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Abstract 

Estuaries are the transition between freshwater and marine environments, and 

regulate the delivery of riverine fluxes to the oceans. The Humber estuary (UK) is 

considered a major source of nutrients to the North Sea. It is a highly turbid and 

dynamic macrotidal estuary that receives contaminated fluxes from agriculture, 

urbanisation, industry and historical mining activities. The chemistry of the river 

water and the sediments is modified within the estuarine continuum due to mixing. 

Sediments are subjected to resuspension periodically (on a tidal cycle timescale) and 

occasionally or seasonally (due to extreme rainfall or flooding episodes), which 

triggers a series of redox processes that control nutrient and pollutant cycling. 

During simulated sediment resuspension in aerated conditions, the release of 

accumulated reduced substrates (ammonium, manganese, iron, sulphur) and trace 

metals were reversed within relatively short timescales, which is important when 

assessing the environmental consequences of different resuspension episodes. 

However, the position in the salinity gradient was the dominant control on sediment 

geochemistry since a transition from the inner estuary (Mn/Fe-dominated redox 

chemistry) to the outer estuary (Fe/S-dominated redox chemistry) was observed. To 

better understand the role of the benthic biogeochemical denitrification processes in 

the nitrogen cycling, nitrate-dependent oxidation was also investigated in 

microcosm experiments. The same transition was observed in the nitrate reduction 

coupled with the oxidation of different inorganic species from the inner to the outer 

estuary. In this oxidation scenario there was also evidence of trace metal 

mobilisation. Due to the greater availability of electron donors in the mudflats of the 

outer estuary, they showed the greatest potential for denitrification and therefore are 

considered a relevant nitrogen sink in the Humber estuary. Furthermore, in this 

context of highly spatiotemporal variability, benthic microbial diversity showed a 

decreasing trend with increasing salinity, but sediment mixing and transport and the 

presence of strong redox transitions were also environmental parameters shaping the 

microbial communities in the Humber sediments. 
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Chapter 1 

Introduction 

1.1 Project context 

Estuaries represent the transition between freshwater and marine environment. Nutrient 

inputs, mainly through river fluxes, to estuaries have been increased by anthropogenic 

activities due to the increasing populations, the more intensive agricultural practices, 

and industrialization (Howarth et al., 1996). Nutrient enrichment is probably the most 

common problem in estuaries globally and it is linked to eutrophication in coastal 

waters (Nixon, 1995; Hobbie, 2000; Howarth et al., 2000; Galloway et al., 2004; 

Howarth & Marino, 2006). 

The linkages between hydrological, physical and biogeochemical processes within 

estuaries show a great spatiotemporal variability. The mixing of river and seawater 

drives rapid changes in the physicochemical conditions that affect the speciation of the 

chemical components in solution, and therefore in their reactivity within the system 

(Statham, 2012).  

Aquatic sediments are characterised by developing a redox profile in which different 

geochemical zonations associated with a dominant respiration process are organised 

following the availability of the preferred electron acceptor (the one that yields the 

highest amount of free energy in the microbial oxidation of organic matter). The 

original scheme of these redox zonations proposed by Froelich et al. (1979) constitutes 

a paradigm in biogeochemistry. However, such ideal zonation may not apply for 

sediments that are continuously being disturbed by physical forces or bioturbation; 

hence the complexity of studying benthic microbial processes in estuarine sediments.  

Estuaries are typically very turbid due to the high concentrations of suspended 

particulate matter (SPM) derived from river and coastal inputs and resuspension of the 

benthic sediments. Estuaries act in fact as sediment traps and the particles have 

extended residence times due to the repeated cycles of sediment resuspension and 
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settling (Grabemann et al., 1997). Particle-water interactions involve nutrients and other 

solutes such as organic matter and heavy metals (Millward & Turner, 1995; Gebhardt et 

al., 2005). Moreover, during sediment resuspension high concentrations of SPM 

(especially at the estuarine turbidity maximum, Schubel (1968)) have been associated 

with intense microbial activity (Hollibaugh & Wong, 1999) and dissolved chemicals are 

released back to the water column (Corbett, 2010). In short, estuarine sediment 

dynamics plays an important role in the biogeochemical cycles controlling the fate and 

transport of nutrients and other chemicals therein.  

The analysis of the role of biogeochemical processes in the chemistry and biology of 

estuaries, the composition of the fluxes, and the possible impacts on the coastal waters 

requires consideration of the physical processes as well (Hobbie, 2000). A 

comprehensive approach to estuarine ecosystems is fundamental for their modelling and 

management (Hobbie, 2000; Mitchell & Uncles, 2013). Furthermore, in a climate 

change scenario sea level rise and major changes in the precipitation patterns have been 

predicted, which will alter the inputs of nutrients to the estuaries and will require 

modification of flood defences (Jickells, 2005; Gao et al., 2014). Therefore the likely 

effects of global warming on the estuarine processes, together with the trends in terms 

of agricultural practices and sediment supply, need to be taken into account in the 

management strategies of estuaries to ensure the coastal ecosystem sustainability.  

The Humber estuary (UK) is representative of many major estuaries worldwide. It is a 

highly turbid and well-mixed estuary that has received important loads of nitrogen 

−mainly from its tributary rivers draining intensive agricultural catchments (Sanders et 

al., 1997; Mortimer et al., 1998)− and heavy metals –from legacy of contaminated 

sediments along the more industrial and mining catchments (Cave et al., 2005). 

Additionally there has been a loss of intertidal-wetland environment over the last couple 

of hundred years, which has affected sediment and chemical fluxes (e.g. denitrification 

capacity and nitrogen retention and organic carbon storage have decreased) (Jickells et 

al., 2000). The decrease of sites for sediment accumulation has impacted the cycles of 

particle resuspension since particles are continuously resuspended before they are 

exported eventually to the sea. During sediment mobilization, there is a potential source 
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of nutrients and metals that may be released back to the water column. So there is a 

scientific interest in studying the impacts of estuarine sediment biogeochemistry and 

dynamics on major and trace element cycling and transport to the coastal zone. This 

work also includes the first description of the benthic microbial populations of the 

Humber sediments by using high throughput DNA sequencing technologies, which has 

resulted in a deep coverage of individual samples. Improving the understanding of the 

benthic bacterial community distribution along the salinity continuum will help to better 

understand the relationship between microbiology and geochemistry and to constrain 

which are the environmental controls on the microbial communities. 

1.2 Research aims and objectives 

Previous work in the Humber Estuary has shown that gradients in porewater profiles, 

nutrient fluxes, and the redox and absorption state of sediment particles may be 

significantly affected by sediment mixing and resuspension on different timescales and 

by the activity of macrofauna. Those macrofaunal communities are largely influenced 

by sediment resuspension and salinity as well (Mortimer et al., 1999). However such 

conclusions were obtained from studies of nutrient diffusion fluxes in sediment cores 

and not from resuspension experiments. Anoxic nitrification processes and reoxidation 

of technicium in estuarine sediments from the Humber have been also studied. In this 

context, we found the need of a more comprehensive study of the multiprocesses 

occurring during sediment reoxidation (during resuspension and during anaerobic 

oxidation with nitrate as an oxidant), and therefore of the complex interlinks between 

nitrogen, iron, sulphur and trace metal cycling. To do so, we outlined a systematic study 

of four sites of different geochemical characteristics along the salinity continuum. 

The overall aim of this research project was to improve the understanding of the 

biogeochemical processes of estuarine sediments along the salinity gradient of the 

Humber estuary. To achieve this, sediments and river water from the Humber estuary 

collected in the same tidal cycle have been used in different laboratory experiments in 

order to reproduce different natural scenarios and investigate nutrient and metal 
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behaviour in such circumstances, as well as to characterise the benthic microbial 

communities along the salinity gradient.  

The first centimetres of the bed sediments from the Humber were simplified in two 

sedimentary units. The first unit corresponds to the upper first centimetre, this region of 

the sediment is re-suspended periodically (daily to weekly). Dissolved oxygen will 

penetrate a few millimetres into the sediment, so this surface layer tends to be in 

oxic/suboxic conditions. The second sedimentary unit we defined corresponds to the 

subsurface sediment, from 5-10 cm depth. This region of the sediment is rarely 

(seasonally to annually) disturbed, only when there is an extreme event such as a big 

storm or a flood event (Mortimer et al., 1998). Oxygen does not penetrate down to this 

region of the sediment profile. In the absence of oxygen, other species will act as a 

terminal electron acceptor in the biotic and abiotic redox processes and reduced species 

of major and trace elements may be accumulated. The mobilisation of the subsurface 

sediment could become more frequent in the near future due to global warming since it 

has been predicted that extreme rainfall episodes will become increasingly common in 

temperate regions (Jones & Reid, 2001; Christensen et al., 2007; Gao et al., 2014). 

Therefore the more frequent mobilization of the subsurface sediment will impact the 

geochemistry of the system since buried chemicals will take part in the common 

reoxidation processes. Consequently, the composition of the nutrient fluxes coming into 

the coastal waters is likely to be modified which may lead to eutrophication problems if 

the nutrient load is being increased.  

To achieve the aim, the objectives were: 

- To characterise the porewater, overlying water and sediment composition along 

the estuarine continuum, with especial attention to the redox indicators. 

- To monitor the behaviour of nitrogen species, iron, manganese, sulphate and 

trace metals (TMs) when sediments from different pools (surface and subsurface) are 

resuspended in oxic conditions 
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- To investigate the anaerobic oxidation processes coupled to nitrate reduction 

within the suboxic zone of the estuarine sediment profile and identify the dominant 

processes in the presence of sulphur or lack thereof along the estuarine continuum.  

- To characterise the microbial communities living in the different geochemical 

environments of the Humber estuary and identify diversity trends along the salinity 

continuum. 

1.3 Thesis outline 

This thesis consists of eight chapters: 

Chapter 1 contains the rationale of the project, the research aim and objectives and the 

thesis outline. 

Chapter 2 contains a literature review about estuarine systems that addresses 

microbiology and sediment geochemistry in detail. Major elements and trace metal 

cycling are described as well as the geochemical gradients of interest (redox and 

salinity). This is followed by an overview of the Humber estuary which has been the 

study site for this work. 

Chapter 3 contains the compilation of all the experimental and analytical methods used. 

Some of the laboratory techniques and instrument protocols were carried out according 

to the standard operational procedures available in the Cohen Geochemistry Labs 

(University of Leeds). The methodology for the molecular biology work is also 

included as well as the multivariate analysis tools used for the interpretation of the DNA 

sequencing data. 

Chapter 4 provides characterisation data for all the sediments and waters used in the 

experiments. 

Chapter 5 “Reoxidation of estuarine sediments during simulated resuspension events: 

Effects on nutrient and trace metal mobilisation”. This includes the results of sediment 

reoxidation experiments in which sediment resuspension in oxic conditions was 

simulated in the laboratory to analyse its effects on major and trace elements. Changes 



28 

 

over time were analysed according to natural timescales based on the duration of 

regular and a sporadic resuspension events.  

Chapter 6 “Nitrate-dependent oxidation of undisturbed estuarine sediments and its 

effects on major and trace elements as a function of in situ geochemistry”. This chapter 

describes the microcosm experiments used to investigate nitrate-dependent oxidation 

processes in subsurface estuarine sediments during anaerobic incubations. 

Chapter 7 “Diversity patterns of benthic bacterial communities along the salinity 

continuum of the Humber estuary (UK)”. We characterise the benthic microbial 

populations along the salinity continuum using amplicon sequencing of 16S rRNA 

gene. These data were used to measure the microbial diversity and in combination with 

geochemical data we investigate the environmental controls on the microbial 

community distribution along the estuary.  

Finally, Chapter 8 contains a summary of the work presented in the thesis, conclusions 

and suggestions for future work. 
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Chapter 2 

Literature Review 

2.1 Introduction to estuaries 

Estuaries and nearby wetlands are partially enclosed coastal bodies of water where 

rivers meet the sea. They host one of the most diverse and highly productive ecosystems 

in the word (Hobbie, 2000; Statham, 2012). Coastal zones in general and estuaries in 

particular have been a focus for human settlement and intense economic activity 

(industry, fishery, commercial ports). Estuaries provide valuable habitats (e.g. nurseries 

for many aquatic plants and animals) and ecosystem services such as coastal protection 

and nutrient cycling and storage (Jickells, 1998; NOAA, 2008). They receive particulate 

and dissolved materials mainly from river fluxes, but also from atmospheric deposition 

and groundwater (Nedwell et al., 1999), and such inputs have been modified by 

anthropogenic activities. Estuaries are transitional environments showing strong 

chemical gradients and intense geochemical cycling, where organic matter and nutrients 

are transformed and retained (Garnier et al., 2008). They act as buffers in the interface 

between land and ocean since they act as natural protective filters and traps for 

sediment, nutrients and contaminants (de Jonge et al., 2002). There is a wide range of 

physical and biogeochemical processes operating over different time and spatial scales 

within the estuaries that regulate the chemistry and biology of the system and hence 

influence the composition of fluxes to coastal waters (Nedwell et al., 1999; Hobbie, 

2000). 

It has been estimated that riverine N fluxes in many temperate regions have increased 

from pre-industrial times by 5 to10-fold in the last century due to population growth, 

urban and industrial expansion, the development of agricultural practices with a 

widespread use of fertilizers, and increased atmospheric deposition (Howarth et al., 

1996; Howarth et al., 2000). This is important because nitrogen is normally the limiting 

nutrient for primary production in most estuaries and coastal waters in the temperate 

zone. Although nitrogen is not the only element of concern since phosphorous 
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(normally limiting in freshwaters, Nedwell et al., 2002) can also be limiting in some 

coastal systems (Howarth & Marino, 2006). Excess nutrients in estuarine and adjacent 

coastal waters leads to eutrophication (Nixon, 1995; Howarth et al., 2000). 

Eutrophication has been defined as the increase in the rate of organic matter supply to 

an aquatic ecosystem related to the enhancement of the primary production associated 

with the excess nutrient supply. As the algal bloom crashes and intensive heterotrophic 

bacterial activity develops, the oxygen concentration will drop. This can result in 

hypoxic (or even anoxic) water episodes, which have a negative impact on the 

ecosystem, for example the development of harmful algal blooms (HAB) and fish kills 

(Nixon, 1995; Hobbie, 2000; Howarth et al., 2000; Galloway et al., 2004; Howarth & 

Marino, 2006). Hypoxic episodes are unlikely in well-mixed estuaries since the oxygen 

is constantly supplied due to wave action and circulation patterns (NOAA, 2008), and 

besides, they are typically turbid environments and therefore primary production is 

limited due to the low light availability (Jickells, 1998). However, the environmental 

consequences of eutrophication may be intensified by other physicochemical processes 

associated with climate change: elevated temperatures, changes in wind patterns and 

hydrological cycle (frequency of extreme storm events, floods, droughts, stagnancy, 

etc.), and sea level rise (Statham, 2012). 

2.1.1 Types of estuaries 

Estuaries have their origin in the last Ice Age (Pleistocene), when the sea level started to 

rise due to the melting of the major continental glaciers (18,000 years ago). According 

to their origin, estuaries can be classified as coastal plain, fjord, tectonic and bar-built 

estuaries. However they can also been classified based on how river and sea waters mix 

in their confluence (Trujillo & Thurman, 2013). 

In general, freshwater flows across the surface of the estuary towards the ocean, while 

the denser subsurface seawater moves landwards along the bottom of the estuary. The 

mixing occurs at the contact of the two water masses (Trujillo & Thurman, 2013). It is 

important to note that the Coriolis effect causes low-salinity surface-water in an estuary 

to curve to the right (in the Northern Hemisphere and in the opposite direction in the 

southern Hemisphere), so seawater coming in the estuary tends to flow in on the left 
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side (Gross, 1976). Additionally, estuarine mixing patterns vary with location, season 

and tidal conditions, but it is possible to simplify them in four models: vertically mixed, 

slightly stratified, highly stratified and salt wedge estuaries (Fig. 2.1). 

 

Figure 2.1: Classification of the estuaries by mixing. Diagrams of the four types 

of estuaries based on the type of mixing between fresh and sea water. Numbers 

represent salinity (psu) and arrows indicate flow directions. Source: Trujillo & 

Thurman (2013), page 363. 

2.1.1.1 Vertically or well-mixed estuaries 

A vertically mixed estuary is normally large and shallow estuary, and it occurs where 

river flow is low and tidal currents are moderate to strong (NOAA, 2008). There is a net 

flow going always from the head of the estuary towards the sea (Fig. 2.1a). The mixing 

between fresh and seawater is even at all depths and therefore salinity is uniform 

vertically at any point of the estuary. The strong influence of the tides annuls the 

vertical stratification, so salinity, influenced by the daily tidal range, increases from the 

head to the mouth. Salinity lines curve at the edge of the estuary due to the Coriolis 

effect (Trujillo & Thurman, 2013). The Humber or the Severn estuaries (both in the 

UK) or the Delaware Bay (US), or the Myall River (Australia) are well-mixed estuaries. 
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2.1.1.2 Slightly and highly stratified estuaries 

These are deeper estuaries where tidal currents are strong and river discharges small; 

the mixing is vigorous and salinity increases seawards at any depth (Gross, 1976). 

However, two layers of water separated by a zone of mixing can be distinguished. The 

circulation pattern of slightly stratified estuaries is based on a net subsurface flow of the 

denser saline water towards the upper estuary and a net surface flow of low-salinity 

waters towards the mouth (Fig. 2.1b) (Trujillo & Thurman, 2013). A highly stratified 

estuary is also deep but only the upper-layer salinity increases seawards, whereas the 

bottom layer has a constant salinity (seawater salinity) along the estuary. Mixing occurs 

at the interface of the surface and subsurface water and it creates a net flow of deep 

water into the upper water (Fig. 2.1c). So the surface water mass simply moves 

forwards, increasing its salinity as it mixes with the deep layer. One of the most 

remarkable characteristics of these estuaries is the developing of strong haloclines at the 

boundary between the two layers (Trujillo & Thurman, 2013). The Chesapeake Bay, the 

San Francisco Bay (both in the US), or the Mersey estuary (UK) are examples of 

slightly stratified estuaries. The Vellar River (India) and the Doubtful Sound (New 

Zealand) are examples of highly stratified estuaries. 

2.1.1.3 Salt wedge estuaries 

Salt wedge estuaries are river-dominated and are the least mixed of all the estuaries 

(NOAA, 2008). The river flow is large and the salty water enters from the ocean 

beneath the upper freshwater layer (Fig. 2.1d). The weak tidal currents together with the 

force of the river flow determine the circulation pattern. There is no horizontal salinity 

gradient at the surface since it remains as freshwater throughout the length of the 

estuary (or even beyond in some cases). There is a wedge of saltwater on the bottom, 

which location varies with the weather and tidal conditions (NOAA, 2008). So there is a 

horizontal salinity gradient at depth and a distinct halocline at any point along the 

estuary. The halocline becomes shallower and more pronounced near the mouth of the 

estuary (Trujillo & Thurman, 2013). For example the Pearl River (China) or the 

Columbia and Mississippi Rivers (in the US) have a long salt wedge estuaries. 
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2.2 Microbiology of estuarine systems 

Estuaries are very complex ecosystems which experience fluctuating conditions over 

both space and time to which estuarine microbial communities are exposed 

continuously (Attrill, 2002). The continuous mixing of waters, sediment resuspension, 

and, consequently, the high variability of the local physicochemical characteristics (pH, 

temperature, salinity, turbidity, oxygen, chemical composition of the fluxes.) can affect 

the stability and composition of microbial communities along the estuarine continuum 

(Crump et al., 1999; O'Sullivan et al., 2013; Liu et al., 2014; Wei et al., 2016). 

Microbial populations play a key role in the estuarine biogeochemical processes 

(Federle et al., 1983; Rink et al., 2008). Estuaries are typically very turbid due to the 

high concentrations of SPM. Therefore heterotrophic activity will dominate over the 

primary production due to light limitation (Cole et al., 1992; Jickells, 1998). In less 

turbid systems, such as some microtidal and oligotrophic estuaries, pelagic and benthic 

photosynthetic activity may be important in terms of nutrient input (Nedwell et al., 

1999). 

Intense microbial activity is associated with areas of high SPM concentrations since 

microorganisms are attached to particle surfaces (Plummer et al., 1987). However the 

microbial processes occurring in the water column will be still of lower magnitude than 

those in the sediments. High turbidity has been also associated in most estuaries with 

high sedimentation rates of organic matter rich materials (Nedwell et al., 1999), which 

is highly relevant since the benthic aerobic and anaerobic heterotrophic microorganisms 

are responsible for the majority of the organic matter degradation in coastal and shallow 

estuaries (Canfield et al., 2005b). Bacterial breakdown of organic matter drives a series 

of redox reactions that are involved in the different element cycles, but the vertical 

distribution of the different respiration processes is not as well stratified as in other 

aquatic sediments due to the continuous sediment remobilisation and bioturbation 

(Sørensen & Jørgensen, 1987; Aller, 1994). 
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2.2.1 Environmental variables influencing aquatic microorganisms in the 

estuarine environment 

2.2.1.1 Temperature 

Microbial metabolic and growth rates are affected by temperature. There are three 

cardinal temperatures that define the response of an individual organism to temperature: 

minimum, optimal and maximum growth temperature (Rheinheimer, 1985; Canfield et 

al., 2005b). The optimum temperature is normally closer to the maximum than to the 

minimum (when enzymatic activity is too slow). When maximum growth temperatures 

are exceeded, proteins and membrane stability are damaged. Psychrophilic (maximum 

growth rates at <15°C) bacteria predominate in the marine environment (Rheinheimer, 

1985; Canfield et al., 2005b). In other inland water bodies of warmer zones and 

seawater near to the surface, mesophilic bacteria can predominate during some periods 

of the year (Rheinheimer, 1985). 

2.2.1.2 Salinity 

Salinity in estuarine systems ranges from near zero at the head of the estuary 

(freshwater) to seawater (or closer) salinity (35 psu). All microorganisms maintain 

cytoplasmic water activity lower than the external environment by keeping higher 

solute concentration within the cell and establishing the osmotic pressure needed for 

cell growth (Canfield et al., 2005b). However, as salinity increases, there are more 

difficulties for the cells to maintain these physiological conditions. The majority of the 

microorganisms are adapted to a specific, and sometimes narrow, salinity range; and 

therefore they can be divided according to their tolerance to salinity in: mild (or 

halotolerant) (maximum growth 1-6% NaCl by weight), moderate (maximum growth 6-

15% NaCl), and extreme halophile (maximum growth >15% NaCl) (Canfield et al., 

2005b). Most of the marine microorganisms are halophilic, whereas most of the 

freshwater microorganisms are halophobic and cannot grow at a salt concentration of 

more than 1% (Rheinheimer, 1985). There is a small percentage of organisms that can 

thrive in both fresh and seawater (Rheinheimer, 1985). In fact, in the estuarine 

environment, several studies have demonstrated that fresh and marine communities mix 
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along the salinity gradient, and there are few evidences of the existence of truly 

estuarine bacterial communities (Crump et al., 2004). 

2.2.1.3 Light and Turbidity 

In coastal areas the depth of the photic zone depends on latitude, season and, especially, 

on the turbidity of the water. As mentioned before, light is the limiting factor for 

primary productivity in turbid estuaries. But in some shallow coastal areas and 

oligotrophic estuaries, benthic microalgae (cyanobacteria and unicellular eukaryotic 

algae) grow within the surface of illuminated sediments and the biomass of these mat-

forming species can sometimes be larger than the biomass of the free-living species (i.e. 

phytoplankton in the water column) (Gray & Elliott, 2009). When there is benthic 

primary production, the nutrient exchange between sediment-water may be reduced due 

to the consumption of N and P (Nedwell et al., 1999). 

Estuaries typically have elevated concentrations of SPM that is very cohesive and 

readily flocculates. Turbidity can be extraordinarily high, especially in the turbidity 

maximum zone (TMZ) (see more in section 2.4.3). The number of free-living bacteria 

in these regions is very low, and conversely, the majority of the microbial population is 

attached to particle surfaces (Uncles et al., 1998c; Herman & Heip, 1999). The SPM 

constitutes an optimal microenvironment since nutrients, normally present at low 

concentrations in the water column, are more accessible for the microbiota (Owens, 

1986; Plummer et al., 1987; Hollibaugh & Wong, 1999), and consequently organic 

matter mineralisation and nitrification (Owens, 1986; Barnes & Owens, 1998; Goosen 

et al., 1999; Herman & Heip, 1999), and also denitrification if low oxygen 

concentrations (Abril et al., 2000), are enhanced. 

2.2.1.4 Inorganic and organic substrates 

Inputs of dissolved and particulate organic matter (DOM and POM) and inorganic 

nutrients enter the estuaries mainly through the river or coastal waters, and support 

autotrophic and heterotrophic activity in different parts of the system (Bianchi, 2006). 

But in macrotidal and shallow estuaries, resuspension and diffusive fluxes from the bed 
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sediments also provide important amounts of substrates that support biogeochemical 

processes. 

Inorganic nitrogen, phosphorous and silicon represent the most important nutrients for 

primary productivity in the aquatic environment since they are, together with light, the 

limiting factor for phytoplankton growth (Hessen, 1999; Howarth & Marino, 2006). 

They are also indicators of water quality. An excessive nutrient concentration can 

trigger excessive production of biomass (HAB/eutrophication), which may result in 

hypoxic or anoxic waters and its further impacts for the aquatic life (Nixon, 1995; 

Howarth et al., 1996; Howarth et al., 2000). Inorganic carbon enters living biomass 

through carbon fixation by autotrophic organisms. This biomass will be transformed 

back into inorganic carbon via hydrolysis, fermentation, and then mineralisation 

(respiration or oxidation of the organic carbon via various electron acceptors such as 

oxygen, manganese oxides, nitrate, iron oxides, and sulphate) (Canfield et al., 2005b). 

Organic matter buried into the sediments will be involved in early diagenesis through a 

combination of biological, chemical and physical processes. In fact, high rates of 

organic matter oxidation are expected in estuaries due to the high rates of sediment 

accumulation (Henrichs, 1992). Sediment organic matter is very poorly characterised 

because it is a mixture of labile and refractory compounds of different molecular weight 

(from small chemically-identifiable molecules, such as carbohydrates, amino acids or 

short chain fatty acids, to large macromolecules) (Henrichs, 1992; Seitzinger & 

Sanders, 1997). The periodic sediment reworking, the oxic-anoxic oscillations and 

bioturbation are some of the environmental processes that induce re-partitioning of 

organic substrates between particulate and dissolved phases which has further 

consequences in their degradability (Middelburg & Herman, 2007). Organic matter 

becomes more refractory with sediment depth and its fate will depend on the level of 

early diagenesis that occur in the upper sediments (Henrichs, 1992), which is controlled 

by the redox conditions and the degradability of the organic detrital input (Bianchi, 

2006). 

Trace metals are also important inorganic substrates as they are essential micronutrients 

for microbial metabolism as constituents of important enzymes (e.g. copper or cobalt). 



39 

 

However they can be toxic for microorganisms and inhibit their growth even in very 

small concentrations (Bruland et al., 1991). 

2.2.1.5 Dissolved oxygen 

The level of dissolved oxygen (DO) in the estuarine water column determines the type 

and abundance of the organisms that can live therein. Dissolved oxygen can be 

produced in photosynthesis or it can come from the atmosphere by diffusion. It is the 

most favourable of the abundant electron acceptors and is consumed by aerobic 

heterotrophic bacteria, fungi and decomposer organisms during the breaking down of 

organic matter (Canfield et al., 2005b). The temperature and salinity influence the 

solubility of oxygen (oxygen solubility decreases with increasing temperature and 

salinity). Thus, there are seasonal changes in the DO levels (NOAA, 2008). 

Microorganisms can be classified according to their oxygen requirements: obligate 

aerobes (only grow when oxygen is present), facultative aerobes (oxygen not required 

but preferred), facultative anaerobes (can tolerate oxygen but grow better without), and 

obligate anaerobes (only grow in the absence of oxygen). There are also 

microaerophilic organisms which grow optimally at very low oxygen concentrations 

(Rheinheimer, 1985). The interfases between oxic and anoxic environments in 

sediments and also in water columns are sites of intense microbial activity (Canfield et 

al., 2005b). 

2.2.1.6 pH and redox potential 

The growth and reproduction of microorganisms is affected by the pH of the medium in 

which they live. The optimum pH of most aquatic bacteria is between 6.5 and 8.5. In 

estuarine environments, the pH tends to be constant due to the buffering effect of the 

chemical composition of seawater; although the biological activity may induce 

significant pH changes (NOAA, 2008). For example, during photosynthesis, the 

consumption of CO2 (which becomes carbonic acid when it dissolves in water) results 

in higher pH and more alkaline water. 

The redox potential (Eh) of the water and sediments of estuaries is also of ecological 

importance. Redox reactions involve the transfer of electrons between an electron donor 
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(oxidation reaction) and electron acceptor (reduction reaction). Physiological groups of 

microorganism can grow only within a range of Eh, therefore the location of the 

microorganisms promoting different respiration processes in the environment depends 

on the availability of the electron acceptors and the thermodynamics of the reactions 

(Stumm & Morgan, 1970; Froelich et al., 1979; Berner, 1981) (see Fig. 2.4 in section 

2.3.3). The redox potential can be altered by the microbial activity to a varying extent 

(Rheinheimer, 1985). 

There is evidence of an interesting processes in which one can see the fine relationship 

between pH, Eh and the microbial activity. Long filamentous bacteria (also known as 

“cable bacteria”) are able to mediate long distance (>1cm) electron transport from 

sulphide to oxygen in different aquatic sediments (Nielsen et al., 2010; Pfeffer et al., 

2012; Risgaard-Petersen et al., 2012). Thus, electric currents directly connect oxygen 

reduction at the surface with sulphide oxidation in the subsurface through bacterial 

nanowires. One of the lines of evidence for this electric coupling of spatially separated 

electrochemical half reactions was distinct pH signatures in the oxic zone (sharp pH 

increase due to proton consumption during the oxygen reduction) and in the anaerobic 

zone (proton production consistent with sulphide oxidation) (Nielsen et al., 2010; 

Risgaard-Petersen et al., 2012). Being able to use spatially separated electron donors 

and acceptors, cable bacteria are able to monopolise major energy sources and thus have 

a competitive advantage (Pfeffer et al., 2012). 

2.3 Nutrients and geochemical gradients in estuaries 

As mentioned in the introduction, estuaries are characterised by strong gradients in 

many different geochemical factors. These gradients determine which processes are 

dominant and how is the coupling between them. So biological and chemical processes 

influence physical and sedimentological processes and vice versa. 

2.3.1 Nutrient and major elements cycles 

Nutrient loads to estuaries have increased historically with the increase in human 

population, and agricultural and industrial activities within their catchments (Howarth et 

al., 1996; Hessen, 1999; Boyer, 2002). The loads of soluble and particulate material 
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coming into estuaries reflect the nature of the catchment and the type of anthropogenic 

activities developing therein (Nedwell et al., 1999). However, the transfer of riverine 

nutrient loads to coastal waters is not direct since an intense nutrient and other elements 

cycling can take place in the estuarine transition. Therefore estuaries play an important 

filtering role for DOM and POM, and are considered buffer systems or sinks for organic 

matter and nutrients (de Jonge et al., 2002). Nutrient loads change spatiotemporally and 

they will reciprocally influence the biological and physicochemical processes operating 

in estuaries.  

Nutrient cycling in estuaries not only changes the total nutrient loads, but also affects 

the ratios of nutrients which may have further implications in primary productivity 

(Hessen, 1999; Nedwell et al., 1999). Although, as has been already discussed, primary 

productivity contribution to nutrient cycling in turbid estuaries does not appear to be a 

significant process due to the low light availability (Nedwell & Trimmer, 1996; Jickells, 

1998). The bacterial breakdown of the organic matter associated with the sedimented 

material controls a series of redox reactions that will impact on the nutrient (N, P) and 

major elements (Fe, Mn, S) cycles.  

Bottom sediments are more important than the water column in the budgets of 

biologically significant elements (Nedwell et al., 1999). The microbial oxidation of 

organic matter needs of an electron acceptor supply and in the marine environment 

aerobic respiration and anaerobic sulphate reduction are the main metabolic processes 

for organic matter mineralisation (Sørensen et al., 1979; Nedwell, 1984). However 

sulphate is not as abundant when we move towards the freshwater end of an estuary, 

thus, alternative electron acceptors such as nitrate become important. Consequently, 

geochemical gradients associated with the availability of electron acceptors happen 

along the estuarine continuum. 

2.3.1.1 The nitrogen cycle 

Nitrogen is a key constituent of many important biomolecules and it is an essential 

nutrient to all living organisms (Canfield et al., 2005a). The N cycle (summarised in 

Fig. 2.2) is complex because N can be found in different redox states (from -3 to +5) 

and in a wide variety of forms (particulate, dissolved, organic, inorganic, gas) 
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(Galloway et al., 2004; Statham, 2012). The redox reactions in which those N 

compounds are cycled are the base of microbial processes that simultaneously, control 

the availability of N in the environment (Canfield et al., 2005b). 

 

Figure 2.2: Diagram of the Nitrogen cycle. Arrows represent metabolic 

transformations: assimilation processes in green and dissimilation processes in 

grey. Dashed vertical arrows indicate exchange or transport between oxic and 

anoxic zones. After Thamdrup (2012). 

River inputs are the main N sources to estuarine waters, although atmosphere and 

groundwater have been also recognised as important sources. From the total dissolved 

N inputs to an estuary, inorganic N (DIN) is generally the major portion, especially in 

hypernutrified estuaries; however organic N (dissolved (DON) or particulate (PON)) 

may be a significant input in some estuaries (20-90% of the total N load) (Seitzinger & 

Sanders, 1997). The speciation and distribution of N along the salinity continuum will 

be controlled by a complex group of dissimilatory and assimilatory transformations 

coexisting at a range of oxygen concentrations (Thamdrup, 2012); but denitrification is 

considered the major N-removal process to the atmosphere in shallow aquatic 

environments (Statham, 2012). 
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Despite their complexity, we can summarise the microbial N-transforming processes. 

To start with, atmospheric nitrogen (N2) is fixed by microbes into ammonia (NH3) 

which is biologically available; although N fixation contribution in the N cycling is 

probably small in estuaries (Nedwell & Trimmer, 1996). Ammonia may be also 

supplied by the breaking down of organic biomolecules containing N by microbes or 

animals (ammonification). Ammonium is only stable in reducing conditions. It can be 

assimilated by microbes and plants or oxidised 1) to nitrite (nitrification) (Owens, 1986) 

and ultimately to nitrate aerobically or anaerobically by a variety of 

chemolithoautotrophic prokaryotes (Canfield et al., 2005a); and 2) to N2 anaerobically 

in the anammox process (Mulder et al., 1995; Thamdrup & Dalsgaard, 2002). From the 

resulting oxidised species, nitrate is the most stable in surface oxic waters. Nitrite is less 

stable, and it is considered an important intermediate product in nitrification, and 

denitrification. Both can be assimilated by microorganisms or denitrified to N2 by a 

variety of heterotrophs (mostly facultative anaerobes) and chemolithoautotrophs (which 

use nitrate as electron acceptor in the oxidation of reduced inorganic compounds such 

as H2, H2S, Fe
2+

, or Mn
2+

). Dissimilatory nitrate reduction to ammonium (DNRA) is 

another nitrate reduction pathway that will retain N in the system in a bioavailable form 

(Tiedje et al., 1982; Jørgensen, 1989) and it was found to be as important as 

denitrification in shallow estuaries and tidal flats (Koike & Hattori, 1978). The 

anammox process can account for up to 50% of the N2 production in the marine 

environment (Thamdrup & Dalsgaard, 2002) and it has been also reported in estuarine 

systems and coastal sediments, although its importance increases with water depth as 

denitrification rates attenuate (Thamdrup, 2012). Anammox and DNRA may play a 

significant role in the N cycle, although their relative importance in different coastal 

environments is still in discussion (Song et al., 2013; Roberts et al., 2014). Organic N 

will be cycled during microbial metabolism and thus it also plays an important role in 

the estuarine geochemistry. However the organic N pool is difficult to characterise as it 

comprises a wide variety of compounds, the majority of which are complex high 

molecular weight compounds. These large molecules are more refractory and less 

bioavailable than low molecular weight compounds which are readily available for 

microbes and phytoplankton (Seitzinger & Sanders, 1997).  
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Nitrogen can be trapped in an estuary by primary productivity, organic matter burial and 

denitrification (Nedwell et al., 1999). In some estuaries denitrification is a major sink 

for nitrate, although the large proportion of N inputs are removed via transmission to 

the coastal waters (Jickells et al., 2000). Benthic bacterial denitrification is an important 

process of inorganic nitrate removal in muddy sediments, where there are high organic 

matter loads, low oxygen supply and high nitrate concentrations (Jickells, 1998; 

Teixeira et al., 2010). The loss of intertidal areas due to human activity has supposed 

the detriment of denitrification capacity and sediment storage in temperate estuaries 

such as the Humber estuary (Jickells et al., 2000). Among the final products of 

denitrification, N2 is the predominant gas, however N2O, always as a minor product 

though, seems to be favoured when nitrate concentrations are very high (Nedwell et al., 

1999), which is of relevance since N2O is an important greenhouse gas. 

2.3.1.2 Iron and manganese cycling 

Iron and Mn are the most important redox-active metals in aquatic sediments and both 

elements show similarities in terms of geochemistry and microbiology. Iron and Mn 

cycles are interlinked with other major elements cycles (C, N, P and S) and furthermore 

they interact with other compounds and TMs of environmental significance (Canfield et 

al., 2005b). In nature, under oxic conditions and at neutral pH, Mn (generally as Mn
4+

) 

and Fe (as Fe
3+

) are present as Mn and Fe oxides and oxyhydroxides (Stumm & 

Morgan, 1981), which are normally amorphous and poorly crystalline precipitates with 

high surface area, high adsorption capacity, and low solubility. They can also be in 

solution chelated with organic compounds (Canfield et al., 2005b). Iron and Mn oxides 

will be transported, mixed and eventually buried into anoxic sediments where they will 

be reduced either abiotically (with sulphides, and also Fe
2+

 in the case of Mn oxides), or 

biotically by oxidation of organic matter (Postma, 1985; Lovley & Phillips, 1988a; 

Thamdrup et al., 1994). Microbial Fe reduction can occur deeper in the sediment where 

it becomes the main C oxidation pathway and inhibits sulphate reduction and 

methanogenesis (Lovley & Phillips, 1987). There is an intensive redox-cycling of Fe 

and Mn as both (in their reduced and oxidised forms) react spontaneously with a range 

of compounds and are involved in a range of microbially mediated processes (Froelich 

et al., 1979; Straub et al., 1996; Luther et al., 1997; Hulth et al., 1999; Weber et al., 
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2001; Straub et al., 2004). Soluble Mn and Fe (Mn
2+

 and Fe
2+

) can diffuse upwards and 

downwards the sediment profile but they will be trapped in the sediment due to 

oxidation and precipitation as they approach the oxic surface layer (Thamdrup et al., 

1994). Manganese is more mobile and less sensitive to oxygen than Fe
2+

, so Mn
2+

 can 

migrate further up than Fe
2+

 in the sediment column towards a more oxidising zones 

(Postma, 1985). Due to differences in kinetics and thermodynamics, Fe
2+

 does not 

accumulate until Mn
4+

 is depleted (Froelich et al., 1979; Lovley & Phillips, 1988b). 

Dissolved manganese could be also removed, mainly by carbonate precipitation, but 

also by adsorption to clay minerals, formation of metal oxides and precipitation with 

sulphides. Similarly, Fe
2+

 accumulation is regulated by precipitation in different mineral 

phases, including carbonates, silicates, phosphates and, preferably, stable iron sulphides 

(Middelburg et al., 1987; Canfield et al., 2005b; Hedrich et al., 2011). The scavenging 

capacity of the Fe and Mn oxyhydroxides for TMs plays a key role in the distribution 

and transport of those in the aquatic sediments (Boyle et al., 1977; Huerta-Diaz & 

Morse, 1990; Burdige, 1993). 

2.3.1.3 The sulphur cycle 

Sulphate is one of the major ions in seawater, with concentrations ranging from 24-28 

mM, significantly higher than concentrations in freshwaters (0.1 mM). This difference 

sets an important gradient in estuarine biogeochemical cycling (Bianchi, 2006). Figure 

2.3 shows the S cycle from a simplified microbiological perspective, so the reduction of 

sulphate to sulphide can be assimilatory or dissimilatory. The range of the oxidation 

states of the compounds involved in these processes goes from +6 (SO4
2-

) to -2 (H2S). 

Sulphur is an important redox element due to its linkage with other major element and 

TM cycles, and it plays a key role in the early diagenesis of anoxic sediments 

(Jørgensen, 1977). Below the oxic and suboxic zones, bacterial sulphate reduction has a 

dominant role in organic matter mineralization at the sea bed (Jørgensen, 1982) and in 

most shallow aquatic environments (Canfield et al., 2005b). However some coastal 

environments have shown metal oxide reduction as the dominant anaerobic C 

mineralization pathway (Aller, 1990; Canfield, 1993). Most of the sulphide produced 

will be trapped in the sediments as it precipitates with metal ions and eventually forms 

pyrite (Jørgensen, 1977). However some of the sulphide can stay in solution and 
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diffuses upwards to the oxic surface. In its way towards the surface most of the sulphide 

will be oxidised back to a variety of intermediate S compounds and eventually to 

sulphate chemically (with MnO2) or microbially by chemoautotrophic or 

photoautotrophic sulphur bacteria (Jørgensen, 1977). The group of microorganisms 

involved in the S cycle is the most diverse of the microbial groups involved in an 

element cycling (Canfield et al., 2005b). Stable sulphur isotopes have been used to 

determine the microbial pathways and the origin of the different S-pools (Jørgensen & 

Cohen, 1977; Peterson & Fry, 1987; Canfield & Raiswell, 1999). However there is still 

poor understanding of the quantitative importance of the many different intermediate 

processes of the cycle. 

 

Figure 2.3: Diagram of the S cycle from a microbiological approach. After 

Canfield et al. (2005b). 

2.3.2 Salinity gradient 

The existence of a salinity gradient, due to fresh and saline waters mix, is the decisive 

characteristics of an estuary and distinguishes it from other aquatic or coastal 

environments. Salinity plays a critical role in in these transitional ecosystems since 

defines physical, chemical and biological features, and their interactions (Telesh & 

Khlebovich, 2010). In the river water, salinity, in the range of few hundreds of 

milligrams per litter, is more variable than in the seawater in which stable 

concentrations of salts are in the range of grams per litter. The salts in the river water 
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are mainly derived from the weathering of rocks within the catchment and human 

activities (Bianchi, 2006). The major components of the seawater are Cl
-
>Na

+
>SO4

2-

>Mg
2+

>Ca
2+

 and K
+
 (Thurman & Trujillo, 2004). The relatively constant concentrations 

of these ions in the seawater indicate their non-reactive behaviour and their long 

residence times, but, in estuaries they can be altered significantly due to a range of 

processes (dissolution, oxidation, evaporation, etc.) (Bianchi, 2006). 

Despite their limitations, “property salinity plots” (see an example in Fig. 6.4) are one 

of the most used methods to derive fluxes of dissolved constituents in estuaries 

(Nedwell et al., 1999). This approach assumes that the estuary is well-mixed and is at 

steady state. So the parameter of interest (normally a dissolved component) is plotted 

against a conservative index of mixing (salinity or chlorinity) (Morris et al., 1978). 

Therefore information about the interactive chemical processes involving removal or 

addition of that component in the estuarine continuum or about the variability of the 

riverine fluxes and their composition can be inferred. The region of salinities between 

5–8 psu has been identify as a “critical salinity zone” and is where the most likely major 

biotic and abiotic processes show nonlinear dynamics of change (Telesh & Khlebovich, 

2010). 

2.3.3 Redox gradient 

In aquatic sediments, there is a vertical progression of metabolic processes determined 

by the use of the available electron acceptors during organic matter mineralisation 

(Canfield & Thamdrup, 2009) (Fig. 2.4). The sequential utilization of the terminal 

electron acceptors is based on the thermodynamics of the process and the free energy 

yield (Stumm & Morgan, 1970; Froelich et al., 1979; Berner, 1980) (Table 2.1). 
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Table 2.1: Principal pathways for organic matter (as acetate) mineralization in 

nature using different electron acceptors and standard Gibbs free energy 

associated with the reaction (source Canfield et al., 2005b). 

 kJ per 

reaction ΔG 

(acetate)* 

Oxic respiration 
-402 

O2 + 1/2 C2H3O2
- 
 HCO3

-
 + 1/2 H

+
 

Denitrification 
-359 

4/5 NO3
-
 + 3/5 H

+
 + 1/2 C2H3O2

- 
 2/5N2 + HCO3

-
 + 1/5 H2O 

Mn reduction 
-385 

7/2 H
+
 + 2 MnO2 + 1/2 C2H3O2

- 
 2 Mn

2+
 + HCO3

-
 + 2 H2O 

Fe reduction (FeOOH) 
-241 

15/2 H
+
 + 4 FeOOH + 1/2 C2H3O2

- 
 4 Fe

2+
 + HCO3

-
 + 6 H2O 

Sulphate reduction 
-43.8 

1/2 H
+
 + 1/2 2SO4

2-
 + 1/2 C2H3O2

- 
 1/2 H2S + HCO3

-
  

Methanogenesis 
-19.9 

1/2 H2O + 1/2 C2H3O2
- 
 1/2 CH 4 + 1/2 HCO3

-
 

 

At the surface, dissolved oxygen can diffuse a few millimetres into the sediments (the 

oxic zone) where aerobic respiration is the dominant metabolic pathway. Beneath, there 

is often a suboxic zone, the nitrogenous zone, where nitrate (and nitrite as its reduction 

intermediate) accumulates and is actively reduced. Below or overlapping the 

nitrogenous zone, Mn
2+

 accumulates as a result of Mn reduction (the manganous zone). 

In the upper bound Mn
2+

 can react with oxygen, and maybe nitrite or nitrate (Canfield 

& Thamdrup, 2009), to Mn(IV) (mainly) and Mn(III). Sometimes, if the oxidation is not 

completed, Mn
2+

 diffuses upwards into the water column (Thamdrup et al., 1994). 

Dissolved Fe
2+

 accumulates in the absence of oxygen and normally below nitrate- and 

Mn-reduction zones as a result of a combination of biotic and abiotic reduction of Fe 

oxides. This zone will be the ferruginous zone, and in its upper limit, Fe
2+ 

can be 

oxidised by oxygen (biotically and abiotically), by nitrate and nitrite (biotically), and by 

Mn oxides (abiotically). Downward diffusion of Mn
2+

 and Fe
2+

 into anoxic zones may 
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result in their precipitation with different mineral fractions (carbonates, silicates 

phosphates and sulphides) (Berner, 1981; Middelburg et al., 1987). In general, besides 

the effects of advection and bioturbation, Mn and Fe cycling in aquatic sediments 

implies upward and downward diffusion that depends on concentration gradients and it 

will be influenced by different environmental factors (pH, oxygen, hydrogen sulphide 

concentrations, organic matter, SPM, etc.) (Canfield et al., 2005b). Finally, in anoxic 

conditions, sulphate reduction results in an accumulation of dissolved sulphide (the 

sulphidic zone). Sulphate is the second most abundant anion in seawater and its 

reduction is the major anaerobic mineralization process in coastal sediments (Jørgensen, 

1977, 1982; Middelburg & Levin, 2009). Sulphide is very reactive and the upper bound 

of the sulphidic zone will be defined by its biotic and abiotic reaction with oxygen, 

nitrate and nitrite, and Mn/Fe oxides. Below, methane is accumulated at depth when 

sulphate is nearly depleted (Iversen & Jørgensen, 1985); this zone is known as methanic 

zone and methanogenesis will be the main metabolic process therein. 
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Figure 2.4: Idealised vertical distribution of electron acceptors within the 

sediment profile (left box) and the chemical zones (italic font) (right box) which 

typically accompany the respiration process (metabolic zonation). Note the 

overlap between zones and the not exact coincidence in some cases between 

chemical and metabolic zonations. After Canfield & Thamdrup (2009). 

2.3.4 Contaminants 

Among the many different types of pollution (from sewage, agricultural or industrial 

fluxes, runoff, atmosphere) and pollutants (metals, organic (PCBs and PHAs) and 

organometallic compounds, pathogens, oil, etc) that an estuary may receive, we will 

focus here on the trace metals (TMs). 

The major inputs of TMs to estuaries are derived from riverine, atmospheric and 

anthropogenic sources (Millward & Moore, 1982; Du Laing et al., 2009). Trace metal 

concentrations are typically low (in the order of ppb). Some TMs are micronutrients for 

many organisms, however they are also important because of their potential toxic 

effects (Di Toro et al., 1990; Bruland et al., 1991; Allen et al., 1993). In general, metals 

in solution are more bioavailable and reactive, but the particle associated metals are 

very important because they may have a long-term impacts since the solid reservoir can 
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act as a buffer and a secondary source of dissolved metals (Turner & Millward, 2002). 

Trace metals have shown a non-conservative behaviour in many estuaries (Millward & 

Turner, 1995). Furthermore, all the metals do not behave in the same way and their 

behaviour may also vary among estuaries (Millward & Moore, 1982), and hence the 

difficulties in the study and modelling of TM cycling in the highly variable conditions 

of an estuary (Millward & Moore, 1982; Turner & Millward, 2002). The complex 

interactions between the aqueous and solid phases (sorption reactions, coagulation and 

flocculation, oxidation, precipitation) and the kinetics of such processes can explain 

some of these differences. 

The environmental factors controlling the availability, recycling, transport and fate of 

TMs in the estuarine system are: redox, SPM, salinity, organic matter, pH, carbonates, 

and the presence of sulphides. Particularly in estuaries, SPM plays a very significant 

role in the chemical cycling due to the constant variations in SPM (composition, 

concentration and reactivity) related to the regular (tidal) and other sporadic 

resuspension events (Turner & Millward, 2002) (see also Fig. 2.5). Salinity is another 

important environmental parameter since seawater ions will compete for the sorption 

sites and there are important complexation reactions (Du Laing et al., 2009). In general, 

TM mobility increases with increasing salinity. Organic matter influences on TM 

cycling due to the adsorption, complexation and chelation processes, however it has 

been associated with either an increase or decrease in TM mobility in different 

circumstances (Du Laing et al., 2009). Iron, Mn and S cycling have direct links with the 

TM cycling. Iron and Mn oxides are the main carriers of TMs in oxic conditions, while 

in anoxic conditions, sulphides will decrease the mobility and availability of TMs via 

precipitation (Du Laing et al., 2009). 

2.4 Estuarine sediments 

Estuaries are known as regions of sediment accretion (Schubel & Carter, 1984). 

Estuarine sediments are derived from a variety of sources such as atmospheric inputs, 

natural fluvial inputs, continental shelf, in situ chemical and biological processes, 

shoreline erosion, and anthropogenic activities. Their distribution is controlled by the 
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geomorphology, the hydrodynamics within the upper reaches of the estuary and 

tidal/sediment transport processes near the mouth (Bianchi, 2006). In general, sediments 

are transported mainly as suspended load (bed loads are minor), stored in the estuary, 

and eventually discharged into the coastal shelf (Mckee & Baskaran, 1999). The 

suspended load contains clays and silts and its distribution depends on the turbulence 

and water currents. Conversely, the coarse material (sands, gravel, etc.) is distributed by 

bed load transport, which includes saltation and is generally slower than the mean flow 

of water (Bianchi, 2006). 

2.4.1 Sediment deposition and depositional features 

In general, sediment deposition follows a pattern of sedimentation zones. The head of 

an estuary is dominated by fluvial deposition and biological inputs become more 

important in the higher salinity regions. The central region, typically a high productivity 

zone, is strongly influenced by biological processes such as bioturbation or faecal pellet 

deposition. At the mouth, sediment deposition is controlled by high energy marine 

processes (waves, littoral transport, tides). According to Nichols et al. (1991) model, the 

sediment is coarser in the upper estuary, becomes finer at the middle and coarser again 

at the mouth. The residence time of sediments is very variable (from days to years) 

since some of the particles entering the estuary with the river flows will remain in 

suspension and reach the sea fairly quickly, whereas a significant proportion will 

undergo many cycles of deposition on the bed and (re)suspension (Dyer, 1989). 

The tidal classification comprises: microtidal (tidal range of <2 m), mesotidal (tidal 

range between 2-4 m), and macrotidal (tidal range >4 m) (Hayes, 1975). Tidal-

dominated estuaries are characterised by macrotidal ranges and in general these 

estuaries have a funnel shape with strong tidal currents, enhanced by the large opening 

at the mouth, that control the transport of river-borne sediments (Wells, 1995). Some 

common features of many macrotidal estuaries are: subtidal sand ridges, sand wave 

migration, bordering intertidal mudflats and wetlands (marshes and mangroves). The 

intertidal area is usually one of the major sources and sinks for suspended sediment 

within an estuary (Dyer, 1989). Channel sands are the dominant sediment facies near 

the central and mouth regions, while finer sediments accumulate in the low-energy 



53 

 

margins and the narrow sinuous head of the estuary (Nichols et al., 1991). Differences 

in physical forcing, carbon loading, remineralisation rates and burial will be reflected in 

the distinct sedimentary facies. 

The four dominant processes controlling estuarine sediment dynamics are: erosion of 

the bed, transportation, deposition, and consolidation of the deposited sediments 

(Nichols & Biggs, 1985). Erosion will depend on how cohesive the sediments are, 

which is related to grain size and shear stress of the bed. The erodibility of the sediment 

varies spatially and temporally and it is also influenced by the microbial mats and 

biofilms formed on the sediment surfaces (Bianchi, 2006). 

Furthermore neap-spring cycles have implications in the ratio of sedimentation to 

erosion in an estuary (Allen et al., 1980). During periods of decreasing tidal amplitude, 

the peak current velocities decrease day by day while the duration of the slack 

increases; thus the ratio of sedimentation to erosion increases. On the contrary, when 

tidal range increases, there is net erosion due to the increasing current velocities at each 

succeeding tide. After the cycle is completed, a proportion of the sediment deposited 

during neap conditions gets compacted and resists erosion during the following spring 

tides, creating a thin layer of mud that accumulates in the estuary (Parker et al., 1994) 

(see also section 2.4.3). Repeated neap-spring cycles have a role in the regulation of the 

residence time of suspended sediments in the estuary (Allen et al., 1980). In macrotidal 

estuaries, seaward transport of sediments should be maximum during decreasing spring 

tides, when there is a residual tidal flow out of the estuary, while during the strongest 

spring-tides high levels of suspended material are maintained (Allen et al., 1980). 

2.4.2 Suspended particulate matter in estuaries 

In aquatic environments, and particularly in estuaries due to their elevated 

concentrations, suspended particles are involved in controlling the reactivity, transport 

and biological impacts of substances, and provide a crucial link for chemical 

constituents between the water column, bed sediment and food chain (Turner & 

Millward, 2002) (see Fig. 2.5). SPM concentrations sometimes are high enough to limit 

light penetration and, consequently, productivity (Dyer, 1989). Although, SPM 

concentrations usually decline seawards allowing improved light conditions. Suspended 
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particles, which include sediments and seston, are suspended more or less temporarily 

in the water column, and are in continuous exchange with the bed sediment reservoir. 

The seston refers to biogenic material formed in situ (plankton, bacteria, invertebrate 

larvae and eggs, and assemblages thereof), and has a strong seasonal component. On the 

other hand, suspended sediments (mud, silt, sand and colloidal aggregates) include 

actually a complex assemblage of mineral, biotic and anthropogenic material (Turner & 

Millward, 2002). 

Fine particles are cohesive and readily flocculate. Coagulation leads to the formation of: 

agglomerates (organic and inorganic matter weakly bound), aggregates (inorganic 

matter strongly bound) and floccules (non-living biogenic material bound by 

electrochemical forces) (Schubel, 1971). Moreover, coagulation is favoured as salinity 

increases because the repulsive forces between negatively charged particles, which 

prevent their flocculation, are destabilised by the increasing concentration of cations 

(positively charged) in solution (Stumm & Morgan, 1970). The salinity conditions and 

tidal gradients found in estuaries are ideal for coagulation processes, together with other 

factors, such as DOM, concentration and composition of SPM, particle size, etc. 

(Bianchi, 2006). Grain size is particularly important and sometimes is used to further 

classify SPM due to its implications in settling characteristics, residence time, and in the 

biogeochemical cycles (Dyer, 1989; Turner & Millward, 2002). 

In estuaries, SPM concentrations show important spatiotemporal variations. Sediments 

are resuspended regularly in a normal tidal cycle, but also in occasional events related 

to weather conditions (winds, seasonal storms, rainfall, and floods) which will have 

further implications for the concentration and character of SPM. The role of suspended 

particles is also significant in estuarine systems because of the modification of chemical 

and particle reactivities by abrupt changes in salinity, pH, redox conditions and DOM 

(Turner & Millward, 2002). A wide variety of pollutants that have an affinity for fine 

particles can be trapped within the estuarine circulation system. For example, TMs can 

enter estuaries through river loads bound to particles and then, particle-water 

interactions during estuarine transport may enhance the particulate TM concentrations 

(Millward & Glegg, 1997). Thus the retention of contaminated sediments in estuaries 
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delays their transport to the ocean, and so, estuaries may become a long-term source of 

pollutants to the coastal waters as a result of internal cycling (Millward & Glegg, 1997; 

Mitchell, 1998). 

 

Figure 2.5: Summary diagram of the role of SPM in estuarine biogeochemical 

processes. The boxes represent the reservoirs of materials and chemicals, arrows 

represent physical and biogeochemical processes between compartments (after 

Turner & Millward, 2002). 

2.4.3 Resuspension, estuarine turbidity maximum and fluid muds 

Transport of water and suspended sediments in estuaries is a combination of density 

circulation (resulting from density gradients between fresh and sea water) and tidal 

processes; and the trapping of fine sediments in the upper and middle regions of an 

estuary is the main effect (Allen et al., 1980). The mixing of fresh and saline water is a 

fundamental process because it controls the nature of longitudinal and vertical density 

gradients, and consequently the estuarine density circulation. Also turbulence, due to 

river and/or tidal currents, results in mixing and diffusion (Allen et al., 1980). 

In partly-mixed and well-mixed estuaries the freshwater-saltwater interface is 

associated with a region of high SPM concentration known as TMZ and it delimits the 
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intrusion of brackish waters into freshwaters within an estuary (Uncles et al., 1998b). 

The TZM is a significant feature of an estuary and indicates the magnitude of sediment 

mobility (Dyer, 1989). By definition, the TZM is the region where SPM concentrations 

are significantly higher (10-100 times) than in adjacent fluvial or coastal waters 

(Schubel, 1968), often >10 g L
-1

 (Mitchell, 1998). The TMZ is located at the head of the 

estuary, but its position has a strong seasonal behaviour as it moves upstream and 

downstream the estuary depending on the freshwater inflow (Mitchell, 1998; Uncles et 

al., 1998b). The turbidity maximum is often associated with an oxygen minimum and is 

generally considered an area of high microbial activity (nitrification-denitrification) as a 

result of bacterial association with the periodically resuspended particles (Owens, 1986; 

Plummer et al., 1987; Barnes & Owens, 1998; Goosen et al., 1999; Herman & Heip, 

1999; Hollibaugh & Wong, 1999; Abril et al., 2000). 

The dynamics of the turbidity maximum is influenced by river flow, tidal amplitude 

variations, channel morphology, wind strength and direction, and sediment availability 

through a series of complex mechanisms involving turbulence, gravitational circulation, 

tidal asymmetry, tidal straining of particles on the ebb tide, solute transport, 

flocculation, sedimentation, erosion and consolidation processes (Allen et al., 1980; 

Dyer, 1989; Mitchell, 1998). Particle trapping efficiency increases in the vicinity of the 

salt wedge front because density stratification supresses turbulent mixing (Geyer, 1993). 

Therefore, during ebb tide, the seaward flow in the lower layer favours the settling of 

materials in a highly stratified particle trapping zone. The cycles of resuspension and 

settling of this bulk of fine sediment material are intense (Grabemann et al., 1997), and 

so, during flood tide, when erosion dominates, it will be redistributed landwards (Geyer, 

1993). 

Sedimentation rates are rapid and high in the TMZ, and so the trapping of particles in 

this benthic boundary layer can result in the formation of “fluid muds” (Allen et al., 

1980; Parker et al., 1994). The fluid muds are described as a highly concentrated, high 

viscosity, benthic layer with SPM concentrations >10 g L
-1

 (may be >100); they are 

formed in many macrotidal estuaries at neap tides and show oxic/anoxic character with 

the tidal oscillations (Abril et al., 2000). During spring tides, vertical stratification may 
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be disrupted and the fluid muds are more dispersed, so they will be called mixed or 

mobile muds instead (Bianchi, 2006). 

2.5 The Humber Estuary 

The Humber Estuary (Fig. 2.6) is a macrotidal and well-mixed estuary located on the 

east coast of Northern England, although it shows a weak vertical halocline in the outer 

part (Pethick, 1990). The tidal range, one of the largest in the word, varies between 2.5 

and 7.2 m. It is the largest estuarine system in England in terms of catchment area 

(26,000 km
2
, 20% of the area of England) and, it represents the largest freshwater 

contribution to the North Sea from all the British rivers (236 m
3 

s
-1

 as an annual 

average) (Neale, 1988; Neal & Davies, 2003). It is considered a major source of 

nutrients to the North Sea, and these nutrient loads are affected by the agricultural, 

industrial and urban activities within the basin (Pethick, 1990; Uncles et al., 1998a). 

The catchment area is very diverse in terms of natural environment and land use, 

including former coal and metal-mining areas, and so it is possible to distinguish 

between the more rural northern rivers (Derwent, Swale, Ure, Nidd and Wharfe, all 

tributaries of the River Ouse), and the more urban and industrial southern rivers (Aire 

and Calder which are tributaries of the Ouse, plus the Don and the Trent) (Jarvie et al., 

1997). The estuary has been heavily industrialised, hosts major ports, oil and gas 

refineries, receives several industrial and sewage discharges, and it is continuously 

dredged for maintenance of the shipping channels (Cave et al., 2005). It has been 

estimated that the area surrounding the Humber reached its peak in pollution in the 

50−70s (Lee & Cundy, 2001). 

The Ouse and Trent Rivers are the main systems contributing to the freshwater flow to 

the Humber and they meet at the Trent Falls (62 km west of the Spurn Point). Upland, 

the tidal effect is limited by artificial locks and weirs and it reaches to the Naburn Weir 

(~60 km from the Humber) on the Ouse River and to the Cromwell Weir (~80 km to the 

Humber’s confluence at Trent falls) on the Trent River. 
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Figure 2.6: Map of the Humber catchment and its main tributaries. 

2.5.1 Meteorology 

The climate in the catchment area is characterised by an annual temperature of ~10°C 

approximately, with maximum temperatures in the range of 5-8 and 19-23°C in winter 

and summer respectively. In general the area receives an average annual rainfall of less 

than 700 mm (Met Office, 2012) which is associated with Atlantic depressions and 

convection, and it is well spread over the year. The area is considerable sunnier than 

most areas at this latitude in the British Islands and also drier due to the rain shadowing 

effect of the Pennines (Met Office, 2012). 
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2.5.2 Geology and geomorphology 

The geology of the Humber catchment shows a variation from east to west (Jarvie et al., 

1997). In draining a fifth of England, the materials coming to the estuary reflect the 

different drainage surfaces they come from (Neale, 1988). The rivers of the western side 

of the Humber catchment (the Ouse catchment) flow eastwards across the 

Carboniferous rocks of the Pennines and the Triassic Sandstones of the Vale of York 

(Jarvie et al., 1997). The Derwent drains an area of younger Jurassic Limestone and 

Clays of the North York Moors before joining the Ouse. On the other hand, the Trent 

drains a large part of the East Midlands, a more lowland system composed by several 

divisions of the Permian and Triassic (New Red Sandstone-aged sedimentary rocks), 

which are often overlain by superficial glacial deposits. The Trent also contains water 

from tributaries coming through Carboniferous rocks (from the Derbyshire Moors in the 

North Midlands) and Jurassic Limestone and Clays to the south east (Neale, 1988; 

Jarvie et al., 1997). 

The Quaternary period had a great influence on the Humber catchment. The majority of 

the deposits of this period have been attributed to the first part of the last glaciation 

(Devesian, 18,000-13,000 years BP) (Catt, 1990; Jarvie et al., 1997). The drainages 

were blocked during the glaciation, and the resulting impounded lake accumulated 

several metres of laminated clays on its bed. When the Devesian ice melted away, the 

new coastline was positioned about 40 km eastwards of the pre-glaciation (Ipswichian 

period) coastline, and a network of streams draining towards the Humber developed 

across the exposed surface of the lake clays. These streams became the present-day 

rivers. During the early Holocene (12,000 years BP), sea level was low and rivers cut 

down deep valleys into the glacial deposits which, as the sea level rose, accumulated 

fine (silts and clays) alluvium (Jarvie et al., 1997). The sea level reached the present 

level 6,000 years ago and, since then, the outline of the Humber has been developed. 

The current geomorphology of the Humber reflects three centuries of urbanisation and 

land reclamation (Jickells et al., 2000) and 405 km of coastal defences protect the 

Humberside from river and sea floodings (Andrews et al., 2006). Alteration of the river 

courses, draining low-lying lands, and reclamation processes, such as the practice 
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known as ‘warping’, are the principal human activities that have influenced fluvial 

processes. For example, during the warping water is retained by low walls or bunds at 

high tide and the suspended sediments are allowed to settle before the water is drained 

away (at low tide). This practice of sediment deposition, was carried out from the mid-

eighteenth to the mid-twentieth century in the Humber area and has produced soils of 

great agricultural value in the banks of the estuary (Jarvie et al., 1997). 

2.5.3 Sediments, tidal processes and turbidity in the Humber Estuary 

Tidal processes are the dominant processes controlling sediment transport in the 

Humber Estuary. It has been estimated that most of the sediment entering the Humber 

comes from the flooding marine tide, ca. 2.2×10
6
 m

3
 a

−1
, compared to just 0.3×10

6
 m

3
 

a
−1

 from rivers (Andrews et al., 2008). Or in other words, the total annual SPM loads 

from the rivers is approximately equivalent to the sea-born sediment carried on a single 

storm tide into the estuary. Nearly 90% of the sediments carried up into the Humber by 

the currents and tidal flow are derived from the rapid erosion of the Holderness cliffs 

which are situated immediately north of the Spurn Point (Albakri, 1986; Jickells et al., 

2000; Cave et al., 2005). However, only a small proportion (similar to the quantity 

brought in to the estuary by river flows) of these sediments is actually deposited (Cave 

et al., 2005) because most is continuously resuspended and eventually re-exported to 

the North Sea (Jickells et al., 2000). It has been estimated that the residence time for a 

standard particle in the Humber is ca. 18 years, whereas the residence time of estuarine 

water for the whole system is between 40-60 days (Millward & Glegg, 1997; Uncles et 

al., 1998d). The continuous processes of erosion and deposition over each tidal cycle 

prevent the mobile sediment pool from settling and, hence to become part of a 

consolidated bed (Mitchell, 2005). 

The estuarine channel is floored by sand and muds which alternate. They overlay glacial 

till (boulder clay). Mud deposits (medium silt class) dominate, although it changes into 

more sandy-silt deposits near the low water mark in the outer estuary and into silty-clay 

in the middle estuary (Freestone, 1987). The central channels, through where the 

strongest currents flow, contain instead coarser (sands) deposits (Freestone, 1987; 

Pethick, 1988). 
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The strong tidal asymmetry of the Humber results in high variations in the current 

velocities especially in the upper estuary. There is a short and fast flood tide (2-3 hrs, 

speed ca. 2 m s
−1

), followed by a long slack period of slower ebb (~10 hrs) (Uncles & 

Stephens, 1999). This asymmetry is translated in an imbalanced transport of sediments 

into and out of the estuary. Thus, the weaker currents of the falling ebb do not evacuate 

the same amount of sediments carried into the estuary during the rising flood. It is the 

rapid narrowing inland which causes the reflection of the tidal wave in the Humber. As 

the reflected wave meets the oncoming wave, they cancel each other since the current 

flows are opposite, and so the water level is not the highest at this point. The fact that 

the fastest currents do not coincide at highest water level, explains the depositional 

processes along the banks of the estuary, on which so much of the human activity in the 

estuary depends (Pethick, 1988). 

The Humber, as a macrotidal estuary, is typically very turbid. The concentrations of 

SPM exhibit important seasonal and longitudinal variability and are in the range of <10 

mg L
-1

 in the tidal river to >10,000 mg L
-1

 in the TMZ (Uncles et al., 2006). These 

concentrations are significantly greater compared to those found in other microtidal 

estuaries (400-700 mg L
-1

 (Weser estuary, Germany); 1000 mg L
-1

 (Seine estuary, 

France); 300-400 mg L
-1

 (Scheldt estuary, Belgium); Mitchell, 2013). The turbidity 

maximum is a strong feature of the Humber, however it is very variable and not static. It 

develops at salinities between 0-10 psu (Uncles et al., 1998b) and normally, SPM 

within the TMZ has higher concentrations in the tidal Ouse (10-30 g L
-1

, a peak of 35 g 

L
-1

 was observed in the summer of 1995) than in the tidal Trent (10-15 g L
-1

) (Mitchell, 

2005). The location of TMZ shows strong seasonal displacement (Uncles et al., 1998b). 

During the summer and early autumn, the flood-ebb asymmetry moves the turbidity 

maximum up-estuary of the freshwater and seawater interface. During the winter and 

spring, when the river flows are greater, it is flushed down-estuary into more saline 

waters. However, in this period of the year, Uncles et al. (1998b) pointed that the level 

of SPM in this area of weaker tidal asymmetry can be maintained by the enhanced 

accumulation of fine sediments due to the stronger gravitational circulation in deeper 

high-saline waters. The TZM plays a major role in the nutrient, TM and organic matter 

cycling. 
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Chapter 3 

Material and Methods 

3.1 Sampling survey and locations 

The sampling survey for this study was undertaken in the summer of 2014 (on the 15
th

 

July). All samples were collected during the low tide of a single tidal cycle. The survey 

started in the most seaward location, Skeffling, and continued inland following the 

direction of the flood tide until Boothferry. The aim was to find representative locations 

of estuarine environments (from fresh to saline water) within the salinity range. 

 

Figure 3.1: Map of the UK (a) and the Humber estuary with the locations of the 

sampling sites (b). 

Table 3.1: Sampling location coordinates. 

 Boothferry Blacktoft Paull Skeffling 

Longitude 0°53'25"(W) 0°43'57"(W) 0°14'01"(W) 0°04'13"(E) 

Latitude (N) 53°43'38" 53°42'28" 53°43'04" 53°38'37" 

 

The Boothferry site will be called Site 1 (S1). Boothferry is located after the river Ouse 

meets the river Aire. It was the most landward location in this survey. Sediments looked 

well stratified at first glance, with a clear colour change from brown to grey/black 

between surface and subsurface layers. 
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The Blacktoft site will be called Site 2 (S2). It is located in the inner estuary region, 

before the Trent Falls, the confluence between the Ouse and the Trent. The sediment 

contained a considerable amount of plant material and debris and looked fairly mixed 

without a clear stratification by colour. 

The Paull site will be called Site 3 (S3). It is located in the north bank of the mid-

estuary, after Hull. At first glance, sediment looked muddier and the colour 

stratification was abrupt (i.e. the very thin surface layer of sediments was brown 

compared to the bulk dark grey-black sediment underneath). A characteristic “rotten 

eggs” odour indicating the presence of hydrogen sulphide could be noticed when 

digging into the dark grey-black surface sediments. 

The Skeffling site will be called Site 4 (S4). It is located in the north bank of the outer-

estuary, after the Sunk Island. It was the most seaward location in this survey. There 

was a strong sediment colour stratification (i.e. the very thin surface layer of sediments 

was brown compared to the bulk dark grey-black sediment underneath) and the “rotten 

eggs” smell was also noticeable. 

3.2 Sample collection, handling and storage 

Surface (0-1 cm), subsurface sediments (5-10 cm) and river water adjacent to each site 

were collected into different brand-new and acid washed polythene containers (10% v/v 

HNO3 and rinsed 5 times with DI water). Surface sediments were taken with care to 

collect only the top few millimetres of sediment using a spatula to scratch off the 

surface. Sediment from the subsurface (at the depth required) was dug with a spade 

rapidly to minimise oxidation. Care was taken to avoid mixing with surface sediments 

and macroorganisms (when seen) were avoided. No air space was allowed in the plastic 

containers in which sediment was collected to minimise oxidation of the sample before 

used in the laboratory experiments. River water pH, conductivity and temperature were 

determined in the field using a Myron Ultrameter PsiII handheld multimeter calibrated 

in-situ. The environmental temperature on the day of the sampling was in between 19-

20°C at all sites. 
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Sediment and water samples were brought back to the laboratory within ~5 hours in a 

cold box and then stored in the fridge at 4°C (or freezer at -20°C in the case of sediment 

subsamples for microbiology analysis and AVS-pyrite extractions) until used. 

Subsamples of wet sediments were weighed and placed in the oven to dry (70°C) in 

order to determine water content and for further use (see below). Part of the river water 

was filtered (0.2 µm Minisart
®
), transferred to different Nalgene HDPE bottles, and 

subsamples were acidified with trace analysis grade acid (1% v/v HNO3 conc.) for trace 

metal (TM) analysis. Porewaters were recovered from each sediment sample by 

centrifugation (30 min, 6000 g) within 6-8 hrs of sampling, filtered, acidified if needed , 

and stored in centrifuge tubes for further analysis. Acid extractable iron (II) (0.5 N HCl 

Fe
2+

(s), see method below 3.3.1.3.3) was analysed directly the same day of sampling due 

to the redox sensitivity of reduced iron. 

3.3 Geochemical analyses 

3.3.1 Solid phase 

3.3.1.1 Bulk mineral and chemical composition 

Dry sediments were ground using pestle and mortar for X-Ray diffraction (XRD) and 

X-Ray fluorescence (XRF).  

The bulk mineral composition was determined by XRD analysis, a technique to 

identify, quantify and characterise minerals in complex mineral assemblages. The 

identification of the minerals present is relatively easy to determine from the position 

and rough intensities of the diffraction peaks, however, the quantification of the 

individual mineral content is much more difficult because the modelling of the 

intensities of the peaks in the diffraction pattern has to be accurate (Stanjek and 

Hausler, 2004). Here, a beam of X-rays is directed at a sample which scatters the beam; 

the crystal planes of the mineral determine the scattering pattern. The distance the X-

rays covered into the crystal before being reflected depends on the lattice planes 

distances (d) and the angle of the beam (θ). The interaction of waves with the crystal 

structures produces diffraction effects if the wavelength and the periodicity of the 

crystals are of similar magnitude, therefore diffraction redistributes the intensity of the 
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whole scattering sphere into distinct directions which results in a signal output called 

diffraction peaks (Stanjek & Hausler, 2004). The XRD analysis of the estuarine 

sediment samples was carried out on a Bruker D8 Advance diffractometer, using Cu 

Kalpha1 radiation from 2θ angles of 2-86°. The step size was 0.2° with counting of 2 

seconds per step. 

The concentration of major and trace elements were determined by XRF spectrometry. 

This technique is based on the excitation of atoms and subsequent relaxation. The 

sample is irradiated by a primary X-ray source that causes elements to emit 

(fluorescence) in their characteristic spectra with a certain intensity, which allows 

identification and quantification of the element and its concentration (Jenkins, 1988). 

When beam strikes the material, if the primary X-ray had sufficient energy, results in 

the ejection of electrons from the innermost shells of the atoms. These ejected electrons 

leave a vacancy, creating a brief period of atom instability; then the atomic electrons 

rearrange with electrons from a higher (outer) energy shell filling the vacancy left. By 

this relaxation process, an X-ray photon is emitted by the atom (fluorescence), the 

energy of which equals the difference between the binding energy of the corresponding 

shells (Jenkins, 1988). Energy disperse XRF analysis was carried out on an Olympus 

Innovex X-5000 spectrometer. The instrument was run in two separate modes using 

powdered samples. Major elements were determined using a calibration dependant 

method (using a range of certified natural sediment and shale rock standards). Minor 

and trace elements were determined using the manufacturers precalibration with 

Compton normalisation was also applied to reduce problems with matrix effects. 

Several relevant reference materials (standardized stream sediments) were run for 

quality check. Analytical uncertainty (measured values versus certified values) was < 

±30% for Mg, < ±20% for S, Cl and K and, < ±10% for all other elements. 

3.3.1.2 Carbon and sulphur analysis 

Dry sediments were utilised to determine total sulphur (TS), total carbon (TC) and total 

organic carbon (TOC) in sediments on a LECO SC-144DR Dual Range Sulphur and 

Carbon Analyser by combustion with non-dispersive infrared detection. All sediments 

were ground and oven-dried (at 60°C). However, prior to the analysis on the LECO, 
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subsamples for TOC were acid-washed with 10% v/v HCl in order to remove inorganic 

carbon and other soluble elements such as Ca. Following the standard protocol, 5-10 

blanks were run to calculate detection limit. Reference standards selected according to 

the range of C and S expected in the samples were used for calibration. Samples were 

run in triplicate and standards were re-run every 15 samples. During the analysis, the 

ceramic boats with the samples are introduced into the furnace (1350°C) under oxygen. 

The CO2 and SO2 gases produced are analysed by IR spectrometry, and the software 

gives the percentages of C and S in each sample. 

3.3.1.3 Iron and manganese analyses 

3.3.1.3.1  Total iron 

Total Fe was extracted by a HNO3–HF–HClO4–H3BO3–HCl sediment digestion 

(Poulton & Canfield, 2005; Guilbaud et al., 2015). Total iron will include the highly 

reactive phase and the continentally-derived background (silicates and ion oxides). 

Samples from the extraction were diluted in volumetric flasks with a 1 g L
-1 

of CsCl 

solution, and then further diluted (1:4) with the same CsCl solution directly on 

centrifuge tubes for analysis of the total iron concentration by Flame Atomic 

Absorption Spectroscopy (AAS) on a ContrAA 700 Analytik Jeta. The sample is 

aspirated and transformed into an aerosol which is atomised by the flame. The atoms 

absorb a specific wavelength light energy allowing the determination of the 

concentration of the element of interest, iron in this case. The instrument was calibrated 

with iron standards (with a range of standards from 0-10 ppm) made up with the same 

CsCl matrix than samples. 

3.3.1.3.2  AVS and pyrite extraction 

Sediment samples were freeze-dried for the Acid Volatile Sulphide (AVS) and pyrite 

extraction. Frozen sediment subsamples were then freeze-dried and frozen again prior to 

the extractions. The AVS extraction is a commonly used operational measurement of 

the amount of sulphide in sediments. The principle of this method is trapping H2S as 

Ag2S precipitates during the first step of the extraction (equations 3.1 and 3.2). Pyrite is 

calculated from the sulphide extracted as Ag2S (equations 3.3 and 3.4) using hot 
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Chromium(II) Chloride (CrCl2) distillation (Canfield et al., 1986: Fossing & Jørgensen 

1989). 

The reactions involved in the AVS extraction are:  

𝐹𝑒𝑆 + 𝐻𝐶𝑙 → 𝐻2𝑆 + 𝐹𝑒2+ + 𝐶𝑙−  Eq 3.1 

𝐻2𝑆 +  2𝐴𝑔+ → 𝐴𝑔2𝑆 +  2𝐻+  Eq 3.2 

The reactions involved in the pyrite extraction are: 

4𝐻+ + 2𝐶𝑟2+ + 𝐹𝑒𝑆2 → 2𝐻2𝑆 + 𝐶𝑟3+ + 𝐹𝑒2+  Eq 3.3 

𝐻2𝑆 +  2𝐴𝑔+ → 𝐴𝑔2𝑆 +  2𝐻+  Eq 3.4 

All the reactants were prepared according to the protocol and 1 g of sample was used 

for the extraction. During this procedure, FeS or FeS2 present in the sample react with 

the H
+
 to release H2S gas (see equations 3.1 and 3.3 above). The H2S gas will travel up 

the condenser column and it is injected through the Pasteur pipette to the tube with the 

AgNO3 solution. The H2S reacts with the AgNO3 (equations 3.2 and 3.4) to form Ag2S(s) 

and HNO3. The Ag2S precipitated was filtered (using a vacuum pump), dried and 

weighed to work out the mass of iron as pyrite or iron sulphide contained in the sample. 

3.3.1.3.3  Acid extractable Iron and Manganese 

The amount of 0.5 N HCl extractable Fe
2+

 in sediments was determined following the 

method by Lovley and Phillips (1986). This type of extraction with HCl is used to 

analyse the production of biogenic Fe(II) from the microbial reduction of Fe(II) 

containing phases (Lovley & Phillips, 1986), and thus the bioavailable iron. This 

extraction targets the poorly crystalline iron oxides, FeS and FeCO3 (Thamdrup et al., 

1994). A ratio (proportion of the total iron extractable that is in reduced state) is used 

due to the experimental set-up (i.e. difficulty to accurately determine the mass of 

sediment used in each individual extraction) and the redox sensitivity of the reduced 

iron. This technique has been widely used in different type of experiments as it provides 

a rapid indication of the redox status of the sediment sample (Lovley & Phillips, 1988; 

Lovley, 1991; Thamdrup et al., 1994; Zachara et al., 1998; Dong et al., 2000; Islam et 
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al., 2004; Burke et al., 2005; Roberts et al., 2014). For the analysis, a soil pellet was 

added in a 10 mL test tube containing 5 mL of 0.5 N HCl very quickly in order to 

minimise oxidation of the sample. After exactly 60 minutes (on an orbital shaker) 

extraction time, the solution was filtered (0.2 µm) into a new test tube. The Fe extracted 

will be analysed by reaction with ferrozine (Viollier et al., 2000). Two 100 µL sub-

aliquot of the filtrate were pipette into two 4 mL cuvettes (cuvette 1 and cuvette 2). In 

the first of the cuvettes, the filtrate was diluted with 2900 µL MilliQ, and then 300 µL 

ferrozine solution (5 g L
-1 

Ferrozine in 0.1 M ammonium acetate) was added. This 

cuvette will represent the amount of Fe(II) extractable by 0.5 N HCl in the sample. In 

the second cuvette, the filtrate was diluted with 2000 µL MilliQ, followed by the 

addition of 300 µL ferrozine solution, 600 µL of Hydroxylamine hydrochloride solution 

(1.4 M Hydroxylammonium hydrochloride solution in 2M HCl), and 300 µL of buffer 

solution (1M ammonium acetate, pH 9.5 adjusted with ammonium hydroxide) to reduce 

all Fe(III) in the sample. Both solutions were left for 10 minutes for colour to develop. 

The absorbance measured at 562 nm in both cuvettes (a reading of 0.500-1.000 in 

cuvette 2 is desirable for good statistics). The absorbance of the solution was corrected 

with respect to the absorbance of a reagent–only blank solution. The percentage of acid 

extractable Fe present as Fe(II) in the sediment is calculated as follows (equation 3.5): 

(𝐴562 𝐶𝑢𝑣𝑒𝑡𝑡𝑒 1 𝐴562 𝐶𝑢𝑣𝑒𝑡𝑡𝑒 2⁄ ) × 100 = % 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 𝐹𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑠 𝐹𝑒(𝐼𝐼) Eq. 3.5 

To actually quantify the hydroxylamine reducible Fe(III) in sediments and therefore 

have the amount of total extractable iron to which the percentage of acid extractable 

Fe(II) can be applied, the method by Lovley & Phillips (1987) followed by reaction 

with ferrozine were used. For the analysis, 10 mL test tubes containing 5 mL of 0.25 M 

H2NOH∙HCl were pre-weighted and afterwards, approximately 0.5 g of sediments were 

added. Operating very quickly was important to minimise oxidation of the sample. After 

an hour of extraction time (on an orbital shaker), the solution was filtered (0.2 µm) into 

a new test tube. A subsample of 100 mL was pipetted into a pre-weight 10 mL test tube 

(the weight was recorded). Subsequently, 3000 µL MilliQ water, 300 µL ferrozine 

solution (5 g L
-1 

ferrozine in 0.1 M ammonium acetate), 600 µL of 1.4 Hydroxylamine 

hydrochloride solution, and 300 µL of buffer solution (1 M ammonium acetate, pH 9.5 
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adjusted with ammonium hydroxide) were added and the weight of the tube was 

recorded. After ten minutes for colour to develop, the absorbance was measured at 562 

nm. The amount of iron was calculated according to a calibration curve made with a 

range of standards from 0-4 mg L
-1

 Fe (treating as above excepting that 3000 µL of 

standard solution is used). 

The same type of extraction was carried out to quantify extractable Mn in sediments. 

For the analysis, 10 mL test tubes containing 5 mL of 0.5 N HCl were pre-weighted and 

approximately 0.1 g of sediment were added. After an hour of extraction time (on an 

orbital shaker), the solution was filtered (0.2 µm) into a new test tube. The leachates 

from these extractions were acidified (1% v/v HNO3 conc.) to be analysed on an 

ICP−MS (see below, section 3.3.2.2). 

3.3.1.4 Trace metal partitioning 

Sequential extractions procedures (SEP) are used to identify and quantify “the different, 

defined species, forms or phases in which an element occurs” (Tack & Verloo, 1995). 

Metal speciation is a function of the mineralogy and chemistry of the soil or sediment 

examined, and it is more of an interest to assess than the total metal content because it 

brings out information about metal bioavailability and mobility and therefore about 

their potential impact in the environment (Tessier et al., 1979; Zimmerman & 

Weindorf, 2010). A series of reagents of different strengths and reactivities are applied 

to the solid sample in SEP to release metals bound to different fractions of the sediment, 

and the concentration of the metal of interest in each leachate is then measured. In SEP, 

the harshness of the reagents increases in each step, therefore the most mobile or 

weakly-bound metals are removed in the first steps and continue in order of decreasing 

mobility or increasing strength of the binding to the solid phase (Zimmerman & 

Weindorf, 2010). 

Sequential extractions were performed following the commonly used scheme by Tessier 

et al. (1979). However, Step 3 (for the extraction of Fe/Mn oxides-bound metals) was 

modified due to the problems found when heating the samples at 96°C (see Table 3.2). 

The fifth step of this extraction protocol (for the extraction of metals bound to the 

residual fraction) was not performed, and modifications in the sediment:solution ratio 
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were applied based on Rauret et al. (1989) (see Table 3.2). When working with wet 

sediments an extra step to remove porewater was required. The extractions were carried 

out in batches of two samples (in triplicates) plus blank (7 tubes in total). Sediments 

were weighed (0.7 g dry weight) in 50 mL Teflon (FEP) tubes. All the reactants used 

for the preparation of the reagents were made up with high purity chemicals. When 

appropriate, samples were handled anaerobically and all reagents were deoxygenated 

until the oxidising stage (H2O2 leaching step). A summary of the reagents and procedure 

is given in Table 3.2. After each step, sample tubes were centrifuged (for 30 minutes, 

15000 g) on a Sigma 4-16KS, then the leachate was filtered (0.2 µm) to a clean tube and 

further acidified with HNO3 conc. (1% v/v). The fourth step was performed on a dry 

block heating plate (Grant, QBD2) inside a fume cupboard, and the oxidants (H2O2 and 

HNO3) were added in few aliquots because the reaction can be quite aggressive and 

sample may be lost due to fizzing. 

The leachates of each extraction step were analysed on an ICP-MS with the 

corresponding precautions to avoid polyatomic influences (see additional information in 

appendix A). The concentrations of the metals [M] in each fraction can be expressed in 

µg g
-1

 dry sediment, for which the data from the ICP-MS will need conversion 

(equation 3.6). The detection limits of the ICP-MS analysis can be found in the 

appendix A. 

[𝑀]𝑙𝑒𝑎𝑐ℎ𝑎𝑡𝑒𝑥 𝑉𝑙𝑒𝑎𝑐ℎ𝑎𝑡𝑒
𝑚𝑎𝑠𝑠𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠

⁄ = [𝑀]𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠   Eq. 3.6 
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Table 3.2: Summary of the sequential extraction protocol followed, based on 

Tessier et al. (1979) with modifications in the solid:solution ratios based on 

Rauret et al. (1989). *The Step 3 was modified: heating the samples at 96°C 

caused problems with the lids of the tubes, therefore, the extraction time was 

increased (from 6 to 12 hrs) and the agitation was performed at room temperature. 

Step Fraction 
Leaching 

time 

Temp. & 

agitation 

V 

leachate 

(mL) 

Leachate 

composition 

Anaerobic 

chamber 

1 Exchangeable 1 hr 

Room 

temperature, 

continuous 

agitation (40 

rpm) 

5.6 
1 M MgCl2, 

pH 7 
Yes 

2 
Bound to 

carbonates 
5 hrs 35 

1 M NaOAc, 

pH 5 

(HOAc) 

Yes 

3* 

Bound to Iron 

and 

Manganese 

oxides 

Overnight 

(12 hrs) 
35 

0.04 M 

NH2OH∙HCl 

in 25% v/v 

HOAc 

Yes 

4 
Bound to 

Organic matter 

2 hrs (1
st
 

aliquot) 

85±2°C with 

occasional 

agitation 

2.1 
0.02 M 

HNO3 

No 

3.5 
30% H2O2 

pH 2 (HNO3) 

3 hrs (2
nd

 

aliquot) 

85±2°C with 

intermittent 

agitation 
2.1 

30% H2O2 

pH 2 (HNO3) 

30 min 

(after 

cooling) 

Continuous 

agitation 

3.5 

(diluted 

up to 14 

mL, so 

add 2.8 

mL of 

MilliQ 

water) 

NH4OAc in 

20% v/v 

HNO3 

 

3.3.2 Aqueous phase 

For the analysis of the aqueous phase, all samples were filtered (0.2 µm Minisart
®
) and 

acidified when needed (for TM analysis). The aqueous solutions analysed consisted of: 

i) river water collected from the sampling sites; ii) porewater recovered from the 

original surface and subsurface sediments (recovered by centrifuging sediments (30 

minutes, 6000 g)); and iii) aqueous phase of the sediment suspensions used in the 

different experiments (recovered by centrifugation of 1.5 mL Eppendorf tubes (6 

minutes, 16000 g)). Due to the salinity range of the samples, the analyses in the 
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different instruments was split in two groups after different matrix-match tests were 

performed: low salinity (0-4 psu) and medium-high (>4 psu) salinity. 

3.3.2.1 Dissolved nutrients 

Inorganic nitrogen species (nitrate, nitrite and ammonium), sulphate and chloride were 

analysed using ion chromatography (IC) and colorimetry. Different methods were used 

due to sample volume constraints. The (i.e. large volumes of sample required by the 

multi-channel segmented flow analyser if simultaneous determination of the three 

nitrogen species). So, the simultaneous analysis of nitrate, nitrite and ammonium was 

not possible and the concentrations of the two nitrogen oxides were determined by ion 

chromatography (IC) with no need of large dilutions. 

3.3.2.1.1  Colorimetric determination 

Colorimetric analysis is a method of measure the concentration of a chemical species in 

aqueous solution based on relative absorption of light, being the absorbance of a solute 

at a particular wavelength function of its concentration in the solution according to the 

Beer’s law. Therefore the absorbance measurement is used to determine concentration 

of the solute of interest. In continuous flow colorimetry instruments, different reagents 

continuously flowing through a closed system of tubing mix and colour develops due to 

the chemical reactions. The standard solutions for calibration and the samples are taken 

into the flowing system via an autosampler. The stream is segmented by air bubbling, 

and each liquid section is subjected to specific and controlled conditions (temperature, 

reaction time, injection of the reagents, etc.) for the chemical reaction developing the 

colour. Colorimetric determination of nitrogen species (NO3
-
, NO2

-
, and NH3) was 

carried out on a multi-channel continuous flow segmented SEAL AutoAnalyser (AA3) 

HR following the manufacturer methodology (Table 3.3). Standards and the reagents 

needed were prepared according to the manufacturer’s instructions with analytical grade 

chemicals and MilliQ water was used throughout (including all the cleaning steps) to 

avoid contamination. For the ammonia analysis the method is based on a modification 

of the Berthlot reaction (Krom, 1980), in which ammonia, salycilate and free chlorine 

form a blue-green coloured complex that is measured in the colorimeter at 660 nm. A 

complexing agent prevents the precipitation of calcium and manganese hydroxides and 
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sodium nitroprusside increases the sensitivity. The automated nitrite determination is an 

adaptation of the standard diazotization method (Kamphake et al., 1967; APHA, 1980). 

Under acidic conditions, nitrite reacts with sulphanilamide to produce a diazo 

compound that couples with N−naphthylethylene diamine dihydrochloride to form a 

purple azo dye which is measured colorimetrically (550 nm). For the determination of 

total oxidized nitrogen (TON, nitrate plus nitrite) concentration in the TON-channel, 

nitrate is reduced to nitrite by a copper-cadmium reduction column (Armstrong et al., 

1967), then nitrite follows the same reaction described above and the coloured solution 

goes into the detector for the determination of nitrite concentration by the colorimeter 

(at 550 nm). The software directly calculates nitrate concentration by difference 

between the concentration in the TON and nitrite channel. 

Table 3.3: SEAL AutoAnalyser (AA3) HR methodology references. 

Analysis Method number 

Nitrite in water and seawater G-062-92 Rev. 3 

Nitrate and nitrite in water and seawater G-172-96 Rev. 13 

Ammonia in Seawater and Freshwater G-320-05 Rev. 1 

 

Calibration standards were prepared from standard stock matrix match solutions. The 

sensitivity was checked prior to analysis. Blank solutions were run every 3-4 samples 

and standard solutions were run during the analysis to check carry over and recovery. 

Typically the % RSD was ≤3% for ammonia, ≤5% for TON. The low detection limits 

(LOD) for the river water (0-4 psu) were 1.23 µM for TON, 0.07 µM for NO2
-
 and 0.34 

µM for NH3. For the seawater (≥4 psu) LOD were 3.7 µM for TON, 0.01 µM for NO2
-
 

and 0.18 µM for NH3. 

3.3.2.1.2  Ion Chromatography  

Ion Chromatography (IC) is an analytical method in which ions are separated by 

differences in the rate at which they pass through a column packed with either an anion 

or cation exchange resin (Fritz & Gjerde, 2009). Since different ions have different 

affinities for the exchange resin, they will move down the column at different times and 

when the eluent (containing the analytes) is run through a detector, the different ions 
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generate separated peaks at specific time points which can be quantified relative to 

standards. Anions (NO3
-
, NO2

-
, Cl

-
, and SO4

2-
) concentrations in filtered samples were 

determined by IC on a DIONEX CD20. For detection of nitrate and nitrite 

concentrations an UV detector was also set (DIONEX AD20 UV absorbance detector 

(225 nm)) in parallel. Due to the high salinity of some samples, a column-switching 

method based on Bruno et al. (2003) was used. With this method, matrix chloride 

anions were pre-separated from the other analytes by a double in-line pre-column 

(AG9-HC 4mm). The four-way valve, placed after this double pre-column, allowed the 

elution of most of the chloride to waste before the rest of the nutrient ions were eluted 

to the analytical column (AS9-HC). Then, anions were detected by a conductimeter 

(DIONEX CD20, ED40 Electrochemical detector, %RSD <10%) and/or by 

spectrophotometry (UV absorbance at 225 nm). Samples were also run on a DIONEX 

500 in order to measure Cl
−
 and SO4

2-
 concentrations (%RSD ≤5%). The limits of 

detection were NO3
-
 (19 and 41 µmol L

-1
 for river and seawater), SO4

2-
 (73 and 885 

µmol L
-1

 for river and seawater) and Cl
-
 (151 µmol L

-1
). Nitrite was below detection 

limit. For the brackish-seawater (≥4 psu) samples, a 20 fold dilution was applied. 

During the IC analysis, standards made up with MilliQ water (with no chlorine in the 

matrix) were also run for quality control; two matrix-match standards were run every 

ten samples for calibration; reference material and a monitor sample were also 

introduced in every run in order to monitor the state (saturation) of the column. 

3.3.2.2 Dissolved metals by Inductively-Coupled Plasma Mass spectrometry (ICP−MS) 

The ICP-MS is an analytical technique used for elemental determination that combines 

a high temperature ICP source with a mass spectrometer. The instrument is capable to 

detect metals and several non-metals at very low concentrations (often at parts per 

trillion level). Samples are introduced, then atoms within the samples are ionized by the 

ICP source. These ions are then separated and detected by the mass spectrometer (Jarvis 

et al., 1992). The analysis of dissolved metals was performed using a Thermo Scientific 

iCAPQc Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The determination 

of trace elements in salt waters has been analytically challenging due to the potential 

interference of the matrix in the sensitivity and the formation of polyatomic ions (Reed 

et al., 1994; Jerez Vegueria et al., 2013), however precautions were taken in the 
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ICP−MS analysis of seawater and a validation method was developed (see Appendix 

A). Aluminium was analysed in standard mode and all other elements (V, Cr, Mn, Fe, 

Co, Cu, Zn, As, Cd and Pb) in Kinetic Energy Discrimination (KED) mode using 

helium as a collision gas to remove polyatomic interferences. A standard concentric 

ring nebuliser, spraychamber, injector and torch were used. All reagents used were trace 

analysis grade. All samples analysed were already acidified (1% v/v HNO3 conc.). 

Medium-high salinity waters (≥4 psu) were diluted 50 fold in 1% v/v HNO3 (0.2 mL 

sample plus 9.8 mL of eluent) before the analysis to reduce matrix effects. Calibrations 

were performed in the range of 1-100 µg L
-1

 using the standard additions technique with 

a 50 fold dilution of a seawater certified reference material (NASS-6 Seawater Certified 

Reference Material (CRM)) to ensure correct matrix matching. Blanks of 3% w/v NaCl 

solution were prepared and run every 20 samples. An internal standard of 1 ppb Rh was 

used for all samples and standards. Fresh-low salinity brackish waters (0-4 psu) were 

treated as above except they were analysed with no dilution. For the samples from 

sequential extraction procedures, samples were diluted 1:50 and four sets of standards 

were made up with different matrices matching the leachate solutions used in each step 

of the extraction protocol (see section 3.3.1.4). An internal standard of 1 ppb Rh was 

used for all samples and standards. The LOD were calculated from repeated 

measurements of 5 individual blank solutions. The LOD will equal three times the 

standard deviation of the blank values. The accuracy of the method was assessed by 

calculating the recovery of an analyte from 2 spiked samples (see Appendix A for more 

information). Finally, the precision of the method was assessed from the repeated 

measurement of a sample 6 times and reported as the 95% confidence interval of these 

results. More details about the precision, method validation, and LOD of the ICP-MS 

analyses in Appendix A. 

3.4 Molecular biology methods 

Immediately after coming back from the field, subsamples taken from bulk sediment 

samples were transferred into micro centrifuge tubes using a sterilised spatula. Care was 

taken to avoid any kind of contamination and samples were frozen at -20°C until used. 
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3.4.1 DNA extraction 

Bacterial DNA was extracted from environmental samples (~0.5 g of wet sediment) 

using a FastDNA spin kit for soils (MP Biomedicals, USA). Unless explicitly stated, the 

manufacturer’s protocols supplied with all kits employed were followed precisely. DNA 

fragment larger than 3 kb were isolated on a 1% agarose “1x” Tris-borate-EDTA (TBE) 

gel stained with ethidium bromide for flat electrophoresis and visualisation under UV 

light (10x TBE solution supplied by Invitrogen Ltd., UK). The DNA was extracted from 

the gel using a QIAquick gel extraction kit (QIAGEN Ltd, UK); final elution was by 

1/10th strength elution buffer. DNA concentration was quantified fluorometrically using 

a Qubit dsDNA HS Assay (Thermo Fisher Scientific Inc., USA). 

3.4.2 Sequencing of the V4 hyper−variable region of the 16S rRNA gene 

DNA samples (1ng µL
-1

 in 20 µL aqueous solution) were sent for sequencing at the 

Centre for Genomic Research, University of Liverpool, where Illumina TruSeq adapters 

and indices were attached to DNA fragments in a two-step PCR amplification targeting 

the hyper-variable V4 region (with the forward target specific primer 5’-

GTGCCAGCMGCCGCGGTAA-3’ and the reverse target specific primer 5’-

GGACTACHVGGGTATCTAAT-3’) of the 16S rRNA gene (Caporaso et al., 2011). 

Pooled amplicons were paired-end sequenced on the Illumina MiSeq platform (2x250 

bp) generating ~12M clusters of data. Illumina adapter sequences were removed, and 

the trimmed reads were processed using the UPARSE pipeline (Edgar, 2013) within the 

USEARCH software package (version 8.1.1861) (Edgar, 2010) on a Linux platform. 

First of all, overlapping paired-end reads were assembled using the fastq_mergepairs 

command. Then the reads from single environmental samples were quality-filtered, 

relabelled, and de-replicated before they were randomly sub-sampled (500,000 reads 

with an average length of 296 bp) to produce a manageable sample size for combined 

analysis (~4M reads). After further de-replication of the combined pool of reads, 

clustering, chimera filtering and singletons removal were performed simultaneously 

within the pipeline by using the cluster_otus command. Operationally taxonomic units 

(OTUs) were defined based on a minimum sequence identity of 97% between the 

putative OTU members. The utax command was applied to assign to them a taxonomic 
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group using a confidence value of 0.7 to give a reasonable trade-off between sensitivity 

and error rate in the taxonomy prediction. The entire dataset (~6M reads) was then 

allocated to the defined OTUs using the usearch_global command and the results were 

reported in an OTU-table, which contained OTU-abundance data and the taxonomy 

classification for each OTU. 

3.4.3 Diversity analysis and community composition 

Traditional estimates of bacterial diversity can be distorted by rare taxa because these 

can be a small proportion of the bacteria population, but a large proportion of species 

present, so Hill numbers, Dq, were used to evaluate diversity (Hill, 1973; Jost, 2006). 

Hill numbers (equation 3.7) define biodiversity as the reciprocal mean of proportional 

abundance, and compensate for the disproportionate impact of rare taxa by weighting 

taxa based on abundance (Hill, 1973; Jost, 2006, 2007; Kang et al., 2016). The degree 

of weighting Dq is controlled by the index q (increasing q places progressively more 

weight on the high-abundance species within a population). Traditional diversity index 

can be converted to Hill numbers (Table 3.4). The unweighted Hill number, D0, is 

exactly equivalent to the species richness. D1 is a measure of the number of common 

species and is equivalent to the exponential of Shannon entropy; and D2 is a measure of 

the number of dominant species and is equivalent to the inverse of Simpson 

concentration (Hill, 1973; Jost, 2006, 2007). 

𝐷𝑞 = (∑ 𝑝𝑖
𝑞𝑆

𝑖=1 )
1

1−𝑞 Eq. 3.7 

The bacterial diversity of each individual sample (alpha-diversity, Dq
α
) was evaluated 

with different weightings on the high-abundance OTUs (D0
α
, D1

α
, D2

α
). The regional 

bacterial diversity (gamma-diversity, D1
γ
) was calculated from the combined dataset. 

The beta-diversity, D1
β
 (which reflects the proportion of regional diversity contained in 

a single average community), was calculated from the gamma diversity and the 

statistically weighed alpha-diveristy (*D1
α
; Jost, 2007) using Whittaker multiplicative 

law (equation 3.8) (Whittaker, 1972). Additionally, beta-diversity has been analysed 

using compositional dissimilarities between two different samples (Bray-Curtis 

dissimilarity) in PAST software (https://folk.uio.no/ohammer/past/). 
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*𝐷1
𝛼 × 𝐷1

𝛽
= 𝐷1

𝛾
 Eq 3.8 

A heat map of OTUs abundance was generated in Rstudio v 0.99.486 (RStudio Team, 

2015). For OTU taxonomic analysis, from the non-chimeric reads the OTUs classified 

as archaea and the OTUs which were not classified to the level of bacterial phylum with 

a confidence > 0.7 were excluded. 

Table 3.4: Conversion of common indices to Hill numbers (Dq) for q=0 q=1 and 

q=2 (D0, D1, and D2) (modified from Jost, 2007). D means diversity index; S 

represents the total number of species in the community; and pi are species 

(OTUs) proportions. 

Order of the 

diversity 

measurement 

(q) 

Traditional 

Diversity Index 

(D) 

To convert 

diversity 

indices (D) to 

measurement 

of diversity 

(Dq) 

Diversity in terms of pi (Dq) 

0 
Species Richness 

𝐷 ≡ ∑ 𝑝𝑖
0𝑆

𝑖=1  
D 𝐷0 = ∑ 𝑝𝑖

0𝑆
𝑖=1 =S 

1 
Shannon entropy 

𝐷 ≡ − ∑ 𝑝𝑖
𝑆
𝑖=1 ln 𝑝𝑖 

exp (D) 𝐷1 = exp (− ∑ 𝑝𝑖

𝑆

𝑖=1
ln 𝑝𝑖) 

2 

Simpson 

concentration 

𝐷 ≡ ∑ 𝑝𝑖
2

𝑆

𝑖=1
 

1/D 𝐷2  = 1
∑ 𝑝1

2𝑆
𝑖=1

⁄  

 

3.4.4 Multivariate statistical analysis 

The package ‘vegan’ was used for multivariate analyses (Oksanen et al., 2013) in 

RStudio (v 0.99.486) (RStudioTeam, 2015). 

Non-metric Multi-Dimensional Scaling (NMDS) is a method used to identify 

underlying gradients and to represent relationships based on various types of distance 

measures in an optimised low-dimensional (Ramette, 2007). The NMDS algorithm 

ranks distances between objects, and these ranks (and not the original distances) are 

used to distribute the objects nonlinearly in the ordination space. NMDS was carried out 



90 

 

by using Bray-Curtis dissimilarity matrix. The microbial community data were input as 

a matrix of the relative abundance of each OTU in each of the eight samples. 

BIOENV (‘biota-environment’) analysis (Clarke and Ainsworth, 1993) was carried out 

also to further investigate the environmental variables that better correlate to sample 

similarities or dissimilarities (Bray Curtis dissimilarities) of the biological community 

using Spearman’s rank correlation method. This test determines which combinations of 

environmental variables best explain patterns in the community composition. Finally, 

canonical correspondence analysis (CCA) is a constrained method based on unimodal 

species-environment relationships (Ramette, 2007). CCA tries to display only the part 

of the data that can be explained by the used constraints and not all the variation. It uses 

two matrices of data, the response matrix (i.e. the community composition like 

abundance data) and the explanatory matrix (i.e. environmental factors) in order to find 

a new mathematically simplified ordination that incorporates both data sets; the 

significance of these correlations is calculated by permutation. Axes are linear 

combinations of the environmental variables (Ramette, 2007). The environmental data 

used in these two tests included: salinity, major ion concentrations in the porewater, 

organic matter content, particle size and a range of redox indicators such as percentage 

of acid extractable Fe
2+

(s), ammonium and dissolved Mn concentrations in porewater. 
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Chapter 4 

Sediment and Water Characterisation 

In this chapter data for sediment and water characterisation have been gathered into 

different tables, in order to better organise the full data set and to provide reference 

tables for the other chapters in the thesis. 

4.1 Sediment characterisation 

4.1.1 Elemental and bulk mineral composition 

The elemental composition obtained from XRF analysis is summarised in Table 4.1. Al, 

Fe and Mn were the major elements. Ni and Cd were below the detection limit. For each 

metal, the concentration was relatively similar among samples. Zinc was the more 

abundant of the trace metals (TMs), but in general all were present in the same order of 

magnitude. 

The XRD analysis was carried out only as a basic scan of the bulk mineralogy of each 

sample and no quantification method (TOPAS rietveld or RIR quantification) was 

applied. The images of the XRD scans can be found in the Appendix B.1. All sediments 

contained a mixture of quartz, carbonates (calcite and dolomite), and silicates (kaolinite, 

muscovite, clinochlore, albite, microcline). Halite was present at the samples from S3 

and S4. Pyrite was only detected in the subsurface sediments from S4. 
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Table 4.1: Elemental composition of the estuarine sediments used throughout (in µg/g unless specified) by XRF analysis. 

Concentrations are averages and the quoted uncertainties are the range of duplicate analysis. 

 S1 S2 S3 S4 

 Surface Subsurface Surface Subsurface Surface Subsurface Surface Subsurface 

Al (%) 3.1±1.0 3.9±0.1 3.6±0.2 3.9±0.2 5.1±0.3 5.0±0.4 5.6±0.4 5.5±0.4 

Fe (%) 2.7±1.0 3.3±0.7 3.1±0.6 2.9±0.5 3.7±0.7 4.1±1.0 4.5±1.0 4.3±0.9 

Mn 656±8 785±8 681±20 654±1 847±6 969±3 758±14 732±11 

Zn 132±3 149±1 139±4 129±4 161±2 199±13 174±1 167±6 

Cu 30±4 33±3 31±2 27±2 39±2 31±3 33±2 37±11 

V 61±1 71±2 62±2 62±4 80±3 98±1 93±2 99±8 

Ni <4 <4 <4 <4 <4 <4 <4 <4 

Cr 69±4 82±1 76±13 77±13 107±1 118±3 116±3 113±4 

Pb 49±6 64±1 58±2 53±2 71±3 90±3 74±6 75±1 

As 23±4 20±2 18±3 18±2 19±2 37±4 30±1 25±2 

Cd <2 <2 <2 <2 <2 <2 <2 <2 
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4.1.2 Grain size and porewater content 

The percentage of water in the wet sediments (porewater) was determined by difference 

after subsamples of wet sediments were oven dried. Surface sediments were slightly 

more saturated than the correspondent subsurface sediment, and S3 and S4 sediments 

contained more water than S1 and S2 sediments (Table 4.2). This is in agreement with 

the grain size of the sediments. The particles of the samples S3 and S4 were finer than 

those for S1 and S2 samples. The particle size has been expressed as the upper bound 

diameter of the sample at 50% of cumulative percentage of particles by volume. The 

distribution curves for size-class, finer, and coarser material are included in Appendix 

B.2. 

Table 4.2: Water content of the estuarine sediment (porewater, PW) (±σ of 

triplicates) and grain size. The size of the particle refers to the upper bound 

diameter of the sample when the cumulative percentage of the particles by volume 

is 50% (D50) (based on six repeated measurements). 

 S1 S2 S3 S4 

 Surface Subsurface Surface Subsurface Surface Subsurface Surface Subsurface 

% PW 42 35±1 42 39±1 55 41±5 54 37±2 

Particle 

size (µm) 
53 37 47 47 16 19 13 16 

4.1.3 Carbon, sulphur and iron  

The following table (Table 4.3) contains the data collected for carbon, sulphur and iron. 

The percentages of TIC, TOC and TS are averaged values and the error associated is the 

standard deviation of triplicates. The total Fe in this table was obtained from the total 

iron extraction. The reproducibility test for these measurements gave a standard 

deviation of 0.2% (σ of six reads for the same sample). Iron and sulphur associated with 

AVS and pyrite have been also reported although no AVS was extracted from S1 and 

S2 samples, whereas in S3 and S4 samples AVS concentrations were very low or under 

detection limit. The 0.5 N HCl extractable iron (total) was quantified and the values are 

averaged measurements with the standard deviation of triplicates. To finish, there is the 
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percentage of acid extractable reduced iron relative to the total acid extractable iron 

with the standard deviation of triplicates as well. 
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Table 4.3: Carbon, sulphur and iron content in the estuarine sediments. The percentages of TIC, TOC TS and iron and sulphur 

associated with AVS and pyrite represent percentages relative to the total dry weight of the sediment sample. 

 S1 S2 S3 S4 

 Surface Subsurface Surface Subsurface Surface Subsurface Surface Subsurface 

%TIC 1.71±0.31 1.01±0.69 0.69±0.22 1.09±0.19 1.43±0.06 1.38±0.21 1.75±0.10 1.76±0.04 

%TOC 1.28±0.29 2.34±0.68 2.48±0.21 1.75±0.15 2.06±0.04 2.58±0.17 2.17±0.04 2.69±0.03 

%TS 0.16±0.01 0.18±0.01 0.18±0.00 0.14±0.01 0.22±0.00 0.35±0.00 0.31±0.00 0.52±0.01 

Total Iron (%) 2.09 2.73 2.68 2.35 3.47 3.97 4.27 3.9 

%Fe-AVS nd nd nd nd <LDL 0.01 <LDL 0.09 

%S-AVS nd nd nd nd <LDL 0.01 <LDL 0.05 

%Fe-Pyrite 0.08 0.10 0.09 0.10 0.10 0.12 0.12 0.18 

%S-Pyrite 0.09 0.11 0.10 0.11 0.12 0.14 0.14 0.21 

0.5 N HCl 

extractable 

FeTOT (µmols/g 

solids) 

106±1 116±10 106±6 105±4 123±3 206±8 93±9 191±28 

0.5 N HCl 

extractable Fe
2+

 

(% Fe
2+

/FeTOT) 
52±2 61±5 53±1 53±2 39±1 84±6 57±3 96±3 
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4.2 Water chemistry characterisation 

The water chemistry has been analysed in detail. All the parameters with the exception 

of pH and conductivity, which are in situ measurements, have been determined for river 

water and porewater recovered from surface and subsurface wet sediments. Salinity has 

been calculated from chlorinity, and the other components (nutrients, major and TMs) 

are direct measurements. 
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Table 4.4: Water (river water, surface porewater and subsurface porewater) chemistry characterisation. Unless specified, all metal 

concentrations are in µM units.  

 S1 S2 S3 S4 

 River Surface Subsurface River Surface Subsurface River Surface Subsurface River Surface Subsurface 

Salinity 

(psu) 
0.4 0.3 0.2 3.5 3.1 1.8 21.6 17.0 17.7 26.1 28.0 32.1 

pH 7.87 - - 7.52 - - 7.90 - - 8.02 - - 

Conductivity 

(mS/cm) 
0.7383 - - 5.731 - - 30.48 - - 36.42 - - 

NO3
-
 (µM) 266 36 37 250 17 26 248 66 17 24 78 7 

NO2
-
 (µM) 1.6 0.2 0.4 1.6 0.1 0.3 0.4 0.9 <DL 0.7 1.0 <DL 

NH4
+
 (µM) 7 12 67 7 25 73 12 73 994 23 166 126 

SO4
2‒ 

(mM) 1 2±0 2±0 3 6±1 3±1 16 33±4 33±2 22 32±4 40±2 

Cl
- 
(mM) 2 4 3 38 49 28 306 265 276 443 347 501 

Al 0.26 0.53 0.29 0.32 0.43 0.37 47.44 47.81 47.44 49.30 41.88 48.93 

Fe 0.1 0.4 4.9 0.1 0.1 0.3 1.2 1.6 3.6 1.8 0.9 3.3 

Mn 1.4 3.4 82.3 1.0 5.1 49 0.6 60 0 23 15 62 

Zn 0.15 0.12 0.01 0.16 0.06 0.04 8.49 3.87 3.52 8.03 3.53 3.53 
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Cu 0.05 0.08 0.10 0.05 0.06 0.05 3.70 8.26 8.32 3.76 8.94 8.06 

As 0.06 0.10 0.19 0.07 0.08 0.08 0.07 0.20 0.99 0.07 0.01 0.25 

Cr 3.96 nM 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.05 0.04 0.03 0.05 

Cd 0.46 nM 0.08 nM 0.06 nM 0.84 nM 0.09 nM 0.09 nM 0.23 0.23 0.23 0.24 0.25 0.23 

V 0.14 0.16 0.24 0.17 0.16 0.20 0.07 0.06 0.22 0.07 0.00 0.08 

Co 0.08 0.13 0.24 0.09 0.10 0.10 0.08 0.25 1.25 0.08 0.01 0.32 

Ni 0.07 0.12 0.27 0.07 0.09 0.13 4.92 nM 8.21 nM 4.63 nM 4.29 nM 2.68 nM 4.79 nM 

Pb (nM) 1.21 1.53 1.60 2.34 1.71 1.13 - - - - - - 
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4.3 Discussion 

A broad interpretation of these data will be done in this chapter, because in the 

following chapters data will be further discussed in the context of the different 

experiments carried out with these materials.  

The bulk elemental and mineral composition did not vary significantly among samples, 

although the TM concentrations were generally slightly higher in the sediments from 

the outer estuary (S3 and S4). The concentrations of TMs in the bulk sediment will be 

used to compare the present concentration with background levels and with the 

concentrations found in the period of greatest industrial activity within the Humber 

catchment (see Chapter 6). Furthermore, the analysis of metal partitioning will give us 

further information about the mobility and bioavailability of these elements in the 

estuarine environment (see Chapter 5 and 6).  

The particle size was finer in the samples taken from the outer estuary mudflats. Very 

fine silt-clays were the predominant grain size classes in the outer estuary, whereas in 

the inner estuary (S1 and S2), sediments were sandier. But in general, all the samples 

had particles in the range from clays to very fine sands.  

The content of TIC was ≤2% in all the samples with no significant differences between 

depths. TOC content was within the range described in the literature (1-4%, Freestone, 

1987). The mudflats of the outer Humber estuary appeared to have a slightly higher 

organic content than the inner estuary sediments. Subsurface sediments showed some 

enrichment in organic matter with respect to their overlying material.  

In terms of the iron, the total content in these sediments varied between 2-4% of iron 

(the results for total amount from the HNO3–HF–HClO4–H3BO3–HCl sediment 

digestion coincide with the XRF data) with no significant difference between sediment 

depths. Sediments from the outer estuary had more iron than those from the inner 

estuary sites and slightly more iron associated with pyrite. The content of sulphur was 

also higher in the outer mudflats. During the iron sulphide extractions no AVS was 

detected in any of the samples from S1 and S2, whereas all the samples from S3 and S4 
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showed Ag2S precipitates at the end of the extraction. During the handling of the solids 

extracted for AVS analysis (filtering, drying, and weighting) errors were introduced and 

AVS quantification of the surface samples from S3 and S4 was not possible. The AVS 

concentrations measured (<0.02 µmoles AVS g
-1

) in these estuarine sediments were low 

possibly due to the dynamic nature of the Humber, but other studies reported low AVS 

in estuarine and other aquatic environments (Di Toro et al., 1990; Allen et al., 1993; 

Fang et al., 2005) (see Chapter 6). Although we expected to find more AVS, especially 

in the samples from the mudflats, these sediments could be characterised as reducing 

sulphidic sediments if we consider the combination of other redox indicators, field 

observations and previous studies in the area. Nevertheless, measurements of dissolved 

oxygen would have been desirable to complete the redox characterisation of the 

sediments. The 0.5 N HCl extractable iron showed also higher values in S3 and S4 

samples, and at the subsurface, the concentrations were ~2 times the concentrations 

found in the inner estuary samples. Subsurface samples, especially in S3 and S4, 

accumulated reduced iron with respect to the surface sediment layer. 

The water chemistry is discussed in depth in Chapter 5, 6 and 7 placing the emphasis on 

different aspects. In general, the nitrate concentrations in the river water were high until 

S3 and porewaters did not accumulate nitrate. Ammonium increased in solution 

seawards and it appeared to accumulate at depth. Dissolved Fe and Mn were low in the 

overlying water, and in general, concentrations increased in the porewaters. Dissolved 

manganese was greater than iron in the majority of the samples. Iron oxides react with 

free sulphides and, at the same time, the produced Fe
2+

 and H2S reduce MnO2 rapidly 

(Thamdrup et al., 1994). This could be a reason for the low AVS detected and the 

accumulation of Mn
2+

 in porewaters. The reaction of MnO2 with reduced iron produces 

more iron oxides that will reproduce this positive feedback mechanism. Furthermore, 

H2S can also react with NO3
-
 which would influence the distribution of free sulphides 

within the sediment (Sayama et al., 2005). In terms of TMs, there were different 

patterns in the concentration changes with depth and with salinity. Zinc, Cd, Cu and Al 

showed significant differences in the concentrations between brackish-fresh waters and 

salt waters, in which the level of these TMs was two orders of magnitude higher than in 

the brackish-freshwaters. Nickel instead appeared in lower concentrations at the more 
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saline waters. The rest of the metals analysed (As, Cr, V and Co) were present in similar 

concentrations in all the samples. Porewaters showed broadly more dissolved TMs than 

their respective overlaying water, although there were exceptions (e.g. Zn showed 

opposite trend). 
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Chapter 5 

Reoxidation of estuarine sediments during simulated resuspension 

events: effects on nutrient and trace metal cycling 

Executive Summary 

Estuarine environments are considered to be nutrient buffer systems as they regulate the 

delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and 

freshwater mixing during tidal cycles leads to the mobilisation of oxic surface 

sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic 

subsurface (5-10 cm) sediments, which may have further implications for the estuarine 

geochemistry. A series of batch experiments were carried out on surface and subsurface 

sediments taken from along the salinity range of the Humber Estuary. The aim was to 

investigate the geochemical processes driving major element (N, Fe, S and Mn) redox 

cycling and trace metal behaviour during simulated resuspension events. The magnitude 

of major nutrient and metal release was significantly greater during the resuspension of 

sulphidic (outer estuary) rather than from non sulphidic (inner estuary) sediments. 

When comparing surface versus subsurface sediment reoxidation, only the outer estuary 

experiments showed significant differences in major nutrient behaviour with sediment 

depth. In general, any ammonium, manganese and trace metals (Cd, Cu and Zn) 

released during the reoxidation experiments were rapidly removed from solution as new 

adsorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary 

sediments showed a scavenging capacity for these dissolved species and hence may act 

as an ultimate sink for these elements. Due to the larger aerial extent of the outer 

estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of 

anoxic iron sulphide rich sediments would have a greater impact on the transport and 

cycling of nutrients and trace metals. Climate change scenarios predict an increasing 

frequency of major storm events in temperate regions which are more likely to mobilise 

deeper sediment regions, altering nutrient and metal inputs to the coastal waters, and 

therefore enhancing the likelihood of eutrophication in this environment. 
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5.1 Introduction 

Estuaries are highly dynamic coastal environments regulating delivery of nutrients and 

trace metals (TMs) to the ocean (Sanders et al., 1997; Statham, 2012). In most coastal 

ecosystems in the temperate zone, nitrogen controls primary productivity as it is usually 

the limiting nutrient; therefore an increased load flowing into such oligotrophic waters 

could lead to eutrophication, and the subsequent environmental impacts due to hypoxia, 

shifts in biological community structures and HAB (Howarth et al., 1996; Abril et al., 

2000; Boyer & Howarth, 2002; Roberts et al., 2012; Statham, 2012). This has been 

focus of attention because human activities over the last century have increased nitrogen 

fluxes to the coast in some regions of the world due to intensive agricultural practices, 

and wastewater and industrial discharges (Howarth et al., 1996; Canfield et al., 2010). 

River inputs are the main nitrogen sources to estuarine waters, although atmosphere and 

groundwater have been also recognised as important nitrogen sources. From the total 

dissolved nitrogen inputs to an estuary, inorganic nitrogen (DIN) is generally the major 

portion, especially in hypernutrified estuaries; however organic nitrogen (DON or PON) 

may be a significant input in some estuaries (20-90% of the total N load) (Seitzinger & 

Sanders, 1997; Nedwell et al., 1999). The speciation and distribution of nitrogen along 

the salinity continuum will be controlled by a complex group of dissimilatory and 

assimilatory transformations coexisting at a range of oxygen concentrations (Thamdrup, 

2012); but denitrification is considered the major removal process of nitrogen to the 

atmosphere in shallow aquatic environments (Statham, 2012). Nitrate is the most stable 

nitrogen species in surface oxic waters. Nitrite is less stable, and it is considered an 

intermediate product in nitrification, and denitrification. Ammonium, in contrast, is only 

stable in reducing conditions. It can be stored within the sediments, from which can be 

readily released back to solution through porewater dilution and desorption from 

particles (Morin & Morse, 1999). Anammox and dissimilatory nitrate reduction to 

ammonium (DNRA) can also play a role in the nitrogen cycle, although the relative 

importance and magnitude of such processes in different coastal environments is still in 

discussion (Song et al., 2013; Roberts et al., 2014). The organic nitrogen pool will be 

cycled during microbial metabolism and thus it also plays an important role in the 
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estuarine geochemistry. However this organic nitrogen pool is difficult to characterise 

as it comprises a wide variety of compounds, the majority of which are complex high 

molecular weight compounds. These large molecules are more refractory and less 

bioavailable than low molecular weight compounds which are readily available for 

microbes and phytoplankton (Seitzinger & Sanders, 1997). Organic matter buried into 

the sediments will be involved in the early diagenesis through a combination of 

biological, chemical and physical processes. In fact, high rates of organic matter 

oxidation are expected in estuaries due to the high rates of sediment accumulation, 

organic matter flux into the sediment and organic matter burial (Henrichs, 1992). 

Estuarine sediments may also have accumulated contaminants such as TMs carried by 

river loads. Sediment geochemistry and dynamics will control the mobility and 

bioavailability of TMs, and therefore estuarine sediments subjected to reoxidation 

processes may be potential sources of TMs (Salomons et al., 1987; Di Toro et al., 1990; 

Allen et al., 1993; Calmano et al., 1993; Simpson et al., 1998; Saulnier & Mucci, 2000; 

Caetano et al., 2003). Trace metals can be in solution, adsorbed (or co-precipitated) to 

different mineral surfaces and organic matter, but in anoxic sediments, iron sulphides 

are thought to be the main solid phases controlling TM mobility and bioavailability due 

its high affinity for a wide variety of TMs (Salomons et al., 1987; Huerta-Diaz & 

Morse, 1990; Allen et al., 1993). When sediments are exposed to oxic conditions, 

dissolved Fe and Mn will precipitate rapidly as amorphous and poorly crystalline Fe/Mn 

oxyhydroxides, incorporating the released TMs by co-precipitation and/or adsorption 

(Burdige, 1993; Calmano et al., 1993; Simpson et al., 1998; Saulnier & Mucci, 2000; 

Gunnars et al., 2002; Caetano et al., 2003). These newly formed minerals will be 

transported, mixed, and maybe, eventually buried into the underlying anoxic sediment 

again. 

In aquatic sediments, there is a vertical progression of metabolic processes determined 

by the use of the available electron acceptors during organic matter mineralisation 

(Canfield & Thamdrup, 2009). The sequential utilization of the terminal electron 

acceptors is based on the thermodynamics of the process and the free energy yield 

(Stumm & Morgan, 1970; Froelich et al., 1979; Berner, 1980). At the surface, dissolved 
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oxygen can diffuse a few millimetres into the sediments (the oxic zone). Beneath, there 

is often a zone where nitrate (and nitrite as its reduction intermediate) accumulates and 

is reduced under anoxic conditions (the nitrogenous zone). Below, zones dominated by 

metal reduction (the manganous and ferruginous zones), sulphate reduction (the 

sulphidic zone), and methanogenesis (the methanic zone) occur in sequence (Canfield & 

Thamdrup, 2009) (see more details about the geochemical zonations in the section 2.3.3 

of this thesis).  

However, in coastal and estuarine sediments, these geochemical zones and the 

correspondent metabolic zones are not normally well delineated and they tend to 

overlap because sediment profiles are often disturbed by mixing and/or bioturbation 

(Sørensen & Jørgensen, 1987; Aller, 1994; Postma & Jakobsen, 1996; Mortimer et al., 

1998; Canfield & Thamdrup, 2009). Rapid redox changes at the estuarine sediment-

water interface due to successive cycles of suspension and settling of surface sediments 

will control the speciation and cycling of nutrients and trace elements on a tidal-cycle 

timescale (Morris et al., 1986). Yet, less frequently, seasonal or annual resuspension 

events (for example, due to very intense storms) can affect sediment to depths that are 

not disturbed normally, intersecting different pools of sediments and therefore altering 

the biogeochemistry of the system (Eggleton & Thomas, 2004). 

In this study sediments from four different sites along the salinity range of the Humber 

Estuary (UK) were used in order to investigate the impact of sediment resuspension on 

the redox cycling and transport of the major elements and TM to the coastal waters. The 

authors have worked in the Humber since 1994 (Mortimer et al., 1998; Burke et al., 

2005) and have observed the frequency and magnitude of resuspension events. Small 

scale resuspension of the upper 1-2 mm occurs on a tidal cycle; medium scale 

resuspension of the order of centimetres occurs during large flooding or moderate storm 

events which occur approximately twice a year. Very significant resuspension events 

that strip off the mud from intertidal areas occur on a timescale of several decades (a 

removal of about 10 cm deep intertidal mudflat was observed following a storm in early 

1996) (Mortimer et al., 1998). Accordingly, for this experiment, two sediment depths 

(the mobile oxic surface layer, 0-1 cm, and the suboxic/anoxic subsurface layer, 5-10 
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cm) were selected to simulate different timescales of resuspension and analyse their 

effects on nutrient and TM behaviour. The aim of this work is to better understand the 

environmental impact of remobilisation events within the estuary since climate change 

scenarios suggest extreme rainfall episodes will become increasingly common in 

temperate regions (Jones & Reid, 2001; Christensen et al., 2007). The more frequent 

disruption of subsurface sediments will affect the geochemistry of estuarine sediments, 

porewater profiles may not reach steady state between resuspension episodes, and there 

may be impacts on the nutrient and TM fluxes to the sea. 

5.2 Material and Methods 

5.2.1 Field sampling  

The Humber Estuary is a macrotidal estuary on the east coast of northern England (see 

Fig. 2.6). It is 60 km in length, contains ~115 km
2
 of mudflats, and is highly turbid 

(Pethick, 1990). The Humber is also considered a major source of nutrients for the 

North Sea (Pethick, 1990; Mortimer et al., 1998; Uncles et al., 1998b). 

Samples of intertidal mudflat sediments and river water were collected at low tide 

during the same tidal cycle on the 15
th

 July 2014 along the north bank of the Humber 

Estuary (Fig. 3.1). The four sites were Boothferry (S1) and Blacktoft (S2) on the inner 

estuary, and Paull (S3) and Skeffling (S4) on the outer estuary. These sites were 

selected to cover the salinity range within the estuary (Mortimer et al., 1998; Burke et 

al., 2005; Uncles et al., 2006). A sample of surface sediment (0-1 cm), subsurface 

sediment (5-10 cm) and river water were recovered from each sampling location. 

Sediments and river water samples were transferred into acid washed polythene 

containers, and stored at 4°C until used in resuspension experiments (started within 48 

hrs). In order to minimise sediment air oxidation, no air space was left in the containers, 

although during the sampling, redox sensitive elements from porewater could have 

undergone partial oxidation. River water pH, conductivity and temperature were 

determined in the field using a Myron Ultrameter PsiII handheld multimeter. 

Subsamples of sediments and river waters were stored for further analysis. Porewaters 
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were recovered from each sediment sample by centrifugation (30 min, 6000 g) within 6-

8 hrs of sampling, and stored for further analysis. 

5.2.2 Sample characterisation and analytical methods 

The sediments were oven dried at 70°C for 24 hrs prior to XRD analysis on a Bruker 

D8 Advance diffractometer and XRF analysis on an Olympus Innovex X-5000 

spectrometer. From the dried sediments, two subsamples were analysed by XRF in two 

different runs. The percentage of AVS and pyrite present were determined on freeze 

dried sediments using the methods described in Canfield et al. (1986) and Fossing & 

Jørgensen (1989) respectively, and the extractions were carried out in triplicates. Total 

extractable Fe and extractable Fe
2+

(s) contents of the sediments were determined after 60 

min extraction in 0.25 M hydroxylamine HCl (Lovley & Phillips, 1987) and 0.5 N HCl 

respectively (Lovley & Phillips, 1986), followed by ferrozine assay (Viollier et al., 

2000). Each of the extractions was also carried out in triplicates. TS and TOC in 

sediments (before and after HCl (10% v/v) treatment were determined in triplicate on a 

LECO SC-144DR Sulphur and Carbon Analyser by combustion with non-dispersive 

infrared detection. TIC was determined by difference. 

All water samples were filtered (<0.2µm Minisart
®
) prior to analysis. A continuous 

segmented flow analyser (SEAL AutoAnalyser 3 HR) was used to measure ammonium 

(%RSD was 3% and 1% for fresh and brackish-saline waters respectively). Ion 

chromatography (IC) was carried out to determine inorganic anions (NO3
−
, NO2

−
, SO4

2−
 

and Cl
−
). Chromatographic analysis of high chloride samples required the use of a 

column-switching method (Bruno et al., 2003) where matrix chloride anions were pre-

separated from the other analytes by a double in-line pre-column (AG9-HC 4 mm). The 

four-way valve, placed after the last pre-column, allowed the elution of most of the 

chloride to waste before the remaining analytes were eluted to the analytical column 

(AS9-HC). Then, ions were detected by conductivity (DIONEX CD20, ED40 

Electrochemical detector, %RSD <10%) and spectrophotometry for differentiation of 

nitrite and nitrate (DIONEX AD20 UV absorbance detector (225 nm)). For high salinity 

samples a second run with a DIONEX 500 (using a 20-fold dilution samples) was 

needed in order to measure chloride concentrations (%RSD ≤ 2%). 
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5.2.3 Resuspension experiments 

Sediment samples (30 g wet weight) from each location were used to prepare sediment 

slurries. The natural river waters were directly used to make up the suspensions without 

any pre-treatment (no deoxygenation or filtration applied). To prepare each specimen, 

120 mL of the corresponding river water were added to the weighed solids in an open 

500 mL Erlenmeyer flask, which was covered with a foam bung that allowed gas 

exchange with the atmosphere, but excluded dust. Each experiment (for each of the 

eigth sediment types) was run in triplicate (24 flasks in total), which will be the basis of 

the precision estimates on the figures presented. Thereafter, the slurries were 

maintained in suspension using an orbital shaker (120 rpm) at laboratory temperature 

(21±1°C). A series of 5 mL subsamples of sediment suspension were withdrawn from 

all flasks at different intervals from 0.02 hrs (1 min) to 336 hrs (two weeks). The 

sampling frequency was progressively decreased with time in order to more intensively 

monitor changes occurring at the start of the experiment relative to those occurring over 

longer time periods. During our experimental time (two weeks), the sampling schedule 

was planned to cover not only short-term, but also medium-term (2-3 days) changes, 

which would represent the duration of a very significant resuspension event like that 

suggested in Kalnejais et al. (2010). 

After sampling, the aqueous phase was separated from solids by centrifugation (5 min; 

16,000 g). Eh and pH were determined in the aqueous phase using a Hamilton PolyPlast 

ORP BNC and an Orion Dual Star meter (with the electrode calibrated at pH 4, 7 and 

10) respectively. Aqueous samples were filtered and retained for analysis. Subsamples 

of each replicate were acidified with 1% v/v AnalR HNO3 (VWR) for TM analysis by 

ICP-MS on a Thermo Scientific iCAPQc ICP-MS. Precautions were taken due to the 

high salinity of some of the samples and to avoid polyatomic interferences (see 

Appendix A for more details). Nutrients in the aqueous phase were measured as 

described above; and acid extractable Fe
2+

(s) was determined immediately on solid 

residues from centrifugation following the method described above. 
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5.2.4 Sequential extractions 

To support the understanding of the changes in TM speciation due to reoxidation, 

sequential extractions were performed concurrently. The partitioning of selected metals 

(Zn, Cu and Cd) between different operationally-defined geochemical fractions was 

determined using the Tessier et al. (1979) procedure as optimised for riverine sediments 

by Rauret et al. (1989). The extractions were carried out in triplicate with the original 

wet sediment samples and with the dried solid residues recovered from each specimen, 

and therefore in triplicates as well, at the end of the resuspension experiments. Four 

extractants were used: 1 M magnesium chloride (MgCl2) at pH 7 (to determine the 

“exchangeable” fraction), 1 M sodium acetate (NaOAc) at pH 5 (for the bound-to-

carbonates, “weak acid extractable”), 0.04 M hydroxylamine hydrochloride 

(NH2OH∙HCl) in 25% v/v acetic acid (HAc) (bound to Fe/Mn oxides), and 0.02 M 

HNO3, plus 30% H2O2 at pH 2 followed by ammonium acetate (NH4Ac) (bound to 

organic matter and sulphides). The third step of the extraction protocol was modified by 

reducing the extraction temperature (from 96°C to room temperature), and increasing 

the extraction time (from 6 to 12-14 hrs (overnight)). With the original wet sediments, 

the first three steps of the extraction protocol were carried out in an anaerobic chamber 

and the reactants needed were deoxygenated prior to use inside the chamber. Metal 

concentrations associated with the residual phase were not determined. The 

concentrations of the metals in the extractants were analysed by ICP-MS. 

5.3 Results 

5.3.1 Sample characterisation 

5.3.1.1 Site characterisation 

The basic physicochemical parameters at the four sampling sites are reported in Table 

5.1. During sampling the light brown oxic surface sediments contrasted visually with 

the underlying dark grey materials, except at S2 (Blacktoft), where there was no colour 

change but abundant plant material throughout. The full chemical characterisation of the 

river waters and porewaters from both sediment depths are given in Chapter 4. 
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Table 5.1: Characterisation of the river waters at the four study sites. 

Conductivity, temperature and pH were measured in situ. Eh was measured prior 

to resuspension in the laboratory. 

 S1 S2 S3 S4 

Conductivity (mS/cm) 0.7383 5.731 30.48 36.42 

Salinity (psu) 0.4 3.5 21.6 26.1 

Temperature (°C) 20.0 19.7 19.2 19.5 

pH 7.87 7.52 7.90 8.02 

Eh (mV) +151±24 +109±23 +75±8 +75±4 

NO3
− 

(µM) 266 250 248 24 

NH4
+
 (µM) 7 7 12 23 

Mn
2+

 (µM) 1.4 1.0 0.6 23 

SO4
2−

 (mM) 0.8 3.4 16 22 

Fe
2+

 (µM) 0.1 0.1 1.2 1.8 

 

5.3.1.2 Solid phase 

The bulk mineralogy of the dried sediments was characterised for all sample locations. 

All sediments contained a mixture of quartz, carbonates (calcite and dolomite), and 

silicates (kaolinite, muscovite, clinochlore, albite, microcline). Pyrite was only detected 

in the subsurface sediments from S4. The concentrations for Zn, Cu and Cd are included 

in Table 5.2 (for the rest of metals see Chapter 4). 

The average TIC, TOC and TS contents of inner estuary sediments (S1 and S2) were 

1.1%, 2.0%, and 0.17% respectively, with little systematic variation with depth. The 

average TIC, TOC and TS contents of outer estuary sediments (S3 and S4) were 1.6%, 

2.4%, and 0.35%, respectively, with both TOC and TS increasing with sample depth. 

The average amount of iron in the inner and outer estuary sediments were 3% and 4% 

by weight, respectively, with 0.09% and 0.13% associated with pyrite. AVS were only 

detected in the samples from the outer estuary but not in all the replicates. The iron 

associated with AVS in S3 and S4 subsurface sediments was 0.01 and 0.09% 

respectively, however it was not possible to quantify the very little amount extracted 

from surface samples. The average amount of 0.5 N HCl extractable Fe
2+

(s) was 108 and 
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153 µmols g
−1

 in the inner and outer estuary sediments, respectively, with no depth 

trend in the inner estuary, but a trend of increase with depth in the outer estuary (see 

Table 5.2). 

 



 

 

1
1
5
 

Table 5.2: Carbon, sulphur and iron characterisation in estuarine sediment and the bulk content of trace metals (Zn, Cu and Cd). 

The errors associated are the standard deviation (1σ) of three (or two replicates in the case of XRF measurements of Mn, Zn, Cu 

and Cd). 

 S1 S2 S3 S4 

 Surface Subsurface Surface Subsurface Surface Subsurface Surface Subsurface 

%TIC 1.71±0.31 1.01±0.69 0.69±0.22 1.09±0.19 1.43±0.06 1.38±0.21 1.75±0.10 1.76±0.04 

%TOC 1.28±0.29 2.34±0.68 2.48±0.21 1.75±0.15 2.06±0.04 2.58±0.17 2.17±0.04 2.69±0.03 

%TS 0.16±0.01 0.18±0.01 0.18±0.00 0.14±0.01 0.22±0.00 0.35±0.00 0.31±0.00 0.52±0.01 

Total Iron (%) 2.77±0.76 3.30±0.74 3.05±0.63 2.89±0.52 3.75±0.74 4.07±0.85 4.48±0.99 4.28±0.89 

%Fe-AVS nd nd nd nd <LDL 0.01 <LDL 0.09 

%Fe-Pyrite 0.08 0.10 0.09 0.10 0.10 0.12 0.12 0.18 

Total 0.5 N HCl 

extractable Fe 

(µmols/g solids) 

106±1 116±10 106±6 105±4 123±3 206±8 93±9 191±28 

0.5 N HCl 

extractable Fe
2+

 

(% Fe
2+

/FeTOT) 

52±2 61±5 53±1 53±2 39±1 84±6 57±3 96±3 

Mn (µg/g) 656±8 785±8 681±20 654±1 847±6 969±3 758±14 732±11 

Zn (µg/g) 132±3 149±1 139±4 129±4 161±2 199±13 174±1 167±6 

Cu (µg/g) 30±4 33±4 31±2 27±2 39±2 31±3 33±2 37±11 

Cd (µg/g) <2 <2 <2 <2 <2 <2 <2 <2 
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5.3.2 Major element behaviour during sediment resuspension 

Changes in the concentration of the major elements (NO3
−
, NH4

+
, Mn

2+
 and SO4

2−
) in 

solution, and 0.5 N HCl extractable Fe
2+

(s) during the oxic resuspension of estuarine 

sediments are shown in Figure 5.1 (inner estuary) and Figure 5.2 (outer estuary). The 

initial concentration of each major species in the river waters (and solids in the case of 

reduced Fe) has been plotted with an open symbol on the y-axis (i.e. zero time). Nitrite 

was below the detection limit and therefore it has not been included. 

5.3.2.1 Inner estuary 

In the experiments using surface sediments from the inner estuary sites (S1 and S2) 

nitrate seemed to be released immediately on resuspension, particularly in S2 

experiments (~400 µM) (Fig. 5.1a). Nitrate concentrations then remained relatively 

constant in these tests until 72 hrs, after which time concentrations steadily decreased 

towards the end of the test at 2 weeks. In the experiments using inner estuary subsurface 

sediments, nitrate concentrations followed similar trends to those exhibited by the 

surface sediment experiments (Fig. 5.1b), however there was significantly more data 

scatter observed in these tests (especially at the later time points). 

Ammonium concentrations in the experiments carried out with surface sediments 

decreased immediately after resuspension started (Fig. 5.1c) and remained close to 

detection levels until 48 hrs when concentrations transiently increased to around 20-30 

μM before decreasing to low concentrations by the end of the test. On the other hand, 

ammonium concentrations in experiments using subsurface sediments (Fig. 5.1d) 

increased modestly and slightly in S1 and S2 experiments respectively when 

resuspension started. Levels of ammonium in the subsurface sediment experiments 

remained relatively constant after the first day of reoxidation. 

In the experiments using inner estuary surface sediments, Mn
2+

(aq) concentrations were 

initially very low (≤5 µM), yet higher than the initial concentration in the water column 

(Fig. 5.1e), and decreased to detection limit levels after the first day of the reoxidation 

experiment, coinciding with the peak observed in ammonium. In the experiments using 

subsurface sediments, Mn
2+

(aq) concentrations showed an immediate increase to ~10-20 
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µM, followed by a very rapid decrease (within hours) to close to detection levels (Fig. 

5.1f). 

The sulphate concentrations were low in the inner estuary sediments, although slightly 

higher at S2 due to its position along the salinity gradient, and increased only 

marginally during the experiments (Fig. 5.1g and 5.1h). 

The initial 0.5 N HCl extractable Fe
2+

(s)
 
represented between 12-18% of the total iron in 

these sediments, being slightly lower in the surface sediments (Fig. 5.1i) than in the 

subsurface sediments (Fig. 5.1j). The percentage of extractable Fe
2+

(s) decreased over 

the duration of the experiments to a similar extent in all inner estuary sediments 

(between 20-40 µmol Fe
2+ 

g
-1

 were removed in each experiment which represented 4-

7% of the total iron in the sediments). 
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Figure 5.1: Major element behaviour during resuspension of inner estuary 

sediments. The purple line with circles represents S1 (Boothferry) and the green 

line with triangles represents S2 (Blacktoft). Open symbols on the y-axis indicate 

the initial concentrations of the major elements in the river water (a-h) and the 

initial 0.5 N HCl extractable Fe
2+

(s) in the sediments (i and j). The vertical error 

bars in all the figures represent one standard deviation (1σ) of triplicates. 
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5.3.2.2 Outer estuary 

The experiments using surface sediments from the outer estuary (S3 and S4) showed 

differences in the nitrate
 
behaviour between both sites (Fig. 5.2a and 5.2b). The initial 

nitrate concentrations in experiments using S3 surface experiments were higher than at 

S4 and similar to those found in the inner estuary sites; they remained relatively 

constant over the tests. In contrast, in the experiments using surface sediments from S4, 

nitrate concentration were initially very low, but it increased by six-fold within the first 

48 hrs (190±30 µM) and nearly by 30-fold (~900±300 µM) by the end of the 

experiment. In the tests using subsurface sediments from S3, initially nitrate 

concentration behaved similarly than in the tests using surface sediments; however, 

after a week, the nitrate concentration dropped below detectable levels. The 

experiments using subsurface sediments from S4, showed very low nitrate 

concentrations (close to or below detection levels) throughout. 

Ammonium concentrations in experiments using outer estuary surface sediments were 

initially low (<20 µM), similar to the concentrations in the original river water, and 

remained so until the end of the test (Fig. 5.2c). There was a very different trend in 

ammonium concentrations in the experiments using subsurface sediments (Fig. 5.2d), 

which increased significantly (by ~2.5 times) within the first few hours of resuspension. 

Ammonium concentration peaks in the experiments were 260±20 (S3) and 130±40 (S4) 

µM. Following this initial release, ammonium levels in solution decreased to ~20 µM 

by the end of the first week to remain stable until the end of the tests. 

In experiments using outer estuary surface sediments, Mn
2+

 concentrations increased 

immediately on resuspension to three times (~30-70 µM) the concentration of the river 

water (Fig. 5.2e). This rapid release of Mn
2+

 to solution was followed by a very rapid 

decrease to close to detection levels after about 4 hrs. In the experiments using 

subsurface sediments from S4, Mn
2+

(aq) concentrations sharply decreased from ~20 µM 

to detection limits after the first 10 hrs of resuspension, whereas for subsurface S3 

experiments there was no clear release-uptake trend in Mn
2+

(aq) concentrations (Fig. 

5.2f). 
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Sulphate is a more important species in solution in the outer estuary samples because 

the proximity to the coastal waters. In experiments using surface sediments the sulphate 

concentrations remained fairly constant throughout (Fig. 5.2g). However, in the 

experiments using subsurface sediments (Fig. 5.2h) the sulphate concentration increased 

with time, particularly in the S4 experiment (from 21±1 to 34±2 mM). 

Iron oxidation trends differed between the surface and subsurface sediments. The initial 

amounts of 0.5 N HCl extractable Fe
2+

(s) in the outer estuary surface sediments (Fig. 

5.2i) were 54±3 (S3) and 40±6 (S4) µmols Fe
2+

 g
−1

, which represented around 40% of 

the total 0.5 N HCl extractable Fe and the <9% of the total iron. By the end of the 2-

weeks reoxidation experiment, the percentage of Fe
2+

(s) decreased to around the 20% 

and 10% in the S3 and S4 surface sediment slurries respectively. The initial amounts of 

extractable Fe
2+

(s)
 
in the subsurface sediments (193±8 (S3) and 179±27 (S4) µmols Fe

2+
 

g
−1

 respectively) represented more than 90% of the total 0.5 N HCl extractable Fe pool 

of the subsurface sediments and ~30% of the total iron. By the end of the tests, the 

percentage of Fe
2+

(s) decreased to ~21% of the total iron (45±3 (S3) and 36±6 (S4) 

µmols Fe
2+

 g
−1

) (Fig. 5.2j). These outer estuary subsurface sediments experienced a 

rapid colour change (from black to brown) during the first hours of the experiment. 
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Figure 5.2: Major element behaviour during resuspension of outer estuary 

sediments. The red line with squares represents S3 (Paull) and the blue line with 

diamonds represents S4 (Skeffling). Open symbols on the y-axis indicate the 

initial concentrations of the major elements in the river water (a-h) and the initial 

0.5 N HCl extractable Fe
2+

(s) in the sediments (i and j). The vertical error bars in 

all the figures represent one standard deviation (1σ) of triplicates. 
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5.3.3 Trace metal mobility during sediment resuspension 

The release of Zn, Cu and Cd during sediment resuspension experiments is shown in 

Figure 5.3 (inner estuary) and Figure 5.4 (outer estuary). Data of TMs in solution have 

been normalised to show µg of metal released per kg (dry weight) of sediment used.  

5.3.3.1 Inner Estuary 

In the experiments carried out with inner estuary sediments, the pattern of Zn behaviour 

depended on the sample depth. In the surface sediment experiments (Fig. 5.3a), Zn 

concentration increased immediately upon resuspension to values 2-3 times the initial 

concentration in the experiment (154±89 (S1) and 120±35 (S2) µg Zn kg
-1

), but 

decreased with time to below the detection limit by the end of the experiment. In 

contrast, in the experiments using subsurface sediments (Fig. 5.3b), the initial Zn 

concentration did not show an important increase, and decreased gradually to a final 

level close to the detection limit. Initially, Cu concentrations remained stable (at about 

the in the river water) in the four sets of experiments, but increased after ~10 hrs of 

resuspension, reaching concentrations around 3-4 times its initial values (about 120±17 

(S1) and 100±35 (S2) µg Cu kg
-1

) (Fig. 5.3c and 5.3d). Cadmium was below detection 

limit (with one single exception) throughout these experiments (Fig. 5.3e and 5.3f). 
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Figure 5.3: Selected trace metals (Zn, Cu, and Cd) released to solution from 

solids during resuspension experiments using S1 and S2 sediments. Zinc released 

from surface (a) and subsurface (b) sediments; Cu released from surface (c) and 

subsurface (d) sediments; Cd released from surface (e) and subsurface (f) 

sediments. Open symbols on the y-axis indicate the initial concentrations of the 

selected TMs in the experiment. The vertical error bars in all the figures represent 

one standard deviation (1σ) of triplicates. Dashed lines indicate the LOD of the 

ICP-MS analysis. 

5.3.3.2 Outer estuary 

The resuspension experiments using outer estuary sediments showed a clear release-

uptake trend for Zn, Cu and Cd. Zinc was immediately released to solution, reaching 

concentrations 3-6 times higher than the initial concentrations in the experiment, and 

then concentrations rapidly decreased to concentrations before mixing (~4500 µg kg
−1

) 

(see Fig. 5.4a and 5.4b). The greatest Zn concentrations were observed in experiments 

with S4 sediments. Similarly, there was an immediate release of Cu to solution, 
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followed by rapid decrease (within hours) to concentrations below 1000 µg Cu kg
-1

. 

The maximum concentrations were ~5000-13000 µg Cu kg
-1

 (Fig. 5.4c and 5.4d), 

which were 2 to 6 times Cu concentration prior to the mixing. Cadmium showed the 

same behaviour (Fig. 5.4e and 5.4f), reaching maximum concentrations of ~2000-3000 

µg Cd kg
-1 

after about 1 hr of sediment resuspension. 

 

Figure 5.4: Selected trace metals (Zn Cu, and Cd) released to solution from solids 

during resuspension experiments using S3 and S4 sediments. Zinc released from 

surface (a) and subsurface (b) sediments; Cu released from surface (c) and 

subsurface (d) sediments; Cd released from surface (e) and subsurface (f) 

sediments. Open symbols on the y-axis indicate the initial concentrations of the 

selected TMs in the experiment. The vertical error bars in all the figures represent 

one standard deviation (1σ) of triplicates. 
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5.3.4 Changes in trace metal partitioning during resuspension 

Partitioning of Zn, Cu and Cd in the sediments before and after the reoxidation 

experiment, as determined by sequential extraction, are reported in Figure 5.5. In all the 

original sediments, Zn was predominantly associated with carbonates (and other weak-

acid extractable phases) and Fe/Mn oxyhydroxides, and the trends for Zn partitioning 

changes were similar in, both, surface and subsurface sediments (Fig. 5.5a and 5.5b). 

After two weeks of resuspension, Zn concentration slightly decreased in the Fe/Mn 

oxyhydroxides fraction and increased in the more weakly-bound (exchangeable and 

bound-to-carbonates) fractions. In the organic matter-sulphide fraction, Zn was only 

detected at the end point samples (concentrations in the leachate were equivalent to 

~10-15 µg Zn g
−1

). 

Copper partitioning (Fig. 5.5c and 5.5d) showed similar changes in all the samples. In 

the original sediments, almost all the Cu extracted was associated with the Fe/Mn 

oxyhydroxides fraction, although almost no Cu was extracted from S3 and S4 

subsurface sediments. Upon resuspension, there was a general shift from the Fe/Mn 

oxyhydroxides fraction to the weak acid extractable, and the organic matter-sulphide 

fraction. Copper concentrations for each leachate were similar between samples. 

Although Cd partitioning was more variable between sites than that of Zn and Cu, the 

concentrations in the extractants were equivalent to less than 0.5 µg Cd g
−1

. There was a 

general shift in Cd partitioning to more easily to extract fractions after 2-weeks of 

experiment (Fig. 5.5e and 5.5f). The most evident change was observed in the 

experiments using sediments from the outer estuary sites, in which Cd moved from 

high-energy bound fractions (organic matter-sulphides and Fe/Mn oxyhydroxides) to 

bound-to-carbonates and exchangeable fractions. 
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Figure 5.5: Trace metal partitioning changes after estuarine sediment reoxidation 

determined by sequential extractions using Tessier et al. (1979) protocol with 

modifications. The concentration (averaged from triplicates) is expressed in µg of 

the trace metal found in the extractant solution by the mass of solids used in the 

extraction. Zinc partitioning in surface (a) and subsurface (b) sediments; Cu 

partitioning in surface (c) and subsurface (d) sediments; and Cd partitioning in 

surface (e) and subsurface (f) sediments. Sites are ordered according to their 

location within the salinity gradient and the arrows represent the time of the 

reoxidation experiment (2-weeks). 
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5.4 Discussion 

5.4.1 Geochemical characterisation of river water and sediment along 

estuarine continuum 

The four sites along the Humber estuary represented the gradual change from a typical 

freshwater environment to an intertidal mudflat with brackish waters. This salinity 

profile was similar to that measured in other surveys (NRA, 1995, 1996; Sanders et al., 

1997; Mortimer et al., 1998). Along the salinity gradient, nitrate concentrations in the 

overlying waters were inversely correlated with the ammonium concentrations. The 

nitrate concentration in the river water samples generally decreased with increasing 

salinity. Previously nitrate has been described to show a conservative behaviour along 

the mixing line, although there may be specific locations that show net nitrate 

production or removal during the year (Sanders et al., 1997; Barnes & Owens, 1998). 

Generally ammonium concentrations measured were of the same order of magnitude, if 

not slightly higher, than the typical Humber waters. We observed increasing ammonium 

concentrations with increasing salinity, but the 90s surveys showed that ammonium 

trends varied throughout the year. All porewaters recovered were enriched in 

ammonium but not in nitrate. Ammonium enrichment was enhanced in the outermost 

estuary sites, which was most likely a reflection of in situ production from organic 

matter degradation during sulphate reduction. Sulphate concentrations increased 

seawards. 

All surface sediments used in the resuspension experiments were in contact with air at 

the time of sampling. The subsurface sediments collected in the inner estuary sites 

appeared to be moderately reducing compared to the subsurface sediments from the 

outer estuary which appeared to become more reducing in depth (with ~90% of the acid 

extractable Fe as Fe (II), presence of AVS, and high ammonium concentrations in 

porewater) (Table 5.2). The better defined redox stratification between the two sediment 

depths sampled at the outer estuary sites was supported by in situ observations (colour 

change and odour of the sediments). Moreover, the total acid extractable Fe in the 

subsurface outer estuary sediments was ~2 times the content of the equivalent sediments 
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from the inner estuary. Thus, it seems that the outer estuary mudflats hold the largest 

Fe-pool within the Humber estuarine continuum. 

Furthermore, the mudflats of the outer Humber estuary accumulated finer materials and 

they appeared to have a slightly higher organic content than the inner estuary sediments 

(see Table 5.2). Organic matter often accumulates with finer grained sediments, and its 

concentrations in coastal sediments are often lower at the sediment-water interface 

(Mayer, 1994). The organic matter depletion in the surface layer relative to the 

immediate subsurface, suggests that frequent mobilisation of surface sediments leads to 

greater organic matter degradation, which will be specially important in the areas of 

maximum sediment mobilization (i.e. TMZ) (Abril et al., 2002, Middelburg & Herman, 

2007) situated in the inner estuary. There is an excess of, DOC concentrations in the 

TMZ of the Humber that is progressively removed and controlled by conservative 

mixing (Alvarez-Salgado & Miller, 1998; Middelburg & Herman, 2007). Therefore 

metabolizable organic matter is progressively depleted along the estuaries, and despite 

the high rates of sediment accumulation in the outer estuary, which allows high organic 

matter burial, this organic matter will be likely more refractory and may be further 

degraded during early diagenesis (Henrichs, 1992; Tyson 1995). 

5.4.2 Geochemical responses of major elements to sediment resuspension 

The oxic resuspension experiments showed that geochemical behaviour of the major 

elements varied on different timescales. So the discussion about those changes upon 

sediment resuspension and their impacts on estuarine geochemistry will be framed by 

two time-windows (Fig. 5.6). Firstly, the immediate changes upon sediment 

resuspension in river water, which are important as they will occur naturally at any type 

of resuspension event (from regular tidal cycles to less frequent extreme events). 

Secondly, longer timescale changes expected during major storms, which typically last 

2-3 days in the Humber region (Lamb & Frydendahl, 1991; EASAC, 2013), and 

potentially mobilise deeper sediments that are not normally disturbed. For the 

immediate changes (left column), differences between the average concentration after 

the first hour of resuspension (as a final concentration datum) and the original 

concentrations of the river water (RW) (baseline) have been calculated. Changes during 
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a major storm timescale (right column) are represented by the difference between the 

average concentration over the first hour (baseline) and the concentration at 48 hrs of 

resuspension. 
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Figure 5.6: Major elements changes over time during sediment resuspension 

experiments at different time windows. Immediate changes (left) and changes 

over a major storm timescale (48 hrs) (right) for nitrate (a and b), ammonium (c 

and d), dissolved Mn (e and f), sulphate (g and h), and 0.5 N HCl extractable 

Fe
2+

(s) from solids (i and j). Light coloured bars represent surface sediments and 

dark coloured bars represent subsurface sediments. *Delta calculated for 72 hrs 

when datum for 48 hrs was not available. 
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Nitrate showed no big releases in the short term (Fig. 5.6a), with the exception of S2 

which may be explained by oxidation of reduced nitrogen species as porewater from the 

sediments did not accumulate nitrate. A combination of oxidation processes may also 

explain the nitrate increases in the longer timescale (Fig. 5.6b). For example the later 

significant increase in nitrate concentration in the experiments using S4 surface 

sediments may in part be associated with nitrification processes, as observed by 

Couceiro et al. (2013). Although a proportional ammonium consumption coupled to the 

production of nitrate was not observed in this experiment, coupled nitrification-

denitrification can occur very fast, especially if other oxidants such as Mn oxides are 

competing with the oxygen for the oxidation of ammonia (to N2) and organic-N (Luther 

et al., 1997; Anschutz et al., 2000). Therefore in this mosaic of redox reactions, a 

combination of aerobic oxidation of organic matter and nitrification may be the major 

nitrate sources. The nitrate produced can be subsequently used in other reactions. In fact 

under longer time intervals (1-2 weeks), the concentrations of nitrate decreased 

progressively in the experiments possibly due to the development of suboxic conditions 

in the experiments (i.e. conditions developed perhaps in isolated micro-niches in the 

bottom of the flasks (Triska et al., 1993; Lansdown et al., 2014; Lansdown et al., 2015), 

such that denitrification could be supported despite the constant influx of air to the 

experiments). As such, the longer term removal of nitrate observed in these experiments 

may be an artefact of the experimental set-up (i.e. the higher sediment to water ratios 

used) and may not be representative of nitrate dispersion following a large resuspension 

event. 

Ammonium showed significant releases (70-140 µM) in the first hour of resuspension 

in the experiments carried out with subsurface sediments from S3 and S4 (Fig. 5.6c), 

likely due to the accumulation of ammonium in porewaters of outer estuary mudflats 

like suggested by Morgan et al. (2012). However, other processes, such as reversible 

desorption from sediments and/or ion-exchange reactions likely have also contributed to 

the ammonium increase (Morin & Morse, 1999; Kalnejais et al., 2010; Morgan et al., 

2012; Percuoco et al., 2015) since porewater contribution to the mixture by simple 

diffusion cannot explain the concentrations reached. The ammonium released in those 

experiments was completely removed after 48 hrs (Fig. 5.6d). Transitory ammonium 
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release also occurred in S1 and S2 surface sediment experiments and these peaks 

coincided with the depletion of Mn
2+

 in solution. Nitrification and ammonium oxidation 

to N2 by Mn oxides could have been the ammonium removal processes. Any Mn
2+

(aq) 

product of these reaction pathways would readily react with the oxygen present to 

regenerate reactive oxides which will act as a catalysts to continue the oxidation of 

ammonium and organic-N (Luther et al., 1997) or, if suboxic conditions, it may react 

with nitrate (Sørensen & Jørgensen, 1987; Murray et al., 1995; Luther et al., 1997; 

Hulth et al., 1999). In the natural environment, the occurrence and magnitude of 

nitrification depends on the availability of oxygen and ammonium (Canfield et al., 

2005), and it will play a major role in the nutrient exchange processes within the 

sediment-water interface as the nitrate produced will, in turn, sustain denitrification 

(Barnes & Owens, 1998; Mortimer et al., 1998). In the Humber, an intense zone for 

nitrification-denitrification has been associated with the TMZ due to the enhanced 

chemical and microbial activity as suspended particles provide a large additional 

surface area (Barnes & Owens, 1998; Mortimer et al., 1998; Uncles et al., 1998a). On 

the other hand, nitrifiers can be inhibited by sulphide concentration, light, temperature, 

salinity and extreme pH (Canfield et al., 2005). The inhibition of nitrification by 

sulphide could favour the preservation of ammonium in porewaters (Joye & Hollibaugh, 

1995; Morgan et al., 2012), which may be a possible reason for the limited evidence of 

nitrate production in these experiments and may help to explain spatial differences in 

coupled nitrification-denitrification within this estuary. Alternatively, re-adsorption of 

ammonium onto particles, is likely to be an important removal process (especially as 

Fe/Mn oxides were likely to be forming in experiments as a result of metal oxidation; 

see below) which, in the natural estuary systems may be key in terms of the nutrient 

buffering capacity of the sediments (Morin & Morse, 1999; Song et al., 2013). 

Dissolved Mn behaviour varied significantly between the short and the long 

remobilisation timescales examined. There was a general immediate release of Mn
2+

(aq) 

from the porewater to solution (Fig. 5.6e) that was completely reversed within a major 

storm time interval (Fig. 5.6f). The release (and later uptake) appeared to be more 

important in the experiments carried out with surface sediments. For the inner estuary 

experiment the released-uptaked Mn
2+

(aq)  closed numerically. However, from the outer 
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estuary, only the S3 surface sediment experiments, showed an equivalent release and 

uptake of Mn
2+

(aq).
 
This and the initial concentration of Mn

2+
(aq)  in surface porewater 

(see Table 4.4 in Chapter 4) may indicate that these sediments were poised at Mn-

reduction at the time of sampling. Site 4 surface experiments showed slightly more 

Mn−uptake because Mn
2+

(aq)  decreased to levels below the initial Mn
2+

(aq)  

concentrations in the river water. As mentioned above, coupled ammonium and/or 

organic-N oxidation with Mn oxides reduction, may also have been a short-term source 

of Mn
2+

(aq). 

Sulphate and Fe did not show significant changes in the resuspension experiments 

during the first hour (Fig. 5.6g and 5.6i), but after, important changes in these species 

occurred during the oxidation. After 48-72 hrs, there was a net production of sulphate in 

the experiments with an increasing trend from S1 to S4, which evidences again the 

more reducing conditions of the outer estuary sediments which probably contained 

reduced S species (e.g. sulphide, thiosulphate) that were oxidised to form sulphate 

during the experiments (Fig. 5.6h). The differences in the concentration of acid 

extractable Fe
2+

(s) over 48 hrs of resuspension (Fig. 5.6j) became more important in the 

experiments using outer most estuary sediments due to their more reducing nature and 

their higher rective Fe content. 

The net removal of reduced Mn and Fe in all the experiments is attributed to a series of 

oxidation reactions occurring during sediment resuspension in aerated conditions, and 

the consequent precipitation of insoluble Mn/Fe oxyhydroxides (e.g. birnessite and 

ferrihydrite). During oxic resuspension, abiotic oxidation processes are expected to be 

the dominant mechanism operating. However, microbially mediated Mn- and Fe-

oxidation are the dominant mechanism operating in micro-aerophilic and suboxic 

environments (Froelich et al., 1979; Thamdrup et al., 1994; Canfield et al., 2005). In 

natural conditions, Mn/Fe oxides may accumulate at or above the oxygen penetration 

depth in much higher concentrations than oxygen, and they can be transported deeper 

into the anoxic zone by bioturbation, where they can couple the oxidation of reduced 

sediment components (for example oxidation of sulphite to sulphate and ammonia to 

nitrate, Luther et al., 1997; Hulth et al., 1999; Anschutz et al., 2000). Upward diffusing 
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Mn
2+

 and Fe
2+

 will also participate in chemo denitrification processes (Sørensen & 

Jørgensen, 1987). 

To summarise, the initial geochemical state of the sediments and their position along the 

estuarine continuum are the biggest influence on the geochemical progression during 

their resuspension. The availability of seawater sulphate, which likely promotes the 

development sulphidic sediments, and Fe
2+

(s) accumulation in the outer estuary mudflats 

may be the major control on the reoxidation processes, and hence Fe- and S-oxidation 

processes will dominate in this part of the Humber. However, the interlinks of N, Mn, 

Fe and S cycles and the spatiotemporal variability of the estuarine environments make it 

extremely difficult to constrain which are the principal reaction pathways occurring 

during resuspension events in natural conditions. 

5.4.3 Trace metal behaviour and changes during resuspension 

Zn and Cu were selected for analysis because they are known to be significantly 

enriched in the Humber sediments due to industrial contamination (Middleton & Grant, 

1990; Cave et al., 2005; Andrews et al., 2008). Cadmium, which is  normally found in 

very low concentrations (<5 nM) in the Humber estuary waters (Balls, 1985; Comber et 

al., 1995), has been included because its behaviour during resuspension experiments 

using outer estuary sediments was noticeable due to the significant immediate release 

upon resuspension. Although the total concentrations in the solid phase were not 

significantly different between samples, during the resuspension experiments the release 

of Zn, Cu and Cd was significantly lower in the experiments carried out with sediments 

from the inner estuary than when using the outer estuary sediments. Despite all the 

precautions taken in the ICP−MS analysis, the determination of trace elements in salt 

waters has been analytically challenging due to the potential interference of the matrix 

in the sensitivity and the formation of polyatomic ions (Reed et al., 1994; Jerez 

Vegueria et al., 2013). However, the difference between the concentrations measured 

immediately upon resuspension and the concentrations after 48 hrs indicated that, even 

if there were polyatomic interferences on the baseline, the trend was not an analytical 

artefact. Despite the differences in magnitude, these TMs showed a general release-

uptake trend in the resuspension experiments. The very rapid increase of TM 
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concentrations in solution upon resuspension (Fig. 5.7a, 5.7c and 5.7e) occurred due to 

a combination of mixing and desorption from different mineral phases (Calmano et al., 

1993; Cantwell et al., 2002). Salinity has been shown to promote metal desorption 

because metals can be mobilised as soluble chloride complexes (Gerringa et al., 2001; 

Millward & Liu, 2003; Du Laing et al., 2008), which may help to explain the higher 

concentrations of metals in the experiments carried out with the outer estuarine 

sediments. Furthermore, very early Fe/Mn oxides-colloids formed (before they 

aggregate to larger particles) may have passed the filters used and therefore any metal 

associated would have been deemed as solutes. Nevertheless, the release of TMs was 

reversed to a considerable extend by the time of a major storm (Fig. 5.7b, 5.7d and 5.7f) 

as a result, most probably, of co-precipitation and adsorption processes to newly formed 

Mn and Fe oxyhydroxides (Burdige, 1993; Calmano et al., 1993; Simpson et al., 1998; 

Saulnier & Mucci, 2000; Gunnars et al., 2002; Caetano et al., 2003). This is evidence of 

the importance of Fe/Mn transformations in the transport and fate of TMs in the 

estuarine sediment-water interface (Du Laing et al., 2009). Further, the presence of 

soluble organic compounds can affect positively or negatively the mobility of TMs (Du 

Laing et al., 2009) which may have had some effects in the trends observed in these 

experiments as well.  

The mobilisation of TMs upon resuspension is also supported by the general shift in 

metal partitioning towards ‘easier to extract’ fractions (exchangeable and bound-to-

carbonates fractions). Although metal release was reversed in a relative short term, 

changes in metal partitioning may have implications in metal bioavailability. The Zn 

released in the inner estuary experiments was <0.1% of the total Zn in the experiment, 

which was within the range of the Zn associated with the exchangeable fraction. This 

release was reversed. Zinc showed no significant changes in partitioning, but the 

decreases in the “weak acid extractable” and Fe/Mn oxides-associated fractions did not 

match quantitatively with any Zn increase in other fractions in the final sediments, 

which may be probably explained by protocol limitations (see below). However in the 

outer estuary experiments the average peak of Zn released was 11% of the total Zn in 

the experiments, and such release was also reversed with time. This released Zn to 

solution was higher than the Zn associated with the exchangeable fraction of these 
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sediments, which suggests that Zn was likely mobilised from other fractions. Probably 

Zn experienced a transient release (i.e. Zn likely sourced from absorption complexes 

and returned to new absorption complexes). This transient release may be what was 

measured in solution at the beginning of the resuspension (Zn concentration peak) (Fig 

5.7). Zinc speciation varied among the outer estuary sediments, and only two of them 

showed changes that quantitatively matched (loss in the Fe/Mn oxides-bound fraction 

was equivalent to the increase in carbonates and organic matter-sulphide fraction). On 

the other hand, the Cu released to solution in the inner estuary experiments represented 

about 0.1% of the total Cu in the solids, which coincided with the Cu found in the 

exchangeable fraction, and, contrary to what was observed in other experiments, Cu 

remained in solution. In the outer estuary experiments, the average peak of Cu released 

to solution was 22% of the total Cu in solids, which suggests that not only the Cu 

associated with the exchangeable fraction was mobilised. For all the speciations carried 

out with end point sediments, Cu was found in all the fractions, whereas in the initial 

samples Cu was found generally only associated with the Fe/Mn oxides-bound fraction. 

Thus, Cu may have been mobilised from high-energy binding sites to weaker binding 

sites. However, errors introduced during the extractions or errors associated with 

protocol limitations cannot be discarded. The total amount of Cd extracted was <1 µg/g 

which was consistent with XRF results (Cd was below detection limit, <2 µg/g). In the 

experiments carried out with inner estuary sediments, Cd was not released to solution 

and its partitioning did not show important changes. Contrarily, in the experiments 

carried out with the outer estuarine sediments, Cd was released to solution and showed 

a release-uptake trend likewise the other metals. However, we suspect the 

concentrations measured have been overestimated because they were >2 µg/g. 

Therefore, even if the trend was real, the concentrations reported may have been 

influenced by polyatomic influences and we cannot discard other contamination errors. 

Cadmium speciation did not show important changes between the initial and the 

reoxidised sediments.  

Numerous limitations have been reported about this extraction protocol (Gleyzes et al., 

2002). The concentrations in the exchangeable phase were generally very low or below 

detection limit, probably because the adsorption-desorption processes are normally pH-
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dependent, and therefore desorption of the specifically adsorbed metals may not be 

complete at neutral pH (Tessier et al., 1979; Du Laing et al., 2009). Furthermore, none 

of the Zn or Cu bound to organic matter-sulphides were extracted from the original 

sediments, which seems contrary to what was expected for initially sulphate reducing 

sediments, as TMs are normally associated with sulphide minerals (Di Toro et al., 1990; 

Allen et al., 1993). However the absence of Zn and Cu in this fraction may be explained 

by protocol limitations since in this step sulphides may be partially dissolved and 

organic matter not completely destroyed (Anju & Banerjee, 2010; Gleyces et al., 2002). 

There may be matrix effects and also readsoptions (by complexation, precipitation, 

coprecipitation, adsorption and loss on the vial walls) during the extraction (Martin et 

al., 1987). In particular, for example, “weak acid-extractable” fraction could not only 

include metals bound to carbonates, but also specifically sorbed to exchangeable sites of 

clay, organic matter or oxides surfaces (Gleyzes et al., 2002). The modification of the 

third step, which was performed at ambient temperature and in which the extraction 

time was increased, may not have been sufficient to complete the extraction of the 

Fe/Mn oxides-associated metals (Gleyzes et al., 2002). 
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Figure 5.7: Trace metals changes over time during sediment resuspension 

experiments at different time windows. Immediate changes (left) and changes 

over a major storm timescale (48 hrs) (right) for Zn (a and b), Cu (c and d) and Cd 

(e and f). Light coloured bars represent surface sediments and dark coloured bars 

represent subsurface sediments. Due to the differences in the order of magnitude 

of the changes between the inner and the outer estuary sediments, zoom-plots 

have been included for Zn and Cu in S1 and S2 (Cd was below detection limit in 

samples from S1 and S2). 

5.4.4 General implications of sediment resuspension for nutrient and trace 

metal transport and mobility in estuaries 

The reoxidation of estuarine sediments due to remobilisation events enhanced the 

release of both nutrients and metals. The major element geochemical progression was 

conditioned by the depth of the sediment being mobilised, whereas the release-uptake 
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trend in TMs behaviour was observed in all sediment types. Humber sediments may act 

as an ultimate sink for major (Fe and Mn) and trace metals; while for nutrients, they 

may act as a major source in some occasions, as argued by Millward and Glegg (1997). 

Nitrate (autochthonous or as product of nitrification processes) was the only major 

nutrient that seems to remain in solution for few days in both resuspension scenarios 

simulated. Hence, although nitrate concentrations were low in the outer estuary, during 

a major storm, important nitrate inputs from the estuary to the coastal waters may occur. 

During sediment reoxidation, any ferrous iron (in solution or associated with particles) 

will be rapidly oxidised, and hence iron will be transported mainly as ferric iron (as 

particles, colloids, or organic-matter complexed). Fe supplied from resuspended 

sediments is likely to be an important source of Fe to the coastal environment as 

suggested by Kalnejais et al. (2010).  

The area of the outer estuary intertidal mudflats, is the largest in terms of aerial extent 

(see Mortimer et al., 1998), and therefore the potential amount of sediments, and 

consequently nutrients and metals, mobilised will be significantly larger during an 

extraordinary resuspension event than during normal circumstances, which may have 

further implications in the coastal ecosystem. In these mudflats, the larger amount of Fe 

and the continuous availability of sulphate seem to promote the development of 

sulphidic conditions at depth which are not observed at the depth sampled in the inner 

estuary sites. The total oxidation of the inorganic species released during the 

resuspension of estuary sediments would equate to oxygen consumption of 20±10 

mmols O2 kg
-1

of sediment, and to 70±40 mmols O2 kg
-1

of sediment for the inner and 

outer estuary sediments respectively. This amount of oxygen removal could result in 

full deoxygenation of surface waters at relatively low solid-solution ratios (15 g L
-1

 for 

the inner estuary; 4 g L
-1

 for the outer estuary). However, well-mixed estuaries rarely 

exhibit water column hypoxia (Paerl, 2006). The kinetics of the reoxidation processes 

(especially those of Fe and S) are such that resupply of oxygen (by diffusion from 

atmosphere or mixing with adjacent oxygenated waters) is likely to prevent anoxic 

conditions from developing in all but the very largest of remobilisation events. 
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During estuarine resuspension events changes in TM speciation due to redox changes 

and desorption from resuspendable sediments are likely to be the main source of TMs to 

the water column; although direct diffusion of porewaters from undisturbed sediments 

can be also an important source of dissolved species (Martino et al., 2002; Kalnejais et 

al., 2010). In these experiments, TM release was followed by an uptake in a relatively 

short time-window (<48 hrs, mostly in 10 hrs). Hirst and Aston (1983) suggested, that 

the metal concentration in the fluxes coming into the coastal waters may remain at 

normal levels even when extraordinary amounts of sediments are mobilised due to the 

rapid scavenging capacity of the newly formed minerals surfaces. This is supported by 

data presented here as only transient metal releases were observed. Others suggested 

that dissolved metals display non‒conservative mixing in macrotidal environments 

which can be explained by the presence of additional metal sources associated with 

sediments, and supports the importance of sediment mobilisation patterns and frequency 

on TM bioavailability and transport (Martino et al., 2002). Furthermore, these 

experiments showed that sediment reoxidation led to a shift in TM partitioning (i.e. a 

greater proportion of TMs was associated with more weakly bound fractions). In the 

natural environment, before sediments are ultimately scavenged deeper in the sediment 

column, they will be continuously resuspended (Lee & Cundy, 2001), so the transfer of 

TMs to weaker binding fractions will have implications in their bioavailability over 

time. 

Under future climate change scenarios more frequent and intense episodes of extreme 

precipitations over Britain have been predicted (Jones & Reid, 2001; Christensen et al., 

2007). Therefore, in terms of budget, the more regular mobilisation of undisrupted 

subsurface sediment will lead to increasing nutrient and metal inputs to the estuarine 

water column, and maybe ultimately to coastal waters, which will have important 

environmental implications. Furthermore, changes in the estuarine dynamics could 

compromise the conditions needed for estuarine sediments to reach steady state before 

the next mixing event takes place, which may affect the sediment redox stratification 

and the development of well-defined geochemical zonations within the sediment 

profile. 



141 

 

5.5 Conclusions 

This study gives an insight into the complex mosaic of processes that result from 

physical disturbances along the estuarine continuum. The position in the estuarine 

salinity gradient is the dominant control on sediment geochemistry with a transition 

from a Mn /Fe-dominated redox chemistry in the inner estuary to a Fe/S-dominated 

system in the outer estuary. Therefore, understanding the system dynamics and 

sediment characteristics is key when studying nutrients and metal cycling along a 

salinity continuum. Sediment resuspension resulted in release of ammonium (where 

enriched) to surface waters. The nitrate released appears to remain in solution for more 

than 2-3 days. Reduced pools of Mn
2+

(aq), Fe
2+

(s) and, likely, sulphides, in sediments 

were oxidised during resuspension resulting in Mn and Fe oxyhydroxides precipitation, 

which produced new sorption sites for the TMs released to solution upon resuspension. 

Thus, rapid releases of ammonium, Mn and TMs may be reversed in relatively short 

(few days) timescales, which is important when assessing the overall environmental 

effects of resuspension episodes on surface waters composition and nutrient and metal 

cycling. In the Humber estuary, the potential resuspension of outer estuary subsurface 

sediments would have a greatest effect on the coastal environment (in terms of COD, 

nutrient and metal release), and it may become a more important process in the future as 

it is predicted an increase in the frequency of major storms that can mobilise these 

deeper sediments due to global warming. 
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Chapter 6 

Nitrate-dependent oxidation of undisturbed estuarine sediments and 

its effects on major and trace elements  

Executive Summary 

The Humber estuary has received riverine fluxes with high concentrations of nitrate and 

heavy metals, but due to the loss of intertidal areas, the capacity for sediment 

transformations of these pollutants has reduced. Nitrogen is conserved along the salinity 

continuum due to freshwater and seawater mixing plus a balance of denitrification and 

nitrification processes. However, it is important to understand controls on the rates of 

and sites for these nitrate removal and addition processes because perturbation of the 

estuary could disturb the overall conservative behaviour of nitrate. Nitrate-dependent 

oxidation coupled to the oxidation of different reduced inorganic species is examined in 

sediment microcosms amended with a high concentration nitrate solution. A 

combination of nitrate-driven redox processes developed in the non-sterilised 

microcosms. There was a transition in the dominant terminal-electron accepting 

processes dependent on the initial geochemical state of the estuarine sediments used. 

Organic carbon and iron oxidation were the most important electron donating processes 

coupled to nitrate reduction in the microcosm experiments using inner estuary 

sediments, followed by a combination of nitrate-dependent iron and sulphur oxidation, 

towards a sulphur-oxidation dominant environment in the experiments using the outer 

most estuarine sediments. Additionally, from the analysis of trace metal partitioning, a 

general shift of trace metals to weaker-binding sites was observed after the sediment 

incubation as a result of nitrate-dependent oxidation. Therefore benthic sediment 

anaerobic oxidation processes may have implications for the bioavailability of trace 

metals that were scavenged in the estuarine sediments. These results confirm that 

estuarine sediments, and reduced outer estuary sediments in particular, can be an 

efficient sink for nitrate, although the dominant benthic nitrate removal processes will 

depend strongly on the local geochemistry.  
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6.1 Introduction 

Estuaries are semi-enclosed coastal environments situated at the river and ocean 

interface in which seawater is diluted with freshwater derived from land drainage 

(Perillo, 1995). The fluxes of soluble and particulate material through estuaries are 

influenced by a range of processes and factors that operate over variable scales of time 

and space (Nedwell et al., 1999; Statham, 2012). Nutrients (nitrogen, silicon and 

phosphorus) and particulate material loads naturally enter river systems from land 

surface runoff and from atmospheric deposition, but manmade sources from industrial 

wastewater, agricultural fertilizers, and sewage treatment, can greatly increase the 

fluxes (Nedwell et al., 1999; Statham, 2012). Normally nitrogen is limiting in coastal 

waters in temperate latitudes, however eutrophic events and the associated 

environmental impacts on water quality and biological activity may occur due to high 

nitrate fluxes reaching the sea (Sanders et al., 1997; Howarth et al., 2000; Shao et al., 

2010; Statham, 2012). Denitrification is a key process for nitrogen removal in estuarine 

systems and, consequently, for protection of coastal waters from nutrient pollution 

(Barnes & Owens, 1998; Howarth & Marino, 2006; Gardner & McCarthy, 2009). 

In estuarine sediments the dominant nitrogen species under oxic conditions is nitrate 

(the result of diffusion from the water column and oxidation of reduced nitrogen species 

in-situ, Barnes & Owens, 1998), whereas under anoxic conditions the dominant 

nitrogen species is ammonium (due mainly to microbial breakdown of organic matter 

and nitrate consumption). The nitrogen cycle in sediments (Fig. 6.1) is a complex set of 

dissimilatory and assimilatory N transformations into its different oxidation states 

(Thamdrup, 2012). 
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Figure 6.1: Relationship of different N transformation processes in the 

sedimentary nitrogen cycle (after Godfrey & Falkowski, 2009) including the 

relative positions of organic matter (OM) oxidation and nitrate dependent metal 

and sulphur oxidation processes. 

There are three possible pathways for microbially mediated nitrate reduction: 

denitrification; anaerobic ammonium oxidation (anammox); and dissimilatory nitrate 

reduction to ammonium (DNRA). These processes can be concurrent within the 

sediments, however it is difficult to determine their relative contribution to total benthic 

nitrate reduction (Song et al., 2013; Roberts et al., 2014). Denitrification is the 

respiratory anaerobic sequential reduction of nitrate to eventually dinitrogen gas (N2) or 

other gaseous N compounds (NO and N2O) (equation 6.1; Canfield, 1993). Nitrite is an 

obligate intermediate in the denitrification and it can sometimes accumulate in the 

sediments indicating active nitrate reduction (Canfield & Thamdrup, 2009). 

Denitrification is mainly coupled with the oxidation of organic matter (Canfield et al., 

2005; Thamdrup, 2012): 

5𝐶𝐻2𝑂 + 4𝑁𝑂3
− → 2𝑁2 + 𝐶𝑂2 + 4𝐻𝐶𝑂3

− + 3𝐻2𝑂             (Eq. 6.1) 

In addition, in anaerobic sediments, nitrate reduction can be also coupled with the 

oxidation of hydrogen, and reduced iron, manganese, and sulphur species (equations 

6.2-6.6) (Straub et al., 1996; Hulth et al., 1999; Kuenen, 1999; Weber et al., 2001; 

Visscher & Stolz, 2005); 

10𝐹𝑒2+ + 2𝑁𝑂3
− + 24𝐻2𝑂 → 10𝐹𝑒(𝑂𝐻)3 + 𝑁2 + 18𝐻+  (Eq. 6.2) 
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5FeS + 8𝑁𝑂3
− + 8𝐻+ → 5𝑆𝑂4

2− + 4𝑁2 + 5𝐹𝑒2+ + 4𝐻2𝑂  (Eq. 6.3) 

5𝑀𝑛2+ + 2𝑁𝑂3
− + 4𝐻2𝑂 → 5𝑀𝑛𝑂2 + 𝑁2 + 8𝐻+   (Eq. 6.4) 

5𝑆2𝑂3
2− + 8𝑁𝑂3

− + 𝐻2𝑂 → 10𝑆𝑂4
2− + 4𝑁2 + 2𝐻+   (Eq. 6.5) 

5𝐻𝑆− + 8𝑁𝑂3
− → 5𝑆𝑂4

2− + 4𝑁2 + 3𝑂𝐻− + 𝐻2𝑂    (Eq. 6.6) 

and such processes can be important for the fate of nitrate in aquatic environments, 

especially when there is limited supply of organic matter (Weber et al., 2001). 

Anammox, a bacterially mediated process where nitrite and ammonium ions are 

converted into dinitrogen and water (equation 6.7; Jetten et al. 1997), has been observed 

in different aquatic environments (Dalsgaard et al., 2003; Jetten et al., 2003; Mortimer 

et al., 2004; Trimmer et al., 2005; Trimmer et al., 2013). It has been estimated to 

account for ~30% of the N2 production in the marine environment, but its contribution, 

which normally correlates with water depth (Dalsgaard et al., 2005), varies from <1% to 

about 80% between different sites (Thamdrup, 2012). 

𝑁𝑂2
− + 𝑁𝐻4

+ → 𝑁2 + 2𝐻2𝑂      (Eq. 6.7) 

As the name implies, DNRA is the transformation of nitrate to ammonium by 

microorganisms during anaerobic respiration (equation 6.8; Brunet & Garcia Gil, 1996). 

Unlike the other two nitrate reduction pathways, DNRA does not remove nitrogen from 

the aqueous system as it is reduced to bioavailable ammonium that is retained within the 

sediments, and can subsequently be released and cycled (An & Gardner, 2002; Rutting 

et al., 2011; Roberts et al., 2012). 

𝐶𝐻2𝑂 + 𝑁𝑂3
− → 𝑁𝐻4

+ + 𝐶𝑂2 + 𝑂𝐻−    (Eq. 6.8) 

The importance of DNRA in sediment denitrification has been increasingly recognised 

over the last few decades (Gardner et al., 2006; Dong et al., 2011). It has been found 

recently that the key factors that seem to regulate DNRA are organic matter loading, 

nitrate availability, temperature and availability of reductants such as sulphide and 

reduced iron (Gardner & McCarthy, 2009; Roberts et al., 2014; Robertson et al., 2016). 

However, despite the efforts to elucidate the environmental and geochemical factors 
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controlling the partitioning between denitrification and DNRA, what regulates the ratio 

between these processes is still not fully understood (Gardner et al., 2006; Dong et al., 

2011; Roberts et al., 2012; Giblin et al., 2013; Roberts et al., 2014; Robertson et al., 

2016).  

In aquatic sediments rich in organic matter, aerobic heterotrophic metabolism is 

restricted to a very thin surface layer, below which the oxidation of organic matter can 

be completed by microbial dissimilatory reduction of inorganic compounds (Lovley, 

1991). In any geochemical setting, the microorganisms that mediate the most 

energetically favourable biochemical reactions have a competitive advantage, and thus 

electron acceptors tend to be consumed in sequence (Froelich et al., 1979). This tends to 

result in the stratification of a sediment profile into geochemical zones associated with 

dominance of a particular metabolic process; the sequence (determined by the free 

energy yield per mole of organic carbon oxidised) is usually aerobic metabolism, 

nitrate, manganese, ferric iron and sulphate reduction, and then methanogenesis 

(Froelich et al., 1979; Berner, 1980; Jørgensen, 1982; Canfield et al., 1993; Canfield & 

Thamdrup, 2009). However, in natural systems, this pattern of biochemical zonation is 

not so clearly delineated because the geochemical/metabolic zones tend to overlap and 

they can be also disturbed by bioturbation and sediment resuspension (Sørensen & 

Jørgensen, 1987; Canfield et al., 1993; Postma & Jakobsen, 1996; Canfield & 

Thamdrup, 2009). During these redox processes, the formation of reactive iron and 

manganese oxides is also likely to affect the migration of trace metals (TMs) whose 

behaviour is strongly controlled by sorption reactions to these mineral surfaces (Boyle 

et al., 1977; Huerta-Diaz & Morse, 1990; Burdige, 1993). Therefore the microbially 

mediated reactions coupling the redox cycles of N, Fe, Mn and S play a key role in the 

sedimentary aquatic environments. 

Furthermore the interaction between these different redox cycles and their implication 

on TM cycling in estuarine sediments has been the focus of attention because estuarine 

sediments often contain high levels of contaminants associated with the anthropogenic 

activities within the catchment (French, 1993; Cave et al., 2005) that were carried into 

the estuary associated with suspended particulate matter (SPM) (Horowitz, 1985; 
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Salomons et al., 1987). The bioavailability of TMs in sediments will depend on the 

chemical nature of their association with particles (Forstner et al., 1989; Di Toro et al., 

1990; Allen et al., 1993; Calmano et al., 1993) that is influenced at the same time by the 

environmental conditions (redox, salinity, DOC, etc.). The redox-sensitive processes 

occurring at the oxic-anoxic sediment interface result in changes in metal mobility, 

mainly due to the coprecipitation or adsorption with the newly formed precipitates or 

the dissolution of metal-containing precipitates (Di Toro et al., 1990; Caetano et al., 

2003). When anaerobic sediments are oxidised, the released metals can be rapidly re-

precipitated with insoluble Fe- and Mn-(oxy)hydroxides, and such immobilization has 

been also observed during anaerobic bio-oxidation (Smith & Jaffe, 1998; Weber et al., 

2001; Lack et al., 2002; Hohmann et al., 2010), which may have an important influence 

on the migration of contaminant metals within subsurface sediments under anaerobic 

conditions. 

The Humber estuary (UK) has been considered an important sink for organic and 

inorganic contaminants. The rivers flowing into the Humber have received pollution 

from heavy industry (especially until the first decades of the 20th century), mining, 

agricultural and urban activities (Goulder et al., 1980, Pethick, 1990; Sanders et al., 

1997; Cave et al., 2005). The area surrounding the estuary has been also heavily 

industrialised; and the estuary is a major locus for gas and oil landing and refining in the 

North Sea (Cave et al., 2005). Sanders et al. (1997) reported nitrate concentrations in 

the waters of the Humber significantly higher than in most other estuaries around the 

world. Estuarine sediments are usually rich in organic content due to high sedimentation 

rates, which increases their potential for denitrification since the oxygen is limited. The 

importance of denitrification for nitrate removal in the sediment-water interface has 

been already demonstrated (Barnes & Owens, 1998; Mortimer et al., 1998; Dong et al., 

2006). Barnes and Owens (1998) estimated that sediment denitrification removes 25% 

of the inorganic nitrogen loads entering in the Humber each year, which according to 

Jickells et al. (2000) will represent only a 4% of the total fluvial nitrogen inputs. 

However, the relative importance of nitrate reduction processes coupled to the oxidation 

of inorganic substrates remains unknown. Therefore, the aim of this work is to 

systematically study the anaerobic denitrification via the oxidation of the different 
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major reduced species (Fe, Mn and S species) in subsurface sediments from four 

geochemically different settings along the north bank of the Humber estuary amended 

with a high nitrate solution in a microcosm experiment. The effects of nitrate-driven 

oxidation on the major element behaviour have been monitored, together with the 

changes on the trace metal partitioning, in order to improve the understanding of 

contaminant fate and transport in this post-industrial estuary. 

6.2 Material and Methods 

6.2.1 Field Sampling 

Sediment samples were collected in July 2014 from four sites along the north bank of 

the Humber estuary during a single tidal cycle. These sites were selected to cover a 

range of salinity conditions from fresh to high salinity waters: Boothferry (S1) (0.4 psu) 

and Blacktoft (S2) (3.5 psu) both in the inner estuary; and Paull (S3) (21.6 psu), and 

Skeffling (S4) (26.1 psu) which are situated towards the outer estuary (see map in Fig. 

3.1). Subsurface (5-10 cm) sediments and river water adjacent to each site were 

collected into polythene containers. River water pH, conductivity and temperature were 

determined in the field using a Myron Ultrameter PsiII handheld multimeter. The 

environmental temperature on the day of the sampling was between 19-20°C at all the 

sites. Samples were transported in a cold box to the laboratory and stored at 4°C until 

used in the microcosm experiments (two weeks). No air space was left in the polythene 

containers to avoid air oxidation of redox sensitive elements. 

6.2.2 Nitrate-driven oxidation experiments 

Microcosm experiments were established with 100 mL of 1:5 sediment-river water ratio 

suspension in 120 mL glass serum bottles. A litre of sediment-river water suspension 

was prepared for each of the four sample sites in acid washed polythene bottles using 

wet sediment, and the final suspension had 20 % of solids by dry weight. For each 

suspension 100 mL aliquots were transferred in triplicate to 100 mL acid washed serum 

bottles and sealed with butyl rubber stoppers and aluminium crimps. The triplicate 

experiments will give the experiment a measure of statistical variability between 

samples. Low oxygen conditions were maintained during mixing and in the microcosm 
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bottles by using N2 gas to displace air in head-spaces. Mixing and homogenising 

difficulties meant that the final amount of solids in the S3 bottles was ~5%, lower than 

the 20 % indicated. Three additional replicate microcosms for each sample were 

autoclaved (3x1 hour cycles at 120°C) as sterile controls. Therefore there were in total 

24 microcosms (four biotically active and their respective control experiments all in 

triplicate). Further replicate microcosm bottles were frozen immediately after 

preparation and used later for further analysis of the initial microcosm conditions (e.g. 

porewater characterisation, iron content and TM partitioning). 

After a first aliquot was taken aseptically under a stream of N2 gas, all bottles were 

amended with 1 mL of a deoxygenated 250 mM nitrate (NaNO3) solution with a sterile 

syringe. Microcosm bottles were incubated at 10°C in darkness during two months 

(sampling stopped at a time when no more major changes in the 0.5 N HCl extractable 

Fe
2+

(s) levels were observed). Periodically, aliquots of 3 mL of sediment slurry were 

withdrawn under s stream of N2 using a sterile syringe and the rubber stopper was 

carefully wiped with ethanol every time. This volume was split evenly into two micro-

centrifuge tubes that were centrifuged (6 min at 16,000 g). One of the supernatants was 

then analysed for Eh and pH using an Orion Dual Star meter with the electrode 

calibrated at pH 4, 7 and 10. The other supernatant was filtered and stored for nutrient 

analysis. Nitrate, nitrite and sulphate were determined by ion chromatography (IC) 

(using a column switching programme, see section 3.3.2.1.2) on a DIONEX CD20 

(ED40 Electrochemical detector, %RSD <10%). Ammonium was measured by digital 

colorimetric analysis on a continuous segmented flow analyser (SEAL AutoAnalyser 3 

HR) (%RSD ≤3%). The amount of  0.5 N HCl extractable Fe
2+

(s) (Lovley & Phillips, 

1986a) was determined for the sediment pellets left in the micro-centrifuge tubes by 

reaction with ferrozine (Viollier et al., 2000).  

The same techniques for the analysis of the aqueous phase were used to characterise 

river water and porewater (recovered by sediment centrifugation (30 min, 6000 g)). 

Dissolved metals (Mn, Fe, Zn, Cu, Cd, As, Pb) were determined in the river waters after 

sample acidification (1 % v/v HNO3 trace analytical grade) using ICP-MS (Thermo 

Scientific ™ ICP-MS). Precautions were taken to avoid potential polyatomic 
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interferences (see Appendix A for more details) and problems associated with high 

salinity samples which were diluted (x50 fold). The original sediments used in the 

microcosm experiment were analysed for: bulk elemental composition by XRF on an 

Olympus Innovex X-5000 spectrometer; AVS (Canfield et al., 1986); pyrite (Fossing & 

Jørgensen, 1989); total 0.5 N HCl extractable iron (Lovley & Phillips, 1987); and TOC 

(after HCl 10% v/v treatment) by combustion with non-dispersive infrared detection on 

a LECO SC-144DR Sulphur and Carbon Analyser. Solids were also analysed for 

particle size by laser diffraction on a Malvern Mastersizer 2000E. The analyses of the 

solid phase were carried out in triplicates, with the exception of the XRF analysis were 

there were only two replicates.  

Sequential extractions were performed on the starting and end point solids using the 

Tessier et al. (1979) procedure as optimised for riverine sediments by Rauret et al. 

(1989). The four extractants used in this procedure were: 1 M MgCl2 at pH 7 (to 

determine the “exchangeable” fraction), 1 M NaOAc at pH 5 (for the carbonate-bound 

fraction or ‘weak acid extractable’), 0.04 M NH2OH∙HCl (in 25% v/v HAc, pH=2) (for 

the bound to Fe- and Mn-(oxy)hydroxides) and HNO3 and 30% H2O2 at pH 2 followed 

by NH4Ac (for metals bound to organic matter and sulphides). The third step of the 

extraction protocol was modified from the riverine protocol by reducing the extraction 

temperature (from 96°C to room temperature), and increasing the extraction time (from 

6 to 14 hrs). The fifth step of the extraction protocol (for metals associated with the 

residual fraction) was not performed. The concentrations of the extracted metals were 

analysed by ICP-MS and all the extractions were carried out in triplicates. 

6.3 Results 

6.3.1 Sediment and water characterisation 

The chemical characteristics of the sediments and water used to make up the sediment 

slurries for the microcosm experiments are summarised in Table 6.1 (full data set can be 

found in Chapter 4).  

The river water at the inner estuary sites was low in salinity (0.4-3.5 psu), high in nitrate 

(~250 µM), low in ammonium (<10 µM) and relatively low in sulphate (1-3 mM). 
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Nitrite was below detection limits. Boothferry (S1) porewater showed some enrichment 

in ammonium (67 µM), and manganese (82 µM) but depletion of nitrate (37 µM) 

relative to the river water. Blacktoft (S2) porewater had lower concentrations of 

ammonium (25 µM) and dissolved manganese (50 µM) than S1, but a similar nitrate 

concentration (26 µM). Boothferry (S1) sediments contained 2.3% organic carbon 

(TOC) and 61% of the acid extractable iron was reduced Fe(II), and Blacktoft (S2) 

sediments contained 1.8% TOC and 53% of the acid extractable iron was reduced 

Fe(II). No AVS was detected in these sediments. 

The river water at the outer estuary sites was brackish (21.6-26.1 psu). The nitrate 

concentration at Paull (S3) (248 µM) was similar to that in the inner estuary, but it was 

significantly lower at Skeffling (S4) (24 µM). Ammonium concentrations at S3 and S4 

were relatively low, but increased seawards (12 and 23 µM, respectively), and sulphate 

concentrations were high and again increased seawards (16 and 23 mM, respectively). 

Nitrite was below detection limits. Sediments porewaters from these sites were low in 

nitrate (17 and 7 µM at S3 and S4 respectively) in comparison to both the inner estuary 

porewaters and their respective overlying water. However sulphate (33 and 40 mM 

respectively) was elevated, and ammonium (934 µM and 126 µM, respectively) and 

dissolved manganese (41 and 62 µM, respectively) were significantly elevated relative 

to the overlying water. Paull (S3) sediments contained 2.6% of TOC, and more than 

80% of the acid extractable iron was reduced Fe(II), and Skeffling (S4) sediments 

contained 2.7% TOC and 96% of the acid extractable iron was reduced Fe(II). Both 

sediments showed Fe-AVS, although the percentage of Fe associated with AVS was 

low (0.01 and 0.09% in S3 and S4 sediments respectively).  
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Table 6.1: Geochemical characteristics of the water, sediment porewater and 

solids from the different sampling locations of the Humber estuary (inner estuary 

(S1 and S2) and outer estuary (S3 and S4). *Particle size refers to the diameter of 

the 50% cumulative percentage of finer particles by volume in the sample (D50); 

nd = not detected. Pb data for brackish-saline (>4 psu) waters are not available (Pb 

was not measured). 

 S1 S2 S3 S4 

 River water  

Salinity (psu) 0.4 3.5 21.6 26.1 

Conductivity (mS/cm) 0.7383 5.731 30.48 36.42 

pH 7.87 7.52 7.90 8.02 

NO3
‒
 (µM) 266 250 248 24 

NH4
+
 (µM) 7 7 12 23 

SO4
2-

 (mM) 1 3 16 23 

Fe
2+

(aq) (µM) 0.14 0.09 1.23 1.81 

Mn
2+

(aq) (µM) 1.4 1.0 0.6 22.8 

Zn (aq) (µM) 0.15 0.16 8.49 8.03 

Cu (aq) (µM) 0.05 0.05 3.70 3.79 

Cd (aq) (nM) 0.46 0.84 230 239 

As (aq) (µM) 0.06 0.07 0.07 0.07 

Pb (aq) (nM) 1.2 4.3 - - 

 Porewater 

Salinity (psu) 0.2 1.8 17.7 32.1 

NO
3-

 (µM) 37 26 17 7 

NH4
+
 (µM) 67 25 934 126 

SO4
2‒

 (mM) 2±0 3±1 33±2 40±2 

Fe (aq) (µM) 4.87 0.28 3.55 3.33 

Mn
2+

(aq) (µM) 82 50 41 62 

Zn (aq) (µM) 0.09 0.05 8.09 7.83 

Cu (aq) (µM) 0.01 0.04 3.62 3.63 

Cd (aq) (nM) 0.52 0.81 234 229 

As (aq) (µM) 0.19 0.08 0.50 0.25 

Pb (aq) (nM) 1.59 1.16 - - 

 Solids 

% Water content in solids 39 28 44 40 
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Particle size (µm) (D50)* 51 49 17 17 

Total Fe (%) 3.3±0.7 2.9±0.5 4.1±0.9 4.3±0.9 

0.5 N HCl extractable FeTOT 

(µmoles/g) 
116±10 105±4 206±8 191±28 

% 0.5 N HCl extractable Fe
2+

(s) 

(% Fe
2+

/FeTOT) 
61±5 53±2 84±6 96±3 

% Fe-AVS nd nd 0.01 0.09 

% Fe-Pyrite 0.10 0.10 0.12 0.18 

%TOC 2.3±0.7 1.8±0.2 2.6±0.2 2.7±0.0 

Mn (µg/g) 785±8 654±1 969±3 732±11 

Zn (µg/g) 149±1 129±4 199±13 167±6 

Cu (µg/g) 33±3 27±2 31±3 37±11 

Cd (µg/g) <2  <2  <2  <2  

As (µg/g) 20±2 18±2 37±4 25±2 

Pb (µg/g) 64±1 53±2 90±3 75±1 

 

6.3.2 Major element behaviour during anaerobic nitrate-dependent 

oxidation 

After nitrate amendment, the mean concentration of nitrate in the microcosm bottles 

was 4.5±1.3 mM. The behaviour of the major elements in the triplicate experiments was 

monitored for two months. Nitrite was initially below the detection limit in all the 

replicates. Heat treatment of the controls resulted in ammonium concentrations of 300-

400 µM, compared with 30-130 µM in the active experiments, but the ammonium 

concentration in the controls did not subsequently change significantly over time. 

Similarly the concentrations of other redox active species did not change during the heat 

treated controls (see Fig. 6.2 below). In general, there were no important changes in pH 

between the starting and end point of the experiments; whereas reduction potential (Eh) 

showed a general decrease with time (Table 6.2). 
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Table 6.2: Changes in pH and Eh between the initial (before nitrate spike) and 

final point of the anaerobic nitrate-dependent sediment oxidation experiment. 

Control samples in brackets. The error represents the standard deviaton (±1σ) of 

triplicate experiments. 

 S1 S2 S3 S4 

 pH Eh (mV) pH Eh (mV) pH Eh (mV) pH Eh (mV) 

t

t0 

7.6±0.0 

(7.1±0.1) 

+73.5±7.8 

(−31.5±11.5) 

7.6±0.1 

(6.9±0.1) 

+92.5±4.6 

(12.9±10.9) 

7.4±0.1 

(6.6±0.1) 

+59.2±9.0 

(−16.8±2.5) 

7.3±0.2 

(6.6±0.1) 

+66.2±7.5 

(−22.3±8.9) 

t

tend 

7.5±0.3 

(7.1±0.0) 

+56.3±70.1 

(−2.6±8.0) 

7.5±0.2 

(7.2±0.1) 

+30.2±52.3 

(−34.9±10.2) 

7.0±0.0 

(6.9±0.0) 

+7.5±19.3 

(−58.5±10.1) 

6.8±0.1 

(7.0±0.1) 

−55.0±16.9 

(−82.4±9.7) 

 

6.3.2.1 Inner estuary 

In the experiments carried out with sediments from the inner estuary, there were no 

important changes in pH, and the Eh decreased with time, although there was scatter 

among replicates at the end point sampling (Table 6.2). After the nitrate spike, in S1 

experiments, nitrate concentrations gradually decreased from 3.5±0.9 mM to 0.6±0.9 

mM in the biotically active samples, whereas nitrate concentrations in the controls 

remained constant throughout (Fig. 6.3a). By the end of the experiments, 290±151 

µmoles of nitrate were consumed. However, in the experiments carried out with S2 

sediments, nitrate concentrations modestly decreased from 2.5±0.1 mM to 1.7±0.0 mM 

in the biotically active samples and remained stable in the controls throughout (Fig. 

6.2a). So the overall nitrate loss was very small (82±13 µmoles). Ammonium 

concentrations in the biotically active experiments were low, although were higher in 

S1 than in S2 experiments, and decreased in both experiments with time to near 

detection limit levels (Fig. 6.2b). Following the salinity gradient, sulphate 

concentrations in S2 microcosms were initially higher than in S1 (3.6 and 1.1 mM 

respectively), but during the anaerobic incubations no significant change were observed 

in any of the two biotically active sets of microcosm experiments (Fig. 6.2c). 

Contemporaneously, the percentage of 0.5 N HCl extractable Fe
2+

(s) decreased from 

70±1 % to 55±3 % in S1 experiments, and from 45±4 % to 36±6 % in S2 experiments 

(Fig. 6.2d). The net removal of extractable Fe
2+

(s) was 35±15 µmoles g
−1 

(52% of the 

total reduced iron inventory in the sediments at t0) in S1 experiments, whereas in S2 
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microcosm experiments there was a decrease of 9±15 µmoles g
−1

 during the time of the 

experiments. Manganese was only measured at the starting and end points of the 

incubation. Dissolved manganese hardly increased in these tests (1.0±0.5 and 1.1±0.1 

µM for S1 and S2 experiments respectively) and 0.5 N HCl extractable Mn
2+

(s) 

increased by 6±7 µmoles g
−1

 in S1 experiments but decreased 2±12 µmoles g
−1 

in S2 

experiments (note the big scatter in Mn data). 

6.3.2.2 Outer estuary 

In the microcosms experiments carried out with outer estuary sediments there were not 

important changes in pH, and the Eh decreased with time in both experiments (Table 

6.2). The decrease in the Eh was more pronounced in S4 (Eh returned to negative values 

within three days after the nitrate spike) than in S3 experiments. After the bottles were 

spiked with high-concentration nitrate solution, nitrate concentrations gradually 

decreased from 4.9±0.5 to 2.9±0.8 mM in S3 biotically active samples, while in the 

controls the concentrations of nitrate did not change (Fig. 6.2e). During the experiments 

~40% of the nitrate added (196±131 µmoles of nitrate) was removed, although there 

was a wide scatter in the S3 replicates at the final sampling points. In the biotically 

active experiments carried out with S4 sediments, nitrate concentrations sharply 

decreased during the first week, and went from 4.2±0.8 mM to near detection limits by 

the end of the experiments (Fig. 6.2e). Therefore, in S4 experiments ~100% of the 

nitrate added was consumed (420±80 µmoles). Ammonium concentration decreased 

gradually from 122±14 and 129±0 µM in S3 and S4 experiments respectively to near to 

detection levels by the end of the experiments (Fig. 6.2f). Sulphate concentrations 

increased to a different extent in these experiments; there was a net production of 

166±90 and 490±60 µmoles of sulphate in S3 and S4 respectively between the 

amendment and the end of the experiment (Fig. 6.2g). Contemporaneously, the 

percentage of 0.5 N HCl extractable Fe
2+

(s) decreased from 81±1% to 28±4 % in S3 

experiments, and from 96±0 % to 91±2 % in S4 experiments (Fig. 6.2h). This can be 

translated in a net removal of 115±29 µmoles g
-1

 of extractable Fe
2+

(s) in S3 experiments 

and of only 12±34 µmoles g
-1

 in S4 experiments during the incubations. Although there 

was considerable scatter in the data, there were not significant changes in concentration 

of dissolved manganese in either S3 and S4 experiments; and the 0.5 N HCl extractable 



164 

 

Mn
2+

(s) decreased only in the experiments carried out with S4 sediments (9±5 µmoles 

g
−1

) in a similar magnitude than the extractable iron did. 

 

Figure 6.2: Concentration changes in nitrate (a, e); ammonium (b, f); sulphate (c, 

g); and 0.5 N HCl extractable Fe
2+

(s) (d, h) during microcosm experiments using 

sediment from the inner (Boothferry (S1) and Blacktoft (S2) on the left) and outer 

(Paull (S3) and Skeffling (S4) on the right) Humber estuary. Controls are 

represented by dashed lines with empty markers, and biotically active experiments 

by solid lines with filled markers. Error bars show ±1σ of replicates. 
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6.3.3 Trace metal changes during anaerobic nitrate-dependent oxidation 

The concentrations of the dissolved TMs in both the river water and the subsurface 

sediment porewater showed important differences between the inner and the outer 

estuary (see Table 6.1). Concentrations of dissolved Zn, Cu, Cd, and As in S1 and S2 

water samples were low (all <0.5 µM), whereas, for example Cu and Zn were in the 

range of ~ 4-8 µM in S3 and S4 river water and porewaters. Fe and Mn aqueous 

concentrations were slightly greater in porewater than in river water in all the samples. 

In the solids, the selected TMs (Zn, Cu, Cd, As and Pb) were present in a different 

range of concentrations (~20-200 µg/g) (Table 6.1), although there was not significant 

differences in the bulk concentration among sites.  

Trace metal partitioning showed in general modest or minor changes between the initial 

and final solids from the microcosms experiments (Fig. 6.3). Initially, Zn partitioning 

(Fig. 6.3a) was similar in the four sediments used: Zinc was associated with weak acid-

extractable fraction (average 18±7 µg g
-1

), and, more importantly, with Fe/Mn 

oxyhydroxides (80±28 µg g
-1

). After the anaerobic incubation Zn experienced a very 

modest general shift to weaker bound fraction. Lead was primarily associated with 

stronger bound fractions (Fig. 6.3b) and, in the end point solids, Pb partitioning showed 

a general shift towards progressively weaker bound fractions. Copper and As 

concentrations in all the leachates were relatively low (~10 µg g
-1

). Initially Cu 

partitioning showed important differences among the inner and the outer estuarine 

sediments (Fig. 6.3c); and As partitioning also varied among samples (Fig. 6.3d). In 

general, Cu (if extracted) and As were associated mainly with strong acid extractable 

(Fe/Mn oxyhydroxides) fractions. After the anaerobic incubations, only minor changes 

in Cu and As partitioning were observed, with the exception of S3 sediments, in which 

Cu showed a significant shift towards weak acid-extractable and strong acid-extractable 

fractions. The concentrations of Cd in the different leachates were very low (<0.5 µg 

g
−1

), and its partitioning varied among samples (Fig. 6.3e). There was a minor shift to 

weak acid-extractable in sediments from the inner estuary after the nitrate-oxidation 

experiment. In the initial solids from S3 and S4, Cd was strongly bound, but the end 

point solids showed a shift towards more ‘easily to extract phases’. 
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Figure 6.3: Changes in trace metal partitioning between the initial (t0) and the 

final (tfinal) sediments after nitrate-dependent oxidation experiments determined by 

sequential extractions using Tessier et al. (1979) protocol. Zinc partitioning (a); 

lead partitioning (b); copper partitioning (c); arsenic partitioning (d); and 

cadmium partitioning (e). Sites are ordered as situated along the salinity gradient 

and the arrows represent the time of anaerobic oxidation. 

6.4 Discussion 

6.4.1 Sediment, water and nitrogen dynamics in the Humber estuary 

The different estuarine settings along the salinity gradient selected for this study 

reflected different types of sediment that can be found in the Humber estuary. Humber 

sediments are not homogeneous and varied from well-mixed oxic sands (like in 

Blacktoft, S2) to anoxic muds (at the mouth of the estuary) (Barnes & Owens, 1998). 
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Despite the relatively high concentrations of nitrate found in the river water collected at 

the different sampling sites (except from S4), the recovered porewaters did not seem to 

accumulate nitrate in general. Instead, porewaters were generally enriched in 

ammonium. Mortimer et al. (1998) found in the Humber increasing concentrations of 

ammonium with depth as a product of organic matter degradation, and suggested that 

sulphate reduction at depth was the primary source of ammonium in the mid-outer 

estuary. DNRA process could be also a source of ammonium. Under natural conditions, 

ammonium will be supplied by microbial degradation of organic nitrogen, mixing 

during sediment resuspension, and/or by direct diffusion through the sediment; and it 

will be oxidised aerobically in nitrification processes. Nitrification is a key nutrient 

exchange process occurring in the sediment-water interface and is strongly associated 

with SPM and bacteria (Barnes & Owens, 1998; Mortimer et al., 1998). The nitrate 

produced during nitrification, may be denitrified within the sediment or exchanged back 

to the water column (Barnes and Owens, 1998). Sulphate concentration increased 

towards the outer estuary and, in the porewaters from the outer estuary sites, sulphate 

was accumulated with respect to the river water. Aqueous iron concentrations generally 

were low (0.1-2 µM) in the river waters collected, and slightly higher (~0.3-5 µM) in 

the recovered porewaters; but there were not significant differences between inner and 

outer estuary samples. The solubility of iron is very low at the prevailing pH values, and 

is controlled by iron hydroxides and FeCO3 (Langmuir, 1997). Dissolved iron is 

expected to be low along the estuarine continuum due to its low solubility, and the 

flocculation and precipitation processes associated with the increasing salinity (Li et al., 

in press). Instead, it is the particulate iron what accounts for the majority of the total 

iron fluxes derived from the rivers to the ocean. Poulton & Raiswell (2002) studied the 

geochemical cycle of iron from continental fluxes to the ocean and concluded that the 

reactive iron decreases during the transport of particles to the deep ocean and estuaries 

are important sinks for the riverine reactive iron-rich particles. The results of reactive 

iron-total iron ratio for the Humber estuary (0.36±0.06) reported in Poulton & Raiswell 

(2002) were consistent with this global pattern of reactive iron-removal during sediment 

transport. In the solids from the Humber estuary, the total iron did show an increasing 

pattern towards the outer estuary but generally the amount of iron was within the range 
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of estuarine and coastal sediments (Lovley & Phillips, 1986b; Thamdrup et al., 1994; 

Cornwell & Sampou, 1995; Poulton & Raiswell, 2005) and the percentage of the iron 

pool that was in reduced state was also higher at the outer estuary sites. Although, we 

did not measure the reactive iron as defined by Canfield (1989) (i.e. “the fraction of the 

iron that readily reacts with sulphide to form iron sulphide minerals and eventually 

pyrite”), the measured 0.5 M HCl extractable iron represents part of this reactive iron 

(i.e. the amorphous and poorly crystalline oxides, Lovley & Phillips, 1986a). So, 

probably the net total amount of reactive iron would be higher in the outer estuary due 

to the larger iron pool found in this region of sediment accumulation. Oxide minerals 

are the most important iron phases in early diagenetic pyrite formation, but 

lepidocrocite and ferrihydrite are more reactive towards sulphide than goethite and 

hematite (Canfield, 1989), therefore the role of the later will be less important in 

estuarine biogeochemical processes. 

Iron- and/or sulphate-reducing subsurface sediments were expected in the middle and 

outer mudflats of the Humber (Mortimer et al., 1998; Burke et al., 2006; Bartlett et al., 

2008). The availability of reactive iron in these reducing sediments could be a reason 

for the rapid free sulphide precipitation (Canfield, 1989). However, the AVS and pyrite 

measurements (see Table 6.1) only show slight or very minor enrichment in the 

sediments from the outer estuary sites with respect to those from the inner estuary, 

which is inconsistent with the amounts of sulphate that were released in S3 and S4 

experiments and their initial reducing appearance (dark grey-black colour and 

characteristic smell). The AVS concentrations measured (<0.02 µmoles AVS g
−1

) in 

these Humber sediments were very low relative to other estuarine systems; although 

low AVS concentrations have been also reported in estuaries and other aquatic 

environments (Di Toro et al., 1990; Allen et al., 1993; Fang et al., 2005; Monterroso et 

al., 2007). The dynamic nature of the Humber leads to a continuous resuspension and 

reoxidation of sediments, which will buffer the AVS to a low concentration in this 

environment, whereas pyrite will accumulate in sediments with time as it is more stable 

than AVS. This would explain the presence of pyrite in all the samples regardless of the 

absence of AVS. Furthermore, the availability of dissolved manganese and nitrate will 

also influence the distribution of free sulphide within the sediments (Thamdrup et al., 
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1994; Sayama et al., 2005). Iron oxides react with free sulphides and, at the same time, 

the produced Fe
2+

 and H2S reduce MnO2 rapidly (Thamdrup et al., 1994), which could 

be another reason for the low AVS detected. Besides, the iron oxides produced in the 

reaction of MnO2 with Fe
2+

 will fuel this positive feedback mechanism. Alternatively, it 

cannot be discarded that the low AVS extracted was an artefact due to the partial 

oxidation of the sediments during sampling and transport or during the handling in the 

laboratory prior sediments were freeze-dried for AVS-pyrite extraction. From the two 

sites at the inner estuary, only sediment from S1 showed iron-reducing characteristics 

and accumulation of ammonium and manganese; while S2 sediments did not appear to 

have a well-defined geochemical stratification at the time of sampling. Blacktoft (S2) 

sediments looked fairly mixed in the field, and, although the porewaters recovered were 

enriched in manganese with respect to the overlying water, they were not particularly 

enriched in ammonium nor in dissolved Fe
2+

. Therefore S2 sediments may not have 

been poised in reducing conditions at the depth sampled. This is consistent with other 

studies), in which no suboxic or anoxic characteristics were observed in Blacktoft 

sediments at the depth sampled (Barnes & Owens, 1998; Mortimer et al., 1998). 

According to Uncles et al. (1998c), nitrate exhibited steady and conservative mixing 

between the nitrate-rich waters coming from the rivers at the upper estuary and nitrate-

poor waters at the mouth of the Humber. Apart from mixing, the main routes for 

nitrogen loss in the Humber estuary are expected to be denitrification, principally via 

microbial breakdown of organic matter, and organic matter burial (Jickells et al., 2000); 

although the contribution other types of denitrification (i.e. sediment anaerobic 

denitrification coupled to the oxidation of inorganic reduced substrates) in the overall 

nitrate removal within the Humber is unknown. In order to identify areas of net nitrate 

removal and production, nitrate profile along the salinity continuum and its respective 

mixing line (from near Trent Falls to Spurn Head) have been plotted in Figure 6.4. 

Combined past records (NRA, 1995, 1996; Uncles et al., 1998c; Burke et al., 2006) 

have been used as a dataset. The average concentration of nitrate at near east of Trent 

Falls has been used as the upper end point of the mixing line because it is where the 

confluence of the two rivers is and the maximum concentrations of nitrate registered in 

the tidal Trent and Ouse rivers were in the same range than the maximum 
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concentrations at Trent Falls (Uncles et al., 1999). The other end of the nitrate mixing 

line is the average concentration at the locations near Spurn Head. Ammonium data 

points have been also plotted. However, due to the high variability of the ammonium 

concentrations at near Trent Falls, and the non-conservative behaviour of this species, 

the ammonium mixing line was not real and therefore has not being plotted. To locate 

the study sites in Figure 6.4, the salinity variation (calculated from salinity records, see 

Chapter 7) at each site has been used, and it is represented by the arrows below the plot. 

 

Figure 6.4: Nitrate (blue) and ammonium (orange) concentrations in the river 

water along the salinity continuum of the Humber Estuary and nitrate mixing line 

from East of Trent Falls to Spurn Head. Data used are from different surveys 

(NRA, 1995, 1996) and studies (Uncles et al., 1998c; Burke et al., 2006) in the 

Humber Estuary. The size of the arrows below the plot shows the salinity 

variation at the sampling locations of this study (S1-S4) from salinity records of 

these sites. 

Nitrate concentrations generally follow the mixing line, and fluxes into and out of the 

sediment would be small compared to the river flux (Fig. 6.4). However, between 

approximately 0-5 psu the high nitrate concentrations seem to decrease sharply which is 
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perhaps related to the intense nitrification-denitrification processes associated with 

TMZ at areas of low-salinity waters proximate to the confluence (Plummer et al., 1987; 

Barnes & Owens, 1998; Uncles et al., 1998b). In the Humber-Trend-Ouse system the 

TMZ is located in the upper reaches of the tidal rivers at fresh or very low salinity 

waters (normally between salinities 0-10 psu, average 2.5 psu, Uncles et al., 1998a), 

although the TMZ location has a strong seasonal component due to the variability of the 

river flows (Mitchell, 1998; Uncles et al., 1998a). Mortimer et al. (1998) found the 

region of maximum turbidity in the vicinity of Trent Falls (around Blacktoft (S2) and 

Brough). The nitrate produced in the TMZ region sustains high rates of denitrification 

(Mortimer et al., 1998). Then, denitrification might decrease down estuary with 

decreasing nitrate concentrations in the water column (Dong et al., 2006). Towards the 

mouth of the estuary, nitrate concentrations may be primarily influenced simply by 

dilution processes due to the dynamics of this area and the combination of estuarine and 

coastal processes occurring (Arndt et al., 2009). Yet, Barnes & Owens (1998) suggested 

that nitrate availability cannot entirely explain nitrate removal in the Humber and 

pointed to multiple controlling factors without a dominating feature neither a constant 

seasonal pattern. In fact the organic matter availability is key to understand 

denitrification processes in estuarine sediments. Rivers are the major source of organic 

carbon to estuaries which is normally low reactive and behaves conservatively 

decreasing downstream (Abril et al., 2002). Organic matter mineralization along a tidal 

estuary modifies the amounts and characteristics of its transfer from the rivers to the 

ocean (Middelburg & Herman, 2007; Bauer et al.,, 2013). Estuarine sediments have 

generally high organic content due to high rates of sedimentation, which leads to a 

diminution of the oxygen status and, therefore, increases the denitrification potential of 

the sediments (Barnes and Owens, 1998). Organic matter breakdown is thought to be 

maximum in the TMZ because it is enhanced when metabolizable organic matter and 

microbial activity increase (Abril et al., 2002; Middelburg & Herman, 2007) In the 

TZM of the Humber, Alvarez-Salgado & Miller (1998) reported a peak in DOC 

concentration due to anthropogenic discharges, desorption processes and 

biogeochemical production. The intensive changes in the TZM may induce the 

repartitioning of organic matter (between DOC and POC) which will have major 
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implications in its composition and degradability along the gradient (Middelburg & 

Herman, 2007). However in very turbid estuaries, the extensive mixing, the dilution of 

possible inputs by the large stock of particles, and simultaneous sources and sinks result 

in small changes in the bulk concentrations of reactive organic matter (Abril et al., 

2002, Middelburg & Herman, 2007). This is because the large POC pool, which shows 

generally constant low reactivity along the gradient (Abril et al., 2002), buffers the 

input of high reactive organic rich particles to refractory POC values. 

Despite this scheme indicates that nitrate behaves conservatively from near the 

confluence (i.e. from the TMZ), there may be other nitrogen sink and/or source areas 

along the estuary. For example, despite the highest denitrification rates are expected in 

the inner Humber (Barnes & Owens, 1998; Mortimer et al., 1998), the outer estuary 

could represent also an important sink for nitrate considering its larger area of mudflats 

(690 km
2
 versus the 115 km

2
 of the inner estuary, Mortimer et al., 1998). There is a lot 

of uncertainty about the ammonium concentrations in the river water. However there 

seem to be an upward trend in the data between 15 and 30 psu (Fig. 6.4) suggesting that 

Humber sediments can act as a source of ammonium in the mid-outer estuary, as 

concluded by Mortimer et al., (1998), which will be rapidly removed from the water 

column due to chemical oxidation and/or perhaps nitrification processes. 

6.4.2 Bacterial nitrate-dependent oxidation processes 

To better interpret which processes have dominated during the nitrate-dependent 

oxidation experiments, electron transfer balances have been calculated (Table 6.3). The 

major species (N, S, Fe, and Mn) are considered as electron donors or acceptors 

depending on which part of the redox reaction were involved in. River waters used to 

prepare the sediment slurries for this experiment were not oxygen free. Therefore, 

although nitrate was in excess in order to favour nitrate-driven oxidation processes, the 

remaining DO was surely used together with nitrate as electron acceptor. Hence oxygen 

has been included in the electron transfer balance and its concentration has been 

estimated to be between 10-8 ppm according to the temperature of the water and 

salinity. When considering the complete oxidation pathway from sulphide to sulphate 

(from -2 to +6 oxidation stage, i.e. transfer of eight electrons per sulphur atom), the 
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molar balance for electron transfer did not close due to an over-contribution of electron 

donors. So, as the low values of AVS suggested, sulphate production most probably did 

not come entirely from the direct oxidation of sulphide. Instead, if an average of four 

electrons transferred per sulphur atom oxidised to sulphate (i.e. thiosulphate as the 

intermediate reduced sulphur species) is considered, the electron transfer seems to 

balance. Thiosulphate is a key intermediate in the sulphur oxidation pathway to sulphate 

and thus for the regulation of the electron flow in sediments; although its concentrations 

are normally low because it can be rapidly reduced back to sulphide or undergo 

disproportionation (Jørgensen, 1990; Jørgensen & Bak, 1991; Jørgensen & Nelson, 

2004). Consequently, it has been assumed that rather than a complete oxidation from 

sulphides to sulphates, a mix of intermediate reduced sulphur species were oxidised 

during the experiments. Alternative end products of the oxidation of sulphur species are 

likely to be present in the experiments, although they were not analysed here. 

 



 

 

Table 6.3: Calculated electron molar balance for redox processes during anaerobic incubation of non-sulphidic and sulphide-rich 

sediments in microcosm experiments. The calculations are based on the total electrons produced and consumed in oxidative and 

reductive processes during two months (56 days) and are expressed in µmoles of electrons in the experiment. The electrons 

produced in the reduction of oxygen have been calculated assuming a complete consumption of 10 ppm and 8 ppm of oxygen in 

fresh-brackish (inner estuary) and brackish-saline (outer estuary) waters respectively. Errors have been calculated from ±1σ of 

triplicate measurements considering error propagation when needed (derived values from multiplications and unit conversion). 

Manganese data only include the acid extractable Mn
2+

(s). 

 Electrons (µmoles) in the oxidative processes Electrons (µmoles ) in the reductive processes 

 

Fe(II)  

Fe(III) + e
-
 

Reduced 

sulphur  

sulphate + 

4e
-
 

Mn(II)  

Mn(IV) + 

2e
-
 

NH4
+
  

N2 + 3e
-
 

Total e
-

produced 

Oxidised 

sulphur + 4 e
-
 

intermediate S 

(thiosulphate) 

Nitrate + 

5e
-
  

nitrogen 

gas 

*Mn(IV) + 

2e
-
  

Mn(II) 

O2 + 4e
-

 2O
2-

 

Total e
-

consumed 

In
n

er
 

es
tu

a
ry

 

S1 885±286 64±33 - 36±2 984±321 - 1447±756 275±340 63 1784±1096 

S2 153±196 - 68±443 4±1 226±639 72±101 409±65 - 63 544±166 

O
u

te
r 

es
tu

a
ry

 

S3 577±113 663±354 - 34±5 1273±472 - 980±656 110 ±360 50 1140±1016 

S4 159±692 2725±9 234±130 39±0 3157±831 - 2101±391 - 50 2151±391 

*In these experiments net manganese reduction has been considered since the concentration of acid extractable manganese (Mn
2+

(s)) was 

higher (with a considerable high error in the measurement) in the final sediments with respect to the original materials. 

1
7
4
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Nitrate-dependent oxidation processes developed in the microcosms experiments 

carried out with subsurface sediments from the inner estuary upon nitrate 

amendment. According to the electron balance, nitrate-dependent oxidation of 

ferrous iron (acid extractable Fe
2+

(s)) and denitrification were the dominant oxidation 

processes in S1 and S2 experiments. However, there were differences in the 

magnitude of such processes due to the different initial redox state of the sediments 

from S1 and S2. In S2 experiments, the low availability of reduced elements to 

couple with nitrate reduction should explain the little impact of microbial nitrate-

dependent iron oxidation (chemolitoautotrophic denitrification) in these 

microcosms. Denitrification coupled with the oxidation of organic carbon (equation 

6.1) is assumed to be the nitrate-consuming process which compensates the electron 

donor balances, since the calculations for S1 and S2 experiments showed an 

imbalance towards the reduction processes. As mentioned above, there is an excess 

in DOC concentrations in the TMZ of the Humber (Alvarez-Salgado & Miller, 

1998) that is associated with higher organic matter breakdown and is progressively 

removed and controlled by conservative mixing. Although DOC was not monitored 

in this study, this is consistent with the results observed in S1 and S2 experiments; 

in which heterotrophic denitrification was an important metabolic process (45 and 

58% of the electrons produced in S1 and S2 balances were assumed to be produced 

in heterotrophic denitrification). Nitrate reduction rate in S1 experiments was 52 

µmoles L
-1

 day
−1

 (calculated over 56 days). There was not accumulation of nitrite or 

ammonium, therefore denitrification to N2 gas (equation 6.2) (or to N2O) was most 

likely the predominant reaction pathway for nitrate (Straub et al., 1996; Benz et al., 

1998; Weber et al., 2006). Ammonium was totally consumed in both experiments, 

but we cannot identify by which process. Additionally, acid extractable Mn
2+

(s) 

increased in S1 experiments, whereas it was oxidised in S2; although, considering 

the big uncertainty of the measurement, no further conclusions about the role of 

reduced Mn in these systems can be drawn. In general, oxidation of ammonium and 

sulphur species contributed marginally to the overall electron transfer in the 

experiments carried out with inner estuary sediments, but no further conclusions 

about specific processes can be derived. 

Towards the outer estuary, processes involving sulphur species will become more 

important due to the higher concentration of sulphate in seawater, which tallies with 
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the electron transfer balance calculated for the outer estuary microcosm 

experiments. Therefore, moving down the estuary, the availability of sulphur species 

becomes important in the sediment redox processes. It should be pointed that the 

reported sulphate concentrations in the microcosm bottles were significantly higher 

than the natural sulphate concentrations in brackish-seawater, which may be due to a 

combination of porewater contribution, sulphate produced in the oxidation reactions 

and possibly analytical artefacts. In S3 and S4 microcosm the pool of acid 

extractable Fe
2+

(s) (potentially bioavailable) was significantly greater than in the 

inner estuary sediments; this together with other redox indicators (porewater 

enrichment in ammonium, manganese, and slightly in reduced iron) confirmed the 

reducing state of S3 and S4 sediments. Nitrate reduction coupled to the oxidation of 

inorganic species occurred upon the addition of high nitrate solution to the 

microcosm. When looking at the electron balance calculations, a transition in the 

dominant processes from Fe-coupled to S-coupled nitrate-dependent oxidation was 

observed between these two sites. Despite the scatter, both electron balances closed, 

so denitrification coupled with the oxidation of organic matter appears to not be as 

important in these systems as it was in the inner estuary microcosms. The outer 

estuary sediments had higher organic carbon content than the inner estuary 

sediments probably due to the high rates of sediment accumulation and, 

consequently, high organic matter burial in the outer estuarine region. However this 

organic matter was most likely more refractory than in the inner estuary since 

metabolizable organic matter is progressively depleted along the gradient (Tyson, 

1995). The low reactivity of the organic matter accumulated and the more 

availability of electron donors in the sediments from the outer estuary may explain 

the more important role of the nitrate consumption by chemolithotrophic 

denitrification in these experiments. 

In the experiments carried out with Paull (S3) sediments, reduced iron decreased and 

there was some net sulphate production, so nitrate reduction seemed to be coupled to 

both, iron and sulphur oxidation processes (equations 6.2, 6.3, 6.5, and 6.6). The rate 

of nitrate consumption was 35 µmoles L
-1

 day
-1

, which is in the same order of 

magnitude that the rate measured at S1; iron oxidation rate was ~2 µmoles Fe
2+

(s) g
-1

 

day
-1

 (~ 3 times larger than S1 experiments, due to the more availability of reduced 

iron); and sulphate production rate was ~30 µmoles L
-1

 day
-1

. Site 3 experiments 



177 

 

showed more iron(II) oxidation (Fig. 6.2h) than the inner estuary experiments (Fig. 

6.2d); however the fact that S3 microcosms contained less amount of sediments than 

the other experiments explains why the net amount of electrons produced from iron 

oxidation in S3 was lower than in S1 (Table 6.3). In short, a combination of Fe(II)- 

and S-oxidation coupled to nitrate reduction appeared to be the dominant processes 

in S3 experiments. On the other hand, the behaviour of the major elements in the 

experiments carried out with sediments from Skeffling (S4) showed important 

differences with respect to the others. This set of microcosms had the fastest rates of 

nitrate reduction (75 µmoles L
-1

 day
−1

) and it was the only set of experiments where 

nitrate was totally consumed (there was <50 µM of nitrate 14 days after the 

amendment). In fact, Eh returned to negative values in S4 microcosms within three 

days after the nitrate spike, which indicates the rapid restoration of the reducing 

conditions as nitrate was depleted. However nitrate reduction coupled to iron 

oxidation did not dominate these experiments because the acid extractable Fe
2+

(s) 

barely decreased during the incubation time. Instead, chemolithotrophic 

denitrification was likely coupled to the oxidation of reduced sulphur species. 

Hence, reactions involving sulphur species (for example equations 6.3, 6.5 and 6.6) 

were likely the most important in S4 experiments. About 25% of the electrons 

produced in the oxidation of sulphur occurred after nitrate was almost depleted (after 

day 7), so perhaps there was an oxygen leak in the bottles during sampling or 

intermediate oxidised species were acting as electron acceptors. After nitrate was 

consumed, extractable Mn
2+

(s) appeared to increase and decrease in S3 and S4 

experiments respectively; however the error associated was too big to drawn further 

conclusions. Ammonium was totally depleted in both experiments likewise in the 

inner estuary experiments, but no further conclusions about the processes involving 

ammonium can be derived. Overall, oxidation of reduced sulphur species coupled to 

nitrate reduction appeared to be the dominant process in S4 experiments. Burke et 

al. (2006) found that sulphate-reducing sediments from the Humber estuary needed 

higher nitrate concentrations to observe iron oxidation as these sediments contained 

more reduced species that iron(III)−reducing sediments, therefore it may be that the 

addition of nitrate in this study was not high enough to burst iron-oxidising bacteria 

activity but  sulphur-oxidising bacteria activity. 
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Overall, these experiments suggested that there is a general potential for nitrate 

removal in the subsurface sediment from the Humber Estuary. The absence of 

nitrate in the sediment porewaters may be an evidence of the nitrate consumption in 

different denitrification processes. Sediment denitrification will be controlled in the 

natural system mainly by nitrate availability, organic status of the sediments, 

macrofaunal density, and temperature (Barnes & Owens, 1998). The removal of 

nitrate indicates a transitional pattern: from a combination of denitrification coupled 

to organic matter and iron(II) oxidation in the inner estuary, towards a combination 

of Fe− and S−oxidation dominated systems in the mid estuary and a S−oxidation 

dominated environment in the outer most estuary. The dominating processes 

observed in the experiments are determined by the initial geochemistry of the 

sediments, or in other words, by the availability of different electron donors in the 

facultative zone found at the depth sampled. In particular, the availability of reduced 

iron and sulphur within the sediment profile probably will condition sediments 

dominated preferably by iron (FeOB) and/or sulphur oxidising bacteria (SOB) along 

the estuarine continuum. 

Previous studies about sediment denitrification in the Humber were based in 

denitrification rates which took into account nitrate concentrations in the river water 

and nitrate exchange between sediment and water column. Denitrification accounted 

for the 25% of the total annual nitrogen inputs to the Humber estuary (Barnes & 

Owens, 1998), and the mid and outer mudflats were the main sinks of nitrate due to 

their larger extension despite the higher nitrate removal rates were found in the inner 

estuary (Mortimer et al., 1998). However, the results in the microcosms did not 

show exactly the same pattern, which may be due to the type of experiments, the 

particular sampling sites chosen, and/or the type of sediments used (subsurface 

instead of immediately surface sediment). It is difficult to estimate the fluxes of 

nitrate between sediment layers in such a disturbed system, so with the available 

data we cannot quantify how much of the nitrate in the water column will be 

denitrified in the undisturbed subsurface sediments. Nevertheless, we suggest that 

denitrification rates likely increase in the subsurface sediments likewise in the 

surface sediments with increasing nitrate concentrations in the river water. Yet, 

when assessing nitrate excess in the water and the possible associated eutrophication 

problems in the coastal environment, it is important to remember that the majority of 
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the nitrate riverine inputs are not denitrified and the influence of the nitrate 

concentrations on the denitrification rates is marginal (Barnes & Owens, 1998) and 

limited (plateau above 500 µM; Jickells, 2000). 

Initial ammonium concentrations in the biotically active experiments were higher 

than the expected concentrations from the mixing of river and porewater. This may 

be explained by desorption and/or ammonification (microbial oxidation of organic 

matter) processes occurring in the microcosms at the beginning of the experiment. 

Ammonium concentrations were increasing seawards but in the microcosm 

ammonium was consumed in all the experiments, which contrasts with the 

observations by Mortimer et al. (1998) which indicated that the outer estuary was a 

net source of ammonium to the water column. In the control experiments, the high 

ammonium concentrations may be a result of the heat-treatment (Salonius et al., 

1967; Berns et al., 2008) which could cause the mineralisation of organic matter and 

also desorption from particle surfaces. Under natural conditions, especially in the 

outer estuary, where anoxic mudflats are found, the amount of adsorbed ammonium 

could represent a substantial part of the total ammonium pool in sediments, which 

could be interpreted as a potential source of bioavailable nitrogen (Rosenfeld, 1979; 

Laima et al., 1999). Net ammonium production was not observed in the microcosm 

experiments, so the development of DNRA processes has not been considered. 

However, we do not know how important DNRA, as an alternative denitrification 

pathway, is in natural conditions in the Humber estuary. To elucidate which 

denitrification pathway is favoured in a specific geochemical environment we would 

need to know not only the availability of nitrate and electron donors, but also the 

organic carbon loading (Roberts et al., 2014). Lastly, anammox reactions have not 

been considered since nitrite concentrations have not been detected throughout, 

although they can also occur in the natural environment. 

6.4.3 Trace metals in the Humber estuary and partitioning changes after 

nitrate-driven oxidation processes 

Zinc, Pb, Cu, As and Cd are considered potentially toxic elements in the aquatic 

environment and have been selected as they were known (with the exception of Cd) 

to be significantly accumulated in the Humber sediments due to the industrial 

activity in the catchment (Cave et al., 2005; Andrews et al., 2008). The bulk (total) 
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concentrations of these metals in the sediments used in this study were above the 

pre-industrial background, but below the levels registered during the 70s-90s (see 

Table 6.4). The concentration of each metal in the sediments from the four sites was 

very similar, and the range of metal concentrations metal was ~20-200 µg/g (see 

Table 6.1). 

Table 6.4: Bulk concentration of trace metals in the Humber estuary over time 

(after Andrews et al., 2008 and references therein). *Cadmium concentrations 

have been reported in other studies (NRA, 1993a, b), so the dates of the 

reported values do not correspond exactly with those of the other metals. The 

range is expressed as annual mean for individual sites and the average value is 

the overall mean calculated from 1980 to 1990. (nr = non-reported values). 

 Zn (µg/g) Cu (µg/g) Cd (µg/g)* As (µg/g) Pb (µg/g) 

This study 130-200 27-37 <2 18-37 53-90 

1980s-1994* 265 51 
0.2-1.1 

(average 0.5) 
50 110 

1970s 322 63 nr 61 132 

Pre-1969 288 61 nr 50 120 

Background 91 19 nr 18 23 

 

In general the concentrations of TMs in solution in the river water and the 

subsurface sediment porewater showed important differences between the inner and 

the outer estuary. The concentrations were significantly higher in the outer estuary 

than in the inner estuary samples (see Table 6.1). The salinity increase could explain 

these higher concentrations since the mobility of metals such as Cd, Cu or Zn has 

been noted to be enhanced when salinity increases due to the formation of chlorine 

complexes (Du Laing et al., 2009). However the interactions between salinity, 

organic matter (e.g. humic acids) and pH are complex and will affect the extent of 

metal desorption from sediments in saline waters. Arsenic did not show that trend 

and values were constant along the salinity gradient. 

The oxidation of anoxic sediments is thought to cause shifts in the TM speciation 

that often mean shifts from higher-energy bound fractions to more reactive or 

bioavailable phases (Di Toro et al., 1990; Calmano et al., 1993; John & Leventhal, 

1995; Saulnier & Mucci, 2000; Zoumis et al., 2001; Caetano et al., 2003). However, 

the implications of the oxidation of estuarine sediments on metal mobility and 

partitioning in the absence or near absence of oxygen via nitrate reduction have not 
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been widely studied to date. Nitrate driven oxidation of the Humber estuary 

subsurface sediments had different effects on TM partitioning among samples and 

there was not a common pattern among the different metals analysed. From the 

sequential extractions performed for this study, the concentrations in the 

exchangeable phase were generally very low or below detection limit, probably 

because the adsorption-desorption processes are normally pH-dependent, and 

therefore desorption of the specifically adsorbed metals may not be complete at 

neutral pH (Tessier et al., 1979; Du Laing et al., 2009). Trace metals were bound 

predominantly in acid extractable (weak and strong acid) fractions. Nevertheless, it 

is known that with this extraction protocol, “weak acid-extractable” fraction may be 

overestimated because it could not only include metals bound to carbonates, but also 

specifically sorbed to exchangeable sites of clay, organic matter or oxides surfaces 

(Gleyzes et al., 2002). The modification of the third step, which was performed at 

ambient temperature and in which the extraction time was increased, may not have 

been sufficient to complete iron and manganese oxides-associated metals extraction 

(Gleyzes et al., 2002). Despite Cu, Zn and Cd being expected to occur as CuS, ZnS 

and CdS in estuarine anoxic sediments due to the availability of sulphate in the 

water column (Huerta-Diaz et al., 1998), the concentrations found in the leachate for 

the organic matter-sulphide fraction were very low. This may be explained by 

weaknesses of the extraction protocol as pointed by Anju & Banerjee (2010) since 

sulphides may be only partially dissolved and organic matter not completely 

destroyed. Yet, what can be concluded is that there was a general but modest shift of 

the TMs towards weaker bound fractions, which suggests that the anaerobic 

oxidation of estuarine sediments can lead to some changes in metal mobility and 

bioavailability. Despite the mechanisms of the TM behaviour during nitrate-driven 

oxidation being beyond the scope of this study, the results suggest that TMs are 

likely co-precipitating with or adsorbing to carbonates and to the fresh Fe/Mn oxide 

surfaces produced during sediment oxidation. 

6.5 Conclusions 

This study presents a systematic study of the biogeochemical effects of the 

anaerobic denitrification on sediments along the salinity gradient of the Humber 

estuary. Sediment denitrification is important for the nitrogen budget of the estuary 



182 

 

in the absence or near absence of oxygen since the indigenous microbial populations 

are capable to use reduced inorganic species (iron, manganese and sulphur) as 

electron donors besides organic matter. Yet, the majority of the nitrate from riverine 

inputs is not denitrified and mixing of fresh and seawater is major process in 

regulating nitrate concentrations. In the experimental conditions, denitrification to 

nitrogen gas seemed to be the main nitrate removal process; however, the dominant 

electron donor species coupling nitrate reduction showed a transition from inner 

estuary towards outer estuary experiments. Denitrification coupled with organic 

matter and iron oxidation were the most important processes in the microcosm 

experiments with inner estuary sediments, followed by a combination of iron and 

sulphur oxidation, towards a sulphur-oxidation dominant environment in the 

experiments using the outer most estuarine sediments. These results suggest that 

chemolithoautotrophic denitrification is not only controlled by nitrate availability in 

the water column, but the geochemical characteristics of the sediments such as the 

development of suboxic or anoxic conditions, the accumulation of iron and/or 

manganese, and the presence of reduced sulphur in the sediment column have also 

implications. Furthermore, during nitrate-driven sediment oxidation, the TMs 

associated with the sediments experienced changes in their partitioning. We 

observed a general shift of trace metals from high-energy binding sites towards 

weaker binding sites. Therefore, upon sediment bio-oxidation, the just-released trace 

metals may be weakly adsorbed on solid surfaces (such as carbonates), and/or 

incorporated in the newly formed Fe/Mn oxides, and hence their bioavailability 

might increase during a certain time window. However, in natural conditions the 

metals accumulated in the subsurface sediments may be transferred slowly in less 

reactive mineral phases as sediment is buried, and therefore, their bioavailability 

will decrease in long time scales. 
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Chapter 7 

Microbial Ecology of the Humber Estuary 

Executive summary 

Macrotidal estuaries are highly dynamic ecosystems in which freshwater and 

seawater mix, and sediments are resuspended frequently. In such challenging 

environments, microbial communities are influenced by high spatiotemporal 

variability in environmental conditions (e.g. salinity, temperature, water flow, 

turbidity). This study investigates the microbial community structure of surface and 

subsurface sediments along the Humber estuary (UK) using a combination of 

geochemistry and amplicon sequencing of the 16S rRNA gene. The richness of 

operationally defined taxonomic units (OTUs) shows only a modest decreasing trend 

from the inner towards the outer estuary sites, whereas the numbers of common and 

dominant OTUs decrease seawards. Multivariate analyses indicate that water 

column salinity is likely the major environmental factor influencing the diversity of 

the bacterial community along the estuarine continuum. Strong redox transitions 

with depth were only observed in the mid and outer estuary, where shifts in 

microbial community composition between surface and subsurface sediments were 

indicated by multivariate analysis tools. Analysis of the regional diversity indicate 

that the dataset may include two potentially distinct communities, which we suggest 

are 1) a homogenous community which is regularly mixed and may be transported 

along the gradient, and is thus subjected to a wide range of salinity conditions; and 

2) a separate bacterial community, indigenous to the more reducing subsurface 

sediments of the mid and outer mudflats of the Humber estuary, where redox 

transitions in the sediment profile are more abrupt. 

7.1 Introduction 

Estuaries are transitional environments where substantial physicochemical and 

biological gradients from freshwater to marine environments develop (Attrill and 

Rundle, 2002; Crump et al., 2004; Elliott and Whitfield, 2011; Lallias et al., 2015). 

The continuous mixing of water and sediments leads to high variability in the local 

physicochemical characteristics (e.g. pH, temperature, salinity, particle size, 
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turbidity, sulphate concentration, river flow seasonal fluctuations, etc.). This can 

affect the stability and composition of microbial communities along the estuarine 

continuum (Crump et al., 1999; O'Sullivan et al., 2013; Liu et al., 2014; Wei et al., 

2016). Microbial populations play a key role in the estuarine biogeochemical 

processes (Federle et al., 1983; Rink et al., 2008). Therefore quantifying the 

variations in microbial communities along a salinity continuum will improve 

understanding of their role in these ecosystems (Bier et al., 2015). 

Variation in microbial community composition has been extensively studied in 

estuarine environments (Llobet-Brossa et al., 1998; Crump et al., 1999; Bowman 

and McCuaig, 2003; Hewson and Fuhrman, 2004; Bernhard et al., 2005; Fortunato 

et al., 2012; Liu et al., 2014; Wei et al., 2016). Over the past few years, the 

widespread availability of high-throughput sequencing techniques has led to an 

increase in data on microbial biodiversity that correlate microbial diversity patterns 

with environmental parameters (Buttigieg and Ramette, 2014; Liu et al., 2014; Bier 

et al., 2015). This raises the question of whether or not microbial diversity patterns 

differ from those for multicellular organisms (Telesh et al., 2011; Wang et al., 

2011). The challenge facing microbial ecologists is that these sequencing datasets 

are very large and increasingly more complex, and therefore difficult to evaluate 

rigorously (Buttigieg and Ramette, 2014; Oulas et al., 2015; Kang et al., 2016). 

Therefore, there is no consensus on the factors controlling microbial abundance in 

estuarine systems, and hence there is currently no widely accepted model on 

bacterial diversity in estuaries (Elliott and Whitfield, 2011; Telesh et al., 2013). 

Salinity is the major environmental factor controlling the patterns of benthic and 

pelagic diversity in estuaries (Attrill, 2002; Lozupone and Knight, 2007; Elliott and 

Whitfield, 2011; Herlemann et al., 2011; Telesh et al., 2011; Lallias et al., 2015). 

The variation in aquatic species diversity in an estuary has been traditionally 

explained using the Remane diagram (Remane, 1934). This conceptual model (Fig. 

7.1), which was based on macrozoobenthos studies in the effectively non-tidal Baltic 

Sea, shows how the relative numbers of freshwater, brackish and marine species 

vary along a salinity gradient. It predicts that species diversity reaches a minimum 

(Artenminimum) in the region of 5-8 psu salinity ('the critical salinity zone'; 

Khlebovich, 1968) because freshwater and marine components, which potentially 

contain similar numbers of species, are stressed within the transitional waters. In this 
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region, organisms tolerant to salinity variation succeed but the less or non-tolerant 

organisms are likely to be absent (Elliott and Whitfield, 2011). Despite several 

recent modifications (Schubert et al., 2011; Telesh et al., 2011; Whitfield et al., 

2012) and critiques (Barnes, 1989; Bulger et al., 1993; Attrill, 2002; Attrill and 

Rundle, 2002), the Remane model still retains significant limitations as a description 

of estuarine systems, especially since it is not applicable to phytoplankton and 

bacteria (Crump et al., 1999; Hewson and Fuhrman, 2004). 

 

Figure 7.1: Remane’s conceptual model for the variation in macrobenthic 

biodiversity along a salinity gradient (after Whitfield et al., 2012). Observed 

variations the diversity of pelagic protists (Telesh et al., 2011) and planktonic 

bacteria (Herlemann et al., 2011) are shown as dashed lines (dark red and 

black respectively). The dotted lines indicate the empirical boundaries for the 

salinity zonation defined for the Humber estuary (see discussion). 
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Telesh et al. (2011) conducted a meta-analysis of large data sets from previous 

studies in the Baltic Sea. They found that phytoplankton show a diversity maximum 

in a ‘critical salinity zone’ (5-8 psu salinity; see Fig. 7.1), which is the location of 

the Arthenminimum (Whitfield et al., 2012). Later, Telesh et al. (2013) proposed 

that salinity changes along the Baltic Sea may create free niches in the brackish 

waters where there is less competition for resources and less specialists. Therefore, 

these authors proposed that the potential vacant niches in the brackish water can be 

occupied by the fast-developing, highly adaptable and fast evolving unicellular 

organisms (i.e. planktonic organisms that can move with the water column, and thus 

experience smaller salinity variations than less mobile species). Yet, Herlemann et 

al. (2011) showed that the diversity of pelagic bacteria expressed in terms of 

operationally defined taxonomic groups (OTUs) displayed a steady distribution in 

the Baltic Sea with no trend with salinity (Fig. 7.1); although this does not preclude 

there being niches for specialist bacteria along the salinity gradient. 

It is widely accepted that microbial communities are sensitive to environmental 

change (Lozupone and Knight, 2007; Sun et al., 2012; Jeffries et al., 2016), and thus 

the large salinity variations that occur in some areas of tidal estuaries might be 

expected to impact upon community composition, activity and diversity (Bernhard 

et al., 2005; Feng et al., 2009; Liu et al., 2014; Wang et al., 2015; Wei et al., 2016). 

Vertical stratification of sediment geochemistry will also influence in the 

composition and function of microbial communities (Hewson and Fuhrman, 2006; 

Canfield and Thamdrup, 2009). However, sediments in tidal estuaries are frequently 

disturbed and thus may not exhibit clear links between geochemical zones and 

bacterial communities present, particularly as geochemical profiles tend to re-

establish more quickly than diversity profiles within the sediments (O'Sullivan et al., 

2013). Furthermore, sediment resuspension facilitates the interaction and mixing of 

microbial assemblages between water and shallow sediments (Crump et al., 1999; 

Hewson et al., 2007; Feng et al., 2009). Thus sediment dynamics may also be an 

important environmental factor shaping estuarine microbial diversity. 

This study presents the first systematic study of benthic microbial diversity in the 

Humber estuary (UK) using high-throughput sequencing. Samples were recovered 

from along the north bank of the estuary at two depths; surface sediments (0-1 cm) 

that are frequency mobilised on the tidal cycle; and subsurface sediments (5-10 cm) 
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that are only mobilised by seasonal storms (typically medium/moderate 

resuspension events occur once or twice a year in the Humber; Mortimer et al., 

1998). Bacterial DNA was extracted and characterised using a metabarcoding 

approach for amplicon sequencing of the V4 hyper-variable region of the 16S rRNA 

gene on an Illumina MiSeq platform. The distribution of the microbial community 

along the estuarine continuum and within the sediment profile was determined; and 

the benthic community structure was correlated with geochemical data using 

multivariate statistics in order to identify the environmental drivers controlling these 

microbial diversity patterns. 

7.2 Material and Methods 

7.2.1 Sampling location 

The Humber Estuary (UK) is situated on the east coast of northern England and 

drains an urbanised catchment with an industrial and mining history (see Fig. 2.6 

and 3.1). It is a highly turbid and well-mixed macrotidal estuary, with a tidal range 

that can reach ~6 m at spring tides (Pethick, 1990). Its catchment area is 24,240 km
2
 

(20% of the area of England), it has 150 km
2
 of mudflats, and nominally it is 60 km 

in length measured from Trent Falls, the confluence of the main tributaries, the Ouse 

and the Trent, to the mouth of the estuary at Spurn Head. However the region of 

freshwater-saltwater mixing stretches inland to Naburn Weir on the Ouse, and 

Cromwell weir on the Trent. The Humber represents the main UK freshwater input 

to the North Sea. The estuarine turbidity maximum (3000 mg L
−1

 silt in suspension), 

moves seasonally with the river flow but it is situated at the inner estuary (Uncles et 

al., 1998a). Although turbidity has a strong seasonal variability, it often limits 

pelagic primary production throughout the estuary system (Mortimer et al., 1998; 

Uncles et al., 2006). 

7.2.2  Sample collection 

Sediment samples were collected at low tide from the intertidal mudflats along the 

north bank of the Humber Estuary during the same tidal cycle on 15
th

 July 2014. The 

four sites were at Boothferry (S1), Blacktoft (S2), Paull (S3), and Skeffling (S4), 

and they were selected to cover different estuarine environments along the salinity 

continuum. A sample of surface (s) (0-1 cm) and subsurface (d) (5-10 cm) sediment 
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were recovered from each location, transported back to the laboratory and 

subsamples were stored in 2 mL microcentrifuge tubes at −20°C for subsequent 

DNA extraction. River water pH, conductivity and temperature were determined in 

the field using a Myron Ultrameter PsiII handheld multimeter. Porewater was 

recovered from sediments by centrifugation (30 min, 6000 g) in the laboratory. All 

water and porewater samples were filtered (0.2µm Minisart
®
) and stored accordingly 

at 4 or −20°C for further analysis. Nutrient concentrations in water were measured 

by ion chromatography (IC) (nitrate, nitrite, sulphate, and chloride) and 

colorimetrically (ammonium) on a continuous segmented flow analyser (SEAL 

AutoAnalyser 3 HR). Dissolved Mn (for other trace elements, see Table 4.4) were 

determined after acidification with 1 % v/v AnalaR HNO3 (VWR) using ICP-MS 

(Thermo Scientific ™ ICP-MS). Solids were analysed for: particle size by laser 

diffraction on a Malvern Mastersizer 2000E; extractable iron (Lovley and Phillips, 

1987; Viollier et al., 2000); AVS (Canfield et al., 1986); pyrite (Fossing and 

Jørgensen, 1989); and TOC (after HCl 10% v/v treatment) by combustion with non-

dispersive infrared detection on a LECO SC-144DR Sulphur and Carbon Analyser. 

7.2.3  DNA extraction and sequencing of the V4 hyper−variable region 

of the 16S rRNA gene 

Bacterial DNA was extracted from environmental samples (~0.5 g of wet sediment) 

using a FastDNA spin kit for soils (MP Biomedicals, USA). DNA fragments larger 

than 3 kb were isolated on a 1% agarose “1x” Tris-borate-EDTA (TBE) gel stained 

with ethidium bromide for viewing under UV light (10x TBE solution supplied by 

Invitrogen Ltd., UK). The DNA was extracted from the gel using a QIAquick gel 

extraction kit (QIAGEN Ltd, UK); final elution was by 1/10th strength elution 

buffer (unless explicitly stated, the manufacturer’s protocols supplied with all kits 

employed were followed precisely). DNA concentration was quantified 

fluorometrically using a Qubit dsDNA HS Assay (Thermo Fisher Scientific Inc., 

USA). 

DNA samples (1ng/µL in 20 µL aqueous solution) were sent for sequencing at the 

Centre for Genomic Research, University of Liverpool, where Illumina TruSeq 

adapters and indices were attached to DNA fragments in a two-step PCR 

amplification that targets hyper-variable V4 region of the 16S rRNA gene (Caporaso 
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et al., 2011). Pooled amplicons were paired-end sequenced on the Illumina MiSeq 

platform (2x250 bp) generating ~12M clusters of data. Illumina adapter sequences 

were removed, and the trimmed reads were processed using the UPARSE pipeline 

(Edgar, 2013) within the USEARCH software package (version 8.1.1861) (Edgar, 

2010) on a Linux platform. First of all, overlapping paired-end reads were 

assembled using the fastq_mergepairs command. Then the reads from single 

environmental samples were quality-filtered, relabelled, and de-replicated before 

they were randomly sub-sampled (500,000 paired-end reads with an average length 

of 296 bp) to produce a manageable sample size for combined analysis (~4M reads). 

After further de-replication of the combined pool of reads, clustering, chimera 

filtering and singletons removal were performed simultaneously within the pipeline 

by using the cluster_otus command. Operationally taxonomic units (OTUs) were 

defined based on a minimum sequence identity of 97% between the putative OTU 

members. The utax command was applied to assign to them a taxonomic group 

using a confidence value of 0.7 to give a reasonable trade-off between sensitivity 

and error rate in the taxonomy prediction. The entire dataset (~6M paired-end reads) 

was then allocated to the OTUs using the usearch_global command and the results 

were reported in an OTU-table, with the OTU-abundance data and the taxonomy 

annotation for each OTU. Sequence reads were uploaded to the National Center for 

Biotechnology Information (NCBI), Sequence Read Archive (SRA) 

(https://www.ncbi.nlm.nih.gov/sra/?term=SRP105158). 

7.2.4  Community composition and statistical analysis 

Traditional estimates of bacterial diversity can be distorted by rare taxa because 

these can be a small proportion of the bacteria population, but a large proportion of 

species present, so Hill numbers, Dq, will be used in this study to evaluate diversity 

(Hill, 1973; Jost, 2006). Hill numbers define biodiversity as the reciprocal mean of 

proportional abundance, and compensate for the disproportionate impact of rare taxa 

by weighting taxa based on abundance (see Appendix E; Hill, 1973; Jost, 2006, 

2007; Kang et al., 2016). The degree of weighting Dq is controlled by the index q 

(increasing q places progressively more weight on the high-abundance species 

within a population). The unweighted Hill number, D0, is exactly equivalent to the 

species richness. D1 is a measure of the number of common species and is 

equivalent to the exponential of Shannon entropy; and D2 is a measure of the 
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number of dominant species and is equivalent to the inverse of Simpson 

concentration (Hill, 1973; Jost, 2006, 2007). 

A heat map of OTU abundance was generated in Rstudio v 0.99.486 (RStudio Team, 

2015) (see figure in Appendix E.4). The OTU diversity in each individual sample 

(alpha-diversity, Dq
α
) was evaluated with different weightings on the high-

abundance species (D0
α
, D1

α
, D2

α
 ). The regional OTU diversity (gamma-diversity, 

D1
γ
) was calculated using the combined dataset (more information in Appendix E). 

The beta-diversity, D1
β
 (which reflects the proportion of regional diversity contained 

in a single average community), was calculated from the gamma diversity and the 

statistically weighed alpha-diversity (*D1
α
; Jost 2007) using Whittaker 

multiplicative law (*D1
α
 x D1

β
 = D1

γ
) (Whittaker, 1972). Additionally, beta-diversity 

was analysed using compositional dissimilarities between two different samples 

(Bray-Curtis dissimilarity) in PAST software (https://folk.uio.no/ohammer/past/). 

Non-metric Multi-Dimensional Scaling (NMDS) was used to graphically represent 

the similarity between bacterial assemblages in an optimised low-dimensional space 

by using Bray-Curtis dissimilarity matrix. NMDS was carried out in the package 

‘vegan’ (Oksanen et al., 2013) in RStudio (v 0.99.486) (RStudioTeam, 2015). The 

microbial community data were input as a matrix of the relative abundance of each 

OTU in each of the eight samples. CCA was also performed using the package 

‘vegan’ (input data were the OTU relative abundances and the environmental 

variables). BIOENV (‘biota-environment’) analysis (Clarke and Ainsworth, 1993) 

was carried out (see Appendix E) to further investigate the relationship between the 

microbial populations, and the environmental variables using Spearman’s rank 

correlation method and Bray Curtis dissimilarities. This test determines which 

combinations of environmental variables best explain patterns in the community 

composition. The environmental data used in these two tests included: salinity, 

major ion concentrations in the porewater, organic matter content, particle size and a 

range of redox indicators such as percentage of acid extractable Fe
2+

(s), ammonium 

and dissolved Mn concentrations in porewater. The sample S3d was excluded in the 

CCA and BIOENV analyses. 
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7.3  Results 

7.3.1  Environmental characteristics 

The environmental variables measured in river water and sediment samples from the 

study sites along the salinity continuum of the Humber are summarized in Table 7.1. 

The surface water temperature of the Humber on the day of sampling was around 

20°C. The locations chosen showed a salinity variation between the river end and 

the sea end of the estuary. Nitrate concentrations in the water column decreased 

along the estuary, and nitrate did not seem to accumulate in the porewater. 

Ammonium concentrations in the water column increased slightly along the 

continuum and were observed to accumulate in porewater, especially in the sites 

where more reducing sediments were found. Sulphate concentrations were 

correlated with salinity. The amount of iron in solids did not vary with sediment 

depth but increased along the estuary. The proportion of the acid extractable Fe that 

was Fe(II) was constant in the surface sediment, however in the subsurface 

sediments it increased along the estuary. Sediments of the mid and outer estuary (S3 

and S4) mudflats were also finer and contained slightly more organic matter. The 

salinity of the porewater was slightly lower than the water column salinity in all sites 

with the exception of S4. 
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Table 7.1: Characterisation of the water column, sediment porewater and sediments 

at the study sites (S1-S4). Suffixes s and d refer to surface and subsurface sediments 

respectively. 

River water 

 S1 S2 S3 S4 

Salinity (psu) 0.4 3.5 21.6 26.1 

pH 7.87 7.52 7.90 8.02 

Conductivity (mS/cm) 0.7383 5.731 30.48 36.42 

NO3
-
 (µM) 266 250 248 24 

NO2
- 
(µM) 1.6 1.6 0.4 0.7 

NH4
+
 (µM) 7 7 12 23 

SO4
2‒ 

(mM) 1 3 16 22 

Cl
- 
(mM) 2 38 306 443 

Sediment porewater 

 S1s S1d S2s S2d S3s S3d S4s S4d 

Porewater salinity 0.3 0.2 3.1 1.8 17.0 17.7 28.0 32.1 

NO3
‒
 (µM) 36 37 17 26 66 17 78 7 

NO2
- 
(µM) 0.2 0.4 0.1 0.3 0.9 <DL 1.0 <DL 

NH4
+
 (µM) 12 67 12 25 73 934 166 126 

SO4
2‒

 (mM) 2 2 6 3 33 33 32 40 

Cl
- 
(mM) 4 3 49 28 265 276 347 501 

Fe (aq) (µM) 0.4 4.9 0.1 0.3 1.6 3.6 0.9 3.3 

Mn
2+

 (aq) (µM) 3.4 82.3 5.1 49 60 0 15 62 

Sediment 

 S1s S1d S2s S2d S3s S3d S4s S4d 

(%) Acid extractable 

Fe
2+

(s) 
52 61 53 53 39 84 57 96 

Total Fe (wt %) 2.1 2.7 2.7 2.4 3.5 4.0 4.3 3.9 

%TOC 1.3 2.3 2.5 1.8 2.1 2.6 2.2 2.7 

%TS 0.16 0.18 0.18 0.14 0.22 0.35 0.31 0.52 

*Grain size (µm) (D50) 57 51 52 49 14 17 14 17 

 

7.3.2  Structure and diversity of the bacterial community along the salinity 

gradient 

The Illumina MiSeq run yielded >500,000 paired-end reads per sample after quality 

control. This dataset was randomly sampled to give exactly 500,000 reads per sample. 

The combined pool of 4 million reads was used to identify the characteristic OTUs in the 

regional dataset. A total of 3,596,003 reads in the combined pool passed the chimera 

check, and these were clustered into OTUs (>97% sequence identity) in the UPARSE 
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pipeline, and assigned to taxonomic groups. Then the entire dataset of 6,179,119 reads 

were allocated to these OTUs. OTUs classified as archaea (4% of non-chimeric reads), 

and the OTUs which were not classified to the level of bacterial phylum with a 

confidence >0.7 (14% of non-chimeric reads) were excluded for further analysis. This 

resulted in 7656 OTUs that were classified to the level of bacterial phylum with a 

confidence level >0.7, which were used to characterise the local and regional microbial 

diversity of the Humber estuary sediments. 

There were 33 phyla that individually represented more than 0.1% of the population of 

any sample (Fig 7.2), the most abundant of which were Proteobacteria (51% of the 

reads), Acidobacteria (11%), Bacteroidetes (10%) and Chloroflexi (9%). OTUs classified 

in a phylum, which individually represented less than 0.1% (on average of the total reads) 

of the microbial community of a specific site were grouped as “Other phyla” in Figure 

7.2. At this taxonomic level, the community structure of all the samples had a similar 

composition, with the exception of the sample of subsurface sediment from Paull (S3d). 

In this sample Proteobacteria were dominant, accounting for 92% of the OTUs present 

versus the 45% (on average) that Proteobacteria represented in the other sites. Overall 

the largest class within the phylum Proteobacteria was Gammaproteobacteria, which 

comprised 18% of total reads in the inner estuary to 25% of the total reads in the outer 

estuary, although sample S3d was dominated by Epsilonproteobacteria (94% of the 

Proteobacteria in S3d). Acidobacteria were slightly more prevalent at S1 and S2 (15% of 

total reads in the inner estuary) than at S3 and S4 (8% of total reads in the mid and outer 

estuary, excluding sample S3d). Within the Acidobacteria, bacteria from the class 

Acidobacteria subdivision 6 were most numerous in the inner estuary (~6% of total 

reads), but were 1% of total reads in the mid-outer estuary. Bacteroidetes were the third 

most abundant phylum in the estuary, representing ~9% of reads in the inner estuary, but 

16% of reads in the mid-outer estuary. Within the Bacteroidetes, bacteria form the class 

Flavobacteriia are the most abundant in both the inner and the outer estuary (~3% and 

12% of total reads). Chloroflexi was the fourth most abundant phylum, and it exhibited 

very little systematic change along the estuary. The most abundant classes within the 

Chloroflexi were Caldilinea and Anaerolineae (~3% and 2% of total reads from the 

whole estuary). 
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Figure 7.2: Taxonomic distribution of the bacterial community at phylum level. 

The phyla with relative abundance below 0.1% are grouped as “Other phyla”. 

The OTU richness, D0
α
, in each sample is plotted in Fig. 7.3a (richness takes no account 

OTU relative abundance). The average richness at the different sites and sediment depths 

was ~5000 OTUs; although sites towards the outer estuary showed slightly lower 

richness. Diversity measurements that indicate the number of common OTUs (D1
α
) and 

dominant OTUs (D2
α
) showed a different pattern (Fig. 7.3b and 7.3c). Both D1

α
 and D2

α
 

revealed a general decreasing trend for OTU diversity along the salinity gradient. 

Between the innermost and outermost estuary samples (S1 and S4) there was a drop in 

both D1
α
 and D2

α
 for the surface and the subsurface sediments by 60-70%. For 

comparative purposes, the OTUs in each sample were ranked by number of reads, and 

D1
α
 was used to identify the common OTUs thus defined. Common OTUs accounted for 

>80% of total sequence reads in all samples, and dominant OTUs account for ~60% of 

total reads (excluding Sd3). Therefore the decrease in the number of common and 

dominant OTUs along the estuary represents a shift towards fewer but more abundant 
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OTUs towards the sea. The statistically weighted alpha-diversity (
*
D1

α
) was 438; the 

regional diversity (D1
γ
) was 934; which following Whittaker’s multiplicative law, 

(D1
β
=D1

γ
/
*
D1

α
), gives a beta component (D1

β
 ) of 2. 

 

Figure 7.3: Alpha-diversity Dq
α
 measurements: (a) D0

α
 or OTUs richness; (b) D1

α
 

exponential of Shannon entropy; and (c) D2
α
 or inverse of Simpson concentration 

for each location (see more information in Appendix E). 

In the two-dimensional NMDS representation of species frequencies in the eight samples 

(Fig. 7.4), the inner estuary sites (S1 and S2) in a relatively close group (“inner estuary 

cluster”, dashed ellipse in Fig. 7.4) without a clear depth trend and only small separation 

between the two sites (average Bray-Curtis dissimilarity within this group was 24%). The 

S3 and S4 bacterial populations fall progressively further from the inner estuary cluster 

without clear cluster amongst them, and with a significant distance between the surface 

(S3s and S4s) and subsurface (S3d and S4d) samples. For example the bacterial 

populations of S3d is approximately equidistant from that of the surface sample from the 
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same location (S3s) and the inner estuary cluster (the Bray-Curtis dissimilarity is ~90% 

in both cases). NMDS is a robust indirect gradient analysis approach which produces an 

optimised ordination based on a distance or dissimilarity matrix, and does not take 

absolute distances into account. However the NMDS analysis suggests that, within the 

context of the Humber estuary, the bacterial populations of all the inner estuary samples 

are similar, but that progression towards the outer estuary causes a shift in the bacterial 

community. 

 

Figure 7.4: Two-dimensional non-metric multidimensional scaling (NMDS) 

ordination for differences in the bacterial community distribution based on Bray-

Curtis distances of the community (OTUs) by site/sample matrix. The stress value 

associated with these two dimensional representation is <0.05 which suggest a good 

fit of the data. 

In the CCA analysis salinity and the presence of FeS-rich sediments seem to split the 

inner estuary (S1 and S2) from the mid- and outer estuary S3 and S4 samples (Fig 7.5). 

The BIOENV analysis showed that salinity and sulphate concentration in porewater were 

the subset of environmental variables that best correlated (0.96) with the community 

composition of the different sites along the Humber estuary (Mantel statistic for the 
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correlation of the matrices, r=0.88, p<0.05) (see Appendix E). The sample S3d was 

excluded in the CCA and BIOENV tests because the significant differences in the 

microbial community composition were disproportionately influencing the ordination 

plots masking patterns in the remaining dataset. 

 

Figure 7.5: Environmental vectors in the CCA for the Humber estuary bacterial 

community (relative abundance data). Sample S3d was omitted from this analysis to 

show patterns in the remaining dataset. Arrows indicate the direction of the 

environmental gradients. Yellow dots represent the ordination of the samples/sites. 

7.4  Discussion 

The Humber estuary is a shallow well-mixed estuary. This type of estuary is 

characterised by water mixing that is strongly driven by tidal forcing. Surface and 

subsurface sediments in the Humber are both subjected to reoxidation processes due to 

resuspension, albeit at different frequencies. Additionally, the spatial heterogeneity of 

nutrient concentrations and the patterns of movement of the turbidity maxima within the 

Humber are influenced by seasonal variations of river flow (Sanders et al., 1997; 

Mitchell, 1998; Uncles et al., 1998a). Concentrations of nitrate decrease in the water 

column towards the outer estuary, while sulphate becomes a more important species as 

seawater has more influence on the water column composition. The sediments recovered 

from the mudflats of the mid and outer estuarine show some iron enrichment compared to 
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the sites from the inner estuary (Table 7.1 and Table 4.3). Field observations of sample 

colour at the outer estuary sites (reddish-brown at the surface but dark grey-black in the 

subsurface), the amounts of Fe and NH4
+
 in the pore fluid, and the proportion of acid 

extractable Fe that is Fe(II), taken together evidence an abrupt redoxcline at these sites 

(others report that the subsurface sediments of the outer estuary mudflats can be sulfidic; 

Mortimer et al., 1998; Andrews et al., 2000). Such an abrupt redox change with depth 

was not seen at the inner estuary sites, where the subsurface sediments appear to be 

poised between nitrate and iron reducing conditions. These underlying environmental 

gradients likely shape the spatial distribution of the bacterial communities in estuaries 

(Crump et al., 2004; Fortunato et al., 2012; O'Sullivan et al., 2013; Liu et al., 2014; 

Jeffries et al., 2016). 

Salinity has been shown to be a critical factor in shaping bacterial diversity patterns in 

estuarine systems (Bernhard et al., 2005; Lozupone and Knight, 2007; Herlemann et al., 

2011; Liu et al., 2014; Lallias et al., 2015). Therefore Humber water column salinity 

records from 14 locations over a period of ~25 years have been collated (Fig. 7.6) to 

provide a proxy for the salinity range experienced by surficial sediments. Deeper 

sediment pore water salinity will vary more slowly than river water salinity and probably 

remains close to the long term average of river water salinity at that location (pore water 

salinity values, calculated from chlorine concentrations, are also plotted on Fig.7.6). As a 

result, three salinity zones have been empirically identified. Firstly, the inner estuary 

extends from 0 to 60 km below Naburn weir (the tidal limit of the Ouse system) where 

the water column salinity is always ≤5 psu (blue area in Fig.7.6, see also annotation in 

Fig. 7.1). Depending on the river flow and state of the tide, the inner estuary water would 

be described as freshwater (0 psu) or oligohaline (≤5 psu). Secondly, the middle estuary 

extends from 60 to 100 km downstream of Naburn weir, and in this zone the water 

column salinity ranges between 0 to ~25 psu (purple area in Fig 7.6, see annotation in 

Fig. 7.1). This range in the mid estuary includes oligohaline, mesohaline and polyhaline 

waters. Finally the outer estuary extends from 100 km below Naburn weir to open coastal 

waters. Here the water column typically varies from ~18 psu salinity to seawater (35 psu) 

(pink area in Fig 7.6, see annotation in Fig 7.1), which includes polyhaline to euhaline 
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waters. Based on this subdivision of the Humber estuary, sites S1 and S2 are in the inner 

estuary, site S3 is in the mid estuary, and site S4 is in the outer estuary. 

 

Figure 7.6: Salinity records of different sites along the Humber estuary (x markers) 

(Freestone, 1987; Prastka & Malcolm, 1994; NRA, 1995, 1996; Sanders et al., 

1997; Barnes & Owens, 1998; Mitchell, 1998; Uncles et al., 1998b; Mortimer et al., 

1999; Williams & Millward, 1999; ABP Research 2000; Millward et al., 2002; 

Burke et al., 2005; Uncles et al., 2006; Fujii & Raffaelli, 2008; Garcia-Alonso et 

al., 2011). The triangle markers indicate the porewater salinity measurements made 

for this study (S1-S4) (empty and coloured markers for surface and subsurface 

porewater salinity respectively). The blue area: 0-60km from Naburn weir, salinity 

≤5 psu; the purple area: 60-100 km from Naburn weir, salinity range from 0-25 psu; 

and the pink area: 100-160 km from Naburn weir, salinity range from 18-35 psu. 

Macroscopic species richness usually has a minimum in areas of estuarine systems that 

undergo high salinity variation (Whitfield et al., 2012). Whereas Telesh et al. (2011) 

found that phytoplankton richness reached a maximum in this ‘critical salinity zone’. 

This study found that bacterial OTU richness, D0
α
, was relatively uniform along the 

Humber estuary (Fig. 7.3a), which conforms to previous reports of uniform richness 

along a salinity gradient (Herlemann et al., 2011). However the hyperdiverse nature of 

microorganisms in many ecosystems means that richness can give a distorted view of 
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microbial diversity because it gives equal weight to common and rare taxa. Also it is 

rarely possible to evaluate richness accurately, as it is extremely difficult adequately 

sample rare taxa even with high-throughput sequencing technologies (Kang et al., 2016). 

Hill numbers of higher order (q = 1 or 2) are a better mathematical approach to microbial 

diversity that give consistent measures of the prominence of common or dominant 

species in a community that are not sensitive to the depth of sequencing (Kang et al., 

2016). 

In the Humber D1
α
 and D2

α
 (Fig 7.3b and 7.3c) revealed that the number of common and 

dominant OTUs in the outer estuary samples were only about 40% and 35% the average 

in the inner estuary. This indicates a change towards a community structure with a 

smaller number of more abundant OTUs along the estuarine salinity gradient. Generally 

Site 3, which is situated in the area of highest salinity variation (purple area in Fig. 7.6), 

fitted this trend. The surface sample (S3s) had D1
α
 and D2

α
 values that were intermediate 

between the inner and outer estuary values, which is not surprising given the regular 

resuspension and mixing processes of surface sediments by tidal forces. The subsurface 

sample (S3d) had lower D1
α
 and D2

α
 values than any other sample analysed. This may be 

associated with salinity stress, but it is likely that some other environmental pressure had 

produced a specialist niche that favours just a few bacterial species at this location 

(bacterial DNA was extracted from <0.5 g of sediment, and thus very local geochemical 

effects can affect the bacterial community within individual samples). 

The NMDS and CCA analyses clustered the inner estuary samples together. Whilst 

distance on both these plots is comparative, and the relationship between distance and 

dissimilarity is not linear on the NMDS plot, when taken with the beta diversity across all 

the samples (D1
β
 ~ 2), it suggests that the communities of the inner estuary sediments (in 

terms of common species) are similar. The colour pattern in the heat map (see Appendix 

E) also showed these samples as being similar in their composition. Furthermore, the 

NMDS and CCA analyses also separated the subsurface mid and outer estuary samples 

from their surface counterparts. Field observations and geochemical measurements 

indicated that these samples were more reducing than the other samples. Estuarine 

surface sediments are mobilized on tidal timescales, whereas subsurface sediments will 
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be disrupted less frequently. These differences on remobilization timescales will depend 

on the location and the magnitude of the resuspension event, but any such remobilization 

will impact on sediment redox state. For this reason, stronger redox stratification would 

be expected in the less-frequently disturbed subsurface sediments of the outer estuary, 

which may provide the geochemical conditions for more specialist communities to 

develop. 

Taxonomically, all samples with the exception of S3d showed a similar composition. 

Proteobacteria was the most represented phylum in all the bacterial communities, 

followed by Acidobacteria, Bacteroidetes and Chloroflexi. This distribution of phyla is 

consistent with other studies in coastal and estuarine sediments (Wang et al., 2012; 

Halliday et al., 2014; Liu et al., 2014; Jeffries et al., 2016; Wei et al., 2016). 

Gammaproteobacteria were the most represented class within the Proteobacteria in most 

of the samples (as was observed in these previous studies), but the bacterial community 

of sample S3d was dominated Epsilonproteobacteria. Epsilonproteobacteria have been 

found in other estuarine and coastal sediments, and pelagic redoxclines (Labrenz et al., 

2005; Campbell et al., 2006; Grote et al., 2008; Bruckner et al., 2013; Jeffries et al., 

2016), and are occasionally abundant (Wang et al., 2012). Many Epsilonproteobacteria 

within the order of Campylobacterales (the most important class of 

Epsilonproteobacteria in sample S3d) are microaerophilic chemolitotrophs that can 

couple the oxidation of sulphur compounds or hydrogen to the reduction of oxygen or 

nitrate (Labrenz et al., 2005; Campbell et al., 2006; Grote et al., 2008; Bruckner et al., 

2013). It has even been suggested that Epsilonproteobacteria could be one of the 

dominant microorganisms involved in the coupling of C, N and S cycles (Campbell et al., 

2006). Thus the dominance of Epsilonproteobacteria in sample S3d may be related to the 

S-reducing conditions found in subsurface sediments of the outer Humber estuary. 

The regional microbial diversity of the Humber estuary (D1
γ
 = 934) indicates that many 

of the OTUs that are common in individual samples are common within regional dataset. 

Further, the beta-diversity calculated for common species (D1
β
 ~ 2) indicates that the 

regional diversity can be explained by there being two distinct compositional groups 

dispersed amongst the various local communities. The first of these compositional units 
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may be a community that is subjected to remobilisation and is regularly mixed and 

transported along the estuary, but is stressed by the varying salinity conditions (in 

frequently disturbed estuarine sediments there is less of a direct link between the 

geochemistry and the bacterial assemblages present; O'Sullivan et al., 2013). The second 

compositional unit may develop in the more strongly reducing and less frequently 

disturbed subsurface sediments of the mid and outer estuary mudflats. 

7.5  Conclusions 

Overall, this study has provide the first insight to the microbial diversity of the Humber 

estuary. The large amount of data produced by using high throughput sequencing 

technologies resulted in a deep coverage of the individual samples. A taxonomic 

approach to the community data did not show clear differences between sampling sites. 

Similarly OTU richness, D0
α
, was relatively uniform in the estuary. However Hill 

numbers of higher order (D1
α
 and D2

α
) decreased towards the sea, which indicates a 

change towards communities where a smaller number of OTUs represent a larger 

proportion of the population. Discovery of this trend illustrates the importance of using a 

rigorous and consistent mathematically approach to characterise bacterial diversity, 

particularly when working with amplicon sequencing data. Beyond salinity variation, 

there was some evidence that redox transitions with depth may apply further selective 

pressure on the microbial populations of the mid and outer mudflats. To conclude, 

salinity seems to be the main environmental driver for diversity in the Humber estuary, 

but other spatiotemporal fluctuations in the physicochemical conditions (redox gradients 

and sediment remobilisation and mixing) will have also an impact on the bacterial 

community composition. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

The overall aim of this PhD study was to improve understanding of the biogeochemical 

processes occurring in estuarine sediments and their living microbial community along 

the salinity gradient of the Humber Estuary. 

Three different redox scenarios were simulated in order to elucidate the principal 

pathways of N, Fe, Mn and S and the interlinks between their cycles. The effects of 

sediment (re)oxidation on trace metal behaviour and speciation were also a focus of 

investigation. 

In Chapter 5, experiments simulated the aerobic resuspension of estuarine sediments from 

two different sediment pools mobilized at different frequency in natural conditions. When 

sediments are resuspended, any nitrate released (from porewater or as a product of 

nitrification) will result in an increase of nitrate concentrations in the oxic water column. 

However, this addition may be insignificant in the short term considering the high nitrate 

levels of the water and the consumption through denitrification processes. In general, 

nitrate showed no immediate changes upon resuspension, although in the timeframe of a 

big storm net increases were observed. If we contrast these findings with the salinity-

nitrate distribution plot (Fig 6.4), we can confirm that nitrate behaves conservatively 

along the salinity gradient since coupled nitrification-denitrification will maintain the 

concentrations of the river water relatively level and it will be the dilution of the 

freshwater flows in the mixing processes what largely regulates the nitrate concentrations 

in the river water. Nevertheless, the third type of sediment oxidation (anaerobic 

oxidation) analysed in microcosms experiments (Chapter 6) confirmed that if nitrate is 

available (note that nitrate was in excess over any DO left in the river water), biotic 

denitrification occurred via a combination of heterotrophic and chemolithotrophic 

microbial activity. These processes will contribute to the nitrogen removal in the 
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Humber, especially in the outer estuary due to the greater availability of electron donors 

and the large extension of the mudflat area (95% of the total intertidal sediment area of 

the Humber, ~115 km
2
 between Spurn Head and Trent Falls, are intertidal sand and 

mudflats). This is the main area for sediment deposition and, hence, for retention of 

nutrient and nitrogen removal (by denitrification and organic matter burial). Therefore the 

management of the intertidal areas is very important due to their highly valuable 

ecosystem function and their role in terms of coastal protection. This systematic study 

along the gradient has confirmed how important the local geochemistry in the N cycling 

is, and additionally a clear transition in the dominating processes from the inner to the 

outer estuary has been detected in aerobic and anaerobic oxidation experiments.  

The initial geochemical state of the sediments and their position along the salinity 

gradient influence the geochemical progression during resuspension. From the results of 

presented in Chapter 5, it can be concluded that there is a transition between Mn/Fe-

dominating systems in the inner estuary towards Fe/S dominating systems in the outer 

estuary mudflats. Furthermore, an immediate release of trace metals to solution during 

resuspension, even if there is an extreme event, will be rapidly reversed likely due to the 

co-precipitation and/or sorption of the dissolved species to the newly formed iron and 

manganese oxides, and sorption to SPM surfaces, colloids, etc. Therefore it can be said 

that estuarine sediments act as an ultimate sink for trace metals. However, the role of the 

sediments in terms of nutrients may vary with the intensity of the resuspension (i.e. the 

sediment depth mobilised), which may be important in a climate change scenario since 

more severe storms are predicted for the UK in future. The potential release of more 

reduced species will add reductive potential, or in other words COD, to the water column 

during an extreme resuspension event, but this is likely to be attenuated by the DO in the 

water column which is maintained due to the constant oxygenation of the river water in 

this highly dynamic estuary. 

From the results presented in Chapter 6, it can be concluded that microbially mediated 

nitrate-depended oxidation processes are likely to occur in regions of the sediments 

where oxygen is absent or nearly absent. Anaerobic denitrification did not develop in the 

microcosms of one of the study sites (S2). The geochemical state of the subsurface 
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sediments in S2 (neither in situ nor after the laboratory analyses) did not suggest that 

those sediments were poised at suboxic/anoxic conditions, which may explain the lack of 

denitrifying activity. The calculation of electron balances for these experiments was 

useful to recognise which were the dominant processes but it was not enough to deduce 

which were exactly the reaction pathways. The results suggested that a combination of 

many different biological reactions account for the nitrate consumption and there is a 

transition with salinity towards S-dominated systems. A similar trend was observed in the 

air-oxidation experiment. 

To finish the conclusions about sediment oxidation effects on geochemistry, there was an 

effect on the trace metal partitioning in the three oxidation scenarios (surface and 

subsurface sediments in aerobic conditions and subsurface sediment anaerobic oxidation) 

studied. In general terms, trace metals experienced a shift towards more ‘easily to extract’ 

fractions as a consequence of sediment (re)oxidation. So, even if the sediments act as an 

ultimate sink for trace elements, their oxidation may have effects on the fate, 

bioavailability and mobility of trace metals. This may have further implications in the 

system, for example if remobilisation patterns change and anoxic sediments are mobilised 

more often.  

So overall, this work has demonstrated the complex interlinks between the major 

elements and trace metal cycles and the importance of the coupling between physical and 

geochemical processes. 

In Chapter 7, the analysis of bacterial DNA by using amplicon sequences of the 16S 

rRNA gene showed that there is a trend in bacterial diversity along the estuarine salinity 

gradient. The sequence depth allowed by the current high-throughput sequencing 

technology provided large amount of data to characterise bacterial communities. 

However, for that very reason, the use of conventional diversity indices is not as 

informative as it used to be for the microbial ecologist community. Challenges for 

describing bacterial diversity nowadays are associated with some intrinsic properties of 

the bacteria (species concept debate, hyperdiversity and increasing capture of rare taxa, 

and variability on the copies of the 16S rRNA gene) and technological difficulties. Hence 

Hill numbers were applied as a measure of diversity, which is what is currently claimed 
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to be the new approach to microbial diversity. Only by using such metrics, the taxa 

(OTUs in this case) are weighted based on their abundance, which controls the variability 

associated with rare taxa and overcomes the misleading interpretation of large datasets. 

By analysing alpha diversity with Hill numbers, it can be concluded that salinity is the 

main environmental factor controlling microbial diversity. However, there was further 

evidence of strong redox transitions with depth being a secondary selective pressure for 

the bacterial communities in the outer estuary Humber mudflats. The results suggested 

that: i) there is a widespread surface sediment community subjected to frequent 

mobilization, and, therefore bacterial communities are being mixed, homogenised and 

transported together with the SPM along the estuary; while ii) there is a potential 

community of more specialists developing at the more reducing and less disturbed 

sediment layers. Again, it is demonstrated how important sediment resuspension is, this 

time for the biology and hence for the ecological functioning of the system.  

8.2 Future work 

The sediment resuspension approach and the microcosm approach are useful to simulate 

a wide variety of geochemical scenarios to give an overall picture of the key processes 

operating in an estuarine system, but more detailed follow up studies using particularly 

target techniques could help to elucidate individual reaction pathways.  

For example, in the study of the aerobic resuspension, improvements could be made by 

controlling key environmental parameters in such scenarios (e.g. dissolved oxygen or 

sediment-solution ratio) to obtain a more solid understanding of the processes 

developing. It will also be very instructive to study the mechanisms of metal precipitation 

during resuspension and if there are differences by depth in the newly formed 

precipitated/aggregates. Field studies, measuring in situ nutrient fluxes and sampling the 

suspended solids could be used in combination to laboratory studies to constrain the 

multiprocesses occurring during a tidal cycle. High resolution studies of the TMZ 

combining geochemistry and microbiology in a properly defined sedimentological 

context have not been made to date. This will be a future area of research regarding the 

intense transformations of nutrients and other reactive elements in these “natural 



223 
 

 

bioreactors” and the potential alterations that the TMZ will experience as a consequence 

of the more frequent intensive rainfall events associated with global warming. 

The use of 
15

N labelled nitrogen substrates will be also useful in the analysis of the nitrate 

reduction pathways, and ammonium removal from solution. For example microsensors or 

diffusive equilibrium in thin layer (DET) gels could be used to analyse microprofiles of 

nitrate reduction in intact cores. This can be combined also with further microcosm 

studies using different treatments. For example addition of inhibitors, and different 

amendments or a combination of them (e.g. nitrate at different concentrations, electron 

acceptors such as ammonium, Fe(II), etc.). 

Rapid release-uptake trends have been recognised during sediment reoxidation 

experiments. To improve the understanding of the trace metal cycling (behaviour, 

mobility and precipitation dynamics), further experiments could be performed with 

selective trace metals and/or minerals. For example the use of imaging technology 

(SEM), and also X-ray absorption spectroscopy (XAS) could be used to investigate the 

atomic level structure and to characterise the chemical form of the trace elements 

associated with different sediment particles. This could be used to study the nature of the 

sorption and co-precipitation onto and with biogenic and non-biogenic minerals formed 

during sediment oxidation under anaerobic conditions. 

The microbiology part of this thesis is a very preliminary study of the benthic microbial 

diversity along the Humber. Small number of sites were used to begin with, and due to 

the large amount of genetic data obtained, those few sites were deeply characterise. 

Furthermore, interesting patterns in microbial diversity have been observed. To further 

test those diversity trends, a larger sampling survey could be carried out in the Humber. 

Considering the decreasing cost/effort of the sequencing facilities at the moment, an 

extension of this work would include more sampling sites along the salinity range, and 

more replicates. Decreasing sequencing depth (number of reads per sample) will allow 

more samples per run and this is sensible since the use of Hill numbers has demonstrated 

that the reliability of these diversity measurements will not be affected by decreasing to a 

certain level the sequencing depth. Furthermore using coring as a sampling method in 

order to more accurately delineate sediment depths could also provide additional 
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information. For the study of specific microbial assemblages, qPCR studies could be 

carried out in order to detect differences in the communities by depth associated to the 

available redox species. 
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Appendix A 

Methods 

This appendix includes further information about the ICP-MS analysis (protocol, errors 

and limits of detection) 

A.1 Instrument information 

The analyses were performed using a Thermo Scientific iCAPQc Inductively Coupled 

Plasma Mass Spectrometer (ICP-MS). 

Aluminium was analysed in standard mode and all other elements in Kinetic Energy 

Discrimination (KED) mode using helium as a collision gas to remove polyatomic 

interferences. 

Table A.1: Summary of the elements and modes used. 

Element Mass (m/z) Instrument Mode 

Al 27 Std 

V 51 KED 

Cr 52 KED 

Mn 55 KED 

Fe 56 KED 

Co 59 KED 

Cu 63 KED 

Zn 64 KED 

As 75 KED 

Cd 112 KED 

 

A.2 Sample and standard preparation 

NASS-6 Seawater Certified Reference Material (CRM) was used as reference material 

(http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/crm/certificates/nass_6.html).  

For the brackish-seawater analysis, samples were diluted 50 fold in 1 % v/v HNO3 before 

analysis (0.2 ml sample + 9.8 ml diluent) to reduce matrix effects during the analysis. 

http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/crm/certificates/nass_6.html
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Standard additions type calibration was used for the analysis using 1:50 diluted NASS-6 

Seawater Certified Reference Material (CRM) as the standard matrix. 

Calibrations were performed in the range of 1-100 µg L
-1

. 

Blanks of 3 % w/v NaCl solution were prepared. 

As internal standardisation, Rhodium at a concentration of 1 ppb was added to all 

standards and samples for use as an internal standard. 

For the freshwaters, everything was run as above except they were analysed with no 

dilution. 

A.3 Analytical figures of merit 

Limits of detection were calculated from repeated measurements of 5 individual blank 

solutions using the equation below. 

𝐿𝑂𝐷 = 3𝜎5 𝐵𝑙𝑎𝑛𝑘𝑠 

Accuracy of the method was estimated by spiking a sample with a known amount of 

analyte and measuring the analyte recovery.  Sample and Sample + Spike were analysed 

5 times. 

% 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 100 ×
𝑀𝑆𝑝𝑖𝑘𝑒−𝑀𝑆𝑎𝑚𝑝𝑙𝑒

𝐶𝑠𝑝𝑖𝑘𝑒
 

Where  Mspike = Measured concentration of spiked sample. 

 MSample =Measured concentration of sample. 

 CSpike = Actual concentration of spike. 

Precision of the method was assessed from the repeated measurement of one sample 6 

times and reported as the 95% confidence interval of these results. 

𝑥̅ ±
𝑡𝑛−1𝑠

√𝑛
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Where  n = number of measurements 

 n-1 = degrees of freedom (5) 

 t = t value (2.78 for 4 degrees of freedom) 

 s = calculated standard deviation of 5 measurements 

 x = calculated mean of 5 measurements 

 

Certified Reference Material 

The Certified Reference Material (CRM) used was NASS-6 Certified reference material. 

This is a seawater reference material. 

A.4 Quality Control, LOD and error details for ICP-MS analyses 

See table below for details about the Quality Control (Table A.2) and the LOD and errors 

of the different ICP-MS analyses (Tables A.3). 

The quality control data (Table A.2) show that, with the exception of the aluminium, the 

concentrations detected from samples containing 1:50 fold dilution of the seawater 

certified material (zero standard) spiked with a 5 ppb metal concentration solution, were 

in fact around 5 ppb. From this control test the recovery was >95%, the LOD was 0.027 

ppb and the uncertainty 3.72 %. 

For the method validation, the protocol followed was: 

1) Two blanks are run to start to start with. 

2) The calibration is carried out with standards (from 0-10 ppb) made up with 1:50 

seawater reference material. 

3) Subsequently, blanks (x6) are run. 

4) Then, 1:50 seawater spiked with 0.5ppb (metal concentrations) solution is run (x3 

times) followed by a 1:50 seawater spiked with 5ppb (metal concentrations) solution (x3 

times). 
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5) Afterwards, two different samples diluted 1:50 (with no spike) (x5 times) are run; 

followed by the same samples (x5 times) diluted 1:50 but spiked with 10 ppb standard 

solution.  

6) Next, 1:50 seawater spiked with 0.5ppb (metal concentrations) solution (x3 times) and 

1:50 seawater spiked with 5ppb (metal concentrations) solution (x3) are run again.  

6) To finish, more blanks are run (x6 times). 
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Table A.2: Summary of the Quality Control. 

 27Al 

(STD) 

[ppb] 

51V 

(KED) 

[ppb] 

52Cr 

(KED) 

[ppb] 

55Mn 

(KED) 

[ppb] 

56Fe 

(KED) 

[ppb] 

59Co 

(KED) 

[ppb] 

63Cu 

(KED) 

[ppb] 

64Zn 

(KED) 

[ppb] 

75As 

(KED) 

[ppb] 

112Cd 

(STD) 

[ppb] 

60Ni 

(KED) 

[ppb] 

Zero Std 4,539 0,07 0,049 0,04 0,563 0,003 0,136 0,418 0,061 0,008 0,18 

Blank 4,662 0,005 0,03 0,04 1,031 0,003 0,202 0,416 0,009 0,005 0,589 

1:50 NASS6 + 5 

ppb 

10,032 4,63 4,892 4,988 5,029 4,957 5,043 5,694 4,887 5,191 5,086 

1:50 NASS6 + 5 

ppb 

11,569 5,106 5,055 4,971 5,485 4,993 5,063 5,115 5,052 4,914 4,801 

1:50 NASS6 + 5 

ppb 

10,278 4,425 4,469 4,395 4,929 4,526 4,674 4,965 4,793 5,14 5,371 

1:50 NASS6 + 5 

ppb 

10,501 4,632 4,648 4,579 5,135 4,63 4,807 5,103 4,965 5,063 4,898 

1:50 NASS6 + 5 

ppb 

10,797 4,696 4,798 4,758 5,293 4,74 4,889 5,164 4,995 5,085 4,896 

1:50 NASS6 + 5 

ppb 

11,512 5,007 5,003 5,04 5,551 4,941 4,981 5,216 5,179 5,005 4,959 

1:50 NASS6 + 5 

ppb 

11,374 5,183 5,147 5,253 5,707 4,974 5,1 5,796 5,132 4,888 5,088 

1:50 NASS6 + 5 

ppb 

11,909 5,164 5,124 5,328 5,814 4,952 5,021 5,219 5,032 4,758 5,199 

Mean 10,997 4,855 4,892 4,914 5,368 4,839 4,947 5,284 5,004 5,006 5,037 

Adjusted Mean 

(Mean- Zero Std) 

6,458 4,785 4,843 4,874 4,805 4,836 4,811 4,866 4,943 4,998 4,857 

Stdev 0,687 0,293 0,241 0,320 0,323 0,181 0,146 0,297 0,125 0,144 0,187 

% Recovery 129,2 95,7 96,9 97,5 96,1 96,7 96,2 97,3 98,9 100,0 97,1 
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Table A.3: Additional information of LOD and uncertainty (% error at 95% confidence interval) for the different analyses 

carried out. 

Analysis and details 
 

Al V Cr Mn Fe Co Ni Cu Zn As Cd Pb 

Step 1 from Sequential 

Extractions. 1 M MgCl2 (1% 

v/v HNO3)  

LOD / ppb 23.5 0.363 1.34 2.00 26.50 0.069 0.610 1.10 2.73 0.298 0.137 0.238 

% uncertainty 4.14 2.81 1.93 5.15 4.2 0.92 1.15 1.37 1.40 4.19 0.89 2.32 

LOD / ppb 23.5 0.36 1.34 2.00 26.5 0.07 0.61 1.10 2.73 0.30 0.14 0.24 

% uncertainty 4.14 2.81 1.93 5.15 4.2 0.92 1.15 1.37 1.40 4.19 0.89 2.32 

Step 2 from Sequential 

Extractions. 1 M NaOAc (1% 

v/v HNO3) 

LOD / ppb 36.4 0.26 0.60 3.65 60.5 0.18 1.58 6.99 2.46 0.58 0.19 0.38 

% uncertainty 4.50 3.64 2.87 5.24 4.20 3.43 4.48 8.33 5.70 4.41 2.21 3.18 

LOD / ppb 36 0.26 0.60 3.65 60.5 0.18 1.6 7.0 2.5 0.58 0.19 0.38 

% uncertainty 4.50 3.64 2.87 5.24 4.20 3.43 4.48 8.33 5.70 4.41 2.21 3.18 

Step 3 from Sequential 

Extractions. 0.04 M 

NH2OH∙HCl in 25% v/v 

HOAc (1% v/v HNO3).  

LOD / ppb 55.07 0.20 0.91 1.19 
0.13 

ppm 
0.17 2.72 2.45 4.83 0.54 0.15 0.23 

% uncertainty 3.74 2.67 2.71 2.48 5.44 3.30 3.76 4.05 3.69 3.11 2.91 2.94 

LOD / ppb 
55 0.20 0.91 1.2 

0.13 

ppm 0.17 2.7 2.5 4.8 0.54 0.15 0.23 

% uncertainty 3.74 2.67 2.71 2.48 5.44 3.30 3.76 4.05 3.69 3.11 2.91 2.94 

Step 4 from Sequential 

Extractions. HNO3 + 30% 

H2O2 + 3.2 M NH4OAc (1% 

v/v HNO3)  

LOD / ppb 122 0.53 0.96 3.44 
0.06 

ppm 
0.25 1.86 2.32 1.73 1.08 0.22 0.25 

% uncertainty 5.55 3.14 2.88 3.43 3.27 2.53 2.95 2.66 2.74 1.09 1.15 1.31 

LOD / ppb 
122 0.53 0.96 3.44 

0.06 

ppm 0.25 1.9 2.3 1.7 1.1 0.22 0.25 

% uncertainty 5.55 3.14 2.88 3.43 3.27 2.53 2.95 2.66 2.74 1.09 1.15 1.31 

“Salt water” samples (S3 and 

S4) from filtered river water 

and resuspension experiment 

(x50 fold) 

LOD / ppb after 

DF50 
7.91 0.14 0.09 0.87 2.16 0.35 0.027 1.35 6.04 0.24 0.03 - 

% uncertainty 0.45 0.48 0.26 0.48 0.80 0.58 3.72 0.68 1.28 1.39 1.00 - 

“Fresh water” samples (S1 and 

S2) from filtered river water 

and resuspension experiment 

LOD µg/L 0.974 0.003 0.016 0.1 0.651 0.001 0.096 0.249 0.701 0.005 0.014 0.059 

% uncertainty 2.0 1.5 1.0 3.1 1.7 2.7 8.9 1.2 5.9 5.1 3.0 8.4 

0.5 N HCl Mn extraction from 

solids 

LOD µg/L    0.04         

% uncertainty    3.13         
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The following table (Table A.4) shows the summary of the low detection limits (before 

and after the dilution factor has been applied) and the uncertainties.  

Table A.4: Summary of LOD and uncertainties. 

 Al V Cr Mn Fe Co Cu Zn As Cd 

LOD / ppb 0,158 0,003 0,002 0,017 0,043 0,007 0,027 0,121 0,005 0,001 

LOD / ppb 

after DF50 

7,91 0,14 0,09 0,87 2,16 0,35 1,35 6,04 0,24 0,03 

% Uncertainty 0,45 0,48 0,26 0,48 0,80 0,58 0,68 1,28 1,39 1,00 
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Appendix B 

Sediment characterisation 

This appendix includes the XRD patterns and the results for the grain size 

characterisation of the eight sediments used throughout the experiments. 

B.1 XRD results 
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Figure B.1: XRD pattern of Boothferry (S1) surface sediment. 
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Figure B.2: XRD pattern of Boothferry (S1) subsurface sediment. 
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Figure B.3: XRD pattern of Blacktoft (S2) surface sediment. 
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Figure B.4: XRD pattern of Blacktoft (S2) subsurface sediment. 
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Figure B.5: XRD pattern of Paull (S3) surface sediment. 
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Figure B.6: XRD pattern of Paull (S3) subsurface sediment. 
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Figure B.7: XRD pattern of Skeffling (S4) surface sediment. 
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Figure B.8: XRD pattern of Skeffling (S4) subsurface sediment. 
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B.2 Grain size characterisation 

 



 

 

2
4
3
 

 

Figure B.9: Distribution curve for finer material (in cumulative percentage of finer material). 
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Figure B.10: Distribution curve for coarser material (in cumulative percentage of coarser material). 
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Figure B.11: Distribution curve for grain-size classes. 
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Appendix C 

Supplementary information for Chapter 5 

“Reoxidation of estuarine sediments during simulated resuspension events: Effects on 

nutrient and trace metal mobilisation” 

Andrea Vidal-Durà, Ian T. Burke, Robert J.G. Mortimer and Douglas I. Stewart 

(in preparation for submission to Estuarine and Coastal Shelf Science) 

C.1 Changes in pH and Eh during sediment resuspension 
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Figure C.1: pH changes during the resuspension experiments using surface (a) and subsurface (b) sediments from the inner estuary 

sites; and surface (c) and subsurface (d) sediments from the outer estuary sites. 
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Figure C.2: Eh changes during the resuspension experiments using surface (a) and subsurface (b) sediments from the inner estuary 

sites; and surface (c) and subsurface (d) sediments from the outer estuary sites.  



 

 

2
4
9

 

C.2 Trace metals behaviour in the aqueous phase during sediment resuspension 

Table C.1: Trace metal in the aqueous phase during S1 (Boothferry) sediment resuspension. 

S1 

Boothferry 

Sediment 

type 
Al Fe Mn As Cd Cr Co Cu V Zn Ni 

Total in 

sample 

(mg) 

surface 537±166 484±133 11.45±0.15 0.40±0.07 <DL 1.20±0.06 <DL. 0.53±0.06 1.06±0.01 2.27±0.05 <DL 

subsurface 757±33 644±145 15.29±0.37 0.38±0.04 <DL 1.59±0.04 <DL 0.64±0.06 1.37±0.05 2.90±0.06 <DL 

Initial in 

aqueous 

phase 

(mg/Kg) 

surface 0.06±0.00 0.07±0.00 0.67±0.01 0.04±0.00 0.00±0.00 0.00±0.00 0.04±0.00 0.03±0.00 0.06±0.00 0.07±0.00 0.03±0.00 

subsurface 0.05±0.00 0.22±0.01 3.37±0.15 0.04±0.00 0.00±0.00 0.00±0.00 0.04±0.00 0.02±0.00 0.05±0.00 0.06±0.00 0.03±0.00 

Maximum 

release 

(mg/Kg) 

surface 0.26±0.02 0.15±0.01 2,13±0.10 0.06±0.01 0.01±0.00 0.01±0.01 0.08±0.12 0.12±0.01 0.07±0.00 0.15±0.09 0.04±0.00 

subsurface 0.24±0.01 0.47±0.55 7.89±0.17 0.06±0.01 <DL 0.01±0.00 0.14±0.00 0.12±0.01 0.09±0.00 0.08±0.08 0.04±0.01 

Final in 

aqueous 

phase 

(mg/Kg) 

surface 0.13±0.01 0.10±0.02 0.34±0.23 0.06±0.01 <DL 0.00±0.00 0.00±0.00 0.12±0.00 0.06±0.01 <DL 0.04±0.00 

subsurface 0.14±0.02 0.37±0.16 1.45±1.21 0.10±0.01 <DL 0.00±0.00 0.00±0.00 0.12±0.01 0.06±0.00 0.04±0.00 0.04±0.01 
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Table C.2: Trace metal in the aqueous phase during S2 (Blacktoft) sediment resuspension. 

S2 

Blacktoft 

Sediment 

type 
Al Fe Mn As Cd Cr Co Cu V Zn Ni 

Total in 

sample 

(mg) 

surface 721±55 587±127 13.11±0.89 0.35±0.06 <DL 1.46±0.26 <DL 0.61±0.06 1.19±0.07 2.67±0.18 <DL 

subsurface 871±40 646±117 14.60±0.32 0.40±0.04 <DL 1.71±0.30 <DL 0.59±0.05 1.37±0.08 2.93±0.10 <DL 

Initial in 

aqueous 

phase 

(mg/Kg) 

surface 0.06±0.00 0.04±0.00 0.55±0.04 0.04±0.00 0.00±0.00 0.00±0.00 0.04±0.00 0.02±0.00 0.06±0.00 0.07±0.00 0.03±0.00 

subsurface 0.05±0.00 0.04±0.00 1.98±0.08 0.03±0.00 0.00±0.00 0.00±0.00 0.03±0.00 0.02±0.00 0.05±0.00 0.06±0.00 0.03±0.00 

Maximum 

release 

(mg/Kg) 

surface 0.29±0.13 0.10±0.04 0.98±0.13 0.06±0.02 0.00±0.00 0.01±0.01 0.01±0.00 0.10±0.02 0.08±0.00 0.15±0.06 0.04±0,00 

subsurface 0.20±0.04 0.05±0.01 4.50±0.27 0.05±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.10±0.00 0.06±0.00 0.06±0.01 0.03±0.00 

Final in 

aqueous 

phase 

(mg/Kg) 

surface 0.11±0.02 0.06±0.01 0.23±0.22 0.06±0.02 <DL 0.00±0.00 0.00±0.00 0.10±0.02 0.06±0.01 <DL 0.03±0.00 

subsurface 0.11±0.00 0.05±0.01 0.03±0.02 0.05±0.00 <DL 0.01±0.00 0.00±0.00 0.10±0.00 0.05±0.00 <DL 0.03±0.00 
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Table C.3: Trace metal in the aqueous phase during S3 (Paull) sediment resuspension. 

S3 

Paull 

Sediment 

type 
Al Fe Mn As Cd Cr Co Cu V Zn Ni 

Total in 

sample 

(mg) 

surface 735±52 536±107 12.10±0.38 0.26±0.03 <DL 1.53±0.05 <DL 0.58±0.03 1.14±0.03 2.34±0.08 <DL 

subsurface 859±69 699±149 16.65±0.65 0.63±0.07 <DL 2.03±0.09 <DL 0.56±0.05 1.68±0.07 3.64±0.28 <DL 

Initial in 

aqueous 

phase 

(mg/Kg) 

surface 12.33±0.40 0.68±0.02 4.27±0.13 0.06±0.00 0.25±0.01 0.02±0.00 0.06±0.00 2.28±0.07 0.04±0.00 5.30±0.16 0.00±0.00 

subsurface 9.95±0.39 0.64±0.02 0.87±0.03 0.10±0.00 0.20±0.01 0.02±0.00 0.09±0.00 1.82±0.07 0.04±0.00 4.29±0.17 0.00±0.00 

Maximum 

release 

(mg/Kg) 

surface 60.55±2.20 6.73±3.81 17.13±0.52 0.15±0.08 3.33±0.49 0.16±0.07 0.16±0.07 6.21±0.19 0.11±0.06 14.18±0.47 0.01±0.00 

subsurface 43.04±2.44 4.04±1.62 6.01±3.20 0.20±0.03 2.27±0.30 0.12±0.06 0.11±0.01 4.33±0.20 0.07±0.01 9.86±0.44 0.01±0.00 

Final in 

aqueous 

phase 

(mg/Kg) 

surface 10.74±0.51 1.55±0.10 0.44±0.21 0.11±0.01 0.25±0.01 0.07±0.01 <DL 0.81±0.04 0.07±0.01 2.03±0.13 0.00±0.00 

subsurface 9.82±0.67 1.72±0.48 6.01±3.20 0.07±0.01 0.22±0.02 0.06±0.00 0.02±0.01 0.75±0.08 0.04±0.00 2.04±0.36 0.00±0.00 
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Table C.4: Trace metal in the aqueous phase during S4 (Skeffling) sediment resuspension. 

S4 

Skeffling 

Sediment 

type 
Al Fe Mn As Cd Cr Co Cu V Zn Ni 

Total in 

sample 

(mg) 

surface 839±75 670±153 11.48±0.73 0.45±0.03 <DL 1.73±0.11 <DL 0.51±0.04 1.38±0.09 2.66±0.16 <DL 

subsurface 1027±95 801±171 13.84±0.66 0.46±0.04 <DL 2.11±0.12 <DL 0.71±0.20 1.85±0.18 3.27±0.18 <DL 

Initial in 

aqueous 

phase 

(mg/Kg) 

surface 12.01±0.74 0.87±0.05 10.04±0.62 0.04±0.00 0.25±0.02 0.02±0.00 0.04±0.00 2.19±0.13 0.03±0.00 4.88±0.30 0.00±0.00 

subsurface 9.40±0.43 0.77±0.04 10.28±0.47 0.04±0.00 0.19±0.01 0.02±0.00 0.04±0.00 1.69±0.08 0.03±0.00 3.71±0.17 0.00±0.00 

Maximum 

release 

(mg/Kg) 

surface 64.76±6.16 5.57±2.59 33.56±3.09 0.14±0.02 3.16±0.25 0.17±0.05 0.17±0.02 13.28±1.42 0.07±0.00 32.94±4.05 0.02±0.01 

subsurface 41.59±4.32 2.91±0.93 11.37±0.85 0.10±0.01 2.22±0.14 0.10±0.03 0.10±0.01 7.73±3.49 0.04±0.00 19.28±9.27 0.01±0.00 

Final in 

aqueous 

phase 

(mg/Kg) 

surface 10.56±0.67 2.69±1.38 2.76±4.30 0.14±0.02 0.25±0.02 0.11±0.02 0.03±0.01 0.87±0.12 0.07±0.00 2.21±0.31 0.00±0.00 

subsurface 8.45±0.47 1,43±0.38 0.04±0.00 0.04±0.00 0.20±0.01 0.08±0.03 <DL 0.70±0.15 0.03±0.00 1.60±0.15 0.00±0.00 
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C.3 Changes in metal partitioning during sediment resuspension 

 

Figure C.3: Aluminium partitioning after estuarine sediment reoxidation 

determined by sequential extractions using Tessier et al. (1979) protocol. The 

concentration is expressed has been normalised to µg Al(aq) in the extractant 

solution by the mass of solids (dry weight) used in the extraction. Surface 

sediments are on the left and subsurface sediments on the right. Sites are ordered 

according to the salinity gradient and the arrows represent 2-weeks of reoxidation 

experiment. 

 

Figure C.4: Manganese partitioning after estuarine sediment reoxidation 

determined by sequential extractions using Tessier et al. (1979) protocol. The 

concentration is expressed has been normalised to µg Mn(aq) in the extractant 

solution by the mass of solids (dry weight) used in the extraction. Surface 

sediments are on the left and subsurface sediments on the right. Sites are ordered 

according to the salinity gradient and the arrows represent 2-weeks of reoxidation 

experiment. 
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Figure C.5: Iron partitioning after estuarine sediment reoxidation determined by 

sequential extractions using Tessier et al. (1979) protocol. The concentration is 

expressed has been normalised to mg Fe(aq) in the extractant solution by the mass 

of solids (dry weight) used in the extraction. Surface sediments are on the left and 

subsurface sediments on the right. Sites are ordered according to the salinity 

gradient and the arrows represent 2-weeks of reoxidation experiment. 

 

Figure C.6: Vanadium partitioning after estuarine sediment reoxidation 

determined by sequential extractions using Tessier et al. (1979) protocol. The 

concentration is expressed has been normalised to µg V(aq) in the extractant 

solution by the mass of solids (dry weight) used in the extraction. Surface 

sediments are on the left and subsurface sediments on the right. Sites are ordered 

according to the salinity gradient and the arrows represent 2-weeks of reoxidation 

experiment. 
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Figure C.7: Chromium partitioning after estuarine sediment reoxidation 

determined by sequential extractions using Tessier et al. (1979) protocol. The 

concentration is expressed has been normalised to µg Cr(aq) in the extractant 

solution by the mass of solids (dry weight) used in the extraction. Surface 

sediments are on the left and subsurface sediments on the right. Sites are ordered 

according to the salinity gradient and the arrows represent 2-weeks of reoxidation 

experiment. 

 

Figure C.8: Nickel partitioning after estuarine sediment reoxidation determined 

by sequential extractions using Tessier et al. (1979) protocol. The concentration is 

expressed has been normalised to µg Ni(aq) in the extractant solution by the mass 

of solids (dry weight) used in the extraction. Surface sediments are on the left and 

subsurface sediments on the right. Sites are ordered according to the salinity 

gradient and the arrows represent 2-weeks of reoxidation experiment. 
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Figure C.9: Arsenic partitioning after estuarine sediment reoxidation determined 

by sequential extractions using Tessier et al. (1979) protocol. The concentration is 

expressed has been normalised to µg As(aq) in the extractant solution by the mass 

of solids (dry weight) used in the extraction. Surface sediments are on the left and 

subsurface sediments on the right. Sites are ordered according to the salinity 

gradient and the arrows represent 2-weeks of reoxidation experiment. 

 

Figure C.10: Lead partitioning after estuarine sediment reoxidation determined 

by sequential extractions using Tessier et al. (1979) protocol. The concentration is 

expressed has been normalised to µg Pb(aq) in the extractant solution by the mass 

of solids (dry weight) used in the extraction. Surface sediments are on the left and 

subsurface sediments on the right. Sites are ordered according to the salinity 

gradient and the arrows represent 2-weeks of reoxidation experiment. 
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Figure C.11: Cobalt partitioning after estuarine sediment reoxidation determined 

by sequential extractions using Tessier et al. (1979) protocol. The concentration is 

expressed has been normalised to µg Co(aq) in the extractant solution by the mass 

of solids (dry weight) used in the extraction. Surface sediments are on the left and 

subsurface sediments on the right. Sites are ordered according to the salinity 

gradient and the arrows represent 2-weeks of reoxidation experiment. 
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Appendix D 

Supplementary Information for Chapter 6 

“Nitrate-dependent oxidation of undisturbed estuarine sediments and its effects on 

major and trace elements” 

D.1 Trace metal partitioning changes during anaerobic nitrate-dependent 

oxidation 

D.1.1 Chromium partitioning 

Chromium speciation did not differ significantly between sediments and over the time 

of the anaerobic incubations, although S3 showed initially more extractable (~2 times) 

Cr in the less reactive phases (Fe- and Mn-(oxy)hydroxides and organic and/or sulphide 

minerals) than the other samples. Cr was associated with these less reactive phases and 

there was a minor increase in the Cr associated to carbonates in the final sediments.  

 

Figure D.1: Changes in Cr partitioning after anaerobic incubation experiments 

(the time difference between the initial (t0) and the final point (tfinal) is 2 months). 

D.1.2 Vanadium partitioning 

The majority of the extractable Vanadium was associated with the Fe/Mn 

oxyhydroxides fraction and the changes over the anaerobic incubations were not 
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significant. Overall, more V was extracted from S3 and S4 sediments. The mismatch 

between the extractable V in S3 initial and final sediments may be due heterogeneity in 

the sediment samples or some errors during the procedure.  

 

Figure D.2: Changes in V partitioning after anaerobic incubation experiments 

(the time difference between the initial (t0) and the final point (tfinal) is 2 months).  

D.1.3 Nickel partitioning 

The Nickel was associated mainly with the less reactive pool, organic matter and 

sulphide minerals, and in a less important proportion to the metal oxides pool. No 

changes in the Ni partitioning were observed after the anaerobic incubations.  

 

Figure D.3: Changes in Ni partitioning after anaerobic incubation experiments 

(the time difference between the initial (t0) and the final point (tfinal) is 2 months).  
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D.1.4 Cobalt partitioning 

Cobalt was chiefly associated with the less reactive pool in all the sediments, with a 

small proportion was associated with the Fe/Mn oxides and the carbonates fractions. Co 

experienced no shifts towards other mineral phases during the anaerobic incubations, 

although there is a mismatching between the final and initial extractions carried out 

with S3 sediments. 

 

Figure D.4: Changes in Co partitioning after anaerobic incubation experiments 

(the time difference between the initial (t0) and the final point (tfinal) is 2 months). 

D.1.5 Iron, Manganese and Aluminium partitioning 

Iron partitioning was considerable similar among sediments, with the exception of S3 

sediments that showed originally an important fraction of iron associated with 

carbonates. The iron associated with sulphides and organic matter remained relatively 

stable over the anaerobic incubations. Iron in S4 sediments experienced a shift towards 

the weak-acid extractable phase during the anaerobic incubation time, however in S3 

sediments the contrary occurred and the proportion of iron associated to carbonates 

decreased. 
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Figure D.5: Changes in Fe partitioning after anaerobic incubation experiments 

(the time difference between the initial (t0) and the final point (tfinal) is 2 months). 

Aluminium is not a heavy metal but is an important element in the earth surface. The 

majority of the aluminium will be associated with the residual material (Tessier 1979) 

as the MgCl2 (pH 7) treatment does not affect silicates, sulphides or organic matter, and 

the weak and strong acid (third step) treatments affect minimally those minerals. The 

combination of H2O2, HNO3 and NH4OAc in the fourth treatment of the Tessier’s 

protocol, attacks very slightly the major silicate phases, so the aluminium extracted is 

still very low compared to the bulk concentration (~40,000-55,000 ppm). However, the 

results of the aluminium partitioning showed some aluminium associated to mainly the 

less reactive fractions in the four sediments, without significant changes between the 

initial and the final sediments. 
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Figure D.6: Changes in Al partitioning after anaerobic incubation experiments 

(the time difference between the initial (t0) and the final point (tfinal) is 2 months). 

Manganese partitioning showed that the Mn was more importantly associated to 

carbonates, and it was also dissolved from Mn oxides. Mn associated with carbonates 

seemed to increase slightly after the incubation time (except in the solids recovered 

from S3 experiments), whereas the proportion recovered from the oxides fraction 

decreased in the final materials. Very low manganese was recovered from the 

exchangeable fraction, and from the organic and sulphide fraction at both tests. 

 

Figure D.7: Changes in Mn partitioning after anaerobic incubation experiments 

(the time difference between the initial (t0) and the final point (tfinal) is 2 months). 

Major elements such as Fe, Al and Mn have been also measured from the sequential 

extraction solution. Manganese and Fe- oxides should not be significantly solubilized at 
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pH 7 so concentrations in the first leachate were expected to be low. Manganese 

concentrations in the exchangeable phase suggest that this metal is found in reduced 

form adsorbed to the sediment particles. However, Fe and Mn concentrations from the 

weak-acid extraction were probably from the dissolution of divalent salts (ferrous and 

manganous carbonates) (Tessier et al., 1979). In fact, the Mn boun-to-carbonate was 

generally higher in the samples than that extracted from the Mn-oxides. Manganese 

oxides are more easily leached than Fe oxides so that can be an explanation for the 

higher concentrations of Mn in the carbonate-bound phase. The low concentrations of 

Mn extracted form the organic matter and sulphides fraction may indicate that the Mn 

extraction was almost complete after the first strong acid treatment. Iron partitioning did 

not show changes in the sediments from S1 and S2, while S4 sediments show a modest 

shift from the less to more reactive fractions. Less Fe was extracted from the final S3 

solids (there was a significant decrease in the initial Fe associated to the carbonate-

bound phase that did not have a correspondent increase in other phase in the final 

sediment extractions), which can be likely due to an error during the extraction 

protocol.Aluminium was extracted at pH=2 which indicates that the silicate components 

of the sediments are attacked at this stage of the extraction. Aluminium partitioning did 

not change significantly after the microcosms incubations, but some Al was found in the 

carbonate-bound fraction in the final solids. 
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Appendix E 

Supplementary information for Chapter 7 

“Diversity patterns of benthic bacterial communities along the salinity continuum of the 

Humber estuary (UK)” 

Andrea Vidal-Durà, Ian T. Burke, Robert J.G. Mortimer and Douglas I. Stewart 

(in review with Frontiers in Aquatic Microbiology) 

E.1 Supplementary diversity data 

In this study we used “Hill numbers” (Hill, 1973) to analyse bacterial diversity since 

they are thought to be a unified measure for diversity that take into account the 

abundance of each species (OTUs in this case). Hill numbers define biodiversity as the 

reciprocal mean of proportional abundance, and compensate for the disproportionate 

impact rare taxa by weighting taxa based on abundance (Hill, 1973; Jost, 2006, 2007). 

So they are more suitable for working with the large datasets produced by amplicon 

sequencing technologies (Kang et al., 2016). The basic expression for the “Hill 

numbers” is represented in equation E.1. 

𝐷𝑞 = (∑ 𝑝𝑖
𝑞𝑆

𝑖=1 )
1

1−𝑞       (Eq E.1) 

Where S is total number of species (OTUs in this study) and pi is the proportion of 

individuals belonging to the i
th

 species in the dataset. The parameter q, is the “order of 

the diversity measure” and determines how the abundance is weighted. By increasing 

the index q the diversity measurement places progressively more weight on the high-

abundance (more common) OTUs within a population. The unweighted Hill number, 

D0, is exactly equivalent to the species richness. D1 is a measure of the number of 

common species and is equivalent to the exponential of Shannon entropy; and D2 is a 

measure of the number of dominant species and is equivalent to the inverse of Simpson 

concentration (Hill, 1973; Jost 2006, 2007). The conversion of traditional diversity 
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indices to Dq of different order is presented in Table E.1. Complete information about 

the diversity results in this study are gathered in Table E.2. 

Table E.1: Conversion of traditional diversity indices to “Hill numbers” (Dq) for 

q=0 q=1 and q=2 (D0, D1, and D2 ) (modified from Jost, 2007). D means diversity 

index; S represents the total number of species in the community; and pi are 

species proportions. 

Order of the 

diversity 

measurement 

(q) 

Traditional 

Diversity Index 

(D) 

To convert 

diversity 

indices (D) to 

measurement 

of diversity 

(Dq) 

Diversity in terms of pi (Dq) 

0 
Species Richness 

𝐷 ≡ ∑ 𝑝𝑖
0𝑆

𝑖=1  
D 𝐷0 = ∑ 𝑝𝑖

0𝑆
𝑖=1 =S 

1 
Shannon entropy 

𝐷 ≡ − ∑ 𝑝𝑖
𝑆
𝑖=1 ln 𝑝𝑖 

exp (D) 𝐷1 = exp (− ∑ 𝑝𝑖

𝑆

𝑖=1
ln 𝑝𝑖) 

2 

Simpson 

concentration 

𝐷 ≡ ∑ 𝑝𝑖
2

𝑆

𝑖=1
 

1/D 𝐷2  = 1
∑ 𝑝1

2𝑆
𝑖=1

⁄  

 

Hills numbers are measures of number of species, which are also called “number of 

equivalents” and are symbolised by Dq (equation E.1). The sum in equation 1 is 

symbolised in Jost (2007) by 
q
λ, and it is the key of these calculations:  

𝜆𝑞 = ∑ 𝑝𝑖
𝑞𝑆

𝑖=1         (Eq. E.2) 

So equation E.1 will look like: 

𝐷𝑞 = (∑ 𝑝𝑖
𝑞𝑆

𝑖=1 )
1

(1−𝑞)⁄
= (𝜆𝑞)

1
(1−𝑞)⁄

    (Eq. E.3) 

To analyse regional diversity (gamma diversity Dq
γ
), we need to calculate its different 

components (alpha and beta diversities, Dq
α 

and
 
Dq

β
). The alpha (single community), 

beta (between the different communities considered), and gamma (regional) 

components of a diversity index, can be individually converted to diversity 
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measurements (Dq
α
,
 
Dq

β
 and Dq

γ
). Following Whittaker’s multiplicative law (Whittaker, 

1972) alpha, beta and gamma diversities are related like so: 

𝐷𝑞
𝛾

= 𝐷𝑞
𝛼 × 𝐷𝑞

𝛽
      (Eq. E.4) 

For the alpha component of any diversity index (D
α
): 

                     𝐷𝛼 ≡ 𝐷( 𝜆𝑞
𝛼 ) = 𝐷 [

𝑤1
𝑞

∑ 𝑝𝑖1
𝑞

+𝑆
𝑖+1 𝑤2

𝑞
∑ 𝑝𝑖2

𝑞𝑆
𝑖=1 +⋯

𝑤1
𝑞

+𝑤2
𝑞

+⋯
]   (Eq. E.5) 

wj is the statistical weight of community j (number of individuals (valid reads) in the 

community j (sample j) divided by the total number of reads in the region). Therefore, 

the diversity measurement, or Jost index of order q (Dq
α
) equivalent to that diversity 

index (D
α
): 

𝐷𝑞
𝛼 ≡ 𝐷( 𝜆𝑞

𝛼 ) = [
𝑤1

𝑞
∑ 𝑝𝑖1

𝑞
+𝑆

𝑖+1 𝑤2
𝑞

∑ 𝑝𝑖2
𝑞𝑆

𝑖=1 +⋯

𝑤1
𝑞

+𝑤2
𝑞

+⋯
]

1
(1−𝑞)⁄

   (Eq. E.6) 

That expression is undefined at q=1, but the limit exists as q approaches 1 (lim
𝑞→1

 ) being 

the exponential of alpha Shannon entropy: 

𝐷1
𝛼 ≡ 𝑒𝑥𝑝[−𝑤1 ∑ (𝑝𝑖1 ln 𝑝𝑖1)𝑆

𝑖=1 + −𝑤2 ∑ (𝑝𝑖2 ln 𝑝𝑖2) + ⋯𝑆
𝑖=1 ]  (Eq. E.7) 

 If we solve this equation for our data set (considering unequal community weights): 

*
D1

α
=438

1
 

Regional diversity measurement of order 1 (D1
γ
) of all the pooled samples equals: 

𝐷1
𝛾

≡ 𝑒𝑥𝑝[∑ −(𝑤1
𝑆
𝑖=1 𝑝𝑖1 + 𝑤2 𝑝𝑖2 + ⋯ ) × ln( 𝑤1𝑝𝑖1 + 𝑤2𝑝𝑖2 + ⋯ )] (Eq. E.8) 

                                                 

1 Note that the alpha diversity measurement when different communities are considered 

is not the average of the alpha diversity of each individual site since it considers the 

weights of the different communities, for more details see Jost, L. (2007). 

Partitioning diversity into independent alpha and beta components. Ecology 88, 

2427-2439. doi: 10.1890/06-1736.1 
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D1
γ
=934 

Then we can calculate the beta diversity (D1
β
) which is the measurement of the relative 

change in species composition between locations or communities by using equation E.4: 

𝐷1
𝛽

= 𝐷1
𝛾

/𝐷1
𝛼 

D1
β 
= 934/438 = 2.13 

D1
β
 has been described as the number of distinct communities or samples in the region 

(Jost 2007). This measurement can be converted into MacArthur’s (1965) homogeneity 

measure (equation E.9). This ratio answers the question of “what proportion of total 

diversity is found within the averaged community or sample?” (Jost 2007). According 

to this homogeneity measure, 47% of the total diversity is found in the average 

community.  

𝑀 = 1
𝐷1

𝛽⁄ =
exp(𝐷𝛼)

exp (𝐷𝛽)
⁄  (Eq. E.9) 

M = 1/D1
β 
= 1/2.13 = 0.47 
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Table E.2: Bacterial Diversity Measurements. The total number of reads include sequences classified as archaea and bacteria 

(including poorly classified reads (<0.7 confidence)). Number of reads per sample are the sum of all the reads allowed (after quality 

control, and only classified as bacterial with a confidence value >0.7 at phylum level).  D0
α
 is equivalent to OTUs richness, i.e. the 

number of OTUs present in each sample. D1
α
 and D2

α
 equivalents to the exponential of Shannon Entropy and the inverse of the 

Simpson concentration respectively (Hill, 1973; Jost, 2006, 2007; Kang et al., 2016). *D1
α
 is a special case of alpha diversity which 

represents an averaged D1
α
 when different communities are considered, however is not the arithmetic average of the individual 

alpha diversity (D1
α
) of each sample because community weights are considered in it is calculation (equation E.6) (Jost, 2007).  

 

 
S1 S2 S3 S4 

S1s S1d S2s S2d S3s S3d S4s S4d 

Total number of paired-end 

reads 
712402 976928 638252 821137 577701 1208696 721187 522816 

Number of reads classified as 

bacteria 
556621 802492 492132 641797 454121 1113761 633444 370056 

Species richness 5262 5968 5599 6004 5541 3873 4126 3488 

Average Richness 4983 

Shannon Entropy 7.1 7.3 7.1 7.2 3.3 6.7 6.0 6.3 

Hill numbers of order 1 (D1
α
)

 1436 1174 1309 1250 833 28 546 412 

Hill numbers of order 2 (D2
α
) 487 378 385 374 175 10 154 120 

Alpha (single-community, 
*
D1

α
), 

gamma (regional, D1
γ
), and beta 

(between communities, D1
β
) 

diversities of order 1 

*
D1

α
 = 438 

D1
γ
 = 934 

D1
β
 = 2.13 
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E.2 Taxa Accumulation Curves (TAC) 

Taxa accumulation curves (TAC) (Figure E.1) have been calculated for the full raw 

dataset, without replacement (reads are picked at random and a given read can only 

be picked once and results are averaged over multiple trials; here 8 iterations). TACs 

cannot be easily calculated at the moment from the dataset after removal of artefacts 

due to the way the sequence analysis pipeline operates. The full dataset used 

contained the pool unfiltered reads from the eight samples used in this study, and 

therefore it included reads from before quality checks were applied in the sequence 

analysis pipeline. Some of the reads that were clustered into the OTUs generated 

were later removed from the diversity analysis, such as OTUs identified as archaea 

and OTUs which were not classified to the level of bacterial phylum with a 

confidence >0.7.  

TAC for the regional OTUs richness shows that D0

 varies by less than 0.1 once 

>60% of the dataset is subsampled. However, this does not mean that more “rare” 

taxa would not be found when the sequencing density were higher.  

TAC for common and dominant OTUs show that both D1

 and D2


 vary by less than 

0.1% once 20% of the dataset is subsampled. Further, because these metrics 

characterise the number of common and dominant OTUs it is inconceivable that the 

values calculated would be any different in deeper sequencing had been undertaken. 
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Figure E.1: Taxa accumulation curves for the unfiltered regional dataset 

subsampled without replacement (average of 8 replications) indicating that D1
α
 

and D2
α
 converge very rapidly, and D0

α
 converges when >60% of the dataset is 

subsampled. The unfiltered dataset contains OTUs later removed from the 

diversity analysis, such as OTUs identified as archaea and OTUs which were 

not classified to the level of bacterial phylum with a confidence > 0.7. In the 

diversity analysis, taxa represented unique OTUs at 97% similarity cutoff. 
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E.3 Bray Curtis Dissimilarity Matrix 

To obtain the matrix in RStudio we need the package “vegan” (Oksanen et al., 

2013). First we import the data of the bacterial community (relative abundance 

data): 

>community_data <-read.csv("relativeabundancetable.csv",row.names = 

1, check.names = FALSE) 

Then we can obtain the matrix by applying the following command: 

>vegdist("community_data",method=”bray”, binary=FALSE, diag=FALSE, 

upper=FALSE, na.rm=FALSE) 

Table E.3: Bray-Curtis dissimilarity matrix 

 S1s S1d S2s S2d S3s S3d S4s S4d 

S1s 0        

S1d 0.239 0       

S2s 0.265 0.284 0      

S2d 0.240 0.246 0.130 0     

S3s 0.553 0.553 0.442 0.447 0    

S3d 0.911 0.913 0.902 0.901 0.900 0   

S4s 0.705 0.706 0.635 0.638 0.424 0.913 0  

S4d 0.762 0.773 0.705 0.705 0.636 0.874 0.550 0 

 

E.4 Heat map 

To obtain the heat map in RStudio we need the packages required: “gplots” and 

“RColorBrewer”: 

First we import the data of the bacterial community (relative abundance data) 

>community_data <-read.csv("relativeabundancetable.csv",row.names = 

1, check.names = FALSE) 

> matrix_community <-community_data(x[,2:ncol(x)]) 

The colours are defined by the colorRampPalette command (example of 5 colours). 

The intervals are defined as well. 



272 

 

2
7
2

 

>my_palette<- colorRampPalette(c("antiquewhite3", "skyblue1", 

"yellowgreen", "salmon", "red3") 

> col_breaks = c(seq(0,0.001,length=100), 

seq(0.001,0.01,length=100), seq(0.01,0.1, length=100), seq(0.1,1, 

length=100), seq(1,100, length=100)) 

Finally we use the heatmap2 function to create the heat map and we define 

separately the legend: 

> heatmap.2(matrix_community, Rowv= FALSE, main= "Heatmap", 

dendogram="none", col=my_palette, breaks=col_breaks, trace="none", 

density.info = "none", key= TRUE, symkey = FALSE, scale = "none", 

rowsep = 1:nrow(matrix_communinity), sepcolor = "white", sepwidth = 

c(0.05, 0.05)) 

>legend("left", fill = my_palette(5), legend = c("0 to 0.001", 

"0.001 to 0.01", "0.01 to 0.1", "0.1 to 1", ">1")) 

The heat map is another graphical representation of the similarities and 

dissimilarities of the bacterial community composition along the salinity gradient. 

The green and red bands (from 0.01 to >1) are the important ones to look at. We can 

interpret the grey bands as absence or extremely low abundances. Samples from the 

inner estuary (S1s, S1d, S2s, and S2d) share the bands with the greatest abundances 

(right part of the heat map). S3s also shares a similar pattern although the green 

areas are a modestly more spread than at the inner samples. The S3d shows again the 

most unalike community composition. It was also the less diverse of the whole set of 

samples when D1
α 

and D2
α
 were applied. In fact, in further multivariate analyses 

(CCA and BIOENV) S3d has been considered as an outsider and it has been 

excluded from the tests performed. The S4s and S4d samples in the Heat map vary 

slightly from the rest of the samples (see some green bars that are not seen in other 

samples), which may indicate the differences in the bacterial community 

composition in the outer most estuary. 
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Figure E.2: Heat map displaying relative abundance (%) of the bacterial 

community (7656 OTUs) for the eight estuarine sediment samples. 

E.5  Canonical Correspondence Analysis (CCA) and BIOENV test 

E.5.1  CCA 

CCA has been also performed in R Studio by the function cca. The input data were 

the OTU table (relative abundance) and environmental variables (salinity, porewater 

nitrate, porewater sulphate, porewater ammonium, porewater manganese, porewater 

iron, TOC, % acid extractable Fe
2+

(s), total iron, particle size, Fe as pyrite and FeS2). 

The sample S3d was not considered in the CCA (neither in the BIOENV, see below) 

because the important differences in the bacterial community composition in this 

sample were strongly distorting the results.  

> CCA <-cca(formula=community_matrix_noS3d ~ Salinity + PW_Nitrate 
+ Fe2_solids + FeTOT + PW_Mn2 + D50 + PW_Ammonium + PW_Sulphate + 
TOC + Fe_Pyrite + PW_Fe2 + FeS2, 
data=environmental_variables_noS3d, subset= TRUE) 

> CCA 

Call: CCA(formula = community_matrix_noS3d ~ Salinity + PW_Nitrate 
+ Fe2_solids + FeTOT + PW_Mn2 + D50 + PW_Ammonium + PW_Sulphate + 

TOC + Fe_Pyrite + PW_Fe2 + FeS2, data = 
environmental_variables_noS3d, subset = TRUE) 
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              Inertia Proportion Rank 

Total           1.042      1.000      

Constrained     1.042      1.000    6 

Unconstrained   0.000      0.000    0 

Inertia is mean squared contingency coefficient  

Some constraints were aliased because they were collinear 
(redundant) 

4 species (variables) deleted due to missingness 

 

Eigenvalues for constrained axes: 

   CCA1    CCA2    CCA3    CCA4    CCA5    CCA6  

0.47735 0.28451 0.13232 0.06868 0.06253 0.01650  

 

Then we plot the result of the cca by: 

> plot(CCA, type ="n")) 

> text(CCA, dis="cn") 

> points(cca2.5, pch=21, col="black", bg="yellow", cex=1.2) 

(see Figure 7.6) 

The constrained (or canonical) correspondence analysis (CCA) has been used as a 

method of constrained ordination to explore the relationship between microbial 

communities (OTU’s abundance) and the environmental variables available. The 

total variability of the dataset was captured in the constrained axes. The first axis 

(CCA1) accounted for the 48% of the constrained (or total in this case) variance, and 

the second axis (CCA2) did for the 28%. The arrows indicate the direction of 

environmental variable gradient represented. Sites from the inner estuary have 

coarser particles and their relative position to the other environmental variables 

suggests these sites have low iron content (total and reduced acid extractable iron) 

and low nitrate concentrations in porewater. Likewise it was observed in the NMDS 

ordination plot, sites from the inner estuary (S1 and S2) appeared grouped regardless 

the sediment depth. S3 (only surface) and S4 appeared to be well separated (S4s and 

S4d also by depth) according to their relative position along the estuarine 

continuum. Salinity and total Fe (both in the approximate direction of the CCA1 

axis) appeared to be the underlying variables most responsible of the differentiation 

of the microbial communities from the middle and outer estuary (S3 and S4). 

Moreover, S4d, besides being positively correlated with salinity and total iron 

content, shows high acid extractable Fe
2+

(s) and low nitrate concentrations in the 
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porewater which indicate reducing conditions found at certain depth in the intertidal 

mudflats. 

E.5.2  BIOENV test 

We use the function BIOENV in RStudio. The environmental parameters used were 

the following: Salinity; concentration in porewater of nitrate, ammonium, sulphate, 

Fe
2+

(aq) and Mn
2+

(aq); 0.5 N HCl extractable Fe
2+

(s); total iron in sediments; Fe-pyrite; 

Fe-FeS2; Total Organic Carbon (TOC); and granulometry (D50). 

The sample S3d was not considered for the BIOENV analysis. 

The function bioenv was applied as follows: 

> bioenv_solution <-bioenv(community_data_noS3d, 
environmental_variables_noS3d, fix.dist.method="bray", 
var.dist.method="euclidean",scale.fix=FALSE, scale.var=TRUE, 
var.max=ncd(var.mat)) 

4095 possible subsets (this may take time...) 

> bioenv_solution 

Call: 

bioenv(comm = community_matrix_noS3d, env = env_variables_noS3d,      
fix.dist.method = "bray", var.dist.method = "euclidean",      
scale.fix = FALSE, scale.var = TRUE, var.max = ncd(var.mat))  

Subset of environmental variables with best correlation to 
community data. 

Correlations:      spearman  

Dissimilarities:   bray  

Best model has 2 parameters (max. 12 allowed): 

Salinity PW_Sulphate 

with correlation  0.9593509  

 

This was the output solution of the BIOENV, in which we can see that the salinity 

together with sulphate concentrations in porewater were the environmental 

parameters with the best correlation (0.96) with the bacterial community data.  

> summary(bioenv_solution) 

 size correlation 

Salinity 1 0.9136 

Salinity PW_Sulphate 2 0.9594 

Salinity PW_Sulphate Fe_Pyrite 3 0.9481 

Salinity PW_Sulphate Fe2_solids FeTOT 4 0.9416 

Salinity PW_Nitrate PW_Sulphate FeTOT 
Fe_Pyrite 5 0.9455 
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Salinity Fe2_solids PW_Fe2 FeTOT FeS2 D50 6 0.9455 

Salinity PW_Nitrate PW_Sulphate Fe2_solids 
PW_Fe2 FeTOT  

D50         

7 0.9506 

Salinity PW_Nitrate PW_Sulphate Fe2_solids 
PW_Fe2 FeTOT  

FeS2 D50 

8 0.9455 

Salinity PW_Sulphate PW_Ammonium Fe2_solids 
PW_Fe2 FeTOT  

Fe_Pyrite FeS2 D50 

9 0.9351 

Salinity PW_Nitrate PW_Sulphate PW_Ammonium 
Fe2_solids PW_Fe2 FeTOT Fe_Pyrite FeS2 D50               

10 0.9247 

Salinity PW_Nitrate PW_Sulphate PW_Ammonium 
Fe2_solids PW_Fe2 PW_Mn2 FeTOT Fe_Pyrite FeS2 
D50        

11 0.9182 

Salinity PW_Nitrate PW_Sulphate PW_Ammonium 
Fe2_solids PW_Fe2 PW_Mn2 FeTOT Fe_Pyrite FeS2 
TOC D50    

12 0.8844 

 

In order to test the significance of bioenv results, we have used function 

mantel.The result for the Mantel statistic was r=0.88 which indicates strong 

positive correlation between the two distance matrices.  

> veg.dist <- vegdist(community_matrix_noS3d, method = "bray", 
binary = FALSE, diag = FALSE, upper = FALSE, na.rm = FALSE) 

> env.dist<-vegdist(scale(env_variables_noS3d), "euclid") 

> mantel(veg.dist, env.dist) 

 

Mantel statistic based on Pearson's product-moment correlation  

 

Call: 

mantel(xdis = veg.dist, ydis = env.dist)  

 

Mantel statistic r: 0.8829  

      Significance: 0.001 CC 

 

Upper quantiles of permutations (null model): 

  90%   95% 97.5%   99%  

0.396 0.490 0.595 0.711  

 

Based on 999 permutations 

mantel(xdis = veg.dist, ydis = env.dist)  
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