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Abstract

Light microscopy can be used to advance our understanding of the molecular and

cellular biology related to human health and diseases. As a powerful new vertebrate

model, zebrafish have been used in various research areas, particularly in cancer

and Parkinson’s disease research. Large-scale data extraction from microscopy is

highly attractive because it enables unbiased multivariate analysis that could lead to

systems medicine approaches. To obtain useful information from large-scale data,

high-throughput image analysis methods and applications are desperately required.

In this thesis, we have explored methods and developed applications for high-

throughput light microscopy zebrafish image analysis, including addressing the

key problems related to three-dimensional (3D) deconvolution/deblurring, robust

feature detection and description, and object counting. In biological image analysis,

dealing with out-of-focus light noise, low image quality, large-scale dataset, illumi-

nation, overlapping, occlusion and insufficient prior knowledge remains challenging.

Methods to address the following problems have been presented in this thesis.

The low image quality of fluorescence microscopy images is addressed in Chapter

3. Owing to the limitations of light microscopes, the whole imaging process can

be considered as a convolution between the object and the point spread function.
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Out-of-focus light and noise cause loss of detail in captured images. Deconvolution

is an ill-posed inverse problem; thus, regularization methods are required to obtain

better results. A maximum a posterior approach with a novel regularisation strategy

to remove out-of-focus blur in 3D fluorescence microscopy images is introduced in

Chapter 3.

The second problem is dyed dopaminergic neurone detection in zebrafish RGB

optical sections (Chapter 4). Owing to the large-scale of the image, low image

quality, irregular appearance of neurones and touching situations, manually counting

individual neurones via the microscope can be labour-intensive, time-consuming,

subjective, and error-prone. To solve this problem, this thesis explores different

methods to detect individual neurones in 3D zebrafish RGB images, including using

detectors with many different handcrafted features and features learned automatically

from deep learning architectures. An additional class-imbalanced problem is dis-

covered during the experiments involving the training of patch-based deep learning

techniques using a large-scale dataset that contains a limited number of positive

samples. To solve this problem, a dynamic cascade framework with deep learning

architectures is designed.

The last problem is cell counting in fluorescent microscopy images (Chapter 5).

Detecting individual cells in two-dimensional (2D) fluorescence microscopy images

is difficult owing to overlap. Rather than counting-by-detection methods, a counting-

by-regression method with an interactive interface for cell counting in a fluorescent

image is proposed. Sparse Bayesian Poisson regression based on a Relevance Vector

Machine framework is also proposed. The proposed framework enables accurate
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counting of a discrete number of cells and leads to much sparser models, which

results in faster performance and maintains a comparable generalisation error.
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Chapter 1

Introduction

1.1 Background

1.1.1 Zebrafish Model for Parkinson’s Disease

Zebrafish have been used as an important model organism for research into many

types of diseases, such as cancer and Parkinson’s disease (PD). Using zebrafish as a

research model has several advantages. For example, the zebrafish is a vertebrate and

has an immune system that is very similar to that of humans. In addition, zebrafish

embryos develop externally and are transparent, which provides an unparalleled

opportunity to study the biology of the immune response. Furthermore, compared to

image analysis of tissue samples from other species, such as mice or humans, where

slides with clearly orientated tissue samples of well-defined standardised thickness

typically form the basis of subsequent image acquisition and analysis.

A growing number of transgenic and mutant zebrafish lines have been developed

for disease research to answer fundamental questions about disease pathogenesis.

For example, in research into mechanisms linked to PD, the dopaminergic nerve cells,

which produce dopamine to control muscle movement, gradually die. The discovery
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of monogenically inherited PD genes has greatly enhanced understanding of the

underlying mechanisms leading to PD but have not yet resulted in better treatments.

Recently, researchers focused on the death of dopaminergic neurones in a ze-

brafish stable mutant line with a loss-of-function mutation in PD gene PINK1.

Autosomal recessively inherited PINK1 mutations are known to cause early-onset

PD in humans [1]. Interestingly, this mutant zebrafish model showed an approximate

25% reduction of dopaminergic neurones as early as three days post fertilisation

compared with wild-type zebrafish controls, as determined by counting tyrosine

hydroxylase (TH) positive neurones after whole-mount in situ hybridisation (WISH).

Here, TH is the rate-limiting enzyme in the synthesis of dopamine which is fre-

quently used as a marker for dopaminergic neurones; the marked neurones are called

TH-labelled neurones.

1.1.2 Light Microscopy: Imaging as a Convolution

Light microscopy, which has been fundamental in advancing understanding of the

molecular and cellular biology of human health and disease, has remained a largely

qualitative approach. Large-scale data extraction from light microscopy is highly

attractive because it facilitates unbiased multivariate analysis that can lead to systems

medicines approaches. This is a rapidly developing research area that has delivered

significant advances in ’-omic’ biological sciences (e.g. genomic, proteomic, etc.).

However, clinical medical imaging has been severely limited in light microscopy

imaging due to the unavailability of appropriate analysis tools. High throughput

image methods and software are required to reduce labour costs and speed up analysis

processes.

A light microscope (or optical microscope) uses visible light to magnify objects.

Three primary factors determine the lateral spatial resolution in light microscopy, i.e.

the numerical aperture, the wavelength of the light and the direction of the optical
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Fig. 1.1 Acquisition of optical sections (z-stack).

axis (depth of field) [2]. The former two factors are inherent limitations of optical

microscopy, and the third factor, i.e. depth of field, contributes to ’out-of-focus’ light

during image processing.

With a certain depth of field, features within this distance of the focal plane

contribute to the image, thereby swamping or even losing details. Due to the

limitations of optical microscopes, the entire imaging process can be considered

a convolution between the object and the point spread function (PSF). The PSF is

simply an image of a single point that describes how each point of the object is

blurred. Note that the PSF is wholly determined by the microscope. By knowing all

optical properties of the optical microscope, the PSF can be measured or estimated.

Fig 1.1 shows the acquisition of optical sections, which are also known as z-

stacks. By moving the objective once a unit in the z-direction (depth of field or ∆z),

the microscope can produce clear images of focal planes in a thick sample. Due to

the loss of specimen information between adjacent focal planes and the effect of
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out-of-focus light, a smaller depth of field results in better optical sectioning, which

also generates more z-stack slices. Using computer techniques, z-stack images can

be reconstructed or viewed as a three-dimensional (3D) volume or a single 3D image,

which makes further image processing techniques, such as 3D deconvolution and 3D

neurone detection, easier to perform.

Linearity and shift invariance are two conditions that describe an imaging process

as a convolution. In this thesis, two types of optical microscopy are used, i.e.

widefield (WF) and confocal microscopy. Both WF and confocal microscopy are

linear and shift invariant processes to a good approximation [3].We denote the

specimen as a function of position f (x), the PSF as h(x) and the resulting image as

g(x). Then, the image is the convolution (∗) of the object with the PSF:

g(x) = f (x)∗h(x). (1.1)

During imaging, except out-of-focus light, some unexpected noise also exists:

g = f ∗h+n. (1.2)

Unlike common additional noise in natural images, such as Gaussian or white

noise, the dominant noise sources in the microscope are electronic noise or, in

some cases, fluctuations in illumination intensity. For fluorescence microscopy

deconvolution, it is often assumed that the noise follows a Poisson distribution due to

the photon-counting process [4]. The imaging process can be written in short form

as follows:

g = n( f ∗h), (1.3)

where n is the Poisson noise function. From a mathematical perspective, convolution

processes for WF and confocal microscopy do not differ. However, there are principle



1.2 Objectives 5

differences between the two types of microscope. Confocal microscopy can eliminate

most the out-of-focus light, which can increase the contrast of details and improve

the in-plane resolution. For example, in fluorescent confocal microscopy, the image

is scanned at one spot or at an array of spots at a time, and a charge-coupled device

(CCD) camera can record up to 30% of the total light emitted by the specimen [2].

However, eliminating out-of-focus light means that part of the light emitted by

the specimen will be excluded. In contrast, with conventional WF microscopy, all

pixels are recorded simultaneously, including all out-of-focus light. In principle, the

PSF of WF microscopy is wider than that of confocal microscopy. To remove out-of-

focus light, a computer image processing technique, i.e. deconvolution/deblurring,

can be used. With advances in computer hardware and parallel computation tech-

niques, it is much more convenient and user friendly to use WF CCD microscopes

with deconvolution software. Consequently, WF microscopy with deconvolution

techniques is used more frequently.

1.2 Objectives

This thesis primarily focuses on light microscopy zebrafish image analysis. The

objectives are (1) to explore methods for high-throughput visual information pro-

cessing in large-scale light microscopy zebrafish datasets, (2) transfer expertise and

experience from computer vision to light microscopy image analysis, (3) address

key problems in light microscopy images, (4) develop image-based modelling of

dynamic biological processes based on robust machine learning techniques and (5)

implement open-source tools and applications for light microscopy zebrafish image

analysis.
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1.2.1 Definition of Problems

Three key problems are considered in this thesis.

Problem 1. Low image quality of widefield fluorescence microscopy

With the limitation of imaging options and the imaging systems for the begin-

ning of this project, the quality of obtained WF fluorescence microscopy images

is quite low. The imaging process can be viewed as a convolution process

between the zebrafish specimen and the PSF, which makes the recorded image

more blurry. More details about light microscopy can be seen in the previous

section 1.1.2. The alternative microscopes can be used to remove out-of-focus

light to improve the image quality, such as confocal fluorescence microscope

and light sheet fluorescence microscope (LSFM). Due to the limitations of

the equipments during the beginning of this project. Widefield fluorescence

microscope with computer aided deconvolution methods are used in this thesis.

3D deconvolution attempts to remove out-of-focus light and additional noise

in optical sections, particularly for WF fluorescence microscopy. However,

the deconvolution is an ill-posed inverse problem, so regularization methods

are needed for obtaining better results. In this thesis, a maximum a posterior

approach with novel regularisation strategy to remove the out-of-focus blur in

3D fluorescence microscopy images is explored.

Problem 2. Cell Detection

In a 3D multichannel zebrafish dataset, specific cells must be detected individu-

ally. Thus, the following must be considered.

(a) Cell detection with handcrafted features. Typical supervised analysis

considers several different handcrafted features. Various handcrafted feature

extraction techniques, such as histogram of gradient (HOG), local binary
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pattern (LBP) and scale-invariant feature transform (SIFT), have been pro-

posed. Important features can be selected with several experiments using

many different handcrafted features. With the same typical detector, different

features and combinations are tested.

(b) Automatic cell detection with learned high-level features. It is not easy

to find useful and perfect low-level features, as they are generally insufficient

to directly represent the semantic meaning of desired object. Different com-

bination of feature vectors will also make the detection process inefficient.

There are two ways to extract features from an image, i.e. handcrafted feature

extraction and automatic feature extraction using deep learning architectures.

Automatic cell detection using deep architectures is investigated. With deep

learning techniques, important high-level object features can be learned auto-

matically. Among different deep architectures, convolutional neural network

(CNN) is one of the best options. An automatic framework with CNN is

explored and tested with our zebrafish dataset.

(c) High-dimensional feature learning. Typical feature extraction methods

are mainly explored in two-dimensional (2D) space. However, the cell de-

tection task requires exploring high-dimensional features in optical sections

(z-stack images). High-dimensional deep architectures are studied and evalu-

ated with our multi-channel z-stack images for capturing high-dimensional

features directly. A fully automatic cell detection framework with high-

dimensional deep architectures is designed for capturing centre pixels of

desired neurons.

(d) Class-imbalanced problem. A dataset is considered ’imbalanced’ if the

number of samples in a single class is much smaller or larger than that of

other classes [5]. More details about class-imbalanced problem can be found

in Chapter 2.4. Typically, the minority class is of primary interest. However,

standard learning algorithms trained using a dataset with an imbalanced
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distribution of classes will produce biases toward the majority class, thereby

resulting in misclassified and unsatisfactory results. The class-imbalanced

problem will be encountered when the supervised learning method is used

with our positive-label-only dataset. In our situation, the class-imbalanced

problem is serious with the dataset containing only positive examples. In this

thesis, a dynamic cascade framework with deep neural network is designed

to address the class-imbalanced problem.

Problem 3. Interactive cell counting in the presence of cell overlap

In PD research, only cells in specific regions of the brain are counted for further

analysis. Counting cells in a zebrafish fluorescence microscopy image involves

the following problems. Although our designed deep learned detection methods

for problem 2 can be applied in this problem, but the accuracy is reduced

because of the severe overlapping, touching, and out-focus-light situations

in 2D fluorescence microscopy. The compared results with CNN will be

presented in Chapter 5. To achieve the requirement of comparing the number of

dopaminergic neurons in certain regions, interactive application with regression

method is designed.

(a) Specific region selection/segmentation. An interaction region selection

method with user input is considered for specific region segmentation. With

this interactive application, users can select specific regions they want.

(b) Counting in specific selected regions with overlapping conditions. In

reality, there are nearly no overlapping cells in 3D space; however, in a

two-dimensional (2D) projection image, overlapping is severe. A counting

method in specific regions that does not require the detection of an individual

cell is investigated.
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1.2.2 Applications and Tools

A zebrafish light microscopy dataset provides opportunities to discover the unique

structure inside the zebrafish brain and apply knowledge from the computer vision

domain to medical image analysis to create practical and interactive applications and

tools. In this thesis, several applications are developed for light microscopy zebrafish

image analysis.

Microscopy Image Deconvolution Application

Due to the limitations of the imaging system, images captured using a WF fluo-

rescence microscope are significantly influenced and degraded by the out-of-focus

signal. Methods to increase image quality and restore details for 3D fluorescence mi-

croscopy are extremely useful for disease researchers. Applications for microscopy

image deconvolution are developed for restoring details for 3D fluorescence mi-

croscopy images.

Automatic Cell Detection Application

The ability to detect cells in microscopy images can advance research, such as

tracking, counting and neurone analysis. To detect certain cell types individually,

such as mitosis and dopaminergic neurones, we aim to develop a robust machine

learning-based detector that can be applied to 3D low-quality light microscopy

images.

Interactive Cell Segmentation Application

In disease research, cells must be detected or counted in specific regions selected by

a neuroscientist. Thus, an interactive cell segmentation application that takes user

input is required.
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Cell Counting Application

Cell counting is an important subset of cytometry. We aim to develop an application

to count target cells in images where individual object detectors do not work properly

due to overlapping, merging, crowding and irregular appearance.

1.3 Contributions

The main contributions of this thesis are described in the following.

• The maximum a posteriori (MAP) method with sparse priors is applied to 3D

deconvolution for Poisson noise WF microscopy.

• Two priors with Hyper-Laplacian distribution and a local mask are used in the

deconvolution framework for removing out-of-focus light and reducing ringing arte-

facts, respectively.

• To assist dopaminergic cell detection in a zebrafish model of PD using TH-labelled

neurones in WF microscopy z-stack RGB images, high-throughput automatic neu-

rone detection methods with 2D and 3D frameworks are proposed.

• A dynamic cascade framework with a deep neural network is designed to address

the problem of training deep learning structures using a large-scale image dataset

that contains a limited number of positive samples. To the best of our knowledge,

the employed imbalanced dataset used for training is one of the largest to date.

•We successfully apply 2D and 3D deep learning architectures to cell detection in a

high-dimensional dataset.

• An efficient GPU-based parallel framework is implemented for training.

•We contribute the first zebrafish database 1 for cell detection. It is expected that

this database will serve as a comparative benchmark for future research.

•We introduce a counting-by-regression framework for cell counting in fluorescent

1http://www.cistib.org/cistib_shf/index.php/download/
zebrafish-embryo-datasets

 http://www.cistib.org/cistib_shf/index.php/download/zebrafish-embryo-datasets
 http://www.cistib.org/cistib_shf/index.php/download/zebrafish-embryo-datasets
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microscopy images. The proposed framework integrates sparse Poisson Bayesian

regression and interactive superpixel-based graph cut segmentation.

• A sparse Bayesian Poisson regression (SBPR) based on a Relevance Vector Ma-

chine (RVM) framework that enables a discrete number of cells to be counted

accurately with a sparse solution resulting significantly less computation cost, is

proposed.

• An interactive interface is implemented with a superpixel-based graph cut for

objective foreground segmentation.

• Integrating the sparse regression model with suitable features for cell counting in

densely clustered regions.

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

• In Chapter 2, previous work related to high-throughput image analysis, deep

learning, neurone detection and neurone counting-by-regression is reviewed.

• In Chapter 3, the 3D deconvolution method for WF fluorescence microscopy

zebrafish images is presented. The maximum a posteriori estimation method

with sparse image priors, including the hyper-Laplacian prior and a local

prior with a mask, is presented to solve non-blind and blind 3D deconvolution

problems for WF fluorescence microscopy. Then, the proposed method is

tested using synthetic microscopy data and real WF microscopy data from

zebrafish. Compared to other regularisation methods, the unique contribution

of the proposed method is combining the hyper-Laplacian model and a local

mask in the MAP framework.

• In Chapter 4, individual cell detection in 3D light microscopy zebrafish images

with three RGB channels is discussed. First, experiments with different hand-
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crafted features are performed to identify the main feature. Then, a supervised

max-pooling Convolutional Neural Network (CNN) is trained to detect cell

pixels in regions preselected by a Support Vector Machine (SVM) classifier.

Finally, a cascade framework with deep learning architectures to improve

detection accuracy and optimise the training procedure is investigated.

• Chapter 5 a robust counting-by-regression method for fluorescent microscopy

images. In the framework, cell regions are first segmented using graph cut

approach based on hierarchical superpixels interactively segment cell regions,

and then the discrete counts in each segmented region will be predicted us-

ing SBPR method with extracted local features. Then, SBPR is applied to

predict discrete counts in each segmented region based on the extracted local

features. Sparse regression leads to much sparser models, resulting in faster

performance with test data while maintaining a comparable generalisation

error. The proposed counting method is evaluated using two different datasets

and is compared to different state-of-the-art techniques.

• Conclusions and suggestions for future work are presented in Chapter 6.



Chapter 2

Literature Review

2.1 High-throughput Zebrafish Image Analysis

Microscopy image analysis is currently being applied to various diverse fields, such

as medicine, biological research, drug testing and metallurgy. High-throughput

microscopy with computer-assisted intervention makes it possible for biologists to

capture high-resolution fluorescent or colour specimen images rapidly. However,

manually analysing large-scale data is difficult and expensive. Thus, as the amount

of available data increases, automatic high-throughput microscopy image analysis

is urgently required. However, extracting interpretable information and knowledge

from raw images is difficult and developing a high-throughput image analysis system

to qualify biological processes with few or no human interactions is challenging [6].

Recently, 3D imaging techniques that can be applied to light microscopes have

been developed, such as mosaic/optical sectioning confocal laser scanning and

mosaic/optical sectioning WF microscopy [7]. Zebrafish are a perfect model to use

as specimens in such 3D imaging techniques, and several researchers have focused

on zebrafish image analysis. For example, studies that focus on deconvolution or

deblurring in zebrafish embryo images [8], segmentation and characterisation of

zebrafish retinal horizontal neurones [9], counting zebrafish neurone somata [7], and
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high-throughput analysis for region detection and quantification of zebrafish embryo

images [10, 11] have been conducted. The 3D imaging techniques combined with

suitable neuronal stains have created new possibilities for neurone detection and

counting within entire volumes.

Several microscopy applications for high-throughput biological image analysis

have been proposed, such as ImageJ/Fiji [12, 13], Ilastik [14], ICY [15], and Vaa3D

[16]. We will evaluate some of those existing applications and tools for different

problems compared with our proposed methods and applications.

2.2 Deep learning in Biomedical Imaging

Deep learning methods attempt to represent high-level abstractions in data with

multiple-layer architectures [17–21]. Some deep learning algorithms, such as artifi-

cial neural networks (ANN), CNNs [22], Deep Belief Networks [23], and stacked

auto-encoders [24], have been developed for different difficult tasks. Rather than

adopting problem-specific handcrafted features, such as HOG and SIFT, deep learn-

ing algorithms, e.g. CNNs, can automatically learn high-level abstractions from

training data.

Fig. 2.1 A regular three-layer neural network.
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Fig 2.1 shows a regular 3-layer ANN, i.e. a multi-layer perceptron (MLP), that

includes an input layer, two hidden layers and one output layer. Formally, a two-

hidden-layer ANN can be represented as the function f : RD→ RL, where D is the

size of the input vector x and L is the size of the output vector f (x). Then, the matrix

notation will become:

f (x) = G
{

b(3)+W (3)
[
s
(

b(2)+W (2)(s(b(1)+W (1)x))
)]}

, (2.1)

where b(1), b(2) and b(3) are bias vectors; weight matrices W (1), W (2), and

W (3); activation functions G and s. Typically, s can be a tanh or sigmoid func-

tion, and G can be a softmax function. To train this network, all parameters

θ = {W (1),W (2),W (3),b(1),b(2),b(3)} can be learned using Stochastic Gradient De-

scent methods [25]. Parameters are updated according to the gradients with back-

propagation algorithm [26].

CNNs, which are considered one of the most effective deep learning techniques,

were introduced in [27] and have been further developed [28, 22, 18]. Among

popular deep learning models, CNNs are one of the most successful architectures,

which have been applied in image classification [22], face recognition [29], natural

language processing [30] and mitosis detection in histology images [31]. Compared

to standard feedforward neural networks, CNNs have significantly fewer connections

and learnable parameters because they share the same basis function across different

image locations [18]. Thus, CNNs are relatively easy to train.

Instead of adopting hand-crafted features, such as Histogram of Oriented Gradi-

ents (HOG) and Scale-Invariant Feature Transform (SIFT), deep learning can learn

high-level features from training data automatically. Furthermore, CNN is able to

reduce learnable parameters significantly by sharing the same basis function across

different image locations [18].
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CNNs are biologically inspired variants of regular ANNs with a sequence of

layers, typically convolutional, pooling and fully-connected layers. Each layer type

has unique properties. The convolutional layer includes a parameter sharing scheme.

The pooling layer reduces the number of parameters and controls overfitting, and

high-level reasoning is implemented in the fully-connected layer.

Fig. 2.2 CNN framework

A standard CNN framework is shown in Fig 2.2. The input can be an entire

image or a small patch extracted from an image, and each square represents a single

feature map in the layer. There are multiple feature maps in each hidden layer to

generate a richer representation of the input image. We denote the kth feature map at

a given layer as mk, the filter in the convolutional layer as W k and bias as bk. Then,

the feature map mk (for tanh non-linearities) is obtained as follows:

mk
i j = tanh((W k ∗ x)i j +bk). (2.2)

By inputting an image array into the CNN structure, the image will be passed

through a series of convoluional, pooling, and fully connected layers, and then an

output image will be generated. The first layer is called convolutional layer, in which

filters are convolved with every unique location on the input image and a unique

number is generated in the hidden layer. By sliding the filter over all the locations,

the outpput after convolution is called activation map or feature map. By using more

filters, we can get more feature maps in the convolutional layer. In the pooling layer,

we can undersampling the image to reduce the number of parameters and control
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overfitting. By attaching a fully connected layer to the end of the structure, the

high level features will be detected and connected to different classes. In 2D CNNs,

convolutions can only compute 2D features from the spatial dimensional only. The

3D CNN is first designed and introduced in paper [108] for human action recognition

in videos, and it is desirable to capture the motion information in multiple contiguous

frames. In our situation, we need to capture the vertical information of the cells

in multiple slices in the 3D stack image. The pixel value at position (x,y,z) on jth

feature map in ith layer is given by

vxyz
i j = tanh

(
bi j +∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
i jmv(x+p)(y+q)(z+r)

(i−1)m

)
, (2.3)

where b is the bias and w is the weight.

2.3 Deconvolution in Biomedical Imaging

Due to the limitation of the imaging system, biomedical images are degraded during

acquisition. Deconvolution is an inverse problem that can be performed if the imaging

process is assumed to be linear and shift invariant. However, inverse problems can

be very sensitive to the inputs. As with most of inverse problems, even if the PSF is

known, image deconvolution is difficult because some information is lost during the

imaging process. Deconvolution without prior knowledge of the PSF, is called ’blind

deconvolution’.

As mentioned previously, image deconvolution is an ill-posed problem, i.e. a

problem that has no solution, many solutions or an unstable solution [32]. No single

mathematical approach can stabilise this type of inherently unstable inverse problem

[33]. The most common approach of solving deconvolution is to attempt to solve

linear equation (1.2), which, in Fourier space, becomes:
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G(x) = F(x)H(x)⇒ F(x) = G(x)/H(x), (2.4)

where G(x), F(x) and H(x) are the Fourier transforms of g(x), f (x) and h(x),

respectively. H(x), which is Fourier transforms of the PSF, is typically referred to as

the optical transfer function (OTF). The image transform is simply the product of

the object transform and the OTF, and the latent image is simply the inverse Fourier

transform result. However, due to noise and because parts of the OTF become very

small or even zero, satisfactory results cannot be generated.

2.3.1 2D Methods

One of the most powerful methods to solve this type of inverse problem is to add some

additional ’constraints’. Most inverse problems are ill-posed, and the deconvolution

problem is no exception [32]. The observed image (g) can be explained using infinite

pairs of the PSF (h) and ground truth image ( f ) [34]. Therefore, to obtain the best

latent image from a blurred image, extra prior knowledge about the known image

structure must be added to regularise the deconvolution process. Traditional 2D

methods, such as inverse filtering [35], Tikhonov filtering [36], Weiner filtering

[37], the Maximum Likelihood (ML) approach, and the Richardson-Lucy algorithm

[38, 39], were proposed several decades ago for inverse image restoration problems.

Some traditional methods can generate better results with additional constraints,

such as the MAP approach, which is an ML approach with priors.

Several methods using MAP estimation with sparse image priors to solve the

2D deconvolution problem have been proposed [34, 40–43]. The MAP approach,

as a nonlinear iteration method, has been proved very efficient and accurate in the

recovery of a latent image or the true blur kernel of a 2D natural image with blur due

to object movement or camera ego-motion [34].
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The sparse derivative distribution, as an image prior, has been used to solve many

ill-posed 2D problems, such as motion deblurring [43], denoising [44], transparency

separation [45], and super resolution [46] problems.

The most well-known regularisation method for the 2D deconvolution problem

is called Total Variation (TV), which has been proved very successful for preserving

edges and removing noise. The hyper-Laplacian distribution has been applied

to 2D non-blind deconvolution [47]. In [43], the hyper-Laplacian distribution was

modified using a Gaussian noise model, and a lookup table was developed to improve

computation time.

Shan et al. [42] presented an algorithm that uses an MAP to remove motion blur

from a single 2D image with two different priors, i.e. global and local priors. To

fit the logarithmic gradient distribution, they introduced two piecewise functions,

y =−k|x| and y =−(ax2 +b), which represent the sharp peak and heavy tails of the

distribution, respectively. For the local prior, they found that errors in the smooth area

between a blurred image gradient and an unblurred image gradient follow a Gaussian

distribution. They used a Gaussian distribution with zero mean to formulate the local

prior to suppress ringing artefacts. Our local prior part is similar to a previously

proposed method [42].

Compared with the gradient distribution using TV regularization, using hyper-

Laplacian distribution can be more precise to describe the heavy tails of the logarith-

mic gradient distribution. However, only using one global prior, ringing artifacts can

be produced during deconvolution due to the errors in the estimated PSF function

and inaccurately modeled image noise. Based on the literature, using another local

prior to reduce the ringing artifacts can be helpful.
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2.3.2 3D Methods

Due to success in solving the 2D deconvolution/deblurring problem, several methods

based on the MAP approach have been proposed for 3D deconvolution of microscopy

data. The iterative and nonlinear maximum likelihood expectation maximisation

(MLEM) method, which is similar to the MAP approach, has been designed to solve

both 3D blind and non-blind Poisson image deconvolution problems [48–51]. A

regularising OTF method using MLEM has been proposed recently [50]. A machine

learning method that models the PSF based on MLEM have been introduced for

blind deconvolution without any prior to regularise a latent image during restoration

[51].

State-of-the-art estimation strategies to demonstrate the validity of the sparse

prior model have been proposed for confocal microscopy, including the Tikhonov-

Miller (TM) regularisation [52, 53] and TV regularisation [49, 50], which are dis-

cussed for comparison. In [53], the TM regularisation method was first used to solve

the deconvolution problem for confocal microscopy. This regularisation term can

remove noise in Poisson noise images but tends to smooth details, which may result

in important information being lost [54].

In [49], the Richardson-Lucy algorithm with TV regularisation was proposed

for confocal microscopy. In [50], the TV regularisation term was presented for

blind iterative deconvolution by updating both the latent image function and the PSF

simultaneously. The TV regularisation method can remove noise and preserve edges

effectively; however it may smooth texture and corner details [54].

Different penalty functions have been introduced for the gradient filter, such as

f1(x) = |▽ x| for TV regularisation and f1(x) = ∥▽ x∥2 for TM regularisation [49].

An adaptive image deconvolution algorithm (AIDA) [55] for multi-frame and 3D

data has been proposed. A quadratic regularisation method [56] has been used to

preserve edges and other sharp object features.
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There are several freely-available software applications for 3D deconvolution

problems, such as Iterative 3D [57], FFTJ and DeconvolutionJ [58], Parallel spectral

Deconvolution 3D [59], DeconvolutionLab [60], and one commercial program i.e.

Huygens (SVI, Hilversum, The Netherlands). These programs require the theoretical

PSF or the PSF parameters based on the imaging system.

2.3.3 Blind Deconvolution

Blind deconvolution is essential if some parameters related to the PSF are unknown.

It requires additional assumption on the latent image or the PSF due to the ill-posed

feature of this problem. The blind deconvolution is heavily influenced by the initial

guess of the PSF. If an inaccurate PSF is used, a processing ringing artefacts will

occur around objects with sharp edges. The noise in the image may also be amplified

during deconvolution process.

Blind deconvolution works started in early 1970s in astronomical imaging and

medical imaging. Most of the works can be performed iteratively to improve the

estimation of PSF and the latent image or signal. The most famous iterative methods

are maximum a posteriori estimation and expectation-maximization algorithms. A

good PSF estimation is very helpful to make the iterative process quicker to converge.

Usually, the blind deconvolution methods use regularization methods to reduce

this kind of amplification. For example, [50] uses TV regularisation in the frequency

domain (KFTV) of the PSF to preserve edges in the data. In [51], all parameters

related to the PSF are known except for depth aberration d and refractive index np of

the imaged sample. Many sets of PSFs are obtained by changing depth aberration

d based on a PSF model [61]; from this, the shape of the PSF is learned as a prior

based on principle components analysis [62] or kernel principal component analysis

[63]. Even many works achieved tremendous progress, the results are still far from

perfect.



2.4 Neurone Detection and the Class-imbalanced Problem 22

2.4 Neurone Detection and the Class-imbalanced Prob-

lem

Neurone detection in microscopy images is a significant preliminary step for fur-

ther experiments and analysis. Some detection algorithms have been published in

computer vision and biomedical image analysis fields for cell counting/detection

purposes [12, 64]. Automated and accurate detection of neurones from microscopic

images has been extensively studied [65, 64]. However, most automated 3D cell

detection methods are not suitable for manual cell detection [64].

In the past few decades, three main types of cell detection algorithms have

emerged. The first class is segmentation- or thresholding-based detection [66]. The

second class is model- or feature-based detection and counting [67, 68], and the third

class is learning-based cell detection [69, 70, 10]. With the development of powerful

computational equipment and continuously improved multi-layer algorithms, deep

learning techniques have achieved significant success in many different fields.

The class-imbalanced problem affects most standard learning algorithms that

minimise a global error function without taking the imbalanced data distribution into

consideration. The performance of standard learning algorithms may be reduced

by irrelevant features and high-dimensional data, particularly in class-imbalanced

data [71]. Although a supervised deep neural network can learn important features

automatically, performance is highly limited by the input data.

Methods for handling class-imbalanced problems have been reviewed in literature

[5, 71]. These methods can primarily be divided into two categories. The first

category is based on sampling methods [72], such as undersampling, oversampling

and probabilistic sampling. In [73], a single deep neural network was trained with

random sampling to segment neuronal membranes in electron microscopy images.

In [72, 31], probabilistic sampling was used to train two deep neural networks to
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improve the final detection accuracy. Probabilistic sampling is a unique sampling

method that trains two probabilistic classifiers. The first deep neural network is

trained with a class-balanced subset randomly or uniformly selected from the original

dataset. With the first pre-trained network, the second training dataset is sampled by

assigning a probability in the original dataset. In [31], the author tested 2D electronic

microscopy data using two CNNs with probabilistic sampling, which performed

better than a single CNN that does not address the class-imbalanced problem.

The second category is an ensemble-based method [74], such as cost-sensitive

learning [75], boosting-based methods [76] and cascade classifiers [77]. Viola and

Jones [78] introduced a cascade of classifiers for rapid face detection with increasing

numbers of features in three stages, which achieved a high detection rate and reduced

computation time significantly. Inspired by Viola and Jones’ method, Wang and

Hunter [77] introduced a cascade framework with diverse models for robust pose

recognition. In our zebrafish dataset, only dozens of central voxels were labelled by

experts as positive examples in each 3D stack for the neurone detection task, which

makes neurone examples under-represented and causes a serious class-imbalanced

problem when training supervised learning algorithms.

The current problem is that most previous methods are only adaptable to a small

dataset with a small imbalance ratio (less than 100) [5, 71]. Such methods are

impractical for large high-dimensional datasets with extraordinarily large imbalance

ratios. For example, synthetic minority oversampling technique (SMOTE) [79],

one of the most famous oversampling methods, causes overfitting if minority-class

examples are generated. Note that it is very difficult to determine misclassification

costs in cost-sensitive learning methods [75]. Furthermore, it is very impractical to

use a boosting method to boost a simple classifier to a stronger one within hundreds

or thousands of iterations using millions of training examples [71]. Moreover, it is

very difficult to find appropriate features to classify different classes correctly, and
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it takes significant time to calculate many different features, especially with a large

high-dimensional dataset.

To solve our problem with the extremely large imbalance ratio with deep learning

architectures, only using one strategy is not enough. Different strategies can be

combined, including sampling, probabilistic sampling, and cascade framework, to

reduce the imbalance ratio, selecting useful training data and improve the detection

accuracy at the same time.

In the following, we will review the basic support vector machine method.

SVM was first introduced in 1992 [80], and then become popular because of

its success in hand written digit recognition. Let xi,yi be the training examples,

i = 1, ..., l, where xi ∈ Rd , and yi ∈ {1,−1}. Given a hyperplane (w,b), a function,

which can classify the data, is given by

f (x) = sign(w ·x+b). (2.5)

This hyperplane should satisfy:

yi(xi ·w+b)≥ 1, ∀i (2.6)

To obtain the geometric distance from the hyperplane to the data points, we must

normalize by the magnitude of w. Therefore, the distance is

d ((w,b),xi) =
yi(xi ·w+b)
|w|

≥ 1
|w|

(2.7)

The hyperplane will be found by minimizing |w|, which can be done by using

Lagrange multipliers [81].
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2.5 Neurone Counting by Density Regression

The counting problem is to estimate the number of desired objects in videos or

still images. Object counting occurs in many real-world scenarios and applications,

including surveillance, security inspection, crowd counting and cell counting. The

counting accuracy of fully unsupervised approaches is limited; thus, other methods

based on supervised learning have been considered. Several methods solve count-

ing problems by performing individual segmentation based on intensity or shape

modelling.

Based on the literature, object counting methods can be divided into two main

categories, i.e. counting by regression and counting by detection. Counting by

detection is required to train a visual detector, which can localise desired objects

individually in images, such as the methods described in the previous section 2.4. In

computer vision, state-of-the-art methods for crowd counting are primarily based on

detection or regression. Rather than detecting desired objects one by one, counting

by regression can estimate the number/density in global or local regions. Crowd

counting by regression avoids explicit object detection or clustering [82, 83]. Several

recent studies have introduced global or local crowd counting methods based on

regression.

For cell counting in microscopy images, recent studies have used a supervised

learning process with regression models to estimate the number of cells [84, 14, 85–

87]. In [87], they proposed counting-by-regression framework with maximum excess

over subarrays (MESA) distance to accurately estimate the count in still images.

Christoph et al. [14] introduced an open-source software for density estimation in

biomedical images, and Xie et al. [85] applied a deep neural regression network

to cell density estimation in fluorescence microscopy images. In [84], the authors

combined an interactive method for car counting in satellite images. To avoid solving

the hard detection problem, counting by regression methods attempt to capture the
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relationship between features and the number of cells in the image. Typical regression

methods used for counting objects include support vector regression, Gaussian

process regression [82] (GPR), RVM regression [88], random forest regression [14]

and ridge regression [84].

For example, [82] presented a privacy-preserving system to count the number of

inhomogeneous crowds travelling in different directions without using individual

object segmentation, detection or tracking. The video is first segmented into two

groups of foreground crowd region groups using a mixture of dynamic textures

based on the moving direction. For each crowd segment group, they extracted

different local features and then a perspective map was applied to weight each image

location based on the real scene. Finally, Gaussian process regression was used

to estimate the number of people in each region. They combined the linear and

squared-exponential (RBF) kernels to capture general linearity and local nonlinearity

trends simultaneously.

[83] presented a counting-by-regression framework for a crowd in videos using a

single regression model. This model can estimate the number of people in different

localised regions without training many regressors. The proposed model can auto-

matically learn the relationship between multi-dimensional structured outputs and

the extracted local features. A multi-output regression model using multi-variant

ridge regression was trained to estimate the number of people in each local region.

In the following, some relevant regression models are reviewed, including Pois-

son Regression and RVM Regression.

2.5.1 Poisson Regression

A random variable Y (observed count) is assumed to follow a Poisson distribution

[89] with parameter λ , and the log-mean parameter is a linear function of the input

vector x ∈ Rd .
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f (x) = xT
β , λ = e f (x), y∼ Poisson(λ (x)) (2.8)

For y = 0,1,2, ..., the probability is as follows:

Pr{y|x,β}= e−λ λ y

y!
. (2.9)

The Poisson distribution is discrete, similar to binomial distribution, but has

only a single parameter λ . The mean, variance and mode of this distribution are as

follows.

E(Y ) = var(Y ) = λ , mode(y) = ⌊λ (x)⌋ (2.10)

Given a matrix of input vectors X = [x1...xN ] and output vectors Y = [y1...yN ]
T ,

the likelihood function in terms of β is as follows:

L(β |X ,Y ) =
N

∏
i=1

e−λiλ
yi
i

yi!
(2.11)

The weight vector β can be obtained by maximizing the log-likelihood as follows:

lnℓ(β |X ,Y ) = log p(y|X ,β ) =
N

∑
i
(yi logλi−λi). (2.12)

To find a maximum, the equation ∂ℓ(y|X ,β )
∂θ

= 0 has no closed form solution;

however, we can solve the negative log-likelihood −ℓ(θ |X ,Y ). This can be solved

using convex optimization methods (e.g. gradient decent).

2.5.2 Relevance Vector Machine Regression

In 2001, Tipping introduced the RVM, which is a general Bayesian framework for

obtaining sparse solutions for regression or classification [88]. There are many
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advantages to use an RVM for regression, including probabilistic prediction, which

dramatically reduces computational complexity with sparse kernel representation. In

this section, we briefly review sparse Bayesian learning for a regression model:

For a regression problem, given a set of example input-target pairs {xn, tn}N
n=1,

the standard regression model with additive noise between input x and scalar target t

can be described as follows:

tn = y(xn)+ εn, (2.13)

where εn is additional noise, which is assumed to be zero-mean Gaussian with

variance σ2. Then, we obtain the following

p(tn,x) = N (tn|y(xn),σ
2). (2.14)

The function y(xn) is defined over the input space:

y(xn;w) =
M

∑
i=1

wiφi(xn) = wT
φ(xn), (2.15)

where φ(xn)= (φ1(xn), ...,φM(xn))
T , which is the non-linear and fixed basis function.

If there is a bias, then M = N +1 and φ1(xn) = 1. The objective of this function is to

estimate the parameter (weight) w = (w0,w2, ...,wN)
T . Then, the likelihood function

is given by:

p(t|X,w,β ) =
N

∏
n=1

p(tn|xn,w,β−1), (2.16)

where β = σ−2 is the noise precision. The RVM in [88] introduced a set of hyperpa-

rameters α = (α1, ...,αM)T , and the weight prior takes the following form:

p(w|α) =
M

∏
i=1

N (wi|0,α−1
i ). (2.17)
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Based on the Bayes’ rule, the posteriori distribution over the weights is given by:

p(w|t,w,β ) =
p(t|w,β )p(w|α)

p(t|α,β )

= (2π)
N+1

2 |Σ|−
1
2 e−

1
2 (w−µ)T Σ−1(w−µ),

(2.18)

where the covariance and mean are respectively:

Σ = (A+βΦ
T

Φ)−1 (2.19)

µ = βΣΦ
T t (2.20)

Here, Φ is the design matrix with N×M elements, Φni = φi(xn) and A= diag(αi).

To obtain the best values for α and β , the type-2 maximum likelihood is used with a

marginal likelihood function:

p(t|X,α,β ) =
∫

p(t|X,w,β )p(w|α)dw. (2.21)

Then, we can obtain the following:

Inp(t|X,α,β ) = InN (t|0,C)

=−1
2
{NIn(2π)+ In|C|+ tT C−1t},

(2.22)

where

C = β
−1I+ΦA−1

Φ
T . (2.23)

To maximize equation (2.22) with respect to α and β , we can obtain re-estimated

equations by setting the derivatives of the marginal likelihood to zero:



2.6 Conclusion 30

α
new
i =

γi

m2
i

(2.24)

(β new)−1 =
∥t−Φm∥2

N−Σiγi
(2.25)

where γi = 1−αiΣii in which Σii is the ith diagonal component of Σ in equation

(2.19), and mi is the ith element of m in equation (2.20). With the optimized hyper-

parameters α∗ and β ∗, the predictive distribution given a new input x will be:

p(t|x,X, t,α∗,β ∗) =
∫

p(t|x,w,β ∗)p(w|X, t,α,β )dw

=N (t|mT
φ(x),σ2(x)).

(2.26)

The variance is given as follows:

σ
2(x) = (β ∗)−1 +φ(x)T

Σφ(x), (2.27)

where Σ is given by equation (2.19) with α and β equal to their optimized values α∗

and β ∗.

2.6 Conclusion

In this chapter, the literature review in different aspects is presented. For high-

throughput zebrafish image analysis and deep learning for biomedical imaging,

background and previous works are introduced. Recent related works are reviewed

and evaluated based on the problems described in Chapter 1, including deconvolution,

detection and counting by regression methods. By reviewing the existing knowledge

in computer vision, machine learning and medical image analysis areas, flaws and

gaps are identified for solving our specific problems. By improving the existing
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methods, we can develop our own methods and contributions in this thesis. For

examples, in the problem of 3D deconvolution in fluorescence microscopy, the idea of

using the MAP method with novel regularization methods can improve the problems

using traditional regularization methods, such as TV and TM regularization. By

borrowing methods from computer vision, deep learning methods can improve the

performance of the detection methods dramatically. Furthermore, inspired by the

existing crowd counting methods in computer vision, interactive methods can be

developed to solve our cell counting problem. In the flowing chapters, several novel

methods and applications will be introduced based on the existing knowledge and

the previous methods in the literature review.



Chapter 3

Three-dimensional Deconvolution for

Light Microscopy Images

As a perfect experimental model organism, zebrafish has been frequently used in a

variety of biomedical research studies. It is often convenient and efficient to adopt

the WF fluorescence microscopy for recording, observing, and analysing labelled

transparent features in zebrafish images; however, the large stack of acquired images

at multiple focus depths (or z-stack) is intrinsically blurred upon acquisition, thus

making proper deconvolution critical for further quantitative analysis.

3D deconvolution is an ill-posed inverse problem; therefore, additional priors

are required to regularise it. In this chapter, we propose a Bayesian MAP method

with sparse images prior to solve the 3D deconvolution problem in WF fluorescence

microscopy. Our proposed sparse image priors include two parts, a global hyper-

Laplacian prior and a local background region mask. These two priors are designed

to preserve sharp edges and suppress ringing artefacts, respectively. Two situations,

involving deconvolution with known and unknown PSFs, are considered in this chap-

ter. Furthermore, both synthetic and real WF fluorescent microscopy images are used

for evaluation. Our experimental results demonstrate the potential applicability of
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our proposed method for 3D fluorescence microscopy and its performance, compared

to state-of-the-art 3D deconvolution algorithms and software.

3.1 Introduction

Light microscopy has been fundamental in advancing our understanding of molecular

and cellular biology in health and disease research. In particular, WF fluorescence

microscopy is a proven approach which is widely used for observing, analysing

and imaging specific labelled features of small living specimens. Compared to

confocal microscopy, WF microscopy is much faster and more convenient; further,

WF microscopy can also record information regarding the entire specimen and

achieve high throughput imaging, thus enabling large-scale image analysis.

During light illumination, however, both focus and out-of-focus light is recorded

by a CCD camera, thereby caussing the original fluorescent information in the

living specimen to either be lost or visualised with reduced contrast due to the low-

resolution out-of-focus light. According to Shaw [90], there are two approaches to

removing this out-of-focus light. One approach is to use confocal microscopy for

biological imaging to eliminate much of the out-of-focus light from detection. The

other approach is to record a stack of images at a series of focal planes via a WF

microscope. Then, deconvolution techniques are used to reduce the effect of the

out-of-focus light for further research, such as feature detection, cell tracking, and

cell counting.

According to Young [91], the imaging process using WF or confocal fluorescence

microscopy is assumed to be linear and shift invariant. The entire imaging process

can be mathematically explained as a 3D convolution process [90]. The inverse

procedure, i.e. removing out-of-focus light from z-stack images, is known as 3D

deconvolution. The convolution process can be formulated as follows:
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(a) One frame of the stack (b) log-gradient distribution

Fig. 3.1 (a) is one frame of a zebrafish embryo z-stack. (b): The blue curve describes
the gradient distribution (▽x f ) of the image. The Hyper-Laplacian with α = 1/3 is
a more appropriate model to describe the log-gradient distribution (blue), compared
with the Gaussian (black), Laplacian (yellow) or Hyper-Laplacian with α = 2/3
(green) log-distribution.

g(x) = n ∑
k∈Ω

h(k) f (x−k), (3.1)

where

g : observed, blurred image,

h : R3→ R–point spread function of the imaging system,

f : R3→ R–latent image or ground truth image function,

n : voxelwise noise function,

Ω : Ω⊂ R3 is the support in the specimen domain recorded by the imaging system,

x : 3-tuple of discrete spatial coordinates.

equation (3.1) can be written in a short form:

g = n(h∗ f ), (3.2)

where ∗ is the 3D convolution operator. Convolution kernel h is the PSF, which

describes the blurring shape of one point of light through the light microscope [90].
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Deconvolution is the reverse problem in which we cannot exactly obtain original

image h and PSF f only from observation g. The common method for 2D image

deblurring is to use prior statistical knowledge of the given 2D natural images to

preserve edges; such statistical knowledge includes their sparse derivative distribution

[34, 40, 42, 45, 54], as the image gradient contains edge information. In 3D z-stack

images, we can also calculate the derivative distribution. In Fig. 3.1, the blue curve

represents the log-gradient distribution of a z-stack image. From the figure, we

observe that most values in the blue curve are zero, so it is called a sparse derivative

distribution and can be used as a sparse image prior to obtain satisfactory result. In

this chapter, we apply this kind of sparse prior to 3D deconvolution via a Bayesian

MAP framework.

Several parameters of the imaging system define the shape and intensity of

the PSF. Two scenarios are considered in realistic cases. In the first scenario, all

PSF parameters related to the imaging system are recorded during imaging. After

estimating the PSF using the existing model, the rest of the process resembles a non-

blind deconvolution problem. In the second scenario, the parameters are unknown;

therefore, the PSF and latent image are estimated simultaneously via an iteration

process which therefore translated to a blind deconvolution problem. Different

models are used for estimating the PSF in these two scenarios.

During the imaging process, the fluorescent signal is influenced by photon noise.

Compared to additive noise, photon noise largely depends on the original signal and

is more difficult to be removed [51]. The process can be described as a Poisson

distribution [4], i.e.

p(k) =
λ ke−λ

k!
,k = 0,1,2, ... (3.3)
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(a) Original frame. (b) Zoom-in of the yellow box in
(a).

(c) The green textue region and
background regions Ψ.

Fig. 3.2 (a): one frame of an original zebrafish z-stack; (b): zoom-in of the yellow
box in (a); (c): after applying the triangle threshold to image gx; here, the green
colour indicates texture regions of the image, while remaining background region is
Ψ.

3.2 Non-blind Deconvolution Framework

In this section, a MAP algorithm with sparse priors is presented for estimating best

latent image f given blurred image g and PSF h. According to the Bayes Rule, i.e.

p( f |g,h) = p(g| f ,h) p( f )
p(g)

∝ p(g| f ,h) p( f ) , (3.4)

where p( f ) is a prior describing f , p(g| f ,h) can be approximated as a Poisson

distribution [93]. Here every point in the blurred image follows an independent

Poisson process, and equation (3.3) can be rewritten as:

p(g(x) | f ,h) = ( f ∗h)(x)g(x)e−( f∗h)(x)

g(x)!
. (3.5)

The sparse image priors will be discussed in the following subsections.

3.2.1 Sparse Image Priors

In this chapter, to simultaneously address the ill-posed nature of the problem and

reduce ringing artifacts when restoring latent image f , prior p( f ) is decomposed
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Fig. 3.3 An illustration of the triangle threshold algorithm [92] in which point A
is selected by maximising the distance between the intensity distribution and the
dotted line drawn between the highest point in the figure and the largest value on the
horizontal axis; next, a fixed offset is added for locating the precise threshold point.

into two components, including a global prior pg ( f ) [43] and a local prior pl ( f )

[42]:

p( f ) = pg ( f ) pl ( f ) . (3.6)

Global Prior pg ( f )

Recent research focused on 2D natural image deconvolution [34, 40–43, 49, 46],

applies log-gradient distributions (see Fig. 3.1) as a prior of the latent image is applied

for preserving edges. There are several different kinds of expressions to approximate

log-gradient distributions, including Gaussian and Laplacian distributions. In this

chapter, we apply the hyper-Laplacian to the 3D deconvolution problem for WF

fluorescent images.

The heavy-tailed distribution of the gradient in the WF fluorescence microscopy

z-stack is well explained by the hyper-Laplacian distribution [43]. In Fig. 3.1, we

observe that the best approximation for the logarithmic image gradient distribution is
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(a) Original frame (b) Texture area (c) Ringing map

Fig. 3.4 Applying the triangle threshold algorithm to a WF fluorescent zebrafish
image: (a) original frame; (b) binary mask produced by the triangle threshold
algorithm. The white area indicates the texture region and (c) the ringing map is
visualised in intensity range [0, 50] by computing the difference between the result
using the local prior and the result without using the local prior.

the hyper-Laplacian distribution with α = 1/3. Here, global prior pg ( f ) is defined

as follows:

pg ( f ) ∝ ∏
i∈Ω⊂R3

e−τ|▽ fi|α ,(0 < α < 1) , (3.7)

where τ is the positive rate parameter and▽ is the 3D gradient filter.

Local Prior pl ( f )

Aside from the global prior, a local prior with a mask is used to reduce ringing

artefacts, as first introduced in motion deblurring [42]. In this chapter, we present our

design for a similar local prior for 3D deconvolution; the difference here is that we

use a triangle threshold method [92] to automatically determine background regions

in the z-stack images. The majority part of the fluorescence microscopy images is

dark background region, and the triangle threshold algorithm works well for this

kind of image.

From [42], we conclude that the background region in the image should also be

background after restoration, and this local prior can effectively suppress ringing
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artefacts in both the background regions and the texture regions. Due to an inaccu-

rately estimated PSF, some ringing artefacts appear near the boundary and edges in

the frequency domain after the restoration. Similar to [42], we define the error of the

gradient between the estimated image and the blurred image in the background area

to follow a normal distribution with zero mean, i.e.

pl ( f ) = ∏
i∈Φ

N (▽ fi−▽gi|0,σ), (3.8)

where Φ denotes the background regions in each frame of the z-stack images; note

that background regions Φ are shown in Fig. 3.2. Even though this local prior is only

defined in the background regions, it can globally reduce ringing artefacts due to the

effect of the PSF during restoration [42].

Mask Function M

We define mask function, M, to describe the background regions, Ψ, in the z-stack

images. Here, we apply the triangle threshold algorithm [92] to automatically

determine the threshold with Ψ indicating the regions where M(x) = 1, i.e.

M(x) =


0, g(x)≥ Threshold

1, else.
(3.9)

From the intensity histogram shown in Fig. 3.3, we observe that most of the

intensity values are less than 200, indicating that most of the points are in the

background region. To segment the texture region from the background, threshold

point A should be precisely selected. We use the triangle threshold algorithm [92],

as illustrated in Fig. 3.3. This algorithm can cleanly segment the texture region

from the WF fluorescent zebrafish image. In Fig. 3.4(c), the difference between the

deconvolution result after 50 iterations using a local prior is obvious, thus indicating

that ringing artefacts and noise can be reduced using the local prior.



3.2 Non-blind Deconvolution Framework 40

Fig. 3.5 Orthogonal views of the generated PSF.

3.2.2 Non-blind Three-dimensional Deconvolution

After defining the two priors, equation (3.4) becomes

p( f |g,h) ∝ p(g| f ,h) pg ( f ) pl ( f ) . (3.10)

Instead of maximising the objective function shown in equation (3.10), negative

log-likelihood function, J( f ), is minimised as

J ( f ) =− log(p( f |g,h))

∝− log(p(g| f ,h))− log(p( f ))

=− log(p(g| f ,h))− log(pg ( f ))− log(pl ( f ))

= JMLEM( f )+
∫

x
λg|▽ f |αdx

+
∫

Φ

λl∥▽ f (x)−▽g(x)∥2dx,

(3.11)
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where JMLEM( f ) is redefined as follows:

JMLEM( f ) =
∫

x
( f ∗h)(x)−g(x) log( f ∗h)(x)

+ log(g(x)!)dx

∝

∫
x
( f ∗h)(x)−g(x) log( f ∗h)(x)dx.

(3.12)

The derivative of J with respect to f is calculated and set to zero. Next, we obtain

a regularised version of the MLEM updating scheme, i.e.

fk+1(x) =

fk(x)
1−λgΨg−λlΨl

· [h(−x)∗ g(x)
( fk ∗h)(x)

],
(3.13)

where Ψg = div(
▽ fk

|▽ fk|2−α
) and Ψl = div((▽ fk−▽g)M(x)) are the regularisation

terms, λg,λl are regularisation parameters, and div is the divergence, i.e. div( f ) =

▽· f .

To determine a stop criterion, we calculate the root mean squared error (RMSE)

[50, 51] at each iteration between the updated latent image and ground truth. How-

ever, in real-world situation, there is no ground truth image, so we calculate the

variance changes of the results between two iterations. Here, repeated iterations

will be stopped when changes to the RMSE value are smaller than constant value ε .

More specifically, we have

RMSE =

(
1
N

N

∑
i=1

(
f (i)− c · ˆf (i)

)) 1
2

, (3.14)

where N is the number of voxels, ˆf (i) is the estimated latent image and c = ∑
N
i=1 f (i)

∑
N
i=1

ˆf (i)
.

The non-blind 3D deconvolution procedure is summarised in Algorithm 1. The

iteration process is implemented in the frequency domain via a fast Fourier transform

(FFT) which greatly improves computational speed.
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Algorithm 1 Non-blind deconvolution algorithm.
Input: 3D WF stack g, PSF h obtained using the VRIGL model
Initialize: k = 0, f0 = g ε = 0.1
while |RMSEk+1−RMSEk|> ε do

Update latent image f
fk+1(x) = fk(x)[h(−x)∗ g(x)

( fk∗h)(x)
]

M(x) =

{
0, g(x)≥ T
1, else.

T = Threshold using triangle threshold method

Ψg = div(
▽ fk

|▽ fk|2−α
)

Ψl = div((▽ fk−▽g)M(x))
fk+1(x) =

fk+1(x)
1−λgΨg−λlΨl

k = k+1
end while
Output: f

3.2.3 PSF Modelling with Microscopy Parameters

In the updating scheme of equation (3.13), the PSF (h) is known and produced by

the variance refractive index Gibson and Lanni (VRIGL) model [94], which is a

modified version of the well-known Gibson and Lanni PSF model [95]. Compared

with 2D deblurring, solving the 3D deconvolution problem is more complex and

time-consuming. To obtain better results, the precise PSF can be used when available.

There are three key approaches for estimating the PSF, namely experimental,

analytical, and computational methods [96]. Using an experimental method to obtain

the PSF usually results in a rather poor signal-to-noise ratio (SNR) [35]. Using a

computational method such as blind deconvolution, both the PSF and latent image

are calculated based on a blurred image; therefore, the optimal result is substantially

biased by the initial guess of the PSF.

Recently, several analytical models for approximating the PSF of WF fluores-

cence microscopy systems have been proposed [94, 97, 95, 98–100]. In [97], a

simple 3D Gaussian function is used for estimating the PSF of the confocal mi-

croscopy system; however, the WF PSF is not easily approximated using only a
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Fig. 3.6 Illustrating the underlying principles of the PSF model.

simple model, and all parameters can influence the shape and intensity of the PSF, a

factor that should be considered in the approximation model. In [94], the VRIGL

model is designed to estimate the PSF of the WF fluorescence microscopy system.

The WF PSF depends on several parameters of the imaging system itself, such as

the numerical aperture (NA) of the microscope, the refractive index of the immersion

medium (ni), the wavelength of the light (λ ), the spatial resolution (∆r), and the

Axial resolution (∆z) [96].

In this chapter, we use the VRIGL model [94] for modelling the PSF as an

analytical method. In Fig. 3.5, orthogonal views of the PSF generated using VRIGL

is shown, and principles behind the VRIGL method are illustrated in Fig. 3.6.

The VRIGL model is described as follows:

h(x;xp,τ) =

∣∣∣∣C∫ 1

0
J0 (krNAρ)eiφ(ρ,z;zp,τ)ρdρ

∣∣∣∣2 (3.15)

where

φ(ρ,z;zp,τ) =k[

zp∫
0

√
n2

s (t)−NA2
ρ2dt + ti

√
n2

i −NA2
ρ2

− t∗i
√

n∗2i −NA2
ρ2 + tg

√
n2

g−NA2
ρ2

− tg
√

n∗2g −NA2
ρ2]
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where x = (x,y,z): The coordinate of a point in the image plane.

xp = (xp;yp;zp): The coordinate of the point source.

τ = (NA;n; t): The parameter set of the imaging system; NA: The numerical aper-

ture; n: The refractive index; t: The thickness.

r2 = (x− xp)
2 +(y− yp)

2: The point at which the ray intersects the exit pupil.

J0: The Bessel function of the first kind of order zero.

ns;ng;ni;n∗g;n∗i ; tg; ti; t∗g ; t∗i can be found in Fig. 3.6.

The VRIGL model is designed to obtain shift varying PSF for a thick specimen.

The VRIGL model improves the standard Gibson and Lanni PSF model by including

refractive index variation along the depth of the specimen. The aberration caused by

the variation of refractive index within the thick specimen is captured by this model.

Shift varying nature of PSF in axial direction is also captured only by three predefined

functions: linear Logarithmic, and Exponential. Compared with standard Gibson

and Lanni PSF model, the VRIGL model is significantly better. The optimization

procedure is very complex and it is beyond the scope of this thesis, so we only

defined the final equation of this model.

3.3 Extension to Blind Deconvolution

3.3.1 Blind Deconvolution Framework

The goal of the blind deconvolution is to simutaneously estimate the latent image

function f and point spread function h by maximising the objective function

p( f ,h|g) = p(g| f ,h) p( f ) p(h)
p(g)

. (3.16)

Given this, the negative log-likelihood function is calculated as
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J ( f ,h) =− log(p( f |g,h))

=JMLEM( f ,h)− log(p( f ))− log(p(h)),
(3.17)

where p( f ) and p(h) are the prior probability functions for latent image function

f and PSF h. Further, the prior p( f ) is the same as the prior used in the non-blind

deconvolution framework. In prior p(h), we use TV regularisation to preserve edges

of the PSF. By minimising equation (3.17), we present the blind deconvolution

updating scheme as follows:

fk+1(x) =

fk(x)
1−λgΨg−λlΨl

· [hk(−x)∗ g(x)
( fk ∗hk)(x)

],
(3.18)

hk+1(x) =

hk(x)∫
Ω

fk(y)dy−λhΨh
· [ fk(−x)∗ g(x)

( fk ∗hk)(x)
],

(3.19)

where λh is the regularisation parameter and Ψh is the regularisation term for up-

dating the PSF. In this chapter, we select different PSF regularisation terms from

state-of-the-art methods to evaluate our proposed blind deconvolution method. In

particular, we use three different PSF regularisation methods for comparison. The

blind deconvolution method is illustrated in Algorithm 2.

3.3.2 PSF Modelling without Microscopy Parameters

The parameters of the PSF based on the imaging system are unknown to the blind

deconvolution framework. However, the result depends on the initial guess of the

PSF, so we use a simple diffraction-limited PSF Gaussian model [100] with far fewer

free variables to initialise the PSF in the blind deconvolution framework. We then

compare deconvolution results using three different PSFs for blind deconvolution

experiment section. The generated PSF is symmetric around the central xy section.



3.3 Extension to Blind Deconvolution 46

We modify the Gaussian model to obtain

h(x,y,z) =
1

σ(z−Cz)2 e
− (x−Cx)2+(y−Cy)2

2σ(z−Cz)2 ,

σ(z−Cz) =
|z−Cz|

Cz
∗ (σ2−σ1)+σ1,

(3.20)

where Cx, Cy and Cz are the coordinates of the central point of the PSF; Further, σ

changes linearly with z between σ1 and σ2; here, σ1 is the variance value in the

central xy section, and σ2 is the variance value in the first or last xy section. Given

the above, we next need an approximate shape for the initial PSF; therefore, σ1 and

σ2 are defined as one and ten, respectively. The values of those two parameters are

selected by testing different values. The combination of 1 and 10 can produce the

best result and make Gaussian model very close to the synthetic VRIGL model with

microscopy parameters.

Algorithm 2 Blind deconvolution algorithm.
Input: 3D WF stack g
Initialize: counter k = 0, latent image f0 = g, PSF initialized using Gaussian
model (σ1 = 1, σ2 = 10).
while |RMSEk+1−RMSEk|> ε do

Update latent image f
fk+1(x) = fk(x)[h(−x)∗ g(x)

( fk∗h)(x)
]

M(x) =

{
0, g(x)≥ T
1, else.

T = Threshold using Triangle Threshold method

Ψg = div(
▽ fk

|▽ fk|2−α
)

Ψl = div((▽ fk−▽g)M(x))
fk+1(x) =

fk+1(x)
1−λgΨg−λlΨl

Update PSF h
hk+1(x) = hk(x) · [ fk(−x)∗ g(x)

( fk∗hk)(x)
]

Ψh = div(
▽hk

|▽hk|
)

hk+1 =
hk+1(x)∫

Ω
fk(y)dy−λhΨh

k = k+1
end while
Output: f
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3.4 Experiments and Results of Non-Blind Deconvo-

lution

To demonstrate the effectiveness of our proposed approach, we conducted experi-

ments using four different datasets, including three synthetic datasets and one real

dataset, the latter being the WF fluorescence microscopy zebrafish embryo dataset.

We calculated a variety of performance metrics, including the RMSE [50, 51],

peak signal-to-noise ratio (PSNR), and normalized mean integrated squared error

(NMISE). The MAP with global hyper-Laplacian (HL) and the MAP with hyper-

Laplacian and a local mask (HL+Mask) were tested and compared with TV and TM

regularisation methods. Note that the deconvolution process stops when the change

in the RMSE between two adjacent iterations is smaller than small constant value ε .

3.4.1 Synthetic Light Microscopy Data

Three groups of synthetic data are used for testing, including the Hollow Bar, the

Hela Cell Nucleus dataset and data from the 3D deconvolution challenge which was

part of the IEEE International Symposium on Biomedical Imaging 2014. For the TV

and TM regularisation methods, the RMSE values converged after approximately

120 iterations.

Synthetic Hollow bar Dataset

The synthetic hollow bar data was obtained from the website 1. The ground truth

data in hollow bar dataset were blurred using a theoretical WF microscopic PSF, then

corrupted by the introduction of both Gaussian noise and Poisson noise with a SNR

of 15dB. Note that voxel volumes of this dataset are 256×256×128. Parameters

of the synthetic PSF include numerical aperture NA= 1.4, spherical aberration W =

1http://bigwww.epfl.ch/deconvolution/?p=bars
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Fig. 3.7 Deconvolution results of four different methods with the top row indicating
the central xy-section of the 3D image data and the bottom row showing the central
xz-section; (a) the ground truth data. (b) the blurred images. (c) results with TM
regularisation after 120 iterations. (d) results with TV regularisation. (e) results
with the proposed HL. (f) results with HL+Mask. (g) the trend of the RMSE with
blue indicating TM, green indicating TV, black indicating HL and red indicating
HL+Mask).

0, wavelength λ = 500nm, spatial resolution ∆r = 100nm and axial resolution ∆z

= 200nm. We achieved the best results for TM and TV regularisations and for our

proposed methods using regularisation parameters λT M = 3 ∗ 10−7, λTV = 0.001,

λg = 0.05, λl = 10−8 and α = 1/3.

Results using the aforementioned methods after 120 iterations are shown in

Fig. 3.7, illustrating that our two proposed methods produce improved results over

those of TM and TV. Results using the TM regularisation become over-smooth after

100 iterations, and the regularisation term became increasingly through each iteration.

Further, results of HL+Mask was a little sharper than that of HL. Fig. 3.7(g) shows

the tendencies of the RMSE values using the four different methods. The TV and

TM methods converged after 100 iterations, whereas the RMSE values of our two

proposed methods converged after only 50 iterations, much more quickly than those

of the other methods.

HeLa Cell Nucleus

The HeLa Cell Nucleus dataset was generated using an online simulation tool

[101]. The data were corrupted by a generated WF PSF without aberration, then

Poisson noise was added. The PSF was generated with numerical aperture NA=
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(a) Ground Truth (b) Blurred
RMSE:7885.9

(c) TM RMSE:3392.1

(d) TV RMSE:3062.4 (e) Proposed HL
RMSE:2710.1

(f) Proposed HL+Mask
RMSE:2689.0

Fig. 3.8 Results of the HeLa cell Nucleus dataset using four distinct methods.

1.4, wavelength λ = 500nm, spatial resolution ∆r = 100nm and axial resolution ∆z

= 200nm. Voxel volumes of the dataset were 129×129×96. For this dataset, we

selected λT M = 10−5, λTV = 0.01, λg = 0.01 with α = 1/3, λl = 10−7 with α = 1/3

to test TM, TV, proposed HL and proposed HL+Mask methods, respectively. RMSE

results covering 550 iterations are shown in Fig. 3.8 and are based on four different

methods; from the figure, we observe that more out-of-focus light was reduced using

our proposed methods. Further, the TV regularisation method was able to preserve

image edges, but the result was an image that was over-smooth. Different methods

converged at different iterations, but all methods converged before approximately

550 iterations. Therefore, we compare the results at 550 iterations. Fig. 3.9 illustrates

that the RMSE results using our proposed methods were lower than those of the TV

and TM methods. Table 3.1 shows scores for our proposed methods using two other
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Fig. 3.9 RMSE results for the synthetic Hela Cell dataset with blue indicating TM,
green indicating TV, black indicating our proposed HL method and red indicating
our proposed HL+Mask method

performance metrics, i.e. PSNR and NMISE from the table, we observe that scores

for our proposed method were also the best as compared with scores for the TV and

TM regularisation methods.

3.4.2 Synthetic Data from 3D Deconvolution Challenge

This third dataset originates from the Second International Challenge on Three-

Dimensional Deconvolution Microscopy competition and can be download from the

corresponding website 2. The data comprises four channels which correspond to

different structures (i.e. point sources, filaments, membranes and dense objects). The

competition did not publish corresponding ground truth data, as the organisers aimed

to reproduce the conditions of a real deconvolution problem. Therefore, performance

metrics cannot be calculated. For this dataset, we selected λg = 0.01 and λl = 10−7

with α = 2/3 for our testing. Results are shown in Fig. 3.10. And in Fig. 3.11, we

present results of our testing the TM, TV and proposed HL+Mask methods on one

of the z-stack images in the dataset.

2http://bigwww.epfl.ch/deconvolution/challenge/index.html
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(a) Original (b) processed (c) Original (d) processed

(e) Original (f) processed (g) Original (h) processed

Fig. 3.10 Results of testing our HL+Mask method on the dataset from the Second
International Challenge on 3D Deconvolution Microscopy; maximum-intensity
projections of the data (a), (c), (e), (f) and corresponding results are shown in
parts (b), (d), (f), (h); note that all the results are displayed as the maximum intensity
value projection along the vertical z direction.

(a) Original (b) TM (c) TV (d) HL+Mask

Fig. 3.11 Results of testing the TM, TV and HL+Mask methods on the dataset
from the Second International Challenge on 3D Deconvolution Microscopy; all the
results are displayed as the maximum intensity value projection along the vertical z
direction.
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3.4.3 Zebrafish Embryo Data

Zebrafish are a popular model organism for human disease research, including

research involving neurological diseases, such as PD. Zebrafish are vertebrates with

good genetic conservation in relation to humans. They are cheap to house compared

with mammalian models, and due to their high fecundity externally developing and

their transparent embryos, zebrafish are ideal for use in drug and toxin screens.

Typically, image analysis of tissue samples from other species, such as mice or

humans, is carried out on slides with clearly orientated tissue samples of well-

defined, standardised thickness and would typically form the basis of subsequent

image acquisition and analysis. Whole mount in situ staining, immunohistochemistry

and confocal microscopy of zebrafish embryos result in the challenge of having to

undertake image analysis in tissue samples of varying dimensions and orientations.

We collected fluorescent light microscopy images of three-day post fertilisation

(3dpf) embryos that have fluorescently labelled monoaminergic neurones. The WF

fluorescent zebrafish embryo dataset was recorded by the In Cell Analyzer 2000;

further the microscopy type is fluorescence with numerical aperture NA = 0.1,

wavelength λ = 490nm, spatial resolution ∆r = 3.7µm, axial resolution ∆z = 20µm,

magnification =2.0, and focal length =100µm. The stack size was 2048×2048×41.

Parameters for this dataset were λT M = 5× 10−5, λTV = 0.01, λg = 0.05 with

α = 1/3, and λl = 10−6 with α = 1/3.
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Fig. 3.12 To observe our results in detail, we magnified the results shown in Fig. 3.13;
here, we show (a) the central xy-section with a yellow square; (b) a zoom-in of the
yellow square region; (c) TM; (d) TV. (e) our Proposed HL and (f) our proposed
HL+Mask methods.

Fig. 3.13 The zebrafish data results using four distinct methods. The central xy-
section and central xz-section of the z-stack images are shown in each block; (a)
central frame of the recorded images; (b) TM; (c) TV; (d) our proposed HL method;
(e) our proposed HL+Mask method.
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Given that there were no corresponding ground truth data for the recorded

zebrafish images, we did not calculate quantitative scores using performance metrics

of the final results. Our qualitative results are shown in Fig. 3.12, Figs. 3.13 and 3.14.

In Fig. 3.12, we zoom in on a specific region of the results to identify more details.

Compared with our other results, we note that clearer information is shown in the

texture regions of the results processed by our HL and HL+Mask methods.

(a) Blurred (b) TM (c) TV

(d) HL (e) HL+Mask

Fig. 3.14 Zebrafish dataset results displayed as the maximum value projection along
the z direction the given four distinct methods; here we show (a) central frame of the
recorded images; (b) TM; (c) TV; (d) our proposed HL method and (e) our proposed
HL+Mask method.

3.5 Experiments and Results of Blind Deconvolution

We used three datasets to test our blind deconvolution methods; these dataset were

the Hollow Bar dataset used in our non-blind deconvolution experiments, a new
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Table 3.1 Comparison of results with different performance metrics

HeLa Blurred TM TV HL HL+Mask
RMSE 5907.4 4153.0 4081.7 4059.9 4052.0
PSNR 19.149 21.550 21.667 21.751 21.752

NMISE 8439.0 4966.7 4926.7 4878.7 4875.8
Bar Blurred TM TV HL HL+Mask

RMSE 5907.4 4153.0 4081.7 4059.9 4052.0
PSNR 25.4601 26.9703 27.4010 27.8959 27.8921

NMISE 3062.2 3042.4 2944.2 2794.8 2788.2

HeLa Cell dataset and the zebrafish embryo dataset. We assume that the parameters

related to the PSF and imaging system of the datasets are all unknown.

3.5.1 Synthetic Light Microscopy Data

To evaluate our proposed regularisation terms, i.e. HL and HL+mask methods, in

the blind deconvolution, we used four regularisation methods (i.e. TM, TV, HL and

HL+Mask) to constrain the latent image, and three different PSF regularisation terms

(i.e. KFTV without OTF mask [50], TM, TV) to update the PSF during each iteration.

In total, we tested twelve combinations of these regularisation methods. Further, we

used two different synthetic datasets to evaluate the blind deconvolution methods.

As note above, these datasets were the Hollow Bar dataset and the HeLa cell dataset.

When evaluating the RMSE for the different combinations of the regularisation terms,

the iterations will not stop until the RMSE value converges. In our experiments, we

chose the best results using different combinations to compare the RMSE values.

Hollow Bar

The resulting computational speed largely depends on the size of the dataset. There-

fore, we resized the original synthetic dataset to improve computational speed, noting

that this has no influence on selecting the best method with the smallest RMSE value.

The original size of the clean Hollow Bar dataset is 256×256×128, whereas the
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(a) One (b) Gaussian (c) VRIGL

Fig. 3.15 The blind deconvolution results applied to the hollow Bar dataset.

reduced size becomes 64×64×32. Next, we corrupted the data using a WF PSF,

which has the same parameters as the original ones used in the previous section. The

RMSE value of the resized blurred dataset was 2965.5 (Table 3.2). In Fig. 3.15, we

compared the different deconvolution results using three different PSFs, including

Gaussian, VRIGL and the PSF with all elements equal to one.

Table 3.2 Comparison of results for hollow bar dataset

Hollow Bar
KFTV
λh = 0.1

TM (PSF)
λh = 10−7

TV (PSF)
λh = 0.05

TM λtm = 10−6 2802.6 2750.0 2714.5
TV λtv = 10−2 2808.0 2431.7 2305.8
HL λg = 10−2 2795.1 2408.9 2225.0

HL+Mask λl = 10−7 2795.0 2407.2 2221.8

In Table 3.2, the RMSE values are calculated using twelve combinations between

of the latent image regularisation methods and the PSF regularisation terms. The

trend of RMSE values in Table 3.2 demonstrates that our proposed method was

better than the other two regularisation methods (TM and TV) combining with four

different PSF updating strategies. In addition, the best method is to use our HL+Mask

method with TV regularisation.
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(a) Blurred (b) TM+TV(PSF) Blind decon-
volution

(c) TV+TV(PSF) Blind decon-
volution

(d) HL+Mask+TV(PSF) Blind
deconvolution

(e) HL+Mask Non-Blind de-
convolution

Fig. 3.16 Results using blind deconvolution methods with different combina-
tions of regularisation terms, including TM+TV(PSF), TV+TV(PSF), proposed
HL+Mask+TV(PSF) blind deconvolution method and HL+Mask non-blind deconvo-
lution method; all results are displayed as the maximum value projection along the z
direction.

HeLa Cell Nucleus

We also tested a new HeLa cell dataset to evaluate the blind deconvolution algorithm.

Voxel volumes of this dataset were 328×328×100. Assuming the parameters were

unknown, we calculated RMSE values for the twelve different combinations noted

above. In Table 3.3, our numbers indicate that the proposed methods (i.e. HL and

HL+Mask) have potential for blind deconvolution.
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(a) Ground Truth (b) Blurred
RMSE:3602.2

(c) FFTJ
RMSE:3512.9

(d) AIDA
RMSE:3653.7

(e) DL
RMSE:3706.5

(f) PSD 3D
RMSE:3566.9

(g) Iterative 3D
RMSE:3277.9

(h) Huygens
RMSE:3231.3

(i) HL+Mask+TV
RMSE:3445.7

(j) HL+Mask
RMSE:2558.4

Fig. 3.17 Comparison of results with different software for the hollow bar dataset.

3.5.2 Widefield Fluorescence Data

We tested the WF fluorescence microscopy zebrafish images using the blind decon-

volution methods. More specifically, we used three different regularisation methods

(i.e. TM, TV and HL+Mask) to update both the latent image and TV regularisation

term. Our results are shown in Fig. 3.16.
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(a) Blurred (b) DconvolutionLab (c) HL+Mask+TV(PSF)

(d) Iterative 3D (e) Huygens (f) HL+Mask

Fig. 3.18 Deconvolution results with different software for the zebrafish data.

3.6 Comparison with State-of-the-art Methods

We implemented the proposed methods using MATLAB 2011(b), and tested this

implementation on a PC with an Intel(R) Core(TM) i5-3470 CPU, 8GB of memory

and a 64-bit operating system. We compared our proposed algorithm with state-

of-the-art methods and some existing software using the hollow bar dataset; the

state-of-the-art methods included Iterative 3D [57], FFTJ and DeconvolutionJ (FFTJ)

[58], parallel spectral deconvolution 3D (PSD 3D)’ [59], DeconvolutionLab (DL)

[60], AIDA [56] and the trial version of one commercial package called Huygens

[102]. Note that DL, Iterative 3D and Huygens are based on iterative frameworks;

further, all methods require the true PSF or the parameters of the PSF based on the

imaging system.
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Table 3.3 Comparison of results for HeLa cell dataset

HeLa Cell
Nucleus

KFTV
λh = 0.1

TM (PSF)
λh = 10−5

TV (PSF)
λh = 10−2

TM λtm = 10−6 4777.5 4809.7 4831.6
TV λtv = 10−2 4780.3 4811.3 4831.0
HL λg = 10−3 4740.0 4769.2 4791.0

HL+Mask λl = 10−8 4727.1 4765.9 4786.5

We used our proposed HL+Mask algorithm and the HL+Mask+TV(PSF) blind

deconvolution method for comparison. We tested all of the above software programs

on the Holly Bar dataset (Fig. 3.17) and evaluated programs based on the iterative

methods on the zebrafish dataset (Fig. 3.18). We tested all methods using the

same VRIGL PSF model and collected the best result of each method. For the

iterative methods, we collected results when they converged. Different iterative

methods have different convergence criteria, so we did not compare the number

iterations corresponding to those iterative methods. From the two figures, we observe

that results using our proposed HL+Mask were much clearer and contained more

details in the texture region as compared with results using other 3D deconvolution

algorithms and existing software.

3.7 Conclusion

we proposed a deconvolution method for 3D WF microscopy data using the MAP

approach with sparse priors. The novelty of the proposed method is that we use

hyper-Laplacian distribution as a sparse prior to describe the log-gradient distribution.

In addition, a local mask is applied to 3D deconvolution to reduce ringing artefacts.

The hyper-Laplacian distribution is much closer to the log-gradient distribution than

other models, particularly for WF z-stack images. The proposed method can be used

in both non-blind and blind deconvolution. Results obtained with synthetic data and

real WF fluorescence data from zebrafish embryos demonstrate that the proposed
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methods are more applicable to 3D WF microscopy images compared to other state-

of-the-art methods. The limitations of the proposed methods are that they require

hundreds of iterations to obtain satisfactory results, which is time consuming, and

the parameters are not adaptive. In future, we will address how to determine suitable

parameters and improve computation speed for high-throughput image analysis.



Chapter 4

Automatic Neurone Detection in

Three-Dimensional Light Microscopy

Zebrafish Images

4.1 Introduction

Currently, this counting process of tyrosine hydroxylase labelled (TH-labelled)

neurones is a slow process to distinguish individual neurones from the background.

Neuroscientists must spend substantial amount of time to count these individual

neurones through a light microscope, which is a manual, labour-intensive, subjective,

and error-prone process. Indeed, it would be fair for biomedical researchers to

complain that they spend more than half of their research time manually labelling or

counting cells in the specimen through a microscope. High-throughput methods and

applications are desperately needed to facilitate the use of this new model system for

PD for high-throughput drug screens.

As noted previously, zebrafish is an excellent system model for PD research. In

particular, it is easy to visualise dopaminergic neurones in the zebrafish brain by using

the aforementioned WISH with a probe against messenger ribonucleic acid (mRNA)



4.1 Introduction 63

for TH. TH is the rate-limiting enzyme that synthesises L-dihydroxyphenylalanine,

the precursor of dopamine. Some of the genetic zebrafish models of PD showed an

approximate 25% reduction in their dopaminergic neurones, as assessed by WISH

for TH, as early as three days post-fertilisation [103].

Once WISH has been performed on the larvae, they are mounted on microscope

slides, and a series of images are taken, capturing each larva in slices called z-

stack images. When these z-stack images are combined, they can be rendered as a

3D image showing the dopaminergic neurones in the larva’s head. Using this 3D

image, it is possible to detect or count the individual neurones. Currently, this is a

manual time-consuming process that is therefore subjective and prone to error. The

expectation here is that automatic algorithms can free neuroscientists from having to

do this detection and counting processes manually.

Our main challenge is to detect individual neurones in z-stack images, as shown

in Fig. 1.1. As noted above, this would facilitate the use of this new model system

for PD for high-throughput drug screens. To automatically count the number of cells

in the zebrafish using computers automatically instead of manually counting, we

must first learn the cell feature pattern. Machine learning techniques can be used to

achieve this task, including feature extraction, feature description, feature detection

and deep learning techniques.

Fig. 4.1 An example of z-stack images containing 41 slices with five slices enlarged
(i.e. the 1st , 10th, 20th, 30th and 41st slices); the bottom three rows represent three
different examples of TH-labelled neurones located within the original z-stack
images with three different colours; note that the red square in each row represents
the clearest frame of the TH-labelled neurone.
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4.2 Major Challenges

4.2.1 Large-scale Image

To process a dataset with large-scale images, high-throughput methods are required

to achieve both efficiency and efficacy at a low cost. To obtain our zebrafish dataset,

each embryo was visually recorded in several (i.e. ranging from 30 to 50) optical

sections (i.e. z-stack images) by moving the focus plane of the light microscope (See

Fig. 1.1). Further, each slice contains three channels in the red-green-blue (RGB)

colour space with a fixed size of 1344∗1024∗3. Currently, several high-throughput

microscopy applications have been published for biological high-throughput image

analysis, such as ImageJ/Fiji [13], CellProfiler [104], Ilastik [14], ICY [15], and

Vaa3D [16]; however, most existing image analysis software is limited in scope,

capacity and ability to detect TH-labelled neurones in large-scale datasets. With the

ongoing development and advances in computational equipment and technology, it

has become increasingly feasible to use personal devices for scientific applications.

Due to their much higher computational power versus that of conventional central

processing units (CPUs), graphics processing units (GPU) are gradually evolved into

highly parallel processing units with relatively low cost. Therefore, we used a GPU

device to accelerate the computational speed of automatically detecting dopaminergic

neurones in large-scale light microscopy images.

4.2.2 Low image quality

There are problems inherent in the 3D multi-channel images recorded through a

light microscope which make the detection process much more challenging. One

of the major issues here is that z-stack images contain much out-of-focus light

because of limitations of the light microscope [2]. During the imaging process,
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Fig. 4.2 A dozen positive examples (i.e. clearest 2D slices) atop a dozen typical
negative examples shown in red and blue boxes, respectively; further, red dots
identify the central voxels of the positive examples.

image information from the in-focus specimen plane is mixed with out-of-focus light

arising from regions outside the focal plane.

Another issue is that not all of the 3D information is recorded by moving the

focus plane in a fixed distance at each time, hence the information between two

neighbouring slices is lost. An alternative approach to obtain higher-resolution

images is to apply deconvolution techniques to remove the out-of-focus light [105, 8];

however, due to the lack of information regarding the PSF and corresponding ground

truth images, this inverse problem cannot be perfectly restored [8]. Moreover, the

computational cost of current deblurring techniques is extremely high due to the large

dataset. In this section, instead of applying deconvolution or restoration algorithms,

supervised deep learning algorithms are trained to directly capture unique blurry

features.

4.2.3 Irregular appearance

Figs. 4.1 and 4.2 illustrate the particular appearance of TH-labelled dopaminergic

neurones in the z-stack images recorded through a light microscope. The dopamin-

ergic neurones appear as a distinguishable colour from the background after the

visualisation step. Different neurones may focus on different slices. In a single neu-

rone, the cell membrane is usually stained so heavily than the rest of the cytoplasm,

causing the neurone to appear as an irregular ellipse in a single slice. Due to the

out-of-focus light, the further the neurone is situated away from the focused frame,
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the blurrier it becomes, making it rather difficult to segment and split the touching

neurones using simple segmentation algorithms, such as thresholding and clustering.

Moreover, because of the individual differences of zebrafish embryos and operation

error in the visualisation step, not all z-stacks are stained the same colour or at the

same depth.

Detecting TH-labelled neurones in light microscopy images is difficult, because

different neurones have highly variable appearances, and the TH-labelled cells are

often clustered together, thereby making individual cells that much more difficult

to detect. In addition, different imaging conditions, such as exposure time, light

source intensity and the transparency of the specimen, can cause variations in image

intensity in each of the three RGB channels, thus resulting in cells appearing with

different colours in different specimens.

Further, when imaging z-stacks of the zebrafish larvae using light microscopy,

there is a slightly out-of-focus light that appears in the recorded z-stack images. We

purposefully do not apply any deblurring or deconvolution [8] to the z-stack images,

thereby making the task more challenging and our proposed method applicable to

realistic scenarios in which the deconvolution parameters are difficult or impossible

to obtain. Finally, Fig. 4.1 shows that the father away the cell is from the central

frame, the blurrier the cell appears.

There are some detection-based algorithms published in computer vision and

biomedical image analysis [65, 7, 66, 9]; however, as mentioned in Chapter 2.2, most

of the automated 3D cell detection methods are an unsuitable replacement for manual

cell detection [64]. With the development of machine learning techniques, deep

learning, e.g. using deep neuronal networks, has the potential to achieve automatic

detection [31, 10]. Instead of using handcrafted features to distinguish neurones from

the background, deep learning-based methods can automatically learn high-level

abstractions from the sub-images extracted from the original data. Among popular

deep learning models, CNN is one of the most successful architectures and applied
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in different areas. Compared to standard feed-forward neural networks, CNNs have

much fewer connections and learnable parameters by sharing the same basis function

across different image locations [18], which makes CNNs easy to train.

4.2.4 Class-imbalanced problem

In our dataset, only a few positive voxels are labelled in each of the large 3D multi-

channel stacks, thus creating a serious class-imbalanced problem for pixel-wise

classification using supervised learning algorithms. Here, the minority-class is of

primary interest; however, supervised learning algorithms trained using a dataset

with an imbalanced distribution of classes will produce a bias towards the majority

class, thereby resulting in misclassified and unsatisfactory results. Relevant methods

about class-imbalanced problem is reviewed in Chapter 2.4. However, only using one

method to solve a class-imbalanced problem with a large imbalance ratio (IR) will

not obtain satisfactory results. Therefore, we combine several different techniques

for solving the class-imbalanced problem, including oversampling [79], probability

sampling [31], boosting [71] and the cascade framework method [78].

4.2.5 Common issues of training deep architectures

Aside from the class-imbalanced problem, there are three other common issues

inherent to training a deep learning architecture using a large-scale dataset: these

issues are the overfitting problem, impractical training process and no golden standard

structures. In this section, we implement the seed expansion and drop-out techniques

[106] to address overfitting. We used a GPU based on the compute unified device

architecture (CUDA) to dramatically reduce the computational time. There is no

golden standard structures for all situation using deep learning architecture. To select

the best structure, several different structures with different input image sizes, filter

sizes and numbers of layers are tested.
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(a) Original Frame (b) LBP-SVM (c) HOG-SVM

(d) LBP+HOG-SVM (e) HOG3D-SVM

(f) Original Frame (g) ColorHist-SVM (h) ColorSift-SVM

Fig. 4.3 Comparison of detection methods that utilise different features

4.3 Cell Counting by Detection with Handcrafted Fea-

tures

To identify useful features for describing the unique pattern of the desired dopamin-

ergic neurones, we first trained a simple 2D detector with different handcrafted

features.

Using this approach, we selected positive cell centre points using ImageJ with

the Point Picker plugin [107]. Based on the coordinates of labelled points, we

extracted fixed-size patches, each patch containing a positive neurone example. We

randomly selected the rest of the unlabelled points, and extracted patches to form
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negative inputs. Overall, we used 14 stacks for training and 6 stacks for testing.

After obtaining the patches, useful features were extracted from these patches to

distinguish desired cells from the non-cell background. In Fig. 4.3, we tested several

existing feature extracting methods in computer vision, including local binary pattern

(LBP), histogram of gradient (HOG), 3D-HOG, scale-invariant feature transform

(SIFT), colour histogram (colorHist), colour SIFT (colorSIFT), edge descriptor and

colour descriptor methods.

Fig. 4.4 Detection results with manual selected features

There were several cell regions in the original images. In each of these cell

regions, there were likewise several cells gathered together, thus making it difficult

to distinguish individual cells. We attempted different experiments using several

feature extraction methods to train a basic SVM classifier to check the potential

applicability of selected features. Compared with several features identified via the

SVM, methods with ColorHist and ColorSIFT features performed well, i.e. with a
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much lower proportion of false negatives. In the sections that follow, we compare

results of our proposed methods and traditional approaches.

Although our detection results were not entirely satisfactory, we were able to

identity some useful features which can be used in our further experiments. As

shwon in Fig. 4.4, the SVM detector with the colorHist feature was able to detect

most of the desired neurones, but with many false positives, which is a very good

preliminary step in finding regions containing desired neurones.

4.4 Automatic Neurone Detection with Two-Dimensional

Convolutional Neural Networks

Fig. 4.5 The workflow of the TH-labelled cell detection framework; the off-line
training and detection processes are illustrated within the red and green dotted
rectangles, respectively.

In this section, we propose an automatic deep learning cell detection framework for

3D z-stack microscopy zebrafish images. In our framework, to improve the efficiency

and accuracy of training a CNN from large-scale images, we apply an SVM classifier

to detect cell regions and form the CNN training set. Our major contributions herein

include our application of deep learning technique, our development of a supervised

max-pooling CNN, and results showing the potential capabilities for automatic cell

detection in z-stack images. Moreover, we establish and populate an accessible light

zebrafish microscopy database with TH-labelled neurones which includes manual

annotations by experts on neurone localisation; our database and annotations can be

used for evaluating and benchmarking other competing methods.
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Fig. 4.6 Colour normalisation with image intensity standardisation.

4.4.1 Zebrafish Dataset

Our zebrafish dataset contains 35 stacks scanned under 20X magnification through a

light microscope. Of the 35 stacks, 25 were selected for the off-line training and 10

for testing. Overall, there were approximately 1000 TH-labelled cells. The volume

in voxels of each stack was 1024 ∗ 1344 ∗ z, where different stacks have different

values of z. The spatial resolution was 3µm and the axial resolution was 1.5µm. The

magnification of the objective was 20X , and numerical aperture NA was 0.7. We

made this dataset publicly available for other researchers to develop and evaluate

their own TH-labelled cell detection or cell counting algorithms. For each stack

in our dataset, a professional observer labelled all centres of TH-labelled cells as

ground truth using Point Picker [107], a plugin of the open source Java programme,

ImageJ [12].

4.4.2 Pre-processing: Colour Normalisation

Zebrafish larvae were recorded in several sessions spanning several days to complet-

ing populate the dataset. Exposure times were not guaranteed to be the same for each

recording session involving the light microscope, so the colour of each stack may

differ. We applied image intensity standardisation (IIS), a technique first introduced
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in [108] for intensity normalisation 2D grayscale scale images. More recently, in

[70], Bogunović et al. modified the IIS algorithm to normalise the intensity of the

3D greyscale rotational angiography. In our work, we applied the original IIS as a

colour normalisation method for 3D light microscopy images. First, we calculated

three histograms of the three channels of the entire RGB stack. Next, we aligned

the histogram of each channel to the corresponding reference based on the nonlinear

registration method described in [108]. An example of this process is shown in

Fig. 4.6.

4.4.3 Cell Region Detection

We determined the cell regions R to subsequently discard irrelevant background

regions. Selecting background training patches was also important for training our

CNN. Therefore, we detected cell regions efficiently and roughly using an SVM

classifier, after which the cell and background training patches were collected from

R instead of the entire stack.

When recording the zebrafish larvae, all the TH-labelled cells were located in

the centre of the image. We observed that all TH-labelled cells had distinctive

colours from the background, and the largest part of the image area was covered

by background pixels. To collect supportive training patches for training our CNN

detector, we needed to collect patches near the TH-labeled cells. All of the stacks had

a similar RGB histogram after IIS colour normalisation was applied; therefore, the

colour histogram was the most useful and reliable feature in distinguishing the cell

and non-cell regions. The binary SVM classifier based on RGB histogram features

(i.e. SVM-RGB Histogram) [109] was used as a rough and fast cell region detector.

Using this SVM-RGB Histogram detector also guaranteed that all TH-labelled cells

were detected within cell regions. Another reason we detected cell regions first was

that although CNNs are a powerful tool, training sets must be carefully selected.
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(a) Original Frame (b) Cell region R

Fig. 4.7 Cell region detection.

Based on the size of the TH-labeled cell, we extracted patches of size 41∗41 (i.e.

123µm∗123µm). Further, to increase the number of cell samples, for each labelled

ground-truth central-pixel C(x,y,z), we drew a cube with spatial radius rs = 3 pixels

(i.e. 9µm) and axial radius ra = 2 pixels (i.e. 3µm) along the z direction. All pixels

within the cube were considered as cell-sample centres Cp, and all remaining pixels

in the stacks belonged to background-sample centres Cn. We extracted all cell patches

from Cp in 20 training stacks, then extracted the same number of background patches

randomly from Cn. To train the SVM-RGB Histogram detector, approximately 0.1

million cell patches and background patches were extracted.

Given the above, we used the SVM detector to detect the cell region and thereby

collect CNN training patches, that are able to remove most of the background

pixels. This stage was more like a feature selection pre-processing stage. Using this

approach, the CNN could also be more accurate in detecting cell samples within the

cell region. Similarly, in the test stage, for accuracy, we also first applied the SVM

detector to detect those regions. We compared our proposed method in training the

CNN without this cell region detection stage. For training the conventional CNN,

cell samples were the same, but the non-cell samples were randomly selected from

the background.
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SVM is more like a training data pre-selection step. Due to the feature divergence

and complexity, we need more data to train the deep learning architectures directly

without the pre-selection step. Another problem is the data is class-imbalanced. We

do not have too many positive training examples. Therefore, the SVM pre-selection

step is helpful to reduce the feature complexity and balance two classes of the training

data.

4.4.4 Training Set Pre-processing

After the cell region R was detected by the SVM-RGB Histogram detector, we

extracted cell and background patches in region R from all test stacks to train CNN

with the same patches sizes and neighbourhood setting described in Section 4.4.3.

Given that pixels within cell region R had similar colours, colour features in the cell

region were not a reliable means of distinguishing cell and background patches. To

reduce training time, we transferred all RGB patches into the YUV colour space,

using only the Y-channel patches. For each Y-channel cell patch, we rotateed 0, 90,

180 and 270 degrees to make the detector rotation invariant and increase the number

of cell samples. The cell and background patches can have overlapping pixels which

is beneficial for increasing the probability of detecting true cells. Approximately 0.5

million cell patches were extracted from all training stacks, similarly, approximately

0.5 million background patches were extracted from cell region R.

4.4.5 Cell Pixel Detection

After the max-pooling CNN was trained, we tested it on the test stacks. Cell region

R was first detected by the SVM-RGB Histogram detector in every frame of each

stack in our test dataset. Then, we used pre-trained CNN to detect cells by scanning

every pixel in R, assigning probability value Pc to each pixel. This strategy required

less than 300 seconds to process each slice. As a result, we obtained 3D probability
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map Mp for each stack, and used a Gaussian filter to smooth this probability map

Mp. Finally, we can find all 3D local maxima in the smoothed Mp using method

described in [31], which requires a self-tuning threshold.

Fig. 4.8 The outline of the convolutional neural network architecture.

4.4.6 CNN Training

We trained the CNN network shown in Fig. 4.8. Training this CNN required three

days of computation using a MATLAB R2011b implementation with C++ library

[110] on a personal computer with an i5-3470 CPU clocked at 3.4GHz, 14GB

memory and 64-bit operating system. Less than 15 epochs were required to reach an

error of less than 10% with a total of 1 million training patches. We tested different

architectures, including different layers, filter sizes and patch sizes. The structure in

Fig. ?? works the best.

4.4.7 Results

We evaluated our detection results according to cells labelled by human observers

in the test set. Detected cells closer than 10 pixels (30µm) in the 2D slice, and five

pixels (7.5µm) in the vertical direction from a ground-truth centroid were defined as

true positives. The distance is decided based on the closest distance of two neurones

in the 3D stack. In addition to number of true positives NT P, we also counted

the number of false positives NFP and false negatives NFN . Next, we calculated

performance measures, including recall (i.e. recall = NT P/(NT P +NFN), precision

(i.e. precision = NT P/(NT P +NFP), and F1 (i.e. F1 = 2PR/(P+R)).
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We called our proposed method here the Refined CNN, and we compared it with

a CNN without the above cell region detection stage (CNN); we also compared our

Refined CNN with an SVM method with different features, including colorHist, col-

orSIFT, and colorSIFT+HOG. Table 4.1 shows that our proposed method performed

significantly better than the other approaches. In addition, we observe from the

example results shown in Fig. 4.9 that our detection accuracy was good if cells were

not clustered together. Therefore, we also conclude here that our proposed method

requires improvements in the terms of cell cluttering.

Table 4.1 Comparison of results on test stacks.

Method Recall Precision F1
Refined CNN (Proposed) 0.7692 0.6452 0.7018
CNN 0.6071 0.3542 0.4474
colorSift+HOG 0.5600 0.2593 0.3544
colorHist 0.4839 0.1136 0.1840
colorSift 0.3704 0.0962 0.1527

4.5 Three-Dimensional Framework for Automatic Neu-

rone Detection

As noted in previous sections, automatic detection of neurones in zebrafish images

is required to be fast, robust and accurate for disease research. In this section, we

present a high-throughput automatic detection method using a dynamic cascade

framework for progressively locating desired neurones. Our dynamic cascade frame-

work is designed to address the problem of training the aforementioned deep learning

architectures from a severely class-imbalanced dataset with labelling only available

at the central voxel of desired objects.

In the framework, to progressively capture the unique high-dimensional structure

of desired neurones, we first trained support vector machine, a 2D CNN and a 3D

multi-channel CNN. The entire detection framework was implemented with acceler-
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Fig. 4.9 Detection result for two stacks; here, human observers identified 28 TH-
labelled cells; in results produced by our proposed method, there were 20 red, 11
blue and six green circles in the stack, where red, blue and green circles represent
true positives, false positives and false negatives, respectively; note that numbers in
circles indicate the slice location of each cell.

ation via a GPU. We thereby illustrate our proposed method to detect dopaminergic

cell in a zebrafish model of PD using TH-labelled neurones in light microscopy

images. Further, we publish our new zebrafish image dataset, so that further research

in this area has a common benchmark for comparison. Our results show that our

proposed deep learning framework outperformed some state-of-the-art techniques,

thereby demonstrating its potential for high-throughput automatic cell detection in

light microscopy images.
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Fig. 4.10 Outline of our framework, including four main stages: image preparation,
pre-processing, offline training and post-processing.

As illustrated in Fig. 4.10, our framework consists of the following procedures:

(1) image preparation; (2) pre-processing (3) offline training and (4) testing stage. In

this section, we present details of each of these steps.

Fig. 4.11 Image histograms (3 channels) of 35 stacks before and after Image Intensity
Standardisation transform. Each colour represents one stack of images. ω , p1 and
p2 are three control points (landmarks) of the transform.
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4.5.1 Zebrafish Embryo Image Preparation

Neurone Visualisation

Neurone visualisation is a critically important step in distinguishing dopaminergic

neurones from the background. Dopaminergic neurones in the zebrafish brain

were visualised using WISH with a probe against mRNA for TH. WISH is a vital

tool used to characterise the phenotype of genetic mutations and chemical genetic

perturbations.

Z-Stack Images Recording

After 3 days post fertilisation, zebrafish embryos were collected and ready for

imaging. Once WISH was performed on the zebrafish embryos, they were mounted

on microscope slides with their heads facing upwards. In doing so, zebrafish embryos

should be fixed in place; otherwise, any movements will cause motion blurring during

the recording with a CCD camera. An alternative way of preventing motion blur is

to cut the head off before the imaging process. To capture all TH-labelled neurones

in each zebrafish embryo, the entire head of the zebrafish embryo must be recorded,

thus narrowing the choice of microscope and objective lens. To ensure higher image

quality and less imaging time, we used a conventional light microscope and objective

lens with 20-times magnification to image the entire head of the zebrafish embryos.

4.5.2 Pre-Processing

Labelling Z-Stack Images for Supervised Training

To train a supervised learning algorithm, TH-labelled neurone (i.e. positive) examples

and non-neurone (i.e. negative) examples should be collected from a range of z-stack

microscopy images. In this thesis, the central voxel of each TH-labelled neurone

was labelled by experts, thereby showing the location of a positive example. In
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Fig. 4.13(a), the red point indicates the labelled voxel for recording 3D coordinate

information of a dopaminergic neurone in 3D z-stack images. We used Point picker

V.27.09.2003, a Plug-in for ImageJ [107], to label the locations of TH-labelled

neurones. Neuroscientists had to find the clearest frame in the z-stack images and

label the central voxels of all possible TH-labelled neurones.

Image Intensity Standardisation

The entire dataset was completed by recording many zebrafish embryos several times.

In general, we cannot guarantee that imaging conditions will be the same each time

zebrafish embryos are recorded. Different exposure times, the transparency level

of the specimen, lighting conditions and the degree of cleanliness of the objective

target can affect image intensity values in each channel of the RGB colour space.

Further, the intensity range of dopaminergic neurones is also varies.

In this thesis, we achieved colour normalisation based on non-linear IIS which

was first described in [108] for 2D magnetic resonance (MR) image. We extended the

IIS approach to attain a robust colour normalisation method for 3D light microscopy

images. Following IIS transform, we normalised the intensity histogram by estab-

lishing the correspondence between two histograms calculated from generic z-stack

and reference z-stack images. This registration was initialised with a transformation

composed of three control points aligning the peak (ω) and two shoulders (p1, p2)

of the unimodal histogram. Formula and calculation details of the IIS transform can

be found in [108]. Further, Fig. 4.11 illustrates histograms from 35 stacks before and

after the IIS transform.
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Fig. 4.12 Illustrating the progressive detection process in which the TH-labelled
neurone region is first detected based on its distinguishable colour; next, all possible
2D neurones are detected in each slice; finally, the 3D feature of each possible
neurone is analysed and the central voxel in the clearest frame is identified.

4.5.3 Off-line Training

Progressive Detection Design

It is rather difficult to directly locate the precise central voxel of a 3D neurone;

even experts must follow a progressive process. Therefore, the general location

of TH-labelled neurones is first visually detected. Next, experts focus on one

possible neurone, then search through all slices for its clearest appearance. Finally,

the centre voxel of the neurone will be labelled in its clearest frame. A similar

progressive detection process is designed and described in Fig. 4.12; however,

the class-imbalanced problem must first be solved to train a supervised learning

algorithm.

Class-Imbalanced Dataset

Given training data with only a few positively labelled voxels, effective and effi-

cient methods must be explored for training a deep learning architecture from such

extremely imbalanced data. This detection problem can be translated into a classi-
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fication problem, as each voxel should be classified into two classes, i.e. positive

(cell) and negative (non-cell) classes. In this section, we describe the final goal of

locating the centres of all TH-labelled neurones in z-stacks, such that the positive

class refers to the region of interest. If all labelled voxels in one training stack are

treated as positive samples, the remaining voxels will be negative samples. This

class-imbalanced problem is so serious that the aforementioned IR for training is

extremely large (IR = 1344∗1024∗40/30 > 1.8M).

Based on the literature, there is no clear definitive best method for handling such

serious class-imbalanced problem. Due to the extraordinarily large IR, techniques are

required primarily to adjust the distribution or reduce the IR of the data distribution

before training. Since training with all majority examples is impractical and requires

too much time, our designed cascade framework with a deep learning architectures

focuses on hard examples in the majority class. In this section, the class-imbalanced

problem is addressed using a dynamic cascade learning framework which uses seeds

expansion to learn from entire images with positional information of TH-labelled

neurones.

Fig. 4.13 Seed expansion process: (a) Seed (red point); (b) modelling shape with a
circle; (c) neighbour voxels within [rx,ry] are treated as positive voxels; (d) a 3D
training patch extracted based on the seed with all voxels within [rx,ry,rz] (blue
cuboid) treated as positive voxels; (e) the upper four 0°, 90°, 180° and 270° rotations
of the original 3D patch and lower four rotations of the flipped 3D patch (i.e. we flip
each frame horizontally); (f) flipping of the original 3D patch along the z direction.

Seeds Expansion

In this section, we use seed expansion to oversample the minority-class voxels

based on the seed position in z-stack images. Resampling methods can adjust the



4.5 Three-Dimensional Framework for Automatic Neurone Detection 83

distribution of original classes to improve the accuracy of classifiers. Oversampling

and undersampling are two widely used resampling techniques; however, there are

problems when applying random oversampling and undersampling, including loss

of information with undersampling and overfitting with random oversampling. In

our case, if each labelled voxel was treated as a seed, the minority-class could be

enlarged. Therefore, instead of generating synthetic data based on the K-nearest

neighbours of features [79], the nearest neighbours in the original z-stack images

based on the seed location are collected as positive voxels. To train patch-based deep

learning architectures, positive training patches are extracted based on all positive

voxels using this seeds expansion technique.

Fig. 4.13 illustrates the process of seed expansion. All labelled positive voxels

treated as seeds are extended based on their 3D coordinates. The nearest neighbour

voxels within three different dimensions are then selected as positive examples.

The radius in each dimension, i.e. rx,ry,rz, is chosen based on the true size of the

TH-labelled neurones, and voxels within the radii are treated as positive voxels. We

can then generate one 3D patch from each positive voxel. The principle behind

selecting the range of radii (rx,ry,rz) is that voxels belonging to the TH-labelled

neurone should be extracted within positive training patches.

Since the supervised learning method described below is based on small patches

extracted from original images, the features are limited by the size and position of

each training patch. To enforce rotation and mirroring invariance, patches extracted

from positive-class voxels are rotated and mirrored to produce more training samples;

however, producing too many similar patches from one single voxel may cause

overfitting problems [79]. In this section, only four degrees (i.e. 0°, 90°, 180° and

270°) are used for patch rotation, as it is easy to implement without any additional

padding processes.
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Dynamic Cascade framework

We designed the dynamic cascade framework to select harder negative examples to

train a stronger classifier step by step. Our dynamic cascade framework is inspired by

the cascade and boosting method. Viola and Jones introduced a cascade framework

to achieve real-time face detection [78]. In their approach, at each of the cascade

stage, a simple classifier was boosted to become a stronger one. By increasing

the number of features, the boosted classifier can have the ability to classify hard

examples.

The advantage of this framework is that each stage reduces the false positive

rate as it simultaneously retains the high detection rate. One disadvantage is that

training process takes too much effort to calculate different low-level features and is

very time-consuming to boost a weak classifier to become a stronger one, requiring

hundreds or thousands iterations. Another difficulty is that those selected low-level

features may not have the ability to classify the hardest examples. Therefore, we

build on the advantages and overcome the disadvantages of the cascade and boosting

methods. In this section, we describe our framework which entails several strong

classifiers which are cascaded to form a dynamic cascade framework for rapid small

cell detection in large-scale images with only positively labelled information.

Fig. 4.14 illustrates our entire learning and detecting framework. In each training

model, the primary purpose is to reduce the false positive rate and simultaneously

retain the high detection rate. How to efficiently and accurately detect and remove

the majority of negative voxels in large-scale images is the major challenge here. As

the negative class is the majority class, once the voxel is rejected in any model, it is

considered as a non-neurone voxel and treated as background.

Implementation details of our approach are described in Algorithm 3. Due to the

unique structure and small number of TH-labelled neurones, we use seed expansion

to oversample the small number of examples in the minority class (i.e. the desired
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Algorithm 3 Dynamic cascade framework
Input: Training images and corresponding labels;
Probabilistic Training Model M n,n = 1,2, ...,N;
Initialize: S1 = S ,n = 1, t = 1;
While n <= N
1. There are m0

t voxels of the majority class S 0
t , and m1

t voxels of minority-class
S1

t forming a training dataset St = S 0
t ∪S 1

t ;
2. Treat all m1

t voxels in minority-class S 1
t as seeds and do seed expansion to

form temporal minority-class training set S 1∗
t with label y1 = 1, and remove

overlapping ones S 1∗
t ∩S 0

t from S 0
t ;

3. Uniform undersampling majority class forming temporal majority class training
set S0∗

t with label y0 = 0 to balance the temporary training dataset with two classes
S ∗

t = S 0∗
t ∪S 1∗

t ;
4. Using training model M n to train a probabilistic classifier Ct with patches
extracted from voxels in S ∗

t , get a trained classifier Pt ←Ct(X);
5. Get the probabilities for voxels in both classes:
P0

t ← Ct(S 0
t ( j)), j = 1, ...,m0

t ,
P1

t ← Ct(S 1
t (k)),k = 1, ...,m1

t ;
6. Calculate adaptive threshold
tht = min(P1

t ( j)), j = 1, ...,m1
t ;

7. Remove example S 0
t ( j) from S 0

t , where P0
t ( j)< tht , to form a new temporal

majority class training set S 0
t+1;

8. n = n+1;
9. New training set with two classes St+1 = S 0

t+1∪S 1
t+1, where S1

t+1 = S1
t .

10. t = t +1;
end while
Output Cascade classifier Ck with threshold thk, where k = 1,2, ..., t.

positive examples). To train the probabilistic classifier with one model, we uniformly

undersample examples in the majority class (i.e. negative examples) to rebalance

the temporary training set. The trained probabilistic classifier therefore gives the

probabilities for examples in both classes. Next, some of the examples in the majority

class will be rejected if the probability values of those examples are lower than a

given threshold.

This threshold is set to the lowest probability value in the minority class. By

setting this adaptive threshold, we ensure a high detection rate and reduce the false

positive rate. The remaining examples in the majority class will then be used in the

next stage in the framework. Each model can be trained several iterations with the
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same positive samples. When the model is unable to classify the remaining hard

examples, the system will jump to the next model. This process will eventually be

terminated after all models are involved.

In this section, we use three different models to classify each voxel in the image.

The classification ability of these three models is progressive. Model 1 is a colour

region detector using a linear classifier with one simple colour histogram feature.

Model 2 is a 2D neurone detector with a 2D CNN. Model 3 is the 3D neurone

detector with a 3D multi-channel CNN.

Model 1: Model 1 is a cell region detector. After the colour normalisation

process is applied during the pre-processing stage, intensity values in each channel

are normalised and the TH-labelled neurones appear in a similar colour. Colour is the

main feature that distinguishes a TH-labelled neurone region from the background.

Because of out-of-focus light, the candidate colour region is much larger than the

true size of the TH-labelled neurones. Therefore, the false positive rate will be high,

and the detection rate is also unsatisfactory if only the colour feature is used. Instead

of adding more features in the next stage as is done in [78], we use a 2D CNN to

automatically learn important 2D features. Model 1 can thereby rapidly shrink the

candidate regions, leaving the harder examples to be detected by Model 2.

Model 2: Model 2 is a 2D neurone detector. CNNs are multi-layer models

combined with different types of layers, including convolutional layers, sub-sampling

layers, and fully connected layers. CNNs are one of the most successful deep learning

models for supervised learning and which also achieve high performance in different

applications [111]. In our 2D CNN structure, we have a convolutional layer, a

max-pooling layer, and a fully connected layer.

Model 3: Model 3 is a 3D neurone detector. Note that 3D CNN were first intro-

duced in [112] for human action recognition in videos. In 2D CNNs, convolutions

are applied to 2D feature maps to compute features from only a single frame. When

applied to three-dimensional problems, it is desirable to capture the axial information
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Fig. 4.14 Illustrating our dynamic cascade framework with different models which
learn from large-scale images only containing positively labelled information. (a)
Model 1 is a colour region detector using one colour feature and an SVM classifier;
(b) Model 2 is a 2D neurone detector using 2D CNN with few feature maps and(c)
Model 3 is 3D neurone detector using 3D multi-channel CNN with many feature
maps.

of the third dimension encoded in multiple frames. We present a 3D multi-channel

CNN which captures the unique 3D structure of the TH-labelled neurones in light

microscopy z-stack images.

Three-Dimensional Multi-channel Convolutional Neural Network

To capture the unique three-dimensional features of TH-labelled neurones and find

the specific locations of those neurones in the clearest frame, we designed a 3D

multi-channel CNN, as shown in Fig. 4.15. After training the previous two models,

we capture the colour feature and 2D features encoded in the TH-labelled neurones.

In each channel, the value of the unit at position (x,y,z) of the ith layer on the jth

feature map in the cth channel is defined as follows:

vxyz
ci j = f

(
bci j +∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ci jmv(x+p)(y+q)(z+r)

c(i−1)m

)
, (4.1)

where f (.) is the activation function, b is the bias and w is the weight.

At the image preparation stage, we used Volocity V6.3 [113] to manually and

consistently adjust the imaging conditions for recording each stack of images. A

function called Voxel Spy can guarantee exposures at the same level such that

TH-labelled neurones appear neither too dark nor too bright in recorded images.

TH-labelled neurones appear with the same structure in three different channels but
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Fig. 4.15 3D multi-channel CNN.

appear with different contrasts. The colour map of TH-labelled neurones in the RGB

space is approximately [0.2,0.2196,0.3333] after the colour normalisation stage;

more specifically, it appears in a unique dark purple colour.

After being processed by Model 1, the remaining voxels have similar colour

features. Inspired by the method presented in [114], instead of using the RGB image

to train one 3D CNN structure, we use three columns in Model 3 to separately

process the information in three channels to improve the performance and also save

on memory use. Since each TH-labelled neurone has a similar structure in three

channels, we used three columns to train three different 3D CNNs with data collected

from three channels of the RGB microscopy images, respectively. In each CNN

structure, we applied the invariant back-propagation algorithm [115] to update the

weights such that the CNNs are robust to variations and noise. In the final fusion

step, instead of averaging the predicted results of each network pc, we multiply them

to obtain final probability value p, i.e.

p =
3

∏
c=1

pc, (4.2)

where pc is the probabilistic value obtained from column c, and pc ∈ [0,1].
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In each channel, the TH-labelled neurones appear almost with the same structure,

but with a different range of intensity values. The multiplied probabilistic value map

helps to ensure that the centre of the TH-labelled neurone is more obvious. We used

rectified linear units (ReLu) as the activation function. Further, we used expansion

and drop-out methods to prevent overfitting.

We treated the RGB image separately using multi-channel CNN include several

reasons. Firstly, the parameters in the un-trained CNN model is randomly initialized,

and based on the literature, training several networks can produce better result than

only using one network. Secondly, the calculation cost of using 3D-MC-CNN is

much lower than the combined CNN model. Finally, the 3D-MC-CNN can also learn

the dependencies between different channels, which is in the fully-connected layer.

We tested both of the methods and the result shows using 3D-MC-CNN can produce

better result compared with the method using one combined CNN.

4.5.4 Post-Processing

In several cell detection methods [31, 10], the post-processing step finds local max-

ima and uses them to identify specific locations of desired objects. One disadvantage

here is that due to noise, several local maxima may be selected around one true

object. Therefore, the threshold among selected local maxima should be manually

decided. Another disadvantage is that because of the irregular appearance of the

TH-labelled neurone, the local minimum may not be the centre of the neurone. In

this chapter, the post-processing step addresses these two problems. We apply an

auto-thresholding method to multiply probabilistic value map Mpv to obtain a binary

mask Mb which represents the most likely cell regions.

We tested several different auto-thresholding methods using ImageJ, and the

best method selected is the Otsu thresholding method [116]. To ensure there is

only one possible cell in each connected region of mask Mb, we apply a watershed
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algorithm. We only need to find extremal regions in the probability map produced

by 3D-MC-CNN for representing the locations of desired cells. Although watershed

algorithm may over-segment the image and producing many small isolated region,

we can still find a large isolated region to represent each location of the cell. Then,

the small isolated region will be removed based on the size of the region.

Next, very small regions of Mb are removed, and we analyse the sensitivity

of the size of the removed region in terms of the final result. In each isolated

3D connected region RI , weighted centroid cw of the isolated region is calculated

using equation (4.3). Finally, the weighted centroids are detected as locations of

TH-labelled neurones.

cw
i =

∑x∈RI
i
Mpv(x) ·x

∑x∈RI
i
Mpv(x)

, i = 1,2,3, ...,n. (4.3)

The relationship between the size of the removed small regions and the final

result is illustrated in Fig. 4.16 in which the red line (i.e. weighted centroid) and

green line (i.e. local maxima) are averaged over all training stacks. Evaluation score

F1 weighted centroid was much higher than that of the local maxima. To obtain the

best evaluation score, we selected the size of the removed region when the red line

reached its peak. Using this approach, the best choice for the size of the removed

small regions was 360, meaning that any isolated region containing less than 360

voxels will be removed in the final stage.

4.5.5 Experiments and Results

Zebrafish Dataset

The dataset contains 60 stacks scanned under 20X magnification through a light

microscope. Forty of these stacks were selected for the offline training, whereas the
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Fig. 4.16 The relationship between the size of the removed small regions and final
evaluation score F1 from equation (4.6); here, the red line represents the weighted
centroid, and the green line represents the ’local maxima’.

Table 4.2 How much faster with GPU!

Train/Test # patches CPU(s) GPU(s) # times faster
10 0.2132 0.2208 0.97

Test 1000 22.1687 0.3161 70.13
10000 221.4367 1.3647 162.26

200 12.4101 0.3334 37.22
Train 2000 128.0468 0.7867 132.76

20000 1241.4702 5.0791 244.43

remaining 20 were used for testing. The number of TH-labelled neurones in one

z-stack of images is around 20 to 40.

The volume (in voxels) of each stack was 1024 ∗ 1344 ∗ 3 ∗ z, where different

stacks had different values of z. The spatial resolution was 3µm and the axial

resolution is 1.5µm. The magnification of the objective was 20X , and the numerical

aperture (NA) was 0.7. For each stack in this dataset, an experienced human observer

labelled all centres of TH-labelled neurones as ground truths using Point Picker [107].

We make this dataset publicly available such that other researchers can develop and

evaluate their own TH-labelled neurone detection or counting algorithms.

Implementation

The entire cascade framework was accelerated using a GPU, i.e. 2GB NVIDIA

GeForce GTX 760 Ti with a 16GB memory on a 64-bit personal computer; the
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entire framework was written on CUDA in C++ and MATLAB. In Table 4.2, it

illustrates how much faster using GPU acceleration than only using CPU for training

and testing the model 3 with 41*41*7-size patches. Our CNN structure was modified

based on the ConvNet library created by Demyanov [117].

To choose the best structure for the 2D CNN and 3D multi-channel CNN struc-

tures for processing the zebrafish dataset, we tested the sensitivity and effectiveness

of different structures, including different patch sizes and filter sizes. In the dy-

namic framework, we observed a unique property of our zebrafish dataset by which

candidate regions containing TH were less than 10% of the entire z-stack images.

Therefore, we used two iterations of Model 1 to quickly and precisely detect the

unique purple colour regions.

As a result, we pre-trained two iterations of Model 1 and one iteration of both

Model 2 and Model 3. In Model 1, the size of each patch was 41∗41, and we used

a linear SVM and RGB-Histogram to detect candidate regions. Finally, the bin of

the RGB-Histogram is 9. In Model 2, the size of each patch was 41∗41 to train a

2D CNN. Note that we used 20 epochs to train the 2D CNN model. In Model 3,

the size of each patch was 41∗41∗7 to train a 3D multi-channel CNN framework;

we used 30 epochs to train the 3D multi-channel CNN model. Training the entire

framework required several hours. It takes approximate 20 seconds to process one

slice (1344*1024*3), and less than 10 minutes to obtain the detection and counting

results of one stack of zebrafish images containing 35 slices.

Evaluation Criterion

We used labelled information as ground truth to evaluate the performance of the

different methods. If the distance between labelled location (xt ,yt ,zt) and detected

location (xd,yd,zd) was closer than d, then this location was considered to be a true

positive (NT P). Constant d was set to 10, which is approximately the closest distance



4.5 Three-Dimensional Framework for Automatic Neurone Detection 93

of the two smallest TH-labelled neurones in our training images. Each labelled

location can only have at most one corresponding detected location as correctly

detected true positive, if there are more detected results around one labelled location,

only the closest detected location can be considered as true positive.

Aside from the number of true positives NT P, we also counted the number of false

positives NFP and false negatives NFN . After these counts were accumulated, we

calculated performance measures, including recall, precision, and F1 score for each

of the test z-stack images. For each stack of images, we calculated the evaluation

scores with those performance measures. Finally, scores for each evaluation method

were averaged to yield a final evaluation score for Recall(R), Precision(P) and

F1-score (F1), respectively. The Recall and Precision metrics are defined as:

Recall =
NT P

NT P +NFN
, (4.4)

Precision =
NT P

NT P +NFP
, (4.5)

and F1-score is the harmonic mean of Precision and Recall:

F1 = 2 · Recall ·Precision
Recall +Precision

. (4.6)

Optimal Structure

To select the optimal structure for our deep learning architecture, we first tested the

sensitivity of the size of the input patches, then tested the sensitivity of the filter size

at each convolutional layer. We randomly selected a subset of data points from all

training examples, and tested with the same 1 million examples for each case.

Sensitivity of patch size:

Through our analysis, we concluded that the patch size should be odd and the patch

should be symmetric extracted from the central voxel. In the seed expansion step,
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Fig. 4.17 Training and testing errors with different sizes of input patches; (a) training
error and testing error are drawn in one figure; (b) enlargement of the training error
shown in (a).

Table 4.3 Sensitivity of patch sizes.

Patch size Testing error Training time Testing time
x * y % M−1Epoch−1s M−1s
33*33 2.7630 126.1592 14.3604
37*37 2.6377 174.0946 16.7188
41*41 2.3622 213.6202 19.7119
45*45 2.9483 269.2293 23.0471
49*49 2.7661 347.4515 26.7166
53*53 2.6945 414.2774 30.5176
57*57 3.3608 475.8913 34.8540
61*61 2.9506 547.0197 39.8501
65*65 2.5568 628.2490 44.8104
69*69 2.5428 708.9567 50.5970

M−1Epoch−1s: Seconds per million patches per epoch.
M−1s: Seconds per million patches.

the TH-labelled neurones are modelled using a circle with averaging 33 pixels in

diameter. The patch size was tested from the smallest size (i.e. 33*33 pixels) to the

largest size (i.e. 69*69) at an interval of four pixels. In total, there were nine networks

trained with patches extracted from the same set of training and testing points. We

tested using the same structure in the 2D CNN model with seven layers, including

an input layer, two convolutional layers (each with filter size 4*4), two sampling

layers (each with filter size 2*2) and two fully connected layers. In Fig. 4.17, we

show training and testing errors with different patch sizes. From our results, we note

that training and testing errors had very small differences after 15 epochs. Further,

after 30 epochs, all testing errors did not change too much at all.
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Fig. 4.18 Decision map of one test z-stack of images in each stage; (a-d) the central
frame of the decision map processed by the first iteration of Model 1 and the second
iteration of Model 1, Model 2 and Model 3; (e) the maximum projection of the
final decision map processed by our cascade framework; (f) decision map after
post-processing; (g) final detection and counting results, shown as blue circles and
(h) comparison with human counting results, shown as red circles.

We measured testing error, training time in seconds per million patches in one

epoch (M−1Epoch−1s), and testing time in seconds per million patches (M−1s) after

training a CNN structure for 50 epochs. Our results here were only marginally

sensitive to patch size as shown in Table 4.3; the training and testing times gradually

increase as patch sizes increased. Although there were small differences in training

and testing errors between different sizes of input patches, for the sake of consistency,

we had to select one patch size for subsequent training and testing. As a result, we

selected patch size 41*41 to consistently train all deep learning architectures. We

also used this patch size because a sufficient number of positive patches can be

produced after seed expansion; further, the computational time was much lower than

if we used a larger patch size.

Sensitivity of filter size

As noted above, we fixed the input patch size to be 41*41; further, we set the filter

size in the max pooling layer to be 2*2 and in the fully connected layer to be 61*2

and 2*1. Given this, we tested different structures with different filter sizes to
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Table 4.4 Sensitivity of filter sizes

First C layer Second C layer Testing error
x*y x*y %

3*3 2.4474
2*2 5*5 2.3711

7*7 2.3828
2*2 2.3949

4*4 4*4 2.3622
6*6 2.3658
3*3 2.5723

6*6 5*5 2.5988
7*7 2.5785

C: Convolutional Layer.

evaluate the sensitivity the filter size had on the convolutional layers. Although the

pooling layer can reduce computational time and produce space invariant features,

some information and important features may be lost if the pooling size is too large.

Nonetheless, Table 4.4 shows that results are not very sensitive to filter sizes.

Other settings

We also tested the number of layers, such as 5, 7, 9, 11 and 13 layers, but there is

no obvious differences. Theoretically, the more layers can have more parameters

to produce better results, but it also needs more resources, such as more training

data, time and powerful equipments. Due to the limitation of the number of training

data and our experimental equipments, 7 layers for 2D-cnn and 9 layers for 3D-

MC-CNN are selected based on its training time and producing results. Normally,

more hidden layers lead to more trainable weights and lower errors. Therefore,

compared with Model 2, we added one more convolutional layer to Model 3 to

make the classification ability progressive; however, because of the computational

speed and the limitations of physical memory, only seven slices were extracted in

constructing each input patch, thereby resulting in a 41*41*7 patch size for each

channel of Model 3. Note that we did not sample along the z-dimension in each

sampling layer, as there are fewer pixels along the z-direction. Due to limitations of

the optimisation method in the CUDA computing library, the feature maps for each

layer can only be set to an integral multiple of 16. Therefore, in the 2D CNN, we

set 16 feature maps in each convolution layer; further, we set the number of feature
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maps to 32 in each convolutional layer of the 3D multi-channel CNN structure. As

a result, optimal structures for Model 2 and Model 3 were selected, with structure

details shown in Table 4.5 and 4.6.

Table 4.5 Structure details of two-dimensional deep architecture.

Layer Type # of Maps Feature size Filter size
0 Input 3 41*41 -
1 C 16 38*38 4*4
2 MP 16 19*19 2*2
3 C 16 16*16 4*4
4 MP 16 8*8 2*2
5 F 1 64*1 1*1
6 F 1 2*1 1*1

C: Convolutional Layer. MP: Max Pooling Layer.

F: Fully Connected Layer.

Table 4.6 Structure details of three-dimensional deep architecture.

Layer Type # of Maps Feature size Filter size
0 Input 1 41*41*7*3 -
1 C 32 38*38*3 4*4*3
2 MP 32 19*19*3 2*2*1
3 C 32 16*16*3 4*4*3
4 MP 32 8*8*3 2*2*1
5 C 32 6*6*3 3*3*3
6 MP 32 3*3*3 2*2*1
7 F 1 64*1*3 1*1
8 F 1 2*1*3 1*1
9 FU 1 2*1 1*1

C: Convolutional Layer. MP: Max Pooling Layer.

F: Fully-Connected Layer. FU: Fusion Layer.
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Table 4.7 Comparison of different high-throughput open-source software

Software Name Preprocess Needed? Automatic? Method F1 Time/slice
Proposed Yes Yes Supervised detectors 0.8585 10s
Ilastik v.1.2.2 (detection) [14] No Interactive input Supervised classifier 0.2650 68s
Ilastik v.1.2.2 (counting) [14] Yes Interactive input Regression - 231s
MINS v.1.3 [118] No Parameters tuning Segmentation 0.1215 195s
3D-MLS v.1.02 [119] Yes Parameters tuning Segmentation 0.1602 321
3D Counter v.2.0.1 [120] Yes Parameters tuning Segmentation & Detection 0 20s

Comparison Methods & Evaluation Results

Fig. 4.19 Typical results in which 2D projections of six typical results are generated;
here, blue filled circles represent results detected by our proposed method (i.e. Auto
Detect), and red circles represent ground truth identified by human experts (i.e.
Human Detect); in each image, evaluation scores were calculated, including recall
(R), precision (P), and the F1-score (F1).

In Fig. 4.19, typical results are shown and evaluated. Many of the detections were

consistent with the ground truths provided by human experts. In our previous work

[10], we trained a region detector and a CNN (i.e. Model 1 + Model 2) using the

same dataset. In [72], CNN with PS is applied to solve the class-imbalanced problem

present in training deep neurone networks for document classification. In Table 4.7,
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Table 4.8 Comparison of results on test stacks.

Method Recall Precision F1
Proposed 0.7996 ±0.0496 0.8168±0.0589 0.8081±0.0339
SVM-RGBHist + 3DMCCNN 0.7864±0.0542 0.7536±0.0595 0.7697±0.0408
SVM-RGBHist + 3DCNN 0.7745± 0.0653 0.7263±0.0502 0.7496±0.0388
SVM-RGBHist + CNN [10] 0.7692±0.0797 0.6452±0.0399 0.7018±0.0430
3DCNN [112] + PS 0.6578±0.0418 0.7269± 0.0295 0.690±0.0284
CNN + PS [72] 0.6292±0.0434 0.6057±0.0430 0.6172± 0.0307
CNN [31] 0.6071±0.0806 0.3542±0.0550 0.4474±0.0294
CNN (Grey) 0.4429±0.0518 0.3227±0.0614 0.3767±0.0396
SVM-HOG 0.5600±0.0662 0.2593±0.0436 0.3544±0.0423
SVM-RGBHist+RGBSift 0.4839±0.0993 0.1136±0.0508 0.1840±0.0650
SVM-RGBSift 0.3704±0.0974 0.0962±0.0338 0.1527±0.0654
3DMCCNN: Three-dimensional multi-channel convolutional neural network.

3DCNN: Three-dimensional convolutional neural network.

CNN: Convolutional neural network.

PS: Probabilistic sampling.

SVM: Support vector machine.

we tested some existing software and tools using our zebrafish dataset, and also

recorded the running time for processing each slice.

In Table. 4.8, results using different combinations are shown, with relevant

methods tested, including Refined CNN (Model 1 + Model 2) [10], 2D CNN (Model

2) with PS [72], 3D CNN [112], 2D CNN (Model 2) [31] and SVM (Model 1)

with a HOG descriptor. Due to computational time, memory limitations and types

of images, when using our dataset, it is not easy to apply other types of detection

methods, such as cascade methods with low level features [78] and adaptive boosting

(AdaBoost) based methods for detection [121].

4.6 Conclusion

In this chapter, we mainly focused on cell detection in 3D multi-channel light

microscopy zebrafish images. By exploring different features with a basic SVM

detector, important handcrafted features were found. By applying CNN, the auto-

matic framework with learned high-level features was designed. To solve the severe

class-imbalanced problem, a cascade dynamic framework was introduced. In the
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framework, centres of cells were detected with three cascade detectors, including a

SVM detector, a 2D CNN detector and a 3D multi-channel CNN. Compared with

different methods, the proposed method has its own potential for cell detection in

3D multi-channel light microscopy images.



Chapter 5

Cell Counting by Regression in

Fluorescent Microscopy Images

5.1 Introduction

Cell counting in images must be fast, robust and accurate. This work is motivated

by the observation that, in PD disease research, compared to wild-type zebrafish

controls, the mutant zebrafish model shows a reduction of approximately 25% of

their dopaminergic neurones as early as three days post fertilisation [1]. To answer

fundamental questions about disease pathogenesis, dopaminergic neurones must be

counted with computer-aided intervention. However, by experimenting and searching

the literature, there is no definite clue to indicate which method is the best; how-

ever, some methods may perform well under certain constraints, e,g, certain shape,

fixed cell size, large background noise, overlapping or occlusion situations. In this

chapter, we aim to design a cell counting method for two-dimensional fluorescence

microscopy images that can operate robustly with few constraints.

The current problem with counting by detection is that it is very difficult to detect

an individual cell due to several major challenges. One common issue is that light

microscopy images contain background noise and out-of-focus light, especially in
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Fig. 5.1 Crop images from two different datasets: A: synthetic image dataset with
overlapping cells [122]. B: our zebrafish WF fluorescent image dataset.

WF microscopy images. During the imaging process, in-focus information is mixed

with out-of-focus information from regions outside the focus plane of interest. The

out-of-focus light makes the cell boundary fuzzier and makes touching cells harder

to detect.

Furthermore, cell images may vary widely, and Figure 5.1 shows two cropped

fluorescent microscopy images from two different datasets. The sizes, shapes and

contrast levels of the cells can differ significantly. Due to different imaging condi-

tions, mitosis, overlapping and touching situations, cells may appear to have different

intensity and different shape. Many researchers have recently focused on cell detec-

tion in microscopy images [65, 69, 10]. However, for our dataset, those methods

cannot produce satisfied results. The occlusion and touching situations significantly

limit the performance of detection methods.

Although many regression models with real-valued output variables have been

designed for different regression tasks, in our situation, the output value for each

cell cluster must be a non-negative integer, that represents an exact count. Poisson

and negative binomial regression can be used to solve this problem. Standard

Poisson regression was first analysed in a Bayesian interface [123]. They proposed a

closed Gaussian approximation to the posterior weight distribution using log-gamma
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distribution. Alternatively, [124] and [125] extended this approximation for crowded

pedestrian counting with low-level features extracted from segmented regions.

Even the rounding process can produce integer result with normal regression

method, but the error will become large after rounding. With the proposed method,

the error function is minimized based on integer number, and the error rate will be

reduced compared with the rounding process with normal regression method.

The RVM is a Bayesian sparse kernel technique [88] that brings a sparse solution

to the kernel-based model [126]. The sparse model avoids the principle limitations

of the kernel-based model and makes prediction performance much faster while

maintaining comparable generalisation error [88]. The original RVM model defines

a conditional distribution that follows Gaussian distribution. In this chapter, we

propose a Sparse Bayesian Poisson Regression (SBPR) model based on Bayesian

Poisson regression (BPR) and RVM regression. By changing the RVM model with

Poisson distribution, we obtain improved versions BPR or RVM that solve their

inherent limitations.

The methods in previous chapter is designed for 3D detection. The method in

current chapter is designed for cell counting in 2D fluorescence microscopy image. In

the 2D fluorescence microscopy, the neurones are gathering closer and it is not easy

to detect severe overlapping and touching condition in 2D projection images. We

also compared 2D CNN with the proposed method in this chapter, and the proposed

cell counting by regression method is more suitable for processing this kind of 2D

fluorescence microscopy images with overlapping and touching situations. Figure.

5.2 illustrates the workflow of our cell counting by regression method.
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Fig. 5.2 Workflow of the cell counting by regression method.

5.2 Segmentation with Superpixel-based Graph Cut

5.2.1 Region Segmentation with Graph Cut

The cell segmentation problem can be posed as a binary graph cuts problem. Here,

we briefly revisit the traditional graph cut segmentation framework. Assume that the

given image is a directed graph G = (P,E ) with pixels P and edges E . This graph

consists of a neighbourhood system N that contains all unordered pairs {p,q} of

neighbouring pixels in P . In this framework, the energy function is minimised to

seek the optimal labelling f ∈ {0,1}|P| for each pixel p ∈P in the image. The

standard form of the energy function is as follows:

E( f ) = λ · ∑
p∈P

Edata( fp)+ ∑
p,q∈N : fp ̸= fq

Esmooth( fp, fq), (5.1)

where λ is a positive coefficient that specifies the relative importance of the data

term Edata versus the smooth term Esmooth. Edata( fp) is the data term that evaluates

the cost of assigning label fp to pixel p:

Edata( fp) =−logPr(p| fp), (5.2)

where Pr(p| fp) is the probability that pixel p matches labels fp. Here, Esmooth( fp, fq)

is a smooth term that measures the penalty for assigning neighbour pixels p and q to

different labels:
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Fig. 5.3 Comparison of different segmentation methods. Left (first row): original
image. Middle (first row): auto-thresholding with Otsu. Right (first row): region
selection with Ilastik. Left (second row): pixel-based graph cut. Middle (second
row): superpixel-based graph cut. Right (Second row) superpixel-based graph cut
with learned probability term

Esmooth( fp, fq) =

e
−

∥∥xp− xq
∥∥

2σ2 , i f fp ̸= fq

0, otherwise

(5.3)

where xp and xq are intensity values from pixels p and q.

The total energy E( f ) in equation (5.1) can be minimized using the Max-

flow/Min-cut algorithm [129].

5.2.2 Superpixel-based Graph Cut

Pixel-wise prediction using a supervised classifier can be noisy, and predicting an

image with mega-pixels also takes significant time.
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Superpixel Generation

Several methods have been proposed to generate superpixels in image segmentation,

and such methods have been proved useful in image segmentation tasks. Here,

we use a simple linear iterative clustering algorithm (SLIC) [130] for superpixel

generation. Compared to other superpixel methods, the SLIC algorithm has its own

advantages to aggregate nearby pixels into superpixels in fluorescent images, e.g. it

is simple to use, fast, memory efficient, has only one tunable parameter, and it has

excellent boundary adherence.

In the SLIC algorithm, cluster centres are first initialised from sampling on a

regular grid. Then, the initialised centres are moved toward the lowest gradient posi-

tion in a certain distance. For each new centre, its best matching points are searched

iteratively based on intensity, colour and spatial proximity from the neighbourhood

to form temporary cluster. If new centres and previous centres are sufficiently close,

then the iteration stops. Finally, post-processing is required to enforce connectivity.

Additional details about superpixel generation using the SLIC method can be found

in the literature [130].

Graph cut, which is primarily based on image intensity, is an unsupervised

technique for image cuts and segmentation. To maintain segmentation consistency

and use rich features from superpixels, a supervised SVM classifier is trained to

predict the data term in equation (5.1). The SVM injects important information into

the probability term Pr(p| fp).

Intensity is the main difference between cell regions and the surrounding back-

ground, intensity means, variances and histograms from the superpixel are extracted.

It is important to include features that reflect the differences between cell and back-

ground regions. Therefore, features in neighbour superpixels are selected to predict

the probability term.
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5.2.3 Local Feature Extraction from Clusters

Those features are manfully selected, and those are most effective features for cell

counting by regression.

Area Size

The number of pixels in the cluster.

Intensity

Mean value, variance and intensity histogram (6-bin) in each segmented cluster.

Perimeter

Number of pixels on each segment perimeter.

Perimeter-area ratio

The ratio between segment perimeter and area.

Internal Edge Feature

The total pixel count of edges within each cluster. Note that Canny edge detection is

used to locate edges. Each pixel is weighted by the square root of its value in the

density map.

Texture Feature

Energy: total sum-squared energy, eθ = ∑i, j p(i, j|θ)2

Shape Convexity Feature

For most situations, the cell appears to be elliptical, which can be used as a prior for

elliptical object segmentation. Since segmentation with a superpixel-based graph cut
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can avoid holds in segmented regions, we only analyse the shape convexity along

the region boundary. The number of convexity defects and the convexity ratio are

recorded as a shape feature. Convexity is the ratio between the convex polygon

perimeter and the perimeter of the shape itself.

Convexity =
ConvexPerimeter

Perimeter
(5.4)

Finally, a feature vector is formed by concatenating all features into a vector,

which is then used as input to the regression module.

5.3 Sparse Bayesian Poisson Regression

The cell number in each cluster must be non-negative integer y ∈ Z+ = {0,1,2, · · ·},

which should be the output of the counting method. However, typical regression

methods are designed for problems with real-valued output variables. Bayesian

treatment for a typical Poisson regression model addresses this limitation [123–125].

Here, we modify the original RVM [88] by modeling the output variable as a Poisson

distribution, thereby resulting in SBPR.

5.3.1 Sparse Modelling

For a regression problem, given a set of example input-target pairs {xn,yn}N
n=1, the

Poisson regression model between input x and scalar target y can be described as

follows:

y∼ Poisson(λ (x)), λ (x) = e f (x) (5.5)

where λ (x) is the arrival rate (or mean of y) and f (x) is the log of the arrival rate. We

define the log of the arrival rate f (x) following the assumption in the RVM model
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[88], which typically assumes the following linearly weighted model for f (x):

f (x) =
N

∑
n=1

K(x,xn)wn,

=φφφ(x)T w

(5.6)

where w = (w1, ...,wN)
T is the weight vector of the linear model, K(x,xn) is

a predetermined basis function centred on the training sample xn, and φφφ(xn) =

[K(xn,x1),K(xn,x2), ...,K(xn,xN)]
T . Our goal is to determine a sparse solution for

the weight vector w in equation (5.6).

The output variable y is Poisson distributed; thus, the likelihood of y given observa-

tion x is:

p(y|x,w) =
1
y!

e−λ (x)
λ (x)y. (5.7)

The zero-mean Gaussian prior distribution over the weight vector w is defined as:

p(w|ααα) =
N

∏
i=0

N (wi|0,α−1
i ), (5.8)

with ααα a vector of N hyperparameters. We define A = diag(α1, ...,αN).

5.3.2 Bayesian Poisson Regression Inference

Having defined the prior, the posterior distribution over the weight w is given by:

p(w|X ,y) =
p(y|X ,w)p(w)∫

p(y|X ,w)p(w)dw
∝ p(y|X ,w)p(w) (5.9)

where X = [x1, ...,xN ] is the matrix of observed input vectors xi, and y = [y1, ...,yN ]
T

is the vector of the corresponding output yi. In equation (5.9), we are forced to adopt

some approximation due to the lack of conjugacy between the Poisson likelihood

and the Gaussian prior. We follow a procedure that approximates a log-gamma

distribution with a Gaussian distribution [123–125].



5.3 Sparse Bayesian Poisson Regression 110

Given a Gamma random variable µ ∼ Gamma(a,b),

p(µ|a,b) = 1
γ(a)ba µ

a−1e−
µ

b . (5.10)

The random variable ν = log µ has a log-Gamma distribution ν ∼ LogGamma(a,b).

For a large a, the log-gamma distribution is approximately Gaussian:

p(ν |a,b) = 1
γ(a)ba eν(a−1)e−

eν

b

≈N (ν | loga+ logb,a−1).

(5.11)

From equation (5.7) (5.11), we can obtain:

p(y|X ,w)

=
N

∏
i=1

[
e f (xi)(yi+c)e−e f (xi)

Γ(yi + c)

]
e−c f (xi)

Γ(yi + c)
yi!

≈
N

∏
i=1

[
N ( f (xi)| log(yi + c),(yi + c)−1)

]
e−c f (xi)

Γ(yi + c)
yi!

,

(5.12)

where f is log-Gamma distributed with f ∼ LogGamma(y+ c,1), which can be

approximated by a Gaussian N ( f | log(y+ c),(y+ c)−1) [123]. As λ (x) = e f (x), λ

is approximately Gamma distributed.

Substituting into equation (5.9),

log p(w|X ,y) ∝ log p(y|X ,w)+ log p(w)

≈−1
2
∥ΦΦΦT w− log(y+ c)∥2

ΣΣΣy
− c1T

ΦΦΦ
T w− 1

2
∥w∥2

A−1

∝−1
2
∥(w− µ̂µµw)∥2

Σ̂ΣΣw
+

1
2

mT
Σ̂ΣΣ

T
wm

(5.13)

Then, the posterior distribution is approximately Gaussian

p(w|X ,y)≈N (µ̂µµw, Σ̂ΣΣw) (5.14)
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with mean and covariance

µ̂µµw = (ΦΦΦΣΣΣ
−1
y ΦΦΦ

T +A)−1m,

Σ̂ΣΣw = (ΦΦΦΣΣΣ
−1
y ΦΦΦ

T +A)−1,

(5.15)

where ΣΣΣy = diag[ 1
y1+c ...

1
yN+c ], m = ΦΦΦΣΣΣ

−1
y (log(y+c)−cΣΣΣy1), c is a constant (c≥ 0),

ΦΦΦ is the N×N symmetrical matrix with ΦΦΦ = [φφφ(x1), ...,φφφ(xN)], wherein φφφ(xn) =

[φ1(xn),φ2(xn), ...,φN(xn)]
T with φi(xn) = k(xn,xi).

Given a new observation x⋆, the predicted log-arrival rate f⋆ = φφφ(x⋆)T w will approx-

imately follow a Gaussian distribution with p( f⋆|x⋆,X ,y)≈N (f⋆|µ̂µµ f , σ̂
2
f ), where

µ̂µµ f = φ(x⋆)T
µ̂µµw

σ̂2
f = φφφ(x⋆)T

Σ̂ΣΣwφφφ(x⋆)
(5.16)

The new prediction distribution for y⋆ is

p(y⋆|x⋆,X ,y) =
∫

∞

0
p(y⋆| f⋆)︸ ︷︷ ︸ p(λ |x⋆,X ,y)︸ ︷︷ ︸dλ⋆.

Poisson Gamma
(5.17)

The Gamma distribution is conjugate prior for Poisson likelihood, thus, the

predictive distribution of y⋆ can be approximated as a negative binomial distribution

[124, 125]:

y⋆|x⋆,X ,y∼ NegBin(eµ̂µµ f , σ̂2
f ) (5.18)

5.3.3 Optimising Hyperparameters

Updating Hyperparameters

The optimal values α̂αα of the hyperparameters, given a training set {X ,y}, can be

found by type-II maximum likelihood [127], which maximises the marginal likelihood
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as follows:

α̂αα = argmax
ααα

log p(y,X |ααα), (5.19)

where

p(y,X |ααα) = p(y|X ,ααα)p(X) ∝ p(y|X ,ααα)

=
∫

p(y,w|X ,ααα)dw

=
∫

p(y,X |w)p(w|ααα)dw

≈
∫ N

∏
i=1

[
N ( f (xi)| log(yi + c),(yi + c)−1)

]
· e−c f (xi)

Γ(yi + c)
yi!

N

∏
i=0

[
N (wi|0,α−1

i )
]

dw

=
∫ e−

1
2∥ΦΦΦw−log(y+c)∥2

ΣΣΣy−c1T ΦΦΦw

(2π)
N
2 |ΣΣΣy|

1
2

· e−
1
2∥w∥

2
A−1

(2π)
N+1

2 |A−1| 12
dw

N

∏
i=1

Γ(yi + c)
yi!

(5.20)

Then, the marginal log-likelihood can be approximated as

log p(y,X |ααα)

∝

∫
−1

2
∥w− µ̂µµw∥2

Σ̂ΣΣw
dw+

1
2

mT
Σ̂ΣΣ

T
wm− 1

2
log |A−1|

(5.21)

The marginal likelihood can be approximate as:

p(y|X ,ααα) ∝
|Σ̂w|

1
2

|A−1| 12
e

1
2 mT Σ̂ΣΣ

T
wm (5.22)

Then, we can get the objective function

L (ααα) = log p(y,X |ααα) ∝
1
2
(log |Σ̂ΣΣw|− log |A−1|+mT

Σ̂ΣΣ
T
wm). (5.23)
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By differentiation for ααα and equating to zero, it gives

∂L (ααα)

∂αi
∝

∂

∂αi
(log |Σ̂ΣΣw|− log |A−1|+mT

Σ̂ΣΣwm)

=−Tr(Σ̂ΣΣw
∂ (A)

∂αi
)+Tr(A−1 ∂A

∂αi
)

−mT
Σ̂ΣΣw

∂ (A)

∂αi
Σ̂ΣΣwm

=−Σ̂ΣΣwii +
1
αi
− µ̂µµwi

= 0

(5.24)

where B = ΦΦΦΣΣΣ
−1
y ΦΦΦ

T , Σ̂ΣΣwii is the i-th diagonal element of the posterior weight covari-

ance, and µ̂µµ
2
wi

is the i-th posterior mean weight from equation (5.15). Then, we can

obtain the new αi:

α
new
i =

1

Σ̂ΣΣwii + µ̂µµ
2
wi

(5.25)

By giving an initial value for ααα , the mean and covariance of the posterior can be

evaluated using equation (5.15). Then ααα can be re-estimated using equation (5.25),

and the posterior mean and covariance can be re-estimated using equation (5.15),

until a suitable convergence criterion is satisfied. When hyperparameter αi is driven

to large values, the weight parameters wi has posterior distribution with zero mean

and variance. Then, the corresponding basis function φi(x) is removed to make the

entire model sparse. Although this update method is guaranteed to locally maximize

the marginal likelihood, the process is inefficient. Based on [128], faster marginal

likelihood maximization is used to estimate hyperparameters in SBPR.
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Faster marginal likelihood maximization

From equation (5.23), the marginal log-likelihood can be approximated as follows:

L (α) ∝
1
2
(log |Σ̂ΣΣw|− log |A−1|+mT

Σ̂ΣΣ
T
wm)

∝−1
2

log | ΦΦΦΣΣΣ
−1
y ΦΦΦ

T +A|+ 1
2

log |A|+ 1
2
(tT

ΣΣΣ
−1
y ΦΦΦ

T
Σ̂ΣΣ

T
wΦΦΦΣΣΣ

−1
y t− tT

ΣΣΣ
−1
y t)

=−1
2

log(|A||ΣΣΣ−1
y ||ΣΣΣy +ΦΦΦ

T A−1
ΦΦΦ|)+ 1

2
log |A|− 1

2
tT (ΣΣΣy +ΦΦΦ

T A−1
ΦΦΦ)−1t

=
1
2

log |ΣΣΣy|−
1
2

log |ΣΣΣy +ΦΦΦ
T A−1

ΦΦΦ|− 1
2

tT (ΣΣΣy +ΦΦΦ
T A−1

ΦΦΦ)−1t

∝−1
2

log |C|− 1
2

tT C−1t,
(5.26)

where
C = ΣΣΣy +ΦΦΦ

T A−1
ΦΦΦ,

t = log(y+ c)− cΣΣΣy1.
(5.27)

By pulling out the contribution from αi [128], C in equation (5.27) can be decom-

posed as:

C = ΣΣΣy +∑
j ̸=i

α
−1
j ΦΦΦ jΦΦΦ

T
j +α

−1
i ΦΦΦiΦΦΦ

T
i

= C−i +α
−1
i ΦΦΦiΦΦΦ

T
i

(5.28)

where ΦΦΦi denotes the ith column of ΦΦΦ and C−i denotes the matrix C with the

contribution from basis function i removed. We can then express the marginal

likelihood with basis function ΦΦΦi omitted as follows:

L (ααα) ∝−1
2

log |C|+ tttT C−1ttt

=−1
2

log(|C−i||1+α
−1
i ΦΦΦ

T
i C−1
−i ΦΦΦi|)−

1
2

tT C−1
−i t

+
1
2

tT C−1
−i ΦΦΦiΦΦΦ

T
i C−1
−i

αi +ΦΦΦ
T
i C−1
−i ΦΦΦi

t

= L (α−i)+ξ (αi),

(5.29)
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where L (α−i) is the marginal log-likelihood with basis function ΦΦΦi omitted and

ξ (αi) is defined by:

ξ (αi) =
1
2

(
log

αi

αi + si
+

q2
i

αi + si

)
(5.30)

where

si = ΦΦΦ
T
i C−1

i ΦΦΦi, qi = ΦΦΦ
T
i C−1

i t. (5.31)

To find the maximum of function LLL(ααα) with respect to αi, the first derivative of

the function is set to zero.

∂L (ααα)

∂αi
=

1
αi
− 1

αi + si
− q2

(αi + si)2 = 0. (5.32)

This results in several stationary points by solving equation (5.32). Note that

there are two possible solutions. If q2
i < si, then αi = ∞. If q2

i > si, then αi can be

obtained from equation

αi =
s2

i

q2
i − si

. (5.33)

In practice, it is convenient to use matrix identity equations that

si =
αiQi

αi−Si
, qi =

αiSi

αi−Si
, (5.34)

where

Si = ΦΦΦ
T
i ΣΣΣ
−1
y ΦΦΦi−ΦΦΦ

T
i ΣΣΣ
−1
y ΦΦΦΣ̂ΣΣwΦΦΦ

T
ΣΣΣ
−1
yyy ΦΦΦi,

Qi = ΦΦΦ
T
i ΣΣΣ
−1
y t−ΦΦΦ

T
i ΣΣΣ
−1
y ΦΦΦΣ̂ΣΣwΦΦΦ

T
ΣΣΣ
−1
y t.

(5.35)

This practical algorithm provides significant speed advantage when updating

hyperparameters [128] and determines whether each candidate basis vector should
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be included in the model. The entire process of the SBPR algorithm is described in

Algorithm 4.

Algorithm 4 Sparse Bayesian Poisson regression
Initializations ααα = ∞

Iteration
1) Compute µ̂µµw and Σ̂ΣΣw using equation (5.15).
2) Compute si and qi using equation (5.34) for all basis functions.
3) Find a candidate basis function Φi that can yield

the maximum increase in L (ααα) (equation (5.29)).
4) If q2

i > si and αi < ∞, Φi will already be in the
model. Then, update αi using equation (5.33).

5) If q2
i > si and αi = ∞, then add Φi to the model

and evaluate αi using equation (5.33).
6) If q2

i 6 si and αi < ∞, then remove Φi from the
model and set αi = ∞.

7) If converged, terminate; otherwise return to 1).
Output µ̂µµw, Σ̂ΣΣw and ααα

5.4 Experiments and Evaluation

The proposed cell counting approach was tested using two different datasets.

5.4.1 Cell Counting Datasets

Synthetic Bacterial Cells Dataset

The first experiment was performed using a synthetic bacterial cell fluorescence

microscopy image dataset [87] generated using [122]. This dataset contains 200

images with an average of 174±64 cells per image.

Real Dataset

The real dataset is a zebrafish image dataset that contains 40 images with an average

of 38±7 cells per image obtained from 40 different zebrafish embryos scanned using

a spinning disc confocal microscope. The objective has 20 times magnification and
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a numerical aperture of 0.8. The resolution is 2.9004 pixels per micron. The size of

the images is 1000*1000.

Table 5.1 Comparison result of relevant methods for zebrafish dataset with fixed size
training vectors. The ’Vector’ column shows how many feature vectors are used for
training and the ’Used’ column is the number of relevant feature vectors used for
testing. The root-mean-square-error for vectors (RMSE/Vector), and mean-absolute-
error for images (MAE/Image) were evaluated using 100 test images.

Methods #Vector #Used RMSE/Vector MAE/Image
SVR 2458 2458 0.51 4.2
GPR 2458 2458 0.39 4.1
BPR 2458 2458 0.38 3.9
RVM 2458 1038 0.36 3.6
SBPR 2458 256 0.33 3.4

Table 5.2 MAE for cell counting with the test set from synthetic cell dataset. Several
state-of-the-art cell counting methods were evaluated with different numbers of
training images. In the last six columns, N is the number of images used in the
training set. Standard deviations correspond to five different draws of training image
sets.

Methods N = 1 N = 2 N = 4 N = 8 N = 16 N = 32
Image Level Ridge Regression [87] 60.4±16.5 38.7±17.0 18.6±5.0 10.4±2.5 6.0±0.8 5.2±0.3
Ilastik [86] 20.9±2.6 12.4±1.5 11.0±0.9 8.2±0.7 7.5±0.5 6.3±0.3
SVM + SIFT Detection [87] 20.8±3.8 20.1±5.5 15.7±2.0 15.0±4.1 11.8±3.1 12.0±0.8
Density MESA [87] 9.5 ± 6.1 6.3±1.2 4.9±0.6 4.9±0.7 3.8±0.2 3.5±0.2
Fully Convolutional Regression Networks [85] N/A N/A N/A 4.1±0.5 3.7±0.3 3.3±0.2
Ridge-Regression (No smooth)[84] 13.8 ± 3.6 11.3±3.1 10.6±2.3 9.9±0.7 10.6±1.1 10.2±0.4
Ridge-Regression [84] 9.6±5.9 6.4±0.7 5.5±0.8 4.5±0.6 3.8±0.3 3.5±0.1
SBPR (Proposed) 9.0±3.7 5.6±1.0 4.3±0.7 4.1±0.5 3.6±0.3 3.3±0.1

5.4.2 Experimental Setup

Each dataset was split into training sets and testing sets. For the synthetic bacterial

cell dataset, we followed the experimental setting in literature [87]. The entire

dataset was divided into two groups with 100 images in each group for training and

testing. Different training sizes can affect the final result significantly; thus, different

numbers of training images were tested. In the training procedure, between 1-32

images were selected randomly from the training set, and the procedure was repeated

for five different sets.
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Five-fold cross-validation was used to evaluate the proposed method with the real

zebrafish cell dataset. The dataset contains two different types of zebrafish embryos,

i.e. wild-type and PINK1 type zebrafish, and each type has 20 images. Typically,

the number of dopaminergic neurones in the PINK1-type should be less than that

of the wild-type zebrafish. Even though there are only a few number of images in

this dataset, an additional experiment was performed to determine whether this type

of reduction can be detected between two different types of images. We manual

labelled centre pixels of the cells in each image.

Accuracy was evaluated by RMSE = 1
M ∑

M
i=1(ĉi− ci)

2 and MAE = 1
N ∑

N
i=1 |ĉi−

ci|, where ci and ĉi are the true and estimated counts, M is the number of vectors

and N is the number of images. Note that performance is strongly affected by the

selected features, different subsets of features were tested, including area features

Fa, intensity-based features Fi, parameter-based features Fp, edge-based features

Fe, texture features Ft , shape-based features Fs, area and shape feature Fas, and a

full set of features F f ull .

Fig. 5.4 The interactive interface.
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The Figure. 5.4 illustrates the interface of the interactive cell counting software.

Users need to draw labels in two different colors on the loaded image, for examples,

drawing red lines on the background and green line on the cell regions. Then, the

cell region will be automatic segmented based on user inputs with superpixel based

graph cut method. For each segmentation region, the proposed method will estimate

the number of cells in each isolated blue region.

5.4.3 Results with Synthetic Bacterial Cell Dataset

Comparison with Relevant Methods

Fig. 5.5 Typical results for synthetic dataset.

As shown in Table 5.1, the proposed and relevance methods were evaluated using

the synthetic dataset. The feature vectors and corresponding count numbers were

collected for training and testing. In total, 2458 feature vectors from the first 32

images in the training set were used for training, and 7179 feature vectors were
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collected from all 100 test images. RMSE for vectors and MAE for images were

calculated.

Comparison with Other Methods

Table 5.2 shows a comparison with previous state-of-the-art methods with the

synthetic cell dataset. Lempitsky and Zisserman [87] introduced a counting-by-

regression method by optimising loss based on the MESA distance. Arteta et al.

[84] first enabled interactive counting with ridge-regression, and Fiaschi and Nair

[86] used an ensemble of randomised regression trees to estimate the object density

map. An open source implementation is provided in the Ilastik framework [14].

Three different features (intensity, edge, and texture) with fixed sizes around dot

annotations can be selected to train a random forest. However, this framework only

enables users to count dot-like objects with very similar appearance. To ensure that

the real number estimates are close to the true count, users must manually label the

centres of most objects in the images to collect sufficient training data. Xie et al.

[85] applied CNNs to regress cell spatial density across an image. Although a deep

learning technique has been applied to cell counting, a final detection process is

required to find the local maxima in the density map as the locations of cells. There

are some drawbacks to find local maxima in a density map with noise, such as smooth

kernel parameters. In addition, thresholding should be selected manually. As a result,

several maxima may be found in a single cell region, and the overlapping situation

can reduce accuracy significantly. The proposed method considerably outperforms

previously proposed state-of-the-art approaches for all training set sizes.

Figure 5.5 shows five typical results selected from 100 test images. The blue

regions are cell regions segmented by the superpixel-based interactive segmentation

method. In each isolated region, the ground truth count number and the predicted
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integer number are shown in red and separated by ’/’. As can be seen, the predicted

results are very close to the ground truth numbers.

5.4.4 Results with Zebrafish Dataset

We tested the proposed method with different segmentation methods, including the

’Otsu’ auto-segmentation method [116], pixel-based graph cut [131], superpixel-

based graph cut and our modified superpixel-based graph cut. The results shown in

table 5.3 demonstrate that the proposed method can generate more precise results than

other methods, such as pixel-based graph cut and auto thresholding segmentation

method. It indicates that, for this real dataset, area, perimeter and shape features are

more useful compared to other features.

Table 5.3 RMSE and MAE comparison with different feature vectors

SBPR RMSE MAE
Features Auto Pixel-GC SP-GC Auto Pixel-GC SP-GC
F_a 1.56 1.12 0.98 10.5 8.5 6.8
F_i 2.13 1.45 1.23 23.6 13.6 10.1
F_p 1.92 1.78 1.04 15.3 8.3 7.3
F_t 1.81 1.49 1.36 19.4 13.4 12.3
F_s 1.76 1.34 1.12 16.5 11.5 9.6
F_as 1.45 0.97 0.72 8.3 8.3 5.2
F_full 1.32 0.78 0.54 9.7 5.2 2.3

Table 5.4 RMSE and MAE comparison of different methods with real dataset.

Methods RMSE MAE
Ilastik [14] - 50.6±10.7
MINS [118] - 5.1±1.3
CellDetect [132] - 12.5±5.6
GPR-rr 0.65 3.1±0.2
BPR 0.58 2.7±0.1
SBPR 0.54 2.3±0.1

RMSE and MAE comparison of different methods with real dataset is shown

in Table 5.4. The results demonstrate the proposed method can generate smallest

error by calculating RMSE and MAE with different software and relevance methods.
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Fig. 5.6 Bland-Altman plot of counts by two experts.

Fig. 5.7 Total count number of two types (PINK1 and wild-type). Blue and red bars
are counts by two different experts, and green and purple bars are counts by proposed
method trained with a ground truth counted by a corresponding expert.

Figure 5.6 shows a Bland-Altman plot, which is a method to evaluate agreement

among two different measurements. The mean difference is the estimated bias and

the SD of the differences measures random fluctuations around this mean. It is

common to compute 95% agreement limits for each comparison (average difference

±1.96 × standard deviations), which indicate how far apart measurements by two

methods are likely to be for most individuals. This figure shows that all points lay

in the two boundaries, which indicates that these two measurements have strong

agreement. As can be seen in Figures 5.6 and 5.7, the reduction of dopaminergic

neurones in the PINK1 type images could be detected the proposed method.
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Fig. 5.8 Comparison of different methods for zebrafish data.

5.5 Conclusions

We presented an interactive counting method to solve the cell counting problem by

regression in fluorescent microscopy images. In addition, a novel SBPR method

based on the RVM framework was proposed. The proposed method integrates a

superpixel-based graph cut method for cell region segmentation. SBPR can generate

an accurate and discrete number of cells in each cluster and can use significantly

fewer relevance vectors for testing, which reduces overall computational cost. Note

that the proposed framework is easy to train and use. The proposed method was

compared to different state-of-the-art methods, and the results show that it has great

potential for counting objects in different types of microscopy images.



Chapter 6

Conclusion and Future Work

As conventional and convenient instruments, light microscopes are used in many

different fields. With current technology, it will possible to produce high-resolution

large-scale images using high-throughput imaging techniques without human in-

teraction. However, it becomes impossible for a human operator to process all

images to obtain relevant and useful information; thus, computational image analysis

methods and computer-aided interventions are required. In this thesis, we have

focused on methods and software for PD research. Methods and software have

been explored for specific problems in light microscopy zebrafish image analysis,

including deconvolution/deblurring, object/feature detection and object counting.

6.1 Conclusions and Discussions

In Chapter 3, a deconvolution method with maximum a posteriori was introduced

for three-dimensional widefield fluorescence microscopy zebrafish images. In the

deconvolution framework, a global sparse prior with Hyper-Laplacian distribution

and a local mask were applied for removing out-of-focus light and reducing the

ringing artefacts, respectively. With the proposed method, non-blind and blind

deconvolution processes were tested with several datasets, including synthetic and



6.1 Conclusions and Discussions 125

real fluorescence microscopy dataset. By comparing with different existing state-

of-the art methods and softwares, it illustrated the proposed method can produce

comparable results. However, there are also some drawbacks of using the proposed

method. One drawback is the parameter should be manually tuned. During the blind

deconvolution, the final result can be sensitive to the estimated initial point spread

function.

In Chapter 4, we have presented three different parts for neurone detection in

zebrafish z-stack images, including neurone detection using support vector machine

with hand-crafted features, neurone detection with 2D convolutional neural network,

and neurone detection with a high-throughput automatic framework.

In the first section, we manually extracted many different features, including LBP,

HOG, LBP+HOG, HOG3D, colour histogram, SIFT, and colour SIFT features, from

the neural images to detect one specific type of neurone. We have demonstrated cell

detection results obtained using these different features with a basic SVM detector.

Although these handcrafted features do not work particularly effectively, we know

that colour is the most important feature and it performs the best with the colour

SIFT feature.

In the second section, an automatic deep-learning-based cell detection approach

for light microscopy zebrafish z-stack images was introduced. The results demon-

strate that the proposed framework has potential for 3D cell detection and outper-

forms techniques based on hand-crafted features.

In the final section, a high-throughput automatic method based on detection to

solve the problem of dopaminergic cell counting by detection in a zebrafish model

of PD using TH-labelled neurones in WF microscopy 3D z-stack RGB images. A

dynamic cascade framework was used to solve the class-imbalanced problem when

training deep learning architectures by combining SVM-RGBHist, a 2D CNN and a

3D-MC-CNN to capture the unique 3D blurry structure of TH-labelled neurones.
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The cascade framework can reduce the searching region rapidly in three stages

and predict the ’hardest’ candidates using a final 3D-MC-CNN deep structure to

locate the centre of the neurone. Our zebrafish dataset has been published so that

further research can have a benchmark for comparison. Our experimental results

demonstrate that, using our dataset, the proposed method has potential for 3D cell

detection and counting and outperforms other methods using our dataset. The

proposed cascade framework can find ’hard examples’ for progressive classification

using three different models. Moreover, the 3D-MC-CNN model has more power to

classify 3D light microscopy images than 3D CNN or 2D CNN models. The deep

neural network algorithm performed better than handcrafted features with a linear

SVM. Furthermore, the results demonstrate that even deep learning architectures

can learn important high-level features automatically; however, performance can be

limited by the method used to select training data from a dataset with large variance.

However, there are still some false positives and false negatives based on human

counting criteria. There are two situations that may influence the final results. First,

human counting criteria are subjective and some TH-labelled neurones are very

ambiguous. For example, if a neurone is stained too lightly, it may not be counted

by experts. Second, the quality of a test image can also influence the accuracy of

the final result. If the quality is too low, multiple neurones may be gathered and

recognised as a single neurone due to out-of-focus light.

In Chapter 5, to count cells in desired regions of two-dimensional fluorescence

microscopy images, a interactive counting by density regression framework was

proposed. Superpixel-based graph cut technique was used to select cell regions with

user inputs. In the framework, a novel SBPR regression method was designed to

estimate the number of cells in each isolated selected region. The proposed method

was tested with one synthetic fluorescence microscopy dataset and one real zebrafish

fluorescence microscopy dataset. Compared to other state-of-the art methods and

softwares, the result shows that the proposed method has its own potential to count
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cells in low-quality fluorescence microscopy images with severe cell overlapping

situations. One advantage is that users can select the region by themselves, which

makes our software more user-friendly. Furthermore, the proposed sparse Bayesian

Poisson regression not only can produce discrete integer counting number, but it also

can produce sparse model to make the prediction performance much faster.

6.2 Suggestions for Future Work

To improve and extend the discovery of this thesis, some potential future work will

be summarised based on methods and applications in each chapter.

For the 3D deconvolution method in Chapter 3, potential future work can be

developed based on several aspects. For the first aspect, to avoid manually tuning

parameters, methods with self-adaptive parameters can be explored. Further, as

the proposed method is designed for fluorescence microscopy image, the future

work is to extend the deconvolution method to process different modalities of light

microscopy images, such as brightfield images and RGB optical sections. In this area,

blind deconvolution techniques are not fully explored, which makes more possibility

for further improvement and development. For the deconvolution software, we have

implemented software with MATLAB. To improve the usability and computational

speed, the software can be rewritten using c++ and CUDA computing with GPU

acceleration.

For cell detection method in Chapter 4, future work can focus on evaluating

the proposed approach using two observers’ label information and comparing it

with other state-of-the art approaches and programmes. Further, to explore the

usability of proposed method, other similar three-dimensional dataset can be tested.

For the zebrafish dataset, it is quite possible to obtain z-stack images with higher

quality using modern high-throughput microscopy screening techniques. For the cell

detection implementation, the optimization can be improved.
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For cell counting by regression method in Chapter 5, the future work will focus

on developing more powerful shape features for cell counting by regression methods

in fluorescence microscopy images. The method can be directly extended to 3D and

tested with large-scale 3D datasets. Furthermore, deep learning regression can be

a good direction for cell counting in whole images. Currently, most deep learning

detection and regression method is based on patches. Image based training procedure

is more convenient and efficient for regression task. For the cell counting software, a

Windows version is finished and delivered to neuroscientists, and a Mac version is

considered for development.

Even though the initial goal of our proposed methods is to process zebrafish

microscopy images for PD research, our proposed methods have potential to be

used for other purposes, e.g. our deconvolution method can be used in the telescope

and natural images; the cell detection method can be used for a significant step

of pedestrian/cell tracking in videos; the counting software can be used for more

complex object counting in natural images.
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