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Abstract

Interceptive actions refer to goal directed movements in which people attempt

to make a controlled collision with a moving object (e.g. catching a ball).

Because interceptive actions often take place under severe temporal constraints,

movements need to be executed with exquisite temporal accuracy and precision.

To achieve this the sensorimotor system needs to: (i) accurately predict the

motion of the target object, and (ii) move the intercepting effector (e.g.

hand, bat) to a location through which the object will pass at just the right

time. This presents the sensorimotor system with numerous computational

challenges. Examining interceptive timing in adults provides insights into

how these challenges are overcome in the developed sensorimotor system,

while studying children can reveal how these abilities are acquired and how

they are related to the development of other sensorimotor and cognitive

processes. The first part of this thesis investigates the control of interceptive

timing behaviours in adults. Chapter 3 provides evidence that online sensory

information is combined with a-priori knowledge, using Bayesian integration,

to optimise movement timing. Chapter 4 demonstrates that adults optimally

time their movements to exploit a physical relationship between the speed

and temporal precision of their movements. The second part of this thesis

then examines interceptive timing abilities in children. Chapter 5 documents

the developmental trajectory of interceptive timing abilities over childhood,

revealing that performance is still far from adult levels by the time children

finish primary school (age 11 years). Chapter 6 tests a common taxonomy



of motor skills, revealing that interceptive timing tasks measure a somewhat

distinct ‘motor construct’ from that measured by ‘fine’ and ‘gross’ motor

tasks. Finally, chapter 7 reveals a relationship between interceptive timing

abilities and academic attainment in mathematics, even after controlling for

motor skills in other taxonomic domains. Together these experiments shed

light on how humans are able to exquisitely time interceptive actions, and

provide key insights into the ontogeny of this fundamental motor ability.
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Chapter 1

General Introduction

1.1 Overview

The evolutionary success of any animal species is ultimately dictated by their

ability to interact with the environment. The control of complex movements

endows animals with particularly advantageous evolutionary adaptations. So-

phisticated control of movement engenders complex behaviours, from predator

avoidance to feeding and hunting, as well as reproduction. Amongst the ani-

mal kingdom humans show a remarkable capacity to learn new sensorimotor

actions, and so can perform an astonishing range of tasks, from throwing a

spear to returning a tennis serve. Compared to the capabilities of some prey

species (e.g. young deer can walk within a few hours of birth) humans are

born with fairly limited hard-wired action capabilities and must spend many

months learning to crawl, stand, walk and run. This developmental trajectory

presumably has great evolutionary advantages since children quickly amass

a huge skill repertoire that greatly surpasses what is currently possible at
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the cutting edge of intelligent robotics. At the heart of this sensorimotor

prowess is the ability to skilfully operate in highly dynamic and unstructured

environments (Lumelsky, 2006). Dynamic because the state of the environ-

ment changes over very short time scales (i.e. objects move) and unstructured

because there is high uncertainty in how the environment will be arranged at

any given point in time.

Dynamic environments present a major challenge to sensorimotor control.

Objects in the world often move relative to the human actor, due to self-motion

and/or the motion of objects themselves. The human will want to avoid

colliding with some objects, while they may wish to bring about a controlled

collision with others in order to achieve a desired outcome (e.g. hitting a

falling ball). The latter interaction is referred to as an interceptive action

and encompasses a broad range of goal directed behaviours. Interceptive

actions all share a common prerequisite for achieving a successful collision: the

intercepting effector (e.g. hand, bat) must coincide with the spatial location

of the target object at the same point in time.

Successfully executing interceptive actions is difficult for a number of

reasons. Unlike interactions with static objects, manual interceptive actions

often take place in the context of severe temporal constraints. Consider the

task of returning a serve from an elite tennis player. It is not uncommon

for the ball to travel in excess of 50m s−1, taking the ball less than half a

second to travel the length of the court. This leaves little time for gathering

sensory information, predicting the trajectory of the ball and deciding how to

innervate the muscular-skeletal system in order to achieve an interception.

Furthermore, the period of time in which a successful action can take place

2



(referred henceforth as the time window) may be in the order of milliseconds,

as a moving object will quickly move out of reach of the actor.

Skilled athletes with many years of training are able to successfully strike

moving objects when the time window is shorter than 4ms, however even

without this specific training healthy adults are able to time interceptive

movements with exquisite precision, keeping timing errors within a standard

deviation of ≈ 6ms (Brenner, van Dam, Berkhout, & Smeets, 2012). It is

often noted in the literature that this level of performance is remarkable

when compared to typical performance on other temporally demanding tasks

(Brenner & Smeets, 2015b). For example, people show much worse temporal

precision when attempting to tap two hands synchronously (Brenner et al.,

2012), or when judging which of two events occurred first (Brenner & Smeets,

2010). Unsurprisingly researchers have taken great interest in how humans

are able to control the timing of interceptive actions to achieve these levels

of performance. Yet many questions remain regarding how adults perform

interceptive tasks and very little is known about how these skills develop over

childhood.

Studying interceptive actions in adults can reveal how interceptive timing

behaviours are supported by the developed sensorimotor system. Yet examin-

ing the development of these abilities in children can illuminate not only how

these skills are acquired, but also how they relate to development in other

sensorimotor and cognitive domains. This chapter begins by reviewing the

current literature on the timing of interceptive actions in adults and children,

identifying some of the many remaining questions regarding how manual

interceptive actions are performed and how the ontogeny of these abilities

3



relates to more general motor and cognitive development.

1.2 Interceptive actions in adults

In interceptive actions the target object and intercepting effector can approach

each other in many different ways. The limit case is moving the effector to

intercept a non-moving object, but there are no real temporal constraints

when performing this task (apart from a general requirement for actions to

be achieved in a timely fashion). The reciprocal case is intercepting a moving

object by placing the effector into its path. Here the timing constraints are

weak and simply ensuring that the correct spatial position is adopted before

the object arrives at that point will result in a successful interception. Thus

getting into the right location as soon as possible will suffice as a control

strategy. This might effectively achieve a blocking action, but tasks such as

catching or hitting place much tighter spatiotemporal constraints over the

interception with only a small time window in which the effector can arrive

at the correct spatial location (as the object will quickly move out of range).

These will be the sorts of skilled interceptive actions examined in the present

thesis.

Successful skilled interceptive timing requires complex movements to

be coordinated so that the effector (e.g. hand or bat) reaches a point in

space where an interception can take place at precisely the right time. The

challenges that must be overcome to achieve this are numerous (Franklin &

Wolpert, 2011). Firstly, there are significant time delays present at every level

of the nervous system, rendering visual signals about the objects location

4



out of date with respect to the required action (by a non-trivial magnitude).

Secondly, there is considerable uncertainty in the movement of the object,

as visual information is insufficient to exactly specify the state of the object

(i.e. its position, velocity, acceleration etc.). Thirdly, motor outputs are

corrupted by noise, such that movements cannot be executed exactly as

planned. In addition, coordinating interceptive actions requires the control

of over 600 muscles, while non-stationarity in the sensorimotor system (e.g.

neuromuscular fatigue) requires neural commands to be continuously adjusted

in order to prevent systematic performance errors.

1.2.1 Time delays

Time delays in the sensorimotor system present a significant challenge to

intercepting moving objects. These delays exist at every level of the nervous

system (Nijhawan, 2008) and even the early stages of cortical visual processing

are subject to significant delays. For example, average lags of ≈ 72ms

have been recorded between the retina being stimulated and neurons in V1

responding (Lamme & Roelfsema, 2000). When reaching to static targets this

does not necessarily present a major issue as the state of the object is unlikely

to change during the lag. However, when objects are moving at high speeds

the perceived state of the object may lag behind its true state by a substantial

magnitude (see figure 1.1). To overcome these delays the sensorimotor system

must make predictions about the object’s likely trajectory (Nijhawan, 2008),

allowing interceptive movements to be aimed to the position through which

the object is likely to pass in the near future. The ability to predict the motion

5



of objects over space and time allows adults to intercept moving objects, even

when the time window is shorter than the lags typically observed in the

conduction time of photoreceptors (Nijhawan, 2008).

Figure 1.1: A one-dimensional representation of the retina mapped topo-
graphically onto the cortex. A ball moves from left to right at a constant
velocity. A single instance in time is depicted in which the position of the ball
is registered at x−1 on the cortex, while its true position is at x0 on the retina.
This lag is due to neural delays early in the sensorimotor system. Adapted
from Nijhawan (2008).

1.2.2 Predicting target motion and control strategies

Predictions about the target object’s motion are used to guide interceptive

actions. Most viable control strategies suggest that people control the timing

of their movements by predicting the trajectory of the object and then

estimating the amount of time remaining until the target object reaches the

spatial location of the planned interception, known as the time to arrival
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(TTA) or time to contact. Predictive control models posit that movements are

programmed on the basis of TTA estimates in advance of the movement onset,

and once initiated are executed without the use of online sensory information.

In contrast, feedback control models suggest that interceptive movements

are controlled by continuously correcting for the error between the TTA of

the target and the TTA of the intercepting effector. Both classes of models

involve prediction of the target’s motion in order to represent “where” the

object can be intercepted and “when” the interception can take place. Models

that involve separate representations of the spatial and temporal information

are said to be separable.

Tresilian (2005) described a predictive control model, referred to here as

the pre-programmed control of timing (PCT) model (see figure 1.2). The

PCT model has two stages. First the desired movement time (MT ) of the

interceptive action is planned. Once a movement time has been programmed

(MTprog) the estimated TTA of the target ( ˆTTAtgt) is continuously monitored.

The interceptive movement is then initiated at a point in time at which
ˆTTAtgt = MTprog + PT + TT , where PT and TT are time delays associated

with perception and the transmission of the descending motor commands.

This simple model suggests that successful timing of the movement depends

on the ability to accurately predict the target’s TTA, compensate for delays

in the sensorimotor system (PT and TT ), initiate the movement at the right

time and reliably produce a movement of the planned time duration (MTprog).

Feedback control models have also been proposed which provide a possible

strategy for the control of movement timing in interceptive actions. A very

simple feedback control strategy specifies the force (F ) that should be applied
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Figure 1.2: Block diagram of Tresilian’s pre-programmed operational timing
model. Adapted from Tresilian (2005).

to drive the effector to the interceptive location as follows,

F = α( ˆTTAtgt − ˆTTAeff ) (1.1)

where α is the rate at which the error between the estimated TTA of the target

and effector is corrected for (Tresilian, 2005). Most feedback models follow

this general structure, although it’s likely that first order approximations of

TTA information are used (Lee, Young, Reddish, Lough, & Clayton, 1983;

Senot, Prévost, & McIntyre, 2003). It has also been suggested that it is the

error between the required velocity of the effector and its current velocity that

drives the movement (Peper, Bootsma, Mestre, & Bakker, 1994; Tresilian,

1994). Of course hybrid schemes are also possible, where MT is planned in

advance and the movement initiated in a similar fashion to the PCT model,

but with the movements continuously corrected for on the basis of online

visual information. Unfortunately it is often difficult to distinguish between

these control schemes on the basis of behavioural data (Brouwer, Brenner, &
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Smeets, 2003; Tresilian, 2005; Zago, McIntyre, Senot, & Lacquaniti, 2009),

as behavioural ‘markers’ of feedback control, such as movement reversals

(Montagne, Laurent, Durey, & Bootsma, 1999) can also be accounted for by

single discrete corrections, rather than true continuous feedback control.

While there remains considerable debate over the control strategies used

to intercept moving targets (Zago et al., 2009), the use of feedback control

strategies seems implausible when intercepting very fast moving objects

(Tresilian, 2005). This is because the time delays in the sensorimotor system

mean that online corrections are of limited use when movements are very

brief, because the movement will have ended before a correction can be

implemented (Tresilian, 2012). In contrast the PCT model provides a simple

solution for dealing with delays, in which they are corrected over repeated

trials. Empirical support for this was provided by de la Malla, Lopez-Moliner,

and Brenner (2012) who found that people were able to account for an

experimentally imposed temporal delay, and found that visual information

about the movement error at the end of the movement (indicating how much

the target was missed by) was particularly important in correcting for delays.

In addition it has been consistently found that adults make faster, briefer

movements when the time window is smaller. This finding is difficult for

feedback control models to explain as they would predict longer MT s as

the temporal difficulty of the task increased (a Fitt’s law type relationship

between speed and accuracy). The PCT model can readily explain this finding

as briefer MT s are associated with more precise movements in the absence of

online corrections (Tresilian & Houseman, 2005).
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1.2.3 Visual information and prior knowledge

Both the PCT and feedback control models suggest that the ability to estimate

the TTA of the target object, and thus make predictions about the object’s

motion, is critical for successful interceptive actions. A large body of research

has focused on the visual cues that may provide information regarding an

object’s TTA (Gray, 2009; Bootsma, Ledouit, Casanova, & Zaal, 2015; Brenner

& Smeets, 2015a; Caljouw, van der Kamp, & Savelsbergh, 2004). Gibson

suggested that all the information needed to support successful action is

present in the visual stimulus (Gibson, 1961), without the need to invoke

higher-level computations or representations. However, this position seems

unlikely for rapid interceptive movements given the limitations of the human

visual system. Sensory information is corrupted by noise (Faisal, Selen, &

Wolpert, 2008; van Beers, Baraduc, & Wolpert, 2002) and can be ambiguous.

This makes it particularly challenging to infer what environmental state

resulted in the pattern of sensory information received (known as the inverse

problem of vision). To overcome these limitations the nervous system may use

prior knowledge of the statistical properties of the object’s motion. Combining

prior knowledge with online sensory information can help disambiguate sensory

cues and reduce the impact of noise on perceptual judgements (Franklin &

Wolpert, 2011).

Bayesian integration provides the statistically optimal method for com-

bining prior knowledge with online sensory information, and there is growing

evidence that adults’ performance on some sensorimotor tasks can be ex-

plained by the brain acting as if it were performing Bayesian integration
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(Körding & Wolpert, 2004; Vilares, Howard, Fernandes, Gottfried, & Kording,

2012; ?, ?; Verstynen & Sabes, 2011; Jazayeri & Shadlen, 2010; Franklin &

Wolpert, 2011; Sato & Kording, 2014). Körding and Wolpert (2004) provide a

simple hypothetical example of the use of Bayesian integration to estimate an

object’s velocity. When attempting to return a tennis serve the velocity of the

ball cannot be known with certainty because sensory information is corrupted

by noise. Over the course of the match the player could learn that certain

velocities are more likely than others (the prior). The optimal estimate of

the target’s velocity is given by combining online visual information with this

prior distribution.

1.2.4 Movement planning

Sensorimotor noise presents not only a problem for perceiving an object’s

state but also for the execution of planned movements. The PCT model of

interceptive timing suggests that the ability to reliably execute movements of a

pre-programmed duration is critical for success in interceptive actions. Even if

the stimulus properties were estimated perfectly (e.g. TTA, position, velocity)

the movements would not be timed perfectly over repeated trials. This is

because the temporal dynamics of the descending motor commands may

fluctuate over time, neural signals are corrupted by noise and the muscular-

skeletal system does not respond in an identical way even when the same neural

commands are received (Faisal et al., 2008). Feedback control mechanisms

attempt to account for this variability by correcting for errors in the movement

as they arise. However, as previously noted, online corrections may not be
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viable when intercepting fast moving targets. The PCT model provides

a mechanism for minimising the effects of noise through the planning of

the movement time (see figure 1.2). This is because making faster, briefer

movements is known to improve the temporal precision (Brenner et al.,

2012). This improvement occurs because errors, arising when moving at

the wrong speed or misjudging the required amplitude of the movement,

have less effect on the intercepting effector’s movement time to the desired

point of interception when moving at high speed (Brenner et al., 2012). It

appears that people take this into account when planning their movements,

making faster movements when the interceptive task requires greater temporal

precision (Tresilian & Plooy, 2006; Tresilian, Plooy, & Carroll, 2004; Tresilian

& Houseman, 2005).

The finding that people vary their movement times as a function of the

temporal requirements of the task raises the question of why people do not

simply move as fast as possible when intercepting all targets, as this would

result in the highest level of temporal precision. A possible explanation is

provided by theories of optimal control, which suggest that people seek to

simultaneously minimise multiple costs when performing movements. Models

of optimal control have been very successful in explaining behaviour on a large

number of tasks (Todorov, 2004). In the case of interceptive timing the time

window specifies the amount of time in which a successful interception can

occur, and thus small timing errors may be acceptable so long as they remain

within the bounds of the time window. Optimal controllers only correct for

errors which interfere with the task goals, as error correction normally comes

with some cost attached (Tresilian, 2012) (i.e. faster movements require more
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energy; less chance of online error corrections). Thus it may be that slower

movement speeds are preferable when the reduced precision associated with

them does not interfere with whether the target is hit or not.

1.3 Interceptive actions in children

While a large body of literature has sought to elucidate how adults achieve such

amazing performance on interceptive timing tasks, few studies have examined

how these timing abilities develop during childhood. Yet the possible benefits

of understanding the ontogeny of these skills are numerous. Firstly, it can

provide a window into how the motor system learns to overcome the complex

computational challenges inherent in sensorimotor control. Secondly, the

ability to perform interceptive actions is considered a fundamental movement

skill (Foulkes et al., 2015) and poor sensorimotor abilities can provide a

sensitive marker of both atypical sensorimotor and cognitive development

(Purcell, Wann, Wilmut, & Poulter, 2012; Ament et al., 2014; Lefebvre &

Reid, 1998; Whyatt & Craig, 2012). Thus understanding what information

performance on interceptive timing tasks can provide regarding a child’s

sensorimotor status, over and above that assessed by other motor tasks (e.g.

‘fine motor’ skills), may provide insights into how to best identify and intervene

in specific sensorimotor problems.

In addition, ‘fine motor’ skills are known to be predictive of children’s aca-

demic attainment, particularly in mathematics (Son & Meisels, 2006). Thus

if interceptive timing tasks capture a unique aspect of a child’s sensorimotor

status it may be that these measures can provide insights into the interrelated
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nature of these seemingly disparate domains of human performance. Thus

understanding how interceptive timing abilities relate to other motor skills

(i.e. whether they tap different ‘sensorimotor constructs’) and higher level

cognitive faculties is a primary concern of developmental psychologists. Here

we provide a brief overview of the existing data concerning the development

of interceptive timing skills in children, before reviewing current literature on

the relationship between interceptive timing and other motor and cognitive

abilities.

1.3.1 Development of interceptive timing abilities

The ability to perform complex interceptive actions (i.e. catching a ball)

appears later in a child’s developmental trajectory than manual skills with

static targets (e.g. reaching to grasp a toy), yet the foundations of interceptive

timing behaviours appear early in infancy. Infants begin to display smooth

pursuit eye movements when tracking moving objects during their first few

months of life (Shea & Aslin, 1990), a skill that appears to underpin the

ability to predict target motion (Spering, Schütz, Braun, & Gegenfurtner,

2011). By 5 months of age infants begin to make catching movements towards

the future locations of moving objects (Robin, Berthier, & Clifton, 1996; von

Hofsten, Vishton, Spelke, Feng, & Rosander, 1998; von Hofsten, 1980), and

appear to take account of their own movement ability when deciding whether

an object is catchable (van Hof, van der Kamp, & Savelsbergh, 2008).

How the ability to time interceptive actions develops after infancy has

not been well documented. While catching skills have been measured in
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children, one problem with these tasks is that they do not isolate ‘timing’

abilities well as errors may result from poor spatial control of the intercepting

effector, rather than poor timing per se. In the adult literature the timing of

interceptive movements has been studied by restricting arm movements to a

single axis through the use of a 1-degree-of-freedom (DoF) manipulandum

(see chapter 2). In these tasks only the amplitude of the movement needs to

be controlled, which makes it easier to dissociate temporal errors from spatial

ones (Tresilian, 2012). As well as allowing the timing aspects of interceptive

movement to be examined, these tasks have a number of other benefits over

the tasks typically studied in children (i.e. catching balls). First, they are

capable of providing objective and detailed measures of performance, unlike

the catching tasks typically used in standardised assessment tests which tend

to use subjective measures of performance (Culmer, Levesley, Mon-Williams,

& Williams, 2009). Second, measures like the MABC-2’s catching task have

to be adapted for different age groups because performance reaches ceiling

and floor for the different age groups on the different tasks. Measuring

performance with a single task is crucial for providing a parametric measure

of interceptive timing performance.

Children’s ability to time motor responses to external targets has been

studied using a related class of tasks known as coincidence anticipation tasks.

These typically involve viewing a runway of sequentially illuminating LEDs,

or viewing a moving target. Participants then press a button to coincide

with the last LED illuminating or the target reaching a specific location.

Performance on these tasks may reach adult levels by age 11 (Haywood, 1980).

However, the timing requirements of coincidence anticipation tasks are less
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demanding than interceptive timing tasks. Firstly, they do not require people

to take account of the time it will take them to make a movement, beyond

accounting for neural delays in pressing a button. Secondly, interceptive

timing movements must be initiated much further in advance of the target

reaching the desired point of interception, which requires accurate predictions

of the object’s TTA to be made over much longer time durations. Thus it is

not clear when interceptive timing abilities will reach adult levels.

The dearth of research into the timing of interceptive actions in children

is perhaps unsurprising given the current lack of a suitable research tool

to measure interceptive timing abilities. A major barrier to the use of the

objective kinematic measures used throughout the adult literature is that

they often require expensive motion capture systems and are not particularly

portable (Culmer et al., 2009). Portability provides a major advantage to

collecting large samples of data as the measures can be deployed outside

of the lab (i.e. in schools). Thus the development of a portable and objec-

tive measurement tool is vital in order to start answering critical questions

regarding the development of interceptive timing abilities.

1.3.2 Interceptive timing, neuro-pathology and other

motor abilities

Understanding the ontogeny of interceptive timing abilities in children is of

particular interest given that performance on tasks which require excellent

interceptive abilities (e.g. catching) can be indicative of neuro-developmental

pathology. The MABC-2 (Barnett, Henderson, & Sugden, 2007), a popu-
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lar standardised measure of motor skill, includes an ‘aiming and catching’

sub-scale, with a catching task that changes with the age group being tested.

The inclusion of a catching task into the MABC-2 was initially based on

subjective clinical insight (Schulz, Henderson, Sugden, & Barnett, 2011).

However, catching tasks appear to provide a sensitive marker of several devel-

opmental disorders. For example, poor performance on interceptive timing

and catching tasks is commonly observed in children with developmental

coordination disorder (DCD) (P. H. Wilson, Ruddock, Smits-Engelsman,

Polatajko, & Blank, 2013; Caçola, Ibana, Ricard, & Gabbard, 2016). In

fact it is thought that children with DCD may have particular difficulties

with motion prediction (Lefebvre & Reid, 1998) and with smooth pursuit

eye movements (Langaas, Mon-Williams, Wann, Pascal, & Thompson, 1998)

which are known to underpin successful interceptive timing. Children with

other developmental disorders, such as autism spectrum disorder also seem

to have particular problems with catching tasks (Whyatt & Craig, 2013).

Thus it seems likely that interceptive timing tasks may provide a useful

measure of a child’s developmental status. Yet it is not known how interceptive

timing tasks relate to other motor abilities. Interceptive tasks can share

many similarities with other motor tasks, for example catching a ball requires

excellent control of dynamic posture, while manually tracking a target requires

dexterous movements of the arm and hand. However, interceptive tasks may

provide a unique measure of children’s ability to predict the motion of objects

in the world and may therefore tap into a distinct domain in which children

may experience specific problems. Unfortunately, there is currently little

experimental evidence regarding how different motor tasks meaningfully
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measure different classes of motor ability.

1.3.3 Interceptive timing and academic attainment

Piaget (1955) highlighted the importance of sensorimotor abilities in learning

and developing abstract knowledge. The idea that sensorimotor development

may have far reaching implications for development of higher order cognitive

facets has recently gained popularity, with theories of embodied cognition

suggesting that cognition is grounded in sensorimotor processes (M. Wilson,

2002; Gottwald, Achermann, Marciszko, Lindskog, & Gredebäck, 2016). A

growing body of evidence suggests that sensorimotor processes play an im-

portant role in the development of numerical cognition (Crollen, Dormal,

Seron, Lepore, & Collignon, 2013). This link may provide an explanation

for why measures of fine motor ability can predict later academic attainment

in mathematics (Grissmer, Grimm, Aiyer, Murrah, & Steele, 2010; Son &

Meisels, 2006; Luo, Jose, Huntsinger, & Pigott, 2007).

Interestingly, Rigoli, Piek, Kane, and Oosterlaan (2012) reported that the

‘aiming and catching’ sub-scale of the MABC-2 showed a particularly strong

relationship with mathematical attainment. A possible explanation for this is

that representations of number, time and space are linked, possibly through

a common representation of magnitude (Walsh, 2003). Thus it may be that

representations of number are engendered by neural systems which underpin

the ability to predict how objects move through time and space. Given that

these abilities subserve interceptive timing, it is possible that performance

on interceptive timing tasks may provide a useful measure for improving
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the predictive accuracy of statistical models which attempt to predict a

child’s academic performance. Circumstantial evidence for this hypothesis

comes from clinical populations as children who typically perform poorly on

interceptive timing tasks also tend to show poor mathematical ability (Pieters,

Desoete, Van Waelvelde, Vanderswalmen, & Roeyers, 2012; Gomez et al., 2015;

Simms et al., 2013; Hurks & Loosbroek, 2012), which is disproportionate

to their problems in other domains (Simms et al., 2014). However, the

relationship between interceptive timing and higher order cognitive skills (i.e

mathematics abilities) has yet to be rigorously established even in non-clinical

populations.
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1.4 Thesis overview

This thesis examines how interceptive actions are performed by both adults

and children. First, a brief review of the experimental methods used to

study interceptive timing is provided in chapter 2. Given the current lack

of an appropriate research tool for studying interceptive timing outside of

the laboratory, the development of a bespoke interceptive timing research

tool is documented. This chapter also provides an overview of the statistical

methodologies utilised throughout this thesis, specifically Bayesian estimation.

As many readers will be unfamiliar with Bayesian approaches to data analysis,

a brief overview and primer are provided to aid readers in interpreting the

analyses performed in the following experimental chapters.

The experimental work in this thesis is split into two sections. The

first examines the mechanisms by which adults are able to achieve the high

levels of temporal precision that have been well documented in the literature

(Brenner & Smeets, 2015b). Chapter 3 explores how adults learn about the

statistical properties of moving objects in order to improve interceptive timing

performance and reduce the uncertainty in perceptual estimates. This builds

on research showing that visual information may not be sufficient for the

successful control of interceptive timing and that prior knowledge plays an

important role (Zago et al., 2009). Chapter 4 then explores how adults try

to minimise the effects of motor noise on movement timing by exploiting a

physical relationship between movement speed and temporal precision. This

builds on the work of Tresilian (Tresilian & Plooy, 2006; Tresilian et al., 2004;

Tresilian & Houseman, 2005) who showed that adults appear to vary their
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movement time in response to changes in the time window.

The second experimental section explores the development of interceptive

timing behaviours in children. While the abilities have been carefully examined

in adults (Brenner & Smeets, 2015b), they have not been well documented

in children. Chapter 5 develops a novel Bayesian model1 to document how

interceptive timing skills develop over childhood, revealing that the ability

to time interceptive movements is far from adult levels by age 11, contrary

to previous suggestions (Haywood, 1980). It also demonstrates that this

timing deficit in young children is related to systematic errors in timing as

well as changes in temporal precision. Next we examine how the development

of interceptive timing abilities relate to other motor and cognitive facets.

First chapter 6 explores the taxonomic relationship of interceptive timing

to both ‘fine’ and ‘gross’ motor abilities. This was done to explore whether

performance on interceptive timing tasks can provide information about a

child’s sensorimotor status over and above that provided by other common

measures of sensorimotor skill. Chapter 7 then explores whether performance

on an interceptive timing task is predictive of academic attainment, given the

purported relationship between performance on the MABC-2’s catching task

and mathematical attainment (Rigoli et al., 2012). Finally, chapter 8 reviews

the experimental findings and discusses areas of interest for future research.

1The model is a regression model for data analysis - as opposed to Bayesian models of
behaviour which are explored in chapter 3.
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Chapter 2

General methods and statistical

analysis

2.1 Measuring interceptive timing

2.1.1 Overview

A diverse number of tasks and measures have been used throughout the

literature to study interceptive timing behaviours. At one end of the literature,

standardised measures of motor ability such as the MABC-2 (Barnett et al.,

2007) simply require children to catch balls and the number of balls caught

provides a measure of interceptive timing ability. This assessment has been

useful in identifying children with poor sensorimotor abilities and is commonly

used as a tool for the diagnosis of developmental coordination disorder (DCD).

The MABC-2’s catching task benefits from the fact that it can be easily

conducted inside clinical and school environments. However, the measure’s
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usefulness for studying interceptive timing behaviours has been questioned

as researchers are not able to precisely control the trajectory of the ball and

the measure appears to conflate throwing and catching abilities (Dirksen, De

Lussanet, Zentgraf, Slupinski, & Wagner, 2016).

Tennis ball machines provide one method of obtaining greater control over

the ball’s trajectory (Van Waelvelde, De Weerdt, De Cock, & Engelsman,

2003), while more sophisticated measures of performance have used optical

motion capture systems to obtain precise measures of interceptive timing

abilities (see López-Moliner, Brenner, Louw, and Smeets (2010) for an exam-

ple). One particularly useful interceptive task for examining the timing of

interceptive movements has been developed by Tresilian et al. over a series of

studies (Tresilian, 2012; Tresilian et al., 2004; Tresilian & Lonergan, 2002). In

this task participants use a 1-DoF manipulandum to strike targets which are

moving along a linear track orthogonal to the target’s trajectory (see figure

2.1). Because the movement is restricted to a single axis the time window

can be precisely controlled by changing the width and speed of the target

and the width of the bat. As long as the interceptive movement achieves

sufficient amplitude the bat is guaranteed to reach the interceptive point.

Thus errors occur when the bat arrives too early or late to hit the target,

allowing temporal errors to be investigated. In interceptive tasks with more

degrees of freedom (2D or 3D movements), an error may occur because of

errors in the spatial trajectory of the interceptive effector as well as timing

errors. Again, this set-up uses optical tracking systems to record the position

of the target and bat.

While optical tracking allows for sophisticated and detailed measurements
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Figure 2.1: A simple interceptive timing task employed by Tresilian et al. A
target moves along a linear track and the participant attempts to hit it using
a manipulandum. The manipulandum moves along a linear track positioned
perpendicular to the target’s path. The target can only be struck when it is
within the strike zone. The time the target is in the strike zone is known as
the time window. In this task the time window is given by L+W

V
, where V is

the target’s velocity.

to be made within the laboratory setting, they are generally not suitable

for testing in clinical and school settings because of their large set up costs

and lack of portability. Virtual interceptive timing tasks provide a potential

method for studying interceptive timing outside of the laboratory. These

tasks use computer displays to render virtual moving targets which people

can intercept by controlling an on-screen bat (or cursor) via an interface (i.e.

a mouse or stylus). These tasks can provide detailed kinematic measures

of performance (see Brenner and Smeets (2015b) for an excellent example)

as well as having the benefit of being much more portable than track based

interceptive tasks.
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2.1.2 Interceptive timing apparatus

In order to study interceptive timing abilities in adults and children a “virtual”

version of the track based intercepting task used by Tresilian et al., (see figure

2.1) was developed. A large high speed gaming monitor (BenQ XL2720Z LCD

display; Resolution: 1920× 1080, size: 548× 642mm, brightness: 300cd m−2,

refresh rate: 144Hz) was used to present stimuli which were generated using

a Python interface to the OpenGL graphics library. In most cases the stimuli

consisted of a moving target and “bat” which could be used to intercept the

target. The high frame rate of the display allowed for minimal lag between

the position of the input device and the position of the on-screen bat.

A bespoke 3D printed 1-DoF manipulandum was developed to control the

on-screen bat. The 3D manipulandum1 was mounted on two linear tracks,

allowing it to move smoothly along a single axis (see figure 2.2). Two iterations

of the input device were developed. In the first iteration a high speed gaming

mouse (Logitech G402 Hyperion Fury) was used to record the displacement

of the manipulandum. This allowed the position of the bat to be estimated

at 144Hz. This set up was used in experimental chapters 5, 6 and 7. The

downside of this set-up was the position of the bat had to be calibrated at

the start of each trial to ensure that the estimated position did not drift over

repeated trials.

A second iteration of the manipulandum replaced the high speed mouse

with a linear potentiometer and was used in experimental chapters 3 and 4.

The potentiometer had a cable which was attached to the manipulandum.
1Thanks to Resolve Engineering (http://www.resolve-re.co.uk/) for help with the 3D

modelling and printing.
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Figure 2.2: The bespoke 3D printed manipulandum used throughout this
thesis. Its displacement along the linear tracks could be measured via a linear
potentiometer (depicted) or a high speed gaming mouse mounted under the
handle.

As the cable extended it varied the voltage across an electrical circuit which

was monitored by a National Instruments (NI) DAQ device. This allowed

the position of the bat to be measured at high speeds (> 500Hz). A custom

Python script allowed the position of the bat to be asynchronously polled

and passed to the program controlling the on-screen stimulus and trial logic.

A graphical representation of this system is shown in figure 2.3.

Figure 2.3: Structure of the interceptive timing task’s apparatus. A bespoke
3D printed manipulandum with 1-DoF moved along a linear track. The
displacement of the manipulandum was measured via a linear potentiometer.
The potentiometer created a change in voltage across an electric circuit which
was measured using a NI-DAQ device. A custom python script communicated
with the DAQ device, carried out simple signal processing and converted the
voltage measurement into a measure of displacement. The device achieved
sub mm accuracy. The displacement data was recorded to disk at 500Hz
while the display was updated at 144Hz. Stimuli were rendered to screen
using a hardware accelerated OpenGL graphics layer.
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2.2 Statistical methodology: Bayesian estimation

This thesis uses a statistical methodology known as Bayesian estimation. As

this methodology is not currently widely used in the psychological sciences a

brief justification for its use is provided. A number of texts exist which provide

an excellent primer to the methods used throughout this thesis (Gelman, 2014;

Kruschke, 2015, 2013). However, as readers may be unfamiliar with Bayesian

estimation a quick overview of the general analysis approach is warranted.

2.2.1 Why Bayesian?

For the last century null hypothesis significance testing (NHST) has dominated

statistical inference in the psychological sciences and many other disciplines.

However, the application of NHST has been criticised for decades and has

recently come under intense scrutiny (Dienes, 2011; Brooks, 2003; Kruschke

& Liddell, 2017a; Goodman, 2008; Cumming, 2014; Cohen & Hubbard, 1995;

Lambdin, 2012). Flexibility in the application of NHST can allow authors to

present almost any finding as significant (Simmons, Nelson, & Simonsohn,

2011), a possible contributing factor to the crisis of replication in psychology

(Open Science Collaboration, 2015). In addition, misunderstandings about

p-values are pervasive among researchers (Goodman, 2008), while there is

growing recognition of the need to move away from black and white thinking

regarding the presence or absence of an effect, and move towards a cumulative

science which incrementally improves estimates of effect magnitudes and

uncertainty (Kruschke & Liddell, 2017b). In light of growing recognition of
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the problems associated with NHST, researchers, editors and journals are

slowly moving away from NHST.

Several alternative approaches to NHST are commonly proposed, including

frequentist estimation (Cumming, 2014), Bayes’ factor (Dienes, 2014) and

Bayesian estimation (Gelman, 2014). Kruschke and Liddell (2017b) provide

an excellent discussion of the key differences between these approaches. In

short, Bayes’ factor is a Bayesian approach which compares the relative

strength of the evidence for two competing models, and provides a method

for hypothesis testing. A weakness of this approach is that the priors assigned

to competing models can dramatically alter the conclusions drawn from the

Bayes’ factor. In addition, this approach normally proceeds by testing a null

model (although it is not obligatory to do so), in which the model’s prior is

an infinitely dense spike at a point in the parameter space (e.g. precisely zero

difference between two group means). Like NHST, this approach has been

criticised as many null hypotheses are extremely implausible, in that we very

rarely expect there to be exactly zero difference between groups.

Frequentist and Bayesian estimation take a very different approach to

statistical analysis, attempting to quantify estimates of effect sizes and un-

certainty. Estimation approaches make use of mathematical models which

provide a description of the data generation process (i.e. how samples of data

are generated from a target population). A statistical model can also be fit

to a real dataset by finding values for the model’s parameters which allow it

to create simulated data which is as similar as possible to the real data. In

frequentist estimation this is commonly achieved using a technique known

as maximum likelihood estimation (MLE). Consider the following simple

28



generative model y ∼ Normal(µ = 10, σ = 5), which states that the data set

y was sampled from a population of normally distributed values with a mean

of 10 and standard deviation of 5. Now imagine that we had collected our

data set y but didn’t know the population mean (for simplicity we’ll assume

that we know the population’s standard deviation). We could use MLE to

find the value of µ which makes the data most likely. To do this we need to

define a likelihood function as follows,

P (y|µ, σ = 5) =
N∏
i

1√
2πσ2

e− (yi−µ)2

2σ2 . (2.1)

This function simply says that the likelihood of dataset given a certain value

of µ and σ is found by multiplying the probability of each data point under a

normal distribution. In our example we assume that we already know σ so we

simply plug in every possible value of µ from negative to positive infinity. The

value of µ which results in the maximum value from the likelihood function is

our MLE. This is illustrated in figure 2.4, which plots the likelihood function.

The maximum likelihood function is shown as a red point.

Figure 2.4: The likelihood function P (y|µ, σ = 5) for our sample from the
target population.
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In our very simple example the MLE is actually just the mean of the

data sample y. However, for more complex models in which we may wish

to simultaneously find MLEs for many model parameters we must employ

optimisation algorithms which iteratively attempt to find the mode of the

likelihood function. With more complex models we can use this approach to

calculate effect sizes and estimate the magnitude of effects. For example, a

more complex model may examine two groups each with their own means.

We could use MLE to estimate the means of both groups and then examine

the magnitude of the difference between them.

A key problem that arises from this approach is that the data set may

still be very plausible under a whole range of other model parameter val-

ues. Cumming (2014) suggests that researchers use confidence intervals to

quantify uncertainty in the model’s parameter values. Unfortunately, despite

their widespread use, confidence intervals are generally not able to quantify

uncertainty in this way (Morey, Hoekstra, Rouder, Lee, & Wagenmakers,

2015). 95% confidence intervals are often incorrectly interpreted as a range

of parameter values in which we believe there is a 95% probability that the

true parameter value falls. What they actually provide is an interval which

can be calculated for a given sample from a population. When we repeatedly

sample from the population and calculate the 95% confidence interval for

each sample we would expect 95% of the confidence intervals to contain the

true parameter value.

Bayesian estimation provides the solution for quantifying uncertainty

in parameter estimates. Rather than providing a single point estimate for

the values of a model’s parameters we would like to know what values of
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the model’s parameters we consider plausible given our data set, and how

plausible those values are relative to each other.

2.2.2 Calculating the posterior

Bayesian estimation uses Bayes’ rule to reallocate “credibility across a space

of candidate possibilities” (Kruschke, 2013), where the “possibilities” are

possible values of parameters in a statistical model. Formally, Bayesian

estimation calculates a joint posterior distribution over the parameters in a

statistical model using Bayes’ Rule,

P (θ|y) = P (y|θ)P (θ)
P (y) (2.2)

where θ is a vector of all the parameters in a statistical model and y is the data.

The posterior distribution P (θ|y) is proportional to the likelihood distribution

multiplied by the prior P (θ). Notice that the likelihood distribution is

exactly the same as that used in MLE as defined in equation 2.12. The prior

distribution specifies how credible we believe different parameter values to be

before we collect data.

For some simple statistical models we can calculate the posterior distri-

bution analytically. However, for most of the models we are interested in it

becomes impossible find analytical solutions. This is because the normalising

term, P (y), which ensures that the posterior distribution integrates to 1, can

be difficult to calculate. It is primarily for this reason that Bayesian estima-

tion has only recently started to gain wide spread popularity. The advent
2The likelihood function is also referred to as the likelihood distribution. They are

equivalent
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of Markov Chain Monte Carlo (MCMC) methods in the 1950’s provided a

method for approximating complex multidimensional integrals, such as P (y),

and advances in modern computational power allowed these methods to be

used on your average desktop computer.

MCMC methods for Bayesian estimation work by constructing a Markov

chain that has an equilibrium distribution which matches the joint posterior

distribution (Gelman, 2014; Betancourt, 2017). In other words, MCMC

algorithms randomly sample values for parameter values in statistical models,

and they sample these values in proportion to their posterior probability.

This is illustrated in figure 2.5. The left panel shows the first few steps of

a Markov chain generated by an MCMC algorithm, in which it randomly

samples values for a parameter (µ) in a statistical model. The right plot

then shows a normalised histogram of the sampled values, with the actual

posterior distribution superimposed over the top (red curve). We can see

that the MCMC algorithm sample parameter values in proportion to their

posterior probability, allowing us to approximate the posterior distribution.

This thesis makes use of a particular type of MCMC algorithm known

as Hamiltonian Monte Carlo (HMC). Unlike many early MCMC algorithms,

HMC scales well with model complexity, allowing complex hierarchical models

to be fit within a reasonable time frame. Specifically this thesis makes use

of a variant of HMC called the ‘No-U-Turn’ algorithm (NUTS) (Hoffman

& Gelman, 2011), as implemented in the probabilist programming language

Stan (Carpenter et al., 2016).
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Figure 2.5: An example of an Markov Chain Monte Carlo algorithm. The left
panel shows an MCMC algorithm randomly sampling values for a parameter
in a statistical model. The right panel shows a normalised histogram of
these values with the true posterior distribution superimposed (red curve).
We can see that the MCMC algorithm is able to approximate the posterior
distribution.

2.2.3 BDA in action

Bayesian estimation follows a simple work flow. First an appropriate statistical

model is specified3. The model is then fit using the experimental data, which

involves approximating the joint posterior distribution over the model’s

parameters. Once the model has been fit the posterior can be examined,

summarised and used to guide decisions about the process under investigation.

For a simple example of Bayesian estimation in action, consider an ex-

periment in which some quantity of interest was measured in two groups of

participants. A researcher may then want to perform a statistical analysis to

examine whether the means of the populations from which the participants

were sampled were different. In frequentist statistics an independent t-test

would commonly be used for this task.

3The models used throughout this thesis are all regression models
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In Bayesian estimation we first need to define a model of how the sample

data was generated from the populations. A simple model of the data might

look like the following,

y ∼ Normal(xβ, σ) (2.3)

where y is the sample data set, x is a matrix where each row indicates the

group membership of a participant, β is a vector of regression coefficients

corresponding to the mean of each group and σ is the variance parameter. The

model simply states that the data set was sampled from a normal distribution

with a mean that depended on the participant’s group. This simple model

has three unknown parameters which we would like to estimate, the two

parameters of β (β1 and β2) and σ. We need to provide priors over these

parameters. These priors should express all knowledge about the model at

hand. Complete ignorance can easily be modelled as a uniform distribution

over the parameter’s support. In this case the modes of the marginal posterior

estimates will be equal to the point estimates obtained through frequentist

MLE. However, it is very uncommon to have a situation in which no prior

information is known. Weakly informative priors are informed only by the

scale of the data. For instance, when measuring someone’s height in meters

it is known a-priori that measurements above 2 metres are unlikely, and

measurements above 5 meters are essentially impossible. For our example we

could model the priors over the β parameters as follows,

β ∼ Normal(0, 1000) (2.4)

34



The choice of prior in this example is arbitrary, but in real applications the

prior should reflect all knowledge about the problem at hand. In fact, the

prior can also be improper (i.e. doesn’t need to integrate to one) so long

as the resulting posterior is proper. We also need to choose a prior for the

model’s standard deviation parameter σ. Because the standard deviation

must be positive our prior must only have support over positive values. In

this example we use a truncated Cauchy distribution,

σ ∼ Cauchy+(0, 50) (2.5)

The Cauchy distribution is a continuous probability distribution commonly

employed for scale parameters. It has much fatter tails (i.e. greater density in

the tails of the distribution) than the normal distribution, allowing for priors

to be specified with most of the density near zero, but with a non negligible

amount of density over larger parameter values. Notice the + symbol in

equation 2.5 which indicates that the distribution only has support over

positive parameter values.

We now have a full generative model which we can fit using the data set

y. For the purposes of this primer this model was fit using a simulated data

set with known parameters. The group means of the population were set at

β1 = 30 and β2 = 34, while the standard deviation was set at σ = 5. Of

course in practise we would not already know these values, else we would

not need to do any statistical analysis. The aim of Bayesian estimation is

to quantify what parameter values we should consider plausible. For our

simulated data set we should find that the posterior distribution contains the
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true parameter value.

Once the model has been fit using an appropriate MCMC algorithm

(in this case HMC) we can example the approximate posterior distribution.

Figure 2.6 shows the marginal posterior distribution over the fitted model’s

parameters. These provide complete distributional information over how

credible we believe possible values of the model’s parameters to be. These

distributions can be summarised using a number of statistics, for example

by their mean and standard deviation. Another useful summary statistic is

the highest density interval (HDI). The x% HDI shows the interval in which

there is a x% chance of the true parameter falling.

Figure 2.6: Marginal posterior distributions over the model’s parameters.
These provide complete distributional information regarding the credibility
of the possible values of the parameter. The true values are shown as dotted
black lines. It is clear that the posterior distribution contains the true model
parameter.

Once the joint posterior distribution has been approximated we can make

inferences from the data. The simplest question we can ask is, is there a

difference between the two β parameters? In other words, are the population

means of the two groups different? We can do so by comparing the two
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marginal distributions over β1 and β2 (i.e. by performing a contrast). In

practise this is done by subtracting the samples generated by the MCMC

algorithm for β2 from those generated for β1. Figure 2.7 shows the contrast

between the two means (β1 − β2). This provides complete distributional

information over the credible differences between the means. Again this

distribution can be summarised as before using statistical functions (i.e.

mean, SD, HDI).

Figure 2.7: The magnitude of the difference between the two groups’ mean
parameters (β1 − β2). These provide complete distributional information
regarding the credibility of the possible differences between groups’ means.
The black dotted line shows the true difference between the means. The
lighter dotted line indicates the zero point.

2.2.4 Making inferences

A key question we often want to answer is whether a statistical effect exists,

and whether it is of a substantive magnitude? In other words we want to use

the posterior distribution to make a decision regarding whether to declare the

existence of an effect. In the above example we might wish to ask whether

there is a difference between the means of the populations we collected our
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data sample from. Answering this questions is surprisingly difficult and

requires us to invoke decision theory (Kruschke, 2015) in which the costs of

being incorrect are considered. However, this is often impractical owing to

the difficulty in specifying appropriate cost functions, thus researchers often

seek to make a decision from the posterior alone using decision heuristics.

One possible heuristic is to ask whether the HDI of the contrast contains

zero. If it does not then we might conclude a non-zero difference. Of course,

we could use the 95% HDI, or the 80% HDI or any other arbitrary interval.

The 95% HDI is commonly used simply to match the conventions of confidence

intervals. A related statistic is the proportion of the posterior distribution

which falls on either side of zero (denoted η throughout this thesis). This

allows us to make a statement about the probability that the effect is in the

hypothesised direction. The 95% HDI will exclude zero when η < 0.025 or

η > 0.975.

When the vast majority of the posterior density falls on one side of zero

we can safely assume a non-zero difference in parameter values. However,

in the case of our toy example the 95% HDI = [-7.31, 0.16]. Thus if we

were following the 95% HDI heuristic we would conclude that we are not

sufficiently certain of an effect. Examining the η statistic reveals there is

a 97% chance of a negative difference between the two group means, thus

if we were 0.5% more certain the 95% HDI would exclude zero. Depending

on the specific statistical question and application we may conclude that we

are happy that an effect exists. Unfortunately this raises the problem that

we may allow ourselves the flexibility to conclude that any effect is in the

direction we hypothesised, by slightly changing the value of η we will accept
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as ’significant’. Thus throughout this thesis an arbitrary threshold is used to

decide whether a non-zero effect is ‘highly probable’. When the hypothesis is

two tailed then we state that 97.5% of the contrast’s distribution must be

on one side of zero (η < 0.025 or η > 0.975, or equivalently the 95% HDI

excludes zero). When the hypothesis is one tailed then 95% of the contrast’s

distribution must be on one side of zero (η < 0.05 or η > 0.95). When 90%

of the posterior distribution falls on one side of zero we view this as evidence

for ‘probable’ effect which strongly warrants further examination but should

be treated with caution.

2.2.5 Conclusion

In summary Bayesian estimation allows us to estimate parameter values in

statistical models. Unlike hypothesis testing (i.e. NHST and Bayes’ factor)

this allows us to examine effect sizes and quantify the magnitude of statistical

effects. Bayesian estimation differs from frequentist information in its use of

probability to quantify uncertainty in parameter values.
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Chapter 3

Turning down the noise in

interceptive timing

Chapter Abstract

Humans demonstrate an exquisite ability to intercept moving targets. Inter-

ceptive timing behaviours require visual information, but there is growing

evidence that vision is not informationally sufficient to allow accurate and

precise behaviour in some interceptive timing tasks. Humans may use prior

knowledge about the probability of a target’s trajectory to optimise perfor-

mance. Indeed, there is evidence that the target’s speed on previous trials

influences human interceptive timing behaviour. More specifically, when the

prior distribution of target speeds (their trial-by-trial variability) is manipu-

lated in a coincidence timing task, people show behaviour consistent with the

brain acting as a Bayesian operator. Here we investigated whether an inter-

ceptive timing task would also be affected by the previous trial distribution

structure. We explored whether the relationship between temporal errors and
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target speed varied depending on the standard deviation of the target speed

distribution, as predicted by Bayesian theories of sensorimotor control. This

hypothesis suggests that people will make larger temporal errors when target

speeds are less likely a-priori. Participants were exposed to either a narrow

or wide target speed distribution (order counterbalanced). The distribution

affected the relationship between temporal errors and target speed, although

the effect was larger when participants were first exposed to a narrow speed

distribution. The results are qualitatively consistent with the brain acting

as a Bayesian operator, although a simple strategy of reinforcing successful

movements on previous trials may provide a good approximation of Bayesian

optimal behaviour.

3.1 Introduction

The interception of moving targets requires individuals to aim their movements

at a point in space through which a target will pass in the future (the

interception point). Most plausible control strategies involve estimating the

future trajectory of the target, determining where it can be intercepted (the

interception point), and gauging the time remaining before the object reaches

the interception point (Tresilian, 2005). This task is made more difficult

because the individual must not only determine when the object will arrive at

the interception point, but how long it will take them to move their effector

to that location. This is a non-trivial problem owing to the substantial

time delays associated with neural conduction, muscle activation, receptor

transduction and information processing (van Beers et al., 2002). Time delays
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are inherent at every level of sensorimotor processing. For example, the

processing of visual information is subject to sizeable delays, with lags of

200ms recorded at various levels of the visual system (Nijhawan, 2008).

Gibson (1961) suggested that the environment contains all of the infor-

mation required for successful interaction with objects in the world. From

this viewpoint, the use of information from memory or the deployment of

constructive processes are not necessary for action, as the stimulus contains

‘invariants’ that the perceptual system can detect directly. It is now widely

considered that this Gibsonian viewpoint is not wholly correct and the in-

formation necessary for sensorimotor control is neither solely contained in

invariants nor is it directly detected (Tresilian, 1999). There is widespread

support, however, for Gibson’s suggestion that the stimulus is informationally

sufficient in ecological conditions (Tresilian, 1999). Nevertheless, there are

some tasks (including interceptive timing tasks) where visual information

alone is not sufficient. In these situations, prior knowledge has the potential

to improve performance.

Prior knowledge of the physical laws that govern the universe provides

individuals with the ability to predict how objects move through space and

time. The use of such information can explain the high levels of performance

observed when humans intercept objects falling under gravity, even when

vision is degraded and the object is small (Brenner, Driesen, & Smeets,

2014). This can be explained by the use of prior information about statistical

regularities in the target object’s trajectory. In the case of falling balls, it

is proposed that the nervous system stores information about gravitational

acceleration. There is empirical evidence in support of such proposals as
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humans make predictable errors when trying to catch falling balls in different

gravitational fields (Zago, McIntyre, Senot, & Lacquaniti, 2008). It has been

suggested that prior knowledge is stored and utilised through the existence of

‘internal models’ that can learn how objects move through time and space to

make predictions about an object’s likely future state (Zago et al., 2008).

The ability to predict how objects move through space and time can help

humans to optimise their behaviour in the face of substantial sensorimotor

delays. In addition it may help overcome challenges posed by the fact

that sensory signals are corrupted by noise (Faisal et al., 2008; van Beers

et al., 2002) which places a limiting factor on perception. When sensory

signals are corrupted by noise, statistically optimal inferences can be made

by incorporating prior knowledge into perceptual estimates through the use

of Bayesian integration. Thus, using knowledge about a target’s likely states

(inferred from many trials) may improve performance on sensorimotor tasks.

Evidence in support of the hypothesis that humans use such prior knowledge

was provided by Körding and Wolpert (2004) in an aiming task and force

amplitude task. These results suggested that using prior knowledge about

a target’s likely states might be used across a variety of sensorimotor tasks,

including timing tasks.

Miyazaki, Nozaki, and Nakajima (2005) tested the idea that people may

show behaviour that is qualitatively consistent with that of a Bayesian

operator by manipulating the structure of trial-to-trial variability across their

experiment. Miyazaki et al.’s coincidence timing task required participants

to press a button at the same time that the final LED from a line of three

LEDs was illuminated. The duration between the illumination of each LED
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(∆LED) was drawn from a normal distribution (referred to as the stimuli

distribution). Participants experienced two conditions, one in which the

standard deviation (SD) of this distribution was narrow and one in which

it was wide. Following several hundred trials, it was found that the slope

and intercept of the temporal errors plotted against ∆LED depended on the

stimuli distribution condition, which we refer to as the stimulus distribution

effect. In the narrow distribution condition, the slope was greater than the

wide distribution condition (and the intercept lower).

This result was predicted by Miyazaki et al. (2005) using a simple Bayesian

model. The explanation was that the perceived value of ∆LED on any single

trial depends on both the current visual information and how credible the

participant believed possible values of ∆LED to be a-priori (their prior over

the stimulus distribution). When the stimulus distribution prior is Gaussian

it will draw perceptual estimates of ∆LED towards the prior’s mean by an

amount that depends, in part, on the variance of the prior. Thus when a

participant experiences a trial in which ∆LED is far from the mean they

will make a larger error when the value of ∆LED is less likely a-priori (i.e.

during the narrow distribution). Thus the finding of Miyazaki et al. (2005)

is consistent with Bayesian integration of visual information and knowledge

acquired over previous trials, and suggests that individuals are sensitive to

the mean and variance of the ∆LED distribution. Moreover, Miyazaki et al.

found that the stimulus distribution effect was observable after a few hundred

trials compared to the thousand-plus trials needed within the force amplitude

task used by Körding and Wolpert (2004). This suggests that there may

be large temporal differences in the rate at which priors are updated across
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sensorimotor tasks.

The Miyazaki et al. (2005) finding demonstrates that people are able to take

account of the variability of the stimulus distribution. However, we wanted

to explore whether the result was a function of the sparse visual environment

associated with the task. It is possible that participants’ estimates were

dominated by the learnt priors due to information insufficiency in the 3 LED

stimuli, which might not be present in a more ecological timing task with rich

visual information. We also wished to determine whether the result would

generalise to a more complex interceptive timing task. Interceptive timing

tasks have greater degrees of complexity than coincidence timing tasks, as

the individual must not only estimate the time that a moving object will

arrive at a future destination, but also determine the time it will take them

to move the effector to this location. The previous differences in the number

of trials taken before the stimulus distribution effect could be detected across

tasks (coincidence timing versus force-amplitude matching), meant that it

was interesting to see whether different timing tasks would also show different

rates of learning. We predicted that the priors may be learnt faster in an

interceptive timing task due to the rich information contained in the stimuli.

We were particularly interested in exploring the asymmetric transfers

reported previously when moving from a narrow to wide stimulus distribution

and vice versa. Both Körding and Wolpert (2004) and Miyazaki et al. (2005)

found that learning of the prior was much slower when moving from a wide

to narrow stimulus distribution than when moving from a narrow to wide.

Miyazaki et al. (2005) suggested that these asymmetries were not predicted by

their Bayesian integration model per se, but suggested the asymmetries might
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be a “universal property of Bayesian integration in sensorimotor learning”.

Miyazaki’s et al. used a very simple Bayesian model which did not provide

a mechanism for learning the prior over the target distribution. Instead they

simply assumed that participants had learnt a prior that corresponded to

the stimulus distribution. Bayesian state-space models provide a mechanism

for learning the stimulus distribution, which does predict slower learning

when switching from a wide to narrow distribution. The learning model is as

follows,

σdist1 ∼ Cauchy+(0, σinit) (3.1)

σdistn+1 ∼ Normal(σdistn , σlearn) (3.2)

n ∈ 1 : N − 1 (3.3)

µi ∼ Normal(M,σdisti) (3.4)

ŷi ∼ Normal(µi, σ) (3.5)

i ∈ 1 : N (3.6)

The model estimates the standard deviation of the stimulus distribution (σdist)

as taking a random walk over the course of the trials, with each estimate

of σdistn+1 being drawn from a normal distribution with a mean centered on

σdistn . The perceptual estimate of the stimulus (ŷn) are then modelled as a

noisy measurement of the true stimulus. This model1 allows the estimate of

σdist to vary on each trial, but regulates the learning rate using the parameter

σlearn.
1For simplicity M is fixed at the target distribution mean in equation 3.4.
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The model captures the slower rate of learning when switching from the

wide to the narrow target distribution. The reason for this is that when the

stimulus distribution switched from narrow to wide the participant quickly

experiences stimuli that are very unlikely under the current estimate of σdist,

which results in the prior quickly updating. When moving from a wide to

narrow stimulus distribution the participant experiences stimuli that are still

very likely under the current estimate of σdist, resulting in slower learning. We

were therefore interested in determining whether we would find asymmetries

similar to those reported by Körding and Wolpert (2004) and Miyazaki et al.

(2005) within our interceptive task.

3.2 Methods

3.2.1 Participants

Eleven right handed participants were recruited from the University of Leeds

(2 male, 9 female, mean age = 25.46 years, SD age = 4.82). This sample size

was based on the numbers recruited in previous studies (Körding & Wolpert,

2004; Miyazaki et al., 2005). Participants did not report any neurological

or movement issues and had corrected-to-normal vision. All participants

provided informed consent and the study was approved by the School of

Psychology Ethics Committee, University of Leeds, UK (Ethics number:

15-0185, date: 17/07/2015).
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3.2.2 Apparatus

The experimental hardware consisted of a bespoke 1-DoF manipulandum

whose position was captured using a linear potentiometer, allowing for reliable

measurements of the manipulandum position when it was moving at high

speed. Participants sat at a desk and viewed a BenQ XL2720Z LCD gaming

display (Resolution: 1920× 1080, size: 548× 642mm, brightness: 300cd m−2,

refresh rate: 144Hz), positioned 50 cm in front of them at eye level. The

monitor was positioned vertically, and the manipulandum was placed on the

desk 30cm to the right of the monitor (see figure 3.1A). The manipulandum

controlled an onscreen bat (dimensions: 10 × 15mm; see figure 3.1B). All

stimuli were generated in Python 2.7.9 using open source libraries. All

coordinates were given in mm with the origin at the bottom left of the screen.

Figure 3.1: A) The experimental setup. The display was positioned in a
vertical orientation 50cm in front of the participant’s eye line. The manip-
ulandum’s position was measured using a linear potentiometer. B) The on
screen display. A target moved around an invisible linear track (transparent
line). Participants attempted to strike the target’s underside using the bat.
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3.2.3 Procedure

At the start of every trial, a start box appeared on screen and the participant

was instructed to place the bat within it (dimensions: 15×20mm, coordinates:

[500, 20mm]) by fully retracting the manipulandum. As soon as the bat was

placed within the start box a target appeared (dimensions: 50× 15mm) at a

position that varied over trials. The target’s trajectory was chosen so that it

would always cross in front of the bat at the same location (coordinates: [500,

150mm]). The targets always moved along the same invisible track (see figure

3.1B) and its starting position on the track was chosen by first selecting the

position that resulted in the target travelling for one second before reaching

the interception point, which depended on the target’s velocity (see below).

This was to ensure that the target was visible for the same length of time on

average. To try and prevent the target’s start position providing a reliable

cue of the target’s speed, we displaced the target along the track from this

position by a distance drawn from a normal distribution, Normal(0, 80mm),

with the constraint that the target must always appear on screen. After the

target had been visible for a duration drawn from the uniform distribution,

Uniform(0.5, 3s), the target began to move. Participants were instructed to

hit as many targets as possible. They were also told to make the striking

action as one continuous movement, not as several smaller movements.

The target was successfully hit if the upper edge of the bat collided with

the lower edge of the target. The target then stopped moving, turned red and

span before disappearing, thereby providing motivating animated feedback of

a successful strike. If the bat passed in front of the target’s horizontal path
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the target immediately stopped moving and then remained on screen for 1

second, indicating a miss. Thus, participants could not simply move the bat

in front of the target’s path and wait for the target. If the bat crossed the

target’s path after the target had moved too far to be struck then the target

stopped and remained visible for 1 second. The position of the bat and target

was timestamped and saved to disk at 500Hz. The bat’s positional data was

filtered using a low pass second order zero-lag Butterworth filter with a cut

off frequency of 10Hz. Spline interpolation was used to estimate the time at

which the bat reached the interception point.

Targets moved at a speed that was drawn from a normal distribution,

Normal(800, σ), where σ depended on the target speed condition. Participants

first tried to hit 100 targets in which σ was 0 (speed was always 800mm s−1)

which acted as a baseline and practice condition. Next the participants were

split into two groups. The N-first group (n = 6) experienced 200 trials in

which the target speeds were first drawn from a narrow distribution in which

σ = 80, followed by 200 trials in which the target speeds were drawn from a

wide distribution where σ = 200. The W-First group (n = 5) experienced the

wide distribution trials first and the narrow last.

3.2.4 Data analysis

The primary measure of interest was the temporal error (TE), defined as the

distance between the centre of the target and centre of the bat, divided by

the target speed, at the time that the upper edge of the bat reached the same

y-coordinate as the lower edge of the target. TE was calculated for all trials,
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regardless of whether the target was hit or not. The TE data was modelled

using a multilevel Bayesian model. Each participant had an intercept and

slope for each target distribution condition (narrow and wide), where target

speed was the predictor. The intercept and slope in each target distribution

condition were themselves determined by a linear regression with trial number

as a predictor. Thus, the intercept and slope were allowed to vary with

trial number. Each participant’s regression coefficients were distributed by a

multivariate normal distribution with a mean vector that depended on the

participant’s group (N-First vs W-First).

More formally, the ith data point was distributed by a Student’s distribu-

tion,

yi ∼ Student(ν, α0tv[i],p[i] + α1tv[i],p[i]xi, σ) i ∈ 1 : N (3.7)

where tv[i] and p[i] index the target velocity distribution condition (wide or

narrow SD) and participant respectively for the ith data point and xi is the

target speed. Both the participant level slope and intercept coefficients were

modelled as depending of the trial number t, where t1 is the first trial in a

given condition,

α0tv[i],p[i] = β1tv[i],p[i] + β2tv[i],p[i]ti (3.8)

α1tv[i],p[i] = β3tv[i],p[i] + β4tv[i],p[i]ti (3.9)

Thus, each participant had eight regression coefficients, four for each target
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speed condition. The β1 and β2 parameters describe how the participant’s

intercept varies with trial number (t) and the β3 and β4 parameters describe

how the participant’s slope varies with trial number. This model is mathe-

matically equivalent to a model with target speed and trial number as main

effects and an interaction term between them.

Each participant’s regression coefficients were modelled as a vector (β)

of eight parameters (four for each target speed condition) distributed by a

multivariate normal distribution,

β ∼ MultiNormal(Up[i]γ,Σ) (3.10)

where Up[i] is a row vector specifying the group of participant p (N-First or

W-First) and γ is a matrix in which each row contains the mean regression

coefficients for each group. As recommended in the Stan user manual (Manual,

2013), Σ was calculated as,

Σ = diagMatrix(τ)ΩdiagMatrix(τ) (3.11)

where τ is a vector of coefficient scales, Ω is the correlation matrix. diagMatrix(τ)

is a square matrix in which all the elements are zero except for the diagonal

which is filled with the values of τ . This approach allows us to place priors

on the covariance and correlations independently.

3.2.5 Priors and implementation

The priors were set as weakly informative, being informed only by the scale

of the data. Weakly informative priors help keep estimates away from clearly
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nonsensical estimates. Note that the Stan implementation was reparametrized

to make it more amenable to the NUTS algorithm (see below for details), but

is algebraically equivalent to the model specified here.

3.2.6 Sampling from the posterior

Bayes’ rule was used to estimate the credible values of the model parameters

(θ) given the data. The joint posterior distribution is given by

P (θ|y) ∝ P (y|θ)P (θ) (3.12)

A representative sample was drawn from the posterior using NUTS

(Hoffman & Gelman, 2011) implemented in PyStan 2.14 (Stan Develop-

ment Team, 2016). Four chains of 5000 samples (warmup N = 2500) were

started at random values in the joint posterior distribution. Convergence

was assessed by visually examining the chains and computing R̂ and effective

sample size for each parameter.

3.3 Results

The model estimated the group level regression parameters as well as the

parameters for individuals. The γ matrix in the model tells us the mean

regression parameters where each row corresponds to the parameters for a

group (N-First and W-First). For simplicity we can say that each group has

a vector of parameters which we now refer to as γ1 . . . γ4. For each group we

can calculate the group level mean intercept E(α0) and slope E(α1) on trial
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t as follows,

E(α0t) = γ1 + γ2t (3.13)

E(α1t) = γ3 + γ4t (3.14)

We can collapse across groups by taking the mean of these parameters over

the two groups.

The main hypothesis was that the regression intercept E(α0) would be

lower in the narrow target speed distribution condition compared to the wide

condition, and the slope E(α1) would be greater in the narrow condition than

in the wide (the stimulus distribution effect). These effects should emerge as

the participants learn about the target distribution, thus there should be no

difference between target speed conditions on the first trial, but there should

be by the last trials.

The expected intercepts and slopes were first examined averaged over

the groups. Figure 3.2 shows credible regression lines (calculated from every

10th sample from the posterior) plotted from these intercepts and slopes

for the first trial (t = 1) and the last trial (t = 200) in the narrow and

wide target speed distribution conditions. On the first trial no difference

was found between the narrow and wide target speed distributions in terms

of the intercept (contrast mean = −7.42mm s−1, SD = 26.23, 95% HDI =

[-58.48, 46.40], η = 0.39)2 or slope (contrast mean = 0.01mm s−1, SD = 0.03,

95% HDI = [-0.06, 0.07], η = 0.59). Contrasts suggested that differences in

2see chapter 2 for an explanation of the contrasts
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both the intercepts (contrast mean = −35.63mm s−1, SD = 25.91, 95% HDI

= [-88.14, 13.71], η = 0.08) and slopes (contrast mean = 0.044mm s−1, SD

= 0.03, 95% HDI = [-0.02, 0.11], η = 0.91) were much more likely in the

last trial. However, the η values did not reach the threshold for declaring a

‘highly probable’ difference (see section 2.2.4), with only 92% and 91% of the

respective contrast distributions falling on the predicted side of zero.

Figure 3.2: Posterior estimates of credible group level regression lines for the
first trial (t = 1) and the last trial (t = 200). On the first trial regression
lines were similar between the two target speed distribution conditions. By
the last trial the intercept appeared lower and the slope greater in the narrow
distribution condition, although the 95% HDI still included zero. The x-
intercept is approximately the target velocity mean. Regression lines were
plotted using every 50th sample from the posterior distribution. The raw
data for the first 100 trials is plotted in the left panel. The raw data for the
last 100 trials is plotted in the right panel.

Examining the credible regression lines in Figure 3.2 it could appear that

there were greater temporal errors in the narrow condition, because of the

steeper slope. However, it is important to remember that target speeds

occurred less frequently at values far from the mean in the narrow target
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distribution condition, by design of the experiment. To examine whether

errors were in fact smaller in the narrow target distribution condition, the

root mean squared error (RMSE) of the temporal errors in the data was

calculated. This conformed that temporal errors were smaller in the narrow

target distribution condition than the wide (see figure 3.3).

Figure 3.3: The RMSE of temporal errors as a function of trials block (trials
1-100 vs 101-200) and target speed distribution. This plot shows the data,
not the posterior distribution. Error bars show the 95% confidence interval.

To explore the stimulus distribution effect further we examined the poste-

rior estimates of the credible regression lines as a function of group (N-First vs

W-First), plotting credible regression lines as a function of group, target speed

distribution and trial number t (see figure 3.4). On the first trial there was no

difference between intercepts in the narrow and wide target speed conditions

in either the N-First group (contrast mean = 4.34, SD = 36.66, 95% HDI =

[-67.137, 77.70], η = 0.55) or the W-First group (contrast mean = -18.95, SD

= 38.27, 95% HDI = [-95.0, 55.821], η = 0.303). Likewise, no differences were

found between the slopes in the N-First group (contrast mean = 0.008, SD =
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0.05, 95% HDI = [-0.086, 0.09], η = 0.515) or the W-First group (contrast

mean = 0.01, SD = 0.05, 95% HDI = [-0.082, 0.103], η = 0.618).

Figure 3.4: Posterior estimates of the expected regression lines for each group
(N-First vs W-First) when t = 1 and t = 200. The left column shows the
N-First group and the second shows the W-First group. The x-intercept
is approximately at the target velocity mean. When t = 1 the plausible
regression lines in the Narrow target speed distribution (blue lines) and Wide
distribution (red lines) overlap. When t = 200 the blue lines show a lower
intercept and greater slope than the red lines. The W-First group show more
overlap than the N-First group.

By the last trial the N-First group probably had lower intercepts in the

narrow target speed condition when compared to the wide (contrast mean

= -53.48, SD = 35.6, 95% HDI = [-124.342, 16.652], η = 0.062) with 93.8%

of the posterior mass being below zero (1− η). Again this fell just short of

our criteria for a highly probable difference by 1.2%. The W-First group did
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not show a reliable difference in intercepts between narrow and wide target

distribution conditions (contrast mean = -17.87, SD = 38.25, 95% HDI =

[-92.942, 56.789], η = 0.315). The N-First group probably had greater slopes

in the narrow condition when compared to the wide (contrast mean = 0.06,

SD = 0.045, 95% HDI = [-0.027, 0.0150], η = 0.932), although η was just short

of the ‘highly probable’ difference criteria (by 1.8%). No reliable difference

was found between slopes for the W-First group (contrast mean = 0.023,

SD = 0.048, 95% HDI = [-0.074, 0.116], η = 0.693). The results therefore

tentatively suggest a possible stimuli distribution effect when moving from a

narrow target speed distribution to a wide one, but not when moving from a

wide to narrow distribution.

To examine the rate at which the intercepts and slopes were changing

with trial we examined each of the group level parameters γ1 . . . γ4 . These

group level parameters are the expected value of the regression coefficients

(see equations 3.13 and 3.14). The first two parameters (γ1, γ2) tell us about

how the intercept changes with trial number. These higher level parameters

correspond to the intercept and the slope of the lower level intercept parameter

(in multilevel models the parameters are themselves modelled as regressions;

the lowest level of the model is given by equation 3.12 and the higher level by

equations 3.13 and 3.14). The last two (γ3, γ4) tell us how the slope changes

with trial number. These higher level parameters correspond to the intercept

and slope of the lower levels slope parameter.

There was no difference in γ1 between the narrow and wide conditions for

either the N-First (contrast mean = 4.63, SD = 36.77, 95% HDI = [-97.18,

78.5], η = .55) or W-First group (contrast mean = -18.96, SD = 38.39,
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Figure 3.5: Posterior estimates of each γ parameter which correspond to the
parameters in equations 3.13 and 3.14. Points show posterior means. Error
bars show the posterior 95% HDI.

95% HDI = [-94.30, 56.37], η = .30). The γ2 parameter revealed a possible

difference between the narrow and wide target distribution conditions in

the N-First group (contrast mean = -0.29, SD = 1.92, 95% HDI = [-0.674,

0.11], η = 0.07), but η just failed to reach the criteria for a ‘highly probable’

difference (by 2%). The γ2 plot in figure 3.5 reveals that the intercept may

have been decreasing over time in the narrow condition, although a substantial

proportion of the marginal distribution spanned zero. However, the intercept

was almost certainly increasing in the wide condition. No difference could

be reliably detected in the W-First group (contrast mean = 0.01, SD = 0.21,

60



95% HDI = [-0.41, 0.41], η = .51).

The γ3 parameter did not reveal a difference between narrow and wide

conditions for either the N-First (contrast mean = 0.0, SD = 0.05, 95% HDI

= [-0.09, 0.09], η = .51) or W-First group (contrast mean = 0.01, SD = 0.05,

95% HDI = [-0.08, 0.13], η = .61). The γ4 parameter revealed a small possible

difference between narrow and wide conditions of 3.2×10−4 (SD = 2.4×10−4,

95% HDI = [−1.94× 10−4, 7.72× 10−5], η = 0.9) in the N-First group, but

again this did not reach the η criteria. The γ4 plot in figure 3.5 reveals that

the slope may have been increasing in the narrow condition, but decreasing

in the wide condition. No differences in the γ4 parameter could be found

between the narrow and wide condition for the W-First group (contrast mean

= 0.0, SD = 2.0times10−4, 95% HDI = [−4.0× 10−3, 6.0× 10−4], η = .57).

3.3.1 Power analysis

While key contrasts suggested an asymmetrical stimulus distribution effect

existed, whereby the differences in slope and intercepts between the target

speed distribution conditions were probably larger in the group who experi-

enced the narrow distribution condition first, their η values failed to reach

our criteria for a ‘highly probable’ difference. Specifically, for the narrow first

group, the η value fell short by 1.2% for the intercepts and 1.8% for the slopes.

We attempted to estimate how many participants would be required to ensure

that the hypothesised effect would be detected with high probability (power

analysis).

In general Bayesian power analysis proceeds by simulating random samples
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of data from a generative statistical model, using hypothesised parameter

values (in this case the marginal posterior means for each parameter was taken

as a best guess of the model parameters; which suggested a asymmetrical

stimulus distribution effect). The model with hypothesised parameter values

can then be used to generate datasets of a fixed sample size (N). For each

sample of size N the model can be refit and the key contrasts of interest

repeated to assess whether the criteria for a highly probable difference was

met (i.e. η < 0.05 or η > 0.95). This process can be repeated many times

and the proportion of contrasts that meet the criteria for a high probable

difference provides an estimate of power (Kruschke, 2015). By doing this for

many different sample sizes it is theoretically possible to determine how many

participants are required to obtain the desired statistical power (given the

effect size and measurement noise).

Unfortunately this approach to power analysis is frustrated by the time

required to repeatedly refit Bayesian models using MCMC. Hierarchical

models can be particularly slow to fit, and in the current case refitting the

model takes approximately 12 hours. Thus fitting the model for multiple

sample sizes a sufficient number of times to provide a stable power estimate is

not practically viable. Thus a different approach was taken in which five data

samples, with N = 10 for each group (total N = 20) were generated. The

model was then refit using these samples and the key contrasts were repeated

(i.e. the four contrasts comparing the intercepts and slopes in both groups;

see figure 3.4). The slope and intercept contrasts for the narrow first group

reached the η < 0.05 (or η > 0.95) criteria in four out of the five simulations.

Figure 3.6 shows the probability of obtaining η < 0.05 for four out of five
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samples as a function of statistical power. It is clear that high power is most

probable, with the maximum likelihood estimate of 79% power. Thus it seems

reasonable to suggest that an N of 10 would be highly likely to detect the

hypothesised effect.

Figure 3.6: Probability of obtaining η < 0.05 for four out of the five simulated
data sets when N = 10 for each of the two groups. The MLE of statistical
power is 79% as indicated by the dotted vertical line. Probabilities were
calculated using the binomial distribution.

3.4 Discussion

We explored whether an interceptive timing task would show evidence of

behaviour being affected by the structure of the trial distribution (as previously

found within a coincidence timing task). Participants were exposed to a narrow

and wide distribution of target speeds and the resulting relationship between

target speed and temporal error was examined. The prediction (from Körding

and Wolpert (2004) and Miyazaki et al. (2005)) was that the slope would

be steeper in the narrow speed distribution condition (and the intercept
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lower), as inferences are drawn more towards the mean of the prior when the

standard deviation of the prior is smaller (the stimulus distribution effect).

Unfortunately the η values for key comparisons did not reach the criteria for

declaring an effect with high certainty, generally missing this criteria by a few

percentage points. Thus the results suggest that a stimulus distribution effect

was very likely present, but further experimental evidence may be required

to achieve a high degree of certainty in the result. Power analysis suggested

that 10 participants in each group would provide sufficient power.

Overall, the pattern of results tentatively suggests that individuals combine

online visual information with knowledge acquired over previous trials when

performing an interceptive task. This extends the findings of Miyazaki et

al. (2005) and shows that these effects are most likely present in interceptive

as well as coincidence timing tasks. The findings of both experiments are

consistent with the interpretation that the brain acts as if it were a Bayesian

operator providing optimal estimates of object arrival. The notion that the

brain acts as a Bayesian operator can explain work by Brouwer, Brenner,

and Smeets (2002) who asked participants to hit targets that moved at

three speeds, while occluding the targets for varying lengths of time. When

occlusions were long in duration, participants tended to hit ahead of the slow

targets and behind the fast targets. However, this effect greatly reduced

for short occlusions, with a decrease in hitting errors. This is an expected

property of an optimal Bayesian operator. When occlusion times are long

(i.e. view times are shorter), visual information will contain more uncertainty

(i.e. the likelihood will be less precise) and thus the prior will dominate

the posterior estimates of the target’s velocity, making it appear as though
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velocity information is ignored. When the occlusion times are shorter, the

likelihood will be more precise and will therefore dominate the posterior.

Thus, the findings of Brouwer et al. (2002) compliment the current study,

where, in Bayesian terms, we manipulated the prior whereas they manipulated

the likelihood.

We also explored whether the order in which participants experienced

the two target speed distributions influenced the strength of the stimulus

distribution effect. We found that the differences in slope (and intercept)

between target speed distribution conditions was probably stronger for the

group who experienced the narrow distribution condition first, although

again this effect just fell short of our η criteria required to declare a ‘highly

probable’ effect (93.8% of the contrasts distribution was on the predicted

size of zero). Despite this short coming, the most probable interpretation of

the results is consistent with those of Miyazaki et al. (2005), who reported

asymmetries when participants moved from narrow-to-wide versus wide-

to-narrow distributions. In the Miyazaki et al. (2005) study, statistically

significant differences were only observed when calculating the slope using a

moving window that included all trials between the 241st and 480th trial. This

may explain the weak effect in wide-to-narrow group from the current study

where only 200 trials were used, as it may take longer for people to update

their prior when moving from a wide distribution to a narrow distribution.

Thus the 200 trials may have been insufficient for participants to update their

prior over the target speed distribution when moving from the narrow to wide

distribution.

The likely asymmetry in the learning of the prior over the stimulus
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distribution is consistent with a Bayesian state space model which updates

estimates of the standard deviation of the stimulus distribution on a trial

by trial basis. As outlined in the introduction learning is expected to be

faster when moving from a narrow to wide stimulus distribution, as the

new distribution suddenly produces stimuli that are very unexpected under

the current prior. When moving from the wide to the narrow distribution,

participants experience stimuli that are still consistent under the current

prior, thus more trials are needed to learn that the stimulus distribution has

changed.

Critical questions still remain about the nature of the mechanisms that

underpin Bayesian inference. Our data suggests that individuals are probably

able to learn new prior distributions in interceptive timing tasks within

relatively few trials (≈ 200), a finding that has been found across a range of

perceptual and motor tasks (Vilares & Kording, 2011). In contrast, several

psychophysical phenomena related to speed perception, including the finding

that low contrast stimuli appear to move slower than high contrast stimuli

(Thompson, 1982), can be explained by assuming that people use a single prior

that favours slower speeds (Freeman, Champion, & Warren, 2010; Stocker

& Simoncelli, 2006). This appears to be incompatible with the finding that

people rapidly update their priors over the course of a short experiment.

However, more complex hierarchical Bayesian models (HBM) can readily

account for both of these findings. HBMs are models which posit probability

spaces over probability spaces, with priors upon priors. Each level of the

model places a probability distribution on the level below (Tenenbaum, Kemp,

Griffiths, & Goodman, 2011). For example, a HBM may have a prior that

66



objects move slowly in the world, which constrains lower level priors regarding

how individual objects move. A HBM may model the relationship between

the speeds of different objects, for example, by learning that different objects

have different speeds but their speeds tend to vary within a certain range of

parameters. This confers two major benefits. Firstly, it allows for optimal

transfer of learning from one object to another, and secondly it allows for

abstract knowledge to emerge from lower levels of the hierarchy i.e. that most

objects move slowly.

It should be highlighted that while the data are consistent with the brain

acting as a Bayesian operator they do not necessarily mean that the system is

actually functioning as a Bayesian operator (i.e. the system may not actually

calculate or represent probabilities). One feature of any successful learning

machine is that previously successful outputs influence subsequent outputs.

It is possible that the learning mechanisms of the brain result in processes of

discriminative classification. For example, it has been shown that under the

right conditions, simple Hebbian learning in neural networks can approximate

normative Bayesian models (Verstynen & Sabes, 2011). Thus behaviour that

is near Bayesian optimal may be possible without the need to calculate or

represent probabilities.

A clear weakness of the study is that critical contrasts did not reach our

criteria for declaring an effect ‘highly probable’, generally falling short by a few

percentage points. Thus while the results tentatively support our hypothesis,

more data or replication of the study may be required to satisfy a strict

threshold for declaring an effect. A major advantage of Bayesian estimation

over frequentist approaches is that the posterior distribution from a study can
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be used as the prior for a replication, or the results of multiple studies can be

combined using a multilevel model (Marsman et al., 2017). Thus Bayesian

estimation provides a natural approach to cumulatively improving estimates

of effects.

In conclusion, we have extended previous reports of individuals combining

visual information with knowledge acquired over previous trials in a coinci-

dence timing task, to show that the same effects can probably be seen in

an interceptive task. The study also suggests that the previous observations

of asymmetric transfer, where the effects are larger when participants move

from a narrow-to-wide distribution rather than vice versa, are also present in

interceptive timing tasks. The general pattern of behaviour is consistent with

the brain acting as if it were a Bayesian operator. However, it may be that

fundamental motor learning processes create Bayesian optimal behaviour but

without the need to explicitly calculate or represent probabilities. Having

explored how adults deal with uncertainty and noise in perceptual quantities,

in the next chapter we move on to examine how adults make optimal choices

in motor planning to reduce the effects of motor noise on task outcomes.
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Chapter 4

The selection of ‘go faster

strikes’ as a function of noise in

interceptive timing tasks

Chapter Abstract

When intercepting moving targets people make temporal errors, sometimes

arriving too early or late at the spatial location at which they intended to

make the interception. Over repeated trials this pattern of errors can be

described in terms of accuracy (the mean error) and precision (the reciprocal

of the standard deviation of errors). Many interceptive tasks require excellent

temporal precision because the window of time in which the target can be

struck is in the order of milliseconds. Briefer, faster movements are associated

with better temporal precision but these movements have associated costs,

including greater energy expenditure. Theories of optimal control (OC)

suggest that an optimal controller that minimises both temporal errors and
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energy costs will select movements that have the longest possible duration

whilst achieving sufficient temporal precision. An experimentally imposed

perturbation that decreases temporal precision (but not accuracy) would

push the system to increase movement speed if it is: (i) sensitive to the

distribution of temporal errors over previous trials and (ii) using an OC

strategy that attempts to minimise temporal errors and energy expenditure.

To test whether this is the case, three groups of adults used a one degree of

freedom manipulandum to hit virtual ‘pucks’ at computer generated moving

targets. The puck moved at its strike speed plus noise drawn from a Gaussian

distribution. The first group experienced no added noise and the results

showed that their strike velocities decreased over trials. The second group

experienced low noise and maintained reasonably constant strike velocity

across trials. The third group were exposed to high noise and increased

strike velocity over time. These data indicate that adults monitor the prior

distribution of their temporal errors in an interceptive task and use this

information for OC.

4.1 Introduction

Interceptive timing actions (e.g. striking a baseball) require the intercepting

effector (e.g. hand, bat) to be in the right place (the same spatial location as

the target object) at the right time. Spatial errors occur when the intercepting

effector is moved to the wrong physical location whilst temporal errors arise

when the effector arrives too early or too late at the correct spatial position.

Both spatial and temporal errors occur for a number of reasons, including
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perceptual misjudgements of the target’s current position, misestimates of

the target’s speed, and inaccuracies in predicting the target’s future location.

Even when perceptual estimates are veridical, errors may still occur in the

execution of the movement due to noise in the motor system. It is often

difficult to decouple spatial and temporal errors as there is no simple way

to determine whether someone missed a target because their movement did

not reach the planned interception location, or because they reached the

planned location at the wrong time. However, by constraining movements to

one degree of freedom, temporal errors can largely be isolated from spatial

errors, since as long as the movement is of sufficient amplitude they will reach

the spatial location at which an interception can take place. This allows for

temporal accuracy and precision to be investigated in humans.

Skilled interceptive behaviours require individuals to learn how to minimise

temporal errors. One possible strategy to minimise temporal errors is to

use online feedback control where errors are detected and corrected within

the course of the movement. There are a number of models of interceptive

timing control that continuously correct for errors between the estimated

time to arrival (TTA) of the target and estimated TTA of the effector at

the planned point of interception (see Tresilian (2005) for a review). These

models are feasible for intercepting slow moving targets but are not viable for

fast interceptive actions, owing to the time delays that are inherent at every

level of the sensorimotor system (Nijhawan, 2008). Thus fast interceptive

actions may require ballistic movements without the aid of online corrections

during a single movement.

Temporal errors can be minimised by using signed error signals to correct
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for the errors made on previous trials. Standard models of sensorimotor

learning suggest that on trial n the expected sensory consequences (ŷn) of

an action are predicted and compared to the true sensory consequences (yn).

An error is then generated by comparing the predicted and actual sensory

consequences, where the error (e) is given by en = yn − ŷn. The next action

is then updated based on the prediction error and the system’s learning rate.

The ability to learn from signed error signals in this manner can explain the

acquisition of a wide range of behaviours, including adaptation to sensory

and motor perturbations (van Beers, 2009). This mechanism can explain

how humans reduce their mean temporal error (improve temporal accuracy)

but cannot explain how improvements are made in temporal precision. The

limitation of such models is that they do not specify how the system selects

the optimal movement when there is a choice of trajectories that will allow

the participant to hit the target. It is often possible to hit moving targets

using a wide range of combinations of movement (MT ) and initiation times

(IT ). MT refers to the duration of the movement from its onset until the

effector reaches the planned interception point, whilst IT is the time at which

the movement starts relative to the time at which the target will reach the

planned point of interception. In a 1-DoF interceptive timing task a perfect

interception (zero temporal error) will then occur when MT = IT . This

specifies the solution manifold, as any value of MT is viable so long as MT

is shorter than the target’s movement time (see figure 4.1).
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Figure 4.1: A) A 1-DoF interceptive timing task. The target moves from
left to right across a screen while a participant attempts to hit the lower
edge of the target with a bat that can only move orthogonal to the target’s
trajectory. As soon as the bat begins to move the IT can be defined as the
target’s time to arrival at the interception point (red dot). If MT = IT
then the center of the bat will strike the center of the target (zero temporal
error). B) The solution manifold is specified by MT = IT for any value of
MT . The shaded region defines the deviation from zero temporal error that
will still allow the target to be hit. Even when an appropriate combination
of MT and IT are planned, errors in the movement’s execution result in
variability in the temporal errors. Smaller values of MT are associated with
better temporal precision, but increased energy costs. The green dot shows a
planned combination of MT and IT that result in the target being missed
on average when errors are Gaussian and centered around the planned values
of MT and IT . The black dot shows a solution that results in zero temporal
error on average. The optimal solution (red dot) results in zero temporal error
on average and falls along the solution manifold in a position that maximises
temporal precision whilst minimising effort.
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OC models suggest that movements are selected from viable alternatives

to minimise a mixed cost function - a function that specifies costs associated

with both errors and energy (Todorov & Jordan, 2002; Todorov, 2004). This

raises the issue of the rewards and penalties associated with the choice of

the trajectory selected from the solution manifold in interceptive tasks. It

appears that faster movements have improved precision (Newell, Carlton,

& Kim, 1994; Tresilian, 2012), suggesting there are benefits to selecting

shorter duration movements. There are several explanations for the improved

precision with decreased duration. First, shorter MT s allows the target to

be viewed for longer before the movement is initiated, which may result in

better estimates of the target object’s TTA at the planned interception point.

Secondly, when movements are very fast even large deviations in the planned

movement speed result in small changes in MT . Thus errors in the movement

execution have less of an impact on temporal errors. However, moving faster

has associated penalties. First, faster movements provide less possibility

for any modification of the movement on the basis of online error detection.

This appears to be a consideration in timing behaviour as increasing spatial

accuracy constraints causes a decrease in temporal precision within a two

degree of freedom timing task (Tresilian, Plooy, & Marinovic, 2009). Second,

faster movements tend to have higher energy demands (Todorov, 2004). The

rewards and penalties associated with shorter duration movements suggest

that optimal performance will involve selection of faster movements when the

temporal precision requirements of a task are high, but slower movements

when the temporal constraints are reduced.

In a series of studies, Tresilian and colleagues examined participants’ MT s
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when using a one degree of freedom manipulandum to intercept targets of

different widths (Tresilian et al., 2004) and targets moving at different speeds

(Tresilian & Lonergan, 2002). It was found that MT was shorter when the

target speed was faster, even after controlling for the target’s view time

(Tresilian & Lonergan, 2002). It was also found that MT was shorter when

the targets were narrower (Tresilian et al., 2004). These findings are consistent

with results from experiments using a two degree of freedom interceptive

task (Brenner & Smeets, 2015b). It was later shown that the changes in

MT were directly related to the time window (the period in which the target

can be struck), which is determined in part by the target’s speed and size

(Tresilian & Houseman, 2005). Critically, the temporal constraints of the

task are relaxed when the time window is larger, so larger temporal errors

can still result in the target being hit. These results therefore suggest that

skilled adult performers are attempting to minimise multiple costs (e.g. error,

effort and energy) as predicted by OC theory. In addition, adults appear to

only attempt to reduce their errors when they interfere with the task goal of

hitting the target, making slower, more variable movements when the time

window is larger.

Thus, the existing empirical evidence indicates that skilled performers use

OC when intercepting moving targets. It is not clear, however, whether adults

have learnt this optimal behaviour over a large time period (i.e. whether

participants have learned to adjust their movement times in response to the

stimulus over many months and years of experience) or whether adult humans

have the flexibility to implement optimal strategies within the time course of

a discrete task (e.g. during the course of a tennis match). The ability to adopt
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such a strategy within a task would require participants to monitor their

distribution of errors over the duration of the task. There is some evidence

that participants are sensitive to the distribution of target speeds within an

interceptive task (see chapter 3), so it is plausible that participants might be

likewise sensitive to the distribution of their temporal errors over a series of

trials within a relatively short time period.

In this study we wished to test whether participants were sensitive to

the distribution of their temporal errors over previous trials when planning

their movements. OC predicts that adults should adjust the timing of their

movements in response to an increase in temporal variability (a decrease

in precision). We therefore examined whether people would adjust the

timing of their interceptive movements in response to externally imposed

execution noise (noise which increased the variability but not the mean

accuracy of the temporal errors). We reasoned that the increased noise

would worsen performance but participants would be unable to improve their

performance by simple error correction mechanisms (because the average

accuracy was unaffected by the addition of the noise). It would be possible,

however, for participants to improve performance by increasing the speed of

their movements (Tresilian, 2012), because faster movements are associated

with greater temporal precision. This allowed us to test the hypothesis

that participants use knowledge of their previous temporal errors within an

interceptive task to select the optimal movement duration (where shorter

durations improve precision but at the cost of higher energy expenditure).

We used a simple interceptive timing task in which participants struck

virtual pucks with a bat, launching them towards moving computer generated
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targets travelling orthogonal to the puck’s path. Three groups of participants

hit pucks towards targets that were identical in size and speed. On average,

the puck moved at the strike velocity, but we added Gaussian noise to the

puck’s velocity in two of the groups: a high noise and a low noise group. The

remaining group experience no added noise (no noise group). If participants

used OC then we would expect the no noise group to decrease their strike

velocities as the experiment progressed (as they became more skilful through

practising the task) whereas the high noise group should increase their strike

velocities (to counteract the decrements in performance created through the

addition of the noise). The low noise group’s behaviour would be expected

to fall between the other two groups.

4.2 Methods

4.2.1 Participants

Twenty six participants were recruited from the University of Leeds (4 male,

22 female, mean age = 27.21 years, SD age = 4.98). Participants did not

report any neurological or movement problems and had normal or corrected-

to-normal vision. All participants provided informed consent and the study

was approved by the School of Psychology Ethics Committee, University of

Leeds, UK (Ethics number: 16-0119, date: 19/04/2016).
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4.2.2 Apparatus

All dimensions and coordinates are given in millimeters. A custom built 1-DoF

manipulandum was used to control an onscreen bat. A linear potentiometer

and a NI-DAQ device was used to capture the manipulandum’s displacement

along a linear track at 500Hz. Participants sat at a desk and viewed a BenQ

XL2720Z LCD gaming display (Resolution: 1920× 1080, size: 548× 642mm,

brightness: 300cd m−2, refresh rate: 144Hz), positioned 50cm in front of them

at eye level. The monitor was positioned vertically, and the manipulandum was

placed on the desk to the right of the monitor (see figure 4.2A). The position

of the manipulandum controlled an onscreen bat (dimensions: 10× 15mm).

All stimuli were generated using Python 2.7.9 using open source libraries. All

coordinates were given in mm with the origin at the bottom left of the screen.

Figure 4.2: The experimental setup. A) Participants used an onscreen bat to
hit pucks towards moving targets. The display was positioned in a vertical
orientation and the manipulandum’s position was measured using a linear
potentiometer. B) The stimulus. A target moved around an invisible track to
increase the viewing time.
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4.2.3 Procedure

At the beginning of every trial a start box (dimensions: 15× 20, coordinates:

[500, 20]) appeared onscreen and the participants were instructed to place

the bat within it by fully retracting the manipulandum. The x-coordinate

of the bat was always 500, and its y-coordinate depended on the position

of the manipulandum. The displacement of the manipulandum resulted in

an identical displacement of the bat along the y-axis. Once the bat was

placed within the start box a rectangle representing a puck (dimensions: 10,

coordinates: [500, 100]) then appeared directly above the bat. Participants

could hit the puck with the bat, which upon being struck would launch up the

screen, at a velocity that depended on the strike velocity and the condition

(see below). The participants launched the puck to hit the target (dimensions:

50×15, coordinates: [264.34, 320]) that was displayed on the screen. There was

a delay before the target began to move along an invisible track at 500mm/s.

The delay was drawn from a uniform distribution, Uniform(0.5, 3.0s). The

centre of the target passed in front of the bat after moving 750mm, at the

coordinates [500, 240]. The track (see figure 4.2) enabled the target to be

viewed for 1.5 seconds.

Participants were instructed to strike the puck in order to launch it at the

target, and were instructed to hit the target with the puck as many times as

possible. The puck successfully hit the target if its upper edge collided with

the lower edge of the target. The target then stopped moving, turned red and

span before disappearing, thereby providing motivating animated feedback. If

the bat passed in front of the target’s horizontal path the target immediately
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stopped moving and then remained on screen for 1 second. Thus, participants

could not simply move the bat in front of the target’s path and wait for the

target. The position of the bat was timestamped and saved to disk at 500Hz.

The bat’s positional data were filtered using a low pass second order zero-lag

Butterworth filter with a cut off frequency of 10Hz. Spline interpolation was

used to estimate the time at which the bat struck the puck.

Participants were split into three groups, a no noise (n = 8), low noise

(n = 9), and high noise (n = 9) group. All participants completed 100

pre-noise trials in which they attempted to hit the target. For these trials

the puck always moved at the same speed that it was struck at (the strike

velocity). After the pre-noise trials, all participants completed 200 noise trials.

For the no noise group these trials were identical to the baseline. For the

low noise and high noise groups the puck moved at a speed drawn from the

normal distribution, Normal(µstrike, σ), where µstrike was the strike velocity

and σ was 100 for the low noise group and σ was 200 for the high noise group.

Following these 200 trials, all participants completed a further 100 post-noise

trials that were identical to those in the pre-noise condition.

4.2.4 Data analysis

Two performance measures were examined. The first was the strike velocity

(SV ) - the velocity at which the bat was travelling when it struck the puck.

The second was whether the target was successfully hit or not, which was

used to estimate the probability of hitting the targets (P-Hit). The SV was

modelled using a multilevel Bayesian model, adapted from the Stan user
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manual (Manual, 2013). Each participant was modelled as having a mean

SV for the pre-noise and post-noise condition. The noise trials were split

into blocks of 50, and each participant was modelled as having four mean

SV s, one for each block. The means for each participant were distributed

through a multivariate Gaussian, with a mean vector that depended on the

participant’s group (no noise, low noise or high noise).

Strike velocity model

More formally we modelled each data point yi as belonging to participant p.

A row vector xi specified the trial block of the ith data point. The likelihood

function for datum yi is then given by,

yi ∼ Normal(xiβp[i], σ) i ∈ 1 : N (4.1)

where βp[i] is a vector of regression coefficients for the participant p who

generated the ith data point and N is the total number of data points. Each

participant’s vector of regression coefficients was distributed by a multivariate

normal distribution,

βp ∼ MultiNormal(Mg[p],Σ), p ∈ 1 : P (4.2)

where Mg[p] is mean vector of coefficients for the group g to which participant

p belongs. The covariance matrix Σ is specified as follows,
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τk ∼ Cauchy+(0, 500), k ∈ 1 : K (4.3)

Ω ∼ LKJCorr(2) (4.4)

Σ = diag matrix(τ)Ωdiag matrix(τ) (4.5)

where K is the number of regression coefficients. This formulation allows

the prior over Σ to be specified as a correlation matrix (Ω) and vector of

scale parameters (τ). The prior distribution over the correlation matrix

(LKJCorr) is defined in the Stan user manual (Manual, 2013).

This model was re-parametrised to make it easier for the Hamiltonian

Monte Carlo algorithm used by Stan to explore, but is equivalent to the model

here.

Probability of target hit model

We were also interested in the probability of hitting the target (P-Hit), which

provided a simple measure of performance. This was modelled in the same

way as SV except the likelihood function (see equation 4.2) was replaced with

a Bernoulli distribution with a logistic link function, to account for the fact

that the outcome variable was discrete (either a hit or a miss).
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µ = xnβp[i] (4.6)

logit−1(µ) = 1
1 + exp(−µ) (4.7)

y ∼ Bernoulli(logit−1(µ)) (4.8)

The priors were chosen to be weakly informative, being informed only by

the scale of the data. Bayes’ rule was used to estimate the credible values of

the model parameters (θ) given the data (y). The joint posterior distribution

is given by P (θ|y) ∝ P (y|θ)P (θ).

A representative sample was drawn from the posterior using the “No-U-

Turn sampler” (Hoffman & Gelman, 2011) implemented in PyStan 2.14 (Stan

Development Team, 2016). Four chains of 5000 samples (warmup N = 2500)

were started at random values in the joint posterior distribution. Convergence

was assessed by visually examining the chains and computing R̂ and effective

sample size for each parameter.

4.3 Results

Strike Velocity

Figure 4.3 shows the posterior estimates of the group means as a function

of the trial block and noise group, where the grey shaded area shows the

added noise blocks. The no noise group possibly showed a slower mean strike

velocity at baseline than the high noise (contrast mean = −166.79mm s−1, SD
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= 114.65, 95% HDI = [-391.90, 54.93], 50% HDI: [-242.73, -91.61], η = 0.07)

and low noise (contrast mean = −122.87mm s−1, SD = 116.30, 95% HDI =

[-344.57, 113.36], 50% HDI: [-197.07, -46.28], η = .14) group, although the η

values did not reach the criteria for a ‘highly probable’ difference. Despite

this the posterior means suggested that the differences between the groups

were potentially quite large. The difference between the low and high noise

groups at baseline was most likely quite small in comparison (contrast mean

= −43.92mm s−1, SD = 112.90, 95% HDI = [-273.36, 175.11], 50% HDI:

[-119.72, 26.98], η = .35), although the large posterior SD means that there

was high uncertainty in this estimate (i.e. large differences between these

groups were not improbable).

Figure 4.3: Posterior estimates of the group means as a function of noise
group and trial block. Points show posterior means and error bars show the
50% HDI.

We predicted that the no noise group would decrease their strike velocity
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Table 4.1: No Noise group. Contrasts between added noise trial blocks and
baseline. Note that the noise trials had zero added noise for the no noise
group. The operator :: indicates a contrast.

Contrast: SV Mean SD 95% HDI 50% HDI η
Noise 1-50 :: BL -59.00 51.29 -157.85, 42.12 -89.02, -21.15 .13
Noise 51-100 :: BL -80.26 53.00 -187.44, 22.11 -159.35, -45.99 .07
Noise 101-150 :: BL -50.10 53.87 -159.37, 50.50 -82.08, -10.50 .18
Noise 151-200 :: BL -76.27 62.46 -200.90, 45.61 -110.01, -26.69 .12
Post-Noise :: BL –66.26 72.84 -208.40, 79.44 -112.85, -19.03 .18

over time, so we compared the baseline conditions to each block of 50 trials

post baseline. Contrasts failed to reach the η criterion for a ‘highly probable’

effect (see table 4.1). However the 51-100 trial block most likely had a

mean strike velocity lower than the baseline, with the η value falling short

of our strict criteria by 2% (i.e. there was a 93% chance of an effect in the

hypothesised direction). The other comparisons were less convincing, with a

large amount of the contrasts distribution spanning zero.

For the low noise group, there was no clear change in strike velocity

between the baseline block and any of the other blocks (see table 4.2). The

95% and 50% HDI always spanned zero, although the contrast mean and SD

indicated that differences of a reasonable magnitude were possible, but less

likely than differences of a low magnitude. This was because the means of the

contrast’s distributions were centered around low values, but their standard

deviations (and 95% HDIs) were reasonably large.

In the high noise group, the contrasts suggested that the average strike

velocity increased compared to baseline. For the first and second noise block

the η value failed to reach the threshold, but a ‘highly’ probable difference
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Table 4.2: Low Noise group. Contrasts between added noise trial blocks and
baseline.

Contrast: SV Mean SD 95% HDI 50% HDI η
Noise 1-50 :: BL -26.52 49.75 -123.98, 71.14 -56.43, 9.54 .30
Noise 51-100 :: BL -6.27 52.70 -113.78, 97.36 -39.62, 29.79 .45
Noise 101-150 :: BL -14.85 52.23 -113.32, 91.99 -50.34, 18.00 .38
Noise 151-200 :: BL -5.12 61.33 -130.94, 111.19 -48.141, 32.02 .46
Post-Noise :: BL 29.80 71.08 -117.62, 163.92 -23.48, 70.52 .66

Table 4.3: High Noise group. Contrasts between added noise trial blocks and
baseline.

Contrast: SV Mean SD 95% HDI 50% HDI η
Noise 1-50 :: BL 44.78 48.76 -49.82, 143.00 9.94, 74.82 .82
Noise 51-100 :: BL 45.71 51.18 -55.47, 147.36 8.65, 77.60 .82
Noise 101-150 :: BL 85.01 50.70 -18.97, 183.07 49.27, 115.33 .95
Noise 151-200 :: BL 72.61 60.16 -46.68, 192.62 33.31, 112.53 .89
Post-Noise :: BL 38.20 70.50 -104.98, 173.25 -9.19, 83.70 .71

was observed between the baseline and the 101-150 noise block (see table 4.3),

suggesting that strike velocity increased over the trials.

4.3.1 Probability of hitting the target

Figure 4.4 shows the mean probability of hitting the targets as a function

of group and trial block. At baseline, the mean probability of hitting the

targets may have been lower in the no noise group than in the low noise

group (contrast mean = -0.06, SD = 0.06, 95% HDI = [-0.19, 0.07], 50% HDI:

[-0.11, -0.02], η = .18) and the high noise group (contrast mean = -0.05, SD

= 0.066, 95% HDI = [-0.18, 0.07], 50% HDI: [-0.09, -0.00], η = .24), although

there was high uncertainty in the contrasts and the η value did not reach the
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criteria for a ‘highly probably’ effect. There was no evidence of a difference

between the low noise and high noise groups at baseline (contrast mean =

-0.01, SD = 0.06, 95% HDI = [-0.11, 0.13], 50% HDI: [-0.03, -0.04], η = .58).

Figure 4.4: Posterior estimates of the group mean probability of hitting the
targets as a function of noise group and trial block. Points show posterior
means and errors bars show the 50% HDI.

We also examined the difference between the groups, averaged over all the

noise blocks, and found no evidence of a difference between the no noise and

low noise groups (contrast mean = 0.00, SD = 0.05, 95% HDI = [-0.1, 0.10],

50% HDI: [-0.03, 0.4], η = .53). There was, however, a possible difference

between the no noise and high noise groups (contrast mean = 0.06, SD = 0.05,

95% HDI = [-0.04, 0.17], 50% HDI = [.02, 0.9], η = .88), as well as between
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Table 4.4: No Noise P(Hit) group. Contrasts between added noise trial blocks
and baseline.

Contrast: SV Mean SD 95% HDI 50% HDI η
Noise 1-50 :: BL 0.09 0.04 0.02, 0.16 0.07, 0.11 > .99
Noise 51-100 :: BL 0.13 0.04 0.05, 0.22 0.10, 0.16 > .99
Noise 101-150 :: BL 0.14 0.04 0.07, 0.21 0.12, 0.16 > .99
Noise 151-200 :: BL 0.17 0.05 0.08, 0.26 0.14, 0.20 > .99
Post-Noise :: BL 0.18 0.05 0.11, 0.27 0.16, 0.21 > .99

the low noise and high noise groups (contrast mean = 0.05, SD = 0.05, 95%

HDI = [-0.04, 0.16], 50% HDI: [-0.02, 0.9], η = .88). The differences in both

of these contrasts were centred around 0.05, although 12% of the contrast

distribution lay on the other side of zero, thus the η value did not reach the

level of a ‘highly probable’ difference.

We also examined how the probability of hitting the targets improved over

time. For the no noise group, the probability of hitting the targets clearly

improved compared to baseline over all the trial blocks with an increase of

around 1% over each block (see table 4.4 for contrasts). For the low noise

group, the difference between baseline and noise block was reliably detectable

by the 101-150 block (see table 4.5 for contrasts). For the high noise group, a

clear difference was observed by the final post-noise block (see table 4.6 for

contrasts).

4.3.2 Power analysis

The key finding was that strike velocity appeared to increase over time for

the high added noise group. The results also suggested that the low noise

group may have reduced their strike velocity over time, particularly between
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Table 4.5: Low Noise P(Hit) group. Contrasts between added noise trial
blocks and baseline.

Contrast: SV Mean SD 95% HDI 50% HDI η
Noise 1-50 :: BL 0.05 0.03 -0.01, 0.11 0.03, 0.08 .95
Noise 51-100 :: BL 0.04 0.04 -0.04, 0.12 0.02, 0.07 .85
Noise 101-150 :: BL 0.09 0.03 0.02, 0.15 0.07, 0.11 > .99
Noise 151-200 :: BL 0.11 0.04 0.03, 0.20 0.09, 0.14 > .99
Post-Noise :: BL 0.14 0.04 0.07, 0.21 0.12, 0.02 > .99

Table 4.6: High Noise P(Hit) group. Contrasts between added noise trial
blocks and baseline.

Contrast: SV Mean SD 95% HDI 50% HDI η
Noise 1-50 :: BL -0.02 0.03 -0.09, 0.04 -0.04, 0.00 .28
Noise 51-100 :: BL 0.02 0.04 -0.06, 0.10 -0.00, 0.05 .72
Noise 101-150 :: BL 0.04 0.03 -0.03, 0.10 0.01, 0.06 .87
Noise 151-200 :: BL 0.07 0.05 -0.03, 0.16 0.04, 0.10 .91
Post-Noise :: BL 0.11 0.04 0.03, 0.19 0.08, 0.01 > .99

the baseline and 51-100 trial block, but the η value for this contrast did not

reach the threshold for a ‘highly probable’ difference.

As in section 4.3.2 a Bayesian power analysis was conducted to test how

many participants would be needed to provide sufficient power to detect

the hypothesised difference between baseline and the 51-100 trial block for

the no-noise group. As in section 4.3.2 the mean of the marginal posterior

distributions over the model parameters was taken as our estimate of the true

effect. We then generated 5 data sets with N = 15 for each group (N = 30 in

total) and refit the model with each data set. A sample size of 15 was chosen

as this was a small increase from the sample size used in this study. As in

section 4.3.2, 4 out of 5 of the model fits returned η < 0.05. The maximum

likelihood estimate suggested that statistical power with N = 15 would be
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approximately 79% for this contrast.

4.4 Discussion

This experiment was designed to explore whether there was evidence for adults

using an OC strategy within the course of a short interceptive task. In order

to address this issue, we investigated whether external Gaussian noise would

cause predictable changes in the strike velocities selected by participants when

performing a one degree of freedom interception task. Participants completed

100 baseline trials with no added noise followed by experimental trials in

which different amounts of noise were added to the velocity of a puck that the

participants launched at a moving target. When no noise was added (no noise

group), participants may have reduced their speed between the pre-noise and

first block of added noise trials, but the contrasts did not reach the threshold

for a ‘highly probable’ difference. The probability of this group hitting the

target increased over the course of the experiment. When low noise was added

(low noise group) participants maintained a fairly constant strike velocity,

whilst also increasing their probability of hitting the targets across the blocks.

When high noise was added (high noise group), participants increased their

strike velocity, reaching a peak strike velocity by the third block of trials.

This group also increased their probability of hitting the targets over the

block. Contrasts suggested that the high noise group may have had a lower

probability of hitting the targets than the other groups (the contrast mean

suggested a difference of approximately 5%), but the η values did not reach

the criteria for a ‘highly probable’ difference.
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Overall these findings support the hypothesis that adults vary their move-

ment speeds in order to accommodate the effects of noise on their temporal

precision whilst maintaining energy efficiency, as predicted by OC. This com-

plements the finding that adults make faster movements when attempting to

hit faster or narrower targets (Tresilian & Houseman, 2005; Tresilian & Plooy,

2006). The present work extends previous observations by showing that the

system can use OC over a relatively short time period (i.e. the duration of

the experiment: ∼ 40min). This ability can help to explain the exquisite

levels of performance reached by skilled performers in tasks such as tennis.

It appears that more participants may have been required to confirm

that people reduce their strike velocity in the absence of added noise. This

would complement the findings and suggest that OC tailors behaviour over

a relatively short learning period. A Bayesian power analysis suggested

that 15 participants would provide approximately 79% power to detect the

hypothesised effect. It seems plausible that as participants became better

at the task with practise their temporal precision would have improved,

allowing them to reduce their strike velocities until precision was at the lowest

acceptable level. This strategy would allow energy costs to be minimised.

While the results lend support to this hypothesis a replication with a larger

sample size is required to confirm the effect.

The fact that participants showed behaviour consistent with an OC strat-

egy suggests that they were sensitive to the distribution of their temporal

errors, or a proxy of this variable (i.e. the proportion of targets they were

hitting). The mechanism that provided sensitivity to the prior performance

distribution is not addressed within the current study. One possibility is
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that the distribution is explicitly represented within the system, and this

representation is used to influence behaviour when precision decreases. An

alternative possibility is that the system was simply biased by the preceding

trial when a successful hit was made. The fact that faster movements increase

precision means that trials where the movement was faster than average would

have a greater probability of hitting the target. This bias would result in

faster movements being selected on average as there would be more preceding

trials associated with a fast movement than a slow one. The net result would

be an increase in fast movements over the course of the trials, but without

the system ever possessing an explicit representation of the distribution.

While there is a clear signal (missing the target) that can explain why the

system would select faster movements, it is less clear how the system would

sense that the faster movements had higher energy costs than necessitated by

the task constraints. It is possible that the pressure for selecting slower move-

ments comes from the increased possibility of implementing online feedback

corrections afforded by a decrease in speed. The potential for feedback correc-

tion is limited in fast interceptive timing actions but is nevertheless present.

The ability to slightly increase or decrease dampening through co-activation

of the arm’s muscles provides a means by which small adjustments in the

time of arrival of the arm might be made online. These online adjustments

might be of limited effectiveness but even small improvements could affect

performance and thus drive change in a system striving to find benefits at

the edge of performance capability. If this conjecture has any merit then it

suggests that the improvements in energy efficiency caused by the selection

of slower movements may be driven by the small enhancements in accuracy
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that can be obtained by decreasing movement speed when task constraints

allow. This would mean that a single variable (hitting performance) could

provide the necessary signal to drive the increases and decreases in movement

duration that underpin optimal control in interceptive timing behaviours.

It is also possible that the system is using simple heuristics in order to

optimise movement speed. For example, the adult system might have learned

over the preceding decades that optimality results from decreasing speed

when hitting targets and increasing speed when missing. The implementation

of such a heuristic could offer some advantages. One advantage of increasing

speed when missing targets is that the increased temporal precision might

make it easier to detect an error signal indicating systematic inaccuracy (van

Beers, 2012).

One strong test of the idea that adults are demonstrating OC within the

current experimental task would involve adding signal dependant noise to

the movements. This manipulation would allow the creation of an unnatural

situation where slow movements were associated with less variability than fast

movements in an interceptive task (to fast moving targets). Unfortunately

implementing such as task is difficult as the reduction in temporal variability

with increased movement speed is much greater than effect of adding signal

dependent noise, even when the noise increases exponentially. This is because

when moving at high speeds, even large errors in movement speed result in

very small deviations in movement time1. One way around this would be to

use an interceptive timing task in which the feedback provided to participants

1This is because the error in movement time (MTe) is given by MTe = D
Se

, where D is
the distance to move and Se is the error in movement speed.

93



is manipulated. This could be done by making the target disappear shortly

before it reaches the interception point (the spatial location at which the bat

could intercept the target) and then manipulating the position it reappears

at once the bat (or puck) also reaches the interception point. This would

allow for slow movements to be associated with less temporal variability. If

participants are as effective in using OC as the present experiments suggest,

then the results should show participants quickly learning to select slower

movements.

The time course of such action selection would be of great interest. On

the one hand, there is the possibility that the system has an inbuilt bias to

increase speed when a task’s temporal constraints become stricter or temporal

errors increase. This would suggest that it will take longer for participants

to reduce their movement speeds when better performance results from the

selection of slower movements. On the other hand, the rewards associated

with the selection of slower movements would include energy efficiency as well

as improved precision, and this dual benefit might drive the system to show

even faster adaptation than observed in the current experiment. It is always

possible, however, that these factors (an inbuilt bias and a shift in the relative

rewards) would counteract one another. These are empirical questions that

can nonetheless be addressed readily through a relatively simple adjustment

to the current experimental design.

In conclusion, we examined whether participants would show behaviour

consistent with OC during the performance of a simple interceptive timing

task. The task design allowed external noise to be added to the speed of a

puck. We found that participants increased their strike velocity when high
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levels of noise were added to the puck’s speed. These findings are consistent

with adults adopting an optimal control policy, so that participants maximised

the number of targets they hit whilst simultaneously minimising effort in

response to the exact requirements of the task.

This chapter and chapter 3 examined the mechanisms by which adults

achieve their amazing levels of temporal precision, a skill level that has

been well documented in the scientific literature (Brenner & Smeets, 2015b).

However, these abilities have not been well documented in children. The next

part of this thesis examines interceptive timing in children, beginning with an

examination of how the ability to precisely time interceptive actions develops

over childhood.
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Part II

Children
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Chapter 5

The development of

interceptive timing abilities

Chapter Abstract

Intercepting moving targets underpins a myriad of human activities, with

adults evidencing exquisite interceptive abilities. While interceptive timing

performance has been carefully documented in adults, the ontogeny of these

abilities in children remains unclear. Understanding the typical developmental

trends is useful as interceptive timing abilities may provide a marker of neuro-

developmental pathology in addition to providing insights into sensorimotor

development. We used a cross-sectional design to examine the development

of interceptive timing abilities in primary school children (aged 5-11 years; n

= 309) and adults (n = 22), using a striking task involving 54 moving virtual

targets. We manipulated task difficulty by altering target speed and width and

used a one degree-of-freedom manipulandum so we could isolate temporal error

from spatial inaccuracy. The results showed clear developmental trends with
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the probability of hitting the targets improving with age. This improvement in

performance was due to refinements in both accuracy (reduction in temporal

bias) and precision (less variability in the errors), but even the oldest children

were far from adult levels. Interestingly, accuracy was similar between the

adults and all other age groups when intercepting fast targets. However, for

the slow and medium speed targets there was a systematic bias to hit too

early, with the bias increasing in the younger age groups. The systematic bias

can be explained by the use of a ‘dumb but smart’ heuristic where perceptual

uncertainty is associated with fast approaching targets.

5.1 Introduction

The sensorimotor skill repertoire of humans is remarkable, both in terms

of the number of tasks that people are able to engage in and the incredible

levels of performance they demonstrate. The ability to hit fast moving targets

provides an exemplar of human sensorimotor abilities. Successfully striking

moving objects requires movements to be timed so that the intercepting

effector arrives at the same spatial location as the target at just the right

time. When objects are moving at high speed, the time window in which

the target object can be struck is often in the order of milliseconds. Thus

temporal errors in the range of tens of milliseconds can result in failure to

hit the target. Temporal errors over multiple trials can be described in terms

of temporal bias (accuracy) and variable errors (precision). Temporal bias

refers to systematic errors in the timing of movements (i.e. hitting too early

or late on average), while variable error refers to the precision in the timing
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errors over repeated trials (typically the standard deviation of the temporal

errors). To repeatedly hit moving objects people must therefore achieve both

low temporal bias and variable error (accuracy and precision).

The fact that human adults readily achieve this is remarkable given the

challenges associated with neural delays (Nijhawan, 2008) and noise in the

sensorimotor system (Faisal et al., 2008). Typical adults show incredible

interceptive timing abilities, hitting falling balls with a temporal standard

deviation (variable error) of ≈ 6ms (Brenner & Smeets, 2015b; Brenner et

al., 2012). This is particularly impressive given that adults show much larger

temporal standard deviation when performing other tasks (e.g. achieving a

standard deviation of only ≈ 20ms when gauging which of two visual targets

appears first (Brenner & Smeets, 2010)).

To study interceptive timing behaviours in adults, researchers have used

tasks in which the possible trajectory of the interception is restricted to a

single axis (1-DoF interceptive tasks). This allows temporal errors to be

isolated from errors in the spatial trajectory, since the presence of spatial error

makes it difficult to study timing behaviour in unconstrained interceptive

tasks. Thus, tasks that allow exploration of interceptive timing behaviour use

apparatus where targets move along a linear track and participants hit the

moving target with a ‘bat’ which can only move orthogonally to the target’s

track (Tresilian & Lonergan, 2002). The temporal difficulty of such tasks

can be controlled by manipulating the time window (the period in which an

interception can be made). The time window is a function of the width of the

target and the target’s velocity (if the size of the effector remains constant).

This form of task is required for investigating how timing abilities develop
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throughout childhood because the difficulty of the task can be parametrically

varied to make it suitable for different age groups. Unfortunately, there is

a dearth of research utilising such methodology with regard to interceptive

timing in children.

A number of studies have investigated how children’s catching abilities

change with age, and several standardised motor tests include such measures

as part of the assessment battery (e.g. Movement Assessment Battery for

Children, Henderson and Sugden (1992)). These tasks reveal clear improve-

ments in performance as children get older. However, the complexity of the

catching task (involving a number of skilled components including spatial

coordination) does not allow one to draw inferences about the ability of

children to intercept moving targets as a function of age. The only relevant

timing data that has been collected with children comprise of coincidence-

anticipation tasks (Haywood, 1980). Coincidence-anticipation tasks involve

participants viewing a linear track of equally spaced LEDs which illuminate

sequentially. Participants attempt to press a button to coincide with the

last illuminated LED, and the time between the button press and the LED

illumination provides a measure of timing ability. In one such study it was

reported that coincidence timing performance reached adult-like levels by

approximately 11-13 years (Haywood, 1980). However, this task does not

require participants to take account of the time it takes them to make a

movement, and requires estimates of the target’s time to arrival (TTA) to

be made over a much shorter time duration than in a true interceptive task,

where movements must be initiated while the target is further away from the

planned interception point. In another study, Kim, Nauhaus, Glazek, Young,
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and Lin (2013) used a coincidence timing task to explore aiming movements.

Kim et al. found that variable errors were higher in 14-16 year olds than

17-18 year olds. Unfortunately, it is impossible to determine whether the

poorer performance in the younger age group was due to differences in the

timing judgements or the control of the aiming movements. Thus, there

currently appears to be no reliable data showing how interceptive timing

abilities change over childhood.

In order to shed light on the ontogeny of interceptive timing, we developed

a 1-DoF interceptive timing task in which participants hit virtual moving

targets by controlling an on-screen bat via a custom-built manipulandum.

The task involved hitting a series of targets of varying difficulty (three

speeds and three target widths) so the same task could be used to measure

interceptive timing abilities in young children (ages 5-11 years) and an adult

comparison group. A Bayesian model was developed which related temporal

bias and variable errors to the probability of hitting the target (P-Hit),

which provided a simple measure of performance. We were first interested in

documenting how P-Hit changed as a function of age and whether adult levels

of performance were reached by 11 years. We also examined whether changes

in P-Hit were related to refinements in the precision of the movements (low

variable error), in accuracy (low temporal bias), or both. Adults show smaller

temporal errors (better precision) when the time window is shorter (when

hitting small or fast targets) (Tresilian & Houseman, 2005; Tresilian & Plooy,

2006) which they achieve by making faster, briefer movements. We therefore

examined movement time (MT ) to examine whether children also exploit

this relationship to reduce variable errors when the time window is shorter.
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5.2 Methods

5.2.1 Participants

Participants were recruited from a state primary school in Bradford, West

Yorkshire, UK. There were 368 children in UK school years 1 to 6 (aged 5-11

years) at the time of testing. All children were invited to take part in the

study. The children completed two test sessions in which they completed

a range of motor and cognitive tasks. All sensorimotor tasks took place in

the first session. Ethical approval was obtained from the University of Leeds

Ethics and Research committee.

From the 368 children at the school, 309 full data sets were included in the

data analysis. Eleven children were removed from the 368 because they were

classed as having special education needs (SEN) by the school. Twenty-nine

were excluded because the experimenter recorded that they did not complete

one or more tasks. Fourteen were excluded because they did not provide data

on the interception task and five did not provide data on postural control.

An adult comparison group (n = 22; 15 Female; Mean Age = 24.76 years,

SD Age = 4.70 ) was also recruited from the University of Leeds.

5.2.2 Task

Children completed a computer based interception task in which they hit

moving targets by controlling a custom-made 1-DoF joystick (see figure 5.1).

The joystick was placed next to a horizontally positioned BenQ XL2720Z

LCD gaming display (Resolution: 1920×1080, size: 548×642mm, brightness:
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300cd m−2, refresh rate: 144Hz). The position of the joystick was represented

on screen by a black rectangular ‘bat’ (dimensions: 10 × 15mm) that was

always in line with the joystick. All stimuli were generated using Python

2.7.9 using open source libraries.

Figure 5.1: A) The experimental setup: children viewed a horizontally oriented
monitor while controlling an onscreen ‘bat’ via a 1-DoF manipulandum (placed
on the left of the display for left handed participants with stimuli reversed).
B) A schematic of the experimental display. Targets moved from left to right
across the screen. Participants were instructed to hit the target from beneath.
C) Possible outcomes. In the upper pane the participant has arrived too early.
In the middle the participant successfully hit the target on its underside. In
the lower pane the participant was too late.

All coordinates are given in millimetres, with the origin of coordinate

system at the bottom left of the screen. A ‘start box’ appeared on screen at

the start of every trial and the participant was instructed to place the bat

within it (coordinates [570, 20mm]; coordinate origin at top left of screen).

A black target (height: 15mm) then appeared at the left hand side of the

screen (coordinates [0,150mm] (for left handed participants the apparatus

and stimuli were reversed, with the manipulandum placed on the left side

of the screen). After a delay drawn from a uniform distribution U(0.25,
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3.0s) the target moved from left to right at a constant speed. The centre

of the target passed in front of the centre of the bat after moving 570mm.

The children were instructed to hit the target with the bat. The target was

successfully hit if the upper edge of the bat collided with the lower edge of the

target (see figure 5.1). The target then stopped moving, turned red and span

before disappearing, thereby providing motivating animated feedback for the

children (the children enjoyed ‘playing the game’). If the bat passed in front

of the target’s horizontal path the target immediately stopped moving and

then remained on screen for 1 second. Thus, participants could not simply

move the bat in front of the target’s path and wait for the target. If the bat

crossed the target’s path after the target had moved too far to be struck then

the target stopped and remained visible for 1 second. The position of the bat

and target was timestamped and saved to disk at 144Hz. The bat’s positional

data were filtered using a low pass second order zero-lag Butterworth filter

with a cut off frequency of 10Hz. Spline interpolation was used to estimate

the time at which the bat reached the interception point. The total number

of targets hit by each participant provided our measure of interceptive timing

ability which is referred to as IntT.

Children performed 54 trials in which the target speed (250mm s−1,

400mm s−1, 550mm s−1) and target width (30mm, 40mm, 50mm) varied (9

trial types x 6). Each target type was presented in a block of 3 trials, with 2

blocks for each trial type. The blocks were pseudorandomly ordered with the

constraint that two blocks of the same kind could not occur sequentially. All

participants experienced an identical sequence of blocks. The order of the

targets (by speed and width) is given in table 5.1. This was done to make it
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Table 5.1: Sequence of target type blocks experienced by all participants.
Participants attempted to hit three targets of the same type within each
block.

Block Target Speed (mm s−1) Target width (mm)
1 250 40
2 250 30
3 250 40
4 400 30
5 400 40
6 400 50
7 400 30
8 550 30
9 400 40
10 250 50
11 550 50
12 400 50
13 550 40
14 250 30
15 550 50
16 550 30
17 550 40
18 250 50

easier to compare children’s performance in later chapters, but means that

order effects may not be accounted for in the data analysis.

5.2.3 Data analysis and measures

We were interested in the probability of hitting the target (P-Hit), the temporal

bias (accuracy) and the variable errors (precision) of the movements. P-Hit,

temporal bias and variable errors can be estimated from the participant’s

temporal errors (TE). TEs describe how early or late a movement was (negative

values mean the bat arrived at the interceptive point too early), and is
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calculated as

TE = Targetcenter − Batcenter

Targetspeed
(5.1)

where the numerator provides the spatial distance (along the x-axis) between

the target and the bat, at the point in time at which the upper edge of the

bat shares the same y coordinate as the lower edge of the target (the point

at which an interception could have taken place). We were also interested

in the movement time (MT ), defined as the time at which the bat’s velocity

exceeded 40mm s−1 until the point at which the bat reached the interceptive

point. Finally we also examined the movement initiation time (IT ), defined

as the time delay between the target starting to move and the participant

initiating their movement, in seconds.

5.2.4 Temporal error model (bias and variable error)

A Bayesian multilevel model was used to model the TE data. The model

provided estimates of P-Hit, temporal bias and variable error. Each temporal

error (yi) was modelled as belonging to participant p. Each participant had a

vector of regression coefficients βp which determined their temporal bias for

each of the target widths and speed. The likelihood function for datum yi

was given by:

µi = xiβp[i] (5.2)

yi = Student’s t(νag[i],w[i],s[i], µi, σag[i],w[i],s[i]) (5.3)
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where xi is a row vector specifying the target’s width and speed on the

ith trial. Thus µi gives the temporal bias of participant p for the target

width and speed that was encountered on the ith trial. Each participant’s

vector of regression coefficients (βp) was distributed by a multivariate normal

distribution,

βp ∼ MultiNormal(Mg[p],Σ) (5.4)

where Mg[p] is the mean vector for the group g to which participant p belongs.

The covariance matrix Σ was specified as

τk ∼ Cauchy+(0, 2.5), k ∈ 1 : K (5.5)

Ω ∼ LKJCorr(2) (5.6)

Σ = diag matrix(τ)Ωdiag matrix(τ) (5.7)

where K is the number of regression coefficients. This formulation allows

the prior over Σ to be specified as a correlation matrix (Ω) and vector of

scale parameters (τ). The prior distribution over the correlation matrix

(LKJCorr) is defined in the Stan user manual (Manual, 2013).

The degrees of freedom and scale parameters for the ith data point

(equation 5.3) depended on the age group, target width and target speed of

the ith trial (ag[i], w[i], s[i] respectively). The scale parameter provided our

measure of the variable error.

The bias and variable error parameters (µ and σ) in the model can be
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combined to provide an estimate of the probability of hitting the target

(P-Hit) as a function of age group, target width and target speed. The time

window (TW ) defines the duration of time in which the target can be struck.

Multiplying this quantity by 0.5 yields the upper and lower TEs that will still

result in the target being struck (TW0.5), and is given by,

TW0.5 = ±0.5× Targetwidth − Batwidth

Targetspeed
(5.8)

On any given trial, the TE and TW determined whether a target was hit

or not. The probability of hitting the ith target given its width and speed is

provided by the following equation:

P-Hiti = P (yi ≤ −TW0.5|µi, σag[i],w[i],s[i], νag[i],w[i],s[i])

−P (yi ≤ +TW0.5|µi, σag[i],w[i],s[i], νag[i],w[i],s[i]) (5.9)

The major benefit of estimating P-Hit this way over other modelling

approaches (e.g. logistic regression) is that changes in P-Hit between age

groups, target widths and target speeds can be attributed to changes in

temporal bias and variable error.

Initiation time model

Exactly the same model was used to model the IT data as the TE data.
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5.2.5 Movement time model

The same model was used for MT except that a lognormal distribution

replaced the student’s t distribution because MT was always positive and

could have positive tails (the parameter ν was dropped from the model). The

mean and standard deviation were then calculated as,

MTmean = eµ+σ2
2 (5.10)

MTSD =
√

(eσ2 − 1)e2µ+σ2 (5.11)

Bayes’ rule was used to estimate the credible values of the model parame-

ters (θ) given the data. A representative sample was drawn from the posterior

using the ‘No-U-Turn sampler’ (Hoffman & Gelman, 2011) implemented in

PyStan 2.12. Four chains were started at random values of θ, taking 2500

warmup iterations followed by 2500 samples each. Convergence was assessed

by visually examining the chains. All R̂ values were below 1.1.

5.3 Results

We report the model’s marginal posterior distributions over group level

parameters unless otherwise stated. Marginal posterior distributions are

plotted with points showing the mean of the distribution while error bars

denote the 95% highest probable density (HDI). For a unimodal distribution

of mass M, the HDI is the narrowest possible interval of M (Kruschke, 2015).
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The 95% HDI is the interval in which there is 95% probability that the true

parameter value falls.

5.3.1 Probability of hitting the targets as a function of

age

P-Hit (the estimated probability of hitting the target) provides a measure

of interceptive timing ability. Figure 5.2A shows the posterior mean and

95% HDI for the probability of hitting the target as a function of age group,

averaged over all target widths and speeds. P-Hit was lowest in the youngest

age group (< 6 years) with a posterior mean of 38% (SD = 0.012, 95% HDI

= [.366, .390]) and reached 60% (SD = 0.014, 95% HDI = [.580, .628]) in

the oldest children (10+ years old). In contrast, the adults performed much

better, with a posterior mean P-Hit of 87% percent (posterior SD = 0.011,

95% HDI = [.854. .897]), indicating that the oldest children tested were far

from adult performance levels, hitting 27% percent (posterior SD = 0.017,

95% HDI = [.237, .307]) fewer targets.
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Figure 5.2: A)P-Hit (Probability of hitting the target), B) Temporal Bias
and C) Temporal Variable Errors as a function of age group, averaged over
all target widths and speeds. Black points show posterior mean. Error bars
show the 95% HDI. Red points show the data means for the P-Hit metric.
These are not shown for the bias or variable error metric.

5.3.2 Temporal bias and variable error as a function of

age

Figure 5.2B and 5.2C reveal that changes in P-Hit were due to both a

reduction in temporal bias and variable errors with increasing age groups. All

the children tended to hit early with this bias decreasing until the 8-9 year old

age group. The adult group were the only group who showed near zero bias

(posterior mean = -0.004, SD = 0.006, 95% HDI = [-0.002, 0.01]). Variable

errors also appeared to decrease across the age groups, with the largest

decrease between consecutive year groups (in the children) seen between the

< 6 and 6-7 years age groups (contrast mean = -0.02, contrast SD = 0.003,

95% HDI = [-0.023, -0.019]) and smaller differences seen thereafter (mean

difference ≈ −0.003). Again the adults showed much lower variable errors

than even the oldest age group of children (contrast mean = 0.024, contrast
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SD = 0.002, 95% HDI = [-0.025, -0.023]).

5.3.3 P-Hit as a function of age group, target width

and speed

To test whether changes in P-Hit with age group depended on the target’s

width and speed (i.e. whether certain targets are better able to discriminate

between certain age groups) P-Hit was examined across the age groups as a

function of target width and target speed (see figure 5.3). The fastest targets

(right panels in figure 5.3) revealed approximately linear increases in P-Hit

across consecutive age groups for the children (increasing by approximately

3% with each age group) which was consistent across the three target widths.

In contrast, the slowest targets revealed a different pattern, with much larger

differences in P-Hit between the youngest age groups. For example, in

the 250mm s−1, 30mm target, P-Hit increased by approximately 10% for

each consecutive age group, until age group 8-9 years, beyond which no

improvements were seen in the children. However, the adult group still hit

32% (posterior SD = 3.68, 95% HDI = [30.4, 35.9]) more targets than even

the oldest children. This general trend was also seen for the other target

widths, with the largest increase in P-Hit found between the youngest age

groups and smaller differences found thereafter (for the child age groups).

The effect of target width on P-Hit was then examined as a function of

age group and target speed. To keep the number of contrasts performed to a

manageable number P-Hit was compared between the widest (50mm) and

narrowest (30mm) targets, for every age group and target speed. As expected
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P-Hit was considerably higher when hitting the wider targets irrespective of

age group and target speed (see figure 5.4; values are all positive indicating

higher P-Hit on widest target). Thus performance was better on the widest

targets than the narrowest, regardless of age group, with the adults showing

increases in P-Hit across the two widths of approximately the same magnitude

as the children.

The effect of target speed on P-Hit was also examined as a function of

age group and target width. Contrasts between the slowest (250mm s−1) and

fastest (550mm s−1) targets (figure 5.5) revealed that P-Hit was higher for

the slowest targets in the adults and for most of the children (as indicated by

positive values), with a few notable exceptions. First, the youngest group (< 6

years old) showed no advantage in P-Hit for the slowest target when they were

30mm and 50mm wide (95% HDI spanned zero), and actually showed worse

performance on the slowest target when the target was 40mm wide (indicated

by a negative value). Three other age groups (6-7, 9-10, 10+) showed no

difference in P-hit with target speed when striking the 40mm target. Notably,

while P-Hit was higher for the slowest target for the remaining group, the

magnitude of the difference in P-Hit was smaller for the 40mm targets for

all the children age groups. This appeared to be because P-Hit was lower

for the 250mm s−1 40mm target than for the 550mm s−1 40mm target. While

this result was not expected it was likely because of a practice effect, as the

former target appeared at the start of the sequence of targets (see table 5.1).
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Figure 5.3: P-Hit as a function of age group, target width (rows) and speed
(columns). Black points show posterior means. Errors bars show 95% HDI.
Red points show the data means for the P-Hit metric. These are not shown
for the bias or variable error metric.
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Figure 5.4: P-Hit contrasts: Width. Magnitude of the difference in P-Hit
between the widest (50mm) and narrowest (30mm) targets for every age
group (columns) and target speed (x-axis). Positive values indicate that P-Hit
was higher on the widest target. Points show the posterior mean. Error bars
show the 95% HDI.

Figure 5.5: P-Hit Contrasts: Speed. Magnitude of the difference in P-Hit
between the fastest (550mm/s) and slowest (250mm/s) target speed for every
age group (columns) and target speed (x-axis). Positive values indicate that
P-Hit was higher for the slowest target. Points show posterior mean. Error
bars show the 95% HDI.
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5.3.4 Temporal bias as a function of age group, target

width and speed

Temporal bias was examined to see whether age related changes in temporal

bias could account for changes observed in P-Hit. Temporal bias was examined

as a function of age group, target width and target speed (see figure 5.6).

Contrasts between the widest and narrowest targets for all age groups and

target speeds (see figure 5.7) did not reveal a clear effect of target width on

temporal bias, regardless of age group or target speed.

For the younger age groups there was a tendency to strike ahead of the

slowest target (indicated by the large negative values in figure 5.6). This was

confirmed by contrasts between the fastest and slowest targets (see figure

5.8). This tendency reduced across the subsequent age groups. However, only

the adults showed no difference in bias between the fast and slow targets

(they showed zero bias for all target types). Again figure 5.8 revealed a

tendency for the magnitude of the difference between the fastest and slowest

target to be greater (more negative) for the 40mm targets than the other

target widths. This was because participants tended to hit too early on the

250mm s−1 40mm target (they also hit this target less; see above). Similar to

the pattern observed in P-Hit this was likely due to this target type appearing

early in the sequence of targets.
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Figure 5.6: Temporal Bias (mean temporal error) as a function of age group,
target speed (columns) and target width (rows). Dashed lines indicate perfect
accuracy. Points show the posterior mean. Error bars show the 95% HDI
(unless smaller than the symbol size).
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Figure 5.7: Bias (mean temporal error) contrasts: Width. Magnitude of the
difference in temporal bias between the widest (50mm) and narrowest (30mm)
targets for every age group (columns) and target speed (x-axis). Positive
values indicate that accuracy was higher for the widest target. Points show
the posterior mean. Error bars show the 95% HDI.

Figure 5.8: Bias (mean temporal error) contrasts: Speed. Magnitude of the
difference in temporal between the fastest (550mm/s) and slowest (250mm/s)
target speed for every age group (columns) and target speed (x-axis). Negative
values indicate that participants were striking early for the slowest target
relative to the fastest. Points show posterior mean. Error bars show the 95%
HDI.
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5.3.5 Variable errors as a function of age group, target

width and speed

Variable error was examined to see whether precision could also account for

changes in P-Hit (see figure 5.9). We were also interested in whether variable

error would change as a function of the temporal window (lower variable error

on narrower and faster targets). It was clear that variable errors decreased

with age group for all the target widths and speeds, although the adult group

showed lower variable errors than the child age groups. Contrasts between

the widest and narrowest targets did not reveal an effect of target width

on variable errors regardless of age group or target speed (see figure 5.10).

However, target speed did appear to effect variable errors as revealed by

contrasts between the fastest and slowest targets (see figure 5.11). Variable

errors were smaller when intercepting the fastest target, and the magnitude of

the difference between the fastest and slowest target was similar across all age

groups, including the adult group. There was a trend for the contrast between

the fastest and slowest target speed to reveal a difference of a larger magnitude

for the 40mm target than the other target widths. As with the P-Hit and

temporal bias, this was likely due to a practice effect, with variable errors

being particularly large for the 40mm, 250mm s−1 target which appeared

early in the target presentation sequence (see table 5.1).
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Figure 5.9: Variable Error as a function of age group, target speed (columns)
and target width (rows). Points show the posterior mean. Error bars show
the 95% HDI (unless smaller than the symbol size).
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Figure 5.10: Variable Error contrasts: Width. Magnitude of the difference
in variable error between the widest (50mm) and narrowest (30mm) targets
for every age group (columns) and target speed (x-axis). Positive values
indicate that variable errors were larger for the widest target. Points show
the posterior mean. Error bars show the 95% HDI.

Figure 5.11: Variable error contrasts: Speed. Magnitude of the difference in
variable error between the fastest (550mm/s) and slowest (250mm/s) target
speed for every age group (columns) and target speed (x-axis). Positive values
indicate that variable error was greater for the slowest target. Points show
posterior mean. Error bars show the 95% HDI.
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5.3.6 Movement time (MT)

Given that variable errors appeared to reduce with target speed but not target

width we explored whether these changes could be attributed to differences in

MT, as briefer movements are associated with lower variable error (Tresilian,

2012). MT generally remained constant across target widths and this was

confirmed by examining the difference between the widest and narrowest

target at each target speed (see figure 5.12). However there were a few

exceptions, with certain contrasts excluding zero for the < 6, 6-7 and 9-10

years age groups. There was not a clear pattern to the results and the values

suggested that MT was actually longer for the narrowest targets in these

cases.

Figure 5.12: MT contrasts: Width. Magnitude of the difference in MT
between the widest (50mm) and narrowest (30mm) targets for every age
group (columns) and target speed (x-axis). Positive values indicate that MT
was longer for the widest target. Points show the posterior mean. Error bars
show the 95% HDI.

In line with Tresilian and Houseman (2005) MT decreased with target

speed as shown in figure 5.13. The magnitude of the difference between the
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fastest and slowest target was roughly the same across target widths but

showed some variation between the age groups.

Figure 5.13: MT contrasts: Speed. Magnitude of the difference in MT between
the fastest (550mm/s) and slowest (250mm/s) target speed for every age
group (columns) and target speed (x-axis). Positive values indicate that MT
was longer for the slowest target. Points show posterior mean. Error bars
show the 95% HDI.

5.3.7 Initiation time as a function of age group, target

width and speed

Initiation time was examined to see if systematic differences in the time of

movement initiation would exist between age groups. It may be that the

younger children showed a larger temporal bias (see figure 5.6) because they

simply triggered their movements as soon as they perceived the target moving.

Figure 5.14 suggests that this wasn’t the case, with no clear differences

between age groups in terms of initiation time. It is clear from figure 5.16

that initiation times were earlier in the target’s motion when the target was

faster, as would be expected as the target actually moved for less time (all
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targets moved a fixed distance). This was confirmed by contrasts in figure

5.16. Initiation time appeared to vary across target widths for the youngest

two age groups (¡6 years and 6-7 years), as well as the 9-10 years age group.

Figure 5.14: Initiation time as a function of age group, target speed (columns)
and target width (rows). Points show the posterior mean. Error bars show
the 95% HDI (unless smaller than the symbol size).
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Figure 5.15: Initiation time contrasts: Width. Magnitude of the difference in
initiation time between the widest (50mm) and narrowest (30mm) targets
for every age group (columns) and target speed (x-axis). Points show the
posterior mean. Error bars show the 95% HDI.

Figure 5.16: Initiation time contrasts: Speed. Magnitude of the difference in
initiation time between the fastest (550mm/s) and slowest (250mm/s) target
speed for every age group (columns) and target speed (x-axis).Points show
posterior mean. Error bars show the 95% HDI..
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5.3.8 Controlling for trial order

It is clear from figure 5.3 that performance was generally poorer on the

250mm s−1 - 40mm target than for the faster targets of the same width. This

pattern of results is evident in the P-Hit speed contrasts (see figure 5.5),

resulting in lower values for the 40mm contrasts than for the 30mm and

50mm contrast. This was almost certainly due to the order of the target

blocks with all the 250mm s−1 - 40mm targets appearing within the first three

blocks. To attempt to control for this the model was refit with block number

as a predictor. The P-Hit speed contrasts when controlling for trial block

are shown in figure 5.17. It is clear that the statistical model was unable to

account for the bias caused by the order effects. This may be because both

blocks of the 250mm s−1 - 40mm targets appeared early in the trial sequence.

Performance improved rapidly over these trials so it may be difficult from a

statistical perspective to discriminate between learning to perform the task

per se, or just performing poorly on these early target types.
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Figure 5.17: P-Hit Contrasts: Speed - controlling for trial block. Magnitude of
the difference in P-Hit between the fastest (550mm/s) and slowest (250mm/s)
target speed for every age group (columns) and target speed (x-axis). Positive
values indicate that P-Hit was higher for the slowest target. Points show
posterior mean. Error bars show the 95% HDI.

5.4 Discussion

In this experiment we explored how performance on an interceptive timing task

varied over a cross-section of primary school children (ages 5-11 years) and an

adult comparison group. We also examined whether changes in the probability

of hitting the targets (P-Hit) were due to changes in temporal bias (accuracy),

variable error (precision), or both. The data showed clear developmental

trends with P-Hit improving gradually with age group. Nevertheless, the

adults showed superior performance to even the oldest children. This contrasts

with studies employing coincidence-anticipation timing tasks, which have

reported that coincidence timing reaches adult levels by 11 years (Haywood,

1980). Thus, the present data provides the first definitive demonstration that

interceptive timing abilities are not fully developed by 11 years of age. The
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data revealed that both bias and variable error reduced over childhood. This

suggests that as children become older they become better able to time their

actions in response to perceptual input, and develop an improved ability to

generate the necessary motor actions in a reliable manner.

Many of the tasks used to measure interceptive timing abilities in children

(i.e. the MABC-2) use different tests for different age groups to avoid ceiling

and floor effects, making it difficult to compare across age groups. However, the

interceptive timing task created for our experiment worked well. By carefully

selecting the range of target widths and speeds, the task was designed to allow

the same measure to be used with both young children and adults. The task

successfully differentiated adults from the youngest children, but provided

a challenge for the adults (who only hit 88% of the targets), whilst pitched

at a level that allowed the youngest children to succeed (hitting 38% of the

targets on average).

Unsurprisingly, the probability of hitting the targets (P-Hit) was greater

for wider targets, and this pattern of results was seen for all age groups

including the adults. The probability of hitting the target showed a more

complex relationship with target speed, which varied as a function of age.

For the adults and the older children (with a few exceptions), the probability

of hitting the target was higher for slower targets. Surprisingly, the youngest

children (ages < 6 years) did not have a higher probability of hitting the

slower targets. The reason for this appears to be that the younger children

showed a large bias to hit ahead of the slowest target, and a similar but smaller

bias was found for the medium speed targets. This bias to hit slower targets

earlier than the fastest target was seen in all the age groups except the adults,
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but the magnitude of the effect decreased with age (i.e. the oldest children

showed a very small bias). This finding is consistent with previous reports

of children responding early to slow targets in coincidence-anticipation tasks

(Benguigui, Broderick, Baurès, & Amorim, 2008), and adults striking targets

early even when there is only one target speed (Brenner, Cañal-Bruland, &

van Beers, 2013).

The results raise the issue of why there was a bias to hit slower moving

targets early relative to faster ones. Optimal performance on our task involves

participants detecting the perceptual information specifying the TTA of the

approaching target at the interception point, and using this information to

time their movements. From this perspective, sensorimotor learning describes

the process in which humans become ‘tuned’ to the sensory invariants that

link stimuli to optimal action selection. It seems reasonable to suggest that

this ability will improve over childhood - and indeed the present data indicate

that this is the case. It is probable, however, that the noise inherent in the

stimulus will lead to uncertainty about the TTA on a number of trials. In this

situation (i.e. when perceptual uncertainty exists), participants might use a

simple heuristic to time their response. One heuristic would be to assume

that the object is approaching quickly. Indeed, Rushton and Wann (1999)

have shown previously that adults have a bias towards the earliest estimate

of TTA when TTA information is available from multiple sensory cues. This

heuristic is sensible because the perceptual information associated with faster

moving targets will typically be associated with more uncertainty, and in

many interceptive timing tasks it is better to be early than late. This heuristic

would serve the participants well when faced with fast moving targets, but
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would lead to systematic biases with slower targets. Furthermore, children’s

interceptive behaviours may be more influenced by the use of such a heuristic

than adults, assuming they are less able to accurately predict the TTA of

the target. Indeed, the bias towards hitting the slow targets early (relative

to the fast targets) was most apparent in the youngest children and then

steadily decreased until it was only just evident within the adult group. Most

notably, the youngest group of children showed the greatest effect even when

the largest target moved at the slowest speed. These results suggest that

the youngest children have difficulty in using sensory information to provide

reliable estimates of the TTA of an approaching target, and have an intrinsic

bias to assume that targets are approaching quickly. This can explain the

otherwise counter intuitive finding that the youngest group of children showed

the same levels of performance for the fast targets as for the slow ones.

The data also showed that temporal precision (lower variable error) was

better in the older age groups, and for faster targets. The increased precision

with target speed can be explained by the decreased movement duration

observed with faster targets. It has been shown that there is lower temporal

variability associated with faster movements (Brouwer et al., 2002; Tresilian

& Plooy, 2006). The data also showed that accuracy and precision did not

vary with target width for any of the age groups, including the adults. This

contrasts with previous studies where it was found that movement time

decreased (and thus precision increased) with smaller targets (Tresilian &

Houseman, 2005). The difference between studies might be due to smaller

changes in width within the present study or the smaller number of trials

(Tresilian & Houseman, 2005). Thus it may be that more trials are required
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for participants to optimally tailor their MT to smaller changes in target

width.

One limitation of the current study is that performance was worse for the

middle sized, slowest speed target. As this target type appeared at the start

of the sequence of targets this pattern of results was probably due to learning

over the course of the experiment. The same fixed order of target presentation

was used across all of the participants. This design ensured that we could

compare between individuals (see chapters 6 and 7) and age groups. It did

mean, however, that the early trials were subject to initial improvements in

performance as the participants became increasingly familiar with the task.

These data establish for the first time that children continue to develop

their interceptive timing capabilities beyond 11 years of age, given that

performance was far from adult levels by this age. The improvements in

performance on our interceptive timing task entailed reductions in both bias

and improvements in precision (smaller variable errors). Thus, childhood is

marked by an improved capacity to tailor actions to perceptual information

and a greater ability to reliably execute the motor responses. The present

study indicates that young children may rely on a simple heuristic whereby

the presence of perceptual uncertainty regarding a target’s TTA triggers

an earlier movement initiation. This heuristic created systematic errors

with slower targets but would have increased the probability of hitting the

faster targets (despite the reduced opportunity to use perceptual information

because of the shorter viewing window). The presence of such response biases

suggests a mechanism through which participants might increasingly tailor

their movements to the the task statistics. In the next chapter we move on
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to examine how the interceptive timing abilities documented in this chapter

relate to performance on other sensorimotor tasks.
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Chapter 6

Testing a common taxonomy of

motor skill in children

Chapter Abstract

Human development is characterised by the acquisition of a large repertoire

of sensorimotor abilities. Children progressively learn to crawl, stand and

walk over their first few years of life, while also developing the ability to

grasp and dexterously manipulate objects. This skill repertoire develops over

childhood, both in terms of the number of sensorimotor tasks that children

can engage in and also the proficiency with which children perform these

tasks. These skills are often subjected to a binary taxonomic scheme in which

they are classified as being either ‘fine’ (e.g. writing, grasping) or ‘gross’ (e.g.

standing, walking etc). One difficulty with classifying actions in this manner

is that many behaviours do not fall neatly within one or the other domain.

For example, catching a ball can require both gross movements of the torso

and fine coordination of the hands. Thus it may be useful to classify tasks
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into a larger number of more specific categories. It may be that interceptive

timing tasks (e.g. hitting, catching) tap into children’s ability to predict target

motion, providing additional information regarding a child’s ‘sensorimotor

status’ beyond that provided by typical ‘fine’ and ‘gross’ motor tasks (i.e.

task not involving moving objects). We took three canonical measures of skill

within these domains and obtained precise and accurate objective measures of

children completing these actions (n = 309). We explored the child’s ability

to: (i) manipulate a hand held stylus when interacting with visual stimuli;

(ii) maintain posture with eyes open and closed; (iii) intercept moving targets.

Bayesian analysis indicated that it is meaningful to consider these actions

as falling within different categories, though the number of useful domains

and taxonomic ranks for classifying motor skills remains to be determined.

The results suggest that measures of interceptive timing ability provide a

useful measure of ‘sensorimotor status’ when used alongside ‘fine’ and ‘gross’

measures.

6.1 Introduction

There is a bewildering array of skilled behaviours evidenced by adult humans.

Humans are able to perform tasks as diverse as controlling vehicles, preparing

food, and performing laparoscopic surgery. Even young children show sensori-

motor behaviours several orders of magnitude more sophisticated than those

currently achieved at the frontiers of robotics, both in terms of the number

of tasks they can perform and the proficiency with which they do so. The

sheer number of motor tasks in which humans engage makes it difficult to
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catalogue the specific skills found across and within cultures throughout the

world. Yet developing a taxonomy of sensorimotor abilities is of substantial

importance to behavioural scientists and clinicians alike. Researchers often

address hypotheses pertaining to broad sensorimotor constructs using only

a single task, while clinicians attempt to obtain measures of an individual’s

sensorimotor ‘status’ using a handful of tasks. Thus understanding how

sensorimotor skills relate to one another is of huge practical importance.

As the idea of a ‘general intelligence’ flourished at the start of the 20th

century, researchers began to posit the existence of an analogous ‘general

motor’ ability which underpins performance across a wide range of tasks

(Brace, 1927; McCloy, 1934). This hypothesis was later challenged (Bachman,

1961), yet the literature still often groups performance on different motor tasks

under broad categories of abilities. One commonly deployed scheme categorises

motor skills as being either ‘fine’ or ‘gross’ in nature. Skills classified as being

‘fine motor’ generally involve dexterous manual manipulation whilst ‘gross

motor’ is typically used to describe actions involving movement of the torso

and locomotion (e.g. running, walking, standing).

There are some difficulties with such a taxonomic scheme. Flatters,

Mushtaq, Hill, Holt, et al. (2014) suggested that categorising motor tasks as

either ‘fine’ or ‘gross’ may not reflect the complexity of many tasks, as many

skilled behaviours require both fine and gross actions. For example, many

manual dexterity tasks require postural adjustments to be made, owing to the

consequent shifts in the centre of gravity following arm movements (Huang &

Brown, 2013; Thelen & Spencer, 1998). Indeed, postural stability is likely

to be a pre-requisite for obtaining reliable sensory information (holding the
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head steady so that clear and stable vision is available), information which

is vital for the performance of many manual dexterity tasks. In support of

this notion, it has been shown that individuals reduce their postural sway

when performing a precise manual task (Balasubramaniam, Riley, & Turvey,

2000), and the amount of observed sway varies with the spatial precision

requirements of the supra-postural task in both adults (Haddad, Ryu, Seaman,

& Ponto, 2010) and children (Flatters, Mushtaq, Hill, Rossiter, et al., 2014).

The interactions that must exist between postural and manual control suggest

that the development of these different skills will have a degree of synergy,

and thus skills in one domain will not be independent of skills in the other.

Nevertheless, there appears to be face validity in distinguishing between ‘fine’

and ‘gross’ skills as there are a number of tasks that involve control of the

torso but little involvement of the hands, and vice versa.

In order to test the empirical support for the binary classification scheme,

Flatters, Mushtaq, Hill, Holt, et al. (2014) tested a large sample of children on

a test of manual dexterity (Culmer et al., 2009) and a test of postural stability

(Flatters, Culmer, Holt, Wilkie, & Mon-Williams, 2014). Flatters, Mushtaq,

Hill, Holt, et al. (2014) found there were weak to moderate correlations

between the tests, supporting the idea that gross and fine motor abilities

have a degree of interdependence, but indicating that it is meaningful to

consider actions as falling within one or other category. Other lines of evidence

suggest that some children display poor abilities in either fine or gross motor

tasks (Zwicker, Missiuna, Harris, & Boyd, 2012), whilst a study employing

confirmatory factor analysis gave support to fine and gross motor abilities

reflecting at least partially separable constructs (Schulz et al., 2011). In
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summary, classifying tasks as being either gross or fine appears to have some

empirical support, although the two are at least partially related (Flatters,

Mushtaq, Hill, Holt, et al., 2014).

The usefulness of the binary classification scheme relates to the identifica-

tion of children with motor difficulties where the problems differentially affect

gross or fine motor skills. It is therefore unsurprising that the common binary

motor skill classification scheme is reflected in the design of standardised

tests of motor ability (Barnett et al., 2007). One of the most popular tools

for assessing motor skill in children is the Movement Assessment Battery for

Children -2 (MABC-2). First published in 1992, the original MABC was

developed from a Test of Motor Impairment. The test was designed to assess

the movement skills of children ages 4-12 years, with separate test items for

different age groups. While the items vary by age group they involve similar

skills. The MABC originally had 4 age groups, but this was reduced to three

in its successor, the MABC-2 (Barnett et al., 2007). The MABC / MABC-2

has generally been found to have good test-retest reliability, with Croce,

Horvat, and McCarthy (2001) reporting intra-class correlation coefficients of

0.92-0.98 depending on the age group being examined. Similarly high values

have been reported when examining children in Hong Kong (Chow, 2003).

In addition, it has been found that physiotherapists show high inter-rater

reliability, with kappa coefficients in the region of 0.99 to 1. In addition the

MABC-2 has been found to be responsive to physical therapy interventions in

children with developmental coordination disorder (Wuang, Su, & Su, 2012).

The MABC-2 groups actions into ‘manual dexterity’, ‘static and dynamic

balance’ and ‘ball skills’. The division of tasks into these categories was justi-
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fied initially on the basis of subjective “common sense and clinical experience”

(Henderson & Barnett, 1998), and there was only limited empirical evidence

to support such a classification (Schulz et al., 2011). The work of Flatters,

Mushtaq, Hill, Holt, et al. (2014), however, provides some support for this

division, with the ‘manual dexterity’ section of the MABC-2 capturing ‘fine’

motor abilities and the ‘static and dynamic balance’ tasks reflecting ‘gross’

motor performance.

There is less empirical support for a separate category of ‘ball skills’

within standardised assessment batteries. For example, the MABC-2 has

a ball skill section which includes tasks involving bouncing and catching a

ball, or throwing a ball against a wall and catching it (the task varying as

a function of age group). The difficulty is that such tasks have concurrent

demands on other postulated categories of movement (i.e. ‘gross’ and ‘fine’).

Many catching tasks involve complex coordination of the head, neck, trunk,

arms and legs, and may require locomotion to a position from which the

target can be caught (McLeod & Dienes, 1996). In addition, rapid arm

movements require prospective and reactive adjustments in posture (Van

Der Fits, Klip, Van Eykern, & Hadders-Algra, 1998), and thus poor posture

may limit catching performance. In support of this notion, it has been found

that children who lag behind their peers in terms of catching performance

can show significant improvements in catching ability when provided with

external postural support (Savelsbergh, Bennett, Angelakopoulos, & Davids,

2005). In addition, it has been suggested that the MABC-2’s gross motor

measures correlate moderately with the measures of ball skill in young children,

although no inferential statistics or measures of uncertainty were provided
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for the correlations (Schulz et al., 2011). Likewise, skilled catching and

throwing behaviours require precise control over the fingers of the hand.

These considerations raise questions about the validity of introducing a third

division into the classification of motor skill.

There is, however, a critical difference between ball skills and many other

‘gross motor’ tasks which can provide a theoretical justification for creating

a different taxonomic class. Catching tasks can be considered to fall within

a category of ‘interceptive timing’ behaviour (Tresilian, 2005). Interceptive

timing skills can be classified as those actions which involve interacting with

objects that are in motion relative to the actor, including catching or hitting

moving objects as well as object avoidance (e.g. avoiding cars while crossing

a road). Interceptive timing abilities are fundamental to performing many

activities that are ubiquitous in daily lives. The successful interception of

a moving object requires the interceptive effector (e.g. hand, bat) to arrive

at the same spatial location at the same time as the object. This requires

movements to be aimed towards a position through which the target will

pass at some point in the near future. Thus, the ability to predict the

future motion of moving objects underpins performance on many interceptive

timing tasks (Zago et al., 2009). In addition, most models of interceptive

timing suggest that individuals must estimate the time remaining until the

target reaches a specific point along its trajectory where it can be intercepted

(Tresilian, 2005). These specific task attributes suggest that ‘ball skill’ might

be a useful taxonomic category as these tasks have a fundamental component

(interceptive timing) that is not captured in many canonical examples of fine

and motor ability.
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The usefulness of the tripartite scheme of classification ultimately hinges

on an empirical demonstration that these three domains can be empirically

distinguished. We therefore tested a large sample of children (ages 4-11

years) on an interceptive timing task, a manual dexterity battery (fine motor)

(Culmer et al., 2009) and a test of postural stability (gross motor) which

required participants to stand still with both eyes open and eyes closed

(Flatters, Culmer, et al., 2014). The manual dexterity battery included three

uni-manual fine motor tasks. One of these tasks involved tracking a moving

target with a stylus. Like interceptive timing tasks, performance on tracking

tasks is thought to depend on the ability to predict the motion of the tracked

target (Barnes & Asselman, 1991; Dallos & Jones, 1963), and thus these tasks

may tap overlapping sensorimotor constructs. Thus we predicted that while

the largest correlations between tasks would be found within the manual

dexterity battery, a larger correlation should be found between the interceptive

timing task and the tracking task than between interceptive timing and the

other fine motor measures which did not involve moving targets. We expected

only small correlations between tasks in the different domains. If the domains

turn out to be indistinct, as demonstrated by large correlations between all

tasks, then it would suggest that less extensive testing is required to identify

children with motor problems.
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6.2 Methods

6.2.1 Participants

Participants were recruited from a state primary school in Bradford, West

Yorkshire, UK. From the 368 children at the school, 309 full data sets were

included in the data analysis. More information on the participants can be

found in chapter 5.

6.2.2 Apparatus

Interceptive timing task (IntT)

Details of the interceptive timing task can be found in chapter 5. Partici-

pants performed 54 trials in which the target speed (250mm s−1, 400mm s−1,

500mm s−1) and target width (30mm, 40m, 50mm) varied (9 trial types x 6).

Each target type was presented in a block of 3 trials, with 2 blocks for each

trial type. The blocks were pseudorandomly ordered with the constraint that

two blocks of the same kind could not occur sequentially. All participants

experienced an identical sequence of blocks. The number of targets hit (IntT)

provided a simple measure of interceptive timing performance

Manual dexterity

Manual dexteriy was measured using the Clinical Kinematic Assessment Tool

(CKAT) (Culmer et al., 2009). CKAT consists of three sensorimotor tasks that

are presented on a tablet computer screen (Toshiba Portege M700-13p tablet,
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screen: 260× 163mm, 1200× 800 pixels, 60Hz refresh rate) and completed

using a hand-held stylus. The planar position of the stylus was recorded at

120Hz and smoothed using a 10Hz dual-pass Butterworth filter at the end of

each testing session.

Figure 6.1: CKAT Tasks A) Tracking task. Participants followed a green dot
with the stylus. In the first trial the dot followed the dotted (invisible) path.
In the second trial the guide track was visible. In each trial the dot made
three revolutions of the figure of eight pattern at each speed: fast, medium
and slow. B) The Aiming Task. Participants made movements to sequentially
appearing targets. C) Tracing task: Participants traced a path using the
stylus, while staying within a moving box.

CKAT - tracking task (with and without spatial guide)

Participants completed two trials in the tracking task (figure 6.1A). In the

first trial, they placed the stylus on a static dot (10mm diameter) displayed

on the centre of the screen. After one second the dot began to move across

the screen in a figure-of-8 pattern. Participants were instructed to keep the

tip of the stylus as close as possible to the dot’s centre for the duration of

the trial. The dot completed nine revolutions of the figure-of-8 pattern. The

dot moved at a ‘slow’ pace during the first three revolutions. In the next

three revolutions the dot moved at a ‘medium’ pace and in the last three the

dot moved at a ‘fast’ pace (see Flatters, Mushtaq, Hill, Rossiter, et al. (2014)

for details). Participants then completed a second trial which was identical
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to the first except that a black 3mm wide ‘guide’ line was displayed on the

screen, indicating the path which the dot would follow.

The root mean square error (RMSE) provided a measure of the partici-

pant’s spatio-temporal accuracy, where the error was the straight line distance

in millimetres between the centre of the target dot and the stylus. A separate

RMSE score was calculated for each target speed within each trial. The

median value of these was taken to provide an overall measure of performance

on the tracking task.

CKAT - aiming task

The aiming task (figure 6.1B) required participants to make 50 aiming move-

ments to sequentially appearing circular targets (5mm diameter). Once the

participant successfully moved the stylus to the target dot then that target dis-

appeared and the next target appeared (see Flatters, Mushtaq, Hill, Rossiter,

et al. (2014) for details). Movement time (MT) was the measure of interest

and was defined as the time between arriving at one target location and

arriving at the next, defined as when the stylus entered the target. The mean

MT over the first 50 trials provided our measure of ‘aiming’ performance.

CKAT - tracing task

The tracing task required participants to trace a path displayed on the tablet

(figure 6.1C). A box moved along the path every 5 seconds. Participants were

told to trace the path as accurately as possible while ensuring they stayed

within the moving box at all times. At each time point (120Hz) the minimum

2D distance between an idealised reference path and the stylus was calculated.
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The arithmetic mean was calculated for these values across each trial, giving

a measure of path accuracy (PA). The ideal trial time if the participant

remained within the moving box was 36 seconds. To normalise path accuracy

for task time, PA was inflated by the percentage that participant’s actual MT

deviated from the ideal 36 seconds value (adjusted path accuracy). Adjusted

path accuracy was then used as the measure of performance on the tracing

task.

Postural control task

Postural movements were measured using a custom built motion-capture

rig (Flatters, Mushtaq, Hill, Rossiter, et al., 2014; Flatters, Mushtaq, Hill,

Holt, et al., 2014). Children stood with their feet shoulder width apart on a

Nintendo Wii Fit board, which recorded the participant’s centre of pressure

(COP) at 60Hz. The data was filtered using a wavelet filter as described in

Flatters, Culmer, et al. (2014). The 2D path length subtended by the COP

(in mm) provided a measure of postural stability. Two measurements were

taken. In the first the children stood fixating a target on a wall directly in

front of them (posture eyes open). In the second task the children stood with

their eyes closed (posture eyes closed).

6.2.3 Statistical models

Correlation model

Several Bayesian correlation models were specified to explore the relationships

between performance on the motor tasks. The first two models were used to
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examine the correlations between performance on all the motor tasks without

controlling for age. The first of these modelled the data as being distributed by

a multivariate normal distribution (normal model), while the second modelled

the data as coming from a multivariate student’s t-distribution (robust model).

We assumed that this model would be more robust to outliers in the data.

The normal model with priors was defined as follows:

µ ∼ Normal(0, 10) (6.1)

τ ∼ Cauchy+(0, 10) (6.2)

Ω ∼ LKJCorr(2) (6.3)

Σ = diagMatrix(τ)ΩdiagMatrix(τ) (6.4)

y ∼ multiNormal(µ,Σ) (6.5)

where Ω is a correlation matrix, τ is a vector of coefficient scales and µ

is a vector of variable means. Thus the model naturally decomposes the

covariance matrix into a correlation matrix (Ω) and vector of scale parameters

(τ) (Manual, 2013). Priors were chosen to be weakly informative, based on

the scale of the data. A half cauchy prior was placed over τ , and an LKJCorr

prior was placed over Ω, as recommended by Gelman (Manual, 2013).

The robust model was identical except the multivariate normal likelihood

(equation 6.5) was replaced with a multivariate student’s t distribution,

y ∼ multiStudent(ν, µ,Σ) (6.6)
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and the degrees of freedom prior was given a prior distribution,

ν ∼ exponential( 1
30) (6.7)

Partial correlation model

A final model was specified that allowed for correlations between variables to

be examined after controlling for age1 (partial age model). This model was

identical to the robust-model except that the mean vector µ (equation 6.1)

was replaced with a mean for each participant that depended on a matrix of

regression coefficients (β) and the participant’s age as follows,

β ∼ Normal(0, 10) (6.8)

µi = βxi (6.9)

where x was a design matrix with age as the only predictor. This allowed

us to partial out age, leaving the correlation matrix Ω as the correlations

between all the motor task variables after controlling for age. Several versions

of the correlation models were fit using different data transformations and

compared against one another, as described in the results section.

The priors were informed only by the scale of the data. Bayes rule was

used to estimate the credible values of each of the model’s parameters (θ)

given the data. The joint posterior distribution is given by

1The robust model was also use to explore the relationships between variables after
controlling for age (see the z-model in the results section)
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P (θ|y) ∝ P (y|θ)P (θ) (6.10)

A representative sample was drawn from the posterior using the ‘No-U-Turn

sampler’ (Hoffman & Gelman, 2011) implemented in PyStan 2.14 (Stan

Development Team, 2016). Four chains of 5000 samples (warmup N = 2500)

were started at random values in the joint posterior distribution for each

model. Convergence was assessed by visually examining the chains and

computing R̂ and effective sample size for each parameter.

6.3 Results

6.3.1 Motor task correlations

The normal and robust models were fit several times with different data

transformations applied. As the data were not normally distributed this was

done to explore how to best model the data. The first model applied no

transformation and used the normal-model specification, and is referred to as

the identity model (ID normal). The second two models transformed the data

using the natural logarithm and used the normal and robust specifications

(log-normal, log-robust). A final model was fit to the transformed data using

the common logarithm (log10-robust) and only used the robust specification.

Approximate leave-one-out cross validation was used to compare the

expected out-of-sample predictive accuracy of the models (Vehtari, Gelman,

& Gabry, 2015), as defined by the expected log pointwise predictive density

(elpd). This provides a simple method of model comparison. First the
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elpd was compared for the ID normal and log-normal models, revealing a

strong preference for the latter (elpddiff = 3568.37, SE = 100.477). This

was unsurprising given that the most of the outcome measures were skewed

positively. The log-normal model was then compared to the log-robust

model, revealing a preference for the latter (elpddiff = 152.08, SE = 49.56),

which suggests that this model was better accounting for outliers in the data

set. Finally, we compared the log-robust model to the log10-robust model,

revealing a preference for the later (elpddiff = 1546.66, SE = 0.17), suggesting

that the log10-robust transformation was the best. Thus, the results of the

log10-robust model were used to make inferences from the data.

Figure 6.2 shows a matrix of plots revealing the marginal posterior dis-

tributions over the correlation coefficients in the log10-robust model. There

was only a very small correlation between IntT and both posture measures.

The 95% HDIs spanned zero, although it was a negative relationship for the

IntT and posture eyes open measure. Larger correlations were seen between

IntT and the three manual dexterity measures. The posture measures showed

small to medium correlations with the manual dexterity measures. These

correlations are unsurprising given that all of these measures are expected to

improve with age. Therefore, the more interesting question is whether these

correlations hold once we control for age.
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6.3.2 Age controlled correlations

Two models were developed to account for age. The first was exactly the

same as the log10-robust model except that the data were split into groups

by age and then transformed to z-scores, using the means and standard

deviations of each age group (log10-Robust-Age). This model is analogous to

the analysis methods employed by (Flatters, Mushtaq, Hill, Holt, et al., 2014).

For the next analysis, age was used as a predictor in a linear regression model

with all the motor tasks as the outcome measures, allowing examination of

the relationships between these variables after accounting for age (partial

correlation coefficients). Again we compared these models using approximate

leave-one-out cross validation and found that the partial correlation model

was favoured (elpddiff = 2993.97, SE=19.11). We therefore made inferences

from this model.

For clarity we split the correlation matrix plots for the partial correlation

model into separate figures. Figure 6.3 shows the marginal posterior distribu-

tions over the correlations between the three CKAT measures and figure 6.4

shows the correlation between the two posture measures (eyes open and eyes

closed). Weak to moderate relationships were found between performance on

the CKAT tasks and a large correlation was found between the two posture

measure (eyes open and eyes closed).

Figure 6.5 shows the relationship between the interceptive timing mea-

sure (IntT) and all other motor measures. After controlling for age small

correlations between IntT and the CKAT aiming and tracing tasks were

likely. As predicted, the correlation between IntT and the CKAT tracking
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Figure 6.3: Bayesian partial correlation plots. Marginal posterior estimates
over the correlation coefficients between the CKAT tasks after controlling for
age. Posterior means (µ), standard deviations (σ) and 95% HDI are shown in
each panel. Dotted lines show the zero point. Colours indicate the strength of
relationship according to the posterior mean, with brighter colours indicating
a stronger relationship. Black horizontal bars indicate the 95% HDI.

task appeared to be larger (posterior mean -0.22) than the relationship better

IntT and aiming and tracing, with the 95% HDI spanning a higher range

of values. Contrasts between the IntT-aiming and IntT-tracking partial cor-

relation coefficients confirmed that the IntT-tracking correlation was larger

(contrast mean = -.07, SD = 0.07, 95% HDI = [-.20, .06], 50% HDI = [-.12,

-.27], η = .16), and the same was found when comparing the IntT-tracing

and IntT-tracking correlation coefficients (contrast mean = -.09, sd = 0.07,

95% HDI = [-.24, .05], 50% HDI = [-.14, -.43], η = .11). Figure 6.5 suggested

that only very small correlations were likely between IntT and the posture

measures. The posterior means were close to zero and the 95% HDI spanned

zero.
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Figure 6.4: Bayesian partial correlation plots. Marginal posterior estimates
over the correlation coefficients between the posture tasks (eyes open; eyes
closed) after controlling for age. Posterior means (µ), standard deviations
(σ) and 95% HDI are shown in each panel. Dotted lines show the zero point.
Colours indicate the strength of relationship according to the posterior mean,
with brighter colours indicating a stronger relationship. Black horizontal bars
indicate the 95% HDI.

Figure 6.5: Bayesian partial correlation plots. Marginal posterior estimates
over the correlation coefficients between the IntT task and all other motor
measures (CKAT and posture) after controlling for age. Posterior means (µ),
standard deviations (σ) and 95% HDI are shown in each panel. Dotted lines
show the zero point. Colours indicate the strength of relationship according
to the posterior mean, with brighter colours indicating a stronger relationship.
Black horizontal bars indicate the 95% HDI.
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Finally the correlations between the CKAT measures and both posture

measures are shown in figure 6.6. The marginal posterior distributions revealed

that the correlations were likely positive but very small, although a larger

correlation was found between the CKAT tracing task and the eyes-closed

posture task.

Figure 6.6: Bayesian Partial Correlation Plots. Marginal posterior estimates
over the correlation coefficients between the CKAT and posture tasks after
controlling for age. Posterior means (µ), standard deviations (σ) and 95%
HDI are shown in each panel. Dotted lines show the zero point. Colours
indicate the strength of relationship according to the posterior mean, with
brighter colours indicating a stronger relationship. Black horizontal bars
indicate the 95% HDI.

To examine how the results would differ if the z-scored model was used

instead of the partial correlation model, the results of both are plotted in

figure 6.7. The filled coloured curves show the correlations in the partial

correlation model, while the black curves show the correlations from the

z-scored model. It is clear that there was very close agreement between both

models.
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Figure 6.7: Bayesian Partial Correlation Matrix. The filled coloured plots
show the marginal posterior estimates over the correlation parameters in the
partial correlation model. The solid black lines show the same for the z-scored
model. Both posteriors shows very close agreement.

6.4 Discussion

We tested a large sample of primary school children on an interceptive timing

task whilst also taking measures of manual dexterity and postural control.

As expected the largest correlations were found between the subtasks of the

CKAT battery and between the two posture measures. The results suggested

that performance on the interceptive timing task did not allow inference about

performance on the posture tasks. In other words, there was support for

the hypothesis that these tasks fall within different domains (operationalised

within the MABC-2). A number of ball skills require the individual to control

posture whilst engaged in an interceptive task, and this could conceivably

give rise to a strong relationship between interceptive timing and postural
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control ability, but this was not found to be the case. Notably, we minimised

the postural demands of the interceptive task by ensuring that the task was

performed whilst the participant was seated. This arrangement decreased the

need for participants to make postural adjustments relative to standing, where

adjustments are required to compensate for the forces generated when making

rapid arm movements (Massion, 1992). In contrast to postural control, we

did find a relationship between interceptive timing performance and manual

dexterity. This relationship was seen primarily with the tracking task, which

may be due to this task having an element of temporal prediction (as we

discuss later). However, the size of the relationships between interceptive

timing performance and manual dexterity was small, which provides support

for the idea that these tasks fall within different categories. Finally, there were

small to moderate correlations found between posture and manual dexterity,

suggesting a degree of dependency, but again supporting the idea that these

skills can be categorised separately.

The moderate correlations found between posture and manual dexterity

provide support for the conclusions drawn by Flatters, Mushtaq, Hill, Holt,

et al. (2014). Flatters et al., reported statistically significant relationships

between centre of pressure measures (eyes open and eyes closed) and the

tracking task, but not the aiming and tracing task. The correlation coefficients

reported by Flatters et al., are broadly consistent with the posterior distri-

bution of credible values reported in the current study. Our study suggests

that very small positive correlations are most likely between the postural

measures and the aiming and tracing task. For the tracing task, Flatters et al.

reported substantially larger correlations when posture was measured using a
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head tracker, possibly because the centre of pressure measurements act as a

proxy for changes in the centre of gravity, but do not map directly to postural

maintenance (Flatters, Hill, Williams, Barber, & Mon-Williams, 2014). Thus,

it is possible that a stronger relationship exists between manual dexterity and

postural stability than we were able to detect with the measurements used in

the present study.

The results of the present study provide support for the notion that motor

skills can be usefully classified as falling within three domains of ‘gross’, ‘fine’

and ‘interceptive timing’. The findings therefore give empirical justification for

the use of the categories of ‘manual dexterity’, ‘static and dynamic balance’

and ‘ball skills’ within the Movement ABC-2. This does not, however, allow

the conclusion that this is an optimal taxonomic classification scheme. It

might be argued, for instance, that a greater number of categories is required.

In this context, it is worth exploring the extent to which tasks within the

categories correlate with each other. It has been shown previously that

catching and throwing tasks are moderately correlated (Van Waelvelde, De

Weerdt, De Cock, & Smits-Engelsman, 2004a). Likewise, performance on a

catching task has substantial correlations with other interceptive timing tasks

(Van Waelvelde, De Weerdt, De Cock, & Smits-Engelsman, 2004b). These

results suggest that there is some merit to the use of a general category of ‘ball

skill’. The present study showed large correlations between the eyes open and

closed postural measures, while moderate correlations were found between

the manual dexterity measures, suggesting these tasks can be placed within a

‘gross’ and ‘fine’ motor category respectively. Thus, there is empirical support

for the broad domains encompassing a number of related tasks.
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The findings from the present study suggest, however, that the tri-domain

classification scheme may have limitations, with some tasks showing a mixed

pattern of cross- and within-domain correlations. Our results showed that

performance on the interceptive timing task had a stronger correlation with

the tracking task than with the aiming and tracing tasks. This makes sense

as both the tracking and interceptive timing task involved interacting with

a moving target. Thus, both the interceptive timing and tracking task may

benefit from an underlying ability to predict how objects move through space

and time, extrapolating from the object’s current position to its likely future

location at specific points of time. This suggests that a better taxonomic

classification scheme might be based around the sensorimotor processes (e.g.

tracking, steering, intercepting approaching targets, using visual information

to control posture etc,) that underpin motor tasks. It remains to be seen

whether actions might be better classified according to their underlying

sensorimotor processes, at least within one rank of a taxonomic scheme. The

advent of recent technology (such as that used within the present study)

makes precise measures of these processes a realistic proposition and thus it

is possible to address these issues in future research.

In summary, the present results support the broad classification of motor

skills within the three domains of ‘gross’, ‘fine’ and ‘ball skills’, as opera-

tionalised in tests such as the Movement Assessment Battery for Children.

Nevertheless, it remains to be seen whether adoption of these domains is

sufficient for pinpointing childhood motor deficits. For example, there is grow-

ing interest in the concept of ‘fundamental movement skills’ where specific

actions are identified as key developmental building blocks for the majority
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of human movement skills (Robinson et al., 2015). From this viewpoint, it

could be argued that ‘gross’ motor skills might be better assessed through

investigation of a larger number of fundamental actions (such as walking,

running, jumping, hopping, kicking and climbing) rather than sampling a

sub-set of these behaviours. In a similar vein, ‘fine’ motor skills might be

better assessed through a detailed exploration of fundamental actions such

as reach-to-grasp behaviour and the control of fingertip forces. The data

collection and Bayesian analysis techniques reported in the current study will

allow future exploration of such issues.

In this chapter it was found that the interceptive timing task provides

a measure of motor ability, which is somewhat distinct from that of ‘fine’

and ‘gross’ motor measures. In the next chapter we explore how this distinct

measure relates to academic attainment, specifically in mathematics.
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Chapter 7

Interceptive timing and

mathematics

Chapter Abstract

Interceptive timing is a fundamental ability underpinning numerous actions

(e.g. ball catching), but its development and relationship with other cognitive

functions remains poorly understood. Piaget (1955) suggested that children

need to learn the physical rules that govern their environment before they

can represent abstract concepts such as number and time. This leads to the

hypothesis that the neural processes involved in learning how objects move in

space and time could underpin the development of abstract representations

related to these concepts (i.e. mathematics). To test this hypothesis, we

captured objective measures of interceptive timing abilities in 309 primary

school children (5-11 years), alongside national standardised academic at-

tainment scores and general motor skill. Bayesian estimation showed that

performance on an interceptive timing task predicted mathematical ability
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even after controlling for motor skill and age. These findings suggest that

attempts to educate children should not neglect sensorimotor development

within the physical body that houses the cognitive phenotype.

7.1 Introduction

Interceptive timing is a fundamental human sensorimotor ability that un-

derpins actions where the goal is to make contact with a moving target (e.g

hitting a baseball). These tasks require both spatial and temporal accuracy,

and proficiency in these tasks appears later in a child’s developmental history

than skills with minimal temporal constraints (e.g. reaching to static objects).

Neurologically intact adult humans show exquisite precision in interceptive

timing, with elite baseball batters able to swing their bat to a spatial accuracy

of ±1.5cm and a temporal accuracy of ±10ms (Tresilian, 1999). The intercep-

tive timing skills of humans are a testimony to the incredible learning capacity

of the sensorimotor system and its ability to overcome the challenges involved

in controlling over 600 muscles with the inherent difficulties of nonlinearity,

nonstationarity, information delays, and noise whilst operating within an

uncertain world (Franklin & Wolpert, 2011). The temporal delays involved

in processing perceptual information and transmitting motor commands are

particularly problematic in interceptive timing tasks and require the individ-

ual to make predictions about where the object and the limb will be at the

time of desired contact (Tresilian, 2012). These predictions require precise

estimates of how the object will move over time, together with state estimates

of the neuromuscular system.
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It is widely believed that sensorimotor prediction relies on internal models

within the sensorimotor system. Internal models allow for prediction of

object motion through space and time (Merfeld, Zupan, & Peterka, 1999)

with forward models used to estimate the sensory consequences of motor

commands (Flanagan & Wing, 1997; Wolpert, Miall, & Kawato, 1998). Thus

the development of these models is central to the ontogenetic acquisition of

interceptive timing skills. The deleterious impact of developmental delays in

motor prediction can be readily imagined with regard to a child’s ability to

engage in physical activity. But it is possible that sensorimotor impairments

have consequences for a child’s cognitive capabilities in a manner that is

not so readily appreciated by educational authorities. Such proposals are

consistent with the view that the phylogenetic emergence of higher-order

cognitive abilities was built upon the evolutionary platform provided by the

motor system, particularly with respect to estimating the future state of the

environment and physical body (Desmurget & Grafton, 2000).

The idea that higher-order cognitive processes emerged from sensorimotor

abilities is attractive (M. Wilson, 2002). It has been suggested that the

fundamental importance of sensorimotor substrates to cognition extends both

to the individual as well as the species, with Piaget (1955) suggesting that

ontogeny recapitulates phylogeny in this regard. Thus, Piaget proposed that

sensorimotor interactions with the environment underpin the development

of cognitive representations, including our understanding of number. This

idea has received a surge of support over the last decade, with evidence

that abstract representations of number are grounded in early interactions

with objects and an understanding of physical space (de Hevia & Spelke,
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2010; Nieder & Dehaene, 2009). It appears that number representations are

spatially orientated (Fias, van Dijck, & Gevers, 2011) with representations

of number and space sharing overlapping neural circuitry (Hubbard, Piazza,

Pinel, & Dehaene, 2005) and being closely related to representations of time

(Bueti & Walsh, 2009; Burr, Ross, Binda, & Morrone, 2011; Chang, Tzeng,

Hung, & Wu, 2011; Lourenco & Longo, 2010; Srinivasan & Carey, 2010).

The putative relationship between sensorimotor ability and cognitive

capacity leads to the hypothesis that a child’s interceptive timing skills will

be related to the development of their ability to represent space, time and

number (i.e. their mathematical ability). A robust test of this hypothesis

is to measure interceptive timing skill and relate it to standardized school

mathematical measures. A failure to find a relationship would allow us to

reject the hypothesis, whilst a more general relationship between interceptive

timing skill and cognitive ability (in reading and writing) would suggest

that there is no specific functional relationship between mathematics and

interceptive timing ability over and above general academic achievement.

Thus, we developed an interceptive timing task with 54 moving targets

to test 368 primary school children (aged 5-11 years). Three target speeds

and three target widths were presented (9 trial types) with a sufficient range

to challenge older children whilst allowing younger children to also succeed.

The number of targets hit (IntT score) was the primary measure of interest.

We also measured the manual dexterity and postural control abilities of the

children to distinguish between general motor skill and interceptive timing

abilities. Mathematics ability was obtained from the children’s nationally

standardised mathematics attainment scores (1-14 scale). These, along with

162



reading and writing scores, were provided by the school.

7.2 Methods

7.2.1 Participants

Participants were recruited from a state primary school in Bradford, West

Yorkshire, UK. From the 368 children at the school, 309 full data sets were

included in the data analysis. More information on the participants can be

found in chapter 5.

7.2.2 Apparatus

Interceptive timing task

Details of the interceptive timing task can be found in chapter 5. The metric

used to index interceptive timing ability was the number of targets hit (IntT)

out of a total of 54.

Manual dexterity

Manual dexterity was measured using the clinical kinematic assessment tool

(CKAT). All details can be found in chapter 6.

Postural control task

Postural movements were measured using a custom built motion-capture rig

(Flatters, Mushtaq, Hill, Rossiter, et al., 2014; Flatters, Mushtaq, Hill, Holt,

et al., 2014). All details are provided in chapter 6.
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Academic attainment

Nationally standardised academic attainment scores for mathematics, read-

ing and writing were provided by the school (https://www.gov.uk/national-

curriculum/ overview). Children were graded on a scale from 1 to 14 which

map to UK standardised scores.

7.2.3 Data analysis

Bayesian estimation techniques were employed to make inferences from the

data and conducted using PyStan 2.8.0. Bayesian estimation uses Bayes’ rule

to yield complete distributional information about the relative credibility of

all possible parameter values in a statistical model. Formally, Bayes’ rule

provides the posterior distribution P (θ|y,X), where θ is a vector of model

parameters, y is the data, and X is a matrix of predictors. The marginal

posterior distribution can be summarized by the highest density interval

(HDI). For example, for a given parameter the 95% HDI gives the upper and

lower bounds of the interval which has 95% probability of containing the true

parameter value.

We employed an ordered-probit regression to model the data. Ordered-

probit regression is appropriate when the dependent variable is ordinal, as in

the case of the academic attainment metric. The model was fit separately for

each attainment outcome. The model linearly combines predictor variables

(IntT, manual dexterity, posture and age) to give an expected latent academic

attainment score (µ). Thus, the model assumes that academic attainment

is on a continuous and linear scale. The model then maps the expected
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latent attainment score to the ordinal observed attainment metric via a

thresholded cumulative-normal inverse link function (see figure 7.1). The

model is analogous to frequentist ordered-probit regression which can be

conducted with several R packages (e.g. polr; ordered).

Figure 7.1: Illustration of an ordered probit model. The ith participant’s
predictor scores (the ith row of X) are multiplied by a vector of regression
coefficients (β) to give an expected latent attainment score (µi). The latent
attainment score is dispersed by a normal distribution centered at µi with
standard deviation σ. Thresholds (C1 . . . CK−1) slice through the distribution
and the area under the curve between consecutive thresholds provides the
probability of obtaining each observed academic attainment scores (k ∈ 1 : K).
The distance between thresholds is not necessarily equal. Note that the number
of possible attainment outcomes in this illustration is lower than in the actual
model.

IntT, age, tracking, aiming, tracing and postural scores (eyes open and

eyes closed) were entered as predictors. The model was based on Kruschke

(2015), and its full specification with priors is given below.
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β ∼ Normal(0, K) (7.1)

µ = Xβ (7.2)

C1 ≡ 1.5 (7.3)

Ct ∼ Normal(t+ 0.5, K) t ∈ 2 : K − 1 (7.4)

σ ∼ Cauchy+(0, 100) (7.5)

θi,k =



1− φ(µi−C1
σ

), if k = 1

φ(µi−Ck−1
σ

)− φ(µi−Ck
σ

), if 1 < k < K

φ(µi−Ck−1
σ

), if k = K

(7.6)

yi ∼ Categorical(θi) i ∈ 1 : N (7.7)

where N is the number of participants, X is an N × 7 matrix of predictor

variables where the first column is equal to 1. θ is an N ×K matrix where

the ith row specifies the probabilities of obtaining each academic score for

the ith participant. φ is the cumulative normal function and µ represents a

continuous latent attainment outcome.

The first and last threshold value C1 and CK−1 were fixed in order to

identify the model. All priors were chosen to be weakly informative on the

scale of the data. For each model a representative sample was taken from

the posterior distribution using the NUTS algorithm (Hoffman & Gelman,

2011) implemented in Stan. Four chains of 10000 samples were started at

random locations of the joint posterior parameter space. Each chain first took

5000 warm up samples which were then discarded. Convergence was assessed
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by visually inspecting the chains and examining the Gelman-Rubin statistic

(R̂) (Gelman & Basbøll, 2014) and effective sample size of all parameters.

All R̂ values were close to 1 and the effective sample size was > 6000 for all

parameters.

7.3 Results

Figure 7.2A-D shows the marginal posterior distributions over the key model

parameters for the mathematics attainment model. The credible values of the

IntT score slope (β2) are displayed in figure 7.2C. The slope was non-zero,

as indicated by the 95% highest density interval (HDI; horizontal black line

in figure 7.2C) with a mean estimate of 0.03 (95% HDI = [0.01, 0.5]). This

means that for every five extra targets hit, the model estimates an average

increase of 0.15 on latent mathematics score for that individual. The age

slope (β1) was non-zero with a marginal posterior at 1.1 (95% HDI = [0.9,

1.22]) (figure 7.2B), suggesting that the latent mathematics score increased

by more than one point for every year at school. For the reading and writing

models the 95% HDI over the β2 (IntT Score) parameters contained zero (see

figure 7.2G and 7.2K) indicating that IntT score is unlikely to have predictive

value for reading and writing scores.

The mathematics model β2 parameter shows that mathematics attainment

increases with IntT score. However, in order to estimate the probability of

obtaining a given observed mathematics score (k ∈ 1 : 14) given a set of

predictor values, the model also takes account of the SD (σ) and threshold (C)

parameters. While the model suggests that IntT score influences mathematics
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Figure 7.2: Kernel density estimates of marginal posterior distributions over
key attainment model parameters: A, E, I) The regression intercepts (α) for
each attainment model; B, F, J) The age slopes (β1); C,G,K) The IntT score
slopes (β2) with an error bar showing 95% HDI and a dot indicating the
mean. The vertical black dashed line indicates the zero point. HDI is clearly
non-zero in the mathematics model; D, H, L) SD parameters (σ).

ability, its influence on the observed attainment measure depends on the value

of all other predictors. For example, it can be seen in Figure 7.1 that if the

other predictor variables result in the expected latent attainment score being

high enough to place the normal distribution’s mass above the last threshold,

IntT score will have no discernible effect on our outcome measure (because

the outcome measure is at ceiling). It is also possible that the change in

mathematics ability required to move up a grade may not be equal at all levels

of the attainment outcome. The model readily accounts for these possibilities,

but it means that we need to hold other predictor variables constant in order
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to explore the model’s predictions as IntT score increases.

To explore the predictions made by the model we plotted the posterior

mean estimate of the probability of having an observed mathematics attain-

ment score greater than or equal to different values, as a function of age

and IntT score, where each value is shown as a separate surface (see figure

7.3A). All other predictor variables were fixed at the school median. It is clear

that the probability of obtaining an observed mathematics score equal to or

greater than k increased with both age and interceptive score. As expected,

the effect of interceptive score depended on both age and the value of k. For

example, the probability of having a mathematics score greater than or equal

to 6 increased with IntT score in 9 year olds much more than in 6 year olds

(for 6 year olds the probability of a score above 4 increased rapidly with IntT

score).

This is further illustrated by figure 7.3B which shows the flattened surface

k ≥ 6, with the addition of the 95% HDI around the posterior mean (with all

other predictors fixed at the school median). For children aged nine years,

the model predicted that the probability of an observed mathematics score

greater than or equal to 6 (the school median) increased by ≈ 4% for every

five hit targets on the interception task. For children aged six years, the

IntT score had little influence on the probability of the mathematics score

being ≥ 6 when the other predictors were fixed. In reality the predictors

were correlated to various degrees such that good IntT scores were generally

associated with good scores on the other motor tasks.
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Figure 7.3: A) Mean posterior estimate of the probability of an observed
mathematics attainment score equal to or greater than k as a function of
age and IntT score, with all other predictors fixed at the school median. In
practice these predictors covary with age and each other. B) The surface
k ≥ 6 with error bars showing the 95% HDI.

7.4 Discussion

This study demonstrates that interceptive timing ability can predict mathe-

matical performance in primary school children. This finding is consistent

with human sensorimotor systems and cognitive abilities being intrinsically

linked. Correlational studies always raise questions about the direction of

causality. One possibility is that learning mathematics actually improves

interceptive timing ability. However, longitudinal studies have found a predic-

tive relationship between ‘fine motor’ skills before starting school and later

mathematics attainment (Grissmer et al., 2010). Thus it seems more plausible

that interceptive abilities influence mathematics ability. This present finding

could be extended either by replicating the effect in a longitudinal study or by

training interceptive timing skills and examining the impact on mathematics

(or vice versa).
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Another possibility is that sensorimotor performance is a proxy measure of

psychopathology, as populations with clinical motor control deficits sometimes

exhibit poor mathematics ability (Tinelli et al., 2015; Van Rooijen, Verhoeven,

& Steenbergen, 2011). Indeed, ‘fine-motor skills’ can predict measures of

mathematics ability in healthy children (Carlson, Rowe, & Curby, 2013;

Grissmer et al., 2010; Luo et al., 2007; Pagani, Fitzpatrick, Archambault, &

Janosz, 2010; Son & Meisels, 2006). However, we controlled for general motor

skills and still found IntT score was predictive of mathematics attainment

but not reading or writing attainment. These controls also rule out simplistic

explanations based on interceptive timing skills acting as a proxy measure for

parental involvement, access to technology, or social economic status (Ritchie

& Bates, 2013).

The findings are consistent with the idea that number representations

are linked with concepts of time and space, possibly through a common

representation of magnitude (Walsh, 2003). It is possible that children must

first learn the physical rules that govern how objects move before they can

form related abstract representations (Piaget, 1955). The ability to learn

the physical rules is likely to vary between individuals, and our findings may

reflect variance in the development of the neural structures that underpin

predictive learning regarding how objects move in space and time. In this

regard, our results are consistent with recent findings showing that basic

spatial processing abilities in infants relate to later mathematical ability

(Lauer & Lourenco, 2016).

The relationship between interceptive ability and mathematics is likely

to be complex, since it is likely that not all elite sports people are excellent
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mathematicians, whilst people with physical disability may excel in mathe-

matics. However, the results of the present study suggest that we should not

neglect the importance of sensorimotor development in young children (given

that the environment - broadly construed - is known to exert a large influence

on sensorimotor ability). Indeed, the present work complements reports that

physical activity can exert positive benefits on cognitive processing, even if

the mechanisms remain opaque (Hill, Williams, Aucott, Thomson, & Mon-

Williams, 2011). Thus, our study agrees with a growing body of evidence that

suggests the quality of early sensorimotor interactions with the environment

may have a direct impact on children’s cognitive and education outcomes.
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Chapter 8

Discussion and conclusion

8.1 Introduction

The ability to successfully intercept rapid moving objects provides a quintessen-

tial example of the capacity of humans to perform complex sensorimotor

actions in dynamic and unstructured environments. Unlike interactions with

static objects, interceptive actions require exquisite control over the tim-

ing of movements. That humans are able to time interceptive actions with

millisecond precision, despite the numerous challenges presented by informa-

tion delays, noise, uncertainty, redundancy and controlling over 600 muscles

(Franklin & Wolpert, 2011) is a testament to humans’ sensorimotor prowess.

These skills may have played a vital role in our species’ evolutionary success,

allow us to engage in survival-critical behaviours and underpin many everyday

tasks and sports. Interceptive timing has fascinated researchers for decades

yet many questions remain regarding how interceptive actions are controlled

and how these skills are learned and developed. The preceding chapters
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examined critical questions regarding how adults are able to achieve such

high levels of performance in interceptive timing tasks, as well as exploring

the ontogeny of these skills, their relationship to other motor skills, and their

impact on other life outcomes (specifically academic attainment).

8.2 Summary of experimental findings

Examining interceptive timing abilities in adults and large numbers of children

required a portable experimental tool which could provide detailed measures

of performance. To this end a ‘virtual’ interceptive timing task, based on the

track style experimental apparatus used in a series of studies by Tresilian et

al., (e.g. Tresilian and Lonergan (2002)), was developed as documented in

chapter 2. The system used a bespoke 3D printed, 1-DoF manipulandum

to control an on screen bat to hit virtual moving targets. This allowed for

careful control over the experimental stimuli, provided detailed and objective

measures of interceptive timing performance, and yet was portable enough to

be used outside of the laboratory in school environments.

The thesis then explored two interrelated themes. The first part examined

the control of interceptive actions in adults, specifically how adults are able

to achieve the temporal precision required to successfully strike rapid moving

targets, while the second examined the ontogeny of interceptive timing abilities

in children. Chapter 3 explored how adults use prior information about the

motion of targets to reduce the impact of sensorimotor noise on movement

timing. It has been previously found that adults make systematic timing

errors in coincidence anticipations tasks, which is consistent with the brain
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performing Bayesian inference (Miyazaki et al., 2005). This was replicated in

the interceptive timing task, with adults learning the prior distribution over

target speeds within several hundred trials.

Chapter 4 then explored how people minimise errors in the execution

of their movements. Online corrections are unlikely to be helpful in rapid

interceptive actions, but errors can be reduced by carefully planning the

pre-programmed duration of the movement (Tresilian, 2012), as faster and

briefer movements are associated with better temporal precision (Newell et

al., 1994). In the experiment participants struck ‘pucks’ at moving targets.

This allowed Gaussian noise to be added to the speed of the puck. The results

revealed that people compensated for the added noise by increasing the speed

of their movements. However, in the absence of added noise participants

reduced their movement speeds over the course of the experiment, while the

probability of them hitting the targets increased. This suggests that people

will choose to make slower movements when they are able to do so without

compromising performance. This pattern of results is consistent with models

of optimal control (Todorov, 2004), with the sensorimotor system attempting

to simultaneously minimise both temporal errors and energy costs (Tresilian,

2012).

While the timing abilities of adults have been well documented (Brenner

& Smeets, 2015b; Brenner et al., 2014; Tresilian et al., 2009; Tresilian, 2012)

very little is know regarding how interceptive timing abilities develop over

childhood. Chapter 5 examined the developmental trajectory of interceptive

timing in a large cross-section of children (aged 5-11) and an adult comparison

group. The study revealed that, contrary to the findings of previous studies
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which used coincidence timing tasks (Haywood, 1980), children were still

far from adult levels of performance by age 11. The study also revealed

that young children not only show poor temporal precision, but also make

systematic timing errors, striking too far ahead of moving targets on average.

After establishing how interceptive timing abilities develop over early

childhood, chapters 6 and 7 examined the relationship between these abilities

and other motor and cognitive facets. Chapter 6 explored the relationship

between interceptive timing and measures of ‘fine’ and ‘gross’ motor skills.

The results suggested that interceptive timing measures may tap into a ‘motor

construct’ that is somewhat distinct from those measured by motor tasks in

other domains, possibly because interceptive timing tasks capture people’s

ability to predict the motion of moving objects, while tasks involving static

objects do not. These findings justify the inclusion of interceptive tasks in

standardised measures of motor ability (i.e. the MABC-2) as they appear to

capture a unique aspect of a child’s sensorimotor ‘status’.

Finally, chapter 7 examined how children’s interceptive timing abilities

relate to academic attainment. A growing body of evidence suggests that

sensorimotor skills, particularly in ‘fine’ motor tasks, are predictive of academic

attainment (Grissmer et al., 2010; Son & Meisels, 2006). However, it is not

known whether interceptive timing may add some unique predictive value

when attempting to forecast children’s attainment. It was predicted that

interceptive timing abilities may be particularly related to mathematics

attainment, given evidence that representations of number are grounded in

sensorimotor processes (M. Wilson, 2002; Crollen et al., 2013; Hubbard et

al., 2005). This was confirmed with interceptive ability predicting attainment

176



in mathematics but not reading and writing, even after controlling for both

‘fine’ and ‘gross’ motor abilities. This finding is consistent with the idea that

number representations are linked with concepts of time and space (Walsh,

2003), which may play an important role in motion prediction - a fundamental

component of interceptive timing performance.

8.3 Future work

The first part of this thesis explored the mechanisms by which adults minimise

temporal errors in interceptive timing, while the second part documented

the development of these skills in children, as well as investigating their

relationship to other motor abilities and academic attainment. The results

raise a number of interesting questions and suggest areas in which progress

could be made. These are discussed below.

Now that the developmental trends in interceptive timing have been

documented (see chapter 5), a clear line of enquiry for future research is to

investigate the mechanisms driving improvements in interceptive timing with

age. Chapters 3 and 4 suggest possible mechanisms by which performance may

improve over childhood. Chapter 3 demonstrated that adults integrate visual

information with prior knowledge in a Bayesian manner. Yet it is not known

at what age this behaviour may become observable. Is Bayesian integration a

fundamental function of the nervous system which is present very early in

life, or does it take years for the sensorimotor system to begin operating in

this fashion? Gori, Del Viva, Sandini, and Burr (2008) found that children

do not appear to integrate information across multiple sensory modalities
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until at least age 8. However, this does not preclude the use of Bayesian

integration within modalities at an earlier age. The authors suggested that

a possible reason for the lack of multisensory integration may be that the

developing sensorimotor systems need to constantly recalibrate to account

for physical growth (e.g. lengthening of limbs) and different senses may be

used to recalibrate each other. If the need to calibrate senses to one another

precludes multisensory integration, it may be that within modality priors

relating to physical attributes of the world may still be used by young children,

as physical changes to the body would not be expected to change perception

of the physical attributes of the environment (e.g. object movement speeds).

Chapter 5 demonstrated that young children show a large bias in the

timing of their movements, striking too far ahead of moving targets, which

may suggest that the youngest children are not performing in a Bayes optimal

way. However, this was impossible to confirm in the study. A simple follow up

study could use the experimental design of chapter 3 to test this hypothesis

in children directly. However, one obvious challenge in doing so is that the

experimental procedure requires a large number of trials, making the tasks

unsuitable for testing in schools.

If children do perform Bayesian inference in a similar fashion to the adults,

a number of predictions can be made. For example, we may expect children’s

visual estimates of the target’s speed to be noisier than adults (Deutsch &

Newell, 2005). If this is the case then children should take longer to learn

the distribution of target speeds, as priors update more slowly when visual

information is more uncertain. We may also expect children to be more

reliant on their priors than adults because of the uncertainty in their online
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visual information. This would be observable as a larger slope and lower

intercept, when regressing temporal error on target speed, than was seen

in the adults in chapter 3. In addition, if adults are able to better predict

how objects will move over time and space than children, we may expect to

see a greater decrement in children’s performance when the quality of visual

input is degraded (e.g. by refractive blur). In fact, it is known that adults

with normal vision show interceptive skills that are fairly robust to simulated

refractive blur (Mann, Abernethy, & Farrow, 2010; Mann, Ho, De Souza,

Watson, & Taylor, 2007) possibly because of their ability to predict target

motion with only sparse visual information.

Further studies are also needed to determine how adults and children

program their movement times in order to reduce temporal errors. Chapter 4

provided a novel method for studying this, which was examined in adults only.

The results of chapter 4 demonstrate that people are most likely minimising

multiple costs (i.e. errors and effort). In adults this raises the question of

whether performance might be improved by simply motivating the participant

to choose faster strike speeds. For example, would participants reduce their

movement times if they received a reward for doing so, as would be expected

from studies that show adults make decisions in movement planning which

maximise the expected gain of the movement (Thrommershäuser, Maloney, &

Landy, 2009). Extending this research to children would also be of particular

value. Childhood is characterised by a rapid increase in physical strength,

thus it may be that the costs associated with certain movements may change

with age (i.e. faster movements may become less effortful with age). Thus

the cost functions implicit in the decisions involved in planning movement
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times may fluctuate over the developmental trajectory.

As well as furthering our understanding of the mechanisms driving im-

provements in interceptive timing with age, chapters 6 and 7 suggest that

research into the complex interplay between intercept timing, general sensori-

motor abilities and child development is also of critical importance. It is clear

that early sensorimotor skills are related to life outcomes, including academic

attainment (chapter 7) and even higher level cognitive abilities (Gottwald et

al., 2016). While existing studies have examined the relationship between

motor skills and academic attainment, these have generally involved using

a broad number of complex motor tasks with scores averaged across them.

Together, chapters 6 and 7 suggest that different tasks not only tap different

motor ‘constructs’, but that they also contribute uniquely to predictive mod-

els of academic attainment. In other words, there is not a ‘general’ motor

skill which predicts attainment, but rather different motor tasks (including

interceptive timing tasks) appear to measure different constructs which relate

to academic attainment.

In understanding the link between interceptive timing and academic

attainment in mathematics there are a number of challenges which need to be

overcome. A key limitation of chapter 7 was the observational nature of the

study, making it difficult to establish a causal relationship. In addition, it is

not possible to completely rule out the prospect of a third variable accounting

for the relationship (e.g. access to technology, parental involvement), although

this seemed unlikely given the pattern of results. Yet the explanation that the

sensorimotor processes which underpin interceptive timing tasks may provide

a foundation upon which mathematical abilities arise is compelling (Hubbard
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et al., 2005; Walsh, 2003). One possible method of establishing a causal

relationship would be to train interceptive timing skills and examine whether

any improvements result in performance on approximate or symbolic number

tasks. While this may initially seem implausible, it is known that even brief

training on approximate number tasks improve symbolic mathematical ability

(Hyde, Khanum, & Spelke, 2014), and neural representations of number,

which are presumably recruited in approximate number tasks, may be related

to representations of space and time (Burr et al., 2011).

Establishing whether shared neural substrates exist between the processes

involved in mathematics and interceptive timing skills is a clear challenge for

future research. Evidence suggests that the posterior parietal cortex may be a

possible substrate for processes critical in mathematics and interceptive timing

abilities. Walsh (2003) proposed that the representation of number, time and

space may be linked through a shared representation of magnitude. In support

of this finding, Burr et al. (2011) found that saccades compress perceptions of

spatial, temporal and numerical magnitudes, an effect which has been linked

to predictive remapping of retinotopic neurons during saccades (Duhamel,

Colby, & Goldberg, 1992), particularly in the lateral intraparietal sulcus

(LIP). In addition neurons in LIP and the ventral intraparietal sulcus (VIP)

have been found to be sensitive to both numerosity (Roitman, Brannon, &

Platt, 2007; Nieder & Miller, 2004) and time durations (Leon, Leon, Shadlen,

& Shadlen, 2003; Hayashi et al., 2013), while damage to the posterior parietal

cortex is often associated with deficits in numerical and temporal judgements

(Bueti & Walsh, 2009). Given that estimation of time durations is critical in

interceptive timing tasks it seems plausible that the same neuronal processes
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may be recruited when intercepting moving objects. In fact, neurons in LIP

appear to play a role in visual motion extrapolation (Bosco et al., 2015), an

ability which is critical in interceptive tasks and requires excellent estimation

of time.
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8.4 Concluding remarks

The results of this thesis provided insights into the mechanisms by which

adults can achieve amazing levels of temporal precision, how these abilities

develop in childhood, and how they relate to other sensorimotor and cognitive

domains. It is clear that much more work needs to be done to understand how

these skills develop and influence cognitive facets and academic attainment.

Using sophisticated portable research tools (such as that described in chapter

2), which move beyond the crude and noisy measures found in standardised

motor tests, should provide a useful first step to achieving this.
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