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Abstract 

This thesis presents findings of hydrothermally synthesised barium titanate 

nanoparticles for biomarker applications. Hydrothermal barium titanate (H-BT) and 

barium strontium titanate (H-BST) nanoparticles were successfully synthesised 

and were characterised for their second harmonic generation applications. X-Ray 

powder diffraction (laboratory and synchrotron) highlighted that H-BT and H-BST 

had a mixed tetragonal and cubic phase fraction present by Rietveld peak fitting 

analysis. Regardless of the phase fractions present, all nanoparticles emitted SHG 

(including a commercial cubic BaTiO3 sample that appeared cubic by XRD). The 

smaller sized H-BST nanoparticles (45 nm) required an increase in incident laser 

power compared to the H-BT sample (~140 nm).   

The phase of the nanoparticles and origin of SHG was investigated by electron 

diffraction, electron energy loss spectroscopy and high resolution HAADF-STEM 

imaging. In-situ electron diffraction of barium titanate showed that the tetragonal 

diffraction pattern transformed to a cubic pattern when heated above the Curie 

point. The phase transition was also investigated by EELS measurements of the 

Ti-L3 edge t2g-eg peak separation at room temperature and 400 oC showing the 

reduction in t2g-eg peak separation when the sample transforms from a tetragonal 

to cubic phase. The surface of the nanoparticles also showed an atomically rough 

layer with incomplete unit cells, and the ‘bulk’ of the nanoparticles showed random 

Ti-atom distortions by HAADF-STEM Ti-atom displacement analysis. This 

suggests the origin of SHG is likely to be both a cause of surface roughness and 

local asymmetric distortions in the nanoparticle bulk. 

The hydrothermally prepared and PLL-coated nanoparticles were measured to 

assess the cell viability and DNA damage of cells after a 24-hour exposure. The 
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nanoparticles were measured by dynamic light scattering to understand the 

behaviour of uncoated and PLL-coated nanoparticles suspended in different 

media. The uncoated nanoparticles showed little reduction in cell viability and 

genotoxicity, whereas the PLL coated nanoparticles showed a reduction in cell 

viability and a failed comet assay at concentrations ≥10 µg/mL. The nanoparticles 

were confirmed to be taken up into the cells by electron microscopy of critically 

point dried and resin embedded cell sections. Cryo-TEM of the H-BT-PLL 

nanoparticles suspended at 100 µg/mL in complete cell culture media showed that 

some nanoparticles were coated with a calcium phosphate coating and others not. 

This resulted in, either cells having a direct exposure to PLL and positively 

charged nanoparticles, or all the calcium was removed from the media that is 

required for cell signalling pathways which could lead to a reduction in cell 

viability.    
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Chapter 1 – Introduction 

1.1 Biomarkers 

A biomarker is defined as a material that marks or maps a biological process or 

function. The most significant breakthrough in biomarkers was the discovery 

and use of the green fluorescent protein (GFP) from the Jellyfish Aequorea 

Victoria [3,4]. Use of GFP is a well-established technique to mark gene 

expression and protein targeting in intact cells and organisms [5] and uses the 

phenomenon of fluorescence under ultraviolet radiation. A major drawback to 

use of GFP however, arises due to photobleaching. This is the photochemical 

degradation of the dye where, upon excitation, the fluorophore may undergo an 

electronic state transition, causing the formation of free radicals. Which can 

react with the surrounding environment disabling the proteins ability to 

fluoresce ([6,7] and Figure 1). In addition, fluorescent molecules must be 

genetically encoded to be used as a biomarker, which can be labour intensive 

and has caused problems with energy transfer between proteins [8]. 

 

 

 

 

 

Figure 1. Photobleaching of a AlexaFluor 488 fluorescently tagged 3T3 cell under 

continuous illumination for the specified times. Highlighting the 

photochemical degradation of the dye; taken from [9].  

00 s 60 s 180 s 
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A practical solution to GFP bleaching came with the use of semiconductor 

quantum dots (QDs) as fluorescent biomarkers. QDs are semiconductor 

nanocrystals which have a higher efficiency of fluorescent emission in 

comparison to fluorescent proteins. However QDs are known to have problems 

with intermittency or “blinking” (stochastic on/off fluorescence) when using them 

as biomarkers which can be problematic when using them for long lifetime 

tracking ([10] and Figure 2). In addition, semiconductor QDs have a potential 

lack of biocompatibility due to their composition; e.g. Cadmium Selenide & 

Cadmium Telluride because cadmium is known to induce cytotoxic responses. 

This is generally overcome by coating the dots in an inert, inorganic shell such 

as zinc sulphide [11,12]. 

 

 

 

 

 

 

Figure 2. Single frame from a CdSe-CdS (core-shell) video, showing the quantum 

dot fluorescence over a specified time, with the inset showing the stochastic 

on/off signal generated; taken from [13]. 

 

Developments in fluorescence microscopy have allowed the user to image cells 

beyond the diffraction limit of light by a number of techniques collectively known 

as super-resolution microscopy. These techniques are specifically known as 
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stimulated emission depletion microscopy (STED), photoactivated localisation 

microscopy (PALM), stochastic optical reconstruction microscopy (STORM) 

and structured illumination microscopy (SIM) [14,15]. However, the use of 

harmonic nanoparticles aims to develop inorganic biomarkers that overcome 

the shortcomings of fluorescent molecules and QDs. This can be achieved by 

using the phenomena of second harmonic generation (SHG) to make second 

harmonic nanoprobes. The advantage of second harmonic generation is its 

stability over continuous illumination periods, making SHG markers suitable for 

long lifetime tracking. These harmonic nanoparticles do not suffer from 

photobleaching (as for fluorescent markers, Figure 1) or blinking (as for 

semiconductor QDs, Figure 2) due to the virtual energy state transition that is 

induced prior to emission; discussed in Section 1.2 (Figure 3). It is important to 

note however, that second harmonic light is only generated if the crystal 

structure is non-centrosymmetric. In the case of perovskite material such as 

barium titanate, this requires transformation to a tetragonal crystal structure 

(Section 1.3).  

1.2 Second harmonic generation (SHG) 

Light can be described as a sinusoidal electromagnetic wave that propagates 

at an angular frequency ω (2πf). When this radiation interacts with a 

centrosymmetric material it induces a linear dipole moment (polarisation) in 

response to the propagation of the electric field through the material. However, 

in crystals that are non-centrosymmetric (no inversion symmetry) there can be 

a non-linear response to the incident radiation, particularly at high incident 

intensity [16]. Tetragonal BaTiO3 can produce a non-linear optical response 
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when illuminated by an intense photon source. This second harmonic 

generation (SHG) of light, also known as frequency doubling is the 

simultaneous absorption of two near-infrared photons, with re-emission of a 

single photon of double the incident frequency in the visible region (Figure 3). 

 

 

  

 

Figure 3. (a) Diagram showing the simultaneous absorption of two near-infrared 

photons interacting with a non-centrosymmetric nanoparticulate crystal and 

generating light at double the frequency. (b) Jablonski diagram of SHG; 

adapted from [17]. 

 

This harmonic light generation can provide emission during continuous 

illumination to circumvent the drawbacks (discussed above) associated with 

long lifetime imaging and tracking of conventional markers. 

1.3 Barium titanate nanoparticles. 

Barium titanate adopts a tetragonal crystal structure when below the 

ferroelectric Curie point (130 oC for pure BaTiO3), this structure possesses a 

non-centrosymmetric crystal structure and is one of the most extensively 

researched perovskite materials to date. It has excellent ferroelectric 

properties, high dielectric susceptibility and is used in a large variety of 

applications; the most common being multilayer ceramic capacitors [18]. There 
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is a demand to make thinner layers in micro-capacitors and therefore smaller 

particles of BaTiO3 are required. However a problem associated with the size 

reduction of barium titanate is that the paraelectric cubic phase 

(centrosymmetric crystal structure) becomes more stable than the tetragonal 

phase (even below the Curie temperature) – leading to inferior dielectric 

properties [19].  

In order for a material to be ferroelectric there must be a net (electrostatic) 

dipole moment within the material. In the case of tetragonal barium titanate – a 

non-centrosymmetric crystal medium – the net dipoles are formed by the 

titanium atom in the oxygen octahedron being displaced from the centre of the 

unit cell (see Chapter 2, Section 2.3.1 for a detailed discussion) 

 

 

 

 

Figure 4. Schematic barium titanate nanoparticle as a function of decreasing 

particle size; the ferroelectric tetragonal core becomes less dominant in terms 

of total particle volume, and the paraelectric cubic surface shell ultimately 

dominates at and below a critical size. As the particle size decreases, 

naturally the bulk dipole interaction decreases and consequently disorder will 

eventually dominate the bulk  [20]. 

 

The addition of strontium into the barium titanate lattice (Ba1-xSrxTiO3) lowers 

the transition (Curie) temperature from the tetragonal to the cubic crystal 

structure (transition of ferroelectric to paraelectric) and is seen to increase the 

Ordered ferroelectric core 

Disordered paraelectric shell 

Decreasing particle size 
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dielectric constant of the material (the net titanium dipole, discussed in Section 

2.4.1) [21]. It is known that increasing amounts of strontium ions incorporated 

into the barium titanate lattice shifts the unit cell to smaller lattice parameters as 

more strontium is incorporated [22]. This implies that if the strontium ions are 

homogenously incorporated into the barium titanate lattice, they may inhibit 

particle growth, whilst still retaining a tetragonal phase below the, now lower, 

Curie point [23,24]. 

The phenomenon of SHG suggests that non-centrosymmetric BaTiO3 and Ba1-

xSrxTiO3 nanoparticles can be used as second harmonic nanoprobe 

biomarkers. This thesis will focus on the unexplored method of the 

hydrothermal synthesis of barium titanate or barium strontium titanate 

nanoparticles for use as second harmonic nanoprobes. The thesis will 

introduce the current research associated with barium titanate and barium 

strontium titanate biomarkers and will present the characterisation of these 

nanoparticulate structures. The results include bulk characterisation of the 

materials such as X-ray diffraction (XRD), dynamic light scattering (DLS) and 

second harmonic generation (SHG) imaging. In addition, individual nanoparticle 

characterisation techniques such as transmission electron microscopy (TEM), 

scanning transmission electron microscopy (STEM) and electron energy loss 

spectroscopy (EELS) are investigated. Finally, the work will assess cell viability 

of in vitro cells exposed to these particles. 

1.4 Aim of this project:  

To explore hydrothermally synthesised BaTiO3 nanoparticle systems for 

biomarker applications. 
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1.5 Objectives:  

• To synthesise barium titanate nanoparticles that produce SHG. 

• To incorporate strontium homogenously into the barium titanate lattice to 

enhance SHG. 

• To characterise the BaTiO3 nanoparticle crystal structure by X-Ray 

diffraction, transmission electron microscopy and electron energy loss 

spectroscopy. 

• To functionalise BaTiO3 nanoparticles for enhanced uptake in vitro. 

• To measure BaTiO3 nanoparticle dispersions in complete cell culture 

media in order to understand nanoparticle behaviour before exposure to 

cells. 

• To measure the cell viability on exposure to both uncoated and coated 

barium titanate nanoparticles. 

• To assess the cellular uptake of barium titanate nanoparticles following 

exposure to cells in vitro. 
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Chapter 2  – Synthesis and Characterisation of barium titanate 

nanoparticles – Literature review.  

2.1 Second harmonic generation (SHG) microscopy 

When incident light radiation interacts with a centrosymmetric material it 

induces a linear dipole moment (polarisation) in response to the propagation of 

the electric field through the material. However in dielectric crystals that are 

non-centrosymmetric (meaning that there is no inversion symmetry) such as 

tetragonal barium titanate there can be a nonlinear response to the incident 

radiation, particularly at high incident intensity; Figure 5 [16]. 

 

  

 

 

Figure 5. (a) Linear response of induced polarisation to the electric field of light in 

a centrosymmetric material. (b) Nonlinear response to the incident 

electromagnetic radiation in a non-centrosymmetric material [16,25]. 

 

Though nonlinear optics originates from quantum confinement of electrons in 

molecules [25], the interpretation of both the quantum mechanical and classical 

approach can be summarised by the ease of displacement of electrons in a 

potential harmonic well [25]; Figure 6. An electron is bound to a molecular 

orbital of a material oscillating at a natural frequency with an equal 
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displacement ‘x’. The harmonic profile represents the response of the electron 

by the electric component to the optical field (a sinusoidal varying field) [25,26].  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. (a) Displacement of an electron in a centrosymmetric material – harmonic 

profile. (b) A non-centrosymmetric material – anharmonic profile.  

 

A harmonic response in the above figure represents the linear polarisation of a 

molecule or material where the displacement of the electron is directly 

proportional to the applied optical field. However if the material is non-

centrosymmetric or has a net dipole moment it modifies the incident radiation 

and the resultant polarisation [25], resulting in an anharmonic displacement of 

the electron plot shown in the above figure; where the displacement of the 

electron or molecule is no longer proportional to the incident radiation. This is 

the origin of nonlinear polarisation and it occurs in a medium that lacks a centre 

of inversion symmetry such as tetragonal barium titanate. 

Second harmonic generation is the production of light at a wavelength half that 

of the incident photons. It is a nonlinear optical technique where the incident 

frequency of photons is converted to light of exactly double the frequency but 

does require an intense (or multiphoton) incident light source; Figure 7. 
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Figure 7. (a) Jablonski diagrams of SHG vs conventional two-photon excited 

fluorescence (2-PEF). The SHG diagram shows the simultaneous absorption 

of two photons with the emission of a single photon of double the frequency, 

compared to 2-PEF where the electrons are excited to higher energy levels 

and upon relaxation by vibrational losses emits a photon of less than double 

the incident frequency. (b) Comparison of the illumination mechanisms of 

SHG (nonlinear) excitement compared to 2-PEF (linear), showing spatial 

confinement of generated SHG signal at a focal spot generated by the femto-

second pulsed near infrared incident beam (orange cone) compared to a cone 

of fluorescence from conventional fluorescence microscopy (blue cone); 

taken from [27,28].  

 

Franken et al. first demonstrated the phenomenon of second harmonic 

generation by first deriving the phenomenon mathematically, then showing the 

macroscopic properties of SHG in a quartz crystal [29]. The mathematical 

explanation of SHG is discussed in detail in Chapter 3, Section 3.8. However, 

SHG research has increased over the recent years due to the improvement of 

laser intensity and the ability to generate good second harmonic intensity. 
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Second harmonic light is produced by a femtosecond-pulsed laser of near-

infrared light. Near-infrared wavelengths are used because of optical windows 

allowing absorption and scattering from biological tissue (such as: blood, skin, 

water and fatty tissue), but at longer wavelengths the absorption of light is low 

and this allows for increased sample penetration depth (ideal for thick tissue 

samples) [30,31]. The laser is pulsed because it allows a higher flux of photons 

to be delivered to the sample and the SHG output signal scales quadratically 

when incident radiation power is increased [32,33]. However, as this technique 

requires a high intensity laser to generate second harmonic radiation in the first 

place, it is a less than ideal situation for applications involving radiation 

sensitive biological tissue. A review of near infrared radiation (NIR) by Karsten 

König, revealed that peak laser intensities higher than 100 GW/cm2 are likely to 

be harmful to intracellular components [34]. Meaning there is a limit to the laser 

intensity that can be used to image in biological media without inducing 

damage. Further difficulties are presented by Taatjes et al. in that SHG signal is 

reduced in samples embedded in epoxy resin, fixed with glutaraldehyde and 

stained with osmium tetroxide (generic electron microscopy sample preparation 

steps), meaning that correlation microscopy of biological samples requires 

further research and understanding [35].  

One of the first biological SHG experiments was conducted in 1986 [32,33], 

where membranes in biological samples were visualised by their isotropic 

endogenous structures (such as collagen, muscle or microtubules) [36]. 

Campagnola et al. exploited the intense endogenous SHG signal that is 

produced from collagen to characterise collagen stacks in various mouse tissue 

thicknesses, showing that the SHG of the mouse leg tissue is still present at a 
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depth of 300 µm [37]. The intense SHG signal was also exploited by Le et al. 

when distinguishing between auto-fluorescent areas and areas that give SHG 

signal from elastin in swine arteries [38]. Le et al. confirmed the SHG signal 

was generated by collagen and could be collected in vivo whereas the auto-

fluorescence signal present was from stained elastin components but only 

imaged in vitro. Their results showed an increase in SHG in the diseased 

arteries because collagen is denser in the diseased tissue; Figure 8.  

Endogenous SHG imaging microscopy without the use of nanoparticles has 

shown signal limitations such as absorption/scattering of the SHG signal in 

thick samples before reaching the detector and a weakly generated SHG signal 

in biological tissue [17], leading to the explicit use of nanoparticles as SHG 

nanoprobes. 

 

 

 

 

 

 

 

 

Figure 8. SHG imaging of healthy and atherosclerotic iliac arteries from Ossabaw 

pigs. (a) Cross-sectional and (b) luminal views of collagen in healthy arteries 

compared to (c) cross-sectional and (d) luminal views of an atherosclerotic 

artery. In each case scale bars are at 75 µm; taken from [38]. 
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Kim et al. studied the SHG output of sub-100 nm barium titanate nanoparticles 

down to 22 nm [39]. The research showed the SHG output of BaTiO3 

nanoparticles decreased in power when the size of the nanoparticles 

decreased (from 50 nm to 22 nm). Kim et al. characterised the crystal phase of 

BaTiO3 nanoparticles by XRD, suggesting BaTiO3 is ‘pseudo-cubic’ i.e. 

appears cubic by XRD analysis due to the lack of XRD splitting in the (002/200) 

peak, but has tetragonal features (in that it emits SHG light). The research 

hypothesized the origin of second harmonic signal in barium titanate particles 

may not have been from a tetragonal phase nanoparticle, but arose from 

broken inversion symmetry of the surface (surface-roughened) as shown in 

Figure 9 [39].  

 

 

 

 

 

 

Figure 9. Second harmonic and atomic force microscopy image of a 22 nm sized 

BaTiO3 nanoparticle on a glass substrate; taken from [39].  

 

Kim et al. undertook further work to prove the quadratic dependency of the 

SHG signal with the incident beam power, providing further evidence that it is 

SHG of light and not Rayleigh scattering which has produced from 22 nm sized 



 
 

- 14 - 

barium titanate nanoparticles. The authors suggested that the cubic (or non-

tetragonal) surface effects dominated at sizes of around 20 nm [39].     

Several nanoparticle types investigated for second harmonic applications were 

investigated by Staedler et al. (shown later in Table 2) who presented a survey, 

detailing the cytotoxic responses to these SHG nanoparticles [40,41]. They 

investigated the in vitro cell uptake of uncoated and PEG-coated bismuth ferrite 

nanoparticles in A549 cells. Their results showed that the PEG-coated 

nanoparticles were less toxic than the uncoated nanoparticles, but the uptake 

into cells was reduced. They stated that in addition to reduced cellular uptake, 

the uncoated nanoparticle toxicity was due to the electrostatic interaction 

between the BiFeO3 surface and the cell membrane and reduced cytotoxicity 

for PEG-coated BiFeO3 was likely due to steric hindrance [41]. Further 

research by Staedler et al. showed the long second harmonic response time of 

KNbO3 nanoparticles with the ability excited over 5 hours in a fluorescently 

tagged HTB-182 cell. The SHG emission of these KNbO3 nanoparticles that 

were stable over a 5-hour period when illuminated by a femtosecond pulsed 

laser were also shown to be wavelength-tuneable within the near-infrared 

range (Figure 10) [40].  

Figure 10 shows that these nanoparticles can be used for long lifetime imaging, 

they also have the advantage of simultaneously absorbing two photons and 

emitting a single photon of double the frequency (Figure 7) implying that they 

are less likely to photobleach (like fluorescent molecules [9]) and emission blink 

(like semiconductor quantum dots [13]) shown in Figure 2, Chapter 1. 

Therefore, these nanoparticles can be used for in vivo biological imaging and 

more importantly have the potential for application in vivo intravital microscopy.  
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Intravital microscopy is the light microscopy-based technique which has 

become an essential tool in biology. The key advantage to intravital microscopy 

and second harmonic generation is the use of the near infrared wavelength 

(longer wavelength) allowing deeper (~120 µm) penetration into the 

tissue/medium [42]. 

 

 

 

 

 

 

 

 

 

Figure 10. (upper plot) The pulsed laser excitation (A, B, C and D) with the 

corresponding second harmonic signal (A’, B’, C’ and D’). The absorption 

(dashed line) and fluorescence (continuous line) spectra of FM1-43 cell 

membrane dye [40]. (middle plot) The multiphoton images of HTB-182 cells 

(red) with the second harmonic potassium niobate (KNbO3) shown merged 

and without the cells underneath (exposed for 24 hours). The scale bar 

corresponds to 20 µm. (lower plot) The lifetime behaviour of the membrane 

dye (red) and the second harmonic signal (blue) showing the SHG signal 

being stable for at least a period of 5 hours compared to ~ 2 hours for the 

fluorescent dye; taken from [40]. 
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Intravital microscopy in collaboration with SHG biomarkers, requires an incident 

light beam to excite BaTiO3 or any non-centrosymmetric nanoparticles that are 

exposed to live mammalian models leading to subcellular resolution, live-tissue 

imaging [43]. A comprehensive review of intravital microscopy by Condeelis 

and Segall [44] discusses the use of multiphoton (in vivo) intravital microscopy 

to better understand cancer cells and the movement of invasive tumours. Their 

research shows cancerous cells migrating along the extracellular matrix using 

the second harmonic signal arising from the extracellular matrix with 

fluorescently tagged tumour cells in vitro, shown in Figure 11.  

 

 

 

 

 

Figure 11. False coloured multiphoton image of tumorous cells in vitro (green) 

moving on extracellular matrix imaged by SHG (purple). The arrows indicate 

the points of cell-matrix interactions; taken from [44,45]. 

 

The first example of intravital microscopy using barium titanate nanoparticles 

as second harmonic nanoprobes was conducted by Pantazis et al. who 

conducted in vivo studies of BaTiO3 harmonic nanoprobes injected into 

zebrafish embryos. The results showed that barium titanate nanoparticles 

exhibited no toxic effects and appeared physiologically inert during embryonic 

growth [46]. In vivo imaging enabled continuous tracking of specific cells during 



 
 

- 17 - 

(a) (b) 

tissue growth, and also highlighted the advantage of second-harmonic BaTiO3 

nanoparticles which showed a strong signal over 20 minutes of illumination, 

whilst the Dextran-Alexa 546 fluorescent marker underwent bleaching over the 

same amount of time (Figure 12) [46]. Further work by Pantazis et al. 

investigated the specific targeting of the zebrafish embryos by labelling BaTiO3 

nanoparticles with cyanine (Cy5)-coupled reduced antibodies in order to 

compare the signal generated by the fluorescence and SHG directly; this 

revealed a superior signal to noise ratio from the SHG signal [46]. 

Figure 12.  Zebrafish embryos co-injected with the BaTiO3 nanoparticles and 

10,000 MW Dextran-Alexa546 molecule and imaged at the ‘dome stage’ (~4 

hours old) of zebrafish embryos [46]. (a) In vivo imaging of the zebrafish 

embryo with the fluorescent marker in red and the BaTiO3 nanoparticles in 

white at time = 0 minutes. (b) In vivo imaging after 20 minutes of illumination 

showing the fluorescent signal from the organic dye decaying in comparison 

to the stable second harmonic light signal of BaTiO3 nanoparticles. The scale 

bar corresponds to 20 µm; taken from [46] supporting information. 

 

The research conducted by Pantazis et al. (Figure 12) subsequently led to 

intravital microscopy imaging by Čulić-Viskota et al. [47] where uncoated 

barium titanate nanoparticles and PEG-functionalised nanoparticles were 

exposed to living zebrafish embryos (Figure 42).  
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Intravital SHG microscopy of barium titanate nanoparticles was also shown by 

Grange et al. [42]. This proof of concept was first shown in vitro by imaging 

BaTiO3 nanoparticles through different thicknesses of mouse tail tissue using 

SHG microscopy. The simple experiment involved dropcasting BaTiO3 

nanoparticles (~100-300 nm in size) dispersed in methanol onto a glass 

substrate and a controlled thickness of mouse tail (20 to 200 µm) thick was 

added on top by conventional histology preparation routes [42]; Figure 13. 

Figure 13. (a) Sample preparation for in vitro SHG imaging in mouse tail tissue. 

SHRIMPS are an acronym for second harmonic radiation imaging probes. (b) 

SHG imaging of 300 nm BaTiO3 nanoparticles embedded 120 µm below the 

surface of in vitro mouse tail tissue; taken from [42]. 

 

With successful in vitro SHG imaging of BaTiO3 nanoparticles in mouse tail 

tissue, in vivo SHG imaging was also performed with injected BaTiO3 

nanoparticles dispersed in distilled water just under the mouse tail skin (and not 

in the blood vessels) [42]. The mouse was placed under the microscope after 

being anesthetized with the tail being immersed in water; shown in Figure 14. 

The SHG images were collected by determining the position of the particles on 

the x-y axis, using a marker to position nanoparticle locations on the tail and 

then imaged on the x-z axis (through the mouse tail). The nanoparticles were 
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as deep as 100 µm within the mouse tail, with the endogenous SHG of the 

collagen also being evident. The researchers noted that the elongated signal of 

the BaTiO3 nanoparticles collected was partly due to the scattering of turbid 

media and some microscope aberrations [42].  

Figure 14. (a) In vivo set-up for intravital SHG imaging of BaTiO3 nanoparticles in 

mouse tail tissue. (b) SHG imaging on the x-y axis where the nanoparticles 

were first located and then imaged in the x-z axis through the mouse tail 

showing the endogenous SHG of the collagen in the mouse tail and the 

nanoparticles embedded within the mouse tail tissue and labelled with the 

arrows ~100 µm deep; taken from [42].  

 

The in vivo studies carried out by Grange et al. with second harmonic BaTiO3 

nanoparticles in mouse tail tissue (Figure 14) showed that these nanoparticles 

can be used for intravital microscopy [42], however developments are still 

required in this field. 
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2.2 Nanoparticle interactions in cellular environments 

 

The biophysical interaction of inorganic nanoparticles and biological interfaces 

are a crucial area of biomedical research; where safe use of these 

nanomaterials is critical for future application in this field. Therapeutic uses of 

nanoparticles are assessed by in vitro cell lines, observing the cytotoxic and 

genotoxic response to nanoparticle exposure. These nanoparticle exposures 

are then assessed in vivo, to get a better understanding of the nanoparticle 

exposure, such as: distribution, metabolism and excretion of the nanoparticles 

[48]. 

Nanoparticles can physically enter the body through inhalation, ingestion and 

transcutaneous (skin) pathways. Once in the body and having passed 

specialised clearance cells (macrophages and other phagocytes), the 

nanoparticles can enter the cell through a few mechanisms; the main pathway 

being endocytosis; Figure 15 [49]. Endocytosis is the uptake of extracellular 

particles across a plasma membrane into a cell. Particles are encapsulated by 

the cell membrane, transported through the cell in a lipid vesicle and may be 

broken down in a lysosome. If the particles are unable to be broken down or 

catalysed then this could lead to cell mutation upon mitosis or cell apoptosis 

[50].  
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Figure 15. (a) Endocytosis can occur through non-specific labelling and (b) 

receptor mediated endocytosis. The non-receptor mediated endocytosis is 

known as pinocytosis and is a continuous process; whereas the receptor 

mediated endocytosis is a selective uptake of macromolecules; [50].  

 

Outcomes of nanoparticle uptake in biological environments are normally 

complex in vivo as it is difficult to fully characterise the adverse effects that may 

occur [49,51–54]. A review by Eleonore Fröhlich looked at the role of the 

nanoparticle surface and surface charge on the cellular uptake and cytotoxicity 

[51]. It highlights the factors that can cause cytotoxicity such as: generation of 

reactive oxidative species, the nanoparticles physically damaging the plasma 

membrane, dissolution of the particles in the suspending medium, or the 

binding of nanoparticles to membrane proteins/receptors; together with the 

remainder of the adverse effects shown in Figure 16 [51].  

 

 
  



 
 

- 22 - 

4 5 

7 

8 

 

 

 

 

 

 

 

Figure 16. Cytotoxic responses caused when exposing nanoparticles to cells. (1) 

Reactive oxidative species (ROS) generated extracellularly by nanoparticles, 

(2) nanoparticles physically damaging the cell membrane or (3) binding to 

membrane bound proteins/receptors. (4) Intracellular metal ions and reactive 

oxidative species from lysosomal degradation, (5) lysosomal disruption and 

(6) interfering with mitochondrial metabolism. (7) Intracellular ROS creates 

structural alterations of proteins in addition to (8) toxic actions in the nucleus 

(genotoxic) interfere with transcription (8); taken from [51]. 

 

The surface charge of a nanoparticle coating will have an effect on cellular 

uptake and cytotoxicity as reviewed by Fröhlich (67). This review detailed that 

positively charged (cationic) nanoparticles have a higher cell uptake in non-

phagocytic cells (cells that do not professionally engulf particles) leading to 

greater cytotoxicity, whereas negatively charged (anionic) nanoparticles have 

increased cellular uptake in phagocytic cells, thereby exhibiting higher 

cytotoxicity (67). 

A review by Nel et al. discussed the nanoparticle characteristics that are likely 

to affect in vivo biocompatibility, and a review of the nanoparticle interactions 
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when dispersed in biological systems; Figure 17 [49]. Nel et al. discussed the 

key areas that affect nanoparticle in vivo biocompatibility; such as: (i) the 

surface of the nanoparticle; (ii) the reaction medium surrounding the particle 

interface – when it interacts with components in the surrounding system – and 

(iii) the nanoparticle-biological interface; shown in Figure 17 [49]. 

The surface of the nanoparticle is important because it is this that is in contact 

with the surrounding suspending media. This interaction implies that the 

surface charge (affecting the zeta potential), the size and morphology (affecting 

the surface energy) and surface crystallinity and defects (affecting the 

functional groups) can all alter the nanoparticle interactions with the 

surrounding medium [49,55,56]. 

 

 

 

 

 

 

 

Figure 17. The nanoparticle/biological interface can be affected by any of the 

labelled components or a combination of them, highlighting the complexity of  

nanomaterials interacting in biological systems; taken from [49] and [55]. 

 

The solid-liquid interface between the nanoparticle and suspending media is 

important as it is the components of the suspending medium that form the 
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double layer around the nanoparticle (discussed in Chapter 3), which in turn 

affects the stability and reactivity of the nanoparticle [49,55]. The stability of 

nanoparticles can be changed by functionalisation of the surface (discussed in 

Section 2.6) and determines how these nanoparticles interact with the cells, i.e. 

the amount of nanoparticles taken up by cells and resultant effect on the cell; 

Figure 18 [57]. It is important to note that the solid/liquid interface is dynamic 

and changes depending on the surface properties of the nanoparticle.  

 

 

 

 

 

 

 

Figure 18. The interaction of two nearby nanoparticles suspended in biological 

media, highlighting the double layer formation (discussed in Chapter 3) with 

the attractive Van der Waals, electrostatic repulsive forces and other dynamic 

surface interactions; taken from [49]. 

 

When the suspended nanoparticles come into contact with the cells, the 

nanoparticles will either bind specifically (if functionalised for a specific 

membrane target molecule) or non-specifically. The non-specific binding of 

nanoparticles to the cellular membrane is a result of the nanoparticle properties 

such as: surface roughness, surface charge and hydrophobicity. It is generally 
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accepted that positively charged surfaces are likely to be taken up by cells due 

to electrostatic attraction (discussed by Fröhlich [51]). However, the surface 

roughness (a result of the local atomic disorder of the surface), has been 

modelled by Hoek et al. who showed that it promoted nanoparticle adhesion to 

the cell membrane and this would likely result in increased uptake by the cells 

[49,58].  

The hydrophobicity of the nanoparticle is a result of the double layer formed 

around the nanoparticle (Figure 18) and affects the stability of the nanoparticle. 

If the nanoparticles have a low hydrophobicity, then they will be colloidally 

stable in aqueous media and tend to be reasonably dispersed. Compared to 

nanoparticles with a high hydrophobicity, which will not be stable as they want 

to minimise the contact with water and the nanoparticles will likely agglomerate 

[49]. The hydrophobicity of the nanoparticles are also important because of the 

interaction with the cell membrane lipid bilayers [59]. Verma et al. have shown 

that gold nanoparticles with amphipathic ligands (hydrophilic and hydrophobic 

compounds) adsorbed to the nanoparticle surface; entered a mouse dendritic  

cell without causing any damage to the cell membrane [60].  

 

A three-dimensional phase diagram highlighting the factors that can affect 

biocompatibility of nanoparticles in cells is shown in Figure 19. 
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Figure 19. A three dimensional phase diagram showing the biocompatibility trends 

of 130 nanoparticles screened in vivo for therapeutic use [61]. The dashed 

lines across the rigid core size (of the nanoparticle) shows the approximate 

limits of renal and biliary clearance. Particles which can be safely removed by 

the reticuloendothelial system (RES – component of the immune system) 

shown in the blue area. The enhanced permeation and retention of particles is 

shown in the green area (EPR) which are ideal characteristics for therapeutic 

nanoparticles; taken from [49], courtesy of [61]. 

 
 

To date, there is no current research involving the functionalisation and 

characterisation of barium strontium titanate nanoparticles for SHG biomarkers. 

The literature described here provides a generic overview of nanoparticle 

interactions with cells to aid the results presented in Chapter 6.   
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2.3 Structure of BaTiO3 nanoparticles. 

 

A perovskite is a common class of crystalline structures for ferroelectric 

materials. It has a generic composition of ABO3 ideally showing a body centred 

cubic structure (Figure 20) highlighting 8 (A) cations (in the corners) a single 

(B) cation in the unit cell centre, with oxygen (or other anions) atoms present in 

the centre of each of the faces (ABO3). The unit cell structure in Figure 20 has 

the potential to be ferroelectric if, when the unit cell is repeated – there is a 

spontaneous net electrostatic dipole moment within the material that can be 

reversed upon the application of an electric field [22,62]. In the case of BaTiO3 

and Ba1-xSrxTiO3, the net dipoles are formed by the titanium atom being 

displaced in the oxygen octahedron, typically transforming to a tetragonal 

crystal structure; Figure 20 [62].  

  

 

 

 

 

 Figure 20. (a) The unit cell of an ABO3 perovskite structure in the case of barium 

titanate (BaTiO3) with the atoms labelled. (b) In the case of tetragonal barium 

titanate titanium atom is displaced in the oxygen octahedron, giving rise to a 

net polarisation and a transformation in crystalline structure, typically to 

tetragonal symmetry. (c) List of bond lengths for cubic and tetragonal BaTiO3 

symmetry. 
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Figure 21. The phase transitions of barium titanate when cooled through the Curie 

temperature (130 oC). The unit cell structure and parameters are shown; 

adapted from [63–65]. 

 

The net dipole moment forms when the material cools through the Curie point.    

The Curie point for BaTiO3 is 130 oC and ~50 oC for Ba0.8Sr0.2TiO3 [64,66,67], 

above this transition Curie temperature the perovskite unit cell is cubic and 

below it is typically tetragonal (although it can be orthorhombic or rhombohedral 

at lower temperatures) as shown in Figure 21. It is generally accepted that 

cubic unit cells are paraelectric (i.e. no net spontaneous polarisation) whereas 

tetragonal unit cells are known to be ferroelectric, this may not always be the 

case for nanoparticulate perovskite systems and so care will be taken to clarify 

the unit cell configurations [68]. 

The determination of the Curie point for BaTiO3 systems was initially conducted 

on parallel plate capacitors where the Curie point for course BaTiO3 (>1 µm) 

was reported to be 120 oC [22,69]. Upon further studies the transition 

temperature between ferroelectric and paraelectric was determined to be 130 

oC [22,62,70,71]. Further research suggested that the phase transition was 
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highly dependent on microstructure [71] and as the particle size decreased 

(≤100 nm), a depolarisation effect due to size dominated, and BaTiO3 

nanoparticles became paraelectric. The evidence supporting the ‘critical size’ of 

this phase transition is summarised in Section 2.3.1.  

 

2.3.1 Tetragonal and cubic phase transition based on size 

The size dependence of the cubic/tetragonal phase transition of BaTiO3 has 

long been debated. Overall, there is a broad agreement that the tetragonal 

phase becomes less stable as the particle size is reduced below 100 nm.   

Early research suggested that the phase transition occurs when particle sizes 

reach the sub-micrometre scale, e.g. 0.12 μm and 0.35 μm [72,73]. As 

characterisation techniques improved it has become a common view that the 

critical particle size values are below 100 nm [39] and over the past decade 

there has been a large discrepancy in determining the absolute critical particle 

size; values of ~25 nm, ~50 nm and ~70 nm have been reported [74–76]. 

The discrepancy in values for the size dependant phase transition has led to 

the adoption of a (broadly) accepted size-dependent mechanism. Involving a 

tetragonal particle core and a cubic shell, producing a ferroelectric/paraelectric 

core/shell particle [20]. The core/shell mechanism is widely accepted in most 

perovskite structures because the paraelectric phase (cubic shell) has no net 

dipole moment, whereas the ferroelectric phase does (i.e. a tetragonal core 

with a net Ti-atom dipole). This net dipole moment (sometimes referred to as a 

“correlation length”) is a measure of the range over which the unit cell dipoles 

interact with each other [20]. As the particle size decreases, naturally the bulk 

dipole interaction decreases – meaning that the correlation length will 
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decrease. Consequently, the disordered paraelectric surface will eventually 

dominate the ferroelectric bulk.  

A modification to the generally accepted size dependant tetragonal-cubic phase 

transition was the suggestion of a gradient lattice strain layer proposed by 

Hoshina et al. [77] which is commonly represented in lattice parameter 

diagrams. This model is shown experimentally by Rietveld fitting of synchrotron 

X-Ray diffraction data with extracted unit cell lattice parameters [77]. This 

model suggests that all nanoparticles have a tetragonal core, a gradient lattice 

strain layer (GLSL) and a cubic surface which will eventually dominate the bulk 

when the particle size decreases to sufficiently small values and the surface 

area/volume ratio is high. 

 

 

 

 

 

 

 

Figure 22. The c/a ratio of the tetragonal/cubic phase transition. The area of the 

graph with c/a <1.011 Å is the speculated gradient lattice strain layer [77].  

 

A study on the critical particle size phase transition between cubic-tetragonal 

BaTiO3 was conducted by Smith et al. [74] using characterisation techniques 

that determine global and local nanoparticle structures. The study analysed 

data obtained using X-Ray synchrotron radiation measurements, temperature 
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dependant Raman spectroscopy and pair distribution function (PDF) analysis. 

The research proposed that there is a well-defined phase transition between 

the ferroelectric phase and the paraelectric phase in bulk BaTiO3 at the Curie 

point of 130 oC. The research also suggested that as the particle size 

decreased, the volume of the unit cell increased and caused the titanium 

displacement to increase due to more space being available. They advocate 

that because smaller nanoparticles have larger Ti atom displacements they are 

not more ferroelectric, but are more paraelectric because of the increase in unit 

cells volumes which, reduces the coherence from one unit cell to another, (so 

no net polarisation) which is a similar principle when bulk BaTiO3 is heated 

above the Curie point (130 oC) [74]. 

The phase transition mechanisms proposed, either the gradient size dependant 

strain layer [77] or of the local order in small nanoparticles [74] were suggested 

using bulk phase analysis techniques (aside from local order analysis by PDF). 

However, phase analysis of BaTiO3 nanoparticles can also be done using 

electron microscopy, which can provide information from individual particles. 

The ferroelectric order of individual BaTiO3 nanoparticles has been investigated 

using high resolution electron microscopy and PDF analysis by Polking et al. 

[78]. Their research showed that the ferroelectricity of nanoparticles is likely to 

be dependent on shape, in addition to nanoparticle size. Specifically, 

nanoparticles that appear cubic are more ferroelectric, compared to spherically 

shaped nanoparticles which exhibited a steady decline in ferroelectric dipole 

coherence by PDF analysis. A comparison of cubic and spherical nanoparticle 

ferroelectric distortions showed that the coherence length of cubic 

nanoparticles is ~ 20 Å compared to 10 Å for spherical nanoparticles. The 
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atomic resolution phase reconstruction and titanium displacement map for a 

spherical BaTiO3 nanoparticle is shown in Figure 23. 

 

 

 

 
 
 
 
 
 
 
 

Figure 23. (a) Atomic resolution reconstructed phase image and titanium 

displacement maps of a spherical barium titanate nanoparticle. The arrow 

shows the general displacement along the [001]. (b) The colour scale shows 

the magnitude of the Ti atom displacement; taken from [78]. 

 

The research shown by Polking et al. suggested that the Ti displacements are 

0.15 Å at maximum, but can also show random displacements at the surface of 

the nanoparticles (Figure 23). This would suggest that although there are Ti-

atom displacements present in the unit cell, the nanoparticle is not ferroelectric 

due to the absence of any net displacement. Further TEM investigation of 

barium titanate and barium strontium titanate nanoparticles by electron energy 

loss spectroscopy is discussed in Section 2.5.  

5 nm 

5 nm 
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2.4 Synthesis of BaTiO3 and Ba1-xSrxTiO3 nanoparticles 

 

The mixed oxide route is a common technique for synthesising piezoelectric 

multilayer ceramic materials. This procedure involves sintering equimolar 

mixtures of precursor however, the morphology of the resultant product is 

highly dependent upon the morphology of the precursors [79]. The 

disadvantage of this synthesis method includes the vast amount of energy 

needed. Firstly, high temperatures are used, this then leads to the formation of 

course micrometre sized powders which leads to intensive milling to de-

aggregate the synthesised powder. However high intensity ball-milling with 

precursor material is capable of producing BaTiO3 particles ~ 12 nm in size 

[80]. This process takes several days, has a large particle size distribution and 

has issues with impurities such as BaCO3 [79,80]. 

A common ‘wet-based’ synthesis procedure is the hydrothermal method and 

this is used to directly produce sub-micrometre barium titanate from mixed 

slurries of aqueous ions. Providing a consistent and reliable method when 

altering process variables such as reaction dwell time and temperature. A key 

advantage to the hydrothermal method is the relatively low temperature needed 

for synthesis (70-200 oC) in comparison to the mixed oxide route [81,82]. Most 

hydrothermal preparation methods utilise hydroxide precursors under highly 

alkaline conditions and high Ba:Ti molar ratios [83]. After reaction, the slurry is 

initially washed with a dilute acid to remove any adsorbed BaCO3 impurities 

and then with distilled water thereafter. Once the washing process has been 

repeated a number of times, the slurry is then dried at a suitable temperature 
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(60 – 80 oC) overnight [83]. Eckert et al. [84] suggested the formation of barium 

titanate nanoparticles via the hydrothermal method involved two common 

dissolution-precipitation formation mechanisms. These are homogenous 

nucleation of BaTiO3 in solution and heterogeneous nucleation on TiO2 

precursor particles which then transform to BaTiO3. Both mechanisms have 

been debated; however, both are still considered plausible, Figure 24. 

 

 

 

 

 

 

 

 

 

 

Figure 24. The dissolution-precipitation mechanism containing (a) homogenous 

(blue arrows) and (b) heterogeneous nucleation (green arrows) of BaTiO3 with 

the red arrows showing the movement of barium and titanium ions to form 

BaTiO3 [84]. 

 

Eckert et al. suggested that the rate determining step for the homogeneous 

nucleation step was Ti-O bond breaking in titanium dioxide (TiO2), which can 
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inhibit the reaction from propagating. TiO2 is insoluble at high pH solutions 

however a high pH is favoured for barium titanate precipitation because Ba2+ 

ions leach at low pH, as discussed by Adair et al. [85]. Conversely, the rate 

determining step for heterogeneous nucleation was the diffusion of Ba2+ ions 

through the BaTiO3 layer that eventually forms on the TiO2 core [84]. 

Hydrothermally assisted synthesis can be tailored to control the size of the 

nanoparticles by dissolving metal fatty salts through a co-precipitation method 

[86]. A typical synthesis procedure involves dissolving a barium precursor 

(Ba(NO3)2) in water then adding this to an alkaline (NaOH) solution. A titanium 

precursor (Ti(Bu)4) is added in excess to provide control over nucleation and 

dissolved in an alcohol/fatty acid (BuOH/oleic acid) solution [87]. This reagent 

mixture was placed into a hydrothermal autoclave for 18 hours at 135 oC and 

produced an average nanoparticle size of 22 nm; Figure 25 [86,87].  

 
 

 

 

 

 

 

 

Figure 25. Low magnification bright field TEM image of BaTiO3 nanoparticles 

synthesised by liquid-solid solution hydrothermally assisted synthesis, inset 

a histogram of nanoparticle sizes of 100 nanoparticles; taken from [87]. 
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Solvothermal techniques are subtly different to hydrothermal synthesis. This 

preparation method utilises solvents as the reaction medium (as opposed to 

water in hydrothermal). The advantage of solvothermal synthesis compared to 

hydrothermal is quoted to be the production of smaller BaTiO3 particle sizes for 

similar reaction times [74]. Kwon et al. demonstrated this by substituting 

ethanol in place of de-ionised water as the solvent medium, so as to inhibit 

particle growth. The findings showed that the particle size could be tuned with 

appropriate ratios of ethanol and deionised water [88].  

This thesis presents results from hydrothermal synthesis based on the 

procedure described by Eckert et al. [84] and the characterisation of the 

crystallographic phase produced is be discussed in the following chapters. 

 

2.4.1 Barium strontium titanate 

When a dielectric material such as tetragonal barium titanate is placed in a 

parallel plate capacitor, the polar dipoles (of BaTiO3) will shift in the opposite 

direction to the applied/external electric field and lower the electric field overall. 

The change in the overall electric field is known as the dielectric constant (or 

relative permittivity) relative to a vacuum in the parallel plates. When tetragonal 

BaTiO3 is heated through the Curie temperature, the material becomes cubic 

(centrosymmetric) a larger electric field is required to polarise the material and 

the accounts for a peak in relative permittivity measurements (Figure 26) at 

Curie temperatures [89]. Manipulation of the Curie point in barium titanate is 

done via the addition of strontium ions into the barium titanate lattice. The 

addition of strontium ions linearly reduces the Curie point but results in a higher 

peak dielectric constant (the opposing internal electric field from polarised 
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molecules) Implying that the polarization of the medium is larger compared to 

pure BaTiO3 (Figure 26) [22,89]. For a 20 atomic% strontium incorporation, the 

Curie point is (~50 oC) with a higher dielectric constant (and net Ti-atom 

polarisation). Incorporating strontium into the barium titanate lattice is the 

reduction of unit cell parameters (and consequently unit cell volume), the 

Ba0.8Sr0.2TiO3 unit cell contracts by 0.03 Å (cubic BaTiO3 lattice parameter a = 

4.015 Å, to a = 3.985 Å for Ba0.8Sr0.2TiO3) [67,90].  

 

Figure 26. (a) Reduction of the Curie point as a function of strontium ion addition 

to BaTiO3, highlighting the Curie point for the desired BaSrTiO3 composition 

to be ~ 40oC (Ba0.8Sr0.2TiO3). (b) The relative permittivity vs. temperature with 

varying strontium addition (Ba1-xSrxTiO3); adapted from [66,67].  

 

Barium-strontium titanate nanoparticles can be also synthesised using the 

hydrothermal method. However it should be noted that barium and strontium 

reagents will have different chemical properties including ion mobility and 

solubility [91]. This can lead to multi-phased systems consisting of barium-rich 
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and strontium-rich titanate complexes [21,91,92]. Roeder et al. conducted a 

study of the synthesis of single phase and bi-phasic barium-strontium titanate 

nanoparticles, producing a phase-selection map to summarise the best way to 

get the desired mol % of strontium into the barium titanate lattice; Figure 27 

[92]. 

 

 

 

 

 

 

Figure 27. Barium strontium titanate (BST) phase-selection map, highlighting the 

solution compositions required for stable BST (●) and biphasic BST (□ – 

barium rich, ■ – strontium rich) compositions; taken from [92]. The x-axis 

shows the mol % strontium incorporation, and the y-axis (Ba/(Ba+Sr)) is a 

ratio of the initial concentration of barium ions to the total Ba+Sr ions in 

solution (i.e. Ba/(Ba+Sr) = 0.3 will produce a Ba0.7Sr0.3TiO3 incorporation or 

Ba0.07Sr0.93TiO3. 

 

It is noted that barium strontium titanate nanoparticles have not been used 

previously as second harmonic biomarkers, so work presented here would be 

the first example of using barium-strontium titanate nanoparticles (BST) as 

second harmonic nanoprobes. In order to determine the crystal phase required 

for second harmonic biomarkers, characterisation of barium titanate and barium 
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strontium titanate nanoparticles is required. To fully understand the 

nanoparticle systems, a range of characterisation techniques are needed, and 

the techniques used throughout this project are: X-Ray diffraction, electron 

microscopy and electron energy loss spectroscopy which are reviewed in the 

following section. 

2.5 Characterisation of barium titanate and barium strontium 

titanate nanoparticles. 

Prominent research highlighting the crystal phase determination of varying 

synthesis and characterisation routes for barium titanate and barium strontium 

titanate are summarised in Table 1. 

2.5.1 X-Ray diffraction  

X-Ray powder diffraction (XRD) uses crystallographic scattering to determine 

the crystal structure from a ‘bulk’ amount of sample. This leads to difficulties in 

determining the crystal phase, because nanoparticles have fewer atomic 

planes (compared to a bulk sample) with the same d-spacing, the diffraction 

pattern will produce broad peak as there are fewer planes for incident X-Rays 

to interfere constructively with (known as line broadening). This can lead to 

difficulties in elucidating the XRD (002/200) peak splitting of the tetragonal 

phased barium titanate samples (discussed in Chapter 3). Although, Kim et al. 

has shown BaTiO3 to produce SHG even when the XRD pattern appears cubic 

(due to the diffraction pattern line broadening [39]). Even though XRD can 

provide the net crystal phase of a sample, XRD line broadening makes analysis 

difficult below 100 nm particle sizes, and in order to locally characterise the 

crystal phase, electron microscopy and electron energy loss spectroscopy are 

also extensively used.  
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Reference Synthesis Characterisation Results 

Uchino et al. 

[72] 

Hydrothermal and 

co-precipitation  

XRD for crystal phase analysis at room 

temperature and above the Curie point 

(200 oC). Transmission electron 

microscopy images were used for 

average particle size distribution   

XRD shows the tetragonal c/a unit cell parameters changes to cubic unit 

cell parameters when the nanoparticle size is below 120 nm. TEM 

images were used to show the difference in particle size/morphology 

from different synthesis routes. 

Frey et al. 

[73] 

Sol-gel synthesis 

and post synthesis 

heat treatment 

XRD for crystal phase analysis and 

scanning electron microscopy for 

determining the particle/grain sizes. 

BaTiO3 nanoparticles appear cubic by XRD below a particle size of 350 

nm. SEM images of the sol-gel, heat treated synthesis shows a variation 

of particle morphology and grain sizes. 

Hoshina et 

al. 

[77] 

Two-step sintering 

method and aerosol 

deposition method 

Synchrotron XRD analysis of varying 

nanoparticle sizes. 

High resolution synchrotron XRD of varying sizes of BaTiO3 shows a 

‘gradient lattice strain layer’ where the unit cell parameters show a 

tetragonal core, GLSL and a cubic surface layer.  

Smith et al. 

[74] 
Solvothermal.  

Synchrotron XRD phase characterisation 

and pair distribution function (PDF) 

analysis. 

Claim that particles as small as 26 nm remain tetragonal until near the 

phase transition temperature, however PDF analysis suggests that Ba-

Ti distortions and titanium off-centring is greater in smaller 

nanoparticles but these have a smaller c/a ratio due to the lack of small 

correlation-length.  
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Polking et 

al. 

[78] 

Solvothermal.  
High resolution TEM, electron 

holography and PDF analysis 

Ti-atom mapping shows mono-domain displacements of ~ 0.15 A in 

magnitude near the bulk of the nanoparticle and local structural 

distortions are also present. Off axis holography shows dipole 

switching behaviour when a small bias is applied, implying BaTiO3 

nanoparticles are ferroelectric. PDF analysis suggests the surface has a 

lack of dipole coherence but atoms and displacements are very 

disordered. 

Eckert et al. 

[84] 

Hydrothermal 

synthesis 

XRD crystal phase analysis and TEM 

with energy dispersive X-Ray (EDX) 

spectroscopy 

XRD and Rietveld analysis of the patterns showed the unit cell 

parameters of the hydrothermal samples produced a tetragonal unit cell 

splitting. TEM and EDX showed that barium titanate nanoparticles were 

produced and the morphology of the nanoparticles was smooth. 

 

Roeder et al. 

[92] 

Hydrothermal 

synthesis of barium 

strontium titanate 

(BST) nanoparticles. 

XRD crystal phase analysis and TEM 

imaging of particle sizes 

XRD analysis of varying BST strontium incorporations, showed 

biphasic strontium-rich and also barium-rich BST depending on the 

reagent molar quantities. TEM analysis showed that barium-rich BST 

particles were much larger in size compared to strontium-rich BST. 

 



 
 

- 42 - 

Bugnet et al. 

[68] 

Chemically 

purchased and 

mechanically milled 

Electron energy loss spectroscopy of 

barium titanate of O-K and Ti-L2,3 edge at 

room temperature and 200 oC. 

The EELS O-K edge at room temperature and 200 oC shows little 

difference between the edge onsets. The Ti-L3 eg peak at 200 oC (above 

the Curie point) shows a shift of 0.05 eV. Highlighting a change in 

structural distortion. 

Moon et al. 

[93] 

Mixed oxide 

synthesis 

Electron energy loss spectroscopy of 

barium titanate at room temperature and 

150 oC. 

Investigated the splitting of the Ti-L2,3 t2g-eg peak splitting, suggesting 

the nanoparticle had a tetragonal surface shell (~ 5 nm) and a cubic 

core due to the acquired reference spectra collected at room 

temperature and 150 oC (above the Curie point). 

Rossell et 

al. 

[94] 

Hydrothermal 

synthesis 

Electron energy loss spectroscopy of 

barium strontium titanate 

(Ba0.03Sr0.97TiO3) 

This study investigated the effect barium dopants have on strontium 

titanate nanoparticles, suggesting that the barium dopants cluster and 

cause polar barium-rich nanoregions in the nanoparticle. 

 

Table 1. Overview of the BaTiO3 and BaxSr1-xTiO3 nanoparticle synthesis techniques, characterisation of the nanoparticles and the summary of 

the results. This is an overview of the literature review to show that the synthesis and characterisation of the perovskite nanomaterials have 

been investigated by many research groups by similar techniques, yet some of their conclusions are contradictory e.g. [77] & [93].
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2.5.2 Electron energy loss spectroscopy (EELS) 

 

Electron energy loss spectroscopy (EELS) is a rigorous technique carried out in 

a TEM that measures inelastic scattering (loss of kinetic energy) when incident 

electrons interact with the specimen. EELS is capable of providing structural 

and chemical information about a material with spatial resolution down to the 

atomic level [95]. A brief background to the technique is given here, however a 

more detailed explanation of the acquiring technique and analysis of the 

spectra is discussed in Chapter 3 and Chapter 5. 

Figure 28 shows the inelastic scattering of an incident electron exciting an 

electron bound to the K orbital to a range of empty states. The energy required 

to excite the atomic electron to the range of empty states is the electron energy 

loss. The electron energy loss can be typically be a range from few electron 

volts ~2 – 50 eV (known as low loss) up to hundreds of electron volts (high loss 

typically valued from > 50 eV) [95]. The EEL spectrum is calibrated from the 

zero loss peak that arises from weak energy loss electrons but primarily 

consists of elastic, forward scattering electrons (i.e. little to no electron beam 

interacting with the specimen) [96].  

Core-loss edges in electron energy loss spectroscopy are the collection of the 

inelastically scattered incident electrons that have interacted with the specimen. 

Electrons that are bound to the atom will be excited to a range of unoccupied 

density of states, and the transmitted inelastically scattered electrons will reflect 

this transition to the range of density of states (Figure 28).  
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Figure 28. The ionisation process, highlighting the energy loss mechanism from 

an inner shell electron (K) and ejected to a range of empty sates when the 

incident beam interacts with the electron and continues; adapted from [96]. 

 

Electron energy loss spectroscopy is used here to investigate the phase of 

barium titanate nanoparticles by investigating the sample at room temperature 

and above the Curie point, to see if the phase change is evident in the core-

edge electron energy loss spectra (i.e. the ~0.1 Å shift in Titanium atom). EELS 

can provide information about the electronic structure or chemical bonding of 

the material by interpretation of the EELS core edges (edges are characteristic 

to the atom and subshells). Any change in density of states will be reflected in 

the high loss edges or energy loss near edge structures (ELNES) [97]. EEL 

spectroscopy requires a thin sample (~100 nm) because if the sample is too 

thick, then the incident beam electrons undergoing energy loss, will endure 

plural or multiple scattering events. This will result in a loss of spectral 

information due to a large decaying background [95,98]. The technique is 
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sufficient to resolve vibrational and electronic modes of energy loss with a 

typical energy resolution ranging between 0.5–0.1 eV, if using a 

monochromatic electron source [95,98]. Figure 29 shows the background 

subtracted EELS data acquired experimentally from a reasonably thin (~150 

nm) BaTiO3 sample, highlighting the zero-loss region (ZLP) and the Ti-L3,2 

edge spectral features.  

 
 

 

 

 

 

 

 

Figure 29. Experimental EEL spectrum showing the zero loss peak and plasmon in 

the low loss region (x-axis break from 0-50, 450-485 eV). The high loss region 

(450–485 eV) shows the Ti-L2,3 edge t2g & eg peaks. The background is 

subtracted to measure the t2g-eg peak splitting. 

 

The Ti-L and O-K EELS edges have been extensively characterised by 

Leapman et al. [98] who investigated anatase (TiO2 has a tetragonal unit cell). 

This review compared X-Ray absorption spectra with experimental and 

modelled EELS data with good agreement between data. The molecular orbital 

diagram for TiO6
8- is shown in Figure 30 highlighting the bonding of titanium 
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and oxygen in the BaTiO3 unit cell. The Ti-L3 and Ti-L2 edges arise due to 

electrons from the L-shell undergoing spin-orbit splitting into 2p3/2 and 2p1/2 

levels which are then excited to empty d-states [98]. The molecular orbital 

energy level diagram shows that these empty Ti-3d states are hybridised with 

the O-2p states. This implies that any change in the chemical or molecular 

bonding when BaTiO3 changes from tetragonal to cubic phase should also, in 

principle, change the Ti-L2,3 and O-K edges because the Ti-3d-O-2p 

interactions change as the Ti-O octahedra changes orientation.    

    

 

 Figure 30. (a) The EELS nomenclature showing the energy shell where the 

electron originates from; taken from [96] (b) Molecular orbital energy level 

diagram of TiO6
8- representing the environment around titanium in TiO2; taken 

from [98]. 
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Bugnet et al. have published work on the EEL spectra of barium titanate, 

investigating not only at the phase transformation from tetragonal to cubic, but 

also looking to model the O-K edge EEL spectra to gain a better understanding 

of the distortion and changes in the local electronic structure [68,97]. They 

modelled the oxygen K-edge of BaTiO3 using Density Functional Theory 

(WIEN2K code) and achieved good agreement between the experimentally and 

modelled spectra [97]. 

More recent work by Bugnet et al. during the writing of this thesis highlighted a 

difference in the Ti-L2,3 edge at room temperature relative to that above the 

Curie point (the difference is expected given that the crystal phase transition 

alters the arrangement of atoms in the unit cell). Bugnet et al. showed the Ti-L3 

edge eg energy loss values reduced by ~0.05 eV at room temperature (black) 

and above the Curie point (red); Figure 31 [68].  

 

 

 

 

 

 

Figure 31. (a) Model of the BaTiO3 unit cells used to calculate the O-K edge of 

barium titanate and highlighting the tetragonal distortion along the [001] 

direction. The distances shown, are from the oxygen to the nearest (Ti1) and 

furthest (Ti2) titanium atom; taken from [97]. (b) Highlights the difference 

between the room temperature (i.e. tetragonal-solid black line) and above the 

Curie point (i.e. cubic-red open circles) Ti-L3 eg peaks acquired at room 

temperature and 200 oC respectively; taken from [68]. 

(a) (b) 
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(a) (b) 

Moon et al. also suggested there was a change in the Ti-L3 edge t2g-eg peak 

splitting when BaTiO3 was heated above the Curie point [93]. This work also 

suggested a change in phase measured by EELS data on going from the 

surface of the nanoparticle to the core of the nanoparticle. This contributes to 

the theory of a core-shell mixed phase nanoparticle suggested by XRD 

techniques [74,99–101]. However, the work carried out by Moon et al. 

contradicts the XRD analysis and suggested that the BaTiO3 nanoparticles 

possess a tetragonal shell and cubic core [93,102,103]. The tetragonal phase 

was identified at room temperature and the cubic phase was collected by in-situ 

heating of the sample to 150 oC. The results showed that the EELS data 

collected from the surface of the nanoparticles had a larger Ti-L3 edge t2g-eg 

peak separation of 2.36 eV as compared to the cubic phase value of at 1.96 

eV; Figure 32 [93].  

Figure 32. (a) Experimental EEL spectra of 50 nm BaTiO3 nanoparticles showing 

spectra extracted from (1) 1 nm, (2) 4nm, (3) 7 nm and (4) 20 nm away from the 

surface of the nanoparticle. (b) Plot of the Ti-L3 edge t2g-eg peak splitting 

showing the decrease the further away from the surface of the nanoparticle; 

taken from [93]. 

 

The work carried out by Bugnet et al. and Moon et al. suggest a common 

result: that in-situ EELS heating experiments of BaTiO3 above the Curie point 
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suggests that the cubic phase has a reduced Ti-L3 edge t2g-eg peak splitting (a 

reduction of ~0.3 eV) [68,93]. EELS of BaTiO3 is investigated in Chapter 5 to 

determine the structure and phase of the nanoparticles at room temperature 

and when heated above the Curie point.  

For barium strontium titanate, little EELS analysis has been conducted to 

investigate the phase of the nanoparticles, however work carried out by Rossell 

et al. has shown the effect of barium ion doping in SrTiO3 (Ba0.03Sr0.97TiO3) 

nanoparticles [94]. This work employed EELS as a chemical analysis tool to 

spatially resolve the Ba dopants in SrTiO3, showing that the barium ions 

clustered within the nanoparticles.  

 

 

 

 

 

 

Figure 33. (a) Atomic resolution HAADF-STEM image of barium strontium titanate 

with the area highlighted to show where the extracted EELS-mapping data 

were collected from. (b) The colour coded signal showing the Ti-L2,3 edge Sr-

M4,5 edge and Ba-M4,5 edge. When the colour coded edges are reconstructed a 

colour map shows that the barium atoms are clustering in one area of the 

nanoparticle; taken from [94].  
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2.6 Functionalisation of nanoparticles to promote cellular 

uptake. 

 

The functionalisation of barium titanate nanoparticles is important for altering 

the nanoparticle surface for nanoparticle stability when suspended in media. 

Functionalisation can be conducted during the synthesis of the nanoparticles 

(shown by the co-precipitation route [87] in Section 2.4) or post nanoparticle 

synthesis. Functionalisation is generally used to improve nanoparticle 

suspensions which can have an effect on other properties e.g. improving  

dielectric properties for multilayer ceramics [104]. However, functionalisation of 

BaTiO3 nanoparticles discussed here, shows improved nanoparticle 

suspensions and specific labelling for improved biomarker targeting. To date, 

there is no literature about the coating of barium strontium titanate 

nanoparticles and this will not be discussed here. 

Dynamic light scattering (DLS) of nanoparticles and zeta potential 

measurements are standard techniques to assess nanoparticle stability in 

suspensions. DLS measures of scattered light intensity and is used to 

determine nanoparticle behaviour when suspended in media, zeta potential 

measurements indicate the surface charge of the nanoparticles which can be 

determined when nanoparticle suspensions are placed under an applied 

electric field. Both techniques are discussed further in Chapter 3. 

The fundamentals of using these techniques are based on DVLO theory which 

assumes that particle stability is dependent on the interaction of surface charge 

with the surrounding components of the solvent and the impact this has on the 

attractive and repulsive forces of nanoparticles in a solvent [105]. The primary 



 
 

- 51 - 

forces for attraction and repulsion are the van der Waals attraction, electrostatic 

repulsion and polymeric (steric) repulsion. A surface charge originates from 

nanoparticles being brought into contact with a solvent. In the case of aqueous 

media containing polar ions such as water, the surface charge of the 

nanoparticles influences the type and distribution of nearby ions [106]. The 

charged surface in contact with the suspending media forms an electrical 

double layer by distributing neutralising co-ions from the solution onto or near 

its surface, Figure 34. 

 

 

 

 

 

 

Figure 34. (a) The diffuse electrical double layer of a charged surface (according to 

the Helmholtz model) due to thermal motion, the Stern layer is not always 1:1 

(here a compact layer where opposite ions – pink – adhere to the surface – 

navy). (b) Graphical representation of the electrical potential of the diffuse 

double layer where this varies with electrolyte concentration of the diffuse 

double layer. The 1/κ term is the Debye length which is the double layer 

thickness at 1/e of the surface potential at 25 oC in water. ψ is the surface 

potential and D is the distance away from the surface [105]. 

 

The attractive van der Waals forces are based on intermolecular dipoles 

aligning and by virtue, these dipoles attract. The attraction of these dipoles are 

inversely proportional to separation distance. The Born repulsive force is 
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strongly repulsive, it occurs at minimal separation as it is due to the like 

charges repelling i.e. the overlapping electron clouds of negatively charged 

particles. These attractive and repulsive interactions contribute to the DVLO 

theory and calculations have been made between two charged spheres as to 

the optimum separation [106]. The attractive and repulsive forces are shown in 

Equation 1 and Equation 2 respectively, and the total energy interaction is 

graphically represented in Figure 35. 

              

Equation 1. The theoretical approximation of the Born repulsion where a and B are 

constants of the intermolecular potential at a distance D [105]. 

 

Equation 2. The attractive forces summarised by the size of the particle x, a 

constant of the material AH which is inversely proportional to distance D [106]. 

 

 

 

 

 

 

 

Figure 35. (a) The resultant energy interaction (red) based on (b) the attractive Van 

der Waals forces (negative) and (c) Born repulsion (positive) as a function of 

particle separation [105]. 
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The stability of nanoparticles in solution is a combination of these attractive and 

repulsive forces. Stabilising nanoparticles in solution, i.e. preparing a non-

flocculating sample in which the nanoparticles remain dispersed, utilises the 

electrostatic repulsion from charged nanoparticle surfaces. The magnitude of 

this charge influences the particle stability.  

Nanoparticles can be coated with a polymer to improve dispersion, this is 

known as steric stabilisation (Figure 36). The polymer conformation that 

adheres to the nanoparticle surface is affected by the quality of the solvent and 

the concentration of polymer present. Sterically stabilised nanoparticles repel 

each other by the overlapping polymer layers when they come close in 

proximity, however the steric repulsive force can also experience attractive 

forces [105,106].    

 

 

 

Figure 36. Mechanisms of particle stability. Steric stabilisation can physically 

improve the stability of nanoparticle suspensions if enough polymer adsorbs 

to the surface. Electrostatic charge stabilisation uses like charges at surfaces 

to repel nanoparticles in suspensions [105]. 

 

Surface functionalisation is used to alter the surface of the nanoparticle using 

polymer adsorption or specific labelling with molecules. Specific labelling allows 

the nanoparticle surface to be coated with a molecule to target an area for the 

given application [106].  
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Blanco-Lopez et al. investigated the behaviour of uncoated BaTiO3 

nanoparticle suspensions in water at varying pH. Characterising the zeta 

potential of barium titanate nanoparticles across a pH range of 2 to 10 (Figure 

37) to better understand the surface charge on the nanoparticles [107]. The 

researchers also investigated the dissolution of barium titanate nanoparticle 

surfaces across a similar pH scale; characterising the suspensions by atomic 

absorption spectroscopy [108,109] shown in Figure 37. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. (a) The zeta potential of barium titanate nanoparticles suspensions as a 

function of pH. (b) Barium ions released from a 0.5 % volume suspension of 

BaTiO3 over 48 hours at similar pH values in (a); taken from [107,109]. 

 

Figure 37 shows that BaTiO3 nanoparticles suspended in aqueous media are 

stable at acidic pH (pH 3/4) and alkaline pH (pH 10). The isoelectric point (the 
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pH where the nanoparticle has no net surface charge) is at ~pH 6.5 [107]. 

Figure 37 shows that BaTiO3 nanoparticles are colloidally stable at acid pH, 

however the atomic absorption results shows barium ions leach from the 

nanoparticles at acidic pH (pH= 3 or 4) [107,109]. This will affect the dispersion 

of BaTiO3 nanoparticles (especially as there are acidic components during 

nanoparticle cell uptake [110]). The work carried out by Blanco-Lopez et al. 

showed the surface characteristics of uncoated barium titanate, however most 

nanoparticle systems introduced to biological systems are functionalised and 

this is discussed below. 

 

Kim et al. investigated the coating of barium titanate nanoparticles with a high-

dielectric strength polymer in order to help improve the chemical processing of 

these materials into thin films [104]. Their research showed the nanoparticle 

stability was improved by sterically coating with n-octylphosphonic acid and 

their proposed phosphate ligand binding mechanisms to the BaTiO3 surface is 

shown in Figure 38 [111]. Kim et al. chemically modified the surface of BaTiO3 

with phosphonic acid and poly-ethylene glycol (PEG) organic ligands which 

decreased the aggregation of the nanoparticles by three-fold (compared to 

uncoated nanoparticles). The phosphonic acid binder was used with another 

organic ligand (pentafluorobenzyl) to disperse the nanoparticles in different 

suspending media in order to improve the casting of these suspensions into 

thin films [104].   
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Figure 38. Proposed binding mechanisms of phosphonic acid to the Ti-O surface 

of BaTiO3; taken from [111]. 

 

Other research groups have suggested that barium titanate suspensions could 

be improved by functionalisation with polymers such as: polyethylneamine 

(PEI) [112], 3-aminomethylphosphonic acid (AMPA) [113], 3-

aminopropyltriethoxysilane (APTES) [114], polyethylene glycol (PEG) [40,115] 

and poly-L-lysine (PLL) [116].  

Dempsey et al. showed that barium titanate nanoparticles coated in PEI had 

improved cellular uptake. The PEI-coated BaTiO3 (PEI-BT) nanoparticles had a 

low toxicity as compared to uncoated barium titanate in terms of a cell viability 

MTT assay; Figure 39 [112]. The improved cellular uptake was proposed to be 

as a result of the net positive surface charge of the PEI-BT nanoparticles.     
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(a) 
(b) 

Figure 39. Multiphoton image series, comparing barium titanate (BT) and PEI 

coated barium titanate (BT-PEI) at a weight ratio of polymer to nanoparticle of 

1:40; scale bar is 10 µm. (a) BT and BT-PEI nanoparticles were added to HeLa 

cells and imaged (multiphoton) to gain the cell boundary outline, the SHG 

signal from the nanoparticles were collected and the cellular outline overlaid 

on the SHG image. (b) The comparison of cellular uptake was averaged 

across 4 different areas and an average number of internalised nanoparticles 

per cell determined (p < 0.01); taken from [112]. 

 

Hsieh et al. has demonstrated coating BaTiO3 with 3-aminomethylphosphonic 

acid (AMPA) by sonicating the reagents for a period of 24 hours. The polymer 

was suggested to bind to the BaTiO3 nanoparticle surface by the PO4 binding 

mechanisms shown in Figure 38 [113]. This resulted in electrostatically 

stabilised BaTiO3 nanoparticles due to the amine groups repelling each other; 

shown by dynamic light scattering results in Figure 40. The amine group on the 

surface can be used for further conjugation to proteins for specific labelling 

[113].  
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Figure 40. Dynamic light scattering of a BT-AMPA nanoparticle dispersion with an 

SEM of the nanoparticle shown inset, indicating a similar primary particle size 

shown by DLS and SEM; taken from [113]. 

 

Specific labelling of the barium titanate nanoparticle surface was carried out by 

Hsieh et al. using 3-aminopropyltriethoxysilane (APTES) [114]. This research 

showed BaTiO3 nanoparticles functionalised to a reduced antibody, that 

specifically binds to the primary antibody, highlighting the specificity of the 

nanoparticles in an antibody microarray in Figure 41. The research showed that 

functionalisation with APTES provided a stable dispersion (not shown) but 

more importantly, BaTiO3 nanoparticles could be labelled to bind to specific 

antibodies [114]. The work showed that this type of labelling is highly specific 

(<5 % non-specific labelling) and the bio-conjugated nanoparticles can also 

produce SHG; Figure 41. The disadvantage of this highly-specific labelling was 

the lengthy synthesis procedure required. 

Further chemically modified barium titanate surfaces were investigated by 

Čulić-Viskota et al. who produced a protocol for chemically binding PEG for in-

vivo SHG imaging of zebrafish [47,115]. 
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Figure 41. Specific binding to the BT-APTES-antibody on a microarray of primary-

antibodies. The dashed circles show the target areas of primary antibodies 

using two other antibodies for a negative control and buffer solution for a 

positive control. The printing spot is 90 µm in diameter and 200 µm in between 

printing areas; taken from [114].  

 

The research published by Čulić-Viskota et al. developed a functionalisation 

protocol for barium titanate nanoparticles used as SHG nanoprobes. First of all 

the nanoparticles were acid treated with hydrogen peroxide (H2O2) to saturate 

the BaTiO3 nanoparticle surface with -OH groups [47]. This provided a surface 

for N-aminoethyl-2,2,4-trimethyl-1-aza-2-silicyclopentane (ATSP) molecules to 

react with the OH groups to leave a new amine rich surface; Figure 42 [115]. 

The end NH2 group can then be used for further conjugation with biological 

molecules. However, this preparation process takes over three days and 

requires specialist chemistry apparatus [47,115]. The chemically modified BT-

ATSP nanoparticles were then further functionalised with the addition of poly-

ethylene glycol (PEG), and the composite BT-ATSP-PEG nanoparticles then 

used for in vitro SHG imaging in a zebrafish, as also shown in Figure 42; 

[47,115].  
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(c) 

(a) (b) 

 

 

Figure 42. (a) Bright Field TEM image of commercially purchased, uncoated 

barium titanate nanoparticles with a high magnification image of the surface 

(inset). (b) Treated nanoparticles with ATSP, resulting in a ~5 nm surface layer 

shown by the high magnification image of the surface (inset). The scale bars 

in the main image are 100 nm with a 5 nm scale bar for the insets. (c) 

Multiphoton and SHG combined image of a stained zebrafish embryo with the 

BT-PEG SHG nanoprobes shown in white after 24 hour exposure, scale bar 

300 µm; taken from [47,115]. 

 

Staedler et al. produced a review of the harmonic nanoparticles that 

investigated the SHG output and biocompatibility of nanoparticles. The 

nanoparticles in the study had PEG adsorbed to the surface to improve the 

nanoparticle stability [40]. This coating was produced by agitation using an 

ultrasonicator for a 24-hour period at an acidic pH.  
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The research by Staedler et al. showed that barium titanate was the least 

cytotoxic compared to potassium titanyl phosphate (KTP), lithium niobate 

(LiNbO3), zinc oxide (ZnO), potassium niobate (KNbO3) and bismuth ferrite 

(BiFeO3) in four different cell lines after exposure at 5, 24 and 72 hours, at a 

concentration of 50 μg/mL BaTiO3 (Table 2) [40].  Hsieh et al. produced in vitro 

cytotoxic studies of barium titanate nanoparticles in HeLa cells, highlighting no 

change in cell viability after a 24 hour exposure (not shown) [117]. 

Table 2. Cytotoxic effect of PEG coated BaTiO3 nanoparticles after exposure for 5, 

24 and 72 hours. The cell lines A549, HTB-182 and HTB-178 are human lung 

cancer cells; BEAS-2B is non-tumorous lung-derived cells. The results shown 

are the mean ± standard deviation of triplicates of two different experiments; 

taken from [40]. 

 

The research conducted by Staedler et al. highlighted a less timely option of 

coating BT nanoparticles with PEG by ultra-sonicating for 24 hours. I attempted 

the use of this functionalisation route on hydrothermally prepared BaTiO3 

nanoparticles as part of this work; however, the results were not found to be 

successful.   

Cell Type A549 HTB-182 HTB-178 BEAS-2B 

Nanoparticle exposure % of surviving cells 

5 hours 91 ± 5 87 ± 9 87 ± 13 93 ± 1 

24 hours 84 ± 4 85 ± 1 91 ± 2 92 ± 4 

72 hours 81 ± 8 88 ± 2 74 ± 9 78 ± 9 
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The polymer chosen for functionalising BaTiO3 nanoparticles in this study was 

the non-covalent wrapping of poly-L-lysine. Ciofani et al. first published the 

successful preparation and characterisation of BT-PLL nanoparticles [116]. The 

research suggested that BT-PLL nanoparticles showed improved cellular 

uptake into H9C2 rat-cardiomyocytes. However, due to the increased uptake of 

BT-PLL nanoparticles, the MTT assay showed a reduction in cell viability for 

BT-PLL and PLL at a concentration of around 10–20 µg/mL; Figure 43 [116]. 

 

 

 

 

 

 

 
 

 

 

 

Figure 43. (a) Plot of the dynamic light scattering of BT-PLL nanoparticles in cell 

culture media, (b) the zeta-potential of BT-PLL nanoparticles showing a net 

positive surface charge in diluted cell culture medium. (c) MTT assay showing 

the reduction of cell viability when the BT-PLL (spotted) and PLL (striped) 

concentrations are increased; taken from [116]. 
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This non-covalently wrapped, electrostatically stabilised poly-L-lysine coating 

around the BaTiO3 nanoparticles is used to functionalise the hydrothermally 

prepared BaTiO3 nanoparticles as discussed in Chapter 3. Functionalisation of 

nanoparticles is important as it is shown to have influence on the cell viability 

(Figure 43). 

2.7 Literature review summary. 

This literature review has summarised the scientific background and current 

research of barium titanate systems for their application as second harmonic 

biomarkers.  This thesis addresses how barium titanate nanoparticles emit 

SHG and how they can be used as biomarkers, investigating: 

• Why fine particles emit SHG when their experimental results suggest the 

crystal phase of the nanoparticles are cubic (Kim et al.) [39];  

• If the addition of strontium ions into the barium titanate lattice enhances 

the output of SHG due to the proposed increase in dielectric constant 

(i.e. net polarisation) at room temperature (Figure 26) [22,89]; 

• How the nanoparticles are dispersed in complete cell culture media 

before they are delivered to cells and what is their suspension 

behaviour across a range of concentrations; 

• Why specific functionalisation of barium titanate systems (with a positive 

charge) have an effect on cell viability (Ciofani et al. [116]). 

 

These are fundamental aspects of using nanoparticles as biomarkers, and 

elucidation of the above points will help improve the design of these systems 

for future application.  
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Chapter 3 Materials and Methods 

3.1 Synthesis of BaTiO3 and Ba1-xSrxTiO3 nanoparticles 

Hydrothermal synthesis is a widely used technique for producing barium 

titanate and barium strontium titanate nanoparticles. It can result in a high yield 

of product with a direct route to sub-micron sized powders that are relatively 

mono-disperse. This procedure allows reagents to be subjected to relatively 

high temperatures and pressures that are generally achieved in a stainless 

steel autoclave as shown in Figure 44. 

 

 

 

 

 

Figure 44. (a) Labelled photograph of the hydrothermal autoclave and Teflon cup 

equipment used here. (b) Schematic cross-section of the Teflon cup that is 

placed in the stainless steel cladding. 

 

The potassium hydroxide solution was made by dissolving 6.63 g of KOH (≥90 

%, Sigma Aldrich, Dorset, UK) in 40 mL of deionised water to make a 3 M 

solution inside a 125 mL sized Teflon cup. This was agitated by a magnetic 

stirrer whilst the other reagents were weighed. The reagents were 19.75 g (1.6 

M) of barium hydroxide octahydrate, (≥98 %, Sigma Aldrich, Dorset, UK) and 

5.00 g (1.6 M), of titanium (IV) oxide nanopowder, quoted particle size of 21 nm 
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(≥99.5 %, Sigma Aldrich, Dorset, UK). The reagents were weighed and placed 

inside the Teflon cup and the slurry was stirred by a magnetically driven bar for 

approximately 10 minutes or until visibly mixed well. The pH was measured to 

be ~13 and the Teflon cup was inserted into the stainless steel cladding, (Parr 

instruments) sealed and placed into a furnace (Pyro Therm, Leicestershire, UK) 

for 72 hours at 150 oC with a heating and cooling rate of 5 oC per minute. 

Barium strontium titanate (Ba0.8Sr0.2TiO3) was synthesised in two ways. Both 

synthesis routes used a 3M solution of KOH, 6.63 g (≥ 90 %, Sigma Aldrich, 

Dorset, UK) dissolved in 40 mL of deionised water transferred to the Teflon 

cup. Synthesis route 1 reagents were: 10.10 g (0.8 M) of Ba(OH)2.8H2O, 3.20 g 

(1 M) of titanium (IV) oxide nanopowder (≥99.5 %, Sigma Aldrich, Dorset, UK) 

and 0.97 g (0.2 M) of strontium hydroxide Sr(OH)2 (≥94 %, Sigma Aldrich, 

Dorset, UK). This was sealed in the Teflon cup as described below.  

Synthesis route 2 used an excess amount of barium hydroxide octahydrate 

23.31 g (1.8 M) (≥98 %, Sigma Aldrich, Dorset, UK) 1.13 g (0.4 M) of titanium 

(IV) oxide nanopowders (≥99.5 %, Sigma Aldrich, Dorset, UK), with the addition 

of 0.56 g (0.1 M) of strontium hydroxide (≥94 %, Sigma Aldrich, Dorset, UK). 

Both slurries were stirred by magnetic bar for approximately 10 minutes or until 

well mixed and the pH was measured to be ~13. The Teflon cup was inserted 

in the stainless steel cladding, sealed and placed at 150 oC for 48 hours at a 

heating and cooling rate of 5 oC per minute.  

Once the reaction was complete, the supernatant was decanted and the 

sediment washed with acetic acid (≥99 % Sigma Aldrich, Dorset, UK) while still 

in the Teflon cup. The acetic acid/nanoparticle slurry was transferred to 

polypropylene centrifuge tubes and ultrasonicated for 15 minutes (EMAG 
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EMMI-30HC 3L, Germany), the sonicated slurry was then centrifuged at 6000 

rpm for 5 minutes (Centurion 2000 series, Sussex, UK) and the supernatant 

was discarded. The washing process was repeated 4-5 times with deionised 

water. The washed nanoparticle slurry was then placed in a glass petri dish and 

left to dry overnight at ~100 oC. 

Commercial barium titanate samples were purchased from Sigma Aldrich 

(Dorset, UK): a cubic phase (≤ 100 nm particle size, ≥ 99 % trace metals basis) 

and also a tetragonal phase (< 3 μm, 99 % trace metal basis) that was ground 

using an agate pestle and mortar (Agar Scientific, Essex, UK) to produce a 50 

– 450 nm range of nanoparticle sizes; Figure 45. In addition, a cubic barium 

strontium titanate sample (Ba0.6Sr0.4TiO3) was purchased from PI-KEM of 50 

nm (99.5 %, Shropshire, UK). 

A table of sample origin and nomenclature is presented in Table 3. 
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Figure 45. Representative bright field TEM images and the respective particle size 

distributions of the (a) crushed tetragonal barium titanate (CT-BT), (b) cubic 

barium titanate (CC-BT) and (c) cubic barium strontium titanate (CC-BST) 

commercial samples determined by TEM. 
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3.2 Coating barium titanate and barium strontium titanate 

nanoparticles with poly-L-lysine (PLL). 

Poly-L-lysine is a naturally occurring amino acid that is a common addition to 

cell culture media because it promotes adherence of cells to a substrate [118]. 

This is due to a positive poly-L-lysine molecular charge attracting the negatively 

charged patches of a cell membrane.  

When added to the nanoparticles, the polymer poly-L-lysine (PLL) ionises in 

solution and adsorbs to the BaTiO3 surface.  Improving the colloidal stability 

and cellular uptake by steric stabilisation and electrostatic charge of the 

nanoparticles [116]. Steric stabilisation is the physical and distinct separation of 

particles by the physically adsorbed PLL molecules around the nanoparticles. 

The electrostatic property of the coating should also produce a stable colloid 

because of like charges repelling, but opposite charges (between the coated 

nanoparticles and cells) attracting, so as to promote cellular uptake (discussed 

further in section 3.6).  

A nanoparticle/poly-L-lysine suspension was made by dissolving 100 mg of 

poly-L-lysine hydrobromide, mol wt. 70,000 – 150,000 kDa (Sigma Aldrich, 

Dorset, UK) into 100 mL of deionised water. This produces a 100 mL poly-L-

lysine solution to which 1000 μg of BaTiO3 or Ba1-xSrxTiO3 nanoparticles were 

added. The nanoparticle/PLL suspension was then ultrasonicated for 24 hours 

(EMAG EMMI-30HC 3L, Germany) and subsequently dried in a container on an 

indirect heat source for 24 hours. 

To prepare coated nanoparticles for cellular exposure in culture media, 50 mg 

of poly-L-lysine hydrobromide, mol wt. 70,000 – 150,000 (Sigma Aldrich, 
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Dorset, UK) was dissolved into 0.5 mL Dulbecco’s phosphate buffered saline 

(PBS) solution (Sigma Aldrich, Dorset, UK) to give a concentrated PLL/PBS 

100 mg/mL solution. BaTiO3 or Ba1-xSrxTiO3 nanoparticles were then added (50 

mg) to produce a concentrated suspension that was further diluted by 50 mL of 

Dulbecco’s modified eagle medium (DMEM) for cell culture to produce a 1000 

μg/mL BT-PLL-DMEM solution and this was used to treat the cells. 

A full list of the samples used in the project are summarised in Table 3 below. 

Full sample name Acronym 

Poly-L-lysine PLL 

Hydrothermal barium titanate H-BT 

Hydrothermal barium titanate with 1mg/mL PLL 
coating 

H-BT-PLL 

Hydrothermal barium strontium titanate – 
(Route 1) 

H-BST-01 

Hydrothermal barium excess barium strontium 
titanate – (Route 2) 

H-BST 

Hydrothermal barium strontium titanate with 
1mg/mL PLL coating 

H-BST-PLL 

Commercial cubic barium titanate CC-BT 

Commercial tetragonal barium titanate CT-BT 

Commercial cubic barium strontium titanate CC-BST 

 

Table 3. A list of samples either prepared hydrothermally or available 

commercially, with the corresponding nomenclature that will be used herein. 
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3.3 Characterisation of BaTiO3 and Ba1-xSrxTiO3 

nanoparticles. 

3.3.1 X-Ray powder diffraction (XRD) 

This characterisation technique determines or identifies the crystal structure of 

a sample and it utilises the ‘reflections’ of X-Rays by crystallographic atomic 

planes. At critical (Bragg) incident angles, X-Rays interfere constructively after 

scattering from planes (each with a specific interatomic spacing) within an 

irradiated sample. Figure 46 shows a schematic for the derivation of Bragg’s 

equation for constructive interference i.e. for a phase difference of λ (nλ = 

2dsinθ), which is the physical origin of how X-Rays can diffract and be used to 

determine a crystal structure.  

 

 

 

 

 

 

Figure 46. Graphical representation of the Bragg equation nλ = 2.d.sinθ. Two 

incident X-Rays are in phase by a full wavelength at an incident angle of θ for 

an interatomic spacing d and so the scattered rays interfere constructively to 

give a ‘reflection’ peak in the XRD pattern [65]. 
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Here, this technique can determine the crystal phase content and estimate the 

relative amounts of each phase present in the barium titanate and barium 

strontium titanate nanoparticle samples. The phase fraction determination is 

conducted post data collection by Rietveld refinement – in this case a linear 

combination of cubic and tetragonal reference patterns was fitted to the 

experimental data. 

A distinguishing feature of the tetragonal barium titanate X-Ray diffraction 

(XRD) pattern is the splitting of the (002/200) peak at ≈ 45 o2θ (for Cu Kα X-

Rays, λ = 1.540 Å). In cubic barium titanate only a single peak is generated. 

Figure 47 shows an example diffraction pattern of cubic and tetragonal 

perovskite and the tetragonal offset of the unit cell that gives splitting of the 

(002/200) peak. 

 

The lab-based X-Ray diffractometer used here was a Bruker D8 powder 

diffractometer with a Vantec detector using a Cu-Kα source (1.540 Å). A step 

size of 0.033 o2θ over a scan range of 20 – 80 o2θ was used to give a total 

scan time of 45 minutes. ~0.5 g of sample was prepared by pressing powders 

and small agglomerates flat in a shallow, circular holder specific for this 

diffractometer (approximate diameter = 4 cm x depth = 1.5 cm). Rietveld peak 

fitting was conducted using X’Pert HighScore Plus software with calculated 

ICDD files: 04-013-5890 and 01-078-4475 for the tetragonal and cubic BaTiO3 

fitting models respectively. For Ba0.8Sr0.2TiO3, experimental ICCD files 04-006-

6507 and 04-015-2711 were used for the tetragonal and cubic fitting models 

respectively. 
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Figure 47. (a) Unit cell [100] view of a cubic barium titanate lattice with the face 

centred OI oxygen atoms removed for ease of viewing. (b) The modified unit 

cell highlights the offset of the titanium and oxygen atoms to produce 

tetragonal barium titanate. Typical Ti-atom displacement values are ~ 0.1 Å 

[74]. (c) The CC-BT powder X-Ray diffraction pattern labelled with the Miller 

indices. (d) The CT-BT X-Ray diffraction pattern showing the tetragonal 

splitting of the 002/200 peak labelled with the Miller indices. 
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Hot stage XRD was conducted on a Bruker D8 advance diffractometer 

operated with a Copper Kα source (1.541 Å) at 170 oC using an Anton Parr 

TTK450 hot stage holder. The aluminium oxide sample holder (approximate 

dimensions 1.5 cm x 1 cm x 0.2 cm) was coated in a conductive grease (Anton 

Parr, Austria). The sample was heated to 170 oC at a rate of 30 oC min-1 and 

data were collected using a 0.035 o2θ step size over a scan range of 20 – 80 

o2θ, giving a total scan time of 45 minutes. Rietveld peak fitting was conducted 

in X’Pert HighScore Plus with calculated ICDD files: 04-013-5890 and 01-078-

4475 for the tetragonal and cubic BaTiO3 fitting models respectively. The 

varying Rietveld fitting parameters were: unit cell lattice, diffraction pattern 

background and peak-width parameters. 

The average crystallite size was determined using the Scherrer equation which 

is used for polycrystalline powders is shown in Equation 3. [65] 

 

Equation 3. Scherrer equation used to calculate the average crystallite size D. A 

particle shape constant k = 0.9 and the wavelength of the incident radiation 

(~1.540 Å) over the instrumental broadening at full width half maximum 

(FWHM) and the angle of the measured FWHM. 

 

The instrumental broadening of the Bruker D8 diffractometer (laboratory-XRD 

and hot-stage XRD) was calculated using a NIST aluminium standard giving a 

peak broadening of 1.218 x10-3 (arb. units) and 1.17 x10-3 (arb. units) 

respectively. These values were subtracted from the experimental peak FWHM 

value when determining the average crystallite size (the potential micro-strain 

of the XRD patterns were not taken into account). 
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3.3.2 Synchrotron powder diffraction 

Synchrotron powder diffraction was conducted at the Diamond light source, 

Beamline I11 (Oxford, UK). Synchrotron X-Ray powder diffraction is 

advantageous because of the large flux, highly collimated and shorter 

wavelength X-Ray source in comparison to a laboratory-XRD. The large flux 

and collimated beam allow for higher angular resolution of scattering data to be 

obtained which is critical for analysing (002/200) peak splitting in BaTiO3 

patterns. The shorter wavelength used and the beamline’s multianalysing 

crystal devices (Figure 48) reduce the sample fluorescence and improve the 

data resolution [119,120].  

Synchrotron data were gathered using the rapid access facility at the Diamond 

Light Source (Oxford, UK, Beamline I11). The incident radiation was a Cu-Kα 

source (0.826 Å) at a step size of 0.001 o2θ over an angular range of 3-150 o2θ 

giving a total scan time of 1 hour. ~0.25 g of sample was loaded into a 

borosilicate glass capillary tube (0.5 mm diameter, Capillary Tube Supplies Ltd, 

Cornwall, UK) with a total sample length of 40 – 50 mm. Data were collected 

automatically using a multi-analysing crystal (MAC) detector array and a 

capillary spinner under the supervision of Professor Chiu Tang and Dr Claire 

Murray (Diamond Light Source, Oxford, UK) [119]. 
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 Figure 48. Labelled photograph showing the diffractometer set-up at the Diamond 

Light Source, beamline I11. The multianalysing crystal (MAC) detectors are 

mounted on the 2θ circle over a 40 o2θ rotating stage; taken from [120]. 
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3.4 Electron Microscopy 

Imaging and characterisation were used to investigate the particle size and size 

distributions, confirm the crystal structure, chemical composition and cellular 

uptake of BaTiO3 nanoparticles through scanning, transmission and scanning 

transmission electron microscopy (SEM, TEM and STEM). Electron microscopy 

(EM) overcomes the drawback of using visible-light for microscopy which until 

recently [121–123] limited the resolving power to reveal fine detail at 200 – 300 

nm resolution [124]. The resolving power can be approximated by Abbe 

diffraction limit (Equation 4) which governs the smallest distance that can be 

resolved, as depicted by the Airy disk intensity profiles in Figure 49.  

 

Equation 4. The wavelength (λ) of radiation for visible light ranges between ≈ 700 

nm to ≈ 300 nm, the numerical aperture (NA) [96]. 

 

 

 

 

 

Figure 49. Airy disk intensity profiles of individual, incoherent sources (black) the 

resultant intensity profile is shown in blue (a) two separated peaks (P1 & P2) 

with discernible points. (b) Two peaks that cannot be resolved, whereas (c) 

the minimum overlap that is resolvable and is the depiction of the Rayleigh 

criterion [96]. The grey disks are the projected zero-order airy disks of the 

above intensity profiles with the first-order shown as a black ring.    
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For an optical microscope with visible-light of wavelength 500 nm and a 

numerical aperture of 1.3. The resolving power is ≈ 380 nm which is not 

suitable for analysing nanometre detail or atomic structure of samples, for 

example the unit cell of barium titanate is approximately 0.3 – 0.4 nm3. 

Electrons have a wave-particle duality that can relate the electron momentum 

to the wavelength through Planck’s constant. This relationship is utilised in EM 

to control the electron wavelength by changing the accelerating voltage of the 

microscope. The relativistically corrected relationship of electron wavelength to 

the accelerating voltage is summarised in Equation 5. 

 

Equation 5. h is Planck’s constant, m0 is the rest mass of the electron, e is the 

electron charge, V is the accelerating voltage of the microscope and c is the 

speed of light in a vacuum. 

The electron source for the TEM used here is a thermally assisted or Schottky 

field emission gun (FEG), which is an extremely fine tungsten cathode tip with a 

ZnO coating and the electrons tunnel from the tip by means of a small 

extraction voltage applied from an anode, a second anode then accelerates the 

electrons to the desired energy (voltage); as shown in Figure 50. The SEM and 

dedicated STEM used a cold field emission gun. A cold field emission gun 

benefits from a narrower beam energy spread as it is not thermally assisted 

(i.e. lower temperature), but produces a lower overall probe current [96,125]. 

The anodes that extract and accelerate the electrons from the emission tip (the 

gun), cause a beam crossover the exact position of which is controlled by 

magnetic lenses (discussed later) [96].  
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Figure 50. Schematic of field emission gun highlighting a sharp cathode tip with 

two-sets of anodes. The first anode is the extraction voltage (typically 3-5 kV) 

from the FEG-tip and the second anode is the accelerating voltage (up to 30 

kV for SEM and up to 300 kV for TEM).  

 

The accelerating voltages for TEM, SEM and STEM can be altered to produce 

different signals from the specimen, e.g. a high accelerating voltage in the SEM 

produces poor spatial resolution due to a larger interaction volume, but 

provides good backscattered electron signal. Typical values for accelerating 

voltage, wavelength and resolution for each of the microscopy techniques are 

summarised in Table 4. 

Electron microscopy  Accelerating voltage (kV) Wavelength (pm) 

SEM 2, 5,10 & 15 27.3, 17.3, 12 .2 & 9.9 

TEM 80, 200 & 300 4.1, 2.5, 2.0 

Nion dedicated STEM 100 3.7 

Table 4. Summary of the electron microscopy techniques and the associated 

wavelength of typical accelerating voltages of the microscopes. Taken from 

[96]. 

The electron beam generated from the electron gun is then focussed onto the 

sample by a series of electromagnetic lenses. The working resolution is 
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significantly worse than the wavelength-limited resolution because of 

aberrations in the main imaging lenses. The electron microscope schematics 

for both SEM and TEM are shown in Figure 51 [126,127].  

 

Although Equation 4 & Equation 5 show that the shorter the wavelength the 

more the working resolution is improved, the image is not necessarily improved 

because the lenses used to ‘collect’ electrons are imperfect. This imperfection 

in lenses is known as spherical aberration, where the electron beam that 

passes closer to the optic axis of the lens is focussed less strongly than that at 

the edge of the lens; Figure 52. 
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Figure 51. (a) Simple cross-section sketch of SEM highlighting components and 

(b) cross sectional view of transmission electron microscope, taken from 

[96,127]. 
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Figure 52. (a) A perfect lens shows illumination focused to a spot. (b) A realistic 

beam path construction of illumination passing through a lens that has 

spherical aberration [127]. 

 

Lenses also suffer from chromatic aberration where electrons of different 

energy are brought to a different focus, this then blurs the image of specimens 

that strongly scatter incident electrons inelastically and change their 

wavelength (i.e. thick specimens). The incident electrons that have been 
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scattered and lost energy are focused more strongly in comparison to electrons 

with no energy loss which focus at the Gaussian image plane; Figure 53.  

 

 

 

 

 

 

 

 

Figure 53. Chromatic aberration results in electrons with varying energy loss 

being focussed on different planes. The electrons that have no energy loss 

are more likely to have a longer focal length than electrons that have energy-

loss by scattering from the specimen [96].  

 

Chromatic blurring can be reduced by monochromating the electron source. 

This chromatic-aberration correction is used in the FEI Titan microscope 

(explained in TEM section 3.4.2). Spherical aberration correction can improve 

the wavelength limited resolution of a microscope [128] and in this research a 

Cs-corrected dedicated STEM microscope was used at SuperSTEM (Section 

3.4.3). 
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3.4.1 Scanning electron microscopy (SEM) 

 

The scanning electron microscope uses a focussed, convergent primary 

electron beam (Figure 51) which interacts with the sample to produce a number 

of electron and X-Ray (light) signals, and these signals can be used to provide 

information on the surface structure and composition of the sample. Secondary 

electrons are generated by the primary electrons and originate from the surface 

of the specimen allowing for morphology and topography to be imaged [127]. 

Secondary electrons are low energy and are imaged by in-lens and 

conventional Everhart-Thornley (EH) detectors. The in-lens detector is on top of 

the final pole piece in the SEM chamber whereas the EH detector is positively 

biased and outside the lens [129,130].   

Backscattered electrons (BSE) provide atomic number contrast due to incident 

electrons being elastically scattered ‘back’ by the atomic nucleus towards the 

detector. The heavier elements will backscatter electrons more readily as they 

have high atomic number and will appear brighter in the image (assuming the 

specimen is flat). 

Emission of X-Rays and energy dispersive X-Ray analysis (EDX) is used in 

tandem with the imaging techniques because it is able to determine the 

elemental composition of the samples (explained in section 3.4.4). The 

interaction volume of the incident electrons in the SEM shows the volume of the 

sample from which these signals arise, shown in Figure 54. 
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Figure 54. (a) Schematic of the interaction volume from scanning electron 

microscopy. The separated area’s show where the respective SE, BSE and X-

Ray signals originate from (the scale of signal values are dependent on 

atomic number and accelerating voltage). (b) Schematic of electron 

interaction for a thin sample. Other signals mentioned here and collected in 

the TEM are discussed in the following section [96,131]. 

 

A Hitachi SU8230 scanning electron microscope using a cold field emission 

gun was operated between 2 – 15 kV depending on the signal desired from the 

sample i.e. secondary electron surface imaging or EDX spectroscopy was used 

in this study. The microscope was fitted with an Oxford instruments X-Max 80 

mm2 silicon drift EDX detector that increases the count rate of X-Rays collected 

giving higher sensitivity as a result of the large collection area in comparison to 

traditional silicon-lithium detectors [96,132]. 
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3.4.2 Transmission electron microscopy (TEM) 

 

Transmission electron microscopy uses a number of different imaging modes, 

summarised in Figure 55. Bright field microscopy uses a parallel beam of 

electrons focused to reveal fine detail in a specimen and the objective aperture 

collects the direct beam and blocks highly scattered electrons, whereas dark-

field (DF) imaging uses one or more of the diffracted spots collected by the 

displaced objective aperture (or by tilting – not shown) [127].  

Bright field microscopy shows areas that scatter as dark on a bright 

background (analogous to an X-Ray projection), where electron scattering from 

the sample gives rise to a number of contrast modes. Mass-thickness contrast 

depends on the amount of inelastic scattering due to the thickness and mass 

(density or atomic number) variations within the specimen [65]. Diffraction 

contrast arises due to crystallinity of the sample where electrons are reflected 

close to (or at) Bragg angles. This leads to dark image contrast from crystalline 

areas that are diffracting [65]. Phase contrast relies on the phase difference of 

the direct (undiffracted) beams and the diffracted beam(s) so as to produce an 

interference pattern which is visible at high magnifications [133]. 

Electron diffraction is the Bragg scattering of incident electrons from a 

crystalline specimen and it can be imaged directly in the back focal plane of the 

objective lens. The electron diffraction pattern is acquired by inserting a 

selected area aperture on an area of the sample (visible in the image) and then 

exciting the intermediate (diffraction) lens [133].  
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Figure 55. (a) Simplified beam path of image formation. (b) Bright field image 

formation where the objective aperture collects the direct beams and blocks 

the diffracted beams (c) Dark field image achieved with an objective aperture 

centred on a diffracted beam in the back focal plane. [96,127,134]. 
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The transmission electron microscopes used in this study were a FEI Tecnai 

F20 microscope operated at 200 kV, fitted with a Gatan Orius SC600A CCD 

camera and an Oxford instruments 80 mm X-max SDD detector and a FEI 

Titan Themis3 300 TEM operated with a high brightness X-FEG at 300 kV, a 

monochromator giving a 0.2 – 0.3 eV energy spread (when in use without 

monochromator on; ~ 1.3 eV energy spread). The latter microscope is fitted 

with a windowless Super-X, 4 detector silicon drift detector EDX system and a 

Gatan GIF quantum ER imaging filter for high speed electron energy loss 

spectroscopy (EELS). 

TEM samples were prepared by drop casting suspensions onto a copper grid 

coated with a holey carbon support film (Agar scientific, Essex, UK). This is 

allowed to dry and then placed in the specimen holder and inserted into the 

microscope vacuum. 

In this work the TEM was primarily used to determine the average particle 

sizes, atomic lattice spacing, crystallography and energy dispersive X-Ray 

analysis (EDX) was used to confirm the nanoparticles were chemically 

synthesised successfully. 

HAADF-STEM imaging of resin embedded cell sections was undertaken using 

an FEI Tecnai F20 FEG microscope (probe size of ~2 nm) at Leeds. HAADF-

STEM and STEM-EELS of the nanoparticles was also conducted on the FEI 

Titan Themis3 (probe size of ~0.4 Å). The HAADF detector (50-170 mrad) was 

inserted and images were collected.  

After HAADF-STEM imaging of the resin embedded cell sections, bright field 

TEM imaging and EDX spectroscopy of the same nanoparticles were collected. 
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3.4.3 Scanning transmission electron microscopy (STEM) 

Scanning transmission electron microscopy utilises a convergent, scanning 

beam across a thin sample for bright field and dark field STEM imaging. 

Throughout this project high angle annular dark field (HAADF) STEM is 

primarily used as it can directly interpret atomic structure when imaged, 

particularly from the high Z-contrast of barium titanate and barium strontium 

titanate nanoparticles.  

This technique is also inherently suited for combination with EDX and electron 

energy loss spectroscopy; (section 3.4.5) the latter gives STEM-EELS 

spectrum images producing highly spatially resolved linescans and maps 

across nanoparticles to elucidate the chemistry of the elemental components 

[96,134]. The electron beam path of STEM image formation is shown in Figure 

56. 

The STEM probe diameter is limited by the condenser aperture and probe 

convergence semi-angle (α) at the specimen. As the electrons are scanning 

across the sample, they are transmitted through the sample and depending on 

the angular range or scattering, collected by a bank range of detectors, 

producing: bright field (0 to 6 mrad), annular dark field (35 to 100 mrad) and 

HAADF images (70 to 210 mrad) [135].  

A dedicated Cs-aberration corrected STEM at Daresbury labs, Nion UltraSTEM 

100 was used in this project operating at 100 kV (probe size of ~0.8 Å). Cs-

aberration correctors are an assembly of octupole/quadrupole Cs-correctors 

prior to the probe forming objective lens. The microscope is fitted with an UHV 

Enfina EEL spectrometer; Figure 57.  
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Figure 56. (a) Beam path of a conventional TEM being used for STEM. (b) The 

beam path of a dedicated STEM (spherical aberration corrected) similar to 

SuperSTEM; It is inverted in comparison to conventional TEMs which is key for 

gun stability [96,134]. 

 

Examples of HAADF-STEM data collected by these microscopes are shown in 

Figure 57. 
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Figure 57. (a) HAADF-STEM image of a BaTiO3 nanoparticle from the aberration 

corrected SuperSTEM microscope together with, (b) high resolution atomic 

lattice HAADF-STEM image of BaTiO3 nanoparticle viewed down the [100] 

direction. (c) HAADF-STEM image of BaTiO3 nanoparticles internalised (red 

box) in a resin embedded A549 cell section that was taken on FEI Tecnai 

running in STEM imaging mode. 
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3.4.4 Energy dispersive X-Ray (EDX) spectroscopy  

 

EDX is capable of semi-quantitative elemental analysis in small (μm) volumes 

of a specimen; it is critical here for determining the successful hydrothermal 

synthesis of BaTiO3 and Ba1-xSrxTiO3 nanoparticles.  

The technique relies on the characteristic X-Ray emission from atoms. If 

atomically bound electrons (e.g. in the K or L shell) have been ionized or 

excited to a higher empty energy level (by say a high energy incident electron), 

this atom has an electron hole that can be filled by an electron coming down 

from a higher energy level [96,133]. The characteristic difference in energy 

between these two states is emitted in the form of an X-Ray photon of 

particular energy [127]; Figure 58. 

 

 

 

 

 

 

Figure 58. (a) Atom schematic with electron subshells spectroscopically labelled 

for which electrons from the outer orbitals cascade to lower orbitals in EDX 

spectroscopy. (b) Schematic of X-Ray production after an incident electron 

ionises an atom it produces a characteristic X-Ray when the higher energy 

orbital electrons cascade into the lower energy orbitals [127,131,133,134].   
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Figure 59 shows example EDX spectra obtained from barium titanate and 

barium strontium titanate nanoparticles, using the Ba-L, Ti-K, L and Sr-K, L X-

Ray lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 59. (a) EDX spectrum of barium titanate with a TEM image of the 

nanoparticle inset. (b) EDX spectrum of barium-strontium titanate with a TEM 

image of the nanoparticle inset. The grids have a carbon background support 

film hence the signal and the copper is from the support grid and microscope. 
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3.4.5 Electron energy loss spectroscopy (EELS) 

Electron energy loss spectroscopy (EELS) is a complimentary technique to 

EDX and is a highly spatially resolved analytical technique that produces an 

energy loss spectrum of the incident electrons that have lost energy by 

interacting inelastically with electrons in the specimen [134]. The transmitted 

electrons are passed through a magnetic field spectrometer which separates 

the electron beam in terms of energy [133].  

STEM-EELS linescans were used to probe the structure and composition 

across barium titanate and barium strontium titanate nanoparticles. The 

chemical composition and bonding of atoms is reflected in characteristic peaks 

known as core-loss edges [134]. Electron energy loss spectroscopy is due to 

the incident electron beam interacting with the specimen and the atomic 

electrons being excited to a range of energy states causing energy losses (ΔE) 

in the transmitted primary beam; Figure 60. The main features of the electron 

energy loss spectrum are shown in examples of energy loss spectra from 

BaTiO3; Figure 61.  

The elastically scattered electrons (with no energy transfer) are generally 

transmitted through the specimen to give a single sharp peak known as the 

zero-loss peak (ZLP) in the EEL spectrum. The ZLP full width half maximum 

(FWHM) is limited by the energy spread of the electron source and this 

parameter effectively determines the overall energy resolution of the technique 

[134]. The low loss region of the energy-loss spectra ranges from 0 to 50 eV, 

contains the ZLP and the excitation of electrons in the outermost atomic 

orbitals (valence electrons) and this low loss region is dominated by resonant 

oscillations of the valence electrons known as plasmons [134];  
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Figure 60. (a) A single atom representation of core electron interaction for EELS. 

The Incident electron radiation excites an electron from a core energy level to 

a range of unoccupied states and the transmitted electron is collected with 

the resultant energy loss. (b) The background subtracted energy loss near 

edge structures (ELNES) schematic shows how the atomic electrons are 

excited from a single core state to a range of unoccupied states that reflect 

the unoccupied density of states (DOS) [96,127,134]. 

 

The high loss region of the EEL spectrum ranges from 50 eV to several 

thousand electron volts and core-loss edges in this region correspond to the 

excitation of localised core electrons to range of states to just above the Fermi 
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level. The excitation of electrons from inner-shell energy levels show an ‘edge’ 

superimposed on a decaying background signal and are known as edges. The 

core loss edges for Ti-L2,3 and O-K are dominated by transitions of electrons 

from 2p to 3d and 1s to 2p atomic states respectively; shown in Figure 61. 

 

 

 

 

 

 

 

 

 

 

 

Figure 61. Low-loss and background subtracted high-loss barium titanate 

experimental data collected from the FEI Titan. The prominent zero loss peak 

(ZLP) and plasmon peak are shown in the low energy loss spectrum, whereas 

the core loss requires a gain change to visualise the Ti-L2,3 edge and O-K 

edge on a subtracted, decaying background. The x-axis is broken for visual 

purposes. 

 

In the case of STEM-EELS linescans, a spectrum image is produced at each 

probe position which generates a data ‘cube’ of information when the probe is 
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scanning across a BaTiO3 nanoparticle. Two-dimensions of the data cube 

reflect the spatial information regarding the image and the third axis contains 

the EEL spectra; Figure 62.  

 

 

 

 

 

 

 

 

 

 

 

Figure 62. (a) STEM-EELS linescan across a nanoparticle shown by the red arrow 

acquired by the FEI Titan with the axes shown. The axis dimensions are also 

shown in (b). Showing a data ‘cube’ generated during STEM-EELS linescans. 

The x-axis is the spatial information generated in STEM as the fine probe is 

scanned across the sample. Each pixel in the x-axis has a spectrum recorded 

at the spatial points which is recorded on the z-axis (the EEL spectrum). (c) 

The corresponding spectrum image (E) for the linescan shown in (a) 

[133,134,136,137]. 
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As the detector has a fixed array of detector channels, there is a set energy 

loss range of the spectra that can be collected depending on the energy 

dispersion in the magnetic spectrometers. A larger EELS collection range or 

dispersion means a lower energy loss resolution is acquired. For certain edges 

(like the Ti-L2,3 edge and the O-K edge) a balance is required. For higher 

resolution data, a lower dispersion is needed i.e. each pixel collects a small 

energy loss per channel (e.g. 0.025 eV/channel collected using the FEI Titan 

microscope). However; this will only collect the Ti-L2,3 edge or the O-K edge. 

Whereas the dedicated microscope at SuperSTEM is able to collect both the 

Ti-L2,3 and O-K edges using a lower resolution dispersion of 0.3 eV/channel.  

The benefits of STEM-EELS data for nanoparticles is that spatial information of 

the sample can be related to the spectral information which will potentially allow 

us to determine the chemical bonding and phase within individual nanoparticles 

[136]. EDX data can be collected in tandem with EELS; EDX is the transition to 

a single energy state giving a broad single peak, which is good for heavier 

elements (Ba, Sr), whilst EELS is a transition to a range of states and giving an 

edge shape that reflects the density of states and is good for light elements.  

In-situ heating and electron energy loss spectroscopy can be performed on 

barium titanate samples to collect EEL spectra above the Curie point (the 

transition of tetragonal crystal structure to cubic crystal structure). 

Monochromated EEL spectra were collected on the commercial sample CT-BT 

to obtain reference tetragonal and cubic data. The resolution obtained from the 

zero-loss peak for the CT-BT sample was 0.425 eV. 

The in-situ heating holder used was a 3 x 7 mm silicon nitride chip (Nano-chip 

XT) with a ~ 300 μm wide membrane area with a number of 5 x 20 μm2 
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transparent carbon film windows approximately 20 nm thick (DensSolutions, 

Wildfire, Netherlands). This design supports a heating rate of 200 oC per 

millisecond up to 800 oC. 

 

3.4.6 Cryo-scanning transmission electron microscopy (Cryo-TEM) 

and plunge freezing. 

 

Cryo-TEM is the operation of the microscope with the sample at cryogenic 

temperatures (~ -180 oC). The aim of plunge freezing a solution by rapid 

immersion in liquid ethane is to look at a vitrified sample i.e. no water 

crystallisation, so the sample is very close to its native hydrated state. If we 

allow a liquid sample to dry, then drying fronts can move constituents around. 

An advantage of plunge-freezing, is the observation of a biological sample 

close to its natural environment without post treatment of the specimen. Plunge 

freezing was achieved here by use of an FEI Vitrobot system where a 3.5 μL 

nanoparticle suspension was put onto a plasma cleaned TEM-grid, the grid was 

blotted to produce a thin film and plunge frozen into liquid ethane (sample cools 

at a rate of ~ 106 Ks-1). The sample was then transferred to a cryogenically 

cooled Gatan single-tilt cryo-transfer holder under liquid nitrogen and either 

imaged cold using the FEI Titan microscope or vacuum dried for subsequent 

analysis (dehydration by sublimation i.e. without moving constituent 

components around). 
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3.5 Attenuated total reflectance Fourier transform infrared 

spectroscopy (ATR-FTIR) 

FTIR is an optical spectroscopic analysis tool that can determine bonding in 

molecules and chemical species, including vibrations of light elements [138]. 

Conventionally the infrared radiation is transmitted through the sample, at 

certain wavelengths the sample absorbs the incident radiation by excitation of 

the molecules in the specimen and changes to the dipole moment of the 

molecules. The resulting variation of transmitted radiation produces an infrared 

spectrum. 

The components of an FTIR include: a radiation source, monochromator, 

beamsplitter and a detector. The incident beam is split into two optical beam 

paths before recombining to produce an interferogram which contains all the 

infrared frequencies simultaneously to allow for rapid measurements. This rapid 

interferogram measurement is a function of the beamsplitter. It contains a 

stationary and moving mirror that produces the interference signal with all the 

frequencies, however as it passes through the sample the signal must be 

Fourier-transformed (transformed from a time to a frequency domain) in order 

to get a plot of intensity at each separate frequency [139].  

There are three main sampling methods for FTIR, the first being transmission in 

which the incident beam is transmitted through the sample and collected; this 

method can be used for most samples and is cost effective [140]. The second 

is a diffuse reflectance technique where the beam is directed towards 

scattering samples and reflections at different frequencies are collected. In both 
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cases the sample is usually mixed into a KBr optically transparent matrix 

(transparent due to the ionic bonding of KBr). 

Finally, the third method (which is used here) is ATR-FTIR that uses a totally 

internally reflected incident laser beam that passes through a crystal, where 

evanescent wave ‘spills’ out of the crystal towards a sample pressed flat on the 

crystal top. The beam is then collected by a detector, shown in Figure 63. The 

benefit of using this technique in comparison to the other two methods is 

sample preparation i.e. because it is a non-transmission technique, the ionic 

KBr holders are not needed [140]. 

An example of ATR-FTIR is shown in Figure 63 with an example of a water 

molecule (for description purposes) to demonstrate the types of vibrations that 

absorb the light energy at a specific frequency leading to changes in an 

intensity frequency plot. 

 

 

 

 

 

Figure 63. (a) Schematic of ATR-FTIR mechanism where an evanescent infrared 

wave is in contact with the sample on top of the transmitting crystal. (b) The 

common vibrational modes of the bonds shown by water molecules: 

symmetric stretching (~3000 cm-1), bending (~1750 cm-1), and asymmetric 

stretching (~1200 cm-1). These types of vibrational modes are common to 

most samples [141,142]. 
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The ATR-FTIR used was a Thermo Scientific NicoletTM iSTM FTIR Spectrometer 

to analyse barium titanate, barium strontium titanate, poly-L-lysine and coated 

BaTiO3/Ba1-xSrxTiO3 nanoparticles. The data were manually assigned 

molecular vibrations using references [143,144]. The polymer poly-L-lysine was 

used to coat barium titanate and barium strontium titanate nanoparticles to 

improve colloidal stability by steric separation of the nanoparticles and by 

altering the surface charge coating the nanoparticle (discussed later in 3.6).  

The FTIR spectra show the observable peaks of poly-L-lysine spectra within 

the 1250 – 3500 cm-1 range (below 1250 cm-1 is the crystal lattice fingerprint 

region). The structure of poly-L-lysine is shown below. 

 

 

 

 

 

 

Figure 64. Sketch of polymer poly-L-lysine hydrogen bromide labelled with 

primary amines and secondary amides. 

 

The amide NH group produce vibrations from the neutral amide within the main 

chain of the polymer and there is also a vibration from the side chain NH2 

amine group. The two broad peaks at 3280 cm-1 and 2865 cm-1 are attributed 

to the peptide (OC-NH-) bond and the CH2 stretching mode respectively. The 

next distinguishable peak at 1650 cm-1, is the primary amine NH2 group 
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stretching mode and the in plane deformation of the secondary amide group at 

1538 cm-1. The primary amine and secondary amide are distinctive PLL peaks 

as shown in experimental data (Figure 65).  

The ‘CH2NH2’ molecule produces a wagging vibration in the range of 1470 – 

1430 cm-1. The medium peak at 1390 cm-1 is the O-H bending for carboxylic 

acids. The Amide III peak is the range 1330 – 1220 cm-1 along with the weak 

peaks in the 1295 –1145 cm-1 range being the rocking/twisting of NH2. 

 

 

 

 

 

 

 

Figure 65. Experimental FTIR spectrum taken in this study of poly-L-lysine with the 

major peaks labelled and referenced in the text. 

 
An FTIR spectrum of H-BT is shown in Figure 66 with the vibrations labelled on 

the spectrum. 
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Figure 66. Experimental FTIR spectrum of H-BT with the major peaks labelled and 

referenced by [99]. Lattice vibrations of the TiO2 lattice are shown at ~550 cm-

1, barium carbonate species are present due to air exposure at ~1440 cm-1. 

Adsorbed water is present as hydroxyl ions vibrations (~1600 cm-1, 3200 cm-1) 

in addition to adsorbed heavy water (D2O) at ~ 2600 cm-1. 

 

3.6 Dynamic light scattering (DLS) and zeta potential 

measurements. 

DLS is the measurement of scattered monochromatic light by nanoparticles 

that are moving due to Brownian motion in a suspending medium. The Stokes-

Einstein equation relates the mobility due to Brownian motion of the 

nanoparticles to the hydrodynamic size of the particles in the sample, defined 

by the diffusion coefficient of the medium. 
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Equation 6. ɣ is the diffusion coefficient, kB is the Boltzmann constant, T is the 

temperature, η the viscosity of the medium and α the hydrodynamic radius of 

the suspended particle in an aqueous solution. 

 

DLS assumes that the suspended particles in the solvent are spherical and the 

technique can measure a large sample volume in comparison to microscopy 

techniques i.e. 1 mL in DLS vs. 10 L in TEM.  

A drawback to dynamic light scattering is the sensitivity towards larger particle 

size fractions, meaning that if impurities are present or samples are 

polydisperse this will produce poor results (the Rayleigh approximation shows 

the intensity of scattered light is proportional to sixth-power of the particle 

diameter, d6 [105,145,146]). It provides no other information in terms of the 

properties of the sample (shape or structural information), but importantly does 

indicate how the nanoparticle sample is dispersed in a suspending medium. 

This analysis technique can provide information based on the intensity of 

scattered light against the size (intensity distribution), number-weighted 

distribution against size (number-distribution) and volume-weighted distribution 

based on the conversion of the intensity profile using Mie theory. This 

conversion assumes larger spherical particles have a smaller angle of 

scattering relative to the incident beam in comparison to smaller particles [146]. 

All these outputs are different when samples are not monodisperse (which is 

the case here for the BaTiO3 and Ba1-xSrxTiO3 nanoparticles). The DLS data 

were collected and replotted mathematically using the Malvern Zetasizer 
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software. The stability of PLL-coated BaTiO3/Ba1-xSrxTiO3 and bare 

BaTiO3/Ba1-xSrxTiO3 nanoparticles were determined using DLS (Figure 67). 

 

 

 

 

 

Figure 67. Schematic for dynamic light scattering set-up. The intensity of light 

scattered by the nanoparticles in the colloidal suspension is measured 

directly by the photomultiplier tube on a moving arm against the reference 

laser intensity [106]. 

 

The measurements were conducted on a Malvern Zetasizer Nano ZS 

spectrometer. A total of 60 measurements per sample were collected from 5 

repeats of 12 subset measurements for both DLS and zeta potential data 

collection. The material refractive indices employed were 2.44 for BaTiO3 [147] 

and 2.27 for Ba1-xSrxTiO3 [148] respectively. The dispersant refractive index 

was measured using a refractometer (1.33 water, 1.35 serum free cell media, 

1.35 complete cell media). Nanoparticle suspensions were prepared at 5 

different concentrations: 1000, 100, 10, 1 and 0.1 μg/mL. A 1 mL aliquot of the 

nanoparticle suspensions were pipetted into disposable folded capillary cells 

(DTS1070, Malvern instruments, Malvern, UK) for DLS and zeta potential 

measurements in water, and a dip cell (ZEN1002, Malvern instruments, 
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Malvern, UK) for zeta potential cell culture media measurements. However, the 

zeta potential of cell culture media suspensions failed to produce quality data 

because of the complex nature of the medium containing ions, proteins and 

nanoparticles. An example of mono- and polydisperse nanoparticle systems 

are shown in Figure 68. 

 

 

 

 

 

 

 

 

 

 

Figure 68.  Typical dynamic light scattering data highlighting the difference 

between a monodisperse system (a), (c) and (e) and a polydisperse system 

(b), (d) and (e); showing the intensity, volume and number distributions in 

each case.  

 

3.6.1 Zeta potential measurements 

The negatively charged nanoparticle surface in contact with the 

suspenspending media forms an electrical double layer by distributing 
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neutralising co-ions from the solution onto or near its surface (Chapter 2). The 

zeta potential of a nanoparticle suspension is the measurement of the charge 

on the partially dissociated ions around the nanoparticle that gives rise to a net 

electrostatic charge based on the DVLO diffuse double layer (Chapter 2, Figure 

34).  

 

 

 

 

 

 

 

 

Figure 69. Schematic showing the origin of zeta potential measurements of a 

negatively charged nanoparticle in a suspending medium. The negatively 

charged nanoparticle (e.g. BaTiO3 & Ba1-xSrxTiO3) has a stern layer where 

positively charged ions in the suspending medium surround the nanoparticle 

to lower the surface potential. This is known as the stern potential and this 

stern layer is surrounded by a shear plane which is where there is a larger 

concentration of non-bonded positive ions. This creates a potential difference 

between the particle surface and the shear plane, known as the zeta potential. 

Then a diffuse layer follows and the potential decays to zero as a function of 

distance from the particle surface [105,106].  

 

 



 
 

- 108 - 

3.7 Biological electron microscopy, cell toxicity and 

genotoxicity  

3.7.1 A549 cell seeding and culture. 

Lung epithelial A549 cells derived from a lung adenocarcinoma [149] were 

used in this work. The biological electron microscopy preparation was 

conducted with Dr Olga Posada-Estefan from the Leeds Institute of 

Cardiovascular and Metabolic Medicine and Mr. Martin Fuller from the School 

of Molecular and Cellular biology.  

Cells were cultured in Dulbecco’s modified eagle medium (ThermoFisher 

Scientific, Loughborough, UK) for growth of the A549 cells under a controlled 

environment of 95 % Air and 5 % CO2 at 37 oC; this allows the epithelial cells to 

proliferate (multiply) and attach to a growth substrate – in this case, a 

disposable cell culture flask (Sigma Aldrich, Dorset, UK); until the cells have 

reached 70 % confluence. The cell culture medium was aspirated and the cells 

were washed with phosphate buffered saline (PBS) and the enzyme trypsin, to 

break down extracellular matter and proteins and to prevent cells adhering to 

the disposable flask (which were placed back in the incubator for 10 minutes). 

The enzyme trypsin was then inhibited by the addition of complete cell culture 

media. The mixture of cells, complete media and trypsin were then washed by 

aspirating the supernatant and re-suspended in either serum free media or 

complete media (carried out in the disposable flask). 

The clean re-suspended cells were counted by placing an aliquot of the cell 

suspension onto a counting grid and covered with a glass coverslip. An 

Olympus optical microscope at 10 x magnification was used to approximate the 
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number of cells in each of the 200 μL wells in a 96-well plate (1 x104 cells). The 

solution of cells and media were then set-up in three different ways. For MTT 

and Comet assays the cell suspensions were placed back into the 96 well-plate 

so that the A549 cells could attach to the surface of the wells; for TEM the cell 

suspensions were centrifuged in Eppendorf tubes so they could then be used 

for resin embedding; Finally, for SEM imaging a glass coverslip was used at the 

bottom of the 96 well plate for the cells to adhere to. After the cell suspensions 

were incubated for 24 hours with the culture media, the media was aspirated 

and fresh medium (either serum free or complete) added along with exposure 

to barium titanate nanoparticles or barium-strontium nanoparticles at specific 

concentrations and incubated for a further 24 hours. 

 

3.7.2 MTT (3-(4, 5-dimethylthiazole-2-yl-2, 5-diphenyl tetrazolium 

bromide) cell viability assay. 

 

MTT is a colorimetric assay that determines which cells are metabolically 

active, the viability of cells were assessed by the cells ability to enzymatically 

convert the yellow MTT dye into insoluble formazan crystals, which can be 

solubilised using dimethyl sulfoxide (DMSO) into a purple coloured solution 

[150]. Viable cells produced (in this case) a deep purple colour. Dead cells go a 

paler lilac colour e.g. if these are overloaded by a high concentration of barium 

titanate or barium strontium titanate nanoparticles and are unable to 

enzymatically convert MTT to formazan crystals (which are then solubilised by 

DMSO). It was important to obtain accurate and reliable results for in vitro 

cytotoxicity assays for initially screening the toxic effect of nanoparticles to 
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cells, however it should be noted that the accuracy of the cell toxicity can vary 

depending on a number of factors (user experience, cell line, contamination 

and nanoparticle interaction with the dye) hence some statistical tests were 

applied (student t-test and analysis of variance)  [150].   

3.7.3 The Comet assay 

The Comet assay is an electrophoresis study of DNA damage where denatured 

DNA separates from bulk double stranded DNA to produce a ‘comet’ with a ‘tail’ 

when imaged using epifluorescence microscopy. If the BaTiO3 or Ba1-xSrxTiO3 

nanoparticles proved to be genotoxic (by DNA strand breaking), then it would 

result in small fragments of the negatively charged DNA breaking off and these 

would migrate to the anode during electrophoresis [151].  

The treated cells were pelleted and mixed with low melting point agarose gel at 

37 oC, which was then deposited onto a microscope slide and left on ice for a 

short period of time to immobilise the cells. The cells were then treated with a 

lysis buffer containing EDTA, NaOH, detergent and then treated with 

neutralising buffer for 5 minutes. The slides were washed with deionised water 

and placed in an electric field. Ethylene dibromide was used to stain the DNA 

samples and when imaged using an epifluorescence microscope they showed 

a bright centre of stained DNA that remained unbroken with a plume of 

denatured DNA following, analogous to a ‘comet’. The DNA damage was 

summarised in terms of % tail DNA and 100 samples were measured with 

image analysis software.  
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3.7.4 Preparation of cell uptake experiments for electron 

microscopy. 

Preparing cells for scanning electron microscopy required the cells to be 

seeded on a cover slip (Thermo Scientific, Lehndorf, Germany) placed in a 24-

well plate. When preparing samples for transmission electron microscopy cells 

were prepared as described in section 3.7.1, but once the cells were pelleted 

the subsequent steps described here are performed in Eppendorf tubes. 

Treated A549 cells with barium titanate and barium strontium titanate 

nanoparticles were washed with pre-warmed PBS and fixed with 2.5 % EM 

grade glutaraldehyde for 15 minutes at 37 oC. The fixative was then aspirated 

and replaced with fresh 2.5 % glutaraldehyde at 4 oC for 4 hours. The cells 

were washed with a maintenance buffer solution containing di-sodium 

hydrogen orthophosphate dihydrate (Na2HPO4.2H2O) and sodium dihydrogen 

orthophosphate monohydrate (NaH2PO4.H2O). Now the cells were dead (fixed) 

they were post fixed/stained with osmium tetroxide (Millonigs 100 mM 

phosphate buffer, pH 7.3) in 1 % concentration added to the maintenance 

buffer solution and incubated at room temperature for 2 hours in the dark. This 

osmium tetroxide solution was aspirated and the samples dehydrated by a 

series of ethanol washing steps, starting at 10 % ethanol for 10 minutes, 50 % 

for 15 minutes, 70 % for 15 minutes and 100 % for 10 minutes.  

This was replaced with fresh ethanol and taken for the final processing steps 

for SEM (Critical point drying) and TEM (resin embedding and sectioning) that 

were both performed by Mr Martin Fuller. Critical point drying (SEM) is where 

the dehydration of the cells previously immersed in ethanol was replaced by 
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critically point dried liquid carbon dioxide to maintain the biological integrity (i.e. 

avoid rupture of membranes). A Polaron E3000 CPD unit was used at 1200 psi.  

Resin embedded cell sectioning for TEM preparation used an epoxy resin 

(AGAR Araldite CY212, Essex, UK), hardener (DDSA, Sigma Aldrich, Dorset, 

UK) and accelerator (DMP-30, Sigma Aldrich, Dorset, UK) and once cured (at 

60 oC overnight) these were cut into thin sections using an ultra-microtome 

(Reichert-Jung Ultracut-E) to produce sections from the resin-block face to a 

desired thickness (nominally 100 nm) and these were floated onto 3 mm 

copper TEM grids. 

3.8 Second harmonic generation microscopy 

Second harmonic generation is the production of light at a wavelength half that 

of the incident photons. It is a nonlinear optical technique where photons of a 

certain frequency are converted to light of exactly double the frequency (half 

the wavelength). It relies on the non-centrosymmetry of the scattering medium 

(or a net polarisation); which is determined by the amplitude of the electric field 

applied by the optical wave [33]. The non-linear polarisation susceptibility is 

summarised in Equation 7.  

 

Equation 7. The dipole moment per unit volume P is a function of the nonlinear 

susceptibility constants χ, χ2, χ3 for first, second and third order respectively 

and E is the electric field of the optical wave and ε0 is the permittivity of free 

space [152]. 
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This equation represents the molecular dipole moment of the medium, where 

the larger the dipole moment the larger the second harmonic conversion will 

be. The electric field component of the incident light can be written as a 

sinusoidal wave; Equation 8 and substituted into Equation 7 to produce 

Equation 9 and show the nonlinear response to light. 

 

Equation 8. E0 is the amplitude of the wave and ω is the angular frequency. This 

equation is used to calculate induced polarisation for linear-polarised 

material.  

 

Equation 9. The first, second and higher orders susceptibilities all affect the 

induced polarisation; we can assume third order affects and above are 

negligible because χ3 is small. 

 

Using trigonometric identities, cos2 ωt = ½ (1 + cos 2(ωt)) and by expanding 

the brackets the equations can be rearranged to give Equation 10 [153,154]. 

 

Equation 10. The fundamental frequency (red) is the linear polarisation of light, the 

middle component (blue) is a waveform generated at double the frequency 

(the second harmonic waveform). The DC offset (green) is a sum of the 

second harmonic and fundamental amplitudes [16,25]. 

 

If Equation 10 were drawn in waveform, the colour co-ordinated components 

highlighted in the equation are shown with the same colours in Figure 70. 
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Figure 70. The net optic polarisation (purple). With the fundamental polarisation 

(red), the second harmonic waveform (blue) and the negative DC offset 

(green) [16,25]. 

There are a few assumptions that are made in order for this classical model to 

apply. The first being that χ2 is non-zero in a non-centrosymmetric material, and 

the value rapidly decreases with increasing inversion symmetry. Also in the 

above equations we are assuming that higher order susceptibilities are 

negligible. The equations are a classic explanation of second harmonics; 

further explanation of nonlinear optics can be derived using quantum 

mechanics. Full theory into nonlinear susceptibilities and electron interactions 

are explained by Bloembergen [155]. SHG was detected using an Olympus 

confocal laser scanning two-photon microscope (FluoView FV1200) utilising a 

Ti: Sapphire laser source at 200 mW pulsed wave power. The laser was pulsed 

at 80 MHz with a pulse width of 100 fs, giving a peak laser intensity of 100 

GW/cm2 in a beam area of 25 μm2. A light path diagram of the modified 2-

photon confocal microscope used for both optical microscopy and SHG is 

shown in Figure 71.  
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The signal was detected in reflected epi-geometry using an 820 nm near 

infrared source, and a band pass filter centred at 410 nm (± 5 nm). SHG 

images were collected at a line scanning speed of 20, 40 or 100 µs/pixel and a 

noise reduction Kalman filter was applied over 20 frames. The two-photon 

confocal microscope for second harmonic generation in epi-geometry is shown 

in Figure 71. The SHG samples were prepared by dropcasting 200 μL of the 

nanoparticle suspensions onto a 22 x 22 mm glass coverslip (Thermo 

Scientific, No. 1 thickness, New Hampshire, USA). The images were usually 

taken on 20x or 40x magnification with 0.75 and 0.90 numerical aperture values 

respectively. An example of commercial barium titanate (CT-BT) SHG is shown 

in Figure 72. 

 

 

 

 

 

 

Figure 71. The light path in a modified two-photon confocal microscope for an 

optical microscope image. The femtosecond pulsed laser enters the objective 

lens and interacts with the specimen. Incident radiation is shown by the red 

arrows going through a series of dichroic mirrors filtering out broader 

wavelengths and the reflected signal (purple for visual purposes) is eventually 

collected by the photodetector. The light path diagram for second harmonic 

generation (blue) is produced and includes the fundamental wave (not shown 

in the diagram). This is collected by a photomultiplier tube with a band pass 

of 405 – 415 nm for collection of the second harmonic signal. 
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Figure 72. Second harmonic light image collected from the modified two-photon 

microscope of agglomerated CT-BT nanoparticles. The image was collected at 

750 V laser power and the scale shows an arbitrary scale of SHG output. 

 

Characterisation of the commercial and hydrothermally prepared nanoparticles 

will be discussed in the following chapters. 
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Chapter 4 – Characterisation of barium titanate and barium 

strontium titanate nanoparticles. 

This chapter will investigate the crystal phase content, particle size distributions 

and second harmonic optical output of the commercial reference samples and 

the hydrothermally synthesised nanoparticles. Results for: X-Ray diffraction, 

synchrotron powder diffraction, second harmonic imaging, secondary electron 

SEM images and bright field TEM images with EDX are presented. 

Characterisation of the commercially purchased samples are shown here to 

assess the suitability of using them as reference electron energy loss 

spectroscopy standards in the following chapter. The crystal phase fractions of 

commercial samples: CC-BT, CT-BT, CC-BST and hydrothermal samples: H-

BT, H-BST-01 and H-BST are estimated by X-Ray powder diffraction, 

(laboratory and synchrotron) and Rietveld peak fitting. Rietveld peak fitting was 

done with high-energy synchrotron calculated models of cubic (01-078-4475) 

and tetragonal (04-013-5890) barium titanate and experimental models of cubic 

(00-034-0411) and tetragonal (00-044-0093) barium strontium titanate 

contained in ICDD files. The varying fitting parameters were: the unit cell lattice 

parameters, diffraction pattern background and peak-width parameters. 

CC-BT and CT-BT (Sigma Aldrich, Dorset, UK) were commercial standards 

bought to assess the suitability of using these as calibration standards for 

Rietveld peak fitting for determining the cubic and tetragonal BaTiO3 phases 

respectively. CC-BST (PI-KEM, Shropshire, UK) is used as a cubic standard for 

Ba1-xSrxTiO3 samples. Rietveld refinement of the commercial samples shows 

that the standards are not 100 % phase pure, except for CT-BT. 
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Bright field TEM images and particle size distributions of the commercial 

samples are shown in (Figure 45, Chapter 3).  

The average particle sizes and composition of the hydrothermally produced 

barium titanate nanoparticles are measured by TEM with EDX. For barium-

strontium titanate (H-BST-01 and H-BST) hydrothermal preparation routes, the 

incorporation of strontium ions into the barium titanate lattice is characterised 

by spot-EDX of ~ 100 nanoparticles.  

Second harmonic light generated from the hydrothermal samples are 

qualitatively analysed against the commercial calibration standards. Correlative 

SHG images of H-BT are compared to SEM images of the same area. 

 

4.1 Characterisation of commercial and hydrothermal 

samples. 

The XRD of commercial samples (laboratory and synchrotron) are presented 

with the Rietveld peak fitting of their diffraction patterns. These samples (CC-

BT, CT-BT and CC-BST) are fitted with the calculated and experimental ICDD 

phase standards to determine the suitability of Rietveld peak fitting for the 

hydrothermal samples (H-BT, H-BST-01, H-BST). The presence of a tetragonal 

crystal phase is important for SHG and determination of such phase fraction 

will link to the SHG output intensity. 

The X-Ray diffraction data set presented herein shows the full diffraction 

pattern (20 - 80 o2θ), the cubic Rietveld refinement of the (111) and (002/200) 

peaks and the tetragonal Rietveld refinement of the same peaks with the 

difference plot displayed underneath. The (111) peak is shown because it 
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should always be a single peak that displays no splitting and the peak can be 

used to determine the average crystallite size by application of using the 

Scherrer equation (Equation 3, Chapter 3). Whereas the (002/200) peak can be 

used to elucidate the tetragonal phase fraction percentage and the c/a lattice 

constant ratio, as estimated by Rietveld refinement. The Rietveld fittings in the 

subsequent figures are shown overlaid on the experimental data. Although the 

refinement was done with both of the reference patterns at the same time, the 

reference tetragonal data (purple) and the cubic reference data (blue) patterns 

are shown separately to show their individual fit to the experimental data. 

The discrepancy between the experimental diffraction pattern and the fitted 

reference patterns is shown as a difference plot. The difference plot is the sum 

of the tetragonal and cubic reference patterns (thin blue line) subtracted from 

the experimental pattern (black diffraction peaks). The direction and magnitude 

of the difference plot is a result of the combined reference patterns either over 

or under-fitting the experimental data (difference plot peaks up or down 

respectively) and the magnitude is the amount in which the over/under-fittings 

occur. 

The weighted r-profile (Wrp) is a software generated value which is an 

indication of the intensity match of the reference peaks to the experimental 

data. This value decreases as the experimental and reference profiles (sum of 

cubic and tetragonal) approach being equal in area. Fittings that have a 

weighted r-profile value close to 1 are considered an excellent fit whilst fittings 

with a value of 10 and above are considered a poor fit.  

A software generated value known as the ‘goodness of fit’ is also presented. 

This is a non-empirical software-generated value of how well the user has fit 
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the reference data to the experimental peaks to the software’s best estimate 

[156,157]. Both the Wrp and GoF fitting values are given in the summary tables 

at the end of each section.  

Because the work presented here will be assessing the suitability of Rietveld 

peak fitting in determining the phase of the sample, the (%) uncertainty for the 

estimated phase fractions will not be given. However, laboratory and 

synchrotron XRD Wrp fitting values will indicate the accuracy of these values. 

The average crystallite sizes are determined by the Scherrer equation 

(Equation 3, Chapter 3) involving a value for the instrumental broadening of the 

diffractometer. This is obtained by analysing a corundum (Al2O3) sample (not 

shown), where the FWHM of the (110) peak is measured [158]; but for 

synchrotron analysis this was not measured and so the average crystallite 

sizes for the synchrotron data are not provided.  

 

4.1.1 X-Ray diffraction of Commercial standards. 

The commercial barium titanate samples (CC-BT, CT-BT) are fitted with the 

calculated cubic and tetragonal ICDD reference patterns by Rietveld 

refinement. The crosshairs in the diffraction pattern unfortunately cannot be 

altered but represent the unmodified ICDD reference pattern and Rietveld 

refined pattern labelled in the laboratory XRD Rietveld peak fitting of CC-BT in 

Figure 73. 

The Rietveld peak fitting of CC-BT laboratory XRD data shows that there is 

actually a 53 % tetragonal phase fraction present. This tetragonal phase 

fraction has a c/a ratio of 1.006 (unit cell parameters: c = 4.027 Å, a = 4.002 Å). 

This sample was analysed further by synchrotron radiation at the Diamond 
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Light Source (Beamline I11, rapid access) under the supervision of Professor 

Chiu Tang and Dr Sarah Day (Diamond Light Source, UK); Figure 74. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 73. (a) Laboratory-XRD pattern of CC-BT labelled with the Miller indices. (b) 

Tetragonal Rietveld peak fitting of the (111) and (002/200) peaks, suggests the 

powder has a 53 % tetragonal phase fraction. (c) Cubic Rietveld peak fitting of 

the (111) and (200) peaks, suggests the powder has a 53 % cubic phase 

fraction. The crosshairs in the diffraction pattern for both (b) and (c) show the 

unmodified and Rietveld refined calibration standards. (d) Difference plot of 

the reference patterns subtracted from the experimental pattern. 
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Figure 74. (a) Synchrotron powder diffraction pattern of CC-BT labelled with the 

Miller indices. (b) Tetragonal Rietveld peak fitting of the (111) and (200) peaks, 

suggests the powder has a 50 % tetragonal phase fraction. (c) Cubic Rietveld 

peak fitting of the (111) and (002/200) peaks, suggests the powder has a 50 % 

cubic phase fraction. (d) Difference plot of the reference patterns subtracted 

from the experimental pattern. 

(100) 

(110) 

(111) (200) 

(210) 

(211) 

(220) 

(221) 

(310) 

(111) (002/200) 

(111) 

(200) 

(a) 

(b) 

(c) 

(d) 

 
100 

 
50 

 
0 

 
150 

 
-100 

 
-50 

 
-150 

 
2000 

 
1000 

 
0 

 
1000 

 
2000 

 
0 

C
o
u
n
ts

 

21 24 

Position o2θ 

22 23 

Position o 



 
 

- 123 - 

Both the laboratory-XRD and synchrotron powder diffraction Rietveld peak 

fitting data of CC-BT sample (Figure 73 & Figure 74) suggest a ~50 % 

tetragonal phase fraction is present, implying that the sample will produce SHG 

(imaging of second harmonic light production will be shown in Section 4.2). 

This sample is expected to be all cubic but found that ~50 % of the sample has 

a small tetragonal like distortion. Both the experimental data show no obvious 

tetragonal phase splitting of the (002/200) peak, and the tetragonal phase 

reference pattern is fit to a single (200) experimental peak. This indicates that 

the reference tetragonal phase fraction has an almost equal unit cell c/a ratio 

(the tetragonal unit cell c/a ratio is 1.01 for both laboratory and synchrotron). 

The estimated tetragonal unit cell parameters for laboratory Rietveld refinement 

and synchrotron Rietveld refinement are: c = 4.027 Å, a = 4.002 Å, and: c = 

4.016 Å, a = 4.013 Å respectively. Showing the estimated laboratory-XRD data 

to have a greater estimated tetragonal phase fraction present (c/a = 1.006), 

than the weaker c/a ratio estimated by synchrotron radiation (c/a = 1.0008).  

To see if a better fitting is achieved with the two reference ICDD phases 

(tetragonal and cubic) as opposed to a solo reference phase (cubic), the 

software is instructed to fit the reference cubic and tetragonal ICDD phase 

patterns separately to the experimental CC-BT sample with the difference plots 

shown; Figure 75. 

Showing that for accurate Rietveld peak fitting of CC-BT, both the reference 

cubic and tetragonal ICDD patterns are required. 
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Figure 75. (a) Synchrotron diffraction pattern of CC-BT with the tetragonal 

reference pattern (purple) Rietveld peak fitted to the experimental data (red). 

The difference plot is shown in (b). The reference cubic pattern is Rietveld 

peak fitted with the reference cubic pattern in (c). In addition to the difference 

plot shown in (d). (e) Difference plot of synchrotron CC-BT with cubic and 

tetragonal fittings. 
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Figure 75 shows the variation in the difference plots fitted with the cubic and 

tetragonal phases. Visually, the single phase fitting difference plots are under-

fitting (rather than overfitting) just before the (111) and (200) peaks in the 

residual plots. Whereas a flatter residual fitting either side of the (111) and 

(200) residual peak fits is shown in the difference plot when both reference 

patterns are used. This indicates that the fittings require both the cubic and 

tetragonal reference patterns; which will be continued throughout. 

A commercial tetragonal sample, CT-BT (Sigma Aldrich, Dorset, UK) was 

analysed to determine the phase fraction by Rietveld peak fitting. Figure 76 

shows the laboratory XRD pattern with the pattern labelled with the Miller 

Indices. 

 

The laboratory-XRD of CT-BT shows only a ~ 75 % tetragonal phase fraction 

by Rietveld peak fitting. The Rietveld fitting suggests the CT-BT sample is a 

mixture of two phases (cubic and tetragonal) with a clear and well defined 

splitting of the (002/200) peaks. The reference tetragonal phase after Rietveld 

fitting shows a c/a ratio of 1.01 (c = 4.035 Å, a = 3.99 Å). However, the 

(002/200) peak splitting is not as well defined as two-sharp peaks (as expected 

for a calculated reference tetragonal diffraction pattern). Therefore, this sample 

was analysed further by the Diamond Light Source (Beamline I11, rapid 

access) under the supervision of Professor Chiu Tang and Dr Sarah Day;  

Figure 77. 
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Figure 76. (a) Laboratory X-Ray diffraction pattern of CT-BT labelled with the Miller 

indices. (b) Tetragonal Rietveld peak fitting of the (111) and (200) peaks, 

suggests the powder has a 76 % tetragonal phase fraction. (c) Cubic Rietveld 

peak fitting of the (111) and (002/200) peaks, suggests the powder has a 24 % 

cubic phase fraction. (d) Difference plot of the reference patterns subtracted 

from the experimental pattern. 

(111) 

(200) 

(002) 

(111) 

(200) 

(002) 

(001/010) 
(002/(200) 

(012/021) 

(110) 

(111) (112/211) 

(022/220) 

(003/221) 

(013/031) 

(a) 

(b) 

(c) 

(d) 

0 

- 600 

- 800 

- 400 

- 200 

 600 

 

800 
 

 400 

200 

 

0 

 

2000 

 

4000 

 

0 

 

2000 

 

4000 

C
o
u
n
ts

 

20 30 40 50 60 70 

Position o2θ 

15000 

10000 

5000 

Position o2θ 

38 40 42 44 
46 

C
o
u
n
ts

 



 
 

- 127 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 77. (a) Synchrotron powder diffraction pattern of CT-BT labelled with the 

Miller indices. (b) Tetragonal Rietveld peak fitting of the (111) and (200) peaks, 

suggests the powder has a 100 % tetragonal phase fraction. (c) Cubic Rietveld 

peak fitting of the (111) and (002/200) peaks, suggests the powder has a 0 % 

cubic phase fraction. (d) Difference plot of the reference patterns subtracted 

from the experimental pattern. 
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The synchrotron powder diffraction of CT-BT shows a 100% tetragonal phase 

fraction is present. The difference plot shows a very sharp (111) peak in which 

the reference cubic and tetragonal patterns are struggling to fit to the sharp 

peak (shown in the difference plot), which accounts for a poor residual fitting 

and a large Wrp (= 47.2). 

Thus we conclude that the CT-BT samples shows a 100 % tetragonal phase 

fraction; which is ideal for a reference pattern; giving a c/a ratio of 1.01 (c = 

4.04 Å, a = 3.99 Å). Rietveld peak fitting suggests CC-BT has a 50 % 

tetragonal phase fraction present, which isn’t ideal to use as a standard and so 

the CT-BT sample was heated above the Curie temperature (above the 

tetragonal to cubic transition) and used as a model cubic sample for 

subsequent work in Chapter 5. 

For an ideal cubic reference, the CT-BT sample was heated to 170 oC (~ +40 

oC above the Curie point) to ensure that the sample undergoes a tetragonal-to-

cubic transition above the temperature shown in Figure 78 [73].  

In Figure 78, the Rietveld fitting of CT-BT still suggests there is a tetragonal 

component despite the sample being at 170 oC, where it should all be 

transformed to a cubic-phase barium titanate. However, closer inspection 

shows the tetragonal component is no longer has a clear (002/200) peak 

splitting as seen in Figure 76, but is now closer to a single peak indicating an 

extremely weak tetragonal distortion: c/a = 1.0002 (c = 4.032 Å, a = 4.031 Å) 

with a Wrp = 15.2. This suggests a single referenced cubic pattern is more 

plausible to the experimental data based on the magnitude of the residual fit. 

The single cubic Rietveld peak fitting is shown in Figure 79 and summarised in  

Table 5.  
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Figure 78. (a) Laboratory X-Ray diffraction pattern of CT-BT collected at 170 oC 

labelled with the Miller indices. (b) Tetragonal Rietveld peak fitting of the (111) 

and (200) peaks, suggests the powder has a 53 % tetragonal phase fraction. 

(c) Cubic Rietveld peak fitting of the (111) and (002/200) peaks, suggests the 

powder has a 47 % cubic phase fraction. (d) Difference plot of the reference 

patterns subtracted from the experimental pattern. 
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Figure 79. (a) Laboratory X-Ray diffraction pattern of CT-BT collected at 170 oC 

labelled with the Miller indices. (b) Cubic Rietveld peak fitting of the (111) and 

(200) peaks. (c) Difference plot of the reference patterns subtracted from the 

experimental pattern. (Inset) Comparison of laboratory-XRD CT-BT (black) and 

CT-BT-170oC (red) data at normalised (200) peak intensity, showing the 

change in tetragonal (002/200) peak splitting to a cubic single (200) diffraction 

peak at ~ 45 o2θ; consistent with the expected transition to a cubic phase.  

 

The best set of fitting parameters for the commercial samples are summarised 

in Table 5. The results presented are based on a combined reference pattern 

that includes the individual reference patterns for both tetragonal and cubic 

phases (shown in Figure 77 & Figure 79 respectively). Reference cubic and 
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tetragonal samples for EELS analysis, will be taken from the CT-BT sample 

below (tetragonal) and above (cubic) the Curie temperature. A summary of 

Rietveld peak fitting data for the laboratory-XRD and synchrotron powder 

diffraction data for the commercial samples are shown in Table 5. 

 

Table 5. Summary of the Rietveld peak fitting for laboratory-XRD and the 

Synchrotron powder diffraction data. The average crystallite size is 

determined using the Scherrer equation (Equation 3, Chapter 3). The c/a ratio 

is a tetragonal ratio known as the longer ‘c’ unit cell parameter over the ‘a’ 

parameter. These values were estimated during Rietveld fitting. The estimated 

tetragonal phase fraction, weighted r-profile (ideally = 1) and goodness of fit 

(a software generated fit value, ideally <10) by Rietveld peak fitting are shown. 

 

Table 5 shows a tetragonal phase fraction is present in all samples and a cubic 

phase fraction is present in all except one of the commercial samples (CT-BT, 

Sample 

Average 

crystallite 

size (nm) 

Rietveld 

fitted 

tetragonal 

unit cell 

parameters 

c/a 

ratio 

Tetragonal 

phase 

fraction 

(%) 

Weighted 

r-profile  

(Wrp) 

Goodness 

of fit 

(GoF) 

CC-BT 

81.7 c = 4.027 Å 

a = 4.002 Å   
1.006 53 4.3 8.0 

Synchrotron c = 4.016 Å 

a = 4.013 Å 
1.0008 50 1.3 8.5 

CT-BT 

174.4 c = 4.04 Å 

a = 3.99 Å 
1.01 76 4.8 9.6 

Synchrotron c = 4.04 Å 

a = 3.99 Å 
1.01 100 47.2 38.3 

CT-BT @ 

170 oC 
152.6 

c = 4.032 Å 

a = 4.031 Å 
1.0002 53 15.2 17.3 

Cubic fitting only 

(N/A) 
12.6 11.6 

CC-BST 

28.7 c = 4.03 Å 

a = 3.99 Å 
1.01 8 5.3 5.1 

Synchrotron c = 3.966 Å 

a = 3.964 Å 
1.0005 30 1.2 7.4 
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that is assumed to be fully tetragonal). The use of Rietveld refinement is a 

robust method of phase identification of the commercial samples, and the best 

measure of the phase is acquired from the synchrotron powder diffraction data 

because of the increased resolution. The unit cell parameter values from the 

refined data are in good agreement the ICDD unit cell parameters (a = 4.01 Å 

for cubic ICDD file and c= 4.04 Å, a = 3.99 Å for the tetragonal ICDD file), 

shown in Table 5. 

The Rietveld refinement of CT-BT suggested that it is 100 % tetragonal and the 

model tetragonal refined unit cell parameters for CT-BT were: c = 4.04 Å, a = 

3.99 Å (c/a = 1.01). The Wrp = 47.2 and GoF = 38.3 suggest a poor fitting of the 

synchrotron data (Figure 77), which can be attributed to a poor residual fit to 

the (111) peak intensity. The CC-BT sample shows no suitable cubic phase 

can be fit to the synchrotron data, therefore would expect this sample to 

produce SHG. 

The Rietveld refinement of CT-BT-170oC with both the cubic and tetragonal 

reference patterns suggested a ~50 % tetragonal phase fraction (the model 

tetragonal unit cell parameters being: c = 4.032 Å, a = 4.031 Å with c/a = 

1.0002). However, the c/a ratio (1.0002) is a much smaller distortion than in the 

model tetragonal reference pattern fitted to the commercially purchased cubic 

(CC-BT) sample (Table 5). A better Wrp of CT-BT-170oC is obtained by fitting 

only the reference cubic model (Wrp=12.6) as compared to when both 

tetragonal and cubic model patterns are used (Wrp=15.2). The CT-BT-170oC 

Wrp and GoF fitting parameters suggests the sample is likely to be fully cubic 

and wouldn’t expect this sample to produce SHG. The phase of CT-BT-170oC 

is investigated further in Chapter 5. 
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The CC-BT Rietveld refinement suggests a ~ 50 % tetragonal phase fraction 

present with the model tetragonal unit cell parameters for CC-BT: c = 4.016 Å, 

a = 4.013 Å giving a c/a = 1.0008. Because the c/a ratio is small, the unit cell is 

more centrosymmetric (i.e. more of a cubic-like unit cell) and hence the model 

tetragonal and cubic reference patterns are almost equal. The synchrotron data 

shows a better Wrp (1.3) than the laboratory-XRD data (Wrp = 4.3). The sample 

is not phase pure by either measure (laboratory or synchrotron XRD) therefore 

this sample would be expected to produce SHG light. 

The commercially purchased cubic barium strontium titanate sample (CC-BST) 

laboratory-XRD pattern is shown in Figure 80. A commercial tetragonal sample 

was unavailable. Rietveld peak fitting of XRD of the sample indicates a cubic 

and tetragonal phase fraction are present. This sample was analysed further by 

the Diamond Light Source (Beamline I11, rapid access) under the supervision 

of Professor Chiu Tang and Dr Sarah Day; Figure 81. 

The laboratory XRD of CC-BST sample shows an 8 % tetragonal phase 

fraction present; with a c/a ratio of 1.01 (c = 4.03 Å, a = 3.99 Å). The Rietveld 

peak fitting of this sample may be affected by the small average particle size ~ 

50 nm by TEM imaging (~30 nm average crystallite size by laboratory-XRD), 

causing a broadening of the (002/200) peak (in comparison to the µm sized 

CT-BT sample).  

The Synchrotron powder diffraction of CC-BST also shows the presence of a 

tetragonal phase; however, the phase fraction is somewhat larger (30 %). The 

estimated unit cell parameters are: c = 3.96 Å, a = 3.92 Å, giving a c/a = 

1.0005. This suggests a weakly distorted tetragonal phase which indicate that 

the sample is actually fully cubic. The synchrotron fitted data shows an 
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improved Wrp value of 1.2 in comparison to the laboratory-XRD Wrp fitting value 

of 5.3; Figure 80. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 80. (a) Laboratory X-Ray diffraction pattern of CC-BST labelled with the 

Miller indices. (b) Tetragonal Rietveld peak fitting of the (111) and (200) peaks, 

suggests the powder has an 8 % tetragonal phase fraction. (c) Cubic Rietveld 

peak fitting of the (111) and (002/200) peaks, suggests the powder has a 92 % 

cubic phase fraction. (d) Difference plot of the reference patterns subtracted 

from the experimental pattern. 
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Figure 81. (a) Synchrotron powder diffraction pattern of CC-BST labelled with the 

miller indices. (b) Tetragonal Rietveld peak fitting of the (111) and (200) peaks, 

suggests the powder has a 30 % tetragonal phase fraction. (c) Cubic Rietveld 

peak fitting of the  (111) and (002/200) peaks, suggests the powder has a 70 % 

cubic phase fraction. (d) Difference plot of the reference patterns subtracted 

from the experimental pattern. 
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The Rietveld refinement of the commercial samples suggested that there is a 

tetragonal phase fraction present in all samples; indicating that SHG should be 

possible from all these samples. 

The summary of diffraction and Rietveld refinement data in Table 1 lists an 

estimated volume fraction of tetragonal phase in addition to its distortion from 

cubic symmetry by providing the refined unit cell parameters. This allows us to 

go ahead with some confidence in the analysis of the unknown hydrothermally 

prepared barium titanate and barium strontium titanate samples. 

The XRD (laboratory and synchrotron) of hydrothermally prepared barium 

titanate (H-BT) is presented in section 4.1.2. 

 

4.1.2 Hydrothermally prepared barium titanate. 

The laboratory-XRD pattern of hydrothermal barium titanate nanoparticles is 

shown in Figure 82. The crystal phase fractions were estimated by Rietveld 

peak fitting. 

The H-BT sample shows a clear splitting of the (002/200) peak suggesting a 

tetragonal phase fraction is dominant. Rietveld peak fitting of H-BT shows a 

~75 % tetragonal phase fraction is present. The difference plot shows a good 

residual fit and a low Wrp (2.4). Indicating a good fit of the (111) and (002/200) 

peaks H-BT sample; Figure 82. 

The H-BT sample was analysed at the Diamond Light source, beamline I11 

(Rapid Access, Didcot, UK) under the supervision of Professor Chiu Tang and 

Dr Sarah Day and the data is shown in Figure 83. 
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Figure 82. (a) Laboratory X-Ray diffraction pattern of H-BT labelled with the Miller 

indices. (b) Tetragonal Rietveld peak fitting of the (111) and (002/200), 

suggests the powder has a 74 % tetragonal phase fraction. (c) Cubic Rietveld 

peak fitting of the (111) and (002/200) peaks suggests the powder has a 26 % 

cubic phase fraction. (d) Difference plot of the reference patterns subtracted 

from the experimental pattern. 
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Figure 83. (a) Synchrotron powder diffraction pattern of H-BT labelled with the 

Miller indices. (b) Tetragonal Rietveld peak fitting of the (111) and (002/200) 

peaks, suggests the powder has a 59 % tetragonal phase fraction. (c) Cubic 

Rietveld peak fitting of the (111) and (002/200) peaks, suggests the powder 

has a 41 % cubic phase fraction. (d) Difference plot of the reference patterns 

subtracted from the experimental pattern. 
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The synchrotron powder diffraction of the H-BT sample (Figure 83) shows a 

more pronounced splitting of the (002/200) peak compared to the laboratory-

XRD data. However, the Rietveld fitting estimates a lower tetragonal phase 

fraction (58 %). The Rietveld peak fitting for laboratory and synchrotron powder 

diffraction data are shown in Table 6. The synchrotron data shows a substantial 

reduction in tetragonal phase fraction compared to laboratory-XRD, suggesting 

that even though the (002/200) splitting is better resolved in the synchrotron 

data, the tetragonal phase is actually less distorted (suggested by the Rietveld 

tetragonal model c/a ratio decreasing from 1.008 to 1.006). The W rp values for 

laboratory and synchrotron XRD decreases from 2.4 to 3.3 respectively.  

This suggests the Rietveld fitting is poorer for the synchrotron fitting, which is 

likely due to the mismatch in fitting across the more pronounced (002/200) 

peak splitting, resulting in a poorer residual fit (shown in Figure 83). 

When the H-BT sample is heated above the Curie point to ensure a tetragonal-

to-cubic transition occurs (H-BT-170oC) a single (200) peak becomes 

prominent (Figure 84), with a disappearance of the (002/200) tetragonal 

splitting indicating that there is indeed a phase transformation. 

However, the (200) peak does show an asymmetric broad base which can be 

fitted using a tetragonal reference pattern, giving a c/a ratio of 1.007 (c = 4.06 

Å, a = 4.03 Å). The data were also fitted with the cubic reference only to see if it 

improved the Wrp and GoF of the H-BT-170oC sample and to indicate which 

phase combination is the best fit; Figure 85. 



 
 

- 140 - 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 84. (a) Laboratory X-Ray diffraction pattern of H-BT collected at 170 oC 

labelled with the Miller indices. (b) Tetragonal Rietveld peak fitting of the (111) 

and (002/200), suggests the powder has a 54 % tetragonal phase fraction. (c) 

Cubic Rietveld peak fitting of the (111) and (002/200) peaks suggests the 

powder has a 46 % cubic phase fraction. (d) Difference plot of the reference 

patterns subtracted from the experimental pattern. 
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Figure 85. (a) Laboratory X-Ray diffraction pattern of H-BT collected at 170 oC 

labelled with the Miller indices. (b) Cubic Rietveld peak fitting of the (111) and 

(200) peaks. (c) Difference plot of the reference patterns subtracted from the 

experimental pattern.  

 

The Rietveld fitting parameters for Figure 84 and Figure 85 are summarised in 

Table 6. 
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Sample 

Average 

crystallite 

size (nm) 

Rietveld 

fitting 

tetragonal 

unit cell 

parameters 

c/a 

ratio 

Tetragonal 

phase 

fraction 

(%) 

Weighted 

r-profile 

(Wrp) 

Goodness 

of fit 

(GoF) 

H-BT 

71.8 c = 4.03 Å 

a = 3.99 Å 
1.008 75 2.4 6.3 

Synchrotron c = 4.03 Å 

a = 4.005 Å 
1.006 58 3.3 10.0 

H-BT 

@ 170 oC 
84.2 

c = 4.06 Å 

a = 4.03 Å 
1.007 54 9.0 8.0 

Cubic fitting 

N/A 
15.7 12.9 

Table 6. Summary of the Rietveld peak fitting for laboratory-XRD and Synchrotron 

powder diffraction data for H-BT. The average crystallite size is determined by 

the Scherrer equation. The c/a ratio tetragonal phase fraction, Wrp and 

goodness of fit are all parameters generated by the Rietveld peak fitting. 

 

The Rietveld analysis of H-BT-170oC above the Curie point suggested a better 

fit when including the tetragonal reference data (Wrp = 9). Furthermore, the 

Rietveld refinement data suggested the H-BT tetragonal phase decreases 

when analysing laboratory and synchrotron XRD (from 75 % to 58 %).  

The powder diffraction data of the H-BT sample shows a tetragonal crystal 

phase fraction is consistently present in the majority even after heating above 

the Curie temperature. However, its exact phase fraction (75–60 %) is difficult 

to elucidate through Rietveld peak fitting. To confirm H-BT nanoparticles were 

successfully synthesised, the morphology and crystal structure of the 

nanoparticles were investigated by SEM and TEM data as shown in Figure 86 

& Figure 87 respectively.  
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Figure 86. (a) Secondary electron SEM image of agglomerated barium titanate 

nanoparticles hydrothermally synthesised at 150 oC for 72 hours. (b) EDX 

spectrum of nanoparticles. The nanoparticles were dropcast onto a SEM stub 

and coated in a 5 nm platinum/iridium coating for SEM analysis. The spectrum 

is labelled with the elements. 
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Figure 87. (a) Bright field TEM image of flocculated barium titanate nanoparticles 

produced by hydrothermal synthesis at 150 oC on a holey carbon support film. 

(b) The particle size distribution shows an average particle size of 139 ± 23 

nm. (c) High resolution bright field lattice image with FTT shown inset. (d) 

Labelled electron diffraction pattern from the nanoparticle down the [101] 

axis. 

The SEM image (Figure 86) shows agglomerated barium titanate nanoparticles 

on a SEM stub with the respective EDX spectrum showing a barium and 

titanium signal at ≈ 4 keV. The barium titanate nanoparticles show a variation in 

size (< 1 µm) and a square morphology with truncated facets. 
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The bright field TEM image (Figure 87) shows flocculated H-BT nanoparticles 

with a particle size distribution centred around 140 nm. A high resolution image 

(with an FFT inset) and a labelled electron diffraction pattern with the Miller 

(hkl) indices is also shown. 

The data suggest successful hydrothermal synthesis of barium titanate 

nanoparticles by laboratory XRD, synchrotron powder diffraction, SEM, TEM, 

EDX and electron diffraction. There is still a question over the precise phase 

content and distribution of the nanoparticles (although evidence suggests they 

are 60–75 % tetragonal) which will be analysed and discussed further by 

electron energy loss spectroscopy (EELS) in Chapter 5. 

 

4.1.3 Hydrothermally prepared barium strontium titanate. 

Barium strontium titanate nanoparticles were synthesised in order to increase 

the dielectric constant of the nanoparticles for use as biomarkers (Figure 26, 

Chapter 2) [67]. 

For hydrothermally prepared BST samples, only the synchrotron data are 

reported. This is because Rietveld refinement of the Commercial CC-BST 

sample shows that it produced a better fit for the higher resolution synchrotron 

data as compared to the laboratory-XRD.  

The synchrotron XRD data of the first Ba1-xSrxTiO3 synthesis route H-BST-01 is 

shown in Figure 88. The data show a splitting of the (002/200) peak. However, 

there is a peak asymmetry at the right side of the (002/200) peaks which could 

indicate a compositional change for H-BST-01. Which gives rise to an 

additional (200) peak. This peak asymmetry and extra peak could indicate the 

presence of a strontium-rich BST phase that results in a peak at higher o2θ 
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values [92] consisting with a barium-rich BST which is responsible for the major 

intensity peak.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 88. (a) Synchrotron powder diffraction pattern of H-BST-01 labelled with the 

miller indices. (b) Tetragonal Rietveld peak fitting of the (111) and (200) peaks, 

suggests the powder has a 53 % tetragonal phase fraction. (c) Cubic Rietveld 

peak fitting of the (111) and (002/200) peaks, suggests the powder has a 47 % 

cubic phase fraction. (d) Difference plot of the reference patterns subtracted 

from the experimental pattern. 
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Overall the diffraction data implies a barium-rich BST that is the major 

(002/200) peak (~ 1 µm crystallite size) and a strontium-rich BST (~ 65 nm 

crystallite sizes – Table 7) that diffracts at higher angles of o2θ, implying a near 

equal mixture (53 % vs 47 %) of a tetragonal phased (barium-rich) powder and 

a cubic phased (strontium-rich) powder. The addition of Strontium ions into the 

barium titanate lattice shifts the pattern to higher 2θ angles (as shown by the 

(111) peak in Figure 88) because the smaller ionic radius of Sr reduces the 

lattice constants (cubic lattice parameters for BT = 4.019 Å and for BST = 3.965 

Å). It might be expected that the tetragonal Ba-rich phase would exhibit SHG, 

whilst the cubic Sr-rich phase would not. 

 

The incorporation of Strontium ions into the barium titanate lattice for H-BST-01 

was further analysed by TEM with EDX and he results are shown in Figure 89 

& Figure 90. 
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Sr: 8.7 %, Ba: 91.2 % 

Size: 65 nm 

 

Sr: 40.3 %, Ba: 59.7 % 

Size: 44 nm 

Sr: 10.8 %, Ba: 89.2 % 

Size: 55 nm 

Sr: 22.6 %, Ba: 77.4 % 

Size: 46 nm 
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Figure 89. (a) Bright field TEM image of H-BST-01 nanoparticles. The annotations 

show the size of the nanoparticles and the atomic % of Sr-K series and Ba-L 

series determined by spot-EDX. The largest difference of strontium 

incorporation is ≈ 30 atomic %. (b) Particle size distribution of H-BST-01 

nanoparticles with a bi-phasic strontium incorporation (Figure 88). The 

average particle size ~65 nm ± 16 nm. 
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Figure 90. Plot showing TEM-EDX analysis of the composition of 100 H-BST-01 

nanoparticles showing a biphasic strontium incorporation. The trend 

generally shows that smaller nanoparticles (below ~50 nm) have a higher 

incorporation of strontium. The desired incorporation for hydrothermal BST is 

Ba0.8Sr0.2TiO3, but the graph shows a bi-modal distribution of composition 

corresponding to ≈ Ba0.88Sr0.12TiO3 and ≈ Ba0.65Sr0.35TiO3. 

 

TEM-EDX revealed that the H-BST-01 sample showed bi-phasic strontium 

incorporation (Figure 90). This was accompanied by a peak asymmetry in the 

(002/200) peak in synchrotron diffraction data (Figure 88). The asymmetric 

(200) peak at higher o2θ suggested a cubic strontium-rich BST phase. This 

strontium-rich BST revealed a broader and lower diffraction intensity XRD peak 

as compared to the barium-rich BST which exhibited a split (002/200) peak. 

The strontium rich phase would appear to form smaller crystalline particles, 
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however varying amounts of strontium incorporation (Figure 90) might also be 

expected to broaden the (200) diffraction peak from the cubic Sr-rich phase. 

TEM-EDX of H-BST-01 confirms the bi-phasic incorporation of strontium into 

barium titanate forming particles of differing average sizes. This outcome would 

not be ideal for second harmonic biomarker applications as the smaller, 

strontium-rich cubic phased BST nanoparticles might not produce SHG.  

If this sample was introduced as a biomarker and adverse toxicological effects 

were experienced, there would be uncertainty as to the source of these effects 

(i.e. either from tetragonal barium-rich BST or the cubic strontium-rich BST). 

Furthermore, they would also not be suitable for use as a ‘biomarker’ if the 

cubic phased nanoparticles cannot be tracked. Hence this suggests that 

synthesis of a new hydrothermal barium-strontium titanate sample with more 

homogenous strontium incorporation is required for second harmonic 

generation and biomarker applications. 

 

Following this analysis, the hydrothermal synthesis of barium-strontium titanate 

was modified based on work by Roeder et al. [92]. Here, the barium reagent 

was added in excess so as to reach the desired Ba0.8Sr0.2TiO3 ratio. The 

resulting synchrotron diffraction pattern of this newly synthesised sample is 

shown in Figure 91. 
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Figure 91. (a) Synchrotron powder diffraction pattern of H-BST that appears cubic, 

labelled with the Miller indices. (b) Tetragonal Rietveld peak fitting of the (111) 

and (200) peaks, suggests the powder has a 74 % tetragonal phase fraction. 

(c) Cubic Rietveld peak fitting of the (111) and (002/200) peaks, suggests the 

powder has a 26 % cubic phase fraction. (d) Difference plot of the reference 

patterns subtracted from the experimental pattern. 
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The synchrotron data of H-BST shows no peak splitting or importantly 

asymmetry, suggesting a lack of bi-phasic incorporation of Sr. Rietveld peak 

fitting of the data suggests a ~ 74 % tetragonal phase fraction is present 

together with a much lower Wrp (0.027) than was achieved for the previously 

synthesised sample (H-BST-01, Wrp = 1.9); Table 7. A Wrp <1 is considered a 

perfect fit; meaning that the user fit is better than the software estimate fit of the 

experimental reference pattern. The H-BST sample also shows a higher, albeit 

small c/a ratio (1.0004) as compared to the previous H-BST-01 sample 

(1.0002) i.e. effectively a minor tetragonal distortion. 

TEM-EDX analysis of H-BST nanoparticles (Figure 92) showed that the atomic 

ratio of Barium-L series and Strontium-K series X-Rays from 100 particles 

indicated a single-composition BST phase close to the desired composition.  

 

 

 

 

 

 

 

 

Figure 92. Plot showing TEM-EDX of 100 H-BST nanoparticles suggesting a 

reasonably single-composition H-BST sample. The average incorporation of 

strontium is ≈ 15 % and closer to the desired Ba0.8Sr0.2TiO3 stoichiometry. 
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Furthermore, the H-BST nanoparticles showed a narrower particle size 

distribution and a smaller average particle size of ≈ 45 ±10 nm (Figure 93). This 

sample (H-BST) will be the barium strontium titanate sample used for 

subsequent nanoparticle biomarker analysis (Chapter 6). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 93. (a) Bright field TEM image of H-BST nanoparticles and (b) Particle size 

distribution of H-BST nanoparticles with an average particle size ≈ 45 nm. (c) 

High resolution bright field lattice image down the (111) axis and (d) labelled 

electron diffraction pattern of the highlighted area in the nanoparticle cluster 

(inset) from the cubic barium strontium titanate ICDD file 00-034-0411.  
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Sample Average 

crystallite 

size (nm) 

Rietveld 

fitting 

tetragonal 

unit cell 

parameters 

c/a 

ratio 

Tetragonal 

phase 

fraction (%) 

Weighted 

r-profile 

Goodness 

of fit 

H-BST-01 Synchrotron 

c = 3.98 Å 

a = 3.97 Å 
1.0002 47 1.9 13.4 

H-BST Synchrotron 

c = 3.988 Å 

a = 3.986 Å 
1.0004 74 0.027 4.65 

Table 7. Summary of synchrotron XRD of H-BST-01 and H-BST. The c/a ratio, 

tetragonal phase fraction, weighted r-profile and goodness of fit are produced 

by the software. 

 

In summary, the H-BST-01 sample showed a bi-phasic incorporation of 

strontium which was corrected by altering the starting stoichiometry of the 

reagents to produce H-BST. The H-BST sample showed ~ 74 % tetragonal 

phase fraction by synchrotron peak fitting, however the tetragonal distortion 

was small.  

Rietveld peak fitting of H-BST shows a low weighted-r profile and low goodness 

of fit (similar to that of the laboratory XRD data, not shown). The c/a ratios of H-

BST and H-BST-01 are small, giving 1.0004 and 1.0002 (approx. c = 3.988 Å, a 

= 3.986 Å and c = 3.98 Å, a = 3.97 Å) respectively. However, Rietveld 

refinement strongly suggests there is a tetragonal phase fraction present in all 

the samples. Therefore, SHG of light would be expected from all samples and 

this is discussed in section 4.2.   
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4.2 Second Harmonic Generation  

Rietveld fitting of XRD data for both the commercial and hydrothermally 

synthesised nanoparticles suggested a mixed phase of cubic and tetragonal 

components in all bar the CT-BT sample that was 100 % tetragonal. Figure 94 

shows the second harmonic light output for all of the CT-BT, CC-BT, H-BT and 

H-BST nanoparticle samples.  

 

 

 

 

 

 

 

 

 

 

 

Figure 94. SHG images taken at 40 x magnification, 0.75 numerical aperture at 750 

V laser power of (a) CT-BT, (b) CC-BT, (c) H-BT, (d) H-BST. The CT-BT sample 

was acquired at 750 V laser power to normalise the remaining samples as the 

maximum intensity that can be collected is 4095 (arb. Units). 
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(b) (a) 

The maximum intensity that can be collected using the photomultiplier tube is 

4095 (arbitrary units) and all images were normalised to the intensity of the CT-

BT sample as the Rietveld peak fitting suggested that this sample was 100 % 

tetragonal. The CC-BT and H-BST show little to no second harmonic 

production of light, however when the laser power was increased, SHG output 

was increased (Figure 95). 

 

Figure 95. SHG production from (a) CC-BT and (b) H-BST nanoparticles at 1125 V 

laser power, showing that SHG of light is produced by both these samples.  

 

The SHG images show that all the samples can produce second harmonic light 

even for the commercial cubic standard and the fine particle H-BST sample. 

However, SHG production in these samples did require a higher flux of incident 

photons produced by an increase in laser power). 

Rietveld peak fitting of the samples suggested that a tetragonal phase often 

with a small c/a ratio was present in all samples. However, it was unclear from 

the XRD analysis as to whether this tetragonal phase was distributed between 
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the nanoparticles (inter-particle) or within the nanoparticles (intra-particle). 

Correlative SHG and secondary electron SEM images, shown in Figure 96, 

suggests the tetragonal phase distribution is intra-particle as all the particles 

imaged emit SHG to some extent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 96. (a) SHG image of agglomerated H-BT nanoparticles on a glass 

coverslip. (b) Secondary electron SEM image of the same nanoparticles.  
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Figure 97. Secondary electron SEM image at a higher magnification of H-BT 

agglomerated nanoparticles, correlated with the same area in the cropped 

SHG image. 

 

Figure 96 and Figure 97 show a distinct correlation between second harmonic 

light and electron microscopy images, qualitatively showing that all the barium 

titanate nanoparticles present were emitting second harmonic light. This 

suggests that the tetragonal phase is distributed within each particle (intra-

particle). 

This intra-particle phase theory required analysis of the chemical and molecular 

bonding of individual nanoparticles which has been characterised by electron 

energy loss spectroscopy (EELS) in the following chapter.  
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4.3 Chapter Summary 

• Rietveld peak fitting of the CT-BT synchrotron powder diffraction data 

suggests it was 100 % tetragonal phased with a c/a ratio of 1.01.  

• CC-BT was a ≈ 50 % tetragonal phase fraction with a c/a ratio of 1.0008. 

• H-BT was a ≈ 60 % tetragonal crystal phase fraction with a c/a of 1.006.  

• Evidence of a phase transition to a cubic phase was shown when 

laboratory-XRD was collected at 170 oC (above the Curie point) for CT-

BT and H-BT. 

• H-BST-01 showed a bi-phasic level of strontium incorporation as 

characterised by TEM-EDX analysis. 

• H-BST was synthesised to overcome the problem of the bi-phasic 

strontium incorporation so as to produce a homogenous BST phase. 

• H-BST had a ~75 % tetragonal phase fraction but with only a small 

tetragonal distortion of 1.0002.  

• All samples (except CT-BT) showed a mixture of tetragonal and cubic 

crystal phase fractions; however, all samples produced SHG of light 

(albeit requiring an increase in laser power for the CC-BT and H-BST 

samples) 

• Correlative SHG and secondary electron SEM images of the H-BT 

sample showed that all nanoparticles emitted SHG light, suggesting that 

the nanoparticles have an intra-particle phase distribution of cubic and 

tetragonal phase fractions. 
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Chapter 5  – Electron energy loss spectroscopy (EELS) of 

barium titanate and barium strontium titanate nanoparticles. 

 

The XRD (laboratory and synchrotron) data presented in Chapter 4 suggest 

that all BaTiO3 (excluding CT-BT) and Ba0.8Sr0.2TiO3 nanoparticle samples 

possessed both a cubic and tetragonal phase fraction (whereas the CT-BT 

sample is 100 % tetragonal). The second-harmonic generation results indicated 

that all the nanoparticle samples emit light – including the cubic phase samples 

which are not expected to emit at all. Correlative SEM and second-harmonic 

light images of the H-BT sample showed that all nanoparticles emit. This 

implies there was non-centrosymmetric crystal symmetry present in all particles 

and a combination of cubic and tetragonal crystal phases existed within each 

particle (intra-particle) as opposed to in separate particles (inter-particle).  

Electron energy loss spectroscopy results are presented here in order to 

investigate the chemical bonding of the titanium-oxygen atoms in the BaTiO3 

unit cell. Changes in the titanium-oxygen octahedron are expected to alter the 

characteristic Ti-L and O-K core-loss edges fine structure (ELNES).  

EELS data were collected from nanoparticles both at room temperature (RT) 

and above the Curie temperature of 130 oC (collected here at 400 oC), so 

forcing BaTiO3 to undergo a phase transition from the tetragonal to the cubic 

phase. EELS data were collected using diffraction-coupled TEM-EELS (EELS 

from a whole nanoparticle), STEM-EELS linescans (using a convergent beam 

scanned across a single nanoparticle) and STEM-EELS mapping (convergent 

beam scanned around a projected area of the nanoparticle). 
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Diffraction-coupled TEM-EELS of the tetragonal (CT-BT) and transformed 

(cubic) sample (CT-BT heated to 400 oC) were used as calibration tetragonal 

and cubic spectra respectively. The CT-BT and CT-BT-400oC EELS data was 

used to interpret the crystal phase of the hydrothermally synthesised barium 

titanate (H-BT) nanoparticles. The processing of the acquired Ti-L and O-K 

EELS edges was conducted using Gatan Digital Micrograph software and is 

summarised in Figure 98.    

 

 

 

 

 

 

 

Figure 98. Extracted Ti-L2,3 and O-K EELS edges from the CT-BT sample at room 

temperature. (a) The Ti-L2,3 edge with the unprocessed EELS edge on a 

decaying background signal. The raw data is background-subtracted and 

plural scattering is removed. (b) An O-K edge with the unprocessed EELS 

edge on a decaying background signal. The spectrum is background-

subtracted and plural scattering is removed. The near edge features labelled 

by the letters are referenced in the text.  

 

The titanium-L2,3 and oxygen-K core-loss edges (Figure 98) are present on a 

decaying background, which was subtracted by power-law fitting [159]. If the 

sample is thick (≥100 nm) plural scattering effects can be removed by Fourier 
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deconvolution using the associated low loss spectra (shown in Figure 29, 

Chapter 3). Plural scattering effects were relatively negligible on the samples 

presented here (Figure 98), so they were not applied to the remaining data. 

The Ti-L2,3 experimental data were then fitted with four Gaussian peaks (Figure 

104) to determine the peak centre and FWHM of the crystal field features 

labelled t2g and eg. The O-K edges were only qualitatively analysed with respect 

to the peak shape (ELNES) features labelled A, B and C in Figure 98 and 

which are described below. 

Each of the characteristic core-loss edges shown in Figure 98 represents 

energy losses of the incident beam electrons which correspond to excitation of 

bound electrons from atomic core states or shells (e.g. K, L, M) to a range of 

unoccupied states above the Fermi level (quantum states 1s → 2p, 2p → 3d, 

correspond to shells K and L respectively – Figure 30, Chapter 2). Electron 

energy loss transitions from one quantum state to another follow the dipole 

selection rule (the change in angular momentum quantum number Δℓ ± 1), if 

the experimental collection angle is sufficiently small (≤ 30 mrad at 200 kV). 

This rule means that electron transitions from 1s → 2s, 2p → 3p or 1s → 3d 

quantum states are not allowed.  

The Ti-L2,3 edge (Ti-2p → unoccupied states with Ti-3d character, Figure 98) 

shows crystal field splitting of both the Ti-L3 and Ti-L2 edges into 4 peaks 

known as the t2g and eg antibonding peaks. The separate Ti-L3 & Ti-L2 edges 

occur because the initial Ti-2p state undergoes spin-orbit splitting [98,160].  

The O-K edge represents a transition from the Oxygen-1s orbital to unoccupied 

states with O-2p character [98]. In the BaTiO3 unit cell, the Ti atom is bonded to 

six surrounding oxygen atoms in an octahedral arrangement (TiO6
8-) and the 
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Ti-3d and O-2p orbitals are hybridised resulting in a molecular orbital of mixed 

character. This results in a O-K edge transition from an O-1s orbital to an 

empty hybridised O-2p, Ti-3d orbital, exhibiting characteristic features similar to 

the Ti-L3 edge which correspond to t2g (A) and eg (B) antibonding orbitals. 

Feature (C) is related to transitions to states formed from the interaction of O-

2p states with Ba-5d states [1,97,98].  

The commercial tetragonal (CT-BT) standard will first be investigated as a 

tetragonal calibration standard because XRD data indicate it to be phase pure. 

 

5.1 Commercial tetragonal barium titanate (CT-BT) 

 

The X-Ray powder diffraction and Rietveld refinement data suggested that the 

CT-BT sample was 100 % tetragonal and therefore it was used as a reference 

tetragonal EEL spectra. To confirm that the commercially purchased sample is 

phase pure, bright field TEM, electron diffraction and EDX mapping data were 

collected; Figure 99. 

Figure 99 shows a bright field TEM image of CT-BT particles at room 

temperature and EDX elemental mapping of a CT-BT nanoparticle is shown 

inset to confirm the sample is barium titanate. The electron diffraction pattern 

from the large CT-BT particle is also shown. 
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Figure 99. (a) Bright field TEM image of CT-BT particles. The rough appearance of 

the particle is due to the purchased sample being ground by pestle and 

mortar, to produce sufficiently thin particle fragments for TEM. (inset) EDX 

elemental map of a different CT-BT nanoparticle, confirming the presence of 

elements that compose barium titanate. (b) Electron diffraction pattern 

collected at room temperature of the large particle shown in (a). The rings 

shown were referenced against the tetragonal ICDD file: 04-015-2711 

(collected below the Curie point); Table 8. 
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Bright field TEM of an isolated CT-BT nanoparticle (Figure 100) and its electron 

diffraction pattern was also analysed in Figure 101. 

 

 

Figure 100. Bright Field TEM image of the isolated CT-BT nanoparticle (in Figure 

99) from which electron diffraction and EEL spectra were collected. This 

image was collected at room temperature (RT). 
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Figure 101. Electron diffraction pattern collected from the polycrystalline isolated 

nanoparticle collected at room temperature; Figure 100. The rings shown were 

referenced against the tetragonal ICDD file: 04-015-2711 (Table 10) with the 

tetragonal (002/200) splitting shown inset.  

 

The electron diffraction data show that the CT-BT sample is tetragonal in 

agreement with the XRD (laboratory & synchrotron) data summarised in 

Chapter 4. The CT-BT sample was heated in the microscope (in-situ) to 400 oC 

(above the Curie point) and was used as a cubic reference standard (Figure 

102). 
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Figure 102. (a) Bright field TEM overview of the same CT-BT nanoparticles at 400 

oC with the copper grid in the foreground. (b) The isolated CT-BT nanoparticle 

from which EEL spectra were collected at 400 oC; electron diffraction patterns 

collected at 400 oC are shown in Figure 103. 
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Figure 103. Electron diffraction pattern collected at 400 oC of (a) the large particle (Table 9), (b) the isolated nanoparticle; Figure 102. The rings 

were referenced against the cubic ICDD file: 01-078-4475 (Table 11) and the same (200) peak as shown in Figure 101 (inset) highlights that 

there was no tetragonal splitting.   
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CT-BT nanoparticle cluster - RT 

Ring number 
Ring radius 

(1/nm) 

d-spacing 

(Å) 
(hkl) 

1 2.410 4.148 001 

2 3.468 2.882 101 

3 4.232 2.362 111 

4 4.769 2.096 002 

5 4.901 2.040 200 

6 5.491 1.821 102 

7 5.959 1.677 112 

8 6.937 1.441 202 

9 7.452 1.341 003 

10 7.533 1.327 300 

11 7.990 1.251 310 

12 8.233 1.214 113 

13 8.540 1.170 222 

CT-BT nanoparticle cluster – 400 oC 

Ring number 
Ring radius 

(1/nm) 

d-spacing 

(Å) 
(hkl) 

1 2.410 4.148 100 

2 3.455 2.894 110 

3 4.2321 2.362 111 

4 4.874 2.051 200 

5 5.455 1.832 210 

6 5.959 1.677 211 

7 6.910 1.447 220 

8 7.310 1.367 221 

9 7.701 1.298 310 

10 8.071 1.238 311 

11 8.397 1.190 222 

12 9.117 1.096 321 
 

Table 8. Electron diffraction data shown in Figure 99 collected 

from the large CT-BT particle. The d-spacing is referenced 

against the tetragonal ICDD file and labelled with the (hkl) 

indices. The tetragonal splitting of the (002)/(200) and 

(003)/(300) rings are highlighted. 

Table 9. Electron diffraction data shown in Figure 103 (a) collected 

from the large CT-BT-400 oC particle. The d-spacing is referenced 

against the cubic ICDD file and labelled with the (hkl) indices. 

Splitting of the (200) ring is no longer visible, as expected for a 

cubic phase. 
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Individual CT-BT nanoparticle - RT 

Ring number 
Ring radius 

(1/nm) 

d-spacing 

(Å) 
(hkl) 

1 2.43 4.12 001 

2 3.46 2.89 101 

3 4.25 2.35 111 

4 4.92 2.03 002 

5 5.01 1.99 200 

6 5.98 1.67 112 

7 6.86 1.46 202 

8 7.34 1.36 003 

9 8.11 1.23 113 

10 8.91 1.12 203 

11 9.20 1.09 302 

12 9.86 1.01 004 

13 10.31 0.97 400 
 

Individual CT-BT nanoparticle – 400 oC 

Ring number 
Ring radius 

(1/nm) 

d-spacing 

(Å) 
(hkl) 

1 2.45 4.09 100 

2 3.51 2.85 110 

3 4.24 2.36 111 

4 4.89 2.05 200 

5 5.98 1.67 211 

6 7.02 1.42 220 

7 8.09 1.24 311 

8 8.83 1.13 320 

9 9.26 1.08 321 
 

Table 10. Electron diffraction data shown in Figure 101 collected 

from the isolated CT-BT nanoparticle. The d-spacing is 

referenced against the tetragonal ICDD file and labelled with 

the (hkl) indices. The tetragonal splitting of the (002)/(200) and 

(004)/(400) rings are highlighted in bold. 

Table 11. Electron diffraction data shown in Figure 103 (b) collected 

from the isolated CT-BT-400 oC nanoparticle. The d-spacing is 

referenced against the cubic ICDD file and labelled with the 

(hkl) indices. Splitting of the (200) ring is no longer visible here 

also, as expected for a cubic phase. 
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The electron diffraction data collected at room temperature (RT) and 400 oC 

were referenced against the modelled tetragonal and cubic BaTiO3 ICDD files: 

04-015-2711 and 01-078-4475 respectively.  

The room temperature CT-BT electron diffraction patterns from the large and 

isolated nanoparticles were referenced to a tetragonal diffraction pattern; 

Figure 99 – Table 8 & Figure 101 – Table 10 respectively; tetragonal splitting of 

the (002/200) diffraction peaks were evident in both these patterns.  

In comparison, the electron diffraction data acquired at 400 oC (above the Curie 

point) were referenced to a cubic diffraction pattern for both the large and 

isolated CT-BT particles; Figure 103 –Table 9 & Table 11 respectively; no 

tetragonal splitting of the (200) peaks was observed in these patterns.  

The electron diffraction data confirmed that the expected phase transition from 

tetragonal to cubic occurred when the CT-BT sample was heated to 400 oC i.e. 

well above the Curie point (of 130 oC). Therefore, the CT-BT sample was 

suitable for providing reference tetragonal (RT) and cubic (400 oC) EEL 

spectra, and only the EELS data collected from the thinner, isolated particle are 

discussed herein.   
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5.1.1 EELS analysis of CT-BT nanoparticles. 

 

An experimental Ti-L2,3 core loss edge from the CT-BT sample at room 

temperature (CT-BT-RT) is shown in Figure 104 with Gaussian fittings to the 

respective t2g, eg peaks. Diffraction coupled EELS were collected using a 

monochromated electron source with an energy resolution of 0.43 eV. The 

Gaussian fitting uses a least-squares model and peaks were fitted using Gatan 

Digital Micrograph software (version 2.30) with the EELS plugin.  

The Gaussian fitting parameters for the CT-BT-RT sample are summarised in 

Table 12. 

 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 104. Electron energy loss Ti-L2,3 edge acquired at room temperature from 

an individual CT-BT nanoparticle (Figure 100) that shows the background 

extracted Ti-L2,3 edge (black) with Gaussian fitted peaks underneath the t2g 

and eg peaks (red). The residual of the fittings (blue) suggests that at least an 

additional two peaks could be fitted in between the Ti-L3 eg and Ti-L2 t2g peaks 

and between the Ti-L3 t2g and eg peaks. However, the existing 4 peak fit is 

sufficient to describe the crystal phase-dependant crystal field splitting of the 

t2g and eg peaks. 
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Table 12. Peak centre and full width half-maximum (FWHM) values of the CT-BT 

Gaussian peak fit at the Ti-L2,3 edge. The peak separation of the t2g and eg 

peaks for both edges are shown. The FWHM values of the Gaussian fittings 

were unconstrained to allow the Gaussian fitting centres to be optimised. 

These FWHM values were then fixed for subsequent spectral fittings. 

 

The extracted Gaussian fitting data for room temperature CT-BT (Table 12) 

was used as a reference tetragonal EEL fingerprint. When BaTiO3 is heated 

above the Curie point of 130 oC, (CT-BT-400 oC) a phase transition from 

tetragonal to cubic occurs as evidenced by electron diffraction [22,71]. This 

phase transition adjusts the Ti-L3 t2g and eg peak positions to lower peak 

separation values [68,93,97]. 

The Gaussian fitting parameters for CT-BT-RT (Table 12) were then used on 

the experimental CT-BT-400 oC EEL spectrum and the FWHM values fixed and 

applied to the 400oC experimental spectrum. The Gaussian centres were 

unconstrained to adjust to the CT-BT-400oC experimental data and the 

Gaussian peak values were extracted to acquire a cubic reference of the Ti-L2,3 

t2g-eg peak separation. The Ti-L2,3 core loss edge for CT-BT-400 oC is shown in 

Figure 105. 

Gaussian 

fittings 
Ti-L3 t2g Ti-L3 eg  Ti-L2 t2g  Ti-L2 eg  

Gaussian 

centre (eV) 
458.47 460.54 463.87 465.93 

eg-t2g peak 

separation (eV) 
2.07 2.06 

FWHM (eV) 0.67 1.14 1.34 1.91 
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Figure 105. Ti-L2,3 edge acquired from the individual CT-BT-400oC nanoparticle. 

The Gaussian fittings have the FWHM parameters constrained to those of the 

CT-BT-RT values. The Gaussian peak centres were unconstrained, adjusted to 

fit the experimental data and are shown in Table 13. The residual fitting is 

relatively poor on both t2g and eg peaks. 

Table 13. Gaussian peak centres and full width half-maximum (FWHM) values of 

the fit to the Ti-L2,3 edge from the CT-BT-400 oC nanoparticle. The FWHM 

values were constrained to the model from the room temperature CT-BT 

fitting parameters (Table 12).  

Gaussian 

fittings 
Ti-L3 t2g Ti-L3 eg Ti-L2 t2g Ti-L2 eg  

Gaussian 

centre (eV) 
458.46 460.45 463.71 465.81 

eg-t2g peak 

separation (eV) 
2.00 2.10 

FWHM (eV) 0.67 1.14 1.34 1.91 

Ti-L3 Ti-L2 

t2g 

t2g 
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Figure 105 shows a poor residual after Gaussian fitting of the Ti-L2,3 t2g and eg 

peaks of CT-BT-400oC using the FWHMs derived from CT-BT-RT peaks 

(Figure 104). Suggesting that a phase transition from tetragonal to cubic 

BaTiO3 has occurred [20,73].  

The CT-BT-400oC EEL spectrum is used later as a cubic standard and 

therefore the Gaussian fitting parameters were re-applied, unconstrained by 

those of the CT-BT-RT fitting parameters; Figure 106.      

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 106. Ti-L2,3 EELS edge of the individual CT-BT-400 oC nanoparticle. The 

Gaussian fittings were completely unconstrained from those of room 

temperature CT-BT sample. A residual fit similar to that obtained for the CT-

BT-RT Gaussian fitting is now evident.  
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Table 14. Gaussian fitting parameters of CT-BT-400 oC that are independent of RT 

CT-BT, showing the Gaussian centre and FWHM values of the Gaussian 

fittings for the respective Ti-L2,3 edges. The peak separation of t2g and eg 

peaks for both Ti-L edges are shown.  

 

A comparison of the CT-BT and CT-BT-400 oC Gaussian fitting parameters are 

summarised in Table 15. 

Table 15. Comparison of the CT-BT Ti-L2,3 edges at room temperature (RT) and 400 

oC. The t2g-eg peak separations for the EEL spectra acquired at 400 oC are 

reduced for the Ti-L2,3 edge when compared to the spectra collected at RT 

(highlighted columns). This reduction in Ti-L2,3 t2g-eg peak separation has also 

been shown in other research published by Bugnet et al. [68]. 

 

A visual comparison of the Ti-L2,3 t2g and eg peaks for the RT and 400 oC 

spectra are shown in Figure 107 and for the O-K edge in Figure 107. 

Gaussian 

fittings 
Ti-L3 t2g Ti-L3 eg Ti-L2 t2g Ti-L2 eg 

Gaussian 

centre (eV) 
458.44 460.43 463.84 465.83 

eg-t2g peak 

separation (eV) 
1.99 1.99 

FWHM (eV) 0.74 1.11 1.65 1.62 

Gaussian 

fitting 

Ti-L3 t2g 

(eV) 

Ti-L3 eg 

(eV) 

eg-t2g peak 

separation 
(eV) 

Ti-L2 t2g 

(eV) 

Ti-L2 eg 

(eV) 

eg-t2g peak 

separation 
(eV) 

RT 458.47 460.54 2.07 463.87 465.93 2.06 

400 oC 458.44 460.43 1.99 463.84 465.83 1.99 
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Figure 107. Comparison of Ti-L2,3 t2g and eg peaks for CT-BT at room temperature 

(black) and 400 oC (red). The spectra are aligned to absolute edge energies 

from the zero loss peak. (a) Showing both the Ti-L3 and Ti-L2 edges and (b) 

showing just the Ti-L3 t2g and eg peaks to highlight the marginal difference in 

peak splitting. The dashed line is aligned to the RT Ti-L3 eg peak maxima 

highlighting the small shift to lower energy for the eg peak at 400 oC. 
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Figure 108. Experimental O-K core loss edges at room temperature (black) and 400 

oC (red). The spectra are aligned to absolute edge energies from the zero-loss 

peak. (a) The letters indicate the key features of the spectra that relate to the 

hybridised O-2p and Ti-3d states split into t2g (A) and eg (B) with feature (C) 

relating to the O-2p and Ba-5d states. (b) The magnified O-K edge shows a 

difference in CT-BT-400 oC A and B peak positions compared to the RT 

spectrum. 
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The EEL spectra of the CT-BT nanoparticle collected at RT and 400 oC showed 

a repeatable difference in the separation of the Ti-L2,3 t2g and eg peaks (Figure 

107 – Table 15). In this experiment, the EELS data were collected 270 oC 

above the Curie temperature in order to account for any heat loss or heat 

dissipation of the support film of the DensSolutions wildfire chip. 

The Ti-L2,3 core loss edges are associated with the excitation to hybridised Ti-

3d –O-2p antibonding molecular orbitals (Figure 30; Chapter 2). When CT-BT 

is heated to 400 oC, there is a reduction in the t2g-eg peak splitting. This implies 

there is a change in the unit cell parameters and in particular the change in the 

Ti-O bond lengths. Shorter bond lengths should increase the t2g-eg splitting and 

(the tetragonal titanium offset to an oxygen anion) and transformation to the 

cubic phase will reduce the t2g-eg splitting, due to all bond lengths becoming 

equal (discussed further in Chapter 7). The O-K edges of the CT-BT sample 

collected at RT and 400 oC (Figure 108) show a shift in the positions of peak 

maxima and broader peaks for both ‘A’ and ‘B’ features which are attributed to 

the hybridized O-2p and Ti-3d t2g and eg antibonding orbitals respectively.  

The t2g-eg peak splitting at the Ti-L2,3 edge was quantified by fitting Gaussians 

peaks to the experimental data (Table 15). This core loss edge was 

investigated for the H-BT sample using STEM-EELS linescans at room 

temperature and 400 oC. The fitting of Gaussian peaks to the Ti-L2,3 edge 

across the nanoparticle could indicate whether the nanoparticle phases are 

tetragonal or cubic and whether there is an inter- or intra-particle phase 

distribution. The O-K edge was qualitatively investigated across a nanoparticle 

using STEM-EELS by observing the peak shape across the nanoparticle (at RT 

and 400 oC).  
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5.1.2 Hydrothermal Barium Titanate (H-BT) 

 

EELS analysis of H-BT nanoparticles (Figure 109) was conducted using the 

FEI Titan Themis microscope at RT and 400 oC. HAADF-STEM EELS 

linescans had an energy resolution of 0.40 eV using a monochromated electron 

source. Similar to the CT-BT sample, the crystal structure of the H-BT 

nanoparticles was first investigated by electron diffraction. 

 

 

 

 

 

 

 

 

Figure 109. (a) Bright field TEM image of agglomerated H-BT nanoparticles. (b) 

Bright field TEM image of an isolated H-BT nanoparticle used for STEM-EEL 

spectroscopy. The single crystal particle is being view down the [0,,0] 

direction. 
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Figure 110. Electron diffraction pattern of agglomerated H-BT nanoparticles at RT 

shown in Figure 109, highlighting tetragonal reflections labelled with the (hkl) 

indices; Table 16.  

Agglomerated H-BT nanoparticles – RT 

Ring number 
Ring radius 

(1/nm) 

d-spacing 

(Å) 
(hkl) 

1 2.45 4.08 001 

2 2.54 3.94 100 

3 3.45 2.89 101 

4 3.56 2.81 110 

5 4.24 2.35 111 

6 4.83 2.07 002 

7 5.12 1.95 200 

8 5.42 1.85 102 

9 5.96 1.67 112 

10 6.20 1.61 211 

11 7.06 1.42 202 

12 7.49 1.34 212 

Table 16. Electron diffraction data of agglomerated H-BT nanoparticles collected at 

RT (Figure 110). The d-spacing is referenced against the tetragonal ICDD file 

and labelled with the (hkl) indices. A (002/200) peak splitting is clearly evident. 
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Figure 111. Electron diffraction pattern of the isolated H-BT nanoparticle at RT 

shown in Figure 109, highlighting reflections labelled with the tetragonal (hkl) 

indices in Table 17. 

 

 

 

 

 

 

Table 17. Electron diffraction data of the isolated H-BT nanoparticle at RT (Figure 

111). The d-spacing is referenced against the tetragonal ICDD file and labelled 

with the (hkl) Miller indices to the tetragonal phase. Specific (002) and (200) 

spots are visible in this zone, (002/200) tetragonal splitting is identified in this 

orientation (and the pattern is therefore distinguishable from the cubic 

phase).

Isolated H-BT nanoparticle – RT 

Ring radius (1/nm) d-spacing (Å) (hkl) 

2.48 4.03 100 

2.50 4.00 001 

3.34 2.99 101 

4.92 2.03 002 

4.96 2.01 200 

5.55 1.80 102 

7.04 1.42 202 

7.85 1.27 103 
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Figure 112. (a) Bright field TEM image of the agglomerated H-BT nanoparticles 

now imaged at 400 oC. (b) Bright field TEM image of the individual H-BT 

nanoparticle collected at 400 oC after STEM-EELS linescans. The crystal is 

still being view down the [0,-1,0] direction.  

 

 

 

 

 

 

 

 

 

Figure 113. Electron diffraction pattern of H-BT agglomerated nanoparticles at 400 

oC (Figure 112), highlighting cubic reflections labelled with the (hkl) indices in 

Table. i.e. splitting of (002) reflections are no longer visible. 
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Agglomerated H-BT nanoparticles – 400 oC 

Ring number 
Ring radius 

(1/nm) 

d-spacing 

(Å) 
(hkl) 

1 2.45 4.02 100 

2 3.45 2.89 101 

3 4.25 2.35 111 

4 4.90 2.04 200 

5 6.00 1.67 211 

6 6.93 1.44 220 

7 7.71 1.29 310 

8 8.23 1.22 311 

Table 18. Electron diffraction data of the agglomerated H-BT nanoparticles at 400 

oC (Figure 113). The d-spacing is referenced against the cubic ICDD file and 

labelled with the (hkl) indices. 

 
 

 

 

 

 

 

 

 

 

Figure 114. Electron diffraction pattern of the individual H-BT nanoparticle at 400 

oC (Figure 112). The crystal is now presumed to be cubic because the [0,-1,0] 

orientation does not reveal tetragonal splitting; albeit the (002/200) are shown, 

they are the same spacing as each other. The labelled (hkl) reflections shown 

in Table 19. 
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Isolated H-BT nanoparticle – 400 oC 

Ring number 
Ring radius 

(1/nm) 

d-spacing 

(Å) 
(hkl) 

1 2.49 4.01 001 

2 3.48 2.87 101 

3 4.90 2.04 002 

4 4.90 2.04 200 

5 5.51 1.81 102 

6 7.08 1.41 202 

7 7.79 1.28 103 

Table 19. Electron diffraction data of the individual H-BT nanoparticle at 400 oC 

(Figure 113). The d-spacing is referenced against the cubic ICDD file and 

labelled with the (hkl) indices. The (200) and (002) reflections are shown to be 

the same (within error) after heating to 400 oC. 

 

The electron diffraction of agglomerated nanoparticles (Figure 110) shows 

tetragonal crystal structure reflections in the random orientation of 

nanoparticles. The individual H-BT nanoparticle electron diffraction pattern 

shows the tetragonal (002/200) splitting at room temperature and upon heating 

to 400 oC the (200) and (002) reflections assume the same d-spacing; thus 

suggests the particle is tetragonal as XRD (laboratory and synchrotron) 

analysis shows a tetragonal phase fraction is present. The H-BT nanoparticles 

evidently became cubic at 400 oC as shown by the hot stage XRD (Chapter 4). 

STEM-EELS of the H-BT nanoparticle was collected using the Titan Themis 

microscope. The monochromated electron source has a 0.40 eV energy 

resolution and the EELS data were initially extracted from a full spectrum image 

(Figure 62, Chapter 3) and then at each pixel to determine the intra-particle 

phase distribution. The H-BT EELS data were initially fitted with the CT-BT 

Gaussian peak centres and FWHM peak fitting parameters however this 

produced a poor fit for the Ti-L3 t2g and eg peaks, as shown by the residuals in 
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Figure 115. The Ti-L2,3 edges were then fitted unconstrained Gaussian peak 

positions and peak widths and compared to the CT-BT reference sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 115. The H-BT Ti-L2,3 EEL spectrum acquired at room temperature. The 

Gaussian fits used (a) the previously determined CT-BT Gaussian fitting 

parameters and (b), the previously determined CT-BT-400 oC Gaussian fitting 

parameters. The residuals to both fits are poor. 
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Figure 115 shows The H-BT EEL spectrum with the CT-BT and CT-BT-400 oC 

Gaussian fitting parameters applied as model tetragonal and cubic EEL spectra 

respectively. Neither the tetragonal (CT-BT) nor the cubic (CT-BT-400oC) 

reference Gaussian fitting parameters produced a good residual fit to the H-BT 

Ti-L3 edge and t2g and eg peaks. Thus we can conclude that the existing CT-BT 

and CT-BT-400 oC Gaussian fitting parameters are unsuitable for phase 

determination of the H-BT material. The Gaussian fits were then repeated 

without prior constraints on fitting parameters (Figure 116); this produced a 

significantly better fit. The independent Gaussian fitting parameters of H-BT are 

summarised in Table 20, which lists the Gaussian centre and FWHM values for 

the respective Ti-L2,3 edges. The peak separation of the t2g and eg peaks for 

both Ti-L edges are shown and are compared to the CT-BT, CT-BT-400 oC and 

H-BT-400 oC Gaussian parameters in Table 22.  
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Figure 116. Ti-L2,3 EELS edge of the individual HT-BT nanoparticle shown in Figure 

109 (b). The Gaussian fit parameters were not constrained to the prior settings 

of the CT-BT reference sample. The optimum H-BT Gaussian fitting 

parameters are summarised in Table 20. 

Table 20. Gaussian fitting parameters of H-BT, showing the Gaussian centre and 

FWHM values of the fitted peaks for the respective Ti-L2,3 edges. The peak 

separation of t2g and eg peaks for both Ti-L edges are shown and suggest a 

tetragonal phase particle. 

 

Gaussian 

fittings 
Ti-L3 t2g Ti-L3 eg Ti-L2 t2g Ti-L2 eg  

Gaussian 

centre (eV) 
458.38 460.45 463.80 465.84 

eg-t2g peak 

separation (eV) 
2.07 2.04 

FWHM (eV) 0.70 1.18 1.57 1.67 
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Figure 117. Ti-L2,3 EELS edge of the individual HT-BT-400 oC nanoparticle. The 

Gaussian fitting parameters were not constrained to the prior settings of the 

CT-BT sample. The H-BT Gaussian fitting parameters are summarised in Table 

21. 

Table 21. Gaussian fitting parameters of H-BT-400 oC, showing the Gaussian 

centre and FWHM values of the fitted Gaussian peaks for the respective Ti-L2,3 

edges. The peak separation of t2g and eg peaks for both Ti-L edges are shown 

and are suggest the presence of a cubic phase. 

 

Gaussian 

fittings 
Ti-L3 t2g  Ti-L3 eg  Ti-L2 t2g  Ti-L2 eg  

Gaussian 

centre (eV) 
458.35 460.37 463.76 465.77 

eg-t2g peak 

separation (eV) 
2.02 2.01 

FWHM (eV) 0.70 1.10 1.64 1.66 
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Figure 118 shows a direct comparison of the Ti-L2,3 edge for H-BT and H-BT-

400 oC samples and the Gaussian peak positions are given in Table 22. 

Figure 118. Comparison of the H-BT Ti-L2,3 edge at RT and 400 oC showing a shift 

in the Ti-L2,3 eg peaks to lower energy loss values. As shown in Table 22 both 

spectra were energy calibrated to absolute energies from the ZLP (acquired in 

Dual EELS mode). 

Table 22. Comparison of the CT-BT and H-BT Gaussian fitting parameters Ti-L2,3 

edge t2g, eg peaks collected at RT and 400 oC. The dispersion of the EELS data 

was 0.025 eV/channel, giving the accuracy to the best resolution of 0.01 

eV/channel. The data suggests the H-BT starts tetragonal and transforms to 

the cubic phase. 

Gaussian fitting 
Ti-L3 t2g 

(eV) 
Ti-L3 eg 

(eV) 

eg-t2g peak 

separation 

(eV) 

Ti-L2 t2g 

(eV) 
Ti-L2 eg 

(eV) 

eg-t2g peak 

separation 

(eV) 

CT-BT (RT) 458.47 460.54 2.07 463.87 465.93 2.06 

CT-BT (400 oC) 458.44 460.43 1.99 463.84 465.83 1.99 

H-BT (RT) 458.38 460.45 2.07 463.80 465.84 2.04 

H-BT (400 oC) 458.35 460.37 2.02 463.76 465.77 2.01 
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The Gaussian fits to the CT-BT nanoparticle and H-BT nanoparticle Ti-L2,3 

edge spectra at room temperature (RT) and above the Curie point (400 oC) 

show a consistent difference in the t2g-eg peak splitting. The Gaussian fits also 

suggest a small reduction in the Ti-L2 edge t2g-eg peak separation for the CT-BT 

and H-BT sample relative to the Ti-L3 edge.  

When CT-BT and H-BT were heated to 400 oC; the CT-BT Ti-L2,3 edge t2g-eg 

peak splitting values were reduced suggesting a phase transition from 

tetragonal (RT) to cubic (400 oC) occurs in agreement with the electron 

diffraction data. 

The H-BT EEL spectra presented so far (Figure 115 to Figure 118) are an 

average of a full spectrum image, i.e. an average over a whole particle. 

However, the tetragonal/cubic phase fractions determined by XRD and SHG 

(when correlated to SEM) suggested the phase separation to be intra-particle. 

Thus the H-BT Ti-L3 edge t2g-eg peak separation was next measured at each 

STEM-EELS pixel (2nm) of a linescan across an individual H-BT particles 

viewed by HAADF imaging on the Titan microscope (1.4 Å probe size) and the 

data is shown in Figure 119 & Figure 120. The splitting values shown in Figure 

119 & Figure 120 

 do not exactly correspond to the values determined by Gaussian fitting 

because they were measured direct from the spectra. 
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Figure 119. (a) HAADF-STEM image of a H-BT nanoparticle collected at RT 

showing the EELS linescan of a nanoparticle (red arrow). (b) Spectrum image 

of the STEM-EELS linescan of the H-BT nanoparticle. The y-axis is the total 

length of the linescan with each spectrum taken at 2 nm intervals on the 

linescan across the HAADF image. (c) The H-BT nanoparticle HAADF intensity 

profile (solid black) highlighting the projected nanoparticle shape. The blue 

data points are the Ti-L3 edge t2g-eg peak splitting values extracted from each 

spectrum on the spectrum linescan. The separation between the peaks are 

shown on the left hand side y-axis on the graph. The average separation value 

is 2.13 eV. However, spectra at the edges of the nanoparticle shows a more 

cubic like 2.02 eV splitting. 
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The Ti-L3 edge t2g-eg peak splitting for the H-BT nanoparticle at room 

temperature (Figure 119), showed a reduction in the t2g-eg peak separation at 

the surfaces of the nanoparticle as compared to the core. This indicates that 

the H-BT nanoparticle at room temperature has a cubic surface and a 

tetragonal core. The change in the Ti-L3 t2g-eg peak splitting occurs at around ~ 

5 nm from the surface. Thus the cubic/tetragonal phase fraction for this 

nanoparticle can be estimated; with the assumption that the nanoparticle is a 

100 nm perfect cube in shape (Equation 11).  

   

Equation 11. Estimated surface phase fraction by volume (~ 27 %) suggesting a 

cubic surface layer around a 100 nm cubic-shaped nanoparticle. Implying the 

remaining tetragonal phase fraction is ~ 73 % by volume. The estimated ~5 nm 

surface layer (~10 nm overall) is shown in the reduced t2g-eg peak separation 

in Figure 119 (c). 

 

Although the estimated phase volume fractions of H-BT determined by STEM-

EELS suggest a ~27 % cubic surface phase and a ~73 % tetragonal core 

phase fraction, the estimated tetragonal phase fraction acquired by Rietveld 

fitting of synchrotron diffraction data (Figure 83, Chapter 4) suggests that the 

tetragonal phase fraction is ~59 %, (with a ~41 % cubic phase present). 

Assuming that STEM-EELS is accurate, then the ~15 % difference between the 

estimated tetragonal fractions by STEM-EELS and XRD can be explained by 

the presence of local defects/distortions. These local defects/distortions provide 

a local ‘tetragonal-like’ structure that is highlighted by the Ti-L3 t2g-eg peak 
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splitting when scanning the probe across the nanoparticle (Figure 119). Similar 

Ti-L3 t2g-eg peak splitting data were plotted for the H-BT sample heated above 

the Curie point in Figure 120. 

 

 

 

 

 

 

 

 

Figure 120. The H-BT nanoparticle HAADF intensity profile (solid black) 

highlighting the nanoparticle morphology. The blue data points are the Ti-L3 

edge t2g-eg splitting values extracted from each pixel on the spectrum image 

(not shown). The separation between the peaks are shown on the LHS y-axis 

on the graph. The average separation value is 2.05 eV i.e. cubic like. Only 2 

spectra show a value less than 2.0 eV at the very right hand particle edge. 

 

Figure 119 and Figure 120 allows comparison of the H-BT Ti-L3, t2g-eg peak 

separation across a nanoparticle at both RT and 400 oC. When the sample was 

heated to 400 oC i.e. above the phase transition temperature, the t2g-eg peak 

separation decreased consistent with the formation of a cubic phase and 

possibly the removal of any tetragonal distortions/defects on heating above the 

Curie point. The t2g-eg peak splitting decrease at the surface of the tetragonal 
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nanoparticles was correlated with high resolution atomic lattice images at 

SuperSTEM (see later). However, first we compare the O-K edges of the H-BT-

RT and H-BT-400 oC samples (full spectrum images) with the CT-BT-RT 

sample in Figure 121. 

 

Figure 121. Comparison of the H-BT O-K edge averaged across the whole particle 

at RT (black) and 400 oC (red) and also compared with CT-BT-RT (blue). The 

magnified O-K edge shows little difference in peaks ‘A’ and ‘B’ in comparison 

to the CT-BT O-K edge (blue – Figure 108). The H-BT EEL spectra are aligned 

to the CT-BT O-K edge peak ‘A’ maxima. Inset – A magnified O-K edge of 

peaks A and B for H-BT-RT and H-BT-400oC aligned by absolute energy). 

 

A comparison of the O-K edges of H-BT at RT and 400 oC averaged across the 

whole particle is shown in Figure 121. This revealed no significant difference 

between the collected O-K spectra, compared to the same CT-BT-RT and CT-
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BT-400oC comparison (Figure 108). So only the Ti-L3 t2g eg peak separation will 

be investigated here after. 

EEL spectroscopy allowed in-situ data collection of a commercial tetragonal 

sample (CT-BT), a cubic standard (CT-BT-400 oC) and the comparison of these 

standards to a hydrothermally prepared sample (H-BT and H-BT-400 oC). The 

hydrothermally prepared H-BT sample showed similar Ti-L2,3 t2g-eg peak 

splitting to the commercial reference standards (CT-BT and CT-BT-400oC) 

indicating that a phase transition occurred from tetragonal to cubic phase upon 

in-situ heating. 

The H-BT sample was then further analysed at SuperSTEM to collect high 

resolution lattice images and EEL spectra of H-BT nanoparticles at room 

temperature. The experiment primarily investigated the Ti-L3 t2g-eg peak 

separation analysed by STEM-EELS linescans and STEM-EELS mapping of 

nanoparticles.  
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5.2 SuperSTEM experiments 

The SuperSTEM data presented here are a collection of H-BT EELS linescans 

conducted at room temperature; Figure 122. The EELS data had a dispersion 

of 0.3 eV/channel with a cold-FEG giving ~0.8 eV energy resolution. The STEM 

probe size was and 0.8 Å STEM probe size.   

 

 

 

 

 

 

 

Figure 122. HAADF-STEM image of the H-BT nanoparticle with line spectra 

collected across the nanoparticle from left to right (red) at 0.4 nm pixel size.  

 

The purpose of the study was to investigate any reduction in Ti-L3 edge t2g-eg 

splitting at the surface of the nanoparticles. A reduced linescan was used to 

investigate the surface of the nanoparticle shown in Figure 122 and the CCD-

projected Ti-L2,3 edge EEL spectra, are shown in Figure 123. 
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Figure 123. (a) HAADF-STEM lattice image of the H-BT nanoparticle in Figure 122. 

The linescan is collected from 10 nm inside the nanoparticle out to the 

surface of the nanoparticle at 0.5 nm intervals (red arrow). (b) The EELS 

spectrum image generated from (a) shows the energy loss on the x-axis and 

length of STEM-EELS linescan on the y-axis. (c) Plot showing the measured 

Ti-L3 t2g eg peak separation across the nanoparticle (blue data points) in 0.5 

nm intervals. The HAADF line profile of the nanoparticle (black), starts from 

the centre of the nanoparticle towards the surface of the nanoparticle. 
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A prominent feature present in the Ti-L3 edge t2g-eg peak splitting data 

extracted from the STEM-EEL spectra (Figure 123) is the decrease in t2g-eg 

peak splitting at the surface of the nanoparticle. Figure 124 shows the extracted 

Ti-L2,3 of the SuperSTEM data acquired in (Figure 123) at 0.5 nm spacing 

across the particle. The Ti-L3 edge t2g-eg peak splitting in Figure 124 decreases 

~4 nm away from the surface (denoted by the red asterisk at 6.5 nm). The Ti-L3 

peak splitting past the red asterisks were not measured due to the low signal to 

background shown in Figure 124. 

 

 

 

 

 

 

 

 

 

 

 

Figure 124. The extracted EEL spectra series of the nanoparticle shown in Figure 

122 starting from the centre of the nanoparticle to the surface of the 

nanoparticle. The black arrow shows the beginning of the collected EEL 

spectra and each spectrum was extracted at 0.5 nm intervals. 
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The Ti-L3 edge t2g-eg splitting was investigated by STEM-EELS spectrum 

imaging at a pixel size of ~2 x 2 Å2 (i.e. half a unit cell parameter) from the 

edge of a particle which was simultaneously imaged using HAADF-STEM 

([100] zone axis) The data is shown in Figure 125. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 125. EELS mapping data of the nanoparticle shown in Figure 122. The EEL 

spectra were acquired from an area 0.195 x 0.195 nm2 (blue box) and the Ti-L3 

t2g-eg peak separation distances were measured at each pixel. The colour 

coded key are the separation values of the Ti-L3 edge t2g-eg peak separation in 

eV. The EELS data suggests a difference in the EEL spectra acquired within 

the nanoparticle (mainly green) to the surface of the nanoparticle (mainly 

blue) in terms of the t2g-eg peak separation. 
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In total, 10 BaTiO3 and 7 Ba0.8Sr0.2TiO3 nanoparticles were analysed by EELS 

(not shown), using both SuperSTEM and Titan microscopes. All data revealed 

a difference between the Ti-L3 t2g-eg peak splitting from the bulk of the 

nanoparticle compared to the surface. Suggesting that there is an intra-particle 

phase distribution in the nanoparticles with the surface showing more of a 

cubic-like peak splitting and the core showing ‘tetragonal’ like peak splitting. 

The difference in Ti-L3 edge t2g eg peak splitting values for Titan and 

SuperSTEM data (Figure 119 and Figure 123 respectively) are due to the 

different energy dispersions the data were collected at (0.3 eV/channel for 

SuperSTEM and 0.025 eV/channel for Titan) i.e. under-sampled at SuperSTEM 

compared to Titan data. In addition, the working resolution of EELS data 

acquired at SuperSTEM was poor compared to the Titan microscope (~0.8 and 

~0.43 eV respectively Figure 126), shown by the zero loss peaks (ZLP). 

Theoretically it should have been similar and the reduction could have been 

due to incorrect spectrometer focusing and under-sampling. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 126. Extracted ZLP of H-BT and CT-BT nanoparticle at SuperSTEM and 

Titan microscope respectively. STEM-EEL linescan acquired at (a) SuperSTEM 

showing a 1.2 eV working resolution for a H-BT nanoparticle and (b) a 0.43 eV 

working resolution from the Titan microscope for the CT-BT nanoparticle. 
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The correct sampling and the better ZLP resolution resulted in better resolved 

peaks for data collected on the Titan; Figure 127. Therefore, the Titan data was 

used for robust EELS analysis and SuperSTEM data for high resolution atomic 

lattice imaging, due to the SuperSTEM probe size being smaller and thus able 

to resolve finer detail (~0.8 Å as compared to ~1.4 Å). The HAADF-STEM 

atomic resolution images provided information about the local crystal structure 

of H-BT as compared in Figure 128. 

 

 

 

 

 

 

 

 

 

 

Figure 127. Extracted H-BT EEL spectra for the Ti-L2,3 edge at SuperSTEM (black) 

and Titan microscope (blue) are shown overlaid to compare the EELS data. 

The energy loss is calibrated to the Titan Ti-L3 t2g EELS peak. The Titan data is 

collected at a lower dispersion (0.025 eV/ channel compared to 0.3 

eV/channel) resulting in a noisier but better resolved EEL spectrum.  
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Figure 128. HAADF-STEM images of the [100] oriented H-BT nanoparticle shown in 

Figure 122 with the area of (b) and (c) shown by the red box. (b) High 

resolution HAADF-STEM image of the area shown in (a). The right columns 

are Ba, with lower intensity Ti-O columns in the centre of each square. (c) 

Higher magnification HAADF-STEM image of the surface shown in (b) 

showing incomplete unit cells at the surface producing an atomically ‘rough’ 

layer. The BaTiO3 unit cell schematic is overlaid and repeated to the surface 

to highlight the missing atom positions. 
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The atomic resolution HAADF STEM images in Figure 128 show the H-BT 

nanoparticle surface is atomically ‘rough’ and the BaTiO3 unit cells are 

incomplete around the surface of the nanoparticle. This rough nanoparticle 

surface will affect the Ti-L3 edge t2g-eg peak splitting and any incomplete unit 

cells are likely to cause a t2g-eg splitting decrease because the electrostatic 

crystal field splitting at the Ti site depends on the number of oxygen anions and 

their Ti-O distances (a shorter distance gives a bigger splitting).  

Research conducted by Polking et al. suggests that local structural distortions 

(Figure 125) are likely to be a surface-induced phenomenon [78], where cubic 

shaped particles exhibit nearly atomically flat surfaces with low internal 

stresses in comparison to spherically shaped nanoparticles with irregular 

surfaces that have high internal stresses of the order of GPa for <10 nm 

nanoparticles; this in turn reduces the coherence of Ti-atom distortions in 

BaTiO3 nanoparticles [78].  

Analysis of Ti-site atomic column positions in the H-BT nanoparticle was 

performed using Matlab software (conducted by Dr David Hernandez-

Maldonado at SuperSTEM) which can map the Titanium atom displacements in 

the central atomic columns, the results are displayed Figure 129. The image 

analysis shows the Ti-atoms in the bulk of the H-BT nanoparticle possess a 

random asymmetric distortion within each unit cell of the nanoparticle.  

This asymmetric distortion is assumed to be a contributing source to the 

second harmonic light production. When characterising these nanoparticles by 

bulk measurement techniques they appear to have tetragonal and cubic phase 

fractions (Chapter 4). These terms (tetragonal and cubic) are not entirely 

accurate, because Ti-atom mapping and HAADF imaging shows there is no net 
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direction for the displacement of the titanium atoms, therefore it is suggested 

that there may be no ‘tetragonal’ phase but instead a random distribution of 

asymmetric Ti-atom distortions that give rise to an overall tetragonal-like 

character to the nanoparticle. This random distribution of asymmetric 

distortions will likely cause broadening of the (002/200) peak when analysing 

the bulk of the sample, however it may be unlikely to produce the (002/200) 

peak splitting that is observed by XRD analysis (Figure 83, Chapter 4) giving a 

c/a ratio of 1.006. This suggests that there may be a small net direction of 

these asymmetric distortions that appear random on small areas of individual 

nanoparticles imaged by STEM (Figure 129). 
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Figure 129. (a) HAADF-STEM image of the H-BT nanoparticle used for Ti-atom 

displacement analysis. The red box shows the area magnified in (b). A low 

magnification atomic resolution HAADF-STEM image with the red box 

highlighting the area magnified in (c). An atomic resolution HAADF-STEM 

image for Ti-atom displacement analysis acquired towards the bulk of the 

nanoparticle. The red arrows in (c) shows the magnitude and direction of 

displacement for the central Ti-atom column. The image highlights no net 

direction of Ti-atom column displacement in the nanoparticle with a maximum 

displacement of 0.4 Å. The magnitudes are summarised in Figure 130. The 

blue line shows where the mapping area stops. 
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The H-BT Titanium atom column displacements shows random asymmetric 

distortions with no net displacement. A histogram of the magnitude of the 

titanium atom column displacement distances is displayed in Figure 130. The 

displacement values above 0.4 Å (Figure 130) are due to the mapping area 

being cut off during the analysis seen in Figure 129 (the bottom row of arrows). 

The  average magnitude of the Ti-atom column displacements shown in Figure 

130 (~0.2 Å) can be compared to Ti-atom column displacement mapping data 

acquired by Polking et al. for a 15 nm sized BaTiO3 nanoparticle which showed 

a maximum displacement of ~0.15 Å [78].  

 

 

 

 

 

 

 

Figure 130. (a) A histogram of the magnitude of the displacement values of the 

titanium column in STEM-HAADF images of the H-BT nanoparticle, showing 

the average magnitude of the displacement being around 0.15 – 0.2 Å.   

 

The Rietveld fitting of synchrotron data for H-BT nanoparticles estimated the 

unit cell parameters to be c = 4.03 Å and a = 4.005 Å (c/a = 1.006). This 

indicates that estimation of the magnitude of the overall tetragonal distortion is 

much less when measured by bulk techniques (~0.02 Å by synchrotron XRD 
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vs. ~0.2 Å by HAADF-STEM). This implies that XRD analysis shows the long 

range net distortion in a particular direction as compared to the random local 

distortions measured by HAADF-STEM.  

HAADF atomic resolution imaging also highlighted atomically rough surfaces 

for H-BT that are likely to contribute to the SHG of light in addition to the 

asymmetric distortions of Ti-atom columns identified by displacement mapping 

towards the bulk of the nanoparticle. EELS analysis showed a similarity in Ti-

L2,3 edge t2g-eg peak separations between the CT-BT and H-BT samples 

collected at RT. The Ti-L3 t2g-eg peak separation reduced for both samples on 

heating to 400 oC, suggesting that both H-BT and CT-BT are tetragonal-like at 

room temperature and transform to a cubic-like phase when heated above the 

Curie temperature. 

 

The Ti-L3 edge t2g eg peak splitting analysis and the Ti-atom displacement 

mapping will be conducted for H-BST nanoparticle to see if the origin of SHG in 

this material could be due to a similar surface and bulk contribution, discussed 

in Section 5.2.1.  

 
 

5.2.1 Hydrothermal barium strontium titanate. 

 

The EELS data from H-BST nanoparticles collected at SuperSTEM shows the 

Ti-L3 edge t2g-eg splitting across a nanoparticle in Figure 131 and Figure 132.  
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Figure 131. (a) HAADF-STEM image of a H-BST nanoparticle collected at 

SuperSTEM with the crystal orientation labelled. (b) HAADF-STEM image of 

the surface of the nanoparticle with a STEM-EELS linescan collected from the 

region marked in red. (c) The resulting STEM EELS spectrum image shown 

with spectra extracted every 0.5 nm; the spectra are shown in Figure 132. 

 

The STEM-EELS linescan analysis of H-BST at room temperature shows a 

mixture of phases from the surface to the core (a cubic surface and tetragonal 

core) due to the variation in t2g-eg peak splitting across the nanoparticle.  

 

 

Energy loss (eV) 

L
in

e
 s

p
e
c
tr

a
 (

n
m

) 
 

(a) (b) 

(c) 

[100] 

view direction 



 
 

- 210 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 132. (a) Graph showing the measured Ti-L3 t2g eg peak separation (blue data 

points) across the nanoparticle shown in Figure 131 at 0.5 nm intervals. The 

HAADF linescan profile of the nanoparticle (black), starts from the surface of 

the nanoparticle (0 nm) and moves towards the centre (8.5 nm). (b) The 

extracted EEL spectral series from the linescan shown in Figure 131b, starting 

from vacuum (bottom) and moving towards the bulk of the nanoparticle (top) 

at 0.5 nm intervals. The red asterisk highlights the spectrum where the Ti-L3 

t2g-eg peak splitting increases at around ~ 3 nm into the nanoparticle. 
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The change in the Ti-L3 t2g-eg peak splitting occurs around ~3 nm from the 

surface of the particle i.e. 6 spectra (Figure 132, red asterisk), presumably due 

to atomically rough surfaces and incomplete unit cells Figure 131 (b).  

The cubic/tetragonal phase fraction for this BST nanoparticle can be estimated; 

with the assumption that most nanoparticles are cubes of average size ~45 nm 

(Figure 91, Chapter 4), that have a ~6 nm distorted surface layer (shown in 

Figure 132) in Equation 12.  

 

Equation 12. Estimated cubic phase surface fraction (~35 %) implying the 

remaining tetragonal phase fraction is ~65 %.  Thus assumes a ~3 nm surface 

layer (~6 nm layer in total, shown by the plot in Figure 132) and that the H-BST 

nanoparticle is cubic. 

 

The estimated volume fractions of the different phases in H-BST by STEM-

EELS suggest a ~35 % surface cubic phase and a ~65 % tetragonal bulk 

phase fraction. The estimated tetragonal phase acquired by Rietveld fitting of 

synchrotron diffraction data (Figure 91, Chapter 4) suggested a 74 % tetragonal 

phase fraction present (and a ~26 % cubic phase was present). Thus, there is 

reasonable agreement between the two techniques.  

SuperSTEM Ti-site atomic column centre analysis of H-BST towards the 

surface of the nanoparticle was performed using Matlab software conducted by 

Dr David Hernandez-Maldonado at SuperSTEM and is shown in Figure 133. 

This agreement in tetragonal phase fraction for H-BST could be due to the 
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smaller distortions observed in H-BST nanoparticles measured by HAADF-

STEM as opposed to H-BT (Figure 133 and Figure 130 respectively). 

HAADF-STEM Ti-atom column analysis (Figure 133) suggested the Ti-atom 

columns in the H-BST nanoparticle possessed small regions of net polarisation 

which implies this is tetragonal. This contradicts the Ti-L3 EELS data which 

suggested from the t2g-eg peak splitting that this region was cubic. 
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Figure 133. High resolution atomic HAADF STEM image of H-BST nanoparticle 

surface with the Ti-site atom column displacement analysis shown by the red 

arrows (full nanoparticle shown inset with the area of analysis highlighted 

with a red box). The magnitude and direction of the displacements are shown 

and summarised in (b). The magnitude of the average displacement of the H-

BST nanoparticle is 0.10 – 0.15 Å, i.e. less than H-BT displacement (Figure 

130). 

(a) 

(b) 

[100] view  

direction 
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The average magnitude of the Ti-atom column displacements for H-BST shown 

in Figure 133 (0.1 – 0.15 Å) were in good agreement with displacement 

mapping data acquired by Polking et al. for a 15 nm BaTiO3 nanoparticles 

(~0.15 Å) [78].  

The Rietveld refinement fitting of synchrotron data for H-BST nanoparticles 

estimated the unit cell parameters were c = 3.988 Å and a = 3.986 Å (c/a = 

1.0004).  

This again indicated that the estimation of the overall magnitude of the 

tetragonal distortion was significantly less (~0.002 Å) when measured by 

Rietveld analysis of synchrotron-XRD data.  

 

Although H-BST was not extensively analysed by EELS unlike H-BT, the 

technique was used to apply the phase analysis results of the model systems 

(like CT-BT and H-BT) to understand the modified BaTiO3 system (H-BST). 

The results suggested that all barium titanate systems would produce second 

harmonic light; primarily from the bulk of the nanoparticle due to the random 

asymmetric nature of the Ti-atom column distortions, in addition to the non-

centrosymmetric nature of the atomically rough nanoparticle surfaces (despite 

STEM-EELS analysis suggesting a cubic surface layer ~4nm for H-BT and ~3 

nm for H-BST by Ti-L3 t2g-eg peak splitting).  

Although the STEM-EELS linescans suggested a cubic surface phase fraction 

(~14 % for H-BT, ~19 % for H-BST) and a bulk tetragonal phase fraction; 

second harmonic light is produced primarily from the nanoparticle bulk with an 

additional contribution from the atomically rough surface. This explains why 
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SHG is exhibited by all samples (even those that appear 100 % cubic by XRD; 

Chapter 4). 

5.3  Chapter Summary  

• CT-BT and CT-BT-400oC EELS spectra were used as calibration 

spectra for tetragonal and cubic phases respectively. 

• Electron diffraction patterns of CT-BT and CT-BT-400oC confirmed the 

expected tetragonal to cubic phase transition occurred when heated 

above the Curie point. 

• Electron diffraction of H-BT and H-BT-400oC also showed that the 

tetragonal to cubic phase transition occurs when heating above the 

Curie point.  

• Gaussian fitting of the H-BT and H-BT-400oC EEL spectra showed the 

same reduction in the Ti-L2,3 edge t2g-eg peak separation as CT-BT and 

CT-BT-400oC when transformed to a cubic phase following heating 

above the Curie point. 

• The Ti-L3 edge t2g-eg peak separation in H-BT is reduced at the surface 

of the nanoparticles and up to 10 nm into the bulk. This indicates an 

intra-particle phase variation accounting for a core volume fraction of ca. 

~73 % (compared to ~ 60 % by XRD – Chapter 4) 

• Atomically resolved HAADF-STEM images of H-BT acquired at 

SuperSTEM showed an atomically ‘rough’ nanoparticle surface that may 

be cubic (by STEM-EELS) but might still contribute to SHG light 

production through incomplete unit cells. 
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• HAADF-STEM Ti-atom column centre analysis (towards the centre of 

the nanoparticle) conducted at SuperSTEM suggested that the Ti-atom 

in each H-BT unit cell possessed a ~0.2 Å random asymmetric 

displacement associated with local defects or strains. However, XRD 

suggests that there is a net displacement of ~0.02 Å.  

• H-BST showed a similar reduction of Ti-L3 edge t2g-eg splitting up to ~6 

nm in from the surface of the nanoparticle as compared to the bulk. This 

indicates an intra-particle phase variation accounting for a core volume 

fraction of ca. ~65 % (compared to ~75 % by synchrotron XRD – 

Chapter 4). 

• HAADF-STEM Ti-atom column centre analysis suggested a ~0.1/0.15 Å 

local displacement while XRD suggests a net unit cell distortion of 

~0.002 Å i.e. smaller than for H-BT. The local distortions are however 

shown by HAADF-STEM to continue to the surface of the nanoparticle 

despite STEM-EELS suggesting this surface layer is cubic. 

• SHG of light in all the samples (shown in Chapter 4) would likely be a 

combination of the non-centrosymmetric nature of the unit cells shown 

by the local and net asymmetric distortions throughout the nanoparticles 

as well as the atomically ‘rough’ nanoparticle surfaces. i.e. they are likely 

to be both a surface and bulk effect.  
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Chapter 6 – Exposure of hydrothermally synthesised barium 

titanate and barium strontium titanate nanoparticles to lung 

epithelial cells.  

 

 

The previous results chapters have focused on the crystal phase 

characterisation of hydrothermally synthesised barium titanate and barium 

strontium titanate nanoparticles. Chapter 4 discussed the X-Ray analysis 

(laboratory and synchrotron) and optical second harmonic generation of the 

nanoparticles, both techniques suggesting that a tetragonal phase fraction is 

present (up to ~60 % for H-BT and ~75 % for H-BST by the estimates of 

Rietveld analysis of data). Chapter 5 investigated individual particles by in-situ 

heating STEM-EELS and HAADF-STEM imaging showing that there is a 

surface layer of cubic-like character present on all nanoparticles in addition to 

an asymmetric distortion of the central Ti-atom position in the BaTiO3 unit cell 

throughout particles. Overall, the characterisation from the previous chapters 

showed an intra-particle phase variation of BaTiO3 involving a tetragonal core 

and a ‘cubic-like’ surface (~ 5 nm thick).       

This chapter investigates the behaviour of the nanoparticles in aqueous 

suspensions (including cell media) and nanoparticle delivery into lung epithelial 

(A549) cells. The cytotoxic and genotoxic in-vitro assays of uncoated and poly-

L-lysine (PLL) coated nanoparticles are presented initially in order to highlight 

the cell viability/genotoxic differences between the two nanoparticle coatings. 

The cytotoxic and genotoxic results are then supplemented with 

characterisation of nanoparticle suspensions in water at certain delivery 

concentrations by FTIR, dynamic light scattering and zeta potential 

measurements. Dynamic light scatting of nanoparticles in water, serum-free 
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media and complete cell culture media provided hydrodynamic size ranges. 

Zeta potential measurements provided surface charge values of uncoated and 

PLL coated nanoparticles dispersed in water.  

Cellular uptake of nanoparticles was confirmed by low and high kV SEM of 

critically point dried cells and serial focused ion beam (FIB) sectioning by SEM. 

Further uptake was evidenced by TEM and HAADF-STEM characterisation of 

resin embedded cell sections. The HAADF-STEM data showed the 

nanoparticles were internalised and this was confirmed with elemental analysis 

by TEM-EDX. Finally, the nanoparticle suspension behaviour was 

characterised by cryo-TEM to identify changes in nanoparticle dispersion 

between H-BT and H-BT-PLL at 100 µg/mL in complete cell culture media.    

The A549 cell viability (MTT assay) and genotoxicity (Comet assay) of H-BT, H-

BT-PLL, H-BST and H-BST-PLL were undertaken and analysed by Dr Olga 

Posada-Estefan (School of Medicine, University of Leeds, UK). The MTT assay 

results for the uncoated and PLL coated nanoparticles are shown in Figure 134 

& Figure 135 and Comet assay results are shown in Figure 136 & Figure 137 

respectively.  
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6.1 Cell viability MTT assays and genotoxic Comet assays 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 134. MTT Cell viability assay of H-BT and H-BT-PLL nanoparticles at 

varying concentrations against the control (horizontal dotted line at 100 %). 

(a) H-BT shows a significant difference only at exposure of 1000 μg/mL, 

analysed by ANOVA (p<0.05). (b) H-BT-PLL shows a significant difference at 

exposures of 100 and 1000 μg/mL, analysed by ANOVA (p<0.05). 

* 

* 
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H-BT-PLL  
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Figure 135. MTT Cell viability assay of H-BST and H-BST-PLL nanoparticles at 

varying concentrations against the control (horizontal dotted line at 100 %). 

(a) H-BST shows a significant difference only at exposure of 1000 μg/mL, 

analysed by ANOVA (p<0.05). (b) H-BST-PLL shows a significant difference at 

exposures of 10, 100 and 1000 μg/mL, analysed by ANOVA (p<0.05). 
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The MTT assays of H-BT, H-BT-PLL (Figure 134) H-BST and H-BST-PLL 

(Figure 135) that showed exposure concentrations with a significant difference 

from the control were marked with an asterisk and were mainly present at high 

doses. The difference in cell viability between the uncoated and PLL-coated 

nanoparticles showed that coated samples caused significant drops in cell 

viability at exposures above 100 μg/mL for H-BT-PLL and above 10 μg/mL for 

H-BST-PLL. 

The decrease in cell viability for H-BT and H-BST nanoparticles at 1000 µg/mL 

is likely to be due to the high concentration of nanoparticles present, which 

might then overload the cells. For the coated H-BT-PLL and H-BST-PLL coated 

nanoparticles, the cell viability was significantly reduced for the higher 

nanoparticle concentrations. This decrease in cell viability may at first glance 

be due to the positively charged PLL-coating around the nanoparticle. The 

positive charge possesses a higher affinity than a neutral or negatively charged 

nanoparticle to the negatively charged A549 cell surface [51] and as a result, 

more nanoparticles may have undergone endocytic uptake in comparison to H-

BT or H-BST nanoparticles (negative surface charge). This will be explored in 

detail later. 

The genotoxic comet assays for the same samples are summarised in the 

same format in Figure 136 & Figure 137.  
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Figure 136. COMET assay of (a) H-BT and (b) H-BT-PLL nanoparticles with the 

control concentration shown as 0 μg/mL. Error bars show the standard 

deviation at 4 replicates per exposure. The change in concentration between 

the H-BT and H-BT-PLL nanoparticles is due to the COMET assay failing 

(explained in discussion) for nanoparticle concentrations higher than 10 

μg/mL for H-BST-PLL. The results shown above however, display no 

significant difference with the control (p <0.05) at any exposure 

concentrations. 
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H-BT-PLL  
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Figure 137. COMET assay of (a) H-BST and (b) H-BST-PLL nanoparticles with the 

control concentration shown as 0 μg/mL. Error bars show the standard 

deviation at 4 replicates per exposure. The change in concentration between 

the H-BST and H-BST-PLL nanoparticles is due to the COMET assay failing 

(explained in discussion) for nanoparticle concentrations higher than 10 

μg/mL for H-BST-PLL. The results shown above however, display no 

significant difference with the control (p <0.05) at any exposure 

concentrations. 

(a) 

(b) 

H-BST  

H-BST-PLL  
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The Comet assay is a measure of the denatured DNA generated in the A549 

cells over a 24-hour period. The repeated failure of the comet assay above 10 

μg/mL for the PLL-nanoparticle concentrations may be due to the interaction of 

the positively charged polymer with the comet assay or the failure of DNA 

separation during electrophoresis (due to a larger positive charge present 

because of the higher nanoparticle concentrations). The comet assay shown 

for H-BT nanoparticles shows no significant difference between the 

nanoparticle concentrations and suggests they produce no genotoxic effects. 

There is an increase in DNA damage for H-BST nanoparticle concentrations 

above 10 μg/mL but it is not a significant difference (p<0.05) when compared 

with the control.  

 

The cell viability and genotoxic assays (Figure 134 & Figure 136) have shown 

that there is a significant difference between the response of A549 cells to 

exposure of uncoated H-BT nanoparticles and PLL coated H-BT nanoparticles. 

These particular assays were considered when the nanoparticles and the 

nanoparticle dispersions were characterised by further techniques.  

To confirm PLL is coating the nanoparticles, FTIR of H-BT, H-BT-PLL, H-BST 

and H-BST-PLL were analysed qualitatively from the spectra. The PLL-coating 

was then imaged by conventional bright field TEM supplemented with zeta 

potential data given in Section 6.2.     
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6.2 Nanoparticle coating 

 

The ATR-FTIR spectra of poly-L-lysine, H-BT, H-BT-PLL and H-BST, H-BST-

PLL respectively are shown in Figure 138. To confirm that the nanoparticles 

were successfully coated with PLL, FTIR vibrations are compared in Table 23. 

The coating was then visualised by conventional bright field TEM of H-BT-PLL 

and H-BST-PLL shown in Figure 139. 

Zeta potential measurements of uncoated and PLL coated nanoparticles in 

water provided data on the electrical surface potential of the nanoparticle-water 

electrical double layer (discussed in Chapter 2, Figure 34). The data revealed a 

change in surface potential when the poly-L-lysine coating was successful 

(Figure 140). 

The behaviour of nanoparticles suspended in water, serum free media and 

complete cell culture media were characterised by dynamic light scattering. 

This technique estimates the hydrodynamic size of agglomerates and outputs 

particle size distribution against scattering intensity, volume and number.  

SEM imaging of critically-point dried A549 cells, FIB-SEM imaging of resin 

embedded A549 cell sections and HAADF-STEM of resin embedded cell 

sections confirmed cellular uptake of nanoparticles. Cryo-TEM of plunge frozen 

H-BT and H-BT-PLL nanoparticle suspensions were collected in water and 

complete cell culture media in order to correlate DLS suspension data and 

quantitative cryo-TEM analysis.  

 

The FTIR data is presented on the following pages.  
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Figure 138. Qualitative FTIR comparison of H-BT-PLL and H-BST-PLL (red) spectra 

shows key vibrations common with PLL (black). (a) FTIR spectra of uncoated 

H-BT (blue), H-BT-PLL and poly-L-lysine. (b) FTIR spectra of H-BST, H-BST-

PLL and poly-L-lysine. The PLL peaks that are labelled are attributed to the 

CH2NH2 wagging (1456 cm-1), secondary amide OC-NH (1538 cm-1) and primary 

amine NH2 (1645 cm-1) vibrations; summarised in Table 23. 
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Table 23. Summary of FTIR vibrations for PLL, H-BT-PLL and H-BST-PLL samples. All the PLL vibrations are shown against the relevant H-BT-

PLL and H-BST-PLL vibrations. The PLL-β sheet vibration present in H-BT-PLL, was due to the slow drying of the sample as opposed to 

random coil structures forming when dried quickly; as seen by Rozenberg et al. [143].  

Vibration 

PLL 

Wavenumbers 

(cm-1) 

Vibration 

H-BT-PLL 

Wavenumbers 

(cm-1) 

Vibration 

H-BST-PLL 

Wavenumbers 

 (cm-1) 

Rocking/ twisting of NH2 1282 Rocking/ twisting of NH2 1286 Rocking/ twisting of NH2 1285 

Rocking/ twisting of NH2 1297 
  

Amide III peak 1324 

O-H bending for 

carboxylic acid 
1392 

O-H bending for 

carboxylic acid 
1394 

O-H bending for 

carboxylic acid 
1394 

CH2NH2 wagging 1456 CH2NH2 wagging 1454 CH2NH2 wagging 1456 

Secondary amide OC-

NH 
1538 

Secondary amide OC-

NH 
1525 

Secondary amide OC-

NH 
1519 

Primary amine NH2 1645 Primary amine NH2 1616 Primary amine NH2 1619 

CH2 2865 PLL–β sheet structure 1693 

OC-NH peptide group 3280 CH2 2848 
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The FTIR data (Table 23) showed the vibrations of PLL, H-BT-PLL and H-BST-

PLL spectra and highlighted the NH2 rocking/twisting, CH2NH2 wagging, 

secondary amide (OC-NH) and primary amine (NH2) vibrations. This confirmed 

the co-localisation of PLL in the nanoparticle samples.  

The H-BT-PLL and H-BST-PLL nanoparticles were suspended in water and 

dropcast onto a holey carbon support film suspended on a copper TEM grid 

and imaged by bright field TEM as shown in Figure 139.  

 

 

 

 

 

  

 

Figure 139. (a) Bright field TEM image of a H-BT-PLL nanoparticle with the PLL 

layer compressed on to the surface. (b) Bright field TEM image of H-BST-PLL 

nanoparticles. The microscope was defocused to provide sufficient contrast 

in the PLL layer. Such amorphous coatings were not visible at any defocus in 

the uncoated nanoparticles (Figure 87 and Figure 93 in Chapter 4). 

 

The PLL coating on barium titanate and barium strontium titanate nanoparticles 

(described in Section 3.2) can effect the overall particle size by two main 

properties of the polymer. The first being the polymer molecular weight. If there 

is a large range in polymer molecular weight (i.e. 70,000 to 300,000) then some 

coated nanoparticles will appear smaller in size than others due to some lower 

(a) (b) 
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molecular weight polymers coating the nanoparticles, in comparison to the 

coating with larger molecular weight polymers which will produce a larger 

nanoparticle size. In addition, the ratio of polymer to particle concentrations will 

also effect the size of the nanoparticles in two ways. If the polymer to particle 

ratio is small, the polymer will likely adsorb to the particle surface, relax and 

form bridges with surrounding nanoparticles due to favouring bond forming 

enthalpy [106] this will therefore increase the measured nanoparticle size. If the 

poly-particle ratio is high, then fast adsorption will occur with no relaxation of 

the adsorbed polymer and will produce a sterically stabilised nanoparticle 

suspension.   

Zeta-potential measurements of uncoated H-BT and H-BST nanoparticles and 

PLL-coated nanoparticles are shown in Figure 140 and the change in zeta 

potential from uncoated, negatively charged nanoparticles to positively 

charged, PLL-coated particles revealed that coating of H-BT and H-BST with 

PLL was successful.  
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Figure 140. The average zeta potential measurements of nanoparticles suspended 

in water at each concentration. (a) H-BT average zeta potential value of – 28 

mV. (b) The H-BT-PLL average zeta potential value of + 49 mV. (c) H-BST 

average zeta potential value of – 29 mV. (d) H-BST-PLL average zeta potential 

value of + 47 mV. The H-BST-PLL 0.1 µg/mL concentration ‘failed’ (showing a 

negative zeta potential) as a result of the signal being too weak to measure. 

 

When combined the FTIR data, bright field TEM images and zeta potential 

measurements showed that PLL coating of the nanoparticles was successful. 

The uncoated (H-BT, H-BST) and PLL-coated (H-BT-PLL, H-BST-PLL) 

nanoparticle suspension behaviour was then investigated by DLS suspended in 

water, serum free media and complete cell culture media in a range of 

concentrations the results are given in Section 6.3.  

(a) (b) 

(c) (d) 



 

- 231 - 

6.3 DLS of uncoated and PLL-coated nanoparticle 

suspensions 

 

The uncoated and PLL-coated nanoparticle suspensions were investigated by 

dynamic light scattering (DLS) in suspending media; the hydrodynamic sizes 

were plotted against scattering intensity, particle volume and particle number 

distributions. 

The stability of a nanoparticle suspension is affected by the surface charge of 

the nanoparticle interacting with the suspending media. Changing either the 

surface of the nanoparticle or the suspending media, will polarise any media 

components at the nanoparticle surfaces differently. Work here presents the 

nanoparticle suspensions in water, serum free cell culture media and complete 

cell culture media. The dynamic light scattering of H-BT and H-BT-PLL 

nanoparticles are shown in Figure 141 and Figure 143 respectively for water, 

serum free media and complete cell culture media. DLS of H-BST and H-BST-

PLL nanoparticles suspensions are shown in Figure 144 and Figure 145 

respectively for the case of water, serum free media and complete cell culture 

media. The DLS plots are shown for consistent serial dilution concentrations 

(1000, 100, 10, 1, 0.1 μg/mL) similar to the cell culture experiments for the MTT 

assays (Figure 134 & Figure 135) and Comet assays (Figure 136 & Figure 

137). The dispersion indices for the H-BT and H-BT-PLL are summarised in 

Table 24 and Table 25 respectively. The dispersion indices for the H-BST and 

H-BST-PLL are summarised in Table 26, and a descriptive summary of the 

dynamic light scattering graphs is shown in Table 27. 
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Water Serum free media Complete cell culture media 

 (a) 

 (b) 

 (c) 

 

Figure 141. Dynamic light scattering of H-BT nanoparticles displayed in columns 

of: water, serum free media and complete cell culture media. The particle 

frequency distributions are plotted against hydrodynamic size at: 1000, 100, 

10, 1 and 0.1 μg/mL. (a) The H-BT nanoparticle intensity distribution, (b) H-BT 

volume distribution and (c) H-BT number distribution in the labelled 

suspending media (water, serum free and complete media). The DLS graphs 

will be discussed by intensity, volume and number distribution for each 

suspending media. 
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6.3.1 DLS of H-BT nanoparticles suspended in water. 

 

Chapter 4 showed that the average primary particle size of H-BT measured by 

TEM was ~140 nm. H-BT nanoparticles dispersed in water and measured by 

DLS intensity showed a reasonably monodisperse system, where small 

agglomerates of primary particle size dominated (shown at ~300 nm) but large 

agglomerates (shown at 10,000 nm) were also clearly observed. The same 

DLS results plotted by volume showed a similar distribution to that by intensity, 

where there are small nanoparticle clusters similar to the primary particle size 

(~100–300 nm) in addition to large nanoparticle agglomerates at ~10,000 nm. 

In the same data plotted in terms of number, the nanoparticle suspension 

appeared much more monodisperse and the size roughly corresponded to 

clusters of relatively few primary H-BT nanoparticles (~100–300 nm). The 

absence of large agglomerate sizes at 10,000 nm suggested that these are 

relatively few in frequency/number even if seen/detected by volume. The 

distributions in Figure 141 revealed the nanoparticle behaviour in water and 

schematic diagrams of the types of suspended nanoparticle clusters are shown 

in Figure 142. 
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Figure 142. Schematic representations of the H-BT nanoparticles (red) with a 

primary particle size of ~ 130 nm. (a) The DLS graphs showing the majority of 

the H-BT hydrodynamic nanoparticles are of the order of the primary particle 

size (ranging from ~100 – 300 nm). (b) Heavily agglomerated H-BT 

nanoparticles (at ~10,000 nm) are present in volume and intensity 

distributions but not present (relatively) by number and are therefore present 

in low frequency in comparison to the smaller clusters of H-BT nanoparticles.  

 

6.3.2 DLS of H-BT nanoparticles suspended in serum free media. 

The DLS results measured for nanoparticle dispersions in serum free media 

(Figure 141) suggested that these were polydisperse at all nanoparticle 

concentrations. The distributions by intensity, number or volume all showed a 

similar behaviour. It was possible that the inorganic salts and electrolytes in the 

serum free media interfered with the DLS measurements [161,162]. 

 

6.3.3 DLS of nanoparticles suspended in complete cell culture 

media. 

Complete cell culture media consisted of: DMEM, 10 % by volume of Foetal 

calf serum and 1 % by volume of Penicillin-Streptomycin typically between 5-50 

nm [161,163] (prepared by Dr Olga Posada-Estefan, School of Medicine, 

University of Leeds). These additional components present in the suspension 

were seen in each distribution plot (~1 – 50 nm). Thus, the remaining scatter 

 (a)  (b) 
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was interpreted as the H-BT nanoparticles dispersed in complete media which 

showed a similar distribution by intensity to H-BT nanoparticles in water, i.e. 

small clusters of the H-BT primary particle size (~100-300 nm) and some larger 

clusters. The DLS results from H-BT nanoparticles suspended in complete 

media size were dominated by the smaller components of the serum proteins 

and crucially also showed that small clusters of H-BT primary particles were 

present in suspension; this is explored later by Cryo-TEM analysis (Section 

6.6). The DLS data generates a probability (Poisson) distribution that is 

normalised and interpreted by a dispersion index. If the DLS peak width is as 

big as the height (i.e. height/width = 1) then the suspensions are polydisperse 

and the dispersion index will be 1. Dispersion index values <0.25 – 0.3 means 

that the suspensions are near monodisperse [146]. The distributions 

summarised in Table 24 showed that H-BT nanoparticles (in general) were 

reasonably monodisperse in both water and complete cell culture media (DI 

<0.2), whereas the nanoparticles suspended in serum-free media were 

polydisperse or the media interfered with the light scattering (most dispersion 

indices were equal to 1). 

Concentration 

(μg/mL) 

H-BT 

Water Serum free media Complete media 

1000 0.28 0.52 0.16 

100 0.19 1.0 0.20 

10 0.21 1.0 0.42 

1 0.44 1.0 0.35 

0.1 0.48 1.0 0.48 

Table 24. The intensity distribution dispersion indices of the H-BT nanoparticles 

suspended in water, serum free media and complete cell culture media. 
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The dispersion indices showed a concentration dependence, where low 

nanoparticle concentrations were apparently more polydisperse, presumably 

this was because there are relatively few clusters to dominate the intensity 

scatter at these concentrations. 

The H-BT-PLL nanoparticle suspensions in water, serum free media and 

complete cell culture media are shown in Figure 143. The H-BT-PLL 

nanoparticle dispersion are discussed and dispersion indices given in Table 25.  

 

6.3.4 DLS of H-BT-PLL nanoparticles suspended in water. 

The H-BT-PLL nanoparticles dispersed in water were similar in size distribution 

to the H-BT nanoparticles; there were small clusters of primary particle size (at 

~100–600 nm) by intensity and there were also large agglomerates (~10,000 

nm) present in the intensity size distribution. 

By volume, the H-BT-PLL nanoparticles showed a multimodal size distribution 

where there were nanoparticles of primary particle size (~100–200 nm), small 

clusters of primary particles (~500–1000 nm) and large agglomerates also 

present (~10,000 nm).  

By number, the H-BT-PLL nanoparticle suspension showed a broader 

dispersion than the primary particle size (~100–1000 nm) with only some 

secondary clusters of a few primary H-BT-PLL nanoparticles at the lower 

concentrations. Once again the large agglomerates (>1000 nm) were absent by 

suggesting they are low in frequency (similar to the nanoparticle size 

distribution seen for H-BT in water – Figure 141 and Figure 142).
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Figure 143. Dynamic light scattering of H-BT-PLL nanoparticles displayed in 

columns of: water, serum free media and complete cell culture media. The 

particle distributions are plotted against hydrodynamic size at: 1000, 100, 10, 

1 and 0.1 μg/mL. (a) The H-BT-PLL nanoparticle intensity distribution, (b) H-

BT-PLL volume distribution and (c) H-BT-PLL number distribution in the 

labelled suspending media. The DLS graphs will be discussed by intensity, 

volume and number distribution for each suspending media. 

Water Serum free media Complete cell culture media 
 (a) 

 (b) 

 (c) 
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6.3.5 DLS of H-BT-PLL nanoparticles suspended in serum free 

media. 

The nanoparticle dispersion shown in Figure 143 showed that the nanoparticles 

were polydisperse at all concentrations. The size distribution of H-BT-PLL 

nanoparticles would suggest that different electrolytes present in the cell culture 

media interacts with the polymer causing an unstable suspension. Electrolytes 

present in serum free media (such as: Ca2+ and Mg2+) will cause coagulation by 

reducing the double layer which will produce a polydisperse nanoparticle 

suspension. The nanoparticle size distributions by intensity, number or volume 

all showed similar behaviour. The dispersion indices are summarised in Table 

25. It is possible that the serum free media interfered with the DLS 

measurements. 

 

6.3.6 DLS of H-BT-PLL nanoparticles suspended in complete cell 

culture media. 

The DLS intensity distribution of H-BT-PLL nanoparticles dispersed in complete 

cell culture media (Figure 143) showed a similar behaviour to H-BT 

nanoparticles dispersed in complete media (Figure 141). Serum components 

were present around ~10–50 nm in addition to small clusters of the H-BT-PLL 

primary particle size (~100–500 nm) with large agglomerates present at 

~10,000 nm by intensity, volume and number. Electrolytes present in complete 

cell culture media (such as: Ca2+, Mg2+, foetal bovine serum and antibiotics) will 

effect the double layer of PLL coating on BaTiO3 nanoparticles. Bridging 

flocculation may occur as a result of a low polymer to particle ratio with 

increasing nanoparticle concentrations (100 µg/mL and higher) which may 
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produce larger hydrodynamic sizes that were measured in the H-BT-PLL 

distributions (Figure 143). However this will be a result of the synthesis 

parameters described in Chapter 3 and will not be investigated in this work. 

The volume distribution showed that the suspension is dominated mainly by the 

smaller serum components of complete cell culture media (~1–50 nm). The 

concentration at 100 µg/mL showed a bimodal distribution of H-BT-PLL primary 

particle size (~100 nm) and small clusters of primary particles (~500–1000 nm). 

The number distribution of H-BT-PLL nanoparticles suspended in complete 

media (Figure 143) showed that the serum proteins were dominant (~1–50 

nm). The concentration at 100 µg/mL showed the H-BT-PLL primary particle 

size at (~100 nm) in addition to an intermediate particle size at (~500 nm). The 

number distribution also showed that an intermediate particle size (~500 nm) 

was present at 1000 µg/mL but reduced in number as the dispersion mainly 

consisted of large agglomerates (~10,000 nm).  

The dispersion indices for H-BT-PLL nanoparticles suspended in water, serum 

free media and complete cell culture media are summarised in Table 25.  

Concentration 

(μg/mL) 

H-BT-PLL 

Water Serum free media Complete media 

1000 0.44 0.69 0.09 

100 0.56 1.0 0.56 

10 0.46 1.0 0.54 

1 0.53 1.0 0.43 

0.1 0.52 0.11 0.24 

Table 25. The intensity distribution dispersion indices of the H-BT-PLL 

nanoparticles suspended in water, serum free media and complete cell culture 

media. 
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The dispersion indices shown in Table 25 highlighted that the H-BT-PLL 

nanoparticles followed a similar trend to that of H-BT nanoparticles. The 

dispersion in water showed that the H-BT-PLL nanoparticles are reasonably 

stable. The dispersion in serum free media gave problems during measurement 

(similar dispersion indices to those of H-BT; Table 24) whilst the H-BT-PLL 

nanoparticles in complete cell culture media were reasonably stable (although 

as already discussed the distributions were dominated by the components in 

the media).  

Summaries of the H-BT and H-BT-PLL DLS results are shown in Table 27 

where the dispersion is discussed for each concentration and dispersion type. 

However, the following section will discuss the dynamic light scattering results 

from H-BST and H-BST-PLL nanoparticles suspended in water, serum free 

media and complete cell culture media.  
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6.3.7 DLS of H-BST nanoparticles suspended in water, serum free 

media and complete cell culture media. 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 144. Dynamic light scattering of H-BST nanoparticles displayed in columns 

of: water, serum free media and complete cell culture media. The particle 

distributions are plotted against hydrodynamic size at: 1000, 100, 10, 1 and 0.1 

μg/mL. (a) The H-BST nanoparticle intensity distribution, (b) H-BST volume 

distribution and (c) H-BST number distribution in the labelled suspending 

media. The dispersion indices are summarised in Table 26. 

Water Serum free media Complete cell culture media 
 (a) 

 (b) 

 (c) 
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The average primary particle size of H-BST nanoparticles measured by TEM 

analysis was shown to be ~45 nm (Figure 93, Chapter 4). The DLS data 

however, showed a similar dispersion to H-BT nanoparticles in water in that 

small clusters of primary particle size were dominant (by intensity) at ~100–200 

nm and there were also large agglomerates present at lower intensity. The 

dispersion indices for H-BST nanoparticles in water, serum free media and 

complete cell culture media are given in Table 26, these suggested a broad 

dispersion that was not polydisperse. 

H-BST nanoparticles suspended in water showed intensity and volume 

distributions that were bimodal; exhibiting dominant clusters of H-BST 

nanoparticles (~100–500 nm) and some large agglomerates (~1000–10,000 

nm). DLS results by number suggested that H-BST nanoparticles suspended in 

water were monodisperse (~100–200nm) and no large agglomerates were 

detected suggesting they were large in size but small in number. The 

dispersion indices implied that the H-BT nanoparticles were reasonably stable 

in water (Table 26). The H-BST nanoparticles suspended in serum free media 

showed polydisperse suspensions across the concentration range (similar 

dispersion to H-BT nanoparticles in Figure 141). The dispersion indices showed 

similar values to the H-BT nanoparticles in serum free media and it is possible 

the inorganic salts and electrolytes in serum free media interfered with the DLS 

measurements [161,162]. 

The H-BST nanoparticles in complete cell culture media were reasonably 

monodisperse, with small clusters of nanoparticles (~200–400 nm) present in 

the intensity, volume and number distributions plots. There were some smaller 

components of the cell culture media present in each of the size distribution 
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plots which became more dominant by number (~10–50 nm), again these were 

attributed to the serum proteins in the media. The dispersion indices confirmed 

that H-BST nanoparticles were monodisperse (DI = <0.3) in complete cell 

culture media (Table 26). The H-BST-PLL nanoparticles are discussed in 

Section 6.3.8.  

6.3.8 DLS of H-BST-PLL nanoparticles suspended in water, serum 

free media and complete cell culture media. 

The H-BST-PLL nanoparticles suspended in water showed intensity and 

volume distributions which were bimodal: small clusters of primary particle size 

H-BST-PLL nanoparticles were dominant at ~100–500 nm and there were 

relatively few large agglomerates at ~1000–10,000 nm. By number, the H-BST 

nanoparticles suspended in water appeared reasonably monodisperse (~100–

200nm) and no large agglomerates were detected suggesting they were again 

relatively few in number (excluding the lower nanoparticle concentration 

bimodal distributions). 

The H-BST-PLL nanoparticles suspended in serum free media showed the 

nanoparticles to be relatively monodisperse (similar to water) where there were 

clusters of H-BST-PLL nanoparticles (~100–500 nm). The hydrodynamic size 

of H-BST-PLL nanoparticles changed across the nanoparticle concentration 

range (i.e. at 100 µg/mL ~300 nm compared to ~600 nm at 10 µg/mL). The size 

distribution of H-BST-PLL nanoparticles in serum free media would suggest 

that the polymer to nanoparticle ratio is high enough due to the reduced H-BST 

nanoparticle size (~45 nm) to produce a good coverage of the particle surface 

for a relatively monodisperse nanoparticle suspension, however the measured 
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sizes by DLS of (100 – 300 nm) suggests that there may be ~2-5 nanoparticles 

bridged together by the PLL polymer (Figure 145).  

DLS results suggested that the H-BST-PLL nanoparticles in complete cell 

culture media were monodisperse by intensity, volume and number; with 

clusters of nanoparticles appearing at ~400 nm. The smaller components of the 

cell culture media were only identified at 0.1 µg/mL (~10 nm). The dispersion 

indices of the H-BST-PLL nanoparticle in complete media suggested that the 

dispersion was monodisperse (Table 26). In complete cell culture media, the H-

BST-PLL polymer to particle ratio is sufficiently high at all applied nanoparticle 

dose concentrations where coated suspensions are stable at ~400 nm (Figure 

145). 
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Figure 145. Dynamic light scattering of H-BST-PLL nanoparticles displayed in 

columns of: water, serum free media and complete cell culture media. The 

particle distributions are plotted against hydrodynamic size at: 1000, 100, 10, 

1 and 0.1 μg/mL. (a) The H-BST-PLL nanoparticle intensity distribution, (b) H-

BST-PLL volume distribution and (c) H-BST-PLL number distribution in the 

labelled suspending media. The dispersion indices are summarised in Table 

26. 

Water Serum free media Complete cell culture media 

 (a) 

 (b) 

 (c) 
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Table 26. The dispersion indices of the H-BST and H-BST-PLL nanoparticles 

suspended in water, serum free media and complete media. Dispersion 

indices closer to 0.25–0.3 are considered monodisperse and 1 is 

polydisperse. 

 

The dispersion indices shown in Table 26 highlighted that the H-BST-PLL 

nanoparticles followed a similar trend to that of H-BST nanoparticles, where the 

dispersions were reasonably monodisperse at particle concentrations of 100 

and 10 µg/mL and more polydisperse at lower nanoparticle concentrations (1 

and 0.1 µg/mL). 

In general, the dispersion indices indicated that H-BST-PLL nanoparticles were 

more stable than H-BST nanoparticles in water, serum free media and also 

complete cell culture media. 

The DLS data are summarised and discussed in Table 27 to provide an 

overview of the behaviour of nanoparticle suspensions. 

Concentration 

(μg/mL) 

H-BST  
H-BST-

PLL  
H-BST  

H-BST-

PLL  
H-BST  H-BST-PLL  

Water Serum free media Complete media 

1000 0.64 0.20 0.47 0.20 0.64 0.20 

100 0.25 0.20 1.0 0.38 0.25 0.20 

10 0.38 0.25 0.82 0.05 0.38 0.25 

1 0.48 0.57 0.61 0.24 0.48 0.57 

0.1 0.45 0.59 0.50 0.36 0.45 0.59 
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Concentration 

(μg/mL) 
Water Serum free media Complete media 

H-BT 

Bimodal distribution by intensity and 

volume. Lots of small primary particle 

clusters (100–500 nm) and some large 

agglomerates of many primary particles 

(>1,000 nm). By number it appears 

reasonably monodisperse (only ~100 – 

300 nm clusters detected). 

Fully polydisperse –  The distributions by intensity, 

number or volume all show similar behaviour. It is 

possible the inorganic salts and electrolytes in 

serum free media are interfering with the DLS 

measurements [161,162]. 

The intensity, volume and number distribution 

show the serum components present at ~10–50 

nm. The plots by intensity and volume show a 

bimodal particle distribution with large 

agglomerates present at ~10,000 nm. Small 

clusters of the primary particle size are present at 

~ 100 nm and are dominant by number. 

H-BT-PLL 

Bimodal distribution by intensity and 

volume. Lots of small primary particle 

clusters (300–1000 nm) and some large 

agglomerates of many primary particles 

(~10,000 nm). By number it appears 

reasonably monodisperse (~100–300 

nm clusters) with only the lower 

concentrations showing a bimodal 

distribution (100 & 500 nm clusters). 

Similar to H-BT, the H-BT-PLL nanoparticles are 

fully polydisperse but marginally less so by 

comparison. The intensity, volume and number 

distribution show that either the serum free media 

is causing a change in agglomeration, or the 

components of serum free media are confusing 

the measurement. Electrolytes present in serum 

free media (such as: Ca2+ and Mg2+) will cause 

coagulation by reducing the double layer which will 

produce a polydisperse nanoparticle suspension. 

The plots by intensity, volume and number show 

the serum components present at ~10–50 nm. At 

100 µg/mL the distribution plots show the primary 

particle size (~100 nm) and an intermediate size 

(~500 nm). At lower concentrations i.e. <100 

µg/mL the suspensions are polydisperse.  

The intermediate size is also present in the 

higher particle concentration of 1000 µg/mL and 

will be investigated further in the plunge frozen 

cryo-TEM section. Higher nanoparticle doses 

may produce bridging flocculation measured in 

the H-BT-PLL distributions. 
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H-BST 

Bimodal distribution by intensity and 

volume. Lots of small clusters of primary 

particle size (~100–500 nm) and some 

large agglomerates of many primary 

particles (>1,000 nm). By number it 

appears reasonably monodisperse 

(~100 – 200 nm clusters). 

Fully polydisperse –  The distributions by intensity, 

number or volume all show similar behaviour.  It is 

possible the inorganic salts and electrolytes in 

serum free media are interfering with the DLS 

measurements [161,162]. 

The intensity, volume and number distribution 

show the serum components present at ~10–50 

nm.  The small clusters of the primary particle 

size are dominant at ~200–400 nm at the 

nanoparticle concentrations of 1000 and 100 

µg/mL. At lower nanoparticle concentrations 

(<100 µg/mL) the suspensions are more 

polydisperse. 

H-BST-PLL 

Bimodal distribution by intensity and 

volume. Lots of small clusters of primary 

particle size (~100–700 nm) and some 

large agglomerates of many primary 

particles (~10,000 nm). By number it 

appears reasonably monodisperse (only 

~100–200 nm clusters are detected) 

with the lower concentrations showing a 

multimodal distribution (~50, ~100 & 

500 nm). 

H-BST-PLL nanoparticles appear to be 

monodisperse where there are clusters of H-BST-

PLL nanoparticles (~100–500 nm). The 

hydrodynamic size of H-BST-PLL nanoparticles 

changes across the nanoparticle concentration 

range (i.e. at 100 µg/mL ~300 nm compared to 10 

µg/mL ~ 600 nm). It is a possibility that the 

polymer to nanoparticle ratio is adequate to 

produce a relatively monodisperse nanoparticle 

suspension. 

The intensity, volume and number distribution 

show the nanoparticle suspensions to be 

monodisperse. The serum components are 

detected at ~10–50 nm only at 0.1 µg/mL.  Small 

clusters of the primary particle size are dominant 

at ~200–400 nm for the remaining nanoparticle 

concentrations. It is a possibility that the polymer 

to nanoparticle ratio is adequate to produce a 

relatively monodisperse nanoparticle suspension. 

Table 27. Summary of the DLS measurements acquired for H-BT, H-BT-PLL (Figure 141 and Figure 143 respectively), H-BST and H-BST-PLL 

(Figure 144 and Figure 145 respectively). The table summarises the interpretation of the overall dispersions measured over the range of 

nanoparticle concentrations.  
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The DLS data for H-BT, H-BT-PLL, H-BST and H-BST-PLL nanoparticles in 

water, serum free media and complete cell culture media, provided insight into 

the nanoparticle behaviour in suspensions. However, the data showed no 

indication as to how the nanoparticle suspensions interacted with the A549 

cells. Nor did the data indicate whether the nanoparticles were internalised by 

the cells.  

Sections 6.4 & 6.5 discuss the nanoparticle uptake in using critically point dried 

cell SEM images as well as FIB-SEM and HAADF-STEM imaging of resin 

embedded thin cell sections.   

6.4 HAADF-STEM imaging of resin embedded A549 cell 

sections. 

To show that the nanoparticles were actually being internalised by the cells at a 

1 µg/mL nanoparticle dose after a 24-hour exposure (Figure 134 – Figure 137), 

secondary electron (SE) and backscattered (BSE) images of exposed, fixed 

cells were acquired at different SEM accelerating voltages. So changing the 

penetration depth of the electron beam which revealed nanoparticles present at 

15 kV but not at 2 kV. This highlighted that the nanoparticles were not on the 

surface of the cell but internalised because of the increased penetration depth 

of the 15 kV beam (Figure 147). 

Qualitative analysis of nanoparticle uptake into A549 cells was also shown by 

FIB-SEM serial sectioning of resin-embedded cells. This technique images the 

block face of the resin-embedded cells, the same area is then ion beam milled 

to a depth of 10 to 20 nm and then imaged again. This demonstration data was 

acquired by three microscope companies FEI (H-BT), Zeiss (H-BST) and 
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Tescan (H-BT-PLL) and are shown in Figure 148 – Figure 150 at random 

sectioning (nm) distances to highlight internalised nanoparticles Further 

confirmation of cellular uptake was shown by HAADF-STEM images given in 

Figure 151 of resin embedded thin cell sections for H-BT, H-BT-PLL, H-BST 

and H-BST-PLL with the corresponding bright field TEM image and EDX 

spectra presented so as to confirm the chemistry of the imaged nanoparticles is 

that of BaTiO3 or Ba1-xSrxTiO3. 

The low magnification SEM image of A549 cells critically point dried on a glass 

substrate highlighted the presence of nanoparticle agglomerates (blue box). 

Due to the topographical appearance of SE(L) SEM images at 15 kV, the 

nanoparticles appeared as if they were on the cell surface; Figure 146.  

 

 

 

 

 

 

 

 

Figure 146. Overview of A549 critically point dried cells originally grown on a glass 

substrate. The red box indicates the area which is shown in Figure 147 at 15 

kV and 2 kV accelerating voltages to show that the nanoparticle agglomerates 

(bright contrast) are indeed internalised. The blue boxes indicate the areas in 

which H-BT nanoparticle agglomerates are present.   
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Figure 147. SE upper, SE lower and BSE electron images (labelled at the bottom of 

each image) were collected from the A549 cell highlighted in Figure 146 with 

H-BT nanoparticles internalised. (a), (c) and (e) were collected at 15 kV with 

the nanoparticles highlighted by the red box. The 15 kV images show surface 

and internal detail. The images collected at 2 kV (b), (d) and (f) were at a lower 

magnification to show cellular structure, showing no visible nanoparticles 

with only details of the sample surface. (f) Intentionally left blank as the 

working distance (14.5mm) is too long to collect the backscattered signal.  

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 147 shows the secondary electron upper (SE-U, in-lens detector) image 

and the secondary electron lower (SE-L, Everhart-Thorley detector) image and 

backscattered electron (BSE) image at both 15 kV and 2 kV and showed that 

the nanoparticles were internalised in the A549 cells (because 2 kV is only 

sensitive to the surface and no particles were visible in the images).  

6.5 FIB-SEM and serial thin-sectioning of A549 cells.  

 

The resin embedded A549 cells were imaged on the resin block face and FIB-

milled in serial sections at 10–20 nm intervals through the block face to show 

internalised nanoparticles. This technique can be used for 3D reconstructions 

of the cell and to provide qualitative information regarding internalisation of the 

nanoparticles by cells. As these were microscope demonstration data acquired 

at different microscope companies, the cell sections for H-BT (Figure 148), H-

BST (Figure 149) and H-BT-PLL (Figure 150) nanoparticles showed all particle 

types are internalised to some extent. 
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Figure 148. FIB-SEM inverted contrast BSE image of irregular shaped clusters of 

H-BT nanoparticles in A549 cells (red boxes). These images were collected 

using a monochromated FEI Helios G4 at 2 kV, with a slicing thickness of 10 

nm. The slicing depth (Z) is selected to show the best frames and Z is labelled 

on each image. The larger, more round black blobs within the cells are 

osmium decorated lipid filled vesicles.  
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Z = 280 nm 

Z = 1,330 nm 

Z = 2,160 nm 

Z = 770 nm 



 

- 254 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 149. FIB-SEM inverted contrast BSE image series of H-BST nanoparticles in 

A549 cell (red boxes). These images were collected using Tescan GAIA3-2016 

microscope at 3 kV, with a slicing thickness of 20 nm. The slicing depth (Z) is 

selected to show the best frames and are labelled on each image.

Z = 0 nm 

Z = 1,560 nm 

Z = 1,800 nm Z = 2,000 nm 

Z = 2,200 nm Z = 2,480 nm 
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Figure 150. FIB-SEM inverted contrast BSE image series of resin embedded A549 

cell section with internalised H-BT-PLL nanoparticles (red boxes). These 

images were collected using Zeiss crossbeam 540 EsB detector at 1.7 kV, with 

a slicing thickness of 10 nm. The slicing depth (Z) is selected to show the best 

frames and are labelled on each image. 

Z = 0 nm 

Z = 1,080 nm 

Z = 1,245 nm Z = 1,650 nm 

Z = 1,800 nm 

Z = 0 nm 
Z = 1,080 nm 
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Further evidence of nanoparticle cell uptake was shown by HAADF-STEM, 

TEM images and TEM-EDX of H-BT, H-BT-PLL, H-BST and H-BST-PLL 

nanoparticles internal to A549 thin cell sections. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 151. (a) HAADF-STEM image of a resin embedded thin section of A549 cell 

with H-BT nanoparticles internalised (red dashed box) following exposure in 

complete cell culture media. (b) Higher magnification HAADF-STEM image of 

the internalised nanoparticles. (c) EDX spectrum of the internalised H-BT 

nanoparticles in complete media. (d) Bright field TEM image of the 

internalised H-BT nanoparticles.   
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Figure 152.  (a) HAADF-STEM image of a resin embedded thin section of A549 

cells with H-BT-PLL nanoparticles internalised (red dashed box) following 

exposure in complete cell culture media. (b) Higher magnification HAADF-

STEM image of the internalised nanoparticles. (c) EDX spectrum of the 

internalised nanoparticles. (d) Bright field TEM image of the internalised 

nanoparticles with a high resolution image and FTT (inset) confirming it is 

barium titanate imaged down the [110] view direction with no visible PLL 

coating. 
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Figure 153.  (a) HAADF-STEM image of resin embedded thin section of an A549 

cell with H-BST nanoparticles internalised (red dashed box) following 

exposure in complete cell culture media. (b) Bright field TEM image of the 

internalised H-BST nanoparticles. (c) EDX spectrum of the nanoparticles 

showing strontium is present. (d) Higher magnification bright field TEM image 

of H-BST nanoparticles where the EDX spectrum was acquired.  
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Figure 154. (a) HAADF-STEM image of resin embedded thin section of an A549 cell 

with H-BST-PLL nanoparticles internalised (red dashed box) following 

exposure in complete cell culture media. (b) Higher magnification HAADF-

STEM image of the internalised nanoparticles. (c) EDX spectrum of the 

internalised nanoparticles. (d) Bright field TEM image of the internalised 

nanoparticles with no visible PLL coating. 
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The SEM, FIB-SEM and HAADF-STEM images of the nanoparticles 

internalised in the critically point dried and resin embedded A549 cells and 

resin embedded cell sections provided a snapshot of the cells after 24 hours’ 

exposure. Qualitatively, there was no difference between H-BT and H-BT-PLL 

nanoparticle uptake (Figure 151 and Figure 152), however there was a clear 

decrease in cell viability at concentrations > 100 µg/mL by the MTT assay 

(Figure 134). Moreover, H-BT-PLL nanoparticles showed no clear coating 

around the nanoparticle surface when internalised in the A549 cells. This 

means that either the cells were processing the PLL coating or the PLL coating 

was not around all the nanoparticles present in the suspensions (which was not 

in agreement with by DLS).     

The DLS data from H-BT-PLL nanoparticles (Figure 143 – Table 27) broadly 

suggested a multimodal distribution. The smallest size fraction was consistent 

with the components of the complete cell culture media (10–50 nm) [163]. The 

dominant H-BT-PLL particle size fraction in suspension appeared to be small 

clusters of primary particle sizes (~100 nm) and there were a small number of 

large agglomerates (>1,000 nm). There was also an intermediate particle size 

fraction (~500 nm) that appeared for 100 µg/mL (and a small number at 1000 

µg/mL) that suggested the H-BT-PLL nanoparticles in complete cell culture 

media (Figure 143) clustered differently to their H-BT equivalents (Figure 141) 

as summarised in Table 27.  

To characterise the nanoparticle suspensions by imaging, cryo-TEM was used 

to vitrify the samples onto a carbon-coated copper grid by plunge freezing the 

samples into liquid ethane. 
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6.6 Cryo-TEM of H-BT and H-BT-PLL nanoparticles. 

Cryo-TEM was used to quantify H-BT and H-BT-PLL nanoparticle agglomerate 

sizes in water and complete cell culture media suspensions. This was not 

possible by simple TEM sample preparation by dropcasting and drying due to 

movement of particles caused by evaporation of the liquid and movement of the 

liquid meniscus. 

Cryo-TEM freezes the nanoparticle suspensions in their native state in order to 

give true nanoparticle/agglomerate sizes in the suspension. The H-BT and H-

BT-PLL nanoparticles are shown suspended in vitreous ice (i.e. suspended in 

water, then plunge frozen) with a clear coating around the H-BT-PLL sample, 

as seen in Figure 155. 

 

 

 

 

 

 

 

Figure 155. Cryo-TEM of (a) H-BT nanoparticles and (b) H-BT-PLL nanoparticles 

suspended in vitreous ice at a concentration of 100 μg/mL. A clear coating is 

visible around the H-BT-PLL particles. 

 

(a) (b) 
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As the cell viability assay showed a decrease in cell viability at a concentration 

of H-BT-PLL of ≥ 100 µg/mL, cryo-TEM of the nanoparticle suspensions were 

imaged at 100 μg/mL. The cryo-TEM images of H-BT and H-BT-PLL 

nanoparticle suspensions in complete cell culture media are shown in Figure 

156 and Figure 157 respectively. 

 

 

 

 

 

 

 

 

Figure 156. Bright field cryo-TEM of H-BT nanoparticles suspended in complete 

cell culture media at a concentration of 100 μg/mL. No coatings are visible 

around the nanoparticles. 

 

The cryo-TEM images of H-BT-PLL at 100 µg/mL (Figure 157) showed (some) 

nanoparticles with an obvious coating in the frozen nanoparticle suspension 

compared to no visible coating in the resin embedded cell section (Figure 152). 

However, not all H-BT-PLL nanoparticles were fully coated, some appeared 

uncoated i.e. some apparently uncoated H-BT in a H-BT-PLL sample. 
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Figure 157. Bright field cryo-TEM of H-BT-PLL nanoparticles suspended in 

complete cell culture media at a concentration of 100 μg/mL. Showing some 

nanoparticles with a clear coating and others with none. 
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Cryo-TEM of the H-BT-PLL nanoparticles at 100 µg/mL (Figure 158, Figure 159 

and Figure 160) were analysed by bright field-TEM and STEM EDX-mapping of 

the obviously coated and uncoated H-BT-PLL nanoparticles respectively.  

 
  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 158. (a) Bright field cryo-TEM image of H-BT-PLL nanoparticles at 100 

μg/mL in complete cell culture media. The bright field TEM image shows 50% 

of the nanoparticles coated. (b) HAADF-STEM image of the same area, the 

EDX-mapping of the particles is shown in Figure 159. 

(a) 

(b) 
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Figure 159. (a) The cryo-HAADF-STEM image with EDX mapping areas from Figure 

158. (b) Colour code of EDX mapping elements. The corresponding HAADF-

STEM EDX map area (inset) shows the corresponding EDX spectrum labelled 

with the elements. Oxygen was mapped but is not shown due to oxygen being 

present throughout the whole sample. The coated particles clearly had a 

calcium phosphorous rich shell. 
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Figure 160. Cryo-HAADF-STEM image of a different area of H-BT-PLL 

nanoparticles at 100 μg/mL. The EDX mapping data suggests a shell that is 

rich in calcium and phosphorus.  

 

EDX-mapping data of the H-BT-PLL nanoparticles showed that there was a 

calcium and phosphorous-rich area around the coated H-BT-PLL nanoparticles 
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when the nanoparticles were suspended in complete cell culture media (Figure 

159 & Figure 160). The calcium & phosphorous-rich coating will be referred to 

as calcium phosphate herein (but could be a mono, di or tri-calcium 

phosphate). STEM-EDX showed that calcium phosphate was most probably 

adsorbed to the surface of H-BT-PLL nanoparticles from the complete cell 

culture media (which contains 200 µg/mL of calcium chloride and 400 µg/mL of 

sodium phosphate i.e. in excess compared to the nanoparticles) [164].  

It is likely that the H-BT-PLL nanoparticles still had the PLL coverage, as shown 

by the FTIR data and zeta potential measurements (Figure 138 & Figure 140 

respectively) highlighting that the coating was successful and the zeta potential 

increased from negative (when uncoated) to positive when coated. The 

formation of a calcium & phosphorous-rich coating around the nanoparticle may 

be due to the positively charged H-BT-PLL nanoparticles adsorbing a calcium 

phosphate complex or attracting phosphate ions that in turn attracts Ca ions. 

 

EDX mapping of the H-BT-PLL nanoparticles also highlighted the presence of 

nitrogen on both coated & oppositely coated nanoparticles (Figure 161). This 

implies that H-BT-PLL nanoparticles that appear uncoated, do in fact still have 

a PLL coating. 
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Figure 161. (a) HAADF-STEM image of the nanoparticles in Figure 25. (b) EDX 

mapping of the nitrogen signal from the nanoparticles showing that all 

nanoparticles contain some Nitrogen suggesting that all have the PLL 

coating.  

 

The H-BT-PLL nanoparticles show a fraction of nanoparticles with a calcium 

phosphate rich coating at 100 µg/mL, leaving a remaining fraction of calcium 

phosphate uncoated H-BT-PLL nanoparticles.  

This apparent uncoated/coated particle fraction shown in Figure 158 provides 

an explanation for the primary and intermediate particle size seen in the DLS 

number distribution at 100 µg/mL (Figure 143). Where small clusters of the H-

BT-PLL primary particle size fraction (~100–200 nm) were present these were 

calcium phosphate uncoated-particles. In addition, the intermediate particle size 

fraction (~500 nm) were the calcium phosphate-coated H-BT-PLL 

nanoparticles.  

The calcium phosphate coated and the uncoated particle fraction will have 

affected the interaction of H-BT-PLL nanoparticles with A549 cells due to the 

different charges remaining at the surface of the nanoparticles. The H-BT-PLL 

nanoparticles had a positive surface charge (shown by the zeta potential 

(a) 
 

(b) 
 

N 
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measurements – Figure 140) in comparison to the calcium phosphate 

screened–PLL surface charge (which one might presume was overall more 

neutral) remaining on the coated H-BT-PLL nanoparticles. The calcium 

phosphate/PLL coated nanoparticles might be expected to be relatively inert 

compared to the uncoated H-BT-PLL nanoparticles. 

The difference in coatings and consequent surface charge could be the likely 

cause of reduced cell viability when the nanoparticle concentration increased 

(above 10/100 µg/mL); shown in the MTT cell viability assay (Figure 134).  The 

calcium phosphate components in the cell culture media were being used up at 

a certain concentration between 10 and 100 µg/mL, this would have led to the 

presence of an uncoated particle fraction, which may have been more toxic.  

It can be shown with simple calculations and a few assumptions (detailed 

below) that the stock Ca ions in the media (200 µg/mL of calcium chloride) 

were used up at a nanoparticle concentration of ~ 100 µg/mL (shown in Section 

6.6.1). 

 

6.6.1 Estimation of the Ca ion concentration in complete cell 

culture media. 

Assumptions 

• The BaTiO3 nanoparticles (density = 6.02 g cm-3) are perfectly cubic in 

morphology and near monodisperse– justified by DLS number plots 

(Figure 143). 

• The calcium phosphate in the coating has the same packing density as 

hydroxyapatite (Ca5(PO4)3(OH)) with a Ca: P ratio of 1.6:1. The Ca: P 

ratio is measured to be ~1.3:1 by EDX. Hydroxyapatite is used here 
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because the density/volume is well known [165], however it may also be 

amorphous calcium phosphate but the density of this is not well 

established. 

• the visibly apparent coating is a 50 % PLL and 50 % CaPO4 uniform 

coating around the nanoparticle. 

 

 

 

 

 

Figure 162. Annotated cryo-TEM of a CaPO4 coated H-BT-PLL nanoparticle in 

complete cell culture media dispersed at a concentration of at 100 µg/mL; to 

highlight the assumptions in particle and shell size used for the following 

calculations. 

Total volume of BT particles in suspension (Mass = Volume x Density):  

100 x10-6 g/mL, density of BaTiO3 = 6.02 g cm-3  

Therefore, the total volume of BT in 1 mL = 16.6 x10-6 cm3. 

Volume of one BT nanoparticle (100 nm cube) 

(100 x10-9)3 = 1x10-21
 m3 

Volume of Coating around one BT particle 

= (200 x10-9)3 – (100 x10-9)3 = (8 x10-21 – 1 x10-21) 

 = 7 x10-21 m3 (i.e. 7 times volume of BaTiO3) So: 

Coating volume in 1 mL of solution = 7 x 16.6 x 10-6 cm-3 = 1.162 x 10-4 cm3 

100 nm 
 50 nm 

~ 200 nm 

 50 nm 
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Assuming Ca5(PO4)3(OH) is 50 % of coating then volume of Ca5(PO4)3OH in 1 

mL of solution is: 

1.162 x10-4 cm3 x 0.5 = 0.58 x10-4 cm3  

Calcium ions in Hydroxyapatite 1 mL of solution (density = 3.16 g/cm3, molar 

mass 502.3 g/mol) 

Mass of Hydroxyapatite in 1 mL = 0.58 x10-4 cm3 x 3.16 g/cm3 = 1.83 x10-4 g 

Ca Molar mass = (= 40.01 g/mol x 5) = 200.4 g/mol 

Ca Molar mass to Hydroxyapatite ratio = 200.4 g/mol/502.3 g/mol ≈ 0.4 

Concentration of Ca ions used in 1 mL of suspension. 

(mass of Ca ions x Ca Molar mass ratio) = 0.4 x 1.83 x 10-4 g  

= 0.73 x10-4 g ≈ 70 µg/mL of Ca 

Concentration of Ca ions used from CaCl2 in complete cell culture media 

(CaCl2 concentration of 200 µg/mL [164]) 

Molar mass of Ca = 40.01 g/mol, Molar mass of Cl = 35.45 g/mol 

so Ca Molar mass ratio to CaCl2 = 0.36 

0.36 x 200 µg/mL = 72 µg/mL ≈ 70 µg/mL of Ca 

Therefore ≈70 µg/mL of Ca ions used to coat 100 µg/mL of BT 

Equation 13. Simple calculation to show that Calcium ions are used up coating 100 

µg/mL of BaTiO3. Stock of Ca ions in 200 µg/mL of CaCl2 is 72 µg/mL of Ca 

ions, so all available Ca ions would be used up by coating 100 µg/mL of BT. 
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Cryo-TEM imaging of H-BT-PLL nanoparticles at 100 µg/mL (Figure 157) 

showed coated H-BT-PLL nanoparticles with a Ca: P rich-coating and H-BT-

PLL nanoparticles without a Ca: P coating. The estimation given in Equation 13 

suggested ~70 µg/mL of Ca ions were needed to coat 100 µg/mL of H-BT. This 

implies all the calcium ions were used up at nanoparticle concentrations of ≥ 

100 µg/mL, which could account for the reason why some nanoparticles were 

not calcium phosphate coated by cryo-TEM at 100 µg/mL H-BT-PLL. 

Assuming the calcium phosphate layer forms because of ionic interactions that 

screen the positive surface charge of H-BT-PLL then this would have left the 

remaining H-BT-PLL with a positive surface charge (Figure 140). This 

remaining fraction of positively charged H-BT-PLL nanoparticles are likely to 

have had an effect on cytotoxicity. It has been reported that  positively charged 

nanoparticles were more cytotoxic than negative nanoparticles of similar size in 

non-phagocytic (A549) cells [51]. In addition, Research has shown that 

positively charged particles are more readily taken up by cells than the 

respective anionic nanoparticle [51,166] and further research has shown PLL to 

be toxic [167,168].  

Thus the reduction in the MTT cell viability for H-BT-PLL nanoparticles (Figure 

134) between 10–100 µg/mL could be due to the calcium phosphate uncoated 

H-BT-PLL nanoparticle fraction with a greater positive surface charge than that 

of calcium phosphate coated H-BT-PLL nanoparticle fraction; due to either the 

positive surface charge or direct exposure to PLL. 

Calcium ions take part in many cellular functions such as movement, 

metabolism and proliferation of cellular life cycles [169], and if all the calcium 

ions are being used to coat the barium titanate nanoparticles (at concentrations 
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of ≥ 100 µg/mL) this may reduce the cell viability. Loss of calcium is known to 

alter the different cellular pathways that require Ca ions [170]. 

This intermediate particle size fraction which we attributed to calcium 

phosphate coated H-BT-PLL nanoparticle clusters (~500 nm) was seen in the 

number plot of the H-BT-PLL DLS measurement in complete cell culture media 

at 100 µg/mL (Figure 143). H-BT-PLL nanoparticles at the same concentration 

(100 µg/mL) were quantitatively analysed by Cryo-TEM, showing that this 

intermediate particle size was indeed the calcium phosphate coated H-BT-PLL 

nanoparticles. 

The comparison of the DLS and cryo-TEM number distributions are compared 

in Figure 163 for H-BT and H-BT-PLL in complete cell culture media. 
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Figure 163. Comparison of the dynamic light scattering and Cryo-TEM data of (a) 

H-BT in complete cell culture media and (b) H-BST-PLL nanoparticles in 

complete cell culture media.  

 

(a) 

(b) 

Nanoparticle Size (nm) 
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Figure 163 shows the number distributions of H-BT and H-BT-PLL 

nanoparticles in complete cell culture media collected by DLS and cryo-TEM. 

The cryo-TEM analysis shows that the calcium phosphate uncoated H-BT-PLL 

nanoparticles matched the DLS data of small agglomerates of primary particle 

size (~100–200 nm) whereas the calcium phosphate coated H-BT-PLL cluster 

sizes broadly matched the intermediate particle size identified by DLS (~500 

nm). Cryo-TEM also showed that large agglomerates are present for calcium 

phosphate coated and uncoated H-BT-PLL nanoparticles (>1,000 nm), as 

predicted by DLS.  

6.7 Chapter Summary  

• MTT cell viability assays showed a decrease in viability for nanoparticle 

concentrations of 1000 µg/mL for H-BT and above 100 µg/mL for H-BT-

PLL and above 10 µg/mL for H-BST-PLL (Figure 134) 

• The genotoxic (Comet) assay showed that nanoparticles caused no 

DNA damage (aside from the failed assays for PLL coated nanoparticles 

above 10 µg/mL) – Figure 136. 

• FTIR spectra of coated nanoparticles showed vibrations associated with 

PLL and the presence of this coating was confirmed by dropcast bright 

field TEM (Figure 138).  

• The zeta potential measurements of H-BT and H-BT-PLL nanoparticle 

surface charge in water increased from negative to positive mV when 

PLL was coated on the nanoparticles (Figure 140) 
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• Dynamic light scattering showed large numbers of small agglomerates of 

primary particle size and relatively few large agglomerates for most 

nanoparticle suspensions (Figure 142). 

• For H-BT-PLL nanoparticles in complete cell culture media there was the 

presence of an additional, intermediate agglomerate size fraction (~ 500 

nm) Figure 143. 

• Overall, DLS data showed the nanoparticle suspensions in different 

media were broadly similar at a range of concentrations (Table 27). 

• The SEM and FIB milling showed that the nanoparticles were 

internalised by A549 cells (Figure 147 – Figure 150). 

• HAADF-STEM and TEM-EDX confirmed that the nanoparticles were 

internalised by A549 cells. However, the PLL coated nanoparticle 

samples showed no significant coating when inside the cell (Figure 152).  

• Cryo-TEM of 100 µg/mL was conducted to confirm changes seen by 

DLS in the dispersion between H-BT and H-BT-PLL and to provide 

mechanistic causes of the reduced cell viability (Figure 157). 

• A calcium phosphate-rich coating of some of the H-BT-PLL 

nanoparticles was identified by cryo-TEM (Figure 161). However, some 

fraction of the H-BT-PLL particles remained uncoated at 100 µg/mL 

(Figure 163). It has been shown that a 50 nm thick calcium phosphate 

rich shell around each H-BT-PLL nanoparticle would have used up all 

the Ca ions available in the complete cell culture media at a 

concentration of 100 µg/mL maximum (Section 6.6.1) and this may 

explain why a fraction remained uncoated. 
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• This calcium phosphate uncoated H-BT-PLL fraction may have been the 

cause of the reduction in cell viability above 10 µg/mL in H-BT-PLL 

(discussion – Section 6.6.1).    

• Another possibility of reduced cell viability is the lack of calcium ions in 

the media for cell signalling pathways which ultimately leads to cell 

death. 
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Chapter 7 – Results and Discussion 

Hydrothermal barium titanate (H-BT) and barium strontium titanate (H-BST) 

nanoparticles of ~140 nm and ~45 nm have been successfully synthesised for 

their second harmonic imaging applications using a multiphoton laser source. 

 

7.1.1 Synthesis and characterisation of tetragonal barium titanate 

and barium strontium titanate. 

Chapter 4 presented the Rietveld peak fitting of X-Ray powder diffraction data 

(laboratory and synchrotron) for commercial and synthesised hydrothermal, 

BaTiO3 and Ba1-xSrxTiO3 samples. Rietveld analysis showed all samples, 

except the as-bought CT-BT exhibited a mixture of tetragonal and cubic crystal 

phases. The CT-BT sample had evidence for a clear (002/200) peak splitting 

(and c/a of 1.01) and was presumed to be 100 % tetragonal due to no cubic 

phase being required for the fit (Figure 77, Chapter 4). When the CT-BT 

sample was heated through the Curie point (at 130 oC) to 170 oC, laboratory-

XRD observed the tetragonal (002/200) split peak change to a single cubic 

(200) peak, indicating a phase transition from tetragonal to cubic occurred; 

Figure 79, Chapter 4 [22,62]. Because the CT-BT sample showed a 100 % 

tetragonal phase by synchrotron radiation and a tetragonal to cubic transition 

upon heating, this sample was used as a tetragonal calibration standard for 

EELS analysis in Chapter 5. 

Rietveld peak fitting of the synthesised H-BT estimated that ~60 % of a 

tetragonal phase was present (and c/a of 1.006). This sample showed a 

tetragonal (002/200) peak splitting but the sample also had showed the 
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presence of a ~40 % cubic phase. When the sample was heated through the 

Curie point to 170 oC the tetragonally split (002/200) peak transformed to a 

single (200) cubic peak (Figure 84, Chapter 4). However, Rietveld analysis 

showed a tetragonal phase could still be fitted to the data (54 % phase 

fraction), suggesting a tetragonal phase remained above the Curie 

temperature. In-situ TEM analysis by Li et al. implies that strain relaxation at 

the surface of barium titanate allows all phases (cubic, tetragonal, orthorhombic 

and rhombohedral) to co-exist in BaTiO3 nanoparticles (of 2–10 nm sizes) up to 

a temperature of 600 oC [171]. However, it is likely the tetragonal phase 

Rietveld fitting could be a result of a broad (200) diffraction peak base caused 

by internal defects (such as hydroxyl defects) and strain in the nanoparticles 

[81,172]. 

To further confirm barium titanate nanoparticles were successfully synthesised; 

SEM with EDX and TEM with electron diffraction was employed (Chapter 4, 

Figure 86 and Figure 87). SEM with EDX showed the morphology and 

expected elemental composition of the nanoparticles, whereas TEM with 

electron diffraction highlighted the particle size distribution and confirmed a 

barium titanate crystal structure.   

The first batch of hydrothermally synthesised barium strontium titanate (HBST-

01) nanoparticles showed a bi-modal incorporation of strontium ions in the 

barium titanate lattice, with a barium-rich BST producing a (002/200) diffraction 

peak splitting and strontium-rich BST producing a separate (200) diffraction 

peak (Figure 88). This was undesirable because not all particles would emit 

SHG at the same intensity and so a batch was re-synthesised following Roeder 

et al. [92]. The newly synthesised H-BST showed a more consistent strontium 
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incorporation by TEM-EDX (Figure 92) and Rietveld analysis showed a ~75 % 

tetragonal phase fraction present (and c/a ratio of 1.0002; Figure 91).  

Experimentally determining the phase of BaTiO3 nanoparticles has been 

extensively discussed in literature. Characterising the phase of BaTiO3 

nanoparticles using ‘bulk’ techniques (like laboratory-XRD and X-Ray 

synchrotron diffraction) are difficult and are used to try and determine the 

phase of individual nanoparticles. This leads to characterising the global/net 

phase of the nanoparticles as opposed to individual nanoparticles and the post-

data analysis (like Rietveld and PDF) can be dependent on resolution of data 

and user experience [74,173].  

Regardless of the precise mixture of tetragonal and cubic crystal phases, all 

samples produced SHG of light (Figure 95, Chapter 4) with CC-BT and H-BST 

requiring an increase in laser power – likely due to the smaller particle size of 

the nanoparticles, as demonstrated by Kim et al. [39]. This was the first 

instance where barium strontium titanate nanoparticles have been used to 

produce second harmonic light and supports the reason for Sr ion addition (to 

enhance SHG output due to the increased dielectric constant). It can be argued 

that second harmonic emission from ~45 nm H-BST nanoparticles was 

enhanced because emission was detected from particles smaller than H-BT 

(~140 nm) but no direct comparison can be made due to the difference in size 

[22,28,40]. Correlative SHG and SEM qualitatively showed all nanoparticles to 

emit second harmonic light (Figure 97, Chapter 4). Moreover, samples that 

show no tetragonal (002/200) peak splitting in the XRD pattern (such as CC-BT 

and H-BST) also produced second harmonic light and this is also seen in 

particle sizes down to 22 nm; Kim et al. [39]. Although the generally accepted 
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size-dependent phase transition mechanism suggests a tetragonal-core and 

cubic-shell structure (Figure 4, Chapter 1), it is generally accepted that the 

surface layer is atomically-rough/disordered and can be an origin of SHG in 

these cases [39]. 

 

7.1.2 Origin of second harmonic generation 

To address the origin of SHG in these nanoparticles, Chapter 5 presented the 

results of in-situ heating in the TEM of CT-BT and H-BT nanoparticles to 400 

oC and electron energy loss spectra were collected from a whole CT-BT 

nanoparticle (diffraction coupled) and scanned across a H-BT nanoparticle 

(STEM-EELS). Furthermore, high resolution HAADF-STEM Ti-atom position 

analysis and STEM-EELS analysis of H-BT was collected by aberration 

corrected STEM (at room temperature) shown in Section 5.2 in Chapter 5. 

Electron diffraction data of CT-BT and H-BT samples showed the (002/200) 

tetragonal reflections disappearing when heated through the Curie point (Figure 

103 and Figure 114 in Chapter 5), providing evidence of a tetragonal to cubic 

phase transition of individual and many nanoparticles. This suggested that a 

phase transition does occur in XRD above the Curie point (Figure 79 and 

Figure 84, Chapter 4). In-situ, diffraction coupled EELS of CT-BT and STEM-

EELS of H-BT showed a reduction in the Ti-L3 edge t2g-eg peak separation 

when heated through the Curie point, in agreement with Bugnet et al. and 

Moon et al. [68,93].  

The strength of the crystal field splitting at the Ti-L3 edge (i.e. the t2g-eg splitting) 

is inversely proportional to the Ti-O distance [68,134,174]. In the tetragonal unit 

cell (Figure 20, Chapter 2) there is an offset Ti-atom in the c-direction, meaning 
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that there is one oxygen anion closer to the Ti-atom (~1.8 Å) and another 

further away (~2.1 Å) however, the increased electrostatic interaction between 

the closer ions will increase the crystal field splitting. This was observed for the 

CT-BT Ti-L2,3 edge t2g-eg splitting where the peak separation at room 

temperature was ~2.05 eV (having shown that it is was 100 % tetragonal by 

XRD; Figure 79, Chapter 4 and, Table 22 Chapter 5). When the sample was 

heated above the Curie point, the Ti-O distances become equal (~1.95 Å), 

which would imply in first approximation that, the crystal field splitting should 

decrease and it was observed that when the CT-BT and H-BT samples were 

heated above the Curie point, there was a decrease in Ti-L3 t2g-eg peak 

separation to ~2.0 eV (Table 15, Chapter 5). This is consistent with the 

tetragonal to cubic phase change already observed by electron diffraction 

occurring because cubic phases have an increase in unit cell volume. The 

cubic ICDD reference pattern quotes a larger unit cell volume (ICDD: 01-078-

4475), and this was also confirmed experimentally by Rietveld and PDF 

analysis of synchrotron diffraction data (Smith et al. [74]). This suggests that 

the decrease in the Ti-L2,3 edge t2g-eg peak separation is because of the 

increased unit cell volume produced by the tetragonal to cubic phase transition 

(and therefore ultimately a decrease in electrostatic interaction). Ultimately, this 

enables us to state that any t2g-eg splitting above 2.05 eV is tetragonal-like and 

below 2.0 eV is cubic-like. 

This EELS phase fingerprint was used to probe individual H-BT nanoparticles 

by STEM-EELS linescans. This highlighted tetragonal-like t2g-eg peak splitting 

in the bulk of a nanoparticle and a cubic-like t2g-eg splitting at the surface 

(Figure 119, Chapter 5). The opposite peak splitting was observed by Moon et 
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al. where the Ti-L3 t2g-eg peak splitting of their barium titanate sample showed a 

tetragonal-like surface and cubic-like core [93]. Moon et al. hydrothermally 

synthesised 50 nm BaTiO3 nanoparticles using only hydroxide precursors 

carried out at 180 oC for 6 hours. Their Ti-L3 edge t2g-eg splitting results are not 

consistent with the conventional phase gradient core-shell model presented in 

the literature review [20,77,93]. However, their research did confirm that the Ti-

L3 edge t2g-eg peak separation was reduced for cubic phase samples [68,93].  

The presence of a tetragonal-core and cubic-surface phase fraction identified 

by STEM-EELS was compared to the estimated phase fractions estimated by 

XRD (Chapter 4). This suggested an intra-particle phase variation in agreement 

with the conventional size-dependent phase mechanism i.e. a tetragonal-core 

and a cubic-shell [20,100]. The estimated tetragonal fraction of ~60 % for H-BT 

by Rietveld analysis was compared to a calculated ~73 % by STEM-EELS 

analysis (Table 6), Chapter 4 and Equation 11, Chapter 5) which assumed a 

cubic surface layer of ~10 nm in an average-sized particle.  

The STEM-EEL spectra acquired at SuperSTEM showed poor resolution and 

under-sampled spectra (Figure 127, Chapter 5). However, high resolution 

atomic lattice images of H-BT provided information on the surface and core of 

the nanoparticle (Figure 129, Chapter 5). The qualitative image analysis of the 

H-BT surface showed an atomically rough layer with incomplete unit cells 

(Figure 128) and an apparent cubic-like ‘strain relaxed’ surface (based on the 

previous STEM-EELS data). Li et al. claim a ‘strain relaxed’ surface in barium 

titanate nanoparticles can account for ferroelectricity above the Curie point due 

to the coexistence of all phases [171]. However, it is likely that complete 

‘relaxation’ of defects or strains only occurs when the sample is heated through 
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the Curie temperature to a 100 % cubic phase; i.e. when the H-BT sample is 

heated to 170 oC and 400 oC analysed by XRD and STEM-EELS respectively 

(in Figure 84 in Chapter 4 and Figure 120 in Chapter 5). 

Ti-atom displacement mapping at the core of H-BT (Figure 129) showed, 

random distortions in the lattice. The magnitude of the Ti-atom displacements 

measured by HAADF-STEM imaging were ~0.2 Å and this is larger than the 

maximum displacement (~0.15 Å) analysed by Polking et al. in 15 nm sized 

barium titanate [78]. Rietveld peak fitting of XRD data suggests a net distortion 

of central Ti-atom columns of ~0.02 Å (Table 6, Chapter 4) compared to ~0.2 Å 

characterised locally by HAADF-STEM (Figure 129). The larger but randomly 

oriented distortions are assumed to be associated with internal defects/strains 

[175]. The bulk measurement and lower ‘net’ distortion in XRD, is likely due to 

the global measurement of the random distortions observed locally by HAADF-

STEM. 

Thus, we arrive at a model of the H-BT nanoparticles with internal defects and 

strains (induced by the hydrothermal growth process) and a phase gradient 

from shell to core that is consistent with the strain relaxation and the core-shell 

model present in the literature [20,77]. Wada et al. proposed the source of the 

defects in hydrothermal barium titanate were internalised hydroxyl ions and 

barium vacancies that arise during the hydrothermal synthesis [81,172]. 

A similar intra-particle phase variation can be seen for H-BST with a Rietveld 

refinement-estimated tetragonal core-volume fraction of ~74 % (Figure 91, 

Chapter 4) compared to ~65 % by STEM-EELS analysis (Equation 12, Chapter 

5). Rietveld analysis suggests the net tetragonal distortion is 0.002 Å (Table 7, 

Chapter 4) compared to the local strain induced distortion of ~0.15 Å by 
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HAADF-STEM analysis (Figure 130, Chapter 5; similar to that found by Polking 

et al. [78]). The Ti-atom position distortion also continues to the surface of the 

nanoparticles (albeit smaller in magnitude compared to nanoparticle bulk as per 

the H-BT sample) even though this sample only had a ~6 nm cubic layer by 

STEM-EELS t2g-eg peak splitting analysis (Figure 132, Chapter 5) (compared to 

10 nm in H-BT). 

Overall, the characterisation of H-BT and H-BST nanoparticles suggests that 

surface roughness and internal defects/strains of the nanoparticles (Figure 129, 

Chapter 5) could give rise to a two-phase character to the particles (a 

tetragonal-like core and a cubic-like shell). This intra-particle variation in 

structure will certainly give rise to SHG because of the non-centrosymmetric 

local distortions identified by STEM-EELS and HAADF-STEM imaging and the 

global net distortions identified by XRD; i.e. second harmonic light is produced 

by all samples because it is likely to be both a surface and bulk effect [36,39]. 

Thus it is suggested that strain and internal defects may be critical parameters 

for all BaTiO3 nanoparticles if they are to produce SHG – Kim et al. [39,172]. 

 

7.1.3 Nanoparticle suspension behaviour 

Having established the potential origin of SHG, Chapter 6 investigated lung 

epithelial (A549) cell viability and genotoxicity after a 24-hour exposure to 

uncoated and poly-L-lysine (PLL) coated barium titanate nanoparticles. The cell 

viability (MTT) assay of H-BT and H-BST nanoparticles showed no significant 

reduction in cell viability at any nanoparticle concentration (up to 1000 µg/mL), 

whereas the H-BT-PLL and H-BST-PLL nanoparticles show a significant 
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decrease in cell viability at nanoparticle concentrations at ≥100 µg/mL and ≥10 

µg/mL, respectively (Figure 134 and Figure 135).  

The genotoxic (comet) assay for H-BT and H-BST nanoparticles samples 

showed no significant DNA damage to A549 cells across the nanoparticle 

concentrations (up to 1000 µg/mL). However, the H-BT-PLL and H-BST-PLL 

comet assays failed at nanoparticle concentrations higher than 10 µg/mL 

(Figure 136 and Figure 137) due to difficulties in electrophoretic separation at 

high nanoparticle concentrations, presumably due to a large positive charge 

being present (arising from the PLL). 

The PLL coating protocol was first shown by Ciofani et al. and used to improve 

nanoparticle colloid stabilisation for SHG purposes [116]. Successful PLL 

coating was shown here by: qualitative FTIR spectroscopy (Table 23), bright-

field TEM imaging (Figure 138) and a change in zeta potential (from -29 mV 

when uncoated to +49 mV when PLL coated) when the nanoparticles were 

suspended in water (Figure 140) in Section 6.2. The zeta potential 

measurement of the uncoated and PLL coated nanoparticles was attempted in 

cell culture media, but it produced varying and unreliable results; likely due to 

the interaction of the nanoparticles with the media. 

The stability of uncoated and PLL-coated nanoparticles was characterised by 

dynamic light scattering of particle suspensions in water, serum free media and 

complete cell culture media at a range of nanoparticle concentrations (0.1 to 

1000 µg/mL). This provided insight into the nanoparticle behaviour in 

suspension before they were introduced to cells (summarised in Table 27). 

Nanoparticles suspended in water showed a reasonably monodisperse 

suspension with small nanoparticle agglomerates close to the primary particle 
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size (~140 nm) being dominant by number and agglomerates of 1000’s of 

particles (~10,000 nm) being dominant by volume. The serum-free media 

suspensions however, were polydisperse by their intensity, volume and number 

distribution and the inorganic salts and electrolytes in serum free media were 

presumed to interfere with the DLS measurements [161,162].  

The intensity, volume and number distributions of nanoparticles suspended in 

complete cell culture media shows the presence of serum at ~10–50 nm, 

dominating the scattering measurement (also shown by Hondow et al. [163]). 

The H-BT nanoparticle suspension in complete cell culture media however 

showed the same particle distribution that was seen in the water suspension 

with large numbers of nanoparticles near to the primary particle size (~140 nm) 

and relatively few large agglomerates of nanoparticles (~10,000 nm). H-BT-PLL 

nanoparticles suspended in complete cell culture media showed a similar 

monodisperse system up to 100 µg/mL and above this concentration where the 

size distribution was then bimodal. At 100 µg/mL the number plot highlighted 

scattering at a primary particle size (~140 nm) and an intermediate particle size 

(~500 nm). The reported cluster size measured by Ciofani et al. was ~300 nm 

at their maximum nanoparticle concentration of 20 µg/mL [116]. Measuring 

higher concentrations than Ciofani et al. allowed for a different interpretation of 

the nanoparticle dispersion behaviour. 

The H-BST nanoparticle suspensions in complete cell culture media also 

showed the presence of serum at ~10–50 nm and a number-dominant 

agglomerate size (~200-400 nm) compared to the ~45 nm measured particle 

size by TEM (Figure 93, Chapter 4). The H-BST-PLL nanoparticles only 

showed the presence of serum at 0.1 µg/mL, with the other concentrations 
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showing the nanoparticle cluster size (~200-400 nm) to be dominant by number 

and volume.  

Overall, the DLS data gives an understanding of the nanoparticle suspensions 

before cell exposure. There are two main particle sizes that are exposed to 

cells: (a) agglomerates of near primary particle size (~140 nm) and (b) few 

relatively large agglomerates that might dominate the dose but would only kill a 

few cells. Because the MTT and Comet assays showed little change in cell 

viability and impact on the genotoxicity, the cells are able to cope with exposure 

to lots of small agglomerates (assuming the nanoparticles are taken up into the 

cell). 

The cell uptake of nanoparticles was confirmed by electron microscopy of 

critically point dried and resin embedded cells (SEM, FIB-SEM and HAADF-

STEM). Electron microscopy showed that varying amounts of nanoparticles 

were taken up into the cells after a 24-hour exposure (Figure 147). The cells 

appeared viable and had exhibited small nanoparticle agglomerates that has 

been internalised (Figure 151, Chapter 6); consistent with the DLS summary. 

However, for the PLL-coated nanoparticles, no clear coating was visible after 

they were internalised by the cells (Figure 150). This was also present in the 

work by Ciofani et al. and they suggested that poly-L-lysine undergoes 

dissolution upon cell internalisation [116]. Cryo-TEM of H-BT and H-BT-PLL 

nanoparticles suspended in water (vitreous ice) showed an obvious coating for 

H-BT-PLL nanoparticles (Figure 155, Chapter 6). Cryo-TEM of H-BT and H-BT-

PLL nanoparticles suspended in complete cell culture media were acquired in 

order to understand their dispersion behaviour when being introduced to cells. 
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When H-BT nanoparticles were suspended in complete cell culture media at 

100 µg/mL, plunge frozen and imaged by TEM (Figure 156) they showed 

cluster sizes of ~200 nm which were similar to the size measured by DLS 

(Figure 143). H-BT-PLL nanoparticles in complete cell culture media on the 

other hand showed a number of particles that were obviously coated and 

another fraction which were not (Figure 157). This accounted for the bimodal 

number plot distribution seen by DLS measurements (Figure 143), where the 

coated H-BT-PLL nanoparticles seen in TEM are the intermediate particle size 

(~500 nm) identified by DLS and the uncoated nanoparticles seen in TEM are 

the primary particle size agglomerates (~140 nm) identified by DLS. Cryo-TEM 

with HAADF-STEM EDX mapping was used to determine the composition of 

the coating around the H-BT nanoparticle which was revealed to be calcium-

phosphate (Figure 159). The complete cell culture medium contained 200 

µg/mL of calcium chloride and 400 µg/mL of sodium phosphate [164].  

If it is still assumed that the H-BT-PLL nanoparticles had a poly-L-lysine 

coating, as identified by the positive zeta potential measurements and other 

TEM images (in Section 6.2), it could be that a calcium phosphate layer forms 

from the media to screen the net positive charge of the PLL coating (initially by 

phosphate group migration and then by calcium migration). At a sufficient 

nanoparticle concentration all the Ca ions in the media could be used up. This 

leaves a fraction of H-BT-PLL nanoparticles not coated in calcium phosphate. 

This fraction with only PLL at the surface, could on exposure to cells reduce 

cell viability as observed here (Figure 134) and presented by Ciofani et al. 

[116]. Moreover, increased uptake could occur due to the positive surface 

charge of the nanoparticle and increased cytotoxicity may follow (Fröhlich [51]). 
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The impact of direct cellular contact with poly-L-lysine is described by other 

research [51,167,168]. It is also possible that the resulting lack of calcium ions 

in the media (which are typically used for cell signalling) may also lead to cell 

death [170]. 

It is possible to show that all the calcium ions in the complete cell culture media 

would be used to coat the 100 nm H-BT nanoparticles at a concentration of ~70 

µg/mL or higher (Section 6.6.1 in Chapter 6). This is consistent with the 

observed onset of a bimodal distribution at 100 µg/mL of primary particle size 

agglomerates (~140 nm) and intermediate size agglomerates (~500 nm) by 

DLS (Figure 143) and by cryo-TEM size measurements (Figure 163). 

 

In summary, hydrothermal synthesis of BaTiO3 nanoparticles has been shown 

to be an appropriate route to produce SHG biomarkers because of potential 

internal defects and strains that produce a core-shell phase structure ideal for 

SHG production. Sr additions are shown to potentially enhance SHG, although 

this cannot be confirmed because the resulting particle sizes are smaller than 

the equivalent H-BT particles. Uncoated hydrothermal H-BT nanoparticles are 

shown to be biocompatible and induce very little cytotoxicity, despite being 

taken up by lung epithelial cells. This is because: (a) BaTiO3 is not especially 

toxic [40] and (b) the nanoparticles disperse reasonably well in cell culture 

media, producing small clusters of few primary particles (number dominant) 

with only some  large clusters of nanoparticles (volume dominant). Therefore, 

most cells will only be exposed to small clusters of nanoparticles and hardly 

any exposed to large nanoparticle agglomerates (seen in the cell uptake by 

electron microscopy; Figure 152). If the cells can tolerate nanoparticle 
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internalisation (of small agglomerates) as evidenced by TEM data; then most 

cells will be unaffected by exposure to the barium titanate nanoparticles.  

Functionalising the nanoparticles with PLL aimed to enhance cellular uptake by 

using a positively charged coating, however it had a very different impact and 

the coating ‘interacted’ with the delivery media in an unexpected way. Here, we 

show a positively charged coating potentially takes all of the vital calcium ions 

out the media (by causing them to precipitate electrostatically into an additional 

coating on the positively charged polymer coated-nanoparticle). This has 

significant impact on the exposed cells (either through direct exposure to PLL 

or calcium ion deficiency) and makes such a coating unsuitable for long-term 

biomarker applications. 

 

7.1.4 Summary 

Thus, this work adds to the body of knowledge on H-BT nanoparticles for 

biomarkers by showing the potential source of SHG in hydrothermally prepared 

H-BT nanoparticles (if not all barium titanate nanoparticles shown in this work). 

In addition, I have shown that understanding the dispersion behaviour of such 

nanoparticles in delivery media is essential prior to cellular or tissue exposure 

for biomarker applications. 



 
 

292 

Chapter 8 – Conclusions and future work. 

 

The aim of this project was to explore barium titanate nanoparticle systems for 

biomarker applications. Using a hydrothermal synthesis method, barium titanate 

(H-BT) and barium strontium titanate (H-BST) nanoparticles were successfully 

synthesised and were characterised for their multiphoton second harmonic 

generation of light and their associated biomarker applications.  

8.1 Outcomes:  

8.1.1 Structural characterisation and underpinning Science  

Successful hydrothermal syntheses of BaTiO3 and Ba0.8Sr0.2TiO3 nanoparticles 

were characterised by X-Ray diffraction (XRD), electron microscopy (TEM and 

SEM), electron energy loss spectroscopy (EELS) and multiphoton second 

harmonic generation (SHG). The homogenous incorporation of strontium ions into 

the barium titanate lattice was proposed in order to increase the dielectric constant 

(and therefore increase the net polarisation) at a lower Curie temperature, and 

therefore enhance the SHG output overall. However, smaller H-BST nanoparticles 

(~45 nm) in comparison to H-BT (~140 nm) required more laser power which 

increases the risk of damage to cellular and tissue structures. i.e. the need for a 

higher flux of near-infrared incident radiation would increase the damage risk to 

exposed biological material. Although, successful SHG was possible from H-BST, 

a direct size comparison would be required to determine whether strontium 

incorporation truly enhances SHG.  The crystal phase of the nanoparticles was 

characterised by Rietveld refinement of synchrotron XRD data, which estimated 
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that most nanoparticles were a combination of tetragonal and cubic crystal phases 

(except for a commercial tetragonal barium titanate sample, CT-BT). The H-BT 

and H-BST samples were estimated to have a tetragonal phase fraction of ~60 % 

and ~75 % respectively. High resolution electron microscopy and electron energy 

loss spectroscopy determined the source of SHG to be both a surface and bulk 

effect; due to the random Ti-atom displacement present in the bulk of the 

nanoparticle (meaning it is non-centrosymmetric) and an atomically rough surface 

layer of the nanoparticles (with a corresponding lack of inversion symmetry i.e. 

non-centrosymmetric). XRD showed the presence of two phases (cubic and 

tetragonal), whereas SHG showed that all particles emit and STEM-EELS 

suggested a tetragonal core and a cubic surface. Therefore, we suggest 

agreement with recent research indicating a core-shell structure for these 

nanoparticles. This was consistent with high-resolution STEM imaging data which 

although showed Ti-atom distortion towards the surface of the nanoparticle, the 

displacement was found to be smaller at the surface as compared to the bulk of 

the nanoparticle, suggesting a gradient-lattice strain layer; [77]. In-situ STEM-

EELS showed a mixed phase tetragonal-like core and cubic-like shell when the Ti-

L3 edge t2g-eg peak splitting was measured across the nanoparticle when heated. 

When the H-BT sample was heated in-situ above the Curie point, STEM-EELS 

showed a cubic-like Ti-L3 edge t2g-eg peak splitting across the whole nanoparticle, 

suggesting a tetragonal to cubic phase transformation occurred. This was also 

confirmed by electron diffraction of CT-BT and H-BT particles, showing a 

tetragonal to cubic phase change when heated above the Curie point. This work 
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presents the underpinning science that shows hydrothermal synthesis induces 

growth defects and strain gradients that produce core-shell nanoparticles suitable 

for SHG. 

8.1.2 Application and underpinning coating mechanisms 

Nanoparticles were successfully coated with a positively charged poly-L-lysine 

(PLL) polymer shown by FTIR, electron microscopy and zeta potential 

measurements. The PLL coating was used to try to enhance or to promote cellular 

uptake, (due to the net negative charge of the A549 lung epithelial cell) however, 

no quantitative study was performed to compare the uptake of uncoated and PLL-

coated nanoparticles. MTT and Comet assays were used to measure the cell 

viability and genotoxicity of uncoated and PLL coated nanoparticles after 24-hour 

exposure to the A549 lung epithelial cells, showing a decrease in cell viability for 

PLL coated nanoparticles at high exposure concentrations (≥100 µg/mL). 

The nanoparticle suspensions in water, serum free media and complete cell 

culture media were measured by dynamic light scattering (DLS) and most of the 

suspensions appeared reasonably monodisperse with dominant numbers of 

agglomerates close to the primary particle size (~200 nm) and a few large 

nanoparticle agglomerates that were significant by volume (~10,000 nm in size) 

being present. DLS data suggested that nanoparticle clusters (near primary 

particle size) would dominate uptake by cells as they were number dominant. H-

BT-PLL nanoparticles suspended in complete cell culture media at above critical 

concentrations ≥100 µg/mL, showed a bimodal number distribution of near primary 
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particle size agglomerates (~150 nm) and intermediate size agglomerates (~500 

nm), as well as the expected low fraction of large volume agglomerates.   

Cell uptake was identified by electron microscopy of critically point dried and resin 

embedded cells, showing primarily that small agglomerates were taken up by 

cells, and confirming that BaTiO3 and Ba1-xSrxTiO3 nanoparticles can be used for 

biomarker work. However, the cell viability drops at high dosing concentrations 

and is significantly lower for positively charged nanoparticles, which is likely due to 

the interaction with complete cell culture media identified by Cryo-TEM (see 

below). Electron microscopy of H-BT-PLL nanoparticles showed cell uptake with 

no visible PLL coating present.  

H-BT-PLL was analysed by cryo-TEM to understand the nanoparticle suspension 

behaviour in cell culture media before being introduced to the cells. It was 

observed that H-BT-PLL nanoparticles interacted with constituent ions from the 

complete cell culture media to give nanoparticles coated in a ~ 100 nm thick 

calcium phosphate layer. Potentially this removed all the calcium ions from the 

stock complete cell culture media at nanoparticle concentrations of ~70 µg/mL and 

above, resulting in either a portion of H-BT-PLL nanoparticles without a calcium 

phosphate coating being in direct contact with the cell, or the removal of calcium 

ions in the media that are used for cell signalling. Either possibility could have led 

to cell death. This nanoparticle interaction has not been identified before and is not 

currently well understood. 
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8.2 Recommendations for Future work 

An overall recommendation from this work is to use BaTiO3 and Ba1-xSrxTiO3 

nanoparticles for future SHG work. The source of SHG in hydrothermally 

synthesised nanoparticles has been identified by EELS and high resolution 

electron microscopy arising from a core-shell nanoparticle structure. This plus 

other research has shown SHG to occur for particle sizes down to 22 nm (~45 nm 

in this research), even though the particles are expected to be cubic in phase at 

this size [39]. Future work could explore: 

 

• Using similar BaTiO3 and BaSrTiO3 nanoparticle sizes to quantify the SHG 

output and determine quantitatively whether strontium addition improves 

SHG output. 

• Quantify the uptake of uncoated and coated BaTiO3 and BaSrTiO3 

nanoparticles by high-throughput screening of SHG using flow cytometry 

as well as low throughput electron microscopy (similar to work published by 

Summers et al. on quantum dots [176]).  

• To measure the SHG output of BaTiO3 and BaSrTiO3 nanoparticles in cells 

to quantify the output signal generated from the nanoparticles in vitro 

similar to the survey of nanoparticles by Staedler et al. [40]. 

• Investigating polymer coatings on barium titanate nanoparticles such as the 

interaction of polymer in different electrolytes and also the effect of 

changing the nanoparticle:polymer ratios. 
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• Undertake a survey of polymers for functionalisation of the BaTiO3 

nanoparticle system, using different polymer systems (adjusting the 

surface charge or attachment to the particle) and assessing which 

nanoparticle system is best for dispersion and SHG imaging for intravital 

microscopy (i.e. least cyto- or genotoxic).  

• From the results of these studies, the nanoparticle system could then be 

used to look at specific targeting. Due to the size of the nanoparticles it 

would be best to target tumours as opposed to cells) and apply these 

techniques to intravital microscopy. A clear exploratory route forwards 

would be to use the H-B(S)T system with specific surface targeting for 

tumours and apply this to surgical resection by intravital microscopy. 
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