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Abstract

The role of flagellar based motility is well established amongst strains of Pseudomonas
fluorescens. The benefits and overall necessity of motility give a large selection pressure
for bacteria to be motile, especially in the colonisation of the plant root rhizosphere. As
flagellar based motility is so important to P. fluorescens, non-motile P. fluorescens have
a great benefit in evolving towards motility. Here | investigate the strength of reviving
flagellar regulation in previously non motile strains of P. fluorescens. | show that the
evolved flagella mechanisms are far weaker than the wild-type system and thus the
mutant bacteria rely on other motile secondary metabolites, particularly the
biosurfactant viscosin. | also investigate the different swarming phenotypes P.
fluorescens express when introduced to a varied nutrient environment. | find that when
bacteria are in a stress free nutrient rich environment, a smooth swarming phenotype is
favoured. When the bacteria are under stress and starved of nutrients, the spidery
phenotype is preferred. | also introduce a new novel swarming phenotype | have
nicknamed ‘sun-like’, which appears to be a combination of both smooth and spidery
motility. | theorise these distinct phenotypes can be directly influenced by the amount
of biosurfacant present, where smooth spreading require increased biosurfacants and
spidery spreading require the least. Moreover, | believe the phenotypes are a response
to colonisation versus exploration, where biosurfacant can aid colonisation but is a

hindrance to exploration.

Declaration

I declare that this thesis is a presentation of original work and | am the sole author. This
work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References.



Contents

1.0 INErOAUCEION.........oiiiiii et ettt bbbt sttt ebe st e benee s 5
1.1 PSeudomonas flUOIESCENS............cccueceeeeveeceeeeeerietieeeceeste e ee e e ess s e sae e e 6

1.2 Pseudomonas MOLIlITY.......cc.cereoerreiniie ettt s s 6

1.3 FIagElIa @nd fIEQ......c.eveeeeeeeeeee ettt ettt s e s s 7

1.4 HYPErMOLIItY oo veveeeee ettt et st st e et se b e a e e e 8

1.5 P. fluorescens biofilm formation........ccccoeeveeveviieicicecceecee e e 8

1.6 BIiOSUITACTANT...c.ccueeieeiece ettt sttt st et st et see s s ee e see e s 9

1.7 THe CUITENT SEUAY ....ciiiiie ettt sttt ettt st ebesraea e s aessaenas 9

2.0 MeEthOdOIOZY..........covoieeee e ettt et st steste et e s aes e e e 11
2.0 BaACEOIIA ittt e et e e s e et se e r s e et e e e 11

2.2 Effect of Nitrogen on MOotility.....ccoeeeverieeinesie s 11

2.2.1 MBIttt sttt sttt e sttt st et st 11

2,22 SeIECHION ottt e st st 13

2.2.3  StOring MULANTS....coiiie et et e e e 13

2.3 LB Gradient EXPeriMENt.....ccoe ittt e s s bes s sese s ess e enes 13

2.4 Cross Media EXPEriMENT.......cci o ecieeeeeeietee ettt see st ste e sreesens 15

2.5 Biosurfacant EXPeriment........ccoceeeeieieeiece ettt st et eae e s s s 15

2.6 Data ANQlYSiS..cciici ittt e e st st st s s s 16

3.0 RESUILS........oeeeece ettt ettt e et s bbb bt s et bt st en e s 17
3.1 Diversity of Motility 0N NitrOZeN.......cvecuiciecieee ettt et 17

3.2 Media Gradient........occueeire ettt sttt sttt sttt ebe s 20

G BN o o T=T 0 To} 4V 1= TSRS 22

3.4 Cross media area SPread.... ... e ce ettt st s e e e 24

3.4.1  ArEa SPread.... ettt ettt et r e ae e 24

3.5 BioSUMACTANT ASSAY...coccieeieeeerietieieeecee et ettt et et ebeeresassebaesbe e e e 26

4.0 DISCUSSION.......c.eouiieteiietire et sttt eae sttt se et ebe st bes e eae sbe sesses e saeaesee s eseasebe sessessseeae seeseas s enes 27
4.1 Evolved Motility of fleQ KNOCKOULS.......ccoeeeiterieee ettt et st 27

4.1.1  Environmental effect......oc i 27

4.1.2 Selection Motility in Non-motile Strains.........cccccoveevececcvecevnvennenns 28

4.1.3  Phenotypic EffeCt.....ciiicceicecece e s 28

4.1.4 Non-motile Versus Wild-type.......ccecveeeeeceeceeceeereerieceeseeere e 29

4.2 Motile Phenotypes of Wild-type P.fluOrescens............coceeeoeeceeveeeeeeenevnvennns 30



4.2.1 SMOOth SPreading......ccocecveeeveietieieeee ettt 30

4.2.2  SPidery SPreading......ccoecveeireneseneerereee sttt st s 31

A.2.3  SUN-TKE ettt ettt st s e es et s 32

4.3 BiOSUITACTANT ...ttt sttt st s e e s 34

4.3.1 LB Interaction with Biosurfactant.........ccccceovveinineennncienenrenen, 34

4.3.2  Evolving Biosurfactant USage........ccecevevrueirerieneenenieeenece e eens 34

5.0 Conclusion and Further ReSearch...............cocooo ittt e 35
6.0 REFEIENCES...... ...ttt ettt et sa et bttt s b st ebe e s 38



List of Figures

Figure 1: The detection of biosurfactants methods.......c.ccooveineveneiecnincienee 16
Figure 2: Area of spread of the AR2 mutants over 8 transfers........ccceceeeeeeeennene 18
Figure 3: Evolved smooth spreading of the non-motile AR2 mutants.................. 18
Figure 4: Evolution of the ‘Sun-like’ motile phenotype......cccoeveeeevcevrcecnceeennne 19
Figure 5: Area of spread of wild-type SBW25 over 8 transfers.......c.cccceevrerernnnne 19
Figure 6: Evolved spidery spreading of wild-type SBW25.........ccoceeeieereceecvrnnnnnns 20
Figure 7: LB gradient at 24 hours and 48 hours over 8 transfers...........cccceeeuenee. 21

Figure 8: The diversity of wild-type SBW25 motility on a nutrient gradient.......22

Figure 9: The motile phenotypes results on the cross media experiment.......... 23
Figure 10: 24 hour cross media reSUltS.......ccovveeieeeeeetiecee e e e 24
Figure 11: 48 hour cross media results.........cooceeieeeieciecieeceenece e e e 25
Figure 12: Cross media results comparing media history.......ccccocevvvenvvervenenennne 25
Figure 13: Biosurfactant resuUltS.......cocvevreereeiree ettt e 26
List of Tables
Table 1: Mixture of M9 salts made per [itre ... 12
Table 2: Contents of the three nitrogen specific mediums..........ccccevvreverennnen. 12
Table 2: Contents of the LB gradient mediums...........coocvveeieeeerveiecceeceene e 14
Acronyms

fleQ — Transcriptional regulator — Bacterial Flagellar

ntrB — Two-component sensor - Nitrogen

ntrC — Two-component response regulator — Nitrogen

viscC —
visocsin

SBW25

Non-Ribosomal peptide synthase gene involved in making the lipopeptide surfactant

— A Wild-type Pseudomonas fluorescens Strain

AR2 - Non-motile Pseudomonas fluorescens mutant. Deleted fleQ and Kanamycin

resistant transposon interested into ViscC



1.0 Introduction

Bacteria play a vital role in the mutualistic symbiosis of many natural ecosystems
(Lugtenberg and Dekkers 1999, Barea et al., 2005), in other words they offer a ‘give and

take’ relationship with an overall benefit for the community and habitat.

Research into plant — microbe bioremediation has provided us with an enhanced
understanding of how we can take advantage of this bacterial symbiosis for our own gain
in various industries (Anderson et al., 1993 and Lu and Zhang 2006), of which agriculture
remains at the forefront of research (Ciancio et al., 2016, Singh et al., 2016) and Dubey
et al., 2016). In fact, there is a strong focus on the use of bacteria in agriculture as a
means to enhance plant growth and food production (Ciancio et al.,, 2016 and Saharan
2011). Bacteria enable plants to better utilise their surrounding nutrients, and also fend
off diseases (Vessey 2003 and Ciancio et al.,, 2016). These bacteria reside in thriving
populations at the plant root i.e. rhizosphere. Thus in theory, by increasing a bacterium’s
capacity to aid plants, we can use bacteria as a catalyst for plant nutrient metabolism.
However, in order to do this, it is essential that we fully understand the role and process

by which bacteria deliver and transport nutrients.

Studies have shown that crop yield and plant health can be increased through symbiotic
bacteria by ensuring bacterial dominance and increasing the beneficial community
where is it needed (van Loon et al., 1999, Tautges et al., 2016 and Kundu and Guar 1980).
For attachment and colonisation of bacteria, motility is essential and the components of
motility (i.e. flagella and biosurfacants) play a vital role in the bacterium’s success in
aiding plant growth (Martinez-Granero et al., 2006). A prevalent bacterium within the
soil microbe relationship is Pseudomonas fluorescens (Lugtenberg and Dekkers, 1999). P.
fluorescens is a plant growth promoting bacteria which is part of the beneficial microbial
symbiosis with in the plant-root rhizosphere (Hayat et al., 2010). As P. fluorescens has
such a positive effect on plants, it has the potential to be exploited for agricultural
purposes to increase crop growth and defend against plant pathogens (Rainey 1999).
Bacterial motility has a key function in the plant rhizosphere as it is fundamental in
colonising plants roots, therefore by further understanding and evolving species of P.

fluorescens we could aid the ecological performance of the bacteria (Martinez-Granero



et al.,, 2006). | aim to focus on the different motile phenotypes of P. fluorescens
particularly the smooth and spidery phenotypes (Giddens et al., 2007 and Alsohim et al.,
2014). By understanding the mechanisms by which these motile phenotypes occur, and
the specific benefits for the community when shifting between each phenotype, | hope
to gain an insight into whether these can be put to use by inducing a motile phenotype

to aid a healthy rhizospheric community.

1.1 Pseudomonas fluorescens

Pseudomonas fluorescens is a diverse species of opportunistic bacteria commonly found
in soil, plants and water surfaces (Silby et al., 2009) and is a beneficial microbe in the
symbiosis between plants at the rhizosphere (Handelsman and Stabb 1996 and Naseby
et al., 2001). The bacteria are gram-negative rod shaped with an optimum growth
temperature between 25-30°C. P. fluorescens is a model bacterium for the study of
motility due to its strong phenotypes and diversity (Speirs et al., 2000, Bantinaki et al.,
2007 and Rainey and Travisano 1998). These same benefits mean P. fluorescens also
holds many benefits for the study of bacterial evolution, especially with microbe-plant

interactions.

1.2 Pseudomonas Motility

Motility is recognised as a fundamental necessity for bacteria, as motility aids colonisation,
invasion and protection within a community (Chaban et al., 2015). P. fluorescens is able to
perform a number of motile phenotypes, including the flagella-dependent motilities
swarming and swimming (Jarrell and McBride 2008). As a result there is a huge selective
advantage for motility, particularly the methods involving flagella. The swarming and
swimming motility expressions allow the bacteria to efficiently and quickly move through
an environment and mutations in the bacterium’s flagellar regulation affect it’s
chemotaxis towards attractants and their biofilm formation (Mastropaolo et al., 2012).
To aid swarming motility, the bacteria can produce biosurfactants, which allow the

bacteria to glide with their flagella across a surface (Andersen et al., 2003).



Biosurfactants also have other beneficial roles for P. fluorescens, as they act as an
antifungal and antibacterial compound to antagonise pathogens and competitors

(Andersen et al., 2003).

P. fluorescens is also able to utilise flagella -independent motilities. One example of this
is twitching which requires pili and is controlled by the Poc complex (Cowles et al., 2013).
The twitching motility allows the bacterium to travel across moist surfaces by retraction

of the polar type IV pili, which operates as a grappling hook (Mattick 2002).

Twitching is also referred to as ‘social gliding motility’ and it gives a bacterial population
an advantage in rapid colonisation in nutrient rich environments (Mattick 2002).
Although each adaption of motilities provides a unique advantage for P. fluorescens, the
focus of this project is on the flagella-based motiles and how the flagella evolve in

response to environmental conditions.

1.3 Flagella and fleQ

The flagellum is a threadlike locomotor appendage that protrudes from the plasma
membrane and cell wall of bacteria (Willey et al., 2011). The expressions of flagella are
mediated by the fleQ gene (Arora 1997). Gene expression for flagellar mediated motility
is highly coordinated. The gene fleQ regulates the expression of two modes of movement
(swimming and swarming) independently. Repression of fleQ can stop the flagellar
movement as it is located at the top of the hierarchy which enables the expression of all
the other flagellar genes (Giddens et al., 2007). Therefore, the expression and regulation

of fleQ is essential for the motility of bacteria.

Motility is recognised as an essential factor in the adhesion and colonisation of roots in
plants (Piette and Idziak 1992) and thus there is a large selection pressure for bacteria to
be motile. The development of non-motile strains of P. fluorescens can severely impair
their ability to occupy plant roots (De Weger et al., 1987). However, flagellar synthesis is
costly (Zhao et al., 2007), so the development of flagella in non-motile bacteria must

provide a strong advantage to the population.



The flagella producing gene fleQ has a striking homology with the nitrogen regulating
gene ntrC (Arora et al., 1997). As a result it is possible that this homology may allow ntrC
to express the role of fleQ in non-motile mutants with fleQ knocked out. Previous
research at the University of Reading, UK, carried out by Alsohim (2010) found that if
non-motile Pseudomonas fluorescens mutants were left to incubate at 27°C for over 72
hours on 0.25% agar, they can begin to spread away from the site of inoculation, showing
that non-motile P. fluorescens can acquire motility. The acquisition of motility was found
to be the result of a mutation in ntrC where the homology resulted in ntrC replacing the

function of the fleQ gene, in regulating flagellar synthesis.

1.4 Hypermotility

Hypermotility is the expression of multiple flagella through single point mutations in fleN
(Dasqupta et al., 2000 and van Ditmarsch et al., 2013). Hypermotility increases the speed
of flagella - dependent motilities and provides a benefit in competitive environments
(Ditmarsch et al., 2013) and abundant healthy flagella are able to explore a diverse range
of niches giving the bacteria an ecological advantage (Roth et al.,, 2013). However,
hypermotility comes at a cost to bacteria; the increased flagella numbers impair the
bacterium’s ability to form the strong biofilms that Pseudomonas spp. is known for
(Ditmarsch et al., 2013). The rhizosphere selects hypermotile mutants suggesting the in
the soil environment motility is more important than biofilm formation (Barahona et al.,

2010 and Martinez-Granero et al., 2006).

1.5 P. fluorescens biofilm formation

The Pseudomonas genus is notorious for its ability to form strong biofilms (O’Toole et
al., 2000). Through cooperation and adhesion, biofilms are able to supply a bacterial
community with essential oxygen and nutrients (Rainey and Rainey 2003). P. fluorescens
is known to have many biofilm forming phenotypes each providing the community with
a unique advantage, for example, the fuzzy spreader phenotype offers a resistance to
some bacteriophage (Ferguson et al., 2013). The flagellum is essential for early biofilm

development (O’'Toole et al., 2000).



1.6 Biosurfactant

Biosurfactants are secondary metabolites produced by bacteria and are very useful in
reducing surface tension, thus aiding motility (Alsohim et al., 2014). Along with being
useful motile aids, biosurfactants are also known to restore and enhance swarming
motilities under environmental stress, by creating a non-stressful micro-environment for

the bacterium (Singh et al., 2013).

Viscosin is a fundamental and well-studied polypeptide within the Pseudomonas genus;
the properties of viscosin are numerous including antibiotic and biosurfactant roles. It is
a known biosurfactant which aids P. fluorescens spreading motility and plant growth
promotion (Alsohim et al., 2014). The extent of the use of viscosin in P. fluorescens
reflects the phenotypic motile response. This is due the negative correlation between
biosurfactant production and flagella use, by allowing the bacteria to more efficiently

slide across a surface (Nogales et al., 2015).

1.7 The current study

To start | aimed to better understand whether the resurrection of motility of a fleQ
mutant through nitrogen selection would prove to be as diverse and strong as the wild-
type P. fluorescens. This research was based on the work of Taylor et al., (2015) who
discovered that due to the homology of fleQ and ntrC, in the case of a catastrophic
deletion of fleQ, flagellar regulation can be regulated by excessive NtrC-P, produced by a
mutated ntrB. To achieve this mutants and wild-type strains of P. fluorescens (SBW25)
were grown on a variety of nitrogen based mediums, as an active nitrogen regulation
mechanism is required to stimulate the adaption of the ntrB gene for motile revival.
However, through experimentation | noticed that the motile strategy employed by the
wild-type SBW25 appeared to be media dependent and each method had a noticeable
variation on the production of biosurfactants which are visible as a clear viscous liquid

on the surrounding the bacteria.



| then aimed to explore these motile methods of P. fluorescens and to better understand
the role of the biosurfactant viscosin, between the motile strategies. | aimed to
investigate whether the different motile phenotypes exhibit a drastic change in the use
of biosurfacants. As well, | pursue the effect of starvation stress on P. fluorescens and
how this plays a role in different motile methods and the effect a limited nutrient

environment has on the production of viscosin.

Currently there is little research into how environment can shape motile fitness and the
phenotypic response. Therefore, this study aims to fill this research gap. | aim to
investigate the role off the different motile phenotypes of P. fluorescens to see how
motile fitness is affected under changes in nutrient environments. | also aim to
understand what mechanics are behind each phenotype and the cost and benefits of

employing different motility methods.

To summarize the aims are as follows:

e To investigate whether the evolved motility non-motile strains of P. fluorescens
display as diverse motile strategies as the wild-type.

e To understand whether the non-motile strains will be as successful as the wild-
type strain through area spread.

e To investigate the stimulus for the different motile methods of P. fluorescens.

e To understand the role of biosurfacants in the diverse motile phenotypes.

10



2.0 Methodology

2.1 Bacteria

The two strains of P. fluorescens | used in the selection were the wild-type SBW25 and a
non-motile mutant (AR2) provided by The University of Reading, UK. The AR2 mutants
have the fleQ gene knocked out and a kanamycin resistant transposon inserted into the
viscC gene, resulting in strain with no primary flagella producing gene (fleQ) or viscosin
gene (viscC). The kanamycin resistant transposon allows the identification of
contamination in the AR2 strains, which gives confidence that any extreme motility
observed in the AR2 strains is exhibited by the AR2 mutants and not the effect of cross

contamination with an SBW25 strain or another contaminant.

2.2 Effect of nitrogen on motility

2.2.1 Media

Four treatments were used to create mutants within the SBW25 and AR2 strains. These
selection treatments put the bacteria in a limited environment with regards to nitrogen.
The environments supplied were LB, M9 minimal media, ammonia media and a media
with no nitrogen (referred to as N-). These four mediums provide the bacteria with
sufficient nitrogen for growth (LB), exclusive nitrogen environment (NH4), and limited
nitrogen environment (M9) and no nitrogen at all. Using these mediums | can assess;
whether varied nitrogen conditions have any effect on motility and where in the nitrogen
regulating cycle does the evolution of motility have the greatest impact. With the
exception of the LB media, the mediums were created in a similar way except for their
respective nitrogen requirement (Table 1). As we are assessing the swarming ability of
these bacteria, 0.25% agar was used to allow the bacteria to swarm over the media

(Rashid and Kornberg 2000).

Each stock media was created in a 1L Duran bottle. As all the supplements in the LB are

able to be autoclaved these were simply mixed together and autoclaved with 1L dHO.
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The other nitrogen limiting mediums required the addition of compounds which could

not be autoclaved (such as glucose), therefore | filled a 1L Duran bottle with less than

500m| dH20 and added 2.5g of agar, which will create 0.25% agar after adding the

further necessary solutions. | made a large batch of two different M9 salts, M9x10 for

the minimal M9 salts media and M9x5 for the nitrogen exclusive or absent media which

were both autoclaved (Table 1 and 2). These M9 salts (Table 2) provide the minimal

nutrients for the bacteria to grow, so any change observed will be the effect of the added

nitrogen source. The other solutions, 1M CaCl,, 1M MgS04, 1M NHa and 20% glucose

were sterilised by using 0.25uM syringe filter.

M9 NH3 No Nitrogen
M9x5 n/a 500 500
M9x10 500 n/a n/a
1M MgSO4 2 2 2
20% Glucose 50 50 50
1M CaCl; 0.250 0.25 0.25
1MNH3 n/a 10 n/a

Table 1: The contents of each of the 3 nitrogen specific media made for 1L. Each was made in ~400ml water agar mixed

with 2.5g agar. After autoclaving | added the relevant treatments to each bottle of water agar and topped the bottles up

to 1l with dH20, giving a final agar concentrations of 0.25%.

M9x5 Salts (g) M9x10 Salts (g)
Na;HPO, 33.9 33.9
KH2PO,4 15 15
NaCl 2.5 2.5
NH4CI n/a 5.0

Table 2: The solution of M9 salts made to add to the nitrogen specific media. M9x5 salts contain no nitrogen and were

specific to limited nitrogen mediums. M9x10 salts have added NH4Cl and is for the M9 media. The salts were made in 1L

12




2.2.2 Selection

Within the different nitrogen selection, further artificial selection was added to assess
how the different strains mutated within the media. This was achieved by using a
positive, negative and random selection. The positive selection only transferred the
bacteria that swarmed the furthest from the inoculation site; these bacteria will be the
most motile therefore gives a positive selection for motility. The negative selection
selected bacteria from the inoculation site, i.e. the bacteria that have swarmed the least
or not at all, thus giving a negative selection for motility. The random selection used a
square grid with a circle of a radius of 4.5cm in the centre, within this circle the square
grid had numbers 1-60 written on. A random number generator from Microsoft Excel
was used and the selection was taken from the number square that corresponded to the
random numbers generated. This gives an effective neutral selection, neither selecting

for the most motile or non-motile strains.

2.2.3 Storing mutants

The strains were grown over night at 28°C and a sample was taken and added to 100pl
LB in wells of a 96 well plate. These strains were then grown overnight and shaken at
28°C. After growth, 100ul 50% glycine and frozen at -80°C. The glycine was added to

prevent the cells from bursting (Cleland et al., 2004).

2.3 LB Gradient Experiment

The results of the nitrogen selection experiment gave rise to an interesting discovery of
the variation of motile methods between and a LB solution and a minimal M9 solution.
Thus, this experiment aimed to understand the threshold of the motile methods used
within these two mediums and how the bacteria would interact in a gradient
combination of both. Therefore, the two foundations for the gradient experiment are an
LB broth and M9 salts. This gradient creates an environment from the optimal bacterial
growth, to the minimal requirements for growth. To achieve this | decreased the amount

of LB in the media and substituted with minimal M9 salts. The gradient of LB

13



concentrations used were 50%, 10% 1% and 0% LB, all with 2.5g agar to create a 1L

solution at 0.25% agar to allow for bacterial motility (Table 3).

A litre of non-sterilised LB was made with adding 20g in 1L dH.0. Then the LB was
pipetted to the different media concentrations as per table 1. The solutions were topped
up to their relevant levels with dH,0, with the addition of 2.5g agar and mixed until
dissolved. The M9 salts (table 2) were made and sterilised separately and added after
autoclaving. This is because it was found that the addition of M9 salts and agar in
autoclaving compromised the media, making it turn a dark brown colour and affects the
solidification of the agar after pouring. Once sterile, the plates were poured adding

~25ml of the media to each petri dish. These were left to dry under a laminar flow hood

for 1 hour.
LB stock | M9 salts | 20% Glucose | MgSO, | CaCl; dH.0
(ml) (ml) (ml) (ml) (ml) (ml)
50% media | 500 250 25 1 0.125 250
10% Media | 100 450 45 1.8 0.225 450
1% Media 10 495 49 1.9 0.247 495
0% Media 0 500 50 2 0.250 500

Table 3: The concentrations of LB and M9 salts used for 1L for the four separate mediums to measure the effect of
bacteria movement on an LB gradient.

The ancestral of wild-type Pseudomonas fluorescens was point inoculated at the centre
of each plate and grown at 28°C for 48 hours. Due to varied growth rates of the bacteria
on the mediums photos were taken at 24 hours and 48 hours, giving readings of initial
and long term colonisation. The higher LB concentrations showed substantial motility
very early on, where it took the lower concentrations longer to establish great motility.
However, transfers were taken after 24 hours onto fresh media to allow for motility
evolutions. | ran the experiment for 8 transfers or until | found significant differences in

motile phenotype. | also used 10 replicates of each selection to ensure reliability.

This experiment also included the positive and negative selection to see whether
selecting for motility affects the motile morphology of the bacteria. These two selections

were taken the same as in the nitrogen experiment.

14



The data was analysed using Image) (Abramoff et al., 2004). For the experiments here

on out only the final transfer, mutants were used (transfer 8).

2.4 Cross Media Experiment

To assess whether the observed phenotypes were media specific or general mutations
of the bacteria, | carried out a cross media experiments on the final transfer strains. For
this, each media was inoculated with every mutant evolved at the final transfer (transfer
8) in the 50%, 10% 1% and 0% mediums, as well as the ancestral SBW25 strain and the
non-motile AR2 strain as controls. Photos were taken at 24 hours and at 48 hours, using

the same protocol as the gradient experiment.

2.5 Biosurfacant Experiment

The focus of this research was to understand the role of biosurfactants under nutrient
stress and their effect on motile method. To ensure reliable results two experiments
were used to measure biosurfacant production. Firstly, to positively detect for
biosurfacant | used a novel paraffin oil experiment designed by Burch et al., (2010). A
light mist of paraffin oil is sprayed on the visible bacteria and left to disperse for 15
minutes. After this time the paraffin behaves hydrophobicly towards the biosurfacant,

so detection is seen by droplets of oil spread over the petri dish (Figure 1).

This method was useful to achieve biosurfacant detection; however, it did not give a
clear measurement of biosurfacant which was required. To measure biosurfacant |
designed a experiment using crystal violet. By pipetting 70% crystal violet (diluted with
glycerol to keep viscosity) at the sight of inoculation, | found the crystal violet would
spread across the plate with surface tension keeping the dye within the area of
biosurfactant production (Figure 1). This method not only gave the option to measure
the area spread of viscosin through ImagelJ, but also provided and a distinct observation
of the various patterns in which viscosin spread across the petri dish. This information
could then be used to understand whether the different motile phenotypes employ

different methods of viscosin secretion, or whether this is indeed of any significance.
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Figure 1: Investigating methods of identifying biosurfactant production using paraffin oil (A) and crystals violet (B).

The paraffin oil experiment (A) sufficed only as a detection method. Biosurfacants are detected by oil droplets onto of the
surfactant where it is behaving hydrophoibcally towards the surfactant. Left shows a non-motile (AR2) mutant of P. fluorescens

where now biosurfacant could not be detected. Right shows a wild-type motile P. fluorescens where biosurfacant is detected.

The crystal violet method (B) was an effective Biosurfacant measurement technique. Left shows the bacterial growth after 16
hours at room temperature before the addition of crystal violet. Right shows the addition of crystal violet applied immediately.

The purple spread of crystal violet signifies the area of biosurfacant produce by the bacteria.

2.6 Data Analysis
Statistical differences (P<0.05) between experiments were analysed by ANOVA. Data

analysis was done with the software SPSS 23. Graphs were constructed using GraphPad

pro.
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3.0 Results

3.1 Diversity of Motility on Nitrogen

This experiment aimed to follow the previously mentioned work of Taylor et al (2015) to
understand whether a flagellar evolved in fleQ knockouts (the primary flagellar
regulating gene) will be as strong as a wild-type flagellar in carrying out the diverse motile

phenotypes wild-type P. fluorescens expresses.

| found that in the fleQ knockout strain (AR2) the speed of motility acquisition is
significantly reflected by nutrient environment and that motile strength increases
through time (Fs,23=20.065, p<0.05) (Figure 2). However, there is a fitness cap compared
to the wild-type. Motile diversity is also restricted in the AR2 mutants. Two common
strategies of Pseudomonas motility are smooth spreading and spidery spreading. In the
non-motile AR2 mutants, there was no evidence of spidery spreading and these strains

relied solely on smooth spreading (Figure 3).

In the wild-type SBW25 strain, the two most distinct motile phenotypes were found on
the LB and M9 mediums. LB showed a large diversity in motility, however, favoured the
smooth spreading and a new novel form of Pseudomonas motility named ‘sun-like’
(Figure 4). The wild-type SBW25 strains were consistently motile throughout (Figure 5).
The strains evolved on minimal M9 media favoured the spidery motility associated with
hypermotility (Figure 6). These motile methods seem to be media specific; however the
fitness benefits and mechanisms of the particular methods are unclear at this stage. This
is why | pursued an investigation into the comparison between Pseudomonas fluorescens

motility on an LB gradient mixed with M9 salts.
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was quickly acquired in all mediums; however the media capped the motile potential of the bacteria. Most

successful were mediums were LB (A) and M9 (B) and the least successful were N- (C) and NH4 (D)

Figure 3: An example of the only motile expression of the AR2 mutants. This examples shows growth on LB media from

the ancestral strain at transfer 0, to acquiring motility at transfer 4 and the maximum motile at the final transfer.

Although area of spread increased over time, the motile phenotype was not able to adapt to the different

environments. This strain was only able to express a smooth phenotypic response to all the mediums evolved in.

The effect of the three motile selections (positive, negative and random) on each strain

did not have a significant effect on the wild-type SBW25 (F,45=0.324, p=0.744). The

same can be said for the non-motile AR2 strain (F2,45=0.530, p=0.564). When

considering the effect of media and selection, the wild-type strain was again

insignificant (Fs,42=0.427, p=0.840). However, the non-motile strain was did have a

significance comparing selection with media, (Fs,42=3.449, p<0.05). The media in which
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selection had a significant effect for the non-motile strain was LB (F2,9=3.408),
p=0.0099), suggesting that when nutrients are plentiful motility strength is more

diverse therefore more selectable.

There is a significant difference between the area spread of the wild-type strain and the
newly acquired motile strain (F1,05=44.90, P<0.05). The wild-type strain, on average, were
far more motile than the mutant strain even late in the transfer experiment. Overall,
suggesting that acquired motility through reconstructive evolution will not be as

successful as the wild-type mechanism.

Figure 4: The evolution of a novel ‘sun-like’ motility overserved in Pseudomonas fluorescens grown on 100%

LB. Left shows the ancestral transfer, middle is after 4 transfers and right is the motility at the final eighth

transfer.
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Figure 5: The evolution of motility of the wild-type SBW25 strain, measured in area spread. The motile
strength of the bacteria was very media dependent. Most successful were mediums were LB (A) and M9 (B)

and the least successful were N- (C) and NH4 (D)
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Figure 6: An example of how motile expression diversified in the wild-type SBW25 strain. This examples shows growth on
minimal M9 media from the ancestral strain at transfer 0, to transitioning to spidery motility at transfer 4 and at the final
transfer. The wild-type strain was able to expressed different motile phenotypes based on the environment the bacteria

were presented with.

3.2 Media Gradient

The primary study, on the effect of nitrogen treatment on the evolution of flagellar
strength, leads to further research to understand how a gradient of LB mixed with M9
salts will produce a distinct shift in motile strategies. The research from here on out
exclusively examined the wild-type SBW25 strain, using the non-motile AR2 mutant only
as a negative control for motility. Understandably, the lower the nutrient concentration
the slower the bacteria spread. The speed of bacterial spread was measured after two
transfers, the first transfer at 24 hours and the second at 48 hours. | found that after 24
hours, only those that were grown on 50% showed any notable motility. However,
through the transfers, the 10% mutants began to show increased motility after 24 hours
(Figure 7). At 48 hours the motile strategies of the lower LB concentrations can be seen
and their area of spread increases significantly compared to 24 hours (Figure 7). The 0%
LB bacteria are forced to evolve more efficient motile strategies so they can search for
more nutrients in their limiting environment, through the expression of spidery tendrils.
Interestingly, the 1% LB mutants only expressed one or two tendrils from the sight of
inoculation, this also occurred briefly in the 0% strains, however, the 0% strains were
able to evolve beyond this and produce many tendrils. Although the 0% LB strains
produced more tendrils than 1% LB, the difference in their area of spread was
insignificant (Figure 7), likely due to the small amount of colonisation the 1% LB strains

did at the site of inoculation.
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The bacteria grown on 10% were the only bacteria that showed any significant change in
the area spread throughout the eight transfers at 24 hours (Figure 7). What did change
is the motile phenotype expressed (Figure 8) | found that all the ancestral P. fluorescens
strains used the smooth spreading motile strategy. As the concentration of LB decrease,

there is a shift towards spidery spreading.

| also introduced a positive and negative selection into the gradient experiment to see
whether the motile phenotype is effect by the distance in which the bacteria travelled.
These results prove insignificant (F1,09=0.015, p=0.678) and no evidence of increased or

decreased motility was observed nor a change in the methods of motility.
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Figure 7: The evolution of flagellar based motility (measured in area of spread) of wild-type P. fluorescens on a LB
gradient from 50% to 0% mixed with minimal M9 media of the results after 8 transfers at 24 hours (A) and 48 hours
(B). At 24 hours (A), little motility is shown in the lower LB concentrations however the higher concentrations show
a large amount of motility. At 48 hours (B), motility is much more substantial in the lower LB concentrations, and
over time the 0% LB mutants are forced to evolve efficient and quick swarming phenotypes, eventually competing

with 50% LB for the most motile bacteria.
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3.3 Phenotypes

| observed a large diversity of motile phenotypes in P. fluorescens species throughout
the cross media experiment. | have categorised these into three groups; smooth,
spidery and a new novel expression | have named ‘sun-like’ (Figure 8). The ancestral
spreading is exclusively smooth. However, after the bacteria have been effectively
expressing motility throughout many generations, they are able to freely express
different motile strategies based on their environment (Figure 9). At high LB
concentrations smooth spreading is common and the lower LB concentrations spidery
spreading in favoured. The sun-like expressed occurs when the bacteria have evolved
towards a low LB environment and then introduced to a higher LB environment. In the
case of the sun-like motility it appears to be a combination of smooth and spidery

spreading which are competing, resulting in its distinctive expression.

Figure 8: The evolution of the three distinct methods of motile observed through the nutrient gradient of LB mixed with
M9 salts. LB increase from left to right. Yellow shows the typical ancestral growth and how to evolve to utilise different
motile strategies based of nutrient environment. Blue shows the evolution of spidery motility under minimal nutrients
where the bacteria must search for a more variable nutrient source. Red shows the evolution of smooth spreading when
nutrients are not an issue. The bacteria utilise a greater surface area relying on surfactant production to take advantage of
the plentiful nutrients available to them. Green shows the evolving of ‘sun-like’ phenotype, where there is an equally

selection for spidery and smooth spreading so the bacteria benefit from combination of motile expressions.
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Media History |N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Environment
50LB 1] 1] 1] 1] 1] 1] 1] 1] 1] 2 1] 1] 1] 1 1 1 1 1 1 1
10LB 1 1 1 1 2| 2 50LB
1LB 1 2 2 1 1 1 1 1 1 1 1 1
OLB 1 1 1
50LB 2| 1 1 1 1 1
10LB 1 1 2| 1 1 1 2| 1 2| 1 2| 1 2 1 2| 2 10LB
1LB 1 1 1 2| 1 2
OLB 2] 2 1 1
50LB 2 1 1 2| 2
10LB 2 1 1 2 1 1 2 2 1 1LB
1B 2| 2| 2| 2| 2| 2| 1 2| 1 2| 2|
OLB 2 2 1 1 2 2 2 2 2 1 2| 2 2 2 2

2 2 .

2 1 2| 2 2

2 2 2| 2 2

2| 2| 2| 2 1

1 Smooth

2 Spidery

3 Sun-Like
Indistinguishable

Figure 9: The morphotypes of every strain tested on all four mediums during the cross media experiment. This sable shows all ten replicates of the Positive (P)
and the Negative (N) selections. The two most stable mediums are the two extremes (50LB and OLB) suggesting the strongest selection towards a motile
phenotype when nutrients are plentiful (smooth) or sparse (spidery). Many phenotypes are indistinguishable in the middle LB concentrations of 1LB and 10LB
suggesting an unstable competition between different motile methods. The only generalist evolution, which does not appear to be media specific, is that those
that have evolved on the lowest LB concentration, will perform the novel ‘sun-like’ motile when introduced to a more generous nutrient environment.

There are examples where the motile phenotype of the strain is strong and so the dramatic change in nutrients plays no affect in influencing the phenotype, for
example 50LBN10, 10LBP6 and OLBP4.



3.4 Cross media area spread

The purpose of this experiment was to understand whether motility fitness is media

specific or an evolved trait of the bacteria grown under the specific mediums. Every T8

strain was measured on every medium used in the gradient experiment. The bacteria

were point inoculated and area spread measurements taken at 24 hours and 48 hours.

48 hours gave time to allow the bacteria grown in nutrient limiting environments to

express a comparable amount of motility.

3.4.1 Area spread

The first observation is that it is clear that evolving strains of P. fluorescens towards

motility over a 16 day period significantly increases their motility. All strains

outperformed the ancestral wild-type of which they evolved from on all mediums, even

after 48 hours of growth (Figure 10 and 11).
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Figure 10: Graphs of the cross media experiment at 24 hours carried out on 50% 10% 1% and 0% LB (A, B, C

and D respectively).
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Figure 11: Graphs of the cross media experiment at 48 hours carried out on 50% 10% 1% and 0% LB (A, B, C

and D respectively)
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Figure 12: The Cross media graphs separated into media history (the evolved environments of each mutant)
at 50%, 10%, 1% and 0% LB (A, B, C, D respectively). Shows how 50% and 10% mutants become specific to
their evolved environment whereas 0% and 1% mutants evolve generalist strategies to increase motile

spread based on their nutrient availability.
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A second observation is that those which have evolved on the lower LB concentrations
(1% and 0% LB) appear to on average have a slight motile advantage over the higher LB
concentrations (Figure 12). The statistics for this experiment show that the high LB
mediums (50% and 10%), which both predominantly use smooth spreading are not
significantly different to each (F1,80=0.745,P= 0.842) other but are significantly different
to the lower two LB concentrations (F1,160=0.543, P<0.05). Suggesting the shift in area

spread occurs between 10% and 1% LB.

3.5 Biosurfactant assay
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Figure 13: The biosurfacant production graphs separated into media history (the evolved environments of each

mutant) at 50%, 10%, 1% and 0% LB (A, B, C, D respectively).

The surfactant assay aimed to prove that biosurfactant production increases in smooth
spreading to provide a less resource intensive method of motility. However, the results
seemed to prove the opposite. It appears that biosurfactant production is greater in the
bacteria evolved in the lower LB concentrations (Figure 13). What does seem to happen
is that biosurfactant production is media specific (F1,3=122.60, P<0.05), as the complete
absence of LB results in a significant loss of biosurfactant production (Figure 13). All the
bacteria produced far more biosurfactant than the ancestral SBW25 strain in
biosurfactant production, meaning that evolving towards flagella dependent motility

increases biosurfactant production.
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4.0 Discussion

4.1 Evolved Motility of fleQ Knockouts

4.1.1 Environmental Effect

As found by Taylor et al (2015), the non-motile mutant of P. fluorescens achieved motility
through time and selection on all four mediums tested. The results follow the idea that
an active nitrogen regulation network is required. The no nitrogen control showed
limited bacterial growth throughout; this is likely due to a reduced survival rate because
of the low nutrient environment. However, it is peculiar that the bacteria evolved
motility in this negative control. This is likely due to presence of trace nitrogen either
from the agar, or possibly from the volatile ammonia media which was created alongside

the nitrogen void medium.

Taken altogether, an active nitrogen regulation system appears to have a great influence
on the acquisition of motility in non-motile Pseudomonas spp. The nitrogen condition
with the highest nitrogen levels (LB) achieved the greatest spread of growth closely
followed by the minimal M9 media. This would suggest that active nitrogen regulation is

required. However, an abundance of nitrogen allows the bacterial motility to thrive.

In the ammonia environment, where the nitrogen source is exclusive, motility took
longer to establish and was never as substantial as the LB or M9 environments. Therefore
motility can still occur in non-motile P. fluorescens in an exclusive nitrogen environment,
but its success and benefits are reduced. This could be due to a greater dependence on
the nitrogen regulating genes, thus evolving these genes to express motility is less

favourable.

The comparison between the effective acquisition between the M9 and ammonia
environments is curious. Given that the M9 environment nitrogen source is much lower
than the ammonia nitrogen source, it may be expected that the bacteria adapt quicker

towards motility in the ammonia environment. However, ammonia is toxic to bacteria
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(Miller et al 2006), meaning the non-motile P. fluorescens had to compete with the toxic
selection pressure. The resulting consequence considerably reduced the adaptation
towards motility, suggesting that the toxic environment selects against motility because
the mutation that confers motility would increase ammonia intake into the cell to toxic
levels. Therefore motility is constrained within these environments. Thereby, in order for
motility to evolve in ammonia the bacteria must have first built a resistance to its toxic
environment. This gives reasoning as to why motility was able to establish in the M9

medium more readily than ammonia.

4.1.2 Selecting Motility in Non-motile Strains

The evolved AR2 mutants on LB were the only samples to have any effect on the positive
and negative selection, where the positive selection significantly increased motility over
the negative selection. | believe this to be the result of a combination between increased
motility diversity at a high nutrient environment (as there is no consequence for slow
motility) and also the fragile nature of acquiring motility through rewiring another
regulatory network. The unstable flagella regulation, coupled with an ample nutrient
environment, reduces a natural push towards increased motility and so population can

be easily manipulated artificially.

4.1.3 Phenotypic Effect

The non-motile AR2 mutants only expressed smooth spreading across all the mediums,
whereas the wild-type expressed smooth and spidery with the additional of the novel
sun-like motility. This lack of diversity in the AR2 motility could be due to flagellar
strength. An evolved flagellar regulatory system from homologous genes may not be as
reliable or as strong as a wild-type mechanism; therefore the strength of the product
may not behave as well. In other words, the AR2 mutants may not have a robust flagellar
regulating mechanism, therefore, the flagellar number is reduced and mutations within
the operon could result in a brittle protein structure. For spidery motility, flagella appear
to play a vital role, due to its common appearance in hypermotility (van Ditmarsch et al.,
2013). Although the non-motile mutant also has a transposon inserted into the viscosin

producing gene viscC, | still predict a role of biosurfactant in the smooth spreading of the
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AR2 mutants. This can be the result of a different biosurfactant, or the loss the

transposon.

My reasoning behind a reliance of biosurfactant in the AR2 motility stems from the
exclusive motile method (smooth), and a theory of a weakened flagella. The neat circle
spread from the site of inoculation observed in the AR2 mutants suggests that they are
relying on biosurfactants to move therefore reducing their flagella production; this can
be cost effective, due to the intensive production of flagella and constant metabolic
fuelling of the flagella (Zhao et al., 2007 and Martinez-Garcia et al., 2014). If this is the
case, the evolutionary trait may only be useful in vitro, as flagella offer more than just
motility to bacteria, in their natural environment P. fluorescens must compete for
nutrients, location and with pathogens in all of which the flagella plays a role (de Weert
et al., 2002, Capdevila et al., 2004 and Péchy-Tarr et al., 2005). Undoubtedly, if the non-
motile strain was introduced into the wild, it would quickly be outcompeted and become
extinct purely as motility is such an important trait in vivo (Martinez-Granero et al.,
2006). The smooth spreading also occurs in the wild-type strain if there is an abundant
nutrient environment. This theory suggests that with an abundance of nutrients and no
competition, P. fluorescens is better suited to a less flagella intensive motile morphology
and relies on biosurfactant to more effortlessly glide across their environment to acquire
nutrients. This approach gives the bacteria substantial motility with the minimum

amount of energy needed.

4.1.4 Non-motile Versus Wild-type

Overall, the wild-type strain was much more successful in colonising an environment
than the mutants. The area spread by the wild-type strain was, on average, much more
than the mutant strains, even once motility was widely expressed in the mutants.
Therefore it seems that the resurrection of flagella regulation, from the rewiring of past

evolution, will not be as successful as the wild-type.

This is also true for the diversity of motile expression. As | have previously explained, the

AR2 mutant was restricted to one motile phenotype (smooth) and thus removed the
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benefits of the spidery phenotype when exposed to a less nutrient rich environment.
These limitations could drastically impair the bacteria in the wild and leave them exposed

to competition and predators.

4.2 Motile Phenotypes of Wild-type P. fluorescens

The most striking observation found in the cross media and gradient experiments is the
large diversity of motile phenotypes across the P. fluorescens species. These motile
phenotypes have been categorised into three groups; Smooth, spidery and a new novel
expression named ‘sun-like’ (Figure 8). The smooth and spidery spreaders and well
recognised across the Pseudomonas genus, however, | believe the observed sun-like
method is a new expression that occurs when there is no strong selection for spidery or

smooth motility at high nutrient levels.

4.2.1 Smooth Spreading

Smooth motility occurred most commonly with a strong presence of LB when nutrients
are rich (Figure 9). The benefit of smooth spreading is the increased surface area for the
bacteria to colonise, which increases exponentially. | theorised at the beginning that
smooth spreading was the result of a substantial biosurfactant production mechanism,
causing the smooth spreading by the colony being held together by the surface tension
of the biosurfacant, rather than venturing their own paths through the media. Although,
the cross media experiment showed that those which evolved in an environment which
selected for spidery spreading produce more biosurfactant if nutrients become more
favourable (Figure 13). This suggests that the bacteria evolved more effective motility
methods if starved of nutrients, meaning that when nutrients are dramatically
decreased, bacteria become more motile efficient in comparison to those which have
adapted to a more nutrient-rich environment. In other words, when bacteria evolve to
adapt motility in a stressful environment, it can enhance their motility in a stable

environment.
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Rather than smooth spreading being a general evolved trait of a bacterial community, it
appears to be media specific. As even the bacteria which adapted towards spidery
motility were able to immediately adapt when conditions are favourable to smooth
spreading (Figure 9). Suggesting that smooth spreading mechanisms can be turned on
and off depending on the specific environment. | would also argue that smooth spreading
is synonymous with increased biosurfactant production but again it is media dependent.
Very little biosurfactant was produced in the low LB environments (Figure 13) which is
where the least smooth spreaders occurred (Figure 9). Although it is clear there is a
relationship between smooth spreading and biosurfacant production on a high nutrient
environment, | cannot state the direction of the relationship, i.e. whether a high LB
concentration selects for smooth spreading or increase biosurfactant production.

However, | am sure that whichever is selected for, the other one will be apparent.

It is also worth considering that plentiful nutrients mean the selection for finding
nutrients is removed and thus there is no need to fuel such resource intensive flagellar
system. In this case, reliance on biosurfacants could be more cost-effective and gives
greater evidence to the directionless circle of growth in smooth spreading. The
weakened flagellar systems means less independent movement and the bacteria spread
as a colony head together by the surface tension from the viscosity of biosurfacants. The
impaired flagella function in motility could translated to other flagella roles i.e. biofilm
formation. However, the numerous benefits and the general bacterium’s dependence of
flagella mean that its role is quickly restored when needed, even in the case of a
catastrophic deletion of the flagellar regulating gene fleQ where other genes can be

rewired from previous homoglous adaption (Taylor et al., 2015).

4.2.2 Spidery Spreading

Spidery spreading is highly associated with a low LB environment (Figure 9). The
prominent tendrils of spidery motility are often associated with hypermotility (van
Ditmarsch et al., 2013) and thus, the spidery spreaders | observed are likely to be the
most efficient movers. These spreaders occurred most when biosurfacant production

was at its lowest (Figure 13), therefore it is possible that spidery spreading only occurs
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when biosurfactant is not selected for. But again, it is difficult based on the current
results to conclude definitively whether the environment is selecting primary for spidery
spreading or reduced biosurfactant production. However, it is likely that one is selected

for, which causes the other.

Another reason for occurrence of spidery spreading at low nutrients is the balance
between exploration and colonisation. Spidery spreaders move a greater distance but at
a cost to an overall surface area, and so are more cable of exploring an environment than
colonising it. At low nutrients, exploration would be favoured to find a more nutrient rich
source and so spidery motility would a more successful alternative to smooth spreading.
At low nutrient levels it is not favourable for the bacteria to stay and colonise the current
environment as this could be fatal in the long-run for the community. Therefore the
bacteria spread directionally using spidery tendrils to actively search for more nutrient

rich environments.

It is also possible that the cost of producing biosurfacants is high and therefore an
unnecessary expense to the bacteria when nutrients are low (Makkar and Cameotra
1999). So, by avoiding wasting nutrients on biosurfacant production, provides a benefit.
Although | do not know how much of a selection resource conservation is, as increase
flagella number and intensity also come at a high cost (Zhao et al., 2007) so | postulate
that the gain may not out way the cost when replacing biosurfactant with flagella usage

in spidery spreading.

4.2.3 Sun-like

The Sun-like phenotype occurred only at the highest LB concertation (Figure 9). | believe
this motile phenotype to be a combination of both spidery and smooth spreading. The
high nutrient environment creates an opportunity for a highly diverse bacterial
community, as there are fewer stressful selections the bacteria must adapt to. Therefore,
it is not unreasonable to expect that that many motile phenotypes are being co-
expressed. In this case however, | am speculating that this motile phenotype was a

community of co-operators and cheaters. Here, the pioneering spidery spreaders pave
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the way through the media, almost like roads through a forest, and the smooth spreaders
hitch-hike through the roads and spread using biosurfacants to colonise the nearby area.
Creating the large smooth growth surrounded by thick tendrils, which | have named sun-

like.

| believe the reason the sun-like phenotype only occurs in higher LB concentrations, is
the absence of the cheaters when nutrients are less accessible. As | mentioned, these
cheaters are likely to be the expression of smooth spreaders which my results have
shown to not be selected at lower nutrient concentrations (Figure 8 and Figure 9). AT
low nutrient levels, the community must constantly explore a harsh environment, as
attempts to colonise an area will quickly use up to local resources thus causing the
extinction of the colony. Therefore, any cheaters which aim to piggy back off the spidery
explorers at low nutrients levels will not survive long enough for effective reproduction,

so the characteristic sun-like phenotype does not occur.

For this reason, | propose the sun-like expressions is the result of the environment and
phenotypic diversity in the population, where both colonisers and explores (i.e. smooth
spreaders and spidery spreaders) can exists as there is no negative selection for one. The
expression occurs when a bacterial strain has adapted towards efficient motility, which
allows the community to flourish when a motile strength is advantageous. The abundant
nutrients reduce the selection towards a specific phenotype and thus they are co-
expressed. The nature of the spidery phenotype means they can explore greater
distances, and so if the smooth spreaders are able to adhere to the spidery spreaders
they can take advantage of these distances and increase the speed in which they colonise
area. As the smooth spreaders are more efficient in colonising a large surface area, their
population dramatically increases whereas the spidery spreaders population can only
increase through the paths they travel. Sometimes, when sun-like expression is
observed on a petri dish, after 48 hours the only evidence of spidery spreaders is a very
faint pale white line showing the paths they travelled, the rest of the plate appears to be

one giant smooth spreader.

Alternatively, the sun-like spreaders may be the causes of a high nutrient environment

allowing specialisation very quickly. In this case there would be no selection for cheaters,
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just increased motility. So in this situation, the environment allows for a highly diverse
population and for very quick motility to cross the media. The bacteria diversify between
ancestral (smooth) spreading and hypermotile (spidery) spreading bacteria, which co-

exist having no effect on each other’s success.

4.3 Biosurfactant

4.3.1 LB Interaction with Biosurfactant

There is a significant difference between the production of viscosin and the presence of
any small amount of LB (Figure 13). This suggests a minimal amount of LB can act as a
catalyst for viscosin production. Or the LB nutrients favour protein formation allowing
for increased viscosin and an exclusive M9 minimal media prolongs protein expression.
There have been successful adaptions of protein measurements from minimal M9 media
which increase protein production through the addition of LB (Cai et al., 2016 and Paliy
et al., 2003), therefore it is likely the absence of LB is significantly impairing viscosin
production possibly due to a lack of resource to produce a useable amount of viscosin.
Using this point of view you could argue that the media selects for biosurfactants, which

the presence, or absences of, selects between smooth or spidery motility respectively.

4.3.2 Evolving Biosurfactant Usage

What is definitely clear is that viscosin production, regardless of the motility strategy,
increases in quantity if the bacteria are selected for motility. This is evident by the fact
that every selected strain of SBW25 produced far more viscosin than the ancestral strain.
Therefore, this suggests that viscosin supplies a strong benefit to motility, so much so
that selecting for motility has a direct effect on viscosin production. Although viscosin is
not essential for motility, its aids can undeniably be a deciding factor when faced with

competition and increasing the community fitness.
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5.0 Conclusion and Further Research

Overall, evolved motility in the non-motile strain of P. fluorescens is not as effective as
the wild-type strain. The non-motile mutant cannot adapt to environments as well as the
wild-type nor is it able to colonise an area as well as the wild-type. To further prove my
theory that the AR2 mutants have weaken flagellum, | would like to assess the number
through electron microscopy, or the speed in which the single cells are able to move
through a microfluidic devices. Molecularly, | could assess the number of point mutations

in the fleN gene to get an understanding of flagellar number (Dasgupta et a/ 2000)

What would be interesting is to see whether other flagella involving functions are able
to resurrect flagella regulation in non-motile P. fluorescens, for example biofilm
formation. | could investigate whether substantial biofilms can be formed by evolving
ntrC and ntrB in non-motile P. fluorescens. If flagella function is repaired | can delve
further and see whether the evolution can induce hypermotility. If the non-motile strains
do not evolve any flagellum then it raises an interesting consideration between the

importance of motility verses biofilm formation in the evolution of flagella.

The smooth and spidery motile phenotypes are clearly dependent on nutrient availability
and | believe spidery motility to be induced in times of stress where the bacteria must
explore for a less stressful environment. If spidery motility is a stress response, it may
also be employed when the community is exposed to competition or predators. So |
could test whether specific motile phenotypes are preferred when competing against

other bacteria, or in defence of a predator on agar.

Smooth spreading is seen when the bacteria are in a comfortable environment. | believe
a major factor behind smooth spreading is an increase in biosurfactant production,
however | am unsure whether the environment selects for smooth spreading which
induces increased biosurfacants, or vice versa. To test this | could grow the bacteria in a
liquid broth, rather than agar, where swarming motility is not as essential. Biosurfactant
production can be detected by inoculating and incubating varied LB concentrations at

27°C overnight. After shaking for 10 seconds and then being allowed to rest for 5 minutes
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at room temperature, the biosurfactant presence can be measured (Alsohim 2010). A
positive result for biosurfacant is frothy broth at the air-liquid surface. A measurement
here between different nutrient concentrations would give an indication whether

biosurfacant alone is affected by nutrient levels.

To give further understanding whether my theory of the sun-like motility is a
combination of both spidery and smooth spreading, it would be useful to have a 48 hour
time-lapse of the bacterial spread on agar. This will give evidence as to whether the
spidery tentacles are indeed pioneering through the environment, allowing the smooth
spreaders to take advantage to these paths by spreading out using biosurfactants. | could
also test whether the population has a large diversity of flagella number, as the spidery
spreaders should express a greater number of flagella, whereas the smooth spreaders
express fewer. This would result in a varied flagella number within population. Testing
for flagella number can be done using electron microscopy or through sequencing the

fleN gene for point mutations.

What is most essential is to supply ecological significance to this research. A plant assay
to understand whether smooth or spidery spreading aids colonisation of plants would
prove vital to accompany this research. By measuring whether a particular motile
method favours rhizosphere occupation, or has the potential to aid plant growth, could
be of huge benefit agriculturally. To understand this it is possible to induce motile
phenotype through LB concentration and have a plant root in the centre of the medium.
The bacteria can be inoculated away from the root and after incubation; the levels of
bacteria on the plant root can be measured, through a serial dilution on nitrofurantoin
medium. Another method to assess this is to take natural isolates from stressful
environments, i.e. a phage infected population or naturally low nutrient environment.
These isolates may favour a particular spreading method and thus give evidences to
whether stressful environments select for spidery motility. The same experiment can be
done from areas of high colonisation, to see if these natural isolates favour smooth
spreading. If a significant difference is found this would be useful in terms of biofertiliser

or biocontrol.
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The Pseudomonas spp. is known to have many colony morphologies, each of which holds
important adaptions for the bacteria. For example, the wrinkly spreaders have strong
adhesive properties, allowing adhesion to each other and surfaces creating a self-
supporting mat (Rainey and Travisano 1998), or the trade-off in fuzzy spreaders between
resistance to bacteriophage and poor biofilm formation (Ferguson et al 2013). Moreover,
previous studies have connected the changes in bacterial motility with antipredatory-
defence (Friman et al., 2008) and fitness advantages in the presence of phages (Taylor
and Buckling 2013). While, these patterns might not be universal (Koskella et al., 2011)
it is possible that the motile phenotypes | have underpinned may also have yet undefined

ecological significances in wider context of bacterial fitness.
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