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Abstract 

 

This thesis describes the conceptualisation and realisation of GaAs-based self-

aligned stripe (SAS) distributed feedback lasers (DFB) based on GaAs-InGaP regrowth 

technology, and its incorporation into the development of master oscillator power 

amplifier (MOPA) photonic integrated circuit (PIC). 

GaAs-based SAS DFB lasers operate via a single longitudinal mode and provide a 

robust, portable and low cost solution to enable a broad range of potential applications. 

Compared to other waveguides, e.g. ridge waveguide, SAS structures enable narrower 

active regions and demonstrate better characteristics with a lower sensitivity to 

temperature. 

In my designs, InGaP/GaAs buried gratings are formed utilising an Al-free grating 

sequence GaAs-InGaP-GaAs, whilst the SAS waveguides are realised via a stripe-

etched n-doped InGaP optoelectronic confinement layer, where no AlGaAs is exposed 

during the fabrication process. 

Chapter 1 goes through the development of DFB lasers over almost 5 decades since 

its birth in 1970s, followed by discussion of the gap between present GaAs-based PIC 

technologies and their commercialisation. After, Chapter 2 introduces the experimental 

methodology involved in the research activities conducted: fundamental principles of 

DFB lasers and the 4-stage research process. 

The following 3 chapters describe the 3 main projects in this research. Chapter 3 

begins with the design of 2, 4 and 6 InGaAs QWs narrow ridge DFB lasers in, and 

then moved onto the conceptualisation and realisation of 2 and 4 InGaAs QWs SAS 

DFB lasers in Chapter 4. This SAS-DFB technology was then applied to the 

development of monolithically integrated 4 InGaAs QWs MOPA PIC in Chapter 5.  

In Chapter 6, I outline some future work to be conducted for further achievement. An 

optimised design of SAS-DFB-MOPA is first discussed. I then present some 

preparatory works for two other potential future directions: widely tunable GaAs-based 

sampled grating distributed Bragg reflector laser (SG-DBR) and high power ~1180nm 

In(Ga)As/GaAs DWELL (dot-in-a-well) SAS-DFB-MOPA. 
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 Introduction Chapter 1.

 

 

After Einstein showed the existence of stimulated emission, the first laser action was 

developed in 1960 by Maiman [1] in ruby. The word “laser” is the acronym for “light 

amplification by stimulated emission of radiation”. A laser is also regarded as a laser 

oscillator, which generates laser light output without light input. This means that a laser 

performs initially as a light emitter, as well as a light amplifier. In the past half century, 

the blooming of semiconductor lasers has vigorously boosted the development of 

optical systems. Today, semiconductor lasers are undoubtedly playing increasingly 

significant roles in numerous applications, such as optical data storage, spectroscopy, 

metrology, material processing and medical treatments. Especially, the use of 

semiconductor lasers in optical data transmission makes them the backbone supporting 

today's Information Age. Semiconductor lasers demonstrate better lasing performance 

over other alternatives like dye lasers or gas lasers. In general, they operate more 

robustly and reliably while generating highly coherent optical waves at sufficiently high 

output powers, whilst maintaining a high efficiency of electrical-to-optical power-

conversion. In addition, semiconductor lasers are smaller and cheaper than alternatives. 

This chapter starts with the background and fundamental principles of semiconductor 

lasers (Sections 1.1 and 1.2), then moves onto the core research topic of this thesis, i.e. 

distributed feedback (DFB) lasers. Section 1.3 establishes an overview of the historical 

development of DFB lasers since the 1970s. In Sections 1.4 and 1.5, two core 

technologies involved in my research are discussed, i.e. grating fabrication and photonic 

integration, followed by an overall description of the project motivation (Section 1.6).  
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1.1 Background 

 

The concept of semiconductor lasers was first demonstrated and reported in 1962 by 

several groups [2]-[5]. Since then, semiconductor lasers have undergone an all-aspect 

development during the next 55 years to this day, including the design concepts of 

epitaxial structures and waveguides, and their related fabrication methods and 

techniques. The fundamental concept of semiconductor lasers is shown in Fig. 1-1: a 

laser utilises stimulated emission, (a), in a gain material within a layered epitaxially-

grown structure, e.g. (b) a double heterostructure “p-i-n” junction, which is fabricated 

into an optical waveguide geometry that provides lateral optoelectronic confinement 

(e.g. ridge waveguide) with certain mechanisms providing optical feedback for the 

generated optical wave (e.g. front-end facets or grating), as shown in (c). This will be 

described in detail in in the Section 1.2.  

(a) 

 

(b) 

 
 

 
(c) 

Figure 1-1: Fundamental concept of semiconductor lasers: (a) stimulated emission, (b) double 

heterostructure “p-i-n” junction and (c) ridge waveguide Fabry-Pérot (FP) laser with 

asymmetric facet reflectivity 
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In the design and development of a laser with an anticipated functionality, it is 

significant that the lasing performance matches the set of required characteristics, 

including spectral profile, beam profile and L-I (light output to current injection) profile. 

The spectral profile concerns aspects like the lasing wavelength, linewidth and whether 

emission is via multi-mode or single mode. The requirement in the beam profile of a 

laser is either based on the condition of its direct usage or in accord with the situation 

where its output light needs to be coupled into a next section (a fibre or device). 

For a commercially available laser, a packaging method is chosen in accord with its 

characteristics (output beam profile, output power and operating temperature) and its 

expected application situations, which concerns the limitation of package size/shape, 

whether a fibre is needed and so on.  

 

Nowadays, most commercial semiconductor lasers in the wavelength range from 

650nm to 2μm are based on two major types: GaAs-based lasers (grown on gallium 

arsenide substrates) and InP-based lasers (grown on indium phosphide substrates).  

 

1.1.1 InP-based and GaAs-Based Lasers 

 

The wavelength of a laser is primarily determined by the bandgap energy of the 

intrinsic material (active region). Although any direct-bandgap semiconductor can 

theoretically be used to produce lasers, the requirements for different alloys, i.e. 

epitaxial layers, to be lattice-matched and capable of being precisely doped limit the 

options of available material systems.  
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Fig. 1-2 maps several commonly used alloys into coordinates of band gap energy 

(left-hand y-axis) and lattice constant (x-axis) at room temperature. The corresponding 

wavelength associated with the band gap energy is shown on the right-hand y-axis.  

Both InP-based and GaAs-based laser systems use the alloys of the same 

constituents: gallium (Ga), aluminium (Al), indium (In), arsenic (As) and phosphorus 

(P), but grown in the compositions lattice-matched to InP and GaAs respectively. 

Additionally, for the applications requiring longer wavelengths (~10μm), quantum 

cascade lasers (QCL) were developed operating via inter-sub-band transitions, whilst 

gallium nitride (GaN) system is developed for applications requiring a shorter 

wavelength of ~400nm. 

 

Figure 1-2: Lattice constant and bandgap energy of various III-V semiconductors at room 

temperature (adapted from Tien, 1988) [6] 

For applications requiring wavelengths in the range of 1.3μm-2μm, lasers are 

fabricated with InP-based material systems. Especially, in long-haul optical 

communications, InP-based lasers lasing at wavelengths of 1300nm, 1480nm and 

1550nm have been intensively studied, and their development has underpinned the 

improvement in fibre optic communications and the internet revolution. But for 
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applications like optical information recording/processing, optical measurement, 

biomedical applications and sensing requiring wavelengths shorter than ~1200nm, InP-

based materials are no longer suitable due to the material’s bandgap energy (Eg), where 

InP is used as the cladding and the band-gap offset becomes undesirable (ΔEc ~ ΔEg) for 

<1200nm, which severely limits their potential to satisfy a rapidly growing demand for 

innovation in this wavelength regime.  

The GaAs-based material systems are for the wavelength range of 650nm-1200nm, 

and overlap with InP-based systems up to 1310nm has been realised. Compared to their 

counterparts, GaAs-based components with better performance are beginning to enter 

the market in large volume (e.g. those based on quantum dots sold by the QD Laser 

Inc., Japan). To date, devices operating up to ~1600nm are also available on GaAs, e.g. 

diluted nitrides (GaInNAsSb) [7], bismides (GaAsBi) [8] and bilayer QDs [9]. 

Fig. 1-3 shows the range of active material systems available to be grown on GaAs 

and the range of wavelengths they can access, together with some typical applications 

that can be addressed at these wavelengths. 

 

Figure 1-3: Potential spectral range addressed on GaAs, available active materials and 

associated applications with impacts envisioned, where the solide line represents commercially 

available materials and wavelength eregion, whilst the dotted line represents research grade 

materials and wavelength region 
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Wavelengths of 650nm-780nm are commonly used in optical storage and displays; 

785nm, 808nm, 830nm, 920nm and 940nm are commonly used for solid state pumping 

and printing; 980nm is used for erbium doped fibre amplifier (EDFA) pumping in 

telecommunications; ~1060nm can be used for green light (520~560nm) generation 

through second harmonic generation (SHG), i.e. frequency doubling; and ~1300nm can 

be used for optical communications substituting InP-based lasers. In terms of 

manufacture, GaAs-based lasers benefit from the use of larger substrates (6 inch) for 

reduced fabrication costs. Furthermore, GaAs-based lasers enjoy a more favourable 

band off-set, which improves carrier confinement thus enabling higher temperature 

operation. Additionally, GaAs is also a cheaper and more robust material. 

 

1.1.2 Single Longitudinal Mode Laser 

 

For many applications, stable lasing operation via a single longitudinal mode (SLM) 

with a sufficiently narrow linewidth and a sufficiently high side mode suppression ratio 

(SMSR). Traditional Fabry-Pérot (FP) lasers, as illustrated in Fig. 1-1, are no longer 

feasible for such a spectral profile. Based on the concept of FP lasers, SLM can be 

achieved by introducing periodically structured mechanisms in the laser designs to 

provide wavelength selectivity in a similar way to diffraction gratings.  

Fig. 1-4 illustrates the schematic diagrams of three well-studied SLM laser 

structures: (a) distributed Bragg reflector laser (DBR), (b) distributed feedback laser 

(DFB) and (c) vertical-cavity surface-emitting laser (VCSEL). A DFB laser employs a 

periodic structure (grating) along the gain medium, whilst a DBR laser has one or two 

DBR (grating) sections located on one or both sides of a gain section, and a VCSEL 
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utilises the epitaxially grown layers as the diffraction grating. Despite some advantages 

provided by VCSEL lasers (e.g. high beam quality with low divergence), DFB and 

DBR lasers are more favourable not only because the limitation of the maximum output 

power for a single VCSEL laser, but also due to their capability of being monolithically 

integrated into photonic integrated circuits (PICs), where a majority of optical systems 

are designed and realised with transverse propagation of light, i.e. edge emitting.  

(a) 

 

   
 (b) (c) 

Figure 1-4: Schametic diagram of (a) DBR laser, (b) DFB laser and (c) VCSEL 

Between DBR and DFB lasers, the latter has prevailed as the more cost-effective 

option. In addition, instead of having passive gratings located outside the active region, 

DFB lasers have gratings fabricated along the length of the waveguide. Although the 

grating functions under the same electrical and thermal operating conditions as the laser, 

which may result in less independency compared to the gratings in DBR lasers, the 

DBR lasers suffer from severe mode-hopping at high power [4], and hence the DFB has 

become the natural choice in single mode laser design. Furthermore, although both DFB 

and DBR lasers have potential for incorporation as the light source in PIC designs due 

to their independence upon cleaved facets for optical feedback, an additional 

active/passive integration technique is usually required even in the simplest DBR-PIC 

designs for a better device performance. 
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1.2 Fundamental Principle of Semiconductor Lasers 

 

This section outlines the most related principles of semiconductor lasers, which 

support the laser design and development in the following chapters. This part starts with 

the energy bands and band gap, which are the ultimate determiners of the optoelectronic 

properties a material; then moves onto the optical properties of semiconductors, in 

which the stimulated emission process is the basis of laser operation; followed by 

several significant aspects of the structural design of semiconductor lasers, including the 

double hetero-structure (DHS), quantum well, laser cavity and waveguide design. 

 

1.2.1 Energy Bands and Band Gap  

 

In solids, isolated atoms are brought together at a balance between attractive and 

repulsive forces. Such a process significantly changes the electron energy levels. To 

avoid violating the Pauli Exclusion Principle, with the decreasing distance between 

atoms, electron wave functions start to overlap and split into discrete energy levels in 

the form of bands, as illustrated in Fig. 1-5. For a solid, the two highest energy bands, 

i.e. valance band and conduction band, are important in determining its optical-electrical 

properties. The forbidden energy gap between valance and conduction bands (Eg) is 

called the energy gap.  

Kronig-Penney model considers an ideal one-dimensional single crystal array. The 

potential satisfies the same spatial period corresponding to lattice spacing. By applying 

Schrödinger equation, the result, as shown in Fig. 1-6 (a), which can be simplified to a 
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reduced zone version as highlighted by the yellow area, shows that there are a series of 

allowed energy bands with forbidden bands in-between. 

 

Figure 1-5: Development of discrete energy levels into energy bands [10] 

  
(a) (b) 

Figure 1-6: (a) E-k relationships of Kronig-Penney mode and its reduced zone representation 

(yellow area) and (b) energy band structure of gallium arsenide (GaAs) [11] 

In real 3-dimensional crystals, the E-k relationship is much more complicated than 

the Kronig-Penney model. Fig. 1-6 (b) shows the E-k relationship of gallium arsenide 

(GaAs), which illustrates significant difference between the calculated ones as shown in 

Fig. 1-6 (a). The nature of being a direct bandgap semiconductor (minimum energy of 

conduct band and maximum valance band energy are at the same k) makes GaAs an 

ideal material for developing semiconductor lasers. 
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1.2.2 Optical Properties of Semiconductor 

 

The principle of semiconductor lasers lies in the interaction between light and 

semiconductor materials. As shown in Fig. 1-7, there are three ways that light (photons) 

interacts with electrons in semiconductor material, i.e. absorption, spontaneous emission 

and stimulated emission. In the figure the dots represent electrons, the circles represent 

holes and the waved arrows represent optical waves. 

 

Figure 1-7: Three ways that a electron interacts with a photon: absorption, spontaneous 

emission and stimulated emission [12] 

 

Absorption refers to the process that an electron initially in a lower energy level 

absorbs the energy from a photon and gets excited to a higher energy level.  

Spontaneous emission refers to the process when an electron initially in a higher 

energy level jumps back to a lower energy level and releases the energy in the form of a 

photon. This process and the propagation direction of the generated photon are both 

random.  
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Stimulated emission refers to the process when an electron initially in a higher 

energy level is stimulated by a photon to jump back to a lower energy level to generate 

a photon with identical properties to the initial photon. 

 

In addition to the above 3 processes, there is also non-radiative recombination, 

including Auger recombination and recombination at defects. In such processes, a 

conduction band electron recombines with a valence band hole while generating no 

useful photons, but phonons or lattice vibration. In the context of the semiconductor 

laser, these processes should be avoided, because they represent the loss of electrons 

which do not contribute to the gain. 

 

1.2.3 Laser Structures 

 

The process of stimulated emission provides optical gain to an incident wave by 

generating a coherent wave, i.e. same direction and phase. Therefore, the optical 

radiation propagating through the medium will be amplified as long as the stimulated 

emission process overwhelms the absorption in the cavity which requires a high density 

of electrons in the conduction band. However, under thermal equilibrium, more 

electrons naturally exist in the valance band resulting in the absorption process 

surpassing the stimulated emission.  

Therefore, the material has to be driven into a non-equilibrium state to invert the 

carrier population by energy injection. For semiconductor lasers, population inversion is 

realised by injecting current into a p-n junction-based structure. 
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 Double Heterostructure (DHS) 

The first generation semiconductor lasers [2]-[5] were designed as homo-junction 

structures working at forward biased condition. As illustrated in Fig. 1-8, a homo-

junction structure can be regarded as a normal p-n junction with an additional intrinsic 

(un-doped) layer in-between. Electrons are injected from the n-type region and holes 

from the p-type region, thereby achieving population inversion in the intrinsic layer. 

These structures suffered from a weak confinement of injected electrons and holes 

 

Figure 1-8: Band structure and refractive index step profiles of homo-junction and hetero-

junction structures [12] 

 

The concept of the double heterostructure (DHS) was first formulated in 1963 

independently by Russian researchers Alferov and Kazarinov [13] and U.S. researcher 

Kroemer [14], and was realised for room temperature operation in 1969 [15]. From the 

1960s to the 1970s, international competition in studying heterostructure (hetero-

junction) lasers [16]-[18] was fierce, and the realisation of the DHS led to a huge 

development of semiconductor lasers.  
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A shown in Fig. 1-8, a DHS is formed by sandwiching an un-doped layer of one 

material with a smaller bandgap by two cladding layers, p-doped and n-doped 

respectively, of another material with a larger bandgap. A “p-i-n” junction is formed 

and the carrier confinement in the intrinsic layer is provided by the bandgap offset, 

which provides a potential well for carriers entering this region. The intrinsic materials 

also have higher refractive indices than that of the cladding materials, resulting in a 

favourable photon confinement through total internal reflection. 

 

 Quantum Well 

As described above, the DHS provides both optical and electrical confinements. 

When the thickness of the middle layer is reduced to be comparable to the de Broglie 

wavelength of the electron and holes (approximately 40 atomic layers thick), the 

allowed energy levels in the layer is no longer continuous, but quantised. This is when 

the DHS becomes a quantum well (QW) structure, in which quantum physics effects 

can be exploited in laser design at room temperature.  

Fig. 1-9 illustrates the quantisation of the allowed energy levels in an ideal “infinite 

well” model, where the barriers on both sides of the quantum well are infinitely high, 

such that the wave-function is zero. Viewing this as a simple “particle-in-a-box” model, 

by applying Schrödinger's equation, the calculated allowed discrete sinusoidal wave-

functions are with quadratically spaced energy levels. 

Fig. 1-10 compares the optical absorption spectrum in a bulk structure and in a 

quantum well structure, where the existence of excitons is neglected. In a bulk structure, 

the profile of the curve follows that of the density of states.  
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Figure 1-9: Illustration of quantisation in an “infinite well” through the “particle-in-a-box” 

model [19] 

In a quantum well structure, the transitions in the valence and conduction bands are 

only allowed to occur between the states with the same quantum number, resulting in a 

“sub-bands” profile. 

 

Figure 1-10: Optical absorption in a bulk structure and in a quantum well structure (excitonic 

effects are neglected) [19]  
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 Fabry-Pérot (FP) Laser Cavity 

The manufacture of semiconductor lasers is based on epitaxial growth techniques. 

Therefore, the semiconductor lasers are either surface-emitting lasers, e.g. VCSELs, or 

edge-emitting lasers. FP lasers are a traditional edge-emitting laser type. They achieve 

optical feedback for amplification by letting the optical radiation resonate inside the 

cavity between facet mirrors, where the cavity is formed of (or partially formed of) gain 

medium. Other alternatives include DFB lasers and DBR lasers in which the optical 

feedback is distributed along the periodically structured diffraction grating.  

Fig. 1-11 shows a FP cavity consisting of a highly-reflective coated rear mirror, a 

partially defined gain medium and an uncoated or anti-reflective coated front mirror, 

where the gain medium is pumped.  

 

Figure 1-11: Schematic diagram of a FP laser with partially defined gain medium [12] 

When the light is propagating in the cavity, a certain portion of it is repeatedly 

reflected back between the facets. Its intensity increases (obtains gain) if the injected 

current is high enough to achieve population inversion for stimulated emission to 

dominate the process. With increasing current, the gain increases until a threshold 

current is reached for the gain of a round trip to compensate the sum of internal loss and 

mirror loss. This is when the device starts to lase. With higher current injection, both 

gain and carrier density clamp in an operating laser. 
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 Waveguide Structures 

The lateral confinement of the photon and carriers is realised through waveguide 

geometries. Lateral confinement is especially significant for the development of single 

longitudinal mode (SLM) lasers that also require a single lateral mode operation [20].  

For gain-guided laser structures, this is achieved by laterally confining the gain 

stripe. As illustrated in Fig. 1-12 (a), the pumping current is limited to a predefined 

stripe contact. Although the injected current spreads laterally underneath, the current 

density will reduce to a level that the active region is dominated by absorption, so that 

the optical field is confined to the stripe area. 

Index guiding can be achieved in the structures with lateral variation of refractive 

index. Fig. 1-12 (b) shows a ridge laser with weak index guiding which is further 

contributed with gain guiding. Fig. 1-12 (c) shows a buried DH laser with strong index 

guiding which dominates the lateral optical field confinement. 

 
(a) (b) (c) 

Figure 1-12: Schematics of edge-emitting laser diode structures [20]: (a) gain guided, (b) ridge 

waveguide: week index guiding and (c) buried heterostructure (BH): strong index guiding 

Comparably, in buried DH lasers, strong index-guiding and a strong carrier 

confinement in the lateral direction can both be achieved. Also, such structures usually 

have lower threshold current density with a more stable mode pattern. 
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1.3 Distributed Feedback Lasers 

 

This section takes a historical view and briefly introduces the development of DFB 

lasers during the recent 4 decades since their conceptualisation and realisation in the 

1970s to the present days. 

 

1.3.1 First Realisation in the 1970s 

 

The fundamental concept of the DFB laser was developed by Herwig Kogelnik, 

Charles Shank and other co-workers in Bell Laboratories during 1969-1972: the coupled 

wave theory for thick hologram gratings [21] and its effect upon stimulated emission 

[22], and led to publication of the ‘Coupled-Wave Theory of Distributed Feedback 

Lasers’ [23], where the DFB lasers is defined as the laser structures “provide feedback 

via backward Bragg scattering from periodic perturbations of the refractive index and/or 

the gain of the laser medium itself”. 

The first generation DFB lasers were developed by several groups in 1974-1975: the 

research group in Xerox Palo Alto Research Centre [24] and the group of Hitachi Ltd. 

and California Institute of Technology [25] were 2 pioneers. In their reports, both 

research groups employed the same method to form the corrugation: p-AlGaAs grown 

on etched GaAs. Fig. 1-13 shows the schematic diagram of the GaAs/AlGaAs DHS 

DFB reported in [25]. The laser was fabricated in a 2-step LPE (liquid -phase epitaxy) 

process. In the first step, 4μm n-Al0.3Ga0.7As and 1.5μm p-GaAs were grown on n-GaAs 

substrate. After etching the corrugations (period: 340nm, 3
rd

 order, depth: 90nm) into 

the p-GaAs layer, in the second step 3μm p-Al0.3Ga0.7As and 1μm p-GaAs were grown 
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on the corrugated surface. This design demonstrated 811nm single mode lasing at 80-

l00K with a threshold current density of 2500A/cm
2
 in pulsed operation.  

 

Figure 1-13: Schematic diagram of the GaAs/AlGaAs DHS DFB reported in [25] 

In comparison, a single heterojunction GaAs/AlGaAs laser was reported in [24], 

where the corrugations were directly etched into the GaAs substrate with 30μm AlGaAs 

grown above, which consisted of a GaAs n-type substrate, a GaAs p-type diffused layer 

and a AlGaAs p-type grown layer. The devices demonstrated a threshold current density 

of 1200A/cm
2
 in pulsed operation at ~77K. By applying different corrugation periods, 

they successfully designed a range of DFBs lasing at wavelengths from 843nm to 

856nm. But their design concept was not continued further due to many advantages of 

DHS structures, such as better electrical and optical confinement. 

Since very beginning, researchers already started to realise the potential for DFB 

lasers to be monolithically integrated, enabled through their independence upon end 

mirrors. Hitachi furthered their DHS DFB study and in 1977 they reported a frequency-

multiplexing light source model consisting of a monolithically integrated GaAs/AlGaAs 

DFB laser array [26], as shown in Fig. 1-14. By exploiting the ~20nm gain spectrum 

width of GaAs, they demonstrated a 6 channel design with the shortest lasing 

wavelength of ~891.2nm and the longest of ~903.1nm, with a ~2nm difference between 

channels. In terms of the active/passive integration, they employed an off-set method by 
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first etching the waveguide sections down to the substrate immediately after the 

definition of grating areas, followed by overgrowth of AlGaAs to complete both the 

grating and the passive waveguide sections. 

 

Figure 1-14: Schematic diagram of first generation DFB monolithic integration: frequency-

multiplexing DFB array reported in [26] 

Despite the weak performance of the prototype above, it demonstrated the potential 

for DFB lasers to be used in monolithically integrated photonic systems. 

  

1.3.2 Development of InP/InGaAsP DFBs 

 

In the 1980s, research concentrated on InP/InGaAsP DFB lasers operating in the 

wavelength range of 1.3μm to 1.5μm. Because this range matches the application for 

long haul high bit rate communications system due to their stability in SLM operation 

under high-speed direct modulation with low dispersion and low loss in silica optical 

fibres. During that time, one extensively studied waveguide design was the BH DFBs. 

As for the cavity design, the lasers usually had one cleaved facet for fibre coupling and 

a specially designed rear structure like a tilted facet, unexcited regions or window 

regions to assist in suppression of the FP mode. 

In 1982, Matsuoka at el. from Atsugi Electrical Communications Laboratories of 

Nippon Telegraph and Telephone (NTT) corporation developed a 3-step LPE growth 
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process for the fabrication of a 1.5μm BH GaInAsP/InP DFB laser [27] [28]. Fig. 15 (a) 

shows their improved device designs [28], where the corrugation was etched in the P-

doped InGaAsP guide layer immediately above active region. In the earlier version [27], 

as shown in Fig. 1-15 (b), the corrugation was etched into the N-InP substrate prior to 

an N-doped InGaAsP guide layer and the active region, where the active region was 

overgrown above the corrugated surface. In both designs, a P-N-P-N junction was 

performed as current blocking mechanism to achieve lateral carrier and photon 

confinement. 

Matsuoka also studied the effect of the grating phase at the cleaved facet to achieve a 

high SLM yield [29], in which they verified that both the threshold current and the 

lasing wavelength are periodically correspondent to the relative position of the facet to 

the grating. Later, they applied an anti-reflection/high-reflection (AR/HR) facet 

configuration to their designs and achieved 45mW output power with SMSR over 30dB 

[30] in 1986. 

 
 

(a) (b) 

Figure 1-15: Matsuoka’s BH InGaAsP/InP DFBs with buried grating with (a) corrugation 

formed above the active region in P-doped InGaAsP guide layer as reported in [28] and (b) 

corrugation formed below the active region in N-doped InGaAsP guide laye [27] 

In 1984, Kitamura, Yamaguchi, Mito, Murata and Kobayashi, researchers in Opto-

Electronics Research Laboratories (NEC Corporation), reported their 1.3μm [31] and 
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1.55μm [32] InGaAsP/InP DFB designs in a double-channel planar BH, where they 

achieved stable CW SLM operation over 100
o
C. Their DFBs were fabricated with a 

buried InGaAsP/InP corrugation (period: 395nm, 2
nd

 order, thickness: 70nm), as 

illustrated in Fig. 1-16. The fabrication of this structure was a 3-stage process. Firstly, a 

layer of n-InP buffer layer, an un-doped active layer and a p-InGaAsP guiding layer 

were grown on an n-InP substrate. Then, the corrugation was etched into the guiding 

layer prior to a 2
nd

 growth of a layer of p-InP to infill the corrugation. Before the 3
rd

 

growth to complete the buried structure (p-n-p-n current blocking layers), a mesa area 

was etched between a double-channel structure to form the stripe geometry. 

 

Figure 1-16: DFB double-channel planar BH laser diode (DFB-DC-PBH LD) developed by 

Kitamura et al. [32] 

In 1988, Kakimoto and other researchers in Mitsubishi Electric Corporation, 

developed a 1.5μm-wavelength high-efficiency (0.39 mW/mA) low-threshold narrow-

beam-profile (FWHM: 25
o
) GaInAsP/InP DFB p-substrate partially inverted BH 

(PPIBH) using a MOCVD technique for a thinner active region [33] [34]. In their 3-

stage design, a p-InP buffer layer, a GaInAsP active layer and a n-GaInAsP guiding 

layer were first grown on p-InP substrate by MOCVD; after formation of corrugation on 

the guiding layer, a n-InP cladding layer was grown by MOCVD again; after the etch of 

mesa structure, the LPE was then employed to grow both current blocking layers on 
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both sides of the mesa (where the diffusion of Zn from the surrounding p-type InP 

blocking layers results in p-type inversion of the tips of the n-InP blocking layers) and a 

n-GaInAsP contact layer.  

In addition to the development in transverse waveguide (i.e. edge-emitting) designs 

described above, an alternative concept was surface-emitting DFB. During 1987 to 

1990, Macomber and co-workers, in the Hughes Danbury Optical Systems, Inc. (Perkin-

Elmer Corporation), conceptualised and realised the surface-emitting DFB, where the 

facet reflection were first time eliminated [35]. After, they developed a 2-D array of 

surface-emitting DFBs and achieved Watts of output power [36], followed by further 

improvement made in the beam quality [37]. Fig. 1-17 illustrates the device concept of 

their designs: a finite gain area was defined by current pumping on an essentially 

infinite 2
nd

 order gold grating on the p-contact surface.  

 

Figure 1-17: Illustration of the concept of surface-emitting DFB reported in [37] [38]  

They also studied the variation of slope efficiency, threshold current and beam 

profile (both far-field and near field) with varying grating periodicity, stripe length and 

thickness of p-cladding [38], and demonstrated that optimisation of the grating-

waveguide and geometry can significantly improve the properties. However, these 

devices suffered from poor lateral beam quality due to multi-mode operation. 
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1.3.3 Towards Higher Single Longitudinal Mode Yield 

 

From the mid-1980s, it was found that the SLM yield of the fabrication of DFB 

lasers with uniform (non-wavelength-shifted) gratings was undesirably low. This was 

due to their nature of having 2 degenerate modes on both sides of the Bragg wavelength 

and the uncertainty of facet phase. Since then, researchers were led into the 

improvement of the SLM yield. 

 

 Quarter-Wavelength-Shift (QWS) and Spatial Hole Burning (SHB) 

One solution was the introduction of a λ/4 phase shift into the grating (earlier 

versions existed, e.g. π/2 phase shift), resulting in a single mode with the lowest 

threshold gain. However, it was found both theoretically and experimentally that in 

phase-shifted DFBs the distribution of the optical intensity along the laser cavity can be 

significantly altered, which leads to severe spatial-hole-burning (SHB). This influences 

the stability of SLM when applying more current injection for higher power operation. 

Soda et al., researcher from Fujitsu Laboratories Limited, investigated high-power 

phase-adjusted SLM operation taking SHB into consideration. In 1984, they reported a 

GaInAsP/InP phase-adjusted DFB design with a step-like non-uniform stripe width 

which demonstrated stable SLM operation [39], as illustrated in Fig, 1-18. After, they 

achieved high power operation on their phase-adjusted DFB lasers. By introducing an 

asymmetric quarter-wavelength-shifted, where the shift was positioned a distance away 

from the centre of the laser, the devices demonstrated a high efficiency and a large 

threshold gain difference under high-power operation [40]. Further study demonstrated 
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an 80% SLM operation yield in moderately-coupled (KL = 1.25) devices due to a large 

threshold gain difference [41].  

 

Figure 1-18: Schematic diagram of the phase-adjusted DFB with phase-shifter step-like stripe 

geometry developed by researchers in Fujitsu Laboratories Limited [39] 

Later, they achieved SLM operation over a wide temperature range by designing a 

weak coupling (KL = 0.7) grating with an asymmetric facet reflectivity configuration 

(Rfront = 0.05 and Rrear = 0.31) with a designed-in detuning between the peak gain and 

the lasing wavelength [42], where the introduction of detuning was based on the studies 

by Ogita at el. [43] focusing on the linewidth reduction. In 1987, Ogita verified that the 

linewidth can be reduced through fine control of the detuning effect [43], where a 

reduction of 50% was experimentally observed for DFBs purposely designed for their 

lasing wavelength to be 10nm shorter than the gain peak wavelength [44], where it was 

shown that a narrower linewidth can be achieved by increasing the front facet 

reflectivity. For their devices, a minimum value of linewidth was experimentally 

measured at a reflectivity of 0.05, while a low front facet reflectivity was necessary for 

a higher yield for stable SLM operation, as reported in [45]. During that time, in 

addition to above proposed methods for SHB suppression in λ/4-shifted DFBs by 

Fujitsu, other methods included: gratings with non-uniform amplitude [46], corrugation-

pitch modulation [47] and stripe-width modulation [48]. 
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 Gain-/Loss-Coupled DFB 

Another solution for higher SLM yield was the introduction of gain-coupling into the 

grating mechanism. The study of gain-coupled DFBs started from the late 1980s. In 

1988, researchers working in the Optical Measurement Technology Development Co., 

Ltd. (Japan) contributed to the development of the first generation of gain-coupled 

GaAlAs/GaAs DFB laser.  

As reported by Luo et al., gain coupling can be achieved either by direct corrugation 

of the active region [49] [50] or by fabricating buried absorptive gratings [51]. In the 

early 1990s, several groups over the world conducted research comparing gain-coupled 

and index-coupled DFB lasers, including David, Morthier, Vankwikelberge and co-

workers from Ghent University [52]-[54]; Lowery and Novak from the University of 

Melbourne [55]; and Suhara, Islam and Yamada from Kanazawa University [56]. They 

found that, in addition to a higher single-mode yield, gain-coupled DFBs perform better 

in most situations, benefitting from higher resistance to external feedback, more stable 

single-mode operation, less severe SHB effect and potentially longer modulation 

bandwidths. In the mid-1990s, some groups achieved gain-coupled DFBs through the 

introduction of current blocking gratings, e.g. periodically distributed n-InP segments in 

p-InP cladding [57] [58].  

 

Towards the end of the 1990s, laterally-coupled metal gratings (absorptive) were 

developed [59]-[61], which were desirable since the fabrication process is material 

independent. This method will be described in more detail in Section 1.4.1. 
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1.3.4 On-Chip Thin Film Heater 

 

One important feature of DFB lasers is their thermal tunability, which is mainly due 

to the thermal effect upon the grating mechanism in DFB lasers. There are 2 

mechanisms through which an increase in temperature can affect the wavelength 

selection of the gratings.  

For index-coupled DFBs, the refractive indices in the grating materials are 

temperature dependent, which influence the Bragg wavelength of the periodic structure. 

Furthermore, thermal expansion of the grating materials due to increasing temperature 

can also influence the determination of Bragg wavelength, especially for laterally-

coupled semiconductor-air or metal gratings. 

Since the 1990s, many groups have attempted to utilise the thermal tuning 

phenomenon to develop tunable DFB lasers. One typical method was to fabricate on-

chip thermal elements, e.g. a thin film heater. Fig. 1-19 shows a typical design of on-

chip thin-film heater on a narrow ridge waveguide defined by etched trenches.  

 

Figure 1-19: Schematic diagram of a typical thin film heater design 
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As can be seen, the heater was deposited to a distance along the ridge upon the 

dielectric isolation layer, which is able to controllably generate heat upon increasing the 

applied current. In fact, the concept of this thermal element is highly device-

independent.  

As shown in Fig. 1-20, it can also be easily applied on other types of waveguides, 

including conventional side-wall etched ridge waveguides and self-aligned-stripe 

waveguides. 

 

Figure 1-20: Schematic diagram of thin film heater designed for difference waveguides 

Sakano and colleagues from Hitachi Ltd. developed a platinum thin film heater and 

reported in 1992 [62]. A tuning wavelength of 4nm (1548nm at Iheater=0mA, 1552 nm at 

Iheater=230mA) was achieved through a 0.7μm thick 15μm wide 0.8μm long Pt stripe 

heater, with a tested resistance of 17, deposited along the laser ridge on a 0.2μm thick 

SiO2 insulation layer.  

Following-up research led by Aoki (also from Hitachi Ltd.) improved the 

functionality of their thin-film heater designs [63] [64] in the late 1990s, where they 

achieved a 5nm stable SLM tuning range with a low electric power of 400mW.  
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More recently, groups from China applied this concept. In 2013, Zhang reported a 

widely tunable dual-mode distributed feedback laser design [65], where a spacing of the 

duo-mode spacing can be tuned between 0.34nm to 8.06nm. In 2014, Meng 

demonstrated a thermally tuned DFB design [66], where a tunability of 15 channels 

with 100GHz spacing was achieved. 

One should keep in mind that the extent to which the thermal effect induces a 

wavelength shift in the gain peak and in the DFB wavelength is different. With an 

increasing operating temperature, the former shifts significantly faster than the latter and 

affects the detuning between the gain peak and the DFB peak. Therefore, the design of 

the grating period is necessary to match the tuning range of the gain peak, which is 

usually with a Bragg wavelength positioned on the long wavelength side of the gain 

peak. Furthermore, this different tuning rate could result in mode hopping from lasing 

via a shorter DFB mode to a longer one. The mode-hopping phenomenon should be 

differentiated from the above continuous wavelength tuning. 

It was suggested that QD lasers might be more suitable for tunable DFB laser designs. 

Compared to quantum well lasers, quantum dot lasers theoretically have a lower 

threshold current and higher temperature stability, resulting in the gain peak exhibiting 

reduced sensitivity to temperature, which means that the change of detuning while 

thermal tuning is less severe in QD DFBs than in QW DFBs.  

Gerschutz et al. at Nanoplus reported a 1305nm 2μm wide 600μm long ridge DFB 

(metal grating) laser incorporating InGaAs/GaAs QD layers [67], which operates with a 

temperature-independent threshold at ~17mW from 20
o
C to 85

o
C, where the decrease in 

slope efficiency is reported to be lower than 10% in this range, whilst demonstrating a 

typical tunability of 0.1nm/
o
C. 
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1.3.5 Maturity of GaAs-Based System: Shift back to Shorter 

Wavelength 

 

The need for development of DFB lasers at shorter wavelengths had long existed in 

the 1980s. As addressed in Section 1.1.1, GaAs-based material system is the choice for 

the wavelength range 650nm-1200nm, where the InP-based material system is no longer 

suitable. It was not until the maturity of GaAs-based material systems, including 

InGaAs, GaAs, AlGaAs and InGaP, in the 1990s that made their realisation possible. 

Since the beginning of the 2000s, the Ferdinand-Braun-Institut has been one of the 

leading forces in the development of GaAs-based DFB lasers. Fig. 1-21 illustrates their 

GaAs-based DFB concept developed and matured by Wenzel, Klehr and colleagues. As 

seen, their index-coupled ridge waveguide DFB incorporates a grating layer fabricated 

in the AlGaAs p-cladding above the active region.  

 

Figure 1-21: Schematic diagram of Ferdinand-Braun-Institut’s GaAs-based buried grating 

ridge DFB lasers with a cladding-waveguide-core-waveguide-cladding layer structure, where 

the Al composition, x, in cladding is higher than that, y, in waveguide, and an InGaP-GaAs-

InGaP Al-free grating layer sequence 
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In the early 2000s, they developed a buried grating fabrication technique utilising an 

InGaP-GaAsP-InGaP Al-free grating layer sequence. Since 2006, they improved the 

grating fabrication sequence to be InGaP-GaAs-InGaP, where the InGaP is lattice-

matched to GaAs. As to their epitaxial layer design, instead of directly sandwiching the 

active region by upper- and lower- claddings, they applied a graded-cladding scheme, 

where the active region is firstly surrounded by lower Al-concentration AlGaAs 

waveguide layers, then sandwiched by higher Al concentration AlGaAs cladding layers, 

which provides a higher transverse optical confinement. 

In 2004, they reported a 1.5mm long 2μm wide ridge waveguide AR/HR coated DFB 

laser with a 14nm GaAsP QW and AlGaAs/GaAsP gratings, operating at ~783nm with 

an output power of 200mW [68]. Then, in 2006, they demonstrated a 1.5mm long 

2.2μm wide ridge waveguide (RW) AR/HR coated DFB laser using the same grating 

technique, operating at ~976nm with an output power of 500mW [69]. Another 1.5mm 

long 2.2μm wide RW AR/HR coated DFB laser, this time with a 7nm InGaAs QW 

embedded in GaAsP barrier layers operating at ~894nm with an output power of 

250mW, was reported in 2007 [70].  

 

In 2009, Stevens et al. reported an alternative grating fabrication technology based 

on a GaAs-InGaP-GaAs sequence to form GaAs/InGaP gratings. This particular design 

will be described in detail in Section 1.4.2 and the fabrication process will be described 

in Chapter 3. 
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1.3.6 Commercially Available DFBs (650-1450nm) 

 

It is useful to establish a general understanding of today’s commercially available 

DFB lasers operating in the range of 650nm to ~1450nm that one can purchase or make 

quotation request. Six well-known DFB suppliers are NTT (Japan), Eblana Photonics 

(Ireland), Nanoplus (Germany), Thorlabs (United States), Eagleyard (Germany) and 

Ferdinand-Braun-Institut (Germany). By summarising the specifications provided on 

their product webpages, Table 1-1 presents an up-to-date list of today’s commercially 

available DFB lasers. 

As illustrated, Eblana Photonics, Eagleyard and Thorlabs provide devices operating 

at specific wavelengths, i.e. 689nm, 760nm, 764nm, 767nm, 780nm, 795nm, 852nm, 

855nm, 935nm, 1030nm, 1064nm, 1083nm, 1278nm, 1310nm and 1392nm. 

As to NTT, Nanoplus and Ferdinand-Braun-Institut, they provide solutions for 

customised devices. NTT and Nanoplus provide DFB lasers mainly for gas sensing 

applications with an available wavelength range of 760nm to 14000nm and 1260nm to 

2330nm respectively.  

In comparison, Ferdinand-Braun-Institut offers solutions for high power DFB lasers 

specifically in the wavelength range of 760nm to 1080nm. According to their online 

description, they can achieve up to 500mW output power whilst keeping an SMSR 

higher than 50dB. 

This research is aimed at developing high power high performance DFB lasers 

utilising self-aligned stripe waveguides, which can then be packaged into standalone 

devices or integrated in photonic integrated circuits for the realisation of new functions. 

The motivation behind will be described in Section 1.6 in more detail. 
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Wavelength 

(nm) 
Applications 

Pout 

(mW) 

Ith 

(mA) 

SMSR 

(dB) 

Linewidth 

(MHz) 
Suppliers 

 689 Sr sensing 10 50 ~40 <3-4 Eblana Photonics 

760 

to 830 

760nm: O2 sensing 

780/795nm: Rb sensing 

780nm: Rb atomic clocks 

~500  >50 <10 
Ferdinand-Braun-

Institut 

5 15 >35 - Nanoplus 

 760 
O2 sensing 

10 60 ~40 <3-4 Eblana Photonics 

40 70 50 ~2 

Eagleyard 
 764 40 70 50 ~2 

 767 K spectroscopy 50 70 50 ~2 

 780 
Rb sensing (D2) 

Rb atomic clocks 

80 70 45 0.6 

12 60 ~40 <3-4 Eblana Photonics 

15 40 40 2 Thorlabs 

 795 Rb sensing (D1) 80 70 45 0.6 Eagleyard 

830 

to 920 

852/894nm: Cs sensing 

894nm: Cs atomic clocks 

~500 - >50 <10 
Ferdinand-Braun-

Institut 

10 20 >35 - Nanoplus 

 852 Cs sensing (D2) 150 70 45 0.6 
Eagleyard 

 855 THz generation 150 70 45 2 

920 935nm: H2O sensing 

980nm: EDFA pumping 

1064nm: THz generation 

~500 - >50 <10 
Ferdinand-Braun-

Institut  to 1080 

 to 1100 20 20 >35 - Nanoplus 

 935 H2O sensing 80 70 45 2 

Eagleyard 

 
1030 

1064 
Seed laser for fibre laser 

600 

pulsed 
70 25 2 

 1064 Nd: YAG replacement 80 70 45 2 

 1083 
Magnetometer 

He polarisation 
80 70 50 2 

1100 

to 1300 
1278nm: HF sensing 20 15 >35 - Nanoplus 

 
1278 HF sensing 8 12 ~40 <2 Eblana Photonics 

1300 

to 1450 

1341nm: HBr sensing 

1392nm: H2O sensing 

20 20 >35 ~2 NTT 

5 30 >35 - Nanoplus 

 1310 Communication 2 7 40 - Thorlabs 

 1392 H2O sensing 10 12 ~40 <2 Eblana Photonics 

Information Source 

NTT https://www.ntt-electronics.com/en/products/photonics/gas_sensing.html 

Eblana Photonics http://www.eblanaphotonics.com/optical-sensing.php 

Nanoplus http://nanoplus.com/en/products/distributed-feedback-lasers/ 

Ferdinand-Braun-Institut https://www.fbh-berlin.de/forschung/photonik/department-optoelektronik/lasertypen/dfb-laser 

Thorlabs https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7928 

Eagleyard http://www.eagleyard.com/products/single-frequency-laser-diodes/ 

Table 1-1: Up-to-date commercially available DFB lasers 

  

https://www.ntt-electronics.com/en/products/photonics/gas_sensing.html
http://www.eblanaphotonics.com/optical-sensing.php
http://nanoplus.com/en/products/distributed-feedback-lasers/
https://www.fbh-berlin.de/forschung/photonik/department-optoelektronik/lasertypen/dfb-laser
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7928
http://www.eagleyard.com/products/single-frequency-laser-diodes/
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1.3.7 Recent Development 

 

There are many developing directions for future advancement of DFB lasers. This 

section briefly reviews a number of DFB-related developments reported in recent years.  

 

 GaAs-Based Photonic Integration 

GaAs-based DFB laser and photonic integrated circuit (PIC) technology is one 

important developing direction. This will be introduced in detail in Section 1.5. 

 

 Improvement of Fabrication Methods / Design Concepts 

The persistent pursuit for improvement and optimisation based on present 

development is as important as exploring new fields. In recent years, some reports have 

described new design concepts and new methods for optimisation. In 2012, researchers 

from the Ferdinand-Braun-Institut reported a novel grating fabrication method to 

achieve “floating” buried gratings as an improvement to their well-developed InGaP-

GaAs-InGaP method [77]. As described, after the 1
st
 growth, the top grating 

GaAs/InGaP sequence was patterned and etched through the GaAs cap-layer. The wafer 

was then transferred back into the reactor, where the un-capped InGaP was etched in-

situ. After the regrowth of the reminder of the AlGaAs cladding layer, the remaining 

GaAs/InGaP segments form the “floating” buried grating. In 2013, Zhao et al. reported 

a 16-channel DFB laser array using nano-imprint technology [78]. This mechanical 

imprint process was first introduced in 1995, but rarely used for DFB fabrication until 

the recent decade. Nano-imprint technology is a promising solution to reduce the cost of 

grating fabrication, because the stamps, once fabricated, can be used hundreds of times. 
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 DFB on Si 

The integration of electronic and optical systems has been a hot topic in the recent 

decade, where the ability to integrate III-V materials with Si is the key. Tian et al. at 

Ghent University recently demonstrated InGaP/InP O-band DFB lasers grown directly 

on (001) silicon [74]. Meanwhile, researchers from the Tokyo Institute of Technology 

conceptualised a laterally pumped GaInAsP/InP membrane DFB grown on Si by using a 

2μm thick BCB adhesive bonding [75]. Alternatively, direct growth of III-V epi-layers 

on Si is also reported [76], where a low density of threading dislocations was achieved 

by applying thermal annealing to the combination of a nucleation layer and dislocation 

filter layers. 

 

 THz Generation  

THz radiation (from several tenths THz to several THz) is useful sources for 

applications in sensing and spectroscopy, THz imaging for quality control, THz data 

communication and security purposes as well. Among numerous methods, continuous 

wave THz generation using dual mode semiconductor lasers (optical heterodyning 

schemes) is highly favourable, where two optical waves with different wavelengths are 

selected to generate electromagnetic waves with terahertz frequencies. Fig. 1-22 shows 

an example of this optical heterodyne conversion (photo-mixing) process, where the 

mixing of sin(at) and sin(bt) results in a beating [sin(at) + sin(bt)]
2
. In this 

example, a : b = 11:10.  

In recent years, reported design concepts (demonstrated or under development) 

include dual-mode lasing of DFB laser [71], in-series integration of DFB and DBR [72] 

and DFB laser arrays [73]. 
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Figure 1-22: Example: interference of two optical waves sin(at) and sin(bt), where a : b = 

11 : 10 

 

 Blue DFBs 

Blue lasers are a suitable light source for many applications, including underwater 

communications where the conventional acoustic methods suffer from slow data rates 

and short reach. Single longitudinal mode blue lasers are desirable and their 

development can also broaden the scope of the DFB family. Thomas et al. reported a 

1mm long 1.5μm wide laterally-coupled InGaN/GaN DFB ridge laser with 0.5μm wide 

520nm deep lateral gratings on both sides, operating at 430nm with 40mW (with 

390mA current injection) output and an SMSR of 22dB [79]. Compared to InP-based 

and GaAs-based DFB lasers, there remains a significant opportunity for further 

improvement. 
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1.4 Grating Fabrication Methods 

 

A key aspect of the manufacture of DFB lasers is the fabrication of the grating 

structures. In general, the distributed feedback is established by a periodical variation of 

refractive index (index-coupled) and/or a periodically modulated gain medium 

(complex- or gain-coupled laser).  

This section discusses various grating fabrication methods developed during the past 

4 decades and their suitability for inclusion in my GaAs-based DFB design. 

Categorising by the positions of the gratings, two main approaches are surface gratings 

and buried gratings.  

 

1.4.1 Surface Grating 

 

For the surface gratings, the grating patterns are defined on the surface of the device 

by etched surface corrugation, deposited surface metal grating and laterally etched 

groove-type grating [80]. More recently, the development of lateral metal gratings 

combined the concepts of the latter two, by forming metal gratings at either side of the 

etched laser ridge. 

 

 Surface Corrugation 

Etched surface corrugations were used early on in development of DFBs. Applying 

this technique, the top layers of the sample (i.e. contact layer and p-cladding layer) are 

etched to form the corrugation, prior to deposition of the p-contact. Fig. 1-23 shows a 
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schematic diagram of this technique developed by Zory et al. in 1970s. In 1974, Zory 

and colleagues reported their approach to fabricate V-groove diffraction gratings in 

GaAs by selective etching when he was working in IBM Thomas J. Watson Research 

Centre [81]. In 1975, they attempted to realise a DFB mechanism through surface-

emitting double-heterostructure AlGaAs diode lasers with surface corrugation 

surrounding the output aperture [82]. Zory continued his work at the University of 

Florida, and in 1990, he led the theoretical study of the coupling coefficient of 

metallised corrugations on GaAs-AlGaAs heterostructure diode lasers [83]. 

 

Figure 1-23: Schematic diagram of a surface corrugation as reported in [83] 

 

Many research groups adopted this technique, including the development of surface 

emitting DFBs conducted by Macomber in the late 1980s, as mentioned in Section 

1.3.2, which was based on this p-contact corrugation etch technique [35] [36]. When it 

came to the 1990s, this method became more sophisticated and was widely applied on 

InGaAsP/InP systems. In 1994, two researchers from the University of Munich, Rast 

and Muhlhoff, reported their 1.55μm InGaAsP/InP ITG-DFB-BCRW (integrated-twin-

guide DFB bridge-contacted ridge-waveguide) with surface corrugation formed by 

directly etching 200nm into the top of the p-InGaAsP guiding/contact layer, followed by 

Ti/Au metallisation [84]. 
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 Disadvantages 

It is significant for the operation of a DFB laser that a sufficient portion of the guided 

optical mode interacts with the grating mechanism. Therefore, this technique requires 

either very thin upper cladding and contact layers or a very deep uniform transfer of the 

grating into the upper cladding, or both. However, a thinner upper cladding layer results 

in a higher optical loss to the surface metal and lower device efficiency. As for deeply 

etching the top layers, if applying this method in GaAs-based DFB designs, the upper 

cladding is then required to be an Al-free compound, i.e. InGaP, which means the loss 

of the flexibility in waveguide design offered by all-composition lattice-matched 

AlGaAs cladding. Otherwise, a deeply etched corrugation into the upper cladding 

results in the exposure of AlGaAs to the air in the fabrication process, affecting the 

long-term reliability of the laser. 

 

 Surface Metal Grating 

Another widely studied method is that of surface metal gratings. Unlike the surface 

corrugation method, this method does not require the top layers of the samples to be 

corrugated (etched). Instead, the grating pattern is formed entirely through the 

periodical definition of metal adjacent to the laser ridge. 

In 1997, Osowski and colleagues (University of Illinois Urbana-Champaign) 

developed their asymmetric cladding gain-coupled DFB designs incorporating an 

InGaAs/GaAs single quantum well with AlGaAs cladding [59] [60]. Fig. 1-24 (a) shows 

the first version of their study [59], where 30nm thick Ti gratings (Λ=326 nm, 2
nd

 order, 

duty cycle = 30%) were firstly deposited prior to a shallow ridge etch, which was 

followed by SiO2 deposition. Lastly a 2μm wide stripe was opened for p-metal 
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deposition (1.5/130nm Ti/Au). However, the dimensions of the duty cycle were difficult 

to control with this lift-off procedure, which also limited the minimum achievable 

grating period.  

In [60], an improved procedure was reported where the lift-off process was replaced 

by direct metal deposition into an oxide grating pattern. As illustrated in Fig. 1-24 (b), 

the grating pattern (Λ=160.5nm, 1
st
 order, duty cycle = 40%) was defined in an 80nm 

thick SiO2. The following metal deposition (30/3/150nm Ti/Pt/Au) formed both the 

metal grating and the p-contact. 

(a) 

 

(b) 

 

Figure 1-24: Schematic diagrams of Ti surface grating fabrication procedures reported by 

Mark Osowski and colleagues realised through (a) lift-off procedure reported in [59] and (b) 

metal deposition on oxide grating procedure reported in [60] 

 

Higher single mode yield with higher resistance to back-reflected optical wave are 

exhibited in such loss-coupled DFB designs, compared to index-coupled DFB designs 

due to the mode degeneracy problems with cleaved facets. 
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 Disadvantages 

These designs require a very thin upper cladding layer (reducing the separation 

between the pattern and the centre of the guided mode) to obtain sufficient coupling 

between the optical mode and the grating pattern. This results in absorption loss caused 

by deposition of the metal electrode on the thin cladding layer. This also limits the 

capability to tailor the waveguide design for potential device optimisation. Furthermore, 

the required thin upper cladding layers significantly limits the feasibility for such DFB 

laser designs to be further developed into a monolithically integrated module for other 

potential applications or improved functionalities. 

 

 Groove-Type Grating 

Groove-type gratings utilise the index difference between the semiconductors and the 

air (or other deposited protective material, e.g. polyimide), where periodic grooves are 

uniformly and deeply etched into the semiconductor. In the late 1990s, this technique 

was extensively used in the study of DBR lasers both in the well-developed 

InGaAsP/InP material system and in developing InGaAs-InGaP-GaAs systems [85]-

[89]. Fig. 1-25 illustrates the concept behind typical groove-type grating DBR designs. 

As shown, the grating sections are deeply etched (a) entirely through or (b) to closely 

above the core. 

When applying to DFBs, the grooves are etched on both sides along the ridge, as 

illustrated in Fig. 1-26. Because the position of the formed gratings is on either side of 

the propagating optical mode, it is also known as the lateral-coupled DFBs (index-

coupled in this case). In order to achieve sufficient overlap between the optical mode 

and the grating, the grooves are usually deeply etched [80]. 



 

 

 41 

 

 

 

(a) 

(b) 

Figure 1-25: Schematic diagrams of typical DBR designs with groove-type gratings deeply 

etched in DBR grating section(s): (a) entirely through and (b) above the core 

Since the mid-1990s, lateral-index-coupled gratings became a popular method to 

manufacture DFB lasers due to the elimination of overgrowth processes [90]. In such 

structures, the evanescent part of the optical waves propagating along the waveguide 

interacts with the grating to establish distributed feedback. 

 

Figure 1-26: Schematic diagrams of typical DFB designs with groove-type gratings deeply 

etched along the laser ridge [80] 

Since only the evanescent part interacts with the grating, the optical confinement 

factor in the grating is usually two orders lower (~10
-4

) than that in overgrown gratings 

[61] and the distance between the core of waveguide and the bottom of the etched 
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grating is critical for the determination of the coupling coefficient [90]. Because of the 

strict requirement for fine, smooth, and deeply etched grooves, electron-beam 

lithography (EBL) has been the optimal patterning method, in spite of its high cost and 

slow speed making it unsuitable for mass-manufacturing.  

More recently, in 2011, Millett and colleagues, researchers from the University of 

Ottawa, successfully patterned and fabricated a 1310 nm InGaAsP/InP lateral-coupled 

DFB laser with a 3
rd

 order grating using stepper lithography, which is comparably high-

yield and low-cost [91]. In 2013, Li and Cheng (University of Texas) demonstrated the 

feasibility of optical interference lithography for patterning 2μm-deep 1
st
 order gratings 

for InGaAsP/InP lateral-coupled DFBs [92], where the gratings were first etched into a 

dielectric layer and then transferred to both sidewalls. 

 Disadvantages 

This method suffers from two main disadvantages, which both result because of its 

nature of using the evanescent part of the optical wave. Firstly, there is a maximum 

ridge width that a laser can be fabricated with. Secondly, it requires a fine control of the 

distance from the bottom of the deeply etched gratings to the waveguide core. Both 

these significantly limit the tailor-ability of waveguide design, and the latter also 

increases the complexity of the fabrication process. Furthermore, despite the 

improvement made for InGaAsP/InP DFB lasers using this approach, an unavoidable 

drawback when applying to the GaAs-based material system is the exposure of the 

AlGaAs upper-cladding layers to air, which requires complicated passivation or 

protection techniques or a trade-off in the device performance and lifetime. 
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 Lateral Metal Grating 

This method can be recognised as the combination of surface metal gratings and 

groove-type gratings, where metal gratings are deposited along the laser ridge adjacent 

to the side-walls of the ridge. Kamp and Forchel, researchers from the University of 

Würzburg, contributed to development of this material independent method.  

In 2001, they demonstrated DFB operation on several material systems using 

chromium as the grating material [61], which has an absorption coefficient of 

2.810
5
cm

-1
 at a wavelength of 1000nm resulting in a gain coupling coefficient of 

approximately 5-20cm
-1

 for their devices. Fig. 1-27 illustrates the concept of their 

design: a 2-3μm wide ridge was etched to ~150nm above the waveguide layer, and then 

a 15nm thick Al2O3 isolation layer separating semiconductor and the gratings was 

deposited prior to the use of electron beam lithography for grating patterning. During 

the grating fabrication the top of the ridge was protected using a Ti/Ni mask, which was 

then removed together with deposited Al2O3 and Cr in a HF dip in the last step.  

 

Figure 1-27: Schematci diagram of complex-coupled DFB with Cr grating developed in [61] 

Their research was soon adopted for fabricating commercial DFB lasers by a German 

laser supplier, Nanoplus Nanosystems and Technologies GmbH. Due to the nature of 
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being material independent, the adoption of this lateral Cr grating technology allows 

Nanoplus to design and fabricate DFBs on different compound semiconductors systems, 

e.g. InP, GaAs and GaSb. Today, Nanoplus provides customised DFB lasers over a 

wide range of wavelengths from 0.76 to 14μm (in-lab research reported up to 16μm 

[93]). Their product portfolio mainly focuses on tunable laser diode spectroscopy 

(TDLS) applications, e.g. gas sensing applications, where a high output power is usually 

not necessary. According to their product specifications, for the wavelength range of our 

interest, i.e. GaAs-based DFB: 650nm-1200nm, the typical output power specified for 

DFBs with lasing wavelength range of 760-830nm is 5mW; and 10mW for wavelength 

range of 830-920nm; and 20mW for wavelength range of 920-1300nm. 

 Disadvantages 

However, these laterally loss-coupled gratings suffer from a low-yield in the 

manufacture process, due to the need for gratings to be independently written for each 

laser ridge, making it a very expensive method. Another drawback is the high level of 

optical loss in the waveguide design of these designs [94], and because of the weak 

overlap of the fundamental lateral mode with the grating, only narrow ridge lasers are 

possible [95]. 

 

1.4.2 Buried Grating (Overgrown Grating) 

 

To fabricate buried gratings, an overgrowth step is involved for the in-fill and 

planarisation of the etched grating patterns (by chemical etching and/or dry etching) in 

the top layer(s) of a previously grown structure, such that a grating is formed in the laser 

waveguide and/or active region. Based on how the buried gratings are formed, they can 



 

 

 45 

provide distributed feedback via index-, complex- and gain- coupled mechanisms [54] 

[96]-[98].  

In a buried grating DFB laser, the coupling coefficient of the laser optical mode to 

the grating can be tailored reproducibly and accurately by changing the thickness of the 

grating and the distance between grating and active region. This method involves 

patterning, etching and overgrowth, which means that the fabrication processes have to 

be designed accordingly for each unique material system. Although this technique had 

been well-developed in InP-based DFBs, e.g. InGaAsP/InP gratings, past methods to 

transfer to GaAs-based material systems proved difficult to fabricate high-quality 

gratings.  

Attempts to overgrow AlGaAs on GaAs have proven unsuccessful due to mass 

transport effects destroying the grating profile and the inability to adequately planarise 

without degrading the grating [99]. Also, overgrowth on patterned AlGaAs is not 

feasible due to oxidisation of the Al-containing regrowth surface.  

 

 Al-Free Structures 

In some reports, Al-free structures were developed in order to entirely avoid the risk 

of oxidisation, such as the InGaP-GaAs-InGaP buried heterostructure DFB reported in 

1993 by researchers from Oki Electric Industry Co., Ltd. [100], where the device design 

employed a mesa-etch-overgrowth (matured in InGaAsP/InP DFBs) process to form the 

p-n-p-n InGaP current blocking mechanism. A 30nm thick overgrown grating pattern 

was etched on the top of the n-doped InGaP lower cladding layer, followed by growth 

of the InGaAs/GaAs QW (grating planarised by the 100nm GaAs lower barrier layer), 

p-doped InGaP upper cladding layer and p-doped GaAs contact layer.  



 

 

 46 

During 1998 to 2000, researchers from University of Wisconsin-Madison reported 

their achievements in high power operation (>1W) with their broad-stripe DFB designs 

for several lasing wavelengths: 730nm [101], 893nm [102] and 980nm [103].  

However, Al-free structures have no flexibility for the optical mode control afforded 

by AlGaAs cladding. This is because the InGaP cladding is only lattice matched to 

GaAs at one stoichiometry, whereas AlGaAs is lattice-matched over its full range of 

possible Al compositions. 

 

 Low Al Structures 

In some reported designs, low Al concentration claddings were used to reduce the 

effect caused by oxidisation, such as the structure reported in [104] by the Ferdinand-

Braun-Institut where Al0.15Ga0.85As waveguides were used. Although this reduces the 

risk to some extent, it will still limit the extent to which the waveguide can be tailored. 

 

 In-Situ Etching Method 

In order to avoid the exposure of AlGaAs to air during the etch-overgrowth process, 

some research groups developed in-situ etching methods, where the sample is grown-

etched-overgrown in the reactor chamber. Ferdinand-Braun-Institut reported their 

method involving in-situ CBr4-etching within the MOVPE reactor prior to overgrowth, 

to allow regrowth upon etched AlGaAs surfaces [105]. However, such in-situ etching 

methods require precise control of the etching process and can be susceptible to non-

uniformity, un-monitored etching and contamination from the chamber walls, making it 

an unrealistic manufacturing methodology. 
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 Al-Free Grating Sequence Methods 

As mentioned in Section 1.3.5, since the early 2000s, the Ferdinand-Braun-Institut 

led a rapid development of GaAs-based ridge DFBs based on their Al-free grating layer 

sequence fabrication technique [68]-[70]: GaAs/AlGaAs buried gratings formed by 

InGaP-GaAs-InGaP (developed from their earlier GaAsP/AlGaAs gratings formed by 

InGaP-GaAsP-InGaP).  

In 2009, Stevens et al. from the University of Sheffield demonstrated a novel method 

of grating fabrication. By altering the sequence to be GaAs-InGaP-GaAs, an additional 

GaAs in-fill layer was grown prior to growth of the upper-cladding to planarise the 

etched InGaP matrix, which results in formation of a GaAs/InGaP buried grating. 

Compared to the Ferdinand-Braun-Institut’s GaAs/AlGaAs grating, the main advantage 

of Stevens’ GaAs/InGaP grating lies in a higher index contrast in most of the cases. Fig. 

1-28 illustrates the buried gratings formed by these two methods. Take 1μm wavelength 

as an example, the refractive indices of GaAs, Ga0.49In0.51P and AlxGa1-xAs are ~3.50, 

~3.15 and ~3.30 (x = 0.42) respectively.  

 

Figure 1-28: Comparison of GaAs/AlGaAs and GaAs/InGaP buried gratings 

The difference obtained from GaAs/AlGaAs is approximately 0.20 (x=0.3), whilst 

that of GaAs/InGaP is 0.35. Although this can be improved by using a higher Al 
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concentrations, e.g. nAlGaAs (x=0.6) ~ 3.19 thus the difference becomes 0.31, but 

sacrificing the flexibility provided by full Al% range in waveguide design. 

Furthermore, in most buried grating DFBs, tailoring of the coupling coefficient is 

achieved by adjusting the thickness of the grating and its distance from the active 

region, and of course the waveguide geometry. It can be estimated that the GaAs/InGaP 

grating by Stevens et al. benefits from a higher effective refractive index near the 

grating region due to the stacking of GaAs layers, which leads to a stronger photon 

confinement. Therefore, the Stevens et al.’s method allows the grating layer to be 

formed further away from the active region. Also, the flexibility in adjusting the 

thickness of the lower GaAs layer and in-fill GaAs layer offers additional waveguide 

design flexibility.  

Both these features are desirable for more complicated waveguide designs, e.g. self-

aligned stripe DFBs. The detailed fabrication process will be described in Chapter 3. 
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1.5 Photonic Integration of DFB Lasers 

 

Today, more and more applications require high power DFB lasers operating via a 

single frequency at an output power of hundreds of milliWatts. High power stand-alone 

DFB lasers could be realised using two methods.  

One straightforward method is to design devices operating with a high volume of 

current injection. However, even with a high-performance heat-sinking mechanism 

incorporated in the package, the level of self-heating generated under high current 

density is still difficult to dissipate. Furthermore, the grating is corrugated along with 

the gain region, such that they share the same electrical and thermal conditions. With 

high current injection, the influence of current density and self-heating upon the grating 

will result in a red-shift of the DFB lasing peak.  

Another method is to incorporate a longer gain region to achieve the same level of 

output power at a lower current density. However, compared to short cavity DFB lasers, 

long cavity structures suffer from less stable single longitudinal mode operation and less 

robust modulation performance with respect to SHB and mode hoping, and of course 

larger device sizes. 

 

With above limitations of developing stand-alone high power DFB lasers, a 

monolithically integrated DFB master oscillator power amplifier (DFB-MOPA) could 

present a promising method to fill this gap. In a DFB-MOPA, the DFB section, i.e. the 

master oscillator (MO), only needs to be pumped moderately to provide stable SLM 

lasing with sufficient power to be coupled into a semiconductor optical amplifier 

(SOA), i.e. the power amplifier (PA). 
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1.5.1 Monolithic Photonic Integration 

 

Real-life applications are usually based on functioning modules incorporating more 

than one optical component, and optical systems, including the MOPA, are composed 

discretely, where each integrated component is individually developed, manufactured 

and packaged, which makes it very difficult to further optimise the system in terms of 

smaller sizes, lower costs and higher efficiency.  

In the research and development of lasers and optical systems, one constant theme is 

the pursuit of better performance, lower cost and higher efficiency, as well as the 

realisation and conceptualisation of new functionalities. Therefore, among the many 

research and development directions being pursued today, photonic integrated circuits 

(PICs) are regarded as a highly promising trend for next-generation optical system 

design.  

In the electronics industry, the world has witnessed the success achieved through 

monolithically integrating an increasing number of electronic components into a single 

device. By achieving greater processing power, higher reliability, lower cost, smaller 

device size and reduced power requirements, new devices have been developed for a 

wide range of applications.  

PICs are conceptually very similar to electronic integrated circuits (ICs) since they 

simplify optical system design by integrating many optical components such as lasers, 

modulators, amplifiers in analogy to the transistors, capacitors, resistors of the 

electronic integrated circuit. The result is a simplification of an optical system with 

increased functionality and the reductions in cost, space, power consumption as well as 

the improvement in reliability provided by the IC concept. 
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Integration of a number of components into a PIC can greatly reduce the requirement 

on the number of optical packages and the multiple costs incurred through burn-in of 

individual components. The reduction in the number of fibre couplings reduces the 

complex assembly and alignment as well as the cumulative coupling losses associated 

with each fibre coupling (meaning that lower powers can be used for the same system 

performance compared to discretely packaged devices). Diagnostic devices can also be 

integrated allowing functional on-wafer testing at the wafer level (without the need for 

discrete device separation and testing), reducing manufacturing time and cost. In 

addition to performance and cost benefits PICs also enable increased functionality, 

enabling functions that would otherwise not be technically or economically viable. 

 

1.5.2 Maturity in InP-Based PICs (>1200nm) 

 

Today, optical networks are mainly based on transmission around 1310nm and 

1550nm due to the dispersion and loss characteristics of standard single mode optical 

fibres. As such, discrete components have been developed over the years on InP which 

adequately serve the wavelength range 1300nm to 1650nm [106]-[109]. More recently, 

the development of InP-based PICs has been driven by the need for optimisation of 

optical networks applications [110] [111]. With 1550nm the preferred wavelength for 

long haul telecoms, PIC development has furthermore been limited to this wavelength.  

Over the last 2 decades, the development of InP-based PIC has enabled the 

realisation of complex widely tuneable lasers and wavelength division multiplexing 

(WDM) PICs with increasing number of components and increasing bandwidth for data 

communications [112]-[115]. In recent years, further development of InP PIC 
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technologies has conceptualised the integration realised on silicon-on-insulator (SOI) to 

achieve large-scale integration of electronic and photonic integrated circuits [116] [117]. 

However, if photonic integration of a range of active and passive components is 

required at wavelengths shorter than ~1200nm, such as for a number of biomedical 

applications, there is presently no available PIC technology, and a hybrid method is the 

only present option. This severely limits the potential to satisfy a rapidly growing 

demand for innovation in this wavelength regime, as described in Section 1.1.1. 

 

1.5.3 Lack of Development of GaAs-Based PICs (<1200nm) 

 

It is not envisaged that GaAs would replace InP as the platform of choice for 1300 or 

1550nm data communications in the short term as a result of the large gap in 

sophistication between InP PICs, developed over more than 20 years, and the 

conceptual GaAs PICs which have yet to be developed. Whilst long term cost savings 

for the telecoms industry should be kept in mind, it is the new functionality in the 

wavelength range 650nm to 1310nm that is the ultimate driving force behind GaAs PIC 

technology. For example there are a large number of applications within the burgeoning 

biomedical imaging field that are presently served by a wide range of disparate discrete 

components, many of which do not meet the ultimate specification requirements of the 

application, or are based on research laboratory grade components or components which 

do not lend themselves to widespread proliferation due to their size, cost, or long term 

reliability. Widely tuneable lasers based on PIC technologies can replace current micro-

electro-mechanical systems (MEMS) as better light sources for spectroscopic 

applications [118]-[120]. 
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At this stage it is difficult to predict the full extent to which medium and large scale 

photonic integration will impact this field, but one can imagine lab-on-a-chip functions 

that would be possible through up-scaling to medium to large scale integration, and the 

development of a small scale capability within the timeframe of this project is expected 

to prompt further interest and scope for application in both associated and disparate 

fields of investigation.  

 

1.5.4 Overcoming the Technological Barrier 

 

Although ICs in GaAs have been used for the development of monolithic microwave 

integrated circuits (MMICs), the GaAs-based PIC applications have not yet been 

commercialised. In general, PICs require multiple growths (1) to realise the integration 

of active and passive components, e.g. butt-joints, (2) to form certain structures for 

particular components, e.g. buried gratings, (3) to form certain waveguide structures, e.g. 

buried waveguides. 

Buried waveguides benefit from many advantages over alternatives, including 

greater flexibility, better functionality, improved heat dissipation, smaller active sizes 

and controllable optical profiles. For these reasons, they are commonly adopted in the 

design of PICs.  

In GaAs material systems (based on GaAs substrates), AlGaAs is the ideal 

waveguide cladding material. Being lattice matched to GaAs at all Al compositions, the 

refractive index of AlGaAs can be tailored by changing its stoichiometry for waveguide 

design. However, the requirement for multiple growth results in the major technological 

barrier when transferring sophisticated InP-based PIC approaches to GaAs. As is known, 
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aluminium containing layers oxidise immediately when exposed to air, which means 

that manufacture processes involving overgrowth upon etched AlGaAs layers are not 

reliable. As a result, simply transferring methods developed on InP for telecoms 

applications to GaAs/AlGaAs materials is not an option.  

Alternative methods such as Al-free epitaxial structures [121] or in situ etching and 

regrowth within MOVPE chamber [122] suffer from the difficulties in process control, 

reliability and design flexibility. 

 

Overcoming this technological barrier is significant for exploiting the potential of 

GaAs PICs. The group at Sheffield has developed a serious of in-lab proof-of-concept 

GaAs-based devices, including self-aligned stripe (SAS) lasers [123], distributed 

feedback (DFB) lasers [99] and super-luminescent diodes [124], using a novel GaAs 

regrowth technology allowing Al cladding layers for full optical flexibility. My project 

benefits from this breakthrough and aims at furthering the scope of this method in the 

development of SAS GaAs-based DFB lasers and their incorporation into photonic 

integration. 
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1.6 Project Motivation 

 

This project aims to develop high power GaAs-based DFB lasers targeting the 

increasing number of applications requiring SLM operation in the wavelength range 

from 650nm to 1300nm. Furthermore, it is hoped that the possibility of developing a 

generic platform technology for development and manufacture of GaAs-based PICs can 

be realised, such that a variety of applications can be realised using the same family of 

manufacture processes. This technology could provide a route to significant reductions 

in device cost and increases in functionality with respect to reliability and efficiency.  

Within the project, stand-alone DFBs with ridge and SAS waveguide geometries are 

studied, and the monolithic integration of the DFB-MOPA is investigated. The 

development of ridge DFBs represents preparatory work conducted to enable the 

realisation of a novel SAS-DFB, which effectively integrates a buried optical 

waveguide, gain block and wavelength filter into one device. Subsequently, MOPA 

devices realise the monolithic integration of a small subset of photonic components 

based on the generic SAS buried device methodology, where two SAS-DFB-MOPA 

prototype designs are fabricated and characterised. Their successful demonstration 

represents the initial stages in the development of a standard generic platform for more 

complex GaAs photonic integration, allowing extension to a range of disparate fields. In 

the future, a wide range of additional advanced building block photonic components 

could be developed for inclusion in the GaAs PIC toolkit. Components such as optical 

amplifiers, splitters, spot size converters, and active-passive couplings should be studied. 

PICs could be designed and developed for a wide range of possible applications such as 

in generation of THz radiation for process control and security spectroscopy systems, 

and tuneable lasers for use in biomedical imaging and spectroscopy. 
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1.7 Thesis Outline 

 

This thesis consists of 7 chapters, including this introductory chapter, an 

experimental methodology chapter, 3 research and experiment chapters, a future work 

chapter and a conclusion chapter. 

 

 Chapter 2: Fundamental Principles of DFB and Experimental Methodology 

In this chapter, I first present the fundamental principles of developing DFB lasers, 

i.e. the coupled wave theory. I then introduce the experimental methodology involved in 

this project. The device development process in each following experiment chapter has 

undergone a typical 4-stage research process: waveguide design, wafer growth, device 

fabrication and device characterisation. Fimmwave, supplied by Photon Design, has 

been used for waveguide design and these designed epitaxial layer structures were 

grown in the EPSRC National Centre for III-V Technologies built in Sheffield. Devices 

were mostly fabricated in the device fabrication clean rooms and characterised using 

characterisation setups. 

 Chapter 3: GaAs-Based Narrow Ridge Distributed Feedback Lasers 

In this chapter, I present the development process for a set of narrow ridge 2, 4 

and 6 QWs DFB lasers operating at ~1000nm. This study was primarily carried out as 

preparatory work to support the development of the SAS DFB lasers in Chapter 4. The 

research started with ridge waveguide modelling to simulate the confinement factors in 

QWs (ΓQWs) and grating layer (Γgrating), so as to design three 2QWs structures with 

different Γgrating, and structures for 4 and 6 QWs with a constant Γgrating. Broad area 



 

 

 57 

lasers were first made prior to the make of DFBs to compare the properties of samples: 

(1) grown by MOVPE and MBE and (2) incorporating 2/4/6 QWs. In the 

fabrication of DFBs, A two-stage growth process was used, associated with a grating 

patterning-etching process between the planar growth and the overgrowth. 3μm wide 

ridge waveguide DFBs were fabricated and characterised. Simulations were validated 

through the comparison of experimentally estimated and simulated confinement factors 

in the grating layer for each structure. 

 Chapter 4: GaAs-Based Self-Aligned Stripe Distributed Feedback Lasers 

In this chapter, I describe the conceptualisation and realisation of SAS DFB lasers. 

Based on previous research of SAS lasers utilising an InGaP optoelectronic confinement 

layer [123] and DFB lasers employing buried GaAs/InGaP index-coupled grating [99], 

this study incorporated the grating layer immediately below the stripe geometry with a 

distance above the active region. A 3-stage growth process was used, associated with 2 

patterning-etching processes between the planar growth and 1
st
 overgrowth to form the 

grating and between the 1
st
 overgrowth and 2

nd
 overgrowth to form the stripe geometry 

respectively. 3μm SAS DFBs were fabricated and characterised. The experimental 

measurement was fed back into the simulation through comparison of experimentally 

estimated and simulated confinement factor in the grating layer and the comparison of 

experimentally measured and simulated far-field beam profile. 

 Chapter 5: GaAs-Based Monolithically Integrated Self-Aligned Stripe 

Master Oscillator Power Amplifier 

In this chapter, the research conducted in Chapter 4 [125] has been furthered into the 

photonic integrated circuit theme. I introduce the conceptualisation of monolithically 

integrated GaAs-based SAS MOPA devices incorporating an SAS DFB and tapered 
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SAS SOA. MOPA structures with two different SOA geometries were designed, 

fabricated and tested. Due to the poor quality of the 2
nd

 overgrowth, the SOA sections 

are highly defective which makes it impossible to drive the SOAs with a CW current 

source. The devices were characterised with DFB sections CW pumped and the SOA 

sections pulsed pumped. The experimental findings are compared and discussed, 

together with suggestions for future device optimisation. 

 Chapter 6: Future Work 

In this chapter, I first present an optimised version of SAS-DFB-MOPA based on 

study conducted in Chapter 6. After, I describe some preparatory works for future 

research, including (1) the study of active-passive integration on 1060nm InGaAs QD 

material using impurity free vacancy disordering and (2) the comparison of ground state 

lasing and excited state lasing properties of a set of ~1180nm In(Ga)As/GaAs DWELL 

materials. These preparatory works are aimed at the conceptualisation of (1) GaAs-

based sampled-grating DBR (SG-DBR) tunable lasers and (2) ~1180nm QD SAS-DFB-

MOPA based on the GaAs-InGaP regrowth technology. 

 Chapter 7: Conclusion  

In this final chapter, all the studies conducted are summarised.  
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 Fundamental Principles of DFB and Chapter 2.

Experimental Methodology 

 

 

This chapter consists of two main sections. In the first section, the most important 

fundamental principles of distributed feedback lasers are introduced, upon which some 

discussions in Chapter 1 are theoretically supported. The second section describes the 

experimental techniques involved in my research. 

 

 

2.1 Fundamental Principles of DFB Laser 

 

This section first discusses the nature of light in terms of electromagnetic wave and 

related wave equation. Then I introduce the coupled-wave theory developed by 

Kogelnik and Shank in 1972 [1] together with more recent interpretation by Morthier in 

his book “Handbook of distributed feedback laser diodes” [2]. After, the main design 

concept of DFB lasers in my research is described. 

 

2.1.1 Light as Electromagnetic Waves 

 

In 1864, Maxwell combined the electromagnetism equations and suggested the 

existence of transvers electromagnetic waves and proposed that light is an 

electromagnetic wave with a free space propagation speed of: 



 

 

 70 

𝑐 = √
1

𝜇0𝜀0
 

𝑤ℎ𝑒𝑟𝑒 𝜇0: 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒 𝑎𝑛𝑑 𝜀0: 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒 

 

As an electromagnetic wave, light is a combination of propagation of time varying 

electric field and magnetic field. According to Maxwell, the wave equation is: 

∇2(E⃗⃗ , H⃗⃗ ) =  
1

c2

∂2

∂t2
(E⃗⃗ , H⃗⃗ ) 

𝑤ℎ𝑒𝑟𝑒 �⃗� : 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑎𝑛𝑑 �⃗⃗� : 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 

The equation implies that the fields propagate with a speed of c, which equals to: 

c = ν0 

𝑤ℎ𝑒𝑟𝑒 𝜈: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 0: 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑣𝑎𝑐𝑢𝑢𝑚

The speed of propagation in a medium with refractive index of n is: 

υ =
c

n
= ν   and   n = √μrεr 

𝑤ℎ𝑒𝑟𝑒 𝜇𝑟: 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝜀𝑟: 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 

 

The magnetic field can be omitted for a simple mathematical generalisation of the 

wave equation: 

E(x, y, z, t) = E0 cos(ωt − k⃗ ∙ r + φ) 

𝑤ℎ𝑒𝑟𝑒 �⃗� : 𝑤𝑎𝑣𝑒 𝑣𝑒𝑐𝑡𝑜𝑟, |�⃗� | =
2𝜋

𝜆
 𝑎𝑛𝑑 𝑟 : 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑜 (𝑥, 𝑦, 𝑧) 
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2.1.2 Fundamental Principles of DFB Lasers 

 

An easy way to quickly understand the operation of distributed feedback lasers 

(DFB) is that the optical feedback of intra-cavity radiation is no longer provided by two 

reflective end-facets, but is "distributed" as many refractive sources along the cavity. 

This "distribution" is realised by periodically structuring the waveguide as a diffraction 

grating, as shown in Fig. 2-1 (a) and (b).  

(a) 

 

(b) 

(c) 

 

Figure 2-1: Propagation of light in laser cavity of (a) a F-P laser, (b) a DFB laser and the 

relative amplitude of the 2 conter-running waves, i.e. R(z) and S(z) 

In DFB lasers, the grating structure provides an optical feedback with wavelength 

selection, which has the maximum reflectivity at around the Bragg wavelength (B):  

λB = 2neff 

𝑤ℎ𝑒𝑟𝑒 : 𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑎𝑛𝑑 𝑛𝑒𝑓𝑓: 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑒𝑥  
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 Coupled Wave Theory 

Kogelnik and Shank’s coupled wave theory is based on the scalar wave equation [1], 

here E is the complex amplitude of a field of angular frequency () which is 

independent of x and y: 

∂2

∂z2
E + k2E = 0 

Defining the spatial modulation of the refractive index, n, and gain constant, α: 

n(z) = n + n1 cos(2β0z)    and   α(z) = α + α1 cos(2β0z) 

𝑤ℎ𝑒𝑟𝑒 
𝜋

𝛽0
: 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 

 

At Bragg condition: 

 
π

β0
=

λmedium

2
=

λair

2n
 →  β0 ≡

n0

c
 

For the theory developed in [1], it was assumed that: 

  0, laser oscillates at about the Bragg frequency 0 

α ≪ β0,    n1 ≪ n,    α1 ≪ β0 

Therefore: 

k2 = β2 + [2jα + 4(
πn1

λ0
+

1

2
jα1)]β cos(2β0z) 

Defining coupling constant: 

 κ =
πn1

λ0
+

1

2
jα1,   (per unit length) 



 

 

 73 

In such a structure, the electric field E can be described using the two significant 

counter-running waves, as sketched in Fig. 2-1 (c), R and S: 

E(z) = R(z)exp (−jβ0z) + S(z)exp (jβ0z) 

When substituting E into the wave function, if neglecting second derivatives 
𝜕2𝑅

𝜕𝑧2
 and 

𝜕2𝑆

𝜕𝑧2 and inserting all the assumptions, then: 

−R′ + (α − jδ)R = jκS   and   S′ + (α − jδ)S = jκR 

𝑤ℎ𝑒𝑟𝑒 𝛿 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 (𝛽2 + 𝛽0
2)/2𝛽 ≈ 𝛽 − 𝛽0 

 

In [1], R and S were assumed in the form: 

R = r1e
γz + r2e

−γz   and   S = s1e
γz + s2e

−γz 

𝑤ℎ𝑒𝑟𝑒 𝛾2 = 𝜅2 + (𝛼 − 𝑗𝛿)2 

 

After applying all the boundary conditions: 

γ + (α − jδ) = ±jκeγL   and   γ − (α − jδ) = ∓ κe−γL 

κ = ±
jγ

sinh(γL)
 

𝑤ℎ𝑒𝑟𝑒 𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑣𝑖𝑡𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 

 

With given L and κ, a set of modes can be calculated corresponding to eigenvalues 

(generally complex) of γ, which further corresponds to a pair of α and δ: 

α − jδ = γ coth (γL) 



 

 

 74 

Consider a gain-free structure, where α=0 and κ is real. Fig. 2-2 shows the sketch of 

dispersion curves where the propagation constant is plotted as a function of /c. As 

shown, a stopband of width 2n1/ λ is centred at the Bragg frequency.  

 

Figure 2-2: Sketch of dispersion curves of a gain-free structure [1] 

 

 Mode Spectrum 

For the waveguide cavity in my research, photon lifetime (τp) is related to the 

threshold gain (gth) by the equation: 

Γaνggth =
1

τp
= νg(ᾶm + ᾶc) 

𝑤ℎ𝑒𝑟𝑒 ᾶ𝑚: 𝑚𝑖𝑟𝑟𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠, ᾶ𝑐: 𝑐𝑎𝑣𝑖𝑡𝑦 𝑙𝑜𝑠𝑠𝑒𝑠 

Through solving the wave equation with boundary (z=0 and z=L) values equal to 

zero, the solution of the lasing mode is a set of propagation vectors β' and their 

corresponding threshold gain gth, which results in two with lowest and identical gth 

corresponding to the two degenerate modes [1]-[3]. 
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Fig. 2-3 (a) presents the characteristic spectrum showing the resonance of the modes 

in an index-coupled non-phase-shifted structure. As can be seen, the spectrum is 

symmetric centring at Bragg frequency (νBragg). There is no resonance at νBragg 

corresponding to the stopband discussed earlier. It is also found that the two modes 

locating closest on both sides of νBragg sharing the same lowest threshold gain, 

corresponding to 2 degenerate modes in a non-phase-shifted DFB laser. 

 

Figure 2-3: Sketch of characteristic spectrum of the resonance modes of structures with (a) a 

uniform grating and (b) a λ/4 shifted grating [2] 

Fig. 2-3 (b) presents the characteristic spectrum showing the resonance of the modes 

in an index-coupled quarter-wavelength-shifted structure. As can be seen, the spectrum 

is also symmetric centring at νBragg. Compared to the former, there is a resonant mode 

with lowest threshold gain right at νBragg, corresponding to the single mode selected in a 

quarter-wavelength-shifted DFB laser.  

In real laser operation, the mode with the lowest threshold gain lases. Due to the 

difficulty in precisely aligning cleaved facets to the grating, a facet phase shift 

contributes to the grating phase condition, adding a degree of variability in laser-to-laser 

uniformity. In my design, I exploited the random phase shift associated with cleaved 

facets in order to break the degeneracy and ensure single-mode operation. Its simplicity 

of manufacture makes it a suitable method for research purposes. 
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In the solution described above, the lowest two modes for different κL values are the 

two symmetrically located dots closest to the (β' –βo) L= 0 grid line. In practice, not 

only because of the structural imperfection, but also because of effects such as spatial 

hole burning (SHB) and random facet phase, the threshold gain of one of the two modes 

decreases compared to the other one. 

 

 Light Intensity Distribution 

Although λ/4-shifted DFB lasers do not have the issue of having 2 degenerate modes, 

the distribution of the light intensity has a pointing curve profile at the phase-shift 

location as sketched in Fig. 2-4 (a), which can easily cause SHB and further affecting 

the mode stability of the laser. 

 
(a) (b) 

Figure 2-4: Schematic diagrams of longitudinal variation of spatial intensity distribution of (a) 

an AR-coated λ/4 shifted DFB for 3 coupling values [2] and a non-phase-shifted DFB with 

different coupling levels [1]  

 

Fig. 2-4 (b) sketches the spatial light intensity along the laser cavity of a non-phase 

shifted grating [1]. As illustrated, for devices with κL<1, the highest optical intensity is 
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at the edges of the grating. For devices with κL>1, the highest optical intensity is in the 

centre of the grating. For high power operation, the former can significantly damage the 

output facet, while the latter can cause SHB and affect the mode stability. 

In my non-phase-shifted DFB structures, κL were designed to be equal to 1, which 

has a less significant impact on intensity variation, to reduce the effect of SHB for better 

laser performance [4] [5]. 

 

 Simulation of Coupling Coefficient 

The performance of such a structure is based on its coupling coefficient (K), which 

can be linked to the optical confinement factor in the grating (Γg). In my research, 1
st
 

order rectangular 50/50 GaAs/InGaP gratings were designed and fabricated. Γg is given 

by the following equation: 

𝛤𝑔 =
𝜅𝜆𝐵

2(𝑛1 − 𝑛2)
 

where B: Bragg wavelength; n1, n2: refractive indices of grating materials 

 

For laser waveguide design, I used Fimmwave by Photon Design, which is a 

software-based refractive index mode solver, to obtain important simulation data, such 

as the confinement factors in the active region and in the grating. In the design stage, n1, 

n2 and DFB are known and Γg is simulated in order to calculate κ. The value of κL 

affects the location of SHB.  

Typically, it is called critically-coupled for a DFB laser to have a κL of 1 (over-

coupled for κL >1 and under-coupled for κL <1).  
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 Experiment Approximation of Coupling Coefficient 

In practice, the coupling coefficient can be approximated experimentally [6] by 

measuring the wavelength spacing (Δν) between two adjacent sub-threshold DFB 

modes either side of the Bragg wavelength and the longitudinal mode spacing (Δνlong): 

𝜅𝑚𝑒𝑎𝑠 =
𝜋 × ∆𝑣

2 × 𝐿 × ∆𝑣𝑙𝑜𝑛𝑔
 

where L: the cavity length of device; Δν, Δνlong are measured in the unit of cm
-1

 

 

This gives me a method to validate the simulation of layer structure design by 

comparing the calculated coupling coefficient from simulated confinement factors and 

experimentally measured coupling coefficients.  

More importantly, we wish to realise a high-power DFB laser and to do so, we need 

a good grasp of the design rules and their relation to practical realisation through 

verifying the accuracy of the design tool. This comparison of waveguide properties 

between simulation result and experimental measurement allows us to do so.  

Also, it is important for my future waveguide design, especially in more complicated 

photonic integrated circuit (PIC) designs, starting with the simplest 2 component 

integrated MOPA design.  

In MOPA design, we need to be able to design the DFB portion for κL~1 to achieve 

best practice, as explained above. Therefore, it is necessary to get a handle of κ control 

here using this exercise, and then determine the required L through examination of laser 

performance as a function of cavity length. 
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2.1.3 DFB Design in This Research 

 

The comparison among different grating fabrication techniques have been made 

above. Fig. 2-5 illustrates two DFB structures with (a) laterally-coupled grating and (b) 

overgrown grating respectively. The majority of nowadays DFB lasers are 

manufactured using one of these schemes.  

  
(a) (b) 

Figure 2-5: Schematic of DFB structures with (a) lateral grating and (b) overgrown grating 

 

In this research, the index-coupled overgrown grating, as first reported in [7], was 

adopted. This was achieved by choosing two lattice-matched materials with different 

refractive index at the designed lasing wavelength. GaAs and InGaP were used to form 

the grating through the periodical variation of the effective refractive index. These 

materials are lattice-matched and offer a large refractive index difference allowing them 

to be positioned far away from the active region.  

Furthermore another important reason for choosing GaAs/InGaP is that they allow 

selective etching by etchant 1:1 HCl/H3PO4. In fabrication, the first growth stops after 

the GaAs-InGaP-GaAs grating layer. The lower layer acts as etch stop to the wet 

chemical for InGaP etching and to protect the underlying Al-containing layer, and the 
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upper layer not only acts as a cap for selective etching, but also minimises the 

possibility of As-P exchange at the re-growth surface.  

As reported in previous work by my research group [7], the main design concept 

includes: 

 Overgrown grating: In0.49Ga0.51P/GaAs matrix 

The lattice-matched In0.49Ga0.51P/GaAs pair has a high refractive index contrast. 

Therefore the grating layer can be formed a relatively long distance away from the 

active region. Therefore any deleterious effects in the active region resulting from the 

grating etch and re-growth processes are minimised. 

 Cladding layers: Al0.42Ga0.58As  

Using Al0.42Ga0.58As as the cladding layer provides greater design flexibility than 

using Al-free structures, because AlxGa1-xAs is lattice-matched to GaAs for all 

composition of x (Al %), unlike InGaP cladding, which is only lattice-matched for one 

stoichiometry. Since Al0.42Ga0.58As is not exposed to atmosphere during manufacture of 

the buried grating structure, the oxidation process of Al can be ignored [8]. 

 Active region: In0.17Ga0.83As multiple quantum wells 

InGaAs QW lasers normally emit within the range 900-1100nm with relatively high 

reliability in terms of sudden failure and typical lifetime. Therefore, whilst access to a 

platform for advanced components on GaAs enables us to exploit the novel properties 

of exotic active media such as quantum dots, diluted nitrides or even bismides, we 

started this program using a well-developed and well-known QW scheme for emission 

at ~980nm, where robust, high gain material allows study of the device without the 

ambiguity associated with using “developing” materials. 
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2.2 Experimental Methodology 

 

In general, each project in the following chapters has undergone a typical 4-stage 

research process: waveguide design, wafer growth, device fabrication and device 

characterisation.  

In the initial stage, Fimmwave, by Photon Design, is employed to simulate the 

designed waveguides and optimise confinement factors. Simulation of the waveguide 

provides significant parameters for study, e.g. guided mode profile and optical 

confinement factor in selected layers. In the second stage, these layer designs are grown 

at the EPSRC National Centre for III-V Technologies based in Sheffield. In the third 

stage, these wafers are fabricated into devices in our clean room according to the 

parameters in the simulated waveguide design. Further, for the manufacture of the 

grating structures and self-aligned stripes, regrowth processes are involved, which will 

be described in detail in Chapter 3, 4 and 5. In the last stage, the performance properties 

of devices are characterised using purpose-built experimental setups, including those 

used to measure the light-output and voltage as a function of injected current, i.e. L-I-V 

properties, emission spectrum and far-field beam profile. 

 

2.2.1 Device Design – Fimmwave Waveguide Simulation 

 

For a semiconductor light emitting device, especially a laser, the waveguide structure 

directly influences its optical properties. Therefore, waveguide design is typically 

performed at the initial stage of device-focused research. This was a critical starting 

point for my research, and particularly important for the devices to be described in the 
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following chapters. To accurately simulate the designed waveguide, I used Fimmwave, 

computer software supplied by Photon Design, to model 2-D waveguide structures, as 

illustrated in Fig. 2-6. Fimmwave has a variety of mode solvers and a variety of 

waveguide definition user interfaces [9]. Among the many available solvers, I adopted 

the Film Mode Matching (FMM) solver for my research. This semi-analytical and fully-

vectorial solver is based on the FMM method [10] [11], which is optimised for 

epitaxially grown structures in my projects. An exemplary waveguide simulation 

process is described in Appendix I.  

 

Figure 2-6: Simulation of a ridge waveguide DFB laser using Fimmwave 

FMM method is one of many numerical methods for calculating vector mode fields, which is 

especially efficient for layered waveguides with a rectangular geometry. The core concept of 

this method is under the assumption of the materials to be isotropic, non-magnetic and non-

absorbing. 

As illustrated in Fig. 2-7, the solver simulates a given waveguide in the form of a matrix of 

rectangles, which are laterally defined by a number of slices (M) and vertically defined by a 

sequence of layers (N). For each rectangle (m, n), the refractive index is n(m,n), such that the 
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relative permittivity (dielectric constant) is ε(m,n) = n(m,n)
2
. For each slice, the software then builds 

a 2D mode from its TE and TM 1D modes.  

 

Figure 2-7: Simulation of a typical ridge waveguide cross section 

Electromagnetic filled components are in the form of: 

𝐹(𝑥, 𝑦, 𝑧, 𝑡) =  𝛷(𝑥, 𝑦)𝑒𝑗(𝜔𝑡−𝛽𝑧), 𝑤ℎ𝑒𝑟𝑒 𝜔 = 𝑘𝑐 = 2𝜋𝑐/𝜆𝑣𝑎𝑐𝑢𝑢𝑚  

By inserting into Maxwell’s equations, for all points inside rectangle (m, n), i.e. xm < 

x < xm+1 and yn < y < xn+1,  

𝜕𝑥
2𝛷 + 𝜕𝑦

2𝛷 = [𝛽2 − 𝑘2𝜖(𝑚,𝑛)]𝛷 

By gathering the modes with the same z-component (kz) of the modal wave-vector and 

adjusting the modal amplitudes to match the distribution at interfaces, a waveguide mode can be 

found in terms of a set of slice mode amplitudes.  

Considering TE polarization for the interest of my research, i.e. electric field component Ex, 

the boundary continuity conditions require: (a) Ex and ∂yEx are continuous between layers 

(lateral boundaries) and (b) εEx and ∂xEx are continuous between slices (vertical boundaries). 

This is only possible for a certain number of discrete β (certain values of kz).  
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2.2.2 Wafer Growth – Metal Organic Vapour Phase Epitaxy  

 

Both molecular beam epitaxy (MBE) and metal organic vapour phase epitaxy 

(MOVPE) methods for arsenides growth are available at the EPSRC National Centre for 

III-V Technologies in Sheffield. In my research, most of the wafers and all the 

overgrowths were grown by MOVPE, using the Thomas Swan Flip-top Shower-head 

reactor, as pictured in Fig. 2-8. 

 

Figure 2-8: Thomas Swan Flip-top Shower-head reactor [13] 

The operating principle of MOVPE can be described in the following way: In the 

chamber, the required elements are carried as a component of gaseous precursors and 

mix when brought together in close proximity to a heated-substrate surface [12]. In this 

reaction, the precursors are decomposed and the semiconductor compound is formed on 

the surface. A certain switching sequence of valves in the gas lines allows the growth of 

layered structures. The preference of MOVPE over MBE was manifold: The higher 

growth temperature of MOVPE results in a comparatively smaller occurrence of O2 

incorporation into upon the Al-containing wafer layers, hence lower resistivity and 

higher quality cladding layers. Furthermore, in the formation of the GaAs/InGaP/GaAs 

overgrown gratings, the diffusive nature of the MOVPE growth process enables grating 

in-fill and planarisation of the overgrown GaAs, which fills in the etched InGaP matrix 

prior to the growth of upper layers. 
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2.2.3 Device Fabrication 

 

The devices studied in this thesis have been fabricated mostly in the device 

fabrication clean rooms in Sheffield, with the only exception being DFB grating 

definition, for which we relied upon the EPSRC National Centre for III-V Technologies 

in Glasgow to pattern to our designs.  

The three common device fabrication processes involved in preparation of my 

devices were lithography, etching and metallisation. Other fabrication techniques 

included dielectric deposition, device facet coating and nanoscale structural 

measurement. 

 

 Common Fabrication Techniques 

 Lithography – Photolithography / E-Beam Lithography 

By exposing photosensitive polymer (e.g. Shipley positive photoresist, SPR350) with 

UV light through a chrome-patterned quartz photomask on a Karl-Suss MJB3 Mask 

Aligner, pictured in Fig. 2-9 (a), the pre-designed patterns on the mask are transferred 

onto the surface upon developing in MF-26A developer. During development, the 

exposed resist is removed and the non-exposed regions remain.  

By using the vacuum contact mode, the achievable feature resolution is down to 

600nm. However, the grating periods of the DFB lasers in my designs are only ~150nm. 

Therefore, for grating patterning, electron beam lithography (EBL) has been employed 

instead of photolithography. The EBL was performed using Vistec equipment in the 

EPSRC National Centre for III-V Technologies nanofabrication partner in Glasgow.  
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(a) (b) 

Figure 2-9: (a) Karl-Suss MJB3 Mask Aligner and (b) Oxford Plasma-Lab ICP (Inductively 

Coupled Plasma) Etch System 

 

 Etching – Wet Etch / Dry Etch (RIE / ICP) 

Etching is an important process in device fabrication. This includes semiconductor 

etching, e.g. electrical-isolation trench etching or ridge etching, and dielectric etching, 

e.g. contact window etching. Different etching methods are adopted for different 

fabrication requirements. For example, both ICP, pictured in Fig. 2-9 (b), Argon dry 

etch and wet chemical etch using 1:1 HCl/H3PO4 etchant (selectively etching InGaP 

over GaAs) were applied for grating fabrication; only wet etch was adopted for ridge 

etching in broad area laser fabrication using 1:1:1 HBr/CH3COOH/K2Cr2O7 etchant; 

RIE dry etch using CHF3/O2 (35sccm/5sccm) was performed to open windows in Si3N4 

coated surfaces, to allow application of remote bond-pads to narrow ridge devices. 

 

 Metallisation 

A thermal evaporator (Edwards 306 Coating System), pictured in Fig. 2-10 (a), has 

been used as the main tool for contact metallisation, including Au/Zn/Au p-ohmic-

contact, In-Ge/Au n-ohmic-contact and Ti/Au bond pad, where titanium is chosen due 
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to its strong adhesion to both Si3N4 and gold. The deposition process is real-time 

monitored by a crystal thickness monitor, pictured in Fig. 2-10 (b), positioned adjacent 

to the sample being coated. In order to form ohmic contacts, annealing is performed to 

the sample by a Mattson Rapid Thermal Annealing System (RTA) for 3 seconds at 

360
o
C to diffuse Zn into the GaAs layer. The RTA is pictured in Fig. 2-10 (c). 

(a) 

 

(b) 

 

(c) 

 

Figure 2-10: Metallisation equipments: (a) Edwards 306 Coating System, (b) deposition crystal 

thickness monitor and (c) Mattson Rapid Thermal Annealing System (RTA) 

The following two sections (2.2.2 and 2.2.3) describe two standard device fabrication 

processes. Broad area laser structure (50μm ridge width) is a simple laser waveguide 

used to compare or study the lasing characteristics of grown structures. In such broad 

devices, the effect of process-induced variability, such as side-wall roughness and 

waviness, is minimised compared to narrow-ridge lasers (where sidewalls have greater 

influence), aiding comparison of material properties. They also have the advantage of a 

faster time to be processed. Mesa diodes are fabricated to study the spontaneous 

emission characteristics of a grown structure. 
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 Standard Fabrication Process I: Broad Area Laser  

The wafer is cleaved to a suitable size for processing, followed by a 3-stage wash (n-

Butyl, Acetone and IPA) to remove any contamination from handling. Then, the sample 

is heated up on the 100
o
C hot plate for 1 minute to remove any residual IPA. The 

fabrication process then consists of 3 stages. 

 

 Stage I: Front Contact 

As shown in Fig. 2-11, to define the pattern for contact deposition, SPR 350 positive 

photoresist is spun onto the sample at 4000rpm for 30 seconds, followed by 1 minute 

hard bake at 100
o
C on a hot plate. The sample is then exposed under the ‘CONTACTS’ 

mask using an MJB3 Mask Aligner, with the cleaved edges perfectly aligned to the 

mask. After 1 minute development in MF26A, the patterns from the mask transfer into 

the photoresist with 43μm-wide defined stripes being opened in the photoresist.  

After rinsing in DI water, 1 minute oxygen plasma ash is performed to ensure full 

removal of photoresist in the exposed areas. 

 

Figure 2-11: Photoresist spin and exposure under ‘CONTACTS’ mask and development  

Before metal deposition, the sample is firstly washed in 19:1 DIW/Ammonia 

solution to remove any existing oxide on the opened areas, then rinsed in DI water and 

blown dry. This step is significant because the presence of any oxides between the 
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semiconductor surface and the contact to be deposited will increase the contact 

resistance. 

 

Figure 2-12: Au/Zn/Au front contact deposition 

Gold wire and a piece of Zinc are placed in tungsten elements 6cm above the crystal 

thickness monitor. The chamber was pumped down to a pressure of 2×10
-6

mbar to 

proceed. Then Au/Zn/Au layers are deposited with a thickness of 5/10/200nm on both 

the photoresist coating and the opened stripes, as shown in Fig. 2-12. The metal 

deposited on the photoresist-coated areas is removed during a lift-off in acetone. The 

cleanliness is inspected under an optical microscope. Finally, the cleaned sample is 

annealed in the RTA at 360
o
C with 30 seconds ramp and 3 seconds dwell. 

 

 Stage II: Ridge Etching 

This step is similar to the photolithography described above. The sample is spun with 

SPR 350 positive photoresist and then exposed under UV light with perfect alignment 

between the deposited contact stripes and the ‘RIDGES’ mask, followed by 1min 

MF26A development. The sample is then rinsed in DIW, following by 1min oxygen 

plasma ash. As in Fig. 2-13, the stripes on mask ‘RIDGES’ are 50μm wide, 7μm wider 

than the contact stripes width 43μm, to fully cover the contact area and allow for any 

misalignment and undercut during wet etch. 

An isotropic wet etch is performed to etch down ~1.5μm from the sample surface for 

the formation of laser ridges. Wet etch using 1:1:1 HBr/CH3COOH/K2Cr2O7, known 
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locally as the ‘one-one-one etchant’, has an etch rate of approximately 2-5μm/min at 

20
o
C for most III-V compounds. This rate is too high to control for a target etch depth 

of only ~1.5μm. For the ease of operation, the etchant is diluted as 2:2:1:1 

HBr/CH3COOH/K2Cr2O7/DIW for a more manageable etch rate. 

 

Figure 2-13: Photoresist spin and exposure under ‘RIDGES’ mask and development 

A Veeco DEKTAK 150 is employed for repeatedly checking the etch depth until the 

target depth is reached. Fig. 2-14 illustrates the wet etching process. Following removal 

of the resist in EKC830 posistrip, a 2 minute oxygen plasma ash is performed to remove 

any residual photoresist. The cleaning process is repeated until the sample is clean and 

no photoresist residue can be observed. 

 

Figure 2-14: 2:2:1:1 HBr/CH3COOH/K2Cr2O7/DIW etching and resist removal 

 

 Stage III: Substrate Thinning and Back Contact 

Substrate thinning is important for laser fabrication. For an operating laser, heat is 

generated in the active region. By thinning the substrate, the active region can be 

positioned closer to the heat-sink, which increases the ability for heat dissipation, thus 

improving the overall device performance. Also, a thinner sample allows better cleaving 
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of devices, especially for short cavity lengths, for which the minimum length that can 

feasibly be cleaved is ~3 times the substrate thickness. The sample is spun with a thick 

layer of SPR 350 photoresist to protect the fabricated front features from scratching, 

which is hard baked at 100
o
C for 1 minute. The sample is then mounted epi-side-down 

with wax onto a glass holder for substrate thinning with a Logitech LP50 Lapper 

Polisher. As in Fig. 2-15, the sample is then evenly grinded to a target thickness of 130-

150μm, using 3μm calcined aluminium oxide. 

After rinsing in DI water, the sample is removed from its glass holder by dissolving 

the wax in warm n-butyl acetate. The protective photoresist is removed in warm 

Acetone, followed by a full 3-stage clean and cleanliness inspection under optical 

microscope. 

Further, 20nm/200nm thick In-Ge/Au back contact matallisation is deposited, again, 

using the thermal evaporator. The deposition was followed by RTA annealing at 340
o
C 

with 30 seconds ramp and 3 seconds dwell. Although not optimum for In-Ge/Au (prefer 

420
o
C), this temperature is chosen as satisfactory to avoid over-diffusing the top Au-Zn-

Au contact.  

 

Figure 2-15: Substrate thinning and back contact deposition  

 

 Final Step: Cleaving / Mounting / Bonding 

The sample is now ready to be cleaved into certain lengths of broad area lasers for 

characterisation. As in Fig. 2-16, a quick and economical way to package the devices is 
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to mount them on AlO2 ceramic tiles with Ag-containing indium paste at its eutectic 

temperature of 180
o
C on a hot plate. Then the Au/Zn/Au p-contact is wire-bonded to the 

lead-outs on the ceramic tile using an Ultrasonic Ball Bonder, such that the leads can be 

probed during test and not directly to the lasers. 

 

Figure 2-16: Sample packaging on AlO2 ceramic tile 

 

 Standard Fabrication Process II: MESA Diode Fabrication 

The fabrication of MESA diodes is similar to the fabrication of broad area lasers. 

Firstly, the sample is cleaned and cleaved into a suitable size. A thermal evaporator is 

then employed for back contact In-Ge/Au deposition with a target thickness of 

20nm/200nm respectively, followed by RTA annealing at 340
o
C with 30 seconds ramp 

and 3 seconds dwell, as in Fig. 2-17 (a).  

Then the sample is patterned with ‘CONTACT’ mask (an array of annular contacts), 

by photoresist spin, exposure and development. Then a thermal evaporator is again 

employed for front contact deposition with a target thickness of 5nm/10nm/200nm 

Au/Zn/Au respectively. After resist removal, annealing is performed using the RTA at 

360
o
C with 30 seconds ramp and 3 seconds dwell, as in Fig. 2-17 (b).  
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(a) (b) (c) 

Figure 2-17: Fabrication process of mesa diode (a) back contact deposition, (b) front contact 

deposition and (c) mesa etching 

Finally, the sample is patterned with ‘MESA ETCHING’ mask (photoresist spin, 

expose and develop). The sample is etched using a diluted 1-1-1 wet etchant with a 

target depth of 1~2μm, followed by photoresist removal, as in Fig. 2-17 (c). 

The devices are then ready to be cleaved and mounted for characterisation, with the 

result being an array of electrically contacted cylindrical mesa diodes with an optical 

access aperture within the top contact. Such devices are useful in electrical 

characterisation (I-V) and characterisation of spontaneous emission spectra.  

 

 Other Fabrication Techniques 

In addition to the main fabrication methods described above, there are also a number 

of other important fabrication processes used in preparation of samples studied in this 

thesis. 

 

 PECVD 

Plasma-enhanced chemical vapour deposition (PECVD) is used for dielectric film 

deposition, e.g. silicon nitride and silicon dioxide. In the fabrication of devices with 

narrow contact stripes, where we do not wish to bond directly on top of (e.g. devices for 
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3μm ridge DFBs, as will be described in Chapter 3; devices for 3μm self-aligned stripe 

structures, as will be described in Chapter 4 and 5), a silicon nitride film was first 

deposited on the sample surface. Following this, windows were opened in the 

silicon nitride film on top of the ridge/stripe to form the electrical contact. With this 

treatment, the silicon nitride film serves as an electrical isolation layer which allows the 

bond-pad to be deposited close to the contact without shorting to the etched 

semiconductor surface below.  

Also, dielectric deposition can be used for formation of anti-reflection (AR) facet 

coatings. Furthermore, silicon dioxide and titanium dioxide can be used to enhance the 

intermixing effect during selective area impurity free vacancy disordering of InGaAs 

quantum dots, as have been experimented in the preparation work for sampled grating 

distributed Bragg reflector laser (SGDBR) designs (Chapter 6). 

 

 AFM 

A Veeco Atomic-force microscopy (AFM), pictured in Fig. 2-18, was employed for 

characterising the grating resist pattern and the etched grating depth. AFM, as a type of 

scanning probe microscopy, is very-high-resolution (fractions of a nanometre) and 

therefore suitable for our requirement of measurement of typically 20nm depths. 

 

Figure 2-18: Veeco Atomic-force microscopy (AFM) 
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AMF was employed to measure the nanoscale etch depth in the process of grating 

fabrication. Fig. 2-19 presents some examples of grating AFM scans showing the etched 

grating patterns. Although mechanical errors exist in operation, e.g. x-y plane distortion 

due to sample movement caused by repeated back-and-forth movement of the tip, AFM 

was an effective and time-efficient method to examine the grating fabrication process. 

(a) 

  

(b) 

 

 

Figure 2-19: (a) Two exemplary grating scans taken by AFM and (b) an example of cross 

section measurement through the etched grating pattern 

Fig. 2-19 (a) shows 2 examples of AFM scans of gratings, the yellow portion 

corresponds to the un-etched GaAs capping, while the brown portion corresponds to the 

etched InGaP grooves. A cross-section measurement, as in Fig. 2-19 (b), of the etching 

depth can determine whether the etching is sufficient or not. Should the grating depth be 
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insufficient, samples can undergo additional wet chemical etching until the target depth 

had been reached. In my design, with the top GaAs surface (capping) being robust to 

this selective etch, which can proceed without the PMMA pattern once the GaAs has 

been penetrated down into the InGaP layer, as will be described in detail in Chapter 3.  

 

 Facet Coating 

Facet coating is an important fabrication process for DFB lasers. AR facet coating on 

at least one side of the device is particularly necessary for the laser cavity to suppress 

the Fabry–Pérot modes from dominating the DFB mode. Whilst single layer Si3N4 or 

SiO2 coatings can be applied using PECVD, in order to have high-quality facet coating 

(i.e. accurate reflectivity), the devices in Chapters 3, 4 and 5 were sent to Helia 

Photonics, a company (in Livingston, Scotland) specialising in optical coatings for light 

emitting semiconductor devices. AR (0.1%) and/or HR (95%) coatings were applied to 

the samples as required specifications, e.g. centred at 1050nm with 25nm bandwidth, 

based on device information, e.g. effective refractive index at facet and size 

specifications. 

Sometimes, at the starting point of device characterisation, in order to obtain some 

primary characterisation results rapidly after device fabrication, a Si3N4 film was 

applied to cleaved facets as simple single-layer AR coatings using PECVD. The 

deposition thickness was calculated as ~125nm for a central wavelength of ~1000nm, 

using the quarter-wavelength equation, d=/4n, where n~2 is the refractive index of 

Si3N4 at 1000nm. 
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2.2.4 Device Characterisation 

 

In order to quantitatively assess the quality, performance and characteristics of 

manufactured devices, a characterisation setup, pictured in Fig. 2-20, is available for 

experimental measurement. For a laser diode, the significant parameters include light 

output power versus injected current, lasing spectrum profile and far-field beam profile. 

 

 
(c) 

(a) 

 
(b) 

Figure 2-20: Characterisation setup (a) oscilloscope, pulsed power source and power metre 

connected to its power head (up to down), (b) far-field beam profiler (c) spectrum analyser and 

laser diode I/T controller (up to down) 

 

 Light Output Power versus Injected Current 

Many important characteristics of an optical device are revealed by measuring the 

light output with increasing current (L-I properties), which for a laser diode reveal 
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characteristics such as the lasing threshold, slope efficiency and linearity between the 

growth of power upon the increase of current [14]. A typical L-I curve is shown in Fig. 

2-21, together with the I-V characteristic (i.e. the voltage required to generate this 

current). 

 

Figure 2-21: Example of L-I-V curve obtained from laser characterisation 

 

 Cavity Length Dependent Characterisation (ηi, αi and J0) 

Many of the performance characteristics of devices are measured, calculated and 

compared from the LI curves, for instance slope efficiency and threshold current. By 

measuring a laser structure with different cavity lengths, a cavity-length-dependent 

characterisation can be performed to (1) reveal the internal quantum efficiencies (ηi) and 

internal loss (αi), by plotting the inverse external differential quantum efficiencies (ηd) 

as a function of the cavity length; (2) calculate the transparency threshold current 

density, J0, by plotting the threshold current density, Jth, as a function of inversed cavity 

length [14].  
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 Characteristic Temperature (T0) 

For laser diodes, the device temperature might increase significantly when trying to 

achieve high output powers, which could impact negatively on lasing operation. For 

instance, an increase in the threshold current and a decrease in the slope efficiency are 

typically observed as temperature increases. By measuring a laser device at different 

operating temperature, a temperature-dependence characterisation can be performed to 

determine the characteristic temperature, T0, which should be as high as possible for 

temperature insensitive operation [14]. 

 

 Lasing Spectrum Profile 

The optical spectrum of a laser depends on its optical cavity and operating conditions 

(current and temperature) [14]. Ideally, for a DFB laser, the spectrum is composed of a 

single lasing mode, which is built up in optical feedback from a periodic variation of the 

structure (grating). This is different from the lasing spectrum of a conventional Fabry–

Pérot laser, which is built up via optical feedback from front-back mirrors to form 

standing wave oscillation with F-P modes at the modes of the standing wave. Fig. 2-22 

shows an example of the spectrum recorded from a 0.6mm cavity length DFB laser with 

70mA CW pumping applied at room temperature.  

The spectrum shows a robust single-mode lasing peak at 1000.8nm with a linewidth 

of 15.7pm (recorded with a resolution of 10pm) and an SMSR lager than 40dBm. 

For different applications, the requirements of the spectrum vary significantly. For a 

DFB laser diode, not only does the lasing wavelength directly determine the potential of 

its application, but the side mode suppression ratio (SMSR) and the rate of 

thermal/current tuning are also important properties to study. Furthermore, due to the 
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thermal effect on the band gap energy (Eg) of semiconductors, the central wavelength of 

the gain spectrum red-shifts with an increase in operating temperature. 
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Figure 2-22: Example of the lasing spectrum recorded from a 0.6mm long DFB laser operating 

with 70mA CW injected current at room temperature 

In DFB lasers, the lasing wavelength is stabilised and determined by the grating. Due 

to the temperature dependence of semiconductor refractive indices, this wavelength also 

shifts towards long wavelength. When pumped with a CW power source, self-heating of 

the device also contributes to the wavelength shift.  

Controllable and well-defined tunability of a laser provides potential for many 

applications where a range of lasing wavelengths are needed. By measuring the 

spectrum of a device under different operating conditions (temperature and pumping 

current), the degree of thermal and current tunability of a DFB laser can be 

characterised. 

 

 Far-Field Beam Profile 

In addition to LI and spectral characteristics, the optical far-field beam profile of the 

light output of a device is important, both for free space and fibre-coupled applications. 

The far-field beam profile is measured by capturing the spatial intensity of a laser beam 
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on a plane perpendicular to the propagation direction. Fig. 2-23 shows an example far-

field measurement recorded for a 3mm long DFB laser. The result is displayed in both 

3-D and 2-D forms and both illustrate a single lateral mode operation. Axial cross-

sections may be obtained, giving both fast- and slow- axis divergence angles, associated 

with these asymmetric beams. 

 

 
(c) 
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Figure 2-23: Example of beam profile of a ridge DFB laser (a) schematic diagram of 

divergence of output beam, (b) fast- and slow- section plots, (c) 3-D view and (d) front view 

Furthermore, the near-field beam profile of a waveguide can be inferred from that of 

its resultant far-field. Hence, the measurement of the far-field beam profile of a device 

is also useful to detect if the device operates via its fundamental optical mode or via 

higher order lateral modes.  
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 Characterisation Setup Overview 

An overall schematic diagram of my characterisation setup is shown in Fig. 2-24. 

The setup consists of a device driving unit, a probe station on a temperature-controlled 

platform with 3 detection schemes: (1) light output power measurement, (2) 

electroluminescence spectrum analysis and (3) far-field beam profile unit. These will be 

described separately in the following sections.  

 
Output Power 

 
 

 

Device Driving 

 

 

 
Spectrum Analysis 

 
Far-Field Beam Profile 

Figure 2-24: Schematic diagram: an overview of device characterisation setup 
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 Device Driving Unit 

As illustrated in Fig. 2-25, samples were placed on the temperature controlled copper 

block, underneath which a Peltier thermo-electric cooling (TEC) element is placed. A 

Lightwave LDC-3900 Modular Laser Diode Controller controls the temperature by 

adjusting the driving current of the TEC according to the real-time monitoring of the 

substrate temperature using a thermistor. The operational temperature range of this 

setup is 15
o
C to 75

o
C. For continuous-wave (CW) operation measurement, the p-contact 

and n-contact of the device are also connected to the LDC-3900 controller (39440 

module installed) through probes. The operational CW driving current range is 0mA to 

2000mA with an 8 Watt TEC controller [15].  

 

Figure 2-25: Schematic diagram: device temperature control and current driving 

As illustrated, a Lightwave LDP-3840B Precision Pulsed LD Current Source is also 

available as an alternative current source. It is usually used for devices that require a 

high injection current (>1A) or of high resistance due to growth or fabrication 

imperfections, where CW pumping causes significant self-heating of the device. In 

practice, due to transmission line effects, an impedance matching resistor (Rmathcing + 
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Rdevice = 50Ω) is connected in series to achieve good pulsed profile [16] [17]. During 

measurement, the pulsed wave is monitored by a Tektronix TDS 220 Digital Real-Time 

Oscilloscope by checking the voltage applied on the impedance matching resistor. The 

operational driving range is 0mA to 3000mA with a set point resolution of 1mA [16].  

 

 Light Output Power Measurement 

The light output power of a device is measured through a Hewlett Packard (HP) 

81525A Power Head (5mm InGaAs sensor [18]), which is connected via an HP 81533B 

Power Head Interface to a HP 8153A Lightwave Multimeter.  

 

Figure 2-26: Schematic diagram: emission output power measurement 

The measurement wavelength range is 800nm to 1650nm and the power range is +3 

to -70dBm [18]. The power head is fixed onto a XYZ-stage for the ease of alignment 

while testing. To plot the light output against current and voltage against current 

measurement, I used LabVIEW to control both the power meter and the CW (or pulsed) 

current driver through GPIB cables. In cases when the pulsed current source is used, the 
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measured value of power is a time-averaged value. Therefore it is automatically 

multiplied by the inverse duty cycle, for example, if the duty cycle is set to be 1%, the 

measured power is multiplied by 100. In effect, this represents the power that would be 

attained in the absence of self-heating. 

 

 Electroluminescence Spectrum Measurement 

For measurement of the optical emission spectrum, the light wave from the front 

facet of an operating device is collected by a multimode fibre, which is fixed on an 

XYZ-stage. 

 

Figure 2-27: Schematic diagram: emmision spectrum investigation 

During measurement, the fibre is precisely aligned with its facet being located 

sufficiently close to the facet of the device under test. The collected light is fed into an 

Advantest Q8384 Optical Spectrum Analyser (OSA). The available wavelength range is 

from 600nm to 1700nm with a resolution of 10pm [19]. 
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The OSA is also connected to a PC via a GPIB cable and is remotely controlled 

using LabVIEW software. Emission spectra can be recorded under different driving 

currents and/or temperatures. 

 

 Far-Field Beam Profile Measurement 

A Photon-Inc Goniometric Radiometer LD8900R/IR/10 is employed for far-field 

beam profile measurement. It is controlled using the supplied PC software through RS-

232 controller and Digital I/O Interface 880GSX. 

 

Figure 2-28: Schematic diagram: far-field beam profile measurement 

The setup characterises real-time angular radiation intensity of the input light to 

provide 2-D (horizontal and vertical) or 3-D measurement of the beam profile with a 

viewing range of ±72
o
 (0.055

o
 resolution) [20]. Data is then exported as “.asc” files for 

further analysis.  
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 GaAs-Based Narrow Ridge Chapter 3.

Distributed Feedback Lasers  

 

 

Semiconductor lasers are used as light sources in many of today’s optical 

applications. This is because of their many advantages over alternatives, including their 

compact size, efficient and reliable operation, and its economic cost. In a traditional 

Fabry–Pérot laser, the laser oscillation is achieved by the optical feedback from cleaved 

facets. However, in applications where highly coherent light is needed, such as 

spectroscopy or fibre optics communication, traditional semiconductor lasers are no 

longer suitable due to their low spectral stability and purity resulting from the formation 

of the resonant cavity, where a range of wavelengths are supported simultaneously. For 

such applications, selection of a single longitudinal mode is required. 

 

In distributed feedback lasers (DFB), optical feedback is obtained from a periodic 

corrugation along the path of optical propagation. A grating is fabricated through 

periodic modulation in refractive indices (index-coupled) or gain (gain-coupled), so that 

a single longitudinal mode is selectively fed back within the broad gain spectrum. In my 

research, overgrown index-coupled DFB laser structures have been designed, fabricated 

and characterised. The grating was formed using two materials, GaAs and InGaP, which 

provide periodical variation of the refractive index.  

DFB lasers are potential for applications based on TDLS (tunable laser diode 

spectroscopy) [1] [2] due to their narrow linewidths and sufficiently high SMSR. The 

http://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer
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modulation of a single mode DFB laser can also be used as the signal generation unit in 

many applications, for example in an all-optical packet switching system [3]. 

This chapter starts with a description the initial 2QWs DFB structure [4] in Section 

3.1.1. Then, from the initial DFB design, structural modification and simulation are 

presented in detail in Sections 3.1.2 and 3.1.3. Further, Section 3.2 introduces the 

preparation work that was conducted prior to DFB lasers being manufactured, including 

comparison of (1) performance of broad area lasers fabricated from material grown by 

MOVPE and MBE and (2) performance of mesa diodes and broad area lasers fabricated 

from MOVPE grown material with 2, 4 and 6 QWs. Then Section 3.3 describes the 

four-stage manufacture process of the DFB lasers, followed by characterisation, analysis 

and discussion in Section 3.4. 

 

 

3.1 DFB Simulation 

 

The starting point for this study was the DFB structure described in [4]. The initial 

structure, as described in Table 3-1, consisted of an active region of 2 In0.17Ga0.83As 

QWs separated by 20 nm GaAs and an InGaP/GaAs grating layer (thickness: 20nm; 

period: 148nm) grown 470nm above the active region.  

In this report, a 1mm long 3μm wide ridge laser with as-cleaved facets (i.e. uncoated) 

demonstrated a threshold of 62mA with CW injection. At 93mA, the output power 

reached 7.9mW with an SMSR of 28.3dB. I started this research based on this initial 

structure.  
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 Layer Thickness Material 

Overgrowth Contact 200nm GaAs 

Upper 

Cladding 
530nm Al0.42Ga0.58As 

In-Fill 50nm GaAs 

Planar 

Growth 

 10nm GaAs 

Grating 20nm In0.49Ga0.51P 

 25nm GaAs 

Upper 

Cladding 
470nm Al0.42Ga0.58As 

Core: QWs 

50nm GaAs 

7.6nm In0.17Ga0.83As 

20nm GaAs 

7.6nm In0.17Ga0.83As 

50nm GaAs 

Lower 

Cladding 
1000nm Al0.42Ga0.58As 

Buffer 500nm GaAs 

Table 3-1: Layer details of the initial DFB structure in [4]  

Unlike traditional Fabry–Pérot lasers, the analysis of the optical mode in DFB lasers 

employs coupled wave theory. Kogelnik and Shank [5] pointed out one problem of AR-

coated index-coupled DFB lasers is the degeneracy into dual-mode operation, i.e. on 

both sides of the Bragg wavelength. One solution to this is the introduction of a /4 

phase shift. However, such a structure, referred to as a quarter-wave shifted structure, 

suffers from high spatial hole-burning (SHB) at the phase-discontinuity point [6] [7]. 

The non-uniform carrier density is a result of non-uniform power density, which further 

results in unstable single longitudinal mode operation [8] and increase of the linewidth 

[9]. Although the SHB can be reduced to some extent by modulating the stripe width 

[10], such structures still suffer from higher complexity with respect to their 

manufacture.  

The purposes behind the study in this chapter were to fine-tune the capability to 

accurately simulate the waveguide and grating coupling using Fimmwave and to 

attempt to optimise the lasing performance compared to the original design in [4], with 

a view to realisation of high power and high performance DFB lasers. 

http://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer
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3.1.1 Fimmwave – Waveguide Modelling Software 

 

Fig. 3-2 shows an exemplary simulation of my first DFB structure. As annotated, a 

grating of a varied thickness was designed to be manufactured in the upper cladding (P-

Al0.42Ga0.58As) with a separation of varied distance above the active region. In terms of 

waveguide design, the grey areas were the areas to be etched away in order to form the 

ridge. The ridge width was fixed to be 3μm in order to achieve single lateral mode 

operation. The etching depth was designed to be ~1.5μm inbetween grating and active 

region. The contour plotting represents the intensity profile of the simulated guided 

optical mode. 

 

Figure 3-1: DFB-1: 2QWs, 470nm separation and 15nm grating thickness 

One important parameter that can be obtained from waveguide simulation is the 

confinement factor in the grating layer, which allows the calculation of its coupling 

coefficient (K) through the equation: 

Γg =
KλB

2(n1 − n2)
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B is the DFB wavelength, and n1 and n2 are the refractive indices of GaAs and 

InGaP (3.51 and 3.15 at 1000nm respectively). The simulated confinement factor for the 

initial structure was 0.001358, corresponding to a K~10cm
-1

, which makes KL=1 for a 

1mm device. 

 

3.1.2 Strain-Balanced QW Design 

 

As mentioned at the beginning of this section, the aim of the design was not only to 

fine-tune the capability of tailoring the waveguide using Fimmwave, but also seeking 

optimisation (in terms of power and SMSR) of the original DFB structure. One way to 

achieve high power lasing is to cleave longer devices. But this would limit the 

performance (longer grating means higher possibility of defect incorporation and 

reduces efficiency) and application potential (many applications are not suitable for 

long devices, for example high-speed modulation) of my design. Therefore, in addition 

to variation of the grating thickness and distance from the active region for 2QWs 

designs, additional QWs were added to my structure in order to achieve higher gain in 

the core. So I included another 2 structures into the overall design theme, which had 4 

and 6 QWs in the active region respectively. Furthermore, it was expected that a 

higher differential gain offered by additional number of QWs could potentially support 

a higher direct modulation speed. 

 

However, when growing In0.17Ga0.83As QWs within GaAs separations (barriers), the 

mismatch in lattice constants between the two materials causes strain in the layers. 

When growing 2QWs in the structure, the effect of the strain is not significant. 
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However, when stacking 4 and 6 QWs, the strain effect significantly influences the 

quality of growth [13]. Therefore, instead of only using GaAs spacer layers between the 

QWs, the 10nm of GaAs on either side of the In0.17Ga0.83As QWs was substituted with 

GaAs0.885P0.115. The lattice constant of In0.17Ga0.83As is higher, which is higher than that 

of GaAs than that of GaAs0.885P0.115. Therefore, to some extent, by sandwiching 

In0.17Ga0.83As with GaAs0.885P0.115 layers we can balance the induced strain.  

In the process of growing lattice-mismatched materials, the accumulation of strain is 

positively correlated to the product of growth thickness (d) and strain rate (ε). In my 

design, as illustrated in Fig. 3-2, in each repeating unit, a 7.6nm InGaAs QW is 

sandwiched by two 10nm GaAsP barriers. Fig. 3-3 presents the schematic diagram of 

the energy band diagram of this structure. 

 

Figure 3-2: Compensation of compressive strain induced by InGaAs QWs  

The lattice constant of GaAs is 5.653Å and that of In0.17Ga0.83As is approximately 

5.722Å, where the strain rate, ε(InGaAs→GaAs), is ~ 1.21%(+). The lattice constant of 
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GaAs0.885P0.115 is approximated to be 5.630Å and its strain rate to GaAs, ε(GaAsP→GaAs), is 

then ~ 0.41%(-). Therefore, for each unit, the determining factor of compressive strain 

induced by InGaAs QW is: d(InGaAs)  ε(InGaAs→GaAs) = 9.2(+), whilst that of the tensile 

strain induced by GaAsP barriers is: d(GaAsP)  ε(GaAsP→GaAs) = 8.2(-).  

This mathematically shows the compensation (9.2 ~ 8.2) of strain effect in the 

structure design. Since the structure is still slightly compressively strained (9.2 > 8.2), 

one can expect that when stacking more number of QWs (2 → 4 → 6), the effect of 

strain will become more significant, thereby influencing the properties of the devices.  

 

Figure 3-3: Energy band diagram of the strain-balance structure design 

 

3.1.3 Design and Simulation 

 

In order to control the variables in the complete set of structures, I modified the 

original structure from [4] and added GaAsP strain-balancing layers for all the 2, 4 

and 6 QWs structure designs, as illustrated in Fig. 3-4. 
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Figure 3-4: Strain-balanced design for 2, 4 and 6 QWs active region  

Based on this initial structure, I simulated 5 DFB structures with variation in the 

following 3 aspects: (1) thickness of grating (DFB1~DFB3), (2) separation between 

grating and active region (DFB1~DFB2) and (3) number of quantum wells in the active 

region (DFB2, 4, 5). Table 3-2 shows the layer details of the 5 DFB structures.  

By adjusting (1) and (2), coupling in the structure can be modified. Adjusting (3) will 

affect the gain, as well as the coupling, and hence grating thickness and space for these 

structures were designed to maintain a constant confinement factor in the grating. For 

example, the 3 variations designed for the initial structure were: 15nm grating, 470nm 

separation and 2 QWs.  

DFB 2 and DFB 3 are both based on DFB 1, the initial structure, with one variable 

changed in each. As illustrated, DFB 2 has 500nm separation instead of 470nm resulting 

in a decrease of confinement factor in the grating, Γg, from 0.001358 (DFB 1) to 

0.000963 (DFB 2). DFB 3 has 20nm grating thickness instead of 15nm causing an 
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increase of confinement factor from 0.001358 (DFB 1) to 0.001694 (DFB 3). Fig. 3-5 

illustrates the waveguide simulation of DFB 2 and DFB 3.  

Layer Thickness Material DFB1 DFB2 DFB3 DFB4 DFB5 

Contact 300nm GaAs - - - - - 

Upper 

Cladding 
850nm Al0.42Ga0.58As - - - - - 

In-Fill 40nm GaAs - - - - - 

 12nm GaAs - - - - - 

Grating (varied) In0.49Ga0.51P 15nm 15nm 20nm 20nm 25nm 

 12nm GaAs - - - - - 

Upper 

Cladding 
(varied) Al0.42Ga0.58As 470nm 500nm 470nm 400nm 340nm 

Barrier 40nm GaAs - - - - - 

Core: QWs 

10nm GaAs0.885P0.115 

Repeat 

×2 

Repeat 

×2 

Repeat 

×2 

Repeat 

×4 

Repeat 

×6 

7.6nm In0.17Ga0.83As 

10nm GaAs0.885P0.115 

… 

Barrier 40nm GaAs - - - - - 

Lower 

Cladding 
1200nm Al0.42Ga0.58As - - - - - 

Buffer 500nm GaAs - - - - - 

Confinement Factor in Grating (10
-3

) 1.358 0.963 1.694 0.962 0.936 

Confinement Factor in QWs (10
-3

) 25.397 21.628 25.048 44.526 62.429 

Table 3-2: Layer details of five simulated DFB structures, DFB 1, 2, 3 compare Γg, whilst DFB 

2, 4, 5 compare increasing QW number 

 

The confinement in the QWs of DFB 1, 2 and 3 had similar values, 0.025397, 

0.021628 and 0.025048 respectively. Because the only structural difference between 

DFBS 1 and 3 was the 5nm thicker grating in DFB 3, therefore the lateral and vertical 

confinement conditions were similar, so that they have approximately the same 

confinement factor in the QWs. As to DFB 2, this structure had 30nm thicker AlGaAs 

between the grating and the active region, which broadened the optical mode in the 

lateral direction. This was because the ridge waveguide was etched to a depth 30nm 

higher than DFB 1, which resulted in a slightly weaker lateral confinement of the 

optical mode. 
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Figure 3-5: Waveguide simulations of DFB 2, where Γg decreased from 0.001358 (DFB 1) to 

0.000963, and DFB 3, where Γg increased from 0.001358 (DFB 1) to 0.001694  

 

As for structures with 4QWs and 6QWs (Fig. 3-6), these structures were designed 

to maintain Γg such that the only difference should be a result of greater gain being 

available in structures with more QWs.  

 

Figure 3-6: Waveguide simulations of DFB 4 and DFB 5 

By stacking more QWs, the vertical confinement of the waveguide becomes stronger, 

which results in the optical mode shrinking away from the grating layer when increasing 

the number of QWs in the active region from 2 (DFB 2) to 4 (DFB 4) to 6 (DFB 5). 
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This also gives rise to a slight decrease of the lateral confinement. This can be seen 

from the decrease of the width of the outermost contour plot in Fig. 3-6. The outermost 

width of DFB 2 was 29.4μm, which increased to 31.5μm for 4QWs and further 

increased to 33.9μm for 6QWs.  

In order to match the confinement factor in the grating layer with DFB 2 (the 

structure with the lowest confinement factor in the three 2QWs designs), a thinner 

AlGaAs spacing and a thicker GaAs/InGaP grating were incorporated into the design 

and simulated. In the final structure, the waveguides containing 4 and 6 QWs had a 

confinement factor in the grating of 0.000962 and 0.000936 respectively, which 

matched with that of DFB 2 (0.000963). The confinement factors in the active region 

were 0.04526 and 0.062429 for 4 and 6 QWs respectively, which were roughly 

doubled and tripled compared to that of DFB 2 (0.021628). 

 

3.1.4 Summary 

 

In summary, DFB 1 was based on the initial DFB structure reported in [4]. For DFBs 

2 and 3, modifications were made in the distance between grating and active region and 

the thickness of grating to tailor the confinement factor in the grating layer. 

Furthermore, with the expectation to manufacture high-power DFB lasers, a greater 

number of QWs were introduced into DFBs 4 and 5. In order to maintain consistency 

between structures, the confinement factor in the grating layer of DFBs 2, 4 and 5 were 

designed to be approximately equal.  
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3.2 Preparation Works 

 

 MOVPE and MBE 

Before the manufacture of DFB ridge lasers, the ability of the III-V Centre to 

produce 980nm lasers was examined. General laser performance was compared between 

samples grown by MOVPE and by MBE by fabricating and characterising broad area 

lasers. Table 3-3 presents the detailed layer structure of the 2 InGaAs/GaAs QWs 

grown by both methods on n-doped GaAs substrate with 3
o
 off to (110) orientation. 

Layer Thickness Material Doping Concentration 

Contact 300nm GaAs p 2.00E+19 

Upper 

Cladding 

600nm Al0.42Ga0.58As p 1.00E+18 

600nm Al0.42Ga0.58As p 5.00E+17 

Active 

Region 

50nm GaAs - - 

7.6nm In0.17Ga0.83As - - 

20nm GaAs - - 

7.6nm In0.17Ga0.83As - - 

50nm GaAs - - 

Lower 

Cladding 

600nm Al0.42Ga0.58As n 5.00E+17 

600nm Al0.42Ga0.58As n 1.00E+18 

Buffer 500nm GaAs n 1.00E+18 

Table 3-3: Layer structure of 2 InGaAs/GaAs QWs grown by MBE and MOVPE 

 

 Two, Four and Six QWs 

The starting point for the research was the initial 2QWs DFB design, where 2QWs 

offer more gain than a single QW, it leads that to grow more QWs should result in even 

higher gain in active region, thus achieving higher power DFB lasers. 

In order to investigate and compare general properties prior to the real manufacture 

of 2, 4 and 6 QWs DFB lasers, a set of structures comprising 2, 4 and 6 QWs 
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were grown, so that, by fabricating these structures into devices (lasers and/or mesa 

diodes), their optical properties could be studied and compared prior to their integration 

into DFB lasers (e.g. what cavity lengths are required and the implications for K 

design). The growth involved strain-balancing design as described in Section 3.1.3. The 

active region described in Table 3-3 was replaced by the structure shown in Table 3-4. 

Layer Thickness Material 2QWs 4QWs 6QWs 

Active 

Region 

40nm GaAs - - - 

10nm GaAs0.885P0.115 
Repeat 

2 

Repeat 

4 

Repeat 

6 
7.6nm In0.17Ga0.83As 

10nm GaAs0.885P0.115 

40nm GaAs - - - 

Table 3-4: Active region of MOVPE grown 2, 4 and 6 QWs 

 

 Mesa Diode and Broad Area Lasers 

The operation of a laser depends on many factors including waveguide design, mirror 

reflectivity and resonant cavity. Therefore, before the fabrication of lasers, mesa diodes, 

as in Fig. 3-7 (a), were first manufactured from these samples to check their electrical 

properties and compare the spontaneous emission.  

As described in detail in Chapter 2, to fabricate mesa diodes, the samples were first 

deposited with the In-Ge/Au n-contact contact, followed by 340°C annealing. After, 

Au/Zn/Au p-type contact was deposited and annealed at 360°C. The devices were 

finished by 1-1-1 etching (1:1:1 of C2H4O2, HBr and K2Cr2O7) to form the mesa of a 

depth of 1.4μm. 

Broad area lasers were also fabricated to compare the lasing characteristics. As 

described in Chapter 2, a broad area laser is a standard and quick-to-make laser 

structure, which is usually fabricated from designed wafer structures for 
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electroluminescence characterisation of their lasing properties, for example the EL 

spectrum and LIV characteristics. They allow rapid feedback of material growth success 

and are also beneficial for length dependent laser characterisation since the influence of 

process-induced uniformity is minimised. Fig. 3-7 (b) shows s schematic diagram of a 

standard broad area laser with parameters annotated.  

(a) 

 
  

  

(b) 

 

Figure 3-7: Schematic diagram of (a) a mesa diode and (b) a broad area laser 

Broad area lasers (50μm wide) were processed from these materials in order to 

characterise their performance. Their fabrication process is described in detail in 

Chapter 2, but comprise a 1.4μm deep wet etch and application of Au/Zn/Au p-contact 

to the ridge and substrate thinning to ~150μm, followed by In-Ge/Au n-contact 

metallisation, prior to cleaving.  
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3.2.1 MBE and MOVPE Comparison: Broad Area Lasers  

 

As both growth methods (MBE and MOVPE) are available at the III-V Centre, we 

firstly grew the same standard 2 InGaAs/GaAs QWs structure by both methods to 

determine which would be most appropriate for DFB planar growth, given the long 

waiting list for growth and hence the long lead time associated with the III-V centre’s 

MOVPE reactors. The two materials were fabricated together into broad area lasers and 

length dependent LI characteristics were measured. Fig. 3-8 plots the length dependent 

CW measurement of the two laser sets. 

 
(a) (b) 

Figure 3-8: CW measurement of broad area laser grown by (a) MBE (0.5/1mm) and (b) 

MOVPE (0.75/1/1.5/2/2.5/3mm) 

The results indicate that the samples grown by MBE could not lase under CW 

current injection at room temperature, likely as a result of their high resistance. 

According to the measurement, a 1mm long MOVPE grown laser had a resistance of ~ 

1.88 and that of a 1mm MBE grown laser was 4.12. In comparison, the cavity length 

dependent characterisation of the samples grown by MOVPE exhibited a more typical 

laser performance. There is no particular reason why MOVPE should be better than 

MBE for these structures, but the quality of AlGaAs that can be achieved is a likely 

factor. Fig. 3-9 shows the temperature dependent characterisation of the MOVPE-grown 
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lasers. The calculated characteristic temperature T0 is 55.835
o
C. Whilst this is low in 

real terms compared with published values for comparable structures, these are bare, un-

mounted, non-heat-sunk bars. 
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Figure 3-9: CW temperature dependent characterisation of a 1mm MOVPE grown broad area 

laser 

That the performance of the MOVPE-grown lasers was so far superior to those 

grown by MBE affirmed our decision to continue the growth campaign by MOVPE. 

 

3.2.2 Comparison of 2×, 4× and 6× QWs Mesa Diodes  

 

Fig. 3-10 plots the L-I measurement of fabricated mesa diodes with 2, 4 and 6 

QWs. The light output was measured by placing the power head vertically 1mm above 

the contacted mesa, which was further aligned by injecting a test current to the device 

and adjusting the x-y location to optimise the coupling efficiency and therefore attain 

the highest power value. The spontaneous emission produced by mesa diodes 

containing 6QWs sample is larger than that of 4QWs, which is larger than those with 

2QWs. Gain is not directly related to spontaneous emission, the result accords with 

expectation. The spontaneous emission output power of a mesa is related to current by 

the equation [14]: 
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𝑃𝑠𝑝 = 𝜂
𝑐
𝜂
𝑖
𝜂
𝑟

ℎ𝜈

𝑞
𝐼,       𝑤ℎ𝑒𝑟𝑒     𝜂

𝑟
=

𝑅𝑠𝑝

𝑅𝑠𝑝 + 𝑅𝑛𝑟 + 𝑅𝑙
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Figure 3-10: Measurement of the spontaneous emission and voltage from 2, 4 and 6 QWs  

mesa diodes as a function of current 

Therefore, a change in L-I relationship must be due to change in ηc and/or ηi and/or 

ηr. ηc is net collection efficiency, and is considered to be kept constant. ηr is radiative 

efficiency, defined to simplify the uncertain dependence of non-radiative recombination 

rate (Rnr) and carrier leakage (Rl) on I, but usually depends on carrier density (N) [14].  

ηi is internal quantum efficiency, which represents the fraction of injected current in 

the active region. The different number of QWs should not affect ηi, but the measured 

device resistance shows that R2QW > R4QW > R6QW, which would cause the local 

temperature inside the 2QWs mesa to be higher than for 4QWs mesa, and higher than 

6QWs mesa. This might result in a decrease of ηi from 6 to 4 to 2 QWs.  

This hypothesis can be validated by revealing the relative difference ratio (%) in both 

output power and in resistance. Fig. 3-11 plots the output power difference ratios from 

the 4QWs ( ) and 6QWs ( ) mesas to that of the 2QWs mesa, i.e. setting 2QWs 

as the reference, as a function of current. Both curves show that the ratio increases with 



 

 

 126 

a near-linear profile against the increase in current injection. By applying linear fitting 

for both, an intercept of 11.1% was calculated for the curve (4 to 2 QWs) and 24.7% 

for the curve (6 to 2 QWs). The intercept of the linear fitting represents a theoretical 

output power difference ratio at 0mA current injection, where the self-heating effect can 

be neglected. 
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Figure 3-11: The relative difference ratios from 4 and 6 QWs mesa to 2QWs mesa, plotted 

as a function of injection current, together with their linear fitting 

 

Also, the relative difference ratios in resistance from the 4 and 6 QWs mesas to 

that of the 2QWs mesa can be calculated as follows: 

(R4QW - R2QW) / R2QW = -16.1%; (R6QW - R2QW) / R2QW = -26.4% 

Therefore, with the 2QWs mesa being the reference here, the 4QWs mesa 

exhibited 16.1% lower resistance, whilst exhibiting a characteristic output power 

increase of 11.2%; and the 6QWs mesa exhibited 26.4% lower resistance, whilst 

exhibiting a characteristic output power increase of 24.7%.  

This calculation validated the hypothesis above that the difference in device 

resistance contributed to the difference of measured L-I properties.  
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3.2.3 Comparison of 2×, 4× and 6× QWs Broad Area Lasers 

 

2, 4 and 6 QWs broad area lasers were fabricated following the same process as 

in 3.4.1, with all samples mounted on ceramic tiles and tested as-cleaved without the 

application of facet coatings.  

 

 Laser Characterisation 

One important parameter to be calculated in the laser characterisation is the internal 

quantum efficiency (ƞi), which determines the L-I properties of a laser. Firstly, we 

calculate the external differential quantum efficiency (ƞd) as a function of cavity length, 

extracted from the linear fitting of an L-I curve by the given equation [15]: 

ƞ𝑑 = 2
∆𝑃

∆𝐼
[
q

hc
] 

h = 6.626210
-34

 J.sec; c = 2.9910
8
 m/sec; q = 1.602210

-19
 C;  = 110

-6
 m; 

If we then plot the inverse external differential quantum efficiency (1/ƞd) as a 

function of cavity length (L), the intercept of the linear fit on the 1/ƞd axis is then 1/ƞi.  

Another important parameter to be calculated is the transparency threshold current 

density (J0), which can be regarded as the theoretical threshold current density of laser 

with infinite optical cavity length (i.e. no mirror loss) [15]. This is obtained by plotting 

the threshold current density (Jth) as a function of inverse cavity length (1/L). The 

intercept of the linear fit with the Jth axis is then J0.  

The following section presents the experimental results obtained from 2, 4 and 6 

QWs broad area lasers, characterised in this way. 



 

 

 128 

 Characterisation of 2×QWs Broad Area Laser 

Fig. 3-12 plots the L-I curve of 2QWs broad area lasers with cavity length of 0.5, 1, 

1.5 and 2mm. Measurements were performed at room temperature using a CW current 

source. CW lasing was observed down to the shortest cavity length cleaved with Ith ~ 

70mA (Jth ~ 280A/cm
2
). Table 3-5 presents the characteristics obtained from analysis of 

the measurement of the 2QWs broad area lasers in Fig. 3-12. From this table ηd and Jth 

are plotted as a function of cavity length in Fig. 3-13. The internal quantum efficiency 

(ηi) is calculated to be 64.53% and the transparency threshold current density (J0) is 

166.56A/cm
2
. 
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Figure 3-12: L-I curve of 2QWs broad area laser 

2QWs BA Lasers  0.5mm 1mm 1.5mm 2mm 

Area cm
2
 0.00025 0.0005 0.00075 0.001 

2Slope Efficiency W/A 0.512 0.429 0.335 0.268 

ηd - 0.414 0.347 0.271 0.217 

Threshold Current mA 69.7 110.8 153.6 194.5 

Threshold Current Density A/cm
2
 278.9 221.5 204.8 194.5 

Table 3-5: Experimental results of 2QWs broad area laser 
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Figure 3-13: Characterisation of 2QWs broad area laser 
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 Characterisation of 4×QWs Broad Area Laser 

Fig. 3-14 plots the L-I curve of 4QWs broad area lasers with cavity lengths of 0.5, 

1, 1.5 and 2mm. Measurements were performed at room temperature using a CW 

current source. CW lasing was observed down to the shortest cavity length cleaved with 

Ith ~ 86mA (Jth ~ 343A/cm
2
). Table 3-6 presents the characteristics obtained from 

analysis of the measurement of the 4QWs broad area lasers in Fig. 3-14. From this 

table ηd and Jth are plotted as a function of cavity length in Fig. 3-15. The internal 

quantum efficiency (ηi) is calculated to be 49.09% and the transparency threshold 

current density (J0) is 203.49A/cm
2
. 
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Figure 3-14: L-I curve of 4QWs broad area laser 

4QWs BA Lasers  0.5mm 1mm 1.5mm 2mm 

Area cm
2
 0.00025 0.0005 0.00075 0.001 

2Slope Efficiency W/A 0.477 0.307 0.277 0.212 

ηd - 0.386 0.248 0.224 0.171 

Threshold Current mA 85.8 135.9 189.6 250.9 

Threshold Current Density A/cm
2
 343.4 271.8 252.7 250.9 

Table 3-6: Experimental results of 4QWs broad area laser 
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Figure 3-15: Characterisation of 4QWs broad area laser  
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 Characterisation of 6×QWs Broad Area Laser 

Fig. 3-16 plots the L-I curve of 6QWs broad area lasers with cavity length of 0.5, 1, 

1.5 and 2mm. Measurements were performed at room temperature using a CW current 

source. CW lasing was observed down to the shortest cavity length cleaved with Ith ~ 

123mA (Jth ~ 492A/cm
2
). Table 3-7 presents the characteristics obtained from analysis 

of the measurement of the 6QWs broad area lasers in Fig. 3-16. From this table ηd and 

Jth are plotted as a function of cavity length in Fig. 3-17. The internal quantum 

efficiency (ηi) is calculated to be 52.13% and the transparency threshold current density 

(J0) is 371.73A/cm
2
. 

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25
CW Source

Room Temperature
 6QW 0.5mm

 6QW 1mm

 6QW 1.5mm

 6QW 2mm

P
o

w
e

r 
(m

W
)

Current (mA)  

Figure 3-16: L-I curve of 6QWs broad area laser 

6QWs BA Lasers  0.5mm 1mm 1.5mm 2mm 

Area cm
2
 0.00025 0.0005 0.00075 0.001 

2Slope Efficiency W/A 0.333 0.275 0.173 0.153 

ηd - 0.270 0.222 0.140 0.124 

Threshold Current mA 123.0 223.1 310.2 394.2 

Threshold Current Density A/cm
2
 491.8 446.2 413.6 394.2 

Table 3-7: Experimental results of 6QWs broad area laser 
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Figure 3-17: Characterisation of 6QWs broad area laser 
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 Discussion and Comparison 

 Device Resistance 

Fig. 3-18 illustrates the resistance calculated from length-dependent electrical (I-V) 

characterisation showing that the 2, 4 and 6 QWs devices have similar resistance for 

all cavity lengths. This is expected, since the devices were fabricated together under 

identical process parameters. No additional resistance or leakage was contributed by the 

additional QWs growth. 
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Figure 3-18: Length dependent resistance of 2, 4 and 6 QWs lasers 

 

 Estimation of Minimum Saturated Gain 

For the 2QWs laser set, lasing is observed for cavity lengths down to the shortest 

available (due to cleaving limitation) of 500μm. With the assumption of no other losses 

in the cavity, the gain coefficient is given by the threshold condition equation [16]: 

𝑔 =
1

2𝐿
ln

1

𝑅2
 

The reflectively (R) on both as-cleaved facets were approximated as 0.31, which is a 

typical value for GaAs/AlGaAs laser [15]. Such that a saturated gain coefficient was 

estimated to be higher than 23.4cm
-1

. This indicates its potential applicability to the 

DFB laser, and any subsequent integrated devices. Further gain, through greater number 

of QWs is therefore only really necessary should subsequent device processing have a 
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deleterious impact on gain, or generate excessive waveguide losses. Analysis of these 

materials, containing greater number of QWs, is therefore necessary to ensure that there 

are no additional issues, such as excess strain commensurately higher defect density, 

associated with the growth of additional QWs. 

 

 L-I Characterisation Comparison 

Laser characterisation for the 2, 4 and 6 QWs lasers are summarised in Table 3-

8. These results demonstrate that the transparency threshold current density, J0, 

increases significantly along with the increase in the number of quantum wells. It can be 

expected that this increase is due to the increase in the number of available electronic 

states to fill and non-uniform carrier injection into the QWs, resulting in a higher 

injected current needed to reach the transparency condition. This matches the result of 

[17], where 3, 5 and 7 Ga0.5In0.5P/(Al0.7Ga0.3)0.5In0.5P QWs lasers were studied. The 

result also matches with the research reported in [18], where 1, 2 and 3 

GaAs/Al0.22Ga0.78As (7nm/5nm) QWs lasers were studied. However in their 

measurement of short devices (<200μm), a larger number of quantum wells resulted in 

lower threshold current density, which was attributed to the mirror loss term increasing 

with a decrease in cavity length, such that the optical gain of their 1 QW device was 

easily saturated. 

  2QWs 4QWs 6QWs 

Transparency Threshold Current Density 166.6A/cm
2
 212.8A/cm

2
 371.7A/cm

2
 

Internal Quantum Efficiency 64.50% 59.30% 52.10% 

Table 3-8: Comparison of 2, 4 and 6 QWs laser characterisation  

Table 3-8 also shows that, under CW pumping, lasers with 2QWs have higher 

internal quantum efficiency (64.53%) than that of 4QWs (59.3%), than that of 6QWs 
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(52.1%). I suggest that this is mainly due to heating in the device induced by the CW 

pumping current. Due to the increasing current needed to reach the lasing condition, as 

discussed above, the self-heating effect caused by the large CW current becomes more 

significant. For example, the CW threshold current of a 1mm long laser was 110.8mA 

for a 2QWs laser, 135.9mA for a 4QWs laser, and 223.1mA for a 6QWs laser. In 

order to verify this assumption, a selection of devices was re-measured under pulsed 

current injection with 5μs pulse width and 5% duty cycle. Fig. 3-19 plots the L-I 

characteristic for a range of cavity length from 0.5-2mm using pulsed current injection.  

 

 

Figure 3-19: L-I plots of 0.5/1/1.5/2mm lasers with 2, 4 and 6 QWs measured with pulsed 

current source (pulse: 5μs-5%) 

Table 3-9 summarises the threshold currents extracted from these plots. Because of 

the significant reduction in heating resulting from the pulsed operation, a decrease in 

lasing threshold current is observed, compared with the CW measurement. Taking the 

1mm devices as an example, for 2QWs: 110.8mA dropped to 63.4 mA; 4QWs: 

135.9mA dropped to 96.1 mA; 6QWs: 223.1mA dropped to 142.4 mA. It should be 
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pointed out that for pulsed current injection there is an underlying background DC bias, 

contributing several mAs to the current injection in all cases. Since this is small, and 

identical between measurements, it does not affect the discussion here. 

 Threshold Current (mA) Slope Efficiency (W/A) 

Length(mm) 0.5 1 1.5 2 0.5 1 1.5 2 

2QWs 38.1 63.4 97.5 130.9 0.33 0.27 0.22 0.17 

4QWs 46.5 96.1 132.5 201.6 0.33 0.27 0.18 0.15 

6QWs 77.3 142.4  239.2 322.5 0.27 0.21  0.17 0.13 

Table 3-9: Threshold current and slope efficiency (single facet) of 0.5/1/1.5/2mm lasers with 2, 

4 and 6 QWs measured using pulsed current source (pulse: 5μs-5%) 

 

As shown in Fig. 3-19, as well as listed in Table 3-9, the relationship between the 

measured slope efficiency and the number of QWs is in agreement with the assumption 

above. First of all, all 12 values (4 lengths  3 structures) of slope efficiency increase 

significantly from those measured under CW operation (note efficiency is per facet in 

Table 3-9), which was a result of the reduced self-heating from pulsed current injection 

compared to CW. For low threshold current devices, i.e. 0.5mm and 1mm devices of 2 

and 4 QWs, devices of identical cavity length operated with approximately the same 

slope efficiency, 0.33W/A (0.5mm) and 0.27W/A (1mm) for both 2 and 4 QWs, 

matching observations made in [17].  

For devices operating with higher threshold currents some self-heating still 

contributes to a reduction in slope efficiency. However, this is much less significant 

compared to that resulting from CW operation. For example, the measured CW slope 

efficiency of a 2mm-long 2QWs 2mm laser was 0.1341, whilst for a 2mm-long 

6QWs laser it was 0.07646, which indicates a reduction ratio of (0.1341-

0.07646)/0.1341  43%, while the measured pulsed slope efficiencies were 0.17 and 

0.13, indicating a reduction ratio of only (0.17-0.13)/0.17  24%. 
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3.2.4 Summary 

 

This section described the comparison made (a) between MOVPE-grown and MBE-

grown broad area lasers (Section 3.2.1), where the MOVPE-grown lasers demonstrated 

better performance, and (b) among 2, 4 and 6 strain-balanced InGaAs QWs as mesa 

diodes (Section 3.2.2) and broad area lasers (Section 3.2.3). Length dependent 

characterisation of broad area lasers fabricated from these structures revealed that, for 

the 2QWs structure, lasers with cavities as short as 0.5mm cavity length demonstrated 

lasing. The characterisation demonstrated an increase in transparency threshold current 

density due to the increasing number of states to fill, and a reduction in internal 

quantum efficiency was observed from 2 to 4, then to 6 QWs. This was attributed to 

an increase in the threshold current, which generated more self-heating during device 

operation. 
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3.3 DFB Fabrication 

 

Following the previous study, the device manufacture follows a four-step process: (I) 

planar wafer growth, (II) grating patterning and etching, (III) over-growth and (IV) 

device fabrication. This section describes these four steps in detail. 

 

Fig. 3-20 is a schematic illustration of the general DFB laser cross-section. The front 

view is a slice through the grating (i.e. light propagating along the width of the page), of 

the layer structure after regrowth and prior to fabrication. As shown in this schematic, 

the InGaP/GaAs grating layer was formed within the upper cladding layer to a distance 

above the InGaAs QW active region defined by the required grating coupling strength.  

 

Figure 3-20: Schematic diagram of the layer structure after overgrowth 
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3.3.1 Planar Growth 

 

Epitaxial growth was performed by Metal-Organic Vapour Phase Epitaxy (MOVPE) 

in the EPSRC National Centre for III-V Technologies. On an n-doped GaAs substrate 

which was mis-oriented by 3° to the (110) direction, 1200nm n-doped (lower 600nm: 

1.018cm
-3

; upper 600nm: 5.017cm
-3

) Al0.42Ga0.58As lower cladding layer was grown 

above a 500nm GaAs (n-doped 1.018cm
-3

) buffer layer. Above this, partially strain-

balanced quantum wells (QWs) emitting ~990nm were grown within a waveguide 

structure comprising: 2, 4 and 6 7.6nm In0.17Ga0.83As QWs separated by 20nm 

GaAs0.885P0.115 strain balancing layers with 10nm GaAs0.885P0.115 and 40nm GaAs grown 

on either side. For each structure, a certain thickness of p-doped (5.017cm
-3

) 

Al0.42Ga0.58As was grown above the core prior to growth of the grating layer, the 

thickness of which, like the grating thickness, is a simulation result to match the 

coupling requirement for KL ~ 1.  

 

3.3.2 Grating Patterning and Etching 

 

After growth, the samples were patterned in ~50nm PMMA by electron beam 

lithography with a range of grating periods with mark to space ratio of approximately 

50:50. Ten continuous grating periods were patterned from 144nm to 162nm with a 

2nm step. This was aimed to allow for uncertainty in calculation of neff and to allow for 

red-shift of gain due to thermal effects. By estimation (assuming neff = 3.33), this grating 

period range could achieve a range of Bragg wavelength (B) from ~960nm to ~1080nm 

to fully cover the intrinsic gain peak and operational red-shift of our structures (7.6nm 
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In0.17Ga0.83As QWs), thereby ensuring the existence of grating periods that are located 

close enough to receive sufficient gain to reach DFB lasing condition. Fig. 3-21 

illustrates the features along the patterned grating stripe of the samples. As to the 

method of grating fabrication, in order to precisely achieve the designed structure, it is 

necessary to achieve precise control over the depth of the grating etch. In wet etching 

alone, it is difficult to control the mark to space ratio due to lateral etching. If using dry 

etching only, the etching rate is difficult to control precisely, considering the variation 

of equipment usage (changes relating to previous used recipes, last chamber cleaning 

time, sample size, etc.) and resulting variation in etching rate. Precision in grating etch 

was attained through use of a two-step etching process, which combined dry etch and 

wet etch, since neither of these used alone could guarantee the required level of 

precision. For this method, the first order DFB grating layer comprised an InGaP layer 

(lattice matched to GaAs) sandwiched between two 12nm thick GaAs layers.  

 

Figure 3-21: E-beam patterning 

 

 Step I: ICP Dry Etch – etch into InGaP layer 

The first step is to etch the exposed GaAs using an Oxford Plasma-Lab ICP 

(Inductively Coupled Plasma) Etch System using the Argon recipe: RF power = 250W, 

ICP power = 0W, pressure = 4mTorr and Argon = 10sccm. The etch process etches 
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through the upper 12nm GaAs and terminates some depth (~10nm) within the InGaP 

layer. The target etch depth was set to 20~25nm to ensure that the top GaAs is 

consistently penetrated but that the lower GaAs layer is not reached. Fig. 3-22 illustrates 

this process. The red arrows represent the Argon etch process and the yellow arrows 

illustrate the etched areas.  

 

Figure 3-22: ICP dry etch -- through upper-GaAs layer into InGaP layer 

 

 Step II: PMMA Removal  

After etching, Acetone is used to fully remove the PMMA resist, followed by a 1.5-

minite O2 plasma ash, revealing the grating structure as shown in Fig. 3-23. The 

cleanliness was inspected under an optical microscope to ensure the complete removal 

of the PMMA resist. 

 

Figure 3-23: Removal of PMMA 
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 Step III: Selective Wet Etch – etch down to lower GaAs 

The third step is to selectively etch the remaining depth of InGaP in the exposed area 

of the grating pattern, terminating at the lower GaAs/InGaP interface. The etchant 1:1 

HCl/H3PO4 solution is chosen for its high etching selectivity of InGaP over GaAs, so 

that the lower GaAs layer acts as an etching-stop layer in this process to protect the 

Al0.42Ga0.58As layer underneath from being exposed. Fig. 3-24 illustrates this process. 

The red and yellow arrows represent the etching process and indicate the etched 

thickness respectively. This same wet etchant was used in processing the self-aligned 

stripe structure described in [19], and as demonstrated, the etching proceeded with a 45
o
 

angle, pinned laterally by the GaAs layer above. 

 

Figure 3-24: 1:1 HCl/H3PO4 solution wet etch the remaining InGaP 

 

 Grating Etch Measurement 

The grating etch was measured using AFM to characterise the grating etch. Samples 

were inspected and Fig. 3-25 shows the measurement of DFB 1, which had a 15nm deep 

grating. The measured ~27nm etch depth matched the sum of GaAs capping thickness 

(12nm) and the grating etched thickness (15nm), which indicated successful etch of the 

gratings, down to the lower GaAs etch-stop layer. 
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(a) (b) 

Figure 3-25: AFM scan of etched grating pattern of DFB 1, ~27nm etch depth measured. The 

height profile in (b) is taken at the cross-section marked by the while line in (a) 

 

3.3.3 Over-Growth 

 

Following grating etch and clean-up of the PMMA mark, the wafer was then 

returned to the MOVPE reactor for overgrowth. Immediately prior to loading into the 

chamber, a wash in 1% diluted HF is performed to assist removal of native oxide and 

any further residual contamination. Fig. 3-26 illustrates the overgrowth process and the 

formation of the buried 1
st
 order rectangular 50/50 GaAs/InGaP grating.  

 

Figure 3-26: 1:1 Formation of InGaP/GaAs buried grating structure 

As shown in the figure, 40nm p-doped (5.018cm
-3

) GaAs was first overgrown to in-

fill and planarise the grating, followed by 850nm p-doped (lower 250nm: 5.017cm
-3

, 
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upper 600nm: 1.018cm
-3

) Al0.42Ga0.58As upper cladding, and a 300nm p-doped 

(2.019cm
-3

) GaAs contact layer to complete the structure. The grating is formed in the 

upper cladding layers with a thickness and distance above the active region as 

determined by the simulation in Section 3.1.3. 

 

3.3.4 Laser Fabrication 

 

The fabrication of narrow ridge 3μm-wide DFB lasers consisted of 4 main steps, 

namely (1) trench etching; (2) dielectric deposition and contact window opening; (3) p-

contact and bond-pad deposition; (4) back thinning and n-contact deposition. 

 

 Step I: Trench Photolithography and Etching 

To assist in the description of the device fabrication process, Fig. 3-27 (a) shows a 

pictorial representation of the epitaxial structure of the overgrown wafer, as in Fig. 3-20, 

but with the front view being perpendicular to grating. SPR 350 photoresist was spun 

onto the samples at 4000rpm for 30 seconds, followed by 1 minute bake on 100
o
C hot 

plate. For better alignment, photoresist edge beads were removed. Mask patterns were 

aligned to stripe patterns (grating), exposed and developed in MF26A for 1 minute and 

rinsed in DI water, as Fig. 3-27 (b).  

In order to ensure complete removal of the resist in the exposed area, 1 minute 

oxygen plasma ash was performed. To make the remaining photoresist more resistant 

against the following ICP etching, samples were hard baked at 100
o
C on a hot plate for 

another 1 minute. 
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(a) (b) 

Figure 3-27: Photolithography for trench etching 

ICP etching was employed for trench etching with the following settings: SiCl4 = 

5sccm, RF = 100W, ICP = 250W, Pressure = 2 mTorr and Temperature = 20
o
C. The 

target was to etch down to 150-250nm above active region depending on each sample.  

  
(a) (b) 

Figure 3-28: Trench etching and Si3N4 deposition 

Then a 30s wet etch in 20:1 Citric acid / H2O2 was performed to smooth any 

roughness/damage, followed by 3 minute oxygen plasma ash. The samples were then 

placed in warm acetone to remove the photoresist. After cleaning, another 2 minute 

oxygen plasma ash was performed to remove any residual photoresist, resulting in 

structure in Fig. 3-28 (a). 
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 Step II: Silicon Nitride Deposition and Window Etching 

The next step was dielectric deposition to provide an electrical insulating layer to 

enable remote bandpads to be deposited adjacent to each ridge. Plasma-enhanced 

chemical vapour deposition (PECVD) was employed to deposit 550nm thick Si3N4 onto 

samples, as shown in Fig. 3-28 (b). Then, similar to Step I, Si3N4 coated samples were 

spun with SPR350 photoresist and aligned to the contact window mask. After exposure, 

development and oxygen plasma ash, as in Fig. 3-29 (a), samples were ready for 

dielectric etching. 

  
(a) (b) 

Figure 3-29: Contact window photolithography and etching 

The reactive ion etcher (RIE) was employed to etch the contact window area. The 

process recipe was: CHF3 = 35sccm, O2 = 5sccm, chamber pressure = 35mTorr and RF 

power = 60W. The etch process was monitored using End Point laser reflectometry. 

After the curve became flat to indicate the Si3N4 was etched through, 30 extra seconds 

etching time was given to ensure the complete removal of Si3N4 in defined area, 

particularly at edges and in case of non-uniformity. After etching, samples were 

performed with 5 minute oxygen plasma ash, before the samples were placed in warm 
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acetone to remove the photoresist. It was inspected to ensure that all the resist had been 

removed and that the dielectric etch was successful.  

 

 Step III: P-Contact and bond pad photolithography and deposition  

Samples were then spun with PMGI and photoresist SPR 350. The P-contact mask 

was aligned to the etched contact window pattern. The exposure and development 

processes were similar to those described above. After 1 minute oxygen plasma ash, 

samples were ready for metal deposition, as in Fig. 3-30 (a).  

  
(a) (b) 

Figure 3-30: P-Contact photolithography and deposition 

For the deposition of Au-Zn-Au P-contact, a thermal evaporator was employed. In 

the preparation for evaporation, 200mg of gold wire and a 10mg piece of Zinc were 

placed in tungsten elements. Samples were rinsed in 19:1 H2O : Analar Ammonia 

solution for 30 seconds to remove surface oxide, then rinsed in DI water and blown dry. 

When loading, both heating elements were fixed 6cm above the crystal thickness 

monitor. Samples were then placed in the chamber underneath the heating elements, 

close to the crystal thickness monitor. The chamber was pumped down to a pressure of 
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2×10
-6

mbar to proceed. The contact deposition included 5nm gold, then 10nm zinc and 

then 200nm gold. After lifting off and cleaning, to realise the structure picture in Fig. 3-

30 (b), the samples were put into the rapid thermal annealer (RTA). The annealing 

process was set to be 30 seconds ramp and 3 seconds dwell at 360
o
C. 

For the deposition of band pads, the photolithography and metallisation was as above 

but 200mg of gold wire and 10mg of titanium wire placed in tungsten elements at either 

side of the sample. The bond pad deposition included 15nm titanium and then 150nm 

gold from each side of the sample, which is a process usually used in order to coat any 

sidewalls successfully, resulting in the structure pictured in Fig. 3-31. 

  
(a) (b) 

Figure 3-31: Bond pad photolithography and deposition 

 

 Step IV: Back thinning and n-contact deposition  

A Logitech LP50 lapper/polisher was employed for substrate thinning. This process 

is necessary for better heat extraction thereby a higher pumping current limit for high 

power operation and to allow cleaving of small cavity lengths. In preparation, samples 

were first spun with a thick layer of photoresist to protect the fabricated feature from 
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scratches. Then, samples were mounted upside down onto the glass holder of the 

Logitech LP50 using specialist wax. The lapping media was a 1:9 ratio of 3μm 

aluminium oxide particles: water. The samples were thinned to around 130μm. After 

rinsing in DI water, samples were removed from glass holder in warm n-butyl acetate, 

followed by removal of the protective resist in Acetone and 3-stage cleaning. 

20nm/300nm In-Ge/Au back contact was then deposited using a thermal evaporator, 

followed by RTA annealing at 340
o
C with 3 seconds dwell. 

 

 Step V: Cleaving, AR/HR Coating, Mounting and Bonding  

The fabricated samples were cleaved into 1, 2 and 3mm long devices and anti-

reflection and high-reflection coatings, with reflectivities of R < 0.1% (AR) and R > 

95% (HR) at 1014nm with 25nm bandwidth, were applied to either side of the facets by 

Helia Photonics. Lastly, some devices were mounted epi-side-up on C-mount or AlO2 

ceramic tiles with InAg paste and bonded using a K&S Ultrasonic Ball Bonder for 

characterisation purposes.  
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3.4 DFB Characterisation 

 

Since this research was aimed at high power DFB lasers, the full set of 5 structures 

was bar-tested (i.e. probed and characterised for L-I, spectrum, resistance etc.) to screen 

out any poor performing DFB designs and identify suitable devices for further study. 

Fig. 3-32 plots the achieved wavelength range of CW-pumped DFB lasers under 

room temperature operation for this set of designs, in accordance with the grating 

period. According to the measurements performed over all the 5 DFB designs, devices 

with 4 out of 10 grating periods (i.e. 150nm, 152nm, 154nm and 156nm) were observed 

single-mode DFB operation. 
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Figure 3-32: DFB wavelength resulting from the grating period, which is averaged from the 

characterisation of the 5 structures to represent this set of devices for illustration purpose) 

In my DFB designs, the Bragg wavelength (B) is determined by grating period (), 

whilst the ability to lase vis DFB modes depends on the detuning level, i.e. the distance 



 

 

 149 

between the centre of the amplified spontaneous emission (ASE) spectrum and the 

selected wavelength. Based on the overall measurement, the ASE spectral peak shifted 

from ~990nm (low current and low substrate temperature) to ~1040nm (high current 

and high substrate temperature), which allowed DFB laser operation from grating 

periods of 150/152/154/156nm, as noted in Fig. 3-32 by red dots lasing at 

~987/1000/1013/1026nm respectively. This result will be discussed in more detail in 

Section 3.4.4, together with a discussion of wavelength tunability. 

 

From the calculation of the fit to this plot, an effective refractive index of the 

fabricated GaAs/InGaP grating was estimated as ~3.29, which was approximately the 

same (1.2% lower) as the theoretical estimation, 3.33, as used in the Fimmwave 

waveguide simulation. This slight difference could be caused by the 45
o
 etching angle 

during the selective wet etch (etchant: HCl/H3PO4) at the very bottom of the structure, 

which resulted in slightly more InGaP than GaAs being present in what was designed as 

a 50/50 rectangular grating, together with a slight variation in mark-to-space of the 

pattern generated by EBL. 
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3.4.1 Characterisation of Two 1mm Long Representative 

Devices 

 

The L-I bar-test measurement revealed that DFB2 and DFB4 performed better in 

terms of resistance, threshold, slope efficiency and spectrum. Therefore, two 1mm-long 

devices of each of DFB 2 and DFB 4 were firstly mounted on C-mounts and measured 

at room temperature under CW operation due to their possibility for attaining high 

power performance.  

A C-mount is illustrated in Fig. 3-33 with the top-view optical microscope image of a 

mounted 1mm DFB laser, where the sample is mounted epi-side-up to the plated CuW 

submount with the P-bond-pads wired to the side stripe.  

 

Figure 3-33: Illustration of a C-mount and the top-view of a mounted DFB laser  

These 2 devices were representative of the set of lasers in each bar. Since the 

temperature-induced wavelength shift of the ASE spectral peak changes more rapidly 

than that of the DFB peak, the 152nm grating period was selected because the 

corresponding Bragg wavelength was experimentally measured to be slightly on the 

longer wavelength side of the gain peak. Therefore, when pumped to high currents such 

as require for high power, the resultant rise in temperature brings the gain peak into 

resonance with the Bragg wavelength.  
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 Representative Device 1: DFB-2 (2×QWs) 

Fig. 3-34 shows the L-I-V measurement of a 1mm device with 152nm grating period 

of DFB 2 structure. It was mounted on a C-mount using indium-based paste and tested 

at room temperature (~17
o
C) using a CW current source.  

 

Figure 3-34: L-I-V measurement of a 1mm representative device of DFB 2 

Fig. 3-35 present the electroluminescence spectral recorded with injected current 

from 40mA to 200mA. In the figure, (a) shows a single peaked response from 40mA to 

100mA and a dual mode response since 120mA to 200mA; (b) shows a colour-filled-

contour version of these spectra graphically presenting the appearance of the second 

mode by showing the change in spectral intensity as a function of current; (c) plots the 

extracted peak wavelength and SMSR as a function of the injected current, where the 

peak in the SMSR of ~37dBm was recorded at 60mA before reducing with the 

increasing current. 
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(b) (c) 

Figure 3-35: (a) EL spectra recorded with current injection from 40mA to 200mA, (b) Colour-

fill contour plot of the recorded spectra and (c) the peak wavelength and SMSR plotted as a 

function of injected current. The plots show that a second mode appears within the current 

injection range of 100-120mA 

These plots (Fig. 3-34 and 3-35) show that the device starts lasing with a threshold of 

~30mA. As shown in Fig. 3-35 (a) and (b), the device exhibits a single lasing mode 

upon lasing at ~998nm from a current of 40mA up until 100mA, before a 2
nd

 mode at 

~996nm appears since 120mA. With more injected current, both modes exist 

simultaneously. Fig. 3-35 (c) plots the wavelength shift and SMSR as a function of 
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current. The plot shows that the device operates with an SMSR higher than 25dBm from 

40mA to 100mA. In this range, the laser demonstrates single mode lasing with an 

output power reaching ~25mW at 100mA and with an SMSR larger than 25dBm. 

Above 100mA, the power continues to rise (e.g. 65mW at 200mW) however, with 

power split over 2 lasing modes. 

 

 Representative Device 2: DFB-4 (4×QWs) 

Fig. 3-36 shows the L-I-V measurement of a 1mm device with 152nm grating period 

of DFB 4 structure. It was mounted on a C-mount using indium-based paste and tested 

at room temperature (~17
o
C) using a CW current source. This device behaves very 

similarly to DFB2 above, but with slightly higher power available.  

 

Figure 3-36: L-I-V measurement of a 1mm representative device of DFB 4 
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(b) (c) 

Figure 3-37: (a) EL spectra recorded with current injection from 40mA to 200mA, (b) Colour-

fill contour plot of the recorded spectra and (c) the peak wavelength and SMSR plotted as a 

function of injected current. The plots show that a second mode appears within the current 

injection range of 60-80mA 

Fig. 3-37 (a) present the electroluminescence spectra recorded with injected current 

from 40mA to 200mA, showing a single peaked response from the lasing threshold to 

60mA and a dual mode response between 80mA to 200mA; (b) presents a colour-filled-

contour version of (a) plotting the spectral intensity as a function of current and 

wavelength which graphically shows the appearance of the second mode; (c) plots the 
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extracted peak wavelength and SMSR as a function of the injected current, where the 

peak in the SMSR drops from ~33dBm at the current of 40mA to ~4dbm at the current 

of 120mA, which corresponding to the appearance of the second mode at the current of 

80mA. 

These plots (Fig. 3-36 and 3-37) show that the device starts lasing with a threshold of 

~25mA. Upon lasing, the device exhibits a single lasing mode at 998nm, as shown in 

Fig. 3-37 (a) and (b), up until a current of ~70mA, where a 2
nd

 mode appears. With 

more injected current, both modes exist simultaneously. As shown in Fig. 3-37 (c), the 

device operates with an SMSR higher than 30dBm from 40mA to 60mA, and drops to 

<15dBm at 80mA due to the appearance of the second mode. In this range, the laser 

demonstrates single mode lasing with an output power of ~17mW at 60mA with an 

SMSR ~ 32dBm. Above 80mA, the SMSR continues to reduce and maintains as low as 

4dBm from 120mA to 200mA, where the 2 modes exist simultaneously, whilst the 

power increases approximately linearly as a function of the injected current up to 82mW 

at 200mA however, with power split over 2 lasing modes. 

 

 Discussion 

Within the range of injection currents corresponding to single mode operation, both 

representative devices perform much better than the 1mm DFB laser reported in [4], in 

which a CW threshold of 62mA with an output power of 7.9mW at 93mA with an 

SMSR of 28.3dB was demonstrated. Compared to this initial realisation, the threshold 

current is reduced to ~25mA (DFB 2) and ~30mA (DFB 4). Furthermore, the single 

mode output power obtained with high SMSR~30dBm is larger, with ~18mW at 80mA 

(DFB 2) and ~17mW at 60mA (DFB 4) versus only 7.9mW at 93mA in [4]. The laser in 
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[4] exhibited single mode operation over a small range of currents due to there being no 

AR coat and multiple stich errors between the 10 E-beam lithography write-fields 

required, and it was expected that the present design could provide a remedy to this, 

with single-mode operation over a much broader range of currents. The existence of a 

2
nd

 mode in both Fig. 3-35 and 3-37 could be because of the DFB mode hopping 

phenomenon or multiple lateral modes. For the DFB mode hopping phenomenon, the 

DFB lasing mode hops from one wavelength to another (usually from one mode to the 

next longer wavelength mode) due to the shift in the gain peak. However, longitudinal 

DFB modes tend to shift from one mode to another with the increasing current or 

temperature, rather than lase simultaneously as is observed here. The dual-mode 

operation observed from both DFB 2 and DFB 4 devices is indicative of two lateral 

modes competing in the waveguide. In order to further confirm this suspicion, the far-

field beam profile of light exiting the facet of DFB 2 was measured. 

 

 Examination of Far-Field Beam Profile 

The far-field beam profile measurement was performed using a Photon-Inc 

Goniometric Radiometer LD8900R, as described in Chapter 2, by placing the device 

such that its facet is positioned 1mm away from the light entrance slit of the equipment. 

Fig. 3-38 (a) illustrates the fast/slow axis as the light exiting the facet.  

Fig. 3-38 (b) and (c) plots the far-field profile measured at 60mA, 130mA and 

160mA CW current pumping using the cross-sectional profiling mode and 3-D profiling 

mode respectively. As shown, at 60mA, the beam profile shows a single lateral mode. 

However, with increasing current, a second lateral mode appears in the beam profile 

recorded at 130mA. As more current is injected (from 130mA to 160mA), the second 
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mode grows stronger. One can expect that the appearance of this second lateral mode 

could be the reason for the appearance of the second peak in the emission spectrum. 

This measurement of the far-field beam profile of the representative device 1 (DFB2) 

provides further evidence to support the hypothesis that a second lateral mode is 

propagating in the waveguide 
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Figure 3-38: (a) Illustration of the fast/slow axis of the far-field beam profile measurement; (b) 

the far-field beam profiles recorded with injected current of 60/130/160mA; (c) 3-D view of the 

beam profiles recorded 

The simulation activity in Section 3.1.3 resulted in an etch depth being defined for 

which only the fundamental optical mode is supported. However, upon examination of 

the fabricated laser structures, it became apparent that the etch depth was not as it was 

designed to be. When forming the 3μm ridge, the devices had been accidentally over-

etched.  
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During fabrication, instead of a trench-etch depth of 1.5μm, terminating inbetween 

the grating layer and active region as designed, the ridge had been etched to a depth of 

2.5μm, through the active region and terminating some distance into the lower cladding. 

In order to verify the effect that this over-etch would have on the beam profile, the 

waveguide was re-simulated using this revised etch depth. 

 

3.4.2 Re-Simulation of Over-Etched Ridge Waveguide 

 

The simulation of optical modes is shown in Fig. 3-39 for an etch depth of 2.5μm. In 

contrast to Fig. 3-3, 3-5 and 3-6, this waveguide may support 2 lateral optical modes. 

 

Figure 3-39: Re-Simulation of the Actual Ridge Structure 

Therefore, during characterisation of these devices, it is possible that there were 2 

competing lateral modes propagating in the laser cavity as observed in the far-field 

profile in Fig. 3-38. One lateral mode enjoys a relatively lower threshold such that the 

devices start lasing on a single mode. With increasing pumping current, at some point, 
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the second mode reaches threshold and also begin to lase, resulting in a dual-mode 

laser. 

From the far-field beam profile examination shown in Fig. 3-38 (b) in Section 3.4.1, 

it is suggested that the laser starts lasing via the fundamental mode, and then switches to 

2 competing lateral modes. It is noted that the mode profile observed from the slow-axis 

profile at 60mA was not the expected Gaussian-like profile. This was because the 

transition from lasing via the fundamental mode to lasing via multiple lateral modes 

starts soon after the lasing threshold is overcome for this 1mm device. A later far-field 

examination of a 3mm-long DFB laser shows the Gaussian-like distribution, where a 

longer cavity introduces a greater difference in threshold gain between the two modes, 

resulting in single mode operation over a broader range of currents. 

 

3.4.3 Characterisation of Longer Devices  

 

Sections 3.4.1 and 3.4.2 demonstrate that the over-etched waveguides could support 

multiple lateral modes. Therefore, in real operation, due to imperfections in the 

waveguide, two modes are in competition in the waveguide. One of the two modes 

enjoys a relatively lower threshold such that lasing commences via this single mode. 

With increasing current, the other mode also reaches threshold and the laser then 

operates in a dual-mode manner. Due to this mechanism, a longer cavity length could 

theoretically increase the difference between the thresholds of the two modes, such that 

the device operates single mode over a wider range of currents.  

A 3mm long DFB 4 device was mounted on a C-mount for measurement. Fig. 3-40 

plots the CW L-I-V characteristics measured from this device. A device resistance was 
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calculated as 1.15 from the I-V plot. The threshold current and slope efficiency were 

extracted from this data as 55mA and 0.325mW/mA respectively. 
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Figure 3-40: L-I-V measurement of a 3mm representative device of DFB 4 

 

Fig. 3-41 (a) and (b) presents the EL spectra recorded from the device at the CW 

injection current range of 60 to 250mA, demonstrating single mode operation in this 

current range. Fig. 3-41 (c) plots the lasing wavelength and SMSR as a function of 

current measured from 60mA to 250mA. The device starts lasing via a single DFB 

mode from 70mA (at 997.8nm with >35dBm SMSR) and continues to operate in this 

way until a current of 250mA (at 998.3nm with >44dBm SMSR). This measurement 

provides strong evidence to support the assumption that longer length laser cavities help 

to expand the threshold difference between the supported lateral modes, resulting in 

extension of the single mode operation to higher currents (hence to correspondingly 

higher output power). 
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(b) (c) 

Figure 3-41: (a) EL spectra recorded with current injection from 60mA to 240mA, (b) Colour-

fill contour plot of the recorded spectra and (c) the peak wavelength and SMSR plotted as a 

function of injected current. The device demonstrates single-mode DFB operation up until 

250mA 

Fig. 3-42 presents the experimentally measured far-field beam profile of this 3mm 

DFB laser (solid lines), which was taken with a current injection of 60mA. The 

Gaussian-like distribution of measured divergence in both fast and slow axis is in 

agreement with the previous assumption that the devices operate via the fundamental 

mode upon reaching the threshold. Correspondingly, the measurement was compared to 
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the simulated profile of the supported fundamental mode extracted from the waveguide 

modelling. 
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Figure 3-42: Comparison of far-field beam profile between experimental (solid lines) 

measurement and simulation result (dotted lines) 

This comparison shows that the experimentally measured vertical divergence (fast-

axis) matches that simulated, with FWHMs of 41.35
o
 and 43.75

o
 respectively. However, 

the measured lateral divergence is narrower than that simulated, with FWHMs of 13.61
o
 

and 17.84
o
 respectively. This could be a result that, the fundamental mode was 

modelled in an individual manner in the simulation, while in the real operation, the 

competition between modes exists although the laser operates via a single mode upon 

reaching the threshold. 
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3.4.4 Thermal and Current Tuning Measurement 

 

Another important characteristic of DFB lasers is the tunability, as required for 

spectroscopic applications. Furthermore, tunability of DFBs in this range could be 

useful in realisation of tunable THz sources by difference frequency generation, and 

also in frequency doubled applications, e.g. display. A typical Δ of thermal tuning of a 

DFB laser is a few nanometres with a tuning rate of 0.08-0.1 nm/
o
C [20]-[22]. 

The DFB lasers were therefore characterised as a function of temperature (thermal 

tuning) and current (current tuning) to investigate their tunability. A 1mm long DFB 

laser (DFB 2, grating period: 154nm) was cleaved. By increasing the operating 

temperature of a DFB laser, the operational wavelength shifts to longer wavelength 

(red-shift) due to the changes in refractive indices within the grating structure. Besides 

controlling substrate temperature, the self-heating mechanism induced by increasing the 

pumping current is another method sometimes used for red-shifting the emission. The 

device was mounted with indium-containing paste on an AlO2 ceramic tile and bonded 

with gold wires. Compared to a C-mount, ceramic tiles exhibit poorer thermal 

conductivity. As the sample was tested at elevated temperature, a grating period of 

154nm was chosen instead of 152nm, in order to better match the red-shifted gain 

spectrum. 

 

 Thermal Tuning 

The EL spectrum of DFB 2 is shown in Fig. 3-43, recorded at a fixed CW pumping 

current of 60mA over a range of temperature from 25
o
C to 65

o
C. A single laser peak is 

observed over this temperature range and a wavelength shift of 4.5nm is measured, 
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corresponding to a tunability of 0.1125nm/
o
C. Compared to the values reported in [20]-

[22], this is a relatively high tuning rate, which could result from the additional self-

heating generated by CW pumping of a poorly heat-sunk device. In any case, the single 

mode is maintained throughout the complete tuning range, demonstrating its suitability 

for use in its intended applications. 
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Figure 3-43: Thermal tunning with 60mA CW Current Pumping 

Fig. 3-44 plots the peak wavelength of the DFB mode and the spontaneous emission 

peak, which is representative of the gain peak, as a function of temperature. The gain 

peak is observed to shift much more rapidly than the DFB mode, at a rate of 

~0.725nm/
o
C.  
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Figure 3-44: Wavelength shift of DFB peak and gain peak against temperature 
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This is as expected since the Eg has a greater dependence on temperature than the 

refractive index in the grating does. Hence the operating temperature is an important 

condition in DFB design, due to the requirement to match B with gain. 

 

 Current Tuning 

Current tuning in DFB laser is a result of current-induced local temperature increase 

inside the device and its subsequent effect on the refractive index profile of the grating. 

Fig. 3-45 plots the current tuning of the same DFB laser (DFB 2, 154nm grating period, 

1mm length) tested at a fixed heat-sink temperature of 25
o
C over a range of CW 

pumping currents from 40mA to 100mA. A wavelength shift of 1.375nm is measured 

over this current range for the single laser mode, corresponding to a current tuning of 

0.023nm/mA. 
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Figure 3-45: (a) CW current tunning with heat-sink temperature fixed at 25
o
C and (b) extracted 

SMSR and DFB peak against injected current 

The SMSR for this laser is plotted in Fig. 3-45 (b) as a function of current, together 

with the peak wavelength. As the current is increased above the laser threshold current, 

the SMSR is observed to increase, together with an increase in the peak wavelength. 

The rate of red-shift in lasing wavelength increases with increasing current, and 
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commensurately, as the current is increased, the rate of increase in SMSR diminishes, 

saturating at a very high 44dB.  

 

3.4.5 Overall Summary of DFB Tuning Measurement 

 

Measurement of the peak wavelength of different period DFB lasers were 

synthesised in order to enable construction of a wavelength map. Fig. 3-46 summarises 

the full extent of DFB laser tunability through both thermal and CW current tuning. 

This plot aims to identify the lasing wavelength attainable under different heat-sink 

temperatures and pumping currents of the whole set of DFB lasers. 

 

Figure 3-46: Summary of DFB tuning measurement of temperature and CW pumping current, 

where the recorded DFB wavelength shifts of 4 different grating periods are compared to that 

linearly apporximated for the gain peak 

The black and yellow solid lines represent a linear approximation to the wavelength 

shift of the gain peak with temperature at different pumping currents (85-190mA). The 
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yellow lines represent an estimation of pumping currents, 115mA and 130mA, which 

were not actually measured but seen as a guide. The dashes represent the DFB lasing 

wavelengths measured at different temperature, with different grating periods 

highlighted by different colours, where the smaller current tuning effect result in a 

vertical dash of wavelength points as a function of current at each current. Hence the 

vertical range of a dash illustrates the current tuning at a certain heat-sink temperature 

over the annotated current range.  

For example, for a device with a 154nm grating period (red dashes), when operating 

with a current injection of 160mA under 40
o
C heat-sink temperature, the DFB lasing 

wavelength would be at ~1015nm, being approximately on the gain peak at ~1017nm. 

For a device with a 156nm grating period (blue dashes), the lasing wavelength under the 

same condition would be on the red side of the gain peak in the range of 1024~1026nm.  

 

3.4.6 Comparison of Experimental and Simulated Coupling 

Coefficients 

 

As outlined in Section 3.1, the purpose of the different DFB structural designs was to 

fine-tune the ability to simulate and design DFB lasers according to the required cavity 

length. According to the theory introduced in Section 2.1.2, the coupling coefficient (K) 

of a DFB laser with a uniform grating (non--shifted) at a given cavity length (L) can be 

approximated from measurement (Kmeas) of the longitudinal mode spacing (Δνlong) and 

the spacing between the two DFB modes (Δν), which is related to the stopband by the 

equation: 

𝐾𝑚𝑒𝑎𝑠 =
𝜋 × ∆𝑣

2 × 𝐿 × ∆𝑣𝑙𝑜𝑛𝑔
 



 

 

 168 

Fig. 3-47 shows an example of how the coupling coefficient is calculated from 

measurement of a 1mm DFB1 laser with Δν obtained from the plot of the central 

wavelength region and Δνlong obtained from the F-P modes. As annotated on the figure, 

Δν and Δνlong were measured as 1.27cm
-1

 and 1.80cm
-1

 respectively, from which a Kmeas 

of 22.23cm
-1

 was then approximated. 
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Figure 3-47: The Δνlong and Δν measurements of a 1mm long DFB1 laser 

The coupling coefficient (K) for a 50/50 rectangular grating is linked to the Bragg 

wavelength (B), optical confinement factor in grating layer (Γg), and the refractive 

index difference between the grating materials (n1 - n2) by the equation:  

𝛤𝑔 =
𝐾𝜆𝐵

2(𝑛1 − 𝑛2)
 

Therefore a set of simulated coupling coefficients (Ksimu) can be calculated for DFB 

1-5 from the measured DFB lasing wavelength (meas) and the re-simulated grating 

confinement factor (Γre-simu), where a 2.5μm etching depth (as actually fabricated) is 

used instead of the 1.5μm as originally designed, using the equation: 

𝐾𝑠𝑖𝑚𝑢 =
2𝛤𝑟𝑒−𝑠𝑖𝑚𝑢(𝑛GaAs − 𝑛InGaP)

 𝜆𝑚𝑒𝑎𝑠
 

𝑤ℎ𝑒𝑟𝑒 𝑛𝐺𝑎𝐴𝑠 ~ 3.51 𝑎𝑛𝑑 𝑛𝐼𝑛𝐺𝑎𝑃 ~3.15  

Table 3-10 summarises the measurements of Δνlong and Δν from DFBs 1 to 5, from 

which a Kmeas was approximated for each laser. There was no specific reason for 
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choosing different cavity length lasers, since this would not influence the comparison 

because the related equations are independent on cavity length. A comparison can then 

be made between Kmeas and Ksimu for each DFB laser.  

 L Δνlong Δν Kmeas Γre-simu Ksimu 

Unit (cm) (cm
-1

) (cm
-1

) (cm
-1

) (10
-3

) (cm
-1

) 

DFB1 0.1 1.27 1.80 22.23 2.90 20.87 

DFB2 0.2 0.66 1.30 15.49 2.02 14.54 

DFB3 0.1 1.29 2.75 22.53 3.18 22.89 

DFB4 0.3 0.45 1.08 12.69 2.11 15.19 

DFB5 0.1 1.27 1.42 17.51 2.17 15.64 

Table 3-10: Coupling coefficient measurement 

The re-simulated coupling coefficient of the 5 over-etched DFB structures matches 

with the experimentally obtained coupling coefficients within 16.5%, especially for 

DFB1 (+6.5%), DFB2 (+6.5%) and DFB3 (-1.6%). A slightly larger difference was 

observed for DFB4 (-16.5%) and DFB5 (+12.0%). As a reminder of the difference 

between these structures, if DFB 1 is the control structure, DFB 2 has larger AlGaAs 

spacer and DFB 3 has thicker grating layer compared to DFB1. So DFB 1 should have a 

larger K than DFB 2 but less than DFB 3. DFBs 4 and 5 were designed (originally) to 

have K approximately equal to DFB 2, despite containing more QWs. 

For this batch of devices, because of the AR/HR (<0.1% and >95% at 1014nm with 

25nm bandwidth) coatings, there will be reflections and hence the DFB laser becomes 

phase-shifted due to the facet phase issue. As pointed out in [23], the measurement of 

the value of KL is theoretically established from the stopband (calculated from the 

wavelengths of the two DFB modes). However, errors in their measurement can arise 

due to alteration of the spectrum caused by facet reflections and facet-to-grating phase 

variability. For the estimation of the stopband for a low-facet-reflectivity (0.05%) DFB 

laser with KL~1, accuracy is typically of ±25% [23]. In [23], it was demonstrated by 

performing a mathematical calculation of a laser with KL~2.1, that the frequency at 
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which to measure the stopband and the corresponding obtained width are measured 

depends on the variation of facet phase. In a critical condition, a “random-phased” DFB 

laser with no shift in its grating can operate as a /4-shifted (or 2×/8-shifted) DFB 

laser. Instead of having two modes on either side of the Bragg wavelength, such lasers 

have only one lasing mode exactly at the Bragg wavelength. As an example, Fig. 3-48 

(a) plots the spectrum recorded from a 1mm long DFB3 laser. The stopband of such a 

spectrum was approximated by measuring the spacing between the troughs at either side 

of the main spike, as annotated by the red dots.  

For the purpose of illustration, Fig. 3-48 (b) plots 2 spectral examples of DFBs with 

low facet reflectivity taken from the DFB sections of the self-aligned stripe master 

oscillator power amplifier (SAS-MOPA) devices (discussed further in Chapter 5), in 

which the MO (DFB) sections have one end monolithically integrated with a subsequent 

semiconductor optical amplifier (SOA) section, and the DFB side cleaved facet is AR-

coated to 0.1% (at 1050nm). Both spectra show a clear dual-mode sub-threshold profile, 

making extraction of the key parameters for coupling calculation more straightforward.  
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Figure 3-48: Spectrum measurement: (a) a 1mm non--shifted DFB3 laser demonstrated a /4-

shifted-like (or 2×/8-shifted-like) DFB spectrum and (b) examples of sub threshold spectrum 

of non--shifted DFB lasers with low facet reflectivity 

Therefore the measurement-to-simulation comparison demonstrated a high level of 

consistency within a relatively small error range of (-16.5%, +12.0%), and is, perhaps, 

as strong a correlation as we could hope for, given the facet coating scheme employed.  
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3.5 Conclusion 

 

In this chapter, a set of 5 GaAs-based strain-balanced InGaAs QW DFB structures 

have been designed, manufactured and characterised. The original purpose of this batch 

of designs was to enable the manufacture of high output power DFB lasers (hundreds of 

mWs) based on the original design reported in [4], with lower threshold current density, 

higher slope efficiency and improved output spectrum with respect to the SMSR. An 

AR/HR coated 3μm wide 3mm long DFB laser containing 4QWs demonstrated a CW 

threshold of 54mA (Jth ~ 600A/cm
2
) with a slope efficiency of 0.33mW/mA. The laser 

operated via a single mode at ~998nm with an SMSR>35dBm over a current range of 

70mA to 250mA. An output power of 54.68mW with 44.46dB SMSR was measured at 

240mA.  

 

In Section 3.1, five different DFB structures were designed through Fimmwave 

simulation. Section 3.2 described the preparation work carried out prior to the 

manufacture of DFB lasers, including a comparison made between MOVPE-grown and 

MBE-grown broad area lasers and a comparison of devices with 2, 4 and 6 QWs. 

 

According to the simulation, the designed waveguide with ~1.5μm ridge etch depth 

would support operation via the fundamental lateral mode. Unfortunately, during 

fabrication, the devices were accidentally over-etched through the active region to a 

depth of ~2.5μm, resulting in a significant change to the waveguide, and dual-lateral-

mode operation being supported, as measured and re-simulated in Sections 3.4.1-3.4.2. 

This mistake directly limited the potential for high power single mode performance for 
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the whole batch of structures. Study of two representative devices with high power 

potential exhibited a single lasing mode from threshold up until a higher current where a 

2
nd

 mode appeared and both modes existed simultaneously with more injected current. 

Within the single mode operation current range, the two devices demonstrated a 

threshold of ~30mA and ~25mW output power at 100mA with SMSR~25dB and a 

threshold of ~25mA with ~17mW output power at 60mA with SMSR~32dB (Section 

3.4.1) respectively. Both were considerable improvements over the device reported in 

[4]. A 3mm 4QWs DFB device demonstrated a CW threshold of 54mA and a current 

range of 70mA to 250mA for ~998nm single mode lasing with SMSR>35dB (Section 

3.4.3).  

 

Wavelength tuning was studied in Section 3.4.4 for a representative sample mounted 

on a ceramic tile. A thermal tunability of 0.1125nm/
o
C was measured in CW operation 

for a wavelength shift of ~5nm over the temperature range from 20
o
C to 60

o
C. 

Furthermore, current tuning was measured with a rate of 0.023nm/mA, which 

approximately corresponds to a self-heating rate of 0.2
o
C/mA.  

Coupling coefficients (Kmeas) were approximated for each DFB structure through 

measurement of the longitudinal mode spacing and DFB stopband. These were 

compared to the simulated coupling coefficients (Ksimu), calculated from the re-

simulated optical confinement factor in grating layer for each of the over-etched 

waveguides. Good agreement, with clear experimental limitations, was discussed in 

Section 3.4.6, verifying the validity of the simulation in future design. 
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 GaAs-Based Self-Aligned Stripe Chapter 4.

Distributed Feedback Lasers 

 

 

GaAs-based distributed feedback (DFB) lasers provide a robust, portable and low 

cost solution to enable a broad range of potential applications in spectroscopy, gas 

sensing, THz generation, and display.  

Research has been conducted on GaAs-based DFB lasers covering a wide range of 

lasing wavelengths, from 750nm-880nm AlGaAs-GaAs DFB lasers [1] [2] to 900nm-

1100nm InGaAs/GaAs DFB lasers [3], then to 1.3μm-1.5μm GaInAsN-GaAsN-AlGaAs 

DFB lasers [4]. DFB lasers are typically available on GaAs as ridge lasers, as described 

in Chapter 2, with either laterally loss-coupled gratings [5] [6] and more recently using 

buried index-coupled grating approaches incorporating combinations of GaAs, AlGaAs 

and InGaP [3].  

However, ridge waveguides suffer from surface recombination, carrier spreading and 

poor fibre coupling efficiencies. In comparison, buried hetero-structures (BH) allow 

small lateral sizes, low threshold currents, good thermal management, and excellent 

fundamental mode stability [7]. Furthermore, BH lasers can also be designed to support 

direct modulation [8]. For these reasons, BH DFB laser arrays can be used to form 

widely tunable laser sources [9]. They are typically used in directly modulated InP 

telecoms lasers [10]. 

The history of buried heterostructure lasers dated back to the 1970s. A GaAs/AlxGa1-

xAs buried heterostructure laser lasing at ~817nm was realised and reported in [11], 

where a 2-step liquid-phase-epitaxial (LPE) technique allowed AlxGa1-xAs to 
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completely surround the filamentary GaAs active region. In this structure, the optical 

confinement was realised through the index difference between GaAs and AlGaAs and 

the electrical confinement was realised by the n-p-n-p structure. In [11], with 

comparison to a ridge waveguide laser, the BH laser demonstrated better characteristics 

and a lower sensitivity to temperature. A latter design, as reported in [12], realised DFB 

operation at ~830nm though embedding a corrugated structure into the p-AlGaAs in the 

same structure as described in [11], grown with the same 2-step LPE technique.  

In BH laser structures, single lateral mode operation is easier to achieve than in ridge 

lasers [13]. This is because that a much smaller index-step for wave-guiding in BH 

structures tends to release, rather than capture, higher order modes. Also, in BH 

structures, narrower active regions can be preceded as not needing to contact to the top 

directly. BH DFB lasers are commonplace on InP [8], where DFB gratings are 

incorporated within the buried heterostructure laser to realise rapidly modulated 

telecoms lasers. However, they are not commonly available on GaAs and approaches to 

their realisation include regrowth over potentially oxidised aluminium-containing 

layers, etch/regrowth in the same reactor [7] [14], or use of InGaP cladding [15].  

 

This chapter presents the development of self-aligned-stripe (SAS) DFB lasers, 

starting with the waveguide design and simulation (Section 4.1), in which the original 

design concept and structural details are firstly presented. After, I describe the structural 

modifications that were required according to need for regrowth of thicker GaAs. Then 

the growth and fabrication processes are described in detail in Section 4.2, followed by 

the characterisation and discussion of several representative devices in Section 4.3.  
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4.1 Structural Design of SAS-DFB 

 

The self-aligned stripe (SAS) fabrication method allows a stripe-geometry to be 

realised by overgrowth upon a stripe-etched current blocking layer in a 2-stage growth 

process. The current blocking layer is located above the active region with a distance of 

hundreds of nanometres by p-doped AlGaAs to form the p-n-p-n blocking structure. 

In the previous research reported by our group, a GaAs/InGaP regrowth process was 

used to enable SAS lasers to be manufactured on GaAs [16], as in Fig. 4-1 (a).  

 
(a) (b) 

Figure 4-1: Previous work (a) SAS laser [16] and (b) DFB laser [3] 

 

In our GaAs-based SAS process, no aluminium is exposed to atmosphere prior to 

regrowth. Furthermore, since AlxGa1-xAs is lattice matched to GaAs for all 

compositions of x, this permits a significant amount of flexibility in waveguide design, 

and provides attractive benefits for future GaAs based photonic integrated circuits 

design [17]. In a discrete optical system, the requirement for the DFB laser source to 

operate via its fundamental transverse optical mode for high efficiency coupling in 

successive components severely limits the width of the laser active region and 

commensurately its output power [18]. Our previous DFB [3] and SAS laser [16] 
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designs describe structures realised with a single overgrowth and not specifically 

designed to be integrated together. In this chapter, we demonstrate the realisation of 

SAS-DFB lasers emitting at ~1000nm, based on a three-stage growth process (i.e. 2 

overgrowths).  

 

4.1.1 Advantage and Novelty 

 

In general, SAS lasers provide many advantages with respect to device performance 

comparing to ridge lasers, e.g. more stable single lateral mode operation, narrower 

active regions, better direct modulation performance, etc. In my SAS DFB design, one 

core advantage is its excellent flexibility in terms of waveguide design to support device 

optimisation. Fig. 4-2 (a) summarises 12 available variables that can be utilised to 

support designing of a SAS DFB waveguide structure. 

First of all, positions of the overgrown grating and the self-aligned stripe can be 

adjusted within nearly the entire upper cladding region (①-②) to achieve certain 

profile and/or parameters of the guided optical mode. In addition, further modification 

of the waveguide can be achieved via designing structural dimensions of the SAS 

geometry (③-⑦) and the grating sequence (⑧-⑪). Furthermore, the Al composition 

of AlGaAs cladding (⑫) can also be adjusted.  

 

In this project, the SAS geometry was designed to be grown immediately above the 

overgrown GaAs/InGaP grating layer, as illustrated in Fig. 4-2 (b), which means that 

the lower etch-stop GaAs layer of the SAS section (tGaAs-1) also performed as the in-fill 

overgrown GaAs layer (t'GaAs-overgrowth) for the formation the grating matrix. 
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(a) 

 
  

(b) 

  

Figure 4-2: Schematic diagram of (a) the design concept of SAS DFB lasers showing 12 

variables that can be tailored and (b) the waveguide structure designed in this project 

 

This design consists of a 3-stage growth process: the planar growth (lower cladding, 

QWs, partial upper cladding and grating layer), the 1
st
 overgrowth (in-fill GaAs to form 

the grating and n-InGaP blocking layer) and the 2
nd

 overgrowth (in-fill GaAs to form 

the SAS, the remainder of the upper cladding layers and contact layer). 
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4.1.2 Original Design and Simulation 

 

In the initial structural design stage, Fimmwave software, by Photo-Design, was 

again used to simulate the waveguide and calculate overlaps in the structures, using 

refractive indices at 1000nm of 3.51 for GaAs, 3.3 for Al0.42Ga0.58As, 3.14 for 

Al0.7Ga0.3As, and 3.15 for InGaP. The aim of the simulation activity is to help design 

the structure in terms of optimising confinement factors, as well as the mode profile. 

Because the grating is to be fabricated as a 50/50 mark-to-space ratio square-shaped 

GaAs/InGaP grating, the refractive index of grating layer is then calculated as 3.335. 

The basic concept was to achieve optical confinement in the grating as ΚL=1, as 

discussed in chapter 2, whilst also maintaining strong optical confinement with the 

QWs. 

Based on the previously designed SAS laser and DFB structures, two structures, one 

comprising 2QWs and one with 4QWs, are simulated. Essentially, the design is an 

amalgamation of the GaAs DFB laser in [3] with the GaAs SAS laser structure in [16], 

placing the grating layers immediately below the n-doped InGaP optoelectronic 

confinement layer, as shown in Fig. 4-2 (b). 

I applied the optimised thickness (600nm) and width (3μm) of the InGaP 

optoelectronic confinement layer as described in [16], whilst the four main variables 

that I used to modify the waveguide are highlighted in the figure: 

 d: the separation between grating and active region (partial upper cladding) 

 tGrating: thickness of grating 

 tGaAs-1: in-fill GaAs in 1
st
 overgrowth 

 tGaAs-2: in-fill GaAs in 2
nd

 overgrowth 
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Table 4-1 shows the resultant original designs for the 2 and 4 QWs SAS-DFB 

laser structures.  

 
Thickness(nm) Material Doping (cm

-3
) 2QWs 4QWs 

2
nd

 

Regrowth 

300 GaAs P 1.010
19

 -- -- 

750 Al0.42Ga0.58As P 1.010
18

 -- -- 

750 Al0.42Ga0.58As P 5.010
17

 -- -- 

20 Al0.42Ga0.58As P 5.010
17

 -- -- 

60 GaAs P 5.010
17

 -- -- 

1
st
 

Regrowth 

20 GaAs P 5.010
17

 -- -- 

600 In0.5Ga0.5P N 5.010
17

 -- -- 

45 GaAs P 1.010
18

 -- -- 

Planar 

Growth 

10 GaAs P 5.010
17

 -- -- 

7.5 In0.5Ga0.5P P 5.010
17

 -- -- 

15 GaAs P 5.010
17

 -- -- 

-- Al0.42Ga0.58As P 5.010
17

 510nm 300nm 

50 GaAs Un-doped -- -- 

10 GaAs0.885P0.115 Un-doped 
Repeat 

2 

Repeat 

4 
7.6 In0.17Ga0.83As Un-doped 

10 GaAs0.885P0.115 Un-doped 

50 GaAs Un-doped -- -- 

750 Al0.42Ga0.58As N 5.010
17

 -- -- 

750 Al0.42Ga0.58As N 1.010
18

 -- -- 

500 GaAs N 1.010
18

 -- -- 

Table 4-1: Layer structures design of SAS-DFB 2 and 4 QWs 

Fig. 4-3 shows the simulated guided optical mode profile of both designs. The blue 

contour lines indicate the optical mode intensity superimposed over the simplified 

waveguide dimensions, to indicate the overlaps. As can be seen from the 2QWs 

design, Fig. 4-3 (a), an inevitable guided mode exists around the overgrowth GaAs 

layers. This was because, in 2QWs design, the average refractive index of the active 

region was not sufficiently higher than that of the grating area, which had 2 in-fill GaAs 

from both 1st and 2nd regrowth. Effort had been given to minimise the value by: 

 Reducing the 2
nd

 in-fill GaAs from 100nm (as reported in [16]) to 60nm 

 Increasing the separation between grating and active region to 510nm 
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It can also be found that the effect of stacked in-fill GaAs was less obvious in 

4QWs design, Fig. 4-3 (b), because the active region had relatively higher capability of 

confining optical wave with 2 additional high-refractive-index QW layers.  

 
(a) (b) 

Figure 4-3: Mode profile of 2 and 4 QWs SAS-DFB lasers 

 

4.1.3 Design Modification 

 

 Requirement for thicker in-fill GaAs in the first overgrowth 

In order to infill and planarise the grating, the GaAs layer was grown at a higher 

temperature than is typically used for GaAs. This imposes a minimum thickness 

limitation on the GaAs layer in order to adequately planarise the surface prior to InGaP 

growth. Thinner GaAs layers (45nm), such as those used previously [3] and 

incorporated in our initial design from Section 4.1.2, were defective in planar areas on 

test overgrowth samples. 

Although higher quality overgrowth was observed in the grating areas, this would not 

be suitable for future integrated devices, which would require components to be 
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processed within these planar areas. Overgrowth quality was significantly improved by 

using a thicker GaAs planarisation layer (100nm). A dark-field 002 transmission 

electron micrograph (TEM), recorded for a cross-section along the grating, is also 

shown in Fig. 4-4 (a), demonstrating high quality infill and planarisation of the InGaP 

grating with subsequent n-doped InGaP growth above, using the modified thickness of 

100nm GaAs for infill and planarisation. 

(a) 

 

(b) 

 

Figure 4-4: (a) Dark-field 002 TEM of cross section along grating and (b) Additional guided 

mode due to increased GaAs planarisation layer (45nm to 100nm) 

The requirement to grow 100nm GaAs in the first regrowth stage resulted in an 

inevitable change in the simulated optical mode profile for 2 and 4 QWs structures, 

which also resided in an additional guided mode some distance above the active region 

for 4QWs design as well, as illustrated in Fig. 4-4 (b), when using the same cladding 

layer composition as originally designed.  
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This therefore required a re-design of the layer structure to ensure that appropriate 

optical confinement can be achieved in both the grating and in the QWs. One strategy 

could be a re-design of both the upper and lower cladding compositions, and therefore 

growth of a new planar wafer. Another strategy would be to make use of the tailor-

ability of AlxGa1-xAs, which is virtually lattice-matched to GaAs for all compositions, x. 

We are therefore afforded full flexibility for a choice of Alx composition to use in the 

upper cladding layers. Additionally, a change could also be made to the thickness of 

GaAs that is grown first in the second overgrowth step. Therefore, it was entirely 

feasible that sufficient modification to the optical wave-guiding could be achieved by 

changing only the layers in the subsequent 2
nd

 regrowth step, rather than necessitating 

growth of a new starting wafer with different lower cladding composition. 

Since the simulation of the 4QWs SAS waveguide showed a better mode profile, 

the modification of the structure was mainly based on the simulation of the 4QWs 

SAS. 

 

 Structure tailoring of second overgrowth 

The ability to tune the Alx composition in the overgrown cladding layers is a unique 

attribute of the GaAs/InGaP SAS design as compared to alternative strategies for buried 

waveguides, such as Al-free approaches. In this work, full tailoring of the optical mode 

was possible through optimisation of two main variables in the subsequent second 

overgrowth stage: Alx composition / GaAs thickness.  

Fig. 4-5 (a) plots the optical confinement factor in both the grating and in the QWs, 

simulated as a function of Alx composition with the GaAs thickness fixed at 60nm (as 

per our original design). This demonstrated that confinement in the grating could be 
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reduced towards our target value through use of higher composition Alx in the upper 

cladding layers. Above x ~0.4, optical confinement in the QWs was sufficiently high 

and approximately constant. An Alx composition of x=0.7 was deemed to be an 

appropriate upper limit for ease of device fabrication and also taking into account the 

potential reliability issues associated with higher Al compositions.  
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 (a) (b) 

Figure 4-5: Simulated optical confinement factors in the grating and quantum wells as a 

function of (a) Alx composition in AlxGa1-xAs for fixed 2nd regrowth GaAs thickness of 60nm, (b) 

thickness of 2
nd

 regrowth GaAs for fixed Alx composition of Al0.7Ga0.3As 

 

Fig. 4-5 (b) plots the same simulation as a function of the thickness of GaAs grown 

in the second regrowth stage with the composition of Alx fixed at x=0.7, as decided 

from Fig. 4-5 (a). When decreasing the thickness from 60nm, as designed, the 

confinement factor in the grating layer reduced gradually, as did the confinement factors 

in the QWs. At 40nm thick GaAs, our target value of optical confinement factor in the 

grating was reached whilst also exhibiting a reasonably high optical confinement factor 

in QWs.  
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4.1.4 Final Structure Design 

 

Table 4-2 outlines the optical confinement and optical far-fields simulated for both 

the original design and the modified design with (1) 45nm and (2) 100nm of in-fill and 

planarisation GaAs grown above the InGaP grating. Fig. 4-6 (a) compares the original 

and modified structure at the cross-section of the etched stripe. 

 (1) 

Intended 45nm GaAs 

planarisation 

(2) 

Now with 100nm GaAs 

planarisation 

Upper AlxGa1-xAs x=0.42 x=0.7 

2nd GaAs in-fill 60nm 40nm 

ΓGrating 0.0033 0.0031 

ΓQWs 0.0526 0.0531 

Far-field FWHM-Slow  9.7
°
 6.9

°
 

Far-field FWHM-Fast 43.1
°
 46.1

°
 

Table 4-2: Parameters used in the (1) original and (2) modified design together with the 

expected resultant optical properties 

As can be seen, the confinement factor in both the grating layer (ΓGrating) and the 

active region (ΓQWs) could be maintained at similar values as for the original design, as 

presented in Table 4-1 (column “4QWs”). Furthermore, as described in Section 4.1.3, 

without any modification to the 2
nd

 overgrowth for the required thicker GaAs 

planarisation layer (45nm to 100nm), the simulated mode profile shown in Fig. 4-4 (b) 

demonstrated the occurance of an additional guided mode. After the modification, the 

simulated optical profile of this modified design, as shown in Fig. 4-6 (b), exhibited 

improved profile compared to that shown in Fig. 4-4 (b). Also, with these parameters 

included in the design, an optical far-field of 46.1° (fast) and 6.9° (slow) was simulated. 

These values were similar to those achievable using our original design (43.1°, 9.7°). 

The narrower horizontal (slow axis) divergence was a result of a change in the shape of 
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the mode as it interacts with the SAS, but was not expected to present any obvious 

change in device performance. 

  
(a) (b) 

Figure 4-6: (a) Schematic diagrams of original and modified stripe structure and (b) single 

fundamental mode profile enabled using new parameters 

Therefore, as a direct consequence of the thicker GaAs grating in-fill and 

planarisation layer, necessary for high quality InGaP growth, the use of thinner GaAs 

and higher Al composition AlGaAs in the upper cladding layer can be viewed as a 

positive solution to regain the required optical confinement factors.  
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4.2 Growth and Fabrication 

 

This section describes the fabrication process for realisation of SAS-DFB lasers. The 

sample underwent a 3-stage growth process. Between the 1
st
 and 2

nd
 growth, an 

InGaP/GaAs grating was formed within the upper cladding layer and immediately 

below the optoelectronic confinement layer (where the buried stripe was to be etched).  

Between the 2
nd

 and 3
rd

 growth, a 3μm wide SAS was formed above the grating by 

etching through the 600nm n-InGaP blocking layer. A schematic diagram of this SAS-

DFB laser is shown in Fig. 4-7. 

 

Figure 4-7: Schematic diagram of the layer structure that defines the SAS-DFB laser, the box 

showing the formed 50/50 mark-to-space ratio overgrown grating 
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4.2.1 Sample Growth 

 

As mentioned, a three-stage growth process has been applied. In order to realise this 

structure, the following fabrication scheme was used. 

 

 Stage I: Planar Growth and Grating Etching 

An n-doped Al0.42Ga0.58As lower cladding layer was grown using MOVPE (metal-

organic vapour phase epitaxy) above a 500nm GaAs buffer layer on an n-doped GaAs 

substrate which was mis-oriented by 3° to the (110) direction. Above this, partially 

strain-balanced quantum wells (QWs) emitting ~990nm were grown within a waveguide 

structure comprising 2 × and 4 × 7.6nm In0.17Ga0.83As QWs separated by 20nm 

GaAs0.885P0.115 strain balancing layers. 50nm GaAs was grown on either side to 

complete the waveguide core. 300nm p-doped Al0.42Ga0.58As was grown above the core 

prior to growth of the grating layer. The first order DFB grating layer comprised a 

7.5nm thick InGaP layer (lattice matched to GaAs) sandwiched between 15nm and 

10nm thick GaAs layers.  

   
(a) (b) (c) 

Figure 4-8: Schematic diagrams of (a) planar growth, (b) electron beam lithography and (c) 

grating etching 

Following patterning by electron beam lithography (the same process as for ridge 

DFB lasers in chapter 3) grating with periods of 148nm, 149nm and 150nm were 
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formed by first dry etching through the GaAs top layer using an argon reactive ion etch 

process, before wet etching through the InGaP using HCl/H3PO4. In this method, this 

wet etch is highly selective and terminates abruptly at the lower GaAs layer, whose role 

is to protect the underlying p-doped Al0.42Ga0.58As layer from being exposed to 

atmosphere. This etch was laterally pinned by the previous GaAs dry etch process and 

can be performed either with or without removal of the patterned PMMA, using the 

upper GaAs layer as the etch mask.  

 

 Stage II: First Overgrowth 

Following etching, the PMMA was removed and a simple clean process was 

performed, including O2 plasma ash, before a wash in 1% diluted HF immediately prior 

to loading into the MOVPE reactor. The wafer was then returned to the reactor for 

overgrowth. 100nm p-doped GaAs was overgrown to infill and planarise the index-

coupled DFB grating, before 600nm n-doped InGaP (lattice-matched to GaAs) 

optoelectronic confinement layer, and 20nm of GaAs completed the overgrowth.  

 

Figure 4-9: Schematic diagram of the structure following the first overgrowth, the dotted line 

represents the stripe to be etched in the next stage 
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Fig. 4-9 shows a schematic diagram of the sample after the 1
st
 overgrowth. As 

illustrated, the GaAs/InGaP grating was formed to a distance (510nm for 2QWs design 

and 300nm for 4QWs design) above the active region. The dotted lines represent the 

stripe to be etched in the next stage for the formation of the SAS. 

 

 Stage III: Stripe Etching and Second Regrowth 

As shown in Fig. 4-10, 3μm wide SAS patterns were defined using standard UV 

optical lithography. A stripe was etched into the n-doped InGaP layer by first dry 

etching through the top GaAs layer using a SiCl4/Ar based inductively coupled plasma 

(ICP) process and then wet etching through the InGaP layer, down to the lower GaAs 

etch stop layer, again using HCl/H3PO4.  

 
(a) (b) (c) 

Figure 4-10: Schematic diagrams of fabrication of 3μm wide self-aligned stripes 

Following photoresist removal and a simple HF clean, a second overgrowth of 40nm 

p-doped GaAs, 1500nm p-doped Al0.7Ga0.3As and a 200nm GaAs contact layer 

completed the structure. 
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4.2.2 Device Fabrication 

 

Fig. 4-11 (a) shows a pictorial representation of the epitaxial structure of the wafer. 

As illustrated, the buried hetero-structure was formed along with the grating.  

The in-fill GaAs and Al0.7Ga0.3As formed the SAS in the etched 600nm n-doped 

InGaP blocking layer with GaAs/InGaP 50/50 square-shaped grating layer immediately 

beneath the stripe. 

 

 Trench Etching 

To define the pattern for etching of the isolation trenches, SPR 350 photoresist was 

spun onto the samples at 4000rpm for 30 seconds, followed by 1 minute hard bake at 

100
o
C. After exposure, the samples were developed in MF26A for 1 minute and rinsed 

in DI water, as Fig. 4-11 (b). Then 1 minute oxygen plasma ash was performed to 

ensure the complete removal of the resist in the exposed areas.  

   
(a) (b) (c) 

Figure 4-11: Isolation trenches wet etching to form 100μm wide electrically isolated devices 

Then, the patterned samples were wet etched to a trench depth of ~2.5μm using a 

1:1:1 mixture of acid HBr, C2H4O2 and K2Cr2O7, shown in Fig. 4-11 (c). The samples 

were again rinsed in DI water and blown dry, followed by a resist lift-off process in 

warm acetone. After 3-stage cleaning, a 2 minute oxygen plasma ash was used to 

remove any residual photoresist.  
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The cleaning process was repeated until the samples were clean, as verified by 

inspection under an optical microscope. 

 

 Si3N4 Deposition and Window Etching 

The next step was dielectric deposition. Plasma-enhanced chemical vapor deposition 

(PECVD) was employed to deposit 500nm thick of Si3N4 film onto the samples, serving 

the purpose as an electrically insulting layer to allow the later Ti/Au bond pad to be 

deposited close to the stripe, as shown in Fig. 4-12 (a).  

   
(a) (b) (c) 

Figure 4-12: Deposition of 500nm thick SiN dielectric layer and window etching 

The samples were then patterned to expose a window area above the SAS, suing a 

similar process to that described above (photoresist spin, edge bead removal, exposure, 

development, photoresist lift-off), shown in Fig. 4-12 (b). A reactive ion etcher (RIE) 

was used to etch the Si3N4 to open the defined window areas.  

The process recipe included 35sccm of CHF3 and 5sccm of O2 with a chamber 

pressure to be maintained at 35mTorr and RF power at 60W. The etching process was 

monitored using Laser End Point software, and a 30 second over-etch was added to 

process time to ensure complete removal of Si3N4 in the window areas. After inspection 

of the window areas under an optical microscope, the photoresist was removed in warm 

acetone, resulting in a fabricated profile as shown Fig. 4-12 (c). 
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 Top Contact Deposition 

The samples were then aligned, exposed and developed with the metal contact 

pattern in SPR 350 possitive photoresist, as shown in Fig. 4-13 (a). A thermal 

evaporator was used for the deposition of Au/Zn/Au top ohmic contact. In order to 

remove native surface oxide, the samples were dipped in 19:1 H2O : Analar Ammonia 

solution for 45 seconds, then rinsed in DI water and blown dry, before loading in to the 

evaporator and pumping down to a pressure of 2×10
-6

mbar.  

  
(a) (b) 

Figure 4-13: Depostion of Au/Zn/Au Ohmic contact 

The contact deposition included 5nm gold, then 10nm zinc and then 300nm gold. 

After lift-off and cleaning, a 2 minute oxygen plasma ash was performed to remove any 

residual resist. The cleanliness was inspected under an optical microscope. The samples 

were then annealed using the RTA at 360
o
C with 30 seconds ramp and 3 seconds dwell 

the resultant structure is shown in Fig. 4-13 (b). 

 

 Bond Pad Deposition 

The deposition of bond pad was similar to that of contact, as illustrated in Fig. 4-14. 

Instead of being fixed at 6cm height as for zinc, a tungsten basket was fixed at 12cm 

height with ~10mg titanium due to a higher required deposition temperature. The 

deposition thicknesses were: 15nm titanium and 200nm gold. 
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(a) (b) 

Figure 4-14: Deposition of Ti/Au bond pad 

 

 Substrate Thinning and Back Contact 

The samples were thinned for better heat extraction, as well as to facilitate ease 

cleaving into short cavity length devices. A logitech LP50 lapper/polisher was 

employed for this process, and samples were thinned to ~150μm. After thinning and 

cleaning, In-Ge/Au back contact was deposited using a thermal evaporator. The 

deposition thicknesses were: 20nm In-Ge and 200 nm gold. This was followed by RTA 

annealing at 340
o
C with 30 seconds ramp and 3 seconds dwell. 

 

 Cleaving, AR Coating and Mounting 

The fabricated samples were cleaved into 600μm long devices and anti-reflection 

coatings with reflectivity, R=0.1% at 1050nm with 25nm bandwidth, were applied to 

one facet by Helia Photonics. The central wavelength of 1050nm was a compromise 

made among many samples sent for coating together and while not optimum here, 

sufficiently low reflectivity for suppresion of feedback from the facets was anticipated. 

Lastly, devices were mounted epi-side-up on AlO2 ceramic tiles with InAg paste and 

bonded using a K&S Ultrasonic Ball Bonder for characterisation.  
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4.3 Characterisation and Discussion 

 

In practical operation of the DFB laser, a red-shift in the spectral position of the gain 

peak is unavoidable due to Joule-heating when pumping with high CW current or 

operating without adequate heat-sinking provision. In order to ensure that the gain is 

resonant with the DFB mode when pumped with CW current to achieve DFB single 

mode lasing, the grating period was designed to be on the long wavelength side of the 

gain peak in this material (~990nm) to ensure high injected current and high 

temperature operation. Based on the study and measurement in previous DFB ridge 

lasers, as described in Chapter 3, I designed 3 different grating periods (148nm, 149nm 

and 150nm) aiming at a DFB wavelength in the region of 990nm to 1010nm in order to 

coincide with the gain peak of this QW material.  

 

4.3.1 4×QWs SAS-DFB 

This section describes the measurement of three representative SAS-DFB lasers, for 

the three defined grating periods, incorporating 4QWs. Representative devices were 

selected based a searching measurement over 10 devices for each grating period 

 

 Grating Period 148nm 

The following section describes the measurement of a representative 4QWs SAS-

DFB laser with a 148nm period grating. Fig. 4-15 plots the CW L-I-V characterisation 

of this device. The resistance of this device is calculated from the I-V curve to be ~4. 

The L-I curve shows a CW lasing threshold at around 60mA with a slope efficiency of 
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~0.25W/A. This efficiency is maintained until ~100mA and reduces gradually until a 

clear kink is observed in the P-I characteristic at ~160mA. At 160mA onwards, the 

sample is operating with a higher efficiency (~0.4W/A). The appearance of this kink 

can be explained as follows: 

The DFB wavelength associated with a 148nm grating period is ~996nm. This 

wavelength is resonant with the peak of the gain spectrum with ~Ithresh at room 

temperature. Therefore, the device starts lasing via the DFB mode upon reaching the 

threshold current. With an increase in the injected current, the gain peak experiences a 

red shift due to self-heating, detuning itself from the Bragg wavelength, which 

undergoes much less red-shift with increasing I. At ~150mA, the sample transfers from 

lasing via the DFB lasing mode to lasing via the Fabry-Pérot modes, as can be 

demonstrated in the following EL spectra.  
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Figure 4-15: L-I-V curve measured at room temperature with CW pumping 

Fig. 4-16 plots the electroluminescent spectra recorded from this device with 

increasing injection current (from 60mA to 180mA in 30mA increment) over a 

wavelength range of 992nm to 1008nm. As can be seen, the laser operates via a single 

lasing mode about the Bragg wavelength at 994nm to 994.5nm from 60mA (threshold) 
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until 120mA with a measured wavelength shif of 0.008nm/mA. Around 90mA-120mA, 

the laser maintains an SMSR of more than 30dB. Below 120mA, there is no obvious red 

shift of the gain peak from its centre at ~998nm because the self-heating is balanced by 

the heat extraction capability of the mounted device. From 150mA onwards, the red-

shift of the gain peak becomes significant with the simple AlO2 submount unable to 

efficiently heat-sink, thus increasing the detuning between the gain peak and the DFB 

mode, and the sample grudually undergoes a reduction in SMSR and eventually 

transfers from lasing via the DFB lasing mode to lasing via an ensemble of Fabry-Pérot 

modes at the shifted gain peak. 
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Figure 4-16: Spectrum taken at room temperature for CW pumping 

Despite this, the spectra recorded at 150mA and 180mA current injection also 

demonstrate lasing via the DFB mode as well as the F-P modes, which suggests that 

better AR coating could result in continued DFB operation to higher currents. But one 

can expect that, when pumping the device harder to achieve a higher CW output power, 

the self-heating effect with higher current injection would significantly increase the 

detuning due to the red-shift of the gain peak, which results in continuous decrease in 

the L-I slope efficiency and eventually clamps the maximum output power of this 

device.  
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 Discussion 

From the study of this representative device, it was found that, at ~Ithresh, the λBragg of 

a 148nm grating period is positioned ~4nm on the short wavelength side of the gain 

peak, which would continue to increase as more current being injected, end up with 

significant detuning. Iit could be concluded that devices with this grating period 

fabricated from this sample are not suitable for high power CW operation due to the 

inevitable breakdown of DFB operation at higher current. Athough this issue could be 

tackled through improved heat extraction, which increasing the total cost of the device.  

 

 Grating Period 149nm 

The following section describes the measurement of a representative 4QWs SAS-

DFB laser with a 149nm period grating. 

Fig. 4-17 plots the CW L-I-V characteristics. The resistance of this device is 

calculated from the I-V curve to be around 3.  
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Figure 4-17: L-I-V curve measured at room temperature with CW pumping 
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The L-I curve shows a CW lasing threshold at around 65mA with an initial slope 

efficiency of ~0.29W/A. This efficiency is maintained until ~100mA and reduces 

slightly until ~125mA where a deflection to an improved efficiency at around 125mA-

140mA, folloowing a kink in the L-I at around 150mA and becomes stable at ~0.22W/A 

until 200mA. 

Fig. 4-18 plots the CW electroluminescent spectra recorded as a function of 

increasing injection current from 80mA to 200mA with 40mA increment over a 

wavelenght range of 990nm to 1020nm at room temperature. This figure can help 

explain the phenomenon observed in the L-I characteristic above. At low injection 

currents the EL peak is centred ~995nm and the DFB wavelengh is located slightly to 

the red side of the gain spectrum. The laser operates via a single DFB laser mode at 

80mA at 999.6nm and reaches an SMSR of more than 45dB at around 120mA, with a 

small wavelength shift to 1000.0nm. 
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Figure 4-18: Spectrum recorded at room temperature with CW pumping 

However, beyond 120mA mode hopping from the shorter DFB wavelength to the 

longer DFB mode takes place around 140-160mA. This is commensurate with the 

observed kink in the L-I characteristic in Fig. 4-17. Beyond this, the red shift of the gain 

peak becomes significant and increaes the detuning between the DFB mode and the gain 
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peak. At 200mA, the DFB lasing mode is accompanied by the F-P lasing modes at the 

gain peak at ~1007nm. It can be predicted that the lasing operation will be dominanted 

by Fabry-Pérot lasing mode with higher injected current. 

 Discussion 

Compared to the 148nm grating period devices, the 149nm grating devices exhibited 

improved performance to higher CW current injection with commensuratedly higher 

output power. This is a result of the transfer from DFB mode to Fabry-Pérot lasing 

occuring at higher currents, which is due to the wider range of curretns that the DFB 

mode remains resonant with the gain. Therefore, further study was conducted to 

investigate thermal tuning characteristics of these samples, in which pulsed current 

source was used to control the effect of self heating. 

 Thermal Tunability 

Fig. 4-19 plots the L-I characteristic of a 149nm grating period sample over a 

temperature range from 20
o
C to 80

 o
C.  
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Figure 4-19: L-I curve measured at different temperature with pulsed pumping 

The lasing threshold is observed to increase from 58mA at 20
 o

C, to 60mA at 30
 o
C, 

63mA at 40
o
C, 68mA at 50

 o
C, 77mA at 60

o
C, 90mA at 70

 o
C and 120mA at 80

o
C. The 



 

 

 202 

slope efficiency is correspondingly observed to decrease with rising temperature from 

from 0.42W/A at 20
 o

C, to 0.40W/A at 30
 o

C, 0.38W/A at 40
o
C, 0.37W/A at 50

 o
C, 

0.36W/A at 60
o
C, 0.28W/A at 70

 o
C and 0.25W/A at 80

o
C. The kinks at higher currents 

(~2Ith) represent mode hopping from shorter DFB wavelengths to longer DFB 

wavelengths (occuring at 90mA at 20
 o

C, 120mA at 30
 o

C and 140mA at 40
o
C 

respectively). 

Fig. 4-20 plots the spectra recorded with 140mA pulsed (5μs, 10%) pumping for a 

range of temperatures from 20
o
C to 60

o
C using an Advantest Q8384 optical spectrum 

analyser with 0.01nm resolution.  
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Figure 4-20: Spectrum recorded at different temperature with pulsed pumping at 140mA 

The peaks of the spectra were normalised to 0dB for clarity of presentation. The laser 

operates via a single DFB mode over this range of temperatures and exhibits a 

temperature-dependent wavelength shift of 0.09nm/
o
C, tuning from 999.3nm at 20

o
C to 

1002.9nm at 60
o
C. Over this temperature range, an SMSR of about 35dB was 

maintained.  
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 Grating Period 150nm 

The following section describes the measurement of a representative 4QWs SAS-

DFB laser with a 150nm period grating. Fig. 4-21 (a) plots the CW L-I characteristic of 

this device over a range of temperature from 20
o
C to 70

o
C. From a study of the 

threshold current as a function of temperature, a characteristic temperature, T0, of 119°C 

can be determined over this temperature range (i.e. 20°C-70°C). As shown, at 20°C the 

device reaches lasing threshold at ~65mA with a kink exhibited in the power versus 

current (P vs I) characteristic at 110mA. 
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(c) (d) 

Figure 4-21: (a) Output power vs CW injected current under different temperature, (b) plotting 

natural logarithm of threshold current density as a function of temperature to calculate T0, (c) 

spectra recorded with different injection current at 20
o
C and (d) spectra recorded with 140mA 

CW injection current at different temperatures  
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Fig. 4-21 (c) plots the recorded examination of the electroluminescence spectra using 

an Advantest Q8384 optical spectrum analyser with 0.01nm resolution, which revealed 

an expected transition from lasing on multiple Fabry-Pérot modes below 110mA to 

lasing via the single DFB mode above 130mA. At elevated substrate temperatures 

(30°C-70°C) lasing proceeded via the DFB mode from threshold. The device exhibits 

mode-hops from shorter to longer DFB wavelengths. 

These mode hops are accompanied by kinks in each P v’s I curve above threshold 

(occurring at 88mA at 30°C, 90mA at 40°C, 94mA at 50°C, 100mA at 60°C, and 

110mA at 70°C). We attribute the mode-hops to random facet phase shifts at the 

cleaved facets. The device exhibits kink-free single mode operation with more than 

35dB SMSR from 1.5× threshold current.  

Fig. 4-21 (d) plots the spectra recorded at different temperatures when the device was 

operating with 150mA CW injection current, in which the intensity of the peaks was 

normalised to 0dB to assist analysis. Over this temperature range (20°C-70°C), the gain 

peak was observed to red-shift from the shorter wavelength side of the Bragg 

wavelength to its longer wavelength side, whilst this device maintained single mode 

lasing via the DFB mode over this temperature range.  

 Thermal Tunability 

The device was studied over a wide range of temperatures and currents. Fig. 4-22 

plots the EL spectra for a range of CW currents at temperature of 30°C, 40°C, 50°C, 

60°C and 70°C. At each temperature, the spectra exhibit a single DFB mode over a 

range of currents. Here, for each temperature, the spectra were recorded at different 

currents higher than where the mode hoping occurs (as described above), i.e. when 

single-mode lasing via the longer DFB modes, as well as demonstrating an SMSR 



 

 

 205 

larger than 35dB. The spectra shown in Fig. 4-22 can be summarised by plotting the 

lasing wavelength and SMSR over the range of currents applied at each temperature.  
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Figure 4-22: Spectrum recorded with different injected current under different temperature 

Fig. 4-23 summaries the SMSR and the lasing wavelength between 100mA and 

150mA, extracted from Fig. 4-22. The laser demonstrated operation on a single mode at 

1007nm with an SMSR of ~37dB at 100mA (~1.5× threshold) at 30
o
C, rising up to 

~45dB at 130mA (corresponding to >30mW output power at a wavelength of 1008nm), 

and similar behaviour was observed at 40
o
C and 50

o
C with 0.015nm/mA. At higher 

temperatures, single mode lasing was measured over a reduced range of currents (from 

120mA at 60
o
C and 130mA at 70

o
C). 
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Figure 4-23: SMSR and wavelength shift under different temperature 

 Discussion 

In comparison, the representative device with a 150nm period grating demonstrated a 

much better performance at higher pumping current. Despite the observaation of 

transition from lasing on multiple Fabry-Pérot modes (immdieately above Ithresh) to 

lasing via the single DFB mode (above 2Ithresh) at lower operating temperature (20
o
C), 

the device demonstarted stable and kink-free DFB operation over a certain range of 

current at each elevated operating temperature (30/40/50/60/70
o
C). 

 

 Summary 

Characterisation of these representative devices showed the effect of detuning 

(distance between λBragg and material gain peak) upon DFB performance. Furthermore, 

the experimental observation of such effect was very significant for this batch of 

devices, because the exit facet AR coating was not optimal, as described in Section 

4.2.2, resulting in inadequate suppression of facet reflection. In this premise, devices 

with a 150nm period grating are more suitable for high power DFB operation. 
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4.3.2 2×QWs SAS-DFB 

 

Fig. 4-24 plots the L-I-V measurement of the best measured representative SAS DFB 

laser incorporating 2QWs. This device demonstrates an output power of only ~11mW 

at 120mW (CW). Compared to the 4QWs SAS-DFB in Fig. 4-21, this value was less 

than half of that measured. In addition, these 2QWs devices demonstrate a nonlinear 

L-I slope above ~2.5Ithresh and started rolling over above ~200mA. The I-V 

characteristic, which gives R~6 suggests the device is fine electrically. The problem 

was expected from the simulation of the waveguide, which showed a 2
nd

 guided mode 

located around the grating, as shown in Fig. 4-3 (a). For an SAS structure, the in-plane 

(lateral and vertical) confinement of the optical mode is mainly realised through index-

guiding. 
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Figure 4-24: L-I-V measurement of a representative device of 2QWs SAS-DFB 

In Section 4.1.2, although some modification to the original SAS layer structure [16] 

had been made to improve the mode profile, the original design of the 2QWs SAS-

DFB still showed a problematic wave-guiding. Furthermore, the requirement of an 
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increase in thickness of the 1
st
 layer of in-fill GaAs from 45nm, as designed, to 100nm 

to ensure the quality of overgrowth (Section 4.1.3) further affected the waveguide. 

Although some modification was made to reduce this effect in the 4QWs SAS-DFB, it 

was not possible to do so separately for the 2QWs SAS-DFB.  

The spectra recorded from measurement found a different correspondence between 

the grating periods and DFB wavelengths to those recorded from 4QWs SAS-DFBs. 

As described in Section 4.3.1, for the 4QWs SAS-DFBs, the devices with grating 

periods of 148nm, 149nm and 150nm had a lasing wavelength with CW current 

injection just above the threshold at room temperature of ~994nm, ~1000nm and 

~1006nm respectively. However, for the 2QWs devices, as shown in Fig. 4-25, the 3 

wavelengths reduce to ~977nm, ~983nm and ~989nm respectively.  
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Figure 4-25: Spectrum measurement of 2QWs SAS-DFBs 

The Bragg wavelength of a 1
st
 order grating period is determined by the equation: 

B = 2ne (: grating period; ne: effective refractive index) 

Therefore, the effective refractive index could be experimentally calculated from the 

wavelengths. A comparison of the calculated effective refractive index is shown in 

Table 4-3. 
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Lasing 

Wavelength 

(nm) 

Grating 

Period 

(nm) 

Calculated 

neff 

4QWs SAS-DFBs 

994 148 3.36 

1000 149 3.36 

1006 150 3.35 

2QWs SAS-DFBs 

977 148 3.30 

983 149 3.30 

989 150 3.30 

Table 4-3: Comparison of lasing wavelength of 2 and 4 QWs SAS-DFBs 

The calculation shows an average difference in effective index of 0.057, which 

corresponded to a mismatch of ~1.7% between the two samples. The grating was 

designed to be formed by 50/50 InGaP/GaAs rectangular structures, and the refractive 

indices of GaAs and InGaP are 3.51 and 3.15 respectively. Therefore, a measured 

higher effective refractive index indicates a higher composition of GaAs in the actual 

grating structure. From the comparison, it can be speculated that, during the etch of the 

grating pattern, the InGaP layer was etched slightly deeper in the 4QWs sample than in 

the 2QWs sample, or that there was variation in the mark-to-space ratio from sample 

to sample. Both issues could result in a slightly different effective refractive index 

between samples. 

 

4.3.3 Validation of Simulation 

 

In order to validate the waveguide simulation of the device, as well as to feed back 

into the research cycle for future structural design, comparison has been made between 

the experimentally measured and the simulated optical far-field beam profile and 

coupling coefficient. 
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 Far-Field Beam Profile 

The optical far-field profiles were measured for the 4QWs lasers using a standard 

far-field goniometer with InGaAs detector. The measured horizontal (slow-axis) and 

vertical (fast-axis) profiles are plotted in Fig. 4-26. The experimental profiles correlated 

well with the simulated far-fields, which are shown by the dotted red lines 

superimposed upon the experimental data in the figure.  
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Figure 4-26: Comparison of simulated and experimental optical far-field beam profile 

The experimental full-width-at-half-maximum (FWHM) divergence was measured as 

49.4° in the fast axis and 6.6° in the slow axis, verifying both the simulation (46.1° and 

6.9°) and the origin of emitted light (i.e. via the fundamental lateral mode of the 

confined SAS). Small differences between the experimental and simulated far-fields 

were attributed to the effect of gain guiding in the structure and the approximation to a 

vertical profile of the SAS (i.e.: the shape of the etched stripe) in the simulation, rather 

than the angled planes provided by the etch process (described in earlier work [16]). 
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 Coupling Coefficient 

Further correlation between the fabricated device and the simulated optical profile 

was provided by derivation of the grating coupling coefficient in the SAS-DFB and 

comparison with the simulated coupling coefficient. As described in Chapter 3, for a 

DFB laser of a given cavity length (L), by measuring the wavelength spacing (Δv) 

between the two adjacent sub-threshold DFB modes on either side of the Bragg 

wavelength and the longitudinal mode spacing (Δvlong), the coupling coefficient can be 

estimated from [19]: 

𝐾𝑚𝑒𝑎𝑠 =
𝜋 × ∆𝑣

2 × 𝐿 × ∆𝑣𝑙𝑜𝑛𝑔
 

Care must be taken for non-zero facet reflectivity since this facet phase relative to the 

DFB grating distorts the subthreshold emission spectra [20]. However, a good 

approximation can be derived either by fitting the measured curve for a single laser, or 

by measuring many devices along the bar (which will have differing facet phase) and 

selecting the one with the ideal spectrum. The ideal spectrum is one without any 

residual peaks in the stop band, equal strength peaks either side of the stop band, and 

these two peaks are stronger than the higher order modes [20].  

A range of Δλ between 0.24 and 0.26 nm were measured across a laser bar. Fig. 4-27 

plots the measurement of a representative device which demonstrated the most ideal 

spectral profile, in which (a) recorded the two sub-threshold DFB modes at ~1005.8nm 

and (b) recorded the F-P longitudinal modes. The Δν was measured from (a) as 

2.37cm
−1

, with Δνlong from (b) as 2.00cm
−1

. The coupling coefficient, Κ, was therefore 

estimated as 29.51cm
−1

, implying an optical confinement factor in the grating, Γgrating, of 

0.0041, which is higher than that obtained in our simulations (0.0031).  
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Figure 4-27: Recorded spectra showing (a) the two sub-threshold DFB modes, as annotated by 

the red dots, and (b) the F-P longitudinal modes, as annotated by blue dots, from which the 

DFB stop-band and longitudinal mode spacing were experimentally measured as 2.37cm
-1

 and 

2.00cm
-1

 respectively 

This mismatch was expected since the Fimmwave waveguide modelling was mainly 

based on its structural definition in terms of dimensions and refractive indices. The 

simulation did not take into account an additional lateral optical confinement provided 

by the stripe geometry. In the formation of the stripe geometry in this SAS structure, the 

n-doped InGaP electrical blocking layer on both sides of the etched stripe blocks the 

current though a p-n-p-n junction, electrically confining the current flow to the width of 

the etched stripe. This further determines the downwards distribution of the current 

passing through the stripe into the active region below, which results in a determination 

of the lateral dimension (width) of the gain area. This provides a certain amount of gain-

guidance to the optical mode.  

 

In the measurement, the optical mode was both index- and gain- guided. Receiving 

an additional lateral confinement compared with the simulation, the optical mode 
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narrowed slightly, resulting in a slight increase in the measurement of the confinement 

factor in the grating, and hence a stronger coupling coefficient. 

A small deviation in the refractive indices used in the simulation could provide 

another possible cause for this small mismatch. Furthermore, the waveguide structure 

defined in the simulation was based on a simple rectangular profile for the etched InGaP 

layer for simplicity (3μm from top to bottom). However, in real device manufacture, as 

demonstrated in [16], the wet chemical etching proceeded with a 45
o
 angle, pinned 

laterally by the GaAs layer above, resulting in an actual stripe width of 2-2.5μm, which 

could also give rise to this mismatch. 

 

4.3.4 Further Simulation for Future Work 

 

The devices manufactured were realised through modification to the design of the 

upper cladding layers due to the emergence of a specific growth requirement for a 

thicker GaAs layer in the first overgrowth step for planarisation (Section 4.1.3). This 

was enabled through the high level of flexibility offered by this design, and my 

approach provided a demonstration of this important attribute. However, further 

simulation has been carried out for 4QWs SAS DFB with the aim of designing a 

structure appropriate for use in future integrated designs, with a symmetric composition 

of Alx in upper and lower cladding (i.e. growth of a new starting planar wafer). 

Table 4-4 shows a modified design with x = 0.42. Instead of increasing the Al 

composition of the upper cladding, this structure is based on a 32 nm thick grating layer 

and an increased thickness of AlGaAs spacer layer between the grating and the active 

region of 540 nm.  
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Modified design (symmetric) 

AlxGa1−xAs x = 0.42 

2
nd

 GaAs in-fill 40 nm 

1
st
 GaAs in-fill 100 nm 

Grating thickness 32 nm 

Separation 540 nm 

ΓGrating 0.0033 

ΓQWs 0.0415 

Table 4-4: Parameters used in the modified design together with the expected resultant optical 

properties 

These modifications provide nearly identical confinement factor for the grating and 

QWs as before, but also with an improved optical mode profile, as shown in Fig. 4-28. 

 

Figure 4-28: Simulation of optical mode profile  
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4.4 Conclusion 

 

This chapter has demonstrated the 2 and 4 QWs GaAs-based DFB laser design 

incorporating a first order InGaP/GaAs index-coupled DFB grating built within a SAS 

buried waveguide structure. The preparation of the devices mainly consisted of six steps: 

planar growth, grating fabrication, 1
st
 overgrowth, SAS etching, 2

nd
 overgrowth and 

laser fabrication. In the process, it was found that a thickness of 100nm of the in-fill 

GaAs layer, instead of 45nm as designed, was required for the grating planarisation in 

the 1
st
 overgrowth. Therefore, by making use of the tailor-ability of the waveguide 

provided by GaAs/AlGaAs system, the 2
nd

 overgrowth was modified to maintain an 

expected confinement factor. This was achieved by reducing 2
nd

 in-fill GaAs from 

60nm to 40nm and modifying the composition of Al in the upper cladding from 0.42 to 

0.7, as described in Section 4.1, which resulted in a weaker optical confinement (lower 

average refractive index) for the upper cladding to balance the increased confinement 

near grating layer provided by the additional 55nm in-fill GaAs. This modification 

ended up with SAS-DFB devices incorporating an asymmetric cladding scheme, which 

demonstrated the flexibility to tailor the optical profile afforded by the SAS approach. 

For the 2QWs design, problems with optical confinement were observed in the 

simulation stage. Due to the strong optical confinement near the grating layer by 

stacking GaAs layers in the manufacture process, the optical mode profile from 

simulation exhibited a secondary peak centred on the stacked GaAs layers. Although 

modifications were made to reduce the magnitude of the secondary peak, it could not be 

removed entirely. The requirement for a 100nm GaAs in-fill layer in the 1
st
 overgrowth 

to fully planarise the grating pattern introduced even thicker stacking of GaAs. 
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Although modifications have been made to the 2
nd

 overgrowth as described above, the 

wave-guiding in the 2QWs design was not improved, which resulted in a less robust 

device performance compared to that of 4QWs design. 

For the 4QWs design, devices with all three grating periods demonstrated single 

mode DFB lasing at a wavelength in the region of ∼1μm. The representative devices 

with 148nm (~994nm) and 149nm (~1000nm) gratings both demonstrated lasing via the 

DFB mode upon reaching the threshold but is then dominated by the Fabry–Pérot mode 

with increased current injection. This was because the current-induced temperature 

increase inside the device caused a red-shift of the gain spectrum. With higher current 

injection, this red shift resulted in a significant detuning between the gain peak and the 

Bragg wavelength. As for the representative device with 150nm grating period, single 

mode emission was demonstrated at a wavelength of ∼1006nm with a lasing output 

power of ~35mW (20°C, 160mA) and >40 dB SMSR over the temperature range 20°C–

70°C.  

Furthermore, comparison has been made between the experimentally measured far-

field and grating coupling with that simulated for the sample. The results showed a high 

level of accordance in the far-field beam profile comparison, but with a +32% mismatch 

in coupling coefficient comparison. This mismatch could be due to the existence of gain 

guidance in the waveguide in real operation, which was not taken into account in the 

simulation. This introduced additional lateral confinement to the mode, resulting in a 

higher confinement factor in the grating layer. 

Lastly, based on the requirement of 100nm in-fill GaAs for grating planarisation, a 

4QWs symmetric design with both upper and lower cladding of Al0.42Ga0.58As has been 

simulated for future research. 
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 GaAs-Based Monolithically Chapter 5.

Integrated Self-Aligned Stripe Master 

Oscillator Power Amplifier 

 

 

In recent decades, research interest in photonic systems has expanded from the 

optimisation of individual components to the methods and techniques for monolithic 

integration of discrete components. Real-life applications are usually based on 

functioning modules incorporating more than one optical component, and optical 

systems are composed discretely, where each integrated component is individually 

developed, manufactured and packaged. However, the nature of being assembled makes 

it very difficult to further optimise the system in terms of smaller sizes, lower costs and 

higher efficiency. A photonic integrated circuit (PIC) is the photonic equivalent of the 

electronic integrated circuit and refers to an optically functioning module that integrates 

a number of photonic components such as lasers, modulators, amplifiers on one chip. 

The result is a simplification of an optical system with increased functionality and the 

reductions in cost, space, power consumption as well as the improvement in reliability. 

This chapter starts with an introduction of the concept of MOPA (Section 5.1), 

followed by a review of previous research conducted in the development of 

monolithically integrated MOPAs (Section 5.2). Then, the design of the waveguide and 

section geometry of two device types used in this research are described in Section 5.3, 

followed by a description of the process of growth and fabrication (Section 5.4). Section 

5.5 presents the characterisation results of 6 representative MOPA devices, together 

with analysis, comparison and discussion.  
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5.1 Master Oscillator Power Amplifier 

 

High-power, single-mode, diffraction-limited laser sources with output power of 

several Watts are required for many applications, for instance, free-space 

communications and frequency conversion for blue/green sources. Another application 

is in THz generation, where 2 high power DFBs (0.5-1W) are required to achieve usable 

THz radiation. 

 

5.1.1 Discrete MOPA Designs 

 

Conventional narrow ridge or narrow stripe semiconductor lasers cannot meet these 

requirements mainly due to wavelength stability and stand-alone DFB lasers have 

insufficient output power. MOPA systems, as illustrated in Fig. 5-1, provide promising 

potential for these applications, where the laser sections (MOs) operate independently 

for wavelength stability and the amplification of the light is facilitated by the 

semiconductor optical amplifier (SOA) sections (PAs), essentially de-coupling 

wavelength selection and power, within an integrated system.  

 

Figure 5-1: Schematic diagram of a basic MOPA system 

 

In most of today’s GaAs-based and InP-based MOPA structures, the systems are 

composed of a number of discrete components. For example, a study conducted by 
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Martin Maiwald from Ferdinand-Braun-Institut [1] reported their dual-wavelength 

MOPA system design operating at 785 nm for Raman spectroscopy. In this design, as 

shown in Fig. 5-2, the DBR master oscillators and the subsequent tilted SOA (angled to 

facet) were discrete system, and connected via an optical isolator to restrict the 

backward optical wave reflected from lenses and facets.  

 

Figure 5-2: Schematic diagram of a discrete MOPA design reported in [1], where 2 DFBs were 

integrated as the MO 

 

Another study of Ferdinand-Braun-Institut, conducted by Thi Nghiem Vu et al. [2], 

reported their discrete MOPA design for generating nanosecond optical pulses with 

stabilised wavelength, narrow spectral linewidth and high peak power, which aimed at 

applications like free-space communication and metrology. In this design, as shown in 

Fig. 5-3, the DFB master oscillator was also separated from the subsequent flared SOA. 

The two discrete components were connected by an optical isolator. 

 

Figure 5-3: Schematic diagram of a discrete MOPA design reported in [2], where a tapered 

power amplifier with integrated pulse picker was incorporated for generation of nanosecond 

optical pulses 
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5.1.2 Monolithically Integrated MOPA Designs 

 

Perhaps the simplest PIC is the MOPA device, which integrates 2 components (DFB 

and SOA), but arguably 3 building blocks of an integration platform (waveguide, 

amplifier and wavelength filter). For a monolithic MOPA design, the master oscillator 

(MO) is either a distributed Bragg reflector (DBR) [3] or a distributed feedback laser 

(DFB) [4]. Fig. 5-4 illustrates the fundamental design concept of two monolithically 

integrated ridge waveguide (RW) MOPA designs with DFB and DBR MOs 

respectively. 

 

Figure 5-4: Schematic diagrams of typical monolithically integrated ridge waveguide (RW) 

DFB-MOPA and DBR-MOPA with flared SOA sections 

In [3], Spectra Diode Labs reported their DBR design with a CW output power of 

2.2W at 854nm, whilst in [4] the Ortel Corporation reported their DFB MOPA device 

with a CW output power of 1.5W at 980nm.  

After, the Ferdinand-Braun-Institut has continued research into monolithically 

integrated MOPAs with both DFB [5] and DBR [6] master oscillators, with a reported 

output of 3.7W at 973nm and 10W at 977nm respectively. This chapter seeks to bring 

together the capability for DFBs demonstrated in Chapter 3 with the SAS in Chapter 4, 

and broader knowledge of amplifiers developed through simultaneous research on 

super-luminescent diodes by colleagues [7]. Compared to ridge waveguides, SAS 
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structures benefit from many advantages, including high reliability; small active widths, 

control of optoelectronic confinement and high stability of the guided mode profile. In 

addition, SAS structures are comparably thermally independent, which enables the 

possibility for on-chip tuning, e.g. by on-chip thin film heater, and hence potential for 

applications such as tunable THz generation and spectroscopy. The work in this chapter 

is therefore based on the preparatory study of ridge waveguide DFB lasers described in 

Chapter 3, and taken further to study the capability of simulating and manufacturing 

self-aligned stripe (SAS) DFB lasers in Chapter 4. In this chapter the SAS-DFB is 

monolithically integrated with a SAS-SOA structure to realise an integrated MOPA, 

whilst also looking to put together a platform for more complicated photonic 

integration. 

For such discrete MOPA designs, although the functionality of each component 

could be optimised individually, they suffer from low coupling efficiency between the 

discrete components, as well as higher cost for manufacture and larger module sizes. 

First of all, the optical loss is unavoidable from the non-100% collection efficiency due 

to divergence from the facet. Also, the isolator and lenses inbetween also contribute 

further reduction of the collection efficiency. In real operation, the alignment between 

components requires frequent adjustment to maintain an already-low coupling 

efficiency for the system to operate properly. This would require even more precise 

alignment and maintenance for devices with narrow ridge (or stripe), e.g. single mode 

lasers. Furthermore, the system suffers from the high cost of assembling individually 

packaged chips, which also limits the system to relatively large sized modules or sub-

assemblies.  
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5.2 Development of Monolithically Integrated MOPA 

 

This section briefly reviews research being conducted into the development of 

integrated MOPAs reported by research groups over the world. Both DFB-MOPA and 

DBR-MOPA are considered in this section. 

 

5.2.1 Realisations for Wide Tunability 

 

SOAs have been monolithically integrated into more complex devices on InP, such 

as tunable lasers developed for telecommunication applications. Professor Larry 

Coldren, from the University of California Santa Barbara, developed prototype 

sampled-grating (SG) DBR lasers in the mid-1990s [8], which was already a monolithic 

multi-section device itself. In later designs, monolithic SOAs were also integrated into 

the design [9], as illustrated in Fig. 5-5. 

 

Figure 5-5: Schematic diagram of an SG-DBR with monolithically an integrated SOA section 

 

Ward et al. (Bookham Inc.) reported a monolithically integrated design with digital 

super-mode (DS) DBR, which integrated a curved SOA (7
o
-off) for applications 

requiring wide tunability (~45nm at ~1550nm) in 2005 [10] and now underpins a 
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successful telecoms product portfolio. Fig. 5-6 shows the plan view of their design, 

which consisted of a rear phase grating section to generate a comb of reflection peaks, a 

phase control section, a gain section, a front chirped grating section for coarse 

wavelength selection and a low gain SOA section for power levelling (output power 

boosting for 3-4 dB).  

 

Figure 5-6: Schematic diagram of a monolithically integrated DS-DBR-SOA chip reported in 

[10] 

In this design the wide tunability was realised by the control over the currents 

injected into the front and rear grating sections, and the SOA was used to level the 

output power across the tuning range to a similar amount. According to the report, the 

length of the SOA design (350μm) was a trade-off between SMSR and linewidth. The 

key was reported to be the minimisation of the optical feedback from the amplifier into 

the laser. Their techniques were to use a short amplifier in saturation (~150mA CW 

pumping only) and keep the facet reflection low (7
o
-off tilting and <0.2% AR coating). 

 

A research group in Harvard University reported a tunable MOPA design with DFB 

quantum cascade laser (QCL) array aiming at potential applications of spectroscopy in 

the mid-infrared wavelength range in 2012 [11]. In their design, pictured in Fig. 5-7, a 

QCL array was integrated with an array of tapered SOAs, which were electrically 

isolated by a 100μm wide gap in the gold metallisation. The front facet was AR coated 

to increase the SOA threshold for self-lasing, whilst a 360μm un-pumped absorber was 

incorporated between the back facet and the DFB section for each MOPA device to 

suppress the effect of the back facet mirror on mode selection. 
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Figure 5-7: Schematic diagram of a DFB-QCL-MOPA reported in [11] 

 

Researchers in Japan (Yokohama R&D Labs) realised wide tunability on photonic 

integrated circuits by integrating a twelve-channel DFB laser array [12]. As shown in 

Fig. 5-8, on the PIC, the array was connected through a twelve-channel S-bent 

waveguide into a multimode interferometer (MMI) coupler, then into a normal-to-facet 

SOA. They achieved ~40nm tuning range centred at 1550nm and maintained a 

relatively high output power of 90mW even at 70
o
C operating temperature.  

 

Figure 5-8: Schematic diagram of a widely tunable laser reported in [12] 

 

5.2.2 Realisation for High Power 

 

The group of Prof. Bernd Sumpf [13] (at the Ferdinand-Braun-Institut) have been 

highly active in GaAs-based DFB- and DBR- SOA research in recent years. Prof. 
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Sumpf suggests that in these kinds of MOPA systems, only a relatively small output 

power from a spatial fundamental mode laser with robust beam quality is needed to be 

injected into the SOA. For the tapered gain region of an SOA, a flared angle should be 

designed to match the divergence of the injected beam. Furthermore, both facets should 

have high-quality (<0.1%) antireflective coating. 

 

Spectra Diode Labs has led extensive study into the monolithically integrated flared 

amplifier MOPA (MFA-MOPA) designs since the 1990s [14]-[16]. In their design, a 

DBR master oscillator was integrated with a flared SOA for an output power of several 

watts, as shown in Fig. 5-9. 

 

Figure 5-9: Schematic diagram of MFA-MOPA reported in [16] 

For the device they developed in [16], it was reported to achieve 2.2W output power 

with a lasing wavelength of 854nm (Iosc=150mA, Iamp=5A, Temperature =5
o
C). 

 

Based on the above design concept, the Ferdinand-Braun-Institut has continued with 

the monolithic MOPA research with both DFB [5], 2009, and DBR [6], 2007, and a 

flared SOA. Fig. 5-10 illustrates the design of the MOPA in [5] and [6]. The DFB-

MOPA achieved a CW output power of 3.7W at 973nm with current injection of DBR 



 

 

 228 

and SOA to be 500mA and 5.4A respectively, whilst the DBR-MOPA achieved a CW 

output power of 10W at 977nm with current injection of DBR and SOA to be 200mA 

and 13A respectively. 

(a) 

 

(b) 

Figure 5-10: Schematic diagram of (a) a DFB-MOPA and (b) a DBR-MOPA as reported in [5] 

and [6] respectively 

 

5.2.3 Realisations for Different Wavelength Generation 

 

During the same period, Ferdinand-Braun-Institut also developed a 3-section 

1060nm DFB-MOPA with a spacer section and a narrow ridge (un-tapered) tilted SOA 

section (5
o
-off to facet) for potential application in green light generation [17] (2008). 

As illustrated in Fig. 5-11, a 1mm long spacer is integrated between a 1mm long DFB 

section and a 2mm long tilted SOA section. In the report, the spacer section was not 

electrically pumped and its role is mainly as a thermal isolator between the two sections.  

 

Figure 5-11: Schematic diagram of a DFB-spacer-SOA MOPA as reported in [17] 



 

 

 229 

The suppression of reflections from the amplifier facet was achieved by both the 5
o
 

tilting angle and the configuration of anti-reflection (AR) facet coating with an R less 

than 0.05%. 

 

5.2.4 Disadvantages of Monolithic MOPA 

 

Despite many benefits compared to discrete MOPA systems, monolithically 

integrated MOPAs are not without their disadvantages. The main issue is that each 

component of the module cannot be optimised independently, and the whole device is 

indeed optically and thermally coupled [13] and such a monolithically integrated device 

suffers from a dynamic nature among the integrated components which may interact in 

undesirable ways [18] [19]. Furthermore, in discrete MOPA systems, the SOAs can be 

easily selected to be positioned ~50nm shorter wavelength with respect to the desired 

operating wavelength to achieve very high saturation output powers [20]. However, it 

becomes complicated for a monolithic MOPA to achieve this. Although intermixing or 

selective area growth can facilitate this scheme, the cost of manufacture will increase 

for any additional treatment, as well introducing the potential for further problems 

associated with these methods, such as reduced gain. 
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5.3 SAS-MOPA Design 

 

The main concept of the monolithically integrated MOPA design in this chapter is 

related to the MOPA concepts developed and realised by Spectra Diode Labs in 1990s 

[14]-[16] and that of the Ferdinand-Braun-Institut [5] [6]. However, advancements on 

these structures arise from application of the outcomes from my earlier studies on 

GaAs-based DFB lasers with GaAs/InGaP buried gratings in Chapter 3, and the SAS-

DFB laser with n-doped InGaP optoelectronic confinement layers in Chapter 4.  

This section describes the design of the two monolithically integrated MOPA 

structures studied in this chapter, starting with the SAS waveguide design based-on the 

3-step growth process described in Chapter 4, followed by description of the two 

geometric designs along the waveguides. 

 

5.3.1 Waveguide: Self-Aligned Stripe (SAS) 

 

Following the study of SAS DFBs in Chapter 4, the waveguide of the monolithically 

integrated MOPA design in this chapter also adopted the SAS structure to form the laser 

and SOA waveguide. Fig. 5-12 shows the simulated (2D) optical mode profile in the 

SAS DFB waveguide. The blue contours represent the optical intensity, superimposed 

upon the structure input into the software, in the region about the SAS. A 3μm wide 

SAS is formed within a 600nm n-doped InGaP optoelectronic confinement layer, with a 

7.5nm thick grating positioned 300nm (p-doped Al0.42Ga0.58As) above the 4 7.6nm 

In0.17Ga0.83As QWs active region. The simulation was aiming for a robust guided mode 

profile with a sufficiently high optical confinement factor in the QWs and a 
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confinement factor in the grating region to be ~0.0033, such that the resulting KL 

(coupling coefficient  cavity length ~ 1) for the designed length of laser section of 

550~650nm in order to minimise the effect of spatial hole burning upon the 

performance of the device. 

 

Figure 5-12: Simulation of 3μm SAS DFB laser section of the MOPA, showing a robust single-

mode in the waveguide 

 

Table 5-1 lists the detailed layer structure resulting from this design activity, with the 

indication of the 3-step growth process, as well as the thickness, material, doping 

requirement and description of each layer(s).  

As highlighted, the structure used asymmetric upper- and lower- AlGaAs cladding 

compositions (upper cladding in 2
nd

 overgrowth: Al-70%; upper cladding and lower 

cladding in planar growth: Al-42%), which was a result of the requirement of a thicker 

(100nm) in-fill GaAs layer in the 1
st
 overgrowth for a higher growth quality. This was 

discussed in detail in Chapter 4, including the re-simulation of the structure and re-

design of the 2
nd

 overgrowth by utilising the ability to tailor the Al composition to 

optimise the waveguide formed in the GaAs-AlGaAs material system.  
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Thickness(nm) Material Doping Description 

2
nd

 

Regrowth 

300 GaAs P contact layer 

1500 Al0.7Ga0.3As P upper cladding 

40 GaAs P 2
nd

 in-fill GaAs 

1
st
 

Regrowth 

20 GaAs   

600 In0.5Ga0.5P N blocking layer 

100 GaAs P 1
st
 in-fill GaAs 

Planar 

Growth 

10 GaAs P etch-capping GaAs 

7.5 In0.5Ga0.5P P grating layer 

15 GaAs P etch-stopping GaAs 

300 Al0.42Ga0.58As P upper cladding 

50 GaAs - 
active region 

4  

7.6nm In0.17Ga0.83As 

QWs 

 

spaced with GaAsP 

strain balancing layers 

 

sandwiched by GaAs 

barrier layers 

 

10 GaAs0.885P0.115 - 

7.6 In0.17Ga0.83As - 

20 GaAs0.885P0.115 - 

7.6 In0.17Ga0.83As - 

20 GaAs0.885P0.115 - 

7.6 In0.17Ga0.83As - 

20 GaAs0.885P0.115 - 

7.6 In0.17Ga0.83As - 

10 GaAs0.885P0.115 - 

50 GaAs - 

1500 Al0.42Ga0.58As N lower cladding 

500 GaAs N buffer layer 

Table 5-1: Layer information of the 3-step growth process of the wafer 

Both MOPA designs were fabricated from the same wafer, i.e. having the same layer 

structures grown by this 3-step process. The difference between the MOPA types was 

only in the geometric design of the 2 sections. 

 

5.3.2 Section Geometry: DFB and Flared SOAs 

 

In this chapter, several MOPA structures were designed in order to investigate a 

number of design parameters. However, I concentrate on 2 specific designs due to 

subsequent problems in the manufacture of the MOPAs, which unfortunately limited the 

range of variables that could be studied. Fig. 5-13 illustrates the two MOPA designs 
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investigated. The upper MOPA was designed to have a 650μm long laser section to be 

monolithically integrated with a 2000μm long straight-flared semiconductor optical 

amplifier (SOA), i.e. normal to facet.  

 

Figure 5-13: Two MOPA designs with straight and tilted SOAs 

The lower MOPA was designed to also have a 650μm long laser section, but to be 

monolithically integrated with a 2500μm long tilted-flared SOA, i.e. 7
o
-off to the facet. 

Both SOAs have a 230μm wide output facet at the end of the SOA section. A flared 

SOA was used with the aim of generating high output power [5] [6] [11] [14]-[16], 

compared to more conventional narrow width SOAs [10] [12]. Aside from this obvious 

geometrical difference, the 2 MOPA structures also differed in the electrical isolation 

method used.  

Fig. 5-14 illustrates how the 2 structures look after etching prior to the 2
nd

 

overgrowth. As illustrated in the figure, for the structure with a tilted SOA, the interface 

between the laser section and the SOA section contained a continuous SAS, formed by 

etching the InGaP layer continuously along the device. Electrical isolation was then 

provided solely by etching the GaAs contact layer between the 2 sections.  

As for the structure with a straight SOA, a 15μm wide InGaP “window” was left un-

etched between the two etched portions, forming the SAS in each section. This was 

used to create further discontinuity at the interface between the 2 sections. For this 
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monolithically integrated MOPA, the incorporation of an InGaP window in the interface 

would generate a small step of refractive index between the un-etched InGaP and the in-

fill GaAs, which serves as a low reflectivity buried facet and therefore further results in 

optical reflectivity. The purpose of this particular design was for investigation of 

whether a buried facet fabricated in the interface can improve the stability performance 

of a MOPA PIC, for which optical back-reflections from SOA facet back into the DFB 

can be de-stabilising to DFB operation (hence the requirement for an isolator in discrete 

systems, e.g. Fig. 5-2 ) 

 

Figure 5-14: Schematic diagram of interfaces with/without InGaP window before 2
nd

 

overgrowth 

Therefore, after the 2
nd

 overgrowth, the MOPA with the tilted SOA is in-filled with a 

continuous SAS waveguide, whilst a 15μm InGaP window is formed at the interface 

between the DFB and SOA in the MOPA with a straight SOA. Fig. 5-15 shows the 

schematic cross-sectional view of the completed interface, whilst highlighting the 

introduced refractive index-step between the two components. 

 

Figure 5-15: Schematic diagram of the cross-sectional view of the InGaP window showing the 

refractive-index-steps when optical wave propagating through the window from left to right   
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5.4 Device Manufacture 

 

This section introduces the manufacture process of the MOPA structure. Fig. 5-16 

shows a schematic diagram of the monolithically integrated SAS MOPA device with a 

straight-flared SOA. The cross sectional view of the DFB region illustrates the InGaP 

window and the formed GaAs/InGaP grating. 

 

Figure 5-16: Schematic diagram of the SAS MOPA design with a straight SOA section and a 

15μm wide InGaP “window” interface between the two sections  
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5.4.1 Epitaxial Growth 

 

The epitaxial structure was grown using MOVPE (metal-organic vapour phase 

epitaxy). The manufacture process was similar to that described in detail for the SAS 

DFB laser in Chapter 4. The difference here concerns the monolithic integration of an 

SOA with the SAS-DFB, and investigation of the interface between the 2 components. 

 

 Stage I: Planar Growth 

The initial planar growth started with a 500nm GaAs buffer layer grown upon an n-

doped GaAs substrate, which was mis-oriented by 3° to the (110) direction, above 

which 1500nm n-doped Al0.42Ga0.58As lower cladding layer was grown, followed by 

partially strain-balanced quantum wells (QWs) in the active region. The core was 

stacked with 4 7.6nm In0.17Ga0.83As QWs (separated by 20nm GaAs0.885P0.115 strain 

balancing layers), with 50nm GaAs barrier layers grown on its upper and lower sides. 

300nm p-doped Al0.42Ga0.58As was grown above the core prior to growth of the grating 

layer. The first order DFB grating layer, as simulated, comprised a 7.5nm thick InGaP 

layer (lattice matched to GaAs) sandwiched between 15nm and 10nm thick GaAs 

layers. 

 

 Stage II: Grating Formation – electron beam lithography / etch / 1
st
 

overgrowth 

After EBL patterning of the grating pattern, inductively coupled plasma (ICP) Argon 

dry etching and HCl/H3PO4 selective wet etching of the InGaP matrix was performed in 
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predefined areas as used previously in Chapters 3 and 4. As for the design of the grating 

periods, again I applied the 1
st
 order grating Bragg wavelength equation: B = 2ne (: 

grating period; ne: effective refractive index) with an experimentally estimated ne as 

3.35~3.36 (from Chapter 5). In order to make sure of overlap between the Bragg 

wavelength of gratings and the gain peak of the material, 3 periods of grating were 

designed: 148nm (~994nm), 149nm (~1000nm) and 150nm (~1006nm). Fig. 5-17 

shows a schematic diagram of a repeating unit of the patterned sample surface. As 

illustrated, the surface size of the grating area was 50650μm. The length corresponds 

to the designed laser cavity length as the master oscillator (MO), and the width of 50μm 

provided ample tolerance of alignment for the later fabrication of a 3μm wide SAS. The 

areas on the right-hand-side of each grating pattern were left un-patterned such that they 

could be used for definition of the integrated power amplifier (PA) during subsequent 

pattern/growth. 

 

Figure 5-17: Schematic diagram of the patterned grating area of the sample surface, with a size 

of 50μm wide and 650μm long, and the spared space for the integrated SOA 

The etched sample was washed in 1% diluted HF immediately prior to loading back 

into the MOVPE reactor for the 1
st
 overgrowth. 100nm p-doped GaAs was overgrown 

to infill and planarise the index-coupled DFB grating, followed by a 600nm n-doped 

InGaP (lattice-matched to GaAs) optoelectronic confinement layer, and 20nm of GaAs 

to complete this step of the process.  
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 Stage III: Self-Aligned Stripe Formation – photolithography / etch / 

2
nd

 overgrowth 

An SAS MOPA pattern was defined using standard UV optical lithography, aligned 

to the grating regions. The pattern was transferred to the sample surface by first dry 

etching through the top GaAs layer using a SiCl4/Ar based ICP process and then 

HCl/H3PO4 wet etching the remaining InGaP down to the lower GaAs etch stop layer. 

Fig. 5-18 illustrates the SAS MOPA pattern where the n-doped InGaP current blocking 

layer was etched. Two SOA designs were produced. The MOPA structures on the left-

hand-side are designed with straight-flared (i.e. normal facet) SOAs, those on the right-

hand-side are designed with tilted-flared (i.e. based on a ~7
o
-off the normal to facet 

termination) SOAs. For both structures, the laser sections are composed of 3μm650μm 

stripes aligned to the centre of the 50μm650μm grating region.  

 

Figure 5-18: MOPA SAS pattern: straight-flared SOA design, left-hand-side, and tilted-flared 

SOA design, right-hand-side. The dotted stripes indicate the 50μm650μm grating region 

formed (as in Fig. 5-17) underneath the 3μm650μm SAS pattern 

The sample was again washed in 1% diluted HF and loaded back to MOVPE reactor 

immediately for the 2
nd

 overgrowth. 40nm p-doped GaAs was overgrown to form the 

buried hetero-structure, followed by 1500nm p-doped Al0.7Ga0.3As and a 300nm GaAs 

contact layer to complete the structure.   
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5.4.2 Device Fabrication 

 

The 2
nd

 overgrowth did not proceed as planned. As shown in Fig. 5-19, the surface 

was highly defective, as a result of the growth temperature having not been optimised 

prior to the overgrowth. Despite the significant overall defectiveness of the regrown 

layers, the SAS of the DFB laser (MO) had a width of only 3μm, which allowed us to 

select MOPAs with non-defective MO sections, since the stripe could pass through 

higher quality material between defects. For example, in the image the 2
nd

 and 3
rd

 

devices from the left-hand-side column did not contain obvious defects within the laser 

stripe. However, defects are evident in almost every SOA, contributing non-radiative 

recombination and scattering centres in the waveguide of fabricated devices, and 

affecting the electrical performance of devices.  

In spite of this, considering the large surface size of the SOA, such that for SOAs 

with fewer defects, it might still be possible for the devices to work to some extent, I 

decided to proceed with the fabrication process. 

 

Figure 5-19: Microscope image of the sample after 2
nd

 overgrowth, showing a defect density 

estimated as ~5700cm
-1

, together with zoomed-in images taken at the DFB-SOA interfaces 

with/without InGaP window 
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The device fabrication process was similar to that of the SAS DFB, as described in 

Chapter 4. The fabrication process consisted of 6 steps, as annotated by arrows in Fig. 

5-20 (a). Compared to the fabrication process described in Chapter 4, the only 

additional step was the incorporation of step 5, an isolation-etching between the MO/PA 

components. This step aimed to electrically isolate the DFB and SOA sections, such that 

they can be pumped independently, which was achieved by etching through the top 

GaAs contact layer to provide a resistance > 1k between contacts, whilst terminating 

at the AlGaAs interface, so as not to influence the guided optical mode. 

 
(a) 

 
(b) 

Figure 5-20: (a) Device fabrication process of SAS MOPA with straight-flared SOA and (b) 

electrical isolation etch between sections 



 

 

 241 

As shown in Fig. 5-20 (b), this step started with photolithography to cover all but the 

interface areas. The wet etchant 4:1 Citric acid / H2O2, which selectively etches GaAs 

(~300nm/min) over AlGaAs (~3nm/min), was applied to the sample for 90sec to 

entirely etch the 300nm GaAs layer in the interface areas. This was verified by checking 

the resistance between adjacent sections.  

After the 6th step, substrate thinning and n-type-ohmic back contact formation, 

devices were cleaved and sent to Helia Photonics for both facets to be coated with 

Ti3O5/SiO2 anti-reflective (AR) coating (specification: reflectivity <0.1% at 1050nm, 

25nm bandwidth). The central wavelength of 1050nm, rather than 1000nm, was a 

compromise made among this batch of devices and other devices that were sent together 

for coating. Therefore, whilst not optimised for <0.1% for these devices, one might 

expect a slightly higher reflectivity. Fig. 5-21 presents the images taken under an optical 

microscope of the fabricated SAS MOPA devices. The high defect density in the 2
nd

 

overgrown layer is clearly visible. 

-  

Figure 5-21: Images of fabricated devices taken under optical microscope 
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5.5 Device Characterisation 

 

The measurement of MOPAs was conducted by pumping the DFB laser sections 

with a CW current source and pumping the SOA sections with a pulsed current source 

with 5μs pulse width and 10% duty cycle. SOA sections were unable to be driven 

continuously due to overheating resulting from the large current required to achieve 

gain. Samples were mounted epi-side up on AlO2 ceramic tiles for characterisation, and 

therefore heat-sinking was far from ideal. In total, six representative devices were 

measured, as listed in Table 5-2, covering all the 3 different DFB grating periods for 2 

different SOA geometries: 

Device 1 2 3 4 5 6 

SOA Geometry Straight Straight Straight Tilted Tilted Tilted 

Grating Period 

(nm) 
148 149 150 148 149 150 

Table 5-2: Information of six representative devices 

 

5.5.1 DFB Laser Sections Characterisation 

 

First of all, the DFB laser sections of the MOPA devices were characterised by 

measuring L-I-V and spectral properties from the rear facets, i.e. the laser back facet, 

while leaving the SOA section un-pumped, where it would effectively behave as an 

absorber. Fig. 5-22 (a) and (b) plot the L-I-V measurements for the straight-SOA 

MOPA and tilted-SOA devices respectively, where both light output power and applied 

voltage are plotted as a function of injected current for all the 6 representative devices. 

For the straight MOPA devices, the laser sections with 148nm and 149nm period 

gratings demonstrated a threshold current of ~80mA, whilst ~105mA for that of the 



 

 

 243 

laser section with a 150nm period grating. For the tilted SOA devices, the laser sections 

with 148nm and 149nm period gratings demonstrated a threshold current of ~85mA, 

whilst ~95mA for that of the laser section with a 150nm period grating. As can be seen, 

the plots showed a similar amount (~7mW) of light output power at 150mA pumping 

for both structures, commensurate with near-identical DFB-SAS laser sections of 

sufficiently high quality in each.  
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(c) (d) 

Figure 5-22: L-I-V measurement of laser sections of MOPA design with (a) straight SOA and 

(b) tilted SOA; Spectral measurement of laser sections of MOPA design with (c) straight SOA 

and (d) tilted SOA 

Fig. 5-22 (c) and (d) plots the EL spectrum of devices with 148nm, 149nm and 

150nm grating periods for the two MOPA structures. As can be seen, all the devices 

demonstrated lasing via a single mode at 120mA CW current at a heat-sink temperature 

of 20
o
C with reasonably large SMSR (>20dB). For both device types, the laser sections 

with 148nm, 149nm and 150nm grating periods demonstrated lasing wavelengths of 
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~995nm, ~1001nm and 1007nm respectively, which further demonstrates a strong 

correlation between the behaviour of the two laser sections. For both device types, a 

temperature tunability of ~0.09nm/
o
C was measured. 

 Discussion 

For both structures, the laser with grating period of 150nm had a comparatively 

higher threshold current. The measured room-temperature lasing wavelength for the 

grating period of 150nm was ~1007nm and the centre of the spontaneous emission 

spectrum (approximately indicating the centre of the gain spectrum) for such material 

with the measurement condition was measured to be 995~1000nm, as shown in Fig. 5-

22 (c), the red and blue spectra, and Fig. 5-22 (d), the black spectrum. Therefore, 

compared to devices with 148nm (lasing at ~995nm) and 149nm (lasing at ~1001nm) 

grating, the devices with a 150nm grating had the largest detuning between the gain 

peak and the Bragg wavelength, hence these devices required more current injection to 

reach the lasing condition. The longitudinal mode spacing of modes positioned away 

from the laser peak in the spectra was measured, i.e. at ~996nm on the blue spectrum in 

Fig. 5-22 (c) and at ~1000nm in the black spectrum in Fig. 5-22 (d). For both the 

straight SOA and the tilted SOA, MOPAs correspond to Fabry–Pérot modes from the 

laser cavity length of ~650μm. Whilst this could be expected from devices with a 

potentially reflective “window” section between DFB laser and SOA, its appearance in 

devices with no window was not expected. For the MOPAs with a straight SOA, the 

interfaces between lasers and SOAs were formed by leaving InGaP “windows”, as 

described in Section 5.3.2, such that the light generated in the laser section would 

experience refractive-index-steps, as shown in Fig. 5-15, within the buried stripe 

geometry when propagating into the SOA section. This discontinuity in the SAS 

contributed to the formation of the Fabry–Pérot oscillation observed in the spectrum in 
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Fig. 5-22 (c). For the MOPAs with tilted SOA, the interfaces between lasers and SOAs 

were fabricated with a continuous SAS (i.e. without InGaP windows), as described in 

Section 5.3.2. Therefore the light would not experience such reflections within the 

buried stripe geometry when propagating from the laser sections into the SOA sections. 

However, this may result from reflection at the interface between pumped and un-

pumped sections, for which the resulting refractive index change would result in a 

reflective interface. 

 

5.5.2 SOA Sections Characterisation 

 

 Four-Parameter Characterisation of SOA 

The performance and quality of a stand-alone SOA is usually characterised by 4 

parameters [21]: gain, bandwidth, saturation output power and noise figure. Fig. 5-23 

illustrates the definition and measurement of these parameters by diagramming the 

corresponding input and the expected output for each parameter: (a) Gain is the most 

basic property of an SOA, which is calculated directly through dividing the output 

power by the input power and transferring into logarithmic unit (dB). This parameter 

numerically indicates how much the input light is amplified. (b) In an SOA, the 

transitions only take place between available energy levels in a given epitaxial active 

region, which results in a limited wavelength for operation and its gain varies across the 

spectral range. The second parameter, bandwidth, specifies an SOA’s operating range. 

This is calculated as the wavelength range bound by the -3dB of the maximum gain. (c) 

At a given current injection level, as the input power increases, when the density of the free 

carriers becomes insufficient to maintain the spontaneous emission rate, the gain decreases. 
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After 3dB reduction from its maximum gain, the SOA reaches its saturation gain and the 

corresponding output power is its saturation power. (d) The fourth parameter describes the 

quality of an SOA with respect to its ability to maintain the signal to noise ratio (SNR) of 

the input light. The noise figure is defined as the ratio of the input SNR to the output SNR, 

calculated in dB. 

 Input Output Parameters 

(a) 

  

 

(b) 

   

(c) 

   

(d) 

  

 

Figure 5-23: Evaluation of a stand-alone SOA using the four parameters suggested by Mukai 

and Yamamoto [21]: (a) gain, (b) bandwidth, (c) saturation power and (d) noise figure 

However, this set of parameters is unable to be extracted from a monolithically 

integrated SOA as designed and fabricated in the MOPA structures in this chapter, 

where the spontaneous emission generated in the SOA section can propagate into the 

DFB laser section to interact with the grating structure. Therefore the output power is 
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not solely contributed by the amplification of the input power, but also by the portion 

from such interaction, which makes it impossible to determine the gain, saturation gain 

and saturation power. Furthermore, the integrated SOA section has the same epitaxial 

structure as the DFB section. Given that the Bragg wavelength of the DFB is designed 

to overlap with the gain spectrum of the laser section, which intrinsically ensures the 

overlap between the gain spectrum of the SOA and the input DFB mode. Therefore the 

study of the SOA bandwidth becomes unnecessary. As to the fourth parameter, the 

SNRin can be calculated from the spectrum recorded from the DFB rear facet with the 

DFB switched on and the SOA un-pumped, whilst the SNRout can then be calculated 

from the spectrum recorded from the SOA front facet after turning on the SOA. 

However, the performance of this batch of devices is influenced by the non-optimum 

AR coating, resulting in significant loss of spectral purity observed from the output 

spectra, making calculation of the noise figure redundant. 

 

In this chapter, I employed a straightforward method to numerically analyse the 

performance of the amplification. With this method, the portion of amplified DFB 

output power is estimated using the product of the total measured output power and a 

ratio of the integral computation of the range of the peak to the whole range of the 

recorded spectrum. The resultant power is then compared to that measured from the 

DFB rear facet with the DFB section operating alone. The concept of this method 

regards the MOPA device as one integrated device rather than seeing the two sections 

individually, such that comparison is made between performance of the MOPA and 

performance of a stand-alone DFB laser under the same pumping conditions.  

Therefore, this section investigates the L-I and emission spectrum of the fabricated 

SOA sections operating with laser sections un-pumped. 



 

 

 248 

 Characterisation of SOA Sections of Representative Devices 

As described in Section 5.4.2, the poor quality 2
nd

 overgrowth is expected to 

significantly influence the quality of the SOA component. In order to test the feasibility 

of their use, a number of SOAs were screened for their behaviour with DFB sections 

un-pumped. The CW L-I-V measurement on several devices showed that the SOA 

output power begins to roll-over before super-luminescence is observed, which suggests 

it would not be possible to drive the SOA section for optical amplification using a CW 

current source. This may be due to severe self-heating in the imperfect waveguide while 

operating with a ~500mA CW current injection. Hence, in order to reduce the self-

heating and drive the devices in amplification, a pulsed current source was used for all 

the following measurements.  

Fig. 5-24 compared the L-I-V measurement of a representative tilted SOA. The 

results showed that, with CW pumping, the slope efficiency started to decrease (roll-

over) from ~450mA, whilst with pulsed current pumping (pulse width: 5μs; duty cycle: 

10%), the SOA demonstrated super-luminescent operation from ~400mA.  
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Figure 5-24: L-I-V measurement of SOA section using pulsed 5μs-10% (red triangle) and CW 

(blue square) current source 
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Effort was made to enhance the substrate heat-sinking by placing the device directly 

upon the copper heat-sink which was cooled to 10
o
C using a thermoelectric cooler. The 

device still demonstrated roll-over at a current of ~600mA. The use of epi-side-down 

mounting could be expected to enable CW pumping, but this is not straightforward for 

integrated devices, with multiple contacts and has not been attempted here. 

Fig. 5-25 summarises the LIV and spectral measurements recorded from SOA 

sections on both MOPA structures with different grating periods. The DFB sections 

were left un-pumped. In the figure, the left-hand-side column presents the 

measurements of the 3 MOPAs with straight SOAs and the right-hand-side presents the 

measurements of the 3 MOPA with tilted SOAs, in which Fig. 5-25 (a) and (b) are the 

L-I measurements under room temperature using a pulsed current source (5μs-10%), 

whilst (c) to (h) present the recorded emission spectra for each device with 500mA, 

1000mA and 1500mA pumping.  

 

The L-I measurements in Fig. 5-25 (a) and (b) showed that the SOA sections both 

operated in amplification with pulsed current pumping, as indicated by the super-linear 

increase in output power. The tilted SOAs operated with higher output power 

(normalised to CW) compared to the straight SOAs. 

The reason for the lower power recorded from the straight SOAs is due to their 

shorter cavity length, as shown in Fig. 5-18, where for tilted SOAs the 0.5mm 

waveguide section between the laser component and the flared SOA section formed a 

longer amplifier, resulting in higher power according to the exponential relation 

between power, P, and gain, g, and length, l: P  e
gL

. 
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Figure 5-25: L-I and spectral measurements recorded from SOA sections on both MOPA 

structures with DFB sections left un-pumped 
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As shown in Fig. 5-25 (c) to (h), at 500-750mA pumping current, the amplified 

spontaneous emission (or super-luminescence) ASE started to establish in the SOA. Fig. 

5-26 plots zoomed-in versions of the spectra shown in Fig. 5-25 (e) and (f) with 750mA 

pumping over a wavelength range of 2nm, centred about the peaks of the operating 

spontaneous emission, from which the mode spacing of both structures can be 

measured.  
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Figure 5-26: Zoomed-in spectrum of 750mA SOA pumping shown in Fig. 5-25 (e) and (f) 

As highlighted in Fig. 5-25, the measurement reveals that in the straight SOA (with 

InGaP window), the resonance was established within the SOA only (~2mm), while in 

the tilted SOA (continuous SAS stripe), the resonance was mainly established though 

the whole device (~2.5mm SOA plus 0.65mm DFB), but subject also to the occurrence 

of beating between 2 back reflections. The beating observed in the spectrum could be a 

result of the superposition of two resonances of waves established from the SOA facet 

to the interface (2.5mm) and the DFB facet (3.15mm) respectively, with the latter one 

dominating the spectrum.  

 Discussion 

As described in Section 5.5.1, the reflection at the interface without an InGaP 

window (tilted SOA) was provided by the refractive index steps at the interface between 

pumped and un-pumped sections. With 1000mA pumping current, Fig. 5-25 (c) to (h) 
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exhibit additional peaks, situated at wavelengths corresponding to the Bragg 

wavelengths of the DFB gratings in the adjacent DFB laser sections. This suggests that, 

with only the SOA sections pumped, the spontaneous emission generated in the SOA 

sections could propagate into the adjacent DFB laser sections and interact with the 

grating structure to back-reflect at the Bragg wavelength (B). This phenomenon was 

found to be even more significant when the B of the buried grating more closely 

matches the ASE peak of the SOA, i.e. for 149nm grating period devices, where B ~ 

1000nm, the phenomenon becomes more apparent in the EL spectrum, as observed in 

Fig. 5-25 (e) and (f). This is suggestive of either optical pumping of the DFB 

component by the SOA section, or back-reflection from the grating at the Bragg 

wavelength. 

 

5.5.3 Characterisation of MOPAs with Straight SOAs 

 

In this section, MOPAs with straight SOAs are characterised as fully integrated 

devices, with electrical pumping of both the DFB laser and the SOA sections 

simultaneously.  

Fig. 5-27 summarises the L-I and spectral measurement of the 3 representative 

straight SOA MOPA devices. In the figure, the left-hand-side column plots the L-I 

characteristics measured from 0mA to 1500mA with SOA section pulsed using 5μs 

pulse width and 10% duty cycle with the laser switched on at 120mA CW (red line) and 

off (black lines). The power plotted here is normalised to CW. The right-hand-side 

column plots the EL spectra recorded from the output facet of the SOA at different SOA 

pumping currents (0mA/500mA/1000mA) with the laser switched on (at 120mA CW). 
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Figure 5-27: Light output power measurements from SOA facets as a function of pumping 

current (pulsed 5μs-10%) for SOA sections with lasers off and on (120mA CW pumping) and 

spectrum measurements from SOA facets with lasers on (120mA CW pumping) and SOA pulsed 

pumped (0/500/1000mA) for (a)/(b) Device-1, (c)/(d) Device-2 and (e)/(f) Device-3 

The results of both L-I and spectral measurements demonstrate an amplification of 

the optical wave by turning on the SOA. With the SOA section un-pumped (0mA), the 

whole SOA section will act as an absorber. When light generated in the DFB section 

propagates through the cavity, a large portion of the power is absorbed. For an output 

power of 6.4~6.9mW measured from the laser back facet, only 0.09~0.14mW power 
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can be measured from the SOA facet when the SOA is left electrically un-pumped. This 

can be also seen from the black spectra in Fig. 5-27 (b), (d) and (f), where only very 

weak DFB peaks are recorded.  

By turning on the SOA section with a pumping current of 500mA, the optical wave 

in all 3 devices experience amplification, as indicated by comparing the red and black 

spectra. Together with the increase in intensity, all 3 red spectra show an obvious red-

shift compared to the black ones. However, an undesirable loss of spectral purity is also 

observed, which becomes even more severe when pumping the SOA sections with 

1000mA current injection, as observed from the blue spectra. The decrease in intensity 

from red spectrum (SOA 500mA) to black spectrum (SOA 1000mA) for the device with 

148nm period grating, (b), is due to a larger detuning between the ASE centre and the 

DFB wavelength. Furthermore, due to the non-optimal AR coating for this batch of 

samples, the suppression of ASE ripples in the SOA was not optimised, resulting in a 

large ASE ripple, which was measured as lager as ~2.4dBm from the red spectra from 

Fig. 5-27 (b) and (f) where the injected current of SOA sections are 500mA.  

To assist with the analysis, Fig. 5-28 plots the measured DFB peak wavelength and 

intensity extracted from Fig. 5-27 (b), (d) and (f) as a function of current supplied to the 

SOA. As shown in Fig. 5-27 (b), (d) and (f) and Fig. 5-28 (a), a red shift of the lasing 

peak is observed for all 3 period devices with an increase of the SOA pumping current. 

Although the SOA was pumped with a pulsed current source, a duty cycle of 10% for 

hundreds of mAs is still a sufficient pumping current to induce self-heating in the SOA 

sections which due to its large size and proximity to the smaller DFB section, also heats 

up the DFB laser. A wavelength shift (from 0mA to 1000mA in the SOA) was 

measured for each of the 3 devices as 0.715nm, 0.855nm and 1.180nm respectively, 

corresponding to a temperature increase of approximately 7~11
o
C in the DFB sections, 
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whilst the ASE peak shifts were estimated to be ~5nm in the same current range, 

corresponding to a temperature rise of ~10
o
C in the SOAs. 
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Figure 5-28: (a) Lasing peak wavelength shift and (b) peak intensity as function of SOA 

pumping current 

Fig. 5-28 (b) shows that the optical waves in devices with 148nm and 150nm 

gratings increase by ~10dBm and the wave in the device with a 149nm grating increases 

by ~25dBm. This is because the grating period of 149nm corresponds to a DFB lasing 

wavelength of ~1000nm, which has the smallest amount of detuning from the centre of 

the gain spectrum of the SOA and can therefore be expected to undergo greater 

amplification compared to the detuned DFBs.  

By increasing the SOA current from 500mA to 1000mA, the EL spectrum of all the 3 

representative devices, as in Fig. 5-27 (b), (d) and (f), show a significant breakdown of 

the spectral purity of the highest intensity DFB peak. Also, for the representative device 

with 148nm grating (~994nm DFB lasing), shown in Fig. 5-27 (b), a significant increase 

in detuning is observed between the SOA gain peak and the DFB peak. This is a result 

of a red shift of the SOA gain peak with respect to the DFB peak. The result of this 

detuning is that the DFB lasing peak was not amplified as the available gain was 
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reduced by this increased detuning (observed in Fig. 5-28 (b) as the falling blue line at 

1000mA). This behaviour could explain the lower output power and reduced efficiency 

observed in Fig. 5-27 (a) compared to Fig. 5-27 (c) and (e). Although the device was 

pumped using a pulsed current source with a duty cycle of 10%, the self-heating effect 

was still sufficiently severe to invoke a significant red-shift in the SOA section. 

 

By studying the zoomed-in spectral window about the peak wavelength, we can 

investigate the origin of this single-mode-breakdown. Fig. 5-29 plots the spectrum 

shown in Fig. 5-27 (f) at a reduced range of 1nm around the peak.  

1006.5 1007.0 1007.5

-60

-56

-52

-48

-44
Straight SOA MOPA 150nm / Laser on

Room Temperature 

SOA 1000mA pulsed (5s-10%)

 ~ 0.052nm =>  L ~ 2.65mm 

In
te

n
s
it
y
 (

d
B

m
)

Wavelength (nm)  

Figure 5-29: Zoomed-in spectrum of 1000mA SOA pumping shown in Fig. 5-27 (f) 

In this figure, the DFB mode is no longer obvious as a single lasing mode, and is 

replaced by a highly modulated envelope of modes, with a mode spacing of ~0.51cm
-1

 

(calculated from the measured Δ~0.052nm at 1007nm) corresponding to a cavity 

length of ~2.65mm. This suggests that, despite the reflection provided by the 15μm 

InGaP window at the interface, the resonance is established over the whole cavity and 

overwhelms any resonance established within the SOA section alone, as shown in Fig. 

5-26 (a) (Section 5.5.2). The spectrum in Fig. 5-29 appears to comprise the 
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superposition of two resonances; one from the SOA facet to interface (2mm) and the 

other from the SOA facet to the DFB facet (end-to-end, 2.65mm) respectively, with the 

latter dominating. These dominant end-to-end resonances may have been manifested as 

a result of the non-optimal AR coating and larger than desired facet reflectivity.  

Since the role of the SOA component is to amplify the light generated by the DFB 

component, it is important to determine the percentage of the total measured output 

power from the SOA facet that is contributed by the amplified DFB mode. The 

measured output power from the SOA facet (normalised to CW from pulsed duty cycle 

of 10%) consists of both the DFB mode (generated in the DFB section and amplified in 

the SOA section) as well as the ASE generated in the SOA section. In order to estimate 

the ratio of the amplified DFB power to the total measured power, I employed a simple 

and straightforward method: the spectrum is firstly converted from dBm to Watt, by 

using the conversion equation blow: 

P(mW) = 1mW10
(P(dBm)/10)

 

Then, by running integral computations over the peak range (x,y) and the overall 

spectrum range (m,n) respectively, the ratio of the amplified DFB mode within the 

overall spectrum can be estimated: 

𝑅𝑎𝑡𝑖𝑜(𝐷𝐹𝐵)  
∫ 𝑃(𝜆)𝑑𝜆

y

x

∫ 𝑃(𝜆)𝑑𝜆
n

m

 

As seen in Fig. 5-26 (b), the spectrum recorded for device-1 (148nm) exhibits a 

significant effect caused by detuning between the gain peak and the Bragg wavelength, 

resulting in a very similar peak power for the narrow DFB mode and the broad spectrum 

of the ASE. One can expect device-1 to be therefore exhibit an extremely low DFB to 

total output power ratio. Therefore, here I estimate the ratios for device-2 and device-3 
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with ISOA of 500mA pulsed current injection. At this current, the device still operates via 

a single mode, with breakdown of this behaviour when ISOA is increased to 1000mA). 

Fig. 5-30 plots the EL spectra converted into the unit of Watts, from which a ratio can 

be estimated: 

𝑅𝑎𝑡𝑖𝑜(𝐷𝑒𝑣𝑖𝑐𝑒2; 𝐼𝐷𝐹𝐵: 120𝑚𝐴; 𝐼𝑆𝑂𝐴: 500𝑚𝐴)  
∫ 𝑃(𝜆)𝑑𝜆

1000.31

999.96

∫ 𝑃(𝜆)𝑑𝜆
1007

997

  73% 

𝑅𝑎𝑡𝑖𝑜(𝐷𝑒𝑣𝑖𝑐𝑒3; 𝐼𝐷𝐹𝐵: 120𝑚𝐴; 𝐼𝑆𝑂𝐴: 500𝑚𝐴)  
∫ 𝑃(𝜆)𝑑𝜆
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Figure 5-30: Conversion of the “SOA 500mA” (red curve) of (a) Fig. 5-26 (d) and (b) Fig. 5-26 

(f) from dBm into nW 

There is a significant difference between the ratios estimated from the 2 spectra. The 

reason lies in the larger detuning between the Bragg wavelength and the gain peak in 

device-3 compared to that in device-2, which results in less gain at the DFB lasing 

wavelength.  

For the Device 2, by applying the ratio obtained (73%) to the power measured at 

500mA (2.12mW) as plotted in Fig. 5-27 (c), an output DFB power of 1.55mW is 

estimated for this operating condition (IDFB = 120mA, ISOA = 500mA). Compared to the 

laser facet output power measured as 5.11mW, as plotted in Fig. 5-22 (a), it reveals that 

the power is not amplified while maintaining the single-mode spectral profile. When 
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applying the same calculation process above to the spectrum obtained with ISOA 

=1000mA, as plotted in Fig. 5-27 (d), a ratio of 63% is obtained by performing 

integration over the range composed of multiple and broadened peaks from 1000.34nm 

to 1001.26nm as an envelope of the DFB power portion. An output DFB power of over 

20.4mW was calculated, which is approximately 4 times that measured from DFB facet. 

One can expect that if perfectly AR coated, the effect of ASE ripples upon the DFB 

lasing mode could be significantly reduced and that the device can achieve a high output 

power with a much purer single-mode spectral profile. 

 

5.5.4 Characterisation of MOPAs with Tilted SOAs 

 

In this section, MOPAs with tilted SOAs are characterised as fully integrated 

devices, with electrical pumping of both the DFB laser and the SOA section 

simultaneously.  

Fig. 5-31 summarises the L-I and spectral measurement of the 3 representative tilted 

SOA MOPA devices. In the figure, the left-hand-side column plots the L-I 

characteristics measured from 0mA to 1250mA with SOA sections pulsed using 5μs 

pulse width and 10% duty cycle with the laser switched either on or off. Again, the 

power plotted is normalised to CW. The right-hand-side column plots the EL spectrum 

recorded from the output facet at different SOA pumping currents 

(0mA/500mA/1000mA) with the lasers switched on. 

The results of both L-I and spectral measurement of the SOA demonstrate an 

amplification of the optical wave by turning on the SOA. 
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Figure 5-31: Light output power measurements from SOA facets as a function of pumping 

current (pulsed 5μs-10%) for SOA sections with lasers off and on (CW pumping) and spectrum 

measurements from SOA facets with lasers on (CW pumping) and SOA pulsed pumped (0/500 

/1000mA) for (a)/(b) Device-4, (c)/(d) Device-5 and (e)/(f) Device-6 

Again, to assist with the analysis, Fig. 5-32 plots the measured DFB peak wavelength 

and intensity extracted from Fig. 5-31 (b), (d) and (f). As shown in Fig. 5-31 (b), (d) and 

(f) and Fig. 5-32 (a), a red shift of the lasing peak was observed for Devices 4-6 with 

increasing SOA pumping current. This was also observed for Devices 1-3 in Section 

5.5.3, where it was attributed to self-heating resulting from a large SOA section. 
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Figure 5-32: (a) Lasing peak wavelength shift and (b) peak intensity as function of SOA 

pumping current 

A wavelength shift from 0mA to 1000mA was measured for each of the 3 devices as 

0.600nm, 0.544nm and 0.400nm respectively, corresponding to a temperature increase 

of approximately 4~7
o
C in the DFB sections. Compared to the estimated temperature 

increase of 8~13
o
C in Devices 1-3, the reduced shift in these devices could be a result of 

the different geometry of the tilted SOA design, which incorporated a 0.5mm long 

narrow stripe before the tapered portion of the structure, which has the effect of better 

separating the laser section from the major source of self-heating in the tapered SOA. 

Fig. 5-32 (b) plots the intensity of the DFB peak as a function of SOA injected current. 

The device with a 149nm grating period has lasing wavelength ~1000nm and therefore 

exhibits the least detuning from ASE peak. This device exhibits the highest increase of 

~24dBm over the ISOA range from 0mA to 1000mA. This relationship among the 3 

periods was similar to that demonstrated for Devices 1-3. Fig. 5-33 plots the spectrum 

shown in Fig. 5-31 (d) over a smaller range of 1nm about the DFB peak. The measured 

mode spacing (~0.04nm) indicates that the resonance of the wave is established in the 

entire cavity (3.15mm), which is in agreement with the measurement of tilted SOAs 

with the laser section turned off (section 5.5.2). In the figure, the modulation of ASE 
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peaks on the DFB peaks are much less pronounced compared to those observed in Fig. 

3-29, which corresponds to a better performance of the SOAs with respect to 

maintaining the spectral profile of the input DFB lasing mode. 
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Figure 5-33: Zoomed-in spectrum of tilted facet MOPA output with 1000mA SOA pumping 

shown in Fig. 5-31 (d) 

In order to further investigate the MOPA operation of the MOPA design, Device 5 

was investigated further to study the characteristics of the integrated structure. 

 

 Further Investigation of Device 5 (149nm Grating with Tilted SOA) 

 Power Amplification 

In order to characterise the effect of laser operating power upon the output power of 

the MOPA, Fig. 5-34 (a) plots the LI measurement from the SOA facet with different 

pumping currents applied to the laser section from 0 to 180mA. The figure shows an 

increase in the slope efficiency with increasing laser current injection. To assist in 

analysis, Fig. 5-34 (b) plots the output power obtained at ISOA = 1240mA as a function 

of IDFB, showing that the device output power tends to saturate when the IDFB increases 

to ~160mA. 
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Figure 5-34: (a) Output power measured from SOA facet as a function of SOA pumping current 

(pulsed 5μs-10%) with different laser pumping current (CW); (b) the output power obtained at 

ISOA = 1240mA as a function of IDFB; and (c) the output power increase extracted at current step 

80-100mA, 100-120mA and 120-140mA measured ( ) from laser facet with SOA switched off 

and ( ) from SOA facet with SOA 1000mA (pulsed 5μs-10%) 

For the L-I measurement of the MOPA performance, one should keep in mind that 

the amplified DFB mode only comprises a portion of the total collected output power, 

as discussed in Section 5.5.3. However in this measurement the SOA is maintained at a 

fixed current injection whilst increasing the laser current injection, where we can 

assume an increase in the measured output power will represent an increase in the 

power of the amplified DFB peak.  

Fig. 5-34 (c) compares the increase in power resulting from an increase of laser 

pumping current measured from the laser facet ( ) when the laser is pumped only for 

laser characterisation and from the SOA facet ( ) when the device is operated as a 

MOPA with the SOA pumped with 1240mA (pulsed 5μs-10%). For the laser section 

operating alone, a slope efficiency of ~0.1W/A was measured. After being amplified 

through the SOA operating with 1200mA, the slope efficiency increased to ~0.5W/A. 
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 Portion of Amplified DFB Mode 

The ratio of the amplified DFB mode in the broad spectrum can be estimated using 

the method described in Section 5.5.3. Fig. 5-35 (a) shows the spectrum recorded when 

the laser section was operating with 200mA (CW) injection, whilst the SOA section was 

operating with 1000mA (pulsed: 5μs-10%) injection at a controlled substrate 

temperature of 15
o
C. Fig. 5-35 (b) plots the spectrum on a linear scale (i.e. dBm 

converted into Watt). 
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Figure 5-35: Conversion from dBm to Watt of ab example spectrum recorded with the laser 

section operating with 200mA (CW) injection and the SOA section operating with 1000mA 

(pulsed: 5μs-10%) at a controlled substrate temperature of 15
o
C 

Then, by running integral computation over the peak range and the overall spectral 

range respectively, the ratio of the amplified DFB mode within the overall spectrum can 

be estimated for this device under this pumping condition: 

𝑅𝑎𝑡𝑖𝑜(𝐷𝑒𝑣𝑖𝑐𝑒5; 𝐼𝐷𝐹𝐵: 200𝑚𝐴; 𝐼𝑆𝑂𝐴: 1000𝑚𝐴) 
∫ 𝑃(𝜆)𝑑𝜆

1001.02

1000.76

∫ 𝑃(𝜆)𝑑𝜆
1010

990

  72% 

From Fig. 5-34 (a), it can be estimated that the DFB output power at this operating 

condition is approximately 70mW, which is roughly 7 times higher than can be 

approximated from the Fig. 5-22 (b). 
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 Temperature Tunability 

In order to investigate whether an increased operating temperature could contribute 

to the modulation of the spectral profile of the amplified DFB peak, the MOPAs were 

measured as a function of temperature. The DFB laser spectrum was recorded at 20
o
C, 

25
o
C and 30

o
C, as shown in Fig. 5-36 (a), and exhibits typical wavelength tuning of 

0.9nm over this 10
o
C substrate temperature increase.  

The spectrum recorded from the laser facet demonstrated DFB single-mode lasing 

operation over this temperature range. Therefore, for the observed wavelength shift of 

only 0.544nm that was measured for this device operating with SOA pumped from 0 at 

1000mA, the increase in temperature of the laser cavity (due to SOA self-heating), 

equivalent to ~5
o
C, cannot explain the modulation observed. 
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Figure 5-36: (a) Spectrum recorded from laser facet with SOA off and laser section on (140mA 

CW) under different substrate temperature; (b) Spectrum measured from SOA facet as a 

function of laser section pumping current (CW) with SOA 1000mA pulsed pumped (5μs-10%) 

 

  



 

 

 266 

 Spectral Profile with Increasing IDFB 

The influence of the laser output power on the MOPA’s amplified spectral profile 

was also investigated. Fig. 5-36 (b) plots the spectrum recorded from the SOA side of 

the MOPA as a function of the current injected into the laser with the SOA switched on 

(operated at 1000mA, pulsed 5μs-10% duty cycle) with increasing the laser pumping 

current. This shows that, with increasing the current injected into the laser, the SMSR 

and spectral form of the amplified DFB mode profile improves. 

That is, the appearance of a well-defined, dominant single peak in the form of a 

typical DFB spectral profile, such as that exhibited in Fig. 5-36 (a). For the highest 

current plot (200mA) in Fig. 5-36 (b), the side-modes on the right-hand-side of the DFB 

lasing peak could already be identified, which was not the case at lower currents, 

although the SMSR remains strong.  

 

Fig. 5-37 plots these spectral side-modes on a reduced scale for a range of laser 

injection currents from 100 to 200mA. The spectra demonstrate that when the DFB 

laser is operated at lower drive currents (100-140mA), the ASE ripples overwhelm the 

DFB spectral profile, such that the DFB side modes are not resolvable in the ASE 

spectrum. With more injected current (160-200mA), the spectrum appears to superpose 

DFB laser and SOA F-P modes, such that, the DFB spectral profile can be observed 

within the combined spectrum. 

This is clearer in Fig. 5-38, which plots the emission spectrum of the MOPA, 

recorded from the SOA output facet at 200mA laser pumping current, 1000mA SOA 

(i.e. Fig. 5-37: 200mA) together with that recorded from the laser back facet with 

200mA laser current (SOA off) on the same scale, but over an adjusted range. 
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Figure 5-37: Zoomed-in spectrum of Fig. 5-36 (b) showing the DFB side modes on the right-

hand-side of DFB lasing peak for 80-200mA laser pumping current 

The laser spectrum in Fig. 5-38 (a) exhibits a consistent mode spacing of ~0.2nm (at 

~1003nm). This is consistent with the dominant profile in the MOPA spectrum in Fig. 

5-38 (b), also measured as ~0.2nm, but which also exhibits a further modulation with a 

smaller spacing of 0.04nm, which is the contribution made by the SOA ASE ripple. 
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Figure 5-38: (a) Zoomed-in spectrum of DFB characterisation (SOA off) measured from laser 

facet showing the DFB side modes on the right-hand-side of DFB lasing peak; (b) Analysis of 

the modulation of spectrum of 200mA  
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5.5.5 Comparison and Discussion 

 

For both MOPA types, light can propagate into the laser sections where it propagates 

through the laser section and a portion of it is reflected back from the DFB back facet to 

build front-to-end cavity resonance. Such resonance leads to modulation of the ASE 

spectrum, which affects the purity of the spectral profile of the amplified light. With 

higher operating current injections to the device, this could further result in self-lasing 

within a cavity length of the entire device. In order to suppress this, AR coatings were 

applied to both the DFB back facets and the SOA front facets to reduce the amount of 

reflected light. In addition, the InGaP window structures in the straight SOA MOPAs 

provide further suppression by reducing the amount of light propagating between 

sections. Furthermore, in the tilted SOA MOPAs, the 7
o
 incident angle at the output 

effectively reduces the reflected light from the SOA front facets back in to the 

waveguide.  

 

 Comparison of Interfaces with/without InGaP Window 

Based on the experimental observation of performance and behaviour of the devices: 

(1) With the laser section operating only, for both structures the longitudinal mode 

spacing measured in the spectra recorded from the DFB facets correspond to only the 

laser cavity length. This suggests that in the structure without a window, the interface 

between pumped and un-pumped regions provides a reflective interface resulting from 

the refractive index step. (2) With the SOA section operating only, the longitudinal 

mode spacing measured in the spectra recorded from the SOA facets for windowed and 

the non-windowed structures correspond to the SOA cavity length and the device (SOA 
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+ laser) cavity length, respectively. This suggests that the InGaP window achieves its 

designed functionality to provide suppression of light propagating from the SOA section 

into the DFB section. (3) While the MOPA is in operation with both the laser section 

and SOA section electrically pumped, for both structures the longitudinal mode spacing 

measured in the spectra recorded from the SOA facets correspond to the device (SOA + 

laser) cavity length. This suggests that the window loses its designed functionality when 

switching on the laser section. 

The above experimentally observed behaviour of the InGaP window is expected and 

Fig. 5-39 schematically illustrates this phenomenon, where (a) shows the absorption of 

the light propagating through the window into an un-pumped laser section and (b) 

shows the amplification of the light when the laser section is switched on.  

 

Figure 5-39: Schematic diagram of the propagation of slight from SOA section into the laser 

section with an InGaP window 

When the laser section is un-pumped it behaves as an absorber, where any light 

propagating through this section is subjected to strong optical loss, providing 

suppression of the reflected light from the back facet. Despite the suppression, standing 

waves with a mode spacing corresponding to the total cavity length were still measured 

on the recorded spectra of non-windowed MOPAs, whilst that measured for windowed 

MOPAs corresponds to only the length of SOA sections. This difference is caused by a 
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further suppression of light propagating from SOA sections to DFB provided by the 

15μm-wide InGaP window, which generates a small refractive index-step when the light 

penetrates all the layers as shown in Fig. 5-15, resulting in light reflection at the 

interface. Due to this mechanism, the wave reflected from the laser facet (the portion 

that contributes to device-length resonance) experiences further intensity loss as it 

penetrates the InGaP window twice. Hence the window demonstrates its functionality in 

suppression of back-reflection effects.  

When the laser is pumped, the light experiences gain when propagating in the laser 

section. Therefore, the light generated in the SOA portion is no longer absorbed after 

penetrating the window, such that the resonance established between both end facets 

overwhelms that established between the InGaP window and SOA facet, where the 

window is no longer effective. Such undesired loss of functionality of the InGaP 

window allows the ASE ripples to establish over the resonant cavity of the entire device 

length. With higher SOA pumping current, the modulation between the DFB spectrum 

and ripples results in the breakdown of the single mode DFB peak in the amplified 

spectrum.  

 

 Discussion 

The effectiveness of the InGaP window is highly dependent on the overlap of the 

guided optical mode with the cross-sectional area of the window structure, i.e. the 

optical confinement factor of the area. As described in Section 5.3.2, the waveguide 

structure was modified due to the requirement of growing a 100nm thick in-fill GaAs 

layer, where Al0.7Ga0.3As was used instead of Al0.42Ga0.58As, resulting in a lower 

refractive index (3.29 to 3.14), which not only reduces the index-step achieved by the 
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InGaP window, but reduces its optical overlap also. This can be seen in Fig. 5-40 (a) 

and Fig. 5-40 (b), which compare the simulated confinement factors of the cross-

sectional area of the window structure of the original and the modified waveguide 

designs, showing an obvious decrease from 0.0283 to 0.0093 with a factor of ~3 after 

the structural modification. Fig. 5-40 (c) presents a demonstration of the possible 

improvements that could be made to the original waveguide for future optimised 

designs, where the separation between the grating and the active region in these new 

planar structures is reduced from 300nm to 200nm, and the height of the InGaP 

optoelectronic confinement layer is increased from 600nm to 700nm. The simulated 

confinement factor increases with a factor of ~1.8 from 0.0283 to 0.0518, which is more 

than 5.5 times higher than that in the modified designs in this chapter. 

 
 (a) (b) (c) 

Figure 5-40: Simulated confinement factors of the cross-sectional area of the window structure 

in (a) the original waveguide, (b) the modified waveguide and (c) an example waveguide 

designed for higher overlap in the stripe region 
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 Comparison of Tilted and Straight SOA Geometries 

Fig. 5-41 schematically compares the light propagation between the two different 

SOA geometries and the resultant parasitic facet reflections. The red arrows represent 

the amplified optical wave within and leaving the optical cavity. The black arrows 

represent the residual parasitic optical reflections from the AR coated SOA end cavity 

facets. In a tilted SOA, the light incident on the output facet is reflected and diverted 

away from waveguide due to the non-normal incident angle, As for a straight SOA, 

almost all of any reflected light is propagated straight back into the cavity. Therefore, 

less light can be reflected back from the tilted facet into the cavity, resulting in less 

intense ASE ripples, and a purer amplified DFB profile to higher injection currents. 

 

Figure 5-41: Comparison of two SOA geometries and facet reflection, where the red arrows 

represent optical wave being amplified in the cavity and the black arrows stand for reflected 

optical wave from facet 

Comparison of the spectral profiles of the amplified DFB peak with a SOA injection 

current of 1000mA between the two MOPA types (Fig. 5-27 and Fig. 5-31) reveals that 

the breakdown of single mode lasing behaviour was much less severe in the tilted SOA 

MOPAs than the straight SOA MOPAs. Therefore, given that a further suppression of 

the end-to-end resonance is provided by an InGaP window in the straight SOA MOPAs, 

the MOPAs with tilted SOAs still demonstrate a better suppression of the ASE ripples 

due to their higher resistance to the disturbing back reflection from the SOA facets. 
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 Summary 

In summary, because the un-optimal AR coating for these devices was specified to 

centre at 1050nm instead of 1000nm as a compromise made among other devices, the 

anti-reflective (AR) coating of the device facets was not optimal for the wavelength, the 

reflectivity at facets is expected to be higher than 0.1%, resulting in an undesired 

excessive amount of light to be reflected from both end facets. Under this configuration, 

the designed InGaP window structure in the interface between the sections is functional, 

but the suppression was not sufficient. One reason is that the refractive-index-step 

induced by the layers (Al0.7Ga0.3As-GaAs-InGaP-GaAs-Al0.7Ga0.3As) is rather small to 

generate a high reflectivity at the interface. Another reason for this is that the InGaP 

window is positioned to a distance above the active region, such that the overlap 

between the guided optical mode and the cross-sectional area of the window is small, 

which limits the effectiveness of the window. As to the geometry of the SOAs, the tilted 

SOAs demonstrate a higher suppression of the optical resonance established between 

the end-to-end facets by effectively reducing the reflected light at the SOA front facet 

back into the device, resulting in reduced influence of the single-mode lasing behaviour 

of the amplified DFB mode.   
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5.5.6 An Observed Issue of the Device Pumping Scheme 

 

Another possible mechanism behind the appearance of the breakdown of single mode 

spectral profile could lie in the use of a pulsed current source for pumping the SOA, 

combined with a CW current source for the laser section. As discussed in Section 5.5.2, 

it was not possible to operate the SOA using a CW current source. A pulsed current 

source was adopted as an alternative option in order to reduce self-heating in the SOA 

and facilitate electrical pumping. During the experiment, it was noted that there was an 

observable difference in the output power collected from the DFB facet when the CW 

current source was connected (but switched off) compared to that collected with the CW 

source disconnected. This suggests an issue associated with the electrical circuit used in 

the measurements which may have subsequent implications for the spectral purity of the 

MOPA. 

 

In order to investigate this phenomenon, the voltage applied to the impedance-

matching resistor (connected in series, therefore the voltage profile reveals the current 

profile) was examined using an oscilloscope.  

Fig. 5-42 shows photographs of the recorded voltage transients measured (a) when 

the SOA was pumped only with CW current source disconnected, and (b) with the CW 

current source connected to the laser section but switched off. The latter demonstrates a 

clear breakdown from the square-pulse signal recorded in the former, which was a result 

of simply connecting the CW current source into the circuit. Adjustment of the pulse 

width, duty cycle and the impedance-matching resistor could not resolve this issue due 

to the dependence of the square-pulse breakdown on set values of currents. 
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Furthermore, when operating the laser with the CW current source at a fixed current, 

e.g. 160mA, turning on the SOA section with a pulsed current, e.g. 1000mA, caused the 

CW current source to become unstable, with a fluctuation of ±0.5mA about its set value.  

 
(a) (b) 

Figure 5-42: Investigation of pulsed current applied to device using oscilloscope to measure the 

voltage applied in the impedance-matching resistor when (a) only pulsed current source 

operating and (b) CW and pulsed current source operating simultaneously 

Fig. 5-43 illustrates the electrical connection of the device when both current sources 

were connected during the experiment.  

 

Figure 5-43: Schematic diagram of device pumping scheme, CW current applied to DFB and 

pulsed current to SOA 

Although the top p-GaAs was etched for isolation between the two top contacts, the 

two current sources share the continuous back contact and are therefore mutually 

connected in each other’s supply circuit, such that when two current sources were 

simultaneously turned on, the two active circuits were not operating independently and 
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current was allowed to flow into each other’s circuit, resulting in impedance mismatch 

in the pulsed current source. 

The application of another pulsed current source to supply the DFB section, clocked 

together with the SOA pulsed, and with both circuits having impedance-matching 

resistors could not resolve the problem fully either. 

 

Figure 5-44: Schematic diagram of device pumping scheme, pulsed current applied to both 

DFB and SOA, where the pulsed current source were clocked together 

Although better voltage transient profiles were achieved, the interaction between the 

inter-dependent active circuits made it impossible to stably pump the two sections when 

turning on the ISOA to ~600mA. 

Although the impact of this phenomenon upon output spectrum still remains unclear, 

the application of pulsed current to SOA sections in this chapter was only for 

experimental purposes for this batch of devices. In future optimised MOPA designs, as 

will be described in Chapter 6, the devices are expected to be driven with CW currents 

in both DFB and SOA sections, such that the phenomenon observed here will not pose a 

problem.  



 

 

 277 

5.6 Conclusion 

 

This chapter started with an introduction of the MOPA concept and a review of 

current state-of-the-art (Sections 5.1 and 5.2). The design and manufacture of the 2 

MOPA structures in this chapter was described in Section 5.3 and 5.4. In Section 5.5, 

the 2 MOPA structures were characterised and their comparative performance was 

analysed and discussed. In Sections 5.5.1 and 5.5.2, the laser sections and SOA sections 

were first measured individually. The lasers demonstrated robust single mode DFB 

operation with CW injection. Although the SOAs were not able to operate under CW 

current injection, a pulsed current source was used as alternative to drive the SOAs into 

amplification. In Sections 5.5.3 and 5.5.4, the measurement of MOPA operation of both 

MOPA structures demonstrated amplification of the DFB mode by increasing the pulsed 

current applied to the SOAs whilst the laser sections were operated with a fixed CW 

current. Especially, more experiments were performed to investigate the origin of 

single-mode breakdown at higher SOA current injection. Section 5.5.6 described the 

observed issue with the pumping scheme in this chapter (DFB: CW; SOA: pulsed), 

where the two active circuits were not independent because of the continuous back 

contact. 

 

For a monolithically integrated device, the transmission of light from the section 

where it is generated to other is inevitable. In addition, for real world devices, the facet 

AR coating cannot reach 0% reflectivity. Therefore, the transmitted light will establish 

ASE ripples in the resonant cavity, which can generate significant impact upon the 

device performance. In my MOPA designs, the type with straight SOAs has a 15μm 
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wide InGaP window designed in the interface to suppress the amount of spontaneous 

emission generated in SOA section from propagating into the laser section by 

introducing refractive index steps. For the MOPAs with tilted SOAs, the 7
o
-off incident 

angle at the output facet reduces the amount of reflected light back into the waveguide. 

 

As discussed throughout this chapter, there remains much room for improvement of 

this concept of MOPA PIC for future studies. 

 

The problem of highly defective 2
nd

 overgrowth has limited the research 

accomplished in this chapter, not only that a large amount of fabricated devices were 

screened out due to SOA failure, but also that the SOA sections were not able to be 

driven with CW current injection due to significant self-heating to the point that 

amplification was not possible. In future research, the effect of growth temperature on 

the quality of both overgrowth steps has to be fully investigated and optimised before 

proceeding. Given this problem being solved, both DFB and SOA sections will be 

operated with CW currents, such that the electrical issue observed and described in 

Section 5.5.7 will no longer exist. 

 

As discussed, one main issue that breaks down the functionality of the devices is the 

ASE ripples established in the whole device cavity. Methods to solve this problem are 

therefore to reduce the reflection of light from the facets, whilst lowering the portion 

that can propagate back into the waveguide.  

Four possible methods to reduce the facet reflectivity are: 
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1. To apply AR coating designed for a reflectivity of <0.1% at the centre 

wavelength; 

2. To continue with the tilted SOA design instead of straight SOA design to 

effectively reduce the amount of reflected light that propagates back into the 

waveguide; 

3. Introduce an un-pumped window section at the SOA facet to reduce the amount 

of reflected light that propagates back into the waveguide, for both tilted and 

straight SOA designs; 

4. If 1/4--shifted (or double-1/8--shifted DFB) is to be designed for the MO in 

future designs, there will be no necessity to make use of the random facet-

grating phase to yield single mode operation. A rear absorber can be integrated 

between the DFB section and the rear facet to reduce the amount of reflected 

light that propagates back into the waveguide. 

 

Another scheme for ASE suppression is to introduce discontinuities inside the 

device, such as the InGaP window method developed in this chapter, where alternative 

methods include asymmetric waveguide designs and etched facets. As discussed in 

Section 5.5.5, the examination of the InGaP window in operation (both sections are 

switched on simultaneously) reveals that the designed 15μm wide InGaP window and 

the isolation etch could not function sufficiently to suppress the ASE generated in the 

SOA section from propagating into the laser section. This can be improved by 

increasing the optical confinement factor in the area of the etched stripe geometry, 

which corresponds to portion of the guided optical mode that overlaps with the InGaP 

window. 

  



 

 

 280 

5.7 Reference 

 

[1] M. Maiwald, A. Klehr, B. Sumpf, G. Erbert and G. Tränkle, "Dual-Wavelength 

Master Oscillator Power Amplifier Diode-Laser System at 785 nm," IEEE Photonics 

Technology Letters, vol. 26, no. 11, pp. 1120-1123, June 2014. 

[2] T. N. Vu, A. Klehr, B. Sumpf, H. Wenzel, G. Erbert and G. Tränkle, “Wavelength 

stabilized ns-MOPA diode laser system with 16 W peak power and a spectral line 

width below 10 pm,” Semiconductor Science and Technology, vol. 29, no. 3, p. 

035012, December 2014. 

[3] S. O'Brien, R. Lang, R. Parke, J. Major, D. F. Welch and D. Mehuys, "2.2-W 

continuous-wave diffraction-limited monolithically integrated master oscillator 

power amplifier at 854 nm," IEEE Photonics Technology Letters, vol. 9, no. 4, pp. 

440-442, April 1997. 

[4] R. M. Lammert, J. E. Ungar, M. L. Osowski, H. Qi, M. A. Newkirk and N. Bar 

Chaim, "980-nm master oscillator power amplifiers with nonabsorbing mirrors," 

IEEE Photonics Technology Letters, vol. 11, no. 9, pp. 1099-1101, September 1999. 

[5] M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow and H. Wenzel, 

"Measurement and Simulation of Distributed-Feedback Tapered Master-Oscillator 

Power Amplifiers," IEEE Journal of Quantum Electronics, vol. 45, no. 6, pp. 609-

616, June 2009. 

[6] H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. 

Ressel and G. Erbert, “10 W continuous-wave monolithically integrated master-

oscillator power-amplifier,” Electronics Letters, vol. 43, no. 3, pp. 160-161, February 

2007. 

[7] O. M. S. Ghazal, D. T. Childs, B. J. Stevens, N. Babazadeh, R. A. Hogg and K. M. 

Groom, “GaAs-based superluminescent diodes with window-like facet structure for 

low spectral modulation at high output powers,” Semiconductor Science and 

Technology, vol. 31, no. 4, January 2016. 

[8] E. J. Skogen, J. S. Barton, S. P. DenBaars and L. A. Coldren, "Tunable sampled-

grating DBR lasers using quantum-well intermixing," IEEE Photonics Technology 

Letters, vol. 14, no. 9, pp. 1243-1245, September 2002. 

[9] Y. Akulova, G. Fish, P.-C. Koh, C. Schow, P. Kozodoy, A. Dahl, S. Nakagawa, M. 

Larson, M. Mack, T. Strand, C. Coldren, E. Hegblom, S. Penniman, T. Wipiejewski 

and L. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR 

laser transmitter,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, 

no. 6, pp. 1349–1357, November - December 2002. 

[10] A. Ward, D. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. Duck, N. 

Whitbread, P. Williams, D. Reid, A. Carter and M. Wale, “Widely tunable DS-DBR 

laser with monolithically integrated SOA: design and performance,” IEEE Journal of 

Selected Topics in Quantum Electronics, vol. 11, no. 1, pp. 149–156, January - 

February 2005. 



 

 

 281 

[11] P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. W. 

Turner and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser 

array,” Applied Physics Letters, vol. 101, no. 26, p. 261117, 2012. 

[12] M. Wakaba, N. Iwai, K. Kiyota, H. Hasegawa, T. Kurobe, G. Kobayashi, E. Kaji, 

M. Kobayakawa, T. Kimoto, N. Yokouchi and A. Kasukawa, "High Power Operation 

at High Temperature of AlGaInAs/InP Widely Tunable BH Laser," 2013 18th 

OptoElectronics and Communications Conference held jointly with 2013 

International Conference on Photonics in Switching (OECC/PS), Kyoto, Japan, pp. 

1-2, 2013. 

[13] B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, 

M. Zorn, G. Erbert and G. Tränkle, “High-Brightness Quantum Well Tapered 

Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 

1009–1020, May-June 2009. 

[14] D. Welch, R. Parke, D. Mehuys, A. Hardy, R. Lang, S. O'brien and S. Scifres, “1.1 

W CW, diffraction-limited operation of a monolithically integrated flared-amplifier 

master oscillator power amplifier,” Electronics Letters, vol. 28, no. 21, pp. 2011-

2013, October 1992. 

[15] S. O'Brien, R. Parke, D. F. Welch, D. Mehuys and D. Scifres, "High power 

singlemode edge-emitting master oscillator power amplifier," Electronics Letters, vol. 

28, no. 15, pp. 1429-1431, July 1992. 

[16] S. O'Brien, R. Lang, R. Parke, J. Major, D. F. Welch and D. Mehuys, "2.2-W 

continuous-wave diffraction-limited monolithically integrated master oscillator 

power amplifier at 854 nm," IEEE Photonics Technology Letters, vol. 9, no. 4, pp. 

440-442, April 1997. 

[17] O. Brox, J. Wiedmann, F. Scholz, F. Bugge, J. Fricke, A. Klehr, T. Laurent, P. 

Ressel, H. Wenzel, G. Erbert and G. Tränkle, “Integrated 1060nm MOPA pump 

source for high-power green light emitters in display technology,” Proc. SPIE 6909, 

Novel In-Plane Semiconductor Lasers VII, vol. 6909, no. 1G, pp. 1-8, January 2008. 

[18] A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert and J. 

G. McInerney, “Dynamic instabilities in master oscillator power amplifier 

semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 34, no. 1, pp. 

166–170, January 1998. 

[19] G. C. Dente and M. L. Tilton, “Modelling multiple-longitudinal-mode dynamics in 

semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 34, no. 2, pp. 

325–335, February 1998. 

[20] Kamelian Ltd., Semiconductor Optical Amplifiers (SOAs) as Power Boosters, 

Applications Note No. 0001, 2003. [Online]. Available: 

http://www.ing.unitn.it/~fontana/GreenInternet/OpticalSwitching/DataSheets/opr02F

H4.pdf, Accessed on: 16 December 2016. 

[21] T. Mukai and Y. Yamamoto, “Gain, frequency bandwidth, and saturation output 

power of AlGaAs DH laser amplifiers,” IEEE Journal of Quantum Electronics, vol. 

17, no. 6, pp. 1028–1034, 1981. 

  

http://www.ing.unitn.it/~fontana/GreenInternet/OpticalSwitching/DataSheets/opr02FH4.pdf
http://www.ing.unitn.it/~fontana/GreenInternet/OpticalSwitching/DataSheets/opr02FH4.pdf


 

 

 282 

 

 

This Page 

Intentionally 

Left Blank 

 

 

  



 

 

 283 

 Future Work Chapter 6.

 

 

The previous chapters described the development of GaAs-based self-aligned stripe 

distributed feedback laser (GaAs SAS-DFB) technologies. This chapter outlines the 

future work suggested to further the achievement of GaAs photonic integrated circuits. 

Based on the conceptualisation of the SAS-DFB-MOPA prototype in Chapter 5, in 

Section 6.1 an optimised four-section MOPA design is first presented. Section 6.2 and 

6.3, present the preparatory works conducted for the development of (1) GaAs-based 

SAS sampled grating distributed Bragg reflector (SG-DBR) and (2) high power 

~1180nm InAs/GaAs quantum dot SAS-DFB-MOPA. 

  

6.1 Optimisation of SAS-DFB-MOPA  

 

Based on the study of the prototype SAS-DFB-MOPA designs in Chapter 5, I 

conceptualised an optimised four-section tunable laser design. As illustrated in Fig. 6-1, 

this concept incorporates (1) a tilted rear absorber, (2) a DFB laser section, (3) a spacer 

and a (4) tilted-flared SOA section with an un-pumped area at output facet. As 

highlighted in the figure, all the interfaces between sections are fabricated with an un-

etched InGaP “window”, together with the top isolation etch during fabrication. The 

front and rear facets are coated with optimal AR coating with a reflectively to be less 

than 1%. The two enlarged pictures of rear back and front facets illustrate the reduction 

of the facet reflection afforded by the newly introduced absorber and un-pumped 
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window area, where the red arrows represent the light exiting the device and the black 

arrows are the reflected light. 

 

Figure 6-1: Schematic diagram of the optimised four-section SAS-DFB-MOPA design, together 

with the illustrations of reduction of reflected light from rear and front facets by introducing a 

tilted rear absorber and an un-pumped front window area respectively 

The rear absorber is used to effectively reduce the rear facet reflection by absorbing 

the light propagating in the section and diverting a large portion of the reflected light 

away so that it cannot re-couple back into the waveguide. Compared to the current SOA 

design, the additional un-pumped area is designed to further reduce the amount of front 

facet reflection by broadening the divergence of the beam reaching the front facet, 

resulting in a broadened divergence of any reflected light, hence a much smaller portion 

of back-reflected light can re-couple back into the waveguide. 

Furthermore, a spacer section is positioned inbetween the DFB section and the SOA 

section for better thermal separation, which is pumped into transparency while in 

operation.  

In order to visually present the key features of this multi-section waveguide, Fig. 6-2 

presents both lateral and longitudinal cross-sectional views of the epitaxial structure 
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centred at the DFB section. The definition of the SAS is shown in Fig. 6-2 (a) together 

with the specification of layer information; whilst (b) shows the key structural feature at 

the interfaces and the position of the buried grating. 

 
(a) Front View (b) Side View 

Figure 6-2: Cross-sectional schematic diagrams of the DFB section from (a) epitaxial-lateral 

front view, where the layers of the SAS structure are specified, and (b) epitaxial-longitudinal 

side view, where the structural features are highlighted 

In order to improve the waveguide design of the prototype design, as illustrated in 

Fig. 5-12, simulation activities will be conducted aiming at a certain coupling 

confinement factor of the grating layer corresponding to the designed length of the DFB 

section for a KL ~ 1, whilst optimising (1) the mode profile of the wave-guiding for 

stable single lateral mode, (2) the confinement factor in the active region for sufficient 

gain, and (3) the overlap of the guided mode to the cross-sectional area of etched InGaP 

stripe for better functionality of the InGaP windows. The available variables to be 

investigated include: the thickness of the grating, the separation between the grating and 

active region, the thickness of the 1
st
 and 2

nd
 overgrown in-fill GaAs layers. Additional 

variables such as the dimensions of the etched isolation notches and the InGaP window 

may also afford extended flexibility for structural design. 



 

 

 286 

6.2 SAS-SGDBR 

 

In a large number of PIC designs, it is necessary to integrate active and passive 

sections for certain functionalities relaying on passive waveguides (e.g. couplers, DBRs, 

etc.). Typical active sections include the gain section and SOA section, whilst typical 

passive sections include the phase section and grating section. Without any treatment to 

achieve multiple band edges, un-pumped sections would perform as absorbers for light 

generated in the active session(s) to propagate through, e.g. grating sections.  

In the early 2000s, the research group led by Prof. Larry Coldren in UCSB developed 

their monolithic SG-DBR designs employing a QW intermixing method [1]-[3], which 

aimed at applications of wavelength-division-multiplexing (WDM) in fibre optic 

networks. This followed an initial realisation of the SG-DBR using a more complex 

butt-joint regrowth method. 

Fig. 6-3 illustrates the structure reported in [2]. The key sections of an SG-DBR are 

the back and front mirrors (sampled grating), phase section, gain section and the rear 

absorber to reduce the reflected light from the back facet.  

 

Figure 6-3: Schematic diagram of the main concept of an SG-DBR reported in [2] 
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As reported in [2], they achieved a blue-shift of ~100nm of the gain peak in the 

phase and grating sections, supporting a tuning range of 37nm centred at 1540nm. In 

[3], they demonstrated additional integration of an electro-absorption modulator 

between the front mirror section and the front facet. 

 

The operating principle of an SG-DBR, as illustrated in Fig. 6-4, is to utilise the 

slightly mismatched reflectivity spectra of the front and back sampled gratings, where 

only one pair of the reflectivity spikes, i.e. the selected wavelength, can overlap at any 

relative position (tuned by current injection IFront_Mirror and IBack_Mirror) over the 

wavelength range of the gain. 

 

Figure 6-4: Schematic diagram of the wavelength section mechanism of an SG-DBR 
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In 2005, Skogen et al. discussed the advantages of photonic integration and provided 

an overview of the various integration techniques possible [4] and summarised 4 typical 

integration methods, i.e. butt-joint regrowth method [5], selective area growth (SAG) 

method [6], offset quantum-well active region method [7], and quantum well 

intermixing (QWI) method [8], among which QWI is more desirable due to its relative 

simplicity. Many techniques to achieve QWI have been studied, including impurity-

induced disordering (IID) [9], implantation-enhanced interdiffusion [10] and impurity-

free vacancy diffusion (IFVD) [11]. 

In order to develop GaAs-based SG-DBR to achieve wide tunability, some 

preparatory works has been conducted to examine the effectiveness of the IFVD 

intermixing method due to its effectiveness and ease of operation. At elevated 

temperatures, Gallium atoms are soluble in the SiO2 with a high diffusion coefficient 

coating. During annealing, Gallium atoms dissolve into the cap leaving vacancies, 

which moves towards the remainder of the layers with a high diffusion coefficient and 

generate intermixing effect. As Gallium diffused out of the active region, Aluminium 

starts to move in along with the diffusion of vacancies resulting in a broadened band 

gap, corresponding to a blue-shift of the gain peak.  

In order to examine the ability to perform such active-passive integration, a 1060nm 

InGaAs/GaAs quantum dot wafer was prepared. The samples were coated with SiO2 

and TiO2 dielectric coatings and annealed for different time durations and temperatures. 

Fig. 6-5 plots the shifts of the gain peak measured from SiO2 and TiO2 coated areas 

using an annealing temperature of 750
o
C and 800

o
C for difference time duration. A 

relative wavelength difference between SiO2 and TiO2 coated samples as large as 58nm 

was measured (5min at 800
o
C). This is a sufficient value for a target tuning range of 

~40nm. 
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Figure 6-5: Comparison of wavelength shifts with SiO2 and TiO2 coating with different 

annealing temperature and time duration 

 

Fig. 6-6 plots the PL scan performed on a sample annealed at 750
o
C for 40min, from the 

TiO2 coated area across the interface to the SiO2 coated area. As shown, the transition 

from the active region to the passive region was within a width of 50μm. The spectra 

were recorded with certain mechanical limitation of the resolution, which means that the 

actual width of the interface could be narrower. 
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Figure 6-6: Cross-sectional PL scan after annealing at 750
o
C for 40min, from the active to 

passive areas, where the transition was observed to be within in a width of 50μm 
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6.3 1180nm In(Ga)As/GaAs DWELL SAS-DFB-

MOPA 

 

Currently, the research conducted on the development of SAS-DFB-based PIC has 

been limited in the use of InGaAs quantum well active regions with an emitting 

wavelength of ~1000nm. In order to broaden the scope of this technology, I have 

initiated the development of In(Ga)As/GaAs DWELL (dot-in-a-well) SAS-DFB-MOPA 

with an expected lasing wavelength of ~1180nm. This wavelength was chosen in order 

to target potential application in adaptive optics by sodium guide star excitation. 

Two 5 In(Ga)As/GaAs DWELL materials were prepared. One wafer (Type-A) was 

designed to have a QD ground state transition at ~1180nm, whilst the other (Type-B) 

had a ~1300nm ground state and its excited state transition is at ~1180nm. The purpose 

of these 2 structures was to compare their ability for high power and high speed 

operation, since the greater degeneracy of the excited state should enable high power 

operation despite the relatively low ground state saturation of QD lasers, and high speed 

due to higher differential gain. Preparatory experimental activities have been conducted 

by fabricating and characterising broad area lasers from these materials.  

Fig. 6-7 shows schematic representations of these two DWELL epitaxial layer 

structures with the origin of the different gain wavelength is highlighted. As illustrated, 

both wafers were grown on a 3º-off to (110) N-GaAs substrate with an active region 

incorporating 5 layers of InAs QDs in an InGaAs QW. The core was sandwiched by 

Al0.4Ga0.6As upper and lower claddings with a graded region consisting of 25 repeats of 

0.5nm/0.5nm GaAs/Al0.4Ga0.6As on either side. The wafers were completed with a 

300nm thick highly P-doped GaAs top contact layer.  
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Figure 6-7: Comparison of the epitaxial layers of the two In(Ga)As/GaAs 5 DWELL wafers 

The different ground state transition wavelengths between these two materials are 

achieved by adjusting the In0.18Ga0.82As capping layers in their DWELL structures, 

resulting in a change in dot sizes. Based on the "a particle in a box" concept, the energy 

gap between different energy states is proportional to the reciprocal of the square of box 

width, which corresponds to the size of a dot. Therefore, an increase in the dot size 

results in a decrease in bandgap energy leading to a longer emission wavelength.  

Two materials were fabricated and cleaved into broad area lasers with difference 

cavity lengths and characterised. 
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Fig. 6-8 plots the length dependent L-I characteristic and recorded EL spectra 

showing the devices lasing via the 1
st
 excited state transition in a shorter cavity length 

and via the ground state transition in the next shortest length. The measurement was 

conducted at a heat-sink temperature of 15
o
C using a pulsed current source with a pulse 

width of 5μs and a duty cycle of 1%. 
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Figure 6-8: L-I measurement of Type-A and –B DWELL broad area lasers and recoded spectra 

showing the devices lasing via the 1
st
 excited state and the ground state transitions in a shorter 

and the next shortest cavity length respectively 
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In the figure, the left-hand-side column presents the results of the Type-A wafer, and 

the right-hand-side presents those of the Type-B. Based on the length dependent 

measurement of these lasers, it was observed that for short cavities, the lasers lase via 

excited states, as the cavity length increases, the lasers start to lase via ground states. 

This phenomenon was expected. In short cavity devices, as injection current increases, 

the ground state gain saturates below the threshold gain, so that carries start to fill-up 

excited states. As more current is injected the excited state gain increases, and the 

device starts to lase upon reaching the threshold gain. In longer cavity devices, the 

ground state gain reaches the threshold gain before saturation, hence lasing via ground 

state upon reaching the threshold current. 

 

 Estimation of Gain 

The results show that the Type-A lasers start lasing via ground state with a shortest 

cavity length of 0.75mm, while the Type-B lasers start with a cavity length of 1.5m. 

This observation demonstrates that the ground state gain in Type A material is higher 

than that of Type B. Estimation of the gain for these materials can then be performed 

based on a typical internal loss, αi, to be ~10cm
-1

 and a typical approximation of as-

cleaved facet reflectivity for GaAs-based waveguides, R, to be ~0.31, using the 

equation: 

𝑔𝑡ℎ = 𝛼𝑖 +
1

2𝐿
ln

1

𝑅2
 

For Type A material, the ground state saturation gain was estimated to be 

25.62~33.42cm
-1

, and that of Type B material was estimated to be 17.81~19.37cm
-1

. As 

illustrated in Fig. 6-7, compared to those in Type-B material, the QDs in Type A 
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material have a smaller average dot size to achieve larger bandgap energy (Eg) for a 

shorter ground state wavelength. Since the volume of the grown InAs is kept constant 

(0.7nm thick), a smaller average dot size results in a higher dot density, resulting in a 

higher gain. 

 

 Laser Characterisation 

From the L-I properties presented in Fig. 6-8 (a) and (b), Fig. 6-9 plots the length 

dependent characterisation of the two structures.  

Type A: ~1180nm Ground State Type B: ~1180nm Excited State 

  

0 1500 3000
0

1

2

3

4


i.GS

=5.5 cm
-1


i.GS

=71.7%

1
/

d

L (m)
 

0 2500 5000
0

1

2

3

4

5


i.GS

=3.11 cm
-1


i.ES

=8.17 cm
-1


i.GS

=46.9%

1
/n

d

L (m)


i.ES

=55.8%

 
(a) (b) 

0 5 10 15 20
0

100

200

300

400

500

J
th
(A

/c
m

2
)

1/L (cm
-1
)

J
0 GS

=6.5076mA

 

0 5 10 15 20
0

100

200

300

400

500 J
0 ES 

=84.9 A/cm
2

J
th
(A

/c
m

2
)

1/L (cm
-1
)

J
0 GS 

=16.2 A/cm
2

 
(c) (d) 

Figure 6-9: Length dependent characterisation of Type-A and –B DWELL broad area lasers 

In (a) and (b), the internal quantum efficiency (ηi) and internal loss (αi) are estimated 

by plotting the inverse external differential quantum efficiency (1/ηd) as a function of 

cavity length (L). In (c) and (d), the transparency threshold current density (J0) is 
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estimated by plotting the current density (J) as a function of inversed cavity length 

(1/L). The estimated parameters demonstrate that the Type-A (ground state ~1180nm) 

structure operated with a better performance with respect to a higher ηi, a smaller αi and 

a lower J0. However, it is reported that excited state QD lasers perform better with high 

speed direct modulation [12]. Therefore, despite a comparatively poorer characterised 

performance, DWELL SAS-MOPAs with an MO of an excited state DFB may be better 

fit for such modulation applications. 

 

 Effect of Using 3 Degree off Substrates 

For the above 2 structures, the use of substrates 3
o
-off to (110) was aimed at future 

development of SAS structures, where MOVPE overgrowth processes (in-fill and 

planarisation) necessitate the use of mis-oriented substrates involved, as described in 

Chapters 4 and 5. In order to investigate the effect of growing the In(Ga)As/GaAs 

DWELL structures on 3
o
-off substrates, a standard ~1310nm wafer was also grown as a 

control. This structure has the same epitaxial layer structure as the Type-B material but 

was grown on a (100) ± 0.1
o
 substrate. This material was also fabricated into 50μm 

wide broad area lasers together with the previous materials and characterised 

consecutively under the same conditions.  

Fig. 6-10 (a) to (d) plot the EL spectra recorded from these lasers with cavity lengths 

of 1, 1.25, 1.5 and 1.75mm respectively. For 1.75mm long lasers lasing proceeded via 

the ground state transition about a wavelength of 1310nm. For shorter cavities, dual 

state lasing was observed, with distinct groups of lasing modes centred at both 1240 and 

1310nm for 1.5 and 1.25mm long cavities commensurate with lasing occurring via both 
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ground state and the 1
st
 excited state transitions. For cavities shorter than 1.25mm (ie. 

1mm), lasing proceeded via the 1
st
 excited state alone. 
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Figure 6-10: Spectra recoded from broad area lasers made from a standard ~1310nm DWELL 

structure with cavity lengths of 1, 1.25, 1.5 and 1.75mm 

As shown in the figure, unlike the Type-A and -B materials, where the switch 

between lasing via the ground state and lasing via the first excited state occurs sharply 

as cavity length is reduced (within an increment of 0.25mm), dual lasing via both 

transitions is observed here over a range of cavity lengths >0.25mm. This phenomenon 

is a result of the regional variation of the dot density. In operation, the portion of the 

active region with relatively higher dot density enjoys a higher ground state saturation 

gain, which can reach the threshold gain at a shorter cavity length, while for the region 

with a comparably lower dot density, its ground state gain remains saturated below the 

threshold gain and lasing continues via the 1
st
 excited state transition, as observed in 

Fig. 6-10 (b) and (c). 
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This suggests that the dot density in the Type-B material is more uniform than that in 

this standard material, resulting in the switch from excited state to ground state taking 

place immediately within a cavity length increase of 0.25mm, as was also observed for 

Type-A lasers. 

Comparing the ground state saturation gain, the Type B material exhibits lasing via 

the ground state with a cavity length of 1.5mm. In this standard material, although a 

small portion of the active region can lase via the ground state transition with a cavity 

length of 1.25mm, when increasing to 1.5mm, there is still a certain portion of it 

maintains lasing via the 1
st
 excited state transition. This suggests that the Type B 

material potentially benefits from a higher average ground state saturation gain, thus a 

higher average dot density. Consequently, the Type B material should have a smaller 

average dot size hence shorter wavelength, which is in agreement with the measurement 

of the recorded EL spectra: the ground state and excited state lasing wavelengths of this 

standard material are measured to be ~1310nm and ~1240nm respectively, whilst those 

measured for Type B material are ~1275nm and ~1195nm respectively. 

 

The above findings could result from the step-like crystal structures when growing 

epitaxial layers on a 3
o
-off substrate, which affect the self-organisation process for the 

formation of quantum dots, resulting in a more uniform and higher dot density. 
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 Conclusion Chapter 7.

 

 

This thesis has presented research activities conducted in the development of GaAs-

based self-aligned stripe (SAS) distributed feedback lasers (DFB) based on GaAs-

InGaP regrowth technology and its incorporation into the conceptualisation of 

monolithically integrated master oscillator power amplifier (MOPA) designs, into the 

scheme of photonic integration. 

 

In Chapter 1, I briefly went through the development of DFB lasers in more than 4 

decades since its birth in 1970s. Emphasis was put into the development of different 

methods of gratings fabrication, where the two main approaches used in nowadays 

(lateral gratings and overgrown gratings) were introduced and compared. Then, I 

described the gap between the current GaAs-based photonic integration technologies 

and its commercialisation, as comparing to the maturity in the InP-based photonic 

integrated circuits, where a certain technological barrier concerning the Al-containing 

layers in usual GaAs-based waveguides has to be overcome. After, I highlighted the 

motivation behind the research activities in this thesis. 

 

In Chapter 2, I introduced the experimental methodology involved in the research in 

the rest of the chapters with respect to a typical 4-stage research process: (1) waveguide 

design, (2) wafer growth, (3) device fabrication and (4) device characterisation. 

Fimmwave, supplied by Photon Design, has been used for waveguide designing and 

simulating, then the epitaxial layer structures were grown in the EPSRC National Centre 
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for III-V Technologies based in Sheffield. The devices were mostly fabricated in the 

device fabrication clean room and characterised using the characterisation setups in the 

Nanoscience & Technology Building. 

 

In Chapter 3, I presented the development process for a set of narrow ridge 2, 4 

and 6 QWs DFB lasers operating at ~1000nm. This study was primarily carried out as 

preparatory work to support the development of the SAS DFB lasers in Chapter 4. The 

research started with ridge waveguide modelling to simulate the confinement factors in 

QWs (ΓQWs) and grating layers (Γgrating), so as to design three 2QWs structures with 

different Γgrating, and 4 and 6 QWs structures with a constant Γgrating. Broad area lasers 

were first made prior to the make of the DFBs to compare the properties of samples: (1) 

grown by MOVPE and MBE and (2) incorporating 2, 4 and 6 QWs. In the 

fabrication of DFBs, A two-stage growth process was used, associated with a grating 

patterning-etching process between the planar growth and the overgrowth. 3μm wide 

ridge waveguide DFBs were fabricated and characterised. The main issue of this batch 

of designs was their in-stability for single lateral mode lasing, where the accidentally 

over-etched (through active region) ridge waveguide could support multi-lateral-mode 

operation. This unfortunately made it impossible for this batch of deigns to achieve high 

power single-mode lasers. However, compared to the previously reported DFB laser by 

my group, obvious improvement has been achieved with respect to threshold current, 

output power and SMSR. Also, the experimentally estimated coupling coefficients of 

each structure designed matched with those calculated from the simulated confinement 

factor, thereby validating the simulation of the structures in the waveguide design stage 

from the very beginning.  
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In Chapter 4, I described the conceptualisation and realisation of SAS DFB lasers. 

Based on the previous research of SAS lasers utilising an InGaP optoelectronic 

confinement layer and DFB lasers employing buried GaAs/InGaP index-coupled grating, 

this study incorporated the grating layer immediately below the SAS with a distance 

above the active region. A 3-stage growth process was used, associated with 2 

patterning-etching processes to form the grating and the SAS respectively. 3μm SAS 

DFBs were fabricated and demonstrated single mode operation. Again, the experimental 

measurement was fed back to the simulation through comparison of experimentally 

measured and simulated coupling coefficient and simulated far-field beam profile. 

 

In Chapter 5, the research conducted in Chapter 4 has been furthered into the 

development of GaAs-based SAS monolithically integrated master oscillator power 

amplifier (MOPA). After a brief review of the current state-of-the-art in the 

development of monolithic MOPAs, I described the two MOPA types designed and 

studied in the chapter. Both types incorporated an SAS-DFB section and a tapered SAS-

SOA section, whilst one had normal-to-facet SOAs and the other was 7
o
-off. Due to the 

poor quality of the 2
nd

 overgrowth, the SOA sections were highly defective which made 

it impossible to drive the SOAs with a CW current source. The devices were 

characterised with DFB sections CW pumped and the SOA sections pulsed pumped. 

The experimental results have been discussed and future improvement to this prototype 

design has also been presented. 

 

In Chapter 6, an optimised version of SAS-DFB-MOPA was first presented. Based 

on the prototype 2-section designs studied in Chapter 5, this 4-section MOPA 
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incorporates a rear absorber, a DFB laser section, a spacer and an SOA with an un-

pumped window area. Then, two other potential directions of future work for continuing 

this research have been described, together with brief discussions of some experimental 

results from preparatory work performed, including (1) the study of active-passive 

integration on a ~1060nm InGaAs QD material using impurity free vacancy disordering 

and (2) the comparison of ground state lasing and excited state lasing properties of two 

In(Ga)As/GaAs DWELL materials. These preparatory works were conducted to support 

the future development of (1) GaAs-based sampled-grating DBR (SG-DBR) tunable 

lasers and (2) high power ~1180nm monolithically integrated MOPA based on the 

techniques of SAS and GaAs/InGaP buried grating. 
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Appendix I: Fimmwave Simulation Example 

 

This appendix describes the technical operation of the simulation tool, Fimmwave, 

used in this thesis. 

Fig. 1 shows a screenshot of a ridge DFB waveguide design as an example, where 

the RWG interface, used for simulation of the ridge waveguides (RWG), was adopted to 

model the epitaxially grown structure. In the figure, the layer information for the ridge, 

i.e. the central segment in left-hand-side, is shown in a separate window on the right-

hand-side for clarity. The red layer highlighted represents the grating layer, which has 

been selected as the section for optical confinement factor simulation (i.e. calculates 

overlap of optical mode with this layer), in order to help determine the grating coupling 

coefficient. 

 

Figure 1: User interface of Fimmwave and an example of DFB ridge waveguide modelling 
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Fig. 2 presents the parameters associated with the modelled waveguide. The left-

hand-side window illustrates a 3μm wide ridge defined by etching the material at either 

side of the 3μm central slice by 1.2μm (blue box). 

 

Figure 2: Waveguide editor for waveguide definition 

 

The right-hand-side window shows the epitaxial layer structure, i.e. thickness and 

refractive index (red box), entered into the software. The “cfseg” (confinement factor 

segment) is selected for the grating layer for optical confinement factor analysis (orange 

box), such as to calculate optical overlaps with this segment of the ridge waveguide. 

 

For structural modelling, Fimmwave provides several solvers to suit different 

requirements. In my work, the FMM solver was selected and “Semivec TE” (semi-

vectorial transverse electric) type was chosen for simplicity, as shown in Fig. 3. The 

wavelength is set to 0.98μm to match the expected peak wavelength of the resultant 

material. By typing “10” into “max Nmodes” box, the solver is instructed to find a 

maximum of 10 modes when running the simulation.  
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Figure 3: Solver settings for simulation 

The simulation starts with a click on the “Build List” button in the left-hand-side 

window shown in Fig. 4. After, 10 modes (green box) are found and listed, which can 

each be inspected in detail, as in the right-hand-side window.  

 

Figure 4: Waveguide simulation and mode inspection 

The modes found by the solver are based on the analysis of the layer structure 

(defined by layer thicknesses and refractive indices) and the waveguide structure 

(defined by ridge width and etch depth), which does not take into account the electrical 
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properties such as the P/N doping and location of contact. This means that the solver 

finds any potentially supported index-guided optical mode regardless of the current flow 

in the junction, which determines where the light is generated. Therefore, an 

examination of the profile for each found mode (single peak is seen as it is; multiple-

peak is seen as a group) is necessary to determine its validity. A found mode is only 

valid if the envelope of the mode is laterally centred at the defined ridge and vertically 

centred at the active region. 

As shown in the blue box in Fig. 4, Fimmwave provides various methods for mode 

profile examination. By using the functions “Plot 2D” and “Plot 3D” and “Plot Section”, 

the mode profile can be displayed in a variety of forms to assist in visualisation of the 

optical mode. By using these functions, the 1
st
 mode is the only valid mode found in this 

example and the confinement factor in the grating is 0.002295, as highlighted in the red 

box. Fig. 5 shows the (a) 2-D view and (b) 3-D view of this mode by using “Plot 2D” 

and “Plot 3D” functions respectively.  

  
(a) (b) 

Figure 5: Visulisation of optical mode profile: (a) 2-D plot and (b) 3-D plot 

The result shows that a single mode is confined both vertically and laterally in the 

example ridge waveguide. Further, the fast/slow axis-sections can also be extracted by 

using “Plot Section” function. 
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In addition, Fimmwave supports simulation of the far-field beam profile of the 

waveguide. For the example waveguide, the far-field simulation (Fig. 6) shows a 

vertical FWHM (Full width at half maximum) of 38.51
o
 and a horizontal FWHM of 

14.36
o
, consistent with emission from the narrow (135.2 nm) active region and 

relatively broad (3μm-wide) ridge. 

 

Figure 6: Far-field simulation: 2-D beam profile simulation 
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