIMPSON, G. G., OWEN-HUGHES, T., BLAXTER, M. &
 BARTON, G. J. 2016. How many biological replicates are needed in an RNA-seq
 experiment and which differential expression tool should you use? *RNA*, 22, 839-851.
- SCHWOCHOW, D., SERIEYS, L. E. K., WAYNE, R. K. & THALMANN, O. 2012. Efficient recovery of whole blood RNA - a comparison of commercial RNA extraction protocols for high-throughput applications in wildlife species. *BMC Biotechnology*, 12, 33-33.

SEVERI, F. & CONTICELLO, S. G. 2015. Flow-cytometric visualization of C>U mRNA editing reveals the dynamics of the process in live cells. *RNA Biology*, **12**, 389-397.

- SIEMIANOWSKA, E., KOSEWSKA, A., ALJEWICZ, M., SKIBNIEWSKA, K. A., POLAK-JUSZCZAK, L., JAROCKI, A. & J?DRAS, M. 2013. Larvae of mealworm (<i>Tenebrio molitor</i> L.) as European novel food. Agricultural Sciences, Vol.04No.06, 5.
- SIEVERS, F., WILM, A., DINEEN, D., GIBSON, T. J., KARPLUS, K., LI, W., LOPEZ, R.,
 MCWILLIAM, H., REMMERT, M., SÖDING, J., THOMPSON, J. D. & HIGGINS, D. G.
 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology*, 7.
- SIN, Y. W., DUGDALE, H. L., NEWMAN, C., MACDONALD, D. W. & BURKE, T. 2011. MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis. *Immunogenetics*, 64, 313-327.
- SIN, Y. W., DUGDALE, H. L., NEWMAN, C., MACDONALD, D. W. & BURKE, T. 2012. Evolution of MHC class I genes in the European badger (Meles meles). *Ecology* and Evolution, 2, 1644-1662.
- SKINNER, M. A., WEDLOCK, D. N. & BUDDLE, B. M. 2001. Vaccination of animals against Mycobacterium bovis. *Rev Sci Tech*, 20, 112-32.
- SMITH, G. C., MCDONALD, R. A. & WILKINSON, D. 2012. Comparing Badger (<italic>Meles meles</italic>) Management Strategies for Reducing Tuberculosis Incidence in Cattle. *PLoS ONE*, 7, e39250.
- SMÝKAL, P., K. VARSHNEY, R., K. SINGH, V., COYNE, C. J., DOMONEY, C., KEJNOVSKÝ, E. & WARKENTIN, T. 2016. From Mendel's discovery on pea to today's plant genetics and breeding. *Theoretical and Applied Genetics*, 129, 2267-2280.
- SOMPAYRAC, L. 2012. *How the immune system works,* Chichester, West Sussex ; Hoboken, NJ, Wiley-Blackwell.
- TANNE, A. & NEYROLLES, O. 2010. C-type lectins in immune defense against pathogens: the murine DC-SIGN homologue SIGNR3 confers early protection against Mycobacterium tuberculosis infection. *Virulence*, 1, 285-290.
- TATUSOV, R. L., GALPERIN, M. Y., NATALE, D. A. & KOONIN, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Research*, 28, 33-36.
- TOH, H., SHIRANE, K., MIURA, F., KUBO, N., ICHIYANAGI, K., HAYASHI, K., SAITOU, M., SUYAMA, M., ITO, T. & SASAKI, H. 2017. Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. *BMC Genomics*, 18, 31.
- TOMLINSON, A. J., CHAMBERS, M. A., WILSON, G. J., MCDONALD, R. A. & DELAHAY, R. J. 2013. Sex-related heterogeneity in the life-history correlates of Mycobacterium bovis infection in European badgers (Meles meles). *Transbound Emerg Dis,* 60 Suppl 1, 37-45.
- TRABZUNI, D., RAMASAMY, A., IMRAN, S., WALKER, R., SMITH, C., WEALE, M. E., HARDY, J., RYTEN, M. & NORTH AMERICAN BRAIN EXPRESSION, C. 2013. Widespread sex differences in gene expression and splicing in the adult human brain. *Nat Commun*, 4, 2771.

- TROWSDALE, J. & KNIGHT, J. C. 2013. Major Histocompatibility Complex Genomics and Human Disease. *Annual review of genomics and human genetics*, 14, 301-323.
- TURVEY, S. E. & BROIDE, D. H. 2010a. Chapter 2: Innate Immunity. *The Journal of allergy and clinical immunology*, 125, S24-S32.
- TURVEY, S. E. & BROIDE, D. H. 2010b. Innate immunity. *Journal of Allergy and Clinical Immunology*, 125, S24-S32.
- VERA, J. C., WHEAT, C. W., FESCEMYER, H. W., FRILANDER, M. J., CRAWFORD, D. L., HANSKI, I. & MARDEN, J. H. 2008. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. *Molecular Ecology*, 17, 1636-1647.
- VIGNERON, N., STROOBANT, V., CHAPIRO, J., OOMS, A., DEGIOVANNI, G., MOREL, S., VAN DER BRUGGEN, P., BOON, T. & VAN DEN EYNDE, B. J. 2004. An Antigenic Peptide Produced by Peptide Splicing in the Proteasome. *Science*, 304, 587.
- WANG, Z., GERSTEIN, M. & SNYDER, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. *Nat Rev Genet*, 10, 57-63.
- WHEELER, D. L., BARRETT, T., BENSON, D. A., BRYANT, S. H., CANESE, K., CHETVERNIN, V., CHURCH, D. M., DICUCCIO, M., EDGAR, R., FEDERHEN, S., FEOLO, M., GEER, L. Y., HELMBERG, W., KAPUSTIN, Y., KHOVAYKO, O., LANDSMAN, D., LIPMAN, D. J., MADDEN, T. L., MAGLOTT, D. R., MILLER, V., OSTELL, J., PRUITT, K. D., SCHULER, G. D., SHUMWAY, M., SEQUEIRA, E., SHERRY, S. T., SIROTKIN, K., SOUVOROV, A., STARCHENKO, G., TATUSOV, R. L., TATUSOVA, T. A., WAGNER, L. & YASCHENKO, E. 2008. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Research*, 36, D13-D21.
- WHEELER, G. N. & BRANDLI, A. W. 2009. Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. *Dev Dyn*, 238, 1287-308.
- WILL, C. L. & LUHRMANN, R. 2011. Spliceosome Structure and Function. *Cold Spring Harbor Perspectives in Biology*, 3.
- WOODROFFE, R., DONNELLY, C. A., JOHNSTON, W. T., BOURNE, F. J., CHEESEMAN, C. L., CLIFTON-HADLEY, R. S., COX, D. R., GETTINBY, G., HEWINSON, R. G., LE FEVRE, A. M., MCINERNEY, J. P. & MORRISON, W. I. 2005. Spatial association of Mycobacterium bovis infection in cattle and badgers Meles meles. *Journal of Applied Ecology*, 42, 852-862.
- YANDELL, M. & ENCE, D. 2012. A beginner's guide to eukaryotic genome annotation. *Nature Reviews Genetics*, 13, 329-342.
- YANG, X., SCHADT, E. E., WANG, S., WANG, H., ARNOLD, A. P., INGRAM-DRAKE, L., DRAKE, T. A. & LUSIS, A. J. 2006. Tissue-specific expression and regulation of sexually dimorphic genes in mice. *Genome Research*, 16, 995-1004.
- YE, L., HILLIER, L. W., MINX, P., THANE, N., LOCKE, D. P., MARTIN, J. C., CHEN, L., MITREVA, M., MILLER, J. R., HAUB, K. V., DOOLING, D. J., MARDIS, E. R., WILSON, R. K., WEINSTOCK, G. M. & WARREN, W. C. 2011. A vertebrate case study of the quality of assemblies derived from next-generation sequences. *Genome Biology*, 12.

- ZHANG, L., WU, Q., HU, Y., WU, H. & WEI, F. 2015. Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas. *Heredity*, 114, 85-93.
- ZHANG, W., BLEIBEL, W. K., ROE, C. A., COX, N. J. & DOLAN, M. E. 2007. Gender-specific differences in expression in human lymphoblastoid cell lines. *Pharmacogenetics and genomics*, **17**, 447-450.
- ZHANG, W., HUANG, R. S., DUAN, S. & DOLAN, M. E. 2009. Gene set enrichment analyses revealed differences in gene expression patterns between males and females. *In silico biology*, 9, 55-63.
- ZHOU, H., CHEN, S., WANG, M. & CHENG, A. 2014. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. *International Journal of Molecular Sciences*, 15, 21045-21068.
- ZHU, L., RUAN, X.-D., GE, Y.-F., WAN, Q.-H. & FANG, S.-G. 2007. Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca). *BMC Genetics*, 8, 29-29.

Appendix

8.1 KEGG Pathways

KEGG pathway 4			
Galactose metabolism		304	
Hedgehog signaling pathway		308	
African trypanosomiasis		313	
Base excision repair		323	
Mineral absorption		323	
Graft-versus-host disease		325	
Malaria		327	
Cysteine and methionine metabolism		329	
Cocaine addiction		332	
Pyruvate metabolism		334	
Propanoate metabolism		336	
Phototransduction - fly		336	
Ether lipid metabolism		342	
Intestinal immune network for IgA production		344	
Type I diabetes mellitus		344	
Bile secretion		354	
Autoimmune thyroid disease		364	
Citrate cycle (TCA cycle)		368	
Bladder cancer		370	
Thyroid cancer		373	
Allograft rejection		373	
DNA replication		374	
Endocrine and other factor-regulated calcium.		384	
Olfactory transduction		390	
Arginine and proline metabolism		391	
Vasopressin-regulated water reabsorption		394	
RNA polymerase		395	
Proteasome		396	
Complement and coagulation cascades		399	
Ribosome		405	
Prion diseases		416	
PPAR signaling pathway		429	
Aldosterone-regulated sodium reabsorption		430	
Basal cell carcinoma		436	
N-Glycan biosynthesis		455	
Glycolysis / Gluconeogenesis		456	
Staphylococcus aureus infection		460	
Fatty acid metabolism		461	
Fructose and mannose metabolism		479	
Oxidative phosphorylation		488	
Carbohydrate digestion and absorption		497	
	0	500	1000

KEGG pathway 5

8.2 BLASTN output (tabular)

Query Seq-id	Subject seq-id	Identity %	Alignme nt length	E-vlue	Query seq. length	Subject seq. length	Sequence classificatio n
JQ425440.1	CL1150.Contig16 All	90.12	506	0	848	972	MHCI
JQ425440.1	CL1150.Contig16_All	87.46	295	2.00E-92	848	972	MHCI
JQ425440.1	CL1150.Contig4_All	89.33	506	2.00E-180	848	702	MHCI
JQ425440.1	CL1150.Contig15_All	92.87	421	4.00E-173	848	450	MHCI
JQ425440.1	CL1150.Contig14_All	95.42	306	5.00E-137	848	540	MHCI
JQ425440.1	CL1150.Contig14_All	96.19	105	6.00E-42	848	540	MHCI
JQ425440.1	CL1150.Contig7_All	89.56	297	1.00E-103	848	399	MHCI
JQ425440.1	CL1150.Contig18_All	88.47	295	2.00E-97	848	417	MHCI
JQ425440.1	CL1150.Contig17_All	87.46	295	2.00E-92	848	420	MHCI
JQ425440.1	CL1150.Contig13_All	85.14	296	8.00E-81	848	426	MHCI
JQ425440.1	CL1150.Contig8_All	94.51	182	1.00E-74	848	507	MHCI
JQ425440.1	CL1150.Contig8_All	96.19	105	6.00E-42	848	507	MHCI
JQ425440.1	CL1150.Contig5_All	85.8	162	6.00E-42	848	198	MHCI
JQ425440.1	Unigene117550_All	100	83	2.00E-36	848	171	MHCI
JQ425440.1	Unigene12618_All	100	83	2.00E-36	848	171	MHCI
JQ425440.1	Unigene26995_All	100	73	8.00E-31	848	126	MHCI
JQ425440.1	CL1793.Contig7_All	85.53	76	4.00E-14	848	297	MHCI
JQ425440.1	CL1793.Contig5_All	85.53	76	4.00E-14	848	297	MHCI
JQ425440.1	CL1793.Contig3_All	85.53	76	4.00E-14	848	297	MHCI
JQ425440.1	CL1793.Contig2_All	85.53	76	4.00E-14	848	297	MHCI
JQ425439.1	CL1150.Contig16_All	90.04	562	0	932	972	MHCI
JQ425439.1	CL1150.Contig16_All	87.46	295	2.00E-92	932	972	MHCI
JQ425439.1	CL1150.Contig4_All	89.09	550	0	932	702	MHCI
JQ425439.1	CL1150.Contig15_All	91.25	297	8.00E-111	932	450	MHCI
JQ425439.1	CL1150.Contig15_All	96.85	127	4.00E-54	932	450	MHCI
JQ425439.1	CL1150.Contig7_All	89.6	298	4.00E-104	932	399	MHCI
JQ425439.1	CL1150.Contig18_All	88.47	295	2.00E-97	932	417	MHCI
JQ425439.1	CL1150.Contig17_All	87.46	295	2.00E-92	932	420	MHCI
JQ425439.1	CL1150.Contig13_All	85.14	296	8.00E-81	932	426	MHCI
JQ425439.1	CL1150.Contig8_All	94.54	183	3.00E-75	932	507	MHCI
JQ425439.1	CL1150.Contig8_All	96.19	105	7.00E-42	932	507	MHCI
JQ425439.1	CL1150.Contig14_All	94.51	182	1.00E-74	932	540	MHCI
JQ425439.1	CL1150.Contig14_All	96.85	127	4.00E-54	932	540	МНСТ
JQ425439.1	CL1150.Contig14_All	96.19	105	7.00E-42	932	540	МНСТ
JQ425439.1	CL1150.Contig5_All	85.8	162	7.00E-42	932	198	МНСТ
JQ425439.1	Unigene117550_All	100	84	7.00E-37	932	171	MHCI
JQ425439.1	Unigene12618_All	100	84	7.00E-37	932	171	MHCI

1							
JQ425439.1	Unigene26995_All	100	73	9.00E-31	932	126	MHCI
JQ425439.1	CL1793.Contig7_All	85.53	76	4.00E-14	932	297	MHCI
JQ425439.1	CL1793.Contig5_All	85.53	76	4.00E-14	932	297	MHCI
JQ425439.1	CL1793.Contig3_All	85.53	76	4.00E-14	932	297	MHCI
JQ425439.1	CL1793.Contig2_All	85.53	76	4.00E-14	932	297	MHCI
JQ425438.1	CL1150.Contig16_All	90.8	848	0	900	972	MHCI
JQ425438.1	CL1150.Contig4_All	91.31	587	0	900	702	MHCI
JQ425438.1	CL1150.Contig15_All	96.91	324	1.00E-153	900	450	MHCI
JQ425438.1	CL1150.Contig17_All	90.17	417	2.00E-152	900	420	MHCI
JQ425438.1	CL1150.Contig18_All	89.42	416	6.00E-147	900	417	MHCI
JQ425438.1	CL1150.Contig13_All	87.5	424	7.00E-136	900	426	MHCI
JQ425438.1	CL1150.Contig7_All	88.89	387	2.00E-132	900	399	MHCI
JQ425438.1	CL1150.Contig8_All	92.72	261	1.00E-103	900	507	MHCI
JQ425438.1	CL1150.Contig14_All	93.89	180	6.00E-72	900	540	MHCI
JQ425438.1	CL1150.Contig24_All	92.26	155	2.00E-56	900	156	MHCI
JQ425438.1	CL1150.Contig23_All	92.26	155	2.00E-56	900	156	MHCI
JQ425438.1	CL1150.Contig3_All	92.26	155	2.00E-56	900	156	MHCI
JQ425438.1	CL1150.Contig1_All	92.26	155	2.00E-56	900	156	MHCI
JQ425438.1	CL1150.Contig2_All	91.67	156	3.00E-55	900	159	MHCI
JQ425438.1	CL1150.Contig22_All	99.09	110	1.00E-49	900	360	MHCI
JQ425432.1	CL1150.Contig16_All	92.08	972	0	975	972	MHCI
JQ425432.1	CL1150.Contig4_All	93.28	699	0	975	702	MHCI
JQ425432.1	CL1150.Contig15_All	96.91	324	1.00E-153	975	450	MHCI
10425432 1							
30 123 132.1	CL1150.Contig17_All	89.69	417	4.00E-149	975	420	MHCI
JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All	89.69 89.42	417 416	4.00E-149 6.00E-147	975 975	420 417	мнс і мнс і
JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All	89.69 89.42 87.5	417 416 424	4.00E-149 6.00E-147 8.00E-136	975 975 975	420 417 426	MHCI MHCI MHCI
JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All	89.69 89.42 87.5 88.89	417 416 424 387	4.00E-149 6.00E-147 8.00E-136 2.00E-132	975 975 975 975 975	420 417 426 399	MHCI MHCI MHCI MHCI
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig8_All	89.69 89.42 87.5 88.89 93.1	417 416 424 387 261	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105	975 975 975 975 975	420 417 426 399 507	MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig8_All CL1150.Contig14_All	89.69 89.42 87.5 88.89 93.1 94.44	417 416 424 387 261 180	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73	975 975 975 975 975 975 975	420 417 426 399 507 540	MHC I MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig8_All CL1150.Contig14_All CL1150.Contig24_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9	417 416 424 387 261 180 155	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58	975 975 975 975 975 975 975 975	420 417 426 399 507 540 156	MHC I MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig8_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig24_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 92.9	417 416 424 387 261 180 155 155	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-132 1.00E-73 5.00E-58 5.00E-58	975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156	MHC I MHC I MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig8_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 92.9 92.9	417 416 424 387 261 180 155 155 155	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58	975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156	MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig8_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All CL1150.Contig1_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 92.9 92.9 92.9 92.9	417 416 424 387 261 180 155 155 155 155	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156	MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig7_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All CL1150.Contig1_All CL1150.Contig1_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9	417 416 424 387 261 180 155 155 155 155 155	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58 7.00E-57	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156 156 159	MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig7_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig2_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9	417 416 424 387 261 180 155 155 155 155 155 155 156 110	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58 7.00E-57 3.00E-51	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156 156 159 360	MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425433.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig7_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig1_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.44	417 416 424 387 261 180 155 155 155 155 155 156 110 972	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58 7.00E-57 3.00E-51 0	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156 156 159 360 972	MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425433.1 JQ425433.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig7_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All CL1150.Contig1_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig16_All CL1150.Contig16_All	89.69 89.42 87.5 88.89 93.1 94.44 92.91 92.92 92.91 93.11 100 94.44 98.71	417 416 424 387 261 180 155 155 155 155 155 155 156 110 972 699	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58 7.00E-57 3.00E-51 0 0	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156 156 159 360 972 702	MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425433.1 JQ425433.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig7_All CL1150.Contig8_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig2_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig1_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 93.11 100 98.71 98.15	417 416 424 387 261 180 155 155 155 155 155 156 110 972 699 324	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58 7.00E-57 3.00E-51 0 0 0 0 3.00E-160	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156 156 159 360 972 702 450	MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425433.1 JQ425433.1 JQ425433.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig7_All CL1150.Contig8_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig1_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig16_All CL1150.Contig16_All CL1150.Contig15_All CL1150.Contig15_All CL1150.Contig15_All	89.69 89.42 87.5 88.89 93.1 94.44 92.91 92.92 92.91 93.11 1000 98.71 98.15 89.45	417 416 424 387 261 180 155 155 155 155 155 155 156 110 972 699 324 417	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58 7.00E-57 3.00E-51 0 0 0 3.00E-160 2.00E-147	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156 156 159 360 972 702 450 420	MHC I MHC I
JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425432.1 JQ425433.1 JQ425433.1 JQ425433.1 JQ425433.1	CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig7_All CL1150.Contig14_All CL1150.Contig14_All CL1150.Contig23_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig1_All CL1150.Contig16_All CL1150.Contig15_All CL1150.Contig15_All CL1150.Contig15_All CL1150.Contig15_All CL1150.Contig15_All	89.69 89.42 87.5 88.89 93.1 94.44 92.9 93.11 100 98.71 98.15 89.18	417 416 424 387 261 180 155 155 155 155 155 156 110 972 699 324 417 416	4.00E-149 6.00E-147 8.00E-136 2.00E-132 3.00E-105 1.00E-73 5.00E-58 5.00E-58 5.00E-58 5.00E-58 7.00E-57 3.00E-51 0 0 0 3.00E-140 2.00E-147 3.00E-145	975 975 975 975 975 975 975 975 975 975	420 417 426 399 507 540 156 156 156 156 156 159 360 972 702 450 420 417	MHC I

JQ425433.1	CL1150.Contig7_All	88.37	387	4.00E-129	975	399	MHCI
JQ425433.1	CL1150.Contig8_All	91.95	261	3.00E-100	975	507	MHCI
JQ425433.1	CL1150.Contig14_All	92.78	180	1.00E-68	975	540	MHCI
JQ425433.1	CL1150.Contig2_All	94.23	156	7.00E-62	975	159	MHCI
JQ425433.1	CL1150.Contig24_All	93.55	155	1.00E-59	975	156	MHCI
JQ425433.1	CL1150.Contig23_All	93.55	155	1.00E-59	975	156	MHCI
JQ425433.1	CL1150.Contig3_All	93.55	155	1.00E-59	975	156	MHCI
JQ425433.1	CL1150.Contig1_All	93.55	155	1.00E-59	975	156	MHCI
JQ425431.1	CL1150.Contig16_All	91.98	972	0	975	972	MHCI
JQ425431.1	CL1150.Contig4_All	92.7	699	0	975	702	MHCI
JQ425431.1	CL1150.Contig15_All	96.91	324	1.00E-153	975	450	MHCI
JQ425431.1	CL1150.Contig17_All	90.17	417	2.00E-152	975	420	MHCI
JQ425431.1	CL1150.Contig18_All	89.42	416	6.00E-147	975	417	MHCI
JQ425431.1	CL1150.Contig13_All	87.5	424	8.00E-136	975	426	MHCI
JQ425431.1	CL1150.Contig7_All	88.89	387	2.00E-132	975	399	MHCI
JQ425431.1	CL1150.Contig8_All	92.72	261	1.00E-103	975	507	MHCI
JQ425431.1	CL1150.Contig14_All	93.89	180	7.00E-72	975	540	MHCI
JQ425431.1	CL1150.Contig24_All	92.26	155	3.00E-56	975	156	MHCI
JQ425431.1	CL1150.Contig23_All	92.26	155	3.00E-56	975	156	MHCI
JQ425431.1	CL1150.Contig3_All	92.26	155	3.00E-56	975	156	MHCI
JQ425431.1	CL1150.Contig1_All	92.26	155	3.00E-56	975	156	MHCI
JQ425431.1	CL1150.Contig2_All	91.67	156	3.00E-55	975	159	MHCI
JQ425431.1	CL1150.Contig22_All	99.09	110	1.00E-49	975	360	MHCI
JQ425430.1	CL1150.Contig16_All	93.44	975	0	975	972	MHCI
JQ425430.1	CL1150.Contig4_All	93.87	702	0	975	702	MHCI
JQ425430.1	CL1150.Contig17_All	90.41	417	4.00E-154	975	420	MHCI
JQ425430.1	CL1150.Contig18_All	90.14	416	6.00E-152	975	417	MHCI
JQ425430.1	CL1150.Contig15_All	96.6	324	6.00E-152	975	450	MHCI
JQ425430.1	CL1150.Contig13_All	88.42	423	2.00E-142	975	426	MHCI
JQ425430.1	CL1150.Contig7_All	89.41	387	8.00E-136	975	399	MHCI
JQ425430.1	CL1150.Contig8_All	91.95	261	3.00E-100	975	507	MHCI
JQ425430.1	CL1150.Contig14_All	92.78	180	1.00E-68	975	540	MHCI
JQ425430.1	CL1150.Contig2_All	94.23	156	7.00E-62	975	159	MHCI
JQ425430.1	CL1150.Contig24_All	93.55	155	1.00E-59	975	156	MHCI
JQ425430.1	CL1150.Contig23_All	93.55	155	1.00E-59	975	156	MHCI
JQ425430.1	CL1150.Contig3_All	93.55	155	1.00E-59	975	156	MHCI
JQ425430.1	CL1150.Contig1_All	93.55	155	1.00E-59	975	156	MHCI
JQ425430.1	CL7631.Contig3_All	91.84	98	3.00E-31	975	108	MHCI
JQ425430.1	CL1150.Contig22_All	84.68	111	6.00E-23	975	360	MHCI
JQ425429.1	CL1150.Contig16_All	95.16	972	0	975	972	MHCI
JQ425429.1	CL1150.Contig4_All	98	699	0	975	702	MHCI

JQ425429.1	CL1150.Contig15_All	98.15	324	3.00E-160	975	450	MHCI
JQ425429.1	CL1150.Contig17_All	89.45	417	2.00E-147	975	420	MHCI
JQ425429.1	CL1150.Contig18_All	89.18	416	3.00E-145	975	417	MHCI
JQ425429.1	CL1150.Contig13_All	87.47	423	8.00E-136	975	426	MHCI
JQ425429.1	CL1150.Contig7_All	88.37	387	4.00E-129	975	399	MHCI
JQ425429.1	CL1150.Contig8_All	91.95	261	3.00E-100	975	507	MHC I
JQ425429.1	CL1150.Contig14_All	92.78	180	1.00E-68	975	540	MHCI
JQ425429.1	CL1150.Contig2_All	94.23	156	7.00E-62	975	159	MHCI
JQ425429.1	CL1150.Contig24_All	93.55	155	1.00E-59	975	156	MHCI
JQ425429.1	CL1150.Contig23_All	93.55	155	1.00E-59	975	156	MHCI
JQ425429.1	CL1150.Contig3_All	93.55	155	1.00E-59	975	156	MHCI
JQ425429.1	CL1150.Contig1_All	93.55	155	1.00E-59	975	156	MHCI
JQ425428.1	CL1150.Contig16_All	94.32	546	0	543	972	MHCI
JQ425428.1	CL1150.Contig4_All	92.49	546	0	543	702	MHCI
JQ425428.1	CL1150.Contig22_All	85.59	111	7.00E-25	543	360	MHCI
JQ425427.1	CL1150.Contig4_All	93.59	546	0	543	702	MHCI
JQ425427.1	CL1150.Contig16_All	93.04	546	0	543	972	MHCI
JQ425427.1	CL1150.Contig22_All	85.59	111	7.00E-25	543	360	MHCI
JQ425427.1	CL1150.Contig22_All	97.06	68	2.00E-24	543	360	MHCI
HQ908107.1	Unigene57188_All	97.18	674	0	680	795	MHC II
HQ908107.1	Unigene67843_All	97.23	650	0	680	651	MHC II
HQ908107.1	Unigene75449_All	97.28	551	0	680	774	MHC II
HQ908107.1	Unigene75450_All	82.72	654	7.00E-160	680	774	MHC II
HQ908107.1	CL4065.Contig3_All	82.86	566	1.00E-142	680	693	MHC II
HQ908107.1	Unigene27967_All	80.07	552	3.00E-113	680	774	MHC II
HQ908107.1	Unigene4377_All	100	96	1.00E-43	680	96	MHC II
HQ908107.1	CL4065.Contig4_All	100	96	1.00E-43	680	96	MHC II
HQ908107.1	CL4065.Contig2_All	100	96	1.00E-43	680	96	MHC II
HQ908107.1	CL4065.Contig1_All	100	96	1.00E-43	680	96	MHC II
HQ908099.1	CL2981.Contig3_All	99.27	688	0	691	762	MHC II
HQ908099.1	CL2981.Contig1_All	99.27	688	0	691	762	MHC II
HQ908099.1	Unigene42913_All	99.67	603	0	691	603	MHC II
HQ908098.1	CL10050.Contig3_All	99.67	615	0	615	765	MHC II
HQ908098.1	CL10050.Contig2_All	100	582	0	615	582	MHC II
HQ908098.1	CL10050.Contig1_All	100	582	0	615	582	MHC II
HQ908097.1	CL10050.Contig3_All	91.73	617	0	615	765	MHC II
HQ908097.1	CL10050.Contig2_All	91.61	584	0	615	582	MHC II
HQ908097.1	CL10050.Contig1_All	91.61	584	0	615	582	MHC II
HQ908096.1	Unigene57188_All	99.7	674	0	697	795	MHC II
HQ908096.1	Unigene67843_All	99.85	650	0	697	651	MHC II
HQ908096.1	Unigene75449_All	97.28	551	0	697	774	MHC II

HQ908096.1	Unigene75450_All	85.32	654	0	697	774	MHC II
HQ908096.1	CL4065.Contig3_All	83.25	573	3.00E-148	697	693	MHC II
HQ908096.1	Unigene27967_All	80.07	552	4.00E-113	697	774	MHC II
HQ908096.1	Unigene4377_All	100	96	1.00E-43	697	96	MHC II
HQ908096.1	CL4065.Contig4_All	100	96	1.00E-43	697	96	MHC II
HQ908096.1	CL4065.Contig2_All	100	96	1.00E-43	697	96	MHC II
HQ908096.1	CL4065.Contig1_All	100	96	1.00E-43	697	96	MHC II
HQ908095.1	Unigene27967_All	94.83	774	0	822	774	MHC II
HQ908095.1	Unigene75450_All	94.6	741	0	822	774	MHC II
HQ908095.1	CL4065.Contig3_All	96.64	684	0	822	693	MHC II
HQ908095.1	Unigene75449_All	80.62	774	1.00E-168	822	774	MHC II
HQ908095.1	Unigene57188_All	79.89	741	2.00E-151	822	795	MHC II
HQ908095.1	Unigene67843_All	80.7	596	4.00E-128	822	651	MHC II
HQ908095.1	Unigene81593_All	93.62	94	6.00E-32	822	93	MHC II
HQ908094.1	Unigene27967_All	99.22	774	0	822	774	MHC II
HQ908094.1	Unigene75450_All	97.17	672	0	822	774	MHC II
HQ908094.1	CL4065.Contig3_All	97.17	672	0	822	693	MHC II
HQ908094.1	Unigene75449_All	84.09	773	0	822	774	MHC II
HQ908094.1	Unigene57188_All	79.88	671	5.00E-137	822	795	MHC II
HQ908094.1	Unigene67843_All	80.8	526	1.00E-113	822	651	MHC II
HQ908094.1	Unigene81593_All	93.62	94	6.00E-32	822	93	MHC II
HQ908093.1	Unigene27967_All	99.48	774	0	822	774	MHC II
HQ908093.1	Unigene75450_All	97.62	672	0	822	774	MHC II
HQ908093.1	CL4065.Contig3_All	97.62	672	0	822	693	MHC II
HQ908093.1	Unigene75449_All	83.44	773	0	822	774	MHC II
HQ908093.1	Unigene57188_All	79.28	671	2.00E-130	822	795	MHC II
HQ908093.1	Unigene67843_All	80.04	526	5.00E-107	822	651	MHC II
HQ908092.1	Unigene27967_All	96.51	774	0	822	774	MHC II
HQ908092.1	Unigene75450_All	92.31	741	0	822	774	MHC II
HQ908092.1	CL4065.Contig3_All	94.79	672	0	822	693	MHC II
HQ908092.1	Unigene75449_All	81.57	776	2.00E-180	822	774	MHC II
HQ908092.1	Unigene57188_All	76.85	743	4.00E-113	822	795	MHC II
HQ908092.1	Unigene67843_All	77.09	598	2.00E-91	822	651	MHC II
HQ908092.1	CL13896.Contig1_All	100	96	1.00E-43	822	96	MHC II
Y11647.2	Unigene54563 All	100	204	7.00E-104	501	204	Interferon Gamma

8.3 BLASTN output (pairwise)

BLASTN 2.2.31+

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller (2000), "A greedy algorithm for aligning DNA sequences", J Comput Biol 2000; 7(1-2):203-14.

Database: badgernt 127,401 sequences; 85,063,401 total letters

<code>Query= JQ425440.1</code> Meles meles MHC class I antigen (Meme-MHCI) pseudogene mRNA, Meme-MHCI*PS03 allele, partial sequence

Length=848					
Sequences producing	signii	ficant alignments:	Score (Bits)	E Value	
CL1150.Contig16_All CL1150.Contig14_All CL1150.Contig15_All CL1150.Contig15_All CL1150.Contig14_All CL1150.Contig18_All CL1150.Contig18_All CL1150.Contig18_All CL1150.Contig18_All CL1150.Contig18_All CL1150.Contig18_All Unigene12618_All 41 Unigene126995_All 2 CL1793.Contig5_All CL1793.Contig5_All CL1793.Contig3_All CL1793.Contig3_All CL1793.Contig2_All	189 : 3 452 3 542 20 418 1278 682 : 621 : 20 526 2 199 75 945 9 589 127 m 65 36: 65 36: 65 36: 65 36:	<pre>1160 minus strand MHC class I antigen, p 187 MHC class I antigen, partial [Meles 2 minus strand MHC class I antigen, part 2 minus strand hypothetical protein PAND 18 minus strand MHC class I antigen [Ailu 1694 minus strand MHC class I antigen, p 1011 minus strand MHC class I antigen, p 5 hypothetical protein PANDA_022308 [Ail minus strand MHC class I antigen [Bos t 5 PREDICTED: patr class I histocompatibi PREDICTED: patr class I histocompatibi I minus strand PREDICTED: MHC class I po I minus strand PREDICTED: MHC class I po I PREDICTED: MHC class I polypeptide-rel I minus strand PREDICTED: MHC class I po</pre>	654 632 608 488 377 340 302 281 172 154 154 135 80.5 80.5 80.5 80.5	$\begin{array}{c} 0.0\\ 2e-180\\ 4e-173\\ 5e-137\\ 1e-103\\ 2e-97\\ 2e-92\\ 8e-81\\ 1e-74\\ 6e-42\\ 2e-36\\ 2e-36\\ 2e-36\\ 8e-31\\ 4e-14\\ 4e-14\\ 4e-14\\ 4e-14\\ \end{array}$	
Query_1	25	GGCGGCGAGGAGCCGCGCTTCATCTCCGTCGGCTACGTGGAC	TTCACGCA	GTTCGTGCGG	84
CL1150.Contig16_All	58	GGCCGCGGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGAC	GACACGCA	GTTCGTGCGG	117
CL1150.Contig4_All	49	GGCCGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGAC	GACACGCA	GTTCGTGCGG	108
Query_1	85	TTCGACAGCGACTCTGCCAGTCAGAGAAGGA-GGAGCCGCGGG	GCGCCGTA	AGTGGAGCAG	143
CL1150.Contig16_All	118	TTCGACAGCGACTCTGCCAGTC-G-G-AGGATGGAGCCGCGGG	GCGCCGTG	GATGGAGCAG	174
CL1150.Contig4_All	109	TTCGACAGCGACTCTGCCAGTC-G-GA-GGATGGAGCCGCGGG	GCGCCGTG	GATGGAGCAG	165
Query_1	144	GAGGGGCCGGAGTATTGGGACGAGGAGACGCGGATCTGCAAG	GAAACCAC	ACAGACTTAC	203
CL1150.Contig16_All	175	GAGGGGCCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAG	GAAACCAC	ACAGACTTAC	234
CL1150.Contig4_All	166	GAGGGGCCGGAGTATTGGGACCAGCAGACGCGGGGGATCAAG	GAAACCAC	ACAGACTTAC	225
Query_1	204	CGAGGGAGCCTGAACATCCTGCGGGGGCTACTACAACCAGAGCC	GAGGCCGG	GTCTCACACC	263
CL1150.Contig16_All	235	CGAGGGAGCCTGAACATCCTGCGGGGCTACTACAACCAGAGCC	GCGGCCGG	GTCTCACACC	294
CL1150.Contig4_All	226	CGACGGAGCCTGAACAACCTGCGGGGCTACTACAACCAGAGCC	GCGGCCGG	GTCTCACACC	285
Query_1	264	ATCCAGCGCATGTACGGCTGTGACGTGGGGCCCGACGGGGCGCC	CTCCTCCG	CGGGTACAGT	323
CL1150.Contig16_All	295	ATCCAGAACTTGTACGGCTGTGACGTGGGGCCCGACGGGGGCGTC	CTCCTCCG	CGGGTACCGT	354
CL1150.Contig4_All	286	TTCCAGAACATGTACGGCTGTGACGTGGGGCCCCGACGGGGCGTC	CTCCTCCG	CGGGTACCGT	345
Query_1	324	CAGGACGCCTACGACGGCGCGGATTACCTCACCCTGAACGAGG	GACCTGCG	CTCCTGGACC	383
CL1150.Contig16_All	355	CAGTTCGCCTACGACGGCGCGGGATTACATCGCCCTGAACGAGG	GACCTGCG	CTCCTGGACC	414
CL1150.Contig4_All	346	CAGTTCGCCTACGACGGCGCGGGATTACCTCGCCCTGAACGAGG	GACCTGCG	CTCCTGGACC	405
Query_1	384	GCGGCGGATGCGTCGGCGCAGATCACCCAGCGCAAGTGGGAGG	GACGCGGG	TGAGGCAGAG	443
CL1150.Contig16_All	415	GCGGCGGACACGGCGCGCAGATCTCCCGGCGCAAGTGGGAGG	GACGCGGG	TGAGGCAGAG	474
CL1150.Contig4_All	406	GCGGCGGACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGG	GACGCGGG	TGAGGCAGAG	465
CL1150.Contig15_All	1	CAGATCTCCCGGCGCAAGTGAGAGG	GACGCGGG	TGTGGCAGAG	42
CL1150.Contig14_All	1	CAGATCTCCCGGCGCAAGTGAGAGG	GACGCGGG	TGTGGCAGAG	42
Query_1 CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig15_All CL1150.Contig14_All	444 475 466 43 43	CTTGAGAGGGACTACCTGGAGATTACTTGCGTGAAGTGGCTCC CGCTACAGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCC CGCTACAGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCC CTTGAGAGGGACTACCTGGAGATTACTTGCGTGAAGTGGCTCC	CACAGGTA GCAGGTA GCAGGTA CACAGGTA CACAGGTA	TCTGGAGAAC CCTGGAGAAC CCTGGAGAAC TCTGGAGAAC TCTGGAGAAC	503 534 525 102 102
Query_1 CL1150.Contig16_All	504 535	GGGAAGGAGACGCTACTGCGCACAGAGATCACCCTGACCTGGC GGGAAGGAGTCGCTGCTGCGCGCGCAGA	CAGAGGGA	TGGA-GAGGA	562 560

CL1150.Contig16 All 646 GAGATCACCCTGACCTGGCAGCGAGATGGA-GAGGA 680 CL1150.Contig4_All 526 GGGAAGGAGTCGCTGCTGCGCGCAGA 551 CL1150.Contig15 All 103 GGGAAGGAGACGCTACTGCCCCAGAGAGATCACCCTGACCTGGCAGAGGGATGGA-GAGGA 161 CL1150.Contig14_All 103 GGGAAGGAGACGCTACTGCGCACAGAGATCACCCTGACCTGGCAGAGGGATGGA-GAGGA 161 CL1150.Contig7 All 92 CAGAGATCACCCTGACCTGGCAGAGGGATGGA-GAGGA 128 CL1150.Contig18_All 91 GAGATCACCCTGACCTGGCAGAGGGATGGA-GAGGA 125 CL1150.Contig17_All 94 GAGATCACCCTGACCTGGCAGCGAGATGGA-GAGGA 128 CL1150.Contig13 All 94 GAGATCACCCTGACCTGGCACCATGA-GGAGGAGGA 128 CL1150.Contig8_All CAGAGATCACCCTGACCTGGCAGAGGGATGGA-GAGGA 92 128 Unigene117550 All 89 CAGAGATCACCCTGACCTGGCAGAGGGATGGA-GAGGA 125 Unigene12618_All CAGAGATCACCCTGACCTGGCAGAGGGATGGA-GAGGA 89 125 Query 1 563 CCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 62.2 CL1150.Contig16 All 681 CCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 740 CL1150.Contig15 All CCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 221 162 CL1150.Contig14 All CCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 162 221 CL1150.Contig7 All 129 CCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 188 CL1150.Contig18_All CCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 126 185 CL1150.Contig17_All 129 CCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 188 129 CL1150.Contig13_All CCTGACCCAGGACACAGAACTTGTAGGGACCAGGCCTACAGGGAATGGAACCTTCCAGAA 188 CL1150.Contig8 All 129 CCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGAGATGGAACCTTCCAGAA 188 Unigene117550 All 126 CCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGAGAT 171 Unigene12618 All CCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGAGAT 126 171 Query_1 GTGGGTGGCCATGGTGGTGCCTTCTGGACAGGAGCAGAGATACACGTGCCATGTGCAGCA 62.3 682 CL1150.Contig16 All 741 GTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATACACATGCCATGTGCAGCA 800 CL1150.Contig15 All GTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCAGAGATACACATGCTATGTGCAGCA 222 281 CL1150.Contig14 All GTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATACACATGCCATGTGCAGCA 2.2.2 2.81 CL1150.Contig7 All GTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATACACATGCCATGTGCAGCA 189 248 CL1150.Contig18 All 186 GTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATACACATGCCATGTGCAGCA 245 CL1150.Contig17_All 189 GTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATACACATGCCATGTGCAGCA 248 CL1150.Contig13 All GTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATACACATGCCATGTGCAGCA 248 189 CL1150.Contig8 All GTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATACACATGCCATGTGCAGCA 248 189 Unigene26995 All TCTGGACAGGAGCAGAGATACACGTGCCATGTGCAGCA 38 1 TGAGGGACTGTCTGAGCCCATCACCCAGAGATGGGAGCCGCCACATCCTACCATCCCAT Query 1 683 742 CL1150.Contig16_All TAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCTCCTCCCACCATCCCCAT 801 860 CL1150.Contig15 All 282 TGAGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCCACCTCG-C--ACCATCCCCAT 338 CL1150.Contig14 All 282 TAAGGGGCTGCCTGAGCCCATCACC 306 CL1150.Contig14 All 436 GAGCCACCTCCTCCCACCATCCCCAT 461 CL1150.Contig7 All TAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCTCCTCCCACCATCCCCAT 249 308 CL1150.Contig18 All TAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCTCCTCCCACCATCCCCAT 246 305 CL1150.Contig17_All TAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCTCCTCCCACCATCCCCAT 249 308 CL1150.Contig13 All TAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCTCCTCCCACCATCCCCAT 308 249 CL1150.Contig8 All TAAGGGGCTGCCTGAGCCCATCACC 249 273 CL1150.Contig8 All 403 GAGCCACCTCCTCCCACCATCCCCAT 428 CL1150.Contig5_All GAGGGACTGTCTGAGCCCATTACCTTGAGATGGGAGCCTCCTCTTCCCATCGTCCTCAT 59 Unigene26995 All 39 TGAGGGACTGTCTGAGCCCATCACCCAGAGATGGG 73 CATGTGGATCATTGCTGGTCTGATTCTCCCCGTGGTCTTTGCAGTGATTAGAGCTGTGAT Query 1 743 802 CL1150.Contig16_All CATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTGGTGGTGGAGCTGTGAT 861 920 398 CL1150.Contig15 All CACATGGATCATTGCTGGTCTGGTTCTCCTGGTGATCATTGCAGTGATTGGAGTTGCAAT 339 CATGTGGATCATTGCTGGTCTGATTCTCCCCGTGGTCTTTGCAGTGATTAGAGCTGTGAT CL1150.Contig14 All 462 521 CL1150.Contig7 All CATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTGGTGGTTGGAGCTGTGAT 309 368 CL1150.Contig18 All 306 CATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTGGTGGTTGGAGCTGTGAT 365 CL1150.Contig17_All CATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTGGTGGTTGGAGCTGTGAT 309 368 CL1150.Contig13 All 309 CATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTGGTGGTTGGAGCTGTGAT 368 CL1150.Contig8 All 429 CATGTGGATCATTGCTGGTCTGATTCTCCCCGTGGTCTTTGCAGTGATTAGAGCTGTGAT 488 CL1150.Contig5 All CACATGGATCATTGCTGTTCTGGCTCTCCTTGTGGTCGCTGTGGTGGTTGGAGCTGTGAT 60 119 CL1793.Contig7 All TGGATCATTGCTGTTCTGGCTCTCCTTGTGGTCGCTGTGGTGGTTGGAGCTGTGAT 1 56 TGGATCATTGCTGTTCTGGCTCTCCTTGTGGTCGCTGTGGTGGTTGGAGCTGTGAT CL1793.Contig5 All 56 1 CL1793.Contig3_All TGGATCATTGCTGTTCTGGCTCTCCTTGTGGTCGCTGTGGTGGTTGGAGCTGTGAT 1 56 CL1793.Contig2_All 1 TGGATCATTGCTGTTCTGGCTCTCCTTGTGGTCGCTGTGGTGGTTGGAGCTGTGAT 56 Ouerv 1 803 CTGGAGGAAGAAGCGCTCAGATGATGACAGTGCCCAGGGCTCT 845 CL1150.Contig16 All 921 CTGGAGGAGGAAGCGCTCAG 940 CL1150.Contig15 All 399 CTGGTGGAAGAAGCGCTCAG 418 CL1150.Contig14 All CTGGAGGAAGAAGCGCTCA 522 540 CL1150.Contig7 All 369 CTGGAGGAAGAAGCGCTCAG 388 CL1150.Contig18 All 366 CTGGAGGAGGAAGCGCTCAG 385 CL1150.Contig17 All 369 CTGGAGGAGGAAGCGCTCAG 388 CL1150.Contig13_All 369 CTGGAGGAAGAAGCGCTCAG 388 CL1150.Contig8 All 489 CTGGAGGAAGAAGCGCTCA 507 CL1150.Contig5_All 120 CTGGAGGAAGAAGCGCTCAGATGATGACAGTGCCCAGGGCTCT 162 CL1793.Contig7 All 57 CTGGAGGAAGAAGCGCTCAG 76 CL1793.Contig5_All 57 CTGGAGGAAGAAGCGCTCAG 76 CL1793.Contig3 All 57 CTGGAGGAAGAAGCGCTCAG 76 CL1793.Contig2 All 57 CTGGAGGAAGAAGCGCTCAG 76

Lambda K

Н

199

1.33 0.621 1.12

Gapped Lambda K H 1.28 0.460 0.850

Effective search space used: 67199301450

<code>Query= JQ425439.1</code> Meles meles MHC class I antigen (Meme-MHCI) pseudogene mRNA, Meme-MHCI*PS02 allele, partial sequence

Length=932

Sequences producing significant alignments:	Score (Bits)	E Value
CL1150.Contig16_All 189 1160 minus strand MHC class I antigen, p CL1150.Contig4_All 486 1187 MHC class I antigen, partial [Meles CL1150.Contig15_All 3 452 minus strand MHC class I antigen, part CL1150.Contig15_All 20 418 minus strand MHC class I antigen [Ailu CL1150.Contig17_All 20 418 minus strand MHC class I antigen [CL1150.Contig17_All 682 1101 minus strand MHC class I antigen, p CL1150.Contig13_All 621 1046 minus strand MHC class I antigen, p CL1150.Contig13_All 621 1046 minus strand MHC class I antigen, p CL1150.Contig13_All 20 526 hypothetical protein PANDA_022308 [Ail CL1150.Contig14_All 3 542 minus strand MHC class I antigen [Bos t Unigene117550_All 775 945 PREDICTED: patr class I histocompatibi Unigene12618_All 419 589 PREDICTED: patr class I histocompatibil Unigene2695_All 2 127 minus strand DLA class I histocompatibil CL1793.Contig5_All 65 361 minus strand PREDICTED: MHC class I po CL1793.Contig5_All 65 361 PREDICTED: MHC class I polypeptide-rel	725 680 401 379 357 340 302 283 281 172 156 156 156 135 80.5 80.5 80.5	0.0 0.0 8e-111 4e-104 2e-97 2e-92 8e-81 3e-75 1e-74 7e-37 7e-37 9e-31 4e-14 4e-14 4e-14
CLI795.CONCIG2_AIL 05 S01 MINUS STRANG PREDICTED: MHC CLASS I PO	00.5	46-14

Query 2	17	GAGACCTGGGCGGGCTCCCACTCCCTGAGATATTTCGACACCGCGGTTTCCCCGGCCGG	76
CL1150.Contig16 All	1	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCGGCGTGTCCCGGCCCGGC	60
CL1150.Contig4_All	4	GGCTCCCACTCCCTGAGGTATTTCTACACCGGCGTGTCCCGGCCCGGC	51
Query_2	77	AGCGAGGAGCCGCGCTTCATCTCCGTCGGCTACGTGGACTTCACGCAGTTCGTGCGGTTC	136
CL1150.Contig16 All	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACACGCAGTTCGTGCGGTTC	120
CL1150.Contig4_All	52	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACACGCAGTTCGTGCGGTTC	111
Query 2	137	GACAGCGACTCTGCCAGTCAGAGAAGGA-GGAGCCGCGGGGCGCCGTAAGTGGAGCAGGAG	195
CL1150.Contig16 All	121	GACAGCGACTCTGCCAGTC-G-G-AGGATGGAGCCGCGGGCGCCGTGGATGGAGCAGGAG	177
CL1150.Contig4_All	112	GACAGCGACTCTGCCAGTC-G-GA-GGATGGAGCCGCGGGGCGCCGTGGATGGAGCAGGAG	168
Query 2	196	GGGCCGGAGTATTGGGACGAGGAGACGCGGATCTGCAAGGAAACCACACAGACTTACCGA	255
CL1150.Contig16 All	178	GGGCCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAGGAAACCACACAGACTTACCGA	237
CL1150.Contig4_All	169	GGGCCGGAGTATTGGGACCAGCAGACGCGGGGGGATCAAGGAAACCACACAGACTTACCGA	228
Query 2	256	GGGAGCCTGAACATCCTGCGGGGCTACTACAACCAGAGCGAGGCCGGGTCTCACACCATC	315
CL1150.Contig16 All	238	GGGAGCCTGAACATCCTGCGGGGGCTACTACAACCAGAGCGCGGGCCGGGTCTCACACCATC	297
CL1150.Contig4_All	229	CGGAGCCTGAACAACCTGCGGGGCTACTACAACCAGAGCGCGGGCCGGGTCTCACACCTTC	288
Query_2	316	CAGCGCATGTACGGCTGTGACGTGGGGGCCCGACGGGCGCCTCCTCCGCGGGTACAGTCAG	375
CL1150.Contig16_All	298	CAGAACTTGTACGGCTGTGACGTGGGGGCCCGACGGGCGTCTCCTCCGCGGGTACCGTCAG	357
CL1150.Contig4_All	289	CAGAACATGTACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCCGCGGGTACCGTCAG	348
Query_2	376	GACGCCTACGACGGCGCGGATTACCTCACCCTGAACGAGGACCTGCGCTCCTGGACCGCG	435
CL1150.Contig16_All	358	TTCGCCTACGACGGCGCGGATTACATCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCG	417
CL1150.Contig4_All	349	TTCGCCTACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCG	408
Query_2	436	GCGGATGCGTCGGCGCAGATCACCCAGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCTT	495
CL1150.Contig16_All	418	GCGGACACGGCGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGC	477
CL1150.Contig4_All	409	GCGGACACGGCGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGC	468
CL1150.Contig15_All	1	CAGATCTCCCGGCGCAAGTGAGAGGACGCGGGTGTGGCAGAGCTT	45
CL1150.Contig14_All	1	CAGATCTCCCGGCGCAAGTGAGAGGACGCGGGTGTGGCAGAGCTT	45
Query_2	496	GAGAGGGACTACCTGGAGATTACTTGCGTGAAGTGGCTCCACAGGTATCTGGAGAACGGG	555
CL1150.Contig16_All	478	TACAGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGG	537
CL1150.Contig4_All	469	TACAGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGG	528
CL1150.Contig15_All	46	GAGAGGGACTACCTGGAGATTACTTGCGTGAAGTGGCTCCACAGGTATCTGGAGAACGGG	105
CL1150.Contig14_All	46	GAGAGGGACTACCTGGAGATTACTTGCGTGAAGTGGCTCCACAGGTATCTGGAGAACGGG	105
Query_2	556	AAGGAGACGCTACTGCGCACAGGACAACGGAGGAATCCAGTCTCTCCCAGGAAGCAGAGA	615
CL1150.Contig16_All	538	AAGGAGTCGCTGCGCGCAG	559
CL1150.Contig16_All	646	GAGA	649
CL1150.Contig4_All	529	AAGGAGTCGCTGCGCGCAG	550
CL1150.Contig15_All	125	CAGAGA	130

CL1150.Contig15 All 106 AAGGAGACGCTACTGCGCACAG 127 CL1150.Contig7_All GCAGAGA 97 91 CL1150.Contig18 All 91 GAGA 94 CL1150.Contig17_All 94 GAGA 97 CL1150.Contig13 All 94 GAGA 97 CL1150.Contig8_All 91 GCAGAGA 97 CL1150.Contig14 All 125 CAGAGA 130 106 CL1150.Contig14 All AAGGAGACGCTACTGCGCACAG 127 Unigene117550 All GCAGAGA 88 94 Unigene12618 All 88 GCAGAGA 94 Query_2 616 TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAG 674 CL1150.Contig16_All 708 650 ${\tt TCACCCTGACCTGGCAGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAG$ CL1150.Contig15 All 131 TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAG 189 CL1150.Contig7 All TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAG 98 156 CL1150.Contig18 All 95 TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAG 153 CL1150.Contig17_All 98 TCACCCTGACCTGGCAGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAG 156 156 CL1150.Contig13_All 98 TCACCCTGACCTGGCACCATGA-GGAGGAGGACCTGACCCAGGACACAGAACTTGTAGGG CL1150.Contig8 All 98 TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAG 156 131 CL1150.Contig14_All ${\tt TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAG$ 189 TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAG Unigene117550 All 95 153 Unigene12618 All 95 TCACCCTGACCTGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAG 153 675 734 Query 2 CL1150.Contig16_All 709 ACCAGGCCTGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGA 768 CL1150.Contig15 All 190 ACCAGGCCTGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGA 249 CL1150.Contig7 All ACCAGGCCTGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGA 157 216 CL1150.Contig18 All ACCAGGCCTGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGA 154 213 CL1150.Contig17_All ACCAGGCCTGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGA 216 157 CL1150.Contig13 All 157 ACCAGGCCTACAGGGAATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGA 216 CL1150.Contig8 All 157 ACCAGGCCTGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGA 216 CL1150.Contig14 All 190 ACCAGGCCTGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGA 249 Unigene117550 All 154 ACCAGGCCTGCAGGAGAT 171 171 Unigene12618 All ACCAGGCCTGCAGGAGAT 154 Unigene26995 All 1 TCTGGA 6 CAGGAGCAGAGATACACGTGCCATGTGCAGCATGAGGGACTGTCTGAGCCCATCACCCAG Ouerv 2 735 794 CL1150.Contig16 All GAGGAGCAGAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTG 769 828 CL1150.Contig15 All 250 CAGGAGCAGAGATACACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGG 309 CL1150.Contig7 All 217 GAGGAGCAGAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTG 276 CL1150.Contig18 All GAGGAGCAGAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTG 273 214 CL1150.Contig17_All CL1150.Contig13_All GAGGAGCAGAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTG 217 276 GAGGAGCAGAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTG 276 217 CL1150.Contig8 All GAGGAGCAGAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC 217 273 CL1150.Contig14 All GAGGAGCAGAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC 306 250 CL1150.Contig5 All GAGGGACTGTCTGAGCCCATTACCTTG 27 Unigene26995_All CAGGAGCAGAGATACACGTGCCATGTGCAGCATGAGGGACTGTCTGAGCCCATCACCCAG 7 66 Ouery 2 795 AGATGGGAGCCGCCACATCCTACCATCCCCATCATGTGGATCATTGCTGGTCTGATTCTC 854 CL1150.Contig16 All AGTTGGAAGCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTC 829 888 CL1150.Contig15_All 310 366 CL1150.Contig7 All 277 AGTTGGAAGCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTC 336 CL1150.Contig18 All AGTTGGAAGCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTC 274 333 CL1150.Contig17 All 277 AGTTGGAAGCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTC 336 CL1150.Contig13 All 277 AGTTGGAAGCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTC 336 CL1150.Contig8 All GAGCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGTCTGATTCTC 403 456 CL1150.Contig14 All 436 GAGCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGTCTGATTCTC 489 CL1150.Contig5 All 28 AGATGGGAGCCTCCTCTTCCCATCGTCCTCATCACATGGATCATTGCTGTTCTGGCTCTC 87 Unigene26995 All 67 AGATGGG 73 CL1793.Contig7 All 1 TGGATCATTGCTGTTCTGGCTCTC 24 CL1793.Contig5_All TGGATCATTGCTGTTCTGGCTCTC 24 1 CL1793.Contig3_All TGGATCATTGCTGTTCTGGCTCTC 1 24 CL1793.Contig2_All 1 TGGATCATTGCTGTTCTGGCTCTC 24 Ouerv 2 855 CCCGTGGTCTTTGCAGTGATTAGAGCTGTGATCTGGAGGAAGAAGCGCTCAGATGATGAC 914 CL1150.Contig16 All 889 CTGGCAGTCACTGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAG 940 CL1150.Contig15 All 367 CTGGTGATCATTGCAGTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAG 418 CL1150.Contig7 All ${\tt CTGGCAGTCACTGTGGTGGTGGTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAG$ 337 388 CL1150.Contig18 All CTGGCAGTCACTGTGGTGGTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAG 334 385 CL1150.Contig17_All CL1150.Contig13 All 337 CTGGCAGTCACTGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAG 388 337 CTGGCAGTCACTGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAG 388 CCCGTGGTCTTTGCAGTGATTAGAGCTGTGATCTGGAGGAAGAAGCGCTCA CL1150.Contig8_All 457 507 CL1150.Contig14 All 490 CCCGTGGTCTTTGCAGTGATTAGAGCTGTGATCTGGAGGAAGAAGCGCTCA 540 CL1150.Contig5_All 88 CTTGTGGTCGCTGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGATGATGAC 147 CL1793.Contig7 All 25 CTTGTGGTCGCTGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAG 76 CL1793.Contig5_All 25 CTTGTGGTCGCTGTGGTGGTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAG 76 CL1793.Contig3 All 25 CTTGTGGTCGCTGTGGTGGTGGGTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAG 76 CL1793.Contig2 All 25 CTTGTGGTCGCTGTGGTGGTGGTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAG 76 Ouerv 2 915 AGTGCCCAGGGCTCT 929 CL1150.Contig5 All AGTGCCCAGGGCTCT 162 148

Lambda	K	H
1.33	0.621	1.12
Gapped		
Lambda	K	Н
1.28	0.460	0.850

Length=900

Effective search space used: 74066383350

<code>Query= JQ425438.1</code> Meles meles MHC class I antigen (Meme-MHCI) pseudogene mRNA, Meme-MHCI*PS01 allele, partial sequence

Lengen-900			Saaro	F	
Sequences producing	signi	ficant alignments:	(Bits)	Value	
CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig15_All CL1150.Contig17_All CL1150.Contig17_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig14_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All CL1150.Contig1_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig2_All	189 1 486 1 3 45 682 1 20 41 20 52 3 54 1312 1371 1659 1 1600 1 970 1 1 36	1160 minus strand MHC class I antigen, p 187 MHC class I antigen, partial [Meles 2 minus strand MHC class I antigen, part 101 minus strand MHC class I antigen, p 1694 minus strand MHC class I antigen [046 minus strand MHC class I antigen [Ailu 8 minus strand MHC class I antigen [Ailu 6 hypothetical protein PANDA_022308 [Ail 2 minus strand hypothetical protein PANDL 1467 MHC class I antigen, partial [Mele 1526 MHC class I antigen, partial [Meles 1814 MHC class I antigen, partial [Meles 1755 MHC class I antigen, partial [Meles 28 MHC class I antigen, partial [Meles 20 minus strand PREDICTED: LOW QUALITY PR	1131 802 544 540 521 484 473 377 272 220 220 220 220 220 217 198	0.0 0.0 1e-153 2e-152 6e-147 7e-136 2e-132 1e-103 6e-72 2e-56 2e-56 2e-56 2e-56 2e-56 3e-55 1e-49	
0	0.0			~~~~~~~~~	0.0
Query_3 CL1150 Contig16 All	29 125	GCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGGCGCCGTGGA	'GGAGCAG	GAGGGGGCCGG	88 184
CL1150.Contig4 All	116	GCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGCGCCGTGGA	GGAGCAG	GAGGGGCCGG	175
CL1150.Contig22_All	1			GAGGGGCCGG	10
Query 3	89	AGTATTGGGACCGGCAGACGCGGAACCTCAAGGACGCCGCAC	ACGCTTTC	CGAGTGAACC	148
CL1150.Contig16 All	185	AGTATTGGGACCGGCAGACGCAGATCTGCAAGGAAACCACACA	AGACTTAC	CGAGGGAGCC	244
CL1150.Contig4 All	176	AGTATTGGGACCAGCAGACGCGGGGGGATCAAGGAAACCACACA	GACTTAC	CGACGGAGCC	235
CL1150.Contig22_All	11	AGTATTGGGACCGGCAGACGCGGAACCTCAAGGACGCCGCACA	ACGCTTTC	CGAGTGAACC	70
Query 3	149	TGAACACCCTGCGGGACTACTATAACCAGAGCGCGGCCGGGT	CTCACACC	ATCCAGCGCA	208
CL1150.Contig16 All	245	TGAACATCCTGCGGGGCTACTACAACCAGAGCGCGGGCCGGGT	TCACACC	ATCCAGAACT	304
CL1150.Contig4 All	236	TGAACAACCTGCGGGGCTACTACAACCAGAGCGCGGCCGGGT	TCACACC	TTCCAGAACA	295
CL1150.Contig22_All	71	TGAACACCCTGCGGGACTACTACAACCAGAGCGCGGGCCGG			110
Query 3	209	TGTACGGCTGTGACGTGGGGGCCCGACGGCCGCCTCCTCCGCG	GTACAGT	CAGGTGGCCT	268
CL1150.Contig16_All	305	TGTACGGCTGTGACGTGGGGGCCCGACGGGGCGTCTCCTCCGCGG	GTACCGT	CAGTTCGCCT	364
CL1150.Contig4_All	296	TGTACGGCTGTGACGTGGGGGCCCGACGGGCGTCTCCTCCGCGG	GGTACCGT	CAGTTCGCCT	355
Query 3	269	ACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGCGCT	CCTGGACG	GTGGCGGACG	328
CL1150.Contig16_All	365	ACGACGGCGCGGATTACATCGCCCTGAACGAGGACCTGCGCT	CCTGGACC	GCGGCGGACA	424
CL1150.Contig4_All	356	ACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGCGCTC	CCTGGACC	GCGGCGGACA	415
Query_3	329	CCACAGCGCAGATCTCCCGGCGCAAGTGGGAGGCGGCGGATGA	AGGCGGAG	CATGAGAGGA	388
CL1150.Contig16_All	425	CGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGA	AGGCAGAG	CGCTACAGGA	484
CL1150.Contig4_All	416	CGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGA	AGGCAGAG	CGCTACAGGA	475
Query_3	389	ACTACCTGGAGGTGACATGCCTGGAGTGGCTCCACAGGTACC	GGAGAAC	GGGAAGGAGT	448
CL1150.Contig16_All	485	ACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACC	IGGAGAAC	GGGAAGGAGT	544
CL1150.Contig4_All	476	ACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACC	GGAGAAC	GGGAAGGAGT	535
Query_3	449	CGCTGCTGCGCGCAGAAACCCCCAATACACACGTGACCCGCCA	ACCCCATC	TCTGACCGTG	508
CL1150.Contig16_All	545	CGCTGCTGCGCGCAGAAACCCCCAATACACACGTGACCCGCCA	ACCCCATC	TCTGACCGTG	604
CL1150.Contig4_All	536	CGCTGCTGCGCGCAGAAACCCCCCAATACACACGTGACCCGCCA	ACCCCATC	TCTGACCGTG	595
CL1150.Contig17_All	4	GCAGAACCGCCCAACACGCATGACCCACCA	ACCCTATC	TCTGACCATG	52
CL1150.Contig18_All	2	CAGAACCGCCCAACACACGCATGACCCACCA	ACCCTATC	TCTGACCATG	49
CL1150.Contig13_All	4	GCAGAACCGCCCAACACACGCATGACCCACCA	ACCCTATC	TCTGACCATG	52
CL1150.Contig7_All	13	CCCAACACACGTGACCCACCA	ACCCCATC	TCTGACCATG	52
CLII50.Contig8_All	13	CCCAACACACACGTGACCCACCA	ACCCCATC	TCTGACCATG	52
CLIISU.Contig24_All	2		ACCCGATC	TCTAACAATG	49
CLIISU.CONTIG23_ALL	2			TCTAACAATG	49
CL1150 Contigs_ALL	2		ACCCGATC	TCTAACAATG	49
CL1150 Contigr_All	4		CCCCGATC	TCTAACAAIG	マッ ちつ
CHITIO, CONCINCA	7	GUNGAAUUGUUUAAUAUGUAIGAUGAUGUAUUA	JUCCIAIC	ICIGACCAIG	JZ

509 ATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGC Query 3 568 CL1150.Contig16 All 605 ATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGC 664 CL1150.Contig4_All 596 ATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGA 655 CL1150.Contig15 All 127 GAGATCACCCTGACCTGGC 145 CL1150.Contig17_All 53 CTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGC 112 CL1150.Contig18_All 50 CTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGC 109 CL1150.Contig13 All 53 CTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGC 112 CL1150.Contig7_All CTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACCTGGC 53 112 CL1150.Contig8 All 53 CTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACCTGGC 112 CL1150.Contig14_All 127 GAGATCACCCTGACCTGGC 145 CL1150.Contig24 All 50 ATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGA 109 CL1150.Contig23_All 50 ATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGA 109 CL1150.Contig3 All 50 ATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGA 109 CL1150.Contig1 All 50 ATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGA 109 CL1150.Contig2 All CTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACCTGGA 112 53 569 AGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCAGGA Query 3 627 CL1150.Contig16 All 665 AGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCAGGA 723 CL1150.Contig4_All 656 AGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 702 AGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGA CL1150.Contig15_All 146 204 CL1150.Contig17 All 113 AGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCAGGA 171 CL1150.Contig18 All AGAGGGATGGA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCAGGA 110 168 CL1150.Contig13 All 113 ACCATGA-GGAGGAGGACCTGACCCAGGACACAGAACTTGTAGGGACCAGGCCTACAGGG 171 CL1150.Contig7_All AGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGA 113 171 CL1150.Contig8 All 113 AGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGA 171 CL1150.Contig14 All AGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCAGGA 146 204 CL1150.Contig24 All AGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 110 156 CL1150.Contig23 All AGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 156 110 CL1150.Contig3 All 110 AGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 156 CL1150.Contig1 All 110 AGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 156 CL1150.Contig2 All AGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 113 159 GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGGTGCCTTCTGGACAGGAGCAGAGATAC Query 3 62.8 687 CL1150.Contig16_All GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATAC 724 783 CL1150.Contig15 All GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGGTGCCTTCTGGACAGGAGCAGAGATAC 264 205 CL1150.Contig17_All GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATAC 172 231 CL1150.Contig18 All GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATAC 169 228 CL1150.Contig13 All 172 AATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATAC 231 CL1150.Contig7 All 172 GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATAC 231 CL1150.Contig8 All 172 GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATAC 231 CL1150.Contig14 All GATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGATAC 205 264 ACATGCCATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCCACCT Query_3 688 747 CL1150.Contig16 All ACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCT 784 843 ACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCCACCT CL1150.Contig15 All 2.65 324 CL1150.Contig17_All ACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCT 232 291 CL1150.Contig18 All 229 ACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCT 288 CL1150.Contig13_All 232 ACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCT 291 CL1150.Contig7 All ACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCACCT 291 232 CL1150.Contig8 All ACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACC 273 232 CL1150.Contig14 All ACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC 265 306 Query 3 748 804 CL1150.Contig16 All 844 CCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTG 903 CL1150.Contig15_All 325 381 CL1150.Contig17 All 292 CCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTG 351 CL1150.Contig18 All 289 CCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTG 348 CL1150.Contig13 All CCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTG 292 351 CL1150.Contig7 All CCTCCCACCATCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACTGTG 292 351 805 GTGATTGGAGTTGCGATCTGGTGGAAGAAGCACTCAGGAGAAAGGACCAGGCTACTCT 864 Query 3 CL1150.Contig16_All GTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTACTCT 904 963 CL1150.Contig15 All 382 GTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGGCTACTCT 441 CL1150.Contig17_All GTGGTTGGAGCTGTGATCTGGAGGAGGAGGAGCGCTCAGGAGGAAAAGGACCAGGCTACTCT 352 411 CL1150.Contig18 All 349 GTGGTTGGAGCTGTGATCTGGAGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTACTCT 408 CL1150.Contig13 All 352 GTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGACCAGGCTACTCT 411 CL1150.Contig7 All GTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGA 352 399 865 CATGCTGCACGCGAT 879 Query 3 CL1150.Contig16 All 964 CATGCTGCA 972 CL1150.Contig15_All 442 CATGCTGCA 450 CL1150.Contig17 All 412 CATGCTGCA 420 CL1150.Contig18_All 409 CATGCTGCA 417 CL1150.Contig13 All 412 CATGCTGCACGCGAT 426

Lambda K H 1.33 0.621 1.12

Gapped
Lambda K H 1.28 0.460 0.850

Effective search space used: 71450352150

Query= JQ425432.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*06 allele, partial cds

-			Score	E	
Sequences producing	signi	ficant alignments:	(Bits)	Value	
CL1150.Contig16_All CL1150.Contig15_All CL1150.Contig15_All CL1150.Contig17_All CL1150.Contig13_All CL1150.Contig13_All CL1150.Contig8_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All CL1150.Contig3_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig2_All	189 486 1 3 45 682 1278 621 20 41 20 52 3 54 1312 1371 1659 1600 970 1 1 36	1160 minus strand MHC class I antigen, p 187 MHC class I antigen, partial [Meles 2 minus strand MHC class I antigen, part 101 minus strand MHC class I antigen, p 1694 minus strand MHC class I antigen [1046 minus strand MHC class I antigen [Ailu 8 minus strand MHC class I antigen [Ailu 6 hypothetical protein PANDA_022308 [Ail 2 minus strand hypothetical protein PAND. 1467 MHC class I antigen, partial [Mele 1526 MHC class I antigen, partial [Mele 1814 MHC class I antigen, partial [Meles 1755 MHC class I antigen, partial [Meles 128 MHC class I antigen, partial [Meles 0 minus strand PREDICTED: LOW QUALITY PR	1365 1031 544 529 521 484 473 383 278 226 226 226 226 226 226 226 222 204	0.0 0.0 1e-153 4e-149 6e-147 8e-136 2e-132 3e-105 1e-73 5e-58 5e-58 5e-58 5e-58 5e-58 7e-57 3e-51	
Query_4 CL1150.Contig16_All CL1150.Contig4_All	1 1 4	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCC GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCC GGCTCCCACTCCCTGAGGTATTTCTACACCC	GCGTGTC GCGTGTC GCGTGTC	CCGGCCCGGC CCGGCCCGGC CCGGCCCGGC	60 60 51
	61				100
Query_4 CL1150.Contig16_All CL1150.Contig4_All	61 61 52	CGCGGGGAACCCCGCTTCATCGCCGTCGGCTACGTGGACGAC CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC	ACGCAGTT ACGCAGTT ACGCAGTT	CGTGCGGTTT CGTGCGGTTC CGTGCGGTTC	120 120 111
Query_4	121	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGCGCGCG	GGGTGGA	GCAGGAGGGG	180
CL1150.Contig16 All	121	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGCGCCGT	IGGATGGA	GCAGGAGGGG	180
CL1150.Contig4 All	112	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGCGCCGT	GGATGGA	GCAGGAGGGG	171
CL1150.Contig22_All	1			GAGGGG	6
Query_4	181	CCGGAGTATTGGGACCGGCAGACGCGGAACCTCAAGGACGCCC	GCACACGC	TTTCCGAGTG	240
CL1150.Contig16_All	181	CCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAGGAAACCA	ACACAGAC	TTACCGAGGG	240
CL1150.Contig4_All CL1150.Contig22_All	172 7	CCGGAGTATTGGGACCAGCAGACGCGGGGGATCAAGGAAACCZ CCGGAGTATTGGGACCGGCAGACGCGGAACCTCAAGGACGCC	ACACAGAC GCACACGC	TTACCGACGG TTTCCGAGTG	231 66
Query 4	241	AACCTGAACACCCTGCGGGACTACTACAACCAGAGCGCGGCCC	GGTCTCA	CACCATCCAG	300
CL1150.Contig16 All	241	AGCCTGAACATCCTGCGGGGGCTACTACAACCAGAGCGCGGCCC	GGTCTCA	CACCATCCAG	300
CL1150.Contig4 All	232	AGCCTGAACAACCTGCGGGGGCTACTACAACCAGAGCGCGGCCC	GGTCTCA	CACCTTCCAG	291
CL1150.Contig22_All	67	AACCTGAACACCCTGCGGGACTACTACAACCAGAGCGCGGCCC	GG		110
Query 4	301	CGCATGTACGGCTGTGATATGGGGCCCCGATGGGCGCCTCCTCC	CGCGGGTA	CAGTCAGGTG	360
CL1150.Contig16_All	301	AACTTGTACGGCTGTGACGTGGGGGCCCGACGGGCGTCTCCTCC	CGCGGGTA	CCGTCAGTTC	360
CL1150.Contig4_All	292	AACATGTACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCC	CGCGGGTA	CCGTCAGTTC	351
Query_4	361	GCCTACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACGGTGGCG	420
CL1150.Contig16_All	361	GCCTACGACGGCGCGGATTACATCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACCGCGGCG	420
CLII50.Contig4_All	352	GCCTACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGC	GCTCCTG	GACCGCGGCG	411
Query_4	421	GACGCCACAGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGC	GATGAGGC	GGAGCATGAG	480
CL1150.Contig16_All	421	GACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGC	GGTGAGGC	AGAGCGCTAC	480
CL1150.Contig4_All	412	GACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGC	GTGAGGC	AGAGCGCTAC	471
Query_4	481	AGGAACTACCTGGAGGTCACGTGCGTGGAGTGGCTCGGCAGG	TACCTGGA	GAACGGGAAG	540
CL1150.Contig16_All	481	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGG	TACCTGGA	GAACGGGAAG	540
CL1150.Contig4_All	472	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGT	TACCTGGA	GAACGGGAAG	531
Query_4	541	GAGTCGCTGCTGCGCGCAGAAACCCCCAATACACACGTGACCC	CGCCACCC	CATCTCTGAC	600
CL1150.Contig16_All	541	GAGTCGCTGCTGCGCGCAGAAACCCCCAATACACACGTGACCC	CGCCACCC	CATCTCTGAC	600
CL1150.Contig4_All	532	GAGTCGCTGCGCGCGCAGAAACCCCCCAATACACACGTGACCC	CGCCACCC	CATCTCTGAC	591
CL1150.Contig17_All	4	GCAGAACCGCCCAACACGCATGACCC	CACCACCC	TATCTCTGAC	48
CL1150.Contig18_All	2	CAGAACCGCCCAACACGCATGACCC	ACCACCC	TATCTCTGAC	45
CLII5U.Contig13_All	4	GCAGAACCGCCCAACACGCATGACCC	CACCACCC	TATCTCTGAC	48
CLII5U.Contig/_All	13	CCCAACACACGTGACCO	CACCACCC	CATCTCTGAC	48
CLII5U.Contig8_All	13	CCCAACACACGTGACCO	CACCACCC	CATCTCTGAC	48
CLII5U.Contig24_All	2		CACCACCC	GATCTCTAAC	45
CLIISU.Contig23_All	2			GATCTCTAAC	45
CLII50.Contig3 All	2	CAGAACCCTCCAACACACGTGACAC	CACCACCC	GATCTCTAAC	45

CL1150.Contig1_All CL1150.Contig2_All	2 4	CAGAACCCTCCAACACACGTGACACACCCCGATCTCTAAC GCAGAACCGCCCAACACACGCATGACCCACCCCTATCTCTGAC	45 48
Ouerv 4	601	CGTGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	660
CL1150.Contig16 All	601	CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	660
CL1150.Contig4 All	592	CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	651
CL1150.Contig15 All	127	GAGATCACCCTGACC	141
CL1150.Contig17 All	49	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	108
CL1150.Contig18 All	46	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	105
CL1150.Contig13 All	49	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	108
CL1150.Contig7_All	49	CATGCTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC	108
CL1150.Contig8_All	49	CATGCTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC	108
CL1150.Contig14_All	127	GAGATCACCCTGACC	141
CL1150.Contig24_All	46	AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	105
CL1150.Contig23_All	46	AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	105
CL1150.Contig3_All	46	AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	105
CL1150.Contig1_All	46	AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	105
CLII50.Contig2_All	49	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	108
Query_4	661	TGGCAGCGAGATGGA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGC	719
CL1150.Contig16_All	661	TGGCAGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGC	719
CL1150.Contig4_All	652	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	702
CL1150.Contig15_All	142		200
CLIISU.Contigl/_AII	109		167
CL1150.Contig18_ALL	100		167
CI1150 Contig15_ALL	109		167
CI1150 Contige All	109		167
CL1150 Contig14 All	142		200
CL1150 Contig24 All	106	TGGAAGGGATGAA-GAGGACCTGACCCAGGACACAGAGCTGTGGAGACCAGGGCC1GC	156
CL1150.Contig23 All	106	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	156
CL1150.Contig3 All	106	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	156
CL1150.Contig1 All	106	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	156
CL1150.Contig2_All	109	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	159
Query 4	720	AGGAGATGGAACCTTCCAGAAGTGGGCGGCCGGCTGTGGTGGTGCCCTTCTGGACAGGAGCAGAG	779
CL1150.Contig16 All	72.0	AGGAGATGGAACCTTCCAGAAGTGGGCCGCTGTGGTTGTGCCCCTCTGGAGAGGAGGAGCAGAG	779
CL1150.Contig15 All	201	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCAGAG	260
CL1150.Contig17 All	168	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	227
CL1150.Contig18 All	165	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	224
CL1150.Contig13 All	168	AGGGAATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	227
CL1150.Contig7 All	168	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	227
CL1150.Contig8 All	168	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	227
CL1150.Contig14_All	201	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	260
Query_4	780	ATACACATGCCATGTGCAGCATGAGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCC	839
CL1150.Contig16_All	780	ATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	839
CL1150.Contig15_All	261	ATACACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCC	320
CL1150.Contig17_All	228	ATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	287
CL1150.Contig18_All	225	ATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	284
CL1150.Contig13_All	228	ATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	287
CL1150.Contig7_All	228	ATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	287
CL1150.Contig8_All CL1150.Contig14_All	228 261	ATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC ATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC	273 306
Ouery A	840	<u> </u>	80 <i>6</i>
CL1150 Contig16 MI	840		200
CL1150 Contig15 All	321		377
CL1150.Contig17 All	288	ACCTCCTCCCACCATCCCCATCATCGTGGATCATTGCTGGCCTGGCCTCCCCCCCC	347
CL1150.Contig18 All	285	ACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCCTCGCCTGGCAGTCAC	344
CL1150.Contig13 All	288	ACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCCTCGCCTCGCCAGTCAC	347
CL1150.Contig7_All	288	ACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCAC	347
Ouerv 4	897	TGCAGTGACTGGAGTTGCGATCTGGTGGAAGAAGCGCTCAGGAGAGAAAGGACCAGGCTA	956
CL1150.Contig16 All	900	TGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTA	959
CL1150.Contig15 All	378	TGCAGTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGGCTA	437
CL1150.Contig17 All	348	TGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTA	407
CL1150.Contig18 All	345	TGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTA	404
CL1150.Contig13 All	348	TGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGACCAGGCTA	407
CL1150.Contig7_All	348	TGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGA	399
Query_4	957	CTCTCATGCTGCACGCGAT 975	
CL1150.Contig16 All	960	CTCTCATGCTGCA 972	
CL1150.Contig15_All	438	CTCTCATGCTGCA 450	
CL1150.Contig17_All	408	CTCTCATGCTGCA 420	
CL1150.Contig18_All	405	CTCTCATGCTGCA 417	
CL1150.Contig13_All	408	CTCTCATGCTGCACGCGAT 426	

Lambda K H 1.33 0.621 1.12

Gapped		
Lambda	K	Н
1.28	0.460	0.850

Effective search space used: 77581675275

Query= JQ425433.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*07 allele, partial cds

CL1150.Contig2 All

CL1150.Contig3 All

CL1150.Contig1 All

4

2

Length=975					
Sequences producing	signi	ficant alignments:	Score (Bits)	E Value	
CL1150.Contig16_All CL1150.Contig14_All CL1150.Contig15_All CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig14_All CL1150.Contig14_All CL1150.Contig2_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig3_All CL1150.Contig1_All	189 486 1 3 45 682 1278 621 20 41 20 52 3 54 970 1 1312 1371 1659 1600	1160 minus strand MHC class I antigen, p 187 MHC class I antigen, partial [Meles 2 minus strand MHC class I antigen, part 101 minus strand MHC class I antigen, p 1694 minus strand MHC class I antigen [046 minus strand MHC class I antigen [Ailu 8 minus strand MHC class I antigen [Ailu 6 hypothetical protein PANDA_022308 [Ail 2 minus strand hypothetical protein PAND 128 MHC class I antigen, partial [Meles 1467 MHC class I antigen, partial [Mele 1526 MHC class I antigen, partial [Mele 1526 MHC class I antigen, partial [Meles 1755 MHC class I antigen, partial [Meles	1493 1242 566 523 516 484 462 366 261 239 231 231 231 231	$\begin{array}{c} 0.0\\ 0.0\\ 3e-160\\ 2e-147\\ 3e-145\\ 8e-136\\ 4e-129\\ 3e-100\\ 1e-68\\ 7e-62\\ 1e-59\\ 1e-59\\ 1e-59\\ 1e-59\\ 1e-59\\ 1e-59\\ 1e-59\end{array}$	
Query_5	1	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCC	GCGTGTC	CCGGCCCGGC	60
CL1150.Contig16_All	1	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCC	GCGTGTC	CCGGCCCGGC	60
CL1150.Contig4_All	4	GGCTCCCACTCCCTGAGGTATTTCTACACCC	GCGTGTC	CCGGCCCGGC	51
Query_5	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACA	ACGCAGTT(CGTGCGGTTC	120
CL1150.Contig16_All	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACA	ACGCAGTT(CGTGCGGTTC	120
CL1150.Contig4 All	52	CGCGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACA	ACGCAGTT)	CGTGCGGTTC	111
Query_5	121	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGCGCCG	IGGATGGA	GCAGGAGGGG	180
CL1150.Contig16_All	121	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGGGCGCCG	IGGATGGA	GCAGGAGGGG	180
CL1150.Contig4_All	112	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGGCGCCG	IGGATGGA	GCAGGAGGGG	171
Query_5	181	CCGGAGTATTGGGACCAGCAGACGCGGGGGATCAAGGAAACCA	ACACAGAC'	TTACCGACGG	240
CL1150.Contig16_All	181	CCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAGGAAACCA	ACACAGAC'	TTACCGAGGG	240
CL1150.Contig4_All	172	CCGGAGTATTGGGACCAGCAGACGCGGGGGATCAAGGAAACCA	ACACAGAC'	TTACCGACGG	231
Query_5	241	AGCCTGAACAACCTGCGGGGCTACTACAACCAGAGCGCGGCCC	GGGTCTCA	CACCTTCCAG	300
CL1150.Contig16_All	241	AGCCTGAACATCCTGCGGGGGCTACTACAACCAGAGCGCGGCCC	GGGTCTCA	CACCATCCAG	300
CL1150.Contig4_All	232	AGCCTGAACAACCTGCGGGGGCTACTACAACCAGAGCGCGGCCC	GGGTCTCA	CACCTTCCAG	291
Query_5	301	AACATGTACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCC	CGCGGGGTA	CAGTCAGCAC	360
CL1150.Contig16_All	301	AACTTGTACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCC	CGCGGGGTA	CCGTCAGTTC	360
CL1150.Contig4_All	292	AACATGTACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCC	CGCGGGGTA	CCGTCAGTTC	351
Query_5	361	TCCTACGACGGCGCGGATTACATCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACCGCGGCG	420
CL1150.Contig16_All	361	GCCTACGACGGCGCGGATTACATCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACCGCGGCG	420
CL1150.Contig4_All	352	GCCTACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACCGCGGGCG	411
Query_5	421	GACACGGCGGCGCAGATCACCCAGCGCAAGTGGGAGGACGCG	GGTGAGGC	AGAGCGCTGG	480
CL1150.Contig16_All	421	GACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCG	GGTGAGGC	AGAGCGCTAC	480
CL1150.Contig4_All	412	GACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCG	GGTGAGGC	AGAGCGCTAC	471
Query_5	481	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGG	FACCTGGA	GAACGGGAAG	540
CL1150.Contig16_All	481	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGG	FACCTGGA	GAACGGGAAG	540
CL1150.Contig4_All	472	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGG	FACCTGGA	GAACGGGAAG	531
Duerv 5	541	GAGTCGCTGCTGCGCGCAGAAACCCCCCAATACACACGTGACCC	CGCCACCC	CATCTCTGAC	600

CL1150.Contig16_All 541 GAGTCGCTGCTGCGCGCAGAAACCCCCCAATACACACGTGACCCGCCACCCCATCTCTGAC 600 CL1150.Contig1_All 53 CL1150.Contig17_All 4 CL1150.Contig17_All 4 CL1150.Contig18_All 2 CL1150.Contig13_All 4 532 GAGTCGCTGCTGCGCGCAGAAACCCCCCAATACACACGTGACCCGCCACCCCATCTCTGAC 591 GCAGAACCGCCCAACACGCATGACCCACCACCCTATCTCTGAC 48 CAGAACCGCCCAACACGCATGACCCACCACCCTATCTCTGAC 45 GCAGAACCGCCCAACACGCATGACCCACCACCCTATCTCTGAC 48 CL1150.Contig7_All 13 CL1150.Contig8_All 13 48

CCCAACACACGTGACCCACCACCCATCTCTGAC CCCAACACACGTGACCCACCACCCATCTCTGAC

48 GCAGAACCGCCCAACACGCATGACCCACCACCTATCTCTGAC 48

CL1150.Contig24 All 2 CAGAACCCTCCAACACACGTGACACACCACCCGATCTCTAAC 45 CL1150.Contig23 All 2 CAGAACCCTCCAACACACGTGACACCACCCCGATCTCTAAC 45 2

CAGAACCCTCCAACACACGTGACACCACCCCGATCTCTAAC 45

 ${\tt CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC}$ Query 5 601 660 CL1150.Contig16 All 601 CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 660 CL1150.Contig4_All 592 CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 651 CL1150.Contig15 All 127 GAGATCACCCTGACC 141 CL1150.Contig17_All 49 CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 108 CL1150.Contig18_All 46 CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 CL1150.Contig13 All 19 CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 108 CL1150.Contig7_All CATGCTAACACCCTGAGGTGATGGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC 49 108 CL1150.Contig8 All 49 CATGCTAACACCCTGAGGTGATGGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC 108 CL1150.Contig14_All 127 GAGATCACCCTGACC 141 CL1150.Contig2 All 49 CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 108 CL1150.Contig24_All 46 AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 CL1150.Contig23 All 46 AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 CL1150.Contig3 All 46 AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 CL1150.Contig1 All AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 46 TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA Query 5 661 720 CL1150.Contig16 All TGGCAGCGAGATGGAGAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA 720 661 CL1150.Contig4_All 652 TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 702 CL1150.Contig15_All TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 142 201 CL1150.Contig17 All 109 TGGCAGCGAGATGGAGAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA 168 CL1150.Contig18 All TGGCAGAGGGATGGAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA 106 165 CL1150.Contig13 All 109 TGGCACCATGAGGAGGAGGACCTGACCCAGGACACAGAACTTGTAGGGACCAGGCCTACA 168 CL1150.Contig7_All TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 109 168 CL1150.Contig8 All 109 TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 168 CL1150.Contig14 All TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 142 201 CL1150.Contig2 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 109 159 1.56 CL1150.Contig24 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 106 CL1150.Contig23 All 106 TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 156 CL1150.Contig3 All 106 TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 156 CL1150.Contig1 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 106 156 GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCAGAGA 780 Query 5 721 CL1150.Contig16_All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 721 780 CL1150.Contig15 All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCAGAGA 202 261 CL1150.Contig17_All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 169 228 CL1150.Contig18 All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 225 166 CL1150.Contig13 All 169 GGGAATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 228 CL1150.Contig7 All 169 GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 228 CL1150.Contig8 All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 169 228 CL1150.Contig14 All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 202 261 TACACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCCA Query_5 781 840 CL1150.Contig16 All TACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 781 840 TACACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCCA CL1150.Contig15 All 2.62 321 CL1150.Contig17_All TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 229 288 CL1150.Contig18 All 226 TACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 285 CL1150.Contig13 All 229 TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 288 CL1150.Contig7 All TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 288 229 CL1150.Contig8 All 229 TACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC 273 CL1150.Contig14 All TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACC 262 306 $\texttt{CCTCG}{--}{-}\texttt{CACCATCCCCATCACATGGATCATTGCTGGTCTGGTTCTCCTGGTGATCATT}$ Query 5 841 897 CL1150.Contig16 All 841 CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 900 CL1150.Contig15_All 322 378 CL1150.Contig17 All 289 CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 348 CL1150.Contig18 All 286 CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 345 CL1150.Contig13 All CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 289 348 CL1150.Contig7 All CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 289 348 GCAGTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGGCTAC Query_5 898 957 CL1150.Contig16_All GTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC 901 960 CL1150.Contig15 All 379 GCAGTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGGCTAC 438 CL1150.Contig17_All GTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC 349 408 CL1150.Contig18 All 346 GTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC 405 CL1150.Contig13 All 349 GTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC 408 CL1150.Contig7 All GTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGA 349 399 958 TCTCATGCTGCACGCGAT 975 Query 5 CL1150.Contig16 All 961 TCTCATGCTGCA 972 CL1150.Contig15_All 439 TCTCATGCTGCA 450 CL1150.Contig17 All 409 TCTCATGCTGCA 420 CL1150.Contig18_All 406 TCTCATGCTGCA 417 CL1150.Contig13 All 409 TCTCATGCTGCACGCGAT 426

Lambda K H 1.33 0.621 1.12

Gapped

Lambda K H 1.28 0.460 0.850

Effective search space used: 77581675275

Query= JQ425431.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*05 allele, partial cds

-			Score	F	
Sequences producing	signif	icant alignments:	(Bits)	Value	
CL1150.Contig16_All CL1150.Contig15_All CL1150.Contig15_All CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig24_All CL1150.Contig24_All CL1150.Contig23_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig2_All	189 1 486 11 3 452 682 1 1278 621 1 20 418 20 526 3 542 1371 1659 1 1669 1 1660 1 970 11 1 360	160 minus strand MHC class I antigen, p 87 MHC class I antigen, partial [Meles 9 minus strand MHC class I antigen, part 101 minus strand MHC class I antigen [046 minus strand MHC class I antigen [046 minus strand MHC class I antigen [Ailu 046 minus strand MHC class I antigen [Ailu 047 minus strand MHC class I antigen [Ailu 048 minus strand MHC class I antigen [Ailu 049 minus strand MHC class I antigen [Ailu 040 minus strand MHC class I antigen [Ailu 040 minus strand MHC class I antigen [Ailu 040 minus strand hypothetical protein PAND 1467 MHC class I antigen, partial [Mele 1526 MHC class I antigen, partial [Meles 755 MHC class I antigen, partial [Meles 28 MHC class I antigen, partial [Meles 040 minus strand PREDICTED: LOW QUALITY PR	1360 1009 544 521 484 473 377 272 220 220 220 220 220 220 217 198	0.0 1e-153 2e-152 6e-147 8e-136 2e-132 1e-103 7e-72 3e-56 3e-56 3e-56 3e-56 3e-55 1e-49	
Query_6	1	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCC	GCGTGTC	CCGGCCCGGC	60
CL1150.Contig16_All	1	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCC	GCGTGTC	CCGGCCCGGC	60
CL1150.Contig4_All	4	GGCTCCCACTCCCTGAGGTATTTCTACACCC	GCGTGTC	CCGGCCCGGC	51
Query_6	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC	ACGCAGTT	CGTGCGGTTC	120
CL1150.Contig16_All	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC	ACGCAGTT	CGTGCGGTTC	120
CL1150.Contig4_All	52	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC	ACGCAGTT	CGTGCGGTTC	111
Query_6 CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig22_All	121 121 112 1	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGCGCCGT GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGGGCGCCGT GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGGGCGCCGT	IGGATGGA IGGATGGA IGGATGGA	GCAGGAGGGG GCAGGAGGGG GCAGGAGGGG GAGGGG	180 180 171 6
Query_6	181	CCGGAGTATTGGGACCGGCAGACGCGGAACCTCAAGGACGCCG	GCACACGC	TTTCCGAGTG	240
CL1150.Contig16_All	181	CCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAGGAAACCA	ACACAGAC	TTACCGAGGG	240
CL1150.Contig4_All	172	CCGGAGTATTGGGACCAGCAGACGCGGGGGATCAAGGAAACCA	ACACAGAC	TTACCGACGG	231
CL1150.Contig22_All	7	CCGGAGTATTGGGACCGGCAGACGCGGAACCTCAAGGACGCCG	GCACACGC	TTTCCGAGTG	66
Query_6 CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig22_All	241 241 232 67	AACCTGAACACCCTGCGGGACTACTATAACCAGAGCGCGGCCC AGCCTGAACATCCTGCGGGGCTACTACAACCAGAGCGCGGCCC AGCCTGAACAACCTGCGGGGGCTACTACAACCAGAGCGCGGCCC AACCTGAACACCCTGCGGGACTACTACAACCAGAGCGCGGCCC	GGTCTCA GGTCTCA GGTCTCA GG	CACCATCCAG CACCATCCAG CACCTTCCAG	300 300 291 110
Query_6	301	CGCATGTACGGCTGTGACGTGGGGCCCGACGGCCGCCTCCTCC	CGCGGGGTA	CAGTCAGGTG	360
CL1150.Contig16_All	301	AACTTGTACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCC	CGCGGGGTA	CCGTCAGTTC	360
CL1150.Contig4_All	292	AACATGTACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCC	CGCGGGGTA	CCGTCAGTTC	351
Query_6	361	GCCTACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACGGTGGCG	420
CL1150.Contig16_All	361	GCCTACGACGGCGCGGATTACATCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACCGCGGCG	420
CL1150.Contig4_All	352	GCCTACGACGGCGCGGGATTACCTCGCCCTGAACGAGGACCTGC	CGCTCCTG	GACCGCGGCG	411
Query_6	421	GACGCCACAGCGCAGATCTCCCGGCGCAAGTGGGAGGCGGCG	GATGAGGC	GGAGCATGAG	480
CL1150.Contig16_All	421	GACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGG	GGTGAGGC	AGAGCGCTAC	480
CL1150.Contig4_All	412	GACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGG	GGTGAGGC	AGAGCGCTAC	471
Query_6	481	AGGAACTACCTGGAGGTGACATGCCTGGAGTGGCTCCACAGGT	PACCTGGA	GAACGGGAAG	540
CL1150.Contig16_All	481	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGT	PACCTGGA	GAACGGGAAG	540
CL1150.Contig4_All	472	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGG	PACCTGGA	GAACGGGAAG	531
Query_6 CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig17_All CL1150.Contig13_All CL1150.Contig13_All CL1150.Contig7_All CL1150.Contig2_All CL1150.Contig23_All CL1150.Contig23_All	541 541 532 4 2 4 13 13 2 2 2	GAGTCGCTGCTGCGCGCAGAAACCCCCAATACACACGTGACCC GAGTCGCTGCTGCGCGCAGAAACCCCCCAATACACACGTGACCC GAGTCGCTGCTGCGCGCAGAAACCCCCCAATACACACGTGACCC GCAGAACCGCCCAACACACGCATGACCC GCAGAACCGCCCAACACACGCATGACCC CCCAACACACACGTGACCC CAGAACCCTCCAACAACACGTGACCC CAGAACCCTCCAACACACGTGACAC CAGAACCCTCCAACACACACGTGACAC	CGCCACCC CGCCACCC CACCACCC CACCACCC CACCACCC CACCAC	CATCTCTGAC CATCTCTGAC TATCTCTGAC TATCTCTGAC TATCTCTGAC CATCTCTGAC CATCTCTGAC GATCTCTAAC GATCTCTAAC GATCTCTAAC	600 600 591 48 45 48 48 48 45 45 45

CL1150.Contig1_All CL1150.Contig2_All	2 4	CAGAACCCTCCAACACACGTGACACACCCGCGATCTCTAAC GCAGAACCGCCCAACACACGCATGACCCACCCCTATCTCTGAC	45 48
Query 6	601	CGTGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	660
CL1150.Contig16 All	601	CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	660
CL1150.Contig4 All	592	CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	651
CL1150.Contig15_All	127	GAGATCACCCTGACC	141
CL1150.Contig17_All	49	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	108
CL1150.Contig18_All	46	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	105
CL1150.Contig13_All	49	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	108
CL1150.Contig7_All	49	CATGCTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC	108
CL1150.Contig8_All	49	CATGCTAACACCCTGAGGTGATGGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC	108
CL1150.Contig14_All	127	GAGATCACCCTGACC	141
CLII50.Contig24_AII	46		105
CLII50.Contig23_AII	46		105
CL1150.Contigs_ALL	46		105
CL1150.Contig2_All	49	CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC	103
Query 6	661		719
CL1150 Contig16 All	661	TGGCAGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGC	719
CL1150.Contig4 All	652	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	702
CL1150.Contig15 All	142	TGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGC	200
CL1150.Contig17 All	109	TGGCAGCGAGATGGA-GAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGC	167
CL1150.Contig18 All	106	TGGCAGAGGGATGGA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGC	164
CL1150.Contig13_All	109	TGGCACCATGA-GGAGGAGGACCTGACCCAGGACACAGAACTTGTAGGGACCAGGCCTAC	167
CL1150.Contig7_All	109	TGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGC	167
CL1150.Contig8_All	109	TGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGC	167
CL1150.Contig14_All	142	TGGCAGAGGGATGGA-GAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGC	200
CL1150.Contig24_All	106	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	156
CL1150.Contig23_All	106	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	156
CL1150.Contig3_All	106	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	156
CLII50.Contigl_All	106 109	TGGAAGCGAGATGAA-GAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC	150
CLIIJU.CONCIG2_AII	109	IGAAGCGAGAIGAA GAGGACCIGACCAGGACACAGAGCICGIGGAGACC	139
Query_6	720	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCAGAG	779
CL1150.Contig16_All	720	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	779
CLII50.Contig15_All	201	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGGTGCCTTCTGGACAGGAGCAGAG	260
CLII50.Contigl/_All	168		227
CLIISU.CONLIGI8_AII	100		224
CL1150.Contig15_ALL	160		227
CL1150 Contige All	168		227
CL1150.Contig14_All	201	AGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAG	260
Query 6	780	ATACACATGCCATGCCAGCATGAGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCC	839
CL1150.Contig16 All	780	ATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	839
CL1150.Contig15_All	261	ATACACATGCTATGTGCAGCATGAGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCC	320
CL1150.Contig17_All	228	ATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	287
CL1150.Contig18_All	225	ATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	284
CL1150.Contig13_All	228	ATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	287
CL1150.Contig7_All	228	ATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCC	287
CL1150.Contig8_All	228	ATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC	273
CLIIJU.CONCIGI4_AII	201	AIACAIGCCAIGIGCAGCAIAAGGGGCIGCCIGAGCCCAICACC	500
Query_6	840	ACCTCGCACCATCCCCATCACATGGATCATTGCTGGTCTGGT	896
CL1150.Contig16_All	840	ACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCAC	899
CLII50.Contig15_All	321	ACCTCGCACCATCCCCATCACATGGATCATTGCTGGTCTGGT	3//
CL1150.Contig17_All	200		24/
CI1150 Contig13 All	200		344
CL1150.Contig7_All	288	ACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCAC	347
	007		050
GI1150 Contig16 All	897		950
CL1150 Contig15 All	379 379		229 427
CL1150 Contig17 All	348	TGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAGGAGGAGGCCCAGGCIAAAAGGACCAGGCIA	407
CL1150.Contig18 All	345	TGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAGGAGGGAG	404
CL1150.Contig13 All	348	TGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGACCAGGCTA	407
CL1150.Contig7_All	348	TGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGA	399
Query_6	957	CTCTCATGCTGCACGCGAT 975	
CL1150.Contig16_All	960	CTCTCATGCTGCA 972	
CL1150.Contig15_All	438	CTCTCATGCTGCA 450	
CL1150.Contig17_All	408	CTCTCATGCTGCA 420	
CL1150.Contig18_All	405	CTCTCATGCTGCA 417	
CL1150.Contig13_All	408	CTCTCATGCTGCACGCGAT 426	

Gapped		
Lambda	K	Н
1.28	0.460	0.850

Effective search space used: 77581675275

Query= JQ425430.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*04 allele, partial cds

Length=975

Bengen-975			0		
Sequences producing	signi	ficant alignments:	(Bits)	Value	
CL1150.Contig16_All CL1150.Contig17_All CL1150.Contig17_All CL1150.Contig18_All CL1150.Contig15_All CL1150.Contig13_All CL1150.Contig14_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig2_All CL1150.Contig3_All CL1150.Contig3_All CL1150.Contig1_All CL1150.Contig3_All CL1150.Contig3_All CL150.Contig3_All CL150.Contig3_All CL150.Contig3_All	189 486 1 682 1278 3 45 621 20 42 3 54 970 1 1312 1371 1650 2 109 1 36	1160 minus strand MHC class I antigen, p 187 MHC class I antigen, partial [Meles 1694 minus strand MHC class I antigen, p 2 minus strand MHC class I antigen, part 1046 minus strand MHC class I antigen, part 8 minus strand MHC class I antigen, p 8 minus strand MHC class I antigen, [Ailu 6 hypothetical protein PANDA_022308 [Ail 2 minus strand hypothetical protein PAND 128 MHC class I antigen, partial [Meles 1467 MHC class I antigen, partial [Meles 1526 MHC class I antigen, partial [Meles 1814 MHC class I antigen, partial [Meles 1815 MHC class I antigen, partial [Meles 1755 MHC class I antigen, partial [Meles 0 minus strand MHC class I antigen, partial [Meles	1437 1053 545 538 507 484 366 261 239 231 231 231 231 137 110	0.0 4e-154 6e-152 2e-142 8e-136 3e-100 1e-68 7e-62 1e-59 1e-59 1e-59 1e-59 1e-59 1e-59 3e-31 6e-23	
Query_7	1	GAGACCTGGGCGGGCTCCCACTCCTGAGGTATTTCTCCACC	GCGGTGTC	CCGGCCCGGC	60
CL1150.Contig16_All	1	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACC	GGCGTGTC	CCGGCCCGGC	60
CL1150.Contig4_All	4	GGCTCCCACTCCCTGAGGTATTTCTACACC	GGCGTGTC	CCGGCCCGGC	51
Query_7	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC	ACGCAGTT	CGTGCGGTTC	120
CL1150.Contig16_All	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC	ACGCAGTT	CGTGCGGTTC	120
CL1150.Contig4_All	52	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGAC	ACGCAGTT	CGTGCGGTTC	111
Query_7 CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig22_All	121 121 112 1	GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGCGCCG' GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGCGCCG' GACAGCGACTCTGCCAGTCGGAGGATGGAGCCGCGGGGCGCCG'	IGGGTGGA IGGATGGA IGGATGGA	AGCAGGAGGGG AGCAGGAGGGG AGCAGGAGGGG GAGGGG	180 180 171 6
Query_7	181	CCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAGGACGCC	GCACAGAC	TTACCGAGGG	240
CL1150.Contig16_All	181	CCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAGGAAACC	ACACAGAC	TTACCGAGGG	240
CL1150.Contig4_All	172	CCGGAGTATTGGGACCAGCAGACGCGGGGGATCAAGGAAACC	ACACAGAC	TTACCGACGG	231
CL1150.Contig22_All	7	CCGGAGTATTGGGACCGGCAGACGCGGAACCTCAAGGACGCC	GCACACGC	TTTCCGAGTG	66
Query_7 CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig22_All	241 241 232 67	AACCTGCAGACCGCACT-CCG-CTACTACAACCAGAGCGCC AGCCTG-A-ACATC-CTGCGGGG-CTACTACAACCAGAGCGCC AGCCTG-A-ACAAC-CTGCGGGG-CTACTACAACCAGAGCGCC AACCTGAACACC-CTGC-GGGACTACTACAACCAGAGCGCC	GGCCGGGT GGCCGGGT GGCCGGGT GGCCGG	CTCACACCAT CTCACACCAT CTCACACCTT	296 296 287 110
Query_7	297	CCAGAACGTGTACGGCTGTGATGTGGGGCGCGACGGGCGTCT	CCTCCGCG	GATACAGTCA	356
CL1150.Contig16_All	297	CCAGAACTTGTACGGCTGTGACGTGGGGCCCGACGGGCGTCT	CCTCCGCG	GGTACCGTCA	356
CL1150.Contig4_All	288	CCAGAACATGTACGGCTGTGACGTGGGGCCCGACGGGCGTCT	CCTCCGCG	GGTACCGTCA	347
Query_7	357	GGACTCCTACGACGGCGCGGATTACATCGCCCTGAACGAGGA	CCTGCGCT	CCTGGACCGC	416
CL1150.Contig16_All	357	GTTCGCCTACGACGGCGCGGGATTACATCGCCCTGAACGAGGA	CCTGCGCT	CCTGGACCGC	416
CL1150.Contig4_All	348	GTTCGCCTACGACGGCGCGGGATTACCTCGCCCTGAACGAGGA	CCTGCGCT	CCTGGACCGC	407
Query_7	417	GGCGGACACGGCGGCGCAGATCACCCAGCGCAAGTGGGAGGA	CGCGGGTG	CGGCAGAGCG	476
CL1150.Contig16_All	417	GGCGGACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGA	CGCGGGTG	AGGCAGAGCG	476
CL1150.Contig4_All	408	GGCGGACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGA	CGCGGGTG	AGGCAGAGCG	467
Query_7	477	CTGGAGGAACTACCTGGAGGTCACGTGCGTGGAGTGGCTCGG	CAGGTACC	TGGAGAACGG	536
CL1150.Contig16_All	477	CTACAGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGG	CAGGTACC	TGGAGAACGG	536
CL1150.Contig4_All	468	CTACAGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGG	CAGGTACC	TGGAGAACGG	527
Query_7 CL1150.Contig16 All	537 537	GAAGGAGTCGCTGCTGCGCGCAGAAACCCCCAATACACACGT GAAGGAGTCGCTGCTGCGCGCAGAAACCCCCCAATACACACGT	GACCCGCC	ACCCCATCTC	596 596

587 44 41 CL1150.Contig13 All 4 CL1150.Contig7 All 13 CL1150.Contig8 All 13 GCAGAACCGCCCAACACGCATGACCCACCACCTATCTC 44 CCCAACACACGTGACCCACCACCCATCTC

44 CCCAACACACGTGACCCACCACCCATCTC 44

CL1150.Contig2 All GCAGAACCGCCCAACACGCATGACCCACCACCCTATCTC Δ 11 CL1150.Contig24_All 2 CAGAACCCTCCAACACACGTGACACACCACCCGATCTC 41 CL1150.Contig23 All CAGAACCCTCCAACACACACGTGACACACCACCCGATCTC 41 2 CL1150.Contig3_All 2 CAGAACCCTCCAACACACGTGACACACCACCCGATCTC 41 CL1150.Contig1 All 2 CAGAACCCTCCAACACACGTGACACACCACCCGATCTC 41 Ouery 7 597 TGACCGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 656 CL1150.Contig16_All 597 TGACCGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 656 CL1150.Contig4_All TGACCGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 588 647 CL1150.Contig17 All 45 TGACCATGCTGTCACCCTGAGGTGCTGGGCCCCTGGACTTCTACCCTGCGGAGATCACCCCT 104 CL1150.Contig18_All TGACCATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 42 101 CL1150.Contig15 All 127 GAGATCACCCT 137 CL1150.Contig13_All 45 TGACCATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 104 CL1150.Contig7 All 45 TGACCATGCTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCT 104 CL1150.Contig8 All 45 TGACCATGCTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCT 104 CL1150.Contig14 All GAGATCACCCT 137 127 45 CL1150.Contig2 All TGACCATGCTGTCACCCTGAGGTGCTGGGCCCCTGGACTTCTACCCTGCGGAGATCACCCCT 104 CL1150.Contig24_All TAACAATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 101 42 CL1150.Contig23 All 42 TAACAATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCCT 101 CL1150.Contig3_All TAACAATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 101 42 CL1150.Contig1 All 42 TAACAATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCT 101 657 GACCTGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCC 716 Ouery 7 CL1150.Contig16 All 657 GACCTGGCAGCGAGATGGAGAGGGCCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCC 716 CL1150.Contig4_All GACCTGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 702 648 CL1150.Contig17 All 105 GACCTGGCAGCGAGATGGAGAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCC 164 CL1150.Contig18 All GACCTGGCAGAGGGATGGAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCC 102 161 CL1150.Contig15 All GACCTGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCC 138 197 CL1150.Contig13 All GACCTGGCACCATGAGGAGGAGGACCTGACCCAGGACACAGAACTTGTAGGGACCAGGCC 105 164 CL1150.Contig7 All 105 GACCTGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCC 164 CL1150.Contig8 All 105 GACCTGGCAGAGGGATGGAGAGGGCCAGGACCAGGGACACAGAGCTTGTGGAGACCAGGCC 164 CL1150.Contig14 All 138 GACCTGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCC 197 CL1150.Contig2 All 105 GACCTGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 159 CL1150.Contig24 All GACCTGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 156 102 CL1150.Contig23 All GACCTGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 102 156 CL1150.Contig3 All GACCTGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 102 156 CL1150.Contig1 All GACCTGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 102 156 Ouery 7 717 TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCA 776 CL1150.Contig16 All 717 TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCA 776 CL1150.Contig17_All TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCA 165 224 CL1150.Contig18 All TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCA 162 221 CL1150.Contig15 All TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCA 198 257 CL1150.Contig13 All TACAGGGAATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCA 165 2.2.4 CL1150.Contig7_All TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCA 165 224 CL1150.Contig8 All 165 TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCA 2.2.4 CL1150.Contig14_All TGCAGGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCA 198 257 Ouery ' 777 GAGATACACATGCTATGTGCAGCATGAGGGGCTGTCTGAACCCATCACCCGGAGATGGGA 836 CL1150.Contig16 All GAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAA 777 836 CL1150.Contig17_All GAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAA 225 284 CL1150.Contig18 All 222 GAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAA 281 CL1150.Contig15 All GAGATACACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGA 258 317 CL1150.Contig13 All 225 GAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAA 284 CL1150.Contig7 All 225 GAGATACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAA 284 CL1150.Contig8 All GAGATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACC 225 273 CL1150.Contig14 All 258 GAGATACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACC 306 893 Query 7 837 CL1150.Contig16 All GCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGT 837 896 CL1150.Contig17 All 285 GCCACCTCCTCCCACCATCCTCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGT 344 GCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGT CL1150.Contig18 All 282 341 CL1150.Contig15_All 318 374 CL1150.Contig13 All 285 GCCACCTCCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGT 344 CL1150.Contig7_All GCCACCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGT 285 344 CL7631.Contig3 All 4 56 ${\tt CATTGCAGTGATTGGAGCTGTGATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGG$ Query 7 894 953 CL1150.Contig16 All CACTGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGG 897 956 CL1150.Contig17_All CACTGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGG 345 404 CL1150.Contig18 All 342 CACTGTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGG 401 CATTGCAGTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGG CL1150.Contig15 All 375 434 CL1150.Contig13 All 345 CACTGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGACCAGG 404 CL1150.Contig7_All CACTGTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGA 345 399 CL7631.Contig3 All 57 CACTGTGGTGATTGGAGCTGTGATCTGGTGGAAGAAGCGCTCAGG 101 954 CTACTCTCATGCTGCACGCGAT 975 Ouery 7 CL1150.Contig16 All CTACTCTCATGCTGCA 972 957 CL1150.Contig17 All 405 CTACTCTCATGCTGCA 420 CL1150.Contig18 All 402 CTACTCTCATGCTGCA 417 CL1150.Contig15 All 435 CTACTCTCATGCTGCA 450

CL1150.Contig13_All 405 CTACTCTCATGCTGCACGCGAT 426

Lambda	K	н
1.33	0.621	1.12
Gapped Lambda	ĸ	н

Lambda к п 1.28 0.460 0.850

Effective search space used: 77581675275

Query= JQ425429.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*03 allele, partial cds

Lengen-975		Score	F
Sequences producing a	significant alignments:	(Bits)	Value
bequences producing .	organizioano arrgimeneo.	(2100)	Varao
CL1150.Contig16 All	189 1160 minus strand MHC class I antigen, p	1531	0.0
CL1150.Contig4 All	486 1187 MHC class I antigen, partial [Meles	1214	0.0
CL1150.Contig15 All	3 452 minus strand MHC class I antigen, part	566	3e-160
CL1150.Contig17 All	682 1101 minus strand MHC class I antigen, p	523	2e-147
CL1150.Contig18 All	1278 1694 minus strand MHC class I antigen [516	3e-145
CL1150.Contig13_All	621 1046 minus strand MHC class I antigen, p	484	8e-136
CL1150.Contig7 All 2	20 418 minus strand MHC class I antigen [Ailu	462	4e-129
CL1150.Contig8_All 2	20 526 hypothetical protein PANDA_022308 [Ail	366	3e-100
CL1150.Contig14_All	3 542 minus strand hypothetical protein PAND	261	1e-68
CL1150.Contig2_All 9	970 1128 MHC class I antigen, partial [Meles	239	7e-62
CL1150.Contig24_All	1312 1467 MHC class I antigen, partial [Mele	231	1e-59
CL1150.Contig23_All	1371 1526 MHC class I antigen, partial [Mele	231	1e-59
CL1150.Contig3_All 3	1659 1814 MHC class I antigen, partial [Meles	231	1e-59
CL1150.Contig1_All	1600 1755 MHC class I antigen, partial [Meles	231	1e-59

Query_8	1	GAGACCTGGGCGGGCTCCCACTCCCTGAGGTATTTCTACACCGGCGTGTCCCGGCCCGGC	60 60
CL1150.Contig4_All	4	GGCTCCCACTCCTGAGGTATTTCTACACCGGCGTGTCCCGGCCCGGC	51
Query_8	61	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACGCGCAGTTCGTGCGGTTC	120
CL1150.Contig16_All CL1150.Contig4_All	61 52	CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACACGCAGTTCGTGCGGTTC CGCGGGGAGCCCCGCTTCATCGCCGTCGGCTACGTGGACGACACGCAGTTCGTGCGGTTC	120
Query_8	121	GACAGCGACTCTGCCAGTCTGAGGATGGAGCCGCGGGGCGCCGTGGATGGA	180
CL1150.Contig4_All	112	GACAGCGACTCTGCCAGTCGAGGATGGAGCCGCGGGGCGCCGTGGATGGA	171
Query_8	181	CCGGAGTATTGGGACCGGGAGACCCGGAACCTCAAGGAAACCACACAGACTTACCGAGTG	240
CL1150.Contig16_All	181	CCGGAGTATTGGGACCGGCAGACGCAGATCTGCAAGGAAACCACACAGACTTACCGAGGG	240
CL1150.Contig4_All	172	CCGGAGTATTGGGACCAGCAGACGCGGGGGGGTCAAGGAAACCACACAGACTTACCGACGG	231
Query_8	241	AACCTGAACAACCTGCGGGGCTACTACAACCAGAGCGCGGCCGGGTCTCACACCATCCAG	300
CL1150.Contig16_All	241	AGCCTGAACATCCTGCGGGGCTACTACAACCAGAGCGCGGCCGGGTCTCACACCATCCAG	300
CLIISU.Contig4_AII	232	AGCCTGAACAACCTGCGGGGCTACTACAACCAGAGCGCGGGCCGGGTCTCACACCTTCCAG	291
Query_8	301	AACTTGTACGGCTGTGACGTGGGGGCCCGACGGGCGTCTCCTCCGCGGGTACCGTCAGTTC	360
CL1150.Contig16_All	301	AACTTGTACGGCTGTGACGTGGGGCCCCGACGGGCGTCTCCTCCGCGGGGTACCGTCAGTTC	360
CLII50.Contig4_All	292	AACATGTACGGCTGTGACGTGGGGGCCCGACGGGCGTCTCCTCCGCGCGGFACCGTCAGTTC	351
Query_8	361	GCCTACGACGGCGCGGATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGCG	420
CL1150.Contig16_All	361	GCCTACGACGGCGCGGGATTACATCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGCG	420
CLIIJO.CONCIG4_AII	552	GCCTACGACGGGGGATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGGG	411
Query_8	421	GACACGGCGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGCTAC	480
CL1150.Contig16_All	421	GACACGGCGGCGCAGATCTCCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGCTAC	480
CLIISU.CONLIG4_AII	412	GACACGGCGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGCTAC	4/1
Query_8	481	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAG	540
CL1150.Contig16_All	481	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAG	540
CL1150.Contig4_All	472	AGGAACTATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAG	531
Query_8	541	GAGTCGCTGCTGCGCGCAGAAACCCCCAATACACACGTGACCCGCCACCCCATCTCTGAC	600
CL1150.Contig16_All	541	GAGTCGCTGCTGCGCGCAGAAACCCCCCAATACACACGTGACCCGCCACCCCATCTCTGAC	600
CL1150 Contig17 All	332 4		78
CL1150.Contig18 All	2	CAGAACCGCCCAACACGCATGACCCCACCACCTATCTCTGAC	45
CL1150.Contig13 All	4	GCAGAACCGCCCAACACGCATGACCCACCACCTATCTCTGAC	48
CL1150.Contig7_All	13	CCCAACACACGTGACCCACCCCCATCTCTGAC	48
CL1150.Contig8_All	13	CCCAACACACGTGACCCACCACCATCTCTGAC	48

CL1150.Contig2 All GCAGAACCGCCCAACACGCATGACCCACCACCCTATCTCTGAC Δ 18 CL1150.Contig24_All 2 CAGAACCCTCCAACACACGTGACACCACCCCGATCTCTAAC 45 CL1150.Contig23 All CAGAACCCTCCAACACACACGTGACACACCACCCGATCTCTAAC 45 2 CL1150.Contig3_All 2 CAGAACCCTCCAACACACGTGACACACCACCCGATCTCTAAC 45 CL1150.Contig1 All 2 CAGAACCCTCCAACACACGTGACACACCACCCCGATCTCTAAC 45 Query 8 601 CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 660 CL1150.Contig16 All 601 CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 660 CL1150.Contig4 All CGTGATGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 592 651 CL1150.Contig15 All 127 GAGATCACCCTGACC 141 49 CL1150.Contig17_All CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 108 CL1150.Contig18 All 46 CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 108 CL1150.Contig13_All 49 CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC CL1150.Contig7 All 49 CATGCTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC 108 CL1150.Contig8 All 49 ${\tt CATGCTAACACCCTGAGGTGATGGGCCCTGGACTTCTACCCTGCAGAGATCACCCTGACC}$ 108 CL1150.Contig14 All GAGATCACCCTGACC 127 141 CL1150.Contig2 All 19 CATGCTGTCACCCTGAGGTGCTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 108 CL1150.Contig24 All AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 46 CL1150.Contig23 All AATGATGTCACCCTGAGGTGTTGGGCCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 46 CL1150.Contig3_All 46 AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC 105 AATGATGTCACCCTGAGGTGTTGGGCCCTGGACTTCTACCCTGCGGAGATCACCCTGACC CL1150.Contig1 All 46 105 661 TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA 720 Ouerv 8 CL1150.Contig16 All 661 TGGCAGCGAGATGGAGAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA 720 CL1150.Contig4 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 702 652 CL1150.Contig15 All 142 TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 201 CL1150.Contig17 All TGGCAGCGAGATGGAGAGGACCTAACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA 109 168 CL1150.Contig18 All TGGCAGAGGGATGGAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACCAGGCCTGCA 106 165 CL1150.Contig13 All TGGCACCATGAGGAGGAGGACCTGACCCAGGACACAGAACTTGTAGGGACCAGGCCTACA 109 168 CL1150.Contig7 All 109 TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 168 CL1150.Contig8 All 109 TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 168 CL1150.Contig14 All 142 TGGCAGAGGGATGGAGAGGACCAGACCCAGGACACAGAGCTTGTGGAGACCAGGCCTGCA 201 CL1150.Contig2 All 109 TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 159 CL1150.Contig24 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 156 106 CL1150.Contig23 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 106 156 CL1150.Contig3 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 106 156 CL1150.Contig1 All TGGAAGCGAGATGAAGAGGACCTGACCCAGGACACAGAGCTCGTGGAGACC 106 156 Ouery 8 721 GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCAGAGA 780 CL1150.Contig16 All 721 GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 780 CL1150.Contig15_All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTGGTGCCTTCTGGACAGGAGCAGAGA 202 261 CL1150.Contig17_All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 169 228 CL1150.Contig18 All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 166 225 CL1150.Contig13 All GGGAATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 169 228 CL1150.Contig7_All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 169 228 GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA CL1150.Contig8 All 169 228 CL1150.Contig14_All GGAGATGGAACCTTCCAGAAGTGGGCGGCTGTGGTTGTGCCCTCTGGAGAGGAGCAGAGA 202 261 Ouerv 8 781 TACACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCCA 840 CL1150.Contig16 All TACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 781 840 CL1150.Contig15_All TACACATGCTATGTGCAGCATGAGGGGGCTGTCTGAACCCATCACCCGGAGATGGGAGCCA 262 321 CL1150.Contig17 All 229 TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 288 CL1150.Contig18 All TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 226 285 CL1150.Contig13 All TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 229 288 CL1150.Contig7 All 229 TACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACCTTGAGTTGGAAGCCA 288 CL1150.Contig8 All TACACATGCCATGTGCAGCATAAGGGGCTGCCTGAGCCCATCACC 229 273 CL1150.Contig14 All 262 TACACATGCCATGTGCAGCATAAGGGGGCTGCCTGAGCCCATCACC 306 897 Query 8 841 CL1150.Contig16 All CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 841 900 CL1150.Contig15 All 322 378 CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT CL1150.Contig17 All 289 348 CL1150.Contig18 All CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 286 345 CL1150.Contig13 All 289 CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 348 CL1150.Contig7 All 289 CCTCCTCCCACCATCCCCATCATGTGGATCATTGCTGGCCTGGCTCTCCTGGCAGTCACT 348 Ouerv 8 898 GCAGTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGGCTAC 957 CL1150.Contig16 All GTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC 901 960 CL1150.Contig15 All GCAGTGATTGGAGTTGCAATCTGGTGGAAGAAGCGCTCAGGAGAAAAAGGACCAGGCTAC 379 438 GTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC CL1150.Contig17_All 349 408 CL1150.Contig18 All 346 GTGGTGGTTGGAGCTGTGATCTGGAGGAGGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC 405 CL1150.Contig13_All GTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGACCAGGCTAC 349 408 CL1150.Contig7 All 349 GTGGTGGTTGGAGCTGTGATCTGGAGGAAGAAGCGCTCAGGAGGAAAAGGA 399 Query_8 958 TCTCATGCTGCACGCGAT 975 CL1150.Contig16 All 961 TCTCATGCTGCA 972 CL1150.Contig15 All 439 TCTCATGCTGCA 450 CL1150.Contig17 All 409 TCTCATGCTGCA 420 CL1150.Contig18 All 406 TCTCATGCTGCA 417 CL1150.Contig13_All 409 TCTCATGCTGCACGCGAT 426

Lambda K H 1.33 0.621 1.12

Gapped Lambda K H 1.28 0.460 0.850

Effective search space used: 77581675275

Query= JQ425428.1 Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*02 allele, partial cds

Length=543

Sequences producing significant alignments:	Score (Bits)	E Value
CL1150.Contig16_All 189 1160 minus strand MHC class I antigen, p	832	0.0
CL1150.Contig4_All 486 1187 MHC class I antigen, partial [Meles	776	0.0
CL1150.Contig22_All 1 360 minus strand PREDICTED: LOW QUALITY PR	115	7e-25

Query_9	1	GGCTCCCACTCCCTGAGGTATTTCTCCACCGCGGTGTCCCCGGCCCGGCCGG	60
CL1150.Contig16_All	13	GGCTCCCACTCCCTGAGGTATTTCTACACCGGCGTGTCCCGGCCCGGCCGCGGGGAGCCC	72
CL1150.Contig4_All	4	GGCTCCCACTCCCTGAGGTATTTCTACACCGGCGTGTCCCGGCCCGGCCGG	63
Query 9	61	CGCTTCATCGCCGTCGGCTACGTGGACGACACGCAGTTCGTGCGGTTCGACAGCGACTCT	120
CL1150.Contig16 All	73	CGCTTCATCGCCGTCGGCTACGTGGACGACGCAGTTCGTGCGGTTCGACAGCGACTCT	132
CL1150.Contig4_All	64	CGCTTCATCGCCGTCGGCTACGTGGACGACGCGGTTCGTGCGGTTCGACAGCGACTCT	123
Query_9	121	GCCAGTCGGAGGATGGAGCCGCGGGGCGCCGTGGGTGGAGCAGGAGGGGCCGGAGTATTGG	180
CL1150.Contig16_All	133	GCCAGTCGGAGGATGGAGCCGCGGGGCGCCGTGGATGGAGCAGGAGGGGCCGGAGTATTGG	192
CL1150.Contig4_All	124	GCCAGTCGGAGGATGGAGCCGCGGGGCGCCGTGGATGGAGCAGGAGGGGCCGGAGTATTGG	183
CL1150.Contig22_All	1	GAGGGGCCGGAGTATTGG	18
Query_9	181	GACCGGCAGACGCAGATCTGCAAGGACGCCGCACAGACTTTCCGAGGGAACCTGCAGACC	240
CL1150.Contig16_All	193	GACCGGCAGACGCAGATCTGCAAGGAAACCACACAGACTTACCGAGGGAGCCTG-A-ACA	250
CL1150.Contig4_All	184	GACCAGCAGACGCGGGGGGATCAAGGAAACCACACAGACTTACCGACGGAGCCTG-A-ACA	241
CL1150.Contig22_All	19	GACCGGCAGACGCGGAACCTCAAGGACGCCGCACACGCTTTCCGAGTGAACCTGAACACC	78
Query_9	241	GCACTCCG-CTACTACAACCAGAGCGCGGGCCGGGTCTCACACCATCCAGAACGTGTA	296
CL1150.Contig16_All	251	TC-CTGCGGGG-CTACTACAACCAGAGCGCGGCCGGGTCTCACACCATCCAGAACTTGTA	308
CL1150.Contig4_All	242	AC-CTGCGGGG-CTACTACAACCAGAGCGCGGCCGGGTCTCACACCTTCCAGAACATGTA	299
CL1150.Contig22_All	79	-CTGCGGGACTACTACAACCAGAGCGCGGCCGG	110
Query_9	297	CGGCTGTGACGTGGGGCCCGACGGGCGTTTCCTCCGCGGGTACCGTCAGGACTCCTACGA	356
CL1150.Contig16_All	309	CGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCCGCGGGTACCGTCAGTTCGCCTACGA	368
CL1150.Contig4_All	300	CGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCCGCGGGTACCGTCAGTTCGCCTACGA	359
Query_9	357	CGGCGCGGATTACATCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGCGGACACGGC	416
CL1150.Contig16_All	369	CGGCGCGGATTACATCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGCGGACACGGC	428
CL1150.Contig4_All	360	CGGCGCGGATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGCGGACACGGC	419
Query_9	417	GGCGCAGATCACCCAGCGCAAGTGGGAGGACGCGGGGGGGG	476
CL1150.Contig16_All	429	GGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGCTACAGGAACTA	488
CL1150.Contig4_All	420	GGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGCTACAGGAACTA	479
Query_9	477	$\tt CCTGGAGGTCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAGGAGTCGCT$	536
CL1150.Contig16_All	489	TGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAGGAGTCGCT	548
CL1150.Contig4_All	480	TGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAGGAGTCGCT	539
Query_9	537	GCTGCGC 543	
CL1150.Contig16_All	549	GCTGCGC 555	
CL1150.Contig4_All	540	GCTGCGC 546	
T			
133 0.601	H 1 1	2	
1.33 0.021	1.1	۷	
Gapped			
Lampda K	H O QE	0	
1.28 0.460	0.85	0	
Effective search spa	ace us	ed: 42412998768	

<code>Query= JQ425427.1</code> Meles meles MHC class I antigen (Meme-MHCI) mRNA, Meme-MHCI*01 allele, partial cds

Length=543			
Sequences producing	signi	ficant alignments: Score E (Bits) Value	
CL1150.Contig4_All CL1150.Contig16_All CL1150.Contig22_All	486 1 189 1 36	187 MHC class I antigen, partial [Meles 8090.01160 minus strand MHC class I antigen, p 7930.00 minus strand PREDICTED: LOW QUALITY PR 1157e-25	
Query_10	1	GGCTCCCACTCCCTGAGGTATTTCTCCACCGCGGTGTCCCGGCCCGGCCGG	60
CL1150.Contig4_All CL1150.Contig16_All	4 13	GGCTCCCACTCCCTGAGGTATTTCTACACCGGCGTGTCCCGGCCGG	63 72
Query_10 CL1150.Contig4_All CL1150.Contig16_All	61 64 73	CGCTTCATCGCCGTCGGCTACGTGGACGACACGCAGTTCGTGCGGTTCGACAGCGACTCT CGCTTCATCGCCGTCGGCTACGTGGACGACGCAGTTCGTGCGGTTCGACAGCGACTCT CGCTTCATCGCCGTCGGCTACGTGGACGACACGCAGTTCGTGCGGTTCGACAGCGACTCT	120 123 132
Query_10	121	GCCAGTCGGAGGATGGAGCCGCGGGGCGCCGTGGGTGGAGCAGGAGGGGCCCGGAGTATTGG	180
CL1150.Contig16_All CL1150.Contig22_All	124 133 1	GCCAGTCGGAGGATGGAGCCGCGGGGGCCGCGGGGGGGGG	192 18
Query_10	181	GACCGGCAGACGCGGGGGGGGGGGGCGCAGAGCTTTCCGAGGGAACCTGCAGACC	240
CL1150.Contig4_All CL1150.Contig16_All CL1150.Contig22_All	184 193 19	GACCAGCAGACGCGGGGGATCAAGGAAACCACACAGACTTACCGACGGAGCCTG-A-ACA GACCGGCAGACGCAGATCTGCAAGGAAACCACACACAGACTTACCGAGGGAGCCTG-A-ACA GACCGGCAGACGCGGAACCTCAAGGACGCCGCACACGCTTTCCGAGTGAACCTGAACACC	241 250 78
Query_10	241	GCACTCCG-CTACTACAACCAGAGCGCGGCC-GGGTCTCACACCATCCAGAGCATGT	295
CL1150.Contig4_All CL1150.Contig16_All	242 251	AC-CTGCGGGG-CTACTACAACCAGAGCGCGGGCC-GGGTCTCACACCTTCCAGAACATGT TC-CTGCGGGG-CTACTACAACCAGAGCGCGGGCC-GGGTCTCACACCATCCAGAACTTGT	298 307
CL1150.Contig22_All CL1150.Contig22_All	79 293	-CTGCGGGACTACTACAACCAGAGCGCGGCC-GG GGCCAGGGTCTCACACCATCCAGAGCATGT	110 322
Query_10	296	ACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCTCCGCGGGTACAGTCAGGACTCCTACG	355
CL1150.Contig4_All CL1150.Contig16 All	299 308	ACGGCTGTGACGTGGGGCCCGACGGGCGTCTCCCTCCGCGGGTACCGTCAGTTCGCCTACG ACGGCTGTGACGTGGGGGCCCGACGGCGCCTCCCTCCGCGGGGTACCGTCAGTTCGCCTACG	358 367
CL1150.Contig22_All	323	ACGGCTGTGACGTGGAGCCCGACGGGCGTCTCCTCCGC	360
Query_10	356	ACGGCGCGGATTACATCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGCGGACACGG	415
CL1150.Contig4_All CL1150.Contig16_All	359 368	ACGCCCCGATTACCTCCCCCTGACGACGACCTCCGCTCCTGGACCGCGCGGACACGG ACGGCGCGGATTACATCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCGGCGGACACGG	418 427
Query_10	416	CGGCGCAGATCACCCAGCGCAAGTGGGAGGACGCGGGGTGTGGCAGAGCGCTGGAGGAACT	475
CL1150.Contig4_All CL1150.Contig16_All	419 428	CGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGCTACAGGAACT CGGCGCAGATCTCCCGGCGCAAGTGGGAGGACGCGGGTGAGGCAGAGCGCTACAGGAACT	478 487
Query_10	476	ACCTGGAGGTCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAGGAGTCGC	535
CL1150.Contig4_All CL1150.Contig16_All	479 488	ATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAGGAGTCGC ATGTGGAGGGCACGTGCGTGGAGTGGCTCGGCAGGTACCTGGAGAACGGGAAGGAGTCGC	538 547
Query_10	536	TGCTGCGC 543	
CL1150.Contig4_All CL1150.Contig16_All	539 548	TGCTGCGC 546 TGCTGCGC 555	
Lambda K	H 1 1	2	

Gapped Lambda Κ Η 1.28 0.460 0.850

Effective search space used: 42412998768

Query= HQ908107.1 Meles meles nonfunctional MHC class II antigen (Meme-DQB) pseudogene mRNA, Meme-DQB*PS01 allele, partial sequence

Length=680 Score Е Sequences producing significant alignments: (Bits) Value Unigene57188_All 98 892 minus strand MHC class II antigen [Zalop... 1123 0.0 Unigene67843_All 95 745 minus strand MHC class II antigen DQ bet... 1085 0.0 Unigene75449 All 155 928 minus strand MHC class II antigen [Zalo... 935 0.0 Unigene75450 All 119 892 minus strand MHC class II antigen DR be... 564 7e-160 CL4065.Contig3 All 1603 2295 minus strand MHC class II antigen D... 507 1e-142 Unigene27967 All 155 928 minus strand MHC class II antigen DR be... 409 Unigene4377 All 98 193 minus strand MHC class II antigen DQ beta... 178 3e-113 1e-43 CL4065.Contig4 All 98 193 minus strand MHC class II antigen [Zal... 178 1e-43

CL4065.Contig2_All CL4065.Contig1_All	98 1 95 1	93 minus strand MHC class II antigen [Zal 178 1e-43 90 MHC class II antigen DQ beta chain, pa 178 1e-43	
Query_11 Unigene57188_All Unigene67843_All Unigene4377_All CL4065.Contig4_All CL4065.Contig4_All CL4065.Contig2_All	24 1 1 1 1 1 1	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG GGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	83 60 39 60 60 60 60
Query_11 Unigene57188_All Unigene67843_All Unigene75450_All CL4065.Contig3_All Unigene4377_All CL4065.Contig4_All CL4065.Contig2_All CL4065.Contig1_All	84 61 40 8 61 61 61	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAATTTAAG CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAG CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAG CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAAGGATTTCGTGTTCCAGTTTAAG CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA	126 120 120 99 18 96 96 96 96
Query_11 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All	127 121 121 103 100 19 103	GGCGAGTGCTACTTCACCAACGGACGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTAT GGCGAGTGCTACTTCACCAACGGACGGACGGGTGCGGAGCGTGAACAGATACATCTAT GACGCCACTTCACCAACGGGACGGACGGGTGCGGAGCGGAACAGATACATCTAT GAGTGCCACTTCACCAACGGCACGGAGCGGGTGCGGTGC	186 180 159 159 78 159
Query_11 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All	187 181 160 160 79 160	AACCGGGAGGAGTTCGTGCGCTACGACAGCGACGTGGGGGAGTACCGGCCGG	246 240 219 219 138 219
Query_11 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All	247 241 220 220 139 220	CTGGGGCGGCCGGACGCTGAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG CTGGGGCGGCCGGACGCTGAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG CTGGGCCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGG CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGG CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGG	306 300 279 279 198 279
Query_11 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All	307 301 301 280 280 199 280	GCCGAGACAGACACGGTGTGCAGACACAACTACCTGACTGA	366 360 339 339 258 339
Query_11 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All	367 361 340 340 259 340	AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGAGGTTCTGAACCACCAC AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCAC AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCAC AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGAGGTTCTGAACCACCAC CGGCGAGTGGGAGCCTACAGTGACTGTGTATCCCGCGAAGAACCAGCCCTGCAGCACCAC CGGCGAGTGGAGCCTACAGTGACTGTGTATCCCGCGAAGAACCAGCCCTGCAGCACCAC CGGCGAGTGGAGCCTACAGTGACTGTGTATCCCGCGAAGAACCAGCCCTGCAGCACCAC	426 420 399 399 318 399
Query_11 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All	427 421 400 400 319 400	AACATGCTGGTCTGGTCGGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTT AACATGCTGGTCTGGT	486 480 459 459 378 459
Query_11 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All	487 481 460 460 379 460	CGGAATGACCAGGAGGAGAAAGCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGAC CGGAATGACCAGGAGGAGAAAGCTGGTGTGGTG	546 540 519 519 438 519
Query_11	547	TGGACCTTCCAGATCCTTGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC	605

Unigene57188 All	541	TGGACCTTCCAGATCCT	TGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC	599
Unigene67843 All	541	TGGACCTTCCAGATCCT	TGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC	599
Unigene75449 All	520	TGGACCTTCCAGATCCT	TGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC	578
Unigene75450 All	520	TGGACCTTCCAGACCCT	GGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACAC	578
CL4065.Contig3 All	439	TGGACCTTCCAGACCCT	GGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACAC	497
Unigene27967_All	520	TGGACCTTCCAGACCCT	GGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACAC	578
Query 11	606	CTGCCATGTGGAGCACC	CCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTC	665
Unigene57188 All	600	CTGCCATGTGGAGCACC	CCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTC	659
Unigene67843 All	600	CTGCCATGTGGAGCACC	CCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCG	650
Unigene75449 All	579	CTGCCATGTGGAGCACC	CCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTC	638
Unigene75450 All	579	CTGCCAAGTGGAGCACC	CCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTC	638
CL4065.Contig3 All	498	CTGCCAAGTGGAGCACC	CCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTC	557
Unigene27967_All	579	CTGCCAAGTGGAGCACC	CCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTC	638
Query 11	666	TGAATCTGCCCAGAG	680	
Unigene57188 All	660	GGAATCTGCCCAGAG	674	
Unigene75449 All	639	GGAATCTGCCCAGAG	653	
Unigene75450 All	639	TGGGTCTGCACAGAG	653	
CL4065.Contig3 All	558	TGGGTCTGCACAGAG	572	
Unigene27967_All	639	TGGGTCTGCACAGAG	653	
T				
Lambda K	H	1.0		
1.33 0.621	1.	12		
Capped				

Gapped Lambda K H 1.28 0.460 0.850

Effective search space used: 53465137650

Query= HQ908099.1 Meles meles MHC class II antigen DR alpha chain (Meme-DRA) mRNA, Meme-DRA*02 allele, partial cds

Length=691	Caara	F
Sequences producing significant alignments:	(Bits)	Value
CL2981.Contig3_All 111 872 minus strand PREDICTED: HLA class II CL2981.Contig1_All 111 872 minus strand PREDICTED: HLA class II Unigene42913_All 108 710 MHC class II antigen DR alpha chain, pa	1243 1243 1103	0.0 0.0 0.0

Query_12	1	CATAAGTGGAGTCCCTGTGCTAGGATTTTTCATCATGACTTACTGATGGGTCCCCAAGA	60
CL2981.Contig3_All	6	CATAAATGGAGTCCCAGTGCTAGGATTTTTCATCATGACTTTACTGATGGGTCCCCAAGA	65
CL2981.Contig1_All	6	CATAAATGGAGTCCCAGTGCTAGGATTTTTCATCATGACTTTACTGATGGGTCCCCAAGA	65
Unigene42913_All	1	ATAAATGGAGTCCCCAGTGCTAGGATTTTTCATCATGACTTTACTGATGGGTCCCCAAGA	59
Query_12 CL2981.Contig3_All CL2981.Contig1_All Unigene42913_All	61 66 60	ATCACAGGCTATCAAAGAGGACCATGTGATCATCCAGGCTGAGTTTTATCTGACCCCTGA ATCACAGGCTATCAAAGAGGACCATGTGATCATCCAGGCTGAGTTTTATCTGACCCCTGA ATCACAGGCTATCAAAGAGGACCATGTGATCATCCAGGCTGAGTTTTATCTGACCCCTGA ATCACAGGCTATCAAAGAGGACCATGTGATCATCCAGGCTGAGTTTTATCTGACCCCTGA	120 125 125 119
Query_12	121	CCCGTCAGGCGAGTTTATGTTTGACTTCGATGGTGATGAGATTTTCCACGTGGATATGGA	180
CL2981.Contig3_All	126	CCCGTCAGGCGAGTTTATGTTTGACTTCGATGGTGATGAGATTTTCCACGTGGATATGGA	185
CL2981.Contig1_All	126	CCCGTCAGGCGAGTTTATGTTTGACTTCGATGGTGATGAGATTTTCCACGTGGATATGGA	185
Unigene42913_All	120	CCCGTCAGGCGAGTTTATGTTTGACTTCGATGGTGATGAGATTTTCCACGTGGATATGGA	179
Query_12	181	AAAGAAGGAGACAGTGTGGCGGCTGGAAGAATTTGGACGCTTTGCCAGCTTTGAGGCACA	240
CL2981.Contig3_All	186	AAAGAAGGAGACAGTGTGGCGGCTGGAAGAATTTGGACGCTTTGCCAGCTTTGAGGCACA	245
CL2981.Contig1_All	186	AAAGAAGGAGACAGTGTGGCGGCTGGAAGAATTTGGACGCTTTGCCAGCTTTGAGGCACA	245
Unigene42913_All	180	AAAGAAGGAGACAGTGTGGCGGCTGGAAGAATTTGGACGCCTTTGCCAGCTTTGAGGCACA	239
Query_12	241	GGGTGCCTTGGCCAACATAGCTGTGGACAAAGCTAACCTGGACATCATGATAAAGCGCTC	300
CL2981.Contig3_All	246	GGGTGCCTTGGCCAACATAGCTGTGGACAAAGCTAACCTGGACATCATGATAAAGCGCTC	305
CL2981.Contig1_All	246	GGGTGCCTTGGCCAACATAGCTGTGGACAAAGCTAACCTGGACATCATGATAAAGCGCTC	305
Unigene42913_All	240	GGGTGCCTTGGCCAACATAGCTGTGGACAAAGCTAACCTGGACATCATGATAAAGCGCTC	299
Query_12	301	CAACCACACCCCAAACACCAATGTACCTCCAGAGGTGACCGTGCTCTCAAACACCCCTGT	360
CL2981.Contig3_All	306	CAACCACACCCCAAACACCAATGTACCTCCAGAGGTGACCGTGCTCTCAAACACCCCTGT	365
CL2981.Contig1_All	306	CAACCACACCCCAAACACCAATGTACCTCCAGAGGTGACCGTGCTCTCAAACACCCCTGT	365
Unigene42913_All	300	CAACCACCCCCAAACACCAATGTACCTCCAGAGGTGACCGTGCTCTCAAACACCCCTGT	359
Query_12	361	GGAACTGGGAGAGCCCAACACCCTCATCTGCTTCATCGACAAGTTCTCCCCACCAGTGAT	420
CL2981.Contig3_All	366	GGAACTGGGAGAGCCCAACACCCTCATCTGCTTCATCGACAAGTTCTCCCCACCAGTGAT	425
CL2981.Contig1_All	366	GGAACTGGGAGAGCCCAACACCCTCATCTGCTTCATCGACAAGTTCTCCCCCACCAGTGAT	425
Unigene42913_All	360	GGAACTGGGAGAGCCCAACACCCTCATCTGCTTCATCGACAAGTTCTCCCCCACCAGTGAT	419

Query_12 CL2981.Conti CL2981.Conti Unigene42913	ig3_All ig1_All 3_All	421 426 426 420	CAATGTCACGTGGCTTCGAAATGGAAACCCTGTCACCACAGGAGTGTCCGAGACAGTCTT CAATGTCACGTGGCTTCGAAATGGAAACCCTGTCACCACAGGAGTGTCCGAGACAGTCTT CAATGTCACGTGGCTTCGAAATGGAAACCCTGTCACCACAGGAGTGTCCGAGACAGTCTT CAATGTCACGTGGCTTCGAAATGGAAACCCTGTCACCACAGGAGTGTCCGAGACAGTCTT	480 485 485 479
Query_12 CL2981.Conti CL2981.Conti Unigene42913	ig3_All ig1_All 3_All	481 486 486 480	CCTGCCCAGGGAAGACCACCTTTTCCGCAAGTTCCACTATCTCCCCTTCCTGCCCTCAGC CCTGCCCAGGGAAGACCACCTTTTCCGCAAGTTCCACTATCTCCCCTTCCTGCCCTCAGC CCTGCCCAGGGAAGACCACCTTTTCCGCAAGTTCCACTATCTCCCCTTCCTGCCCTCAGC CCTGCCCAGGGAAGACCACCTTTTCCGCAAGTTCCACTATCTCCCCTTCCTGCCCTCAGC	540 545 545 539
Query_12 CL2981.Conti CL2981.Conti Unigene42913	ig3_All ig1_All 3_All	541 546 546 540	CAACGATGTCTATGACTGCAAGGTGGAGCACTGGGGTCTGGATGAGCCTCTTCTCAAGCA CAACGATGTCTATGACTGCAAGGTGGAGCACTGGGGTCTGGATGAGCCTCTTCTCAAGCA CAACGATGTCTATGACTGCAAGGTGGAGCACTGGGGTCTGGATGAGCCTCTTCTCAAGCA CAACGATGTCTATGACTGCAAGGTGGAGCACTGGGGTCTGGATGAGCCTCTTCTCAAGCA	600 605 605 599
Query_12 CL2981.Conti CL2981.Conti Unigene42913	ig3_All ig1_All 3_All	601 606 606 600	CTGGGAGTTTGAACCACCAACTCCTCTCCCAGAGACAACCGAGAATGTGGTGTGTGCCCT CTGGGAGTTTGAACCACCAACTCCTCTCCCAGAGACAACCGAGAATGTGGTGTGTGCCCT CTGGGAGTTTGAACCACCAACTCCTCTCCCAGAGACAACCGAGAATGTGGTGTGTGCCCT CTGG	660 665 665 603
Query_12 CL2981.Conti CL2981.Conti	ig3_All ig1_All	661 666 666	GGGCCTGGTTGTGGGTTGGGTTGGCATC 688 GGGCCTGGTTGTGGGTTTGGTGGGTATC 693 GGGCCTGGTTGTGGGGTTTGGTGGGTATC 693	
Lambda 1.33	K 0.621	н 1.	12	
Gapped Lambda 1.28	K 0.460	H 0.8	50	

Effective search space used: 54364398375

Query= HQ908098.1 Meles meles MHC class II antigen DQ alpha chain (Meme-DQA) mRNA, Meme-DQA*02 allele, partial cds

Length=615			_
Sequences producing	significant alignments:	Score (Bits)	E Value
CL10050.Contig3_All CL10050.Contig2_All CL10050.Contig1_All	75 839 minus strand PREDICTED: SLA class II 105 686 minus strand MHC class II antigen DQ 105 686 minus strand MHC class II antigen DQ	1125 1075 1075	0.0 0.0 0.0

Query_13	1	ACTCTTGCCCTGACCACCATGATGAGCCCTGGTGGCAGTGAAGACATTGTGGCTGACCAT	60
CL10050.Contig3_All	31	ACTCTTGCCCTGACCACCATGATGAGCCCTGGTGGCAGTGAAGACATTGTGGCTGACCAT	90
CL10050.Contig2_All	1	ACTCTTGCCCTGACCACCATGATGAGCCCTGGTGGCAGTGAAGACATTGTGGCTGACCAT	60
CL10050.Contig1_All	1	ACTCTTGCCCTGACCACCATGATGAGCCCTGGTGGCAGTGAAGACATTGTGGCTGACCAT	60
Query_13	61	GTTGGTGCCTATGGCGTAGAAGTCTACCAGTCTTATGGTCCCTCTGGCCAATACACTCAA	120
CL10050.Contig3_All	91	GTTGGTGCCTATGGCGTAGAAGTCTACCAGTCTTATGGTCCCTCTGGCCAATACACTCAA	150
CL10050.Contig2_All	61	GTTGGTGCCTATGGCGTAGAAGTCTACCAGTCTTATGGTCCCTCTGGCCAATACACTCAA	120
CL10050.Contig1_All	61	GTTGGTGCCTATGGCGTAGAAGTCTACCAGTCTTATGGTCCCTCTGGCCAATACACTCAA	120
Query_13	121	GAATTTGATGGAGATGAGTTGTTCTATGTGGACCTGGAGAAGAAGGAAACTGTCTGGCGG	180
CL10050.Contig3_All	151	GAATTTGATGGAGATGAGTTGTTCTATGTGGACCTGGAGAAGAAGAAGAACTGTCTGGCGG	210
CL10050.Contig2_All	121	GAATTTGATGGAGATGAGTTGTTCTATGTGGACCTGGAGAAGAAGAAGAACTGTCTGGCGG	180
CL10050.Contig1_All	121	GAATTTGATGGAGATGAGTTGTTCTATGTGGACCTGGAGAAGAAGAAACTGTCTGGCGG	180
Query_13	181	eq:ctgctgtgttagcacatttgcaggtttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgacccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgaccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgaccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgaccacaaggtgcactgagcgaaatagct ctgcctgtgtttagcacatttgcaggttttgagcacaaggtgcactgagcgaaatagct ctgaggtgcactgaggtgaggtgcactgaggtggggtgcactgaggtggaggtggagggggggg	240
CL10050.Contig3_All	211		270
CL10050.Contig2_All	181		240
CL10050.Contig1_All	181		240
Query_13 CL10050.Contig3_All CL10050.Contig2_All CL10050.Contig1_All	241 271 241 241	ACATCAAAACAAAACTTGAACATCCTGACTAAACGCTCCAACTATACCGCTGCTACCAAT ACATCAAAACAAAA	300 330 300 300
Query_13	301	GAGGTTCCTGAGGTGACGCTGTTTCCCAAGTCTCCTGTGATGCTGGGTCAGCCCAACACC	360
CL10050.Contig3_All	331	GAGGTTCCTGAGGTGACGCTGTTTTCCCAAGTCTCCTGTGATGCTGGGTCAGCCCAACACC	390
CL10050.Contig2_All	301	GAGGTTCCTGAGGTGACGCTGTTTCCCAAGTCTCCTGTGATGCTGGGTCAGCCCAACACC	360
CL10050.Contig1_All	301	GAGGTTCCTGAGGTGACGCTGTTTCCCAAGTCTCCTGTGATGCTGGGTCAGCCCAACACC	360
Query_13	361	CTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAATGTCACGTGGTTGAAGAAC	420
CL10050.Contig3_All	391	CTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAATGTCACGTGGTTGAAGAAC	450
CL10050.Contig2_All	361	CTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAATGTCACGTGGTTGAAGAAC	420

CL10050.Contig1_All	361	CTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAATG	TCACGTGG	TTGAAGAAC	420
010774 13	121		CCAACAAC	CATCATTCC	190
CL10050 Contig3 All	421		CCAAGAAG	GAICAIICC	510
CL10050 Contig2 All	421	AGGCACTCAGTCACAGAAGGTGTTTCTGAAACCAGCTTCCTTG	CCAAGAAG	GATCATTCC	480
CL10050.Contig1_All	421	AGGCACTCAGTCACAGAAGGTGTTTCTGAAACCAGCTTCCTTG	CCAAGAAG	GATCATTCC	480
Query_13	481	TTCTTAAAGATCAGTTACCTCACCTTCCTCCCTTCTGCTGATG	ATATTTAT	GACTGCAAG	540
CL10050.Contig3_All	511	TTCTTAAAGATCAGTTACCTCACCTTCCTCCCTTCTGCTGATG	ATATTTAT	GACTGCAAG	570
CL10050.Contig2_All	481	TTCTTAAAGATCAGTTACCTCACCTTCCTCCCCTTCTGCTGATG	ATATTTAT	GACTGCAAG	540
CL10050.Contig1_All	481	TTCTTAAAGATCAGTTACCTCACCTTCCTCCCTTCTGCTGATG	ATATTTAI	GACTGCAAG	540
Query_13	541	GTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGGG	AACCTGAA	ATTCCAACC	600
CL10050.Contig3_All	571	GTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGGG	AACCTGAA	ATTCCATCC	630
CL10050.Contig2_All	541	GTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGG			582
CL10050.Contig1_All	541	GTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGG			582
Query_13	601	CCTATGTCAGAGCTG 615			
CL10050.Contig3_All	631	CCCATGTCAGAGCTG 645			
T					
Lambda K	H 1 1				
1.55 0.621	1.1.	2			
Gapped					
Lambda K 1 28 0 460	H 0 850				
1.20 0.100	0.000				
Effective search spa	ce use	ed: 48308241840			
Query= HQ908097.1 Me (Meme-DOA) mRNA, Mem	les me e-DOA	eles MHC class II antigen DQ alpha chain			
(,,,,	2				
Length=615			Score	E	
Sequences producing	signi:	ficant alignments:	(Bits)	Value	
CL10050.Contig3 All	75 83	39 minus strand PREDICTED: SLA class II	854	0.0	
CL10050.Contig2 All	105	586 minus strand MHC class II antigen DQ	804	0.0	
CL10050.Contig1 All	105	686 minus strand MHC class II antigen DQ	804	0.0	
Query_14	1	ACTCTTGCCCTGACCACCATAATGAGCCTTGGTGGCAGTGAAG	ACATTGTG	GCTGATCAT	60
CL10050.Contig3_All	31	ACTCTTGCCCTGACCACCATGATGAGCCCTGGTGGCAGTGAAG	ACATTGTG	GCTGACCAT	90
CL10050.Contig2_All	1	ACTCTTGCCCTGACCACCATGATGAGCCCTGGTGGCAGTGAAG	ACATTGTG	GCTGACCAT	60
CL10050.Contig1_All	1	ACTCTTGCCCTGACCACCATGATGAGCCCTGGTGGCAGTGAAG	ACATTGTG	GCTGACCAT	60
Query_14	61	GTTGCTTCCTATGGCATAAGTGTCTACCAGTCTTATGGTCCCT	CTGGCCAG	TACACCCGT	120
CL10050.Contig3_All	91	GTTGGTGCCTATGGCGTAGAAGTCTACCAGTCTTATGGTCCCT	CTGGCCAA	TACACTCAA	150
CL10050.Contig2_All	61	GTTGGTGCCTATGGCGTAGAAGTCTACCAGTCTTATGGTCCCT	CTGGCCAA	TACACTCAA	120
CL10050.Contig1_All	61	GTTGGTGCCTATGGCGTAGAAGTCTACCAGTCTTATGGTCCCT	CTGGCCAA	TACACTCAA	120
Query_14	121	GAATTTGATGGTGATGAGGAATTCTACGTGGACTTGGAGAAGA	AGGAGACA	GTCTGGCAG	180
CL10050.Contig3_All	151	GAATTTGATGGAGATGAGTTGTTCTATGTGGACCTGGAGAAGA	AGGAAACI	GTCTGGCGG	210
CL10050.Contig2_All	121	GAATTTGATGGAGATGAGTTGTTCTATGTGGACCTGGAGAAGA	AGGAAACI	GTCTGGCGG	180
CL10050.Contig1_All	121	GAATTTGATGGAGATGAGTTGTTCTATGTGGACCTGGAGAAGA	AGGAAACI	GTCTGGCGG	180
Query_14	181	CTGCCCATGTTTCAAGCAC-TTAG-ACGTTTTGACCCACAAGG	TGCACTGA	GAAACTTGG	238
CL10050.Contig3_All	211	CTGCCTGTGTTTAGCACATTTGCAGGTTTTGACCCACAAGG	TGCACTGA	GCGAAATAG	268
CL10050.Contig2_All	181	CTGCCTGTGTTTAGCACATTTGCAGGTTTTGACCCACAAGG	TGCACTGA	GCGAAATAG	238
CL10050.Contig1_All	181	CTGCCTGTGTTTAGCACATTTGCAGGTTTTGACCCACAAGG	TGCACTGA	GCGAAATAG	238
Query_14	239	CAATAGCAAAACAAAACTTGAACATCCTGACTAAACGCTCCAA	CTATACCO	CTGCTACCA	298
CL10050.Contig3_All	269	CTACATCAAAAACAAAACTTGAACATCCTGACTAAACGCTCCAA	CTATACCO	CTGCTACCA	328
CL10050.Contig2_All	239	CTACATCAAAACAAAACTTGAACATCCTGACTAAACGCTCCAA	CTATACCO	CTGCTACCA	298
CL10050.Contig1_All	239	CTACATCAAAACAAAACTTGAACATCCTGACTAAACGCTCCAA	CTATACCO	CTGCTACCA	298
Query_14	299	ATGAGGTTCCTGAGGTGACGCTGTTTCTAAAGACTCCTGTGAT	GCTGGGTC	AGCCCAACA	358
CL10050.Contig3_All	329	ATGAGGTTCCTGAGGTGACGCTGTTTCCCAAGTCTCCTGTGAT	GCTGGGTC	AGCCCAACA	388
CL10050.Contig2_All	299	ATGAGGTTCCTGAGGTGACGCTGTTTCCCAAGTCTCCTGTGAT	GCTGGGTC	AGCCCAACA	358
CL10050.Contig1_All	299	ATGAGGTTCCTGAGGTGACGCTGTTTCCCAAGTCTCCTGTGAT	GCTGGGTC	AGCCCAACA	358
Query_14	359	CCCTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAA	TGTCACGI	'GGTTGAAGA	418
CL10050.Contig3_All	389	CCCTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAA	TGTCACGI	GGTTGAAGA	448
CL10050.Contig2_All	359	CCCTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAA	TGTCACGI	GGTTGAAGA	418
CL10050.Contig1_All	359	CCCTCATCTGTCTTGTGGACAACATCTTTCCTCCTGTGATCAA	TGTCACGI	GGTTGAAGA	418

Query_14 419 ACAGGCATTCAGTCACAGAAGGTGTTTCTGAAACCCACTTCCTTATCAAAAAGGATTATT 478 CL10050.Contig3_All 449 ACAGGCACTCAGTCACAGAAGGTGTTTCTGAAACCAGCTTCCTTGCCAAGAAGGATCATT 508

CL10050.Contig CL10050.Contig	g2_All g1_All	419 419	ACAGGCACTCAGTCACAGAAGGTGTTTCTGAAACCAGCTTCCTTGCCAAGAAGGATCATT ACAGGCACTCAGTCACAGAAGGTGTTTCTGAAACCAGCTTCCTTGCCAAGAAGGATCATT	478 478
Query_14 CL10050.Contig CL10050.Contig CL10050.Contig	g3_All g2_All g1_All	479 509 479 479	CCTTCTTAAAGTTCAGTTACCTCACCTTCCTCCCTCTGCTGATGATATTTATGACTGCA CCTTCTTAAAGATCAGTTACCTCACCTTCCTCCTCTGCTGATGATATTTATGACTGCA CCTTCTTAAAGATCAGTTACCTCACCTTCCTCCCTCTGCTGATGATATTTATGACTGCA CCTTCTTAAAGATCAGTTACCTCACCTTCCTCCCTTCTGCTGATGATATTTATGACTGCA	538 568 538 538
Query_14 CL10050.Contig CL10050.Contig CL10050.Contig	g3_All g2_All g1_All	539 569 539 539	AGGTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGGGAACCTGAAATTCCAA AGGTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGGGAACCTGAAATTCCAT AGGTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGG AGGTGGAGCACTGGGGCCTGGATGAACCACTTCTGAAACACTGG	598 628 582 582
Query_14 CL10050.Contig	g3_All	599 629	CCCCTATGTCAGAGCTG 615 CCCCCATGTCAGAGCTG 645	
Lambda K 1.33 0.	.621	н 1.12		
Gapped Lambda K 1.28 0	.460	н 0.850		
Effective sear	rch spac	e use	d: 48308241840	

Query= HQ908096.1 Meles meles MHC class II antigen DQ beta chain (Meme-DQB) mRNA, Meme-DQB*02 allele, partial cds

Length=697

Sequences producing significant alignments:

Unigene57188 All 98 892 minus strand MHC class II antigen [Zalop	1234	0.0
Unigene67843 All 95 745 minus strand MHC class II antigen DQ bet	1195	0.0
Unigene75449_All 155 928 minus strand MHC class II antigen [Zalo	935	0.0
Unigene75450 All 119 892 minus strand MHC class II antigen DR be	675	0.0
CL4065.Contig3_All 1603 2295 minus strand MHC class II antigen D	525	3e-148
Unigene27967_All 155 928 minus strand MHC class II antigen DR be	409	4e-113
Unigene4377_All 98 193 minus strand MHC class II antigen DQ beta	178	1e-43
CL4065.Contig4_All 98 193 minus strand MHC class II antigen [Zal	178	1e-43
CL4065.Contig2_All 98 193 minus strand MHC class II antigen [Zal	178	1e-43
CL4065.Contig1_All 95 190 MHC class II antigen DQ beta chain, pa	178	1e-43

Score E (Bits) Value

Query 15	24	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	83
Unigene57188 All	1	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	60
Unigene67843 All	1	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	60
Unigene75450_All	1	GGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	39
Unigene4377_All	1	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	60
CL4065.Contig4_All	1	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	60
CL4065.Contig2_All	1	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	60
CL4065.Contig1_All	1	ATGGCACTGTGGATCCCCAGAGGCCTCTGGACAGCAGCTGTGATGGCGATCTTGGTGGTG	60
Query_15	84	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAG	143
Unigene57188_All	61	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAG	120
Unigene67843_All	61	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAG	120
Unigene75450_All	40	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAG	99
CL4065.Contig3_All	1	TTCGTGTTCCAGTTTAAG	18
Unigene4377_All	61	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA	96
CL4065.Contig4_All	61	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA	96
CL4065.Contig2_All	61	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA	96
CL4065.Contig1_All	61	CTGAGCGTCCCAGTGGCTGAGGGCAGAGACTCTCCA	96
Query 15	144	GGCGAGTGCTACTTCACCAACGGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTAT	203
Unigene57188_All	121	GGCGAGTGCTACTTCACCAACGGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTAT	180
Unigene67843_All	121	GGCGAGTGCTACTTCACCAACGGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTAT	180
Unigene75449_All	103	GAGTGCCACTTCACCAACGGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTAT	159
Unigene75450_All	100	GGCGAGTGCTACTTCACCAACGGGACGGAGCGGGGTGCGGAGCGTGAACAGATACATCTAT	159
CL4065.Contig3_All	19	GGCGAGTGCTACTTCACCAACGGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTAT	78
Unigene27967_All	103	GAGTGCCACTTCACCAACGGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTAT	159
Query 15	204	AACCGGGAGGAGTTCGTGCGCTACGACAGCGACGTGGGGGGAGTACCGGCCGG	263
Unigene57188_All	181	AACCGGGAGGAGTTCGTGCGCTACGACAGCGACGTGGGGGGGG	240
Unigene67843_All	181	AACCGGGAGGAGTTCGTGCGCTACGACAGCGACGTGGGGGGGG	240
Unigene75449_All	160	AACGGCGAGGAGTACGTGCGCTTCGACAGCGACGTGGGGGGGG	219
Unigene75450_All	160	AACCGGGAGGAGTTCGTGCGCTACGACAGCGACGTGGGGGGGG	219
CL4065.Contig3_All	79	AACCGGGAGGAGTTCGTGCGCTACGACAGCGACGTGGGGGGGG	138
Unigene27967_All	160	AACGGCGAGGAGTACGTGCGCTTCGACAGCGACGTGGGGGGGG	219

Query_15 $\tt CTGGGGCGGCCGGACGCTGAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG$ 264 323 Unigene57188 All 241 CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG 300 Unigene67843_All 241 $\tt CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG$ 300 Unigene75449 All 220 CTGGGGCCGGCCGGACGCTGAGTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAG 279 Unigene75450_All 220 $\tt CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGG$ 279 CL4065.Contig3 All 139 CTGGGGCCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGG 198 Unigene27967 All 220 CTGGGGCGGCCGGACGCTCAGTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGG 279 Query 15 324 383 Unigene57188_All 301 360 Unigene67843 All 301 360 Unigene75449_All 280 339 Unigene75450 All 280 GCCGCGGTGGACACATACTGCAGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAG 339 CL4065.Contig3 All 199 GCCGCGGTGGACACATACTGCAGACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAG 258 Unigene27967 All GCCGCGGTGGACACATACTGCAGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAG 280 339 AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCAC Query 15 384 443 Unigene57188_All 361 AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCAC 420 Unigene67843_All 361 ${\tt AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCAC}$ 420 Unigene75449 All 340 AGGCGAGTGGAACCTACAGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCAC 399 Unigene75450 All 340 CGGCGAGTGGAGCCTACAGTGACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCAC 399 CL4065.Contig3 All 259 CGGCGAGTGGAGCCTACAGTGACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCAC 318 Unigene27967 All 340 CGGCGAGTGGAGCCTACAGTGACTGTGTGTCCCGCGAAGAACCAGCCCCTGCAGCACCAC 399 Query 15 444 AACATGCTGGTCTGGTCGGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTT 503 Unigene57188_All AACATGCTGGTCTGGTCGGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTT 421 480 Unigene67843 All AACATGCTGGTCTGCTCGGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTT 421 480 Unigene75449 All 400 AACATGCTGGTCTGGTCGGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTT 459 Unigene75450 All 400 AACCTCCTGGTCTGCTCTGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTC 459 CL4065.Contig3 All 319 AACCTCCTGGTCTGCTCTGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTC 378 Unigene27967 All AACCTCCTGGTCTGCTCTGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTC 400 459 CGGAATGACCAGGAGGAGAAAGCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGAC Query 15 504 563 Unigene57188_All CGGAATGACCAGGAGGAGAAAGCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGAC 481 540 Unigene67843 All 481 CGGAATGACCAGGAGGAGAAAGCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGAC 540 Unigene75449 All CGGAATGACCAGGAGGAGAAAGCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGAC 460 519 Unigene75450 All 460 CGGAATGGCCAGGAAGAGGAGTCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGAC 519 CL4065.Contig3 All 379 CGGAATGGCCAGGAAGAGGAGTCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGAC 438 Unigene27967 All 460 ${\tt CGGAATGGCCAGGAAGAGGAGTCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGAC}$ 519 TGGACCTTCCAGATCCTTGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC Query_15 564 62.2 Unigene57188 All TGGACCTTCCAGATCCTTGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC 541 599 Unigene67843 All TGGACCTTCCAGATCCTTGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC 541 599 Unigene75449 All 520 TGGACCTTCCAGATCCTTGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACAC 578 Unigene75450 All 520 TGGACCTTCCAGACCCTGGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACAC 578 CL4065.Contig3_All TGGACCTTCCAGACCCTGGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACAC 439 497 Unigene27967 All 520 TGGACCTTCCAGACCCTGGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACAC 578 CTGCCATGTGGAGCACCCCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTC Query 15 623 682 Unigene57188_All CTGCCATGTGGAGCACCCCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTC 600 659 Unigene67843 All 600 CTGCCATGTGGAGCACCCCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCG 650 Unigene75449 All CTGCCATGTGGAGCACCCCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTC 579 638 Unigene75450 All 579 $\tt CTGCCAAGTGGAGCACCCCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTC$ 638 CL4065.Contig3 All 498 CTGCCAAGTGGAGCACCCCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTC 557 Unigene27967_All CTGCCAAGTGGAGCACCCCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTC 579 638 Query_15 683 TGAATCTGCCCAGAG 697 Unigene57188 All GGAATCTGCCCAGAG 660 674 Unigene75449 All 639 GGAATCTGCCCAGAG 653 Unigene75450 All 639 TGGGTCTGCACAGAG 653 CL4065.Contig3 All TGGGTCTGCACAGAG 558 572 Unigene27967_All 639 TGGGTCTGCACAGAG 653 Lambda Κ Η 1.33 0.621 1.12 Gapped Lambda Κ Н 1.28 0.460 0.850 Effective search space used: 54854904225 Query= HQ908095.1 Meles meles MHC class II antigen DR beta chain (Meme-DRB) mRNA, Meme-DRB*04 allele, partial cds Length=822 Score Е

Sequences producing significant alignments:

Score E (Bits) Value

Unigene27967_All 1 Unigene75450_All 1 CL4065.Contig3_All Unigene75449_All 1 Unigene57188_All 9 Unigene67843_All 9 Unigene81593_All 2	55 92 19 89 1603 55 92 8 892 5 745 94 m	8 minus strand MHC class II antigen DR be12080.02 minus strand MHC class II antigen DR be11460.02295 minus strand MHC class II antigen D11360.08 minus strand MHC class II antigen [Zalo5931e-168minus strand MHC class II antigen [Zalop5362e-151minus strand MHC class II antigen D bet4594e-128inus strand MHC class II antigen, partial1396e-32	
Query_16 Unigene27967_All Unigene75450_All Unigene75449_All Unigene57188_All Unigene67843_All	3 1 35 1 56 56	GGCTCCTGGATGACAGCTTTGACACTGATACTGATGGTGCTGAGCCCTCCC-TTGGCTTG GGCGCCTGGATGACAGCTCTGACACTGATACTGATGGTGCTGAGCCCTCCC-TTGGCTTG TGGTGCTGAG-CGTCCCAGTGGCTGA GGCGCCTGGATGACAGCTCTGACACTGATACTGATGGTGCTGAGCCCTCCC-TTGGCTTG TGGTGCTGAG-CGTCCCAGTGGCTGA TGGTGCTGAG-CGTCCCAGTGGCTGA	61 59 59 80 80
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	62 60 10 60 81 81	GGCCAGGGACACCCCACGACATTTCCTGATGCAGTTTAAGGGCGAGTGCTACTTCACCAA GGCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAA GGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAGGGCGAGTGCTACTTCACCAA CAGTTTAAGGGCGAGTGCTACTTCACCAA GGCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAA GGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAGGGCGAGTGCTACTTCACCAA GGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAGGGCGAGTGCTACTTCACCAA	121 119 119 38 119 140 140
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	122 120 120 39 120 141 141	TGGGACGGAGCGGGTGCGGGTCCTGGTCAGACACATCTATAACCGGGAGGAGTTCGTGCG CGGCACGGAGCGGGTGCGGGTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCG CGGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCG CGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACGGCGAGGAGAGTCGTGCG CGGACCGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTACGTCGTGCG CGGACCGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCG	181 179 179 98 179 200 200
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	182 180 180 99 180 201 201	CTTCGACAGCGACGTGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCCATCGCTCA CTTCGACAGCGACGTGGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTCA CTACGACAGCGACGTGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCGGACGCTCA CTTCGACAGCGACGTGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTGA CTTCGACAGCGACGTGGGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTCA CTACGACAGCGACGTGGGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTCA CTACGACAGCGACGTGGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTCA	241 239 239 158 239 260 260
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene67188_All Unigene81593_All	242 240 240 159 240 261 261	GGGCTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGCCGAGGTGGACACCGTGTG GTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGCCGCGGGTGGACACATACTG GTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGCCGCGGGTGGACACATACTG GTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGCCGCGGGTGGACACATACTG GTACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAGGCCGAGACAGAC	301 299 218 299 320 320 47
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene67188_All Unigene671843_All Unigene81593_All	302 300 300 219 300 321 321 48	CAGACACAACTACGGGGTGGTTGAGAGCTTCACGGTGCAGCGGCGAGTGGAGCCTACAGT CAGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGT CAGACACAACTACGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGT CAGACACAACTACCGGGTGGTGAGAGCTTCCTGGTGCAGCGCGAGTGGAGCCTACAGT CAGACACAACTACCTGACTGATGAGAGGCTTCACGGTGCAGAGGCGAGTGGAACCTACAGT CAGACACAACTACCTGACTGATGAGAGGCTTCACGGTGCAGAGGCGAGTGGAACCTACAGT CAGACACAACTACCTGACTGATGAGAGGCTTCACGGTGCAGAGGCGAGTGGAACCTACAGT CAGACACAACTACCTGACTGATGAGAGCTTCCACGGTGCAGAGGCGAGTGGAACCTACAGT CAGACACAACTACCTGACTGATGAGAGCTTCCACGGTGCAGGGCGAGTGGAACCTACAGT CAGACACAACTACCTGACTGATGAGAGCTTCCCGGTGCAGGGCGAGTGGAACCTACAGT	361 359 359 278 359 380 380 380 93
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	362 360 360 279 360 381 381	GACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGT GACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGT GACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGT GACCATCTCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCGGT GACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGT GACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGT GACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGT	421 419 419 338 419 440 440
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	422 420 420 339 420 441 441	GAATGGTTTCTATCCAGGCCACATTGAAGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGA GAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGA GAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGA GAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGA GACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGAGAA GACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGAGAA GACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGAGAA	481 479 479 398 479 500 500
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All	482 480 480 399 480	GTCTGGGGTCGTGTCCACAGG-CTTGATCCCTAATGGAGACTGGACCTTCCAGACCCTGG GTCTGGGGTCGTGTCCACAGG-CCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGG GTCTGGGGTCGTGTCCACAGG-CCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGG GTCTGGGGTCGTGTCCACAGG-CCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGG AGCTGGTGTGGTG	540 538 538 457 538

Unigene57188_All Unigene67843_All	501 501	AGCTGGTGTGGTGTCCACTCCACTT-ATTAGGAATGGGGACTGC AGCTGGTGTGGTGTCCACTCCAC	ACCTTCC ACCTTCC	AGATCCTTG AGATCCTTG	559 559
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	541 539 539 458 539 560 560	TGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGGTCTACACCTG TGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTG TGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGGTCTACACCTG TGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGGTCTACACCTG TGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTG TGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTG	CCAAGTG CCAAGTG CCAAGTG CCAAGTG CCATGTG CCATGTG CCATGTG	GAGCACCCC GAGCACCCC GAGCACCCC GAGCACCCC GAGCACCCC GAGCACCCC GAGCACCCC	599 597 597 516 597 618 618
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	600 598 598 517 598 619 619	AGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGG AGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGG AGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGG AGTTTGACGAGCCCCTGTCACCGTGGAATGGAGGGGCACAGTCGGA AGCCTCCAGAGCCCCATCACAGTGGAGTGG	GTCTGCA GTCTGCA GTCTGCA GTCTGCA ATCTGCC ATCTGCC	CAGAGCAAG CAGAGCAAG CAGAGCAAG CAGAGCAAG CAGAGCAAG CAGAGCAAG	659 657 657 576 657 678 648
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All	660 658 658 577 658 679	ATTCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCT ATTCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCT ATTCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCT ATTCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTCCT ATGCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCTGATCTTCCT ATGCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCTGATCTTCCT	CGTGGTG CGTGGTG CGTGGTG CGTGGTG CGGGCTG CGGGCTG	GGGCTGTTC GGGCTGTTC GGGCTGTTC GGCCTGTTC GGCCTTATC GGCCTTATC	719 717 717 636 717 738
Query_16 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All	720 718 718 637 718 739	ATCTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAF ATCTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAF ATCTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAF ATCTACTTCAGGAATCAGAAGGACACTC-TGGACTTCAGCCAF GTCCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCGCCAG GTCCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCCGCCAG	CAGGTCT CAGGTCT CAGGTCT CAGGTCT CAGGGCT CAGGGCT	CCTGAGC CCTGAGC CCTGAGC CCTGAGC CCTG CCTG	776 774 774 693 771 792
Lambda K 1.33 0.621	н 1.	12			
Gapped Lambda K 1.28 0.460	Н 0.8	50			
Effective search sp	ace u	sed: 65073776100			
Query= HQ908094.1 M mRNA, Meme-DRB*03 a	eles n llele	meles MHC class II antigen DR beta chain (Mem , partial cds	ue-DRB)		
Length=822			Score	F	
Sequences producing	sign	ificant alignments:	(Bits)	Value	
Unigene27967_All 1 Unigene75450_All 1 CL4065.Contig3_All Unigene75449_All 1 Unigene57188_All 9 Unigene67843_All 9 Unigene81593_All 2	55 923 19 893 1603 55 923 8 892 5 745 94 m	8 minus strand MHC class II antigen DR be 2 minus strand MHC class II antigen DR be 2295 minus strand MHC class II antigen D 8 minus strand MHC class II antigen [Zalo minus strand MHC class II antigen [Zalop minus strand MHC class II antigen DQ bet inus strand MHC class II antigen, partial	1397 1136 1136 743 488 411 139	0.0 0.0 0.0 5e-137 1e-113 6e-32	
Query_17 Unigene27967_All Unigene75449_All	3 1 1	GGCTCCTGGATGACAGCTCTGACACTGATACTGATGGTGCTGAC GGCGCCTGGATGACAGCTCTGACACTGATACTGATGGTGCTGAC GGCGCCTGGATGACAGCTCTGACACTGATACTGATGGTGCTGAC	CCCTCCC CCCTCCC CCCTCCC	TTGGCTTGG TTGGCTTGG TTGGCTTGG	62 60 60
Query_17 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All	63 61 103 22 61	GCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGA GCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGA GZ GCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGA GCCAGGGACACCCCCACGACATTTCCTGTTCCTGACGACGTCGGA	AGTGCCAC AGTGCCAC AGTGCTAC AGTGCTAC	TTCACCAAC TTCACCAAC TTCACCAAC TTCACCAAC	122 120 120 39 120
Unigene57188_All Unigene67843_All	124 124	GP GP	GTGCTAC	TTCACCAAC	141 141

Query_17	123	GGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCGC	182
Unigene27967_All	121	GGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCGC	180
Unigene75450_All	121	GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC	180
CL4065.Contig3_All	40	GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC	99
Unigene75449_All	121	GGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCGC	180
Unigene57188_All	142	GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC	201
Unigene67843_All	142	GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC	201

Query 17 183 242 Unigene27967_All 181 240 Unigene75450 All 181 TACGACACCGACGTCGCGCGCGCGCGCCGCGCGCGCCGCCGCCGCCGCCGCCCGC 240 CL4065.Contig3_All 100 159 Unigene75449_All 181 240 Unigene57188_All 202 2.61 Unigene67843 All 202 261 243 TACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGGCCGAGGTGGACACCGTGTGC 302 Query_17 Unigene27967 All 241 TACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGCCGCGGTGGACACATACTGC 300 Unigene75450_All 241 TACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGCCGCGGTGGACACATACTGC 300 CL4065.Contig3 All 160 TACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGCCGCGGTGGACACATACTGC 219 Unigene75449_All 241 300 Unigene57188 All 262 321 Unigene67843 All 262 321 Unigene81593 All CAGAAGGACATCATGGAGCGGAAGAGGTCCGAGGTGGACACCGTGTGC 1 48 AGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGTG Query 17 303 362 Unigene27967_All 301 AGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGTG 360 Unigene75450_All 301 AGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGTG 360 CL4065.Contig3 All 220 AGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGTG 279 Unigene75449 All 301 AGACACAACTACCTGACTGATGAGAGCTTCACGGTGCAGAGGCGAGTGGAACCTACAGTG 360 Unigene57188_All 322 AGACACAACTACCTGACTGATGAGAGCTTCACGGTGCAGAGGCGAGTGGAACCTACAGTG 381 Unigene67843 All 322 AGACACAACTACCTGACTGATGAGAGCTTCACGGTGCAGAGGCGAGTGGAACCTACAGTG 381 Unigene81593 All AGACACAACCACGGGGTGTTTGAGAGCTTCC-GGTGCAGCGGCGAG 49 93 ACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGTG 422 Query 17 363 Unigene27967_All ACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGTG 361 420 Unigene75450 All ACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGTG 361 420 CL4065.Contig3 All 280 ACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGTG 339 Unigene75449_All 361 ACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGTG 420 Unigene57188 All 382 ACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGTG 441 Unigene67843 All ACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGTG 382 441 AATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGAG Query_17 423 482 Unigene27967 All 421 AATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGAG 480 Unigene75450 All AATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGAG 421 480 CL4065.Contig3 All AATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGAG 399 340 Unigene75449_All 421 ACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGAGAAA 480 Unigene57188 All 442 ACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGAGAAA 501 Unigene67843 All ACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGAGAAA 442 501 TCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGGTG Query 17 483 542 Unigene27967_All TCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGGTG 481 540 Unigene75450 All TCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGGTG 481 540 CL4065.Contig3 All 400 TCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCTGGTG 459 Unigene75449_All GCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGACTGGACCTTCCAGATCCTTGTG 481 540 Unigene57188 All 502 GCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGACTGGACCTTCCAGATCCTTGTG 561 Unigene67843 All 502 GCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGACTGGACCTTCCAGATCCTTGTG 561 543 ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACCCCAG Query_17 601 Unigene27967 All 541 ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACCCCAG 599 Unigene75450 All ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACCCCAG 541 599 CL4065.Contig3 All ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACCCCAG 460 518 Unigene75449 All 541 ATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGCCATGTGGAGCACCCCAG 599 Unigene57188_All ATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGCCATGTGGAGCACCCCAG 562 620 Unigene67843 All 562 ATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGCCATGTGGAGCACCCCAG 620 TTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCAAGAT Query 17 602 661 Unigene27967_All TTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCAAGAT 600 659 Unigene75450 All TTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCAAGAT 600 659 CL4065.Contig3_All TTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCAAGAT 519 578 Unigene75449_All CCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTCGGAATCTGCCCAGAGCAAGAT 600 659 Unigene57188 All 621 CCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTCGGAATCTGCCCAGAGCAAGAT 680 Unigene67843 All 621 CCTCCAGAGCCCCATCACAGTGGAGTGG 648 Query 17 662 TCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTCGTGGTGGGGGCTGTTCAT 721 Unigene27967 All TCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTCGTGGTGGGGGCTGTTCAT 660 719 Unigene75450 All TCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTCGTGGTGGGGGCTGTTCAT 660 719 TCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTCGTGGTGGGGGCTGTTCAT CL4065.Contig3_All 579 638 Unigene75449 All 660 GCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCTGATCTTCCTCGGGCTGGGCCTTATCGT 719 Unigene57188_All 681 GCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCTGATCTTCCTCGGGCTGGGCCTTATCGT 740 Query_17 722 CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAACAGGTCTCCTGAGC 776 Unigene27967 All 720 CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAACAGGTCTCCTGAGC 774 Unigene75450 All 720 CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAACAGGTCTCCTGAGC 774 CL4065.Contig3_All CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAACAGGTCTCCTGAGC 639 693 Unigene75449 All CCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCGCCAGCAGGGCTCCTG 771 720 Unigene57188 All CCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCGCCAGCAGGGCTCCTG 741 792

Lambda	K	Н
1.33	0.621	1.12
Gapped		
Lambda	K	Н
1.28	0.460	0.850

Effective search space used: 65073776100

Query= HQ908093.1 Meles meles MHC class II antigen DR beta chain (Meme-DRB) mRNA, Meme-DRB*02 allele, partial cds

Sequences producing significant alignments: (Bits) Value Unigene27967_All 155 928 minus strand MHC class II antigen DR be 1408 0.0 Unigene75450_All 119 892 minus strand MHC class II antigen DR be 1153 0.0 CL4065.Contig3_All 1603 2295 minus strand MHC class II antigen DR 1153 0.0 Unigene75449 All 155 928 minus strand MHC class II antigen [Zalo 715 0.0	Hengen-022	Score	F.
Unigene27967_All 155 928 minus strand MHC class II antigen DR be 1408 0.0 Unigene75450_All 119 892 minus strand MHC class II antigen DR be 1153 0.0 CL4065.Contig3_All 1603 2295 minus strand MHC class II antigen D 1153 0.0 Unigene75449 All 155 928 minus strand MHC class II antigen [Zalo 715 0.0	Sequences producing significant alignments:	(Bits)	Value
Unigene57188 All 98 892 minus strand MHC class II antigen [Zalop 466 2e-130 Unigene67843 All 95 745 minus strand MHC class II antigen D0 bet 388 5e-107	Unigene27967_All 155 928 minus strand MHC class II antigen DR b Unigene75450_All 119 892 minus strand MHC class II antigen DR b CL4065.Contig3_All 1603 2295 minus strand MHC class II antigen Unigene75449_All 155 928 minus strand MHC class II antigen [Zal Unigene67188_All 98 892 minus strand MHC class II antigen [Zal Unigene67843_All 95 745 minus strand MHC class II antigen D be	e 1408 e 1153 D 1153 o 715 p 466 t 388	0.0 0.0 0.0 2e-130 5e-107

Query_18 Unigene27967_All Unigene75449_All	3 1 1	GGCTCCTGGATGACAGCTTTGACACTGATACTGATGGTGCTGAGCCCTCCCT	62 60 60
Query_18 Unigene27967_All Unigene75450_All CL4065.Contig3 All	63 61 103 22	GCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAAC GCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAAC GAGTGCTACTTCACCAAC GAGTGCTACTTCACCAAC	122 120 120 39
Unigene75449 All Unigene57188 All Unigene67843 All	61 124 124	GCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAAC GAGTGCTACTTCACCAAC GAGTGCTACTTCACCAAC	120 141 141
onigeneo, o io_nii	121		± 1 ±
Query_18 Unigene27967_All	123 121	GGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCGC GGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCGC	182 180
Unigene75450_All CL4065.Contig3_All	121 40	GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC	180 99
Unigene75449_All Unigene57188_All	121 142	GGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCGC GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC	180 201
Unigene6/843_All	142	GGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCGC	201
Query_18 Unigene27967 All	183 181	TTCGACAGCGACGTGGGGGGGGGAGTACCGGCCGGGCGGCCGGACGCTCAG TTCGACAGCGACGTGGGGGGGGGG	242 240
Unigene75450_All	181	TACGACAGCGACGTGGGGGGGGGTACCGGCCGGTGACCGAGCTGGGGGCGGCCGGACGCTCAG	240
CL4065.Contig3_All	100	TACGACAGCGACGTGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTCAG	159
Unigene57188 All	202		240
Unigene67843_All	202	TACGACAGCGACGTGGGGGGAGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTCAG	261
Query 18	243	TACTGGAACAGCCAGAAGACATCATGGAGCGGAGGCGGGCCGCGGGGGGGAGACACATACTGC	302
Unigene27967 All	241	TACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGGCCGCGGTGGACACATACTGC	300
Unigene75450 All	241	TACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGGCCGCGGTGGACACATACTGC	300
CL4065.Contig3 All	160	TACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGGGCCGCGGTGGACACATACTGC	219
Unigene75449_All	241	TACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAGGCCGAGACAGAC	300
Unigene57188_All	262	TACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAGGCCGAGACAGAC	321
Unigene67843_All	262	TACTGGAACAGCCAGAAGGACATCCTGGAGAGAACGGAGGCCGAGACAGAC	321
Query_18	303	AGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGTG	362
Unigene27967_All	301	AGACACAACTACGGGGTGGTTGAGAGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGTG	360
Unigene75450_All	301	AGACACAACTACGGGGTGGTTGAGAGGCTTCCTGGTGCAGCGGCGAGTGGAGCCTACAGTG	360
CL4065.Contig3_AII	220		2/9
Unigene57188 All	322	AGACAACIACCIGACIGAIGAGAGCIICACGGIGCAGAGCCGAGIGGAACCIACAGIG AGACAACIACCIGACCGACCGACGCGACCGACGCGACCCGACCGA	381
Unigene67843_All	322	AGACACAACTACCTGACTGATGAGAGAGCTTCACGGTGCAGAGGCGAGTGGAACCTACAGTG	381
Query 18	363		422
Unigene27967 All	361	ACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACCACCTCCTGGTCTGCTCTGTG	420
Unigene75450 All	361	ACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGTG	420
CL4065.Contig3_All	280	ACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTCTGTG	339
Unigene75449_All	361	ACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGTG	420
Unigene57188_All	382	ACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGTG	441
Unigene67843_All	382	ACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTCGGTG	441
Query_18	423	AATGGTTTCTATCCAGGCCACATTGAAGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGAG	482
Unigene27967_All	421	AATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGAG	480
Unigene75450_All	421	AATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGAGGAG	480

CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All	340 421 442 442	AATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGA ACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGA ACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGA ACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGA	ATGGCCAG ATGACCAG ATGACCAG ATGACCAG	GAAGAGG GAGGAGA GAGGAGA GAGGAGA	AG 3 AA 4 AA 5 AA 5	99 80 01 01
Ouery 18	483	TCTGGGGTCGTGTCCACAGGCCTGATCCCTAATGGAGACTGGAG	CCTTCCAG	ACCCTGG	TG 5	42
Unigene27967 All	481	TCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGA	CCTTCCAG	ACCCTGG	TG 5	40
Unigene75450 All	481	TCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGA	CCTTCCAG	ACCCTGG	TG 5	40
CL4065.Contig3_All	400	TCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGA	CCTTCCAG	ACCCTGG	TG 4	59
Unigene75449_All	481	GCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGACTGGA	CCTTCCAG	ATCCTTG	TG 5	40
Unigene57188_All	502	GCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGACTGGA	CCTTCCAG	ATCCTTG	TG 5	61
Unigene67843_All	502	GCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGACTGGA	CCTTCCAG	ATCCTTG	TG 5	61
Query_18	543	ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGC	CAAGTGGA	GCACCCC	AG 6	01
Unigene27967_All	541	ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGC	CAAGTGGA	GCACCCC	AG 5	99
Unigene75450_All	541	ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGC	CAAGTGGA	GCACCCC	AG 5	99
CL4065.Contig3_All	460	ATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGC	CAAGTGGA	GCACCCC	AG 5	18
Unigene/5449_All	541	ATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGC	CATGTGGA	GCACCCC	AG 5	,99
Unigene5/188_All Unigene67843_All	562 562	ATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGC ATGCTGGAAA-TGACTCCCCCAGCGAGGAGATGTCTACACCTGC	CATGTGGA	GCACCCC	AG 6	520
Query_18	602	TTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGG	ICTGCACA	GAGCAAG	AT 6	61
Unigene75450 All	600		ICIGCACA PCTCCACA	GAGCAAG	AI 0 AT 6	59
CL4065 Contig3 All	519	TTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGG	TCTGCACA	GAGCAAG	AT 5	78
Unigene75449 All	600	CCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTCGGAA	TCTGCCCA	GAGCAAG	AT 6	59
Unigene57188 All	621	CCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTCGGAA	ICTGCCCA	GAGCAAG	AT 6	80
Unigene67843_All	621	CCTCCAGAGCCCCATCACAGTGGAGTGG			6	48
Query 18	662		27667666		۵m 7	21
Unigene27967 All	660	TCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTC	STGGTGGG	GCTGTTC	АТ 7 АТ 7	19
Unigene75450 All	660	TCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTC	GTGGTGGG	GCTGTTC	AT 7	19
CL4065.Contig3 All	579	TCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTCC	GTGGTGGG	GCTGTTC	AT 6	38
Unigene75449 All	660	GCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCTGATCTTCCTCC	GGGCTGGG	CCTTATC	GT 7	19
Unigene57188_All	681	GCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCTGATCTTCCTCC	GGGCTGGG	CCTTATC	GT 7	40
Ouerv 18	722	CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAAC	AGGTCTCC	TGAGC	776	
Unigene27967 All	720	CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAAC	AGGTCTCC	TGAGC	774	
Unigene75450 All	720	CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAAC	AGGTCTCC	TGAGC	774	
CL4065.Contig3 All	639	CTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAGCCAAC	AGGTCTCC	TGAGC	693	
Unigene75449 All	720	CCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCGCCAGC	AGGGCTCC	TG	771	
Unigene57188_All	741	CCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCGCCAGCA	AGGGCTCC	TG	792	
Lambda K 1.33 0.621	н 1.	12				
Gapped						
Lambda K	H 0 9	50				
1.20 0.400	0.0	20				
Effective search sp	bace u	sed: 65073776100				
Query= HQ908092.1 M mRNA, Meme-DRB*01 a	Meles allele	meles MHC class II antigen DR beta chain (Mer , partial cds	ne-DRB)			
Length=822						
Sequences producing	r eian	ificant alignments.	Score	E		
sequences producino	y siyn	iiicant allymments:	(DILS)	value		
Unigene27967_All 1	L55 92	8 minus strand MHC class II antigen DR be	1280	0.0		
Unigene75450_All 1 CL4065.Contig3_All	1603 L19	2 minus strand MHC class II antigen DR be 2295 minus strand MHC class II antigen D	1051 1048	0.0 0.0		

CL4065.Contigs All 1603 2295 minus strand MHC class II antigen L		1048	0.0
Unigene75449_All 155 928 minus strand MHC class II antigen [Zalc	· · · ·	632	2e-180
Unigene57188 All 98 892 minus strand MHC class II antigen [Zalop	· · · ·	409	4e-113
Unigene67843_All 95 745 minus strand MHC class II antigen DQ bet		337	2e-91
CL13896.Contig1_All 3 98 MHC class II antigen DR beta chain, par	· • • •	178	1e-43

Query_19	3	GGCTCCTGGATGACAGCTTTGACCGTGATACTGATGGTGCTGAGCCCTCCCA-TGGCTTG	61
Unigene27967_All	1	GGCGCCTGGATGACAGCTCTGACACTGATACTGATGGTGCTGAGCCCTCCCT	59
Unigene75450_All	35	GGCGCCTGGATGACAGCTCTGACACTGATACTGATGCTGAGCCCTCCCT	59
Unigene75449_All	1		59
Unigene57188_All	56		80
Unigene67843_All	56		80
Query_19	62	GGCCAGGGACACCCCACCACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAA	121
Unigene27967_All	60	GGCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAA	119
Unigene75450_All	60	GGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAGGGCGAGTGCTACTTCACCAA	119

CL4065.Contig3_All	22	GAGTGCTACTTCACCAA	38
Unigene75449 All	60	GGCCAGGGACACCCCACGACATTTCCTGTTCCTGACGACGTCGGAGTGCCACTTCACCAA	119
Unigene57188 All	81	GGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAGGGCGAGTGCTACTTCACCAA	140
Unigene67843_All	81	GGGCAGAGACTCTCCAAAGGATTTCGTGTTCCAGTTTAAGGGCGAGTGCTACTTCACCAA	140
Query_19	122	CGGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCG	181
Unigene27967_All	120	CGGCACGGAGCGGGTGCGGTTCCTGGATAGGTATTTCTATAACGGCGAGGAGTACGTGCG	179
Unigene/5450_All	120	CGGGACGGAGCGGGTGCGGAGCGTGAACAGATACATCTATAACCGGGAGGAGTTCGTGCG	179
CL4065.Contig3_ALL	39		98
Unigene/5449_AII	141		200
Unigene67843_All	141	CGGGACGGAGCGGGGGGGGGGGGGGGGGGGGGGGGGGGG	200
Query_19	182	CTTCGACAGCGACGTGGGGGGGGGGGGGCGGCCGGTGACCGAGCTGGGGCGGCCCATCGCTCA	241
Unigene2/96/_AII	180		239
CI4065 Contia2 All	180		150
Unicono75449 All	99 190		700
Unigene57188 All	201		260
Unigene67843_All	201	CTACGACAGCGACGTGGGGGGGGTACCGGCCGGTGACCGAGCTGGGGCGGCCGGACGCTCA	260
0.10	242		200
Unicono27967 All	242		290
Unigene75450 All	240		296
CL4065 Contig3 All	159	GTACTGGAACAGCCAGAAGGACATCATGGAGCGGAGGCGGG-CC-G-CGGTGGACACATA	215
Unigene75449 All	240	GTACTGGAACAGCCAGAAGGACATCCTGGAG-AGAACGGAGGCCGAGACA-G-ACACGGT	296
Unigene57188 All	2.61	GTACTGGAACAGCCAGAAGGACATCCTGGAG-AGAACGGAGGCCGAGACA-G-ACACGGT	317
Unigene67843 All	261	GTACTGGAACAGCCAGAAGGACATCCTGGAG-AGAACGGAGGCCGAGACA-G-ACACGGT	317
CL13896.Contig1_All	1	AGCCAGAAGGACATCATGGAGCAGAAGCGCG-CC-A-ACGTGGACACATA	47
Query 19	299		358
Unigene27967 All	295		356
Unigene75450 All	297	CTGCAGACACAACTACGGGGTGGTTGAGAGCCTTCCTGGTGCAGCGGCGAGTGGAGCCTAC	356
CL4065.Contig3 All	216	CTGCAGACACAACTACGGGGTGGTTGAGAGCCTTCCTGGTGCAGCGGCGAGTGGAGCCTAC	275
Unigene75449 All	297	GTGCAGACACAACTACCTGACTGATGAGAGCTTCACGGTGCAGAGGCGAGTGGAACCTAC	356
Unigene57188 All	318	GTGCAGACACAACTACCTGACTGATGAGAGCTTCACGGTGCAGAGGCGAGTGGAACCTAC	377
Unigene67843 All	318	GTGCAGACACAACTACCTGACTGATGAGAGCTTCACGGTGCAGAGGCGAGTGGAACCTAC	377
CL13896.Contig1_All	48	CTGCAGGCACAACTACGGGGTGGGTGAGAGCTTCACGGTGCAGCGGCGA	96
Query 19	359	AGTGACTGTGTATCCCGCGAAGAACCAGCCCTTGCAGCACCACAGCCTCCTGGTCTGCTC	418
Unigene27967 All	357	AGTGACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTC	416
Unigene75450 All	357	AGTGACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTC	416
CL4065.Contig3 All	276	AGTGACTGTGTATCCCGCGAAGAACCAGCCCCTGCAGCACCACAACCTCCTGGTCTGCTC	335
Unigene75449 All	357	AGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTC	416
Unigene57188 All	378	AGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTC	437
Unigene67843_All	378	AGTGACCATCTCCCCATCCAGGACGGAGGTTCTGAACCACCACAACATGCTGGTCTGCTC	437
Query 19	419	TGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTACCAGAATGGCCAGGAAGA	478
Unigene27967 All	417	TGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGA	476
Unigene75450 All	417	TGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGA	476
CL4065.Contig3 All	336	TGTGAATGGTTTCTATCCAGGCCACATTGAGGTCAGGTGGTTCCGGAATGGCCAGGAAGA	395
Unigene75449 All	417	GGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGA	476
Unigene57188 All	438	GGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGA	497
Unigene67843_All	438	GGTGACAGATTTCTACCCAGGCCAGATCAAAGTTCGGTGGTTTCGGAATGACCAGGAGGA	497
Query 19	479	GGAGTCTGGGGTCGTGTCCACAGGCCTGATCCATAATGGAGACTGGACCTTCCACACCCT	538
Unigene27967 All	477	GGAGTCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCT	536
Unigene75450 All	477	GGAGTCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCT	536
CL4065.Contig3 All	396	GGAGTCTGGGGTCGTGTCCACAGGCCTGATCCGTAATGGAGACTGGACCTTCCAGACCCT	455
Unigene75449 All	477	GAAAGCTGGTGTGTGTGTCCACTCCACTTATTAGGAATGGGGACTGGACCTTCCAGATCCT	536
Unigene57188 All	498	GAAAGCTGGTGTGTGTGTCCACTCCACTTATTAGGAATGGGGACTGGACCTTCCAGATCCT	557
Unigene67843_All	498	GAAAGCTGGTGTGGTGTCCACTCCACTTATTAGGAATGGGGACTGGACCTTCCAGATCCT	557
Query 19	539	GGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACC	597
Unigene27967 All	537	GGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACC	595
Unigene75450 All	537	GGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACC	595
CL4065.Contig3 All	456	GGTGATGCTGGAGACTGT-TCCTCAGAGTGGAGAGGTCTACACCTGCCAAGTGGAGCACC	514
Unigene75449_All	537	TGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGCCATGTGGAGCACC	595
Unigene57188_All	558	TGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGCCATGTGGAGCACC	616
Unigene67843_All	558	TGTGATGCTGGAAA-TGACTCCCCAGCGAGGAGATGTCTACACCTGCCATGTGGAGCACC	616
Query 19	598	CCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCA	657
Unigene27967 All	596	CCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCA	655
Unigene75450 All	596	CCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCA	655
CL4065.Contig3 All	515	CCAGTTTGACGAGCCCTGTCACCGTGGAATGGAGGGCACAGTCTGGGTCTGCACAGAGCA	574
Unigene75449_All	596	CCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTCGGAATCTGCCCAGAGCA	655
Unigene57188_All	617	CCAGCCTCCAGAGCCCCATCACAGTGGAGTGGCGGGCACAGTCGGAATCTGCCCAGAGCA	676
Unigene67843_All	617	CCAGCCTCCAGAGCCCCATCACAGTGGAGTGG	648
Query 19	658	AGATTCTTAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTCGTGGTGGGGGCTGT	717
Unigene27967_All	656	AGATTCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCTTCCTCGTGGTGGGGGCTGT	715

Unigene7545 CL4065.Cont Unigene7544 Unigene5718	0_All ig3_All 9_All 8_All	656 575 656 677	AGATTCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCT AGATTCTGAGTGGAACTGGAGGCTTTGTTCTGGGTCTGCTCT AGATGCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCTGATCT AGATGCTGAGTGGCATCGGAGGCTTTGTGCTGGGGCCTGATCT	TCCTCGTG TCCTCGTG TCCTCGGG TCCTCGGG	GTGGGGCTC GTGGGGCTC CTGGGCCT1 CTGGGCCT1	GT 715 GT 634 FA 715 FA 736
Query_19 Unigene2796 Unigene7545 CL4065.Cont Unigene7544 Unigene5718	7_All 0_All ig3_All 9_All 8_All	718 716 716 635 716 737	TCATCTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAG TCATCTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAG TCATCTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAG TCATCTACTTCAGGAATCAGAAGGGACACTC-TGGACTTCAG TCGTCCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCG TCGTCCGTCACAGGAGCCAGAAAGGAC-CTCGTGGGTCTCCG	CCAACAGG CCAACAGG CCAACAGG CCAACAGG CCAGCAGG CCAGCAGG	TCTCCTGAC TCTCCTGAC TCTCCTGAC TCTCCTGAC GCTCCTG GCTCCTG	GC 776 GC 774 GC 774 GC 693 771 792
Lambda 1.33	K 0.621	н 1.1	2			
Gapped Lambda 1.28	к 0.460	н 0.85)			
Effective s	earch sp	ace us	ed: 65073776100			
Query= Y116	47.2 M.n	neles mi	RNA for interferon gamma, partial			
Length=501						
Sequences p	roducinc	r siani	ficant alignments:	Score (Bits)	E Value	
Unigene5456	3_All 2	205 i	nterferon gamma [Mustela putorius furo]	377	7e-104	
Query_20 Unigene5456	1 3_All 1	.84 GA GA	GAGTGACAAAACAATCATTCAAAGCCAAATTGTCTCCTTCTAC GAGTGACAAAACAATCATTCAAAGCCAAATTGTCTCCTTCTAC	TTGAAACT	GTTTGAA GTTTGAA	243 60
Query_20 Unigene5456	2 3_All 6	244 AA 51 AA	CTTTAAAGATAACCAGATCATTCAAAGGAGCATGGATACCATC CTTTAAAGATAACCAGATCATTCAAAGGAGCATGGATACCATC	AAGGAAGA AAGGAAGA	CATGCTT CATGCTT	303 120
Query_20 Unigene5456	3_All 1	804 GT .21 GT	CAGGTTCTTCAATAGCAGCAGCAGTAAGCGGGAGGACTTTCTT CAGGTTCTTCAATAGCAGCAGCAGTAAGCGGGAGGACTTTCTT	AAGCTGAT AAGCTGAT	TCGAATT TCGAATT	363 180
Query_20 Unigene5456	3_A11 1	864 CC .81 CC	CGTGAATGATCTGCAGGTCCAG 387 CGTGAATGATCTGCAGGTCCAG 204			
Lambda 1.33	K 0.621	H 1.1	2			
Gapped Lambda 1.28	K 0.460	н 0.85)			
Effective s	earch sp	ace us	ed: 38974106976			
Database: Posted Number of Number of	badgerr date: E letters sequenc	nt Teb 23, s in da ces in d	2017 11:56 AM cabase: 85,063,401 database: 127,401			
Matrix: bla Gap Penalti	stn matr es: Exis	ix 1 -	2 0, Extension: 2.5			

8.4 BLASTP output (tabular)

Query Seq-id	Subject seq-id	Identity %	Alignment length	E-vlue	Query seq. length	Subject seq. length
AFR54067.1	CL1150.Contig4_All	96.11	180	7.00E-128	180	234
AFR54067.1	CL1150.Contig16_All	92.22	180	1.00E-118	180	324
AFR54067.1	CL154.Contig12_All	38.12	181	4.00E-31	180	306

AFR54067.1	CL154.Contig11_All	38.12	181	4.00E-31	180	306
AFR54067.1	CL154.Contig24_All	38.12	181	7.00E-31	180	358
AFR54067.1	CL154.Contig19_All	38.12	181	7.00E-31	180	358
AFR54067.1	CL154.Contig27_All	38.12	181	8.00E-31	180	345
AFR54067.1	CL154.Contig23_All	38.12	181	8.00E-31	180	345
AFR54067.1	CL154.Contig2_All	38.12	181	8.00E-31	180	345
AFR54067.1	CL154.Contig1_All	38.12	181	8.00E-31	180	345
AFR54066.1	CL1150.Contig4_All	85	180	6.00E-111	180	234
AFR54066.1	CL1150.Contig16_All	84.44	180	5.00E-108	180	324
AFR54066.1	CL154.Contig12_All	38.67	181	2.00E-32	180	306
AFR54066.1	CL154.Contig11_All	38.67	181	2.00E-32	180	306
AFR54066.1	CL154.Contig27_All	38.67	181	4.00E-32	180	345
AFR54066.1	CL154.Contig23_All	38.67	181	4.00E-32	180	345
AFR54066.1	CL154.Contig2_All	38.67	181	4.00E-32	180	345
AFR54066.1	CL154.Contig1_All	38.67	181	4.00E-32	180	345
AFR54066.1	CL154.Contig24_All	38.67	181	4.00E-32	180	358
AFR54066.1	CL154.Contig19_All	38.67	181	4.00E-32	180	358
AFR54065.1	CL1150.Contig4_All	84.44	180	9.00E-110	180	234
AFR54065.1	CL1150.Contig16_All	83.89	180	7.00E-107	180	324
AFR54065.1	CL154.Contig12_All	39.78	181	6.00E-34	180	306
AFR54065.1	CL154.Contig11_All	39.78	181	6.00E-34	180	306
AFR54065.1	CL154.Contig27_All	39.78	181	1.00E-33	180	345
AFR54065.1	CL154.Contig23_All	39.78	181	1.00E-33	180	345
AFR54065.1	CL154.Contig2_All	39.78	181	1.00E-33	180	345
AFR54065.1	CL154.Contig1_All	39.78	181	1.00E-33	180	345
AFR54065.1	CL154.Contig24_All	39.78	181	1.00E-33	180	358
AFR54065.1	CL154.Contig19_All	39.78	181	1.00E-33	180	358
AFR54064.1	CL1150.Contig16_All	87.22	180	4.00E-111	180	324
AFR54064.1	CL1150.Contig4_All	83.33	180	1.00E-106	180	234
AFR54064.1	CL154.Contig12_All	38.12	181	2.00E-29	180	306
AFR54064.1	CL154.Contig11_All	38.12	181	2.00E-29	180	306
AFR54064.1	CL154.Contig24_All	38.12	181	3.00E-29	180	358
AFR54064.1	CL154.Contig19_All	38.12	181	3.00E-29	180	358
AFR54064.1	CL154.Contig27_All	38.12	181	3.00E-29	180	345
AFR54064.1	CL154.Contig23_All	38.12	181	3.00E-29	180	345
AFR54064.1	CL154.Contig2_All	38.12	181	3.00E-29	180	345
AFR54064.1	CL154.Contig1_All	38.12	181	3.00E-29	180	345
AFR54063.1	CL1150.Contig4_All	94.44	180	7.00E-125	180	234
AFR54063.1	CL1150.Contig16_All	94.44	180	1.00E-121	180	324
AFR54063.1	CL154.Contig12_All	39.23	181	2.00E-34	180	306
AFR54063.1	CL154.Contig11_All	39.23	181	2.00E-34	180	306

AFR54063.1	CL154.Contig27_All	39.23	181	4.00E-34	180	345
AFR54063.1	CL154.Contig23_All	39.23	181	4.00E-34	180	345
AFR54063.1	CL154.Contig2_All	39.23	181	4.00E-34	180	345
AFR54063.1	CL154.Contig1_All	39.23	181	4.00E-34	180	345
AFR54063.1	CL154.Contig24_All	39.23	181	4.00E-34	180	358
AFR54063.1	CL154.Contig19_All	39.23	181	4.00E-34	180	358
AFR54062.1	CL1150.Contig4_All	88.89	90	3.00E-53	90	234
AFR54062.1	CL1150.Contig16_All	86.67	90	7.00E-50	90	324
AFR54062.1	CL154.Contig16_All	38.64	88	2.00E-15	90	88
AFR54062.1	CL154.Contig15_All	38.64	88	2.00E-15	90	88
AFR54062.1	CL154.Contig14_All	38.64	88	2.00E-15	90	88
AFR54062.1	CL154.Contig13_All	38.64	88	2.00E-15	90	88
AFR54062.1	CL154.Contig33_All	38.64	88	4.00E-15	90	127
AFR54062.1	CL154.Contig21_All	38.64	88	4.00E-15	90	127
AFR54062.1	CL154.Contig20_All	38.64	88	4.00E-15	90	127
AFR54062.1	CL154.Contig17_All	38.64	88	4.00E-15	90	127
AFR54061.1	CL1150.Contig4_All	74.44	90	1.00E-40	90	234
AFR54061.1	CL1150.Contig16_All	72.22	90	6.00E-38	90	324
AFR54061.1	CL154.Contig16_All	37.5	88	4.00E-13	90	88
AFR54061.1	CL154.Contig15_All	37.5	88	4.00E-13	90	88
AFR54061.1	CL154.Contig14_All	37.5	88	4.00E-13	90	88
AFR54061.1	CL154.Contig13_All	37.5	88	4.00E-13	90	88
AFR54061.1	CL154.Contig33_All	37.5	88	8.00E-13	90	127
AFR54061.1	CL154.Contig21_All	37.5	88	8.00E-13	90	127
AFR54061.1	CL154.Contig20_All	37.5	88	8.00E-13	90	127
AFR54061.1	CL154.Contig17_All	37.5	88	8.00E-13	90	127
AFR54060.1	CL1150.Contig16_All	88.58	324	0	325	324
AFR54060.1	CL1150.Contig4_All	97.01	234	1.00E-169	325	234
AFR54060.1	CL1150.Contig15_All	74.86	179	3.00E-83	325	150
AFR54060.1	CL1150.Contig17_All	79.29	140	4.00E-73	325	140
AFR54060.1	CL154.Contig12_All	42.31	312	6.00E-73	325	306
AFR54060.1	CL154.Contig11_All	42.31	312	6.00E-73	325	306
AFR54060.1	CL1150.Contig13_All	77.46	142	1.00E-72	325	142
AFR54060.1	CL154.Contig27_All	42.31	312	3.00E-72	325	345
AFR54060.1	CL154.Contig23_All	42.31	312	3.00E-72	325	345
AFR54060.1	CL154.Contig2_All	42.31	312	3.00E-72	325	345
AFR54059.1	CL1150.Contig16_All	85.19	324	0	325	324
AFR54059.1	CL1150.Contig4_All	87.61	234	1.00E-150	325	234
AFR54059.1	CL1150.Contig15_All	75.42	179	3.00E-86	325	150
AFR54059.1	CL1150.Contig17_All	81.43	140	6.00E-75	325	140
AFR54059.1	CL154.Contig12_All	42.95	312	1.00E-74	325	306

AFR54059.1	CL154.Contig11_All	42.95	312	1.00E-74	325	306
AFR54059.1	CL154.Contig27_All	42.95	312	6.00E-74	325	345
AFR54059.1	CL154.Contig23_All	42.95	312	6.00E-74	325	345
AFR54059.1	CL154.Contig2_All	42.95	312	6.00E-74	325	345
AFR54059.1	CL154.Contig1_All	42.95	312	6.00E-74	325	345
AFR54058.1	CL1150.Contig16_All	84.88	324	0	325	324
AFR54058.1	CL1150.Contig4_All	87.18	234	3.00E-149	325	234
AFR54058.1	CL1150.Contig15_All	75.42	179	2.00E-86	325	150
AFR54058.1	CL154.Contig12_All	43.27	312	3.00E-76	325	306
AFR54058.1	CL154.Contig11_All	43.27	312	3.00E-76	325	306
AFR54058.1	CL154.Contig24_All	43.27	312	2.00E-75	325	358
AFR54058.1	CL154.Contig19_All	43.27	312	2.00E-75	325	358
AFR54058.1	CL154.Contig27_All	43.27	312	2.00E-75	325	345
AFR54058.1	CL154.Contig23_All	43.27	312	2.00E-75	325	345
AFR54058.1	CL154.Contig2_All	43.27	312	2.00E-75	325	345
AFR54057.1	CL1150.Contig16_All	86.73	324	0	325	324
AFR54057.1	CL1150.Contig4_All	87.18	234	2.00E-148	325	234
AFR54057.1	CL1150.Contig15_All	73.18	179	9.00E-83	325	150
AFR54057.1	CL1150.Contig17_All	81.43	140	7.00E-75	325	140
AFR54057.1	CL1150.Contig13_All	79.58	142	2.00E-74	325	142
AFR54057.1	CL1150.Contig18_All	80.58	139	1.00E-73	325	139
AFR54057.1	CL154.Contig12_All	41.99	312	1.00E-70	325	306
AFR54057.1	CL154.Contig11_All	41.99	312	1.00E-70	325	306
AFR54057.1	CL154.Contig27_All	41.99	312	5.00E-70	325	345
AFR54057.1	CL154.Contig23_All	41.99	312	5.00E-70	325	345
AFR54056.1	CL1150.Contig16_All	89.81	324	0	325	324
AFR54056.1	CL1150.Contig4_All	95.73	234	3.00E-166	325	234
AFR54056.1	CL1150.Contig15_All	75.98	179	8.00E-85	325	150
AFR54056.1	CL154.Contig12_All	42.95	312	3.00E-76	325	306
AFR54056.1	CL154.Contig11_All	42.95	312	3.00E-76	325	306
AFR54056.1	CL154.Contig27_All	42.95	312	1.00E-75	325	345
AFR54056.1	CL154.Contig23_All	42.95	312	1.00E-75	325	345
AFR54056.1	CL154.Contig2_All	42.95	312	1.00E-75	325	345
AFR54056.1	CL154.Contig1_All	42.95	312	1.00E-75	325	345
AFR54056.1	CL154.Contig24_All	42.95	312	2.00E-75	325	358
AFR54055.1	CL1150.Contig16_All	87.29	181	5.00E-113	181	324
AFR54055.1	CL1150.Contig4_All	83.43	181	2.00E-108	181	234
AFR54055.1	CL154.Contig12_All	38.46	182	5.00E-30	181	306
AFR54055.1	CL154.Contig11_All	38.46	182	5.00E-30	181	306
AFR54055.1	CL154.Contig24_All	38.46	182	7.00E-30	181	358
AFR54055.1	CL154.Contig19_All	38.46	182	7.00E-30	181	358

AFR54055.1	CL154.Contig27_All	38.46	182	8.00E-30	181	345
AFR54055.1	CL154.Contig23_All	38.46	182	8.00E-30	181	345
AFR54055.1	CL154.Contig2_All	38.46	182	8.00E-30	181	345
AFR54055.1	CL154.Contig1_All	38.46	182	8.00E-30	181	345
AFR54054.1	CL1150.Contig4_All	85.08	181	6.00E-111	181	234
AFR54054.1	CL1150.Contig16_All	85.08	181	2.00E-108	181	324
AFR54054.1	CL154.Contig12_All	38.46	182	3.00E-30	181	306
AFR54054.1	CL154.Contig11_All	38.46	182	3.00E-30	181	306
AFR54054.1	CL154.Contig24_All	38.46	182	5.00E-30	181	358
AFR54054.1	CL154.Contig19_All	38.46	182	5.00E-30	181	358
AFR54054.1	CL154.Contig27_All	38.46	182	6.00E-30	181	345
AFR54054.1	CL154.Contig23_All	38.46	182	6.00E-30	181	345
AFR54054.1	CL154.Contig2_All	38.46	182	6.00E-30	181	345
AFR54054.1	CL154.Contig1_All	38.46	182	6.00E-30	181	345
AET36883.1	Unigene42913_All	100	81	8.00E-54	81	201
AET36883.1	CL2981.Contig3_All	100	81	3.00E-53	81	254
AET36883.1	CL2981.Contig1_All	100	81	3.00E-53	81	254
AET36883.1	CL10050.Contig3_All	56.1	82	1.00E-28	81	255
AET36883.1	CL10050.Contig2_All	56.1	82	9.00E-25	81	194
AET36883.1	CL10050.Contig1_All	56.1	82	9.00E-25	81	194
AET36883.1	CL12484.Contig1_All	52.05	73	3.00E-22	81	109
AET36883.1	CL12484.Contig3_All	52.05	73	2.00E-21	81	193
AET36881.1	Unigene67843_All	75.28	89	2.00E-43	89	217
AET36881.1	Unigene57188_All	75.28	89	3.00E-43	89	265
AET36881.1	Unigene75449_All	69.32	88	4.00E-38	89	258
AET36881.1	Unigene75450_All	69.66	89	8.00E-38	89	258
AET36881.1	CL4065.Contig3_All	69.32	88	7.00E-37	89	231
AET36881.1	CL6815.Contig5_All	58.23	79	7.00E-35	89	273
AET36881.1	Unigene27967_All	64.77	88	3.00E-33	89	258
AET36881.1	CL6815.Contig6_All	53.93	89	9.00E-31	89	215
AET36881.1	CL6815.Contig1_All	53.93	89	9.00E-31	89	215
AET36881.1	CL6815.Contig3_All	53.93	89	9.00E-31	89	252
AET36880.1	Unigene27967_All	77.38	84	5.00E-41	89	258
AET36880.1	Unigene75449_All	72.62	84	2.00E-37	89	258
AET36880.1	CL4065.Contig3_All	69.88	83	7.00E-36	89	231
AET36880.1	Unigene75450_All	69.88	83	8.00E-36	89	258
AET36880.1	Unigene67843_All	66.27	83	6.00E-33	89	217
AET36880.1	Unigene57188_All	66.27	83	9.00E-33	89	265
AET36880.1	CL6815.Contig4_All	44.58	83	8.00E-22	89	218
AET36880.1	CL6815.Contig6_All	44.58	83	8.00E-22	89	215
AET36880.1	CL6815.Contig1_All	44.58	83	8.00E-22	89	215

AET36880.1	CL6815.Contig3_All	44.58	83	1.00E-21	89	252
AET36875.1	CL2981.Contig3_All	99.13	230	7.00E-171	230	254
AET36875.1	CL2981.Contig1_All	99.13	230	7.00E-171	230	254
AET36875.1	Unigene42913_All	99.5	201	1.00E-149	230	201
AET36875.1	CL10050.Contig3_All	60.53	228	7.00E-94	230	255
AET36875.1	CL10050.Contig2_All	60.21	191	9.00E-78	230	194
AET36875.1	CL10050.Contig1_All	60.21	191	9.00E-78	230	194
AET36875.1	CL12484.Contig3_All	55.5	191	2.00E-70	230	193
AET36875.1	CL12484.Contig2_All	65.06	83	6.00E-32	230	83
AET36875.1	CL12484.Contig1_All	48.15	108	3.00E-28	230	109
AET36875.1	CL5174.Contig1_All	63.38	71	2.00E-23	230	79
AET36874.1	CL10050.Contig3_All	99.51	205	7.00E-154	205	255
AET36874.1	CL10050.Contig2_All	100	194	3.00E-146	205	194
AET36874.1	CL10050.Contig1_All	100	194	3.00E-146	205	194
AET36874.1	CL2981.Contig3_All	60.2	201	5.00E-81	205	254
AET36874.1	CL2981.Contig1_All	60.2	201	5.00E-81	205	254
AET36874.1	Unigene42913_All	60.21	191	6.00E-78	205	201
AET36874.1	CL12484.Contig3_All	59.44	180	2.00E-74	205	193
AET36874.1	CL12484.Contig2_All	66.67	81	2.00E-34	205	83
AET36874.1	CL12484.Contig1_All	54.64	97	8.00E-30	205	109
AET36874.1	CL5174.Contig1_All	60.76	79	1.00E-25	205	79
AET36873.1	CL10050.Contig3_All	86.83	205	3.00E-133	205	255
AET36873.1	CL10050.Contig2_All	86.6	194	2.00E-125	205	194
AET36873.1	CL10050.Contig1_All	86.6	194	2.00E-125	205	194
AET36873.1	CL2981.Contig3_All	58.21	201	8.00E-76	205	254
AET36873.1	CL2981.Contig1_All	58.21	201	8.00E-76	205	254
AET36873.1	Unigene42913_All	58.12	191	9.00E-73	205	201
AET36873.1	CL12484.Contig3_All	56.45	186	3.00E-69	205	193
AET36873.1	CL12484.Contig2_All	64.2	81	1.00E-31	205	83
AET36873.1	CL12484.Contig1_All	51.96	102	1.00E-27	205	109
AET36873.1	CL5174.Contig1_All	63.38	71	3.00E-24	205	79
AET36872.1	Unigene57188_All	99.55	224	4.00E-170	224	265
AET36872.1	Unigene67843_All	99.54	217	2.00E-165	224	217
AET36872.1	Unigene75449_All	87.56	217	6.00E-142	224	258
AET36872.1	Unigene75450_All	82.95	217	4.00E-134	224	258
AET36872.1	CL4065.Contig3_All	80.53	190	2.00E-112	224	231
AET36872.1	Unigene27967_All	70.51	217	1.00E-111	224	258
AET36872.1	CL6815.Contig3_All	57.6	217	8.00E-91	224	252
AET36872.1	CL6815.Contig2_All	57.6	217	1.00E-90	224	265
AET36872.1	CL6815.Contig5_All	57.6	217	2.00E-90	224	273
AET36872.1	CL6815.Contig6_All	57.01	214	7.00E-89	224	215

AET36871.1	Unigene27967_All	92.64	258	2.00E-164	258	258
AET36871.1	Unigene75450_All	89.53	258	4.00E-158	258	258
AET36871.1	CL4065.Contig3_All	94.37	231	8.00E-148	258	231
AET36871.1	Unigene75449_All	74.71	257	1.00E-133	258	258
AET36871.1	Unigene57188_All	71.98	257	4.00E-127	258	265
AET36871.1	Unigene67843_All	73.33	210	8.00E-112	258	217
AET36871.1	CL6815.Contig2_All	53.36	253	1.00E-95	258	265
AET36871.1	CL6815.Contig5_All	53.36	253	2.00E-95	258	273
AET36871.1	CL6815.Contig3_All	54.69	245	5.00E-95	258	252
AET36871.1	CL6815.Contig6_All	55.77	208	4.00E-81	258	215
AET36870.1	Unigene27967_All	98.84	258	0	258	258
AET36870.1	Unigene75450_All	88.76	258	9.00E-158	258	258
AET36870.1	Unigene75449_All	80.16	257	8.00E-148	258	258
AET36870.1	CL4065.Contig3_All	93.51	231	2.00E-147	258	231
AET36870.1	Unigene57188_All	70.43	257	3.00E-125	258	265
AET36870.1	Unigene67843_All	71.43	210	2.00E-109	258	217
AET36870.1	CL6815.Contig2_All	52.57	253	5.00E-95	258	265
AET36870.1	CL6815.Contig5_All	52.57	253	1.00E-94	258	273
AET36870.1	CL6815.Contig3_All	53.88	245	2.00E-94	258	252
AET36870.1	CL6815.Contig6_All	54.81	208	2.00E-80	258	215
AET36869.1	Unigene27967_All	99.22	258	0	258	258
AET36869.1	Unigene75450_All	89.15	258	7.00E-159	258	258
AET36869.1	CL4065.Contig3_All	93.94	231	2.00E-148	258	231
AET36869.1	Unigene75449_All	78.99	257	6.00E-145	258	258
AET36869.1	Unigene57188_All	69.26	257	2.00E-122	258	265
AET36869.1	Unigene67843_All	70	210	1.00E-106	258	217
AET36869.1	CL6815.Contig2_All	52.17	253	5.00E-94	258	265
AET36869.1	CL6815.Contig5_All	52.17	253	8.00E-94	258	273
AET36869.1	CL6815.Contig3_All	53.47	245	2.00E-93	258	252
AET36869.1	CL6815.Contig6_All	54.33	208	2.00E-79	258	215
AET36868.1	Unigene27967_All	94.19	258	2.00E-170	258	258
AET36868.1	Unigene75450_All	85.27	258	1.00E-149	258	258
AET36868.1	CL4065.Contig3_All	89.61	231	2.00E-139	258	231
AET36868.1	Unigene75449_All	75.88	257	2.00E-139	258	258
AET36868.1	Unigene57188_All	67.32	257	2.00E-118	258	265
AET36868.1	Unigene67843_All	67.62	210	8.00E-103	258	217
AET36868.1	CL6815.Contig2_All	52.17	253	1.00E-94	258	265
AET36868.1	CL6815.Contig5_All	52.17	253	3.00E-94	258	273
AET36868.1	CL6815.Contig3_All	53.47	245	6.00E-94	258	252
AET36868.1	CL6815.Contig6_All	54.33	208	4.00E-80	258	215

8.5 BLASTP output (pairwise)

BLASTP 2.2.31+

Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

Reference for composition-based statistics: Alejandro A. Schaffer, L. Aravind, Thomas L. Madden, Sergei Shavirin, John L. Spouge, Yuri I. Wolf, Eugene V. Koonin, and Stephen F. Altschul (2001), "Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements", Nucleic Acids Res. 29:2994-3005.

Database: BLAST Database 127,401 sequences; 28,354,467 total letters

Query= AFR54067.1 MHC class I antigen, partial [Meles meles]

Sequences producing	significant alignments:	Score (Bits)	E Value
CL1150.Contig4 All	486 1187 MHC class I antigen, partial [Meles	377	7e-128
CL1150.Contig16 All	189 1160 minus strand MHC class I antigen, p	359	1e-118
CL154.Contig12 All	217 1134 class I histocompatibility antigen,	124	4e-31
CL154.Contig11 All	215 1132 minus strand class I histocompatibil	124	4e-31
CL154.Contig24 All	126 1199 class I histocompatibility antigen,	124	7e-31
CL154.Contig19_All	122 1195 class I histocompatibility antigen,	124	7e-31
CL154.Contig27_All	343 1377 class I histocompatibility antigen,	124	8e-31
CL154.Contig23_All	339 1373 class I histocompatibility antigen,	124	8e-31
CL154.Contig2_All	362 1396 class I histocompatibility antigen, G	124	8e-31
CL154.Contig1_All	294 1328 minus strand class I histocompatibili	124	8e-31

0.10.0001	1		60
Query_1	1	SISLKIF I IGVSRFGRGEFRF IAVGIVDDIQFVRFDSDSASRMEFRAPMMEQEGPEIWD	00
CLII50.Contig4_All	3	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD	62
CL1150.Contig16_All	6	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD	65
CL154.Contig12_All	2	TH\$LHYHYLAL\$EPGPDLPQFLAVGYVDDQPFIHYD\$RVDRAKPQALWMATVDAQYWE	59
CL154.Contig11 All	2	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	59
CL154.Contig24_All 111	54	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	
CL154.Contig19_All 111	54	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	
CL154.Contig27 All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
CL154.Contig23 All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
CL154.Contig2 All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
CL154.Contig1_All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
Query_1 120	61	QQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYSQHSYDGA	
CL1150.Contig4_All 122	63	QQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQFAYDGA	
CL1150.Contig16_All 125	66	RQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDGA	
CL154.Contig12_All 117	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig11_All 117	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	

CL154.Contig24_All	112	ΤE	TQKQF	RAWAKV	QQVETWTV	/MGY	HNQS-T(GMHST(QRMFG	CEIRI	EDGH-TH	SFWQFGFDGQ
CL154.Contig19_All 169	112	ΤE	TQKQF	RAWAKV	QQVETWTV	/MGY	HNQS-T(GMHST(QRMFG	CEIRI	EDGH-TH	SFWQFGFDGQ
CL154.Contig27_All	99	ΤE	TQKQF	RAWAKV	QQVETWTV	/MGY	HNQS-TO	GMHST(QRMFG	CEIRE	EDGH-TH	SFWQFGFDGQ
CL154.Contig23_All	99	ΤE	TQKQF	RAWAKV	QQVETWTV	/MGY	HNQS-T(GMHST(QRMFG	CEIRI	EDGH-TH	SFWQFGFDGQ
CL154.Contig2_All	99	ΤE	TQKQF	RAWAKV	QQVETWTV	/MGY	HNQS-T(GMHST(QRMFG	CEIRI	EDGH-TH	SFWQFGFDGQ
CL154.Contig1_All 156	99	ΤE	TQKQF	AWAKV	QQVETWTV	/MGY	HNQS-TO	GMHST(QRMFG	CEIRI	EDGH-TH	SFWQFGFDGQ
Query_1	121	DY	IALNE	DLRSW	TAADTAAÇ	QITQ	RKWE-DA	AGEAEI	RWRNY	VEGTO	CVEWLGR	YLENGKESLI
CL1150.Contig4_All	123	DY	LALNE	DLRSW	TAADTAAÇ)ISR	RKWE-DA	AGEAEI	RYRNY	VEGTO	CVEWLGR	YLENGKESLI
CL1150.Contig16_All	126	DY	IALNE	DLRSW	TAADTAAÇ	QISR	RKWE-DA	AGEAEI	RYRNY	VEGT	CVEWLGR	YLENGKESLI
CL154.Contig12_All	118	DH	LSLDI	ETLSW	VSAKPAAI	TRTK	SWWETE	RCYAEY	YDKAY	LEGLO	CLVSLRR	YLELGGQSLT
CL154.Contig11_All	118	DH	LSLDI	LETLSW	VSAKPAAI	TRTK	SWWETE	RCYAE	YDKAY:	LEGLO	CLVSLRR	YLELGGQSLT
CL154.Contig24_All	170	DH	LSLDI	ETLSW	VSAKPAAI	rtk	SWWETE	RCYAE	YDKAY:	LEGLO	CLVSLRR	YLELGGQSLT
CL154.Contig19_All	170	DH	LSLDI	LETLSW	VSAKPAAI	TRTK	SWWETE	RCYAE	YDKAY:	LEGLO	CLVSLRR	YLELGGQSLT
CL154.Contig27_All	157	DH	LSLDI	ETLSW	VSAKPAAI	TRTK	SWWETE	RCYAEY	YDKAY	LEGLO	CLVSLRR	YLELGGQSLT
CL154.Contig23_All 216	157	DH	LSLDI	LETLSW	VSAKPAAI	TRTK	SWWETE	RCYAE	YDKAY:	LEGLO	CLVSLRR	YLELGGQSLT
CL154.Contig2_All	157	DH	LSLDI	ETLSW	VSAKPAAI	TRTK	SWWETE	RCYAEY	YDKAY:	LEGLO	CLVSLRR	YLELGGQSLT
CL154.Contig1_All 216	157	DH	LSLDI	ETLSW	VSAKPAAI	TRTK	SWWETE	RCYAEY	YDKAY:	LEGLO	CLVSLRR	YLELGGQSLT
Query_1 CL1150.Contig4_All CL1150.Contig16_All CL154.Contig12_All CL154.Contig11_All CL154.Contig24_All CL154.Contig27_All CL154.Contig27_All CL154.Contig2_All CL154.Contig2_All CL154.Contig1_All	180 182 185 178 178 230 230 217 217 217 217	R R R R R R R R R R	180 182 185 178 178 230 230 217 217 217 217									
Lambda K 0.335 0.191	н 0.79:	1	a 0.4	143	alpha 1.38							
Gapped Lambda K 0.290 0.0750	H 0.28	0	a 1.	04	alpha 11.5		sigma 12.3					
Effective search spa	ce use	ed:	2743	848117	8							
Query= AFR54066.1 MH	C cla	ss	I ant	igen,	partial	L [M	eles me	eles]				
Length=180												
Sequences producing	signi:	fic	ant a	lignm	ents:						Score (Bits)	E Value
CL1150.Contig4_All CL1150.Contig16_All CL154.Contig12_All CL154.Contig11_All CL154.Contig27_All CL154.Contig23_All	486 1 189 1 217 1 215 1 343 1 339 1	187 116 134 132 377 373	MHC 0 mir clas minu clas clas	class nus st ss I h ns str ss I h ss I h	I antig rand MHC istocomp and clas istocomp istocomp	gen, c cl bati ss I bati bati	partia ass I a bility histo bility bility	al [Me antige antig compat antig antig	eles en, p gen, tibil gen, gen,	· · · · · · · · · · · ·	334 332 127 127 127 127 127	6e-111 5e-108 2e-32 2e-32 4e-32 4e-32

CL154.Contig2 All	362 1396 class I histocompatibility antigen, G	127	4e-32
CL154.Contig1 All	294 1328 minus strand class I histocompatibili	127	4e-32
CL154.Contig24 All	126 1199 class I histocompatibility antigen,	127	4e-32
CL154.Contig19_All	122 1195 class I histocompatibility antigen,	127	4e-32

Query_2 CL1150.Contig4_All CL150.Contig16_All CL154.Contig12_All CL154.Contig17_All CL154.Contig27_All CL154.Contig27_All CL154.Contig2_All CL154.Contig1_All CL154.Contig24_All 111 CL154.Contig19_All 111	1 3 6 2 2 41 41 41 54 54	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWVEQEGPEYWD SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	60 62 59 98 98 98 98
Query_2 120	61	RQTRNLKDAAHAFRVNLNTLRDYYNQSAAGSHTIQRMYGCDMGPDGRLLRGYSQVAYDGA	
CL1150.Contig4_All	63	$\label{eq:constraint} Q Q T R G I K E T Q T Y R R S L N N L R G Y Y Q S A G S H T F Q N M Y G C D V G P D G R L R G Y R Q F A Y D G A G A G A G A G A G A G A G A G A G$	
CL1150.Contig16_All	66	RQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDGA	
CL154.Contig12_All	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig11_All	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig27_All	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig23_All	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig2_All	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig1_All	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig24_All	112	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig19_All 169	112	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
Query_2	121	DYLALNEDLRSWTVADATAQISRRKWE-DADEAEHERNYLEVTCVEWLGRYLENGKESLL	
CL1150.Contig4_All	123	${\tt Dylalnedlrswtaadtaaqisrrkwe-dageaeryrnyvegtcvewlgrylengkesll}$	
CL1150.Contig16_All	126	DYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESLL	
CL154.Contig12_All	118	$\tt DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT$	
CL154.Contig11_All	118	${\tt DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT}$	
CL154.Contig27_All	157	${\tt DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT}$	
CL154.Contig23_All	157	${\tt DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT}$	
CL154.Contig2_All	157	${\tt DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT}$	
CL154.Contig1_All	157	${\tt DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT}$	
CL154.Contig24_All	170	${\tt DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT}$	
CL154.Contig19_All 229	170	DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT	

Query_2180R180CL1150.Contig4_All182R182CL1150.Contig16_All185R185CL154.Contig12_All178R178

CL154.Contig11_A CL154.Contig27_A CL154.Contig23_A CL154.Contig2_A1 CL154.Contig1_A1 CL154.Contig24_A CL154.Contig19_A	11 178 11 217 11 217 1 217 1 217 1 2130 11 230	R 178 R 217 R 217 R 217 R 217 R 217 R 230 R 230											
Lambda K 0.336 0.19	н 2 0.788	a 3 0.443	alpha 1.38										
Gapped Lambda K 0.290 0.075	H 0 0.280	a 0 1.04	alpha 11.5	sigma 12.3									
Effective search space used: 2743481178													
Query= AFR54065.1 MHC class I antigen, partial [Meles meles]													
Length=180						Saoro	r.						
Sequences produc	ing signi:	ficant align	ments:			(Bits)	E Value						
CL1150.Contig4_A CL1150.Contig16_ CL154.Contig12_A CL154.Contig11_A CL154.Contig27_A CL154.Contig23_A CL154.Contig2_Al CL154.Contig2_Al CL154.Contig1_Al CL154.Contig24_A CL154.Contig19_A	11 486 1 All 189 1 11 217 1 11 215 1 11 343 1 11 339 1 1 362 132 1 294 132 11 126 1 11 122 1	187 MHC class 1160 minus s 134 class I 1 132 minus st 377 class I 1 373 class I 1 96 class I h 28 minus str 199 class I 1 195 class I 1	s I antige trand MHC histocompa rand class histocompa istocompat and class histocompa histocompa	n, partial [M class I antig tibility anti I histocompa tibility anti tibility antig ibility antig I histocompat tibility anti tibility anti	eles en, p gen, gen, en, G ibili gen, gen,	 331 329 132 	9e-110 7e-107 6e-34 6e-34 1e-33 1e-33 1e-33 1e-33 1e-33 1e-33						
Query_3 CL1150.Contig4_A CL1150.Contig16_ CL154.Contig12_A CL154.Contig17_A CL154.Contig27_A CL154.Contig23_A CL154.Contig2_A1 CL154.Contig1_A1 CL154.Contig24_A 111 CL154.Contig19_A	1 11 3 All 6 11 2 11 2 11 41 11 41 1 41 1 41 1 54 11 54	SHSLRYFYTGV: SHSLRYFYTGV: SHSLRYFYTGV: THSLHYHYLAL: THSLHYHYLAL: THSLHYHYLAL: THSLHYHYLAL: THSLHYHYLAL: THSLHYHYLAL: THSLHYHYLAL:	SRPGRGEPRF SRPGRGEPRF SEPGPDLPQF SEPGPDLPQF SEPGPDLPQF SEPGPDLPQF SEPGPDLPQF SEPGPDLPQF SEPGPDLPQF	IAVGYVDDTQFVR IAVGYVDDTQFVR IAVGYVDDQPFIH LAVGYVDDQPFIH LAVGYVDDQPFIH LAVGYVDDQPFIH LAVGYVDDQPFIH LAVGYVDDQPFIH LAVGYVDDQPFIH	FDSDSASRR FDSDSASRR FDSDSASRR YDSRVDR YDSRVDR YDSRVDR YDSRVDR YDSRVDR YDSRVDR	MEPRAPWI MEPRAPWI AKPQALWI AKPQALWI AKPQALWI AKPQALWI AKPQALWI AKPQALWI AKPQALWI	MEQEGPEYWD MEQEGPEYWD MATVDAQYWE MATVDAQYWE MATVDAQYWE MATVDAQYWE MATVDAQYWE MATVDAQYWE MATVDAQYWE	60 62 59 98 98 98 98					
111	LL J4		Strerburgr		.103KVDK	AKEQALM	MAIVDAQIWE						
Query_3 120 CL1150 Contig4 A	11 63	COTRICTED TO	AFRVNLNTLR	CYYNOGAACSHTI	QRMYGCDVG	PDGKLLR	JISQVAIDGA						
122 CL1150.Contig16	All 66	ROTOICKETTO	TYRGSLNILR	GYYNOSAAGSHTI	ONLYGCDVG	PDGRLLR	GYROFAYDGA						
125 CL154.Contig12 A	11 60	TETQKQRAWAK	VQQVETWTVM	GYHNQS-TGMHST	QRMFGCEIR	EDGH-TH	SFWQFGFDGQ						
117 CL154.Contig11_A	11 60	TETQKQRAWAK	VQQVETWTVM	GYHNQS-TGMHST	QRMFGCEIR	EDGH-TH	SFWQFGFDGQ						
117 CL154.Contig27_A	11 99	TETQKQRAWAK	VQQVETWTVM	GYHNQS-TGMHST	QRMFGCEIR	EDGH-TH	SFWQFGFDGQ						
LD6 CL154.Contig23_A	11 99	TETQKQRAWAK	VQQVETWTVM	GYHNQS-TGMHST	QRMFGCEIR	EDGH-TH	SFWQFGFDGQ						
CL154.Contig2_Al	1 99	TETQKQRAWAK	VQQVETWTVM	GYHNQS-TGMHST	QRMFGCEIR	EDGH-TH	SFWQFGFDGQ						
CL154.Contig1_Al 156	1 99	TETQKQRAWAK	VQQVETWTVM	GYHNQS-TGMHST	QRMFGCEIR	EDGH-TH	SFWQFGFDGQ						

CL154.Contig24_All	112	TETQKQRAWAKV	/QQVETWTVM	GYHNQS-TGMHSTQF	MFGCEIRI	EDGH-TH	SFWQFGFDGQ
CL154.Contig19_All 169	112	TETQKQRAWAKV	/QQVETWTVM	GYHNQS-TGMHSTQF	RMFGCEIRI	EDGH-TH	SFWQFGFDGQ
Query_3	121	DYLALNEDLRSW	VTVADATAQI	SRRKWEAA-DEAEHE	CRNYLEVT	CLEWLHR	YLENGKESLL
CL1150.Contig4_All	123	DYLALNEDLRSW	VTAADTAAQI	SRRKWEDA-GEAERY	RNYVEGT	CVEWLGR	YLENGKESLL
CL1150.Contig16_All	126	DYIALNEDLRSW	ITAADTAAQI	SRRKWEDA-GEAERY	RNYVEGT	CVEWLGR	YLENGKESLL
CL154.Contig12_All	118	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI	KAYLEGL	CLVSLRR	YLELGGQSLT
CL154.Contig11_All	118	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI	KAYLEGL	CLVSLRR	YLELGGQSLT
CL154.Contig27_All	157	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI	KAYLEGL	CLVSLRR	YLELGGQSLT
216 CL154.Contig23_All	157	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI	KAYLEGL	CLVSLRR	YLELGGQSLT
216 CL154.Contig2_All	157	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI	KAYLEGL	CLVSLRR	YLELGGQSLT
216 CL154.Contig1_All	157	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI	KAYLEGL	CLVSLRR	YLELGGQSLT
216 CL154.Contig24_All	170	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI)KAYLEGL(CLVSLRR	YLELGGQSLT
229 CL154.Contig19_All 229	170	DHLSLDLETLSW	IVSAKPAATR	TKSWWETERCYAEYI)KAYLEGL(CLVSLRR	YLELGGQSLT
Query_3 CL1150.Contig4_All CL150.Contig16_All CL154.Contig12_All CL154.Contig17_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All CL154.Contig1_All CL154.Contig24_All CL154.Contig19_All	180 182 185 178 178 217 217 217 217 230 230	R 180 R 182 R 185 R 178 R 178 R 217 R 217 R 217 R 217 R 217 R 217 R 230 R 230					
Lambda K 0.336 0.191	Н 0.785	a 5 0.443	alpha 1.38				
Gapped Lambda K 0.290 0.0750	H 0.280	a D 1.04	alpha 11.5	sigma 12.3			
Effective search spa	ce use	ed: 274348117	78				
Query= AFR54064.1 MH	C clas	ss I antigen,	partial	[Meles meles]			
Length=180							
Sequences producing	signi:	ficant alignm	ments:			Score (Bits)	E Value
CL1150.Contig16_All CL1150.Contig1_All CL154.Contig12_All CL154.Contig11_All CL154.Contig14_All CL154.Contig19_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All 3 CL154.Contig1_All 2	189 1 486 1 217 1 215 1 126 1 122 1 343 1 339 1 62 1 3 94 1 3 94 1 3	1160 minus st 187 MHC class 134 class I h 132 minus str 199 class I h 195 class I h 377 class I h 373 class I h 28 minus stra	rand MHC s I antige nistocompa nistocompa nistocompa nistocompa nistocompat and class	class I antiger n, partial [Me] tibility antige I histocompati tibility antige tibility antige tibility antige ibility antiger I histocompatik	n, p es bil en, en, en, en, cn, bili	340 323 119 119 119 119 119 119 119 119	4e-111 1e-106 2e-29 2e-29 3e-29 3e-29 3e-29 3e-29 3e-29 3e-29 3e-29

Query_4 1 SHSLRYFSTAVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWVEQEGPEYWD 60
CL1150.Contig16_All CL1150.Contig1_All CL154.Contig12_All CL154.Contig11_All CL154.Contig24_All	6 3 2 2 54	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	65 62 59 59
CL154.Contig19_All	54	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	
CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All CL154.Contig2_All CL154.Contig1_All	41 41 41 41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98 98 98 98
Query_4	61	RQTQICKDAAQTYRGNLQTALRYYNQSAAGSHTIQNVYGCDVGRDGRLLRGYSQDSYDGA	
CL1150.Contig16_All	66	RQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDGA	
CL1150.Contig4_All	63	QQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQFAYDGA	
CL154.Contig12_All	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig11_All	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig24_All	112	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig19_All	112	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig27_All	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig23_All	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig2_All	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig1_All 156	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
	1.0.1	Α. Τ	
Query_4 179	121	DIIKTWEDTK2MIKKDIKKŐIIŐUVMEDKAK-KEKMUNITEAICAEMTAUITEMAUESTT	
Query_4 179 CL1150.Contig16_All 184	121	DYIALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181	121 126 123	DYIALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DYLALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181 CL154.Contig12_All 177	121 126 123 118	DYIALNEDLRSWTAADTAAQIIQRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DYLALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181 CL154.Contig12_All 177 CL154.Contig11_All 177	121 126 123 118 118	DYIALNEDLRSWIAADTAAQIIGRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DYLALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181 CL154.Contig12_All 177 CL154.Contig11_All 177 CL154.Contig24_All 229	121 126 123 118 118 170	DYIALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DYLALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181 CL154.Contig12_All 177 CL154.Contig11_All 177 CL154.Contig24_All 229 CL154.Contig19_All 229	121 126 123 118 118 170 170	DYIALNEDLRSWTAADTAAQIIGRKWEDAGA-AERWRNILEVICVEWLGRILENGKESLL DYIALNEDLRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWLGRYLENGKESLL DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSLT	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181 CL154.Contig12_All 177 CL154.Contig11_All 177 CL154.Contig24_All 229 CL154.Contig19_All 229 CL154.Contig27_All 216	121 126 123 118 118 170 170 157	DYIALNEDERSWIAADTAAQIIQRKWEDAGA-AERWRNIEEVICVEWEGRIEENGKESEE DYIALNEDERSWIAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWEGRYEENGKESEE DHESEDERSWIAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWEGRYEENGKESEE DHESEDETESWVSAKPAATRTKSWWETERCYAEYDKAYEGGECEVSERRYEELGGQSET DHESEDETESWVSAKPAATRTKSWWETERCYAEYDKAYEEGECEVSERRYEELGGQSET DHESEDETESWVSAKPAATRTKSWWETERCYAEYDKAYEEGECEVSERRYEELGGQSET DHESEDETESWVSAKPAATRTKSWWETERCYAEYDKAYEGECEVSERRYEELGGQSET	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181 CL154.Contig12_All 177 CL154.Contig11_All 177 CL154.Contig24_All 229 CL154.Contig19_All 229 CL154.Contig27_All 216 CL154.Contig23_All 216	121 126 123 118 118 170 170 157 157	DYIALNEDIRSWIAADTAAQIIGRKWEDAGA-AERWRNILEVICVEWIGRILENGKESII DYIALNEDIRSWIAADTAAQIIGRRKWEDAGE-AERYRNYVEGTCVEWIGRYLENGKESII DYLALNEDIRSWIAADTAAQIIGRRKWEDAGE-AERYRNYVEGTCVEWIGRYLENGKESII DHISIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICIVSIRRYLEIGGQSIT DHISIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICIVSIRRYLEIGGQSIT DHISIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICIVSIRRYLEIGGQSIT DHISIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICIVSIRRYLEIGGQSIT DHISIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICIVSIRRYLEIGGQSIT DHISIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICIVSIRRYLEIGGQSIT DHISIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICIVSIRRYLEIGGQSIT	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig1_All 181 CL154.Contig12_All 177 CL154.Contig12_All 177 CL154.Contig24_All 229 CL154.Contig19_All 229 CL154.Contig27_All 216 CL154.Contig23_All 216 CL154.Contig2_All 216	121 126 123 118 118 170 170 157 157	DYIALNEDIRSWIAADTAAQIIQRKWEDAGA-AERYRNYVEGTCVEWIGRILENGKESII DYIALNEDIRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWIGRYLENGKESII DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSIRRYLEIGGQSIT	
Query_4 179 CL1150.Contig16_All 184 CL1150.Contig4_All 181 CL154.Contig12_All 177 CL154.Contig11_All 177 CL154.Contig24_All 229 CL154.Contig27_All 229 CL154.Contig27_All 216 CL154.Contig23_All 216 CL154.Contig2_All 216	121 126 123 118 118 170 170 157 157 157	DYIALNEDIRSWIAADTAAQIIQRKWEDAGA-AERYRNYVEGTCVEWIGRILENGKESII DYIALNEDIRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWIGRYLENGKESII DYLALNEDIRSWTAADTAAQISRRKWEDAGE-AERYRNYVEGTCVEWIGRYLENGKESII DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT DHLSIDLETISWVSAKPAATRTKSWWETERCYAEYDKAYLEGICLVSIRRYLEIGGQSIT	

Lambda	K	Н	a	alpha	
0.334	0.190	0.776	0.443	1.38	
Gapped					
Lambda	K	Н	a	alpha	sigma
0.290	0.0750	0.280	1.04	11.5	12.3

Query= AFR54063.1 MHC class I antigen, partial [Meles meles]

Length=180		
Sequences producing significant alignments:	Score (Bits)	E Value
CL1150.Contig4 All 486 1187 MHC class I antigen, partial [Meles	369	7e-125
CL1150.Contig16 All 189 1160 minus strand MHC class I antigen, p	367	1e-121
CL154.Contig12 All 217 1134 class I histocompatibility antigen,	133	2e-34
CL154.Contig11 All 215 1132 minus strand class I histocompatibil	133	2e-34
CL154.Contig27 All 343 1377 class I histocompatibility antigen,	133	4e-34
CL154.Contig23 All 339 1373 class I histocompatibility antigen,	133	4e-34
CL154.Contig2 All 362 1396 class I histocompatibility antigen, G	133	4e-34
CL154.Contig1 All 294 1328 minus strand class I histocompatibili	133	4e-34
CL154.Contig24 All 126 1199 class I histocompatibility antigen,	133	4e-34
CL154.Contig19_All 122 1195 class I histocompatibility antigen,	133	4e-34

Query 5	1	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDAQFVRFDSDSASLRMEPRAPWMEQEGPEYWD	60
CL1150.Contig4 All	3	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD	62
CL1150.Contig16 All	6	SHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEGPEYWD	65
CL154.Contig12 All	2	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	59
CL154.Contig11 All	2	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	59
CL154.Contig27 All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
CL154.Contig23 All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
CL154.Contig2 All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
CL154.Contig1 All	41	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	98
CL154.Contig24_All 111	54	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	
CL154.Contig19_All 111	54	THSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYWE	
Query_5 120	61	RETRNLKETTQTYRVNLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDGA	
CL1150.Contig4_All 122	63	QQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQFAYDGA	
CL1150.Contig16_All 125	66	RQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDGA	
CL154.Contig12_All 117	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig11_All 117	60	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig27_All 156	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig23_All 156	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig2_All 156	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig1_All 156	99	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig24_All 169	112	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
CL154.Contig19_All 169	112	TETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDGQ	
Query_5 179	121	DYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESLL	
CL1150.Contig4_All 181	123	DYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESLL	

CL1150.Contig16_All	126	DYIALNEDLRSWI	TAADTAAQI	SRRKWE-DAGEAERYRNY	VEGTCVEWLGR	YLENGKESLL	
CL154.Contig12_All	118	DHLSLDLETLSW	/SAKPAATR	rkswwetercyaeydkay:	LEGLCLVSLRR	YLELGGQSLT	
CL154.Contig11_All	118	DHLSLDLETLSW	/SAKPAATR	TKSWWETERCYAEYDKAY	LEGLCLVSLRF	YLELGGQSLT	
CL154.Contig27_All 216	157	DHLSLDLETLSW	/SAKPAATR	IKSWWETERCYAEYDKAY	LEGLCLVSLRR	YLELGGQSLT	
CL154.Contig23_All 216	157	DHLSLDLETLSW	/SAKPAATR	TKSWWETERCYAEYDKAY	LEGLCLVSLRF	YLELGGQSLT	
CL154.Contig2_All	157	DHLSLDLETLSW	/SAKPAATR	TKSWWETERCYAEYDKAY	LEGLCLVSLRR	YLELGGQSLT	
CL154.Contig1_All	157	DHLSLDLETLSW	/SAKPAATR	TKSWWETERCYAEYDKAY	LEGLCLVSLRR	YLELGGQSLT	
CL154.Contig24_All	170	DHLSLDLETLSW	/SAKPAATR	TKSWWETERCYAEYDKAY	LEGLCLVSLRF	YLELGGQSLT	
CL154.Contig19_All 229	170	DHLSLDLETLSW	/SAKPAATR	TKSWWETERCYAEYDKAY	LEGLCLVSLRR	YLELGGQSLT	
Query_5 CL1150.Contig4_All CL150.Contig16_All CL154.Contig12_All CL154.Contig17_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All CL154.Contig1_All CL154.Contig1_All CL154.Contig19_All	180 182 185 178 178 217 217 217 217 230 230	R 180 R 182 R 185 R 178 R 178 R 217 R 217 R 217 R 217 R 217 R 217 R 217 R 230 R 230					
Lambda K 0.335 0.193	н 0.791	a 1 0.443	alpha 1.38				
Gapped							
0.290 0.0750	н 0.280	a 0 1.04	alpha 11.5	12.3			
Effective search space	ce use	ed: 2743481178	3				
Query= AFR54062.1 MHG	C clas	ss I antigen,	partial	[Meles meles]			
Length=90					Score	T	
Sequences producing :	signii	ficant alignme	ents:		(Bits)	Value	
CL1150.Contig4_All CL1150.Contig16_All CL154.Contig16_All CL154.Contig15_All CL154.Contig14_All CL154.Contig13_All CL154.Contig33_All CL154.Contig21_All CL154.Contig20_All CL154.Contig17_All	486 11 189 1 217 48 215 4 217 48 215 4 215 4 3343 72 339 71 339 72 343 72	187 MHC class 1160 minus str 30 class I his 78 minus strar 80 class I his 78 minus strar 23 class I his 19 class I his 23 class I his 23 class I his	I antigen and MHC of stocompation at class in stocompation stocompation stocompation stocompation	h, partial [Meles class I antigen, p ibility antigen, G I histocompatibili ibility antigen, G I histocompatibili ibility antigen, G ibility antigen, G ibility antigen, G	178 171 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7 70.7	3e-53 7e-50 2e-15 2e-15 2e-15 2e-15 4e-15 4e-15 4e-15 4e-15	
Query_6 CL1150.Contig4_All CL150.Contig16_All CL154.Contig16_All CL154.Contig15_All CL154.Contig14_All CL154.Contig13_All CL154.Contig33_All CL154.Contig21_All CL154.Contig20_All	1 2 5 1 1 1 40 40 40	GSHSLRYFYTGVS GSHSLRYFYTGVS GSHSLRYFYTGVS GTHSLHYHYLALS GTHSLHYHYLALS GTHSLHYHYLALS GTHSLHYHYLALS GTHSLHYHYLALS GTHSLHYHYLALS	SRPGRAEPRI SRPGRGEPRI SEPGPDLPQI SEPGPDLPQI SEPGPDLPQI SEPGPDLPQI SEPGPDLPQI SEPGPDLPQI SEPGPDLPQI	FIAVGYVDDAQFVRFDSD FIAVGYVDDTQFVRFDSD FIAVGYVDDTQFVRFDSD FLAVGYVDDQPFIHYD FLAVGYVDDQPFIHYD FLAVGYVDDQPFIHYD FLAVGYVDDQPFIHYDSR FLAVGYVDDQPFIHYDSR FLAVGYVDDQPFIHYDSR	SASRRME PRAF SASRRME PRAF SASRRME PRAF SRVDRAK PQAI SRVDRAK PQAI SRVDRAK PQAI VDRAK PQAI VDRAK PQAI VDRAK PQAI	WMEQEGPEYW WMEQEGPEYW WMATVDAQYW WMATVDAQYW WMATVDAQYW WMATVDAQYW WMATVDAQYW WMATVDAQYW WMATVDAQYW	60 61 58 58 97 97 97

CL154.Contig17_All	40 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD	RAKPQALWMATVDAQYW	97
Query_6 CL1150.Contig4_All CL150.Contig16_All CL154.Contig16_All CL154.Contig15_All CL154.Contig14_All CL154.Contig13_All CL154.Contig33_All CL154.Contig21_All CL154.Contig20_All CL154.Contig17_All	61DRQTRNLKDAAQTYRRSLNNLRDYYNQSEA9062DQQTRGIKETTQTYRRSLNNLRGYYNQSAA9165DRQTQICKETTQTYRGSLNILRGYYNQSAA9459ETETQKQRAWAKVQVETWTVMGYHNQS8659ETETQKQRAWAKVQVETWTVMGYHNQS8659ETETQKQRAWAKVQVETWTVMGYHNQS8659ETETQKQRAWAKVQVETWTVMGYHNQS8658ETETQKQRAWAKVQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS125		
Lambda K 0.332 0.189	H a alpha 0.769 0.443 1.38		
Gapped Lambda K 0.290 0.0750	H a alpha sigma 0.280 1.04 11.5 12.3		
Effective search spa	ce used: 906584538		
Query= AFR54061.1 MH	C class I antigen, partial [Meles meles]		
Length=90			
Sequences producing	significant alignments:	Score E (Bits) Value	
CL1150.Contig4_All CL1150.Contig16_All CL154.Contig16_All CL154.Contig15_All CL154.Contig14_All CL154.Contig13_All CL154.Contig33_All CL154.Contig21_All CL154.Contig20_All CL154.Contig17_All	486 1187 MHC class I antigen, partial [Meles 189 1160 minus strand MHC class I antigen, p 217 480 class I histocompatibility antigen, G 215 478 minus strand class I histocompatibili 217 480 class I histocompatibility antigen, G 215 478 minus strand class I histocompatibili 343 723 class I histocompatibility antigen, G 339 719 class I histocompatibility antigen, G 343 723 class I histocompatibility antigen, G 343 723 class I histocompatibility antigen, G 343 723 class I histocompatibility antigen, G	144 1e-40 138 6e-38 64.4 4e-13 64.4 4e-13 64.4 4e-13 64.4 4e-13 64.4 8e-13 64.4 8e-13 64.4 8e-13 64.4 8e-13 64.4 8e-13 64.4 8e-13	
Query_7 CL1150.Contig4_All CL1150.Contig16_All CL154.Contig16_All CL154.Contig15_All CL154.Contig14_All CL154.Contig13_All CL154.Contig33_All CL154.Contig21_All CL154.Contig20_All CL154.Contig17_All	 GSHSLRYFSTAVSRPGRGEARYWEVGYVDDTQFARFDSDSASP GSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASR GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD 	RMEPRAPWVEQAGPEYW RMEPRAPWMEQEGPEYW RAKPQALWMATVDAQYW RAKPQALWMATVDAQYW RAKPQALWMATVDAQYW RAKPQALWMATVDAQYW RAKPQALWMATVDAQYW RAKPQALWMATVDAQYW RAKPQALWMATVDAQYW RAKPQALWMATVDAQYW	60 61 58 58 58 97 97 97 97
Query_7 CL1150.Contig4_All CL150.Contig16_All CL154.Contig16_All CL154.Contig15_All CL154.Contig14_All CL154.Contig13_All CL154.Contig33_All CL154.Contig21_All CL154.Contig20_All CL154.Contig17_All	61DRETRGIKDAAQTYRVDLQTALGCYNQSEA9062DQQTRGIKETTQTYRRSLNNLRGYYNQSAA9165DRQTQICKETTQTYRGSLNILRGYYNQSAA9459ETETQKQRAWAKVQQVETWTVMGYHNQS8659ETETQKQRAWAKVQQVETWTVMGYHNQS8659ETETQKQRAWAKVQQVETWTVMGYHNQS8659ETETQKQRAWAKVQQVETWTVMGYHNQS8698ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS12598ETETQKQRAWAKVQQVETWTVMGYHNQS125		

Lambda K H a alpha 0.332 0.188 0.775 0.443 1.38 Gapped Lambda K H a alpha sigma 0.290 0.0750 0.280 1.04 11.5 12.3

Effective search space used: 906584538

Query= AFR54060.1 MHC class I antigen, partial [Meles meles]

Length=325

2				Score	E
Sequences	producing	significant	alignments:	(Bits)	Value

CL1150.Contig16_All	189 1160 minus strand MHC class I antigen, p	618	0.0
CL1150.Contig4 All	486 1187 MHC class I antigen, partial [Meles	494	1e-169
CL1150.Contig15_All	3 452 minus strand MHC class I antigen, part	266	3e-83
CL1150.Contig17_All	682 1101 minus strand MHC class I antigen, p	239	4e-73
CL154.Contig12_All 2	217 1134 class I histocompatibility antigen,	248	6e-73
CL154.Contig11_All 2	215 1132 minus strand class I histocompatibil	248	6e-73
CL1150.Contig13_All	621 1046 minus strand MHC class I antigen, p	238	1e-72
CL154.Contig27_All 3	343 1377 class I histocompatibility antigen,	248	3e-72
CL154.Contig23_All 3	339 1373 class I histocompatibility antigen,	248	3e-72
CL154.Contig2_All 30	62 1396 class I histocompatibility antigen, G	248	3e-72

Query 8	1	ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	60
CL1150.Contig16 All	1	ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	60
CL1150.Contig4 All	1	AGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	57
CL154.Contig12 All	1	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	54
CL154.Contig11 All	1	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	54
CL154.Contig27 All	40	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	93
CL154.Contig23 All	40	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	93
CL154.Contig2_All	40	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	93
Query_8 120	61	PEYWDQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYSQH	
CL1150.Contig16_All 120	61	PEYWDRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQF	
CL1150.Contig4_All 117	58	PEYWDQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQF	
CL154.Contig12_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig11_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig27_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig23_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig2_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
Query_8 179	121	$\verb SYDGADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERWRNYVEGTCVEWLGRYLENG $	
CL1150.Contig16_All 179	121	AYDGADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig4_All 176	118	AYDGADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig15 All	1	QISRRKUE-DAGVAELERDYLEITCVKWLHRYLENG	35
CL154.Contig12_All 172	113	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig11_All 172	113	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig27_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig23_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig2_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	

Query_8	180	KESLLRAETPN	THVTRHPISI	DRDVTLRCWAL	DFYPAEITLTW	KRDEEDLT	QDTELVETRP	
CL1150.Contig16_All	180	KESLLRAETPN	THVTRHPISI	ORDVTLRCWAL	DFYPAEITLTW	QRDGEDLT	QDTELVETRP	
CL1150.Contig4_All	177	KESLLRAETPN	THVTRHPISI	ORDVTLRCWAL	DFYPAEITLTW	KRDEEDLT	QDTELVET	
CL1150.Contig15_All	36	KETLLR			TEITLTW	QRDGEDQT	QDTELVETRP	66
CL150.Contig17_All CL154.Contig12_All	1 173	RAEPPN GQSLTRKEPPT	VQVTRHTARI)HAVTLRCWAL)GSITLKCWAR	GFYPAEITLTW	2RDGEDLT WLGEEELV	QDTELVETRP VLETEYVETRP	55
232 CL154.Contig11_All	173	GQSLTRKEPPT	VQVTRHTARI	GSITLKCWAR	GFYPRDISLSW	VLGEEELV	LETEYVETRP	
CL1150.Contig13_All CL154.Contig27_All	1 212	RAEPPN GQSLTRKEPPT	TRMTHHPISI VQVTRHTARI	DHAVTLRCWAL DGSITLKCWAR	DFYPAEITLTW GFYPRDISLSW	HEEEDLT WLGEEELV	QDTELVGTRP VLETEYVETRP	55
CL154.Contig23_All	212	GQSLTRKEPPT	VQVTRHTARI	OGSITLKCWAR	GFYPRDISLSW	VLGEEELV	LETEYVETRP	
271 CL154.Contig2_All 271	212	GQSLTRKEPPT	VQVTRHTARI	GSITLKCWAR	GFYPRDISLSW	VLGEEELV	LETEYVETRP	
Query_8 298	240	AGDGTFQKWAA	VVVPSGQEQF	RYTCYVQHEGL	SEPITRRWE-P	PRTIPITW	VIIAGLVLLVI	
CL1150.Contig16_All	240	AGDGTFQKWAA	VVVPSGEEQF	RYTCHVQHKGL	PEPITLSWKPP	PPTIPIMW	VIIAGLALLAV	
CL1150.Contig15_All 125	67	AGDGTFQKWAA	VVVPSGQEQF	RYTCYVQHEGL	SEPITRRWE-P	PRTIPITW	VIIAGLVLLVI	
CL1150.Contig17_All	56	AGDGTFQKWAA	VVVPSGEEQF	RYTCHVQHKGL	PEPITLSWKPP	PPTIPIMW	NIIAGLALLAV	
CL154.Contig12_All	233	SGDGTYQTWAA	VQVPARTEDF	RYICHVQHSGL	NHTLTVTWE-A	PPRQW	IITSAVVIPML	
CL154.Contig11_All	233	SGDGTYQTWAA	VQVPARTEDF	RYICHVQHSGL	NHTLTVTWE-A	PPRQW	IITSAVVIPML	
CL1150.Contig13_All	56	TGNGTFQKWAA	VVVPSGEEQF	RYTCHVQHKGL	PEPITLSWKPP	PPTIPIMW	VIIAGLALLAV	
CL154.Contig27_All	272	SGDGTYQTWAA	VQVPARTEDF	RYICHVQHSGL	NHTLTVTWE-A	PPRQW	NITSAVVIPML	
CL154.Contig23_All	272	SGDGTYQTWAA	VQVPARTEDF	RYICHVQHSGL	NHTLTVTWE-A	PPRQW	IITSAVVIPML	
CL154.Contig2_All 327	272	SGDGTYQTWAA	VQVPARTEDF	RYICHVQHSGL	NHTLTVTWE-A	PPRQW	NITSAVVIPML	
Query 8	299	IAVIGVAI	WWKKRSGEKO	GPGYSHAARD	325			
CL1150.Contig16_All	300	TVVVGAVI	WRRKRSGGKO	GPGYSHAA	324			
CL1150.Contig15_All	126 116	TAVIGVAI	WWKKRSGEKO	GPGYSHAA	140			
CL154.Contig12 All	289	IFLLLTAGVLI	FIKOYS	JI GI JIIAA	305			
CL154.Contig11_All	289	IFLLLTAGVLI	FIKQYS		305			
CL1150.Contig13_All	116	TVVVGAVI	WRKKRSGGKO	GPGYSHAARD	142			
CL154.Contig27_All	328	IFLLLTAGVLI	FIKQYS		344			
CL154.Contig2 All	328 328	IFLLLTAGVLI	FIKQIS FIKQYS		344			
_								
Lambda K	Н	a	alpha					
0.335 0.191	0.80	1 0.443	1.38					
Gapped								
Lambda K	Н	а	alpha	sigma				
0.290 0.0750	0.28	0 1.04	11.5	12.3				
Effective search spa	ace use	ed: 57081829	59					
Query= AFR54059.1 MH	HC cla	ss I antigen	, partial	[Meles mel	.es]			
Length=325						Correct	F	
Sequences producing	signi	ficant align	ments:			Score (Bits)	E Value	
CL1150.Contig16_All CL1150.Contig4 All	189 486 1	1160 minus s 187 MHC clas	trand MHC s I antige	class I an en, partial	tigen, p [Meles	596 446	0.0 1e-150	

CL1150.Contig15 All	3 452 minus strand MHC class I antigen, part	274	3e-86
CL1150.Contig17 All	682 1101 minus strand MHC class I antigen, p	244	6e-75
CL154.Contig12 All	217 1134 class I histocompatibility antigen,	253	1e-74
CL154.Contig11 All	215 1132 minus strand class I histocompatibil	253	1e-74
CL154.Contig27_All	343 1377 class I histocompatibility antigen,	253	6e-74
CL154.Contig23_All	339 1373 class I histocompatibility antigen,	253	6e-74
CL154.Contig2_All 3	362 1396 class I histocompatibility antigen, G	253	6e-74
CL154.Contig1_All 2	294 1328 minus strand class I histocompatibili	253	6e-74

Query_9	1	ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWVEQEG	60
CLII50.Contigl6_ALL	1	ETWAGSHSLRYFYTGVSRPGRGEPRF1AVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	60
CL1150.Contig4_All CL154.Contig12 All	1 1	AGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG GTHSLHYHYLALSEPGPDLPOFLAVGYVDDOPFIHYDSRVDRAKPOALWMATVD	57
CL154.Contig11 All	1	GTHSLHYHYLALSEPGPDLPOFLAVGYVDDOPFTHYDSRVDRAKPOALWMATVD	54
CL154 Contig27 All	40	GTHSLHYHYLALSEPGPDLPOFLAVGYVDDOPFIHYDSRVDRAKPOALWMATVD	93
CI154 Contig23 All	10	CTHELINVER ALSECODI DOFI AVCYVDDOPFHYDSBV - DDAKDOAI WMATYD	93
CI154 Contig25_AII	40		02
CLI54.CONCIG2_ALL	40		93
CLI54.CONCIGI_AII	40	GIHSLHIHILALSEPGPULPQFLAVGIVDUQPFIHIDSKVDKAKPQALWMAIVD	93
Query_9 120	61	PEYWDRQTRNLKDAAHAFRVNLNTLRDYYNQSAAGSHTIQRMYGCDMGPDGRLLRGYSQV	
CL1150.Contig16_All 120	61	PEYWDRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQF	
CL1150.Contig4_All 117	58	PEYWDQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQF	
CL154.Contig12_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig11_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig27_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig23_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig2_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig1_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
Query_9 179	121	AYDGADYLALNEDLRSWTVADATAQISRRKWE-DADEAEHERNYLEVTCVEWLGRYLENG	
CL1150.Contig16_All 179	121	AYDGADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig4_All 176	118	AYDGADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig15 All	1	QISRRKUE-DAGVAELERDYLEITCVKWLHRYLENG	35
CL154.Contig12_All 172	113	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig11_All 172	113	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig27_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig23_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig2_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig1_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
Query_9 239	180	KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	
CL1150.Contig16_All 239	180	KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	
CL1150.Contig4_All 234	177	KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWKRDEEDLTQDTELVET	
CL1150.Contig15_All	36	KETLLRTEITLTWQRDGEDQTQDTELVETRP	66
CL1150.Contig17_All	1	RAEPPNTRMTHHPISDHAVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	55
CL154.Contig12_All 232	1.1.3	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	

CL154.Contig11_All	173	GQSLTRKEPPTV	QVTRHTARD	GSITLKCW	ARGFYPRDISLSWV	VLGEEELVI	LETEYVETRP
CL154.Contig27_All	212	GQSLTRKEPPTV	QVTRHTARD	GSITLKCW	ARGFYPRDISLSWV	VLGEEELVI	LETEYVETRP
CL154.Contig23_All	212	GQSLTRKEPPTV	QVTRHTARD	GSITLKCW	ARGFYPRDISLSWV	VLGEEELVI	LETEYVETRP
CL154.Contig2_All	212	GQSLTRKEPPTV	QVTRHTARD	GSITLKCW	ARGFYPRDISLSWV	VLGEEELVI	LETEYVETRP
CL154.Contig1_All 271	212	GQSLTRKEPPTV	QVTRHTARD	GSITLKCWA	ARGFYPRDISLSWV	VLGEEELVI	LETEYVETRP
Query_9 295	240	AGDGTFQKWAAV	VVPSGQEQR	YTCHVQHE	GLSEPITRRWE-PI	PRTIPITW	IAGVVL
CL1150.Contig16_All	240	AGDGTFQKWAAV	VVPSGEEQR	YTCHVQHK	GLPEPITLSWKPPE	PTIPIMW	IIAGLAL
CL1150.Contig15_All	67	AGDGTFQKWAAV	VVPSGQEQR	YTCYVQHE	GLSEPITRRWE-PI	PRTIPITW	IIAGLVL
CL1150.Contig17_All	56	AGDGTFQKWAAV	VVPSGEEQR	YTCHVQHK	GLPEPITLSWKPPP	PPTIPIMWI	IAGLAL
CL154.Contig12_All	233	SGDGTYQTWAAV	QVPARTEDR	YICHVQHS	GLNHTLTVTWE-AP	PPRQWI	ITSAVVIPML
CL154.Contig11_All	233	SGDGTYQTWAAV	QVPARTEDR	YICHVQHS	GLNHTLTVTWE-AB	PPRQWI	ITSAVVIPML
CL154.Contig27_All	272	SGDGTYQTWAAV	QVPARTEDR	YICHVQHS	GLNHTLTVTWE-AB	PPRQWI	ITSAVVIPML
CL154.Contig23_All	272	SGDGTYQTWAAV	QVPARTEDR	YICHVQHS	GLNHTLTVTWE-AP	PPRQWI	ITSAVVIPML
CL154.Contig2_All	272	SGDGTYQTWAAV	QVPARTEDR	YICHVQHS	GLNHTLTVTWE-AP	PPRQWI	ITSAVVIPML
CL154.Contig1_All 327	272	SGDGTYQTWAAV	QVPARTEDR	YICHVQHS	GLNHTLTVTWE-AB	PPRQWI	ITSAVVIPML
Query_9 CL1150.Contig16_All CL1150.Contig15_All CL150.Contig17_All CL154.Contig12_All CL154.Contig12_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All CL154.Contig1_All	296 297 123 113 289 289 328 328 328 328 328	LVVIAVTGVAIW LAVTVVVGAVIW LVIIAVIGVAIW IFLLLTAGVLIF IFLLLTAGVLIF IFLLLTAGVLIF IFLLTAGVLIF IFLLTAGVLIF	WKKRSGEKG RRKRSGGKG WKKRSGEKG RRKRSGGKG IKQYS IKQYS IKQYS IKQYS IKQYS IKQYS	PGYSHAA PGYSHAA PGYSHAA PGYSHAA	323 324 150 140 305 305 344 344 344 344		
Lambda K 0.336 0.191	Н 0.798	a 0.443	alpha 1.38				
Gapped Lambda K 0.290 0.0750	н 0.280	a) 1.04	alpha 11.5	sigma 12.3			
Effective search space	ce use	ed: 570818295	9				
Query= AFR54058.1 MHG	C clas	ss I antigen,	partial	[Meles me	eles]		
Length=325						0	
Sequences producing s	signif	ficant alignm	ents:			(Bits)	Value
CL1150.Contig16_All CL1150.Contig15_All CL150.Contig15_All CL154.Contig12_All CL154.Contig11_All CL154.Contig24_All CL154.Contig19_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All 30	189 1 3 452 217 11 215 11 126 11 122 11 343 13 339 13 52 139	160 minus st 87 MHC class 9 minus stran 34 class I h 32 minus str 99 class I h 95 class I h 877 class I h 873 class I h	rand MHC I antige d MHC cla istocompa and class istocompa istocompa istocompa	class I a n, partia ss I ant: tibility I histou tibility tibility tibility ibility a	antigen, p al [Meles igen, part compatibil antigen, antigen, antigen, antigen, G	593 443 274 257 257 258 258 258 257 257 257	0.0 3e-149 2e-86 3e-76 3e-76 2e-75 2e-75 2e-75 2e-75 2e-75

Query_10	1	ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	60
CL1150.Contig16_All	1	ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	60
CL1150.Contig4_All	1	AGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	57
CL154.Contig12_All	1	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	54
CL154.Contig11_All	1	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	54
CL154.Contig24_All	53	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	
CL154.Contig19_All 106	53	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	
CL154.Contig27_All	40	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	93
CL154.Contig23_All	40	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	93
CL154.Contig2_All	40	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	93
Query_10 120	61	PEYWDRQTRNLKDAAHAFRVNLNTLRDYYNQSAAGSHTIQRMYGCDVGPDGRLLRGYSQV	
CL1150.Contig16_All 120	61	PEYWDRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQF	
CL1150.Contig4_All 117	58	PEYWDQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQF	
CL154.Contig12_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig11_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig24_All 164	107	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig19_All 164	107	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig27_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig23_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig2_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
Query_10	121	AYDGADYLALNEDLRSWTVADATAQISRRKWEAAD-EAEHERNYLEVTCLEWLHRYLENG	
179			
179 CL1150.Contig16_All 179	121	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG	
1/9 CL1150.Contig16_All 179 CL1150.Contig4_All 176	121 118	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig16_All 179 CL1150.Contig4_All 176 CL1150.Contig15 All	121 118 1	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG	35
1/9 CL1150.Contig16_All 179 CL1150.Contig4_All 176 CL1150.Contig15_All CL154.Contig12_All 172	121 118 1 113	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
179 CL1150.Contig16_All 179 CL1150.Contig4_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig11_All 172	121 118 1 113 113	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
CL1150.Contig16_All 179 CL1150.Contig4_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig11_All 172 CL154.Contig24_All 224	121 118 1 113 113 165	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
CL1150.Contig16_All 179 CL1150.Contig4_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig11_All 172 CL154.Contig24_All 224 CL154.Contig19_All 224	121 118 1 113 113 165 165	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
1/9 CL1150.Contig16_All 179 CL1150.Contig14_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig11_All 172 CL154.Contig24_All 224 CL154.Contig19_All 224 CL154.Contig27_All 211	121 118 1 113 113 165 165 152	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
1/9 CL1150.Contig16_All 179 CL1150.Contig14_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 224 CL154.Contig19_All 224 CL154.Contig27_All 211 CL154.Contig23_All 211	121 118 1 113 165 165 152 152	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 172 CL154.Contig24_All 224 CL154.Contig19_All 224 CL154.Contig27_All 211 CL154.Contig23_All 211 CL154.Contig2_All 211	121 118 113 113 165 165 152 152 152	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 172 CL154.Contig24_All 224 CL154.Contig27_All 211 CL154.Contig27_All 211 CL154.Contig23_All 211 Query_10 239	121 118 113 165 165 152 152 152 180	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	35
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 172 CL154.Contig24_All 224 CL154.Contig27_All 211 CL154.Contig23_All 211 CL154.Contig2_All 211 Query_10 239 CL1150.Contig16_All 239	121 118 1 113 165 165 152 152 152 180 180	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	35
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig11_All 172 CL154.Contig24_All 224 CL154.Contig27_All 211 CL154.Contig23_All 211 CL154.Contig23_All 211 Query_10 239 CL1150.Contig16_All 239 CL1150.Contig4_All 234	121 118 1 113 165 165 152 152 152 180 180 177	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	35
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 224 CL154.Contig24_All 224 CL154.Contig27_All 211 CL154.Contig23_All 211 CL154.Contig23_All 211 Query_10 239 CL1150.Contig16_All 239 CL1150.Contig4_All 234 CL1550.Contig15_All	121 118 1 113 165 165 152 152 152 180 180 177 36	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	66
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 172 CL154.Contig24_All 224 CL154.Contig27_All 211 CL154.Contig23_All 211 CL154.Contig2_All 211 Query_10 239 CL1150.Contig16_All 239 CL1150.Contig15_All 234 CL154.Contig15_All 234 CL154.Contig15_All 234	121 118 1 113 165 165 152 152 152 180 180 177 36 173	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAELYDKAYLEGLCLVSLRRYLELG KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	35 66
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 172 CL154.Contig24_All 224 CL154.Contig27_All 211 CL154.Contig27_All 211 CL154.Contig2_All 211 Query_10 239 CL1150.Contig16_All 239 CL1150.Contig16_All 234 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232	121 118 1 113 165 165 152 152 152 180 180 177 36 173	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYLALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG GFDGQDHLSLDLETLSWVAADTAAQISRRKWEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	35 66
CL1150.Contig16_All 179 CL1150.Contig16_All 176 CL1150.Contig15_All CL154.Contig12_All 172 CL154.Contig12_All 224 CL154.Contig24_All 224 CL154.Contig27_All 211 CL154.Contig27_All 211 CL154.Contig2_All 211 Query_10 239 CL1150.Contig16_All 239 CL1150.Contig16_All 234 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232 CL154.Contig12_All 232	121 118 1 113 165 165 152 152 152 180 180 177 36 173 225	AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG AYDGADYIALNEDLRSWTAADTAAQISRRKWEDAG-EAERYRNYVEGTCVEWLGRYLENG QISRRKUEDAG-VAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	35 66

CL154.Contig19_All	225	GQSI	JTRKEPPTV	QVTRHTARI	GSITLKCW	ARGFYPRDISLSWW	ILGEEELV	LETEYVETRP
CL154.Contig27_All 271	212	GQSI	JTRKEPPTV	QVTRHTARI	GSITLKCW	ARGFYPRDISLSWW	ILGEEELV:	LETEYVETRP
CL154.Contig23_All 271	212	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWI					NLGEEELVI	LETEYVETRP
CL154.Contig2_All 271	212	GQSI	JTRKEPPTV	QVTRHTARI	GSITLKCW	ARGFYPRDISLSWW	ILGEEELV!	LETEYVETRP
Query_10 298	240	AGDG	GTFQKWAAV	VVVPSGQEQF	XYTCHVQHE	GLSEPITRRWE-PE	RTIPITW	IIAGLVLLVV
CL1150.Contig16_All 299	240	AGDG	GTFQKWAAV	VVVPSGEEQF	RYTCHVQHK(GLPEPITLSWKPPE	PTIPIMW	IIAGLALLAV
CL1150.Contig15_All	67	AGDG	GTFQKWAAV	VVVPSGQEQF	XYTCYVQHE(GLSEPITRRWE-PP	PRTIPITW	IIAGLVLLVI
CL154.Contig12_All	233	SGDG	GTYQTWAAV	QVPARTEDF	XYICHVQHS(GLNHTLTVTWE-AB	PPRQW	ITSAVVIPML
CL154.Contig11_All	233	SGDG	GTYQTWAAV	QVPARTEDF	XYICHVQHS(GLNHTLTVTWE-AF	PPRQW	ITSAVVIPML
CL154.Contig24_All	285	SGDG	GTYQTWAAV	QVPARTEDF	XYICHVQHS(GLNHTLTVTWE-AF	PPRQW	ITSAVVIPML
CL154.Contig19_All	285	SGDG	GTYQTWAAV	QVPARTEDF	XYICHVQHS(GLNHTLTVTWE-AB	PPRQW	ITSAVVIPML
CL154.Contig27_All	272	SGDG	GTYQTWAAV	QVPARTEDF	XYICHVQHS(GLNHTLTVTWE-AB	PPRQW	ITSAVVIPML
CL154.Contig23_All	272	SGDG	GTYQTWAAV	QVPARTEDF	XYICHVQHS	GLNHTLTVTWE-AP	PPRQW	ITSAVVIPML
CL154.Contig2_All 327	272	SGDG	GTYQTWAAV	QVPARTEDF	XYICHVQHS0	GLNHTLTVTWE-AE	PPRQW	ITSAVVIPML
Query_10 CL1150.Contig16_All CL1150.Contig15_All CL154.Contig12_All CL154.Contig12_All CL154.Contig24_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All CL154.Contig	299 300 126 289 341 341 328 328 328 0.799 H 0.280 ce use C clas	IAVI TVVV IAVI IFLI IFLI IFLI IFLI IFLI 9 0 ed: 5 55 I	GVAIW GVAIW LTAGVLIF LTAGVLIF LTAGVLIF LTAGVLIF LTAGVLIF LTAGVLIF 0.443 a 1.04 570818295 antigen,	WKKHSGEKG WKKRSGEKG TKQYS TKQYS TKQYS TKQYS TKQYS TKQYS TKQYS Alpha 1.38 alpha 11.5 59 partial	SPGYSHAA SPGYSHAA SPGYSHAA 12.3 [Meles mo	323 324 150 305 357 357 344 344 344		
Length=325		~ .					Score	E
sequences producing	signif	rıcan	ıt a⊥ıgnm	ents:			(Bits)	value
CL1150.Contig16_All CL1150.Contig4_All CL1150.Contig15_All CL1150.Contig17_All CL1150.Contig13_All CL150.Contig13_All CL154.Contig12_All CL154.Contig12_All CL154.Contig27_All CL154.Contig23_All	189 1 486 11 3 452 682 1 621 1 1278 217 11 215 11 343 13 339 13	1160 187 M 2 min 1101 1046 1694 134 c 132 m 377 c 373 c	minus st MHC class hus stran minus st minus st class I h hinus str class I h class I h	rand MHC I antige d MHC cla rand MHC strand MHC strand MHC strand class histocompa histocompa	class I art: en, partia ss I ant: class I a class I a class I a class I a class I class I tibility I histo tibility	antigen, p al [Meles igen, part antigen, p antigen, p antigen [antigen, compatibil antigen, antigen,	604 440 265 243 243 240 242 242 242 242 242 242	0.0 2e-148 9e-83 7e-75 2e-74 1e-73 1e-70 1e-70 5e-70 5e-70

Query_11 CL1150.Contig16_All	1 1	ETWAGSHSLRYFSTAVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWVEQEG ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	60 60
CL1150.Contig4_All	1	AGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG	57
CL154.Contig12 All	1	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	54
CL154.Contig11 All	1	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	54
CL154.Contig27 All	40	GTHSLHYHYLALSEPGPDLPOFLAVGYVDDOPFIHYDSRVDRAKPOALWMATVD	93
CL154.Contig23_All	40	GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVD	93
Query_11 120	61	PEYWDRQTQICKDAAQTYRGNLQTALRYYNQSAAGSHTIQNVYGCDVGRDGRLLRGYSQD	
CL1150.Contig16_All 120	61	PEYWDRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQF	
CL1150.Contig4_All 117	58	PEYWDQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQF	
CL154.Contig12_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig11_All 112	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig27_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig23_All 151	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
Query_11 179	121	SYDGADYIALNEDLRSWTAADTAAQITQRKWE-DAGAAERWRNYLEVTCVEWLGRYLENG	
CL1150.Contig16_All	121	AYDGADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig4_All 176	118	AYDGADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig15_All CL154.Contig12_All 172	1 113	QISRRKUE-DAGVAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
CL154.Contig11_All	113	${\tt GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG}$	
CL154.Contig27_All	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig23_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
Query_11 239	180	KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWKRDEEDLTQDTELVETRP	
CL1150.Contig16_All 239	180	KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP	
CL1150.Contig4_All 234	177	KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWKRDEEDLTQDTELVET	
CL1150.Contig15 All	36	KETLLRTEITLTWQRDGEDQTQDTELVETRP	66
CL1150.Contig17 All	1	RAEPPNTRMTHHPISDHAVTLRCWALDFYPAEITLTWORDGEDLTODTELVETRP	55
CL1150.Contig13 All	1	RAEPPNTRMTHHPISDHAVTLRCWALDEYPAEITLTWHHEEEDLTODTELVGTRP	55
CT.1150 Contig18 All	1		54
CL154.Contig12_All	173	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	51
CL154.Contig11_All 232	173	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
CL154.Contig27_All 271	212	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
CL154.Contig23_All 271	212	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
Query_11 298	240	AGDGTFQKWAAVVVPSGQEQRYTCYVQHEGLSEPITRRWE-PPHTIPITWIIAGLVLLVV	
CL1150.Contig16_All 299	240	AGDGTFQKWAAVVVPSGEEQRYTCHVQHKGLPEPITLSWKPPPPTIPIMWIIAGLALLAV	
CL1150.Contig15_All 125	67	AGDGTFQKWAAVVVPSGQEQRYTCYVQHEGLSEPITRRWE-PPRTIPITWIIAGLVLLVI	
CL1150.Contig17_All 115	56	AGDGTFQKWAAVVVPSGEEQRYTCHVQHKGLPEPITLSWKPPPPTIPIMWIIAGLALLAV	
CL1150.Contig13_All 115	56	TGNGTFQKWAAVVVPSGEEQRYTCHVQHKGLPEPITLSWKPPPPTIPIMWIIAGLALLAV	
CL1150.Contig18_All	55	AGDGTFQKWAAVVVPSGEEQRYTCHVQHKGLPEPITLSWKPPPPTIPIMWIIAGLALLAV	

CL154.Contig12 All 233 SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-AP---PRQWITSAVVIPML 288 CL154.Contig11 All 233 SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-AP---PRQWITSAVVIPML 288 CL154.Contig27 All 272 SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-AP---PRQWITSAVVIPML 327 272 SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-AP---PRQWITSAVVIPML CL154.Contig23 All 327 Query 11 299 IAVI---GAVIWWKKRSGEKGPGYSHAARD 325 CL1150.Contig16 All 300 TVVV---GAVIWRRKRSGGKGPGYSHAA 324 CL1150.Contig15_All 126 IAVI---GVAIWWKKRSGEKGPGYSHAA 150 CL1150.Contig17_All 116 TVVV---GAVIWRRKRSGGKGPGYSHAA 140 CL1150.Contig13_All 116 TVVV---GAVIWRKKRSGGKGPGYSHAARD 142 CL1150.Contig18 All 115 TVVV---GAVIWRRKRSGGKGPGYSHAA 139 CL154.Contig12_All 289 IFLLLTAGVLIFIKQYS 305 CL154.Contig11 All 289 IFLLLTAGVLIFIKQYS 305 CL154.Contig27 All 328 IFLLLTAGVLIFIKQYS 344 CL154.Contig23 All 328 IFLLLTAGVLIFIKQYS 344 Lambda Κ Η alpha а 0.190 0.793 0.335 0.443 1.38 Gapped Lambda Κ alpha Η sigma а 0.290 0.0750 0.280 1.04 12.3 11.5 Effective search space used: 5708182959 Query= AFR54056.1 MHC class I antigen, partial [Meles meles] Length=325 Score F Sequences producing significant alignments: (Bits) Value CL1150.Contig16 All 189 1160 minus strand MHC class I antigen, p... 62.5 0.0 CL1150.Contig4 All 486 1187 MHC class I antigen, partial [Meles ... 3e-166 486 CL1150.Contig1 $\overline{5}$ All 3 452 minus strand MHC class I antigen, part... 270 8e-85 CL154.Contig12_All 217 1134 class I histocompatibility antigen, ... 257 CL154.Contig11_All 217 1134 class I histocompatibility antigen, ... 257 CL154.Contig11_All 215 1132 minus strand class I histocompatibil... 257 CL154.Contig27_All 343 1377 class I histocompatibility antigen, ... 258 CL154.Contig23_All 339 1373 class I histocompatibility antigen, ... 258 CL154.Contig2_All 362 1396 class I histocompatibility antigen, G... 258 CL154.Contig1_All 294 1328 minus strand class I histocompatibili... 258 3e-76 3e-76 1e-75 1e-75 1e-75 1e-75 CL154.Contig24 All 126 1199 class I histocompatibility antigen, ... 257 2e-75 ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDAQFVRFDSDSASLRMEPRAPWMEQEG Query 12 1 60 CL1150.Contig16_All 1 ETWAGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG 60 CL1150.Contig4 All 1 AGSHSLRYFYTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQEG 57 CL154.Contig12 All GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD--RAKPQALWMATVD 1 54 CL154.Contig11_All 1 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD--RAKPQALWMATVD 54 CL154.Contig27 All 40 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD--RAKPQALWMATVD 93 CL154.Contig23 All 40 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD--RAKPQALWMATVD 93 40 CL154.Contig2 All GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD--RAKPQALWMATVD 93 CL154.Contig1 All 40 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD--RAKPQALWMATVD 93 CL154.Contig24 All 53 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVD--RAKPQALWMATVD 106 61 PEYWDRETRNLKETTQTYRVNLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQF Query 12 120 CL1150.Contig16 All 61 PEYWDRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQF 120 CL1150.Contig4 All 58 PEYWDOOTRGIKETTOTYRRSLNNLRGYYNOSAAGSHTFONMYGCDVGPDGRLLRGYROF 117 CL154.Contig12 All 55 AOYWETETOKORAWAKVOOVETWTVMGYHNOST-GMHSTORMFGCEIREDGHT-HSFWOF 112

CL154.Contig11_All	55	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig27_All	94	$\verb+AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF$	
CL154.Contig23_All	94	$\verb"AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF"$	
CL154.Contig2_All	94	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
CL154.Contig1_All	94	$\verb+AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF$	
CL154.Contig24_All 164	107	AQYWETETQKQRAWAKVQQVETWTVMGYHNQST-GMHSTQRMFGCEIREDGHT-HSFWQF	
Query_12 179	121	$\verb AYDGADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG $	
CL1150.Contig16_All	121	AYDGADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig4_All 176	118	AYDGADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENG	
CL1150.Contig15_All CL154.Contig12_All 172	1 113	QISRRKUE-DAGVAELERDYLEITCVKWLHRYLENG GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	35
CL154.Contig11_All 172	113	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig27_All	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig23_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig2_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig1_All 211	152	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
CL154.Contig24_All 224	165	GFDGQDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELG	
Query_12 239	180	$\tt KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWKRDEEDLTQDTELVETRP$	
CL1150.Contig16_All	180	$\tt KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWQRDGEDLTQDTELVETRP$	
CL1150.Contig4_All	177	$\tt KESLLRAETPNTHVTRHPISDRDVTLRCWALDFYPAEITLTWKRDEEDLTQDTELVET$	
CL1150.Contig15_All CL154.Contig12_All 232	36 173	KETLLRGQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	66
CL154.Contig11_All 232	173	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
CL154.Contig27_All 271	212	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
CL154.Contig23_All 271	212	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
CL154.Contig2_All 271	212	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
CL154.Contig1_All	212	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
CL154.Contig24_All 284	225	GQSLTRKEPPTVQVTRHTARDGSITLKCWARGFYPRDISLSWWLGEEELVLETEYVETRP	
Query_12 298	240	AGDGTFQKWAAVVVPSGQEQRYTCYVQHEGLSEPITRRWE-PPRTIPITWIIAGLVLLVI	
CL1150.Contig16_All	240	AGDGTFQKWAAVVVPSGEEQRYTCHVQHKGLPEPITLSWKPPPPTIPIMWIIAGLALLAV	
CL1150.Contig15_All 125	67	AGDGTFQKWAAVVVPSGQEQRYTCYVQHEGLSEPITRRWE-PPRTIPITWIIAGLVLLVI	
CL154.Contig12_All 288	233	SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-APPRQWITSAVVIPML	
CL154.Contig11_All	233	SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-APPRQWITSAVVIPML	
CL154.Contig27_All 327	272	SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-APPRQWITSAVVIPML	
CL154.Contig23_All 327	272	SGDGTYQTWAAVQVPARTEDRYICHVQHSGLNHTLTVTWE-APPRQWITSAVVIPML	

CL154.Contig2_All	272	SGDGTYQTWAA	VQVPARTEDR	YICHVQHS	GLNHTLTVTWE-AF	PPRQW	UITSAVVIPML	
CL154.Contig1_All 327	272	SGDGTYQTWAA	VQVPARTEDR	YICHVQHS	GLNHTLTVTWE-AF	PPRQW	VITSAVVIPML	
CL154.Contig24_All 340	285	SGDGTYQTWAA	VQVPARTEDR	YICHVQHS	GLNHTLTVTWE-AF	PPRQW	NITSAVVIPML	
Query_12 CL1150.Contig16_All CL150.Contig15_All CL154.Contig12_All CL154.Contig11_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All CL154.Contig1_All CL154.Contig24_All	299 300 126 289 328 328 328 328 328 341	IAVIGVAI TVVVGAVI IAVIGVAI IFLLTAGVLI IFLLTAGVLI IFLLTAGVLI IFLLLTAGVLI IFLLLTAGVLI IFLLLTAGVLI	WWKKRSGEKG WRRKRSGEKG FIKQYS FIKQYS FIKQYS FIKQYS FIKQYS FIKQYS FIKQYS	PGYSHAA PGYSHAA PGYSHAA	323 324 150 305 344 344 344 344 357			
Lambda K 0.335 0.192	н 0.801	a 1 0.443	alpha 1.38					
Gapped Lambda K 0.290 0.0750	H 0.280	a 0 1.04	alpha 11.5	sigma 12.3				
Effective search spa	ce use	ed: 57081829	59					
Query= AFR54055.1 MH	C clas	ss I antigen	, partial	[Meles m	eles]			
Length=181						G	_	
Sequences producing	signi:	ficant align	ments:			(Bits)	E Value	
CL1150.Contig16_All CL1150.Contig4_All CL154.Contig12_All CL154.Contig11_All CL154.Contig24_All CL154.Contig19_All CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All 3 CL154.Contig1_All 2	189 1 486 1 217 1 215 1 126 1 122 1 343 1 339 1 62 1 3 94 1 3	1160 minus s 187 MHC class 134 class I 132 minus st 199 class I 195 class I 377 class I 373 class I 96 class I h 28 minus str	trand MHC s I antige histocompa rand class histocompa histocompa histocompat and class	class I n, parti tibility I histo tibility tibility tibility ibility I histoc	antigen, p al [Meles compatibil antigen, antigen, antigen, antigen, antigen, G ompatibili	345 328 121 121 121 121 121 121 121 121	5e-113 2e-108 5e-30 5e-30 7e-30 8e-30 8e-30 8e-30 8e-30	
Query_13	1	GSHSLRYFSTA	VSRPGRGEPR	FIAVGYVD	DTQFVRFDSDSASE	RMEPRAF	WVEQEGPEYW	60 64
CL1150.Contig16_All CL1150.Contig12_All CL154.Contig12_All CL154.Contig11_All CL154.Contig24_All 110	5 2 1 1 53	GSHSLRYFYIG GSHSLRYFYIG GTHSLHYHYLA GTHSLHYHYLA GTHSLHYHYLA	VSRPGRGEPR VSRPGRGEPR LSEPGPDLPQ LSEPGPDLPQ	FIAVGYVD FIAVGYVD FLAVGYVD FLAVGYVD FLAVGYVD	DIQFVRFDSDSASF DTQFVRFDSDSASF DQPFIHYDSRVI DQPFIHYDSRVI DQPFIHYDSRVI	RMEPRAP RMEPRAP DRAKPQAI DRAKPQAI	WMEQEGPEYW WMEQEGPEYW WMATVDAQYW WMATVDAQYW	64 61 58 58
110	55	GIHSLHIHILA	LSEFGFDLFQ	FLAVGIVD	DQPFIHIDSKVL	JRAKPQAL	MMAT V DAQ I W	
CL154.Contig27_All CL154.Contig23_All CL154.Contig2_All CL154.Contig1_All	40 40 40 40	GTHSLHYHYLA GTHSLHYHYLA GTHSLHYHYLA GTHSLHYHYLA	LSEPGPDLPQ LSEPGPDLPQ LSEPGPDLPQ LSEPGPDLPQ	FLAVGYVD FLAVGYVD FLAVGYVD FLAVGYVD	DQPFIHYDSRVL DQPFIHYDSRVL DQPFIHYDSRVL DQPFIHYDSRVL)RAKPQAI)RAKPQAI)RAKPQAI)RAKPQAI	.WMATVDAQYW .WMATVDAQYW .WMATVDAQYW .WMATVDAQYW	97 97 97 97
Query_13	61	DRQTQICKDAA	QTFRGNLQTA.	LRYYNQSA	AGSHTIQNVYGCDV	GPDGRFI	RGYRQDSYDG	
CL1150.Contig16_All	65	DRQTQICKETI	QTYRGSLNIL	RGYYNQSA	AGSHTIQNLYGCDV	GPDGRLI	RGYRQFAYDG	
CL1150.Contig4_All 121	62	DQQTRGIKETI	QTYRRSLNNL	RGYYNQSA	AGSHTFQNMYGCDV	GPDGRLI	RGYRQFAYDG	
 CL154.Contig12_All 116	59	ETETQKQRAWA	KVQQVETWTV	MGYHNQS-	TGMHSTQRMFGCEI	REDGH-1	HSFWQFGFDG	

CL154.Contig11_All	59	ETE	IQKQRAWAK	VQQVETWTV	MGYHNQS-TO	MHSTQRMFGCE	IREDGH-T	HSFWQFGFDG
CL154.Contig24_All	111	ETE	IQKQRAWAK	VQQVETWTV	MGYHNQS-TG	MHSTQRMFGCE	IREDGH-T	HSFWQFGFDG
CL154.Contig19_All	111	ETE	IQKQRAWAK	VQQVETWTV	MGYHNQS-TG	MHSTQRMFGCE	IREDGH-T	HSFWQFGFDG
CL154.Contig27_All	98	ETE	IQKQRAWAK	VQQVETWTV	MGYHNQS-TG	MHSTQRMFGCE	IREDGH-T	HSFWQFGFDG
CL154.Contig23_All	98	ETE	IQKQRAWAK	VQQVETWTV	MGYHNQS-TG	MHSTQRMFGCE	IREDGH-T	HSFWQFGFDG
CL154.Contig2_All	98	ETE	IQKQRAWAK	VQQVETWTV	MGYHNQS-TG	MHSTQRMFGCE	IREDGH-T	HSFWQFGFDG
CL154.Contig1_All 155	98	ETE'	IQKQRAWAK	VQQVETWTV	MGYHNQS-TG	MHSTQRMFGCE	IREDGH-T	HSFWQFGFDG
Query_13	121	ADY	IALNEDLRS	SWTAADTAAQ	ITQRKWEDAG	A-AERWRNYLE	VTCVEWLG	RYLENGKESL
CL1150.Contig16_All	125	ADY	IALNEDLRS	SWTAADTAAQ	ISRRKWEDAG	E-AERYRNYVE	GTCVEWLG	RYLENGKESL
CL1150.Contig4_All	122	ADY	LALNEDLRS	SWTAADTAAQ	ISRRKWEDAG	E-AERYRNYVE	GTCVEWLG	RYLENGKESL
CL154.Contig12_All	117	QDH:	LSLDLETLS	WVSAKPAAT	RTKSWWETER	CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
CL154.Contig11_All	117	QDH:	LSLDLETLS	GWVSAKPAAT	RTKSWWETER	CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
CL154.Contig24_All	169	QDH:	LSLDLETLS	WVSAKPAAT	RTKSWWETER	.CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
CL154.Contig19_All	169	QDH:	LSLDLETLS	WVSAKPAAT	RTKSWWETER	CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
CL154.Contig27_All	156	QDH:	LSLDLETLS	GWVSAKPAAT	RTKSWWETER	CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
CL154.Contig23_All	156	QDH:	LSLDLETLS	WVSAKPAAT	RTKSWWETER	CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
CL154.Contig2_All	156	QDH:	LSLDLETLS	GWVSAKPAAT	RTKSWWETER	CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
CL154.Contig1_All	156	QDH:	LSLDLETLS	WVSAKPAAT	RTKSWWETER	CYAEYDKAYLE	GLCLVSLR	RYLELGGQSL
Ouery 13	180	ΓR	181					
CL1150.Contig16 All	184	LR	185					
CL1150.Contig4 All	181	LR	182					
CL154.Contig12 All	177	ΤR	178					
CL154 Contig11 All	177	ΨR	178					
CI154 Contigra All	229	ΨD	230					
CLI54.CONCIG24_AII	229	TL	230					
CLI54.CONLIGI9_AII	229	TR	230					
CLI54.CONLIG2/_AII	210	TR	217					
CLI54.CONLIG25_AII	210	TR	217					
CLI54.Contig2_AII	216	TR	217					
CLI54.Contig1_AII	216	ΊR	217					
Lambda K 0.334 0.191	H 0.78	5	a 0.443	alpha 1.38				
Gapped								
Lambda K	Н		a	alpha	sigma			
0.290 0.0750	0.28	0	1.04	11.5	12.3			
Effective search spa	ce use	ed:	276508339	92				
Query= AFR54054.1 MH	C cla	ss I	antigen,	partial	[Meles mel	es]		
Length=181							Score	ъ.
Sequences producing	signi	fica	nt alignm	ments:			(Bits)	Value
CL1150.Contig4_All	486 13	187 1	MHC class	s I antige	n, partial	[Meles	334	6e-111
CL1150.Contig16_All	189	1160	minus st	rand MHC	class I an	tigen, p	333	2e-108
CL154.Contig12_All	217 13	134	class I h	nistocompa	tibility a	ntigen,	121	3e-30
CL154.Contig11 All	215 1	132 i	minus str	and class	I histocc	mpatibil	121	3e-30

CL194.contig27_All 343 1377 class I histocompatibility antigen, 121 6e-30 CL194.contig2 All 362 1396 class I histocompatibility antigen, G 121 6e-30 CL194.contig2 All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 CL194.contig2 All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 CL194.contig1 All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 CL194.contig1 All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 CL194.contig1 All 295 1328 minus strand class I histocompatibility antigen, G 121 6e-30 CL194.contig1 All 295 1328 minus strand class I histocompatibility antigen, G 121 6e-30 CL194.contig1 All 1 GSHSLKYFYTGYSRFGREEPRIAVGYUDDGYFYRFDSDASRRMEPRAPMWEQG6PEY CL194.contig1 All 3 GTHSLHYHYLASSEGPDLPQLAVGYUDDGYFIHYDSRVDRAKPQALWMATUDAQY 10 CL194.contig2 All 35 GTHSLHYHYLASSEGPDLPQLAVGYUDDGYFIHYDSRVDRAKPQALWMATUDAQY 10 CL194.contig2 All 40 GTHSLHYHLASSEGPDLPQLAVGYUDDGPFIHYDSRVDRAKPQALWMATUDAQY CL194.contig2 All 40 GTHSLHYHLASSEGPDLPQLAVGYUDDGPFIHYDSRVDRAKPQALWMATUDAQY CL194.contig1 All 50 DQQTGKLTTQYTRSLNLRGYNQSAAGSHTIQNNGCDVGPDGRLLRGYRQFAYDO CL195.contig1 All 50 DQQTGKLTTQYTRSLNLRGYNQSAAGSHTIQNNGCDVGPDGRLLRGYRQFAYDO CL195.contig1 All 50 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGPD CL164.contig1 All 10 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGPD CL165.contig2 All 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGPD CL154.contig2 All 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGPD CL155.contig1 All 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGPD CL154.contig1 All 12 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGAERYRNYVEGTCVEWLGRYLENGKESI 18	
Cli34.contig23_All 339 1373 class I histocompatibility antigen, 11 6e-30 Cli34.contig1_All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 Cli54.Contig1_All 294 1328 minus strand class I histocompatibility. 121 6e-30 Cli54.Contig1_All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 Cli54.Contig1_All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 Cli54.Contig1_All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 Cli54.Contig1_All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 Cli54.Contig1_All 294 1328 minus strand class I histocompatibility antigen, G 121 6e-30 Cli54.Contig1_All 1 GrisLifyHYLLASEPGEDLPOFLAVGYUDDOFPHYDERDEADSRMEPARMUEGGEPY 105 Cli54.Contig1_All 35 GrisLifyHYLLASEPGEDLPOFLAVGYUDOPPHYDERVDRAKPQALMMATVDAQY 105 Cli54.Contig2_All 40 GrisLifyHYLLASEPGEDLPOFLAVGYUDOFPHYDERVDRAKPQALMMATVDAQY Cli54.Contig2_All 40 GrisLifyHYLLASEPGEDLPOFLAVGYUDOFPHYDERVDRAKPQALMMATVDAQY 126 Cli54.Contig2_All 40 GrisLifyHYLLASEPGEDLPOFLAVGYUDOFPHYDERVDRAKPQALMMATVDAQY 127 Cli54.Contig1_All 41 DPQTRGIKDAAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPGGRLLRGYSQDSYDG 128 Contig1_All 52 DQQTRGIKETYQTYRSINLRGYNQSAAGSHTIQNHYGCUGPGGRLRGYSQDSYDG 129 Contig1_All 54 DPQTGIKETYQTYRSINLRGYNQSAGSHTIQNHYGCEIREDGH-THSFWQFGFDG 135 Contig1_All 59 EFTEQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 135 Cli54.Contig1_All 59 EFTEQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 135 Cli54.Contig1_All 98 EFTEQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 135 Cli54.Contig2_All 98 EFTEQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 135 Cli54.Contig1_All 98 EFTEQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 135 Cli54.Contig1_All 98 EFTEQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 135 Cli54.Contig1_All 12 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYNNYVEGTCVENUGRYLENCKESI 136 Cli54.Contig2_All 19 EFTEQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFG	
CL134.Contig2_All 362 1396 class I histocompatibility antigen, G 121 6e-30 CL54.Contig1_All 294 1328 minus strand class I histocompatibili 121 6e-30 Query 14 1 GSHSLRYFYTGVSRFGKGEPRFIAVGYVDDTQVFNFDSDASRRMEPRAPMVEQGGFEYY CL151.Contig1 All 2 GSHSLRYFYTGVSRFGKGEPRFIAVGYVDDTQVFNFDSDASRRMEPRAPMVEQGGFEYY CL154.Contig1 All 3 GSHSLRYFYTGVSRFGKGEPRFIAVGYVDDTQVFNFDSDASRRMEPRAPMVEQGGFEYY CL54.Contig1 All 3 GSHSLRYFYTGVSRFGKGEPRFIAVGYVDDQFFIHY-DSRVDRAKRPALMMATVDAQYY CL54.Contig1 All 3 GSHSLHYHILAISEPGFDLPQFLAVGYVDDQFFIHY-DSRVDRAKRPALMMATVDAQYY CL54.Contig2 All 40 GTHSLHYHLAISEPGFDLPQFLAVGYVDDQFFIHYDSRVDRAKPQALMMATVDAQYY CL54.Contig2 All 40 GTHSLHYHLAISEPGFDLPQFLAVGYVDDQFFIHYDSRVDRAKPQALMMATVDAQYY CL54.Contig1 All 20 DQQTRGIKETQTYRRSLNLRGYYNQSAGSHTIQNHYGCDVGPDGRLLRGYRQFAYDQ CL154.Contig1 All 62 DQQTRGIKETQTYRGSLNILRGYYNQSAGSHTIQNHYGCDVGPDGRLLRGYRQFAYDQ CL54.Contig1 All 63 DRQTQICKETTQTYRGSLNILRGYYNQSAGSHTIQNHYGCLRGGH-THSFWQFGFDG CL54.Contig1 All 59 ETETQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG CL54.Contig1 All 11 ETETQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG CL54.Contig2 All 98 ETETQKQRAMAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG CL54.Contig2 All 12 ADYIALNEDLRSWTAADTAAQISRKWE-DAGEAERYNVVEGCIVEWLGRVLENGKESI 165 CL54.Contig1 All 12 ADYIALNEL	
CL194.Contig1_All 294 1326 minus strand class 1 fistocompatibility 111 fistoco	
Query_14 1 GSHSLRYFSTAVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWVEQGEPEYT Ch1150.Contig16_All 2 GSHSLRYFTTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQGEPEYT Ch1150.Contig16_All 1 GSHSLRYFTTGVSRPGRGEPRFIAVGYVDDTQFVRFDSDSASRRMEPRAPWMEQGEPEYT Ch154.Contig17_All 1 GTHSLHYHLALSEPGPLPCPLAVGYVDDQPFIH-DSRVDRAKPQALMMATVDAQYT Ch154.Contig17_All 3 GTHSLHYHLALSEPGPLPCPLAVGYVDDQPFIHYDSRVDRAKPQALMMATVDAQYT 10 Ch154.Contig27_All 40 GTHSLHYHLALSEPGPLPCPLAVGYVDDQPFIHYDSRVDRAKPQALMMATVDAQYT 1154.Contig27_All 40 GTHSLHYHLALSEPGPLPCPLAVGYVDDQPFIHYDSRVDRAKPQALMMATVDAQYT 1154.Contig27_All 40 GTHSLHYHLALSEPGPLPCPLAVGYVDDQPFIHYDSRVDRAKPQALMMATVDAQYT Ch154.Contig17_All 61 DRQTRGIKETATGYTRGSLNILRGYYNQSAGSHTIQSMYGCDVGPDGRLLRGYRQAGSYDC Ch154.Contig16_All 61 DRQTRGIKETATGYTRGSLNILRGYYNQSAGSHTIQNYGCDVGPDGRLLRGYRQAGSYDC	
Query_141GSHSLRYFSTAVSRPGRGEPFIAVGYUDDTQFVRFDSDSASRRMEPRAFWNEQ@GPEYCli150.Contig1_All2GSHSLRYFYTGVSRPGRGEPRIAVGYUDDTQFVRFDSDSASRRMEPRAFWNEQ@GPEYCli51.Contig12_All3GTHSLHYHYLALSPEGDLPQLAVGYUDDQFFIH*-DSRVDRAKPQALMMATUDQYYCli54.Contig12_All1GTHSLHYHLALSPEGDLPQLAVGYUDDQFFIH*-DSRVDRAKPQALMMATUDQYY10CTHSLHYHLALSPEGDLPQLAVGYUDDQFFIH*DSRVDRAKPQALMMATUDQYY110GTHSLHYHLALSPEGDLPQLAVGYUDDQFFIHYDSRVDRAKPQALMMATUDQYY111CTHSLHYHLALSPEGDLPQLAVGYUDDQFFIHYDSRVDRAKPQALMMATUDQYY112GTHSLHYHLALSPEGDLPQLAVGYUDDQFFIHYDSRVDRAKPQALMMATUDQYY113GTHSLHYHLALSPEGDLPQLAVGYUDDQFFIHYDSRVDRAKPQALMMATUDQYY114GTHSLHHYLALSPEGDLPQLAVGYUDDQFFIHYDSRVDRAKPQALMMATUDQYY1154.Contig2_All40GTHSLHHYLLALSPEGDLPQLAVGYUDDQFFIHYDSRVDRAKPQALMMATUDQYY1154.Contig1_All40GTHSLHYHYLALSPEGDLPQLAVGYUDDQFFIHYDSRVDRAKPQALMMATUDQYY1154.Contig1_All61116DRQTRGIKDAAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYRQSQDSYD121CLI54.Contig1_All122DQQTRGIKETTQTYRGSLNILRGYYNQSAAGSHTIQNYGCDVGPDGRLLRGYRQFAYDC123Contig1_All124ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD125CLI54.Contig1_All126ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD126CLI54.Contig1_All127PETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD126CLI54.Contig1_All128ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD125CLI54.Contig1_A	
Query 14 1 GSHSLRYPETAVSREGKGEPERIAVGVDDTQFVREDSDASRRMEPRAPWVEQGEGEPEY CL1150.Contig16_All 5 GSHSLRYPTGVSREGKGEPERIAVGVDDTQFVREDSDASRRMEPRAPWMEQGEGEPEY CL154.Contig12_All 1 GTHSLHYHTGVSREGKGEPERIAVGVDDDQFVIRTDSDASRRMEPRAPWMEQGEGEPEY CL154.Contig12_All 1 GTHSLHYHTGVSREGGEPERIAVGVDDQFVIRTDSDASRRMEPRAPWMEQGEGEPEY CL154.Contig12_All 1 GTHSLHYHTGLSEFGPDLPQLAVGVDDQFFIHVDSRVDRAKPQALWMATVDAQY 10 CTHSLHYHTLALSEFGPDLPQLAVGVDDQFFIHVDSRVDRAKPQALWMATVDAQY 110 CTHSLHYHTLALSEFGPDLPQLAVGVDDQFFIHVDSRVDRAKPQALWMATVDAQY 110 CTHSLHYHTLALSEFGPDLPQLAVGVDDQFFIHVDSRVDRAKPQALWMATVDAQY 111 CTHSLHYHTLALSEFGPDLPQLAVGVDDQFFIHVDSRVDRAKPQALWMATVDAQY CL154.Contig2_All 40 GTHSLHYHTLALSEFGPDLPQLAVGVDDQFFIHVDSRVDRAKPQALWMATVDAQY CL154.Contig2_All 40 GTHSLHYHTLALSEFGPDLPQLAVGVVDQPFIHVDSRVDRAKPQALWMATVDAQY Query_14 61 DQTRGIKETTQTYRGSLNILRGYYNQSAAGSHTJQNHYGCDVGPDGPCLRGYRQFAYDQ 120 Chtist.Contig1_All 62 DQQTRGIKETTQTYRGSLNILRGYYNQSAAGSHTJQNHYGCDVGPDGPCRLRGYRQFAYDQ 121 CL154.Contig1_All 11 ETETQKQRAWKVQVETWTWGYNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGPDQ 126 CL154.Contig1_All </td <td></td>	
<pre>CL1153.Contiq16_Al1 2 GHSLRYTTGVSREGGEPRIAVGYUDDTGVNEPSDSASRNMEPRAPWMEGGEPEY CL154.Contiq12_Al1 1 GTHSLHYHTLALSERGEDLPQIAVGYUDDQPFIHYDSRUDAKPQALWMATUDAQYI CL154.Contiq12_Al1 1 GTHSLHYHTLALSERGEDLPQIAVGYUDDQPFIHYDSRVDRAKPQALWMATUDAQYI CL154.Contiq24_Al1 53 GTHSLHYHTLALSERGEDLPQIAVGYUDDQPFIHYDSRVDRAKPQALWMATUDAQYI CL154.Contiq23_Al1 40 GTHSLHYHTLALSERGEDLPQIAVGYUDDQPFIHYDSRVDRAKPQALWMATUDAQYI CL154.Contiq27_Al1 40 GTHSLHYHTLALSERGEDLPQIAVGYUDDQPFIHYDSRVDRAKPQALWMATUDAQYI CL154.Contiq1_Al1 40 DRQTRGIKEATQTYRGSLNILRGYINQSAAGSHTIQSMYGCDVGPDGRLLRGYSQDSYDC CL154.Contig16_Al1 65 DRQTQICKETTQTYRSLNNLRGYINQSAAGSHTIQNIYGCDVGPDGRLLRGYRQFAYDC CL154.Contig12_Al1 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig1_Al1 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig1_Al1 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig1_Al1 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig1_Al1 122 ADYLALNEDLRSWTAADTAAQISRKWE-DAGEAERYRNYLEVTCVEWLGRYLENGKESI 160 Contig4_Al1 122 ADYLALNEDLRSWTAADTAAQISRKWE-DAGEAERYRNYLEUTCVEWLGRYLENGKESI 175 CL154.Contig12_Al1 117 QHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGCLVSURRYLELGGQ</pre>	60
<pre>cll150.contigl2_All 5 GSH3LRYFTGVSRPGGEPERIAVGVUDDTGVVEFDSDASRRMEPRAPWWEGEFEY) cll54.contigl2_All 53 GTHSLHYHYLALSEPGPDLPQLAVGVUDDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contigl2_All 53 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contigl2_All 53 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig27_All 40 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig27_All 40 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig2_All 40 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig2_All 40 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig2_All 40 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig1_All 40 GTHSLHYHYLALSEPGPDLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig1_All 40 GTHSLHYHYLALSEPGPLPQLAVGVUDQPFHYDSRVDRAKPQALWMATVDAQYI cll54.contig1_All 40 DRQTRGIKEATQTYRGSLNILRGYNQSAAGSHTIQLYGCDVGPDGRLLRGYSQSDDD cll50.contig1_All 52 DQQTRGIKETTQTYRGSLNILRGYNQSAAGSHTIQLYGCDVGPDGRLLRGYSQFDGFD cll54.contig1_All 53 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD cll54.contig1_All 11 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD cll54.contig2_All 111 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD cll54.contig2_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD cll54.contig1_All 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD cll54.contig1_All 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD cll54.contig1_All 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD cll54.contig1_All 122 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 136 Cll54.contig1_All 124 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 136 Cll54.contig1_All 125 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 136 Cll54.contig1_All 125 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 136 Cll54.contig1_All 127 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 136 C</pre>	61
CL154.Contiq12_Äl1 1 GTHSLHYHTLÄLSERGEPDLPQLÄVGYUDDOPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contiq14_Ål1 53 GTHSLHYHTLÄLSERGEPDLPQLÄVGYUDDQPFIHYDSRVDRAKPQALWMATVDAQYY 110 CL154.Contiq24_Ål1 53 GTHSLHYHTLÄLSERGEPDLPQLÄVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contiq27_Ål1 40 GTHSLHYHTLÄLSERGEPDLPQLÄVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contiq27_Ål1 40 GTHSLHYHTLÄLSERGEPDLPQLÄVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contiq27_Ål1 40 GTHSLHYHTLÄLSERGEPDLPQLÄVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contiq27_Ål1 40 GTHSLHYHTLÄLSERGEPDLPQLÄVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contiq27_Ål1 40 GTHSLHYHTLÄLSERGEPDLPQLÄVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY Query_14 61 DRQTRGIKDAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYSQDSYDC CL155.Contiq4_Ål1 62 DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYSQDSYDC CL150.Contiq16_Ål1 65 DRQTQICKETTQTYRGSLNLLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDC 124 CL154.Contiq12_Ål1 65 DRQTQICKETTQTYRGSLNLLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDC 166 CL154.Contiq14_Ål1 11 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 168 CL154.Contiq24_Ål1 111 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 168 CL154.Contiq27_Ål1 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 155 CL154.Contiq2_Ål1 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 155 CL154.Contiq2_Ål1 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 155 CL154.Contiq2_Ål1 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 155 CL154.Contiq2_Ål1 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 156 CL154.Contiq1_Ål1 122 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGAERYRNYLEVTCVEWLGRYLENGKESI 180 CL1550.Contiq4_Ål1 122 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGAERYRNYLEVTCVEWLGRYLENGKESI 183 CL154.Contiq1_Ål1 125 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGAERYRNYLEGCLVSLRRYLELGGQSI 176 CL154.Contiq1_Ål1 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contiq1_Ål1 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contiq1_ÅL	64
CL154.Contiq1_All CH5LHYHYLALSEFGPDLPQFLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY CL154.Contiq24_All 53 GTHSLHYHYLALSEFGPDLPQFLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY CL154.Contiq27_All GTHSLHYHYLALSEFGPDLPQLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY CL154.Contiq27_All GTHSLHYHLALSEFGPDLPQLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY CL154.Contiq27_All GTHSLHYHLALSEFGPDLPQLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY CL154.Contiq27_All GTHSLHYHLALSEFGPDLPQLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY CL154.Contiq27_All GTHSLHYHLALSEFGPDLPQLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY Query14 GTHSLHYHLALSEFGPDLPQLAVGYUDDQPFHYDSRVDRAKPQALWMATVDAQY Query14 DRQTRGIKBAAQTFRGNLQTALRYYNQSAAGSHTIQMYGCDVGPDGRLLRGYSQDSYDC CL150.contiq16_All DRQTQICKETTQTYRGSLNILRGYNQSAAGSHTIQNYGCDVGPDGRLLRGYRQFAYDC CL154.Contig12_All SPETETQKQRAWAKVQQVETWTVMGYNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig12_All SPETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig27_All SETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig27_All SETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC CL154.Contig2_All SETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC C155.Contig1_All SETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFD	58
CL154.Contig24_Al1 53 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY 10 53 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY 110 53 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contig27_Al1 40 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contig27_Al1 40 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contig1_Al1 40 GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY Query_14 61 DRQTRGIKDAAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYRQSQDSYDC 20 DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNHYGCDVGPDGRLLRGYRQFAYDC 211 DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDC 212 DQQTRGIKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDC 214 DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFGFDC 215 Contig12_Al1 59 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 216 CL154.Contig19_Al1 11 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 215 CL154.Contig23_Al1 98 ETETQKQRAWAKVQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 215 CL154.Contig1_Al1 98 ETETQKQRAWAK	58
11011053GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYY1100GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYYCL154.Contig27_All40GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYYCL154.Contig1_All40GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYYQuery_1461DRQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNYGCDVGPDGRLLRGYRQFAYDC120121DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDC121122DQQTRGIKETTQTYRRSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDC122123DQQTRGIKETTQTYRRSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDC124124CL154.Contig12_All25FETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC116111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC116111111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC12515512615512798128ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155154155155155154155155155155156122157ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI168125159ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI156155157157158ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI169122179	
11.1	
CL154.Contig2_All 40 GTHSLHYYLALSEPGPDLPQFLAVGYVDDQFFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contig2_All 40 GTHSLHYYLALSEPGPDLPQFLAVGYVDDQFFIHYDSRVDRAKPQALWMATVDAQYY CL154.Contig1_All 40 GTHSLHYYLALSEPGPDLPQFLAVGYVDDQFFIHYDSRVDRAKPQALWMATVDAQYY Query_14 61 DRQTRGIKDAAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYRQFAVDQY CL155.Contig4_All 62 DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDQ C1150.Contig16_All 65 DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDQ 124 CL154.Contig12_All 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ 166 CL154.Contig12_All 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ 166 CL154.Contig24_All 111 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ 168 CL154.Contig27_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ 155 CL154.Contig2_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ 155 CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ 155 CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ	97
CL154.Contig1_All40GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYVCL154.Contig1_All40GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYVQuery_1461DRQTRGIKDAAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYSQDSYDG120CL1150.Contig4_All62DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDG121CL1150.Contig16_All65DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDG124CL154.Contig12_All59ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG16CL154.Contig14_All11ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG16CL154.Contig2_All111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG168CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG155CL154.Contig1_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG155CL154.Contig1_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG155CL154.Contig1_All122ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI160CL151.Contig1_All124ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI176CL154.Contig1_All117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI176CL154.Contig1_All <t< td=""><td>97</td></t<>	97
CL154.Contig1_All40GTHSLHYHYLALSEPGPDLPQFLAVGYVDDQPFIHYDSRVDRAKPQALWMATVDAQYVQuery_1461DRQTRGIKDAAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYSQDSYDD120Cl1150.Contig4_All62DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDD121CL1150.Contig16_All65DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDD124CL154.Contig12_All59ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD116CL154.Contig1_All59ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD116CL154.Contig2_All111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD168CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD155CL154.Contig1_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD155CL154.Contig1_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD155CL154.Contig1_All122ADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI168CL150.Contig1_All125ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI179CL154.Contig1_All117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGQQSI176CL154.Conti	97
Query_14 61 DRQTRGIKDAAQTFRGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYSQDSYDG CL1150.Contig4_A11 62 DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDG 121 CL1150.Contig16_A11 65 DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDG 124 CL154.Contig12_A11 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 16 CL154.Contig12_A11 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 16 CL154.Contig24_A11 111 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 168 CL154.Contig27_A11 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 156 CL154.Contig23_A11 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 155 CL154.Contig2_A11 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 155 CL154.Contig2_A11 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 155 CL154.Contig1_A11 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 155 CL154.Contig1_A11 122 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGCAERYRNYLEVTCVEWLGRYLENGKESI 160 CL154.Contig16_A11 125 AD	97
Query_14 61 DRQTRGIKDAAQTERGNLQTALRYYNQSAAGSHTIQSMYGCDVGPDGRLLRGYRQDSYDD 20 CL1150.Contig4_All 62 DQQTRGIKETTQYYRGSLNLRGYYNQSAAGSHTIQNMYGCDVGPDGRLLRGYRQFAYDD 121 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDD 124 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDD 124 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDD 126 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAPDG 126 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAPDG 126 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAPDG 126 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAPDG 126 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAPDG 126 DRQTQICKETTQYYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAPDG 126 DETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD 126 CL154.Contig2_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD 125 CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD 125 CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDD 125 CL154.Contig1_All 98 ETETQKQR	
CL1150.Contig4_All 62 DQQTRGIKETTQTYRRSLNNLRGYYNQSAAGSHTFQNMYGCDVGPDGRLLRGYRQFAYDG 121 CL1150.Contig16_All 65 DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTFQNLYGCDVGPDGRLLRGYRQFAYDG 124 CL154.Contig12_All 59 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 116 CL154.Contig14_All 111 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 116 CL154.Contig19_All 111 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 126 CL154.Contig19_All 111 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 126 CL154.Contig27_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 125 CL154.Contig2_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 125 CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 125 CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 155 CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG 155 CL154.Contig1_All 121 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGVAERWRNYLEVTCVEWLGRYLENGKESI 160 CL1150.Contig16_All <td></td>	
CL1150.Contig16_A1165DRQTQICKETTQTYRGSLNILRGYYNQSAAGSHTIQNLYGCDVGPDGRLLRGYRQFAYDO124CL154.Contig12_A1159ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDO116CL154.Contig11_A1159ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDO116CL154.Contig24_A11111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDO168CL154.Contig19_A11111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDO158CL154.Contig27_A1198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDO15555CL154.Contig2_A1198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDO15555CL154.Contig1_A1198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDO15555Query_14121ADYIALNEDLRSWTAADTAAQITQRKWE-DAGVAERWRNYLEVTCVEWLGRYLENGKESI18051CL150.Contig16_A11125ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI18351CL154.Contig12_A11117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI17651CL154.Contig14_A11117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI17651CL154.Contig14_A11117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI17651CL154.Contig24_A11169QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEDDUALEGLCLVSLRRYLELGGQSI28 </td <td></td>	
CL154.Contig12_Al159ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC116CL154.Contig1_Al159ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC16CL154.Contig24_Al1111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC168CL154.Contig19_Al1111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC168CL154.Contig27_Al198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig23_Al198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig2_Al198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig1_Al198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig1_Al198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig1_Al198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig1_Al1122ADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI180CL1150.Contig16_Al1125ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI183CL154.Contig12_Al1117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI176CL154.Contig1_Al1117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI176CL154.Contig1_Al1169QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI28CL154.Contig24_Al1169QDHLSLDLETLSWVSAKPAATRTKSWETERCYAEDAKAYLEGLCLVSLRRYLELGGQSI <td></td>	
110116CL154.Contig11_All59ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ116CL154.Contig24_All111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ168CL154.Contig19_All111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ168CL154.Contig27_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ155CL154.Contig1_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDQ155Query_14121ADYIALNEDLRSWTAADTAAQITQRKWE-DAGEAERYRNYLEVTCVEWLGRYLENGKESI180CL154.Contig16_All125ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI183CL154.Contig12_All117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI176CL154.Contig1_All117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI176CL154.Contig24_All169QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI228CL154.Contig10_All1602155	
110111 <td></td>	
100CL154.Contig19_All111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG168111ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG15511198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG15511198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG15511198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG15511198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG15511198ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDG15511111198155111111150111111151111111151111111151111111152111111153111111154111111155111111155111111150111111151111111151111111151111111153111111154111111155111111156111111157111111158111111159111111150111111151111111151111111153111111154111111 <td< td=""><td></td></td<>	
100CL154.Contig27_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig23_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig1_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155098ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155121ADYIALNEDLRSWTAADTAAQITQRKWE-DAGVAERWRNYLEVTCVEWLGRYLENGKESI179121ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI180122ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI183115ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI183117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI1761154.Contig11_All117116QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI17612501254.Contig24_All16916116002281154.Contig10_All161160161 <t< td=""><td></td></t<>	
155CL154.Contig23_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig2_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155CL154.Contig1_All98ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC155Query_14121ADYIALNEDLRSWTAADTAAQITQRKWE-DAGVAERWRNYLEVTCVEWLGRYLENGKESI179CL1150.Contig4_All122ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI180CL154.Contig16_All125ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI183CL154.Contig12_All117QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI176CL154.Contig14_All169QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI228228228228228	
1133 CL154.Contig2_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 155 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 155 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 90 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC 91 121 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGVARWNTEGCIRCUMLGRYLENGKESI 180 122 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 183 115 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 183 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI	
CL154.Contig1_All 98 ETETQKQRAWAKVQQVETWTVMGYHNQS-TGMHSTQRMFGCEIREDGH-THSFWQFGFDC Query_14 121 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGVAERWRNYLEVTCVEWLGRYLENGKESI 179 CL1150.Contig4_All 122 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 180 CL1150.Contig16_All 125 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 180 CL151.Contig16_All 125 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 183 CL154.Contig12_All 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contig11_All 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contig24_All 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 228 CL154.Contig10_All 160 ODHUGUDUEDETGEWEGENEERDEGUEDERGENEERDEGUEDERGENEERDEGUEDERGENEERDEGUEDERGENEERDEGUEDERGENEERDEGUEDERGENEERDEGUEDERGENEERDEGUEDERGENEERDEGUEDERGEGUEDERGENEERDEGUEDEGUEDEGUEDERGENEERGEGUEDEGUEDEGUEDEGUEDERGENEERDEGUEDEGUEDEGUEDEGUEDEGUEDE	
Query_14 121 ADYIALNEDLRSWTAADTAAQITQRKWE-DAGVAERWRNYLEVTCVEWLGRYLENGKESI 179 122 ADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 180 122 ADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 180 125 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 183 125 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 183 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 128 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 126 0DHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 128 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI	
179 CL1150.Contig4_All 122 ADYLALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 180 CL1150.Contig16_All 125 ADYIALNEDLRSWTAADTAAQISRRKWE-DAGEAERYRNYVEGTCVEWLGRYLENGKESI 183 CL154.Contig12_All 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contig11_All 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contig24_All 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 228	
180 122 ADYIALNEDERKOWIANDIANQISKRKWE DAGEAERYRNYVEGTOVEWLGRYLENGKESI 180 125 ADYIALNEDERSWTAADTAAQISKRKWE-DAGEAERYRNYVEGTOVEWLGRYLENGKESI 183 183 CL154.Contig12_All 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 1169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 228 124 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI	
CL154.Contig12_All 125 ADTIALNEDLKSWIAADTAAQISKKWE-DAGEAEKIKNIVEGICVEWLGKILENGKESI 183 CL154.Contig12_All 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contig14_All 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 228 CL154.Contig10_All 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 228	
CL154.Contig12_A11 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQS1 176 CL154.Contig11_A11 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQS1 176 CL154.Contig24_A11 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQS1 228	
CL154.Contig11_All 117 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 176 CL154.Contig24_All 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 228	
CL154.Contig24_All 169 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 228	
228	
CL154.Contig27_All 156 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 215	
CL154.Contig23_All 156 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 215	
CL154.Contig2_All 156 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 215	
CL154.Contig1_All 156 QDHLSLDLETLSWVSAKPAATRTKSWWETERCYAEYDKAYLEGLCLVSLRRYLELGGQSI 215	
Query_14 180 LR 181 CL1150.Contig4 All 181 LR 182	

CL154.Contig24_All 126 1199 class I histocompatibility antigen, ... 121 5e-30

CL1150.Contig16_A1 CL154.Contig12_A11 CL154.Contig14_A11 CL154.Contig19_A11 CL154.Contig27_A11 CL154.Contig23_A11 CL154.Contig2_A11 CL154.Contig2_A11 CL154.Contig1_A11	.1 184 LR . 177 TR . 177 TR . 229 TR . 229 TR . 216 TR . 216 TR . 216 TR . 216 TR . 216 TR	185 178 178 230 230 217 217 217 217 217					
Lambda K 0.335 0.191	Н 0.779	a 0.443	alpha 1.38				
Gapped Lambda K 0.290 0.0750	H 0.280	a 1.04	alpha 11.5	sigma 12.3			
Effective search s	pace used:	27650833	92				
Query= AET36883.1	MHC class :	II antige	n, partial	[Meles meles]			
Length=81							
Sequences producir	ng significa	ant align	ments:		Score (Bits)	E Value	
Unigene42913_All CL2981.Contig3_All CL2981.Contig1_All CL10050.Contig3_Al CL10050.Contig2_Al CL10050.Contig1_Al CL12484.Contig1_Al CL12484.Contig3_Al	108 710 MHG 111 872 r 111 872 r 1 75 839 r 1 105 686 1 105 686 1 50 376 r 1 47 625 r	C class I ninus str ninus str minus str minus st ninus str ninus str	I antigen DI and PREDICTI and PREDICTI and PREDICTI rand MHC cla rand MHC cla and MHC clas	R alpha chain, pa ED: HLA class II ED: HLA class II ED: SLA class II ass II antigen DQ ass II antigen DQ ss II histocompat ss II antigen DO	177 178 178 110 98.7 98.7 90.3 89.5	8e-54 3e-53 3e-53 1e-28 9e-25 9e-25 3e-22 2e-21	
Query_15 Unigene42913_All CL2981.Contig3_All CL2981.Contig1_All CL10050.Contig2_Al CL10050.Contig2_Al CL10050.Contig1_Al CL12484.Contig1_Al CL12484.Contig3_Al Query_15 Unigene42013_All	1 DHY 27 DHY 29 DHY 29 DHY 1 29 DHY 1 19 DHY 1 37 1 38 60 IAY 86 IAY	V-IIQAEFY V-IIQAEFY V-IIQAEFY V-IIQAEFY VGAYGVEVY VGAYGVEVY VGAYGVEVY FY FY VDKANLDIM	LTPDPSGEFMF LTPDPSGEFMF LTPDPSGEFMF LTPDPSGEFMF QSYGPSGQYTQI QSYGPSGQYTQI QSYGPSGQYTQI QSYGASGQFAYI QSYGASGQFAYI QSYGASGQFAYI	DFDGDEIFHVDMEKKETVWRJ DFDGDEIFHVDMEKKETVWRJ DFDGDEIFHVDMEKKETVWRJ EFDGDEIFHVDMEKKETVWRJ EFDGDELFYVDLEKKETVWRJ EFDGDELFYVDLEKKETVWRJ EFDGDELFYVDLEKKETVWRJ EFDGEQLFSVELKKKEAVWRJ 81 107	LEEFGRFA LEEFGRFA LEEFGRFA LPVFSTFA LPVFSTFA LPVFSTFA LPVFSTFA LPEFGNLA	SFEAQGALAN SFEAQGALAN SFEAQGALAN GFDPQGALSE GFDPQGALSE GFDPQGALSE HFDPQNGLAS HFDPQNGLAS	59 85 87 88 78 78 87 88
Unigene42913_All CL2981.Contig3_All CL2981.Contig1_All CL10050.Contig2_Al CL10050.Contig2_Al CL10050.Contig1_Al CL12484.Contig1_Al CL12484.Contig3_Al	86 IA 88 IA 88 IA 1 89 IA 1 79 IA 1 79 IA 1 88 IA 1 89 IA	VDKANLDIM VDKANLDIM VDKANLDIM ISKQNLNIL ISKQNLNIL ISKQNLNIL VIKAHLDVL VIKAHLDVL	IIKRSNHTPNTN IIKRSNHTPNTN IIKRSNYTAATN TKRSNYTAATN TKRSNYTAATN VERSNRTRATN VERSNRTRATN	107 109 110 100 100 100 109			
Lambda K 0.336 0.192	Н 0.769	a 0.443	alpha 1.38				
Gapped Lambda K 0.290 0.0750 Effective search s	H 0.280 space used:	a 1.04 73389422	alpha 11.5 7	sigma 12.3			

Query= AET36881.1 MHC class II antigen, partial [Meles meles]

Length=89								
Somionaos producina	aignifiaa	nt olignma	nte.			Score	E	
sequences producing	Signiiica.	nic allgnme	encs:			(BILS)	value	
Unigene67843 All 95 745 minus strand MHC class II antigen DQ bet 151 2 Unigene57188 All 98 892 minus strand MHC class II antigen [Zalop 151 3 Unigene75449 All 155 928 minus strand MHC class II antigen [Zalo 137 4 Unigene75450 All 119 892 minus strand MHC class II antigen DR be 136								
CL4065.Contig3_All	1603 2295	minus str	cand MHC	class II	antigen D	133	7e-37	
CL6815.Contig5_All	88 906 mi	nus stranc	d PREDICT	ED: HLA	class II h	128	7e-35	
Unigene27967_All I	55 928 min	us strand	MHC clas	s II ant istocomm	igen DR be	123 116	3e-33	
CL6815.Contig1 All	88 732 mi	nus strand	d major h	istocomp	atibility	116	9e-31	
CL6815.Contig3_All	88 843 mi	nus strand	d PREDICT	ED: HLA	class II h	116	9e-31	
Query 16	1 DFVF	OFMGOCYFTN	IGTERVRYL	TRYIYNRE	EYARFDSDLGKYVA	AVTELGRP	SAOYWNSOK	60
Unigene67843_All	34 DFVF	QFKGECYFTI	IGTERVRSV	NRYIYNRE	EFVRYDSDVGEYRI	PVTELGRP	DAQYWNSQK	93
Unigene57188_All	34 DFVF	QFKGECYFTN	IGTERVRSV	NRYIYNRE	CEFVRYDSDVGEYRI	PVTELGRP	DAQYWNSQK	93
Unigene75449_All	28 FLF.	L'I'I'SECHF'I'I	IGTERVRFL	DRYF'YNGE Ndytynde	EYVREDSDVGEYRE	PVTELGRP	DAEYWNSQK	86
CL4065.Contig3 All	1 FVF	QFKGECIFII	IGTERVRSV	NRIIINKE NRYTYNRF	EFVRYDSDVGEIRI	PVIELGRP PVTELGRP	DAQIWNSQK	59
CL6815.Contig5 All	32 DFVI	QAKADCYFIN	IGTEKVQFV	VRFIFNLE	CEYARFDSHVGKFVA	ALTELGKP	DAELWNHRP	91
Unigene27967_All	28 FLF	LTTSECHFTN	IGTERVRFL	DRYFYNGE	CEYVRFDSDVGEYRI	PVTELGRP	DAQYWNSQK	86
CL6815.Contig6_All	32 DFVI	QAKADCYFI	IGTEKVQFV	VRFIFNLE	EYARFDSHVGKFVA	ALTELGKP	DAELWNHRP	91
CL6815.Contigl_All	32 DEVI	QAKADCYF'IN Oakadcyfin	IGTEKVQEV	VRFIFNLF VDETENTE	EYARFDSHVGKFVA	ALTELGKP ATTETCKB	DAELWNHRP	91 01
CLOOID.CONCIG5_AII	JZ DEVI	QAIGADCITII	191 DIV QI V	VINELEINDE	IS TAILE DOILY GILL A	101010101(1	DAELWINIINI	JT
Query_16	61 DIVD	RTEAERDTVO	CRHNYKNEE	RTTLQRR	89			
Unigene67843_All	94 DILE	RTEAETDTVO	CRHNYLTDE	SFTVQRR	122			
Unigene57188_All	94 DILE	RTEAETDTVO	CRHNYLTDE	SFTVQRR	122			
Unigene75449_All Unigene75450_All	87 DILE. 87 DIME	RTEALTDIVC	CRHNYGVVE	SFIVQRR	115			
CL4065.Contig3 All	60 DIME	RRRAAVDTYC	CRHNYGVVE	SFLVQRR	88			
CL6815.Contig5_All	92 DILE	RSRASVDALO	CRHNYK		110			
Unigene27967_All	87 DIME:	RRRAAVDTYC	CRHNYGVVE	SFLVQRR	115			
CL6815.Contig6_All CL6815_Contig1_All	92 DILE. 92 DILE	RSRASVDAL(RSRASVDAL(CRHNYKLGA	PFTVGRK	120			
CL6815.Contig3 All	92 DILE	RSRASVDALO	CRHNYKLGA	PFTVGRK	120			
Lambda K	ц	2	alaba					
0.336 0.192	0.778	a 0.443	1.38					
Gapped								
Lambda K	H	a 1 0 4	alpha	sigma				
0.290 0.0750	0.280	1.04	11.5	12.3				
Effective search sp	ace used:	884472720						
Querra AEm26000 1 M	UC alaga T	Tantigan	nortiol	[Moloc	mologi			
Query- AE130000.1 M	ne class i	i ancigen,	, partiar	Imeres	meresj			
Length=89								
						Score	E	
Sequences producing	significa	nt alignme	ents:			(Bits)	Value	
Unigene27967 All 1	55 928 min	us strand	MHC clas	s TT ant	igen DR be	145	5e-41	
Unigene75449 All 1	55 928 min	us strand	MHC clas	s II ant	igen [Zalo	135	2e-37	
CL4065.Contig3_All	1603 2295	minus str	cand MHC	class II	antigen D	130	7e-36	
Unigene75450_All 1	19 892 min	us strand	MHC clas	s II ant	igen DR be	131	8e-36	
Unigeneo/843_ALL 9 Unigene57188 All 9	3 /43 MINU 8 892 minu	s strand M s strand M	MHC class	II anti II anti	gen Dy bet	122 122	00-33 90-33	
CL6815.Contig4 All	88 741 mi	nus strand	d major h	istocomp	atibility	91.6	8e-22	
CL6815.Contig6_All	88 732 mi	nus strand	d major h	istocomp	atibility	91.6	8e-22	
CL6815.Contig1_All	88 732 mi	nus strand	d major h	istocomp	atibility	91.6	8e-22	
CL6815.Contig3_All	88 843 mi	nus stranc	a PREDICT	ED: HLA	CLASS II h	92.0	1e-21	

Query_17 Unigene27967_All Unigene75449_All CL4065.Contig3_All Unigene75450_All Unigene67843_All Unigene57188_All CL6815.Contig4_All CL6815.Contig6_All CL6815.Contig1_All CL6815.Contig3_All	1 HFL 27 HFL 27 HFL 1 FV 28 FV 35 FV 33 FV 33 FV 33 FV 33 FV 33 FV 33 FV	LPVKPECHYC FLTTSECHFT FLTTSECHFT FQFKGECYFT FQFKGECYFT FQFKGECYFT IQAKADCYFI IQAKADCYFI IQAKADCYFI IQAKADCYFI	NGTERVRLL NGTERVRFL NGTERVRSV NGTERVRSV NGTERVRSV NGTERVRSV NGTEKVQFV NGTEKVQFV NGTEKVQFV	DRYFYNSEEY DRYFYNGEEY NRYIYNREEF NRYIYNREEF NRYIYNREEF NRYIYNREF VRFIFNLEEY VRFIFNLEEY VRFIFNLEEY.	VHFNSDVGEYRF VRFDSDVGEYRF VRFDSDVGEYRF VRYDSDVGEYRF VRYDSDVGEYRF VRYDSDVGEYRF ARFDSHVGKFVA ARFDSHVGKFVA ARFDSHVGKFVA	VTELGRP VTELGRP VTELGRP VTELGRP VTELGRP VTELGRP ALTELGKP ALTELGKP ALTELGKP	IAQGWNSQK DAQYWNSQK DAQYWNSQK DAQYWNSQK DAQYWNSQK DAQYWNSQK DAQYWNSQK DALWNHRP DAELWNHRP DAELWNHRP	60 86 59 86 93 93 91 91 91
Query_17 Unigene27967_All Unigene75449_All CL4065.Contig3_All Unigene75450_All Unigene67843_All Unigene57188_All CL6815.Contig4_All CL6815.Contig6_All CL6815.Contig1_All CL6815.Contig3_All	 61 DIM 87 DIL 87 DIL 60 DIM 87 DIM 94 DIL 94 DIL 92 DIL 92 DIL 92 DIL 92 DIL 92 DIL 	ERKRSEVDTV ERRRAAVDTY ERRRAAVDTY ERRRAAVDTY ERREAETDTV ERTEAETDTV ERSRASVDAL ERSRASVDAL ERSRASVDAL ERSRASVDAL	CRHNHGVFE CRHNYGVVE CRHNYGVVE CRHNYGVVE CRHNYLTDE CRHNYKLGA CRHNYKLGA CRHNYKLGA	SF 84 SF 110 SF 110 SF 83 SF 110 SF 117 SF 117 PF 115 PF 115 PF 115 PF 115				
Lambda K 0.343 0.198	н 0.854	a 0.443	alpha 1.38					
Gapped Lambda K 0.290 0.0750 Effective search sp	H 0.280 ace used:	a 1.04 884472720	alpha 11.5	sigma 12.3				
Query= AET36875.1 M meles]	HC class	II antigen	DR alpha	chain, pa	rtial [Meles	5		
Length=230								
Sequences producing	signific	ant alignm	ents:			Score (Bits)	E Value	
CL2981.Contig3_All CL2981.Contig1_All Unigene42913_All 1 CL10050.Contig3_All CL10050.Contig2_All CL12484.Contig3_All CL12484.Contig3_All CL12484.Contig1_All CL5174.Contig1_All	111 872 1 111 872 1 08 710 MH 75 839 1 105 686 105 686 47 625 1 651 899 50 376 1 1 237 hy	ninus stra ninus stra C class II ninus stra minus str ninus stra minus stra ninus stra pothetical	and PREDIC antigen antigen and PREDIC and MHC cl and MHC cl and PREDI and PREDI and HLA cl	TED: HLA C. TED: HLA C. DR alpha Cl TED: SLA C. lass II an lass II ant. CTED: HLA ass II his PANDA_0022	lass II hain, pa lass II tigen DQ tigen DQ igen DO class II tocompat 84 [Ailu	492 492 434 295 250 250 230 120 112 97.0	7e-171 7e-171 1e-149 7e-94 9e-78 9e-78 2e-70 6e-32 3e-28 2e-23	

1	ISGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM	59
3	INGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM	61
3	INGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM	61
1	INGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM	59
6	VLILGTLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDL	62
4	LTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDL	52
4	LTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDL	52
3	LSGGLVLGLYTLMSLLSPQEIGAIKADHMGSYGPAFYQSYGASGQFAYEFDGEQLFSVEL	62
2	LSGGLVLGLYTLMSLLSPQEIGAIKADHMGSYGPAFYQSYGASGQFAYEFDGEQLFSVEL	61
60	EKKETVWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTP	
62	EKKETVWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTP	
62	EKKETVWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTP	
	1 3 1 6 4 3 2 60 62 62	1ISGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM3INGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM3INGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM1INGVPVLGFFIMTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDM6VLILGTLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDL4LTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDL3LSGGLVLGLYTLMSLLSPQEIGAIKADHMGSYGPAFYQSYGASGQFAYEFDGEQLFSVEL60EKKETVWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTP62EKKETVWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTP

Unigene42913_All	60	EKKETVWRLEE	EFGRFASFEAQ	GALANIAVDI	KANLDIMIKRSN	HTPNTNVPI	PEVTVLSNTP	
CL10050.Contig3_All	63	EKKETVWRLPV	VFSTFAGFDPQ	GALSEIATS	KQNLNILTKRSN	YTAATNEVI	PEVTLFPKSP	
CL10050.Contig2_All	53	EKKETVWRLPV	/FSTFAGFDPQ	GALSEIATSI	KQNLNILTKRSN	YTAATNEVI	PEVTLFPKSP	
CL10050.Contig1_All	53	EKKETVWRLPV	/FSTFAGFDPQ	GALSEIATSI	KQNLNILTKRSN	YTAATNEVI	PEVTLFPKSP	
CL12484.Contig3_All	63	KKKEAVWRLPE	EFGNLAHFDPQ	NGLASIAVII	KAHLDVLVERSN	RTRATNVPI	PRVTVLPRFR	
CL12484.Contig2_All CL12484.Contig1_All	1 62	KKKEAVWRLPE	FGNLAHFDPQ	NGLASIAVII	KAHLDVLVERSN	VPI RTRATN	PRVTVLPRFR	12
CL5174.Contig1_All	9		FDAW	RGIGDIVVA	KKNLNNLIQRSN	HTRATNEPI	PEVTVFPKEP	51
Query_18	120	VELGEPNTLIC	CFIDKFSPPVI	NVTWLRNGN	PVTTGVSETVFL	PREDHLFRE	KFHYLPFLPS	
CL2981.Contig3_All	122	VELGEPNTLIC	CFIDKFSPPVI	NVTWLRNGN	PVTTGVSETVFL	PREDHLFRE	KFHYLPFLPS	
CL2981.Contig1_All	122	VELGEPNTLIC	CFIDKFSPPVI	NVTWLRNGN	PVTTGVSETVFL	PREDHLFRE	KFHYLPFLPS	
Unigene42913_All	120	VELGEPNTLIC	CFIDKFSPPVI	NVTWLRNGN	PVTTGVSETVFL	PREDHLFRE	KFHYLPFLPS	
CL10050.Contig3_All	123	VMLGQPNTLIC	CLVDNIFPPVI	NVTWLKNRH	SVTEGVSETSFL	AKKDHSFLE	KISYLTFLPS	
CL10050.Contig2_All 172	113	VMLGQPNTLIC	CLVDNIFPPVI	NVTWLKNRH	SVTEGVSETSFL	AKKDHSFLE	KISYLTFLPS	
CL10050.Contig1_All 172	113	VMLGQPNTLIC	CLVDNIFPPVI	NVTWLKNRH	SVTEGVSETSFL	AKKDHSFLE	KISYLTFLPS	
CL12484.Contig3_All 182	123	VELGQPNVLIC	CMVDNIFPPVI	NITWLRNGQ	IVSEGVAQTSFY	SQPDHLFRI	KFCYLTFVPS	
CL12484.Contig2_All CL5174.Contig1_All	13 52	VELGQPNVLIC VELGQPNTLIC	CMVDNIFPPVI CHVDKFFPPVL	NITWLRNGQ: NVTWLRN	IVSEGVAQTSFY	SQPDHLFRI	KFCYLTFVPS	72 79
Query_18 CL2981.Contig3_All CL2981.Contig1_All Unigene42913_All CL10050.Contig3_All CL10050.Contig2_All CL10050.Contig1_All CL12484.Contig3_All CL12484.Contig2_All	180 182 182 180 183 173 173 183 73	ANDVYDCKVEHWGLDEPLLKHWEFEPPTPLPETTENVVCALGLVVGLVGII230ANDVYDCKVEHWGLDEPLLKHWEFEPPTPLPETTENVVCALGLVVGLVGIV232ANDVYDCKVEHWGLDEPLLKHWEFEPPTPLPETTENVVCALGLVVGLVGIV232ANDVYDCKVEHWGLDEPLLKHW201ADDIYDCKVEHWGLDEPLLKHWEPEIPSPMSELTETVVCALGLAVGLVGIV233ADDIYDCKVEHWGLDEPLLKHW194ADDIYDCKVEHWGLDEPLLKHW194ADDIYDCKVEHWGLDEPLLKHW194ADDIYDCKVEHWGLDEPLLKHW193ADDMYDCKVEH83					I 230 V 232 V 232 201 V 233 194 194 193 83	
Lambda K 0.337 0.196	H 0.81	a 3 0.443	alpha 1.38					
Gapped Lambda K 0.290 0.0750	H 0.28	a 0 1.04	alpha 11.5	sigma 12.3				
Effective search spa	ce us	ed: 37795670	88					
Query= AET36874.1 MH meles]	C cla	ss II antige	en DQ alpha	chain, pa	artial [Mele	S		
Length=205						Score	F.	
Sequences producing	signi	ficant aligr	ments:			(Bits)	Value	
CL10050.Contig3_All 75 839 minus strand PREDICTED: SLA class II 447 7e-154 CL10050.Contig2_All 105 686 minus strand MHC class II antigen DQ 423 3e-146 CL10050.Contig1_All 105 686 minus strand MHC class II antigen DQ 423 3e-146 CL2981.Contig3_All 111 872 minus strand PREDICTED: HLA class II 260 5e-81 CL2981.Contig1_All 118 72 minus strand PREDICTED: HLA class II 260 5e-81 Unigene42913_All 108 710 MHC class II antigen DR alpha chain, pa 249 6e-78 CL12484.Contig3_All 47 625 minus strand MHC class II antigen D0 239 2e-74 CL12484.Contig3_All 651 899 minus strand PREDICTED: HLA class II 127 2e-34 CL12484.Contig1_All 50 376 minus strand HLA class II histocompat 115 8e-30								

Query 19 1 TLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDLEKKETVWR 60 CL10050.Contig3 All 11 TLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDLEKKETVWR 70 CL10050.Contig2_All 1 TLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDLEKKETVWR 60 CL10050.Contig1 All 1 TLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDLEKKETVWR 60 CL2981.Contig3_All 14 MTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDMEKKETVWR 69 CL2981.Contig1 All 14 MTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDMEKKETVWR 69 Unigene42913 All 12 MTLLMGPQESQAIKEDHV-IIQAEFYLTPDPSGEFMFDFDGDEIFHVDMEKKETVWR 67 CL12484.Contig3 All 14 LMSLLSPQEIGAIKADHMGSYGPAFYQSYGASGQFAYEFDGEQLFSVELKKKEAVWR 70 CL12484.Contig1 All 13 LMSLLSPQEIGAIKADHMGSYGPAFYQSYGASGQFAYEFDGEQLFSVELKKKEAVWR 69 LPVFSTFAGFDPQGALSEIATSKQNLNILTKRSNYTAATNEVPEVTLFPKSPVMLGQPNT Query 19 61 120 CL10050.Contig3 All LPVFSTFAGFDPQGALSEIATSKQNLNILTKRSNYTAATNEVPEVTLFPKSPVMLGQPNT 71 130 CL10050.Contig2 All 61 LPVFSTFAGFDPQGALSEIATSKQNLNILTKRSNYTAATNEVPEVTLFPKSPVMLGQPNT 120 CL10050.Contig1_All 61 LPVFSTFAGFDPQGALSEIATSKQNLNILTKRSNYTAATNEVPEVTLFPKSPVMLGQPNT 120 I.EEFGRFASFEAOGALANTAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTPVELGEPNT CL2981.Contig3 All 70 129 70 LEEFGRFASFEAOGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTPVELGEPNT CL2981.Contig1 All 129 Unigene42913 All LEEFGRFASFEAOGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTPVELGEPNT 68 127 CL12484.Contig3 All 71 LPEFGNLAHFDPQNGLASIAVIKAHLDVLVERSNRTRATNVPPRVTVLPRFRVELGQPNV 130 CL12484.Contig2 All 3 PRVTVLPRFRVELGQPNV 20 CL12484.Contig1_All 70 LPEFGNLAHFDPQNGLASIAVIKAHLDVLVERSNRTRATN 109 CL5174.Contig1 All 1 PDFIHAFDFDAWRGIGDIVVAKKNLNNLIQRSNHTRATNEPPEVTVFPKEPVELGQPNT 59 Query 19 121 LICLVDNIFPPVINVTWLKNRHSVTEGVSETSFLAKKDHSFLKISYLTFLPSADDIYDCK 180 CL10050.Contig3 All 131 LICLVDNIFPPVINVTWLKNRHSVTEGVSETSFLAKKDHSFLKISYLTFLPSADDIYDCK 190 CL10050.Contig2 All 121 LICLVDNIFPPVINVTWLKNRHSVTEGVSETSFLAKKDHSFLKISYLTFLPSADDIYDCK 180 CL10050.Contig1 All 121 LICLVDNIFPPVINVTWLKNRHSVTEGVSETSFLAKKDHSFLKISYLTFLPSADDIYDCK 180 CL2981.Contig3_All LICFIDKFSPPVINVTWLRNGNPVTTGVSETVFLPREDHLFRKFHYLPFLPSANDVYDCK 130 189 I.T.C.F.T.DKFSPPVINVTWI.RNGNPVTTGVSETVFI.PREDHI.FRKFHYI.PFI.PSANDVYDCK CL2981.Contig1 All 130 189 Unigene42913 All LICFIDKFSPPVINVTWLRNGNPVTTGVSETVFLPREDHLFRKFHYLPFLPSANDVYDCK 128 187 CL12484.Contig3 All 131 LICMVDNIFPPVINITWLRNGQIVSEGVAQTSFYSQPDHLFRKFCYLTFVPSADDMYDCK 190 LICMVDNIFPPVINITWLRNGQIVSEGVAQTSFYSQPDHLFRKFCYLTFVPSADDMYDCK CL12484.Contig2 All 21 80 LICHVDKFFPPVLNVTWLRN CL5174.Contig1 All 60 79 181 VEHWGLDEPLLKHWEPEIPTPMSEL 205 Query 19 CL10050.Contig3 All 191 VEHWGLDEPLLKHWEPEIPSPMSEL 215 CL10050.Contig2 All 181 VEHWGLDEPLLKHW 194 CL10050.Contig1 All 181 VEHWGLDEPLLKHW 194 CL2981.Contig3 All 190 VEHWGLDEPLLKHWEFEPPTPLPE 213 CL2981.Contig1 All 190 VEHWGIDEPLIKHWEFEPPTPLPE 213 Unigene42913 All 188 VEHWGLDEPLIKHW 201 CL12484.Contig3 All 191 VEH 193 CL12484.Contig2 All 81 VEH 83 Lambda К Н alpha а 0.190 0.770 0.443 0.333 1.38 Gapped Lambda Κ Н alpha sigma a

12.3

11.5

0.290

0.0750

0.280

1.04

Query= AET36873.1 MHC class II antigen DQ alpha chain, partial [Meles meles]

Length=205

Sequences producing significant alignments: (E	Score Bits)	E Value
CL10050.Contig3_All 75 839 minus strand PREDICTED: SLA class II 3 CL10050.Contig2_All 105 686 minus strand MHC class II antigen DQ 3 CL10050.Contig1_All 105 686 minus strand MHC class II antigen DQ 3 CL2981.Contig3_All 111 872 minus strand PREDICTED: HLA class II 2 CL2981.Contig1_All 111 872 minus strand PREDICTED: HLA class II 2 Unigene42913_All 108 710 MHC class II antigen DR alpha chain, pa 2 CL12484.Contig3_All 47 625 minus strand MHC class II antigen DO 2 CL12484.Contig2_All 651 899 minus strand PREDICTED: HLA class II 1 CL12484.Contig1_All 50 376 minus strand HLA class II histocompat 1 CL5174.Contig1_All 1 237 hypothetical protein PANDA_002284 [Ailu 9	394 370 246 246 235 226 119 109 38.3	3e-133 2e-125 2e-125 8e-76 8e-76 9e-73 3e-69 1e-31 1e-27 3e-24

Query 20	1	TLALTTIMSLGGSEDIVADHVASYGISVYQSYGPSGQYTREFDGDEEFYVDLEKKET	57
CL10050.Contig3 All	11	TLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDLEKKET	67
CL10050.Contig2 All	1	TLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDLEKKET	57
CL10050.Contig1 All	1	TLALTTMMSPGGSEDIVADHVGAYGVEVYQSYGPSGQYTQEFDGDELFYVDLEKKET	57
CL2981.Contig3 All	14	MTLLMGPQESQAIKEDHVIIQA-EFYLTPDPSGEFMFDFDGDEIFHVDMEKKET	66
CL2981.Contig1 All	14	MTLLMGPQESQAIKEDHVIIQA-EFYLTPDPSGEFMFDFDGDEIFHVDMEKKET	66
Unigene42913 All	12	MTLLMGPQESQAIKEDHVIIQA-EFYLTPDPSGEFMFDFDGDEIFHVDMEKKET	64
CL12484.Contig3 All	8	VLGLYTLMSLLSPOEIGAIKADHMGSYGPAFYOSYGASGOFAYEFDGEOLFSVELKKKEA	67
CL12484.Contig1_All	8	LGLYTLMSLLSPQEIGAIKADHMGSYGPAFYQSYGASGQFAYEFDGEQLFSVELKKKEA	66
Query_20 117	58	VWQLPMFQALRRFDPQGALRNLAIAKQNLNILTKRSNYTAATNEVPEVTLFLKTPVMLGQ	
CL10050.Contig3_All 127	68	VWRLPVFSTFAGFDPQGALSEIATSKQNLNILTKRSNYTAATNEVPEVTLFPKSPVMLGQ	
CL10050.Contig2_All 117	58	VWRLPVFSTFAGFDPQGALSEIATSKQNLNILTKRSNYTAATNEVPEVTLFPKSPVMLGQ	
CL10050.Contig1_All	58	VWRLPVFSTFAGFDPQGALSEIATSKQNLNILTKRSNYTAATNEVPEVTLFPKSPVMLGQ	
CL2981.Contig3_All	67	VWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTPVELGE	
CL2981.Contig1_All	67	VWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTPVELGE	
Unigene42913_All	65	VWRLEEFGRFASFEAQGALANIAVDKANLDIMIKRSNHTPNTNVPPEVTVLSNTPVELGE	
CL12484.Contig3_All	68	VWRLPEFGNLAHFDPQNGLASIAVIKAHLDVLVERSNRTRATNVPPRVTVLPRFRVELGQ	
CL12484 Contig2 All	З	PRVTVLPRFRVELGO	17
CL12484 Contig1 All	67	WWRLPEFGNLAHFDPONGLASIAVIKAHLDVLVERSNRTRATN	1,
109	0,		
CL5174.Contig1_All	9	FDAWRGIGDIVVAKKNLNNLIQRSNHTRATNEPPEVTVFPKEPVELGQ	56
Query_20	118	PNTLICLVDNIFPPVINVTWLKNRHSVTEGVSETHFLIKKDYSFLKFSYLTFLPSADDIY	
187	128	PNTLICLVDN1FPPV1NVTWLKNRHSVTEGVSETSFLAKKDHSFLK1SYLTFLPSADD1Y	
CL10050.Contig2_All 177	118	PNTLICLVDNIFPPVINVTWLKNRHSVTEGVSETSFLAKKDHSFLKISYLTFLPSADDIY	
CL10050.Contig1_All 177	118	PNTLICLVDNIFPPVINVTWLKNRHSVTEGVSETSFLAKKDHSFLKISYLTFLPSADDIY	
CL2981.Contig3_All 186	127	PNTLICFIDKFSPPVINVTWLRNGNPVTTGVSETVFLPREDHLFRKFHYLPFLPSANDVY	
CL2981.Contig1_All	127	PNTLICFIDKFSPPVINVTWLRNGNPVTTGVSETVFLPREDHLFRKFHYLPFLPSANDVY	
Unigene42913_All	125	PNTLICFIDKFSPPVINVTWLRNGNPVTTGVSETVFLPREDHLFRKFHYLPFLPSANDVY	
CL12484.Contig3_All 187	128	PNVLICMVDNIFPPVINITWLRNGQIVSEGVAQTSFYSQPDHLFRKFCYLTFVPSADDMY	

CL12484.Cor CL5174.Cont	ntig2_All sig1_All	18 57	PNVLICMVDNIFPPVINITWLRNGQIVSE PNTLICHVDKFFPPVLNVTWLRN				GVAQTSFYSQPDHLFRKFCYLTFVPSADDMY	77 79
Query_20 CL10050.Cor CL10050.Cor CL2981.Cont CL2981.Cont Unigene4291 CL12484.Cor CL12484.Cor	htig3_All htig2_All htig1_All htig1_All htig1_All htig3_All htig3_All htig2_All	178 188 178 178 187 187 185 188 78	DCK ^V DCK ^V DCK ^V DCK ^V DCK ^V DCK ^V	/EHWGLDEPI /EHWGLDEPI /EHWGLDEPI /EHWGLDEPI /EHWGLDEPI /EHWGLDEPI /EH	LKHWEPEII LKHWEPEII LKHW LKHW LKHWEFEP LKHWEFEP LKHW	PTPMSEL PSPMSEL PTPLPE PTPLPE	205 215 194 213 213 201 193 83	
Lambda 0.334 Gapped Lambda 0.290	к 0.192 к 0.0750	н 0.775 н 0.280	5 0	a 0.443 a 1.04	alpha 1.38 alpha 11.5	sigma 12.3		

Query= AET36872.1 MHC class II antigen DQ beta chain, partial [Meles meles]

Length=224		
Sequences producing significant alignments:	Score (Bits)	E Value
Unigene57188 All 98 892 minus strand MHC class II antigen [Zalop	490	4e-170
Unigene67843 All 95 745 minus strand MHC class II antigen DQ bet	475	2e-165
Unigene75449 All 155 928 minus strand MHC class II antigen [Zalo	418	6e-142
Unigene75450 All 119 892 minus strand MHC class II antigen DR be	398	4e-134
CL4065.Contig3 All 1603 2295 minus strand MHC class II antigen D	341	2e-112
Unigene27967 All 155 928 minus strand MHC class II antigen DR be	341	1e-111
CL6815.Contig3 All 88 843 minus strand PREDICTED: HLA class II h	286	8e-91
CL6815.Contig2 All 88 882 minus strand PREDICTED: HLA class II h	287	1e-90
CL6815.Contig5 All 88 906 minus strand PREDICTED: HLA class II h	287	2e-90
CL6815.Contig6_All 88 732 minus strand major histocompatibility	279	7e-89

Query 21	1	MALWIPRGLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIY	60
Unigene57188 All	1	MALWIPRGLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIY	60
Unigene67843 All	1	MALWIPRGLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIY	60
Unigene75449 All	1	GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFY	53
Unigene75450 All	1	GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIY	53
CL4065.Contig3_All	1	FVFQFKGECYFTNGTERVRSVNRYIY	26
Unigene27967_All	1	GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFY	53
CL6815.Contig3 All	5	WVPWTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIF	58
CL6815.Contig2 All	5	WVPWTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIF	58
CL6815.Contig5_All	5	WVPWTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIF	58
CL6815.Contig6_All	5	WVPWTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIF	58
Query 21	61	NREEFVRYDSDVGEYRPVTELGRPDAEYWNSQKDILERTEAETDTVCRHNYLTDESFTVQ	120
Unigene57188 All	61	NREEFVRYDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQ	120
Unigene67843 All	61	NREEFVRYDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQ	120
Unigene75449 All	54	NGEEYVRFDSDVGEYRPVTELGRPDAEYWNSQKDILERTEAETDTVCRHNYLTDESFTVQ	113
Unigene75450_All	54	NREEFVRYDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQ	113
CL4065.Contig3 All	27	NREEFVRYDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQ	86
Unigene27967 All	54	NGEEYVRFDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQ	113
CL6815.Contig3 All	59	NLEEYARFDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVG	118
CL6815.Contig2 All	59	NLEEYARFDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVG	118
CL6815.Contig5 All	59	NLEEYARFDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVG	118
CL6815.Contig6_All	59	NLEEYARFDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVG	118
Query 21	121	RRVEPTVTISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGD	180
Unigene57188 All	121	RRVEPTVTISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGD	180
Unigene67843 All	121	RRVEPTVTISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGD	180
Unigene75449_All	114	RRVEPTVTISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGD	173

Unigene75450_All CL4065.Contig3_All Unigene27967_All CL6815.Contig3_All CL6815.Contig2_All CL6815.Contig5_All CL6815.Contig6_All	114RRVEPTVTVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGD1All87RRVEPTVTVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGD1114RRVEPTVTVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGD1111119RKVQPEVAVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGD1All119RKVQPEVAVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGD1All119RKVQPEVAVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGD1All119RKVQPEVAVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGD1							
Query_21 Unigene57188_All Unigene67843_All Unigene75449_All Unigene75450_All CL4065.Contig3_All Unigene27967_All CL6815.Contig3_All CL6815.Contig2_All CL6815.Contig5_All CL6815.Contig6_All	181 181 174 174 174 174 179 179 179 179	WTFQILVMLEM WTFQILVMLEM WTFQILVMLEM WTFQILVMLET WTFQTLVMLET WTFQTLVMLET WTFQTNVMLEM WTFQTMVMLEM WTFQTMVMLEM WTFQTMVMLEM	IPQRGDVYTCH IPQRGDVYTCH IPQRGDVYTCH VPQSGEVYTCQ VPQSGEVYTCQ VPQSGEVYTCQ IPALGDVYTCL IPALGDVYTCL IPALGDVYTCL	VEHPSLQSPITV VEHPSLQSPITV VEHPSLQSPITV VEHPSLTSPVTV VEHPSLTSPVTV VEHPSLTSPVTV VNHVSLLSPVSV VNHVSLLSPVSV VNHVSLLSPVSV	/EWRAQSESAQ /EWRAQSESAQ /EWRAQSESAQ /EWRAQSGSAQ /EWRAQSGSAQ /EWRAQSGSAQ /EWRAQS /EWRAQS /EWRAQS /EWRAQS /EWR	224 217 217 217 190 217 218 218 218 218 215		
Lambda K 0.336 0.191	н 0.78	a 36 0.443	alpha 1.38					
Gapped Lambda K 0.290 0.0750	Н 0.28	a 30 1.04	alpha 11.5	sigma 12.3				
Effective search sp	bace us	sed: 36507182	210					
Query= AET36871.1 M	MHC cla	ass II antige	en DR beta	chain, parti	ial [Meles m	neles]		
Length=258						Score	E	
Sequences producing	g signi	lficant alig	nments:		((Bits)	Value	
Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All CL6815.Contig2_All CL6815.Contig5_All CL6815.Contig3_All CL6815.Contig6_All	155 928 19 892 1603 155 928 98 892 95 745 88 88 88 90 88 84 88 73	8 minus stran 2 minus stran 2295 minus s 8 minus stran minus stran 32 minus stran 96 minus stra 13 minus stra 32 minus stra 32 minus stra	nd MHC clas nd MHC clas strand MHC nd MHC class d MHC class d MHC class and PREDICT and PREDICT and PREDICT and major h	s II antiger s II antiger class II ant s II antiger II antigen ED: HLA clas ED: HLA clas ED: HLA clas istocompatik	n DR be n DR be tigen D n [Zalo [Zalop DQ bet as II h as II h pility	478 462 434 399 383 341 302 302 300 261	2e-164 4e-158 8e-148 1e-133 4e-127 8e-112 1e-95 2e-95 5e-95 4e-81	
Query_22 Unigene27967_All Unigene75450_All CL4065.Contig3_All Unigene75449_All Unigene57188_All Unigene67843_All CL6815.Contig2_All CL6815.Contig3_All CL6815.Contig3_All	1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8	GSWMTALTLILI GAWMTALTLILI GLWTAAVMAIL GLWTAAVMAIL GLWTAAVMAIL WTVVLLVSV WTVVLLVSV WTVVLLVSV WTVVLLVSV	MVLSPPLAWAR MVLSPPLAWAR VVLSVPVAEGR VVLSVPVAEGR VVLSVPVAEGR IRLDSSRTQGR IRLDSSRTQGR IRLDSSRTQGR	DTPRHFLMQFKC DTPRHFLFLTTS DSPKDFVFQFKC TPRHFLFLTTS DSPKDFVFQFKC DSPEDFVIQAKA DSPEDFVIQAKA DSPEDFVIQAKA DSPEDFVIQAKA	GECYFTNGTERV SECHFTNGTERV GECYFTNGTERV GECYFTNGTERV GECYFTNGTERV SECYFTNGTERV ADCYFINGTERV ADCYFINGTERV ADCYFINGTERV	VRLLVRH VRFLDRYI VRSVNRY VRSVNRY VRSVNRY VRSVNRY VQFVVRF VQFVVRF VQFVVRF	LYNREEFVR TYNGEEYVR LYNREEFVR TYNGEEYVR LYNREEFVR LYNREEFVR LFNLEEYAR LFNLEEYAR LFNLEEYAR LFNLEEYAR	60 60 33 67 65 65 65 65
CL6815.Contig6_A118WTVVLLVSVIKLDSSKTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYARQuery_2261FDSDVGEYRPVTELGRPIAQGWNSQKDIMERRRAAVDTVCRHNYGVVESFTVQRRVEPTVUnigene75450_A1161FDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTVCL4065.Contig3_A1134YDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTVUnigene75449_A1161FDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTVUnigene57188_A1168YDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTVUnigene67843_A1168YDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTVCL6815.Contig2_A1166FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEVCL6815.Contig5_A1166FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV								120 120 93 120 127 127 125 125

CL6815.Contig3_All CL6815.Contig6_All	66 66	FDSHVGKFVALTELGKPDAE	LWNHRPDILERSRASVDALCRHNY LWNHRPDILERSRASVDALCRHNY	KLGAPFTVGRKVQPEV KLGAPFTVGRKVOPEV	125 125
enons.concrgo_nii	00				120
Query_22	121	TVYPAKNQPLQHHNLLVCSVI	NGFYPGHIEVRWFRNGQEEESGVV	STGLIPNGDWTFQTLV	180
Unigene27967 All	121	TVYPAKNQPLQHHNLLVCSV	STGLIRNGDWTFQTLV	180	
Unigene75450 All	121	TVYPAKNQPLQHHNLLVCSV	STGLIRNGDWTFQTLV	180	
CL4065.Contig3 All	94	TVYPAKNQPLQHHNLLVCSVI	NGFYPGHIEVRWFRNGQEEESGV\	STGLIRNGDWTFQTLV	153
Unigene75449 All	121	TISPSRTEVLNHHNMLVCSV	IDFYPGOIKVRWFRNDOEEKAGV\	STPLIRNGDWTFOILV	180
Unigene57188 All	128	TISPSRTEVINHHNMLVCSV	TDFYPGOIKVRWFRNDOEEKAGV	STPLIENGDWTFOILV	187
Unigene67843 All	128	TISPSRTEVI.NHHNMI.VCSV	TDFYPGOIKVRWFRNDOEEKAGV	STPLIENGDWTFOILV	187
CL6815 Contig2 All	126	AVHPERTPSI.OHRSI.I.FCSV	TGEVPGDIKIRWERNGOEORVGVI	STGLVBNGDWTFOTMV	185
CI6015 Contigs All	126	AVUDEDTDOI OUDOI I ECOV			105
CI6815 Contigs All	126	AVIII EKTI SUQIIKSUUPCSV.	TGF11GD1K1RWFRNGQEQRVGV1		105
CL6815.Contig6_All	126	AVHPERTPSLQHRSLLFCSV:	IGFYPGDIKIRWFRNGQEQRVGVI	STGLVRNGDWIFQIMV	185
Query 22	181	MLETVPOSGEVYTCOVEHPS	LTSPVTVEWRAOSGSAOSKILSG	GGFVI.GI.I.FI.VVGI.FT	240
Unigene27967 All	181	MLETVPOSGEVYTCOVEHPSI	LTSPVTVEWBAOSGSAOSKILSG	GGEVIGLIFIVVGLET	240
Unigene75450 All	181	MLETVPOSCEVYTCOVEHPSI		CGEVI.GLI.FLVVGI.FT	240
CI4065 Contiga All	154	MI ETUDOSCEUVTCOVENDS			210
University ALL	101	MLEIVFQSGEVIICQVEHFS		GGF VLGLLF LV VGLF I	- 210
Unigene/5449_All	101	MLEMTPQRGDVITCHVEHPSI	LQSPITVEWRAQSESAQSKMLSGI		240
Unigene5/188_All	188	MLEMTPQRGDVYTCHVEHPS	LQSPITVEWRAQSESAQSKMLSGI	GGF.AFGFTF.FGFGFTA	247
Unigene67843_All	188	MLEMTPQRGDVYTCHVEHPSI	LQSPITVEWR		217
CL6815.Contig2_All	186	MLEMTPALGDVYTCLVNHVS	LLSPVSVEWRAQSAYSWRKMLSGI	AAFLIGLIFVLVGTVI	245
CL6815.Contig5_All	186	MLEMTPALGDVYTCLVNHVS	LLSPVSVEWRAQSAYSWRKMLSGI	AAFLIGLIFVLVGTVI	245
CL6815.Contig3 All	186	MLEMTPALGDVYTCLVNHVSI	LLSPVSVEWRAQSAYSWRKMLSGI	AAFLIGLIFVLVGTVI	245
CL6815.Contig6_All	186	MLEMTPALGDVYTCLVNHVS	LLSPVSVEWR		215
Ouery 22	241	YERNOKGHSGLOPTGLLS	258		
Unigene27967 All	2/11	VEDNOKCHSCI ODTCI IS	258		
Unigene75450 All	241	VEDNOKCHSCI ODTCI IS	250		
CI4065 Contina All	214	VEDNOVCUSCI ODUCI I C	200		
UL4005.COILLIGS_ALL	214		201		
Unigene/5449_All	241	RHRSQKGPRGSPPAGLL .	257		
Unigene5/188_All	248	RHRSQKGPRGSPPAGLL 2	264		
CL6815.Contig2_All	246	CLRAQKGYAETRLSG 2	260		
CL6815.Contig5_All	246	CLRAQKGYAETRLSG 2	260		
CL6815.Contig3_All	246	CLRAQKG 2	252		
Lambda K	Н	a alpha			
0.339 0.194	0.8	00 0.443 1.38			
Gapped					
Lambda K	Н	a alpha	sigma		
0.290 0.0750	0.2	30 1.04 11.5	12.3		
Effective search sp	ace u	sed: 4333524636			
Query= AET36870.1 M	IHC cl	ass II antigen DR beta	a chain, partial [Meles	meles]	
Length=258					
Sequences producing	r sign	ficant alignments:		Score E (Bits) Value	
		-			
Unigene27967_All 1	55 92	3 minus strand MHC cla	ass II antigen DR be	554 0.0	
Unigene75450_All 1	19 89	2 minus strand MHC cla	ass II antigen DR be	461 9e-158	
Unigene75449 All 1	55 92	3 minus strand MHC cla	ass II antigen [Zalo	436 8e-148	
CL4065.Contig3 All	1603	2295 minus strand MHG	C class II antigen D	433 2e-147	
Unigene57188 All 9	8 892	minus strand MHC clas	ss II antigen [Zalop	379 3e-125	
Unigene67843 All	5 745	minus strand MHC clas	ss II antigen DO bet	335 2e-109	
CI.6815 Contig? 11	88 0	2 minus strand DDFDT	TTED. HIA class IT b	301 50-05	
CT 6915 Continuez_AII	00 0)6 minuo ottanu FREDI	CTAPP, UIA CIAPS II II	300 10 04	
CLUGID.CONLIGS_ALL	00 9	o minus strand PREDIC	CIED: HLA CIESS II N	200 <u>10-94</u>	
CL6815.Contig3_All	888	is minus strand PREDI	CTED: HLA CLASS 11 h	298 2e-94	
CL6815.Contig6_All	887	32 minus strand major	histocompatibility	260 2e-80	
Ouery 23	1	GSWMTALTT.TT.MVT.SPPT.AWZ	ARDTPRHFI.FI.TTSECHFTNCTFF	WRFLDRYFYNGEFYVR	60

Query_20		-		00
Unigene27967	All	1	GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR	60
Unigene75450	All	1	GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEFVR	60
Unigene75449	All	1	GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR	60

CL4065.Contig3 All	1	FVFQFKGECYFTNGTERVRSVNRYIYNREEF	VR 33
Unigene57188 All	8	GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEF	VR 67
Unigene67843 All	8	GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEF	VR 67
CL6815.Contig2 All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEY	AR 65
CL6815.Contig5 All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEY	AR 65
CL6815.Contig3 All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEY	AR 65
CL6815.Contig6_All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEY	AR 65
0.00	C 1		T TT 100
Query_23	61 C1	FDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAEVDTVCRHNYGVVESFLVQRRVEP	TV 120
Unigenez/96/_AII	61 C1	FDSDVGEIRFVTELGRPDAQIWNSQKDIMERRKAAVDTICKHNIGVVESFLVQRKVEP	TV 120
Unigene/5450_All	61 C1		TV 120
ONIGENE/5449_AII	24	FDSDVGEIRFVTELGRPDAEIWNSQKDILERTEAETDTVCRHNILTDESFTVQRRVEP	TV 120
UniconcE7188 All	54 60		1V 93 mtz 107
Unigene 67843 All	60		IV 127 mm 107
CI 6815 Contian All	66		IV 127 EV 105
CL6815 Contig2_AII	66		EV 12J EV 125
CI6815 Contigs_All	66	EDGRACKEANT WEI CKDDYEI MURDDDII EDGDY GAUDYI CDRNAKI CYDEWACDAKIOD	EV 125
CL6815.Contig6 All	66	FDSHVGKFVALTELGKPDAELWNHRPDTLERSRASVDALCRHNYKLGAPFTVGRKVOP	EV 125 EV 125
·,·,·		x -	
Query_23	121	TVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGDWTFQT	LV 180
Unigene2/96/_All	121	TVYPAKNQPLQHHNLLVCSVNGFYPGHLEVRWFRNGQEEESGVVSTGLIRNGDWTFQT	LV 180
Unigene/5450_All	121	TVYPAKNQPLQHHNLLVCSVNGFYPGHLEVRWFRNGQEEESGVVSTGLIRNGDWTFQT	LV 180
Unigene/5449_All	121	TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQI	TA 180
CL4065.Contig3_All	94	TVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGDWTFQT	LV 153
Unigene5/188_All	128	TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQI	LV 187
Unigene6/843_All	128	TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQI	LV 187
CL6815.Contig2_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGD1K1RWFRNGQEQRVGVLSTGLVRNGDWTFQT	MV 185
CL6815.Contig5_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGD1K1RWFRNGQEQRVGVLSTGLVRNGDWTFQT	MV 185
CL6815.Contig3_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQT	MV 185
CL6815.Contig6_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGD1K1RWFRNGQEQRVGVLSTGLVRNGDWTFQT	MV 185
Query_23	181	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGL	FI 240
Unigene27967_All	181	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGL	FI 240
Unigene75450_All	181	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGL	FI 240
Unigene75449_All	181	MLEMTPQRGDVYTCHVEHPSLQSPITVEWRAQSESAQSKMLSGIGGFVLGLIFLGLGL	IV 240
CL4065.Contig3_All	154	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGL	FI 213
Unigene57188_All	188	MLEMTPQRGDVYTCHVEHPSLQSPITVEWRAQSESAQSKMLSGIGGFVLGLIFLGLGL	IV 247
Unigene6/843_All	188	MLEMTPQRGDVYTCHVEHPSLQSPITVEWR	217
CL6815.Contig2_All	186	MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGT	VI 245
CL6815.Contig5_All	186	MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGT	VI 245
CL6815.Contig3_All	186	MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGT	VI 245
CL6815.Contig6_All	186	MLEMTPALGDVYTCLVNHVSLLSPVSVEWR	215
Query_23	241	YFRNQKGHSGLQPTGLLS 258	
Unigene27967_All	241	YFRNQKGHSGLQPTGLLS 258	
Unigene75450_All	241	YFRNQKGHSGLQPTGLLS 258	
Unigene75449_All	241	RHRSQKGPRGSPPAGLL 257	
CL4065.Contig3_All	214	YFRNQKGHSGLQPTGLLS 231	
Unigene57188_All	248	RHRSQKGPRGSPPAGLL 264	
CL6815.Contig2_All	246	CLRAQKGYAETRLSG 260	
CL6815.Contig5_All	246	CLRAQKGYAETRLSG 260	
CL6815.Contig3_All	246	CLRAQKG 252	
Lambda K	Н	a alpha	
0.339 0.195	0.8	04 0.443 1.38	
Gapped			
Lambda K	н	a alpha sigma	
0.290 0.0750	0.2	80 1.04 11.5 12.3	
Rffooting and the		and. 4222524626	
LIFECTIVE SEARCH SP	ace u	sea: 4333224636	
	uc ~1	and TI antigon ND bota chain mantial Males wales	
Query= Автзохоэ.1 М	nt Cl	ass ii antigen uk beta chain, partiai [Meies meies]	
Length=258			
Sequences producing	sign	ificant alignments: Score E (Bits) Value	
	_		

Unigene27967_All 155 928 minus strand MHC class II antigen DR be... 557 Unigene75450_All 119 892 minus strand MHC class II antigen DR be... 464 0.0 7e-159 CL4065.Contig3 All 1603 2295 minus strand MHC class II antigen D... 435 2e-148 Unigene75449 All 155 928 minus strand MHC class II antigen [Zalo... 428 6e-145 Unigene57188 All 98 892 minus strand MHC class II antigen [Zalop... Unigene67843 All 95 745 minus strand MHC class II antigen DQ bet... 371 2e-122 327 1e-106 CL6815.Contig2_All 88 882 minus strand PREDICTED: HLA class II h... 298 5e-94 CL6815.Contig5 All 88 906 minus strand PREDICTED: HLA class II h... 298 8e-94 CL6815.Contig3_All 88 843 minus strand PREDICTED: HLA class II h... 296 CL6815.Contig6_All 88 732 minus strand major histocompatibility ... 257 20-93 2e-79 Query 24 GSWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR 60 1 Unigene27967 All GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR 1 60 GLWTAAVMAILVVLSVPVAEGRDSPKDFVFOFKGECYFTNGTERVRSVNRYIYNREEFVR Unigene75450 All 1 60 CL4065.Contig3 All 1 FVFQFKGECYFTNGTERVRSVNRYIYNREEFVR 33 Unigene75449_All GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR 1 60 Unigene57188 All 8 GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEFVR 67 GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEFVR Unigene67843 All 8 67 CL6815.Contig2 All 8 WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR 65 CL6815.Contig5 All WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR 8 65 CL6815.Contig3_All 8 WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR 65 CL6815.Contig6 All 8 WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR 65 Query 24 FDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTV 120 61 Unigene27967 All FDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTV 61 120 Unigene75450 All 61 YDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTV 120 CL4065.Contig3 All 34 YDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTV 93 Unigene75449_All 61 FDSDVGEYRPVTELGRPDAEYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTV 120 Unigene57188 All 68 YDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTV 127 Unigene67843 All 68 YDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTV 127 CL6815.Contig2 All 66 FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV 125 CL6815.Contig5_All 66 FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV 125 CL6815.Contig3 All FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV 66 125 FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV CL6815.Contig6 All 66 125 Query 24 121 TVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIPNGDWTFQTLV 180 121 TVYPAKNOPLOHHNLLVCSVNGFYPGHIEVRWFRNGOEEESGVVSTGLIRNGDWTFOTLV Unigene27967 All 180 180 Unigene75450 All 121 TVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGDWTFQTLV CL4065.Contig3 All TVYPAKNOPLOHHNLLVCSVNGFYPGHIEVRWFRNGOEEESGVVSTGLIRNGDWTFOTLV 94 153 121 TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQILV Unigene75449 All 180 Unigene57188 All 128 TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQILV 187 Unigene67843_All 128 TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQILV 187 CL6815.Contig2 All 126 AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV 185 CL6815.Contig5 All 126 AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV 185 CL6815.Contig3 All 126 AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV 185 CL6815.Contig6 All 126 AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV 185 Query 24 181 MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI 240 Unigene27967 All 181 MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI 240 Unigene75450 All MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI 181 240 154 MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI CL4065.Contig3 All 213 Unigene75449 All MLEMTPQRGDVYTCHVEHPSLQSPITVEWRAQSESAQSKMLSGIGGFVLGLIFLGLGLIV 181 240 Unigene57188 All 188 MLEMTPQRGDVYTCHVEHPSLQSPITVEWRAQSESAQSKMLSGIGGFVLGLIFLGLGLIV 247 Unigene67843 All 188 MLEMTPQRGDVYTCHVEHPSLQSPITVEWR 217 CL6815.Contig2 All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGTVI 245 CL6815.Contig5_All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGTVI 245 CL6815.Contig3_All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWR CL6815.Contig6_All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWR MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGTVI 245 215 Query_24 241 YFRNQKGHSGLQPTGLLS 258 Unigene27967 All 241 YFRNQKGHSGLQPTGLLS 2.58 Unigene75450 All 241 YFRNOKGHSGLOPTGLLS 258 CL4065.Contig3 All 214 YFRNQKGHSGLQPTGLLS 231 Unigene75449 All 241 RHRSQKGPRGSPPAGLL 257 Unigene57188 All 248 RHRSQKGPRGSPPAGLL 264 CL6815.Contig2 All 246 CLRAQKGYAETRLSG 260 CL6815.Contig5_All 246 CLRAQKGYAETRLSG CL6815.Contig3_All 246 CLRAQKG 260 252

Lambda	K	H	a	alpha	
0.338	0.194	0.805	0.443	1.38	
Gapped					
Lambda	K	Н	a	alpha	sigma
0.290	0.0750	0.280	1.04	11.5	12.3

Length=258

Query= AET36868.1 MHC class II antigen DR beta chain, partial [Meles meles]

				Score	E
Sequences	producing	significant	alignments:	(Bits)	Value

Unigene27967 All 155 928 minus strand MHC class II antigen DR be... 493 2e-170 Unigene75450 All 119 892 minus strand MHC class II antigen DR be... 440 1e-149 CL4065.Contig3_All 1603 2295 minus strand MHC class II antigen D... 412 Unigene75449_All 155 928 minus strand MHC class II antigen [Zalo... 414 2e-139 2e-139 Unigene57188 All 98 892 minus strand MHC class II antigen [Zalop... 361 2e-118 Unigene67843 All 95 745 minus strand MHC class II antigen DQ bet... 317 8e-103 CL6815.Contig2_All 88 882 minus strand PREDICTED: HLA class II h... 299 CL6815.Contig5_All 88 906 minus strand PREDICTED: HLA class II h... 299 1e-94 3e-94 CL6815.Contig3_All 88 843 minus strand PREDICTED: HLA class II h... 297 CL6815.Contig6_All 88 732 minus strand major histocompatibility ... 258 6e-94 4e-80

Query 25	1	GSWMTALTVILMVLSPPMAWARDTPPHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR	60
Unigene27967 All	1	GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR	60
Unigene75450 All	1	GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEFVR	60
CL4065.Contig3 All	1	FVFQFKGECYFTNGTERVRSVNRYIYNREEFVR	33
Unigene75449 All	1	GAWMTALTLILMVLSPPLAWARDTPRHFLFLTTSECHFTNGTERVRFLDRYFYNGEEYVR	60
Unigene57188 All	8	GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEFVR	67
Unigene67843_All	8	GLWTAAVMAILVVLSVPVAEGRDSPKDFVFQFKGECYFTNGTERVRSVNRYIYNREEFVR	67
CL6815.Contig2 All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR	65
CL6815.Contig5_All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR	65
CL6815.Contig3_All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR	65
CL6815.Contig6_All	8	WTVVLLVSVIRLDSSRTQGRDSPEDFVIQAKADCYFINGTEKVQFVVRFIFNLEEYAR	65
Query_25	61	FDSDVGEYRPVTELGRPIAQGWNSQKDIMEQKRANVDTYCRHNYGVGESFTVQRRVEPTV	120
Unigene27967_All	61	FDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTV	120
Unigene75450_All	61	YD\$DVGEYRPVTELGRPDAQYWN\$QKDIMERRRAAVDTYCRHNYGVVE\$FLVQRRVEPTV	120
CL4065.Contig3_All	34	YDSDVGEYRPVTELGRPDAQYWNSQKDIMERRRAAVDTYCRHNYGVVESFLVQRRVEPTV	93
Unigene75449_All	61	FDSDVGEYRPVTELGRPDAEYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTV	120
Unigene57188_All	68	YDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTV	127
Unigene67843_All	68	YDSDVGEYRPVTELGRPDAQYWNSQKDILERTEAETDTVCRHNYLTDESFTVQRRVEPTV	127
CL6815.Contig2_All	66	FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV	125
CL6815.Contig5_All	66	FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV	125
CL6815.Contig3_All	66	FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV	125
CL6815.Contig6_All	66	FDSHVGKFVALTELGKPDAELWNHRPDILERSRASVDALCRHNYKLGAPFTVGRKVQPEV	125
Query_25	121	TVYPAKNQPLQHHSLLVCSVNGFYPGHIEVRWYQNGQEEESGVVSTGLIHNGDWTFQTLV	180
Unigene27967_All	121	TVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGDWTFQTLV	180
Unigene75450_All	121	TVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGDWTFQTLV	180
CL4065.Contig3_All	94	TVYPAKNQPLQHHNLLVCSVNGFYPGHIEVRWFRNGQEEESGVVSTGLIRNGDWTFQTLV	153
Unigene75449_All	121	TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQILV	180
Unigene57188_All	128	TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQILV	187
Unigene67843_All	128	TISPSRTEVLNHHNMLVCSVTDFYPGQIKVRWFRNDQEEKAGVVSTPLIRNGDWTFQILV	187
CL6815.Contig2_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV	185
CL6815.Contig5_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV	185
CL6815.Contig3_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV	185
CL6815.Contig6_All	126	AVHPERTPSLQHRSLLFCSVTGFYPGDIKIRWFRNGQEQRVGVLSTGLVRNGDWTFQTMV	185
Query_25	181	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI	240
Unigene27967_All	181	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI	240
Unigene75450_All	181	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI	240
CL4065.Contig3_All	154	MLETVPQSGEVYTCQVEHPSLTSPVTVEWRAQSGSAQSKILSGTGGFVLGLLFLVVGLFI	213
Unigene75449_All	181	MLEMTPQRGDVYTCHVEHPSLQSPITVEWRAQSESAQSKMLSGIGGFVLGLIFLGLGLIV	240

Unigene57188 All 188 MLEMTPQRGDVYTCHVEHPSLQSPITVEWRAQSESAQSKMLSGIGGFVLGLIFLGLGLIV 247 Unigene67843_All 188 MLEMTPQRGDVYTCHVEHPSLQSPITVEWR CL6815.Contig2_All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGTVI CL6815.Contig5_All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGTVI 217 245 245 CL6815.Contig3_All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWRAQSAYSWRKMLSGIAAFLIGLIFVLVGTVI 245 CL6815.Contig6 All 186 MLEMTPALGDVYTCLVNHVSLLSPVSVEWR 215 Query 25 241 YFRNQKGHSGLQPTGLLS 258 Unigene27967_All 241 YFRNQKGHSGLQPTGLLS 258 Unigene75450_All 241 YFRNQKGHSGLQPTGLLS 258 CL4065.Contig3_All 214 YFRNQKGHSGLQPTGLLS 231 Unigene75449 All 241 RHRSQKGPRGSPPAGLL 257 Unigene57188_All 248 RHRSQKGPRGSPPAGLL CL6815.Contig2_All 246 CLRAQKGYAETRLSG 264 260 CL6815.Contig5_All 246 CLRAQKGYAETRLSG CL6815.Contig3_All 246 CLRAQKG 260 252 K Lambda Н а alpha 0.338 0.193 0.800 0.443 1.38 Gapped Lambda Κ Н а alpha sigma 0.290 0.0750 0.280 1.04 11.5 12.3 Effective search space used: 4333524636

Database: BLAST Database Posted date: Feb 23, 2017 2:08 PM Number of letters in database: 28,354,467 Number of sequences in database: 127,401

```
Matrix: BLOSUM90
Gap Penalties: Existence: 10, Extension: 1
Neighboring words threshold: 11
Window for multiple hits: 40
```

8.6 Number of annotations per gene of IKB database

#	Gene abbreviation	Full name	Number of repeated annotations
1	WAS	Wiskott-Aldrich syndrome protein.	421
2	MME	membrane metallo-endopeptidase.	295
3	CD22	CD22 molecule.	295
4	CD2	CD2 molecule.	273
5	TMC8	EVIN2.	187
6	IL12RB1	interleukin 12 receptor, beta 1 isoform 1 precursor.	171
7	TRAF3	TNF receptor-associated factor 3 isoform 1.	151
8	LYST	lysosomal trafficking regulator.	128

9	кіт	v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog isoform 1 precursor.	126
10	CD19	CD19 antigen.	112
11	CD44	CD44 antigen isoform 5 precursor.	109
12	CD46	CD46 antigen, complement regulatory protein isoform 12 precursor.	107
13	ADAM17	ADAM metallopeptidase domain 17 preproprotein.	106
14	C4B	complement component 4B preproprotein.	97
15	RFX1	regulatory factor X1.	97
16	ITGA5	integrin alpha 5 precursor.	88
17	DKC1	dyskerin.	88
18	CD5	CD5 molecule.	87
19	BLNK	B-cell linker.	86
20	STAT3	signal transducer and activator of transcription 3 isoform 2.	84
21	STAT4	signal transducer and activator of transcription 4.	82
22	FGFR1	fibroblast growth factor receptor 1 isoform 2 precursor.	80
23	NFATC1	nuclear factor of activated T-cells, cytosolic component 1 isoform B.	77
24	NCF1C	neutrophil cytosolic factor 1 isoform 1.	76
25	STAT6	signal transducer and activator of transcription 6.	76
26	UNC13D	unc-13 homolog D.	74
27	MR1	major histocompatibility complex, class I-related.	69
28	TCIRG1	T-cell, immune regulator 1 isoform a.	67
29	TCF7	transcription factor 7 (T-cell specific, HMG-box) isoform 1.	64
30	CD4	CD4 antigen precursor.	63
31	JAK3	Janus kinase 3.	59
32	CD69	CD69 molecule.	58
33	TCF3	transcription factor 3.	58
34	ІКВКЕ	IKK-related kinase epsilon.	58
35	CLCN7	chloride channel 7.	55
36	CD2BP2	CD2 antigen (cytoplasmic tail) binding protein 2.	53
37	CD300A	leukocyte membrane antigen.	53
38	TNFRSF14	tumor necrosis factor receptor superfamily, member 14 precursor.	53
39	НАМР	hepcidin antimicrobial peptide.	53
40	CD80	CD80 antigen precursor.	52
41	CD226	CD226 molecule.	52
42	IL21R	interleukin 21 receptor precursor.	52
43	CD151	CD151 antigen.	51
44	CCR1	chemokine (C-C motif) receptor 1.	51

45	CIITA	class II transactivator.	51
46	CD40	CD40 antigen isoform 2 precursor.	50
47	ТМС6	EVIN1.	50
48	SP110	SP110 nuclear body protein isoform a.	49
49	MVK	mevalonate kinase.	49
50	IGSF8	immunoglobulin superfamily, member 8.	48
51	CCR2	chemokine (C-C motif) receptor 2 isoform A.	48
52	NCF2	neutrophil cytosolic factor 2.	48
53	WIPF1	WAS/WASL interacting protein family, member 1.	48
54	CD1C	CD1C antigen precursor.	47
55	ITGA6	integrin alpha chain, alpha 6 isoform b precursor.	47
56	CD97	CD97 antigen isoform 3 precursor.	47
57	CD33	CD33 antigen (gp67) isoform 1 precursor.	45
58	TRAF5	TNF receptor-associated factor 5.	45
59	CASP8	caspase 8 isoform A precursor.	44
60	CRLF3	cytokine receptor-like factor 3.	44
61	IL3RA	interleukin 3 receptor, alpha precursor.	44
62	TAP1	transporter 1, ATP-binding cassette, sub-family B.	43
63	TBX21	T-box 21.	43
64	ABCF1	ATP-binding cassette, sub-family F, member 1 isoform a.	43
65	IGF2R	insulin-like growth factor 2 receptor precursor.	42
66	РРРЗСС	protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform (calcineurin A gamma).	42
67	IRF5	interferon regulatory factor 5 isoform a.	41
68	IFNGR1	interferon gamma receptor 1.	40
69	ІКВКВ	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta.	40
70	SIGIRR	single Ig IL-1R-related molecule.	39
71	CD7	CD7 antigen precursor.	38
72	JAK2	Janus kinase 2.	38
73	CEACAM1	carcinoembryonic antigen-related cell adhesion molecule 1 isoform 1 precursor.	37
74	CD86	CD86 antigen isoform 2 precursor.	37
75	FYN	protein-tyrosine kinase fyn isoform a.	37
76	PSIP1	PC4 and SFRS1 interacting protein 1 isoform 1.	37
77	LAX1	lymphocyte transmembrane adaptor 1.	37
78	STAT2	signal transducer and activator of transcription 2.	36
79	LPIN2	lipin 2.	36
80	CD48	CD48 molecule.	35

81	IRF2	interferon regulatory factor 2.	34
82	FOXK2	forkhead box K2.	34
83	PLK3	polo-like kinase 3.	34
84	SEMA7A	semaphorin 7A.	33
85	TNFRSF4	tumor necrosis factor receptor superfamily, member 4 precursor.	33
86	ΡΡΙΑ	peptidylprolyl isomerase A.	33
87	HPS3	Hermansky-Pudlak syndrome 3 protein.	33
88	MYO5A	myosin VA (heavy polypeptide 12, myoxin).	33
89	FAS	tumor necrosis factor receptor superfamily, member 6 isoform 1 precursor.	32
90	DCLRE1C	artemis protein isoform a.	32
91	DOCK2	dedicator of cytokinesis 2.	32
92	STAT5B	signal transducer and activator of transcription 5B.	32
93	SEMA4D	semaphorin 4D.	31
94	CD163	CD163 antigen isoform a.	31
95	LY9	lymphocyte antigen 9 isoform b.	31
96	FOXP3	forkhead box P3.	31
97	IL12RB2	interleukin 12 receptor, beta 2 precursor.	31
98	IRAK1	interleukin-1 receptor-associated kinase 1 isoform 2.	30
99	SH2B2	SH2B adaptor protein 2.	30
100	RELB	reticuloendotheliosis viral oncogene homolog B.	30
101	TNFRSF1A	tumor necrosis factor receptor 1 precursor.	29
102	IL6R	interleukin 6 receptor isoform 1 precursor.	29
103	JMJD6	jumonji domain containing 6 isoform 2.	29
104	ТҮК2	tyrosine kinase 2.	29
105	RIPK1	receptor (TNFRSF)-interacting serine-threonine kinase 1.	29
106	ZAP70	zeta-chain associated protein kinase 70kDa isoform 1.	29
107	IRAK3	interleukin-1 receptor-associated kinase 3.	29
108	DDR1	discoidin domain receptor family, member 1 isoform b.	28
109	IRF8	interferon regulatory factor 8.	28
110	CD27	tumor necrosis factor receptor superfamily, member 7 precursor.	27
111	FLT3	fms-related tyrosine kinase 3.	27
112	STAT1	signal transducer and activator of transcription 1 isoform alpha.	27
113	MX1	myxovirus resistance protein 1.	27
114	ITGAV	integrin alpha-V precursor.	26
115	PLAUR	plasminogen activator, urokinase receptor isoform 1 precursor.	26
116	CCR5	chemokine (C-C motif) receptor 5.	26

117	CD200	CD200 antigen isoform b.	26
118	C1QBP	complement component 1, q subcomponent binding protein precursor.	26
119	IL18	interleukin 18 proprotein.	26
120	ITGAX	PREDICTED: similar to integrin alpha X precursor.	25
121	CD83	CD83 antigen isoform b.	25
122	CD99	CD99 molecule.	25
123	ALCAM	activated leukocyte cell adhesion molecule.	25
124	PRNP	prion protein preproprotein.	25
125	CLIP1	restin isoform a.	25
126	PAFAH1B1	platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit (45kD).	25
127	РРРЗСВ	protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform (calcineurin A beta).	25
128	TRAF2	TNF receptor-associated factor 2.	25
129	FANCD2	Fanconi anemia complementation group D2 isoform b.	25
130	NRAS	neuroblastoma RAS viral (v-ras) oncogene homolog.	25
131	CSF2RB	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte- macrophage).	24
132	SDC1	syndecan 1 precursor.	24
133	ATM	ataxia telangiectasia mutated protein isoform 1.	24
134	MAPK14	mitogen-activated protein kinase 14 isoform 1.	24
135	CD1A	CD1A antigen precursor.	23
136	ICAM3	intercellular adhesion molecule 3 precursor.	23
137	PTPRJ	protein tyrosine phosphatase, receptor type, J isoform 1 precursor.	23
138	IL17RA	interleukin 17A receptor precursor.	23
139	CLIP2	CAP-GLY domain containing linker protein 2 isoform 1.	23
140	IL16	interleukin 16 isoform 1 precursor.	23
141	PSME1	proteasome activator subunit 1 isoform 1.	23
142	TRAF4	TNF receptor-associated factor 4.	23
143	CD53	CD53 antigen.	22
144	XRCC5	ATP-dependent DNA helicase II.	22
145	CSF1	colony stimulating factor 1 isoform a precursor.	22
146	FGFR3	fibroblast growth factor receptor 3 isoform 1 precursor.	22
147	IL28RA	interleukin 28 receptor, alpha isoform 1.	22
148	NFATC2	nuclear factor of activated T-cells, cytoplasmic, calcineurin- dependent 2 isoform B.	21
149	CASP10	caspase 10 isoform a preproprotein.	21
150	BANK1	B-cell scaffold protein with ankyrin repeats 1 isoform 1.	21
151	CLU	clusterin isoform 1.	21

152	CSE2RA	colony stimulating factor 2 recentor alpha chain isoform a precursor	21
152		interleukin 15 recentor alpha isoform 1 precursor	21
155	TNFRSF18	tumor necrosis factor receptor superfamily, member 18 isoform 1 precursor.	21
155	CD1E	CD1E antigen isoform a precursor.	20
156	CD6	CD6 molecule.	20
157	CD36	CD36 antigen.	20
158	CD37	CD37 antigen isoform B.	20
159	CD47	CD47 antigen isoform 1 precursor.	20
160	IL1R1	interleukin 1 receptor, type I precursor.	20
161	CD244	CD244 natural killer cell receptor 2B4.	20
162	TLR2	toll-like receptor 2.	20
163	PLAA	phospholipase A2-activating protein isoform 1.	20
164	LIG1	DNA ligase I.	20
165	СНИК	conserved helix-loop-helix ubiquitous kinase.	20
166	ILF3	interleukin enhancer binding factor 3 isoform b.	20
167	ZEB1	zinc finger E-box binding homeobox 1.	20
168	TLR3	toll-like receptor 3.	20
169	MLPH	melanophilin isoform 1.	20
170	CD28	CD28 antigen.	19
171	ICAM2	intercellular adhesion molecule 2 precursor.	19
172	CD300C	CD300C antigen.	19
173	MRE11A	meiotic recombination 11 homolog A isoform 2.	19
174	MYD88	myeloid differentiation primary response gene (88).	19
175	GFI1	growth factor independent 1.	19
176	CD1B	CD1B antigen precursor.	18
177	ST6GAL1	sialyltransferase 1 isoform a.	18
178	CD84	CD84 molecule.	18
179	IGF1R	insulin-like growth factor 1 receptor precursor.	18
180	EMR3	egf-like module-containing mucin-like receptor 3.	18
181	RFXANK	regulatory factor X-associated ankyrin-containing protein isoform a.	18
182	FCRL5	Fc receptor-like 5.	18
183	FANCA	Fanconi anemia, complementation group A isoform a.	18
184	PTPN22	protein tyrosine phosphatase, non-receptor type 22 (lymphoid) isoform 2.	17
185	ITGA1	integrin, alpha 1 precursor.	17
186	CD9	CD9 antigen.	16
187	ENTPD1	ectonucleoside triphosphate diphosphohydrolase 1 isoform 1.	16

188	NT5E	5` nucleotidase, ecto.	16
189	TNFRSF1B	tumor necrosis factor receptor 2 precursor.	16
190	MUC1	mucin 1 isoform 2 precursor.	16
191	CXCL16	chemokine (C-X-C motif) ligand 16.	16
192	PSMB8	proteasome beta 8 subunit isoform E1 proprotein.	16
193	RAG1	recombination activating gene 1.	16
194	PAFAH2	platelet-activating factor acetylhydrolase 2.	16
195	ANP32B	acidic (leucine-rich) nuclear phosphoprotein 32 family, member B.	16
196	LCK	lymphocyte-specific protein tyrosine kinase precursor.	16
197	PIK3CG	phosphoinositide-3-kinase, catalytic, gamma polypeptide.	16
198	SLAMF6	activating NK receptor precursor.	16
199	PSMF1	proteasome inhibitor subunit 1.	16
200	HAX1	HCLS1 associated protein X-1 isoform b.	16
201	CD1D	CD1D antigen precursor.	15
202	SIGLEC5	sialic acid binding Ig-like lectin 5.	15
203	SPN	sialophorin.	15
204	LY75	lymphocyte antigen 75.	15
205	CCR6	chemokine (C-C motif) receptor 6.	15
206	TRADD	TNFRSF1A-associated via death domain.	15
207	IRF9	interferon-stimulated transcription factor 3, gamma 48kDa.	15
208	IL1B	interleukin 1, beta proprotein.	15
209	IL1F10	interleukin 1 family, member 10.	15
210	ITGAD	integrin, alpha D precursor.	15
211	CD8A	CD8 antigen alpha polypeptide isoform 1 precursor.	14
212	FCER2	Fc fragment of IgE, low affinity II, receptor for (CD23A).	14
213	IL2RA	interleukin 2 receptor, alpha chain precursor.	14
214	ITGA2	integrin alpha 2 precursor.	14
215	SELP	selectin P precursor.	14
216	CD72	CD72 molecule.	14
217	CD81	CD81 antigen.	14
218	CSF1R	colony stimulating factor 1 receptor precursor.	14
219	C2	complement component 2 precursor.	14
220	SIRPA	signal-regulatory protein alpha precursor.	14
221	NFATC3	cytoplasmic nuclear factor of activated T-cells 3 isoform 2.	14
222	EBF1	early B-cell factor.	14
223	MBP	myelin basic protein isoform 1.	14

224	IKBKG	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma.	14
225	PARP1	poly (ADP-ribose) polymerase family, member 1.	14
226	IL17RB	interleukin 17B receptor precursor.	14
227	LITAF	lipopolysaccharide-induced TNF factor.	14
228	SOCS7	suppressor of cytokine signaling 7.	14
229	TRAF7	ring finger and WD repeat domain 1.	14
230	TSPYL2	TSPY-like 2.	14
231	MEFV	Mediterranean fever protein.	14
232	UNC93B1	unc-93 homolog B1.	14
233	SIGLEC6	sialic acid binding Ig-like lectin 6 isoform 1 precursor.	13
234	CD164	CD164 molecule, sialomucin.	13
235	MASP2	mannan-binding lectin serine protease 2 isoform 1 precursor.	13
236	LTB	lymphotoxin-beta isoform a.	13
237	ADA	adenosine deaminase.	13
238	G6PD	glucose-6-phosphate dehydrogenase isoform a.	13
239	TNFRSF13C	BAFF receptor.	13
240	МІСВ	MHC class I polypeptide-related sequence B.	13
241	LIG4	DNA ligase IV.	13
242	C1R	complement component 1, r subcomponent.	13
243	PSMB7	proteasome beta 7 subunit proprotein.	13
244	IL27RA	class I cytokine receptor.	13
245	ADAM10	ADAM metallopeptidase domain 10.	13
246	BTLA	B and T lymphocyte associated isoform 1.	13
247	CASP1	caspase 1 isoform beta precursor.	13
248	CD2AP	CD2-associated protein.	13
249	CKLF	chemokine-like factor isoform e.	13
250	IL1RAP	interleukin 1 receptor accessory protein isoform 1.	13
251	TRAF1	TNF receptor-associated factor 1.	13
252	TAZ	tafazzin isoform 1.	13
253	TFRC	transferrin receptor.	12
254	KLRD1	killer cell lectin-like receptor subfamily D, member 1 isoform 1.	12
255	TNFRSF13B	tumor necrosis factor receptor 13B.	12
256	RFX5	regulatory factor X, 5.	12
257	UNG	uracil-DNA glycosylase isoform UNG1 precursor.	12
258	HLA-DMB	major histocompatibility complex, class II, DM beta precursor.	12
259	CD248	tumor endothelial marker 1 precursor.	12
260	ERGIC2	PTX1 protein.	12
-----	----------	--	----
261	IL17RD	interleukin 17 receptor D isoform hSef-b.	12
262	MRC2	mannose receptor, C type 2.	12
263	DNMT3B	DNA cytosine-5 methyltransferase 3 beta isoform 1.	12
264	CD55	decay accelerating factor for complement.	11
265	CD96	CD96 antigen isoform 2 precursor.	11
266	IL4R	interleukin 4 receptor alpha chain isoform a precursor.	11
267	SMARCAL1	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin a-like 1.	11
268	CLEC12A	myeloid inhibitory C-type lectin-like receptor isoform alpha.	11
269	SH2D1A	SH2 domain protein 1A.	11
270	LAIR1	leukocyte-associated immunoglobulin-like receptor 1 isoform a precursor.	11
271	AP3B1	adaptor-related protein complex 3, beta 1 subunit.	11
272	CR1	complement receptor 1 isoform S precursor.	10
273	ITGB3	integrin beta chain, beta 3 precursor.	10
274	CD79A	CD79A antigen isoform 2 precursor.	10
275	CD82	CD82 antigen isoform 2.	10
276	SLC44A1	CDW92 antigen.	10
277	ITGB4	integrin beta 4 isoform 1 precursor.	10
278	LAMP2	lysosomal-associated membrane protein 2 precursor.	10
279	IL7R	interleukin 7 receptor precursor.	10
280	IL6ST	interleukin 6 signal transducer isoform 1 precursor.	10
281	PDGFRB	platelet-derived growth factor receptor beta precursor.	10
282	BLM	Bloom syndrome protein.	10
283	LILRB2	leukocyte immunoglobulin-like receptor, subfamily B, member 2 isoform 1.	10
284	САМР	cathelicidin antimicrobial peptide.	10
285	TLR1	toll-like receptor 1.	10
286	LTF	lactotransferrin.	10
287	IFI27	interferon, alpha-inducible protein 27.	10
288	NFKBIA	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha.	10
289	TOLLIP	toll interacting protein.	10
290	CD99L2	CD99 antigen-like 2 isoform E3`-E4`-E3-E4.	10
291	IL18RAP	interleukin 18 receptor accessory protein precursor.	10
292	IL32	interleukin 32 isoform B.	10
293	ILF2	interleukin enhancer binding factor 2.	10
294	LILRB3	leukocyte immunoglobulin-like receptor, subfamily B, member 3 isoform 2.	10

295	NCR3	natural cytotoxicity triggering receptor 3.	10
296	CD8B	CD8b antigen isoform 5 precursor.	9
297	MS4A1	membrane-spanning 4-domains, subfamily A, member 1.	9
298	CD68	CD68 antigen isoform B.	9
299	CD74	CD74 antigen isoform a.	9
300	ІКВКАР	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein.	9
301	CTSS	cathepsin S preproprotein.	9
302	A2M	alpha-2-macroglobulin precursor.	9
303	ICOS	inducible T-cell co-stimulator precursor.	9
304	ULBP1	UL16 binding protein 1.	9
305	NOD2	nucleotide-binding oligomerization domain containing 2.	9
306	CD24	CD24 antigen precursor.	9
307	CD276	CD276 antigen isoform a.	9
308	CD302	CD302 molecule.	9
309	CLCF1	cardiotrophin-like cytokine factor 1.	9
310	IL17RE	interleukin 17 receptor E isoform 1.	9
311	ISG20	interferon stimulated exonuclease gene 20kDa.	9
312	NFIL3	nuclear factor, interleukin 3 regulated.	9
313	RAB27A	Ras-related protein Rab-27A.	9
314	SBDS	Shwachman-Bodian-Diamond syndrome protein.	9
315	NLRP3	NLR family, pyrin domain containing 3 isoform a.	9
316	ITGAM	integrin alpha M precursor.	8
317	PTPRC	protein tyrosine phosphatase, receptor type, C isoform 4.	8
318	SELL	selectin L precursor.	8
319	CD63	CD63 antigen isoform B.	8
320	ITGAE	integrin, alpha E precursor.	8
321	ENG	endoglin precursor.	8
322	CSF3R	colony stimulating factor 3 receptor isoform a precursor.	8
323	SLAMF1	signaling lymphocytic activation molecule family member 1.	8
324	MFI2	melanoma-associated antigen p97 isoform 1, precursor.	8
325	CCR3	CC chemokine receptor 3.	8
326	WASF1	Wiskott-Aldrich syndrome protein family member 1.	8
327	JAK1	janus kinase 1.	8
328	NDUFS3	NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH- coenzyme Q reductase).	8
329	SDF2	stromal cell-derived factor 2 precursor.	8
330	CCR4	chemokine (C-C motif) receptor 4.	8

331	HLA-DQB1	major histocompatibility complex, class II, DQ beta 1 precursor.	8
332	IFIT1	interferon-induced protein with tetratricopeptide repeats 1 isoform 2.	8
333	IRF1	interferon regulatory factor 1.	8
334	PSMB6	proteasome beta 6 subunit.	8
335	CD300LG	CD300 molecule-like family member g.	8
336	CD320	8D6 antigen.	8
337	SCARB1	scavenger receptor class B, member 1 isoform 1.	7
338	CD40LG	CD40 ligand.	7
339	LRP1	low density lipoprotein-related protein 1.	7
340	IL2RB	interleukin 2 receptor beta precursor.	7
341	ACE	angiotensin I converting enzyme isoform 1 precursor.	7
342	CTLA4	cytotoxic T-lymphocyte-associated protein 4 isoform b precursor.	7
343	CD160	CD160 antigen.	7
344	L1CAM	L1 cell adhesion molecule isoform 1 precursor.	7
345	VPREB1	immunoglobulin iota chain preproprotein.	7
346	MSR1	macrophage scavenger receptor 1 isoform type 2.	7
347	ABCB1	ATP-binding cassette sub-family B member 1.	7
348	CCRN4L	CCR4 carbon catabolite repression 4-like.	7
349	IL10	interleukin 10 precursor.	7
350	NP	purine nucleoside phosphorylase.	7
351	C8G	complement component 8, gamma polypeptide.	7
352	RAC2	ras-related C3 botulinum toxin substrate 2.	7
353	CFH	complement factor H isoform a precursor.	7
354	HLA-DOA	major histocompatibility complex, class II, DO alpha precursor.	7
355	IFI35	interferon-induced protein 35.	7
356	IL1A	interleukin 1, alpha proprotein.	7
357	IL15	interleukin 15 preproprotein.	7
358	IL18R1	interleukin 18 receptor 1 precursor.	7
359	BATF	basic leucine zipper transcription factor, ATF-like.	7
360	IFI44L	histocompatibility 28.	7
361	TAP2	transporter 2, ATP-binding cassette, sub-family B isoform 1.	7
362	C6	Complement component 6 precursor.	7
363	CCRL2	chemokine (C-C motif) receptor-like 2.	7
364	CD200R1	CD200 receptor 1 isoform a.	7
365	CD300E	CD300e molecule.	7
366	CD300LF	NK inhibitory receptor precursor.	7

367	CX3CR1	chemokine (C-X3-C motif) receptor 1.	7
368	IL17D	interleukin 17D precursor.	7
369	SOCS2	suppressor of cytokine signaling-2.	7
370	SOCS4	suppressor of cytokine signaling 4.	7
371	CD3E	CD3E antigen, epsilon polypeptide (TiT3 complex).	6
372	PTGFRN	prostaglandin F2 receptor negative regulator.	6
373	ITGAL	integrin alpha L precursor.	6
374	CD70	tumor necrosis factor ligand superfamily, member 7.	6
375	TNFSF8	tumor necrosis factor (ligand) superfamily, member 8.	6
376	PECAM1	platelet/endothelial cell adhesion molecule (CD31 antigen).	6
377	ITGA4	integrin alpha 4 precursor.	6
378	ICAM1	intercellular adhesion molecule 1 precursor.	6
379	CD59	CD59 antigen p18-20.	6
380	SLC7A5	solute carrier family 7 (cationic amino acid transporter, y+ system), member 5.	6
381	PVRL2	poliovirus receptor related 2 isoform alpha precursor.	6
382	IL5RA	interleukin 5 receptor, alpha isoform 1 precursor.	6
383	MST1R	macrophage stimulating 1 receptor.	6
384	CD180	CD180 molecule.	6
385	CD209	CD209 molecule.	6
386	INSR	insulin receptor isoform Long precursor.	6
387	PLXNC1	plexin C1.	6
388	GYPA	glycophorin A precursor.	6
389	CXCL1	chemokine (C-X-C motif) ligand 1.	6
390	IL8	interleukin 8 precursor.	6
391	KLRK1	NKG2-D type II integral membrane protein.	6
392	IFNAR2	interferon alpha/beta receptor 2 isoform b precursor.	6
393	ICOSLG	inducible T-cell co-stimulator ligand.	6
394	NPTN	neuroplastin isoform b precursor.	6
395	EBI2	EBV-induced G protein-coupled receptor 2.	6
396	HLA-DOB	major histocompatibility complex, class II, DO beta precursor.	6
397	HRH2	histamine receptor H2.	6
398	IL19	interleukin 19 isoform 2 precursor.	6
399	IL20	interleukin 20 precursor.	6
400	HSP90B1	tumor rejection antigen (gp96) 1.	6
401	FCRLA	Fc receptor-like and mucin-like 1.	6
402	IL11RA	interleukin 11 receptor, alpha isoform 1 precursor.	6

403	IL18BP	interleukin 18 binding protein precursor.	6
404	SOCS6	suppressor of cytokine signaling 6.	6
405	TNFSF10	tumor necrosis factor (ligand) superfamily, member 10.	6
406	TRAF3IP1	TNF receptor-associated factor 3 interacting protein 1.	6
407	CD5L	CD5 molecule-like.	5
408	CD14	CD14 antigen precursor.	5
409	ITGB2	integrin, beta 2 precursor.	5
410	CD34	CD34 antigen isoform a.	5
411	SCARB2	scavenger receptor class B, member 2.	5
412	CEACAM8	carcinoembryonic antigen-related cell adhesion molecule 8.	5
413	CD93	CD93 antigen precursor.	5
414	FASLG	fas ligand.	5
415	HMMR	hyaluronan-mediated motility receptor isoform a.	5
416	CXCR4	chemokine (C-X-C motif) receptor 4 isoform a.	5
417	CCR9	chemokine (C-C motif) receptor 9 isoform B.	5
418	CCL3	chemokine (C-C motif) ligand 3.	5
419	ENC1	ectodermal-neural cortex (with BTB-like domain).	5
420	CFB	complement factor B preproprotein.	5
421	CASP2	caspase 2 isoform 1 preproprotein.	5
422	CASP7	caspase 7 isoform alpha precursor.	5
423	TNFSF13B	tumor necrosis factor (ligand) superfamily, member 13b.	5
424	PSMB9	proteasome beta 9 subunit isoform 1 proprotein.	5
425	C1QB	complement component 1, q subcomponent, B chain precursor.	5
426	AICDA	activation-induced cytidine deaminase.	5
427	PLA2R1	phospholipase A2 receptor 1 isoform 2 precursor.	5
428	PAFAH1B2	platelet-activating factor acetylhydrolase, isoform Ib, beta subunit 30kDa.	5
429	CFP	complement factor properdin.	5
430	CYSLTR1	cysteinyl leukotriene receptor 1.	5
431	GUSB	glucuronidase, beta.	5
432	FCER1G	Fc fragment of IgE, high affinity I, receptor for, gamma polypeptide precursor.	5
433	IFIT2	interferon-induced protein with tetratricopeptide repeats 2.	5
434	PSME3	proteasome activator subunit 3 isoform 1.	5
435	CLEC5A	C-type lectin, superfamily member 5.	5
436	IL12A	interleukin 12A precursor.	5
437	PSME2	proteasome activator subunit 2.	5
438	TAL1	T-cell acute lymphocytic leukemia 1.	5

439	C1RL	complement component 1, r subcomponent-like precursor.	5
440	CCRL1	chemokine (C-C motif) receptor-like 1.	5
441	CXCR6	G protein-coupled receptor TYMSTR.	5
442	IL17C	interleukin 17C.	5
443	IRAK1BP1	interleukin-1 receptor-associated kinase 1 binding protein 1.	5
444	IRAK2	interleukin-1 receptor-associated kinase 2.	5
445	LILRA5	leukocyte immunoglobulin-like receptor subfamily A member 5 isoform 1.	5
446	SLAMF7	SLAM family member 7.	5
447	TICAM2	toll-like receptor adaptor molecule 2.	5
448	TLR4	toll-like receptor 4 precursor.	5
449	TLR5	toll-like receptor 5.	5
450	TNFSF11	tumor necrosis factor ligand superfamily, member 11 isoform 1.	5
451	CTSC	cathepsin C isoform a preproprotein.	5
452	FANCG	Fanconi anemia, complementation group G.	5
453	IFNGR2	interferon-gamma receptor beta chain precursor.	5
454	FCGR3B	low affinity immunoglobulin gamma Fc region receptor III-B precursor.	4
455	CR2	complement component (3d/Epstein Barr virus) receptor 2 isoform 2.	4
456	ITGB1	integrin beta 1 isoform 1B precursor.	4
457	GP1BA	platelet glycoprotein Ib alpha polypeptide precursor.	4
458	NCAM1	neural cell adhesion molecule 1 isoform 1.	4
459	CD58	CD58 molecule.	4
460	CD109	CD109.	4
461	MPL	myeloproliferative leukemia virus oncogene.	4
462	PVRL1	poliovirus receptor-related 1 isoform 1.	4
463	IL2RG	interleukin 2 receptor, gamma precursor.	4
464	KLRB1	killer cell lectin-like receptor subfamily B, member 1.	4
465	SIGLEC1	sialoadhesin precursor.	4
466	LAMP3	lysosomal-associated membrane protein 3.	4
467	IL13RA1	interleukin 13 receptor, alpha 1 precursor.	4
468	KEL	Kell blood group, metallo-endopeptidase.	4
469	CCL4	chemokine C-C motif ligand 4 isoform 1 precursor.	4
470	CCL27	small inducible cytokine A27 precursor.	4
471	CCL28	chemokine (C-C motif) ligand 28 precursor.	4
472	IL9	interleukin 9 precursor.	4
473	CASP3	caspase 3 preproprotein.	4
474	CRADD	CASP2 and RIPK1 domain containing adaptor with death domain.	4

475	YWHAZ	tyrosine 3/tryptophan 5 -monooxygenase activation protein, zeta polypeptide.	4
476	CFI	complement factor I.	4
477	MYLK	myosin light chain kinase isoform 1.	4
478	TCN2	transcobalamin II precursor.	4
479	PDGFB	platelet-derived growth factor beta isoform 1, preproprotein.	4
480	SOD3	superoxide dismutase 3, extracellular precursor.	4
481	TNF	tumor necrosis factor alpha.	4
482	RELA	v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3, p65.	4
483	РРРЗСА	protein phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform (calcineurin A alpha).	4
484	IGJ	immunoglobulin J chain.	4
485	LCP2	lymphocyte cytosolic protein 2.	4
486	PTAFR	platelet-activating factor receptor.	4
487	IL24	interleukin 24 isoform 1 precursor.	4
488	IL1RN	interleukin 1 receptor antagonist isoform 3.	4
489	POU2AF1	POU domain, class 2, associating factor 1.	4
490	LY86	MD-1, RP105-associated.	4
491	C4BPB	complement component 4 binding protein, beta chain isoform 1 precursor.	4
492	CISH	cytokine-inducible SH2-containing protein.	4
493	CMTM7	CKLF-like MARVEL transmembrane domain containing 7 isoform a.	4
494	IL10RA	interleukin 10 receptor, alpha precursor.	4
495	IL9R	interleukin 9 receptor isoform 1 precursor.	4
496	IRAK4	interleukin-1 receptor-associated kinase 4.	4
497	ITFG1	integrin alpha FG-GAP repeat containing 1.	4
498	LILRA6	leukocyte immunoglobulin-like receptor, subfamily A, member 6.	4
499	SOCS1	suppressor of cytokine signaling 1.	4
500	SOCS3	suppressor of cytokine signaling 3.	4
501	SOCS5	suppressor of cytokine signaling 5.	4
502	MAPBPIP	mitogen-activated protein-binding protein-interacting protein.	4
503	ANPEP	membrane alanine aminopeptidase precursor.	3
504	CD79B	CD79B antigen isoform 1 precursor.	3
505	IGSF2	immunoglobulin superfamily, member 2.	3
506	THBD	thrombomodulin precursor.	3
507	CDH5	cadherin 5, type 2 preproprotein.	3
508	BSG	basigin isoform 1.	3
509	TSPAN7	tetraspanin 7.	3

510	GYPC	glycophorin C isoform 1.	3
511	PF4	platelet factor 4 (chemokine (C-X-C motif) ligand 4).	3
512	PRF1	perforin 1 precursor.	3
513	GZMB	granzyme B precursor.	3
514	FADD	Fas-associated via death domain.	3
515	NBN	nibrin isoform 2.	3
516	C1QA	complement component 1, q subcomponent, A chain precursor.	3
517	NCR1	natural cytotoxicity triggering receptor 1.	3
518	PAFAH1B3	platelet-activating factor acetylhydrolase, isoform Ib, gamma subunit 29kDa.	3
519	С3	complement component 3 precursor.	3
520	HLA-B	major histocompatibility complex, class I, B.	3
521	HLA-DRA	major histocompatibility complex, class II, DR alpha precursor.	3
522	IFI16	interferon, gamma-inducible protein 16.	3
523	IFIT3	interferon-induced protein with tetratricopeptide repeats 3.	3
524	MIF	macrophage migration inhibitory factor (glycosylation-inhibiting factor).	3
525	IL1F5	interleukin 1 family, member 5.	3
526	IL1F8	interleukin 1 family, member 8 isoform 1.	3
527	IL1F6	interleukin 1 family, member 6 (epsilon).	3
528	CLEC4D	C-type lectin domain family 4, member D.	3
529	IL1F9	interleukin 1 family, member 9.	3
530	CLEC7A	dendritic cell-associated C-type lectin 1 isoform b.	3
531	C1QL1	complement component 1, q subcomponent-like 1.	3
532	C1QTNF6	C1q and tumor necrosis factor related protein 6.	3
533	CMKLR1	chemokine-like receptor 1.	3
534	CMTM6	CKLF-like MARVEL transmembrane domain containing 6.	3
535	IFITM1	interferon induced transmembrane protein 1 (9-27).	3
536	IL1F7	interleukin 1 family, member 7 isoform 1 proprotein.	3
537	IL20RA	interleukin 20 receptor, alpha.	3
538	IL23A	interleukin 23, alpha subunit p19 precursor.	3
539	IL27	interleukin 27.	3
540	IL4I1	interleukin 4 induced 1 isoform 1 precursor.	3
541	PDCD1	programmed cell death 1 precursor.	3
542	TLR9	toll-like receptor 9 isoform A precursor.	3
543	TNFSF12	tumor necrosis factor (ligand) superfamily, member 12 precursor.	3
544	FANCC	Fanconi anemia, complementation group C.	3
545	FANCE	Fanconi anemia, complementation group E.	3

546	STX11	syntaxin 11.	3
547	NHEJ1	nonhomologous end-joining factor 1.	3
548	PSTPIP1	proline-serine-threonine phosphatase interacting protein 1.	2
549	CD3D	CD3D antigen, delta polypeptide isoform A precursor.	2
550	CD3G	CD3G gamma precursor.	2
551	LTBR	lymphotoxin beta receptor.	2
552	TNFRSF8	tumor necrosis factor receptor superfamily, member 8 isoform 2.	2
553	FCGR2B	Fc fragment of IgG, low affinity IIb, receptor for (CD32) isoform 3.	2
554	ITGA2B	integrin alpha 2b preproprotein.	2
555	GP9	glycoprotein IX (platelet).	2
556	PTPRCAP	protein tyrosine phosphatase, receptor type, C-associated protein.	2
557	CD52	CD52 antigen.	2
558	SELE	selectin E precursor.	2
559	FCGR1A	Fc fragment of IgG, high affinity Ia, receptor (CD64).	2
560	CEACAM6	carcinoembryonic antigen-related cell adhesion molecule 6 (non- specific cross reacting antigen).	2
561	FCAR	Fc alpha receptor isoform a precursor.	2
562	LAMP1	lysosomal-associated membrane protein 1.	2
563	IL1R2	interleukin 1 receptor, type II precursor.	2
564	TNFSF4	tumor necrosis factor (ligand) superfamily, member 4.	2
565	ADAM8	ADAM metallopeptidase domain 8 precursor.	2
566	BST1	bone marrow stromal cell antigen 1 precursor.	2
567	SELPLG	selectin P ligand.	2
568	CXCR3	chemokine (C-X-C motif) receptor 3.	2
569	ТЕК	TEK tyrosine kinase, endothelial precursor.	2
570	SLC4A1	solute carrier family 4, anion exchanger, member 1.	2
571	RHCE	Rhesus blood group, CcEe antigens isoform 1.	2
572	RHD	Rh blood group D antigen.	2
573	BLR1	Burkitt lymphoma receptor 1 isoform 1.	2
574	CCR10	CC chemokine receptor 10.	2
575	CCL5	small inducible cytokine A5 precursor.	2
576	CCL14	chemokine (C-C motif) ligand 14 isoform 1 precursor.	2
577	CCL23	small inducible cytokine A23 isoform CKbeta8-1 precursor.	2
578	XCL1	chemokine (C motif) ligand 1.	2
579	SCYE1	small inducible cytokine subfamily E, member 1.	2
580	LIF	leukemia inhibitory factor (cholinergic differentiation factor).	2
581	CASP6	caspase 6 isoform alpha preproprotein.	2

582	GZMK	granzyme K precursor.	2
583	PSMB10	proteasome beta 10 subunit proprotein.	2
584	PSMB5	proteasome beta 5 subunit.	2
585	CANX	calnexin precursor.	2
586	TRAF6	TNF receptor-associated factor 6.	2
587	LY96	MD-2 protein.	2
588	HRH4	histamine H4 receptor.	2
589	RFXAP	regulatory factor X-associated protein.	2
590	C4A	complement component 4A preproprotein.	2
591	MPO	myeloperoxidase.	2
592	TIMP1	tissue inhibitor of metalloproteinase 1 precursor.	2
593	CEBPE	CCAAT/enhancer binding protein epsilon.	2
594	HLA-DMA	major histocompatibility complex, class II, DM alpha precursor.	2
595	SOD1	superoxide dismutase 1, soluble.	2
596	TNFSF14	tumor necrosis factor ligand superfamily, member 14 isoform 1 precursor.	2
597	C1QC	complement component 1, q subcomponent, gamma polypeptide.	2
598	FCER1A	Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide precursor.	2
599	HLA-DPB1	major histocompatibility complex, class II, DP beta 1 precursor.	2
600	BCAP31	B-cell receptor-associated protein 31.	2
601	NCF4	neutrophil cytosolic factor 4 (40kD) isoform 1.	2
602	B2M	beta-2-microglobulin precursor.	2
603	FCAMR	Fc receptor, IgA, IgM, high affinity.	2
604	PRDX6	peroxiredoxin 6.	2
605	BST2	bone marrow stromal cell antigen 2.	2
606	C1QL3	complement component 1, q subcomponent-like 3.	2
607	C1QL4	complement component 1, q subcomponent-like 4.	2
608	C1QTNF4	C1q and tumor necrosis factor related protein 4.	2
609	C7	complement component 7 precursor.	2
610	CD274	CD274 molecule.	2
611	CD3EAP	CD3E antigen, epsilon polypeptide associated protein.	2
612	CXCR7	chemokine orphan receptor 1.	2
613	СМТМЗ	chemokine-like factor superfamily 3.	2
614	IL10RB	interleukin 10 receptor, beta precursor.	2
615	IL17RC	interleukin 17 receptor C isoform 3 precursor.	2
616	IL1RAPL1	interleukin 1 receptor accessory protein-like 1.	2
617	IL1RAPL2	interleukin 1 receptor accessory protein-like 2.	2

618	LILRA2	leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2.	2
619	LTB4R	leukotriene B4 receptor.	2
620	PDCD1LG2	programmed cell death 1 ligand 2.	2
621	SIVA1	CD27-binding (Siva) protein isoform 1.	2
622	TNFRSF12A	tumor necrosis factor receptor superfamily, member 12A.	2
623	TNFSF15	tumor necrosis factor (ligand) superfamily, member 15.	2
624	TTRAP	TRAF and TNF receptor-associated protein.	2
625	FANCB	Fanconi anemia complementation group B.	2
626	SPINK5	serine peptidase inhibitor, Kazal type 5 precursor.	2
627	SLC35C1	solute carrier family 35, member C1.	2
628	ORAI1	hypothetical protein LOC84876.	2
629	FCGR3A	Fc fragment of IgG, low affinity IIIa, receptor for (CD16).	1
630	DPP4	dipeptidylpeptidase IV.	1
631	ITGA3	integrin alpha 3 isoform b, precursor.	1
632	C5AR1	complement component 5 receptor 1 (C5a ligand).	1
633	SLC3A2	solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2 isoform a.	1
634	IL8RB	interleukin 8 receptor beta.	1
635	PVR	poliovirus receptor.	1
636	KLRC1	killer cell lectin-like receptor subfamily C, member 1 isoform NKG2-A.	1
637	CCR7	chemokine (C-C motif) receptor 7 precursor.	1
638	PROCR	endothelial protein C receptor precursor.	1
639	MRC1	mannose receptor C type 1 precursor.	1
640	LAG3	lymphocyte-activation protein 3 precursor.	1
641	DARC	Duffy blood group.	1
642	ICAM4	intercellular adhesion molecule 4 isoform 3 precursor.	1
643	CD247	T-cell receptor zeta chain isoform 2 precursor.	1
644	CCR8	chemokine (C-C motif) receptor 8.	1
645	CXCL2	chemokine (C-X-C motif) ligand 2.	1
646	CXCL3	chemokine (C-X-C motif) ligand 3.	1
647	РРВР	pro-platelet basic protein precursor.	1
648	CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) isoform beta.	1
649	CX3CL1	chemokine (C-X3-C motif) ligand 1.	1
650	MBL2	soluble mannose-binding lectin precursor.	1
651	IL4	interleukin 4 isoform 1 precursor.	1
652	GZMA	granzyme A precursor.	1

653	TNFSF13	tumor necrosis factor ligand superfamily, member 13 isoform alpha proprotein.	1
654	ТАРВР	tapasin isoform 1 precursor.	1
655	TIRAP	Toll-interleukin 1 receptor domain-containing adaptor protein isoform a.	1
656	PGLYRP1	peptidoglycan recognition protein 1.	1
657	TNFRSF17	tumor necrosis factor receptor superfamily, member 17.	1
658	RAG2	recombination activating gene 2.	1
659	ВТК	Bruton agammaglobulinemia tyrosine kinase.	1
660	WASF3	WAS protein family, member 3.	1
661	AIRE	autoimmune regulator isoform 1.	1
662	СҮВВ	cytochrome b-245, beta polypeptide (chronic granulomatous disease).	1
663	СҮВА	cytochrome b, alpha polypeptide.	1
664	C8A	complement component 8, alpha polypeptide precursor.	1
665	SERPING1	complement component 1 inhibitor precursor.	1
666	LYZ	lysozyme precursor.	1
667	MARCO	macrophage receptor with collagenous structure.	1
668	CFD	complement factor D preproprotein.	1
669	IFNG	interferon, gamma.	1
670	LTB4R2	leukotriene B4 receptor 2.	1
671	SDF2L1	stromal cell-derived factor 2-like 1 precursor.	1
672	PPP3R1	protein phosphatase 3, regulatory subunit B, alpha isoform 1.	1
673	PPP3R2	protein phosphatase 3 regulatory subunit B, beta isoform.	1
674	FCGRT	Fc fragment of IgG, receptor, transporter, alpha.	1
675	HLA-A	major histocompatibility complex, class I, A precursor.	1
676	HLA-C	major histocompatibility complex, class I, C precursor.	1
677	HLA-DPA1	major histocompatibility complex, class II, DP alpha 1 precursor.	1
678	HLA-F	major histocompatibility complex, class I, F isoform 2 precursor.	1
679	PRSS16	protease, serine, 16.	1
680	A2ML1	alpha-2-macroglobulin-like 1.	1
681	IL23R	interleukin 23 receptor precursor.	1
682	CADM2	immunoglobulin superfamily, member 4D.	1
683	PILRA	paired immunoglobulin-like type 2 receptor alpha isoform 1 precursor.	1
684	S100A8	S100 calcium-binding protein A8.	1
685	C5	complement component 5.	1
686	С9	complement component 9.	1
687	COLEC12	collectin sub-family member 12.	1

688	C4BPA	complement component 4 binding protein, alpha chain precursor.	1
689	CR1L	complement component (3b/4b) receptor 1-like.	1
690	CRLF1	cytokine receptor-like factor 1.	1
691	KIR2DL4	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 4 isoform a.	1
692	KIR3DL2	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2 precursor.	1
693	TNFRSF11A	tumor necrosis factor receptor superfamily, member 11a precursor.	1
694	XCR1	XC chemokine receptor 1.	1
695	FANCF	Fanconi anemia, complementation group F.	1
696	IGHG2	immunoglobulin gamma-2 heavy chain.	1
697	OSTM1	osteopetrosis associated transmembrane protein 1.	1
698	FANCL	Fanconi anemia, complementation group L.	1
699	MS4A3	membrane-spanning 4-domains, subfamily A, member 3 isoform c.	0
700	MS4A5	membrane-spanning 4-domains, subfamily A, member 5.	0
701	FCGR2A	PREDICTED: similar to Low affinity immunoglobulin gamma Fc region receptor II-a precursor (Fc-gamma RII-a) (FcRII-a) (IgG Fc receptor II-a) (Fc-gamma-RIIa) (CD32 antigen) (CDw32).	0
702	CD38	CD38 antigen.	0
703	GP1BB	glycoprotein Ib, beta polypeptide precursor.	0
704	GP5	glycoprotein V (platelet).	0
705	CEACAM3	carcinoembryonic antigen-related cell adhesion molecule 3 precursor.	0
706	CEACAM5	carcinoembryonic antigen-related cell adhesion molecule 5 preproprotein.	0
707	PSG1	pregnancy specific beta-1-glycoprotein 1.	0
708	LILRB1	leukocyte immunoglobulin-like receptor, subfamily B, member 1 isoform 1.	0
709	THY1	Thy-1 cell surface antigen.	0
710	VCAM1	vascular cell adhesion molecule 1 isoform a precursor.	0
711	IL8RA	interleukin 8 receptor alpha.	0
712	PROM1	prominin 1.	0
713	TNFRSF9	tumor necrosis factor receptor superfamily, member 9 precursor.	0
714	PDGFRA	platelet-derived growth factor receptor alpha precursor.	0
715	F3	coagulation factor III precursor.	0
716	MCAM	melanoma cell adhesion molecule.	0
717	FUT3	fucosyltransferase 3.	0
718	CD177	CD177 molecule.	0
719	IGLL1	immunoglobulin lambda-like polypeptide 1 isoform a precursor.	0
720	CD207	CD207 antigen, langerin.	0
721	CLEC4M	C-type lectin domain family 4, member M isoform 1.	0

722	IL13RA2	interleukin 13 receptor, alpha 2 precursor.	0
723	GYPB	glycophorin B precursor.	0
724	BCAM	basal cell adhesion molecule isoform 2 precursor.	0
725	RHAG	Rh-associated glycoprotein.	0
726	ALK	anaplastic lymphoma kinase Ki-1.	0
727	CCBP2	chemokine binding protein 2.	0
728	CCL1	small inducible cytokine A1 precursor.	0
729	CCL2	small inducible cytokine A2 precursor.	0
730	CCL7	chemokine (C-C motif) ligand 7 precursor.	0
731	CCL8	small inducible cytokine A8 precursor.	0
732	CCL11	small inducible cytokine A11 precursor.	0
733	CCL13	small inducible cytokine A13 precursor.	0
734	CCL15	chemokine (C-C motif) ligand 15 precursor.	0
735	CCL16	small inducible cytokine A16 precursor.	0
736	CCL17	small inducible cytokine A17 precursor.	0
737	CCL18	small inducible cytokine A18 precursor.	0
738	CCL19	small inducible cytokine A19 precursor.	0
739	CCL20	chemokine (C-C motif) ligand 20.	0
740	CCL21	small inducible cytokine A21 precursor.	0
741	CCL22	small inducible cytokine A22 precursor.	0
742	CCL24	small inducible cytokine A24 precursor.	0
743	CCL25	small inducible cytokine A25 precursor.	0
744	CCL26	chemokine (C-C motif) ligand 26 precursor.	0
745	CXCL5	chemokine (C-X-C motif) ligand 5 precursor.	0
746	CXCL6	chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2).	0
747	CXCL9	small inducible cytokine B9 precursor.	0
748	CXCL10	small inducible cytokine B10 precursor.	0
749	CXCL11	small inducible cytokine B11 precursor.	0
750	CXCL13	chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant).	0
751	XCL2	chemokine (C motif) ligand 2.	0
752	CXCL14	small inducible cytokine B14 precursor.	0
753	MASP1	mannan-binding lectin serine protease 1 isoform 3.	0
754	IL2	interleukin 2 precursor.	0
755	IL3	interleukin 3 precursor.	0
756	IL11	interleukin 11 precursor.	0
757	CSF3	colony stimulating factor 3 isoform a precursor.	0
758	NOS2A	nitric oxide synthase 2A.	0

759	LTA	lymphotoxin alpha precursor.	0
760	GZMM	granzyme M precursor.	0
761	LPO	lactoperoxidase.	0
762	DEFA3	defensin, alpha 3 preproprotein.	0
763	DEFA5	defensin, alpha 5 preproprotein.	0
764	DEFA6	defensin, alpha 6 preproprotein.	0
765	POMC	proopiomelanocortin preproprotein.	0
766	PGLYRP2	peptidoglycan recognition protein 2 precursor.	0
767	IL12B	interleukin 12B precursor.	0
768	C8B	complement component 8, beta polypeptide preproprotein.	0
769	LILRB4	leukocyte immunoglobulin-like receptor, subfamily B, member 4 isoform 1.	0
770	GYPE	glycophorin E precursor.	0
771	GNLY	granulysin isoform NKG5.	0
772	EPO	erythropoietin precursor.	0
773	EPX	eosinophil peroxidase.	0
774	MICA	MHC class I chain-related gene A protein.	0
775	PLA2G7	phospholipase A2, group VII.	0
776	NFATC4	cytoplasmic nuclear factor of activated T-cells 4.	0
777	CHL1	cell adhesion molecule with homology to L1CAM precursor.	0
778	IFNB1	interferon, beta 1, fibroblast.	0
779	СТЅĠ	cathepsin G preproprotein.	0
780	PRG2	proteoglycan 2 preproprotein.	0
781	EBF2	early B-cell factor 2.	0
782	CSF2	colony stimulating factor 2 precursor.	0
783	HRB	HIV-1 Rev binding protein.	0
784	DEFB4	defensin, beta 4 precursor.	0
785	HLA-DQA1	major histocompatibility complex, class II, DQ alpha 1 precursor.	0
786	HLA-DQB2	major histocompatibility complex, class II, DQ beta 2.	0
787	HLA-DRB3	major histocompatibility complex, class II, DR beta 3 precursor.	0
788	HLA-DRB4	major histocompatibility complex, class II, DR beta 4 precursor.	0
789	HLA-DRB5	major histocompatibility complex, class II, DR beta 5 precursor.	0
790	HLA-E	major histocompatibility complex, class I, E precursor.	0
791	IL5	interleukin 5 precursor.	0
792	IL13	interleukin 13 precursor.	0
793	IL17A	interleukin 17A precursor.	0
794	KIR2DL1	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 1.	0

795	KIR2DL3	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 3 isoform 1.	0
796	KIR2DS1	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 1 precursor.	0
797	KIR2DS2	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 2 precursor.	0
798	KIR2DS5	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5.	0
799	KIR3DL1	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 1 precursor.	0
800	IL17B	interleukin 17B precursor.	0
801	CLEC10A	C-type lectin, superfamily member 14 isoform 2.	0
802	PGLYRP3	peptidoglycan recognition protein 3 precursor.	0
803	LEAP2	liver-expressed antimicrobial peptide 2 precursor.	0
804	DCD	dermcidin preproprotein.	0
805	WFDC12	WAP four-disulfide core domain 12 precursor.	0
806	CRP	C-reactive protein, pentraxin-related.	0
807	DEFA1	defensin, alpha 1 preproprotein.	0
808	DEFA4	defensin, alpha 4 preproprotein.	0
809	DEFB1	defensin, beta 1 preproprotein.	0
810	DEFB105A	defensin, beta 105A precursor.	0
811	DEFB106A	defensin, beta 106A precursor.	0
812	DEFB119	defensin, beta 119 isoform a precursor.	0
813	DEFB123	beta defensin 123 precursor.	0
814	LYG2	lysozyme G-like 2.	0
815	CLEC4E	C-type lectin domain family 4, member E.	0
816	HTN3	histatin 3.	0
817	IL6	interleukin 6 (interferon, beta 2).	0
818	IL7	interleukin 7 precursor.	0
819	INDO	indoleamine-pyrrole 2,3 dioxygenase.	0
820	IFIT1L	interferon-induced protein with tetratricopeptide repeats 1-like.	0
821	IL22	interleukin 22.	0
822	CLEC4A	C-type lectin, superfamily member 6 isoform 1.	0
823	DEFB103A	defensin, beta 103B precursor.	0
824	CCL3L1	chemokine (C-C motif) ligand 3-like 1 precursor.	0
825	IL25	interleukin 25 isoform 1 precursor.	0
826	FOXN1	forkhead box N1.	0
827	RNASE7	ribonuclease, RNase A family, 7.	0
828	CLEC6A	dectin-2.	0
829	C1QL2	complement component 1, q subcomponent-like 2.	0

830	C1QTNF2	C1q and tumor necrosis factor related protein 2.	0
831	C1QTNF3	C1q and tumor necrosis factor related protein 3 isoform a.	0
832	C1QTNF5	C1q and tumor necrosis factor related protein 5.	0
833	C1QTNF7	C1q and tumor necrosis factor related protein 7.	0
834	C1S	complement component 1, s subcomponent.	0
835	C3AR1	complement component 3a receptor 1.	0
836	CCL3L3	chemokine (C-C motif) ligand 3-like 3 precursor.	0
837	CCL4L1	chemokine (C-C motif) ligand 4-like 1 precursor.	0
838	CCL4L2	chemokine (C-C motif) ligand 4-like 2 precursor.	0
839	CD164L2	CD164 sialomucin-like 2.	0
840	CD200R2	CD200 cell surface glycoprotein receptor isoform 2.	0
841	CD300LB	CD300 molecule-like family member b.	0
842	SIGLEC15	sialic acid binding Ig-like lectin 15.	0
843	CFHR1	complement factor H-related 1.	0
844	CFHR2	H factor (complement)-like 3.	0
845	CFHR3	complement factor H-related 3.	0
846	CFHR4	complement factor H-related 4.	0
847	CFHR5	complement factor H-related 5.	0
848	CLEC4C	C-type lectin domain family 4, member C isoform 1.	0
849	CMTM1	chemokine-like factor superfamily 1 isoform 13.	0
850	CMTM2	chemokine-like factor superfamily 2.	0
851	CMTM4	chemokine-like factor superfamily 4 isoform 1.	0
852	CMTM5	chemokine-like factor superfamily 5 isoform c.	0
853	CMTM8	CKLF-like MARVEL transmembrane domain containing 8.	0
854	CRLF2	cytokine receptor-like factor 2 isoform 2.	0
855	CYTL1	cytokine-like 1.	0
856	FCGR2C	Fc fragment of IgG, low affinity IIc, receptor for isoform 2.	0
857	FGFR2	fibroblast growth factor receptor 2 isoform 1 precursor.	0
858	FGFR4	fibroblast growth factor receptor 4 isoform 1 precursor.	0
859	IL17F	interleukin 17F precursor.	0
860	IL1RL1	interleukin 1 receptor-like 1 isoform 2 precursor.	0
861	IL1RL2	interleukin 1 receptor-like 2 precursor.	0
862	IL21	interleukin 21.	0
863	IL22RA1	interleukin 22 receptor, alpha 1.	0
864	IL22RA2	interleukin 22-binding protein isoform 1.	0
865	IL26	interleukin 26 precursor.	0
866	IL28A	interleukin 28A.	0

867	IL28B	interleukin 28B.	0
868	IL29	interleukin 29.	0
869	IL31	interleukin 31.	0
870	IL31RA	gp130-like monocyte receptor.	0
871	KDR	kinase insert domain receptor (a type III receptor tyrosine kinase).	0
872	KIR2DL2	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 2 precursor.	0
873	KIR2DL5A	killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 5A.	0
874	KIR2DS4	killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 4.	0
875	KIR3DL3	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 3.	0
876	KLRC2	killer cell lectin-like receptor subfamily C, member 2.	0
877	LAIR2	leukocyte-associated immunoglobulin-like receptor 2 isoform a.	0
878	LIFR	leukemia inhibitory factor receptor precursor.	0
879	LILRA1	leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 1.	0
880	LILRA3	leukocyte immunoglobulin-like receptor, subfamily A (without TM domain), member 3.	0
881	LILRA4	leukocyte immunoglobulin-like receptor subfamily A member 4.	0
882	LILRB5	leukocyte immunoglobulin-like receptor, subfamily B, member 5 isoform 2.	0
883	NCR2	natural cytotoxicity triggering receptor 2.	0
884	SCGB3A1	secretoglobin, family 3A, member 1.	0
885	TNFRSF10A	tumor necrosis factor receptor superfamily, member 10a.	0
886	TNFRSF10B	tumor necrosis factor receptor superfamily, member 10b isoform 1 precursor.	0
887	TNFRSF10C	tumor necrosis factor receptor superfamily, member 10c precursor.	0
888	TNFRSF10D	tumor necrosis factor receptor superfamily, member 10d precursor.	0
889	CA2	carbonic anhydrase II.	0
890	ELA2	elastase 2, neutrophil preproprotein.	0
891	F12	coagulation factor XII precursor.	0
892	IGHM	FLJ00385 protein.	0
893	NLRP7	NACHT, leucine rich repeat and PYD containing 7 isoform 1.	0

8.7 Phylogenetic trees

8.7.1 HLA class II gene

8.7.2 NRAMP1

trjG3HWH5jG3HWH5_CRIGR 0.05548 Cricetidae (Hamster-like rodents)	
tr A0A1A6hD35JA0A1A6hD35J NEOLE 0.01413 tr A0A0A0D9R920 A0A0D9R920_CHLSB 0.04991 Cercopithecidae tr G7N8W9 G7N8W9_MACMU -0.00367 (old world monkeys) tr Q59F11 Q59F11_HUMAN 0.01971 Hominidae	
tr B4DQ73 B4DQ73_H0MAN 0.0007 tr A0A096N2F1 A0A096N2F1_PAPAN 0.00501 tr G7PLF4 G7PLF4_MACFA 0.00133 tr F6X347 F6X347 MACMU 0.0005 Cercopithecidae (old world monkeys)	Primates
spiP49279-2INRAM1_HUMAN 0.0319 Hominidae trjG1RBA4jG1RBA4_NOMLE 0.00977 Hylobatidae (Gibbons) trjB4E0J2]B4E0J2 HUMAN 0.00076 Hominidae	
trjF6K636jF6K636_MICAG 0.02438 Cricetidae (Hamster-like rodents) trjS9WLN7jS9WLN7_CAMFR 0.07488 Camelidae (camels) trjL5L0E5jL5L0E5 PTEAL 0.00038 Pteropodidae (megabats)	
tr J9NSD7 J9NSD7_CANLF 0.03017 tr F1P9P2 F1P9P2_CANLF 0.00363 Canidae (dog) sp Q9XT74 NRAM1_CANLF 0.00939	
CL2921.Contig2_All -0.01112 Query sequence tr/G9KP23/G9KP23_MUSPF 0.01423 Mustelidae (weasel-like) tr/U6D6M0/U6D6M0 NEOVI -0.00331 Mustelidae (weasel-like)	rnivora
tr M3VYE4 M3VYE4_FELCA 0.0373 Felidae (cats) tr D2GXD7 D2GXD7_AILME -0.00731 Ursidae (bears) tr G1L8L5 G1L8L5_AILME 0.00731 Ursidae (bears)	Cal
tr L5LWQ2 L5LWQ2_MYODS 0.00559 tr S7QBI3 S7QBI3_MYOBR 0.00355 Vespertilionidae (common bats)	
tr Q95N75 Q95N75_HORSE 0 tr A0A088SFP4 A0A088SFP4_EQUAS 0.00262 tr A0A088SFA1 A0A088SFA1_EQUBU 0.00105	
tr A0A0885TM3 A0A0885TM3_EQUBU 0 tr A0A0885T0G8 A0A0885TM3_EQUBU 0 tr A0A0885FJ4 A0A0885FJ4_EQUBA 0 tr A0A0885FJ4 A0A0885FJ4_EQUBU 0.00125 tr A0A0885FJ4 A0A0885FJ4_EQUBU 0.00125	
Image: Constraint of the	
trjA0A1D8BIN9JA0A1D8BIN9_CAPHI 0.00259 spjP49280jNRAM1_SHEEP 0.00177 trjW5QE37_W5QE37_SHEEP 0 trjL8jWD6jL8jWD6 9CETA 0.00395	
trjA0A075iFW7jA0A075iFW7_SYNCA 0.00343 trjA4ZDG7jA4ZDG7_BOSIN 0.0013 trjU3RA97jU3RA97_BOSIN 0.00053 (cloven boofed	
u//www.ebi.ac.uk/) tr U3RCQ9 U3RCQ9_BOSIN 0.00074 tr A4ZDG6 A4ZDG6_BOVIN 0.00109 tr U3RA67 U3RA67_BOSIN 0 tr U3RA67_BOSIN 0 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr A6XMW1 A6XMW1 BOVIN 0.00013 tr U3RCQ9 U3RCQ9_BOSIN 0.00074 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.00013 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.00013 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.00013 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.00013 tr U3REZ8 U3REZ8_BOSIN 0.0006 tr U3REZ8 U3REZ8_BOSIN 0.0006<	

8.7.3 TLR8 gene

