
Lectin-like oxidised low density lipoprotein 1 

scavenger receptor regulation of signal 

transduction in cell function and 

atherosclerosis 

 

 

 

 

 

Izma ‘Izzah Nadhirah Abdul Zani 

 

 

 

 

 

 

Submitted in accordance with the requirements for the 

degree of Doctor of Philosophy 

 

 

The University of Leeds 

Faculty of Biological Sciences 

 

 

2017 



-ii- 
 

The candidate confirms that the work submitted is her own, except where 

work which has formed part of jointly-authored publications has been 

included. The contribution of the candidate and the other authors to this 

work has been explicitly indicated below. The candidate confirms that the 

appropriate credit has been given within the thesis where reference has 

been made to the work of other. 

Jointly authored publications: 

Chapter 1 

Abdul Zani, I, Stephen, SL, Mughal, NA, Russel, DA, Homer-

Vanniasinkam, S, Wheatcroft, SB and Ponnambalam, S. (2015) 

Scavenger receptor structure and function in health and disease. Cells 

4(2):178-201. 

I.A.Z., S.S.L., N.A.M. wrote the manuscript. I.A.Z., D.A.R., S.H.V., S.B.W., 

S.V.P. revised the manuscript. 

De Siqueira, J, Abdul Zani, I, Russel, DA, Wheatcroft, SB, Ponnambalam, 

S and Homer-Vanniasinkam, S. (2015) Clinical and pre-clinical use of 

LOX-1-specific antibodies in diagnostics and therapeutics. J Cardiovasc 

Transl Res 8(8):458-465. 

J.D.S wrote the manuscript. I.A.Z. contributed to one of the schematic 

figures. J.D.S., I.A.Z., D.A.R., S.B.W., S.V.P., S.H.V. revised the 

manuscript. 

 

 

 



-iii- 
 

This copy has been supplied on the understanding that it is copyright 

material and that no quotation from the thesis may be published without 

proper acknowledgement. 

© 2017 The University of Leeds and Izma Abdul Zani. 

The right of Izma ‘Izzah Nadhirah Abdul Zani to be identified as Author of 

this work has been asserted by her in accordance with the Copyright, 

Designs and Patents Act 1988. 

 

 

 

 

 

 

 

 

 

 

 

 



-iv- 
 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to Dr. Vas Ponnambalam for giving 

me the opportunity to undertake this very special project. I would like to 

thank him for his advice and support. Throughout my four years, he has 

made me more confident, helped me developed many important skills and 

learned new techniques, and most importantly, I am not discouraged by 

science in academia, yet. I am also thankful of Dr. Stephen Wheatcroft for 

all your help, advice and encouragements. In addition, to Dr. Mike 

Harrison, thank you for your advice and help especially on my technical 

lab skills. I would also like to thank Dr. James Duce and Dr. Bruce 

Turnbull for collaborating with LOX-1 project and also for their insightful 

advice. Moreover, I would like to thank Dr. Nadira Yuldasheva, and I am 

grateful for her advice and assistance in all of the animal work done for my 

project. Furthermore, I would not have been here without the Brunei 

government sponsoring this project. 

It has been an interesting experience to have met people working in the 

same lab area. I firstly would like to thank Nadeem Mughal and Dr. Sam 

Stephens for passing down all their resources and information for me to 

get on with my project. I also would like to thank Adam Odell, Gina Smith, 

Hema, Anna Skromna, Natasha, Jon De Siqueira, Robert Andrews, Jack 

Goode and Nada Abuarab for having the patience to show and teach me 

in the lab. To Gareth Fearnley, thank you for being so understanding and 

patient with me, I really appreciate all your help, advice and support. A 

special thank you to my gym-buddy, Andrew Tsatsanis, with your constant 

distraction, I still manage to finish my project on time and thank you so 

much for all the help and materials you have provided. Furthermore, it has 

been great to have met these amazing people: Robbie Bedford, Faheem, 

Asta, Edgar, Beth Noble, Natalie, Nicola, Sophie, Lia, Tom, Oleg, Romana 

and Ploy. Lastly, I would like to thank my parents for all their support and 

advice. 



-v- 
 

ABSTRACT 

Since the discovery of the lectin-like oxidized low-density lipoprotein 

receptor 1 (LOX-1) by Sawamura and colleagues in 1997, this multi-ligand 

receptor has been implicated in atherosclerosis and diabetes. Oxidised 

LDL binding and trafficking via LOX-1 cause the activation of downstream 

signal transduction that cause pro-athrogenic changes such as endothelial 

dysfunction, apoptosis and foam cell formation. However, the molecular 

mechanisms have not be been fully explained. In this study, tetracycline-

inducible cell lines expressing LOX-1 wild-type and trafficking-defective 

LOX-1-D5A were developed. The findings show different trafficking 

properties between LOX-1-WT and LOX-1-D5A in response to oxidised 

LDL. Due to these differences, LOX-1-WT and LOX-1-D5A in response to 

oxidised LDL exhibited differential downstream signal transduction. 

Moreover, 24 hour stimulation of oxidised LDL via LOX-1-WT caused 

decreased endothelial cell permeability; however, the underlying 

mechanism is not clear. The impact of deleting LOX-1 in ApoE knockout 

mice was reduced aortic plaque coverage. This study revealed that pro-

atherogenic signal transduction was reduced in aorta in LOX-1/ApoE 

double knockout mice compared to ApoE knockout mice. Furthermore, the 

same pro-atherogenic signal transduction was increased in the liver of 

LOX-1/ApoE knockout mice. The differential signal transduction outcomes 

in the aorta or liver are dependent on the status of the atherosclerosis 

disease. LOX-1 is reported to play a role in glucose and lipid homeostasis. 

Previously, deleting LOX-1 revealed altered glucose metabolism and 

insulin resistance phenotype. In this study, differences in downstream 

insulin signalling pathways were exhibited in the skeletal muscle and 

adipose tissue of LOX-1 knockout and wild-type mice. Experimental 

findings also revealed the influence of LOX-1 genotype in iron metabolism 

in the liver. This work has provided insights on a potential role of LOX-1 

clearing oxidised LDL from the circulation, and for the first time, this study 

potentially showed the role of LOX-1 in glucose homeostasis and iron 

metabolism.  
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CHAPTER 1 

Introduction 

 

1.1 Atherosclerosis 

According to the World Health Organization fact sheet, cardiovascular 

disease was the top cause of death in the world in 2000 and 2012 (WHO, 

2014). Cardiovascular disease is the leading cause of death in the 

Western world and is also increasingly prevalent in developing countries. 

Cardiovascular disease is now responsible for more deaths worldwide 

than cancer, trauma and infectious diseases, leading it to be labelled a 

worldwide epidemic (Callow, 2006). In 2012 alone, cardiovascular 

diseases took more than 15 million lives worldwide, which translate to 3 in 

every 10 fatalities. The primary etiologic lesion of cardiovascular disease 

is atherosclerosis that causes vessel stenosis, embolus via thrombus 

formation, and ischaemia of heart and brain (WHO, 2014).  

Atherosclerosis is a chronic disease of the arterial wall and is the 

principal cause of heart attack, stroke and gangrene of the extremities that 

is responsible for 50% of all mortality in the USA, Europe and Japan 

(Ross, 1993). Over the past 50 years, epidemiological studies have 

revealed a number of environmental and genetic risk factors (Lusis, 2000). 

The complex aetiology of atherosclerosis has hindered the advancement 

in describing the cellular and molecular interactions involved in the 

disease. Research into the disease has led to many compelling 

hypotheses about the pathophysiology of atherosclerotic lesion formation 

resulting from an excessive inflammatory fibrous-proliferative response 

causing various forms of insult to the endothelial cell and smooth muscle 

cell of the arterial wall (Glass and Witztum, 2001; Libby, 2003; Lusis, 

2000). Despite the advances in understanding and preventing the 
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pathogenesis of atherosclerosis, there is still lack of evidence showing 

lipoprotein oxidation, inflammation and immunity are involved in human 

atherosclerosis (Libby et al., 2011).  

The beginning process of atherosclerosis starts in early childhood 

when the first apparent deposit of fats in the intima of the large arteries 

canbe detected (Holman et al., 1958; McGill et al., 2000; Williams et al., 

2002). With the consumption of high-fat, cholesterol diets in industrialised 

societies, this potentially drives the process of atherosclerosis. Thus, the 

abundance of plasma lipoproteins seems to be one of the primary risk 

factors of the disease, with the principal atherogenic lipoprotein in the 

blood being low-density lipoprotein (LDL) (Tall and Yvan-Charvet, 2015).  

At one point, atherosclerosis was thought to be a degenerative 

disease in relation to aging. Studies in the past decades have shown 

atherosclerosis is neither a degenerative disease nor predictable (Berliner 

et al., 1995). On the contrary, the role of inflammation has been 

appreciated more linking it to atherosclerosis, either causing it directly or 

indirectly. Pathological studies have demonstrated distinct changes in the 

vessel during atherogenesis, and also showed the involvement of blood-

derived inflammatory cells especially monocytes/macrophages (Lusis, 

2000). A vast number of growth factors (vascular endothelial growth 

factor, VEGF) and cytokines (interleukin-1, IL-1; tumour necrosis factor-α, 

TNF-α) are also known molecules to participate in the pathogenesis of 

atherosclerosis (Ross, 1993). Altogether, the accumulation of atherogenic 

lipoproteins in the intima contributes to the recruitment of monocytes to 

site of the lesion, which possibly explain the underlying cellular and 

molecular mechanisms that lead to atherosclerosis (Libby et al., 2002).  

 

 

 

 

 



Figure 1.1. Events in atherosclerosis. (1) Low-density lipoproteins (LDL) 

pass into sub-endothelial layer where it gets oxidised (oxLDL).  (2) OxLDL 

binds to scavenger receptors such as LOX-1 on endothelial cells, (3) triggering 

expression of adhesion molecules (ICAM1, VCAM1). (4) OxLDL bound to 

macrophage scavenger receptor such as CD36 accumulates in the cytoplasm, 

which cause (5) macrophages transform into foam cells. (6) These foam cells 

and migrated smooth muscle cells form a necrotic core, growing in size and 

cause (7) lumen narrowing. Taken from (De Siqueira et al., 2015). 
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1.1.1 Stages of atherosclerosis 

The underlying cause of myocardial infarction, stroke, and ischaemic heart 

pain is due to atherosclerosis. These diseases, collectively, are known for 

the leading cause of death in the world, and the incidence continues to 

increase linked to rising epidemic of obesity and Type 2 diabetes 

(Braunwald, 1997; WHO, 2014). According to the theories on the 

pathogenesis of atherosclerosis, the possible events of atherosclerosis 

involve lipid deposition, vascular endothelium injury, monocyte 

recruitment, macrophage differentiation and vascular smooth muscle cell 

proliferation, as shown in figure 1.1 (Badimon et al., 1993). These factors 

form the characteristic of the atherosclerotic plaque.  

1.1.1.1 Lesion initiation  

The first detectable lesion of the disease is the so-called ‘fatty streak’, 

which is the retention of apolipoprotein-B (Apo-B)-containing atherogenic 

lipoprotein within the innermost layer of the artery wall, the intima 

(Williams and Tabas, 1995). The pathogenesis of atherosclerosis starts 

with detectable fatty streak early in life as young as 10-14 years of age, 

furthermore, it is attested to by the finding of fatty streak in animal models, 

which precede the development of intermediate lesions (McGill, 1984; 

Stary, 1989; Masuda and Ross, 1990a; Masuda and Ross, 1990b).  

The endothelium that lines the innermost layer of artery has tight 

intercellular junctions that serve as a permeable barrier between the blood 

and tissues. Mechanical force such as fluid shear stress exerting on 

endothelial cells has a tremendous effect on the morphology of endothelial 

cells. In tubular sections of arteries, endothelial cells are polygonal in 

shape and aligned unidirectional to the blood flow, where blood flow is 

laminar and uniform. In focal areas of arteries branching or curving, the 

endothelial cells have no polygonal shapes and no particular co-

ordination, thus the blood flow is disturbed (Gimbrone, 1999). Therefore, 

the regions with more arterial branching are more susceptible for lesion 

formation and increased permeability to molecules such as lipoproteins. 

Accumulation of lipoproteins, especially low-density lipoprotein (LDL), in 
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the sub-endothelial matrix affects the extracellular matrix components 

within the vascular network, which also stimulate the entry and 

accumulation of cholesterol-containing lipid particles in the artery wall 

(Tabas et al., 2007). With increased levels of circulating plasma LDL, the 

transport and accumulation in the sites of lesion also increase. LDL that 

diffuses passively through endothelial cell junction retains within the 

vessel wall, which involves the interaction between Apo-B of LDL and 

proteoglycans in the extracellular matrix (Boren et al., 1998). The most 

significant change during early lesion formation is oxidation of lipid when 

exposed to vascular oxidative products. It has been shown that LDL 

trapped within the walls undergoes modification, involving oxidation, 

glycosylation and aggregation that contribute to inflammation (Figure 1.1). 

The modified product gives rise to oxidised LDL, which is linked to pro-

inflammatory activities and recognized by a number of scavenger 

receptors in macrophages. It is well-known that trapped LDL undergoes 

modification as native LDL is not well-recognized by scavenger receptor to 

generate foam cells (Goldstein et al., 1979; Cyrus et al., 1999). 

1.1.1.2 Inflammation 

Atherosclerosis is characterised by the recruitment of white blood cells 

(leukocytes) to the artery wall. Endothelial cells in the intima typically resist 

the adhering of leukocytes, however, when exposed to aggravating 

conditions such dyslipidaemia and pro-inflammatory mediators like 

adhesion molecules including intercellular adhesion molecule 1 (ICAM-1) 

and vascular cell adhesion molecule 1 (VCAM-1), and growth factors such 

as macrophage colony-stimulating factor (M-CSF) are expressed by 

endothelial cells to attract passing leukocytes on the surface (Ross, 1993; 

Tabas et al., 2007). Modified LDL also inhibits synthesis of nitic oxide that 

is involved in initiating and maintaining vasodilation under normal 

physiological condition (Knowles et al., 2000). The vascular endothelium 

responds to high plasma levels of LDL and disturbed blood flow, and act in 

a paracrine and autocrine manner to maintain vascular homeostasis. 

Hence, alteration of endothelial cell phenotype into a dysfunctional state is 

a pathogenic risk factor of atherosclerosis. 
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The migration of leukocytes into the arterial wall is mediated by 

attachment to adhesion molecules under the influence of both chemotactic 

factors and growth-regulatory molecules released by the altered 

endothelium. The initial step in adhesion, which involves the capturing 

followed by ‘rolling’ of leukocytes along the surface of the endothelium, is 

mediated by selectins (cluster of differentiation 62; CD62) that are 

expressed on leukocytes (Tedder et al., 1995; Dong et al., 1998).  Integrin 

very late antigen-4 (VLA-4) expressed on monocytes mediate firm 

adhesion to VCAM-1 on the activated endothelial cell surface (Alon et al., 

1995).  It is also known that monocyte chemoattractant protein-1 (MCP-1) 

is responsible for direct migration of monocytes at sites of lesion on the 

intima (Gu et al., 1998; Boring et al., 1998). In addition, the proliferation 

and differentiation of monocytes into macrophages is stimulated by 

cytokine M-CSF, which also influences the function of macrophages in 

lesion formation, in terms of expressing scavenger receptors (Smith et al., 

1995).  Anti-inflammatory small molecules such as nitric oxide regulate 

numerous critical cell functions during the process of atherosclerosis that 

involves leukocyte recruitment and migration, smooth muscle cell 

proliferation and control of synthesis of extracellular matrix proteins (Ross, 

1993). At branch points of arteries where atheroprotective mechanisms 

are limited and blood flow is not uniform and laminar, the production of 

local endothelium-derived nitric oxide is reduced; therefore, expression of 

VCAM-1 and ICAM-1 is increased (De Caterina et al., 1995; Nagel et al., 

1994).  

1.1.1.3 Foam cell and plaque formation 

Macrophages are present in all stages of atherosclerosis and function as a 

scavenger cell removing unwanted particles and as a source of 

inflammatory cytokines and growth factors molecules (Gown et al., 1986; 

Jonasson et al., 1986). As the process of atherosclerosis continues, 

monocytes transmigrate beneath the sub-endothelial layer of the intima, 

where monocytes differentiate into macrophages. Beneath the intima 

where macrophages accumulate modified lipoproteins and become foam 

cells (Figure 1.1). As native LDL is not being taken up by macrophages 
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sufficiently, presumably, modification of LDL involves reactive oxygen 

species produced by endothelial cells and macrophages. Several 

enzymes such as myeloperoxidase, sphingomyelinase and phospholipase 

are involved in generating highly reactive species, aggregation of 

lipoprotein leading to accumulation of lipids, and oxidation of LDL (Podrez 

et al., 2000; Marathe et al., 1999; Ivandic et al., 1999). The rapid uptake of 

oxidized LDL leading to foam cell formation is mediated by scavenger 

receptors expressed on macrophages. These scavenger receptors include 

SR-A1, CD36 and LOX-1 are principle receptors involved in 

atherosclerosis (Suzuki et al., 1997; Febbraio et al., 2000). Thus, the 

macrophage is an important pro-inflammatory mediator of cells in the 

atheromatous plaque microenvironment. 

Macrophages also have a role in proliferation, as a result of 

scavenging oxidised LDL, they produce a number of growth factors and 

inflammatory cytokines such as platelet-derived growth factor (PDGF), 

interleukin-1 (IL-1) and tumour necrosis factor α (TNFα) (Heldin and 

Westermark, 1999; Merhi-Soussi et al., 2005; Branen et al., 2004). The 

secretion of cytokines and growth factors by macrophages are crucial for 

smooth muscle cell migration and proliferation and synthesis of 

extracellular matrix components. It was observed that smooth muscle cells 

in arteries respond in an autocrine way to PDGF that further stimulates 

self-secretion of PDGF and also releasing fibroblast growth factor (FGF) 

into neighbouring injured and necrotic smooth muscle cells and the 

overlying endothelium (Baird et al., 1990). The growing mass of 

extracellular atherogenic lipid, the accumulation of migrated smooth 

muscle cells from the medial layer of artery and smooth muscle cell-

derived extracellular matrix make up the fibrous plaques (Figure 1.1). 

There are a number of risk factors to the development of fibrous plaques 

such as increased homocysteine, elevated blood pressure and diabetes. 

Increased homocysteine level in the blood is linked to atherosclerosis by 

causing endothelial cells to become dysfunctional and stimulate vascular 

smooth muscle cells proliferation (Gerhard and Duell, 1999).  

Hypertension mediated by renin-angiotensin pathway cause the 
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expression of angiotensin II (Ang II) in atherosclerosis, which in turn 

stimulates the proliferation of smooth muscle cells and synthesis of 

extracellular matrix components (Negoro et al., 1995). Thus, the smooth 

muscle cell plays the principal role in the fibro-proliferative part of this 

disease process.   

1.2 Role of lipid and lipoproteins in atherogenesis 

Increased serum lipid levels have been strongly linked to the development 

of atherosclerosis. Cholesterol and triglycerides are important components 

of the lipid fraction of the human body. Cholesterol is a hydrophobic 

molecule and an unsaturated alcohol of the steroid family. Cholesterol is 

essential for the structure of animal cell membrane and also important pre-

cursor of bile acids, vitamin D and other steroids; whereas triglycerides 

are esters derived from glycerol and fatty acids, and they are the main 

constituents of body fat (Cox and Garcia-Palmieri, 1990; Oliveira et al., 

2014). As cholesterol and triglycerides are hydrophobic lipid molecules, 

the molecules are transported between cells in the plasma by various 

lipoprotein particles. Plasma lipoproteins are spheroidal particles of 

various size and composition. The lipid core of lipoproteins are composed 

of triglycerides and cholesterol esters, surrounded by a monolayer of 

phospholipids and free cholesterol, and enclosed unevenly by 

apolipoproteins (Apo) (Figure 1.2). Apolipoproteins are amphipathic in 

nature, thus they are able to interact with both the lipids of the lipoprotein 

and the aqueous environment (Segrest et al., 2001). They are grouped 

into two classes: the non-exchangeable apolipoprotein (ApoB-100) and 

exchangeable apolipoprotein (ApoA, ApoC and ApoE) (Segrest et al., 

1992). Apolipoproteins are important components of lipoproteins by 

maintaining the structure of the particle and essential for lipoprotein 

metabolism by binding with specific cell membrane receptors (Dominiczak 

and Caslake, 2011). Plasma lipoproteins are differentiated by their content 

of cholesterol, triglycerides and proteins, and generally classified into five 

major classes: chylomicrons, very low-density lipoproteins (VLDL), 

intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and 
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high-density lipoproteins (HDL). The low-density lipoprotein is involved in 

the delivery of cholesterol to peripheral tissues, and enclosed by only one 

apolipoprotein (ApoB, predominantly B-100) (Esterbauer et al., 1992); the 

high-density lipoprotein is responsible in mediating the inverse process of 

cholesterol transport (Zhang et al., 2003), and enclosed by several 

apolipoproteins (ApoA, C and E) (Movva and Rader, 2008; Superko, 

2009).  

1.2.1 Low-density lipoproteins  

The role of lipoproteins in atherosclerosis is well-established. A significant 

relationship between total cholesterol and coronary heart disease is 

known, however, the total cholesterol level is not an accurate method to 

predict coronary heart disease in patients. Nonetheless, total cholesterol is 

the sum of all cholesterol carried by both atherogenic lipoproteins (VLDL 

and LDL) and anti-atherogenic lipoproteins (HDL). Thus, predicting and 

treating the disease based on LDL-cholesterol levels is important 

(Carmena et al., 2004). ApoB-100 is the only protein component in a 

single LDL particle. LDL of about 180-250 Å in diameter is much smaller in 

size than the originally secreted VLDL, which ranges between 600-800 Å 

(Knott et al., 1986; Chen et al., 1986; Campos et al., 1996; McNamara et 

al., 1996).  

Ground-breaking research by Brown and Goldstein on mutations of 

LDL receptor and accumulation of cholesterol linked to atherosclerosis 

have provided a very strong platform for cardiovascular research and also 

provide convincing evidence that increased LDL levels are sufficient for 

the pathogenesis of atherosclerosis (Brown and Goldstein, 1986). Indeed, 

a critical initial event in atherosclerosis is the retention of ApoB-containing 

LDL in the artery wall that mediates an inflammatory response. For any 

given concentration of LDL-cholesterol in the plasma, LDL retention is 

more crucial than LDL transport into the artery wall (Schwenke and 

Carew, 1989). This is supported by the findings that LDL molecules 

transported across the endothelium were trapped in a three-dimensional 

cage made of fibres and fibrils secreted by the endothelial cells 
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(Nievelstein et al., 1991). This explained the higher concentration of ApoB-

containing LDL in the artery wall than in the plasma, as LDL associates 

with extracellular matrix components in the sub-endothelial space (Hoff et 

al., 1977). 

Despite the ground-breaking findings by Brown and Goldstein, lipid-

laden foam cells were formed in patients and animals lacking the LDL 

receptor, similar to what have been seen in patients and animals with 

functional LDL receptors. Due to this observation, the likely suggestion 

then was that atherosclerosis is not caused by the uptake of native LDL, 

but somewhat, native LDL has to go through a modification process. The 

confusing, yet interesting, enigma was resolved by in vitro incubation of 

modified LDL with a monolayer of arterial endothelial cells and showed 

increased cellular cholesterol content. Furthermore, in vitro incubation of 

macrophages and oxidised LDL also showed cholesterol ester 

accumulation (Quinn et al., 1987). The complex process of LDL oxidation 

involves a change in the proteins and lipids forming more intricate 

products. Extensive alteration in the protein composition and structure is 

due to non-enzymatic oxidative changes in amino acids, and proteolysis 

and cross-links of ApoB (Fong et al., 1987). Therefore, the oxidation of 

LDL induced by cells is a plausible explanation that could justify for the 

initial event, or even the acceleration, of the atherosclerotic process. 

 

 

 

 

 

 

 

 



Phospholipid

Cholesterol

Cholesteryl ester

Apolipoprotein B-100

Figure 1.2. The structure of a low-density lipoprotein (LDL) particle. 

Schematic representation of a LDL particle consists of a hydrophobic core of 

predominantly cholesterol esters. This is surrounded by a monolayer made 

from phospholipids, cholesterol and a single apolipoprotein B-100 (ApoB-

100). Adapted from (Itabe et al., 2011). 
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1.2.2 Oxidised low-density lipoprotein 

Interest in studying oxidised LDL stemmed from observations that 

modification of LDL led to rapid uptake in macrophages. Evidence 

showing the pro-inflammatory and pro-atherogenic properties of oxidised 

LDL as a result of the oxidative modification process in vivo is rather 

controversial. In spite of extensive research for more than 30 years 

addressing the sites of LDL oxidation in vivo, the nature of oxidizing 

agents and the properties of oxidised LDL are all matters of controversy. 

In general, it is known that oxidation of LDL in the circulation is very limited 

due to the presence of anti-oxidants such as apolipoproteins, serum 

albumin, ascorbate, tocopherol and urate. LDL oxidation has to take place 

in the sub-endothelial space of artery wall, where the concentration of anti-

oxidants is relatively lower than in plasma. Additionally, oxidation of LDL 

can be carried out intracellularly, specifically the lysosomal compartment 

in macrophages (Wen and Leake, 2007). Furthermore, LDL oxidation 

could also take place at sites of inflammation where leukocytes infiltrate 

due to increased vascular cell permeability, and perhaps aid into plaque 

formation (Memon et al., 2000). Another study showed substantial amount 

of lipid peroxidation products in human atherosclerotic plaques (Suarna et 

al., 1995). 

Oxidised LDL results from exposing LDL to free radicals and non-

radical oxidants generated by the vascular endothelial cells through 

various enzymatic mechanisms. The free radicals generated by the cells 

include superoxide, nitric oxide, hydroxyl radicals and carbon-centre 

radicals. LDL particles get oxidized by free radicals effectively oxidize the 

polyunsaturated fatty acids producing ApoB-derivative breakdown 

products and alter its receptor recognition to LDL receptor (Halliwell, 2006; 

Niki, 2011). As for non-radical oxidants such as hydrogen peroxide, 

hypochlorite and peroxynitrite, they target the proteins of LDL including 

cysteine, methionine and tyrosine residues. NADPH oxidase, xanthine 

oxidase, nitric oxide synthase, myeloperoxidase and lipoxygenase 

generate oxidants within the arterial wall, and these enzymes have been 
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shown to be present in the atherosclerotic lesions (Stocker and Keaney, 

2005). 

Oxidation of LDL results in a structural change of the surface lipids 

and the ApoB backbone becomes denatured and buried in the lipophilic 

environment (Parasassi et al., 2001). Binding of native LDL to its receptor 

occurs when positively charged lysine residues in ApoB have high affinity 

for negatively charged cysteine residue in the LDL receptor binding 

domain, whereas oxidised LDL lac this property, thus decreasing binding 

affinity to the LDL receptor (Blanco et al., 2010). Possibly, with the 

decreased number of accessible lysine residues on the surface and 

increased electronegativity contributes to its lowered binding capacity to 

LDL receptor (Benitez et al., 2004). Unlike native LDL, oxidised LDL binds 

to proteoglycans, the main component of the sub-endothelial extracellular 

matrix, mediated by the binding of basic residues of ApoB and negatively 

charged proteoglycans. Thus, retention of oxidised LDL within the vessel 

wall due to high affinity to proteoglycans contributes to development of 

atherosclerosis that involves apoptosis, cytokines release, inflammation 

and cytotoxicity (Bancells et al., 2009). 

Oxidised LDL has been reported for its pro- and anti-inflammatory 

effect due to its nature of being a complex molecule. The extent of 

oxidised LDL in determining pro- or anti-inflammatory results depend on 

what the molecule is interacting within the cell, or what receptors being 

bound. The pro-inflammatory effects are primarily mediated by NF-ĸB, 

STAT 1/3, AP-1, to name a few, whereas anti-inflammatory effects are 

mediated by PPARs and HO-1 (Robbesyn et al., 2004). Oxidised LDL is 

an important factor in atherosclerotic plaque formation by producing 

cytotoxic effect, stimulating apoptosis, and producing leukocyte 

recruitment mediators in endothelial cells (Chen et al., 2003; Sanchez-

Quesada et al., 2003; Chang et al., 1997). Therefore, oxidised LDL is a 

potent biomarker in relation to atherosclerosis. 
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1.3 Scavenger receptors 

Scavenger receptors comprise a diverse array of integral membrane 

proteins and soluble-secreted extracellular domain isoforms. These 

proteins are termed scavenger receptor ‘supergroup’, as opposed to a 

superfamily, as this latter term implies primary sequence similarity shared 

across the whole supergroup. A key point is that scavenger receptor 

members within each class bear primary sequence similarity but different 

classes bear little or no primary sequence similarity. The common feature 

uniting this disparate group of proteins within the scavenger receptor 

supergroup is their ability to recognise common ligands such as 

lipoproteins, apoptotic cells, cholesterol esters, phospholipids, 

proteoglycans, ferritin, and carbohydrates. Scavenger receptors were 

initially identified on the basis of their biochemical ability to recognise and 

bind different modified forms of LDL e.g. oxidized LDL. Based on our 

current understanding of SR structure and biological function, these 

proteins are grouped into classes A-J (Figure 1.3) (Abdul Zani et al., 

2015). 
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1.3.1 Class A 

1.3.1.1 Genetics, protein structure and expression 

These are Type II membrane proteins of ~400-500 residues with an N-

terminus comprising a short cytoplasmic domain followed by a single 

transmembrane region and a large extracellular domain that mediates 

ligand recognition. Class A members include SR-A1 (SCARA1), SR-A3 

(SCARA3), SR-A4 (scavenger receptor with C-type lectin; SRCL), and 

SR-A6 (macrophage receptor with collagenous structure; MARCO). A 

unique feature of Class A proteins is a collagen-like domain with collagen-

binding activity with homotrimers of SR-A at the cell surface (Gowen et al., 

2001).  

The SCARA1 gene is on chromosome 8 in both mice and humans. 

SR-A1 is relatively abundant on macrophages but also present on 

vascular smooth muscle and endothelial tissues, especially when 

endothelial cells experience oxidative stress (Mietus-Snyder et al., 1997). 

One common feature is exemplified by SR-A1 such as the ability to bind 

modified or oxidized LDL particles. The SRCL gene is located on human 

chromosome 18 and gene expression is stimulated by oxidative and 

hypoxic stress. SRCL contains a C-type lectin domain and is widely 

expressed including placenta, umbilical cord, lung, skeletal muscle, and 

heart. The MARCO gene is on human chromosome 2 (Kangas et al., 

1999); the gene product lacks the α-helical coiled-coil domain present in 

other Class A members (Ojala et al., 2007). MARCO is expressed in 

tissues of the peritoneum, lymph nodes, liver and spleen macrophages. 

Bacteria or bacterial lipopolysaccharide (LPS) can both stimulate MARCO 

expression (Kraal et al., 2000), linking its function to the innate immune 

response to bacterial infection (Thelen et al., 2010). However, MARCO 

lacks the ability to bind modified LDL particles. 

1.3.1.2 Signal transduction, trafficking and cell function 

SR-A1 undergoes internalization from the surface plasma membrane via 

caveolae-mediated endocytosis routes (Figure 1.4). SR-A1 binding to 
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modified LDL is linked to clathrin-dependent endocytosis via recognition of 

a cytoplasmic dileucine motif (Chen et al., 2006). In antigen-presenting 

cells, SR-A1-mediated pathogen uptake involves lipid raft-dependent 

phagocytosis (Amiel et al., 2007). SR-A1 knockout mice display 50-70% 

reduction in acetylated LDL and oxidised LDL uptake with a corresponding 

size reduction in atherosclerotic lesions (Suzuki et al., 1997; Kamada et 

al., 2001). Nonetheless, there is agreement that gene knockouts cause 

reduced pro-inflammatory responses, macrophage apoptosis and cellular 

necrosis with better stabilization of atherosclerotic plaques (Manning-

Tobin et al., 2009; Makinen et al., 2010). SRCL belongs to the collectin 

family of pattern recognition receptors, which are implicated in innate 

immune responses. During the pro-inflammatory response at sites of 

infection, SRCL can mediate recognition of complex carbohydrates and 

neutrophil granule glycoproteins (Graham et al., 2011; Yoshida et al., 

2003). SRCL levels closely mirror cellular ability to bind, internalize and 

process bacterial and yeast pathogens (Jang et al., 2009; Ohtani et al., 

2001). 

In macrophages, the c-Jun N-terminal kinase (JNK) protein is 

activated in SR-A-mediated foam-cell formation (Ricci et al., 2004). 

Nonetheless, SR-A1-null macrophages display elevated pro-inflammatory 

responses including increase p42/44 (ERK1/2) mitogen-activated protein 

kinase (MAPK) phosphorylation, NF-κB nuclear translocation and 

increased secretion of cytokines (Ohnishi et al., 2011). One view is that 

SR-A1 and MARCO mediates rapid pro-inflammatory ligand internalization 

on vascular cells thus reducing interactions with toll-like receptors (TLRs) 

(Mukhopadhyay et al., 2011). However, SR-A1 and MARCO appear to 

signal through different intracellular pathways with distinct effects on 

immune responses (Jozefowski et al., 2005). On a more global cell 

phenotypic level, expression of MARCO in cultured cells stimulates 

development of plasma membrane-derived dendrites and lamellipodia 

(Pikkarainen et al., 1999), key membranous structures which mediate 

pathogen engulfment by eukaryote cells. 
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1.3.2 Class B 

1.3.2.1 Genetics, protein structure and expression 

The members of this class consist of SR-B1, SCARB2 and CD36. These 

three members have two transmembrane regions located close to the N- 

and C-termini, which straddle a central domain of ~400-450 residues that 

is glycosylated and mediates ligand recognition. The short N- and C-

terminal cytosolic regions are implicated in regulatory roles in signal 

transduction and trafficking. SR-B1 is on human chromosome 12. The SR-

B1 gene product binds HDL, viruses and bacteria; mutation or allelic 

variations in SR-B1 are associated with an increased risk of 

atherosclerosis, infertility and/or an impaired innate immune response 

(Guo et al., 2011; Scarselli et al., 2002; Yates et al., 2011). SCARB2 is on 

human chromosome 4 and predominantly expressed in liver, brain, heart 

and macrophages; the SCARB2 protein mediates binding to HDL particles 

(Ishikawa et al., 2009; Eckhardt et al., 2004). CD36 gene is on human 

chromosome 7. CD36 has many functions including macrophage oxidised 

LDL uptake to promote foam cell formation, platelet 

activation/aggregation, apoptosis, angiogenesis, inflammation, its levels 

are elevated by a fat-rich diet, inflammation and oxidative stress 

(Silverstein et al., 2010; Liani et al., 2012; Nishikawa et al., 2012). 

1.3.2.2 Signal transduction, trafficking and cell function 

SR-B1 binds and internalizes acetylated LDL or oxidised LDL particles 

(Acton et al., 1994). SR-B1-mediated lipid uptake goes through lipid-raft-

dependent endocytosis routes. SR-B1-mediated endocytosis causes 

relatively mild oxidised LDL degradation (Sun et al., 2007), suggesting key 

differences to other scavenger receptor-mediated ligand delivery to 

lysosomes. In the liver, SR-B1 may mediate HDL uptake and endocytosis; 

however, in peripheral tissues, SR-B1 binding to HDL may stimulate 

cholesterol efflux from internal stores (Peng et al., 2004). SCARB2 has a 

role as a viral pathogen receptor including Enterovirus 71 and Coxsackie 

(Yamayoshi et al., 2012a; Yamayoshi et al., 2012b) virus, and 
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internalization go through via clathrin-dependent endocytosis (Eckhardt et 

al., 2006).  

CD36 binds a variety of ligands including thrombosponin-1, 

oxidized phospholipids/lipoproteins, long-chain fatty acids and apoptotic 

cells  (Silverstein and Febbraio, 2009). Oxidised LDL binding to  

macrophage CD36 triggers intracellular signalling events  (Park et al., 

2012). CD36 is enriched within cholesterol-rich membrane micro-domains 

and interacts with other receptors such as tetraspanins and integrins. 

Activated CD36 signal transduction involves the tyrosine kinase Fyn, p38 

MAPK and JNK (Figure 1.4). Notably, CD36-mediated intracellular 

signalling through Fyn is implicated in phosphorylation and activation of 

Vav proteins. These act as guanine nucleotide exchange factors for Rho 

and Rac GTPases that are implicated in actin remodelling, membrane 

dynamics and cell migration. Furthermore, CD36 can also bind microbial 

diacylglycerides to stimulate a pro-inflammatory TNFα response upon 

bacterial infection (Stewart et al., 2010).  

1.3.3 Class C 

Class C scavenger receptors are expressed only in insects such as fruit 

flies and mosquitoes. Members include SR-C1 and SR-C2, which are 

membrane-bound; SR-C3 and SR-C4 are soluble secreted proteins. Class 

C receptors are involved in the innate immune response against 

pathogens by a mechanism called pattern recognition. Pathogen-derived 

ligands that contain a characteristic repetitive molecular pattern bind to 

Class C scavenger receptor on the cell surface, thus triggering a 

sustained immune response. Class C proteins are either Type I 

membrane proteins or soluble secreted proteins where the extracellular 

domains contain N-proximal compliment control protein (CCP) region 

preceding a MAM motif (Ezekowitz et al., 2003). 

1.3.4 Class D 

The CD68 gene is on human chromosome 17 and expressed on cells 

associated with the immune system such as monocytes, macrophages, 
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dendritic cells and osteoclasts. Phorbol esters, oxidised LDL and GM-CSF 

elevate CD68 expression, whereas bacterial LPS or TNFα inhibit CD68 

levels (Li et al., 1998; Yoshida et al., 1998). This suggests a link between 

inflammation and CD68 function. The human CD68 gene product is a 

Type I membrane protein of 354 residues, which is heavily glycosylated. 

CD68 contains an N-proximal mucin-like domain, a proline-rich hinge 

region followed by a lysosome-associated membrane protein (LAMP) 

homology domain, a single transmembrane region and a short 12-residue 

cytoplasmic domain (Holness and Simmons, 1993). CD68 can bind 

oxidised LDL, lectins, and selectins to mediate phagocytosis and bone 

resorption (Ramprasad et al., 1996; da Silva and Gordon, 1999). When 

CD68 is expressed on monocytes, it promotes oxidised LDL binding and 

uptake, suggesting a role in leukocyte-mediated effects in atherosclerosis. 

Furthermore, soluble CD68 delivery into a mouse model reduced foam cell 

incidence and abdominal aortic plaque development with increased 

plaque stabilisation (Zeibig et al., 2011). However, CD68 depletion 

showed little change in oxidised LDL-mediated atherosclerosis in mice (de 

Beer et al., 2003), and oxidised LDL binding and accumulation in CD68-

null mouse macrophages (Song et al., 2011). The role of CD68 in immune 

response is currently not clear. Deletion of the mouse CD68 did not impair 

macrophage ability to deal with innate immunity; this also did not impair 

cytokine production and actually enhanced adaptive immunity (Song et al., 

2011). 

1.3.5 Class E 

Class E comprises of just one member lectin-like low-density lipoprotein 

receptor (LOX-1). A detailed discussion of LOX-1 can be found in the next 

section. 

1.3.6 Class F 

The class F group consists of SREC1 and SREC2 members. SREC1 is on 

human chromosome 17 whereas SREC2 is on human chromosome 22. 

Both protein receptors are Type I membrane proteins of 850-900 residues, 

an extracellular domain of ~450 residues containing multiple EGF-like 
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repeats, a single transmembrane region and a relatively large cytoplasmic 

domain of ~400 residues. SREC1 is present on neuronal and endothelial 

cells in heart, lung, ovary and placenta (Adachi and Tsujimoto, 2002). 

SREC1 binds to carbamylated LDL, acetylated LDL and oxidised LDL 

particles. SREC2 lacks scavenger receptor activity but preferentially forms 

heterodimers with SREC1 (Ishii et al., 2002). Such SREC1-SREC2 

heterodimers lose the capacity to mediate lipid particle recognition 

suggesting that SREC2 suppresses the ligand-binding properties of 

SREC1. The class F members can both regulate modified LDL binding 

and internalization, but their effects on atherosclerosis initiation and 

progression are unclear. The class F protein SREC1 not only recognizes a 

modified lipid particles; receptor-ligand complexes can undergo clathrin-

dependent endocytosis and delivery to the endosome-lysosome system 

(Murshid et al., 2010; Sano et al., 2012). 

1.3.7 Class G 

The class G member is SR-PSOX, also known as chemokine 16 

(CXCL16), is a Type I membrane protein of 254 residues with an N-

terminal extracellular domain, a single transmembrane region and a short 

cytoplasmic domain. Human SR-PSOX is on chromosome 17 and 

expressed on vascular smooth muscle cells, endothelial cells, monocytes, 

macrophages, and kidney podocytes (Gutwein et al., 2009). The SR-

PSOX extracellular domain mediates endocytosis of phosphatidylserine or 

oxidised LDL, and delivery to endosome-lysosome system. The SR-PSOX 

extracellular domain contains a chemokine-related motif followed by a 

mucin-like stalk region. Cleavage within this mucin-like region by 

disintegrin-like metalloproteases (ADAMs) cause shedding of a soluble 

SR-PSOX. SR-PSOX has important innate immunity functionality through 

recognition of bacteria and CpG-rich DNA found in other pathogens 

(Gursel et al., 2006; Sheikine and Sirsjo, 2008). Manipulation of SR-PSOX 

levels modulates macrophage differentiation into foam cells (Zhang et al., 

2008; Quan et al., 2007), suggesting a pro-atherogenic function. SR-

PSOX levels can be up-regulated to recruit CD4+ T cells to affected sites 

during inflammatory disorders in various tissues. Mice lacking SR-PSOX 
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produced lower cytokines and liver natural killer cells (Yamauchi et al., 

2004; Wu et al., 2007; Uza et al., 2011). This molecule may play a vital 

role not only in recruiting but also promoting interaction of both T and 

natural killer cells to dendritic cells (Shimaoka et al., 2004). 

1.3.8 Class H 

The class H members include Fasciclin, EGF-like, laminin-type EGF-like, 

and link (FEEL) domain-containing scavenger receptors 1 and 2 (FEEL1 

and FEEL2), which are Type I membrane glycoproteins of up to 2570 

residues. FEEL1 and FEEL2 are on human chromosome 3 and 12, 

respectively. The FEEL gene products are expressed by cells from the 

spleen, lymph nodes, macrophages, bone marrow, and liver. The FEEL 

extracellular domains have three blocks containing two Fasciclin domains 

interspersed with EGF-like domains and laminin EGF-like domains and a 

single Fascilin domain adjacent to the transmembrane domain. FEEL1 

and FEEL2 bind acetylated LDL, advanced glycated end-products (AGE) 

and bacteria. FEEL1 expression on monocytes has been postulated to be 

a biomarker for increased cardiovascular disease risk (Gratchev et al., 

2012). 

FEEL1 also promotes bacterial recognition and stimulates 

lymphocyte diapedesis through lymphatic and vascular endothelial cell 

monolayers. FEEL1 also stimulates the recruitment of CD4+ FoxP3-

positive regulatory T cells, indicating an important role in the immune 

response to pathogen infection (Adachi and Tsujimoto, 2002; Shetty et al., 

2011). Macrophages also express FEEL2 to promote phagocytosis and 

clearance of aged cells, apoptotic bodies and heparin-linked proteins, 

showing functional similarities to other scavenger receptor members 

(Adachi and Tsujimoto, 2010). 

1.3.9 Class I 

1.3.9.1 Genetics, protein structure and expression 

The members of Class I include CD163, CD5 and CD6 that are primarily 

restricted to the hematopoietic cell lineage. These receptors have type B 
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scavenger receptor cysteine-rich (SRCR) domain, which are encoded by a 

single exon and containing eight cysteine residues. CD163 is a 130 kDa 

transmembrane Type I membrane glycoprotein primarily expressed in 

monocytes and macrophages. CD163 is mapped to human chromosome 

12p13. The primary structure displays an extracellular domain composed 

of nine SRCR domains in tandem, a transmembrane region followed by a 

short intracellular cytoplasmic tail (Moeller et al., 2012; Nielsen et al., 

2006). CD163 is also known as “haemoglobin scavenger receptor” due to 

its important role in mediating haemoglobin recognition and clearance in 

tissue macrophages (Kristiansen et al., 2001; Thomsen et al., 2013). 

Class I scavenger receptors are also present as soluble forms, although 

their functional role is unknown. It has been suggested that these soluble 

fragments could be potential biomarkers for inflammatory and autoimmune 

diseases (Alonso et al., 2010; Burdo et al., 2011; Etzerodt and Moestrup, 

2013). 

1.3.9.2 Signal transduction, trafficking and cell function 

As suggested from its functional name as a haemoglobin scavenger 

receptor, CD163 helps the removal of haptoglobin-haemoglobin (Hp-Hb) 

complexes via the haem oxygenase-1 (HO-1) pathway to reduce pro-

inflammatory haem in the circulation (Thomsen et al., 2013). This 

indicates the role of CD163 in anti-inflammatory response by mediating 

the uptake of toxic haem in macrophages (Kristiansen et al., 2001). 

CD163 has also been shown in animal studies to be expressed in bone 

marrow macrophages to initiate growth and survival of erythroblast. 

CD163 has also been reported to be involved in intracellular signalling 

such as phosphorylation of protein kinase C (PKC) (Nielsen et al., 2006).. 

1.3.10 Class J  

1.3.10.1 Genetics, protein structure and expression 

Receptor for advanced glycation end-products (RAGE) is the sole member 

of class J scavenger receptor. RAGE is a 32 kDa multi-ligand 

transmembrane receptor that belongs to the immunoglobulin gene family. 
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RAGE is expressed in endothelial cells, hepatocytes, smooth muscle cells 

and monocytes (Ramasamy et al., 2009). Full-length RAGE is composed 

of an extracellular V (variable)-type domain, a single transmembrane 

spinning helix that connects the short C-terminal cytosolic domain and two 

C-type domains. RAGE is a pattern recognition receptor that has an ability 

to interact with and/or be activated by a number of pro-inflammatory 

ligands such as β-amyloid (Yan et al., 1996), S100/calgranulin (Hofmann 

et al., 1999), phosphatidylserine (He et al., 2011), and high-mobility group 

protein 1 (HMGB1) (Hori et al., 1995). Under physiological conditions, the 

expression of RAGE is low, but can be provoked in response to chronic 

conditions. These pro-inflammatory endogenous molecules are involved in 

inflammation and physiological stress. 

1.3.10.2 Signal transduction, trafficking and cell function 

The up-regulation of RAGE expression by pro-inflammatory ligands has a 

positive effect in a scenario where inflammation occurs; unlike most 

receptors their expression is down-regulated in chronic inflammatory 

condition (Li and Schmidt, 1997; Yao and Brownlee, 2010). AGE-bound 

RAGE is implicated in signal transduction mediating processes such as 

oxidative stress, apoptosis and inflammation (Xie et al., 2013). Stimulation 

of RAGE is also involved in neuronal differentiation and cell migration 

especially during development. Upon ligand stimulation of RAGE, the pro-

inflammatory gene expression is activated by NF-κB translocation into the 

nucleus; RAGE itself is a target of NF-κB, thus providing a positive 

feedback loop to amplify the response (Li and Schmidt, 1997). 

Furthermore, in vitro studies showed the activation of MAPK 

signalling cascades through RAGE-mediated activation by AGE. This 

triggered the oxidative stress pathway, which in turn led to activation of 

NF-κB (Yeh et al., 2001). Another pathway involved in the inflammatory 

signal transduction is the JNK MAPK pathway. From an in vitro study, 

expression of the pro-inflammatory marker protein vascular cell adhesion 

molecule 1 (VCAM1) was decreased by JNK inhibition (Harja et al., 2008). 

Additionally, activation of JNK by RAGE ligands was shown to increase 
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the transcriptional activity of activator protein 1 (AP1), which further 

increases the expression of pro-inflammatory genes. 

1.4 LOX-1 scavenger receptor 

Atherosclerosis is a chronic progressive disease, and its clinical 

manifestations include coronary artery disease, cerebrovascular disease 

and peripheral arterial disease. It is a multi-factorial disease with many of 

its risk factors being known, however, the cellular and molecular 

mechanisms precipitating the disease process are not well-defined. After a 

ground-breaking research by Steinberg and colleagues (Steinberg et al., 

1989), oxidised LDL received intense interest as it promotes the 

development of atherosclerosis. The rapid uptake of oxidised LDL by 

scavenger receptors is crucial in the initial step of atherosclerosis leading 

to foam cells formation (Yamada et al., 1998). The interaction between 

lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) and oxidised 

LDL plays an important role in the pathogenesis of atherosclerosis (Figure 

1.5).  

1.4.1 Genetics, protein structure and expression 

The class E scavenger receptor comprises of LOX-1, which is on human 

chromosome 12 within a region enriched for genes involved in the innate 

immune response. Sequence and structural analysis revealed LOX-1 

protein is not similar to any macrophage scavenger receptors known. 

Nonetheless, LOX-1 shares similar identity to natural killer cell receptors 

(Aoyama et al., 1999; Sawamura et al., 1997) that the expression of LOX-

1 might induce endothelial cell dysfunction. Human LOX-1 is a Type II 

membrane protein of 273 residues that structurally belongs to the C-Type 

lectin family. Mature form of LOX-1 protein is at 50 kDa due to 

glycosylation, but the precursor form is synthesised at 40 kDa (Kume and 

Kita, 2001). Human LOX-1 is comprised of four domains, namely, a short 

N-terminal cytoplasmic domain, a single transmembrane region, a coiled-

coil ‘neck’ region and a C-type lectin-like domain (Ogura et al., 2009). 

Remarkably, the six cysteine residues of the lectin-like domain are highly 
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conserved, which functions as a ligand-binding domain and initiate 

internalization of ligands (Chen et al., 2001a).  

LOX-1 tends to bind to protein moiety of oxidised LDL (Moriwaki et 

al., 1998); however, as LOX-1 is a scavenger receptor, it exhibits binding 

activity for multiple ligands such as acetylated LDL, phosphatidylserine, 

apoptotic cells and bacteria. Initially, LOX-1 was identified as a vascular 

endothelial-specific receptor for oxidised LDL, but LOX-1 is also 

expressed in vascular smooth muscle cells, cardiomyocytes, and immune 

cells (Draude et al., 1999; Iwai-Kanai et al., 2001). In vivo, normal 

physiological basal LOX-1 expression is relatively low, and enhanced by 

pathological conditions such as hyperlipidaemia, hypertension, diabetes 

and atherosclerosis (Kataoka et al., 1999; Nagase et al., 1997b). Similarly, 

basal expression of LOX-1 is low in vitro, but the expression is induced by 

pro-inflammatory molecules, oxidised LDL and mechanical stress (Kume 

and Kita, 2001; Murase et al., 1998; Nagase et al., 2001).  

LOX-1 is a non-essential gene and polymorphisms within the LOX-

1 gene are linked to increased cardiovascular disease risk, but mutations 

within the gene are mostly non-coding that do not affect LOX-1 protein 

function (Mehta et al., 2007; Li et al., 2003b). Stable overexpression of 

LOX-1 in transgenic LDLR knockout mice has been shown to display 

intramyocardial vasculopathy (Inoue et al., 2005). Conversely, transient 

viral gene therapy in a mouse model showed liver-mediated oxidised LDL 

clearance and reduction in atherosclerosis (Ishigaki et al., 2008). These 

findings have led to much debate as to the role of LOX-1 as a protective or 

pro-atherogenic factor in inflammation and atherosclerosis.  

 

 

 

 

 



Figure 1.5. Schematic of oxidised LDL-mediated LOX-1 trafficking and 

signal transduction pathways. Binding and internalization of oxLDL by LOX-

1 triggers the activation of inflammatory pathways: MAPKs (p38, p42/44, JNK) 

and NF-ĸB. Internalization of oxLDL-LOX-1 is mediated by clathrin-

independent pathway into the early endosome, and later on LOX-1 is either 

recycled or degraded.  
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1.4.2 Signal transduction, trafficking and cell function 

It is generally accepted that atherosclerosis results from interaction 

between oxidised LDL, leukocytes and other cellular components of the 

arterial wall. LOX-1 and CD36 are similar in a way that they act as cell 

membrane scavenger receptors mediating the binding, internalization and 

degradation of oxidised LDL (Figure 1.5). The class E LOX-1 protein 

binding with oxidised LDL stimulates a spectrum of pro-inflammatory 

signalling and mediating pro-atherogenic cellular responses including 

endothelial dysfunction, foam cell formation and vascular smooth muscle 

apoptosis (Kume and Kita, 2001; Kataoka et al., 2001).  

Oxidised LDL provokes wide-ranging effects on a number of 

signalling pathways implicated in atherosclerosis. The cellular effect of 

oxidised LDL-dependent binding to LOX-1 stimulates the activation of 

numerous signal transduction pathways including MAPKs (p38, ERK1/2, 

JNK), Akt/eNOS, NF-κB, NADPH oxidase, Ang II Type I receptor, PKC 

and AP-1 transcription factor (Xu et al., 2013). LOX-1-mediated NF-κB 

activation by oxidised LDL is a key feature of pro-inflammatory response 

in immune and vascular cells. The activation causes the increased in 

adhesion molecules expression including intercellular adhesion molecule-

1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte 

chemoattractant protein-1 (MCP-1). Collectively, these proteins are 

important in the early event of leukocyte adhesion to endothelial cells 

(Ogura et al., 2009; Clarke et al., 2006). Furthermore, binding of oxidised 

LDL to LOX-1 caused the generation of reactive oxygen species, which in 

turn, activating NF-κB signalling protein and inhibits nitric oxide production 

(Cominacini et al., 2001). Inflammatory cytokines such as TNF-α, 

lipopolysaccharide, IL-1, and TGF-β up-regulates LOX-1 mRNA (Minami 

et al., 2000; Draude and Lorenz, 2000; Kume et al., 1998; Nagase et al., 

1998). Inflammatory mediators have profound effect on the expression of 

LOX-1 that includes Ang II, endothelin-1 and shear stress in vivo (Li et al., 

1999a; Murase et al., 1998). It is believed that oxidised LDL binding to 

LOX-1 mediates the NADPH oxidase-ROS signalling pathways activating 

the redox-sensitive NF-κB, due to the so-called “NF-κB binding sites” 
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located in the LOX-1 gene promoter (Nagase et al., 2001). Lastly, 

activation of NF-κB up-regulates Ang II Type-1 receptor (AT1R) as well as 

LOX-1, which in turn increase the LOX-1-mediated activity of oxidised LDL 

uptake.  

1.4.3 LOX-1 in atherosclerosis 

Research on the patho-physiological role of LOX-1 is abundant. Under 

physiological conditions when LOX-1 expression is normal, LOX-1 may 

scavenge cellular debris and clear up oxidised LDL from the circulation, 

and it might also be involved in host-defence system (Kakutani et al., 

2000; Oka et al., 1998; Shimaoka et al., 2001; Ishigaki et al., 2008). In 

pathological states, LOX-1 is involved in activating endothelial cells, 

accumulating and partial degradation of oxidised LDL, and proliferation of 

smooth muscle cells, which are all linked to atherosclerosis (Kataoka et 

al., 1999; Nagase et al., 2000). These pathological roles of LOX-1 

outweigh its physiological role causing detrimental effects.  

The highly-inducible expression of the LOX-1 gene in endothelial 

cells by oxidised LDL has been shown to initiate early stages of 

atherosclerosis. Studies have shown the binding of oxidised LDL to LOX-1 

cause  pathological changes in the endothelial cells, such as generating 

superoxide anions and decreasing production of nitric oxide, resulting in 

cellular apoptosis (Li and Mehta, 2000b). Atherosclerosis susceptible 

regions such as arterial bifurcations have increased expression of LOX-1 

because the endothelium is exposed to shear forces (Chen et al., 2001b; 

Frangos et al., 1999). Thus, fluid dynamics of blood flow may influence 

LOX-1 expression. Studies have shown high LOX-1 expression together 

with oxidised LDL in atherosclerotic lesions in endothelial cells and sub-

endothelial macrophages (Kakutani et al., 2001). This further confirms the 

molecular basis linking oxidised LDL and LOX-1.  

Adhesion of leukocytes onto the vessel wall is an important event in 

atherosclerosis. In vitro study showed increased expression of monocyte 

chemoattractant protein-1 (MCP-1) when human coronary artery 

endothelial cells (HCAEC) were incubated with oxidised LDL. 
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Subsequently, treatment of HCAEC with human LOX-1 anti-sense RNA 

inhibited the oxidised LDL-mediated expression of MCP-1 (Li and Mehta, 

2000a). As LOX-1 is known as a multi-ligand scavenger receptor, an in 

vivo study showed that anti-LOX-1 antibody reduced the number of 

leukocytes rolling along the endothelium, signifying LOX-1 has affinity for 

vascular-tethering ligands (Honjo et al., 2003; Li et al., 2002b; Hayashida 

et al., 2002).  

Proliferation and migration of vascular smooth muscle cells from 

the medial layer is another significant event of plaque formation in 

atherosclerosis. The proliferation of smooth muscle cells is mediated via 

the activation of NF-κB and JNK MAPK signalling pathways shown in vitro 

(Eto et al., 2006). In mouse model where genetic deletion of LOX-1 in 

ApoE knockout background revealed reduced smooth muscle cell 

proliferation (Mehta et al., 2007). Therefore, LOX-1 has a role in causing 

proliferation and migration of smooth muscle cells into the sub-endothelial 

region to become foam cells via the activation of pro-inflammatory 

pathways by oxidised LDL.  

1.4.4 LOX-1 and other diseases 

It is emphasised that activation and increased activity of LOX-1 cause a 

number of diseases including cardiovascular diseases such as 

hypertension, myocardial infarction, congestive heart failure, thrombosis 

and atherosclerosis. LOX-1 may also play a role in diabetes associated 

with cardiovascular diabetic complications. It was also reported that LOX-1 

is linked to risk of cancers in breast, colon and ovaries. Furthermore, LOX-

1 may also play a part in rheumatoid arthritis, obesity, kidney injury, 

pathogenic infection, and metabolic syndrome. 

1.4.4.1 Hypertension 

Hypertension is a common disease that is usually a common risk factor for 

cardiovascular disease. Hypertension is often associated with the increase 

in oxidative stress, which impairs the vascular endothelial cells by 

advancing the proliferation and hypertrophy of vascular smooth muscle 
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cells that lead to narrowing of the vascular lumen. Furthermore, oxidative 

stress has a negative effect on the endothelial cells by diminishing the 

ability of the vascular smooth muscle cells to relax and increase the 

contractile activity (Luo et al., 2011). The connection between 

hypertension and LOX-1 has been reported a decade ago in animal 

models (Nagase et al., 1997a). The correlation suggested that expression 

of LOX-1 mRNA in the aorta was up-regulated in hypertensive rats 

compared to normal healthy rats. An in vitro study supported this 

hypothesis, which detected a marked increase in LOX-1 mRNA levels in 

cultured human coronary artery endothelial cells upon activation of Ang II 

type 1 receptor, a pro-inflammatory G-protein coupled receptor (Li et al., 

1999b). The interrelationship between LOX-1 and Ang II type 1 receptors 

and hypertension was further demonstrated in an animal model where 

differences between LOX-1 knockout and wild-type mice infused with Ang 

II were observed (Morawietz et al., 1999). The involvement of p38 and 

p42/44 MAPK was more pronounced in wild-type mice compared to LOX-

1 knockout mice when infused with Ang II. The effect of Ang II has on 

LOX-1 is attenuated by angiotensin converting enzyme (ACE) inhibitor 

(Morawietz et al., 1999), which further supports the evidence that LOX-1 

may contribute to the pathogenesis of hypertension, either directly or 

indirectly. 

1.4.4.2 Myocardial infarction 

Oxidised LDL is known to cause proliferation and migration of vascular 

smooth muscle cells, which can become ingested by macrophages, and 

over time, foam cells form. This will increase the size of the plaque, 

followed by plaque instability and cessation of blood flow when the 

vascular lumen is occluded. This sequence of events has been shown to 

correlate with oxidised LDL levels and the severity of acute coronary 

syndromes (Ehara et al., 2001). Observations on isolated rat heart 

perfused with oxidised LDL showed decrease in contractile activity. 

Subsequent study showed that LOX-1 expression was increased in the rat 

myocardium. Furthermore, treating the rats with an antibody specific for 

LOX-1, caused LOX-1 expression to markedly decrease (Li et al., 2003c). 
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Regulation of pre-mRNA splicing of OLR1 and subsequent LOX-1 

expression has been linked to myocardial infarction. One of the seven 

SNPs of LOX-1 is a functional isoform of the OLR1 gene called LOXIN. 

This gene product lacks exon 5 and was suggested to protect the cells 

from undergoing apoptosis. Since LOXIN has no functional C-terminal 

domain, its functionality in cellular trafficking also diminishes (Mango et al., 

2005). 

1.4.4.3 Congestive heart failure 

Congestive heart failure is characterized by the inability of the heart, 

especially the left ventricle of the heart, to pump blood to all tissues. The 

expression of LOX-1 in cardiac cells is relatively low, and can be induced 

by chemical stimuli, mechanical stimuli and oxidative stress that are 

activated in failing heart. In a study by Takaya and colleagues using an 

animal model, analysis by real-time (RT)-PCR showed LOX-1 expression 

was markedly increased in rats fed with high-salt diet compared to 

controls (Takaya et al., 2010). The expression level of LOX-1 was more 

pronounced in the left ventricles and the levels increased from the week 

the rats start high intake of salty food. It was also demonstrated that the 

increased expression of LOX-1 impaired the systolic function of the heart 

(Takaya et al., 2010). 

1.4.4.4 Thrombosis 

Thrombosis is a late event in atherogenesis by forming blood clots in the 

vessels and ceases the blood flow, which eventually leads clinical 

manifestation of stroke and myocardial infarction. Platelets are usually 

observed to initiate this event, by internalising the oxidised LDL that cause 

down-regulation of eNOS activity in platelets and also cause platelets to 

aggregate (Mehta and Li, 2002). From previous studies, the LOX-1 

receptor expression has been observed in platelets, and blocking the 

receptor with LOX-1 antibody has been shown to diminish the formation of 

arterial thrombus in animal model (Mehta and Li, 2002). In another study 

by Puccetti and colleagues, they demonstrated the variations in LOX-1 

polymorphisms affecting the platelet activation by oxidised LDL (Puccetti 
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et al., 2005). All this evidence supports the involvement of LOX-1 with 

platelets in atherothrombosis.  

1.4.4.5 Diabetes mellitus 

Diabetes is characterised by endothelial dysfunction, which is usually a 

key event in pathogenesis of atherosclerosis. Atherosclerotic 

cardiovascular disease, diabetic nephropathy and neuropathy are major 

complications of diabetes that are correlated to LOX-1. A number of 

factors may play a part in causing endothelial dysfunction in diabetes 

including oxidative stress, hyperlipidaemia, high glucose level and insulin 

resistance, to name a few. Other studies done using animal models 

demonstrated the expression of LOX-1 in vascular endothelium of diabetic 

rats is increased, which further suggested the association of LOX-1 and 

cardiovascular diabetic complications (Nowicki et al., 2012). The 

expression of LOX-1 in macrophages that is increased by advanced 

glycation end products (AGE) is also involved in the pathogenesis of 

diabetic atherosclerosis. In an in vitro study, LOX-1 expression was 

enhanced by high glucose in macrophages, which supports the role of 

macrophages in the formation of foam cells in vascular walls in the event 

of atherosclerosis (Li et al., 2004). Furthermore, the expression of 

adhesion molecules was increased in inflammatory cells. On the other 

hand, diabetes mellitus also causes diabetic nephropathy that is 

characterized by damage in the tubulointerstitium and development of 

glomerulosclerosis induced by lipid. In a study by Yamamoto and 

colleagues (Yamamoto et al., 2009), they demonstrated using in situ 

hybridization that  LOX-1 mRNA levels is increased in the human renal 

tissue, especially in the tubulointerstitial area. The increasing level of LOX-

1 expression was reported to correlate to the degree of the damage in 

tubulointerstitium of the kidneys. Therefore, from all the evidence reported, 

LOX-1 plays a crucial role in diabetic complications; however, the 

mechanism underlying it is still not clearly explained. 
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1.4.4.6 Cancer 

Atherogenesis and tumorigenesis may work in parallel affecting the 

molecular and cellular substances in a system. The modification of native 

LDL to oxidised LDL is a crucial part of the pathogenesis of 

atherosclerosis in which some may develop certain cancers. Thus, this 

tells us that there is a direct or indirect connection between oxidative 

stress involving lipid and cancer growth. Furthermore, it was found that the 

cancer gene expression is found in atherosclerosis from microarray 

transcriptional profiling studies (Hirsch et al., 2010), which they found the 

commonality in atherosclerosis and cancer involves pro-inflammatory 

molecule NF-κB. LOX-1 is an upstream molecule of NF-κB in the 

inflammatory signalling pathway, and inhibiting LOX-1 with a lipid lowering 

drug reduces the level of NF-κB signalling activity and inhibits cellular 

transformation (Lu et al., 2011). This observation suggests the 

participation of LOX-1 in regulating the inflammatory pathway in cancer.  

These studies interlinking LOX-1 and cancer brought up the 

possibility that LOX-1 may have pro-oncogenic function and targeting its 

activity may be beneficial in the treatment of cancer. Generation of 

reactive oxygen species in cells has been implicated in cancer 

development and progression by regulating the proliferation, migration and 

survival of the cancer cells. The family of NADPH oxidases is the main 

producer of ROS in epithelial and endothelial cells, and they are highly 

expressed in organs such as kidney and colon (Chabrashvili et al., 2002). 

Oxidised LDL and LOX-1 interaction increases activity of DNA oxidation 

and also superoxide production. It is apparent that NADPH oxidase is 

activated by oxidised LDL-LOX-1 interaction (Lu et al., 2011). Thus, this is 

one of the many possible mechanisms of LOX-1 in cancer development by 

relying on the presence of NADPH oxidase (Lu et al., 2011). LOX-1 can 

contribute to or impair tumorigenesis by regulating NF-κB activation. 

However, the involvement of LOX-1 in cancer is still not clearly 

understood. 
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1.4.4.7 Rheumatoid arthritis 

Rheumatoid arthritis is an inflammatory disease of bone and cartilage 

around joints. It is reported that the lipids and lipoproteins found in 

synovial fluids of inflamed joints are oxidized from patients with 

rheumatoid arthritis in contrast with healthy patients (Ishikawa et al., 

2012). It is also observed the formation of foam cells in the inflamed area, 

which is similar to the event of atherosclerosis. Thus, the association 

between rheumatoid arthritis and atherosclerosis is acknowledged 

involving lipid metabolism in inflamed area of the bone (Ishikawa et al., 

2012). Matrix metalloproteinases (MMPs) are enzymes that involve in 

many arthritis diseases by destructing the articular cartilage (Ishikawa et 

al., 2012). The presence of oxidised LDL and LOX-1 was detected in bone 

chondrocytes from the rheumatoid arthritis patients (Winyard et al., 1993). 

In addition, synthesis of MMP-3 in the articular cartilage was observed 

upon activation of LOX-1 by oxidised LDL (Kakinuma et al., 2004). 

Blocking the production of MMP-3 by inhibiting the interaction between 

LOX-1 and oxidised LDL with antibody specific to LOX-1 suggested that 

LOX-1 can be a potential target in the treatment of rheumatoid arthritis 

(Ishikawa et al., 2012).  

1.4.4.8 Chlamydia pneumonia 

Campbell and colleagues have demonstrated the relationship between 

Chlamydia pneumoniae and atherosclerosis using immunohistochemistry 

and polymerase chain reaction (PCR) by isolating the organisms out of the 

atherosclerotic plaques. Chlamydia pneumoniae is distinct from other 

human chlamydial pathogen because of its atherogenic characteristics. In 

a subsequent animal study, Chlamydia pneumoniae was shown to speed 

up the development of atherosclerosis with the condition of the animal to 

be hyperlipidaemic. It was observed that the increased expression LOX-1 

levels on endothelial cells caused by Chlamydia pneumoniae further 

stimulates the uptake of oxidised LDL (Campbell et al., 2012). 

Furthermore, it was shown that Chlamydia pneumoniae binds to the LOX-

1 receptor; furthermore, when they inhibited the LOX-1 with specific 
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antibody, interaction between Chlamydia pneumoniae and LOX-1 

diminished (Campbell et al., 2012). 

1.5 Summary 

Atherosclerosis is a leading cause of death in many parts of the world and 

is a systemic disease involving narrowing or occlusion of the arterial 

vessel wall by a plaque or lesion. The process of atherosclerosis involves 

aberrant lipid particle metabolism, formation of foam cells followed by the 

rupture of atherosclerotic plaque, leading to blood clot formation, arterial 

blockage resulting in heart disease and stroke. LOX-1, a member of the 

scavenger receptor, has been linked with each of these pathological 

processes. Evidence from in vitro and in vivo studies, including LOX-1 

knockout and over-expression models, has implicated LOX-1 as a key 

modulator of the atherosclerotic pathway. This understanding could lead 

to novel therapeutics targeting LOX-1.  

1.6 PhD project aims and hypothesis 

LOX-1 is known to bind oxidised LDL mediated through the basic residues 

in its C-type lectin-like domain. The molecular basis, the signalling 

pathway per se, has been linked to activate a number of pro-inflammatory 

pathways such as MAPKs and NF-κB. However, most of the studies 

performed immunohistochemistry analysis from animal models. These 

studies did not explore  the molecular and cellular mechanisms underlying 

LOX-1-mediated atherosclerosis. Thus, understanding the trafficking of 

LOX-1 and the activation of pathways relating to atherosclerosis is crucial. 

Based on previous data collected in the Ponnambalam lab 

(University of Leeds, UK), it has been shown that deletion of LOX-1 in 

ApoE knockout background mice is associated with more plaques 

formation in the aorta compared to ApoE knockout mice alone 

(Supplementary figure B1) (Mughal, 2015). Furthermore, deletion of LOX-

1 has also been shown to affect glucose metabolism, suggesting insulin 

resistance phenotype (Supplementary figure B2). These results revealed 

that LOX-1 potentially have a protective role in atherosclerosis and related 
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disease. Although it’s a contentious subject to tackle, it is also a possibility 

that LOX-1 solely scavenges and degrades oxidised LDL down its 

trafficking pathway. Nonetheless, as the disease progresses, LOX-1 may 

not be able to degrade oxidised LDL properly, that LOX-1 may “switch” 

becoming more pathological and activating the pro-inflammatory 

pathways.  

Given the contradictory evidence in this subject, I wanted to 

investigate LOX-1 signal transduction, trafficking and cellular outcome in 

cell analysis and in mouse models, thus linking both animal data and 

cellular study explaining mechanisms of atherosclerosis involving LOX-1. 

The first aim of the study is to generate a stable inducible system over-

expressing LOX-1 in both vascular endothelial and non-vascular cell lines, 

with the purpose to assess LOX-1 and oxidised LDL. The second aim of 

the study involves using trafficking-defective LOX-1-D5A mutant (Murphy 

et al., 2008) to compare the effect of LOX-1 wild-type (WT) on trafficking 

and signalling pathways in response to oxidised LDL. This is followed by 

the third aim, which is to harvest different mouse tissue and organs, 

specifically aorta, liver, adipose tissue and skeletal muscle.  All 

experimental transgenic mouse lines were fed on 0.2% cholesterol-rich 

(Western) diet for 12 weeks and using these tissues to elucidate the 

activation of signalling proteins involved in plaque formation, glucose 

metabolism and lipid metabolism. 
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CHAPTER 2 

Materials and methods 

 

2.1 Materials 

2.1.1 Chemical reagents 

All chemicals were of analytical grade and purchased from Sigma-Aldrich 

(Poole, UK) unless otherwise stated. Bicinchoninic acid assay (BCA 

assay) was from Thermo Fisher (Cramlington, UK) or Pierce (Rockford, 

USA). Enhanced chemiluminescence (ECL) reagents for Western blotting 

were from Thermo Fisher (Cramlington, UK). Restriction enzymes were 

from New England Biolabs (Hitchin, UK), Promega (Southampton, UK) or 

Fermentas Life Sciences (York, UK). Oligonucleotide primers were from 

Sigma-Aldrich (Poole, UK) or Integrated DNA Technologies (Coralville, 

USA). Cell culture media and reagents were from Invitrogen (Amsterdam, 

Netherlands). Isofluorane was purchased from Central Business Services 

at the University of Leeds.  

2.1.2 Antibodies 

The following antibodies were purchased: mouse anti-FLAG (Sigma-

Aldrich, Poole, UK), goat polyclonal anti-LOX-1 (R+D Systems, 

Minneapolis, USA), horseradish peroxidase (HRP)-conjugated secondary 

antibody (Thermo Fisher, Cramlington, UK), AlexaFluor-488, -594 

conjugated secondary antibodies (Invitrogen, Amsterdam, Netherlands). 

The following antibodies were produced by the Ponnambalam laboratory: 

sheep anti-LOX-1 (Diagnostics Scotland, Edinburgh, UK), rabbit anti-LOX-

1 (Eurogentec, Seraing, Belgium). Antibodies were used for Western 

blotting and Immunofluorescence at the dilutions shown in table 2.1. 
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Antigen Species Concentration 

mg/ml 

Dilution 

Factor 

Source 

Akt Rabbit 0.5 WB: 1:1000 
Cell Signalling Technology 

(Denvers, MA, USA) 

Akt,  

phospho S473 
Rabbit 0.5 WB: 1:1000 

Cell Signalling Technology 

(Denvers, MA, USA) 

eNOS Rabbit 0.5 WB: 1:1000 
Cell Signalling Technology 

(Denvers, MA, USA) 

eNOS, 

phospho S1177 
Rabbit 0.5 WB: 1:1000 

Cell Signalling Technology 

(Denvers, MA, USA) 

ERK1/2 Rabbit 0.5 WB: 1:1000 
Cell Signalling Technology 

(Denvers, MA, USA) 

ERK 1/2, 

phospho T202/Y204 
Mouse 0.5 WB: 1:1000 

Cell Signalling Technology 

(Denvers, MA, USA) 

ERK 1/2, 

phospho T202/Y204 
Rabbit 0.5 WB: 1:1000 

Cell Signalling Technology 

(Denvers, MA, USA) 

p38 MAPK Rabbit 0.5 WB: 1:1000 
Cell Signalling Technology 

(Denvers, MA, USA) 

p38 MAPK, 

phospho T180/Y182 
Rabbit 0.5 WB: 1:2000 

Cell Signalling Technology 

(Denvers, MA, USA) 

p53 Mouse 0.5 WB: 1:1000 
Cell Signalling Technology 

(Denvers, MA, USA) 

FLAG Mouse 1.0 WB: 1:1000 Sigma Aldrich (Poole, UK) 

FLAG Mouse 1.0 IF: 1:300 Sigma Aldrich (Poole, UK) 

Goat IgG Donkey, HRP 0.4 WB: 1:5000 
Stratech Scientific 

(Newmarket, UK) 

Goat IgG 
Donkey, 

AlexaFluor 
2.0 IF: 1:300 

Life Technologies (Grand 

Island, NY, USA) 

Mouse IgG Donkey, HRP 0.4 WB: 1:5000 
Stratech Scientific 

(Newmarket, UK) 

Mouse IgG 
Donkey, 

AlexaFluor 
2.0 IF: 1:300 

Stratech Scientific 

(Newmarket, UK) 

Rabbit IgG Donkey, HRP 0.4 WB: 1:2500 
Stratech Scientific 

(Newmarket, UK) 

α-Tubulin Mouse 2.0 WB: 1:5000 Sigma Aldrich (Poole, UK) 

Β-actin Mouse 2.0 WB: 1:5000 Sigma Aldrich (Poole, UK) 

 

Table 2.1: Primary and secondary antibodies. Details of antibody 

species, concentration, dilution factor and commercial source for reagents 

used within this study. HRP, horseradish peroxidase; WB, Western blot; 

IF, immunofluorescence. 
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2.1.3 Bacterial strains, plasmid constructs and synthetic 

carbohydrates 

The XL10 gold Escherichia coli (E.coli) strain (TetrΔ(mcrA)183 Δ(mcrCB-

hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA1 gyrA96 relA1 lac Hte 

[F’ proAB laclqZDM15 Tn10 (Tetr) Amy Camr) was from Stratagene (CA, 

USA). The XL10 gold strain was used for plasmid propagation and 

cloning. Full length wild-type and D5A mutant LOX-1 with a C-terminal 

FLAG tag (LOX-1-FLAG WT and LOX-1-FLAG D5A) in the mammalian 

expression vector pcDNA3.1(+) was kindly provided by Dr. Sam Stephens 

(University of Leeds, UK). pFRT/lacZeo, pcDNATM6/TR, pOG44, 

pcDNATM5/FRT/TO from Invitrogen was kindly provided by Dr. Adrian 

Whitehouse (University of Leeds, UK). These plasmids were used to 

create a stable Flp-In T-Rex inducible cell line system.  

2.1.4 Cell lines 

Human embryonic kidney (HEK) 293 epithelial cell line was kindly 

provided by Professor Asipu Sivaprasadarao (University of Leeds, UK). 

HEK Flp-InTM T-RexTM cell line was another kind contribution from Dr. 

Adrian Whitehouse (University of Leeds, UK). Immortalised porcine aortic 

endothelial cell line was kindly provided by Dr. Sam Stephens (University 

of Leeds, UK). 

2.1.5 Mice 

LOX-1 knockout mice on the C56BL/6 background were kindly gifted by 

Professor Tatsuya Sawamura (National Cerebral and Cardiovascular 

Centre, Osaka, Japan). ApoE knockout and wild-type (C57Bl/6J) mice 

were purchased from Charles River (Charles River Laboratories, Margate, 

UK). Mice were housed in a custom-built transgenic animal facility run by 

Central Biomedical Services at the University of Leeds. Housing 

conditions are described in detail in section 2.2. 
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2.1.6 Surgical equipment 

All dissections were performed using instruments purchased from World 

Precision Instruments (Sarasota, USA) or InterFocus (Cambridge, UK). 

2.2 Experimental Methods 

2.2.1 Molecular Biology 

2.2.1.1 Preparation of competent E.coli cells 

E.coli XL10 gold cells were grown on Luria-Bertani (LB) agar (1% (w/v) 

bacto-tryptone, 0.5% (w/v) bacto-yeast extract, 1% (w/v) NaCl and 1.5% 

(w/v) agar, pH 7.0) overnight at 37°C. A single colony was then inoculated 

into 50 ml of LB media (1% (w/v) bacto-tryptone, 0.5% (w/v) bacto-yeast 

extract and 1% (w/v) NaCl, pH 7.0) and grown for ~24 h at 37°C with 

shaking. The stationary phase bacteria was then diluted 1:20 in fresh LB 

and grown until an OD550-600 of ~0.3-0.6 is reached. The culture is then 

chilled on ice for up to 15 min followed by centrifugation for 5 min at 3000 

g at 4°C. Cells were then resuspended in a small amount of residual LB by 

vortexing. 20 ml of ice-cold Tfb I (30 mM potassium acetate, 100 mM 

RbCl2, 50 mM MnCl2, 10 mM CaCl2 and 15% (v/v) glycerol, pH 5.8) was 

added per 50 ml of culture and cells resuspended in the buffer then 

incubated on ice for up to 45 min. Cells were centrifuged for 10 min at 

3000 g at 4°C. The pelleted cells were then resuspended in 4 ml ice-cold 

Tfb II (10 mM MOPS, 75 mM CaCl2, 10 mM RbCl2 and 15% (v/v) glycerol, 

pH6.5) and incubated on ice for 30 min. Cells were aliquoted and snap 

frozen on dry ice before storage at -70°C. 

2.2.1.2 Transformation into competent E.coli cells 

10 μl of competent E.coli XL10 gold cells were added to the DNA and 

incubated on ice for 5 min. Cells were heat shocked at 42°C for 1 min, and 

returned to ice for 3 min. Cells were plated onto LB plates containing the 

appropriate antibiotic and incubated at 37°C overnight. 
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2.2.1.3 Plasmid DNA miniprep using TENS procedure 

A rapid and cheap TENS method for plasmid DNA purification for 

analytical studies was as follows. 5 ml bacterial culture was set up in LB 

from a single colony and grown at 37°C for 16 h. 1.5 ml of the culture was 

centrifuged for 30 sec at 16000 g and the pelleted cells were resuspended 

in 50-100 μl of LB media. 300 μl of TENS solution (10 mM Tris pH 8, 1 

mM EDTA, 0.1 NaOH, 0.5% (w/v) SDS, 0.1 mg/ml RNase) was added and 

vortexed briefly to lyse the cells. 150 μl of 3 M NaAc or KAc, pH 5.5, was 

added and tubes were inverted 4-6 times. This was centrifuged for 5 min 

at 16000 g and the supernatant transferred to a tube containing 0.9 ml ice-

cold 100% ethanol, vortexed and centrifuged for 5 min at 16000 g. The 

DNA pellet was then washed twice in 70% ethanol, and then allowed to air 

dry and resuspended in TE (10 mM Tris, 1 mM EDTA, pH 8). 

2.2.1.4 Small scale DNA purification 

To obtain high quality plasmid DNA, a different procedure was carried out. 

5 ml of LB plus appropriate antibiotic was inoculated with a single colony 

and grown at 37°C for 16 h in a shaking incubator. 1.5 ml was pelleted by 

centrifugation at 16000 g.  Plasmid DNA was then purified using the 

Qiagen miniprep kit (Hilden, Germany) according to the manufacturer’s 

instructions.  

2.2.1.5 Large scale DNA purification 

Single colonies were selected with a sterile pipette tip, inoculated into 2 ml 

of LB plus appropriate antibiotic, and cultured at 37°C in a shaking 

incubator for 6 h. This was then diluted 1:500 in 100 ml of LB plus 

appropriate antibiotic, and cultured at 37°C in a shaking incubator for 16 h. 

The DNA maxiprep was then carried out using the Qiagen maxiprep kit 

(Hilden, Germany) according to the manufacturer’s instructions.  

2.2.1.6 Restriction digests 

Restriction digests contained the appropriate buffer at a final concentration 

of 1x for the enzymes being used. Bovine serum albumin (BSA) was 



44 
 

added when required, to a final concentration of 100 μg/ml. Restriction 

enzymes were added in accordance to the manufacturer’s guidelines for 

the amount of DNA to be digested. Reactions were made up to a specific 

volume with sterile water. Typically, reactions were incubated at 37°C for 2 

h before processing for analysis or sub-cloning. 

2.2.1.7 Gel purification of DNA fragments 

DNA fragments run on a 1-2.5% (w/v) agarose gel were visualised using a 

UV transilluminator and excised from the gel using a clean scalpel. DNA 

was purified using a QIAquick gel extraction kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions. 

2.2.1.8 Ligation of plasmid vector and DNA fragments  

Ligations were set up in a total volume of 10 μl. Reactions contained 2 μl 

5x T4 DNA ligase buffer, 0.5 μl T4 DNA ligase (Invitrogen, Amsterdam, 

Netherlands), a 1:3 molar ratio of vector to insert is usually used with 100 

ng of vector being used. Insert was replaced with sterile water in negative 

controls. Ligations were incubated in 16°C water bath overnight. 

2.2.1.9 Agarose gel electrophoresis 

Electrophoresis of DNA samples was carried out using 1-2.5% (w/v) 

agarose gels containing 1 μg/ml ethidium bromide in 0.5X TAE buffer (2 

mM Tris, 1 mM acetic acid, 0.5 mM EDTA, pH 8) or 0.5X TBE buffer (45 

mM Tris, 45 mM boric acid, 1 mM EDTA, pH 8). Gels were run in 0.5X 

TAE or 0.5X TBE buffer at 100 V for ~1 h. DNA was visualised in a G:BOX 

XT4 Chemi  imaging workstation (Syngene, Cambridge, UK).  

2.2.1.10 Plasmid DNA sequencing  

600 ng of plasmid DNA in 30 μl deionised water was sent for sequencing 

carried out by the DNA Sequencing Service (Dundee University, UK). 

Sequencing of pcDNA5/FRT/TO plasmids were carried out using the CMV 

forward primer (5’-CGCAAATGGGCGGTAGGCGTG-3’) and BGH reverse 

primer (5’-TAGAAGGCACAGTCGAGG-3’).  
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2.2.1.11 RNA extraction and purification 

RNA extraction was performed using an RNeasy Mini Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. Briefly, cells grown 

in 6-well plate were lysed in 350 μl of buffer RLT and homogenized using 

QIAshredder (Qiagen, Hilden, Germany). An equal volume of 70% (v/v) 

ethanol was added to the lysate and the RNA bound to resin in a spin 

column by centrifugation for 15 sec at 8000 g. RNA was washed in buffer 

RW1 for 15 sec and then incubated with DNase I for 15 min to digest any 

deoxyribonucleases. A further 15 sec wash with RW1 preceded 2 washes 

in buffer RPE, firstly for 15 sec, then for 2 min. All washes were spun 

down at 8000 g. RNA was then eluted in 80 μl RNase-free water. Quality 

and quantity of RNA was verified after each extraction. RNA content of 

samples was quantified using OD260 measurements in a nanophotometer 

(Implen, Munich, Germany). Quality was then assessed by calculating the 

OD260/OD280 ratio. 

2.2.1.12 Quantitative real-time reverse-transcriptase polymerase 

chain reaction (qPCR) 

RNA was reverse transcribed into cDNA using High Capacity Reverse 

Transcription kit (Applied Biosystems, California, US) according to the 

manufacturer’s instructions. Briefly, a master mix of 2 μl 10X Reverse 

Transcription buffer, 0.8 μl 25X dNTP, 2 μl 10X random primers, 1 μl 

Multiscribe Reverse Transcriptase and 4.2 μl nuclease-free water was 

made up and added to 10 μl RNA sample. Reverse transcription was 

carried out using a Biometra TProfessional thermocycler (Göttingen, 

Germany). Incubation times were 25°C for 10 min, followed by 37°C for 

120 min and 85°C for 5 min. The resultant cDNA was diluted 1 in 4 with 

DEPC-treated water. 5 μl of diluted cDNA was combined with 300 nM 

(final concentration) of the relevant primers and 12.5 μl Power SYBR 

Green PCR master mix (Applied Biosystems, California, US). The reaction 

mix was made up to 25 μl with DEPC-treated water. PCR reactions were 

performed using the ABI Prism 7000 Sequence Detection System (Applied 

Biosystems, California, UK) with ROX reference dye used for 
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normalisation. The reaction initiated at 50°C for 2 min prior denaturing for 

10 min at 95°C. Samples then underwent 45 cycles of denaturing at 95°C 

for 15 sec, and annealing and extension at 60°C for 1 min. PCR products 

were quantified relative to housekeeping genes encoding GAPDH. The 

primers used are summarised in table 2.2. 

2.2.1.13 DNA extraction for genotyping 

Ear notches were taken from mice in accordance with Home Office 

regulations. DNA from ear notches were extracted using MyTaq Extract 

PCR kit (Bioline, London, UK) according to the manufacturer’s 

instructions. Briefly, 20 μl of buffer A, 10 μl of buffer B and 20 μl deionised 

water were added and vortexed. The mixture was incubated at 75°C for 5 

min followed by further incubation at 95°C for 10 min. The mixture then 

spun down for 1 min at top speed. The extracted DNA in the supernatant 

was diluted 1 in 9 with deionised water. 

2.2.1.14 DNA amplification using polymerase chain reaction 

PCR amplification of DNA was carried out using MyTaq HS Red mix 

(Bioline, London, UK) according to manufacturer’s guidelines. For LOX-1 

and ApoE PCR, 1 μl of DNA was mixed on ice with 12.5 μl MyTaq HS Red 

mix, 0.5 μl of 20mM primers (table 2.3) and top it up to 25 μl with 

deionised water. PCR was carried out using a Biometra TProfessional 

thermocycler (Göttingen, Germany). The PCR cycles were as follows: 

LOX-1      ApoE 

95°C 10 min    94°C 3 min 

95°C 30 sec     94°C 30 sec 

60°C 30 sec         x 35 cycles  68°C 40 sec         x 35 cycles 

72°C 30 sec     72°C 1 min 

72°C 7 min     72°C 2 min 

4°C Hold     10°C Hold 
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Table 2.2: Primer sequences for real-time quantitative PCR. 

 

 

 

 

 

 

 

 

 

Mouse LOX-1 

Forward 5’- GTC ATC CTC TGC CTG GTG TTG T -3’ 

Reverse 5’- TGC CTT CTG CTG GGC TAA CAT C -3’ 

Human LOX-1 

Forward 5’- GAA ACC CTT GCT CGG AAG CTG A -3’ 

Reverse 5’- CAG ATC CAG TCT TGC GGA CAA -3’ 

Porcine LOX-1 

Forward 5’- GAG TCT TTC CAC TCT GCG GT -3’ 

Reverse 5’- CGG TCA CCA GTA ATC CCA GG -3’ 

Mouse GAPDH 

Forward 5’- GGG TGT GAA CCA CGA GAA AT -3’ 

Reverse 5’- CCT TCC ACA ATG CCG AAG TT -3’ 

Human GAPDH 

Forward 5’- GTC TCC TCT GAC TTC AAC AGC G -3’ 

Reverse 5’- ACC ACC CTG TTG CTG TAG CCA A -3’ 

Porcine GAPDH 

Forward 5’- CCA TGT TTG TGA TGG GCG TG -3’ 

Reverse 5’- CCA GGG GCT CTT ACT CCT TG -3’ 
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LOX-1 

Forward 5’- CGC CAA CCA TGG CTA TGG GAG AAT GG -3’ 

Reverse 5’- CAG CGA ACA CAG CTCCGT CTT GAA GG -3’ 

ApoE 

Common 5’- GCC TAG CCG AGG GAG AGC CG -3’ 

Wild-type 

reverse 
5’- TGT GAC TTG GGA GCT CTG CAG C -3’ 

Mutant reverse 5’- GCC GCC CCG ACT GCA TCT -3’ 

 

Table 2.3: Primer sequences for DNA genotyping. 
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2.2.2 Protein analysis by SDS-PAGE 

2.2.2.1 Preparation of cell lysates 

Media was aspirated from flasks and cells were washed twice in cold PBS. 

Cells were then lysed in 2% (w/v) SDS in PBS containing 1 mM PMSF 

and protease inhibitor cocktail (Roche) and scraped into microcentrifuge 

tubes. This was followed by incubating lysates at 95°C for 5 min and 

sonicated for 5 sec. 

2.2.2.2 Preparation of tissue lysates 

Frozen mouse tissue was cut into appropriate size using a scalpel. The 

tissue was then lysed and homogenized in 1X cell lysis buffer (Cell 

signalling Technology, Massachusetts, US) using a hand-held 

TissueRuptor (Qiagen, Hilden, Germany). This was followed by sonication 

of tissue lysates on ice for 20 sec prior to centrifuging at 15,000 rpm for 20 

min at 4°C, with resultant supernatant transferred to a fresh tube. 

2.2.2.3 BCA assay 

After preparing lysates, total protein concentration can be quantified by 

bicinchoninic acid (BCA) assay. On a 96-well plate, 10 μl of standard 

bovine serum albumin (BSA) controls at different concentration of 0, 0.2, 

0.4, 0.6, 0.8, 1.0 mg/ml and 5 μl of protein samples were added in 

duplicates. Reagents A and B of Pierce BCA protein assay (Thermo 

Fisher Scientific, Massachusetts, US) were mixed together in a 50:1 ratio, 

and 200 μl of the mixture was added into each well. The plate was then 

incubated at 37°C for 20 min, followed by reading at 562 nm using a 

Tecan plate reader connected to a PC running on Magellan version 6.0 

software (Tecan, Reading, UK). Values were obtained from it to calculate 

the maximal amount of sample to be loaded for SDS-PAGE gel and 

immunoblot analysis. 

2.2.2.4 SDS-PAGE 

Protein samples were added to an equal volume of 2X SDS-PAGE sample 

buffer (100 mM Tris pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, 0.1% (w/v) 
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bromophenol blue, 4% (w/V) β-mercaptoethanol) and boiled at 95°C for 10 

min. Samples were briefly centrifuged (maximum speed, 10 sec) to collect 

all droplets. To separate proteins, SDS-PAGE gels were made up with the 

solutions listed in table 2.4, and the gels were allowed to set for >15 min. 

Samples were loaded in a 5% stacking gel (30% (w/v) acrylamide, 1 M 

Tris pH 6.8, 10% (w/v) SDS, deionised water, 10% (w/v) APS, TEMED) 

and subjected to electrophoresis in a discontinuous running buffer (25 mM 

Tris, 192 mM glycine, 0.1% (w/v) SDS) at 130V for ~2 h. 

2.2.2.5 Western blotting 

Separated proteins were transferred onto a nitrocellulose membrane 

(Whatman Protran 0.2 μm pore size, Schleicher & Schuell Bioscience, 

Dassel, Germany) in transfer buffer (25 mM Tris-HCl pH 7.5, 106 mM 

glycine, 20% (v/v) methanol) at 4°C for 3 h at 300 mA or overnight at 30 

mA. The membrane was briefly stained with 0.1% Ponceau S in 5% (w/v) 

acetic acid to confirm successful transfer and equal protein loading, before 

being rinsed with TBS-T (20 mM Tris-HCl pH 7.6, 137 mM NaCl, 0.1% 

(v/v) Tween-20) and blocked in 5% (w/v) skimmed milk in TBS-T for 1 h. 

Membranes were then probed with primary antibodies dissolved in 1% 

(w/v) BSA in TBS-T with 1 mM sodium azide at 4°C overnight. Membranes 

were washed 3 times for 10 min in TBS-T and incubated for 1 h in 

species-specific horseradish peroxide (HRP)-conjugated secondary 

antibodies at room temperature. Membranes were washed 3 times for 10 

min in TBS-T and incubated briefly with EZ-ECL combined enhanced 

chemiluminescence substrate detection kit (Geneflow Ltd, Staffordshire, 

UK). Bound antibodies were then visualised by enhanced 

chemiluminescence in a G:BOX XT4 Chemi imaging workstation 

(Syngene, Cambridge, UK). Band intensity was determined using 2-D 

densitometry running on dedicated image analysis software (Syngene). 
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Solutions 
Volume (ml) required for different percentage gels 

10% 12% 15% 

30% acryl 6.7 8 10 

3 M Tris (pH 

8.8) 
2.5 2.5 2.5 

ddH2O 10.2 8.9 6.9 

10% SDS 0.2 0.2 0.2 

10% APS 0.4 0.4 0.4 

TEMED 16 μl 16 μl 16 μl 

 

Table 2.4: Volumes of solutions for one resolving gel for different 

percentage gels. 
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2.2.3 Cell culture 

2.2.3.1 Cell passage 

Epithelial human embryonic kidney 293 (HEK293) cell line and Flp-InTM T-

RexTM -293 cell line were cultured in Dulbecco’s modified eagle medium 

(DMEM; Gibco, Cramlington UK) containing 10 U/ml penicillin, 100 μg/ml 

streptomycin, 2 mM L-Glutamine, 1X non-essential amino acids and 10% 

(v/v) foetal calf serum (FCS; Life Technologies, Paisley, UK). Immortalised 

porcine aortic endothelial cell (PAEC) was cultured in Roswell Park 

Memorial Institute 640 (RPMI640; Gibco, Cramlington, UK) containing 10 

U/ml penicillin, 100 μg/ml streptomycin, 2 mM L-Glutamine, 1X non-

essential amino acids and 10% (v/v) foetal calf serum (FCS; Life 

Technologies, Paisley, UK). All three cell lines were incubated at 37°C in a 

hydrated 5% CO2 atmosphere. Cells were passaged every 2-3 days by 

trypsinisation with 1 ml of TrypLE Express (Invitrogen, Amsterdam, 

Netherlands), followed by incubation at 37°C for 3 min, until cells had 

detached from plate. Complete DMEM or RPMI was used to quench the 

trypsin and remove the cells from the plate, and then plated out. For 

HEK293 and Flp-InTM T-RexTM -293 cells, flasks or plates were pre-coated 

with poly-l-lysine (Sigma-Aldrich, Poole, UK) for 30 min at room 

temperature. Poly-l-lysine was removed and washed once with PBS, and 

air-dried for at least 2 h.  

2.2.3.2 Calcium phosphate-based gene transfection of mammalian 

cells 

Cells were plated the day before transfection at ~20% confluency. Pre-

warmed Opti-MEM reduced serum (Gibco, Cramlington, UK) media was 

added to cells before transfection in the volumes shown in table 2.5 plus 

HBS, plasmid DNA and 2.5 M CaCl2. The mixture was incubated for 20 

min at room temperature prior to adding to cells in drop-wise manner. The 

transfection reagent was left on cells overnight and media was changed 

the next day with full serum media. Cells were ready for further experiment 

24-48 h post-transfection. This method was used for transient cell 

transfection. 
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2.2.3.3 Lipid-based gene transfection of mammalian cells 

Cells were plated the day before transfection at the appropriate number 

for the plate being used. The Lipofectamine 2000 (Invitrogen, Amsterdam, 

Netherlands) transfection reagent was used and carried out according to 

the manufacturer’s instructions. This was carried out in Opti-MEM media. 

Media was replaced with full serum media 4-6 h post-transfection. This 

method was used for generating stable cell line. 

2.2.3.4 Analysis of intracellular signalling pathways 

Cells were seeded into 6-well plates and cultured for at least 24 h in full 

serum media until ~80% confluent. At the same time, 1 μg/ml of 

tetracycline was added to induce LOX-1 expression. Media was then 

aspirated and cells were washed twice with PBS. Cells were then starved 

in Opti-MEM reduced serum media for 2 h prior to stimulation with 10 

μg/ml oxidised LDL (oxLDL) as specified in each experiment. After the 

specified time course, plates were put on ice and media aspirated; cells 

were then washed twice with ice-cold PBS. Plates were then removed 

from ice and cells lysed using an appropriate buffer. 
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Plate size 
Medium 

volume 
HBS CaCl2 DNA 

24 well 300 μl/well 18 μl 1.1 μl 1 μg 

6 well 1.5 ml/well 86 μl 5.1 μl 5 μg 

10 cm dish 8 ml/well 500 μl 30 μl 30 μg 

 

Table 2.5: Transfection volumes for calcium phosphate-based gene 

transfection. 
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2.2.3.5 Cell surface biotinylation 

Cells were stimulated (oxLDL in opti-MEM) for a specified time course 

before washing twice with ice-cold PBS and incubated with 0.25 mg/ml 

EZ-Link Sulfo-NHS-LC-Biotin (Thermofisher) in PBS containing 2 mM 

MgCl2 and 2 mM CaCl2 for 40 min at 4°C. Biotinylation was quenched by 

washing twice with ice-cold 1X TBS (20 mM Tris-HCl pH 7.6, 137 mM 

NaCl) followed by washing twice with ice-cold PBS. Cells were lysed in 

500 μl NP-40 buffer (50 mM Tris pH7.5, 150 mM NaCl, 1% NP-40) for 5 

min on ice before scraping the cells. Lysates were cleared by 

centrifugation at 15000 rpm for 30 min at 4°C. Equivalent protein amounts 

were incubated with 35 μl neutravidin-agarose beads (ThermoFisher) 

overnight at 4°C. Beads were pelleted by brief centrifugation, supernatant 

removed and beads washed 4 times with 500 μl ice-cold NP-40 buffer. 40 

μl of 2X SDS-PAGE sample buffer was added and proteins eluted by 

heating at 95°C for 10 min before analysis by SDS-PAGE and 

immunoblotting. 

2.2.3.6 Assessment of endothelial monolayer permeability using 

trans-endothelial electrical resistance (TEER) 

Human endothelial cells were seeded in 450 l at 1.5 x 105 cells/well 

(sufficient to give a monolayer)  into a 0.4 m pore size Transwell filter 

inserted into a 24-well plate (BD Biosciences, Oxford, UK) containing 500 

l culture media and left to adhere overnight. At t=0 h the trans-endothelial 

electrical resistance (TEER) across each monolayer was measured using 

a MILLICELL-ERS TEER machine (Merck Millipore). Following this, 50 l 

of culture media + 10 g/mL oxidised LDL was added to the upper 

chamber. After a further 1, 2, 4, 6 or 8 h, TEER across each monolayer 

was measured again and the relative increase in permeability 

(corresponding to a decrease in electrical resistance across the 

endothelial monolayer) was calculated as follows: Relative TEER (%) = 

(TEER of sample of interest– TEER of blank (TEER across insert with no 

cells) / TEER of control cells at 0 h – blank)*100. 
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2.2.4 LDL and oxidised LDL preparation 

2.2.4.1 Purification of LDL particles from blood 

 20 ml of blood was collected by a medical doctor from consenting healthy 

adult volunteers (under University of Leeds of Faculty of Biological 

Sciences local ethical approval and license). Blood was added to 3.8% 

(w/v) trisodium citrate in a 9:1 ratio to prevent blood coagulation. Human 

plasma was separated from blood cells by centrifugation at 4000 rpm for 

20 min at room temperature. The clear, yellowish plasma was transferred 

to a fresh tube containing OptiPrep Density Gradient medium (Sigma) in 

4:1 ratio to give a final concentration of 12% (v/v) iodaxinol. 1 ml of HBS 

(0.85% (w/v) NaCl, 10 mM HEPES pH 7.4) was added to a 4.7 ml 

Beckman Opti-Seal centrifuge tube. The plasma-OptiPrep mix was 

layered under the HBS solution and centrifuged at 100,000 rpm at 16°C 

for 3 h. The different lipoprotein fractions formed discrete bands in the 

tube. LDL forms a deep orange band towards the top of the tube. The LDL 

band was removed with a 25 gauge needle attached to a 1 ml syringe. 

The extracted LDL was dialysed into PBS at 4°C for 24 h. The 

concentration of LDL was measured using a BCA assay.  

2.2.4.2 Oxidation of LDL 

Following dialysis into PBS, native LDL was stored in fresh tube 

containing 100 μM EDTA and 20 μl butylated hydroxytoluene (BHT) at 4°. 

LDL particles were oxidized by incubation with 5 μM CuSO4 at 37°C for 24 

h. The oxidation reaction was terminated by adding 100 μM EDTA and 20 

μM BHT. The concentration of oxLDL was measured using a BCA assay. 

2.2.4.3 Agarose gel electrophoresis of lipid particles 

The relative electrophoretic mobility of oxLDL and native LDL was 

analysed by agarose gel electrophoresis followed by Sudan black staining. 

4 μg of lipid particles were loaded to 0.5% (w/v) agarose gel in borate 

buffer (80 mM boric acid, 90 mM Tris-HCl pH 8.3, 3 mM EDTA) and run at 

100 V for 1 h. The gel was then fixed in 75% (v/v) ethanol plus 5% (v/v) 

acetic acid for 15 min. The gel was then stained with a saturated solution 
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of the lipid stain Sudan black in 60% (v/v) ethanol and 0.05% (w/v) NaOH 

for 2 h. This was followed by de-staining of gel in 50% (v/v) ethanol. 

2.2.4.4 Fluorescent DiI-labelling of lipid particles 

OxLDL particles were labelled with the fluorescent compound 1,1 

dioctadecyl-3,3,3’,3’-tetramethyllindocarbocyanine perchlorate (DiI; 

Sigma) in DMSO. 300 μg of DiI was added to each milligram of lipoprotein 

and incubated in the dark at 37°C for 18 h. The labelled oxLDL was then 

centrifuged at 13,000 rpm for 10 min before dialysing against PBS in the 

dark for 24 h at 4°C. The concentration of DiI-oxLDL was measured by 

BCA assay. 

2.2.5 Immunofluorescence analysis 

Media was aspirated from cells seeded on poly-l-lysine (Sigma-Aldrich, 

Poole, UK) coated coverslips in 24-well plates and cells were rinsed twice 

in PBS. Cells were fixed in 500 μl 10% (v/v) formalin (Sigma-Aldrich, 

Poole, UK) for 5 min at 37°C. Fixative was aspirated and coverslips rinsed 

twice in PBS. Coverslips were then incubated in 5% (w/v) BSA in PBS to 

block non-specific antibody binding to cells, followed by washing twice in 

PBS. Coverslips were inverted onto a 25 μl drop of primary antibody 

solution diluted in 1% (w/v) BSA in PBS (table 2.1) in a moist staining 

chamber and incubated overnight at room temperature. Coverslips were 

washed 3 times with PBS and inverted onto a 25 μl secondary antibody 

solution containing 4 μg/ml donkey Alexa Fluor-conjugated secondary 

antibody (Invitrogen, Amsterdam, Netherlands), 2 μg/ml 4,6-diamidino-2-

phenylidole (DAPI) in 1% (w/v) BSA in PBS and incubated for 2 h at room 

temperature. Coverslips were washed 3 times with PBS and mounted onto 

slides using Fluoromount G (Southern Biotech, Alabama, US). Images 

were acquired either using a wide-field deconvolution microscope 

DeltaVision (Applied Precision Inc., Issaquah, US) or an EVOS-fl inverted 

digital microscope (Life technologies, Paisley, UK). Relative protein levels 

or co-distribution were analysed and quantified using Image J (NIH, 

Bethesda, US). 
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2.2.6 Animal housing and husbandry 

All mice were housed in individually ventilated cages at no more than 5 

per unit. Animals only shared a cage with siblings of the same sex. The 

complex lighting was on a ‘fade up-fade down’, 12 h light and 12 h dark 

cycle from 0630 to 1830. Room temperature was 21°C +/- 2°C. Standard 

chow feed (Rat and Mouse No.1 Maintenance; Special Diet Services, 

Essex, UK) and water were available ad libitum. Mice were checked upon 

daily. Breeding cages were set up with 1 male and 2 female over the age 

of 8 weeks. Pups were weaned at 18 days and ear notched for 

identification thereafter. Stringent records were kept of husbandry and 

experimental procedures. Any mice displaying stunted development or 

overly aggressive behaviour were excluded from experiments. 

2.2.6.1 Pro-atherogenic diet 

Mice were fed with 0.2% cholesterol Western diet (Special Diet Services, 

Essex, UK) for 12 weeks from 8 weeks of age. Before 8 weeks old, they 

were fed standard chow (Special Diet Services, Essex, UK). Feed was 

available ad libitum and animals were weighed weekly.  

2.2.6.2 Organ harvesting 

Isofluorane (CBS, University of Leeds) anaesthesia was induced and a 

cardiac puncture technique was performed to withdraw blood. Mice were 

laid on their back, and using a 1 ml syringe and a 22 gauge needle, 

needle was inserted perpendicular to chest wall, straight to the apex of the 

heart in the left ventricle. Blood was slowly withdrawn by gently pulling 

back on the plunger to obtain the maximum amount of blood available. 

Blood was transferred to heparin-coated tubes and immediately placed on 

ice. This was followed by performing a midline laparotomy. The abdominal 

contents were displaced to the right. 5 ml of PBS was slowly perfused into 

the left ventricle to flush out any remaining blood. Organs such as the 

heart, liver, adipose tissue, and aorta were dissected, and then placed in a 

tube before snap freezing the tissues in liquid nitrogen.  
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2.2.7 Statistical analysis 

This was performed using the unpaired two-tailed Student’s t-test for 2 

groups, one-way analysis of variance (ANOVA) followed by Tukey’s post-

hoc test or two-way ANOVA followed by Bonferroni multiple comparison 

test using GraphPad Prism software (La Jolla, CA, US). Significant 

differences between control and test groups were evaluated with p values 

less than 0.05 (*), 0.01 (**), 0.001 (***) and 0.0001 (****) indicated on the 

graphs. Error bars in graphs denote ± SEM (Standard error of mean). 
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CHAPTER 3 

Development of a tetracycline-inducible LOX-

1 expression system  

 

3.1 Introduction 

LOX-1 is a scavenger receptor for oxidised LDL that is associated with 

pathological states such as atherosclerosis and diabetes (Dunn et al., 

2008; Mitra et al., 2011; Chen et al., 2001c). LOX-1 is expressed in 

vascularised tissues such as heart, lung and liver (Sawamura et al., 1997). 

LOX-1 is expressed in different vascular and immune systems including 

the endothelium, monocytes, macrophages and smooth muscle. 

Expression of LOX-1 in resting or basal state is relatively low in primary 

endothelial cells in vitro (Mehta and Li, 1998). However, LOX-1 expression 

can be elevated by pro-inflammatory stimuli such as oxidised LDL, Ang II, 

TNFα and glucose (Aoyama et al., 1999; Li et al., 1999a; Li et al., 2003d).  

One problem in studying the function of LOX-1 is that the 

expression itself is associated with increased programmed cell death i.e. 

apoptosis (Li and Mehta, 2009). An inducible expression system in 

mammalian cells would make it easier to study the functional role of this 

scavenger receptor. One solution is the use of a system that relies on the 

integration of a gene of interest using a FLP recombinase-mediated 

integration to enable tetracycline-inducible expression of the GOI at this 

locus (O'Gorman et al., 1991; Yao et al., 1998). The Flp-InTM T-RexTM 

system is designed to create mammalian cell lines which stably express 

proteins of interest and protein expression is constant across a population 

of cells. The system uses the FRT site for integration of the LOX-1 cDNA 
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by FLP recombinase. The tightly controlled expression of the LOX-1 

transgene is regulated by the tetracycline repressor (TetR), which binds to 

two tetracycline operator sequences upstream of the gene of interest and 

thus blocks gene transcription at the level of new RNA synthesis. By using 

this system, it also removes variations in transgene expression levels 

caused by genome specific variability, and also enables control of the 

timing of gene expression (Thomas et al., 2004).  

The oxidised LDL binding to LOX-1 causes an increase in 

apoptosis in a variety of cell types. This LOX-1-mediated apoptosis is 

caused by activation of caspase-9 and caspase-3, which down-regulate 

anti-apoptotic proteins (Li and Mehta, 2009). It is likely that culture media 

contains lipid particles and related substances that become oxidised and 

become ligands that activate LOX-1 signalling and promote apoptosis.  

The aim of this chapter was thus to generate a stable cell platform for 

studying LOX-1 signalling and functionality in vitro. 

 

3.2 Results 

3.2.1 Generation of the expression construct with LOX-1 gene 

The specific objectives were to generate an inducible LOX-1 expression 

system and test whether such a system could mediate LOX-1-specific 

oxidised LDL binding and uptake. Initially, the LOX-1 sub-cloned into 

pcDNA3.1 vector has a five amino acid linker peptide (GPGPG) and 5’ 

BamHI and 3’ EcoRI sites to the cDNA. Polymerase chain reaction (PCR) 

was used to generate an amino acid FLAG peptide sequence 

(DYKDDDDK) flanked by 5’ EcoRI and 3’ XhoI restriction sites (Murphy et 

al., 2006). Both digested LOX-1-WT and LOX-1-D5A extracted and 

purified from pCDNA3.1 plasmids were detected at ~3 kbp by 1.5% (w/v) 

agarose gel electrophoresis (Figure 3.1A). Appropriate control with uncut 

plasmid was detected at ~8 kbp (Figure 3.1A). 
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The LOX-1 cDNAs needed to be sub-cloned into the multiple 

cloning sites (MCS) of the pcDNA5/FRT/TO expression plasmid. 

pcDNA5/FRT/TO plasmid was digested by restriction enzymes, BamHI 

and XhoI,  to produce ‘sticky’ ends. This linearized plasmid was detected 

at ~5 kbp along with the uncut plasmid control, which migrated faster than 

the digested product (Figure 3.1B). Finally, the digested and purified LOX-

1-FLAG was sub-cloned into the pcDNA5/FRT/TO vector. Analysis of 

recombinant clones showed that both pcDNA5/FRT/TO LOX-1-WT and 

LOX-1-D5A inserts were detected at ~8 kbp; as the ‘vector only’ control 

was detected at ~5 kbp (Figure 3.2). Therefore, this confirms the 

directional insertion of LOX-1-WT and LOX-1-D5A into the 

pcDNA5/FRT/TO plasmid. DNA sequencing confirmed the sequence and 

orientation of the LOX-1-FLAG cDNA inserts within the pcDNA5/FRT/TO 

plasmid. 
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3: BamHI-XhoI digest (LOX-1-D5A) 
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Fig. 3.1. Restriction digestion and analysis of LOX-1-bearing 

plasmids. Agarose gel electrophoresis of (A) digested products of 

pCDNA3.1 LOX-1-WT and LOX-1-D5A constructs, and (B) 

pcDNA5/FRT/TO (5 kbp) plasmid digested using BamHI and XhoI. 
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Fig. 3.2. Recombinant plasmid analysis of LOX-1 clones. 

Analysis of pcDNA5/FRT/TO-LOX-1 recombinant plasmids 

using 1.5% (w/v) agarose gel electrophoresis of clones with 

size of 6 kbp (even number lanes 2, 4, 6, 8, 10) and vector 

only as negative control with size of 5 kbp (odd number lanes 

1, 3, 5, 7, 9). 
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3.2.2 Characterisation of Flp-InTM T-RexTM cell lines 

The generation of Flp-InTM T-RexTM cell line, in which is the parent cell 

lines can receive and express gene of interest requires the stable 

integration of 2 plasmids, pFRT/lacZeo and pcDNA6/TR. The HEK293 

Flp-InTM T-RexTM cell line is available commercially, but the porcine aortic 

endothelial cell (PAEC) line needed to be constructed. The T-Rex cells 

maintain stable integration of both plasmids within the genome by 

conferring resistance to markers on these plasmids for resistance to 

zeocin and blasticidin antibiotics, respectively. This requires transfection 

and integration of the FRT site plasmid (pFRT/lacZeo), the selection of 

PAEC colonies by zeocin resistance and the verification by PCR assay. 

After successful transfection of pFRT/lacZeo, colonies formed were 

selected with 150 µg/ml zeocin and the PAEC clones were allowed to 

grow to confluency prior to expansion and PCR analysis. After the 

extraction of genomic DNA from each clone (1-6), PCR assay was carried 

out to confirm the successful integration of lacZeo gene. In figure 3.3A, the 

expected 450 bp PCR product was observed. This was confirmed by the 

positive control (pFRT/lacZeo) at 450 bp and the negative control (un-

transfected parent cell line) showing absence of this PCR product.  

Subsequently, the second plasmid pcDNA6/TR, which expresses 

the tetracycline repressor protein, is then expressed by transfection and 

integration of pFRT/lacZeo, where integrants were selected by blasticidin 

resistance. Like previously, colonies formed were selected with 15 µg/ml 

blasticidin where the cells then were propagated to confluency. After DNA 

extraction, successful PAEC clones (1-7) with the expected 1.5 kbp PCR 

product were seen (Figure 3.3B), as this was confirmed by the positive 

control PCR (pcDNA6/TR). Thus, the PAEC line containing the Flp-InTM T-

RexTM expression system has now been generated.  

 

 

 



1
0

0
b

p
 D

N
A

 l
a

d
d

e
r

p
F

R
T

/l
a

c
Z

e
o

N
e
g

a
ti

v
e
 c

o
n

tr
o

l

C
lo

n
e
 1

C
lo

n
e

 2

C
lo

n
e
 3

C
lo

n
e
 4

C
lo

n
e
 5

C
lo

n
e
 6

450bp PCR 

product

1
0
0
b

p
 D

N
A

 l
a
d

d
e
r

C
lo

n
e
 1

C
lo

n
e
 2

C
lo

n
e
 3

C
lo

n
e
 4

C
lo

n
e
 5

C
lo

n
e
 6

C
lo

n
e
 7

p
c
D

N
A

6
/T

R

1.5kbp PCR 

product

A 

B 

Figure 3.3. PCR analysis of stable integration of the 

tetracycline-inducible expression system. Analysis of PAEC 

clones were carried out using PCR assays for the confirmation of 

integration of (A) pFRT/lacZeo and (B) pcDNA6/TR. Samples were 

subjected to agarose gel electrophoresis and staining with ethidium 

bromide. 
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3.2.3 Generation of Flp-InTM T-RexTM expression cell lines 

Both the LOX-1-WT and LOX-1-D5A mutant FLAG-tagged cDNAs were 

sub-cloned into pcDNA5/FRT/TO expression vector (Fig. 3.2). These 

plasmids were then co-transfected into the HEK293 or PAEC Flp-InTM T-

RexTM cell lines along with a pOG44 plasmid expressing Flp recombinase. 

A negative control used in the experiment was the transfection of ‘empty’ 

plasmid pcDNA5/FRT/TO alone. Upon stable integration of the 

pcDNA5/FRT/TO containing the LOX-1 cDNA into the FRT site, the cells 

are rendered hygromycin resistant and zeocin sensitive. Thus, the 

successful stable integrants are maintained in culture media containing 

hygromycin and blasticidin antibiotics (but lacking zeocin).  

After successful transfection of LOX-1-FLAG into Flp-InTM T-RexTM 

HEK293 and PAEC cell lines, colonies were selected with hygromycin and 

blasticidin antibiotics to allow propagation. To screen for successful 

expression of LOX-1-FLAG in the cells from various numbers of colonies 

picked, the cells were induced with tetracycline in the culture media for 16-

24 h. Subsequently, cells were lysed and subjected to immunoblotting 

analysis.  Figure 3.4 shows analysis of different HEK293T and PAEC Flp-

InTM T-RexTM clones with negative control, LOX-1-WT (Figure 3.4A) and 

LOX-1-D5A (Figure 3.4B) with the absence or presence of tetracycline 

induction (16-20 h). In this context, LOX-1-WT and LOX-1-D5A mentioned 

are FLAG-tagged, which can be detected as bands of 37-45 kDa in the 

presence of tetracycline. As for the negative control (empty vector), in the 

absence and presence of tetracycline, no bands were detected, thus 

confirming that the expression of tagged LOX-1 proteins is encoded by the 

integrated transgene within each clone. The clone with the highest LOX-1 

expression was chosen to be used in all the experiments onwards.  

To further validate the successful expression of LOX-1-WT and 

LOX-1-D5A in these cell lines, quantitative real-time PCR (qRT-PCR) 

were carried out. As shown in figure 3.5A, mRNA levels of both LOX-1-WT 

and LOX-1-D5A were significantly increased by overnight incubation with 

tetracycline in HEK293 cells. As for PAEC cells, two different primer pairs, 
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namely human LOX-1 and porcine LOX-1 primer pairs were tested for 

qRT-PCR, as shown in Fig. 3.5B and Fig. 3.5C, respectively. Using the 

human-specific LOX-1 primers in PAEC (Figure 3.5B), both mRNA 

expression of wild-type and mutant LOX-1 were significantly expressed 

after tetracycline treatment. To check for native porcine LOX-1 mRNA 

expressed in PAEC cells, porcine LOX-1 primers sequence was used. 

Figure 3.5C shows significant levels of endogenous porcine LOX-1 mRNA 

upon tetracycline addition. The housekeeping gene GAPDH was used as 

an internal control for this qRT-PCR analysis of relative mRNA levels. 

One issue was asking how the addition tetracycline over a time 

period regulates expression of LOX-1 protein. To assess the dynamics of 

tetracycline-induced LOX-1 protein expression, cells were treated with 

tetracycline for 0, 2, 4, 8, 16 and 24 h, then cells were lysed and subjected 

to immunoblotting. Fig. 3.6A shows tetracycline-induced expression of 

both LOX-1-WT and LOX-1-D5A.  The expression profiles are similar with 

maximal tetracycline-induced expression of both proteins evident 16-24 h 

after tetracycline addition. The bands corresponding to these LOX-1 

proteins were quantified and relative levels analysed for LOX-1-WT (Fig. 

3.6B) and LOX-1-D5A (Fig. 3.6C). From these experiments, the optimal 

time period for maximal LOX-1 expression occurs 16-24 h after 

tetracycline addition. 
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Fig. 3.4. Tetracycline-induced expression of LOX-1-WT and LOX-1-

D5A. HEK293 and PAEC clones expressing (A) LOX-1-WT and (B) LOX-

1-D5A were compared to clones carrying empty vector (negative control). 

Cells were induced with 1 µg/ml tetracycline for >16 h. Cells were then 

lysed and processed for immunoblot analysis using mouse anti-FLAG 

antibodies to detected the FLAG-tagged LOX-1 proteins. 
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Fig. 3.5. Quantification of LOX-1-WT and LOX-1-D5A mRNA levels 

using qRT-PCR. The quantification of mRNAs in (A) HEK293 and (B, 

C) PAEC clones were performed using qRT-PCR encoding hLOX-1-

WT and hLOX-1-D5A (A and B), and porcine LOX-1-WT (C). The 

mRNA levels were normalized to GAPDH as a housekeeping gene 

and internal control. Error bars indicate ±SEM (n≥3). p<0.05 (*), 

p<0.01 (**), p<0.0001 (****). 
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Fig. 3.6. Induction of the LOX-1 expression by tetracycline within 24 h. 

(A) HEK293 cell expressing LOX-1-WT and LOX-1-D5A were induced with 1 

µg/ml tetracycline or 0, 2, 4, 8, 16 or 24 h. Cells were then lysed and 

processed for Western blot analysis using antibodies against FLAG-tag and 

quantification of (B) LOX-1-WT and (C) LOX-1-D5A. Error bars indicate 

±SEM (n≥3). p<0.05 (*), p<0.01 (**), p<0.0001 (****). 
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3.2.4 Analysis of oxidised LDL binding to cells expressing LOX-1 

3.2.4.1 Extraction and oxidation of low-density lipoprotein  

In order to study the interaction of LOX-1 with oxidised LDL, LDL needed 

to first be isolated from human blood. Human LDL particles were purified 

from human plasma by ultracentrifugation using self-generating gradients 

of iodixanol (Graham et al., 1996). This method was used due to shorter 

centrifugation times than traditional sodium or potassium bromide 

gradients (Chapman et al., 1981; Kelley and Kruski, 1986) and because 

the high salt concentrations can modify lipoprotein structure and therefore 

require removal. Copper sulphate was used to oxidise the LDL particles. 

There are different methods that can be utilised for oxidation, such as 

transition metals or incubation with cultured cells, but LDL incubation with 

copper sulphate is one of the most widely used methods and produces 

extensively oxidised LDL (Levitan et al., 2010). The oxidation is halted 

with the anti-oxidants EDTA and butylated hydroxytoluene (BHT). 

Oxidation increases the negative charge on the particle due to reactive 

aldehyde conjugation to lysine residues. 

Native and oxidised LDL particles treated with the anti-oxidants 

EDTA and BHT were run on 0.5% (w/v) agarose gels followed by Sudan 

black staining. Oxidised LDL has an increased electrophoretic mobility in 

comparison to native LDL as shown in figure 3.7. Oxidation of the LDL 

particle results in fragmentation of ApoB-100 and aggregation of particles, 

which leads to non-homogeneity in oxidised LDL particles. Therefore, this 

method confirms that the LDL particle has undergone oxidation by the 

copper ions. 
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Fig. 3.7. Purification and oxidation of low-density lipoprotein 

particles. Low-density lipoprotein (LDL) was extracted from human 

plasma using iodaxonal gradient centrifugation and oxidised using 5 

µM copper sulphate (CuSO4) for 24 h at 37ºC (Oxidised LDL; lanes 

2 and 3). Control was incubated with 100 µM EDTA and 20 µM BHT 

at room temperature (nLDL; lane 1). 4 µg of each sample was 

analysed on 0.5% (w/v) agarose gel and stained with the lipid stain 

Sudan black.  
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3.2.4.2 LOX-1 binding to oxidised LDL particles  

To further validate the binding of oxidised LDL to LOX-1, a cell-based 

assay was used. The oxidised LDL particles were incubated with a 

fluorescent lipophilic dye (DiI), which enables tracking of the oxidised LDL 

particles using fluorescence microscopy (Murphy et al., 2006; Murphy et 

al., 2008).  HEK293 and PAEC clones expressing these LOX-1 cDNAs 

were induced with tetracycline overnight. After serum-starvation for 2 h, 

cells were incubated with DiI-oxidised LDL for 15 min on ice. Fixation and 

staining cells with anti-FLAG antibodies allows detection of LOX-1-WT or 

LOX-1-D5A proteins in these clonal lines. Analysis of a negative control 

PAEC clone revealed no staining of FLAG-tagged LOX-1 as expected 

(Figure 3.8B). Nonetheless, the negative control PAEC clone exhibited 

significant amounts of DiI-oxidised LDL binding (Figure 3.8C). 

Furthermore, negative control PAEC showed significant DiI-oxidised LDL 

accumulation within cells in large punctate structures (Figure 3.8D, 

arrows).  

The different LOX-1-expressing clones also showed staining for 

LOX-1 proteins using the anti-FLAG antibody (Figure 3.9, D and E); no 

such staining was visible in the negative control (Figure 3.9F). In contrast 

to PAEC, HEK293 negative control showed little or no binding of DiI-

oxidised LDL to LOX-1 (Figure 3.9I). Upon tetracycline-induced 

expression of LOX-1-WT or LOX-1-D5A, there was notable increase in 

staining for DiI-oxidised LDL (Figure 3.9, G and H). There was DiI-oxidised 

LDL co-distribution with LOX-1-WT (Figure 3.9J, arrows). There was 

notably less staining of DiI-oxidised LDL for cells expressing LOX-1-D5A 

compared to LOX-1-WT expression (Fig. 3.9K). These findings suggest 

that LOX-1 expression in the HEK293 cells enables specific detection of 

oxidised LDL binding and uptake.  
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Fig. 3.8. Staining of DiI-oxidised low-density lipoprotein in 

control PAEC cells. Control porcine aortic endothelial cells 

(PAECs) were induced with 1 µg/ml tetracycline overnight prior to 

incubation with DiI-oxidised LDL (red) for 15 min on ice. Endothelial 

cells were fixed and processed for immunofluorescence 

microscopy using mouse anti-FLAG and secondary anti-mouse 

AlexaFluor-488 conjugate (green); nuclei were stained using DAPI 

(blue). Arrows denote cells exhibiting high DiI-oxidised LDL uptake. 

Scale bar, 200 µm.  
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Fig. 3.9. Visualisation of Oxidised LDL uptake in HEK293 clones 

expressing LOX-1 proteins. Human embryonic kidney (HEK) 293T cell 

transfected with LOX-1-WT (A), LOX-1-D5A (B) and control (C) were 

induced with 1 µg/mL overnight prior to incubation with DiI-oxidised (red) 

LDL for 15 min on ice. Epithelial cells were fixed and processed for 

immunofluorescence microscopy using anti-FLAG (green); nuclei stained 

using DAPI (blue). Scale bar, 200 µm. 
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3.3 Discussion 

In this chapter, I constructed an inducible system that expressed either 

LOX-1-wild-type-FLAG (LOX-1-WT) or a trafficking-defective mutant, LOX-

1-D5A. The idea behind generating Flp-InTM T-RexTM cell line, firstly, it 

requires the integration of two plasmids (Figure 3.10A), where one 

contains the Flp Recombination Target (FRT) sites, and the other 

expresses the tetracycline (tet) repressor (Andrews et al., 1985; Hillen and 

Berens, 1994). To date, only HEK293 cells have both plasmids integrated 

into the genome. Subsequently, full-length human LOX-1 cloned into 

pcDNA5/FRT/TO vector was co-transfected with pOG44 plasmid into 

HEK293 and PAEC Flp-InTM T-RexTM cell lines (Figure 3.10B). Expression 

of LOX-1 is repressed by the tet repressor protein that binds to the tet 

operator O2 sequence upstream of the LOX-1 to prevent transcription. 

Tetracycline must be added into the culture media so then it binds to the 

tet repressor protein that distorts the structure and releasing it from the tet 

operator sequence, which in turn allows the transcription and translation of 

LOX-1 (Figure 3.10C).  

One potential problem with LOX-1 expression in cell lines is that 

activation of this receptor triggers apoptosis (Li and Mehta, 2009). To 

solve this problem, using controlled and inducible expression by LOX-1 is 

one way of studying the functional role of this protein in cells. Here, human 

embryonic kidney 293 cells (HEK293) and immortalised porcine aortic 

endothelial cells (PAEC) were used to stably express LOX-1-WT and 

mutant LOX-1-D5A proteins. As the HEK293 cell line does not bind or take 

up significant levels of oxidised LDL due to little or no scavenger receptor 

being expressed, thus effects of LOX-1 can be studied in detail. In 

contrast, the PAEC cell line does bind and take up significant levels of 

oxidised LDL. This could be due to the possible expression of other 

scavenger receptors including SR-A1, CD36 and LOX-1. Although LOX-1 

expression in the PAEC background is more physiological, it is difficult to 

study the effects of LOX-1 in isolation considering the background 

expression and levels of other scavenger receptors.  
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The addition of the FLAG peptide tag in the full-length human LOX-

1 at the C-terminus upstream of the C-type lectin-like extracellular domain 

(LOX-1-FLAG; Fig. 3.11) enabled monitoring the protein. Both HEK293 

and PAEC cells expressed a ~40 kDa LOX-1-FLAG protein as detected by 

anti-FLAG antibodies, which corresponds to the molecular mass of human 

LOX-1 in vascular cells and tissues (Xie et al., 2004). It is noteworthy to 

point out that there was no ‘leaky’ expression of LOX-1 in the absence of 

tetracycline. This controlled and tetracycline-inducible expression system 

was further validated using qRT-PCR to monitor the mRNA levels of LOX-

1 in the absence and presence of tetracycline.   

Analysis of HEK293 cells expressing LOX-1 or LOX-1-D5A 

suggested substantial differences in oxidised LDL binding and uptake. 

LOX-1-D5A-expressing cells showed dramatically reduced oxidised LDL 

binding and uptake (compared to LOX-1-WT). One explanation could be 

that the D5A mutation perturbs LOX-1 trafficking and availability for 

oxidised LDL binding at the plasma membrane. This mutation does not 

significantly affect the mRNA levels of LOX-1-D5A suggesting that any 

effects are occurring due to altered function of the protein and not due to 

overall expression levels. The following chapter will detail the use of these 

Flp-InTM T-RexTM cell lines to study the functional role of the LOX-1 

protein. 

 

 

   

 

 

 

 

 

 



FRTPSV40 ATG lacZ-Zeocin

Expression of lacZ-Zeocin

CMV TetR PSV40 Blasticidin

Expression ofTetR gene

Parent cell line

PCMV 2x TetO2 LOX-1 FRT Hygromycin

pcDNA5/FRT/TO LOX-1-FLAG

PCMV FLP

pOG44

FRTPSV40 ATG Hygromycin PCMV 2x TetO2 FRTLOX-1 lacZ-Zeocin

Expression of hygromycin

resistance gene X

Tet O2 Tet O2 LOX-1

+ Tetracycline

A 

B 

C 

Fig. 3.10. Schematic diagram of the Flp-InTM T-RexTM system. (A) 

Integration of pFRT/lacZeo and pcDNA6/TR into the genome of the 

parent cell line. (B) Co-transfection of LOX-1 in pcDNA5/FRT/TO vector 

and pOG44 in Flp-InTM T-RexTM cell line. (C) Expression of LOX-1 is 

repressed by tet repressor protein binding with Tet operator O2 

sequence. Addition of tetracycline distorts the shape of the tet repressor 

unable to bind to the Tet operator, which initiates transcription and 

translation of LOX-1. 
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Fig. 3.11. Domain structure of the human LOX-1-FLAG construct. 

CD, cytoplasmic domain; TD, transmembrane domain; ND, neck 

domain; LED, lectin-like extracellular domain; F, FLAG-tag. 
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CHAPTER 4 

LOX-1 binding to oxidised LDL regulates 

signal transduction and cellular responses 

 

4.1 Introduction 

A keynote study by Brown and Goldstein discovered that the LDL receptor 

was a key molecule in the uptake and metabolism of cholesterol and this 

was linked to the formation of lipid and cholesterol-rich foam cells which 

contribute to atherosclerosis (Brown et al., 1976). Human patients with 

familial hypercholesterolemia inherit impaired LDL receptor alleles and 

display increased cholesterol accumulation within atherosclerotic lesions. 

This led to the idea that another membrane-bound receptor must be 

involved in recognising the modified or oxidised form of LDL (Basu et al., 

1976). The first scavenger receptor to be identified, namely SR-A1, is 

known for the binding to  modified forms of LDL particles (Kodama et al., 

1990), and other 9 classes of scavenger receptors have been identified 

(Murphy et al., 2005).   

About 40 years ago, the oxidatively modified form of LDL was 

suggested to be the key mediator of foam cell formation in macrophages; 

LDL modification by endothelial cells was one contributory factor to this 

process (Steinbrecher et al., 1984). It was shown in immunohistochemical 

analysis of human vascular tissues and animal studies that oxidised LDL 

accumulated in atherosclerotic lesions (Itabe et al., 1994; Ehara et al., 

2001; Nishi et al., 2002; Palinski et al., 1996). This oxidised LDL activates 

a number of pro-atherosclerotic signal transduction pathways, which 

effectively activates endothelial cells and cause the proliferation of smooth 
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muscle cells (Berliner et al., 1990; Shih et al., 1999; Kusuhara et al., 1997; 

Huang et al., 1995). The macrophages, smooth muscle cells and 

fibroblasts are known to internalize oxidised LDL through receptor-

mediated pathways involving a number of scavenger receptors such as 

SR-A1, SR-B1, CD36 and LOX-1 (Dhaliwal and Steinbrecher, 1999). The 

early stage of atherosclerosis involves endothelial dysfunction due to the 

binding of oxidised LDL to scavenger receptors on endothelial cells, 

although the scavenger receptor basal levels is usually low (Bickel and 

Freeman, 1992).  

The endothelial receptor for oxidised LDL, namely LOX-1, is a 

membrane protein structurally belonging to the C-type lectin family and is 

expressed in vivo in vascular endothelial cells (Sawamura et al., 1997). 

LOX-1 has a role in binding and internalisation of oxidised LDL in 

endothelial cells. There is a large body of evidence that oxidised LDL 

results in an increase in pro-inflammatory and pro-atherogenic aspects of 

vascular function (Li and Mehta, 2000a; Li and Mehta, 2000b). 

Additionally, LOX-1 is dynamically up-regulated by disease conditions 

such as diabetes, hypertension and dyslipidaemia and mediators such as 

Ang II, cytokines and AGE (Kume et al., 1998; Murase et al., 1998; 

Kataoka et al., 1999; Chen et al., 2001c). 

Almost a decade ago, it was shown that a dynamin-2-dependent 

pathway regulates the internalisation and accumulation of oxidised LDL 

via LOX-1 (Murphy et al., 2008). However, the dynamics and fate of both 

oxidised LDL and LOX-1 receptor within the endosome-lysosome system 

was unknown. One could predict after the dissociation of oxidised LDL 

and LOX-1 in the endosome (Murphy et al., 2008), LOX-1 receptor is 

probably recycled back to the surface membrane. It has been reported 

that oxidised LDL is proteolytically degraded in endothelial cells and 

macrophages (Mehta et al., 2006; Lougheed et al., 1999). If this was the 

plausible scenario, LOX-1 would not be involved in atherogenesis; in fact, 

LOX-1 scavenges and degrades oxidised LDL in the vascular system. In 

the study by Murphy and colleagues, mutations within an acidic motif 

(DDL) in the LOX-1 cytoplasmic domain is responsible for endocytosis, 
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and mutation in this motif (also known as mutant LOX-1-D5A) affects such 

plasma membrane-to-endosome trafficking (Murphy et al., 2008). 

However, the underlying mechanism of this differential trafficking of LOX-

1-WT and LOX-1-D5A is still unclear. It is therefore important to address 

whether oxidised LDL binding and uptake would affect trafficking, which 

would have consequences on signal activation.  

To address this question, the work carried out in this chapter 

evaluated oxidised LDL-mediated trafficking and regulation of downstream 

signal transduction linking to cellular function. Here, I show that oxidised 

LDL activation of LOX-1 triggers differential signal transduction and 

trafficking outcomes. Differences in the functional roles of wild-type and 

mutant LOX-1 could potentially explain how signal transduction pathways 

regulate atherosclerosis. 

 

4.2 Results 

4.2.1 Analysis of LOX-1 signal transduction pathways in non-

vascular HEK293 cells 

4.2.1.1 Oxidised LDL regulates LOX-1 plasma membrane-to-

endosome endocytosis and recycling 

Cell surface LOX-1 is constitutively internalised from the plasma 

membrane by a clathrin-independent and dynamin-2-dependent pathway 

(Murphy et al., 2008). A molecular chaperone is also thought to interact 

with the N-terminus cytoplasmic domain of LOX-1 to mediate 

internalisation and trafficking (Bakthavatsalam et al., 2014). Moreover, the 

Lys to Asn amino acid substitution at position 167 (K167N) within the 

extracellular C-type lectin-like domain of LOX-1 has been shown to reduce 

oxidised LDL binding affinity and uptake (Biocca et al., 2009). Murphy and 

colleagues previously identified cytoplasmic acidic motif within LOX-1 

(Murphy et al., 2008), thus I hypothesised that LOX-1-WT and LOX-1-D5A 
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could differentially regulate oxidised LDL internalisation in order to 

modulate downstream responses. 

To test this idea, HEK293 Flp-InTM T-RexTM cells expressing LOX-1-

WT or LOX-1-D5A were stimulated for 0, 15, 30, 60 or 120 min with 

oxidised LDL prior to monitoring LOX-1-WT and LOX-1-D5A dynamics 

using cell surface biotinylation. In order to measure plasma membrane-

associated LOX-1 levels and LOX-1 activity, both biotinylated cell surface 

(affinity isolation) and total cellular protein (total lysates) pools were 

subjected to immunoblotting for FLAG-tagged LOX-1-WT and LOX-1-D5A 

(Figure 4.1A). Quantification revealed that both LOX-1-WT and LOX-1-

D5A were present at the cell surface at 0 min (Figure 4.1, C and D). 

Oxidised LDL promoted a significant reduction in cell surface LOX-1-WT 

levels at 15, 30 or 60 mins (Figure 4.1C). In comparison, oxidised LDL 

stimulation revealed greater stability and longevity in cell surface LOX-1-

D5A levels (Figure 4.1D). Oxidised LDL stimulation did not seem to affect 

the total cellular LOX-1-WT and LOX-1-D5A levels.  

To further analyse LOX-1-dependent oxidised LDL internalisation, 

HEK293 Flp-InTM T-RexTM cells were subjected to an oxidised LDL 

stimulation time course of 0, 15, 30 and 60 min, prior to analysis of LOX-1-

WT (Figure 4.2) and LOX-1-D5A (Figure 4.3) trafficking using 

fluorescence-based microscopy. As previously mentioned, LOX-1-WT was 

present on the cell surface at 0 min (Figure 4.2, A and B). Interestingly, 

LOX-1-D5A was mostly seen in large punctate structures near the nucleus 

within the cytoplasm at 0 min (Figure 4.3, A and B). Following oxidised 

LDL stimulation for 15 min, LOX-1-WT was observed to localise in the 

cytoplasm and after 30 and 60 min, LOX-1 was seen in the cytoplasm and 

the cell surface (Figure 4.2, B-H). In comparison, LOX-1-D5A failed to 

reveal localisation at the cell surface (Figure 4.3, A and B), but in the 

cytoplasm, even after 15 min (Figure 4.2, C and D). Eventually, LOX-1-

D5A was seen to localise at the cell surface at either 30 or 60 min (Figure 

4.3, E-H). Taken together, these data suggest the differential localisation 

of LOX-1-WT and LOX-1-D5A can cause unique oxidised LDL-stimulated 

signal transduction events.  
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Figure 4.1. Oxidised LDL-mediated LOX-1 internalization. HEK293 

cells expressing (A) LOX-1-WT and (B) LOX-1-D5A were stimulated with 

oxLDL (10 µg/mL) for 15, 30, 60 or 120 min before cell surface 

biotinylation and immunoblot analysis of cell surface and biotinylated LOX-

1 proteins. Transferrin receptor was used as positive control. (C and D) 

Quantification of cell surface LOX-1-WT and LOX-1-D5A, respectively, 

relative to cell surface protein levels at time 0. Error bars indicate ±SEM 

(n≥3). p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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Figure 4.2. Oxidised LDL-mediated LOX-1-WT trafficking. HEK293 

expressing LOX-1-WT was stimulated with oxLDL (10 µg/mL) for 15, 

30 or 60 min. Cells were fixed and processed for immunofluorescence 

microscopy using mouse anti-FLAG (green); nuclei stained using DAPI 

(blue). Scale bar, 100 µm. 
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Figure 4.3. Oxidised LDL-mediated LOX-1-D5A trafficking. 

HEK293 expressing LOX-1-D5A was stimulated with oxLDL (10 

µg/mL) for 15, 30 or 60 min. Cells were fixed and processed for 

immunofluorescence microscopy using mouse anti-FLAG (green); 

nuclei stained using DAPI (blue). Scale bar, 100 µm. 
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4.2.1.2 Oxidised LDL triggers differential LOX-1-mediated signal 

transduction 

Upon binding to oxidised LDL, LOX-1 can activate multiple signalling 

events (Twigg et al., 2012), including activation of NF-κB (Cominacini et 

al., 2000), increased expression of adhesion molecules (Li et al, 2002) 

and increased apoptosis (Schneiderman et al., 1998). Although there are 

many mechanisms linking LOX-1 signalling with cardiovascular disease, 

little is known about the membrane trafficking regulation of oxidised LDL-

mediated LOX-1 signalling. As LOX-1-WT and LOX-1-D5A exhibit different 

trafficking, I hypothesised that such membrane trafficking affects 

downstream signal transduction.  

To investigate this, LOX-1-expressing HEK293 cells were induced 

overnight with tetracycline prior to stimulation with oxidised LDL for 0, 5, 

15, 30 or 60 min before immunoblot analyses (Figure 4.4) of phospho-Akt, 

phospho-NF-κB, phospho-p38 MAPK and phospho-ERK1/2 levels. 

Quantification of phospho-Akt (Figure 4.4C) revealed oxidised LDL 

stimulation significantly decreased the activation of phosphorylated Akt in 

LOX-1-D5A cells at 0, 15, 60 and 120 min compared to LOX-1-WT cells. 

Similarly, quantification of phospho-p38 MAPK (Figure 4.4G) was 

significantly lower in LOX-1-D5A cells than in wild-type LOX-1 cells at 5 

min. Although it was not significant, but the trend could be seen that the 

activation of phospho-p38 MAPK started to increase at 15, 60 and 120 

min. Interestingly, for LOX-1-D5A, phosphorylation of ERK1/2 peaked 

significantly at 60 min (Figure 4.4D). Phosphorylated NF-κB levels were 

not significantly affected by oxidised LDL for either LOX-1-WT or LOX-1-

D5A (Figure 4.4H). These data show LOX-1-WT expression causes 

decreased Akt phosphorylation linked to a gradual increase in phospho-

p38 MAPK levels caused by oxidised LDL.  
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Figure 4.4. Oxidised LDL activation of signal transduction. HEK293 

cells expressing either LOX-1-WT or LOX-1-D5A were treated with 

oxLDL (10 µg/mL) for 5, 15, 60 or 120 min prior to cell lysis and 

immunoblot  analysis against (A) p-Akt, (B) pERK1/2. (E) p-p38 and (F) 

p-NF-ĸB. (C, D, G and H) Quantifications of each activated proteins 

relative to LOX-1-WT; black bars indicate LOX-1-WT; white bars 

indicate LOX-1-D5A. Error bars indicate ±SEM (n≥3). p<0.05 (*), p<0.01 

(**), p<0.001 (***), p<0.0001 (****). 
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4.2.1.3 Inhibition of oxidised LDL binding to LOX-1 affects 

downstream intracellular signalling 

Pharmacological inhibitors that target the extracellular domain of LOX-1 

also attenuate oxidised LDL-dependent expression of pro-atherogenic 

molecules, but the mechanisms underlying such regulation is unclear (Li 

et al., 2002a; Li et al., 2002b). One such small molecule and LOX-1 

inhibitor is a humanised antibody termed JTX92 which blocks LOX-1-

mediated responses (Murphy et al., 2006). Since LOX-1 undergoes 

constitutive endocytosis (Murphy et al., 2008), one possibility is that 

JTX92 modulates LOX-1 signalling to downstream pathways or events. 

The addition of JTX92 caused a reduction in levels of LOX-1-WT (Figure 

4.5A). Surprisingly, JTX92 addition stimulated LOX-1-D5A levels over a 

similar time course (Figure 4.5A).  JTX92 was added prior to stimulation of 

oxidised LDL for 0, 15, 30, 60, or 120 min, followed by cell lysis and 

immunoblot analysis for phospho-Akt, p53, phospho-p38 MAPK and 

phospho-ERK1/2 (Figure 4.5A). Quantification showed that JTX92 blocked 

oxidised LDL-stimulated activation of Akt, p38, ERK1/2 and p53 in cells 

expressing LOX-1-WT (Figure 4.5, B-E, black bar). However, 

phosphorylation of Akt, p38 MAPK and ERK1/2 were significantly 

increased in cells expressing LOX-1-D5A after 30 min in response to 

oxidised LDL stimulation (Figure 4.5, B-E, white bar).  These findings 

suggest that JTX92-mediated binding differentially regulates LOX-1-WT 

versus LOX-1-D5A signal transduction in HEK293 cells. 

 

 

 

 

 

 

 



Figure 4.5. Inhibition of oxidised LDL binding to LOX-1 affects 

signal transduction. (A) Immunoblotting of phosphorylated Akt, p53, 

p38, ERK1/2 in HEK293 cells following 1 h pre-incubation with LOX-1 

blocking antibody (JTX92, 10 µg/mL) prior to oxLDL stimulation (10 

µg/mL) for 15, 30, 60 or 120 min. (B-E) Quantification of activated 

proteins upon oxidised LDL activation in the presence of JTX92 relative 

to time 0; black bars indicate LOX-1-WT; white bars indicate LOX-1-D5A. 

Error bars indicate ±SEM (n≥3). p<0.05 (*), p<0.01 (**), p<0.001 (***), 

p<0.0001 (****). 
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4.2.2 Analysis of signal transduction pathways in vascular 

endothelial PAEC cells  

4.2.2.1 Oxidised LDL causes differential LOX-1-mediated signal 

transduction 

Oxidised LDL stimulates NF-κB, Akt, p38 MAPK and ERK1/2 MAPK 

signalling pathways in endothelial and smooth muscle cells (Robbesyn et 

al., 2004; Jing et al., 1999; Chien et al., 2003) including apoptosis (Wang 

et al., 2016). In this context, I asked whether overexpression of LOX-1-WT 

or LOX-1-D5A caused by oxidised LDL modulated events in signal 

transduction pathways (Figure 4.6 and Figure 4.7). Induction of LOX-1-WT 

(Figure 4.6A) or mutant LOX-1-D5A (Figure 4.7A), was detected after 

without (Tet OFF) or with (Tet ON) induction. Immunoblot quantification 

showed significantly reduced levels of phosphorylated Akt, eNOS and NF-

κB proteins at 0 min in LOX-1-WT cells compared to control (Tet OFF) 

(Figure 4.6, B-E). Stimulation with oxidised LDL in cells expressing LOX-1-

WT did not show significant changes in Akt, eNOS and NF-κB 

phosphorylation. Activated p38 MAPK was slightly increased in response 

to oxidised LDL at 5 min in LOX-1-WT expressing cells but eventually it 

returned to baseline levels (Figure 4.6D). Conversely, for LOX-1-D5A 

expressing cells, phospho-Akt, phospho-eNOS, phospho-p38 MAPK and 

phospho-NF-κB levels were up-regulated at 0 min compared to control 

(Tet OFF) (Figure 4.7, B-E). Stimulation with oxidised LDL caused 

decreased phosphorylation of Akt and eNOS, whilst activity levels of p38 

and NF-κB were increased compared to the control. These data suggest 

that wild-type and mutant LOX-1 cause differential activation of 

downstream signal transduction pathways.  

Next, I compared the differential capabilities of LOX-1-WT and 

LOX-1-D5A in stimulating signal transduction pathways, immunoblotting of 

phospho-eNOS, phospho-Akt, phospho-NF-κB, phospho-p38 MAPK and 

phospho-ERK1/2 were analysed and quantified (Figure 4.8A). Quantified 

levels of phosphorylated Akt were significantly increased at 0 min in LOX-

1-D5A cells, and there was not much change of phospho-Akt levels in 
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response to oxidised LDL (Figure 4.8B). Interestingly, levels of activated 

NF-κB were not altered in response to oxidised LDL, though expression 

levels of phospho- NF-κB was significantly less in LOX-1-D5A (Figure 

4.8C). There were no differences of activated p38 MAPK and ERK1/2 

levels in LOX-1-WT and LOX-1-D5A, apart from a slight increase in 

response to oxidised LDL at 5 min, and then the levels returned to 

baseline (Figure 4.8, D and E). Taken together, these data suggest short-

term stimulation (0-1 h) of oxidised LDL through LOX-1 did not have 

significant effects on downstream signalling events.   

In vascular endothelial cells, although LOX-1 has been linked to 

atherosclerosis-related events such as endothelial dysfunction and 

increased expression of adhesion molecules through the activation of 

several signalling pathways including MAPK proteins and NF-κB, how 

such events are integrated are unclear (Thakkar et al., 2015; Mehta et al., 

2006; Li and Mehta, 2009). Therefore, I  asked whether a longer time-

frame oxidised LDL stimulation caused differential signalling expression 

levels in PAEC Flp-InTM T-RexTM cells (Figure 4.9A). Endothelial cells 

were stimulated with oxidised LDL for 0, 1, 4, 8 or 24 h prior to cell lysis, 

followed by immunoblot analysis for phospho-eNOS, phospho-Akt, 

phospho-NF-κB, phospho-p38 and phospho-ERK1/2. Quantification of 

oxidised LDL-stimulated phospho-Akt levels in both LOX-1-WT and LOX-

1-D5A expressing cells shows a significant reduction at 4, 8 or 24 h post-

stimulation (Figure 4.9B).  On analysing eNOS and ERK1/2 under similar 

conditions, there was a gradual reduction in phospho-eNOS and phospho-

ERK1/2 after 8 or 24 h of oxidised LDL stimulation in both LOX-1-WT and 

LOX-1-D5A cells (Figure 4.9, C and D). Interestingly, levels of stress-

activated phospho-p38 MAPK was elevated more rapidly within 1 h of 

oxidised LDL stimulation and this returned back to baseline at 4, 8 or 24 h 

post-stimulation in both LOX-1-WT and LOX-1-D5A cells (Figure 4.9E). 

These data suggest that oxidised LDL presence over a longer time period 

causes down-regulation of different signal transduction pathways and 

these profound signalling differences at 24 h may represent the activation 

of apoptotic signalling pathways. 



o x L D L  tre a tm e n t (m in )

R
e

la
ti

v
e

 p
-A

k
t 

le
v

e
ls

0 5

1
5

3
0

6
0 0 5

1
5

3
0

6
0

0 .0

0 .5

1 .0

1 .5

* 

o x L D L  tre a tm e n t (m in )

R
e

la
ti

v
e

 p
-e

N
O

S
 l

e
v

e
ls

0 5

1
5

3
0

6
0 0 5

1
5

3
0

6
0

0 .0

0 .5

1 .0

1 .5

* 

* ** 

o x L D L  tre a tm e n t (m in )

R
e

la
ti

v
e

 p
-p

3
8

 l
e

v
e

ls

0 5

1
5

3
0

6
0 0 5

1
5

3
0

6
0

0 .0

0 .5

1 .0

1 .5

2 .0 * 

o x L D L  tre a tm e n t (m in )

R
e

la
ti

v
e

 p
-N

F


B
 l

e
v

e
ls

0 5

1
5

3
0

6
0 0 5

1
5

3
0

6
0

0 .0

0 .5

1 .0

1 .5

* 

A 

B C 

D E 

0     5    15    30    60    0     5    15    30    60

Tet OFF Tet ONoxLDL

stimulation 

(min)

LOX-1

p-eNOS

p-Akt

p-NFκB

p-p38

p-ERK1/2

Tubulin

Figure 4.6. Oxidised LDL activation of LOX-1-WT signal transduction. 

(A) PAEC cells expressing LOX-1-WT were induced overnight with 1 µg/mL 

tet prior to stimulation with oxLDL (10 µg/mL) for 5, 15, 30 or 60 min 

followed by cell lysis and immunoblot analysis. (B-E) Quantifications of 

each activated proteins relative to Tet OFF at time 0; black bars indicate Tet 

OFF; white bars indicate Tet ON. Error bars indicate ±SEM (n≥3). p<0.05 

(*), p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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Figure 4.7. Oxidised LDL activation of LOX-1-D5A signal 

transduction. (A) PAEC cells expressing LOX-1-D5A were induced 

overnight with 1 µg/mL tet prior to stimulation with oxLDL (10 µg/mL) 

for 5, 15, 30 or 60 min followed by cell lysis and immunoblot analysis. 

(B-E) Quantifications of each activated proteins relative to Tet OFF at 

time 0; black bars indicate Tet OFF; white bars indicate Tet ON. Error 

bars indicate ±SEM (n≥3). p<0.05 (*), p<0.01 (**), p<0.001 (***), 

p<0.0001 (****). 
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Figure 4.8. Differential oxidised LDL activation of signal 

transduction in LOX-1-WT and LOX-1-D5A. (A) PAEC cells 

expressing either lOX-1-WT or LOX-1-D5A were stimulated with oxLDL 

(10 µg/mL) for 5, 15, 30 or 60 min followed by cell lysis and immunoblot 

analysis. (B-E) Quantifications of each activated proteins relative to 

LOX-1-WT at time 0; black bars indicate LOX-1-WT; white bars 

indicate LOX-1-D5A. Error bars indicate ±SEM (n≥3). p<0.05 (*), 

p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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Figure 4.9. Longer time-frame stimulation of oxidised LDL. (A) 

PAEC cells expressing either lOX-1-WT or LOX-1-D5A were stimulated 

with oxLDL (10 µg/mL) for 1, 4, 8 or 24 h followed by cell lysis and 

immunoblot analysis against phosphorylated eNOS, Akt, NF-ĸB, p38 and 

ERK1/2. (B-E) Quantifications of each activated proteins relative to LOX-

1-WT at time 0; black bars indicate LOX-1-WT; white bars indicate LOX-

1-D5A. Error bars indicate ±SEM (n≥3). p<0.05 (*), p<0.01 (**), p<0.001 

(***), p<0.0001 (****). 
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4.2.2.2 Oxidised LDL through LOX-1 decreases endothelial barrier 

permeability 

One of the hallmarks of early endothelial dysfunction caused by oxidised 

LDL is increased endothelial barrier permeability to serum proteins (Liao 

et al., 1995; Rangaswamy et al., 1997; Essler et al., 1999; Orr et al., 

2007). In this study, I wanted to know whether endothelial cell permeability 

decreases upon oxidised LDL stimulation via LOX-1-WT. To test this idea, 

I used a non-invasive technique namely, trans-endothelial electrical 

resistance (TEER) to assess the permeability of the PAEC monolayer. 

PAEC Flp-InTM T-RexTM cells with empty vector pcDNA5/FRT/TO (control) 

or LOX-1-WT were stimulated with oxidised LDL (Figure 4.10A). Readings 

of the TEER measurement were taken at 0, 1, 2, 4, 6 and 8 h. Quantified 

measurements showed significant increase of TEER reading in LOX-1-WT 

(red line) cells at time 0 compared to control (blue line) cells. After 1 h 

stimulation of oxidised LDL, TEER reading of PAEC-expressing LOX-1-

WT cells were significantly higher than that observed for control cells; this 

value gradually decreased after 2 h and returned back to baseline after 4 

h. Endothelial barrier permeability is not stimulated by oxidised LDL; in 

fact, there is decreased permeability (increased TEER) upon oxidised LDL 

addition.  

To further assess whether there was monolayer leakage caused by 

oxidised LDL, an alternative approach monitoring the movement of a 

florescent marker such as fluorescein isothiocyanate (FITC)-labelled 

dextran was used. In this assay, PAEC Flp-InTM T-RexTM control or LOX-1-

WT expressing cells were grown to a confluent monolayer on a Transwell 

filter and stimulated with oxidised LDL for 24 h; then cells were incubated 

with FITC-dextran for 30 min and followed by fluorescence measurement 

(Figure 4.10B). Quantification of FITC-dextran movement across the 

PAEC monolayer showed significant lower fluorescence intensity in the 

LOX-1-WT expressing cells compared to negative control. Both TEER and 

FITC-dextran permeability measurements indicate reduced PAEC 

permeability caused by LOX-1-WT expression. 
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Figure 4.10. Oxidised LDL-induced via LOX-1 decreases cell 

permeability. (A) Trans-endothelial electrical resistance (TEER) 

reading was measured from PAEC cells expressing LOX-1-WT (red) 

and control cells at 0, 1, 2, 4, 6, and 8 h following stimulation with 

oxLDL (10 µg/mL). (B) Quantifications of FITC-dextran movement 

across the PAEC layer grown in Transwell filter by measuring 

fluorescence intensity. Prior to measurements, PAEC cells were 

treated with oxLDL (10 µg/mL) for 24 h, followed by incubating cells 

with FITC-dextran for 30 min. Error bars indicate ±SEM (n≥3). p<0.05 

(*), p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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4.3 Discussion 

In this study, I show that the presence of oxidised LDL reveals different 

trafficking properties of LOX-1-WT compared to mutant LOX-1-D5A 

proteins. These differences in oxidised LDL-stimulated LOX-1 trafficking 

have impacts on downstream signal transduction pathway(s), which 

influences endothelial cell barrier permeability (Fig. 4.11). In this model, 

LOX-1 wild-type and mutant LOX-1-D5A bind with similar affinity for 

oxidised LDL, but differentially programme ligand-dependent receptor 

internalisation and recycling (Fig. 4.11). Our findings reveal that oxidised 

LDL-mediated LOX-1 signalling activates Akt and p38 MAPK signal 

transduction. This is linked to oxidised LDL-stimulated LOX-1 endocytosis 

and delivery to endosomes linked to increased activation of the canonical 

MAPK pathway resulting in phosphorylation of the ERK1/2 master 

regulator (Fig. 4.11).  

A key feature of oxidised LDL binding to cell surface LOX-1-WT is 

receptor endocytosis, linked to receptor recycling and possible 

degradation. In contrast, LOX-1-D5A expression results in a significantly 

lower pool of LOX-1 on the cell surface and addition of oxidised LDL 

causes a significantly lower fraction of LOX-1-D5A that undergoes 

endocytosis. Oxidised LDL-dependent LOX-1-WT internalisation was 

markedly higher in comparison to oxidised LDL-stimulated LOX-1-D5A 

expressing cells. This effect correlates with increased distribution of 

activated LOX-1-WT in endosomes and recycling back to cell surface. 

Previously it was shown that LOX-1-D5A lacks the ability to undergo 

oxidised LDL-stimulated internalisation (Murphy et al., 2008). In the work 

presented in this chapter, the D5A mutation within the LOX-1 cytoplasmic 

domain also affects trafficking and recycling of this membrane protein from 

endosomes. It was noteworthy that oxidised LDL stimulation did not affect 

the overall levels of either LOX-1-WT or D5A mutant, suggesting that 

oxidised LDL activation did not stimulate proteolysis or clearance.  

 



Figure 4.11. Schematic of oxidised LDL-stimulated LOX-1 trafficking. 

(1) Binding and uptake of oxLDL through LOX-1-WT. (2) OxLDL-LOX-1 in 

the early endosomes. (3) Un-coupling of oxLDL and LOX-1; LOX-1 is 

possibly recycled or degraded. (4) Trafficking-defect LOX-1-D5A unable to 

internalize oxidised LDL  
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One explanation for how LOX-1-WT and LOX-1-D5A differentially 

promote differential downstream signal transduction is through the binding 

and internalisation of LOX-1 and oxidised LDL. One study suggests that 

the constitutive endocytosis of LOX-1 is independent of oxidised LDL 

binding, and thus the downstream signalling events are linked to oxidised 

LDL activation of LOX-1 (Murphy et al., 2008). Oxidised LDL binding to 

membrane receptors is linked to activation of multiple signal transduction 

pathways (Robbesyn et al., 2004; Jing et al., 1999; Chien et al., 2003). 

The work in this chapter shows that the expression of LOX-1-WT 

stimulates Akt and p38 MAPK activation in response to oxidised LDL. 

Surprisingly, activation of either ERK1/2 or NF-κB was not evident under 

these conditions. Furthermore, despite the inability of LOX-1-D5A to 

internalise oxidised LDL, ERK1/2 activation and signalling was increased. 

As p38 MAPK is usually activated by cellular stress, it is likely that 

oxidised LDL would trigger this stress-activated kinase (Zhang and Liu, 

2002), which plays fundamental roles in survival, proliferation and 

apoptosis (Widmann et al., 1999). In contrast, the Akt signal transduction 

pathway is best known for its involvement in cell survival (Dudek et al., 

1997; Kauffmann-Zeh et al., 1997). Therefore, these findings suggest that 

oxidised LDL binding to LOX-1 cause cross-communication between the 

Akt and p38 MAPK signal transduction pathways, with likely 

consequences for cell survival. Additionally, targeting the LOX-1 

extracellular domain using the monoclonal antibody JTX92 inhibited 

oxidised LDL binding, and prevented the downstream activation of MAPK 

and Akt signalling. Furthermore, the presence of JTX92 caused increased 

loss in LOX-1-WT levels, suggesting that this caused increased 

endocytosis, trafficking and proteolysis in this system. Notably, LOX-1-

D5A expressing cells were capable of oxidised LDL-stimulated MAPK and 

Akt signalling even in the presence of JTX92 monoclonal antibody. Such 

findings suggest that oxidised LDL activation of LOX-1 can trigger 

differential signalling outcomes depending on membrane trafficking, 

plasma membrane and endosome localisation.  
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I have used a PAEC Flp-InTM T-RexTM system to also stably 

express LOX-1-Wt and LOX-1-D5A constructs. I have showed low mRNA 

levels of native porcine LOX-1 (mentioned previously in Chapter 3) with 

the possibility that other scavenger receptors such as SR-A1 and CD36 

might also contribute to oxidised LDL binding on PAEC cells. 

Overexpression of human LOX-1-WT in PAEC cells caused decreased 

activation of Akt, eNOS and NF-κB in response to oxidised LDL, whereas 

overexpressing the mutant LOX-1-D5A enhanced such signalling events. 

The endothelial monolayer within blood vessels produces nitric oxide 

generated by endothelial nitric oxide synthase (eNOS), which is critical for 

regulating blood pressure and vessel integrity; eNOS phosphorylation and 

activation is dependent upon Akt (Dimmeler et al., 1999). One possible 

explanation is that binding and activation of LOX-1 in response to oxidised 

LDL inhibits activation of the Akt/eNOS pathway, which exerts an effect on 

redox-sensitive transcription factor NF-κB.  

These observed differences in signal transduction events between 

LOX-1-WT and LOX-1-D5A impact on the levels of phospho-eNOS, and 

thus directly on the rate of NO synthesis. One possibility is that the 

presence of native porcine LOX-1 or other scavenger receptors in PAECs 

could modulate signalling outcomes and make the effects of LOX-1-WT or 

LOX-1-D5A less clear-cut. Additionally, exposure of either LOX-1-WT or 

LOX-1-D5A to oxidised LDL for a longer time-frame (0-24 h) revealed that 

reduced activation of signal transduction pathways involving Akt/eNOS 

and ERK1/2. Surprisingly, under the same conditions, p38 MAPK was not 

affected by long-term oxidised LDL rapidly returning back to baseline 

within 24 h.  

The role of oxidised LDL in causing endothelial dysfunction in 

atherogenesis is well-established (Liao et al., 1995; Rangaswamy et al., 

1997; Essler et al., 1999; Orr et al., 2007). Surprisingly, in this study I 

showed that oxidised LDL via LOX-1-WT causes decreased endothelial 

cell barrier permeability. This suggests that the expression of LOX-1-WT 

causes fewer and smaller gaps within the PAEC monolayer cells. Under 

such conditions, there would be less ‘leakage’ or movement of cells and 
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molecules across the layer. Under these conditions, LOX-1-WT 

expression could inhibit trans-endothelial migration (TEM) of monocytes 

and lipoproteins into in the sub-endothelial space or intima. The 

mechanism underlying this phenomenon is unclear, as activation of the 

Akt/eNOS and ERK1/2 MAPK signal transduction pathways was reduced 

after 24 h of oxidised LDL stimulation. Another aspect of this work is that 

in PAEC Flp-InTM T-RexTM cells, both native porcine LOX-1 and other 

porcine scavenger receptors could contribute to cellular responses to 

oxidised LDL and thus complicate the analysis. 
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CHAPTER 5 

LOX-1-dependent signal transduction 

pathways in atherosclerosis 

 

5.1 Introduction 

Atherosclerosis-related cardiovascular disease is a major cause of 

morbidity and mortality in the world. Atherosclerosis is a well-established 

phenomenon but the underlying molecular and cellular mechanisms 

remain ill-defined. Arterial plaque initiation, development and progression 

is a dynamic process encompassing endothelial dysfunction, retention and 

modification of lipids, and recruitment of cells of the immune system such 

as monocytes, macrophages, T-cells and B-cells.  

Atherosclerosis begins with the binding and accumulation of lipids 

and lipid particles followed by diverse inflammatory events (Ross, 1999). 

Oxidised or modified LDL particles can promote key steps involved in 

arterial plaque or lesion formation (Steinberg et al., 1989). The binding 

and rapid uptake of oxidised LDL by scavenger receptors, namely SR-A1, 

CD36 and LOX-1, present in macrophages and endothelial cells is 

important in foam cell development within atherosclerotic lesions (Yamada 

et al., 1998). The LOX-1 trafficking pathway oxidised LDL involves 

constitutive internalisation or endocytosis via clathrin-independent 

pathway for delivery to the endosome-lysosome system (Murphy et al., 

2008). LOX-1 mediates multiple pro-atherogenic cellular responses such 

as endothelial dysfunction, apoptosis, vascular inflammation, foam cell 

formation and cholesterol metabolism in fat cells called adipocytes (Chui 

et al., 2005; Xu et al., 2012).  
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LOX-1 is implicated in promoting atherosclerosis from studies using 

different human and animal models (Morawietz, 2007; Hu et al., 2008a; 

Hu et al., 2008b; Khaidakov et al., 2012). The translation of animal 

models, however, has been less conclusive. A seminal study by Mehta 

and colleagues showed a significant reduction of aortic plaque incidence 

in transgenic mice carrying both low-density lipoprotein receptor (LDLR) 

and LOX-1 null alleles (Mehta et al., 2007). Pro-atherogenic and pro-

inflammatory signalling, such as NF-κB and p38 MAPK phosphorylation, 

were also reduced in LDLR/LOX-1 double knockout/null mice compared to 

LDLR-null mice (Mehta et al., 2007). Furthermore, the overexpression of a 

LOX-1 transgene in ApoE knockout mice on a high-fat diet showed 

increased uptake and infiltration of oxidised LDL in the heart and in the 

common carotid artery (Inoue et al., 2005; White et al., 2011). 

Nonetheless, ectopic expression of LOX-1 in the liver of the ApoE 

knockout mice showed reduction in plasma LDL levels, thus showing 

reduced incidence of atherosclerotic plaques (Ishigaki et al., 2008).  

Nonetheless, these findings suggest that LOX-1 can promote beneficial 

(anti-atherogenic) or harmful (pro-atherogenic) effects in atherosclerosis.  

LOX-1 could play a role in the immune system by recognising 

oxidised LDL as a foreign molecule or antigen. Presumably, monocytes 

which infiltrate into the sub-endothelial layer of the intima cause increased 

expression of adhesion molecules such as VCAM-1 and ICAM-1. 

Subsequently, differentiated macrophages and endothelial cells in the 

intima could internalise oxidised LDL to process or degrade this 

substance. Such findings raise the question whether LOX-1 promotes or 

inhibits inflammation and atherosclerosis. The aims of the work presented 

in this chapter therefore were to evaluate the effect of loss of functional 

LOX-1 genotype on signalling transduction pathways in transgenic mice to 

evaluate effects on atherosclerosis.  
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5.2 Results 

5.2.1 Influence of the LOX-1 genotype on animal physiology 

5.2.1.1 Genotyping of transgenic mice 

Recent work from the Ponnambalam laboratory (University of Leeds, UK) 

has shown that LOX-1/ApoE double knockout mice showed increased 

plaque formation compared to ApoE knockout mice (Supplementary figure 

B1) (Mughal, 2015). I investigated this further by assessing the link 

between genotype, diet and signal transduction in these transgenic mouse 

lines. I first assessed the different transgenic mouse lines by subjecting 

ear notch tissues to PCR. The C57Bl/6 mouse line carrying the ApoE 

knockout showed a 245 bp sequence whilst those containing the gene 

showed the presence of a 155 bp sequence (Figure 5.1A). LOX-1 

knockout mice displayed loss of 405 bp sequence within exon 7 of the 

mouse LOX-1 (OLR1) gene (Figure 5.1B). However, future experiments 

will need to confirm the deletion of LOX-1 exon 7 is associated with loss of 

LOX-1 mRNA and protein. 

5.2.1.2 Diet-induced changes in mouse weight 

Six week old male mice fed on a standard chow diet were weighed weekly 

starting from 6 weeks of age (Figure 5.2, A and B). Quantification of the 

weight gain showed a significant ~20-25% increase in both wild-type and 

LOX-1 knockout mice after 6 weeks on standard chow diet (Figure 5.2A). 

Conversely, in ApoE knockout and double LOX-1/ApoE knockout mice, 

there was a significant ~40% increase after 6 weeks of standard diet 

feeding (Figure 5.2B). There was no difference in their body weights at 12 

weeks of age between these groups. After standard chow diet, mouse 

organs such as liver (Figure 5.2, C and D) and heart (Figure 5.2, E and F) 

were weighed and compared within each group. Quantification of organ 

weights, for both heart and liver, showed no differences between wild-type 

and LOX-1 knockout mice and between ApoE knockout and ApoE/LOX-1 

double knockout mice at 12 weeks of age. 
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Figure 5.1. Profiling of transgenic mouse lines. ApoE-null, LOX-

1-null, and wild-type mice were genotyped for LOX-1 and ApoE 

alleles using polymerase chain reaction (PCR). (A) With ApoE 

primers, a low band (155 bp) indicates presence of the gene whilst 

a band (245 bp) indicates its absence. (B) The presence of a DNA 

band (405 bp) with LOX-1 primers indicates a functional gene whilst 

its loss signifies knockout. 
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Figure 5.2. Weight and organ weight of transgenic mouse lines 

on Standard chow diet. Weight measurements of (A) wild-type 

(WT) and LOX-1 knockout (KO) and (B) ApoE KO and LOX-1/ApoE 

KO taken at age 6 weeks and age 12 weeks. (C) Liver weight of 

WT and LOX-1 KO and (D) liver weight of ApoE KO and LOX-

1/ApoE KO at 12 weeks. (E) Heart weight of WT and LOX-1 KO 

and (D) heart weight of ApoE KO and LOX-1/ApoE KO at 12 

weeks. Error bars indicate ±SEM (n≥8). p<0.05 (*), p<0.01 (**), 

p<0.001 (***), p<0.0001 (****). 

6 12 6 12

0

10

20

30 *** ***

WT LOX-1 KO

Age (weeks)

B
o

d
y
 w

e
ig

h
t 

(g
)

6 12 6 12

0

10

20

30

40
*** **

ApoE KO LOX-1/ApoE KO

Age (weeks)

B
o

d
y
 w

e
ig

h
t 

(g
)

WT LOX-1 KO
0.0

0.5

1.0

1.5

2.0

W
e
ig

h
t 

(g
)

ApoE KO LOX-1/ApoE KO
0.0

0.5

1.0

1.5

2.0

2.5

W
e
ig

h
t 

(g
)

WT LOX-1 KO
0.0

0.1

0.2

0.3

W
e
ig

h
t 

(g
)

ApoE KO LOX-1/ApoE KO
0.0

0.1

0.2

0.3

W
e
ig

h
t 

(g
)

A B 

C D 

E F 

Liver Liver 

Heart Heart 

109 



B
o

d
y

 w
e

ig
h

t 
(g

)

8 2 0 8 2 0

0

1 0

2 0

3 0

4 0

5 0

****

****

****

W ild -ty p e L O X -1  K O

A g e  (w e e k s )

B
o

d
y

 w
e

ig
h

t 
(g

)

8 2 0 8 2 0

0

1 0

2 0

3 0

4 0

5 0

* * * ** * * * * * * *

A p o E  K O A p o E  K O /

L O X -1  K O

A g e  (w e e k s )

A 

B 

Figure 5.3. Weight of transgenic mouse lines on Western diet. 

Weight measurements of (A) wild-type (WT) and LOX-1 knockout 

(KO) and (B) ApoE KO and LOX-1/ApoE KO taken at age 8 weeks 

and age 20 weeks. Error bars indicate ±SEM (n≥8). p<0.05 (*), 

p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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To better understand the basis for plaque development in the 

mouse aorta, I fed the mice with fat and cholesterol-rich Western diet for 

12 week period and evaluated different parameters (Figure 5.3). 

Quantification of mouse body weight revealed a significant ~65-70% 

increase for wild-type mice and a significant ~40-45% increase for LOX-1 

knockout mice after 12 weeks on Western diet (Figure 5.3A). Additionally, 

there was a significant ~45% difference in body weight between wild-type 

and LOX-1 knockout mice at 20 weeks of age (Figure 5.3A). Quantification 

of change in body weight during Western diet showed a significant ~65-

70% increase in ApoE knockout mice, with a significant ~50% increase in 

LOX-1/ApoE double knockout mice (Figure 5.3B). These findings suggest 

that presence of functional LOX-1 has impacts on change in body weight.  

5.2.2 Pro-atherogenic signal transduction pathways in the mouse 

aorta 

The concept of oxidative stress and inflammation as central regulators of 

in atherosclerosis and vascular disease raises interesting questions on the 

role of LOX-1 in these processes. A pro-oxidative state implies that 

endothelial cells in the intima could be injured, generate reduced nitric 

oxide levels, promote inflammation, modify or oxidise LDL, all hallmarks of 

atherosclerosis (Mehta, 2006). The effect of knocking out LOX-1 in a wild-

type or ApoE knockout mouse background was investigated and found 

that LOX-1/ApoE double knockout mice have a higher aortic plaque 

coverage compared to control ApoE knockout mice; whilst there were little 

or no plaques in the aortas of wild-type or LOX-1 knockout mice on a 

Western diet (Supplementary figure B1) (Mughal, 2015). 

Based on these previous findings, I hypothesised that pro-

inflammatory and pro-atherogenic signalling events are elevated in LOX-

1/ApoE double knockout mice compared to controls. To test this idea, I 

subjected 8 week old male mice to a 12 week Western diet and harvested 

the aorta from all four mouse lines, namely, wild-type mice, LOX-1 

knockout mice, ApoE knockout mice and LOX-1/ApoE double knockout 

mice. Immunoblotting was used to probe for changes in status of NF-κB, 
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Akt, ERK1/2 and p38 MAPK using antibodies directed to either the native 

protein or phosphorylation epitopes (Figure 5.4A and Figure 5.5A). Even 

though there were no plaques evident in wild-type and LOX-1 knockout 

mice, I wanted to evaluate the impact of loss of LOX-1 alone on signal 

transduction events in the mouse aorta. Quantification of band intensities 

revealed significant increases in phosphorylation of NF-κB, Akt, p38 

MAPK and ERK1/2 in comparison to control wild-type mice (Figure 5.4, B-

E). Such data suggest that the loss of functional LOX-1 causes activation 

of signal transduction events in the mouse aorta. Surprisingly, 

quantification of immunoblotting of mouse aortas showed significant 

reduction in phosphorylation of NF-κB, Akt, ERK1/2 and p38 MAPK in 

LOX-1/ApoE double knockout mice compared to control ApoE knockout 

alone (Figure 5.5, B-E). Such findings clearly show a trend of opposing 

signalling effects caused by the presence or absence of LOX-1 in the 

aorta.  
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Figure 5.4. LOX-1 modulates aorta signal transduction pathways 

in wild-type and LOX-1 knockout mice. (A) Wild-type (WT) and LOX-

1 knockout (KO) fed on a Western diet for 12 weeks were analyzed for 

pro-inflammatory signalling in aorta. Tissues were compared for 

phosphorylation of (B) NF-κB, (C) Akt, (D) p38 and (D) ERK1/2 relative 

to total proteins. Error bars indicate ±SEM (n≥8). p<0.05 (*), p<0.01 

(**), p<0.001 (***), p<0.0001 (****). 
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Figure 5.5. LOX-1 modulates aorta signal transduction pathways 

in ApoE knockout and LOX-1/ApoE knockout mice. (A) ApoE 

knockout (KO) and LOX-1/ApoE (KO) fed on a Western diet for 12 

weeks were analyzed for pro-inflammatory signalling in aorta. Tissues 

were compared for phosphorylation of (B) NF-κB, (C) Akt, (D) p38 and 

(D) ERK1/2 relative to total proteins. Error bars indicate ±SEM (n≥8). 

p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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5.2.3 Pro-atherogenic signal transduction pathways in mouse liver 

The liver is an important organ for clearing oxidised LDL (Itabe et al., 

2011). One possibility is that LOX-1 expressed in the sinusoidal 

endothelial cells of the liver plays a major role in binding oxidised LDL for 

endocytosis and clearance. However, the pro-inflammatory signalling 

pathways influenced by LOX-1 in the liver are unknown. I evaluated such 

signalling events involving LOX-1 after 12 weeks of Western diet. Liver 

tissues from wild-type mice, LOX-1 knockout mice, ApoE knockout mice 

and LOX-1/ApoE double knockout mice were probed by immunoblotting to 

monitor the phosphorylation status of NF-κB, Akt, ERK1/2 and p38 MAPK 

(Figure 5.6A and Figure 5.7A). The signalling differences in liver tissues 

between wild-type and LOX-1 knockout mice were quantified (Figure 5.6, 

B-E). Quantification revealed decreased phosphorylation of NF-κB (Figure 

5.6B), Akt (Figure 5.6C) and p38 (Figure 5.6D) in LOX-1 knockout mice in 

comparison to wild-type mice. There were no significant effects on ERK1/2 

phosphorylation (Figure 5.6E). 

Next, I quantified signalling differences in the liver between ApoE 

knockout mice and ApoE/LOX-1 double knockout mice using 

immunoblotting (Figure 5.7A). Quantification of band intensities revealed 

significant increased phosphorylation of NF-κB (Figure 5.7B), p38 (Figure 

5.7D) and ERK1/2 (Figure 5.7E) in ApoE/LOX-1 double knockout mice 

compared to ApoE knockout mice. However, I could not detect changes in 

phospho-Akt levels in either mouse strain (Figure 5.7C). Such findings 

clearly show a trend of opposing signalling effects caused by the presence 

or absence of LOX-1 in the liver.  
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Figure 5.6. LOX-1 modulates liver signal transduction pathways in 

wild-type and LOX-1 knockout mice. (A) Wild-type (WT) and LOX-1 

knockout (KO) fed on a Western diet for 12 weeks were analyzed for 

pro-inflammatory signalling in liver. Tissues were compared for 

phosphorylation of (B) NF-κB, (C) Akt, (D) p38 and (D) ERK1/2 relative 

to total proteins. Error bars indicate ±SEM (n≥8). p<0.05 (*), p<0.01 

(**), p<0.001 (***), p<0.0001 (****). 
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Figure 5.7. LOX-1 modulates liver signal transduction pathways in 

ApoE knockout and LOX-1/ApoE knockout mice. (A) ApoE 

knockout (KO) and LOX-1/ApoE (KO) fed on a Western diet for 12 

weeks were analyzed for pro-inflammatory signalling in aorta. Tissues 

were compared for phosphorylation of (B) NF-κB, (C) Akt, (D) p38 and 

(D) ERK1/2 relative to total proteins. Error bars indicate ±SEM (n≥8). 

p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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5.3 Discussion 

The work carried out in this chapter showed the impact of deleting LOX-1 

on different signal transduction pathways such as Akt, NF-κB, ERK1/2 and 

p38 MAPK. However, the differential signal transduction outcomes in the 

aorta or liver could be dependent on the status of atherosclerosis disease 

and progression. In our proposed model (Figure 5.8), under conditions 

where atherosclerosis is relatively advanced, loss of functional LOX-1 has 

wide impact on the signal transduction, plaque development and plasma 

lipids. The addition of the Western diet may increase abnormality in 

plasma lipids, with increasing plasma LDL and decreasing plasma HDL 

levels (Figure 5.8).  

In the mouse aorta, although plaque incidence is increased by loss 

of functional LOX-1 within the ApoE knockout background (Supplementary 

figure B1) (Mughal, 2015), the multiple signalling and activation events are 

reduced (Figure 5.8). One possible explanation for this phenomenon is 

that oxidised LDL is trapped within the arterial plaques and cannot activate 

its pro-inflammatory events (Tsimikas et al., 2007). On the other hand, 

LOX-1 deletion causes increased signalling in liver, namely NF-κB, 

ERK1/2 and p38 MAPK activation (Figure 5.8). This is due to high levels 

of oxidised LDL in the blood circulation (Ishigaki et al., 2008), that in the 

absence of LOX-1, oxidised LDL is not being efficiently removed, excreted 

and/or degraded. Such abnormalities could lead to endothelial 

dysfunction, impaired glucose metabolism, abnormal lipid levels and 

plaque formation.  

This is not the first study to examine the link between 

atherosclerosis, plaque formation, presence of oxidised LDL and pro-

inflammatory signalling pathways. In fact, a seminal study used 

overexpression of LOX-1 in endothelial cells of ApoE knockout mice to 

find that increased aortic oxidised LDL levels led to endothelial dysfunction 

and increased production of reactive oxygen species (Akhmedov et al., 

2014). This observation agrees with the work presented in this chapter as 

LOX-1/ApoE double knockout mice showed reduction in pro-inflammatory 
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signalling in the aorta (Figure 5.5). However, what was lacking in the work 

by Akhmedov et al. (2014) is that they have not shown the effect of 

overexpressing LOX-1 in endothelial cells of the liver. One conclusion is 

that in advanced atherosclerosis, LOX-1 is unable to compensate for the 

increased levels of oxidised LDL in the aorta. Thus, LOX-1 may play a role 

in regulating the status of pro-inflammatory gene transcription by 

activating the p65 RelA subunit of NF-κB.  

Moreover, Ishigaki and colleagues showed enhanced clearance of 

oxidised LDL by hepatic LOX-1 after adenoviral administration of LOX-1 in 

the liver of ApoE knockout mice (Ishigaki et al., 2008). Yet again, this 

result coincides with our current study when LOX-1/ApoE double knockout 

mice showing increased pro-inflammatory signalling in the liver. This 

further proves the importance of liver-specific LOX-1 being expressed. 

Scavenger receptors have been reported to be expressed in Kuppfer cells 

and sinusoidal endothelial cells in the liver (Poli, 2000; Schneiderhan et 

al., 2001; Ling et al., 1997). The liver has been shown as an important 

organ in effectively clearing pro-atherogenic oxidised or modified LDL 

particles from the circulation when administered exogenously (Ling et al., 

1997). Additionally, another study showed fluorescent labelled oxidised 

LDL was found to accumulate in rat Kupffer cells (Pieters et al., 1994). A 

contradictory study by Zhang and colleagues revealed the oxidised LDL-

mediated increase in phosphorylation of p65 RelA (NF-κB subunit) and 

increased production of reactive oxygen species via LOX-1 in liver 

endothelial cells (Zhang et al., 2014). However, the use of relatively high 

concentrations of oxidised LDL may have activated other liver scavenger 

receptors and these high concentrations of oxidised LDL may not be 

physiologically relevant. Taken together, I have now shown the important 

role of LOX-1 in the liver, although the fate of oxidised LDL and long-term 

accumulation of oxidised LDL in the liver are unknown.  
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One of the early events in atherosclerosis is endothelial 

dysfunction. As shown in this chapter and in our proposed model in figure 

5.9, loss of functional LOX-1 showed increased phosphorylation of NF-κB 

and MAPKs. As there was no evidence of plaques in the aorta of wild-type 

and LOX-1 knockout mice (Supplementary figure B1) (Mughal, 2015), 

altered signal transduction could explain how atherosclerotic lesions are 

initiated. It is possible in a pre-lesion state of the aorta, LOX-1 expressed 

on the endothelium enables scavenging for oxidised LDL for endocytosis 

and clearance. As the disease progresses, LOX-1 receptor potentially 

modulate pro-atherogenic signalling. One view is that LOX-1 thus switches 

roles depending on how is the relative seriousness of the disease state. 

The work in this chapter thus demonstrates that in the early stage 

of atherosclerosis, LOX-1 may be involved in clearing oxidised LDL 

present in blood plasma to potentially target this substance for clearance 

and/or degradation. I have shown the deletion of functional LOX-1 caused 

increased pro-inflammatory signalling, in spite of scarcity of plaques 

detected in the mouse aorta. Such increased in pro-inflammatory 

signalling in the LOX-1 knockout model could mean that the endothelium 

is being primed to move into a pro-atherogenic state. For the first time, I 

showed loss of functional LOX-1 in a pro-atherosclerotic ApoE knockout 

mouse model did not cause plaque reduction, despite the reduced pro-

inflammatory signalling.   
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Figure 5.9. Consequences of knocking out LOX-1  gene. Knocking 

out LOX-1 in normal physiological state does not alffect the plasma 

cholesterol and lipid levels. However, pro-atherogenic signalling are 

increased in the aorta that might mediate endothelial dysfunction, and 

therefore, potentially explains pre-lesion state in the aorta.  
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CHAPTER 6 

LOX-1 functional regulation of lipid and 

glucose metabolism  

 

6.1 Introduction 

Patients with diabetes mellitus display an increased risk of atherosclerosis 

with 80% of diabetic mortality due to heart attacks and strokes (Nathan et 

al., 2005; Faxon et al., 2004). Type 1 (insulin-dependent) and type 2 (non-

insulin-dependent) diabetes increases the risk major arterial dysfunction 

such as coronary artery disease and peripheral artery disease. The effects 

of diabetes on vasculature are complicated; however, hyperglycaemia, 

insulin resistance, dyslipidaemia and elevated free fatty acids levels are 

major factors in atherosclerosis in diabetes (Beckman et al., 2002). Many 

in vitro studies showed that increased glucose levels cause a plethora of 

pro-atherogenic responses such as increased production of reactive 

oxygen species and increased NF-κB activation (Brownlee, 2005; 

Mazzone et al., 2008; Piga et al., 2007; Yan et al., 1994). Consequently, 

this increases the expression of adhesion molecules in endothelial cells 

and attracts circulating monocytes, which depicts the early stage of 

atherosclerosis (Piga et al., 2007).  

Metabolic syndrome is a complex disorder linking dyslipidaemia, 

obesity, insulin resistance and hypertension (Stern et al., 2005). 

Interestingly, increased plasma oxidised LDL levels are associated with 

metabolic syndrome (Sigurdardottir et al., 2002; Holvoet et al., 2008). A 

number of studies have drawn associations between LOX-1 and the 

pathophysiological findings of diabetes and the metabolic syndrome. Chen 
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and colleagues showed increased LOX-1 expression in vascular 

endothelial cells of diabetic rats suggests the role of LOX-1 in diabetes-

related endothelial dysfunction leading to atherosclerosis (Chen et al., 

2001c). Another study also showed the increased expression of LOX-1 in 

response to high levels of glucose, in which such expression depended 

upon the activation of NF-κB and MAPK signalling pathways (Li et al., 

2003d).  

The impact of LOX-1 deletion on glucose metabolism in animal 

models was examined recently (Mughal, 2015). Glucose tolerance testing 

was performed on mice after overnight fasting and showed that blood 

glucose levels were increased in LOX-1 knockout mice compared to wild-

type mice (Mughal, 2015). Given this, I wanted to assess the signalling 

mechanisms linked to glucose sensing and metabolism linked to the LOX-

1 genotype. The aims of the work presented in this chapter are to 

elucidate the link between membrane receptors and oxidised LDL and 

insulin signal transduction pathways in cells and animals. 
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6.2 Results 

6.2.1 Insulin activates LOX-1-mediated Akt and ERK1/2 MAPK 

signalling 

Insulin is a potent anabolic hormone which is important for glucose 

homeostasis. Insulin-mediated activation of the insulin receptor activates 

downstream signalling events such as the PI3K and MAPK pathways 

(Saltiel and Kahn, 2001). In this study, I hypothesised that LOX-1 

regulates insulin signalling pathway by affecting the activation of 

downstream kinases and/or enzymes that control the cell function. To test 

this idea, I used the previously described HEK293 cells which can display 

inducible wild-type human LOX-1-FLAG expression compared to cells 

carrying the mock-transfected empty vector, which acted as a negative 

control. Cells were serum-starved in insulin-free cell culture media for 2 h, 

prior to stimulation with insulin for 15 min. Immunoblotting was used to 

assess the biochemical status of insulin receptor, Akt, ERK1/2 and p38 

MAPK proteins (Figure 6.1A). Quantification of these revealed that there 

was no significant change in the levels of insulin receptor when LOX-1-

expressing cells were compared to controls (Figure 6.1B).  Stimulation 

with insulin caused an increased activation of Akt with little or no 

difference in between control and LOX-1-expressing cells (Figure 6.1C). In 

contrast, the basal levels of phosphorylated ERK1/2 (Figure 6.1D) and 

p38 MAPK (Figure 6.1E) were decreased and were not significantly 

modulated by insulin stimulation. These data suggest a role for LOX-1 in 

modulating basal MAPK signalling in this model system. 

I then tested our hypothesis using PAEC cells with inducible wild-

type LOX-1-FLAG expression compared to mock-transfected empty 

vector. After serum starvation for 2h, cells were stimulated with insulin and 

subjected to immunoblotting to monitor insulin receptor, Akt, ERK1/2, p38 

MAPK and eNOS (Figure 6.2A). Quantification of these data showed that 

basal phosphorylated eNOS levels were substantially reduced in LOX-1-

exressing cells compared to control (Figure 6.2B). After stimulation with 

insulin, there was an increased trend in phosphorylated eNOS levels in 
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LOX-1 cells compared to control, although it did not reach statistical 

significance (Figure 6.2B). Similarly, non-stimulated basal phosphorylated 

Akt levels in LOX-1 cells were reduced compared to control (Figure 6.2C). 

The levels of phosphorylated Akt were significantly increased after insulin 

stimulation in both LOX-1-expressing cells and controls (Figure 6.2C). 

Phospho-ERK1/2 levels were significantly elevated after insulin stimulation 

in both LOX-1-expressing cells and control (Figure 6.2D). However, 

phospho-ERK1/2 levels were noticeably higher in LOX-1-expressing cells 

compared to control (Figure 6.2D). There were no significant differences in 

basal phospho-ERK1/2 in the presence of LOX-1 vs control (Figure 6D). 

Basal or insulin-stimulated phospho-p38 MAPK was not significantly 

affected by LOX-1 expression (Figure 6.2E). 
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Figure 6.1. LOX-1 modulates insulin-induced activation of  signal 

transduction. (A) HEK293 cells expressing LOX-1-WT and control cells 

were stimulated with 100 nM insulin for 15 min prior to cell lysis and 

immunoblot  analysis. (B-E) Quantifications of each activated proteins 

relative to control cells; black bars indicate control; white bars indicate 

LOX-1-WT. Error bars indicate ±SEM (n≥3). p<0.05 (*), p<0.01 (**), 

p<0.001 (***), p<0.0001 (****). 
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Figure 6.2. LOX-1 modulates insulin-induced activation of  signal 

transduction. (A) PAEC cells expressing LOX-1-WT and control cells 

were stimulated with 100 nM insulin for 15 min prior to cell lysis and 

immunoblot  analysis. (B-E) Quantifications of each activated proteins 

relative to control cells; black bars indicate control; white bars indicate 

LOX-1-WT. Error bars indicate ±SEM (n≥3). p<0.05 (*), p<0.01 (**), 

p<0.001 (***), p<0.0001 (****). 
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6.2.2 Insulin-stimulated signal transduction is independent of 

oxidised LDL-stimulated signalling 

Oxidative stress is involved in a number of pathological conditions, 

including diabetes and atherosclerosis. Maziere and colleagues have 

previously showed the inhibitory effect of oxidised LDL on insulin 

signalling (Maziere et al., 2004). In this study, I hypothesised that oxidised 

LDL downregulates insulin signalling pathway. To test this idea, I pre-

treated both LOX-1 and control cells with oxidised LDL for 24 h, then 

stimulated with insulin followed by immunoblotting analysis to monitor the 

status of insulin receptor, ERK1/2, p38 MAPK, Akt and eNOS proteins 

(Figure 6.3A). Quantification of these data showed that reduction in basal 

phospho-eNOS levels in LOX-1-expressing cells was independent of 

oxidised LDL or insulin stimulation (Figure 6.3B). Treatment of both cells 

with oxidised LDL showed increased levels of phospho-Akt; even though it 

was not statistically significant, insulin stimulation caused an increased 

trend of elevated phospho-Akt in both LOX-1-expressing cells and controls 

(Figure 6.3C).  

Quantification of phospho-ERK 1/2 revealed an increase in both control 

and LOX-1-expressing cells (Figure 6.3D). However, addition of insulin did 

not significantly affect the oxidised LDL-stimulated increase in phospho-

ERK1/2 levels (Figure 6.3D). Although there were ligand-stimulated 

increases in phospho-p38 levels in both LOX-1-expressing cells and 

controls, this was not significant (Figure 6.3E). These data suggest that 

oxidised LDL and LOX-1 act independently in modulating events linked to 

insulin signalling. 
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Figure 6.3. Effect of oxidised LDL on insulin-induced signal 

transduction. (A) PAEC cells expressing LOX-1-WT and control cells 

were pre-treated with 10 μg/mL oxLDL, followed by stimulation with 100 

nM insulin for 15 min prior to cell lysis and immunoblot  analysis. (B-E) 

Quantifications of each activated proteins relative to control cells; black 

bars indicate control; white bars indicate LOX-1-WT. Error bars indicate 

±SEM (n≥3). p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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6.2.3 Role of LOX-1 signalling pathways in glucose metabolism 

Skeletal muscle is one of the major organs that is targeted by insulin and 

has an important role in insulin-induced glucose uptake (Bergman, 1989).. 

Insulin that is secreted by pancreatic β cells binds insulin receptors on 

cells of the skeletal muscle and activates downstream signal transduction 

and metabolic pathways (Petersen et al., 2004; Long and Zierath, 2008). It 

was reported that the rate of insulin-induced glucose uptake is slower in 

obese patients with type 2 diabetes compared to normal healthy patients 

(Sjostrand et al., 2002; Barrett et al., 2009). Up to now, there has been no 

association between LOX-1 signalling pathway(s) and glucose metabolism 

in skeletal muscle. I hypothesised that LOX-1 genotype modulates Akt and 

MAPKs signal transduction pathways. To address this idea, muscle 

tissues from wild-type and LOX-1 knockout mice fed on Western diet were 

analysed by immunoblotting to monitor the status of Akt, p38 MAPK and 

SAPK/JNK protein kinases (Figure 6.4A). Quantification of these data 

revealed significant ~30-40% increase in phospho-Akt levels in LOX-1 

knockout mice compared to wild-type mice (Figure 6.4B).  

Insulin has also been shown to concurrently activate p38 MAPK 

and SAPK/JNK protein kinases, which are implicated in regulation of 

glucose uptake and glycogen synthase activities (Antonescu et al., 2005; 

Moxham et al., 1996). Quantification of immunoblotting data showed 

significant ~35% reduction in phospho-p38 levels in LOX-1 knockout mice 

compared to wild-type mice (Figure 6.4C). Lastly, levels of phospho-

SAPK/JNK was significantly ~2-fold higher in LOX-1 knockout mice in 

comparison to wild-type mice (Figure 6.4D). The presence of a functional 

LOX-1 genotype has complex effects on signalling in skeletal muscle. 

 

 

 

 



p-Akt 

t-Akt 

p-

SAPK/JN

K 

t-

SAPK/JN

K 

p-p38 

t-p38 

WT LOX-1 KO 
A 

WT LOX-1 KO
0.0

0.5

1.0

1.5

*

p
-p

3
8
 l
e
v
e
ls

C 

WT LOX-1 KO
0.0

0.5

1.0

1.5
**

p
-A

k
t 

le
v
e
ls

B 

WT LOX-1 KO
0.0

0.5

1.0

1.5

**

J
N

K
/S

A
P

K
 l
e
v
e
ls

D 

Figure 6.4. LOX-1 signal transduction pathways in skeletal muscle 

of wild-type and LOX-1 knockout mice. (A) Wild-type (WT) and LOX-1 

knockout (KO) fed on a Western diet for 12 weeks were analyzed for 

signal transduction in skeletal muscle. Tissues were compared for 

phosphorylation of (B) NF-κB, (C) Akt, (D) p38 and (D) ERK1/2 relative 

to WT. Error bars indicate ±SEM (n≥8). p<0.05 (*), p<0.01 (**), p<0.001 

(***), p<0.0001 (****). 
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6.2.4 Analysis of LOX-1 function in signal transduction in adipose 

tissues 

Atherosclerosis-related hepatic inflammation has been implicated on 

adipose tissue signal transduction which is important in obesity; this can 

cause systemic inflammation and altered metabolism of lipids and glucose 

(Fain et al., 2004). Treating cultured adipocytes with oxidised LDL showed 

effects on Akt and MAPK signalling pathways which affected glucose 

uptake (Scazzocchio et al., 2009). Recently, LOX-1 was linked to diet-

induced expression of pro-inflammatory cytokines (Takanabe-Mori et al., 

2010). Therefore, in this study, I used immunoblotting of epididymal 

adipose tissues to assess the status of Akt, ERK1/2 and p38 MAPK 

kinases in wild-type and LOX-1 knockout mice on a Western diet (Figure 

6.5A). Quantification of these data revealed significant >2-fold increase in 

phospho-p38 levels in LOX-1 knockout mice compared to wild-type control 

(Figure 6.5C), but there was no significant change on either phospho-Akt 

(Figure 6.5C) or phospho-ERK1/2 levels (Figure 6.5D).  

Adipose tissue stores fat, and the accumulation of adipose tissue 

causes predisposition to obesity, which is linked to insulin resistance. 

Thus, I next evaluated the same signalling pathways in the more 

advanced atherosclerosis ApoE knockout model (see Chapter 5). LOX-

1/ApoE double knockout mice and ApoE knockout mice were fed on 

Western diet, and epididymal adipose tissues subjected to immunoblotting 

analysis for Akt, p38 MAPK and ERK1/2 (Figure 6.6A). Quantification 

showed that the loss of a functional LOX-1 genotype caused ~2-fold 

decrease in basal phospho-Akt levels (Figure 6.6B). However, neither 

phospho-p38 nor phospho-ERK1/2 levels were significantly affected under 

these conditions in these different transgenic mouse lines (Figure 6.6, C 

and D). There is thus a clear link between atherosclerosis status as a 

function of LOX-1 and signalling events in adipose tissues. 
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Figure 6.5. LOX-1 signal transduction pathways in epididymal 

adipose tissue of wild-type and LOX-1 knockout mice. (A) Wild-type 

(WT) and LOX-1 knockout (KO) fed on a Western diet for 12 weeks were 

analyzed for signal transduction in adipose tissue. Tissues were 

compared for phosphorylation of (B) Akt, (C) p38 and (D) ERK1/2 

relative to WT. Error bars indicate ±SEM (n≥8). Error bars indicate ±SEM 

(n≥3). p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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Figure 6.6. LOX-1 signal transduction pathways in epididymal 

adipose tissue of ApoE knockout and LOX-1/ApoE knockout mice. 

(A) ApoE knockout (KO) and LOX-1/ApoE KO fed on a Western diet for 

12 weeks were analyzed for signal transduction in adipose tissue. 

Tissues were compared for phosphorylation of (B) Akt, (C) p38 and (D) 

ERK1/2 relative to ApoE KO. Error bars indicate ±SEM (n≥8). p<0.05 (*), 

p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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6.2.5 Role of LOX-1 signalling pathways in iron metabolism 

It has been previously reported that hepatic iron-overload and insulin 

resistance are linked (Ferrannini, 2000; Moirand et al., 1997). Iron 

regulates the expression of ferritin and the transferrin receptor which are 

central regulators of iron metabolism in mammals. I hypothesised that the 

insulin-resistance phenotype of LOX-1 knockout mice (Supplementary 

figure B2) might affect regulatory proteins that regulate iron metabolism. 

To test this idea, I examined liver from wild-type and LOX-1 knockout mice 

after Western diet using immunoblotting to monitor transferrin receptor, 

ferritin and p53 tumour suppressor (Figure 6.7A). Quantification of these 

data revealed that~3-fold increase in ferritin levels in the LOX-1 knockout 

mice compared to wild-type mice (Figure 6.7B). In contrast, there was ~2-

fold decrease in transferrin receptor levels in LOX-1 knockout mice 

compared to wild-type (Figure 6.4C). I further assessed the p53 tumour 

suppressor which is an indicator of programmed cell death (apoptosis); 

quantification revealed ~2-fold increase in p53 levels in the LOX-1 

knockout mice compared to wild-type (Figure 6.7D). These findings alone 

do not elucidate iron load in the liver, however, such findings support a 

functional link between the LOX-1 genotype, fat and lipid metabolism, and 

require corroboration with more direct assays of iron content.   
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Figure 6.7. LOX-1 regulates iron metabolism in liver. (A) Wild-type 

(WT) and LOX-1 knockout (KO) fed on a Western diet for 12 weeks were 

analyzed for ferritin, transferrin receptor and p53 in liver. Tissues were 

compared for (B) ferritin levels, (C) transferrin receptor levels and (D) 

p53 levels relative to WT. Error bars indicate ±SEM (n≥8). p<0.05 (*), 

p<0.01 (**), p<0.001 (***), p<0.0001 (****). 
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6.3 Discussion 

In this chapter, I have assessed a functional role for LOX-1 in metabolic 

syndrome, which is implicated in obesity and insulin resistance, in major 

insulin-targeted organs, namely skeletal muscle, adipose tissue and liver. 

The use of inducible expression system has allowed the analysis of LOX-1 

modulation of signalling events in non-vascular and vascular endothelial 

cells. A key feature of this work is that stimulating vascular PAEC cells 

showed that the presence of LOX-1 caused increased insulin-stimulated 

ERK1/2 activation. Such signalling has been postulated to increase 

glycogen synthase activity, thus promoting glucose storage via glycogen 

synthesis (Dufresne et al., 2001). The master protein kinase Akt showed 

an increased trend of insulin-stimulated activation in the presence of LOX-

1, but this lacked statistical significance. The importance of Akt in insulin 

signalling is that it is required for GLUT4 translocation to the cell surface, 

which is a major pathway for glucose uptake in skeletal muscle 

(Mackenzie and Elliott, 2014).  

Furthermore, I assessed the effects of oxidised LDL on insulin-

stimulated signalling events. Interestingly, oxidised LDL-mediated 

activation of LOX-1 did not affect insulin-stimulated signal transduction 

pathways involving Akt or ERK1/2. One conclusion is that LOX-1 acts in 

an oxidised LDL-independent manner to modulate insulin receptor 

activation and signal transduction. Such regulation could occur through a 

direct interaction between LOX-1 and insulin receptor: thus LOX-1 could 

be a functional co-receptor for insulin by binding and modulating insulin 

receptor signalling and activity. Previously, it was reported that the 

existence of LOX-1 and Ang II receptors promote production of reactive 

oxygen species and increased activation of MAPKs (Yamamoto et al., 

2015; Wang et al., 2011). More recently, it has been shown that LOX-1 

directly binds the Ang II type 1 receptor (AT1) via its extracellular domain 

(Yamamoto et al., 2015). Taken together, LOX-1 could interact with insulin 

receptor to modulate tyrosine kinase activity and/or signalling to 

downstream Akt and ERK1/2 pathways.  
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Previously, the phenotype of both LOX-1 knockout and wild-type 

mice on glucose tolerance has been assessed (Mughal, 2015), showing 

that loss of functional LOX-1 caused abnormal glucose metabolism with 

insulin-resistant features (Supplementary figure B2). This suggested that 

LOX-1 is required for insulin-stimulated glucose metabolism. Insulin 

regulates glucose metabolism by decreasing glucose output from the liver 

and increasing uptake of glucose into muscle and adipose tissues (Pessin 

and Saltiel, 2000). For effective maintenance of glucose levels from the 

circulation the translocation of glucose transporter to the cell surface in 

muscle and fat cells is a critical aspect of insulin-stimulated activity. 

Furthermore, insulin also plays a role in lipid metabolism by increasing 

lipid synthesis in liver and fat cells, and reducing fatty acid release from 

triglycerides in adipose tissue. Thus, targeting skeletal muscle and 

adipose tissues is important for evaluating the role of LOX-1 on glucose 

and lipid metabolism.  

 I have shown the increased activation of Akt levels in skeletal 

muscle when LOX-1 is deleted. As activation of Akt is well-known to cause 

the translocation of the GLUT4 glucose transporter to the plasma 

membrane, the work in this chapter shows that the presence of functional 

LOX-1 suppresses the activation Akt and JNK/SAPK in skeletal muscle. 

The suppression of Akt activity in skeletal muscle of wild-type mice could 

thus inhibit effective glucose uptake. On the other hand, loss of LOX-1 

function caused decreased p38 activation: this is important as increased 

p38 MAPK activity is also implicated in insulin-stimulated glucose uptake 

(Gehart et al., 2010). Thus in skeletal muscle, LOX-1 could have opposing 

actions in suppressing Akt but promoting p38 MAPK activation.  The exact 

mechanism of insulin-stimulated regulation of glucose metabolism is 

conflicting as glucose transporter activity may be independent of p38 

MAPK activation (Antonescu et al., 2005; Ribe et al., 2005).  

I found that SAPK/JNK activation in skeletal muscle was enhanced 

when LOX-1 function was compromised. Activation of SAPK/JNK is 

implicated in glycogen synthase expression (Moxham et al., 1996). Insulin 

stimulation also causes glycogen synthase dephosphorylation (Jensen 
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and Lai, 2009). Taken together, this suggests that a functional LOX-1 

genotype influences the ability of skeletal muscle tissues to correctly 

respond to insulin. These findings support that previously reported where 

blood glucose levels in LOX-1 knockout mice displayed an abnormal 

response to insulin (Mughal, 2015). One plausible explanation is that LOX-

1 expression in skeletal muscle modulates multiple insulin-stimulated 

signalling events and significantly affects signal transduction pathways 

leading to GLUT4-mediated glucose uptake. Thus, targeting LOX-1 could 

be a future priority in new therapies for diabetes. 

 Adipose or fat tissues regulate lipid homeostasis by storing and 

utilising energy from triglycerides which is also responsive to insulin. 

Accumulation of adipose tissues is a key factor in obesity, and is 

associated with type 2 diabetes and a pre-atherosclerosis state (Despres 

et al., 2001). Studies on insulin-resistance showed metabolic improvement 

after removal of fat or adipose tissues (Gabriely and Barzilai, 2003; 

Gabriely et al., 2002; Thorne et al., 2002). Insulin activates the tyrosine 

kinase activity of the insulin receptor, which then activates a multiple 

downstream signalling pathways such as Akt and ERK1/2 master 

regulators (Cheatham and Kahn, 1995). Deletion of LOX-1 did not have 

any influence on either Akt or ERK1/2 activation; however, phospho-p38 

levels were elevated suggesting increased protein kinase activity. LOX-1 

expression in adipose tissues is reported to regulate pro-inflammatory 

cytokine production (Takanabe-Mori et al., 2010). In this case, such LOX-

1-mediated signalling and regulation of p38 MAPK status might impact on 

pro-inflammatory cytokine expression and/or secretion. 

 The link between iron and lipid metabolism has always been a 

controversial subject as the mechanisms are not fully understood. The 

liver is a major organ for storing iron and maintaining lipid homeostasis 

(Fargion et al., 2001). Iron association with dyslipidaemia and 

atherosclerosis is likely to induce oxidative stress and inflammation in the 

liver. In the work in this chapter indicates a functional link between LOX-1, 

iron and lipid metabolism linked to atherosclerosis. Iron loading in liver can 

be monitored by increased ferritin levels and decreased transferrin 
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receptor levels (Andrews and Schmidt, 2007). I observed high ferritin 

levels and low transferrin receptor levels displayed by LOX-1 knockout 

mice. Studies have suggested that increased iron storage in liver is 

associated with insulin resistance and dyslipidaemia (Dongiovanni et al., 

2011; Gabrielsen et al., 2012; Wlazlo et al., 2013). This further supports 

our conclusion of the insulin resistance phenotype exhibited by LOX-1 

knockout mice.  I further showed that increased p53 levels paralleled the 

increase in ferritin levels in the LOX-1 knockout background. Not only 

does activation of the p53 tumour suppressor cause apoptosis, it also 

promotes insulin resistance (Derdak et al., 2011). 

 LOX-1 thus has a major influence on metabolic syndrome that 

includes insulin resistance, dyslipidaemia and iron homeostasis. The exact 

mechanisms of lipid and glucose metabolism in skeletal muscle, adipose 

tissue and liver influenced by LOX-1 genotype are not fully understood. 

Nonetheless, I have linked the impact of LOX-1 on insulin resistance and 

dyslipidaemia by demonstrating the insulin-induced downstream insulin 

signalling pathways.  
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CHAPTER 7 

General discussion 

 

The studies presented in this thesis provide novel insights into how 

oxidised LDL-mediated LOX-1 trafficking and downstream signal 

transduction modulate expression of pro-atherogenic and pro-

inflammatory proteins. This chapter will now provide an overview of the 

subject matter in the context understanding within the cardiovascular field. 

7.1 Oxidised LDL-mediated LOX-1 trafficking and 

downstream signal transduction 

In this current study, it has been demonstrated that LOX-1 membrane 

trafficking is mediated by oxidised LDL (Figure 7.1). Although there was 

no indication of whether LOX-1 gets recycled or degraded, I show that 

LOX-1 is present on the cell plasma membrane in the absence of oxidised 

LDL. In fact, LOX-1 is also being constitutively internalized independent of 

oxidised LDL, which has a similar trafficking activity to transferrin receptor 

(Murphy et al., 2008). Furthermore, mutations in the intracellular domain 

have caused LOX-1 to lose its ability to internalize oxidised LDL (Murphy 

et al., 2008). It was astounding to find that the mutation has caused a 

trafficking-defect, in which I have demonstrated that LOX-1-D5A mostly 

localised in the endosome and not on the cell surface. I also confirmed 

that the mutation did not have an effect on the mRNA expression, thus it 

could just be that the mutation causes a slow transport of LOX-1-D5A to 

the cell membrane, but the mechanism is unknown.  

 

 



p
3

8
 

E
R

K
 1

/2
 

e
N

O
S

 

A
k

t 

N
F
κ

B
 

C
y
to

p
la

s
m

 

E
n

d
o

c
y
to

s
is

 

R
e
c

y
c

le
 o

r 

d
e

g
ra

d
a

ti
o

n
?

 

L
O

X
-1

 

C
e

ll
 s

u
rv

iv
a

l,
 p

ro
li

fe
ra

ti
o

n
, 
in

fl
a

m
m

a
ti

o
n

, 

a
p

o
p

to
s
is

, 
e

n
d

o
th

e
li

a
l 
d

y
s

fu
n

c
ti

o
n

 

N
u

c
le

u
s

 

T
ra

n
s

c
ri

p
ti

o
n

 

p
5

3
 

A
 

B
 

C
 

D
 

F
ig

u
re

 7
.1

. 
L

O
X

-1
 t

ra
ff

ic
k

in
g

 

a
n

d
 s

ig
n

a
ll

in
g

 p
a
th

w
a

y
s

 

re
g

u
la

ti
n

g
 c

e
ll

 f
u

n
c
ti

o
n

. 
(A

) 

O
x
id

is
e

d
 L

D
L
 (

O
x
L

D
L

) 
s
ti
m

u
la

te
 

L
O

X
-1

 i
n

te
rn

a
liz

a
ti
o
n
 b

y
 c

la
th

ri
n

-

in
d

e
p

e
n
d
e

n
t 
p

a
th

w
a

y.
 

C
o

n
s
e

q
u

e
n
tl
y,

 L
O

X
-1

 i
s
 e

it
h

e
r 

d
e

g
ra

d
e

d
 o

r 
re

c
y
c
le

d
, 
w

h
e

re
a

s
 

O
x
L

D
L
 c

o
u

ld
 b

e
 p

a
rt

ia
lly

 

d
e

g
ra

d
e

d
 i
n
 t
h

e
 c

e
ll.

 (
B

) 
O

x
L

D
L
 

b
in

d
in

g
 t
o

 L
O

X
-1

 i
m

p
a

c
ts

 o
n

 

d
o

w
n

s
tr

e
a

m
 p

3
8

 a
n

d
 E

R
K

1
/2

 

p
h

o
s
p

h
o
ry

la
ti
o
n
. 
(C

) 
L

O
X

-1
 

a
c
ti
v
a

ti
o

n
 s

u
p

re
s
s
e

s
 t
h

e
 

A
k
t/

e
N

O
S

 a
c
ti
v
it
y,

 i
n

 r
e

s
p

o
n

s
e

 t
o

 

th
e

 p
re

s
e

n
c
e
 o

f 
 O

x
L

D
L

. 
(D

) 

L
O

X
-1

 a
c
ti
v
a

te
s
 p

5
3

 c
a

u
s
in

g
 

a
p

o
p

to
s
is

; 
a

n
d

 a
c
ti
v
a

te
s
 N

F
κ
B

 

re
g
u

la
ti
n
g
 t
h

e
 t
ra

n
s
c
ri
p

ti
o

n
 o

f 
p

ro
-

in
fl
a
m

m
a
to

ry
 t
a

rg
e

t 
g
e

n
e

s
. 

D
if
fe

re
n
ti
a
l 
a

c
ti
v
a

ti
o

n
 o

f 
s
ig

n
a

lli
n
g
 

p
a

th
w

a
y
s
 b

y
 L

O
X

-1
p

ro
m

o
te

s
 

in
fl
a
m

m
a
ti
o
n

, 
a

p
o

p
to

s
is

, 
a

n
d

 

e
n

d
o

th
e
lia

l 
d

y
s
fu

n
c
ti
o

n
. 
D

a
s
h

e
d
 

a
rr

o
w

s
 d

e
n

o
te

 u
n

d
e

fi
n
e

d
 

m
e

c
h

a
n
is

m
s
. 

143 



144 
 

In vascular endothelial cells, LOX-1 activation in response to 

oxidised LDL has been suggested to affect activity of MAPKs, Akt, eNOS 

and NF-κB signalling pathways (Mehta et al., 2004; Li et al., 2003b; Li et 

al., 2001; Lu et al., 2009). Oxidised LDL stimulation causes reduction in 

phosphorylated Akt and eNOS levels, which is in agreement with most 

studies (Figure 7.1). Binding oxidised LDL by LOX-1 causes an activation 

of p38 and ERK1/2 MAPKs signalling proteins. One possibility is that the 

activation of these MAPKs is required to regulate internalization. 

Additionally, oxidised LDL up-regulates LOX-1 expression through 

phosphorylation of ERK1/2 (Hsieh et al., 2001). Activation of ERK1/2 has 

also been implicated on LOX-1-mediated gene expression (Li et al., 

2003a). NF-κB, which is activated by pro-inflammatory stimuli, modulates 

the expression of pro-inflammatory cytokines and adhesion molecules (Xu 

et al., 2012; Lawrence, 2009). It was previously reported that binding of 

oxidised LDL to LOX-1 activates NF-κB (Cominacini et al., 2001). 

However, in this study, oxidised LDL-stimulated LOX-1 activation did not 

increase the activity levels of NF-κB.  

The aim of the study was to understand differential signal 

transduction event between LOX-1-WT and LOX-1-D5A, in which there 

was not much difference in response to oxidised LDL. The variations 

between different studies could be that the cell lines used in the current 

study may not have similar mechanisms that are present in primary 

vascular endothelial cell lines. Thus, it may be difficult to interpret the 

results and compare what signalling pathways are actually activated to 

modulate plaque formation. Another limitation of this in vitro study was the 

lack of commercial LOX-1 antibodies for immunoblotting and the difficulty 

of finding antibodies that cross-react with the porcine cell line. Thus, for 

future experiments, exploring the LOX-1 downstream activation and 

nuclear localization of NF-κB could reveal the transcription of pro-

inflammatory target genes involved.  
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7.2 LOX-1 signalling pathways regulate plaque formation 

and glucose metabolism 

A seminal study by Mehta and colleagues showed deletion of LOX-1 in 

ApoE knockout background mice showed reduced plaque formation 

(Mehta et al., 2007), and more studies confirmed this phenotype (Inoue et 

al., 2005; Kataoka et al., 1999). Previous study has shown deletion of 

LOX-1 in ApoE knockout background mice exhibited more plaques 

forming in the aorta (Mughal, 2015). Based on this data, the aim of the 

study was to evaluate LOX-1 signal transduction mechanisms in the aorta 

and the liver. I have shown LOX-1 caused increased pro-atherogenic 

signalling pathway in advanced atherosclerotic state, suggesting in a 

stressed condition, LOX-1 may be activating pro-atherogenic signalling 

pathway. On the contrary, LOX-1 expressed in the aorta pre-lesion state is 

required to clear oxidised LDL from the circulation. Thus, LOX-1 has a 

dual role in modulating plaque formation depending on the progress of the 

disease. To further support these findings, staining of plaques in the aortic 

sinus and detecting pro-inflammatory cytokines in plasma could explain 

the activation of these signalling pathways. 

Aortic atherosclerosis has also been associated with lipid 

metabolism in the liver (Simpson and Harms, 1983). Thus, I evaluated 

pro-atherogenic signalling mechanism in the liver. Deletion of LOX-1 in 

ApoE knockout background mice increased pro-atherogenic signalling 

pathway. Similar observations were seen in which oxidised LDL uptake in 

the liver was increased (Ishigaki et al., 2008). Thus, saying this, 

development of atherosclerotic lesions might be initiated by altered 

hepatic lipid uptake. This further shows the different role of LOX-1 in 

different tissues. Differences in phenotypes observed in most LOX-1 

research could be due to the mouse models being used or the diets that 

are fed to these mice. Furthermore, endothelial cell-specific knocking out 

of LOX-1 in mice would elucidate about the signalling pathways involved. 

In addition, measuring lipid contents in liver could further support the 

findings found. 
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A seminal study by Chen and colleagues was one of the first 

studies that linked diabetes and up-regulation of LOX-1 (Chen et al., 

2001c). But then again, the mechanisms causing the up-regulation of 

LOX-1 in diabetes are not fully understood. Previously,  it was also noticed 

that mice with LOX-1 knockdown had insulin resistance, where glucose 

metabolism was altered (Mughal, 2015). Skeletal muscle is one of the 

important organs targeted by insulin. In this study, for the first time, I 

showed that LOX-1 supresses the activation of Akt and SAPK/JNK, which 

are responsible for glucose transporter translocation and glycogen 

synthase activity, respectively (Antonescu et al., 2005; Moxham et al., 

1996). This suggests that LOX-1 is making skeletal muscle to be insulin-

resistant. Furthermore, altered lipid and glucose metabolism in adipose 

tissue is linked to obesity and insulin resistance (Fain et al., 2004). 

Although there was not much change in the signalling activation, LOX-1 is 

required for the activation of Akt, possibly for the translocation of glucose 

transporter in the cells. This, again, shows LOX-1 has diverse roles 

depending where the receptor is being expressed. Although insulin 

signalling was not specifically studied in my work, insulin resistance could 

be quantified by performing hyperinsulinaemic clamping studies in mice. 

7.3 Concluding remarks 

Studies on LOX-1 and LOX-1-based therapy have been on-going for over 

20 years. Given existing evidence, LOX-1 is a potential target for oxidised 

LDL-mediated cardiovascular diseases such as atherosclerosis and 

thrombosis. LOX-1 is a unique membrane receptor that elicits biological 

functions via diverse mechanisms, and because of this, it may be 

hazardous to completely block LOX-1 activity. I have shown here 

hyperlipidaemia and insulin resistance are potential mechanisms by which 

atherosclerosis is influenced by LOX-1. Further understanding of the many 

functions of LOX-1 would help establish a novel therapeutic strategy for 

the treatment of cardiovascular studies. 
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Figure B1. Loss of functional LOX-1 modulates plaque 

formation. (A) Wild-type and transgenic mice fed on a lipid- and fat-

rich diet had aortas harvested and stained with Oil Red O to visualize 

plaques. (B) The plaque surface area for the different groups 

measured as % of total aortic surface area. Error bars denote ±SEM 

(n=4-12), with significance indicated as: *, p<0.05; **, p<0.01. Data 

provided by Nadeem Mughal (University of Leeds, UK).  
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Figure B2. LOX-1 influence on glucose tolerance. (A) Wild type 

and LOX-1-null mice were injected with a weight-specific bolus of 

glucose and blood glucose measured at 0 (baseline), 30, 60, 90 and 

120 min post-treatment. (B) Area under the curve (AUC) analysis 

was used to calculate the difference between groups. Error bars 

denote ± SEM (n=12; ** p<0.01). Data provided by Nadeem 

Mughal (University of Leeds, UK). 

 

W
ild

 ty
pe

LO
X
-1

-n
ul

l

0

5

10

15

20

25

A
U

C

B 
** 

185 


