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ABSTRACT

The ability to provide accurate forecasts of future gas demand has a major impact on

several business processes for Gas Regions in the UK and elsewhere in the world. Long

term forecasts provide the guidance for major structural needs, while short term forecasts

guide the operations management on requirements of supply purchase, supply storage and

delivery. Accurate forecasts guarantee optimum and safe gas supply at the lowest cost.

Currently there is no single technique that produces the perfect forecast, this research

will attempt to improve on current methods by applying Non-Linear techniques. The tech-

nique to be tested is defined as ”Non-Linear Autoregressive Moving Average with eXo-

geneous Inputs, polynomials, and a Forward Regression with Orthogonal Least Squares

estimation procedure”.

The goal of the research is is to produce a Mean Average Percentage Error of between

4-6% or better, which was proposed by DNV GL (supplier of software for the Gas Industry),

as a valid level of error to make any new methodology of value.
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Chapter 1

INTRODUCTION TO THE RESEARCH

PROJECT

1.1 Hypothesis

The ability to provide accurate forecasts of future gas demand has a major impact on several

business processes for Gas Regions in the UK and elsewhere in the world, e.g. Shaikh and

Ji (2016); Szoplik (2015); Brabec et al. (2015); Zhu et al. (2015); Khan (2015); Potocnik

et al. (2014); Karimi and Dastranj (2014); Taspinar et al. (2013); Pang (2012) and Demirel

et al. (2012).

The efficient operation of the gas supply network relies on accurate knowledge of the

availability of supply and the characteristics of demand. Assessment of these parameters

in the long term enables the planning of grid expansion, together with the investigation

of the location and size of storage capabilities which will be needed for supply security.

Short term demand analysis facilitates grid control action to follow the demand profile

by provision of adequate gas pressures and storage even though the network may be near

maximum transportation capacity. Failure to meet a demand will lead to loss of revenue and

could result in dangerous operating conditions. A technique which enables the automatic

calculation of accurate demand predictions over both long term and short term periods is

of considerable assistance and importance in grid control.

This thesis is rather unusual, as the initial research was started in 1971, as a post-

graduate student in the Control Engineering Department at Sheffield University, under the

supervision of Dr. M.J.H. Sterling. At that time, the research applied the linear mod-

eling techniques Autoregressive Integrated Moving Average (ARIMA) and Autoregressive

Integrated Moving Average with eXogeneous Inputs (ARIMAX) (Box and Jenkins, 1970)
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to short term gas demand modeling and forecasting. The ARIMA/ARIMAX methodology

was in its infancy in the 1970s.

A paper written in 1984, (Lyness, 1984), clearly states the reasons and examples, for

improved forecasting techniques to help in the different time periods of forecasting for the

Gas Industry. These reasons (cost and security of supply), which were relevant then, are

still relevant today.

The aim of this thesis is to apply Non Linear techniques specifically Non-Linear Au-

toregressive Integrated Moving Average with eXogeneous Inputs (NARIMAX), polynomials,

and a Forward Regression with Orthogonal Least Squares (FROLS) estimation procedure

to data from specific gas regions. The data comes from several gas regions in the UK from

the periods 1963-1975 and 2001-2011. The thesis will compare the results of the 2 tech-

niques (ARIMA/ARIMAX and NARIMAX) to data sets from these two time periods. Note:

In all cases the data will be transformed to stationarity prior to modeling and forecasting,

hence the naming convention for the modeling and forecasting throughout this thesis will be

ARMA(X) and NARMA(X), i.e. the ”I” for Integration is performed outside the modeling

process.

Also over the last 40 years, the UK gas market has gone through major changes. Before

1986, the gas market, in the UK, was owned and managed by British Gas, a government run

utility. All the forecasting tools used by the various gas regions were developed in house

either in the region or at the British Gas Research and Development Center in London

(Note: This was my initial employer and my work focus after leaving Sheffield University

in 1973). In 1986, British Gas was privatized and British Gas Research and Development

Center later became Advantica in the 1990‘s (supplying the gas regions with Forecasting

Tools and Services), before being purchased by GL Denton in 2007 and merging with DNV

to become DNV GL in 2013. DNV GL‘s forecasting applications are still supplied to many

of the Gas Regions in the UK, as well as to other parts of the world.

Over the years a number of forecasting tools have been developed, from simple linear

models (exponential smoothing, simple regression and ARIMA models) to more complex

non-linear models (Neural Networks and Fuzzy Logic). Several of these models make up

the DNV GL Suite of Forecasting Tools (including ARMA(X)) today.
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During the first year of this work, contact was made with DNV GL, who described

their history, confirmation of which techniques (over the last 40 years) have been particularly

applicable and useful to the subject of short term forecasting, and the tools/methods they

have implemented as well as those they researched but did not implement. Their philosophy

is that no single tool can provide the exact forecast, and so they have implemented a suite

of programs which they aggregate to produce their short term forecasts (within day, daily

and weekly). This has been mentioned in two papers, (Armstrong, 2005; Perchard and

Whitehand, 2000), as a methodology for Short Term forecasting accuracy.

When discussing the hypothesis, below, with DNV GL (which they have not imple-

mented or researched), they believe it has advantages and possibilities. To this end they

supplied ten years of hourly supply and temperatures data for four UK regions. They have

also confirmed that forecasting errors in the regions of 4-6% (or better) would make the

research of potential commercial value.

Thus the hypothesis for this thesis is: ”Non-Linear Modeling of Gas Demand and

Temperature using Polynomial Autoregressive Moving Average with eXogeneous Inputs

(NARMAX) models, and Forward Regression with Orthogonal Least Squares (FROLS)

estimation procedure can produce as good or better forecasts than the traditional linear

Autoregressive Moving Average with or without eXogeneous Inputs (ARMAX/ARMA)

modeling techniques for short term forecasts in the Gas Domain”.

This hypothesis will be measured by:

1. The Mean Average Percentage Error (MAPE) being equivalent or better

2. Models using the NARMAX methodology are similar or simpler

3. Non Linear terms add value to the forecast output

The results will be compared to my original work done using the ARMA/ARMAX

models, as well as testing with the new data provided by DNV GL. The goal is to produce

forecasts in the region of 4-6% error or better when compared to the actual demands of the

comparison year. The main error calculation will be the MAPE as used by DNV GL to

compare the accuracy of their forecasts (although other statistics will be used to measure

bias and variance).
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Note: DNV GL use rules on special days to adapt to variations in demand, e.g. Sum-

mer, Weekends, Bank Holidays, Christmas Day etc. They do this using the knowledge of

the historical environment, as the modeling techniques do not have sufficient data to model

or forecast the results automatically. However, these ”knowledge rules” have NOT been

included to the work in this thesis, hence the results could potentially be improved if these

rules were applied.

Polynomial NARMAX and FROLS optimization is a well established methodology;

however applied to the problem of Short Term Gas Demand modeling there are several

reasons and potential benefits which make it an interesting research topic:

1. The number of parameter combinations (terms) can be extremely large. An

exhaustive search process of selection would be impossible, and hence the

methodology provides a very structured approach to the term selection pro-

cess. The potential parameters are:

(a) Past demand. Previous research (Antcliffe et al., 1975a,b,c,d) and (Per-

chard and Whitehand, 2000) has shown that the previous four days

influence the current day, as well as a week ago, a month ago and pos-

sibly a year ago. This was true at the time of the original research and

has been confirmed also by DNV GL.

(b) Temperature. The impact of temperature on demand has been apparent

for decades, e.g. Antcliffe et al. (1975a,b,c,d); Perchard and Whitehand

(2000); Fischer (2010); Geen (2012) and Abiodun (2012). However, the

number of temperature combinations is very large, the average (and

there are several possible averages – daily average, morning average,

evening average etc), the max and min, and temperatures at specific

times of the day; as well as the previous days’ values of all of the above,

hence adding to the total number of terms.

(c) Wind speed, Precipitation and Cloud Cover. These are secondary fac-

tors, which can be added later to improve the model.
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(d) Demographic data, Gas Price and Electricity price also affect the de-

mand.

2. Compared to ARMA/ARMAX modeling, the term selection is helped greatly

by the FROLS algorithm which selects the most important terms, in order

of ”value added” to the system output.

3. It is well known in the Gas Industry (Piggott, 2003) that there are interacting

effects; hence the methodology of combinations of parameters is an already

accepted concept.

4. The relationship between demand and the influencing variables (weather and

economic) is non-linear (Geen (2012) and Abiodun (2012)).

5. Few publications covering the combination of NARMAX methodology with

polynomials applied to the Gas and Electricity Demand forecasting problem

have been written. This will be covered in the detailed literature review

Section 2.

6. DNV GL are very interested in the results of the research.

1.2 Document Research Summary

In setting up the document review, the search terms described in Appendix A.1 were used

to find articles related to Gas or Electricity Demand Forecasting. Additionally, the journals

and sites searched are listed in Appendix A.2.

As a summary of the document search for Gas Demand modeling and forecasting, the

following modeling techniques were found: ARMA/ARMAX modeling is still used today

(Potocnik et al., 2014; Taspinar et al., 2013; Siddique, 2013; Demirel et al., 2012; Akkurt

et al., 2010). Artificial Neural Network (ANN) techniques have had a lot of focus and

application (Szoplik, 2015; Yu and Xu, 2014; Karimi and Dastranj, 2014; Taspinar et al.,

2013; Siddique, 2013; Demirel et al., 2012) together with Support Vector Machines (Zhu

et al., 2015; Zhang et al., 2011; Hanand et al., 2004). Fuzzy Logic/Neuro Fuzzy Systems

(Azadeh et al., 2010), Genetic Algorithms (GA) optimization (Yu and Xu, 2014; Karimi and
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Dastranj, 2014; Forouzanfar et al., 2010), Expert Systems (Smith et al., 1996), and Case

Based Reasoning (Smunek and Pelikan, 2008) have also had some focus in the Demand

Forecasting area with more of less success. NARMAX with ANN models have had some

focus in the Electricity Load Demand area (Vajk and Hetthessy (2005), and Lee (2002)),

but little work has been done using polynomials. From the literature research, Polynomial

NARMAX has not been applied, so far, to the Gas Demand modeling and forecasting

domain.

A more detailed description of the documents research and their impact on this thesis

is covered in the next chapter.

1.3 A Brief Personal History

As mentioned above, this thesis is rather unusual, as the initial work was originally started

in 1971/72 when I was registered for a Ph.D. in the Control Engineering Department at

Sheffield University. In order to understand the flow of this thesis, I feel a little background

is necessary. In 1971, after completing a Masters Degree in the Statistics Department of the

University of Sheffield, I was accepted in the Control Engineering Department to complete

a Ph.D. in 2 years.

The first year the research involved modeling and predicting Water Demand. The tech-

niques used spectral representation by orthogonal functions. This research was published in

the ”Journal of the Institution of Water Engineers” in 1974 (Antcliffe and Sterling, 1974).

However, although the methodology was valid, and the results successful but there was no

industrial uptake because:

1. The data was of poor quality and hence the ”rubbish in/rubbish out” principle held.

2. The audience (Water Engineers) could not translate the model to explainable lan-

guage, which the management required in order to invest in the application of the

techniques.

The points above were taken into account for the research work which followed. A new

domain was chosen, and a modeling technique was selected which could be explained by
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engineers to managers. The domain was Gas Demand Modeling and Forecasting, where the

data was of a much better quality, and the technique selected was Autoregressive Integrated

Moving Average (ARIMA) modeling (Box and Jenkins, 1970), which was in the early stages

of application in the early 1970s. The modeling technique had not been applied to Gas

Demand Forecasting at that time.

Also mentioned above, the area of Short Term Gas Demand forecasting is very impor-

tant to the security of supply in the UK (and elsewhere) at a minimum cost (Newton (2010),

Milne (2010)). Short term forecasts are used for the daily operations of the system. The

UK Gas regions do not own the gas, and hence need to forecast as accurately as possible to

keep the supply side and the demand side matched.

In the 1970s the supply storage was covered by large tanks which rose and fell based

on gas input/output. Today, these have been replaced by compression techniques in the

pipeline. However, since gas travels slowly (can take several days (up to four) to arrive

to its final destination), the need for increased forecasting accuracy has become even more

important.

Having spent nearly a year on the Water Demand project, there was only one year left

to develop the Gas Demand Forecasting models and complete the Ph.D. thesis. This did

not happen, but at the end of the year, I was hired by British Gas into their Research and

Development Center in London, where my task was to continue to work on Gas Demand

Forecasting and develop the ARIMA techniques which were in embryonic form (basically

an extension of my research). The results were successful, and after 1 year I was offered

a Research Assistants post back in the Control Engineering Department, to continue to

develop the techniques, programs and publish the results on behalf of British Gas.

Four papers were published (Antcliffe et al., 1975a,b,c,d), covering both Weekly Gas

Demand forecasts and Daily Gas Demand forecasts using the ARIMA/ARIMAX techniques.

Weekly Demand corrected the demand on a standardized temperature profile and Daily

demand was modeled with actual temperatures. A further paper was published in 1975

describing the package of tools developed within the Control Engineering Department, and

applied to the research (Batey et al., 1975).

Now to the present, in 2010, I was accepted for as a Part Time Research student in the
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Department of Automatic Control and Systems Engineering with the intent of completing

my work. Restarting the research after 40 years, required certain changes, although the 2

criticisms above still hold, i.e. accurate data and explainable techniques. The results of the

research are described in the Chapters that follow.

1.4 Thesis Structure

The structure of the thesis is as follows:

� Chapter 2 reviews in detail articles and books relevant to Gas Demand Modeling and

Forecasting domain, and summarizes those related to Electricity Demand Modeling

and Forecasting when relevant to this thesis.

� Chapter 3 describes the theory and methodology for applying ARMAX and Polyno-

mial NARMAX modeling.

� Chapter 4 describes the data used in the thesis.

� Chapter 5 compares ARMAX models and Polynomial NARMAX models applied to

Weekly Demand Forecasting

– Section 5.2 confirms original Ph.D. work for Winter Weekly Demand (correcting

for temperature), using ARMA Modeling with Demand data from 1963-1973.

This is then compared to Polynomial NARMA modeling using the same data.

– Section 5.3 repeats the previous section but using actual temperatures (rather

than standardizing demand around a temperature profile), thus comparing AR-

MAX to Polynomial NARMAX, again using Demand and Temperature data from

1963-1973.

– Section 5.4 models the Yearly Weekly Demand and Temperature data (rather

than just the Winter Weekly Demand data) for Gas Demand from 1963 to 1973,

comparing again ARMAX to Polynomial NARMAX.

– Section 5.5 repeats the previous section using the data supplied by DNV GL for

Gas Demand from 2001 to 2011.
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– Section 5.6 summarizes the results of the Weekly Demand modeling and fore-

casting.

� Chapter 6 compares ARMAX models and Polynomial NARMAX models applied to

Daily Demand Forecasting

– Section 6.2 models Eastern Gas Daily Demand and Temperature data from 1971

to 1975.

– Section 6.3 models X-Gas Daily Demand and Temperature data from 2001 to

2011 supplied by DNV GL.

– Section 6.4 summarizes the results of the Daily Demand modeling and forecasting.

� Chapter 7 will summarize the overall conclusions and propose future work.



Chapter 2

DETAILED REVIEW OF THE LITERATURE

2.1 Introduction

As described in Chapter 1, accurate forecasting is very important to the Gas Industry. ”It

is a key process in running the UK Gas Network. An accurate forecast is required to enable

system balancing thus ensuring a safe and secure supply at minimum cost”, was the way

it is described in a paper presented to the Pipeline Simulation Interest Group (PSIG) in

2000 by DNV GL (Perchard and Whitehand, 2000). This was true in the 1970s and is

still true today. Improving the forecasts for gas demand using a new technique will have

important repercussions to the Gas Industry. This has driven research into new techniques

on a continual basis. The reason for this continual focus is also confirmed by the 2013

International Energy Outlook (IEO2013) from the Energy Information Administration -

USA (2013). Their forward looking article states that ”Natural gas remains an essential

resource until 2040, 80% of the global energy production will be supplied by fossil fuels,

with natural gas being the fastest-growing, increasing by 1.7% per year”.

Energy demand forecasting (electricity and gas) has had a lot of focus over the last 40

years. The period of the 1970s and 1980s saw many papers written, due to the energy crisis

of the time. The difference between the two energy sources is the fact that electricity cannot

be stored, in large quantities, as cheaply as gas. Some papers are cited in this chapter for

electricity as the factors influencing demand, and the techniques applied to the electricity

demand forecasting domain, have many similar characteristics with those of gas demand

forecasting. It was shown in Dagher (2012), that there were far more papers written, in

the 1970s and 1980s, for Electricity Demand Forecasting than for Gas Demand Forecasting,

due to the energy crisis at that time. However, in the paper written the same year by Soldo

(2012), he wrote that there has been an increase in Gas Load Modeling and Forecasting

10
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papers since 2004.

Electricity and gas demand is impacted enormously by weather variables, with temper-

ature having the most significant impact (Fischer, 2010; Sabo et al., 2011; Taspinar et al.,

2013; Potocnik et al., 2014). For time scales of a few hours to the longer term of months and

years, the factors that influence energy demand (as described by Geen (2012) and Abiodun

(2012)) are:

1. Calendar data: the time of the day, the day of the week, public holidays, school

holidays and daylight saving time

2. Meteorological data: temperatures, wind speed, solar radiation, rain and snow

3. Economic factors: economic growth, production plans of companies, price (both for

Gas and Electricity), population growth

On the time periods of a few hours to a few years, the importance/impact on energy demand

of the first two factors (calendar and meteorological data) is equivalent. Economic factors

impact longer time scales, as well as exceptional circumstances, for example, an economic

crisis (Leguet, 2010; Geen, 2012; Abiodun, 2012).

The two presentations written by the National Grid in February 2012 (Geen, 2012;

Abiodun, 2012), explain the different factors and variables (described above) which impact

the forecasting process. They write that ”the functional relationship is non-linear and

there are more or less complex interactions between different data types. Since no simple

deterministic laws that relate the predictor variables (calendar data, meteorological data

and economic variables) on one side and energy demand as the target variable on the other

side seem to exist, it is necessary to use statistical models”.

A paper published by Soldo (2012), entitled Forecasting Natural Gas Consumption,

reviewed many aspects of modeling and forecasting in the Gas Domain, covering the period

1949 to 2010. In particular the paper starts with a detailed review of papers published

during this period. He stated that between 1949 and 2004, 29 papers were published,

where as from 2004 to 2010, 47 papers were published. The increase in publication shows

the growing need for better and better methods for modeling and forecasting in the gas
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domain. The paper starts off with a comprehensive literature review from 1949 up to 2010.

These are summarized in Tables 1, 2, 3 and 4, in his paper, which list the publications by

year, first by author then by applied area, forecast horizon and the gas consumption data

used. Table 6 from this paper covered the different techniques used, along with references.

Up to 2010 no papers had been published using Polynomial NARMAX. And finally Table 5

listed the input data used for the different techniques, and again listed by published paper

and author. The subsections below will cover these techniques for modeling, followed by a

detailed review of papers, specifically related to Gas Load Modeling and Forecasting, from

2010 to the present day. The search terms and journals/sites searched are listed in Appendix

A.

In support of the subsections below, a paper published in 2006 by Gooijer and Hyndman

does an analysis of the 25 years of time series forecasting. Although more oriented to

Economic Data, it provides a clear picture of the different techniques available and applied

to the modeling and forecasting problem.

2.2 Modeling Techniques

ARMA/ARMAX modeling, although developed by Box and Jenkins in the 1970s is still

actively researched and applied today to load demand modeling in the electricity and gas

domains. Several papers have been recently published related to Gas Demand Forecasting

in Turkey (Akkurt et al., 2010; Demirel et al., 2012; Ervural et al., 2016), USA (Siddique,

2013), Croatia (Potocnik et al., 2014) and Iran (Shakouri and Kazemi, 2016). Similar papers

have also been written for Electricity Demand Forecasting in Singapore (Deng and Jiruti-

tijaroen, 2010), Malaysia (Norizan et al., 2010), Kuwait (Almeshaiei and Soltan, 2011) and

China (Miao, 2015). Also the technique is part of the package of tools which make up

DNV GL’s suite of applications that they sell to the UK Gas Regions and other countries

today. Hence it can be considered an acceptable base point to compare to the Polynomial

NARMAX modeling approach researched in this thesis.

The Neural Networks modeling in the Demand Forecasting Domain became the solu-

tion for removing the linear constraints in the 1980s and 1990s. This is probably the second
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most applied methodology to the Demand modeling and forecasting arena. The disadvan-

tage is that the methodology is a black box formulation and even though it has been proved

to provide improved forecasts (Liu, 2011), the inability to describe the black box contents,

can be an issue for implementers (Perchard and Whitehand, 2000). Also the risk of over-

parameterization and over-fitting has been recognized as an issue (Hippert et al., 2005).

Examples of Neural Networks applied to Gas Demand Modeling and Forecasting have been

described for the USA (Khotanzad et al., 2000), Serbia (Ivezic, 2006), Iran (Azadeh et al.,

2010) and Poland (Szoplik, 2015).

The DNV GL formulation uses a supervised neural network. It is trained with a

series of input data (weather and past demand) together with the desired output (actual

gas demand). The internal weights of the neural network are adjusted during the training

procedure in order to minimize the overall prediction error. The neural networks models

used at DNV GL provide within day, day ahead and two day ahead forecasts, and are

part of the application suite of multiple prediction methods. The Neural Network is a

Multi Layer Perceptron (MLP) network with a single hidden layer and is trained by back

propagation of errors with momentum. This methodology is not covered in this research,

but a few recent references are included, which show that it is a methodology applied to the

Demand Forecasting problem with success for both Electricity and Gas (Sheikh and Unde,

2012; Hooshmand et al., 2013; Yu and Xu, 2014; Karimi and Dastranj, 2014; Szoplik, 2015;

Olagoke et al., 2016)

In addition to pure Neural Network applications, mixed techniques have been tested

to attempt to improve the modeling and forecast accuracy. Several papers describe Neural

Networks in conjunction with Genetic Algorithms applied to the problem of Gas Demand

Modeling and Forecasting in China (Yu and Xu, 2014), Iran/Australia (Karimi and Das-

tranj, 2014) and Turkey (Ervural et al., 2016; Shakouri and Kazemi, 2016).

Several papers applying SVMs to Gas Demand Modeling and Forecasting have also

been published recently in China (Zhang et al., 2011) and the UK (Zhu et al., 2015).

Expert Systems have also been used as ”add ons” to other forecasting methods, to



14 Detailed Review of the Literature

handle extreme or specific situation adjustments, which would be difficult or even impossible

to model mathematically (Smith et al., 1996). DNV GL uses an Expert System for this

purpose. The Expert System handles non continuous quantities. They include cloud cover

and precipitation, and the rules adjust the forecasts generated by the statistical and Neural

Network models.

The underlying theory to NARMAX and FROLS has been documented since the mid

1980s by Professor S.A. Billings et al, (Billings and Voon, 1986; Korenberg et al., 1988;

Chen et al., 1989; Billings and Zhu, 1994; Billings and Coca, 2001; Wei et al., 2004) as well

as a recent book by Professor S.A. Billings (Billings, 2013).

The search for published papers covering the NARX/NARMAX technique applied to

the Energy Modeling and Forecasting domain has turned up few examples. Papers have been

published for the Electricity sector in France (Czernichow et al., 1995) , Taiwan (Lee, 2002;

Chang, 2009) and Canada (Jazayeri et al., 2007). No papers appear to have been published

using NARMAX and Polynomials in the Natural Gas modeling and forecasting domain.

The NARMAX methodology has been applied in other domains (motor control, rainfall

runoff, flood modeling, traffic flow, space weather to name a few), using different models,

specifically, Neural Networks and Wavelets (Ahmed and Jamaluddin, 2001; Prudencio and

Ludermir, 2001; Billings and Wei, 2005; Vall and M’hiri, 2008; Zhang et al., 2012).

DNV GL in 2000 (Perchard and Whitehand, 2000) indicated that there was not one

specific modeling algorithm which could be used for all situations, and hence have developed

a suite of programs, which are then aggregated to provide a short term forecast. This point

was also confirmed in a paper covering Gas Demand Forecasting in the USA (Khotanzad

et al., 2000).

2.3 Summary of Gas Demand Modeling and Forecasting Papers from 2010 to

2017

Another aspect of energy modeling is the forecast time horizon and data used for modeling

and forecasting. The time horizon is often described as Short Term, Medium Term and

Long Term Forecasts. Although there is no clear definition for these terms, in the case of

Gas Demand Modeling and Forecasting in this thesis, Short Term will refer to time horizons
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where the focus is on operational information, and hence will cover daily and weekly. DNV

GL also include hourly horizons in their Short Term definition. The data used in modeling

and forecasting is also varied, covering historical demand data, weather information, and in

some cases population size and price indicators. Although these last two inputs are used

more for the long term than the short term modeling problems. The description and details

of the papers below will cover these aspects in more detail.

The above information is covered in the paper published by Soldo (2012), which de-

scribed papers published from 1949 to 2010 specifically for Gas Demand modeling and

forecasting. The papers discovered during the literature search from 2010 to the present

day are listed in Table 2.1 summarized by year. Following the same presentation method

as Soldo, the details of each of these papers are then described.

Year List or Authors by Year

2010 Akkurt et al. (2010)

2011 Zhang et al. (2011), Zhoua et al. (2011), Wadud et al. (2011), Sabo et al. (2011)

2012 Dagher (2012), Geen (2012), Abiodun (2012), Demirel et al. (2012), Pang (2012)

2013 Siddique (2013), Taspinar et al. (2013), Chen et al. (2013)

2014 Karimi and Dastranj (2014), Potocnik et al. (2014), Yu and Xu (2014)

2015 Zhu et al. (2015), Szoplik (2015), Brabec et al. (2015), Khan (2015), Fagianin et al. (2015)

2016 Ghalehkhondabi et al. (2016), Shaikh and Ji (2016), Potocnik and Govekar (2016)

2016 cont. Zeng and Li (2016), Ervural et al. (2016)

2017 Panapakidis and Dagoumas (2017)

Table 2.1: List of published Gas Modeling/Forecasting papers by year.

2.3.1 2010 Papers

One additional paper from 2010 not covered in Soldo (2012) was found during the literature

search.

The paper was written by Akkurt et al. (2010). The focus was on modeling Turkey’s
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gas consumption over two time periods monthly and yearly. For the monthly data, which

contained only historical consumption from 1999 to 2007, the authors tested several mod-

eling techniques, and found that Seasonal ARIMA (SARIMA) performed the best when

forecasting for the year 2008. For the annual data however, which was from 1987 to 2008,

double exponential smoothing (Gardner, 2005) produced the best forecasts (when compared

to an ARIMA model) for the years 2007 and 2008.

2.3.2 2011 Papers

Four papers were published in 2011, related to Gas Demand Modeling and Forecasting.

Zhang et al. (2011) modeled daily gas data of a Northern Chinese city from the years

2008 and 2009. Among several input variables (historical consumption, daily temperatures

and other weather factors), the authors found the average daily temperature had the most

significant influence on the modeling accuracy. The modeling technique they applied to the

problem was Support Vector Machine (SVM), made up of 31 terms, covering the 7 previous

days of consumption, temperature, weather conditions and date property, together with the

actual days, temperature, weather condition and date property. They forecast for 10, 20

and 30 days ahead, and achieved a better than 5% MAPE for each forecast horizon.

Zhoua et al. (2011) used an Output-Input-Hidden Feedback-Elman (OIHF-Elman)

neural network (Hrolenok, 2009) to forecast daily gas load. The input variables for the

model included the highest temperature for the day and several days prior to the forecast

day, the daily gas consumption for the same days as the temperature and the date type

(day of week) again for the same days as the temperature. They found that temperature

has the biggest impact on consumption, but in certain temperature ranges the impact is

almost zero. Also they categorized Monday to Friday differently to Saturday and Sunday.

They forecast for 20 days, and compared the OIHF-Elman neural network with a Elman

neural network. The OIHF-Elman neural network produced lower forecast errors than the

Elman neural network model, except on May 1st. Their conclusion being that more work

(and additional inputs) are required to cover special days (like holidays).



2.3 Summary of Gas Demand Modeling and Forecasting Papers from 2010 to 2017 17

Wadud et al. (2011) looked into modeling the gas demand for Bangladesh for the long

term up to 2025. The aim of the paper is to improve on the current simplistic forecasting

methods used for long term predictions for the country. They included gas price, the

countries GDP and population factors in their model. They also included the fact that

these variables do not impact the demand immediately, and hence included lag factors for

each variable. They modeled annual data for each variable from 1981 to 2008. The modeling

technique used was a log-linear Cobb-Douglas functional form (Tan, 2008). Their results

showed that there is a large potential for Natural Gas usage in Bangladesh, that is currently

untapped, since neither population nor GDP nor price were significant in their model.

Sabo et al. (2011) looked at hourly gas consumption for the city of Osijek (Croatia).

They included past consumption and temperature in their model. The data used was from

2008. They showed that a significant change in temperature influences consumption quickly

and directly for residential customers and small commercial customers. They also showed

that the relationship was linear, using the Gompertz model function (Jukic et al., 2004) and

the Fermat - Torricelli - Weber (FTW) method (Bazaraa et al., 2006; Mordukhovich and

Nam, 2000) to model the relationships. Finally a comparison between the Gompertz model

function, the FTW function and a Linear Function for forecasting future hourly demand,

showed that the Linear Function produced the smallest relative percentage error.

2.3.3 2012 Papers

Five papers were published in 2012, related to Gas Demand Modeling and Forecasting.

Dagher (2012) studied the impact of price changes in gas consumption for residential

customers for a particular utility company in Colorado. They modeled monthly consumption

from 1994 to 2006. Their focus was the length of time between the price change and

the return to stability in consumption. The term used for this type of study is called

”elasticity”. They used an Autoregressive Distributed Lag model (Pesaran, 1999), and

found that demand was less sensitive to price and income changes than previously thought.

Long run equilibrium is achieved around 18 months after the change, rather than 10 years in

previous studies. Additionally, the paper lists the number of energy demand papers written
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between 1930 and 2007 for both Electricity and Gas. The most papers for both energy

sources were written in the 1970s and 1980s due to the energy crisis’s at that time.

Geen (2012) authored a report for the National Grid in the UK, which described the

methodologies utilized to produce forecasts of peak day gas demand and load duration

curves. The report covers the processes used to produce the National Grid’s 2011 demand

forecasts. It describes in detail how demand forecasts are broken down by region, and the

factors that affect the demand forecast. It also states that temperature explains the most

variation in demand but including other weather variables improves the forecasts. It then

goes on to describe the Seasonal Normal Effective Temperature (SNET) concept, and how

this concept is used to correct demand to see underlying patterns. This technique will

be used in Chapter 5 for the weekly data modeling. The report then goes on to describe

Annual and Daily Demand modeling and forecasting. Several appendices describe in detail

the different weather concepts and details about demand differences for weekday/weekend

and special days like Christmas.

Abiodun (2012) also authored a presentation for the National Grid in 2012. This

covered Short Term Gas Demand Forecasting, describing the factors that drive gas demand,

the methods used by the National Grid to forecast Gas demand and factors that impact

forecast accuracy. The most important factor influencing demand is temperature, where a

1◦C change in temperature can increase demand from 5-6%. Other factors include wind

(above 10 Knots), snow, rain, cloud fog and radiation. It also shows however, that the

increase in demand caused by temperature is not linear, the largest increase occurs between

7 and 13◦C. It goes on to describe user behavior which also impacts demand. These include

the transition periods (Autumn and Spring), Bank Holidays (where there can be a variation

of demand between 5 and 20%), large customers behavior, interruption to supply, TV

weather forecast and special events. The presentation then goes on to describe the times

that forecasts are prepared and the data used to develop them. Finally the reasons for

discrepancies in the forecast (i.e. forecast accuracy) are listed.

Demirel et al. (2012) compared several modeling methodologies for daily demand and

forecasting gas consumption for the largest gas distribution company in Istanbul. The daily

data covered the time period 2004 to 2009. Ordinary Least Squares, ARIMAX and three
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ANN models were compared. Historical demand, temperature and temperature squared,

together with gas price were used as input variables. RMSE, MAE and MAPE were used

to compare the models forecasting accuracy for a day ahead prediction. The research found

that the neural network model with back-propagation performed better than the other

models tested. The variables that had the highest impact on the gas demand were the first

lag of demand, temperature and the price of natural gas.

Finally for 2012, Pang (2012) studied the impact of adding additional weather inputs to

the modeling of gas demand. His masters thesis analyzed the significance of each additional

weather candidate and concluded that with combinations, the forecast of the next one-to-

seven days gas demand is improved. The research was carried out in Marquette University’s

GasDay Laboratory. The GasDay application uses weather data, gas usage data and domain

knowledge to forecast natural gas flow. The application currently serves 26 utilities in

22 states, and forecasts around one fifth of the USA’s natural gas usage for residential,

commercial, and industrial customers in more than 130 operating areas.

2.3.4 2013 Papers

Three papers were published in 2013, related to Gas Demand Modeling and Forecasting.

Siddique (2013) also from Marquette University, focuses his masters thesis on the

problem of reducing the manual effort in automating the selection of the specifications

of the model type, the model order and the model parameters. The models considered

are statistical models (e.g. ARMA, ARMAX) and machine learning models (e.g. ANN,

Regression Tree (RT), Support Vector Regression (SVR)).

Taspinar et al. (2013) compared several modeling methods to 1800 days of daily con-

sumption data and associated weather data for two utilities in Turkey. They compared

SARIMAX (Hyndman, 2002), ANN-MLP (Stefanowski, 2010), ANN-RBF (Stefanowski,

2010) and Multivariate Ordinary Least Squares (de Chaisemartin, 2011) to the same data.

The SARIMAX model produced the best result (using MAPE and RMSE as the forecast

accuracy measurements performance) with ambient temperature and cloud cover being the

most significant inputs.
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Finally, Chen et al. (2013) looked at combining Regression Analysis and Neural Net-

works. The Regression Analysis modeling was used for trend modeling and the predicted

values and errors are calculated by the neural network. To prove the effectiveness of the

model, an SVM algorithm (Burges, 1998) compares its results with the result of combination

model. The conclusions are that the combination model is both effective and accurate in

forecasting short-term gas load and has advantages over other models. The paper looks at

data from Shanghai containing historical consumption data, temperature and other weather

factors (sunny, cloudy, cloudy to shade, shade to cloudy, shade, shade to rain, rain, snow)

from 2005 to 2009. Temperature included highest temperature, minimum temperature and

average temperature. To measure the effectiveness of each method on daily predictions,

MAE and MSE were used. The conclusions of the paper were that forecasting load demand

accurately is a difficult task, hence in order to get accurate results, the combination of linear

and nonlinear methods to forecast the load demand, produces improved results.

2.3.5 2014 Papers

Three papers were published in 2014, related to Gas Demand Modeling and Forecasting.

Karimi and Dastranj (2014) developed a hybrid model to predict the natural gas con-

sumption in the city of Yasouj in Iran using daily data from 2006 to 2010. In the model,

an ANN-GA algorithm (Mitchell, 1999) integrates weather records (temperatures, humid-

ity, rainfall and wind speed) and actual gas usage to predict daily gas consumption. The

neural networks structure and its parameters are optimized by the GA. Their conclusions

show that the ANN-GA model compares well with the actual data generating an MAPE of

2.19%.

Potocnik et al. (2014) compared different modeling techniques to two sets of daily

consumption data and corresponding weather data. The data, from Croatia, was collected

from an individual consumer and from a local distribution company. The data was for the

winters of 2011-2012 and 2012-2013. The outside temperature had the most significant effect

on demand, as has been found by many other papers described in this thesis (Khotanzad

et al., 2000; Timmer and Lamb, 2007; Sabo et al., 2011; Zhang et al., 2011). Twelve different
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models were tested against both data sets. The results of the forecast period were compared

using MAPE. The individual customer consumption was best modeled and forecast using

ARX models over different dimensions, whereas the distribution company (serving many

customers) was better modeled by Recursive ARX (RARX) models (Filipovic, 2015). It

was also found that linear systems (RARX etc), outperformed SVM and ANN. The best

model (again measured using MAPE) for both data sets was found to be an RARX model.

Finally, Yu and Xu (2014) proposes a short term load forecasting model based on

optimized genetic algorithm and an improved back-propagation (BP) neural network. The

daily data for the analysis comes from an area of Shanghai from 2005 to 2008. Minimum,

maximum, average temperatures, together with historical data and date type were used to

train the model. Using MAE, MAPE and RMSE as forecasting measure, the optimized

model performed better than the non-optimized methods. Their conclusion is that the

optimized model is very appropriate for short term load forecasting for Shanghai.

2.3.6 2015 Papers

Five papers were published in 2015, related to Gas Demand Modeling and Forecasting.

Zhu et al. (2015) proposed a model based on support vector regression with false

neighbours filtered. They applied the model to UK daily data from 2009 to 2012, using

the first three years for training the model and the last year for testing the predictions.

The effectiveness of the model were measured using MAPE and MAE. The results showed

that their methodology outperformed ARMA methods, and ANN methods. Additionally

the authors proposed models for each day of the week and showed customer behavior differs

daily and hence incorporating this difference of behavior could improve the forecasting

performance.

Szoplik (2015) modeled gas consumption for Szczecin (Poland) using an ANN-MLP

model. They included calendar data (month, day of month, day of week and hour) and

temperature as inputs for the model, as these have an important significance for individual

customers and small businesses. They used the model to forecast any day of the year,

or hour of the day, using data for modeling from 2009 to 2011 covering roughly 132,000
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customers.

Brabec et al. (2015) studied the problem of long term gas meter readings and their

disaggregation and the the re-aggregation for shorter time frames (eg. daily or weekly)

to allow forecasting demand on these time scales. The problem was analyzed using data

from the Czech Republic. Each customer is assigned to a specific segment based on their

consumption profile and their type.

Khan (2015) studied both the short and long-term dynamics of natural gas consump-

tion in Pakistan through an econometric model. Data from 1978 to 2011 was used to analyze

the impact of specific economic factors (Sector-specific income, price and cross price elas-

ticities) on natural gas demand. They then forecast for the years 2012 through to 2020,

developing forecasts for both moderate and extreme situations. Their conclusions were that

real GDP per capita exerts a larger impact on gas consumption compared to its price; and

that both the price and cross price (prices of other fuel sources) elasticities are relatively

low, indicating consumers’ indifference, in Pakistan, towards price escalation.

Finally Fagianin et al. (2015) studied modeling methods for both the gas and water do-

mains. A collection of techniques are evaluated using the few publicly available gas datasets.

The techniques they used were ANN, Deep Belief Networks, Echo State Networks, Genetic

Programming, SVR and Extended Kalman Filter-Genetic Programming. The results show

a strong correlation with temperature, producing improved Gas demand forecasts for both

long and short-term horizons. The overall best forecast for Gas Demand was achieved with

the ANN approach, with a time horizon of 24 h. However, for shorter time horizons of 6 and

12 hours, the SVR has achieved the best results. They also highlighted the high correlation

between gas consumption and temperature information.

2.3.7 2016 Papers

Five papers were published in 2016, related to Gas Demand Modeling and Forecasting.

Ghalehkhondabi et al. (2016) studied energy research publications from 2005 to 2015,

focusing on forecasting methods, which complemented the work by Soldo (Soldo, 2012). It

covered both electricity and gas demand forecasting for multiple time horizons (hourly to
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yearly). The paper describes the modeling and forecasting as a non-linear problem. The

most accurate forecast for one-day ahead were achieved using 6 months input data, and for

two day ahead only the last three months of input data were required for accurate forecasts.

Shaikh and Ji (2016) looks at modeling the long term gas consumption needs for China.

The paper developed a logistic-population model approach to forecast the medium (2020)

and the long term (2035) natural gas consumption for China. The results will assist energy

planners and policy makers in developing gas supply and demand side management policies.

Zeng and Li (2016) also studies long term forecasting in China for the period 2011 to

2014. The paper develops a self adapting intelligent grey prediction model. The conclusions

of the paper show that China will need to import large quantities of Natural Gas to meet

demand.

Potocnik and Govekar (2016) studied hourly forecasting for a Slovenian gas distribution

company. They implemented a step-wise regression method, which was used to forecast from

1 to 48 hours in the future. They confirmed that temperature had the most influence on

the short term forecasts, and that other variables had little effect on the accuracy of the

forecasts. They also confirm that the quality of the temperature date can greatly influence

the forecast accuracy.

Finally, Ervural et al. (2016) proposed a forecasting method integrating GA and ARMA

methods to take advantages of the unique strength of ARMA and GA models to predict

natural gas consumption of Istanbul. The data is monthly and the forecast horizon of

several years. Their experimental results show the combined approach is more robust and

outperforms classical ARMA models in terms of MAPE values.

2.3.8 2017 Papers

One paper was published in 2017, related to Gas Demand Modeling and Forecasting (up to

end of February 2017).

Panapakidis and Dagoumas (2017) describes an automatic specification procedure for

models that are based on additivity assumptions and piecewise linear regression. This

procedure allowed the analyst to gain insight about the problem by examining automati-
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cally selected models, thus easily checking the validity of the forecast. The methodology

was applied to one-step ahead daily gas demand forecasting in Spain. Non-Linear models

were developed, and empirical results showed that the accuracy of the proposed model is

competitive against more complex methods such as neural networks.

2.4 Summary of Electricity Demand Modeling and Forecasting Papers

This subsection will briefly describe papers developed in the Electricity Demand modeling

and forecasting area for completeness. Between 2010 and the present day, there were several

papers describing forecasting on different time frames (annual, daily and hourly), as well as

different methodologies (ARIMA, ANN-GA, ANN-Wavelets and various other techniques).

However, several of the Electricity papers have a direct relevance to the current thesis,

specifically those related to ARMA(X) and NARMAX and are described below.

Czernichow et al. (1995) developed a NARMAX model based on Simple Recurrent Net-

works (SRN) using French electricity consumption data. The input variables were historical

consumption data (half hourly), weather variables, specifically temperature and cloud cover

for the years 1989 to 1992. They also included calendar data (day of the year and day of the

week). A NARX model and a NARMAX model were developed and both were compared

to an ARMA model. The results of their work showed the NARMAX model produce an

MAPE of 1.8% for a forecasting horizon of one day which was comparable to the results

of the French Electricity Company (EDF) and 2.2% MAPE for 2 day forecasting horizon

which was better than EDF.

Lee (2002) for his masters thesis in Taiwan studied the cluster rule NARMAX method

with the Neural Networks for optimization, he found that fewer order terms and more

combination terms were possible using this methodology to capture the dynamics of highly

non-linear systems. The thesis is in Chinese, and so only a brief summary is available.

Espinoza et al. (2006) considered (N)ARX and AR-NARX models for hourly data

modeling and forecasting for a particular substation in Belgium. An AR-NARX model is a

(Nonlinear) Auto Regressive model with eXogenous inputs and Auto Regressive residuals.

Additionally, partially linear structures with autocorrelated residuals were incorporated

into the two model structures. The model’s performance was measured using MSE and
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MAPE. Least Squares Support Vector Machines (LS-SVM) nonlinear regression formulation

was the applied technique for the nonlinear system identification. Based on the LS-SVMs

formulation, the linear ARX model, a full black box NARX model and a partially linear

structures with autocorrelated residuals have been tested. In all these cases, the solution of

each model was characterized by a set of linear equations. By minimization of the MAPE

over the daily peaks, and by including an autocorrelation with a time delay of 24 (hours),

the results improve substantially for the partially linear structure. This structured model,

which is linear on the past values of the load and nonlinear on the calendar and temperature

information, shows a final performance on the test set which is comparable to the full black-

box NARX model, and yet it retains a linear part which improves its interpret-ability with

respect to the fully black-box model.

Jazayeri et al. (2007) developed a NARMAX model using polynomials for a simulated

electricity load and then on a Swedish Data set. They developed a multistage algorithm

for these Nonlinear Aggregate power systems loads. The first stage attempts to find good

initial values of the model parameters by developing discrete equations using the zero-order

hold method followed by approximating a 2nd-order polynomial NARMAX model. The

initial estimates of the NARMAX parameters are evaluated using an extended least squares

approach. Finally, the initial parameter values are used with a Levenberg-Marquardt opti-

mization (Roweis, 2000) routine to compute the optimal parameters.

Chang (2009) developed a methodology for forecasting the hourly load demand of the

power provider using a NARMAX model. The proposed method was used to test on hourly

data from the Taiwan power supply networks and then forecasting 24 hours ahead. The

paper compared the results with an ARMA model for a 7 day time period during August

of 2008. The NARMAX model produced lower errors than the ARMA for each day of the

week.
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METHODOLOGIES

3.1 Introduction

The two modeling techniques that will be applied in this thesis are ARMA/ARMAX and

Polynomial NARMA/NARMAX. This chapter describes in detail these methodologies, to-

gether with the work flow, and the measures for analyzing and comparing the results gen-

erated by each method.

The two methodologies will be applied to several sets of gas demand data (described in

Chapter 4). Gas demand data over a particular period can be characterized by the discrete

series [dt , t = 1, 2, 3, . . .n]. The objective of demand prediction is thus to establish the

values of the series dt for t = n + 1, n + 2, . . . n + m. Hence each Gas Demand data set

will be split into a modeling set and a forecast comparison set, the latter will be used to

compare the estimated forecast to the actual data.

3.2 Autoregressive Integrated Moving Average without/with eXogenous in-

puts (ARIMA/ARIMAX)

The landmark book by Box and Jenkins (1970) produced a structured methodology for

linear, non-stationary, multivariate time series analysis, modeling and forecasting. The tools

and techniques and the application to Gas Demand Modeling and Forecasting published

since then, e.g. Erdogdu (2010); Demirel et al. (2012); Siddique (2013); Taspinar et al.

(2013) and Potocnik et al. (2014), have added additional confidence in the results produced

by this methodology. The advantage of ARIMA/ARIMAX modeling is its simplicity. The

disadvantage is, of course, the assumption that time series in the energy domain are linear

in nature.

26
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3.2.1 ARIMA/ARIMAX Software Environment

For the ARIMA/ARIMAX modeling, a general environment was developed, in MATLAB,

to facilitate the different time frames of the data sets (weekly and daily), and routines

were written to graph and statistically measure the results from both the modeling phase

and the forecasting phase. The Econometrics Toolbox in MATLAB was used for modeling.

The advantage of this toolbox over the MATLAB System Identification Toolbox is that

individual variables may be chosen rather than a range. Code was written for both One-

Step Ahead and Multi-Step Ahead forecasts. The One-Step Ahead forecast calculates the

time period (next week or day in this thesis) from previous known values of demand and

temperature. The Multi-Step Ahead uses known values up to the the start of the forecast

period, and calculated forecast values after the start. These are sometimes denoted by OSA

(One-Step Ahead) and MPO (Multiple Predicted Output) in this thesis.

3.2.2 ARIMA/ARIMAX Workflow

The workflow for ARIMA/ARIMAX modeling is as follows:

1. Analyze and develop a stationary time series from the original time series,

i.e. Transform the original time series

2. Find a best fit model for the resulting transformed series, i.e. Model the

transformed Time Series

3. Analyze the modeling results

4. Forecast into the future

5. Inverse-transform to rebuild the original time series

6. Analyze the forecast results

7. Loop back to step 2 if necessary to improve

Each of these steps will be described in detail below.
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3.2.2.1 Transforming the Time Series for Stationarity

The ARIMA/ARIMAX method is appropriate only for data that is stationary. Stationarity

can be achieved by applying two methods: Power Transformations and Differencing. The

aim of these two operations is to produce a zero mean and constant variance across the

whole time series.

Power transformations are often required when the time series can only take non-

negative values. Frequently, the asymmetry steadily increases in time, and can be attenuated

by applying a class of power transformations. Time series transformations were described by

Box and Cox (1964). For a time series dt (where t = 1, 2, 3, . . . , n) possible transformations

are :

zt =


dt
λ if λ > 0

log(dt) if λ = 0

−dtλ if λ < 0

(3.1)

where λ is some numeric value.

The reason for changing the sign when λ is negative is to ensure that the transformed

values have the same relative ordering as the original values. For time series with non-

stationary variance, a natural logarithm transformation is often appropriate (Pankratz,

2009; Senter, 2010).

Power transformations cannot by themselves always stabilize a time varying mean.

Non-stationary time series are typically characterized as having increasing (or decreasing)

mean levels. A commonly used transformation to remove trends is the difference trans-

formation. Differencing implies calculating the difference among pairs of observations at

some time interval. For example, to difference a time series one step apart, subtract the

1st value from the 2nd value, the 2nd value from the 3rd value etc, and if the mean is zero

and there is a constant variance then the time series is considered to be stationary. If one

step apart differencing does not produce stationarity, additional differencing can be applied.

This simple case is defined below:

∇zt = zt − zt−1 (3.2)
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also written as:

∇zt = (1−B)zt (3.3)

i.e. B is the back-shift operator, Bzt = zt−1.

The general form of differencing for time series with growth and periodicity is written

as :

wt = ∇d∇Ds zt (3.4)

for t = 1, 2, 3, . . . , n

where

wt is the transformed and differenced series

zt is the transformed series dt (Equation 3.1)

∇d = (1−B)d

∇Ds = (1−Bs)D

d, D and s are integers and s measures the seasonality of the time series.

To remove a seasonal component and stable growth trend the differencing should have

d = D = 1 (Box and Jenkins, 1970). To find the most appropriate values of d, D and s a

recursive testing process will often be needed to develop the stationary time series wt.

The Autocorrelation Function (ACF) helps select the appropriate transformations and

differencing operators. The ACF is defined as the Cross-Correlation (CCF) of a signal with

itself (Pelgrin, 2011-2012). It is a mathematical tool for finding repeating patterns, such

as the presence of a periodic signal. The rule of thumb for an ACF is if there are plotted

values (lags) that are greater than 2 standard errors away from zero, then these lags indicate

statistically significant autocorrelation.

The Partial Autocorrelation Function (PACF) is also used to detect trends and sea-

sonality (Pelgrin, 2011-2012). In general, the PACF is the amount of correlation between
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a variable and its lag that is not explained by correlations at all lower-order lags. Again

significant lags are those with values greater than 2 standard errors away from zero.

The standard error of both the ACF and PACF (for large N) is approximately:

SE(rk) ' (
1

N
)
1
2 (3.5)

where rk is the correlation value at lag k.

The results of the ACF and the PACF on the transformed time series are also used

to help identify the Autoregressive (AR) and Moving Average (MA) process orders. For

a full ARMA(X) model, the ACF and the PACF tail off either exponentially and/or sine

waves. The point at which they tail off indicates the AR and MA model orders (p and q).

If there is also a seasonal pattern visible (i.e.spikes in the ACF/PACF equally spaced at ”s”

intervals), the point they tail off indicates the seasonal AR and MA model orders (P and

Q). A good explanation of the different patterns of ACF and PACF and the corresponding

model structure is described in the book by Mills (1990) on page 130, Exhibit 8.4. The Cross

Correlation Function (CCF) is also used to detect any relationships between the different

variables, and hence suggest possible AR and MA orders.

3.2.2.2 Modeling the transformed Time Series

Once stationarity has been achieved using differencing, the Integrated part of the model is

considered achieved, and the modeling process reverts to an ARMAX (or ARMA) activity.

The general structure for the ARMAX model is:

φp(B)ΦP (Bs)wt = c+ βxt + θq(B)ΘQ(Bs)at (3.6)

where

c is a constant

xt is the Input variable or variables (also called covariate(s))

β is the regression coefficient of the Input variable(s).
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φ,Φ, θ,Θ are polynomials in B such that:

φp(B) = 1− φ1B − φ2B2 . . .− φpBp (3.7)

and

ΦP (Bs) = 1− Φ1B
s − Φ2B

2s . . .− ΦPB
Ps (3.8)

are the autoregressive components and

θq(B) = 1− θ1B − θ2B2 . . .− θqBq (3.9)

and

ΘQ(Bs) = 1−Θ1B
s −Θ2B

2s . . .−ΘQB
Qs (3.10)

are the moving average components. If p, P, q and Q and β are correctly determined, then

at will be a white noise sequence distributed as N(0,σ2a), where σ2a is the variance.

If no input variables are used in the model above, then the ARMAX syntax becomes

that of an ARMA model.

3.2.2.3 ARMA/ARMAX notation convention in this thesis

The traditional notation of ARIMA models is ARIMA(p,d,q)(P,D,Q) (Box and Jenkins

(1970)). Non-seasonal ARIMA models are denoted as ARIMA(p,d,q) where the parameters

”p, d, q” are non-negative integers. The autoregressive model order is denoted by ”p”, the

degree of differencing by ”d” and the moving-average model order by ”q”. Seasonal ARIMA

models are denoted ARIMA(p,d,q)(P,D,Q) where the autoregressive, differencing, and mov-

ing average variables for the seasonal part of the model are denoted by the uppercase ”P”,

”D” and ”Q”. Again the parameters ”P, D, Q” are non negative integers.

However, using the Econometrics Toolkit allows for specific variables to be chosen, and

hence the above notation becomes confusing. For example a model which has Autoregres-

sive variables 1 and 3 and a Moving Average variable at 2, could not be represented by

ARMA(3,2), since ARMA(p,q) model means all the Autoregressive variables from 1 to p,
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and all the Moving Average variables from 1 to q are included in the model.

So for this thesis, after the transformation data process (i.e. ”d” and ”D” differencing

applied to the data), AR(a,b, ... n)/MA(a1,b1, ... n1) is used to represent the models,

where a,b ... n and a1,b1, ... n1 represent the specific variables used in the model. Hence

the example above becomes AR(1,3)/MA(2) representing the exact variables used in the

model. From this point in the application chapters, the models are considered ARMA(X)

models and not ARIMA(X) models.

3.2.2.4 Analyze the modeling results

As is often the case, several possible model structures are indicated by the ACF and PACF.

Hence the next step is to measure how well each of these structures performs when compared

to the actual data. Using MATLAB’s functions, each structure is modeled and the residuals

(i.e. the difference between the actual data and the modeled data) are calculated.

For each of the models, the residuals are analyzed using the ACF to check that they

do actually represent a white noise sequence. The ACF will either confirm an adequate

model or suggest possible alterations to provide a better fit. The CCF between the resid-

uals and each input variable also provides evidence of inadequacy of the model (Mills, 1990).

Several additional measure are available to analyze the residuals, as a complement to

the ACF. In this thesis the following measures will be used:

1. F = the sum of the squares of the residuals

- F =
∑n

t=1 a
2
t

2. Akaike Information Criterion (AIC) (Petrov and Csak, 1973; Vrieze, 2012).

- AIC(p) = n ln(σ̂a/n) + 2p

3. Baysian Information Criterion (BIC) (Vrieze, 2012; Watanabe, 2013).

- BIC(p) = n ln(σ̂a/n) + p+ p ln(n),
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4. Q Statistic - Ljung Box Q test (Box and Pierce, 1970; Ljung and Box, 1978).

- Q = n
∑l

k=1 r
2
k,

where

n = the number of effective observations

a = the residuals

p = the number of parameters

σ̂a = the sum of sampled squared residuals.

rk = the autocorrelation value at lag k.

The aim is to select the model which minimizes F, AIC and BIC and validate that Q

is approximately distributed as a χ2 with (l− p) degrees of freedom, where l is the number

after which the autocorrelation values (rk) ≈ 0.

3.2.2.5 Forecast future Demand values

If one model stands out from the above activity, then this model will be forecast into the

future. The future values of wt denoted as ŵt, are calculated, for time values of t=n+1, n+

2, . . . , n + m, where m equals the forecast time horizon, for each model. These values are

written as ŵn+1, ŵn+2, . . . , ŵn+m.

To forecast the future values ŵt, Equation 3.6 may be rewritten as:

ŵt = (φ1B + φ2B
2 + . . .+ φpB

p)wt + φp(B)Φ
′
P (Bs)wt + θq(B)ΘQ(Bs)at (3.11)

where:

Φ
′
P (Bs) = Φ1B

s + Φ2B
2s . . .+ ΦPB

Ps

and the residuals at are defined as:

aj =


aj if j < n+ 1,

0 if j > n+ 1,

(3.12)

where n+ 1 is the starting point of the predictions.
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Two forecasts will be produced for each model, One-Step Ahead and Multi-Step Ahead.

The Multi-Step Ahead forecast sometimes drift away from the actual values as future values

of demand are calculated, hence additionally the thesis will calculate shorter term Multi-

Step Ahead forecasts to check when the model should be re-calibrated (or re-calculated).

3.2.2.6 Inverse-Transform the Predicted values

The values ŵn+1, ŵn+2, . . . , ŵn+m are then inverse-transformed to generate the original time

series future values (d̂n+1, d̂n+2, . . . , d̂n+m).

For example, using Equation 3.4, with differences 1 and 26 (and s = 1):

wt = ∇1∇26zt (3.13)

which can be written as :

wt = (1−B)(1−B)26zt (3.14)

which can be expanded as :

wt = zt − zt−1 − zt−26 + zt−27 (3.15)

for t = 1,2,3, . . . , n

Future values of wt (denoted by ŵt) are written as :

ŵn+i = ẑn+i − zn+i−1 − zn+i−26 + zn+i−27 (3.16)

for i = 1,2,3, . . . , m

Future values of zt (denoted by ẑt) can then be calculated :

ẑn+i = ŵn+i + zn+i−1 + zn+i−26 − zn+i−27 (3.17)

for i = 1,2,3, . . . , m
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Finally, the inverse power transformation is applied to ẑn+i. For example inverse

logarithm is shown in Equation 3.18.

d̂n+i = eẑn+i (3.18)

for i = 1,2,3, . . . , m

These forecast values are plotted against the actual values (the forecast comparison

data set), and the residuals (et) calculated, where

en+i = dn+i − d̂n+i (3.19)

for i = 1,2,3, . . . , m

.

However, multiple potential process models with similar F, AIC/BIC or Q values will

often be the case, and hence each model will be forecast into the future and compared using

specific statistics (Adhikari and Agrawal, 2013), described below.

3.2.2.7 Analyze the forecast results

The model selected should have a balanced set of forecast error measures. A brief description

of the measures are given below, and more details can be found in Prestwich et al. (2014).

The measures are used throughout the thesis to facilitate the choice of the best model from

a forecasting perspective. In the case where several models perform satisfactorily, the best

MAPE value is privileged as the final choice.

1. The Maximum Forecast Error - max(et) for t=n+ 1, n+ 2, . . . , n+m

2. The Minimum Forecast Error - min(et) for t=n+ 1, n+ 2, . . . , n+m

3. MPE - Mean Prediction Error (also called the Forecast Bias):

MPE = (
1

m
)

m∑
t=1

et (3.20)
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- MPE measures the average deviation of forecast values from the actuals.

- MPE indicates the error direction (the positive and negative values do not cancel

out).

- MPE should be close to zero for minimum bias.

4. MAE - Mean Absolute Error (also called Mean Absolute Deviation(MAD)):

MAE = (
1

m
)
m∑
t=1

|et| (3.21)

- MAE measures the overall error.

- MAE indicates the error direction (the positive and negative values do not cancel

out).

- MAE should be close to zero for a good forecast.

5. MSE - Mean Squared Error:

MSE = (
1

m
)

m∑
t=1

e2t (3.22)

- MSE measures the average squared deviation of forecast values.

- MSE indicates the impact of large forecast errors.

- MSE should be close to zero, indicating no large forecast errors.

6. MAPE - (Mean Absolute Percentage Error):

MAPE = (
1

m
)

m∑
t=1

(|et
dt
|) ∗ 100% (3.23)

- MAPE is the most commonly used measure in the literature for forecast accuracy.

- MAPE values close to zero indicate accurate forecasts, and low over and underesti-

mates.
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Additionally, the ACF and CCF will be used to evaluate the residuals (et) to confirm

uncorrelated values, i.e. no information is still contained in the forecast residuals. If the

above measures do not indicate a satisfactory fit, then modifications to the model are made

(different transformations, different parameters), and the process is re-executed starting

from step 2 in the work-flow for ARIMA/ARIMAX described in the Section 3.2 above.
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3.3 Polynomial Non-Linear Autoregressive Integrated Moving Average with-

out/with eXogenous inputs (Polynomial NARIMA/NARIMAX)

As we have seen in the above sections, the ARIMA(X) methodology is relatively simple to

apply. The difficulty comes in interpreting the results at the different stages (Transforma-

tion, Modeling and Forecasting) to select the most appropriate variables in the equations.

This section describes the Polynomial NARIMAX methodology with the Forward Regres-

sion Orthogonal Least Squares (FROLS) algorithm. The methodology helps to select and

rank significant variables/terms automatically. This methodology was developed by Billings

and Voon (1986); Chen et al. (1989); Billings and Zhu (1994), and Billings (2013).

The NARIMAX model can represent a wide class of nonlinear systems (Wei et al.,

2004) and is defined as:

y(k) = F [y(k), x(k), e(k)] + e(k) (3.24)

or

y(k) =F [y(k − 1), y(k − 2), . . . , y(k − ny),

u(k − 1), u(k − 2), . . . , u(k − nu),

e(k − 1), e(k − 2), . . . , e(k − ne)] + e(k)

(3.25)

where y(k), x(k) and e(k) are the system output, input, and noise sequences respec-

tively; ny, nu, and ne are the maximum lags for the system output, input and noise; and

F[•] is some nonlinear function (Billings, 2013).

Essentially, past inputs, outputs and noise terms are used to build the model. The noise

is modeled explicitly, hence, unbiased estimates of the system model are calculated in the

presence of unobserved highly correlated and nonlinear noise (Billings, 2013). The majority

of early applications of NARIMAX models were developed using polynomial expansions.

Today, as well as polynomial expansion models, more complex forms based on wavelets

and other model forms have been developed to represent highly complex nonlinear systems

(Ahmed and Jamaluddin, 2001; Prudencio and Ludermir, 2001; Lee, 2002; Cugliari, 2011;

Zhang et al., 2012).
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3.3.1 Polynomial NARIMA/NARIMAX Software Environment

Again a general environment was develop specifically for Polynomial NARIMAX model-

ing and forecasting in MATLAB. For modeling, some specific attributes were developed,

including the ability to include or remove specific variables and terms. A cut off selector

(ρ1) which stopped the selection of terms if the next term had lower value (contribution to

the system output) than a threshold which allowed for an improved term selection process.

The value for this threshold was initially set at 0.5%. The code for data analysis, graphing,

inverse data transformation was the same as that developed for ARIMA/ARIMAX.

3.3.2 NARIMA/NARIMAX Workflow

The NARIMAX workflow consists of the same steps for ARIMA/ARIMAX described in

Section 3.2. Differences, specific to NARIMA/NARIMAX, are described in the sections

below.

3.3.2.1 Transforming the Time Series for Stationarity

This activity is identical to that described in Section 3.2.2.1. Once stationarity has been

achieved using differencing, the Integrated part of the model is considered achieved, and

the modeling process reverts to an NARMAX (or NARMA) activity.

3.3.2.2 Structure Detection and Modeling the Transformed Time Series

The most fundamental part of NARMAX work is to develop the appropriate model struc-

ture. The model will be made up of model variables and/or model terms, and it is important

to distinguish the difference between them. For Linear models, the model terms and the

model variables are equivalent. For Non-Linear models, the model terms are the results

of every combination of the model variables. The development of the model structure (or

which terms to include in the NARMAX model in Equation 3.25) is vital if a parsimonious

system representation is to be found (Billings, 2013). The number of terms depends on the

values of ny, nu, ne in 3.25 and the polynomial expansion value l. The maximum number of

terms in the NARMAX model (3.25) is given by:
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n = M + 1 (3.26)

where


M =

∑l
i=1 ni

ni = [ni−1(ny + nu + ne + i+ 1)]/i

n0 = 1

(3.27)

For example, a 3 variable model (y1, y2, y3) and 2nd order polynomial produces 10

terms:

constant, y1, y2, y3, y
2
1, y22, y23, y1y2, y2y3 and y1y3.

3.3.2.3 Parameter estimation: determine the model coefficients

The model terms that are produced from the different variables do not produce equal value

to the system output. The aim is to remove those which add little value and select those

terms which make a significant impact on the system output. The process of selecting the

high value terms is hence critically important in developing the correct structure of the

NARMAX model. These objectives can easily be achieved by using the FROLS algorithm

(Wei et al., 2004) which selects the NARMAX model terms one at a time, based on the

value the term adds to the system output.

The FROLS algorithm is essentially the basic Orthogonal Least Squares (OLS) algo-

rithm, but at each step a full search of all the, not yet selected, model terms is performed to

find the next ”best” term (Wei et al., 2004). The selection process is performed by calculat-

ing the Error Reduction Ration (ERR). The ERR offers a simple and effective methodology

for selecting a subset of significant regressors from a large population of regressors in a

forward-regression way. The ERR for a specific term represents the contribution that the

specific term makes to the system output.

At step ”j”, a regressor is chosen if it has the largest value of [err]j from all the

remaining possible terms. In this way, the model is built up, one term at a time, and as

each term is added its significance to the system output is shown through the value of [err]j .
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This choice is independent of how the terms are ordered in the input data. The selection

procedure is terminated when either :

1−
M∑
j=1

[err]j < ρ (3.28)

where M = the number of selected terms and 0 < ρ < 1 is the chosen tolerance.

OR

erri < ρ1 (3.29)

where 0 < ρ1 < 1 is the value under which the selected term’s value is no longer significant

in adding value to the system output.

The benefits of the FROLS algorithm are clearly explained in Wei et al. (2004); where

the author states ”This makes the algorithm accessible to, and usable to, both experts and

non-experts”.

The modeling procedure, in this thesis, starts with a wide range of first order model

parameters (indicated by the ACF), letting the FROLS algorithm indicate those model

terms which add the most value. The results from this first step will be used to reduce the

model parameters (and hence terms) and apply a 2nd order and then a 3rd order etc to the

terms, evaluating the ERR profile produced by the selected terms and the order. Initially

there are no error variables in the model, hence the model will be a NARX structure. Based

on the result of this initial modeling and the prediction process, error variables and terms

will be added and the modeling process repeated, to generate a full NARMAX model.

3.3.2.4 Analyze the modeling results

A stated in Billings (2013), ”Most studies relating to model validation assume the system

under investigation is linear”. Hence, if the correct model variables and time delays are

chosen for the linear model (with unbiased estimated parameters), then the residuals will

be white noise. The autocorrelation function of the residuals and the cross correlation

function between the input variables and the residuals can then be used to confirm the
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model structure is appropriate (Box and Jenkins (1970)).” Other linear model tests involv-

ing a minimum or maximum value are also of value, for example, the F test, the Akaike

Information Criterion (AIC test), and the Q statistic as described in Section 3.2.2.4.

Unfortunately, validation methods developed for linear system models are not suffi-

cient to detect un-modeled nonlinearities. Again as described in Billings (2013), ”The core

concept in statistical model validation for nonlinear systems in that the residuals should

be unpredictable from all linear and non-linear combinations of past inputs, outputs and

residuals”. However, using ONLY the linear tests can indicate that the model is adequate,

whereas non-linear terms are missing which these tests could not evaluate, hence leading to

false results.

To overcome this inadequacy, three additional tests were developed (Billings and Voon

(1986)), to capture the most nonlinear dynamical effects. The four tests (CCF (Input vs

Residuals) and the three Non-Linear Tests) are named as the Linear and Non-Linear Validity

tests in this thesis and are described in 3.30 and 3.31.

φuζ(τ) = 0, ∀τ (3.30)


φζ(ζu)(τ) = 0, τ ≥ 0

φ(u2)′ζ(τ) = 0, ∀τ

φ(u2)′ζ2(τ) = 0, ∀τ

(3.31)

where φ represents the cross-correlation, u represents a system input, ζ represents the

generated residuals from the modeling process and τ represents the cross-correlation lag.

3.3.2.5 Forecast future Demand values

This activity is identical to that described in Section 3.2.2.5.

3.3.2.6 Analyze the forecast results

This activity is identical to that described in Section 3.2.2.7.



Chapter 4

DATA DESCRIPTION

4.1 Introduction

This chapter describes the data which will be used throughout the remaining chapters.

There are three sets of data from two time periods used to test the hypothesis of this thesis.

The first two sets of data are from the original work done in the 1970s. They comprises

weekly data from the Southern Gas Region and the daily data from the Eastern Gas Region

of the UK. The third set of data was provided under Non-Disclosure Agreement (NDA) for

a region in the UK for a period of approximately 20 years centered around the year 2000.

It is denoted as X-Gas in this thesis. The details of each data set are described below.

4.2 Southern Weekly Gas Data 1963-1973

The data illustrated in Figures 4.1 and 4.2 shows the data provided by Southern Gas. Figure

4.1 shows the total weekly demand (in units of 100,000 therms) for Southern Gas from the

weeks starting 1st April 1963 to the week ending 30th March 1973. This demand is the

combination of both manufactured gas and natural gas supplies. This data will be used in

Chapter 5.

Figure 4.2 shows the weekly effective temperature in degrees Celsius for the same

period. The weekly effective temperature was calculated by taking the average of the daily

effective temperature for Southern Gas. The daily effective temperature was defined as:

T = 2/3Max+ 1/3Min (4.1)

Figure 4.3 shows the Seasonal Normal Effective Temperature (SNET) cycle for South-

ern Gas where each point represents the SNET average for the 7 days of that week. This

43
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Figure 4.1: S. Gas - Weekly Demand - 1963-1973

Standardized Temperature profile will be used in Section 5.2 to remove the actual tempera-

ture from the weekly demand data. The details of the methodology for correcting Demand

data to SNET are explained in Appendix B.
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Figure 4.2: S. Gas - Average Weekly Effective Temperature - 1963-1973
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Figure 4.3: S. Gas - Weekly Seasonal Normal Effective Temperature (SNET)
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4.3 Eastern Daily Gas Data 1970-1975

The data illustrated in Figures 4.4 and 4.5 shows the data provided by Eastern Gas. Figure

4.4 shows the total daily demand (in units of Million Cubic Meters (MCM)) for Eastern

Gas from 1st October 1970 to 20th June 1975. Again this demand is the combination of

both manufactured gas and natural gas supplies. This data will be used in Chapter 6.

Figure 4.4: E. Gas - Daily Demand - 1970-1975

Figure 4.5 shows the daily effective temperature, described in Equation 4.1, in degrees

Celsius for the same period.
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Figure 4.5: E. Gas - Average Daily Effective Temperature - 1970-1975
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4.4 X-Gas Daily Gas Data 2001-2011

The data for Chapter 5 and 6 for the years 2001 to 2011, was supplied by DNV GL under

NDA. They supplied demand data and temperature data for 5 UK regions of the UK. The

demand data was hourly demand from January 1st 2001 (7am) to July 4th 2011 (10am).

It is measured in Millions of Cubic Meters (MCM). The demand data set comprises mainly

domestic, small commercial and light industrial customers. The temperature data was two-

hourly up to November 11th 2007 (7am), and then hourly after that. They also provided

wind-speed data for the same periods, which was four-hourly, however, for the thesis, this

additional input variable has not been used.

After discussion with DNV GL, the region data was selected, which is called X-Gas

in this thesis, and the time frame selected was January 1st 2001 (7am) to July 4th 2011

(6am). The next step was to generate hourly data for temperature between January 1st

2001 and November 11th 2007. This was done by linear interpolation (e.g. temperature at

hour 2 was the average of the temperature at hour 1 and hour 3). The next step was to

analyze the demand and temperature data to find other missing values. Several situations

were found, they included an occasional missing value for a specific hour to several missing

values for one or several days. DNV GL advised on how to fix each of these missing value

issues, using industry accepted methods for interpolation.

The daily data for demand was then calculated as the sum of the demand from 7am

day 1 to 6am on day 2 etc. This is called the gas day. For the daily temperature calculated

from the corresponding hourly temperatures, several options were discussed with DNV GL.

� The average of the 24 hourly temperatures (7am to 6am)

� Apply a weighting to the daytime temperature, and calculate an average

� Develop an effective temperature which is a percentage of the previous days temper-

ature added to a percentage of today’s temperature

For this thesis, a simple straight 24 hour average is used. Figure 4.6 and Figure 4.7

show the daily demand (MCM) and average temperature(C◦) for the period selected above.

The daily data was also transformed into weekly data and used in Chapter 5.



50 Data Description

Figure 4.6: X. Gas - Daily Demand - 2001-2011
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Figure 4.7: X. Gas - Average Daily Temperature - 2001-2011
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4.5 Benchmark Data

As mentioned in Chapter 1, the goal is to produce Demand Forecasts of a specified period

(e.g. 26 weeks or 14 days) to be within the 4-6% range (MAPE). The figure was specified

by DNV GL as a level which would merit usage in an operational environment.

Another measure is the Persistence Model, which takes tomorrow’s prediction to be

that of today’s actual. For the One-Step Ahead forecasts, the MAPE of the Persistence

model will be compared to that of the ARMA(X) and the NAR(X)/NARMA(X) models. A

smaller MAPE than the Persistence model as well as being within the range 4-6% is the goal

of the thesis. The conclusions in each forecasting section will refer back to these benchmark

values.

4.5.1 Persistence Model for Weekly Data

The Persistence Model for the 52 Weeks of 1972/73 is shown in Figure 4.8, and the Persis-

tence Model One-Step Ahead statistics for the 26 Winter weeks and for the whole year (52

weeks) for data from both periods (1972/73 and 2010/11) are shown in Table 4.1.

Throughout this thesis, the forecasting statistics will be shown as in Table 4.1. The

definitions for MPE, MAE, MSE and MAPE can be found in Section 3.2.2.7, and the last

two columns show the largest Over Predicted value and the largest Under Predicted value.

The data is shown as 3 values, the value in actual units (i.e. the difference between the

predicted value and the actual value for the period being forecast), the location of the Over

or Under Predicted value within the period, and the percentage error.
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Figure 4.8: Predicted Values for the 1972/73 (Persistence Model)

Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

1972/73 Winter-26 weeks -0.35 6.90 105.96 7.41% 38.12/1/61.75% -14.94/10/-11.52%

2010/11 Winter-26 weeks -1.56 8.07 103.36 10.10% 24.03/14/26.28% -18.13/9/-18.58%

1972/73 Year-52 weeks -0.34 6.72 79.50 8.25% 22.45/51/23.52% -28.04/33/-24.17%

2010/11 Year-52 weeks -0.10 6.16 79.13 11.83% 24.03/40/26.28% -18.13/35/-18.58%

Table 4.1: One-Step Ahead Statistics for Weekly Demand Forecast (Persistence Model)
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4.5.2 Persistence Model for Daily Data

The Persistence Model One-Step Ahead statistics for the 182 Winter days of 1974/75 and

2010/11 are shown in Table 4.2. Figure 4.9 shows the first 56 days of Persistence Model for

2010/11.

Figure 4.9: Predicted Values for the 2010/11 (Persistence Model)
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Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

1974/75 Winter-182 Days -0.01 0.48 0.38 6.37% 1.38/123/20.02% -1.94/ 92/-23.58%

2010/11 Winter-182 Days -0.004 0.73 0.82 6.45% 2.29/69/16.43% -2.05/107/-16.96%

Table 4.2: One-Step Ahead Statistics for Daily Demand Forecast (Persistence Model)
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WEEKLY MODELING AND FORECASTING

5.1 Introduction

This chapter will analyze and produce forecasts for weekly data. ARMAX and NARMAX

methodologies (described in Chapter 3) will be applied to the data described in Section 4.

A comparison of the forecast results will be shown at the end of this chapter. Since the

period of particular interest in the gas industry is from October to March, when the gas

demand approaches the system capacity, each method on each set of data will concentrate

the effort on producing the most effective forecast (in MAPE terms) for these 26 Winter

weeks.

Sections 5.2 to 5.5, below, are focused on presenting the best results produced during

the analysis of modeling and forecasting to each data set. However, the details of the flow

of the work to produce these results is included in a separate appendix for each of the sec-

tions. Finally, Section 5.6 will summarize the conclusions of the ARMAX and NARMAX

methodologies applied to each Weekly data set.

This chapter is structured as follows:

Section 5.2 Winter Weekly Data modified to Seasonal Normal Temperature (1963-1973).

Section 5.3 Winter Weekly Data including the Exogenous variable Temperature (1963-

1973).

Section 5.4 Yearly Weekly Data including the Exogenous variable Temperature (1963-

1973).

56
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Section 5.5 Yearly Weekly Data including the Exogenous variable Temperature (2001-

2011).

Section 5.6 Summary of Results and Conclusions.
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5.2 Winter Weekly Modeling and Forecasting with Seasonal Normal Effective

Temperature (1963-1973)

In this section, the modeling and forecasting process will be simplified, by removing the

Exogenous variable, temperature, from the equation. The technique to do this, used in the

1970s for weekly demand forecasting by British Gas, and occasionally used today (Geen,

2012), was to modify the demand based on a standardized temperature called Standard

Normal Effective Temperature (SNET). This produces a model based on a standardized

temperature profile, and the predictions are used for weekly and monthly demand planning.

The reason for standardizing on SNET is that for these time frames, the aim is to produce

a reasonable forecast for short and medium term planning. Additionally, the weekly and

monthly demand forecasts are less temperature variation sensitive, as the temperatures used

are already an average for these periods.

5.2.1 ARMA Winter Weekly Modeling and Forecasting with SNET

The ARMA sections, below, are validations of the work done for the original thesis in the

1970s. The work has been revalidated as part of the initial learning process, and several

improvements have been made. All the details can be viewed in Appendix C

5.2.1.1 Correcting the data to SNET

Figures 4.1 and 4.2 of Chapter 4 graphed the annual weekly demand data for Southern Gas

for the years 1963 though to 1973. Figures 5.1 and 5.2 represent these 2 series with the

months April to September removed, thus each consisting of 260 data points i.e. 10 half

year cycles (26 weeks), representing the winter period for each of the 10 years under study.

Figure 5.3 shows the SNET for Southern Gas for the winter weeks only.
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Figure 5.1: S-Gas - Winter Weekly Demand - 1963-1973
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Figure 5.2: S-Gas - Winter Average Weekly Effective Temperature (C◦) - 1963-1973
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Figure 5.3: S-Gas - Weekly Winter Seasonal Normal Effective Temperature (SNET (C◦))
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To correct the winter demand in Figure 5.1 to SNET some simple relationship must be

found between demand and effective temperature. The formula for correcting the demand-

temperature relationship is shown in Equation 5.1. The description of the methodology, the

values used in the equation are explained in detail in Appendix B.

dit = yit −Ai(T it − SNETt) (5.1)

where

t = 1, . . . , 26 (corresponding to the 1st week in October to the last week in March)

dit = demand corrected to SNET in year i at week t

yit = measured demand in year i at week t

Ai = slope of demand/temperature graph for year i

T it = Average weekly effective temperature for year i at week t

SNETt = Seasonal Normal Effective Temperature at week t (Figure 5.3)

Finally, each year’s data is then combined into a single series dt, t = 1, . . . , N, where

N = 260, which represents the winter weekly demand corrected to SNET for Southern Gas

from 1963 to 1973. This is shown in Figure 5.4.

5.2.1.2 Transforming the data

Figure 5.4 depicting Southern Gas Corrected Winter Weekly Demand clearly shows this

time series dt is non stationary, it has both a growth component and a seasonal component.

Chapter 3 (subsection 3.2.2.1), described the transformation process to produce stationarity

of a time series, a requirement of the Box and Jenkins modeling process. Several transfor-

mations, including logarithmic and powers, were compared to reduce the yearly variance

growth. A natural logarithmic transformation was tentatively chosen.

zt = loge(dt) (5.2)

The Autocorrelation Function (ACF) of the logged data shows that the time series

is still not stationary, a seasonal pattern with peaks every 26 weeks exists (showing the
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Figure 5.4: S-Gas - Corrected Winter Demand - 1963-1973

relationship winter on winter), and hence difference transformations are also required. Dif-

ferencing of 1 and 26 are typically appropriate, i.e. (∇∇26zt), to produce stationarity.

wt = ∇∇26zt = (1−B)(1−B26)zt (5.3)

This transformed series wt and is shown in Figure 5.5. Analysis of year on year means

and variances confirm that stationarity requirements are met.

The first 9 years of the transformed data (wt, t = 1, . . . , 207) shown in Figure 5.5, will

be used for modeling and the last year will be use to compare with the predicted values

of the model selected. The ACF of wt indicated most lags were not significant (within the

+/- limits (2 times the standard error)). However, the lags 1 and 26 are largely outside the

95% confidence limits and are indications of possible Autoregressive and/or Moving Average



64 Weekly Modeling and Forecasting

Figure 5.5: Transformed S. Gas Corrected Winter Demand (wt) - 1963-1973

terms of the ARMA model.
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5.2.1.3 ARMA Parameter Identification of the Corrected Winter Weekly Demand

The general form of the Box and Jenkins ARMA model is described in Chapter 3 (Section

3.2.2.2). Since in this case there are no input variables, the general equation becomes :

φp(B)ΦP (Bs)wt = c+ θq(B)ΘQ(Bs)at (5.4)

If c, p, P, q and Q are correctly determined, then at will be a white noise sequence.

The original research selected the following model structure (Equation 5.5). The pro-

grams used to estimate the parameters were written in Fortran and run on a UNIVAC 1100

at the British Gas Research Center. The results obtained for φ1, θ1 and Θ are shown in

Equation 5.5. Note that the constant term is zero.

(1− 0.16B)wt = (1− 0.72B)(1− 0.85B26)at (5.5)

For this thesis, MATLAB is used to produce the results of parameter calculations and

prediction data for the ARMA models. Although the results in this Section are not exactly

the same as the results of the work from the 1970, they are similar, and probably more

precise, due to the more powerful computing capabilities of today’s environment. When

re-evaluating the above data with MATLAB using the Econometrics Toolkit, several other

models performed equally well from a modeling perspective as well as for their forecasting

capabilities. The list of all these models analyzed and their modeling and forecast statistics

can be found in Appendix C. Only the final selected model is described here.
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As described in Chapter 3 there are two stages which need to be measured, to select

the appropriate model:

1. Measures of how well the model fits the data used for modeling (in this case the first

9 winters) (Section 3.2.2.4)

2. Measures of how good the model is at forecasting (i.e. comparison of the forecast

output to the actual output, in this case for the 10th year) (Section 3.2.2.5)

The model which had a balanced set of metrics in both the modeling and forecasting

results is shown in Equation 5.6. And using the ARMA notation convention described in

Chapter 3.2.2.3, this is an AR(1,2,3,4)/MA(26) model. The AIC value was the smallest at

-655, the F value was similar for all the models considered, and 0.483 for this model, and

the Q statistic was 37.88 (47 df) which was slightly higher than the other models. The 5%

point for a χ2 with 47 degrees of freedom is 64.00, indicating that there is no reason to

believe the model is inadequate. Additionally, the ACF of the residuals from the modeling

stage has no significant lags, and hence can be considered white noise.

(1− 0.59B − 0.48B2 − 0.33B3 − 0.13B4)wt = (1− 0.59B26)at (5.6)

5.2.1.4 ARMA Forecasting Future One-Step Ahead Demand

The 26 week One-Step ahead forecasts were calculated for the model AR(1,2,3,4)/MA(26)

for the winter of 1972 using Equation 5.7. The value of at are zero for each of the forecast

values (Section 3.2.2.5).

ŵt = 0.59wt−1 + 0.48wt−2 + 0.33wt−3 + 0.13wt−4 − 0.59at−26 (5.7)

The future values of ŵt were then inversely transformed (i.e. inverse the differencing

(1 and 26) and the logarithm), and are shown in original units in Figure 5.6. The forecast

statistics are shown in Table 5.1. The MAPE of 3.71% satisfies the benchmark test (Section
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4.5, i.e. below 4% and well below the Persistence Model MAPE of 7.41%.

Figure 5.6: 26 week - One-Step Ahead Forecast using AR(1,2,3,4)/MA(26)
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Model Over Prediction Under Prediction

ARMA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(1,2,3,4)/MA(26) 0.23 4.02 24.15 3.71% 7.22/21/5.63% -11.94/10/-9.21%

Table 5.1: 26 week - Statistics for One-Step Ahead Weekly Demand Forecast
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5.2.1.5 ARMA Forecasting Future Multi-Step Ahead Demand

Long term Multi-Step Ahead forecasts (e.g. for 26 weeks) for this type of data were not

actually generated for British Gas. A few weeks ahead would be sufficient to get a rough

idea of demand requirements. However, for completeness, the model was run for 26 weeks

to see how it would perform. For Multi-Step Ahead forecasts the forecast demand values

from the start of the forecast horizon are used. Figure 5.7 shows the result of the 26 week

Multi-Step ahead forecast. The values start to drift from the actuals as the forecast horizon

advances. The MAPE for this model is 4.53. The statistics are shown in Table 5.2.

Figure 5.7: 26 week - Multi-Step Ahead Forecast for model AR(1,2,3,4)/MA(26)
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Model Over Prediction Under Prediction

ARMA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(1,2,3,4)/MA(26) 4.30 5.03 36.78 4.53% 14.93/25/14.2% -6.46/10/-4.98%

Table 5.2: 26 week - Statistics for Multi-Step Ahead Weekly Demand Forecast

However, performing shorter Multi-Step ahead predictions of 4, 6 and 8 weeks using the

AR(1,2,3,4)/MA(26) model produce effective forecasts for the operations managers. The

results for the 26 weeks using the different weeks ahead forecasts are shown in Table 5.3.

Note that when the weeks ahead number is not a factor of 26, a 2 weeks ahead forecast is

performed for the last 2 weeks (i.e. weeks 25 and 26).

Model Over Prediction Under Prediction

AR(1,2,3,4)/MA(26) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead 0.25 4.80 29.63 4.30% 10.30/24/8.93% -10.01/10/-7.72%

6 Week Ahead 1.10 3.78 18.40 3.42% 6.43/17/4.80% -9.29/10/-7.17%

8 Week Ahead -0.03 3.13 17.48 3.04% 5.90/4/6.98% -10.01/10/-7.72%

13 Week Ahead 0.47 3.39 18.37 3.13% 8.81/25/7.62% -8.59/19/-6.15%

Table 5.3: Model Statistics for Various Multi-Step Ahead Weekly Demand Forecasts
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The best Multi-Step Ahead period appears to be an 8 week ahead forecast with the

13 week ahead forecast statistics very similar. Figure 5.8 shows the 8 week ahead forecast.

Recalibrating against known values every 8 weeks shows the forecasts do not veer away from

the actuals. Again the results fall within the limits of the benchmark data.

Figure 5.8: 8 week - Multi-Step Ahead Forecast periods for model AR(1,2,3,4)/MA(26)

5.2.2 Summary of ARMA Results

In conclusion, the above work has shown that an Autoregressive Moving Average model can

adequately represent and predict weekly demand data for Southern Gas and meets the level

of acceptance with a One-Step ahead MAPE of <4%, and all Multi-Step ahead MAPE’s of

<5%. These results will now be compared to the NARMAX methodology using the same

data.
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5.2.3 NARMA Winter Weekly Modeling and Forecasting with SNET

As shown in the previous Section, the ARMA methodology is relatively simple to apply. The

difficulty comes in interpreting the results at the different stages (Transformation, Modeling

and Forecasting) and selecting the most appropriate terms in the models. This section is

going to apply the NARMAX methodology with polynomials and the FROLS algorithm

helping to select and rank significant terms automatically. The methodology is described

in details in Section 3.3.

The Southern Gas Winter Weekly Demand shown in Figure 5.1 is corrected to SNET

and shown in Figure 5.4. Since there are no input variables (i.e. no temperature variable

in the model), the NARMAX model, as described in Equation 3.25, becomes a NARMA

model as follows:

y(k) = F [y(k), e(k)] + e(k) (5.8)

or

y(k) =F [y(k − 1), y(k − 2), . . . , y(k − ny),

e(k − 1), e(k − 2), . . . , e(k − ne)] + e(k)
(5.9)

where y(k) and e(k) are the system output and noise sequences respectively; ny and ne are

the maximum lags for the system output and noise.

5.2.3.1 Transforming the data

As with ARMA modeling, the data should be stationary prior to using the NARMA mod-

eling methodology. The same transformations were performed as for the ARMA modeling

of winter weekly demand (section 5.2.1.2), i.e.

1. The actual demand was corrected to SNET, to generate the Corrected Weekly De-

mand.

2. The Corrected Weekly Demand was then transformed with a logarithmic transforma-

tion
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3. The logarithm of the Corrected Weekly Demand was then differenced by factors of 1

and 26

Figure 5.5 shows the transformed Southern Gas Corrected Weekly Demand (wt), which

will be treated by the Polynomial NARMA algorithm.

5.2.3.2 NARMA Parameter Identification of the Corrected Winter Weekly Demand

Following the testing of a Linear AR Model, a 2nd Order NAR Model and a 2nd Order

NARMA model, it was found that the 2nd Order NARMA model produced the lowest

MAPE. A brief description of developing the NARMA Model are shown here, and the de-

tails of all the steps to get to this model are shown in Appendix D.

Using the results from the AR and NAR model testing and the knowledge from the

ARMA modeling on the same data, The past demand variables y(k− 1), y(k− 2), y(k− 3),

y(k − 26), y(k − 27), y(k − 28) and y(k − 29) and their associated terms produced the best

ERR profile for the 2nd Order NAR model. The ERR total was below 60% (56% to be

precise), implying there is information missing from the model. So although the ACF of

the residuals, generated from the NAR model, showed no significant lags, MA terms were

added to evaluate if the addition of residual terms would improve the modeling statistics

and eventually the forecasts. Note : A 2nd Order NAR model with these 7 variables of y ,

generates 35 terms.

Starting from the residual variables e(k−1) to e(k−30), the FROLS algorithm showed

the MA terms e(k − 1), e(k − 2) and e(k − 26) adding value to the system output. Two

runs of the algorithm were required to produce no significant lags of the ACF of the gen-

erated residuals. The ERR value improved to around 70% (Figure 5.9). The 23 terms

selected (from a total of 41 possible terms) are shown in Table 5.4. However, this model

still implies there is additional information required to model this data completely. The

three Non-Linear tests, described in Section 3.3.2.4, could not be applied as there are no
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input variables.

Figure 5.9: ERR Profile for the 2nd Order NARMA Model

The modeling statistics for the 23 term model are:

1. F Statistic with 178 data values = 0.34

2. Q Statistic = 36.98 with 29 degrees of freedom (52-23), which again shows an adequate

model (29 df χ2 value is 42.56 at 5% level)
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Index Model Parameter ERR(%)

term Value

1 yk−26 -0.58 28.77

2 ek−1 0.03 9.24

3 yk−29 -0.04 6.45

4 yk−1 ∗ yk−28 -1.23 3.51

5 yk−28 -0.27 2.64

6 yk−26 ∗ yk−27 4.32 1.67

7 yk−26 ∗ yk−28 5.93 1.44

• • • •

23 yk−1 ∗ yk−2 0.85 0.15

Table 5.4: Results of the FROLS algorithm for the 2nd Order NARMA Model
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5.2.3.3 NARMA Forecasting Future One-Step Ahead Demand

This model was then run to forecast the winter of 1972/73 using all 23 terms and these

forecasts are shown in Figure 5.10.

Figure 5.10: 26 week - One-Step Ahead Forecast for the 2nd Order NARMA Model

The forecast statistics are shown in Table 5.5. The MAPE for the NARMA model was

2.81%. which was an improvement over both the ARMA model and the NAR model using

the same data.
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Model Over Prediction Under Prediction

NARMA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

2nd Order 0.85 2.97 12.76 2.81% 9.08/4/10.74% -5.03/10/-3.88%

Table 5.5: 26 week - Statistics for One-Step Ahead Weekly Demand Forecast
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5.2.3.4 NARMA Forecasting Future Multi-Step Ahead Demand

The NARMA model above was then used to produce Multi-Step Ahead forecasts. The model

statistics were better than the AR and NAR models and are shown in Table 5.6. The 26

week forecast is shown in Figure 5.11, and degrades over time, veering away from the actual

demand. The ACF of the residuals had significant lags, and rerunning the process several

cycle did not completely remove the lags, or improve the modeling or forecast statistics.

Hence the results below show the improvements after just the one cycle of including the

residuals in the model. However, there is information in the residuals which is not being

modeled in the predicted output.

Figure 5.11: 26 week - Multi-Step Ahead Forecast for the 2nd Order NARMA Model
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Model Over Prediction Under Prediction

NARMA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

2nd Order 6.15 6.42 55.34 5.71% 14.88/25/14.15% -1.48/10/-1.14%

Table 5.6: 26 week - Statistics for Multi-Step Ahead Weekly Demand Forecast (2nd Order
NARMA Model)

However, performing shorter Multi-Step Ahead forecasts of 4, 6 and 8 weeks using the

2nd Order NARMA model produce improved forecasts. The results for the 26 weeks using

the different weeks ahead forecasts are shown in Table 5.7.

Note when the weeks ahead number is not a factor of 26, a 2 weeks ahead forecast is

performed for the last 2 weeks (i.e. weeks 25 and 26).

Model Over Prediction Under Prediction

NARMA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead -0.21 4.79 36.75 4.27% 7.88/4/9.32% -15.77/10/-12.16%

6 Week Ahead 1.22 3.99 26.30 3.68% 11.22/8/9.81% -8.82/20/-6.40%

8 Week Ahead -0.82 5.61 48.79 4.93% 14.34/8/12.55% -15.77/10/-12.16%

13 Week Ahead 2.11 4.38 32.32 4.01% 14.34/8/12.55% -6.97/20/-5.06%

Table 5.7: Statistics for Various Multi-Step Ahead Weekly Demand Forecasts (2nd Order
NARMA Model)

The best Multi-Step Ahead period appears to be an 6 week ahead forecast, but there

is very little difference between the 13 week and the 6 week multi-step forecasts, although

the over and under estimates of the 6 weeks ahead forecasts are better than the 13 week.

The Figure 5.12 graphs this result for the 6 week ahead forecast.
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Figure 5.12: 6 Week Ahead Forecast periods for the 2nd Order NARMA Model
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5.2.4 Summary of NARMA Results

The 2nd Order NARMA model produced acceptable One-Step Ahead results. However,

on the Multi-Step Ahead forecast for 26 weeks, the predicted values veer away from the

actuals, and the ACF of the residuals had significant lags. This indicates that there is still

information in the residuals that the modeling process cannot accommodate. Also the NAR

model had the same failings. Hence for 26 week Multi-Step Ahead forecasts are somewhat

dubious. The shorter weeks ahead forecasts appear to be somewhat better.

Comparing the results from Sections 5.2.1 (ARMA) and 5.2.3 (NARMA), the One-

Step Ahead forecasts from the 2nd Order NARMA model produced a superior MAPE result

(2.81%) over the ARMA model (3.71%). In the case of the Multi-Step Ahead forecast, for

26 week ahead, the ARMA model produced a better forecast with MAPE of 4.53% (over

5.71% for the NARMA model). For shorter Multi-Step Ahead horizons, the ARMA model

produced better results all round, with 8 week ahead forecasts producing the best MAPE

of 3.04%. The 6 week ahead forecast for the NARMA Model produced an MAPE of 3.68%.

The ARMA and NARMA models all produced 4-8 week ahead forecasts with MAPE in the

region of 4-5% or better.

Both models (ARMA and NARMA) produce a superior One-Step Ahead MAPE fore-

cast value over the Persistence Model (Section 4.5) and both the One-Step and Multi-Step

Ahead forecasts, and were within the 4-6% value set by DNV GL.
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5.3 Winter Weekly Modeling and Forecasting with Actual Temperature (1963-

1973)

5.3.1 ARMAX Winter Weekly Modeling and Forecasting with Actual Temperature

5.3.1.1 Introduction

The methodology used in the Section 5.2 provided a simple methodology for modeling the

winter weekly gas demand using ARMA and NARMA models. In this Section, the actual

effective temperature will be included into the equations, thus allowing the full power of

both ARMAX and NARMAX to be evaluated. ARMAX is already used extensively in

the Gas Forecasting domain, as covered in Chapter 2, whereas NARMAX activity in this

domain is limited.

The data in this section is identical to that used in Section 5.2 represented by the Winter

Weekly Demand (Figures 5.1) and the Winter Effective Temperature (Figure 5.2). The

period under study is again the Winter Weekly Data from October 1963 to the end of March

of 1973. The ARMAX methodology which will be used to model this data is described in

Chapter 3 with Temperature as the Exogenous variable.

5.3.1.2 Transforming the data

As in the simple ARMA model, the data in an ARMAX model should be stationary, and

hence transformation analysis is required for both the Demand and the Temperature. Anal-

ysis of the yearly means and variances, suggest a logarithmic transformation for the Demand

(as in Section 5.2), and no transformation seems appropriate for Temperature.

Analysis of the Autocorrelation Function of both this initial logarithmic transformation

of Demand and the corresponding Temperature show that differencing of 1 and 26 will pro-

duce stationary time series for both Demand and Temperature.. The differenced series for

Demand and Temperature are shown in Figures 5.13 and 5.14. The data, in blue, represents

the transformed data which will be used for modeling and the red data is the comparison

data for the forecast. The ACF of the Transformed Winter Demand has significant lags at

1 and 26, and the ACF of the Transformed Temperature has significant lags at 1, 2 and 26.
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The Cross correlation Function (CCF) between the Transformed Demand and Temperature

showed a significant lag at zero, significant lags at 26 and -26 as well as smaller signifi-

cant lags at 1, 2, -1 and -2. This indicates that the demand at time t is highly related to

the temperature at time t, as well as a 26 lag relationship between demand and temperature.

Figure 5.13: Difference of Log of Winter Weekly Demand (wt)
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Figure 5.14: Differenced Winter Temperature (xt)
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5.3.1.3 ARMAX Parameter Identification of the Winter Weekly Demand with Temperature

Using the results of the ACF of both the Transformed Winter Demand and Temperature

and the CCF results, several models were generated using the MATLAB Economics Toolkit

functions for ARMAX. Several delay values were applied to temperature series, but a delay

of zero always produced the best results. This implies that future demand at time t1 is only

dependent on the corresponding temperature at t1; as well as past demand values. The

Equation 3.6 from Chapter 3 will be used for the modeling.

Two models generated similar AIC, F and Q statistics and are shown below in Equa-

tions 5.10 and 5.11. The constant is zero in both cases. Table 5.8 contains the modeling

statistics for each of these two models. Neither of these two models have any lags from the

ACF of the residuals outside the 95% confidence limits. As it was impossible to differentiate

between the two models at this stage, both models were carried forward to produce both

One-Step and Multi-Step Ahead forecast, before choosing the best model. As in Section

5.2, the details of all the models considered and their modeling and forecast statistics are

described in Appendix E, and only the best results are detailed in this section.

(1 + 0.40B+ 0.42B2)wt = −0.04xt + (1− 0.97B− 0.31B2 + 0.28B3)(1− 0.44B26)at (5.10)

(1 + 0.27B)wt = −0.04xt + (1− 0.77B)(1− 0.43B26)at (5.11)

Model AIC F Significant Q Degrees of

ARMAX Values Lags Value Freedom

AR(1,2)/MA(1,2,3,26,27,28,29) -711 0.35 None 29.19 43

AR(1)/MA(1,26,27) -708 0.38 None 29.35 48

Table 5.8: Model Fit Comparisons for Weekly Demand with Temperature
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5.3.1.4 ARMAX Forecasting Future One-Step Ahead Demand

One step ahead forecasts were again calculated for each of the two models in Table 5.8 for

the 26 weeks of the winter of 1972/73. Table 5.9 shows the balanced set of metrics for each

of the models.

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(1,2)/MA(1,2,3,26:29) 0.03 4.42 28.71 4.16% 9.97/21/8.38% -11.88/7/-10.24%

AR(1)/MA(1,26,27) 0.07 4.10 24.82 3.86% 7.87/21/6.13% -11.13/7/-10.12%

Table 5.9: Model Statistics Comparisons for Weekly Demand with Temperature Forecasts

The two models have very similar forecast statistics, however, model AR(1)/MA(1,26,27)

was finally chosen due to the smaller Overestimate and Underestimate predicted demand

values. The AR(1)/MA(1,26,27) model is written as:

ŵt = −0.27wt−1 − 0.04x̂t + at − 0.77at−1 − 0.43at−26 + 0.43at−27 (5.12)

Where ŵt is the forecast value of demand at time t and x̂t is the forecast temperature

at time t. As the forecast temperature at time t is not available, the actual temperature is

used to forecast future demand ŵt. The value of at is zero for each of the forecast values

(Section 3.2.2.5). The One-Step ahead forecasts are shown in Figure 5.15.
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Figure 5.15: One-Step Ahead Forecast for model AR(1)/MA(1,26,27)
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5.3.1.5 ARMAX Forecasting Future Multi-Step Ahead Demand

Figure 5.16 shows the Multi-Step Ahead forecast for the AR(1)/MA(1,26,27) model for the

full 26 weeks. The MAPE is 3.38% which is an improvement over the One-Step Ahead

forecast described above, and and even bigger improvement than the ARMA Multi-Step

Ahead forecast from Section 5.2.1.5.

Figure 5.16: Multi-Step Ahead Forecast for model AR(1)/MA(1,26,27)
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The statistics associated with this Multi-Step Ahead forecast are shown in Table 5.10.

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(1)/MA(27) 1.53 3.48 17.97 3.38% 7.88/18/6.62% -6.36/1/-9.59%

Table 5.10: Model Statistics for 26 Week Multi-Step Weekly Demand Forecast

Again, performing shorter Multi-Step Ahead forecasts of 4, 6, 8 and 13 weeks using the

AR(1)/MA(1,26,27) model produces effective forecasts for the operations managers. The

results for the 26 weeks using the different weeks ahead forecasts are shown in Table 5.11.

Note when the weeks ahead number is not a factor of 26, a 2 weeks ahead forecast is

performed for the last 2 weeks (i.e. weeks 25 and 26).

Model Over Prediction Under Prediction

AR(1)/MA(1,26,27) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead 1.68 4.12 25.49 3.92% 8.78/6/9.99% -6.36/1/-9.59%

6 Week Ahead -2.28 5.33 41.12 4.86% 9.36/18/7.86% -11.79/7/-10.17%

8 Week Ahead 0.49 3.33 15.33 3.21% 7.21/18/6.08% -6.36/1/-9.59%

13 Week Ahead -1.72 3.22 17.41 3.05% 6.86/6/7.80%% -9.14/20/-6.80%

Table 5.11: Model Statistics for Various Multi-Step Ahead Weekly Demand Forecasts
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The best Multi-Step Ahead period appears to be a 13 week ahead forecast from an

MAPE perspective, with the 8 week ahead similar. Both are close to the 26 week Multi-

Step Ahead forecast statistics shown in Tables 5.10. However, the 8 week ahead has smaller

overestimate and underestimate predicted demand values and a smaller MPE and MSE.

Figures 5.17 graphs this result for the multiple 8 week ahead forecasts.

Figure 5.17: 8 week Multi-Step Ahead Forecast periods for model AR(1)/MA(1,26,27)

5.3.2 Summary of ARMAX Results

In conclusion, the above work has shown that an Autoregressive Moving Average model can

adequately represent and predict weekly demand data for Southern Gas when temperature

is included in the model (thus generating and ARMAX model). This ARMAX model meets

the benchmark level of acceptance with a One-Step Ahead MAPE of <4%, and a 26 week
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Multi-Step ahead MAPE of <4%. The 13 week, 8 and 4 week multi-step ahead also have

an MAPE of <4%, and the MAPE for the 6 week forecast of <5%. All these statistics

are satisfy the benchmark criteria (i.e. smaller One-Step Ahead MAPE values than the

Persistence Model, and within the 4-6% value set by DNV GL). The next section will apply

the NARMAX methodology to the same data.
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5.3.3 NARMAX Winter Weekly Modeling and Forecasting with Actual Temperature

As in the previous Section, the Southern Gas Winter Weekly Demand and the Winter

Weekly Effective Temperatures described in Chapter 5, and shown in Figures 5.1 and Figure

5.2, are the starting point for the analysis using the NARMAX methodology. The NARMAX

model formula for this chapter are described in Section 3.3, and includes both delayed output

variables and the input variable temperature.

5.3.3.1 Transforming the data

The same transformations were performed as for the ARMAX modeling of winter weekly

demand and temperature (section 5.3.1.2) to produce stationarity, i.e.:

1. The Winter Weekly Demand was transformed with a Natural Logarithmic transfor-

mation

2. The Winter Weekly Effective Temperature required no transformation

3. The Log of the Winter Weekly Demand and the Winter Effective Temperature were

then differenced by factors of 1 and 26

Figures 5.13 and 5.14 show the transformed Southern Gas Corrected Weekly Demand

and Temperature, which will be treated by the NARMAX algorithm. Each series is made

up of 233 data points representing the transformed 9 years 1963 to 1972 (blue - 207 weeks)

and the forecast comparison year (red - 26 weeks).

5.3.3.2 NARMAX Parameter Identification of the Winter Weekly Demand with Temper-

ature

Using the ACF of both the Transformed Demand and Temperature and the CCF of De-

mand and Temperature, variables 1 to 30 for both Demand and Temperature were initially

included in the NARMAX modeling process.
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As in Section 5.2.3, a first step analyzed a Linear model (ARX), followed by inclusion

of residuals, thus creating an ARMAX model. Following the linear model analysis, 2nd and

3rd order terms were introduced (both without and with residuals NARX and NARMAX),

to find the most appropriate model from a modeling and especially a forecasting perspective.

The best results are explained in this section, and the full details of the analysis modeling

and forecasting to reach these results are covered in Appendix F.

Running the modeling process without residuals (ARX Model), the terms 1,2 and 26

were selected for both demand and temperature. A 2nd Order NARMAX model was tested,

using the same variables as the linear ARX model (i.e. y(k − 1), y(k − 2), y(k − 26) and

x(k), x(k− 1), x(k− 2), x(k− 26)), giving 35 terms. Incorporating residuals into the model

generating a full NARMAX model, with only linear residual terms added, improved the

results (after 3 runs) over all the other models (ARX, ARMAX and NARX). The residual

term e(k − 26) added the most value to the system output, and the ERR total was 91.8%.

The terms selected are shown in Table 5.12. The ERR value added by x(k) shows the

significance of the temperature at time k on the demand at time k, generating 87% of the

ERR total value.

Index Model Parameter ERR(%)

term

1 xk -0.045 87.09

2 ek−26 -0.348 0.84

3 xk−2 -0.014 0.84

4 yk−1 -0.469 0.41

5 xk−1 -0.020 1.54

6 yk−2 -0.234 0.69

7 yk−26 -0.-040 0.23

8 xk−26 ∗ yk−26 -0.006 0.79

Table 5.12: Results of the FROLS algorithm for the 2nd Order NARMAX Model
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The modeling statistics were:

1. F Statistic with 178 data values = 0.38

2. Q Statistic = 47.26 with 44 degrees of freedom (df) (52-9) which shows an adequate

model (45 df χ2 value is 60.48 at 5% level)

The ACF and the PACF of the residuals showed no significant lags, but the Linear

and Nonlinear Validity tests (Figure 5.18) still showed a few lags slightly over the 95% sig-

nificance levels, but the lags did not represent any logical time factor, and hence have been

ignored.

Figure 5.18: Linear and Non-Linear Validity Tests
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5.3.3.3 NARMAX Forecasting Future One-Step Ahead Demand

One-Step Ahead Predicted Output for the NARMAX model are shown in Figures 5.19 and

the corresponding forecast statistics in Table 5.13.

Figure 5.19: 26 week - One-Step Ahead Forecast for the 2nd Order NARMAX Model
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

2nd Order 0.25 3.53 18.59 3.38% 6.69/13/6.08% -8.24/7/-7.11%

Table 5.13: NARMAX Model Statistics for One-Step Ahead Weekly Demand Forecast
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5.3.3.4 NARMAX Forecasting Future Multi-Step Ahead Demand

Starting from the 2nd Order NARX model (described in Appendix F), the analysis of

the Multi-Step residuals (ACF, CCF and the Nonlinear Validity tests) , indicate that the

following Moving Average terms e(k−1), e(k−2), e(k−26) and possibly e(k−52) could be

relevant to the model. Including these residual terms and running the process to stability

produces an ACF for the residuals with no significant lags. The Nonlinear Validity tests

showed a small number of significant lags but each close to the significant level. The model

terms and values are shown in Table 5.14.

Index Model Parameter ERR(%)

term

1 xk -0.046 87.14

2 ek−1 0.404 1.32

3 xk−2 -0.006 0.80

4 ek−26 0.368 1.09

5 ek−2 0.263 0.51

6 ek−52 0.120 0.27

7 xk−1 ∗ xk−2 -0.002 0.14

8 yk−1 ∗ yk−2 0.561 0.12

9 xk−2 ∗ yk−26 0.010 0.08

Table 5.14: Results of the FROLS algorithm for the 2nd Order NARMAX Model

The modeling statistics were :

1. F Statistic with 178 data values = 0.27

2. Q Statistic = 25.79 with 43 degrees of freedom (df) (52-9) which shows an adequate

model (43 df χ2 value is 59.30 at 5% level)
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This model was then used to forecast future values. The 26 week Multi-Step Ahead

forecast is shown in Figure 5.20 and the corresponding forecast statistics are shown in Table

5.15.

Figure 5.20: 26 week Multi-Step Ahead Forecast for the 2nd Order NARMAX Model
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

2nd Order 1.48 4.06 22.48 3.99% 8.47/10/7.44% -6.67/26/-6.33%

Table 5.15: NARMAX Model Statistics for 26 week Multi-Step Ahead Weekly Demand
Forecast

Performing shorter Multi-Step Ahead forecasts of 4, 6, 8 and 13 weeks using the 2nd

Order NARMAX model produced the following results for the full 26 weeks in Table 5.16.

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead -1.65 4.99 36.54 4.84% 7.99/1/12.03% -13.08/24/-11.09%

6 Week Ahead 3.28 5.96 51.86 5.53% 13.97/10/12.27% -10.12/18/-8.50%

8 Week Ahead 0.67 3.75 19.63 3.71% 8.01/7/6.91% -7.80/24/-6.62%

13 Week Ahead 0.95 4.23 23.71 4.16% 8.47/10/7.44%% -7.65/26/-7.25%

Table 5.16: NARMAX Model Statistics for Various Multi-Step Ahead Weekly Demand
Forecasts (2nd Order NARMAX Model)

The best Multi-Step ahead period appears to be an 8 week ahead forecast, but there

is very little difference between it and the 26 week ahead forecast. The higher result for the

6 week ahead is due to the large temperature change during this period, which the model

takes time to adjust to. For the 4 week ahead forecast, the high MAPE value is impacted by

the first 4 weeks. The AR term y(k− 1) has to pick up the last winter week of the previous

year, which impacts the calculations heavily. This negative constraint will be removed in

the next Section when all 52 weeks of the year will be modeled and forecast. Figure 5.21

graphs this result for the 8 week ahead.
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Figure 5.21: 8 Week Ahead Forecast periods for the 2nd Order NARMAX Model

5.3.4 Summary of NARMAX Results

For the One-Step Ahead forecasts, the 2nd Order NARMAX model produced a superior

MAPE result (3.38%) over both the NARX model (4.11% MAPE) and the ARMAX model

(3.86%). In the case of the Multi-Step Ahead forecast, for 26 week ahead, the ARMAX

model produced a better forecast with MAPE of 3.38% (over 3.99% for the 2nd Order

NARMAX model). For shorter Multi-Step Ahead horizons, the ARMAX model produced

better results all round, with 8 week ahead forecasts producing the best MAPE of 3.21%.
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5.4 Yearly Weekly Modeling and Forecasting with Actual Temperature (1963-

1973)

5.4.1 ARMAX Yearly Weekly Modeling and Forecasting with Actual Temperature

5.4.1.1 Introduction

Section 5.3 modeled and forecast the Winter weeks only. This has the advantage that

users reaction to temperature is consistent across the period of the winter months, once the

central heating systems have been switched on. However, it has a major disadvantage in

that Autoregressive part of the model will use data that is 26 weeks apart at the start of

each Winter period i.e. the low AR values will pick up the end of the previous winter as

values for the start of the forecast winter). To overcome this disadvantage, this section will

model the full 52 weeks demand with its associated weekly effective temperatures.

As a reminder, Figures 4.1 and 4.2 show the original 10 years of weekly data provided

by Southern Gas. In this chapter, the first 9 years (each of 52 weeks) will be used for

modeling and the 52 weeks from April 1972 to the end of March 1973 will be used for

forecasting comparison. Again temperature will be included in the model, and hence the

Equation 3.6 described in Chapter 3 will apply to the following sections.

5.4.1.2 Transforming the data

As in Section 5.3, data stationarity is achieved with a logarithmic transformation for the De-

mand and no transformation was applied to Temperature. Additionally, the autocorrelation

function shows differencing of 1 and 52 were appropriate for both Demand and Temper-

ature. Analysis of the yearly means and variances after transformation and differencing

confirm that stationarity is achieved. Figure 5.22 shows the fully transformed Demand and

Temperature. The data, in blue, represents the transformed data which will be used for

modeling and the red data is the comparison data for the forecast.

The ACF of the Transformed Weekly Demand has significant lags at 1 and 52, and

the ACF of the Transformed Temperature has significant lags at 1, 2 and 52. The Cross

correlation Function (CCF) between the Transformed Demand and Temperature showed a
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Figure 5.22: Transformed Demand and Temperature

significant lag at zero, significant lags at 52 and -52 as well as smaller significant lags at

1, 2, -1 and -2. This confirms, again, that the demand at time t is highly related to the

temperature at time t, as well as a 52 lag relationship between demand and temperature.

5.4.1.3 ARMAX Parameter Identification of the Yearly Weekly Demand with Temperature

Using the results of the ACF of both the Transformed Demand and Temperature, and the

CCF results, several models were tested for their AIC and BIC values. The lowest values

were produced with AR and MA variables with delays of 1, 2, 3, 51, 52, 53, 54 and 55. The

various combinations of these variable lags were then tested to find a balance between the

modeling and forecast statistics. Additionally, several delays were applied to temperature
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series, but a delay of zero always produced the best results, as in Section 5.3 . This implies

again that future demand at time t is dependent on the corresponding temperature at t,

and past weeks demand values.

Model AR(1,2,51,52,53,54)/MA(52), produces the best results from a modeling per-

spective. The AIC value was -1435, the F Statistic was 0.73 and the Q Statistic was 41

with 45 (52-7) degrees of freedom.. The χ2 value is with 45 df is 60.48 (at the 5% level)

which shows an adequate model. The model is shown in Equation 5.13. The ACF of the

residuals indicated a few lags just outside the +/- 95% confidence limits. Details on all the

other models can be found in Appendix G.

(1−0.43B−0.20B2+0.19B51+0.37B52+0.34B53+0.26B54)wt = −0.04xt+(1−0.84B52)at

(5.13)

5.4.1.4 ARMAX Forecasting Future One-Step Ahead Demand

One step ahead forecasts were again calculated for model AR(1,2,51,52,53,54)/MA(52) for

the 52 week period April 1972 though to March 1973. Figure 5.23 shows the 52 week One-

Step Ahead forecast for the model and Table 5.17 shows the balanced set of metrics for the

model (both 52 weeks and 26 Winter weeks).

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week -0.09 3.02 15.05 4.06% 6.95/11/14.40% -9.96/52/-9.45%

26 Winter Weeks 0.19 3.22 16.25 3.06% 6.49/21/5.45% -9.96/26/-9.45%

Table 5.17: One-Step Ahead Model Forecast Comparisons for Weekly Demand from the
AR(1,2,51,52,53,54)/MA(52) Model
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Figure 5.23: 52 Week - One-Step Ahead Forecasts for 1972/73
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5.4.1.5 ARMAX Forecasting Future Multi-Step Ahead Demand

Multi step ahead forecasts were again calculated for each of the models in Appendix G for the

period April 1972 to March 1973 (i.e. 52 weeks). The model AR(1,2,51,52,53,54)/MA(52)

produced the best Multi-Step Ahead forecasts (for both 52 weeks and 26 Winter weeks).

Figure 5.24 shows the 52 week Multi-Step Ahead forecast this model and Table 5.18 shows

the balanced set of metrics for the model.

Figure 5.24: 52 Week - Multi-Step Ahead Forecasts for 1972/73

The statistics for various shorter Multi-Step ahead predictions of 4, 6, 8 and 13 weeks

using the AR(1,2,51,52,53,54)/MA(52) for the 52 weeks are shown in Table 5.19.

As can be seen, there is no major improvement, however, the MAPE of 5.2% for the 6 week

ahead is an improvement over the full 52 week forecast.
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Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 weeks -1.16 3.88 21.03 6.04% 6.74/11/13.97% -12.12/7/-16.82%

26 Winter Weeks -1.90 3.06 13.52 2.98% 5.39/25/5.65% -7.09/1/-10.68%

Table 5.18: Multi-Step Ahead Model Forecast Comparisons for Weekly Demand from the
AR(1,2,51,52,53,54)/MA(52) Model

Model Over Prediction Under Prediction

AR(1,2,51,52,53,54)/MA(52) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead -0.46 4.09 26.16 5.73% 15.14/11/31.37% -10.91/46/-8.12%

6 Week Ahead 1.25 3.52 18.96 5.20% 13.98/11/28.95% -8.23/6/-11.62%

8 Week Ahead -0.25 5.00 39.10 7.69% 15.14/11/31.37% -12.12/7/-16.82%

13 Week Ahead 1.51 5.60 54.96 6.94% 17.37/39/15.80% -12.53/26/-19.74%

Table 5.19: Model Statistics for Various Multi-Step Ahead Weekly Demand Forecast for
the AR(1,2,51,52,53,54)/MA(52) Model
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5.4.1.6 ARMAX Modeling and Forecasting the 26 Winter weeks

In this section, all 9 and half years of the weekly data is used for modeling, and this new

model will then be used to forecast the 26 winter weeks from October 1972 to March 1973.

Starting from the same variables (and delays) for the 9 year model produced good One-Step

Ahead forecasts but Multi-Step Ahead forecasts started to drift away from the actuals. The

ACF of the residuals showed lags around 104 were significant, and hence combinations for

both AR and MA terms of 1,2,50 to 54 and 102 to 106 were tested. Several models produced

similar modeling statistics and they are shown in Table 5.20.

Model AIC F Significant Q Degrees of

ARMAX Values Lags Value Freedom

AR(50,51,52,53)/MA(1,52,104) -1501 0.82 22,25,... 57 45

AR(50,51,52)/MA(1,52,104) -1503 0.82 22,25,... 59 46

AR(1,50,51,52)/MA(1,52,104) -1510 0.81 22,25,... 54 45

AR(1,50,51,52)/MA(1,2,52,104) -1508 0.81 22,25,50,109 54 44

AR(1,2,51,52,53,54)/MA(52) -1482 0.86 9,22,25,... 47 45

Table 5.20: Model Fit Comparisons for Winter Weekly Demand

Note: All the significant lags in the Table 5.20 are close to the 95% level.
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However, the best model from a forecasting perspective was AR(50,51,52,53)/MA(1,52,104)

both for One-Step Ahead and Multi-Step Ahead forecasts. The results are shown in Tables

5.21 and 5.22.

The model parameters for AR(50,51,52,53)/MA(1,52,104) are :

(1−0.12B50+0.16B51−0.67B52+0.03B53)wt = −0.041xt+(1−0.23B+0.14B52−0.55B104)at

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(50,51,52,53)/MA(1,52,104) 0.03 3.23 19.97 2.95% 10.22/21/8.59% -11.05/7/-9.53%

Table 5.21: 26 Week - One-Step Ahead Model Statistics for the Winter Weekly Demand
Forecast

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(50,51,52,53)/MA(1,52,104) 2.72 3.42 17.46 3.24% 9.35/6/10.63% -4.96/20/-3.69%

Table 5.22: 26 Week - Multi-Step Ahead Model Statistics for the Winter Weekly Demand
Forecast

Figures 5.25 and 5.26 show the 26 Winter Week One-Step Ahead and 26 Winter Week

Multi-Step Ahead for the forecasts based on a the model AR(50,51,52,53)/MA(1,52,104)

which was generated using the first 9 and a half years actual data.
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Figure 5.25: 26 Winter Weeks - One-Step Ahead Forecasts for 1972/73
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Figure 5.26: 26 Winter Weeks - Multi-Step Ahead Forecasts for 1972/73
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5.4.2 Summary of ARMAX Results

In conclusion, the above work has shown that an Autoregressive Moving Average with eX-

ogenous Inputs can again adequately represent and predict weekly demand data for Southern

Gas when temperature is included in the model and all 52 weeks are included in the data.

It also meets the level of acceptance (Benchmark Data) with a 52 week One-Step Ahead

forecast MAPE of 4.06% and a Winter Weeks One-Step ahead MAPE of 3.06%.

For the Multi-Step ahead forecast, the 52 Winter weeks Multi-Step ahead MAPE of

6.04%. This is due to the large errors from the summer weeks. However, when only calcu-

lating the statistics for the 26 Winter weeks, the Multi-Step Ahead MAPE is <3%.

When modeling using 9 and a half years demand and temperature data and forecasting

the Winter Weeks only for 1972/73, the One Step Ahead Forecast MAPE is again <3% while

the 26 week Multi-Step Ahead MAPE is 3.24%. The next section will apply the NARMAX

methodology to the same data.
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5.4.3 NARMAX Yearly Weekly Modeling and Forecasting with Actual Temperature

As in the previous Section, the Southern Gas Weekly Demand and the Weekly Effective

Temperatures described in Figures 4.1 and 4.2 of Chapter 4 are the start point for the

analysis using the NARMAX methodology. The NARMAX model formula for this chapter

are described in Section 3.3, and includes both delayed output variables and an input

variable, temperature.

5.4.3.1 Transforming the data

The same transformations were performed as for the ARMAX modeling of yearly weekly

demand and temperature (Section 5.3.1.2) to produce stationarity, i.e.:

1. The Yearly Weekly Demand was transformed with a logarithmic transformation

2. The Yearly Weekly Effective Temperature required no transformation

3. The Log of the Yearly Weekly Demand and the corresponding Effective Temperature

were then differenced by factors of 1 and 52

Figure 5.22 shows the transformed Southern Gas Weekly Demand and Temperature,

which will be used in this section with NARMAX.
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5.4.3.2 NARMAX Parameter Identification of the Yearly Weekly Demand with Tempera-

ture

The starting point for the NARMAX modeling was similar to that used in Section 5.4,

i.e. identify the range of possible transformed Demand and Temperature variables from the

ACF and CCF. The initial range was y(k−1) to y(k−54) and x(k−1) to x(k−54) inclusive.

As in Section 5.3.3, a first step analyzed a Linear model (ARX), followed by inclusion

of residuals, thus creating an ARMAX model. Following the linear model analysis, 2nd and

3rd order terms were introduced (both without and with residuals NARX and NARMAX),

to find the most appropriate model from a modeling and especially a forecasting perspec-

tive. The best results are explained in this section, and the full details of the results from

this methodology are covered in Appendix H.

Running the modeling process first without residuals (i.e. an ARX Model), the fol-

lowing variables were selected for demand and temperature i.e. y(k− 1), y(k− 2), y(k− 52)

and x(k), x(k − 1), x(k − 2), x(k − 52). However, it was found that x(k − 52) did not have

any impact on the modeling, and hence was removed. A 2nd Order NARX model was then

tested using the same variables as the linear ARX model (i.e. y(k−1), y(k−2), y(k−52) and

x(k), x(k − 1), x(k − 2)). This generated 27 terms. Eight terms were selected on reaching

the thresholds, with an ERR total of 87.48%. However, the ACF of the residuals showed

that there was additional information especially around lags 52 and 104. Hence the Moving

Average terms e(k − 52), and e(k − 104) were added. One run was required to attain no

significant values in the ACF and the Validity tests. Nine terms were selected, and the ERR

total was 90.62%, and again x(k) produced 85% of this total. The Linear and Non-Linear

Validity Tests for this model are shown in Figure 5.27 and the modeling statistics were:

1. F Statistic with 311 data values = 0.67

2. Q Statistic = 45.91 with 43 degrees of freedom (df) (52-9) which shows an adequate

model (43 df χ2 value is 59.30 at 5% level)
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The terms selected for the model are shown in Table 5.23.

Index Model Parameter ERR(%)

term

1 xk -0.045 85.08

2 ek−52 0.40 1.86

3 yk−1 -0.48 0.58

4 xk−1 -0.021 1.60

5 ek−104 0.24 0.40

6 xk−2 -0.013 0.31

7 yk−2 -0.24 0.55

8 xk−2 ∗ yk−52 -0.013 0.11

9 y2k−2 0.003 0.08

Table 5.23: Results of the FROLS algorithm for the 2nd Order NARMAX Model
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Figure 5.27: Linear and Non-Linear Validity Tests
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5.4.3.3 NARMAX Forecasting Future One-Step Ahead Demand

One-Step Ahead Predicted Output for the NARMAX model are shown in Figure 5.28, and

the corresponding forecast statistics in Table 5.24 for both the 52 week One-Step Ahead,

and the 26 Winter week One-Step Ahead forecasts..

Figure 5.28: 52 week One-Step Ahead Forecast for the 2nd Order NARMAX Model
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week 0.06 2.90 13.68 4.04% 10.77/11/22.31% -8.36/33/-7.21%

26 Winter Weeks 0.36 2.87 12.86 2.68% 6.85/6/7.78% -8.36/7/-7.21%

Table 5.24: One-Step Ahead Forecast Statistics for Weekly Demand (2nd Order NARMAX
Model)

5.4.3.4 NARMAX Forecasting Future Multi-Step Ahead Demand

Starting from the 2nd Order NARX model (described in Appendix H), the analysis of

the Multi-Step Ahead residuals (ACF, CCF and Nonlinear Validity tests) , indicate that

following Moving Average terms e(k − 1), e(k − 2), e(k − 51) to e(k − 53) and possibly

e(k−104) were required. Including these residual terms and running the process to stability

found that the x(k − 2) and e(k − 104) added little value to the results. The ERR total

was 89% and the ACF, CCF and the three Nonlinear Validity tests showed a small number

of significant lags but each close to the significant level. The model terms and values are

shown in Table 5.25.



118 Weekly Modeling and Forecasting

Index Model Parameter ERR(%)

term

1 xk -0.044 83.13

2 ek−1 0.44 2.50

3 ek−52 0.41 2.42

4 yk−52 -0.07 0.39

5 ek−53 -0.16 0.21

6 ek−51 0.12 0.18

7 yk−2 0.04 0.14

8 yk−2 ∗ yk−52 0.23 0.10

9 xk−1 ∗ xk 0.0004 0.07

Table 5.25: Results of the FROLS algorithm for the 2nd Order NARMAX Model
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The modeling statistics were :

1. F Statistic with 178 data values = 0.91

2. Q Statistic = 59.80 with 43 degrees of freedom (df) (52-9) which is slightly above the

5% χ2 value (43 df χ2 value is 59.30 at 5% level)

This model was then used to forecast future values for 52 week Multi-Step Ahead.

Analysis of the results of the 52 Week Multi-Step Ahead forecast shows that the highest er-

rors (Over and Under estimates) are during the summer months - week 15 and 7 respectively.

The 52 week Multi-Step Ahead forecast is shown in Figures 5.29 and the corresponding

forecast statistics are shown in Table 5.26 for both the 52 and 26 week Multi-Step Ahead

values.

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week 1.13 3.92 22.12 5.94% 7.39/15/19.47% -11.35/7/-15.74%

26 Winter Weeks 1.39 3.35 15.39 3.23% 5.14/25/5.39% -9.18/10/-8.07%

Table 5.26: Multi-Step Ahead Forecast Statistics for Weekly Demand (2nd Order NARMAX
Model)
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Figure 5.29: 52 week Multi-Step Ahead Forecast for the 2nd Order NARMAX Model
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The statistics for various shorter Multi-Step ahead predictions of 4, 6, 8 and 13 weeks

using the 2nd Order NARMAX model above for the 52 weeks are shown in Table 5.27. As

can be seen, there is no major improvement, however, the MAPE of 5.99% for the 6 week

ahead is close to the full 52 week forecast.

Note when the weeks ahead number is not a factor of 52, a 4 weeks ahead forecast is

performed for the last 4 weeks (i.e. weeks 49 to 52).

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead 0.03 4.96 40.20 6.69% 13.30/36/11.68% -15.07/11/-31.21%

6 Week Ahead -1.94 4.22 28.57 5.99% 9.47/6/13.38% -14.04/11/-29.09%

8 Week Ahead 0.42 5.21 44.93 7.85% 13.30/36/11.68% -15.25/15/-40.18%

13 Week Ahead -1.47 5.98 63.41 7.45% 11.35/7/15.74% -20.85/39/-18.96%

Table 5.27: 52 week - NARMAX Model Statistics for Various Multi-Step Ahead Weekly
Demand Forecasts

The best Multi-Step ahead period appears to be an 6 week ahead forecast, but there

is very little difference between it and the 52 week ahead forecast. Figure 5.30 graphs this

result for the 6 week ahead.
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Figure 5.30: 6 Week Ahead Forecast periods for the 2nd Order NARMAX Model
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5.4.3.5 NARMAX Modeling and forecasting ONLY the 26 Winter weeks

Repeating the methodology as described in Section 5.5.1.6, all 9 and half years of the weekly

data is used for modeling. This new model will then be used to forecast the 26 winter weeks

from October 1972 to March 1973. Starting from the same variables (and delays) for the 9

year model produced good One-Step Ahead forecasts but Multi-Step Ahead forecasts started

to drift away from the actuals. The ACF of the residuals showed lags around 104 were sig-

nificant, and hence combinations for both AR and MA terms of 1, 2, 50 to 54 and 102 to

106 were tested. For both One-Step Ahead and Multi-Step Ahead for the 26 Winter weeks,

the terms were y(k−1), y(k−2), y(k−52), x(k), x(k−1), x(k−2), e(k−1), e(k−2), e(k−52)

and e(k − 104).

The model terms and values are shown in Table 5.28.

Index Model Parameter ERR(%)

term

1 xk -0.047 83.19

2 ek−52 0.56 2.62

3 ek−1 -0.16 1.23

4 xk−2 -0.009 0.74

5 ek−104 0.23 0.49

6 yk−1 -0.46 0.12

7 xk−1 -0.02 0.53

8 yk−2 -0.13 0.22

9 y2k−1 0.11 0.07

Table 5.28: Results of the FROLS algorithm for the 2nd Order NARMAX Model

Figure 5.31 shows the 26 week One-Step Ahead forecast and the associated statistics

for the 2nd Order NARMAX model are shown in Table 5.29.

The Multi-Step Ahead forecast and associated statistical tables for the 2nd Order



124 Weekly Modeling and Forecasting

Figure 5.31: 26 Week One-Step Ahead Forecast periods for the 2nd Order NARMAX Model

NARMAX model are shown in Figure 5.32 and Table 5.30.
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

26 Winter weeks 0.83 2.85 12.36 2.67% 6.73/21/5.65% -7.91/7/-6.82%

Table 5.29: Model Statistics for 26 Winter Weeks - One-Step Ahead Weekly Demand Fore-
cast for the 2nd Order NARMAX Model

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

26 Winter weeks -3.01 3.84 26.99 3.59% 4.04/7/3.48% -11.22/24/-9.51%

Table 5.30: Model Statistics for 26 Winter Weeks - Multi-Step Ahead Weekly Demand
Forecast for the 2nd Order NARMAX Model

Figure 5.32: 26 Winter Week Multi-Step Ahead Forecast periods for the 2nd Order NAR-
MAX Model
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5.4.4 Summary of NARMAX Results

For the 52 week One-Step Ahead forecasts, the ARMAX and NARMAX forecasting results

are very similar (MAPE 4.06% vs 4.04%). However, the statistics from the same model

for only the 26 Winter weeks, show the 2nd Order NARMAX One-Step Ahead forecast is

slightly better (MAPE 2.68% vs 3.06%).

In the case of the Multi-Step Ahead forecast, the two methodologies (ARMAX and

NARMAX) produce results very similar statistics for both the 52 week and the 26 week.

For shorter term multi-step forecast horizons, the results are also very similar.

Finally, running the methodology on 9 and a half years and forecasting ONLY the 26

Winter weeks, produced similar results for each model. One-Step Ahead MAPE were 2.95%

for ARMAX and 2.67% for NARMAX. For the Multi-Step Ahead the MAPE results were

3.24% for ARMAX and 3.59% for NARMAX.



5.5 Yearly Weekly Modeling and Forecasting with Actual Temperature (2001-2011) 127

5.5 Yearly Weekly Modeling and Forecasting with Actual Temperature (2001-

2011)

5.5.1 ARMAX Yearly Weekly Modeling and Forecasting with Actual Temperature

5.5.1.1 Introduction

Section 5.4 modeled and forecast the Yearly and Winter weeks Demand based on data from

the period 1963 to 1973. This Section will apply the same methodology to the data from

2001 to 2011.

As a reminder, Figures 4.6 and 4.7 of Chapter 4 show the original 10 years of daily

data provided by DNV GL for the region X-Gas. This data is converted to weekly totals for

the demand data and the 7 day average for the Temperature data, generating 520 weekly

values. The two series are shown in Figures 5.33 and 5.34.

Figure 5.33: Weekly Demand
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Figure 5.34: Weekly Effective Temperature

The start and end weeks are similar to the 1970s data, i.e. the initial week is early

April 2001, and the last week is the end of March 2011. The first 9 years (each of 52 weeks)

will be used for modeling and the 52 weeks from April 2010 to the end of March 2011 will

be used for forecasting comparison. Again temperature is included in the model, and hence

the Equation 3.6 described in Chapter 3 will apply to the following sections. A periodic

cycles of 52 weeks is still relevant to the new data, however the slope of growth year on year

is much flatter than the data from 1970, this probably due to the stable population in the

region under study.

5.5.1.2 Transforming the data

As in Section 5.4, data stationarity is achieved with a logarithmic transformation for the

Demand and no transformation applied to Temperature together with differencing of 1 and
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52 for both Demand and Temperature. Analysis of the yearly means and variances after

transformation and differencing confirm, again, that stationarity is achieved. Figure 5.35

shows the transformed Demand and Temperature data for the 10 years 2001 to 2011. The

data, in blue, represents the transformed data which will be used for modeling and the red

data is the comparison data for the forecast.

The ACF of the Transformed Weekly Demand has significant lags at 1, 2 and 52,

and the ACF of the Transformed Temperature has significant lags at 1, 2, 3, 4, 5 and 52.

The Cross correlation Function (CCF) between the Transformed Demand and Temperature

showed the same profile as for the 1970s data i.e. a significant lag at zero, significant lags

at 52 and -52 as well as smaller significant lags at 1, 2, -1 and -2.

Figure 5.35: Transformed Demand and Temperature
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The first test was to see how well the model from Section 5.4, i.e. AR(1,2,51,52,53,54)/MA(52),

would perform when applied to the new data. The results are shown in Table 5.31, how-

ever, there were significant lags in the ACF of the residuals at lags 3 and 104, and hence

alternative models were considered to see how they could improve the results. The best

models are described in the sections below.

Model Over Prediction Under Prediction

AR(1,2,51:54)/MA(52) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week One-Step Ahead 0.02 4.20 34.94 6.82% 18.18/39/17.27% -16.01/40/-13.86%

26 week One-Step Ahead -0.08 5.58 53.30 6.88% 18.18/13/17.27% -16.01/14/-13.86%

52 week Multi-Step Ahead 1.14 3.30 16.21 6.52% 12.18/39/11.58% -8.88/46/-10.60%

26 week Multi-Step Ahead 0.35 3.71 20.67 4.61% 12.18/13/11.58% -8.88/20/-10.60%

Table 5.31: Model Statistics for Various Weekly Demand Forecasts.
Model : AR(1,2,51,52,53,54)/MA(52)
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5.5.1.3 ARMAX Parameter Identification of the Yearly Weekly Demand with Temperature

Several models were again tested using the measures of AIC/BIC, F and Q statistics. Mod-

els with similar modeling statistics were then used to forecast the 10th year, and the fore-

cast statistics calculated. The best model from a forecasting perspective was found to be

AR(1,2,3,4,52,53)/MA(52), and temperature x at time t and t − 1. For this model, the

AIC value was -1099, the F Statistic was 1.63 and the Q Statistic was 47.74 with 45 (52-7)

degrees of freedom (the χ2 value is 60.48 with 45 df at 5% level and hence shows an adequate

model). The model is shown in Equation 5.14. The ACF of the residuals found a few lags

just outside the +/- 95% confidence limits, specifically lag 5, but adding these lags to the

model parameters did not improve the results.

(1−0.50B−0.37B2−0.26B3−0.15B4+0.22B52+0.16B53)wt = −0.05xt−0.01xt−1+(1−0.77B52)at

(5.14)

5.5.1.4 ARMAX Forecasting Future One-Step Ahead Demand

One step ahead forecasts were calculated for the 52 week period April 2010 though to

March 2011. Figure 5.36 shows the 52 week One-Step Ahead forecasts for the model

AR(1,2,3,4,52,53)/MA(52) and Table 5.32 shows the balanced set of metrics for the model

for both the 52 and 26 week One-Step Ahead forecasts.

Model Over Prediction Under Prediction

AR(1:4,52,53)/MA(52) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week -0.05 2.92 14.69 5.28% 7.82/6/17.88% -10.82/46/-12.92%

26 Winter weeks -0.02 3.48 19.46 4.41% 7.65/18/8.19% -10.82/20/-12.92%

Table 5.32: Model Statistics for One-Step Ahead Weekly Demand Forecasts
Model : AR(1,2,3,4,52,53)/MA(52)



132 Weekly Modeling and Forecasting

Figure 5.36: 52 Week - One-Step Ahead Forecasts for 2010/2011
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5.5.1.5 ARMAX Forecasting Future Multi-Step Ahead Demand

Multi-Step Ahead forecasts were again calculated for model AR(1,2,3,4,52,53)/MA(52).

Figure 5.37 shows the 52 week Multi-Step Ahead forecast this model and the statistics are

shown in Table 5.33.

Figure 5.37: 52 Week - Multi-Step Ahead Forecasts for 2010/2011



134 Weekly Modeling and Forecasting

Model Over Prediction Under Prediction

AR(1:4,52,53)/MA(52) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week 0.09 2.62 11.52 5.03% 8.42/37/7.44% -8.65/46/-10.33%

26 Winter weeks -0.28 2.99 16.17 3.69% 8.42/11/7.44% -8.65/20/-10.33%

Table 5.33: Model Statistics for Multi-Step Ahead Weekly Demand Forecasts
Model : AR(1,2,3,4,52,53)/MA(52)
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Additionally, starting from the actual demand of the last week of September 2010, the

26 Winter Weeks statistics (October 2010 to March 2011) for AR(1,2,3,4,52,53)/MA(52),

also produced good results and are shown in Table 5.34. Figure 5.38 shows this 26 week

Multi-Step Ahead forecast.

Model Over Prediction Under Prediction

AR(1:4,52,53)/MA(52) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

26 Winter weeks -1.20 3.09 16.84 3.78% 7.02/11/6.20% -9.52/20/-11.36%

Table 5.34: Model Statistics for Multi-Step Ahead Weekly Demand Forecasts
Model : AR(1,2,3,4,52,53)/MA(52)
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Figure 5.38: 26 Winter Weeks - Multi-Step Ahead Forecasts for 2010/2011
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The statistics for various shorter Multi-Step ahead predictions of 4, 6, 8 and 13 weeks

using the AR(1,2,3,4,52,53)/MA(52) for the 52 weeks are shown in Table 5.35.

As can be seen, there is no major improvement over the full 52 week forecast.

Model Over Prediction Under Prediction

AR(1:4,52,53)/MA(52) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead -0.35 3.48 18.26 6.61% 10.59/36/10.86% -9.48/28/-21.25%

6 Week Ahead -1.39 3.89 21.33 7.76% 6.13/36/6.28% -10.58/42/-10.38%

8 Week Ahead -0.41 3.87 24.04 6.93% 11.65/37/10.29% -10.95/32/-18.36%

13 Week Ahead -1.61 3.43 21.49 5.45% 7.02/37/6.20% -13.02/46/-15.55%

Table 5.35: Model Statistics for 52 Week - Various Multi-Step Ahead Forecasts
Model : AR(1,2,3,4,52,53)/MA(52)
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5.5.1.6 ARMAX Modeling and Forecasting for the 26 Winter weeks

In this section, all 9 and half years of the weekly data is used for modeling, and this new

model will then be used to forecast the 26 winter weeks from October 2010 to March 2011.

Starting from the same variables (and delays) for the 9 year model produced good One-Step

Ahead forecasts but Multi-Step Ahead forecasts started to drift away from the actuals. The

ACF of the residuals showed several significant lags, and hence other models with various

combinations for AR and MA terms were tested. Several models produced similar modeling

statistics and are shown in Table 5.36. The 9 year model statistics are shown at the end of

the table for reference.

Model AIC F Significant Q Degrees of

ARMAX Values Lags Value Freedom

AR(1:2,52:53,104)/MA(1,52) -1227 1.52 156 29.77 97

AR(1:2,52:53,104:105)/MA(1) -1227 1.51 156 30.00 98

AR(1,52:53,104:105)/MA(1) -1226 1.52 80,156 30.96 99

AR(1:2,52:53,104:105)/MA(1,52) -1225 1.52 156 29.71 97

AR(1:4,52,53)/MA(52) -1173 1.71 5,157 45 45

Table 5.36: Model Fit Comparisons for Winter Weekly Demand

Note: Variable 156 was included into the models, both as an AR and MA term, but

did not improve the results.
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Each of the models, in Table 5.36, produced similar One-Step and Multi-Step ahead

forecasts. Model AR(1:2,52:53,104:105)/MA(1) was chosen due to slightly better overall

balanced results. These results are shown in Table 5.37.

Model Over Prediction Under Prediction

AR(1:2,52:53,104:105)/MA(1) MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

One-Step Ahead -0.1 4.20 29.54 5.24% 10.78/13/10.24% -11.57/20/-13.82%

Multi-Step Ahead -3.76 4.39 28.45 5.41% 3.72/6/3.54% -11.92/20/-14.24%

Table 5.37: 26 Week - Model Statistics for AR(1:2,52:53,104:105)/MA(1) Model Forecast
for the Winter Weekly Demand

The model parameters for AR(1:2,52:53,104:105)/MA(1) are :

(1 + 0.29B1 + 0.06B2 − 0.72B52 + 0.16B53 − 0.40B104 − 0.01B105)wt = −0.05xt −

0.01xt−1 + (1− 0.93B)at

Figures 5.39 and 5.40 show the 26 Winter Week One-Step Ahead and 26 Winter Week

Multi-Step Ahead for the forecasts based on a the model AR(1:2,52:53,104:105)/MA(1)

which was generated using the first 9 and a half years actual data.
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Figure 5.39: 26 Winter Weeks - One-Step Ahead Forecasts for 2010/2011
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Figure 5.40: 26 Winter Weeks - Multi-Step Ahead Forecasts for 2010/2011
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5.5.2 Summary of ARMAX Results

In conclusion, the model selected for the data from 2001 to 2011 was different than that

used for the data from 1963 to 1973. This implies that the behavior of consumption changed

from the earlier period to today. The new model meets the level of acceptance with a 52

week One-Step Ahead forecast MAPE of 5.28% and a Winter Weeks One-Step ahead MAPE

of 4.41%. For the Multi-Step ahead forecast, the 52 Winter weeks Multi-Step ahead MAPE

of 5.03% and the 26 Winter weeks MAPE of 3.69%. When modeling using 9 and a half

years demand and temperature data and forecasting the Winter Weeks only for 2010/11,

the One Step Ahead Forecast MAPE is 5.24% while the 26 week Multi-Step Ahead MAPE

is 5.41%. The next section will apply the NARMAX methodology to the same data. All the

One-Step Ahead results are better than the Persistence model, and all results are within

the 4-6% levels set by DNV GL or better.
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5.5.3 NARMAX Yearly Weekly Modeling and Forecasting with Actual Temperature

As in the previous Section, the X-Gas Weekly Demand and the Weekly Effective Temper-

atures described in Figures 5.33 and 5.34 are the start point for the analysis using the

NARMAX methodology. The NARMAX model formula for this chapter are described in

Section 3.3, and includes both delayed output variables and an input variable, temperature.

5.5.3.1 Transforming the data

The same transformations were performed as for the ARMAX modeling of yearly weekly

demand and temperature (section 5.3.1.2) to produce stationarity, i.e.:

1. The Yearly Weekly Demand was transformed with a logarithmic transformation

2. The Yearly Weekly Effective Temperature required no transformation

3. The Log of the Yearly Weekly Demand and the corresponding Effective Temperature

were then differenced by factors of 1 and 52

Figure 5.35 shows the transformed X-Gas Corrected Weekly Demand and Tempera-

ture, which will be treated by the NARMAX algorithm. The data, in blue, represents the

transformed data which will be used for modeling and the red data is the comparison data

for the forecast.

5.5.3.2 NARMAX Forecasting Future One-Step and Multi-Step Ahead Demand using Mod-

els from Section 5.4.3

The first test was to see how well the One-Step and Multi-Step Ahead forecast models,

using the 1963 to 1973 data, from Section 5.4.3, would perform when applied to the new

data from the years 2001 to 2011.

The results for both the 52 week and 26 Winter weeks One-Step and Multi-Step Ahead

statistics are shown in Table 5.38. The results shown are acceptable, however a few lags of

residuals are just above the 95% confidence level. Additional models were considered but no
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model was found which produced improved results. Figures 5.41 and 5.42 show the results

of the 52 week One-Step and Multi-Step Ahead forecasts with the new data.

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week One-Step Ahead -0.20 2.43 10.32 4.46% 7.08/6/16.12% -8.48/46/-13.86%

26 week One-Step Ahead -0.36 2.95 13.84 3.69% 5.82/18/6.22% -8.48/20/-10.12%

52 week Multi-Step Ahead 0.14 2.39 8.65 4.79% 6.28/6/14.35% -7.94/40/-6.88%

26 week Multi-Step Ahead -0.42 2.25 7.89 2.75% 4.52/19/4.91% -7.94/14/-6.88%

Table 5.38: Model Statistics for Weekly Demand Forecast. Model : NARMAX from Section
5.4.3
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Figure 5.41: 52 week - One-Step Ahead Forecast for the 2nd Order NARMAX Model
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Figure 5.42: 52 week - Multi-Step Ahead Forecast for the 2nd Order NARMAX Model
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The statistics for various shorter Multi-Step ahead predictions of 4, 6, 8 and 13 weeks

using the 2nd Order NARMAX model above for the 52 weeks are shown in Table 5.39. As

can be seen, there is no major improvement, however, the MAPE of 4.87% for the 13 week

ahead is the smallest MAPE.

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

4 Week Ahead 0.63 4.06 22.42 8.14% 7.80/44/8.35% -10.22/40/-8.85%

6 Week Ahead -0.71 3.97 24.35 8.69% 6.89/16/28.45% -11.76/7/-22.11%

8 Week Ahead 0.53 4.26 24.32 8.19% 11.67/45/12.66% -9.90/32/-16.60%

13 Week Ahead -0.41 2.69 11.70 4.87% 6.28/40/14.35% -11.38/40/-9.85%

Table 5.39: 52 week - NARMAX Model Statistics for Various Multi-Step Ahead Weekly
Demand Forecasts

5.5.3.3 NARMAX Modeling and forecasting ONLY the 26 Winter weeks

Repeating the methodology as described in Section 5.5.1.6, all 9 and half years of the weekly

data is used for modeling. This new model will then be used to forecast the 26 Winter weeks

from October 2010 to March 2011. Starting from the same variables (and delays) for the

9 year model, good One-Step Ahead forecasts were produced. However, the ACF of the

residuals indicated e(k− 2) was present. Hence running the process with y(k− 1), y(k− 2),

y(k − 52), x(k), x(k − 1), e(k − 1), e(k − 2) and e(k − 52) produced an F value of 1.98 and

a Q value of 44.58 with 43 df, indicating an adequate model. The model terms and values

are shown in Table 5.40. Figure 5.43 shows the 26 week One-Step Ahead forecast and the

associated statistics for the 2nd Order NARMAX model are shown in Table 5.41.
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Index Model Parameter ERR(%)

term

1 xk -0.048 73.05

2 ek−52 0.50 6.60

3 ek−1 0.08 3.42

4 xk−1 -0.03 2.47

5 yk−52 -0.06 0.62

6 yk−1 -0.43 0.34

7 ek−2 0.39 0.59

8 yk−2 0.09 0.42

9 yk−1 ∗ yk−52 -0.15 0.07

Table 5.40: 2nd Order NARMAX Model for One-Step Ahead Winter Forecasts

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

2nd Order -0.18 3.07 14.64 3.77% 6.00/24/7.25% -8.58/20/-10.25%

Table 5.41: Model Statistics for 26 Winter Weeks One-Step Ahead Weekly Demand Forecast
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Figure 5.43: 26 Winter Weeks - One-Step Ahead Forecast periods for 2nd Order NARMAX
Model
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Applying the model in Table 5.40 to a Multi-Step Ahead forecasts, the forecast values

started to drift away from the actuals. The ACF of the residuals showed lags 2 and 3 were

significant, and hence combinations for both AR and MA terms, including these variables

were tested. The new model is shown in Table 5.42. The Multi-Step Ahead forecast and

associated statistics for this 2nd Order NARMAX model are shown in Figure 5.44 and Table

5.43.

Index Model Parameter ERR(%)

term

1 xk -0.047 73.05

2 ek−52 0.41 5.58

3 ek−1 0.39 4.10

4 xk−1 -0.01 2.27

5 yk−52 -0.10 0.71

6 yk−1 -0.13 0.14

7 yk−3 -0.04 0.13

8 yk−1 ∗ yk−52 -0.17 0.11

9 yk−3 ∗ yk−52 0.19 0.10

Table 5.42: 2nd Order NARMAX Model for Multi-Step Ahead Winter Forecasts

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

2nd Order 0.32 3.18 16.08 3.77% 6.45/20/7.71% -8.82/13/-8.38%

Table 5.43: Model Statistics for 26 Winter Weeks Multi-Step Ahead Weekly Demand Fore-
cast
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Figure 5.44: 26 Week - Multi-Step Ahead Forecast periods for the 2nd Order NARMAX
Model
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5.5.4 Summary of NARMAX Results

The NARMAX model developed for the 1970s data performed satisfactorily for the 2000s

data. For the 52 week One-Step Ahead forecasts, the 2nd Order NARMAX model results

are slightly improved over the ARMAX results (MAPE 4.46% vs 5.28%). Similarly for the

statistics from the same model for only the 26 Winter weeks, the 2nd Order NARMAX

forecast is slightly better (MAPE 3.69% vs 4.41%).

In the case of the Multi-Step Ahead forecast, the NARMAX 2nd Order Model produced

slightly improved results for the 52 week ahead (4.79% vs 5.03%) as well as improved results

for the 26 week (2.75% vs 3.69%).

Finally, running the methodology on 9 and a half years and forecasting ONLY the Win-

ter weeks, the NARMAX models again, produced better MAPE results over the ARMAX

models for both the One-Step (3.77% vs 5.24%) and Multi-Step Ahead forecasts (3.77% vs

5.41%).
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5.6 Weekly Forecasting Summary and Conclusions

5.6.1 Introduction

The 4 previous sections have shown that the Polynomial NARMAX methodology has the

capabilities to model Weekly Gas Demand, thus providing another methodology for soft-

ware developers. Tables 5.44, 5.45 and 5.46 summarize the results of the forecasting for the

different data sets and time horizons.

For the Benchmark test, the One-Step Ahead MAPE for the forecast values (for both

ARMA(X) and NARMA(X) models) are all smaller than the Persistent Model values in

Table 4.1, i.e. Winter Weeks values of 7.41% and 10.10%, and the Yearly Weeks values

of 8.25% and 11.83%. Also the results for both the One-Step and the Multi-Step Ahead

MAPE forecast values were all within the 4-6% value set by DNV GL.

The 2nd Order NARMAX models provided improved forecasts in all cases over ARX/NARX

models produced by the FROLS algorithm. The NARMAX modeling described in these

sections, shows that the Demand for week t is heavily dependent on the Temperature at time

t. but is not sufficient to produce acceptable forecasts on its own. The NARMAX method-

ology then has to select terms which were very similar in the percentage they add to the

system output. To facilitate the selection, domain knowledge was helpful to remove terms

that made little sense to the forecast, in a similar way to the method used for ARMAX

modeling. This then helped the FROLS algorithm to select significant and appropriate

terms.

Note: Non-linear combinations of the residual terms were also tested in each case, and

did not improve the forecasts.
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5.6.2 Winter Weekly Forecast Summary

The results of the ARMA/ARMAX and the Polynomial NARMAX models, when only the

Winter weeks were modeled, produced acceptable forecasts. However, for the first two sets

of results in Table 5.44, the low AR terms, in the model, use the end of the previous year

values at the start of the forecast year, which caused large errors to occur on the initial

forecast values. This obviously had an impact on the value of the overall statistics. Remov-

ing this constraint, by modeling the full 52 weeks of the year, the polynomial NARMAX

models produced superior One-Step Ahead forecasts and Multi-Step Ahead forecasts over

the ARMAX models. These results are very encouraging, and have the possibility of being

improved, as additional weather variables are introduced.

26 Winter Week Forecast

Data Model One-Step Ahead Multi-Step Ahead

MAPE % MAPE %

1963-1973 ARMA Winter with SNET 3.71 4.53

NARMA Winter with SNET 2.81 5.71

1963-1973 ARMAX Winter Model 3.86 3.38

NARMAX Winter Model 3.38 3.99

1963-1973 ARMAX Yearly Model 3.06 2.98

NARMAX Yearly Model 2.68 3.23

2001-2011 ARMAX Yearly Model 4.41 3.69

NARMAX Yearly Model 3.69 2.75

Table 5.44: 26 Winter Weeks - Model Forecast MAPE Summary
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5.6.3 Winter Weekly Forecast (using 9.5 years data) Summary

The results achieved for both the ARMAX and Polynomial NARMAX method when using 9

and a half years of data, and forecasting the 26 Winter weeks are again within the Benchmark

tests. The results are similar for both methodologies for the 1963-73 data, but NARMAX

produced improved results for the 2001-2011 data. The values are shown in Table 5.45.

26 Week Forecast

Data Model One-Step Ahead Multi-Step Ahead

MAPE % MAPE %

1963-1973 ARMAX Yearly Model 2.95 3.24

NARMAX Yearly Model 2.67 3.59

2001-2011 ARMAX Yearly Model 5.24 5.41

NARMAX Yearly Model 3.77 3.77

Table 5.45: 26 Winter Weeks (9.5 Years Data) - Model Forecast MAPE Summary



156 Weekly Modeling and Forecasting

5.6.4 Yearly Weekly Forecast Summary

Forecasting the full 52 weeks, the Polynomial NARMAX methodology produced slightly

improved results over the ARMAX methodology for both One-Step Ahead and Multi-Step

Ahead forecasts for both the 1963/73 and the 2001/11 data sets (Table 5.46). They are

within the Benchmark Data of 4-6%. The large Over and Under Estimates for the 52 week

forecasts occur mostly in the summer weeks, hence further improvements are possible by

applying corrections to summer temperature data, which DNV GL perform, but which have

not been applied to the data used in this thesis.

52 Week Forecast

Data Model One-Step Ahead Multi-Step Ahead

MAPE % MAPE %

1963-1973 ARMAX Yearly Model 4.06 6.04

NARMAX Yearly Model 4.04 5.94

2001-2011 ARMAX Yearly Model 5.28 5.03

NARMAX Yearly Model 4.46 4.79

Table 5.46: 52 Weeks - Model Forecast MAPE Summary



Chapter 6

DAILY MODELING AND FORECASTING

6.1 Introduction

This chapter will analyze and produce forecasts for daily data. ARMAX and NARMAX

methodologies (described in Chapter 3) will be applied to the data described in Section 4.3.

A comparison of the forecast results will be shown at the end of this chapter. Since the

period of particular interest in the gas industry is from October to March, when the gas

demand approaches the system capacity, each method on each data set will concentrate the

effort on producing the most effective forecast (in MAPE terms) for these Winter days.

This chapter is structured as follows:

Section 6.2 Daily Demand Data from Eastern Gas for the years 1970 to 1975.

Section 6.3 Daily Demand Data from X-Gas for the years 2001 to 2011.

Section 6.4 Summary of Results and Conclusions.
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6.2 Daily Modeling and Forecasting with Actual Temperature (1970-1975)

6.2.1 ARMAX Modeling and Forecasting with Actual Temperature

The data in Figures 4.4 and 4.5 of Section 4.3 depicts the daily demand and temperature

for the period 1/10/1970 to 20/6/1975. The data covers nearly 5 years of daily demand and

temperature for Eastern Gas (1724 days). The first set of tests on this data was to decide how

many days data should be used for modeling. Initially, the days from 1/10/1970 to the end

of September 1974, were modeled, but it was found that fewer data points produced similar

results, and hence a smaller modeling data set was selected. The start point for modeling

was selected as Sunday 1/10/1972 and the end point was Saturday 28/9/1974 (728 days

- 104 weeks). The forecasting period was then set as starting on Sunday 29/9/1974 and

running through to 29/3/1975 (182 days (26 weeks)), covering the Winter period.

The ARMAX sections, below, are not validations of the work done for the original

thesis in the 1970s (Antcliffe et al., 1975d), because the theory and application of ARMA

with eXogenous inputs was in its infancy at that time, and required a complex two step

process to model demand with an input variable (temperature). Today, the process has

been simplified and improved and is supported in the Systems Identification Toolbox and

Econometrics Toolbox in MATLAB, and hence this methodology has been used in the thesis.

However, several aspects of the previous work are still relevant, i.e. the amount of data to

use (described above), the generation of a stationary time series, and model terms relevant

to the final model.

Figure 6.1 shows the daily demand and temperature data for Eastern Gas (noted

as E-Gas in the Figures and Tables) for the period described above (i.e. 01/10/1972 to

29/03/1975). The data in blue is that used for modeling, and the data in red is that used

for comparison with the forecast values.
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Figure 6.1: E-Gas Daily Demand and Temperature (1972-1975)
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6.2.1.1 Transforming the data

As in the previous chapter, the data depicting Eastern Gas Daily Demand clearly shows the

time series is non stationary, it has both a small growth component and a seasonal compo-

nent. Several transformations were tested, including logarithmic and powers, to reduce the

yearly variance growth. Again a natural logarithmic transformation was tentatively chosen.

The Autocorrelation Function (ACF) of the initial transformed data shows that the

time series is still not stationary, a seasonal pattern with peaks every 7 days exists (showing

the relationship week on week), and hence difference transformations are also required.

Differencing of 1 and 7 are typically appropriate, i.e. (∇∇7zt), to produce stationarity.

For the Temperature time series, only a difference transformation of 1 and 7 was

applied. The transformed series (Demand and Temperature) are shown in Figure 6.2 for

the modeling data only (i.e. 728-8 data elements). Analysis of year on year means and

variances confirm that stationarity requirements are met.
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Figure 6.2: Transformed E-Gas Demand and Temperature - Modeling Data ONLY (1972-
1974)
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6.2.1.2 ARMAX Parameter Identification of the E-Gas Daily Demand with Temperature

Using the results of the ACF of both the transformed Daily Demand and Temperature and

the CCF results, the lags 1, 2, 3, 4, 7, 8, 9, 10, 364 and 365 were significant. Several models

were generated with AR and MA variables of these values, using the Economics Toolkit

functions for ARMAX. Several delay values were applied to temperature series, a delay of 2

always produced the best results. This implies that future demand at time t+1 is dependent

on the corresponding temperatures at t+ 1, t and t− 1, as well as past demand values.

The model and parameter values generated, on the transformed data above, is de-

scribed in Equation 6.1 which represents a AR(1)/MA(1,7,8,364,365) model with 2 time

delays on temperature. The modeling statistics, for this model, are shown in Table 6.1.

(1 + 0.18B)wt = −(0.029 + 0.01B + 0.004B2)xt

+(1− 0.49B − 0.86B7 + 0.42B8 + 0.11B364 − 0.024B365)at

(6.1)

Model Temperature AIC F Significant Q Degrees of

ARMAX Delay Values Lags Value Freedom

AR(1)/MA(1,7,8,364,365) 2 -2119 2.14 91 389 711

Table 6.1: Model Fit Statistics for Daily Demand Model

6.2.1.3 ARMAX - Forecasting Future One-Step Ahead Demand

One-Step and Multi-Step Ahead forecasts were calculated for the 182 winter days, and the

balanced set of metrics are shown in Table 6.2. The One-Step Ahead forecasts are shown

in Figure 6.3, and the Multi-Step Ahead Forecasts are shown in Figure 6.4.
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Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

One-Step Ahead 0.01 0.33 0.17 4.33% 1.09/32/12.01% -1.37/96/-18.04%

Multi-Step Ahead 11.58 11.61 217.92 148.17% 34.96/180/428% -0.76/9/-10.23%

Table 6.2: Model Statistics for Daily Demand Forecast starting 29/09/1974 for 182 days

Figure 6.3: One-Step Ahead Forecast for model AR(1)/MA(1,7,8,364,365)
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Figure 6.4: Multi-Step Ahead Forecast for model AR(1)/MA(1,7,8,364,365)

As can be seen in Figure 6.4 (the 182 day Multi-Step Ahead graph), the forecast values

start to veer away from the actual values between day 14 and day 28. Hence the modeling

process was repeated every 14 days through the Winter period, generating 13 two week

forecasts. The results of the recalculations are shown in Tables 6.3 and 6.4 for the One-Step

Ahead statistics for the different periods. Note that in each of the tables, the Period Date

is the start date for the days ahead forecast. Additionally, the first 7-day ahead forecast for

each period is also included.



6.2 Daily Modeling and Forecasting with Actual Temperature (1970-1975) 165

One Step Ahead MAPE (%) Values for the period 29/09/1974 to 29/03/1975

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 29/09/74 13/10/74 27/10/74 10/11/74 24/11/74 08/12/74 22/12/74

14 4.10 4.76 4.34 5.17 2.96 2.46 7.61

7 4.13 3.87 4.23 4.86 3.06 2.57 6.62

Table 6.3: One-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part 1

One Step Ahead - MAPE (%) Values for the period 29/09/1974 to 29/03/1975)

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 05/01/75 19/01/75 02/02/75 16/02/75 02/03/75 16/03/75

14 2.19 3.05 1.91 3.03 2.96 4.11

7 1.42 2.93 1.57 2.95 3.34 3.65

Table 6.4: One-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part 2
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6.2.1.4 ARMAX - Forecasting Future Multi-Step Ahead Demand

Table 6.2 above, shows the overall Multi-Step Ahead MAPE is 148.17%. The first test was

to see how well the 182 day model would forecast 14 days ahead (i.e. starting from known

values every 14 days). The results are shown in Tables 6.5 and 6.6. Figures 6.5 shows the 14

days ahead results for the 182 winter days. Table 6.7 shows the average forecast statistics

for these same periods. The aim in recalculating every 14 days is to improve on the results

shown in Tables 6.5, 6.6 and 6.7. Note that the first 7 days Multi-Step Ahead forecasts for

each period are also included in the tables.

Multi-Step Ahead - MAPE (%) Values for the period 29/09/1974 to 29/03/1975

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 29/09/74 13/10/74 27/10/74 10/11/74 24/11/74 08/12/74 22/12/74

14 3.95 3.27 16.08 9.03 8.23 8.38 16.73

7 4.17 3.20 8.11 7.18 7.72 4.40 21.33

Table 6.5: 182 Day - Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand
Model - Part 1

Multi-Step Ahead - MAPE (%) Values for the period 29/09/1974 to 29/03/1975

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 05/01/75 19/01/75 02/02/75 16/02/75 02/03/75 16/03/75

14 15.50 4.25 3.49 3.53 7.58 4.86

7 7.11 4.78 3.03 2.47 7.29 3.27

Table 6.6: 182 Day - Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand
Model - Part 2
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Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

14 days 0.12 0.61 0.66 8.07% 2.58/110/33.84% -1.73/80/-18.97%

7 days 0.06 0.53 0.51 7.10% 2.39/180/29.33% -2.46/96/-32.41%

Table 6.7: Average Forecast Statistics for Various ARMAX Multi-Step Ahead Daily Demand
starting 29/09/1974 for 182 days

Figure 6.5: 14 day ahead - Multi-Step Forecast for 182 days
Model AR(1)/MA(1,7,8,364,365)



168 Daily Modeling and Forecasting

The modeling process was then run for each of the 14 day periods, and the results

of the recalculations are shown in the Tables 6.8 and 6.9. In this case the forecasts were

calculated for 1 to 7 days ahead as well as the full 14 day interval.

Multi-Step Ahead - MAPE (%) Values for the period 29/09/1974 to 29/03/1975

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 29/09/74 13/10/74 27/10/74 10/11/74 24/11/74 08/12/74 22/12/74

14 3.95 10.14 12.05 6.73 3.97 2.04 12.43

7 4.17 7.34 6.18 4.05 4.66 2.48 17.99

6 3.36 6.56 6.55 3.93 4.29 2.39 18.51

5 2.30 7.11 5.77 2.61 3.96 2.38 18.59

4 2.38 5.89 3.92 2.46 2.77 2.74 14.51

3 2.52 4.07 1.67 2.74 2.40 3.10 12.04

2 3.41 3.30 2.15 2.13 3.51 3.20 8.18

1 1.66 0.82 2.66 3.68 4.35 2.43 2.64

Table 6.8: Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part 1
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Multi-Step Ahead - MAPE (%) Values for the period 29/09/1974 to 29/03/1975

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 05/01/75 19/01/75 02/02/75 16/02/75 02/03/75 16/03/75

14 2.92 3.26 4.67 4.04 4.24 4.85

7 3.08 3.65 4.52 2.33 5.67 3.97

6 3.23 3.44 4.47 1.85 6.05 3.68

5 3.45 3.60 4.58 2.21 6.38 4.09

4 2.85 2.96 4.63 2.67 7.51 2.91

3 2.17 2.46 4.09 2.67 8.63 1.21

2 1.25 2.14 4.36 4.30 7.54 1.58

1 0.21 0.02 4.35 6.06 7.81 2.41

Table 6.9: Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part 2
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6.2.2 Summary of ARMAX Results

In conclusion, for the One-Step Ahead forecasts, the 14 day ahead MAPE (%) values in

Tables 6.3 and 6.4 are all very similar to the full winter forecast value of 4.33% MAPE value

in Table 6.2, except for the Christmas fortnight (Period 7). The 7 days ahead forecast is

slightly lower than the 4.33% for each of the periods except the Christmas fortnight, again.

This may indicate that re-evaluating the model more often (every 7 days, or less) could be

a solution for improvement, except for the Christmas week which would need some manual

intervention or special rules applied (which is the case for DNV GL).

Comparing the Multi-Step Ahead forecasts for each of the recalculated models in Tables

6.8 and 6.9 with the 14 days ahead forecasts of the original model in Tables 6.5 and 6.6 the

recalculated models produce an improved or similar MAPE (%) values for 14 days ahead

except for Periods 2, 3 and 7. These periods represent the start of the increased central

heating period, and the Christmas fortnight. The remaining results in Tables 6.8 and 6.9

are mostly all lower than the MAPE (%) values in Table 6.7, indicating that re-calculating

the model every 14 or 7 days improves the forecasting capabilities of the model. These

results will now be compared to the NARMAX methodology using the same data.
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6.2.3 NARMAX Modeling and Forecasting with Actual Temperature

As in the previous Section, the Eastern Gas Daily Demand and the Daily Effective Tem-

peratures described in Figures 4.4 and 4.5 of Section 4.3 are the start point again for the

analysis using the NARMAX methodology. The first set of tests on this data was to decide

how many days data should be used for modeling with polynomial NARMAX. In contrast

to the decision made in the ARMAX section, the days from Thursday 1/10/1970 to the end

of September 1974, were modeled, and it was found that the results were superior using the

complete data set. Hence the start point for modeling was selected as Sunday 4/10/1970

and the end point was Saturday 28/9/1974 (1456 days - 208 weeks). The forecasting period

was then set as starting on Sunday 29/9/1974 and running through to 29/3/1975 (182 days

(26 weeks)), covering the Winter period.

The NARMAX model formula for this chapter are described in Section 3.3, and includes

both delayed output variables and an input variable, temperature.

6.2.3.1 Transforming the data

The same transformations were performed as for the ARMAX modeling of daily demand

and temperature (Section 6.2.1.1) to produce stationarity, i.e.:

1. The Daily Demand was transformed with a logarithmic transformation

2. The Daily Effective Temperature required no transformation

3. The Log of the Daily Demand and the corresponding Effective Temperature were then

differenced by factors of 1 and 7

Figure 6.6 shows the transformed Eastern Gas Daily Demand and Temperature mod-

eling data, which will be used in this section.
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Figure 6.6: Transformed E-Gas Demand and Temperature - Modeling Data ONLY (1970-
1974)
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6.2.3.2 NARMAX Parameter Identification of the E-Gas Daily Demand with Temperature

The starting point for the NARMAX modeling was similar to that used in Section 5.4,

i.e. identify the range of possible transformed Demand and Temperature variables from the

ACF and CCF. The initial range selected was y(k−1) to y(k−28) and x(k−1) to x(k−28)

inclusive.

As in Section 5.4.3, a first step analyzed a Linear model (ARX), followed by inclusion

of residuals, thus creating an ARMAX model. Following the linear model analysis, 2nd and

3rd order terms were introduced (both without and with residuals NARX and NARMAX),

to find the most appropriate model from a modeling and especially a forecasting perspec-

tive. The final results are explained in this section.

Running the modeling process first without residuals (i.e. an ARX Model), the follow-

ing variables were selected, by the FROLS algorithm, for demand and temperature; y(k−1)

and y(k − 7) and x(k), x(k − 1) and x(k − 2). A 2nd Order NARX model was then tested

using the same variables as the linear ARX model which generated 20 terms. Seven terms

were selected on reaching the thresholds, with an ERR total of 57%. The ACF of the resid-

uals showed that there was additional information, to be modeled, especially around lags 2,

7, 14 and 364. The CCF of the Input (Temperature) and the Residuals showed significant

lags at 7 and 14.

Several combinations of the Moving Average terms e(k−1), e(k−2), e(k−7), e(k−14),

and e(k − 364) were tested. Two runs were required to attain no significant values in the

Validity tests and twelve terms were selected at the threshold with the ERR total of 72.41%.

The modeling statistics were:

1. F Statistic with 311 data values = 4.04

2. Q Statistic = 659 with 716 degrees of freedom (df) which shows an adequate model

(700 df χ2 value is 762 at 5% level, and the 750 df is 814 at 5%).
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The terms selected for the model are shown in Table 6.10.

Index Model Parameter ERR(%)

term

1 xk -0.026 44.87

2 ek−7 0.711 16.82

3 xk−1 -0.017 5.35

4 yk−1 -0.287 2.53

5 xk−2 -0.006 1.28

6 ek−364 -0.141 0.76

7 ek−2 0.0791 0.20

8 yk−1 ∗ yk−7 -0.482 0.13

9 xk−1 ∗ xk -0.001 0.13

10 y2k−7 0.174 0.12

11 xk−1 ∗ yk−1 0.021 0.11

12 y2k−1 0.272 0.10

Table 6.10: Results of the FROLS algorithm for the 2nd Order NARMAX Model
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6.2.3.3 NARMAX Forecasting Future One-Step Ahead Demand

One-Step Ahead Predicted Output for the NARMAX model are shown in Figures 6.7 for the

182 days of winter starting from 29/09/1974 through to 29/03/1975 and the corresponding

forecast statistics in Table 6.11.

Figure 6.7: 182 Day One-Step Ahead Forecast for the 2nd Order NARMAX Model
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

182 Day 0.02 0.31 0.15 4.12% 0.99/32/11.00% -1.34/93/-16.27%

Table 6.11: 182 Day - One-Step Ahead Forecast Statistics for Daily Demand (2nd Order
NARMAX Model)

As in Section 6.2.1.2, the choice was made to re-evaluate the model every 14 days, and

confirmed later with the Multi-Step Ahead forecast (see Figure 6.8). The MAPE for the 14

and 7 One-Day Ahead forecasts for each of the recalculated models is shown in Tables 6.12

and 6.13.

One Step Ahead MAPE (%) Values for the period 29/09/74 to 29/03/1975

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 29/09/74 13/10/74 27/10/74 10/11/74 24/11/74 08/12/74 22/12/74

14 3.45 4.60 4.36 4.34 2.99 2.17 7.86

7 3.10 3.81 3.49 4.26 2.60 2.43 7.64

Table 6.12: One-Step Ahead - MAPE (%) Values - NARMAX Daily Demand Model - Part
1
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One Step Ahead - MAPE (%) Values for the period 29/09/74 to 29/03/1975

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 05/01/75 19/01/75 02/02/75 16/02/75 02/03/75 16/03/75

14 2.29 2.97 1.98 2.48 3.45 4.12

7 1.26 2.82 2.33 2.52 3.96 3.42

Table 6.13: One-Step Ahead - MAPE (%) Values - NARMAX Daily Demand Model - Part
2
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6.2.3.4 NARMAX Forecasting Future Multi-Step Ahead Demand

Starting from the 2nd Order NARX model (described above), the analysis of the Multi-Step

Ahead residuals (ACF, CCF and Nonlinear Validity tests) , indicate again that the following

Moving Average terms e(k− 1), e(k− 2), e(k− 7), e(k− 14), e(k− 21) and e(k− 364) were

significant. Including these residual terms and running the process to stability found that

the e(k− 1), e(k− 7) and e(k− 364) produced the best forecast results. The ERR total was

72.5% and the ACF, CCF and the three Nonlinear Validity tests showed a small number

of significant lags but each close to the significant level. The model terms and values are

shown in Table 6.14.

Index Model Parameter ERR(%)

term

1 xk -0.027 44.87

2 ek−7 0.72 18.25

3 xk−1 -0.014 5.47

4 ek−1 0.10 1.92

5 ek−364 -0.14 0.66

6 xk−2 -0.005 0.43

7 yk−1 -0.16 0.44

8 yk−1 ∗ yk−7 -0.43 0.15

9 xk−1 ∗ xk -0.001 0.10

10 x2k−1 -0.001 0.08

11 x2k−2 0.005 0.09

12 y2k−7 0.11 0.03

Table 6.14: Results of the FROLS algorithm for the 2nd Order NARMAX Model

This model was then used to forecast future values. The 182 day forecast (Figure 6.8)

shows again, that the values start to veer from the actuals between 14 and 28 days. The

forecast statistics are shown in Table 6.15.
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Figure 6.8: 182 Day Multi-Step Ahead Forecast for the 2nd Order NARMAX Model

Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

182 Day 57.71 57.73 7787 731% 266/180/3271% -045/6/-6.69%

Table 6.15: 182 Day - Multi-Step Ahead Forecast Statistics for Daily Demand (2nd Order
NARMAX Model)
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14-day Multi-Step Ahead forecasts were then calculated using the model in Table 6.14

and the MAPE results for each period are shown in Tables 6.16 and 6.17. Table 6.18 shows

the average forecast statistics for the 14-day Multi-Step Ahead forecast, and Figures 6.9

graphs the results. The aim in recalculating every 14 days is to improve on the results

shown in Tables 6.16, 6.17 and 6.18.

Multi-Step Ahead - MAPE (%) Values for the period 29/09/74 to 29/03/1975

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 29/09/74 13/10/74 27/10/74 10/11/74 24/11/74 08/12/74 22/12/74

14 4.53 3.22 15.19 7.38 6.60 9.23 18.06

7 3.14 3.04 7.24 6.32 6.76 5.43 22.46

Table 6.16: 182 Day - Multi-Step Ahead - MAPE (%) Values - NARMAX Daily Demand
Model - Part 1

Multi-Step Ahead - MAPE (%) Values for the period 29/09/74 to 29/03/1975

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 05/01/75 19/01/75 02/02/75 16/02/75 02/03/75 16/03/75

14 16.49 3.10 3.22 3.85 5.55 4.65

7 7.52 4.12 2.70 2.39 6.31 3.05

Table 6.17: 182 Day - Multi-Step Ahead - MAPE (%) Values - NARMAX Daily Demand
Model - Part 2
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

14 days 0.14 0.59 0.65 7.78% 2.71/110/35.57% -1.87/80/-20.50%

7 days 0.06 0.52 0.49 6.90% 2.25/ 89/39.53% -2.51/96/-32.97%

Table 6.18: NARMAX Average Model Statistics for Various Multi-Step Ahead Daily De-
mand Forecasts starting 29/09/1974 for 182 days

Figure 6.9: 14 day ahead - Multi-Step Forecast for 182 days - 2nd Order NARMAX Model
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The model was recalculated every 14 days as in Section 6.2.1.4. The MAPE for the

different Multi-Day Ahead forecasts for each of the 14 days ahead models is shown in Tables

6.19 and 6.20. In this case the forecasts were calculated for 1 to 7 days ahead as well as the

full 14 day interval. It was noted that the FROLS algorithm modified the model in Table

6.14 slightly each period, adding and removing terms, as well as changing the parameter

values, thus adapting the model Period on Period. This will be discussed in Chapter 7.

Multi-Step Ahead - MAPE (%) Values for the period 29/09/74 to 29/03/1975 (182 days)

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 29/09/74 13/10/74 27/10/74 10/11/74 24/11/74 08/12/74 22/12/74

14 4.53 6.30 8.49 3.57 4.23 5.01 15.96

7 3.14 4.45 4.66 2.74 4.68 2.78 20.47

6 2.91 3.38 5.08 3.04 4.60 2.87 20.96

5 2.16 4.02 5.15 2.27 3.79 3.09 21.06

4 1.77 3.14 3.69 2.45 2.40 3.42 16.42

3 1.98 2.45 2.14 1.99 1.86 3.28 12.74

2 1.71 2.45 1.40 2.51 2.55 0.74 8.50

1 0.46 0.77 1.28 3.45 1.85 0.79 3.69

Table 6.19: Multi-Step Ahead - MAPE (%) Values - NARMAX Daily Demand Model - Part
1
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Multi-Step Ahead - MAPE (%) Values for the period 29/09/74 to 29/03/1975 (182 days)

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 05/01/75 19/01/75 02/02/75 16/02/75 02/03/75 16/03/75

14 3.48 2.50 3.56 5.23 3.42 5.07

7 1.99 3.02 3.49 2.96 4.67 4.25

6 1.83 2.96 3.32 2.80 4.86 4.04

5 1.89 3.00 3.43 3.05 5.15 4.34

4 1.53 2.11 3.81 3.74 6.43 3.33

3 1.02 1.62 3.37 4.48 9.93 1.70

2 1.08 2.27 3.59 5.92 7.28 1.45

1 0.61 0.09 5.60 6.78 7.74 1.95

Table 6.20: Multi-Step Ahead - MAPE (%) Values - NARMAX Daily Demand Model - Part
2
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6.2.4 Summary of NARMAX Results

In conclusion, for the One-Step Ahead forecasts, the 14 day ahead MAPE (%) values in

Tables 6.12 and 6.13 are all very similar to the full winter forecast value of 4.12% MAPE

value in Table 6.11, except for the Christmas fortnight (Period 7). The 7 days ahead

forecasts are slightly lower than the 4.12% for each of the periods except the Christmas

fortnight, again.

Comparing the Multi-Step Ahead forecasts for each of the recalculated models in Tables

6.19 and 6.20 with the 14 days ahead forecasts of the original model in Tables 6.16 and 6.17;

the recalculated models produce an improved or similar MAPE (%) values for all the periods.

The MAPE values were all lower than the average 14 days MAPE of 7.78% in Table 6.18

except for Periods 3 and 7, representing the drop in temperatures and the start of the

Central Heating increase; and the Christmas fortnight. For the 7 day ahead forecasts, they

were all below the 6.90% except the Christmas period.

The comparison of these results with the ARMAX modeling on the same data will be

covered in Section 6.4.



6.3 Daily Modeling and Forecasting with Actual Temperature (2001-2011) 185

6.3 Daily Modeling and Forecasting with Actual Temperature (2001-2011)

6.3.1 ARMAX - Daily Modeling and Forecasting with Actual Temperature

6.3.1.1 Introduction

Section 6.2.1 modeled and forecast the Eastern Gas Daily Demand based on data from the

period 1970 to 1975. This Section will apply the same methodology to the data for X-Gas

from 2001 to 2011.

As a reminder, Figures 4.6 and 4.7 of Chapter 4 show the original 10 years of daily

data (Demand and Temperature) provided by DNV GL for the region X-Gas. Again, the

first set of tests on this data was to decide how many days data should be used for modeling.

Initially, the days from 29/09/2001 to the start of October 2010, were modeled, but it was

found that fewer data points produced similar results, and hence a smaller modeling data

set was selected. The start point for modeling was selected as Saturday 04/10/2008 and

the end point was Friday 01/10/2010 (728 days - 104 weeks). The forecasting period was

then set as starting on Saturday 02/10/2010 and running through to Friday 01/04/2011

(182 days (26 weeks)), covering the Winter period.

The demand data and the associated daily effective temperatures are shown in Figure

6.10. The data, in blue, represents the data which will be used for modeling and the red

data is the comparison data for the forecast.
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Figure 6.10: X-Gas Daily Demand and Temperature (2008 to 2011)
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6.3.1.2 Transforming the data

As in Section 6.2.1, the data depicting X-Gas Daily Demand clearly shows this time series

is non stationary, it has both a small growth component and a seasonal component. The

growth component, however, for X-Gas is smaller than that of E-Gas, due to a stable pop-

ulation and a stable gas usage in 2000, compared the growth of the 1970s. We will see later

that this has an impact on the variables selected in the model. The same transformations

were selected as for E-Gas, i.e. a logarithmic transformation of X-Gas Demand and differ-

encing of 1 and 7 for both the demand and temperature. The transformed data, used for

modeling, is shown in Figure 6.11.

Figure 6.11: Transformed X-Gas Demand and Temperature - Modeling Data ONLY (2008-
2010)
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6.3.1.3 ARMAX Parameter Identification of the X-Gas Daily Demand with Temperature

The first test was to see how well the ARMAX model from Section 6.2.1.2, i.e. AR(1)/MA(1,7,8,364,365),

would perform when applied to the new data. However, the ACF of both the transformed

demand and temperature did not show significant lags at 364 or 365. This is probably due

to the fact that the growth component of the X-Gas demand data for 2001-2011 is flatter

than that of E-Gas for 1970-1975, hence alternative models were considered. The significant

lags from the ACF and the PACF for the transformed demand were 1 and 7, and those for

transformed Temperature were 2 and 7. Several models were generated with AR and MA

variables of these values, combined with different delay values applied to temperature series.

Again a delay of 2, for temperature, always produced the best results.

The generated models with similar modeling statistics were then used to forecast the

182 days for the winter period 2010 to 2011, and the forecast statistics calculated. The

best model from a forecasting perspective was found to be AR(1,2)/MA(1,2,7,8,9), and

temperature delay of 2. The ACF of the residuals found a few lags just outside the +/- 95%

confidence limits, specifically lag 51, but adding these lags to the model parameters did not

improve the results.

The model and parameter values generated for AR(1,2)/MA(1,2,7,8,9) model with 2

time-delays on temperature, is described in Equation 6.2 , and the modeling statistics, for

this model, are shown in Table 6.21.

(1 + 0.61B + 0.02B2)wt = −(0.024 + 0.018B + 0.005B2)xt

+(1− 0.97B + 0.05B2 − 0.86B7 + 0.85B8 − 0.05B9)at

(6.2)

Model Temperature AIC F Significant Q Degrees of

ARMAX Delay Values Lags Value Freedom

AR(1,2)/MA(1,2,7,8,9) 2 -1917 2.92 51 411.94 710

Table 6.21: Model Fit Statistics for Daily Demand Model
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6.3.1.4 ARMAX - Forecasting Future One-Step Ahead Demand

One-Step and Multi-Step Ahead forecasts were calculated for the 182 Winter days, and the

balanced set of metrics are shown in Table 6.22. The One-Step Ahead forecasts are shown

in Figure 6.12, and the Multi-Step Ahead Forecasts are shown in Figure 6.13.

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

One-Step Ahead 0.02 0.68 0.69 6.09% 2.28/77/13.65% -2.40/69/-14.79%

Multi-Step Ahead 17.45 17.46 551.68 154.78% 53.99/178/617% -0.31/2/-4.72%

Table 6.22: Forecast Statistics for Daily Demand starting 02/10/2010 for 182 days
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Figure 6.12: One-Step Ahead Forecast for model AR(1,2)/MA(1,2,7,8,9)
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Figure 6.13: Multi-Step Ahead Forecast for model AR(1,2)/MA(1,2,7,8,9)



192 Daily Modeling and Forecasting

As with the Multi-Step Ahead forecasts for the 1970-75 period in Section 6.2.1.3, the

182 day Multi-Step Ahead forecast start to veer away from the actual values between day

14 and day 28 (Figure 6.13). Hence the modeling process was again repeated every 14 days

through the Winter period, generating 13 two week forecasts. The One-Step Ahead MAPE

results of the recalculations are shown in Tables 6.23 and 6.24 for the different periods.

Note that in each of the tables, the period date is the start day for the days ahead forecasts

and the first 7-day ahead forecast for each period is also included.

One Step Ahead MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 02/10/10 16/10/10 30/10/10 13/11/10 27/11/10 11/12/10 25/12/10

14 6.16 6.02 3.98 4.06 4.28 2.88 2.84

7 4.84 3.67 2.48 4.54 3.66 2.97 2.81

Table 6.23: One-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part 1

One Step Ahead MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 08/01/11 22/01/11 05/02/11 19/02/11 05/03/11 19/03/11

14 4.92 3.34 5.60 3.97 5.35 8.08

7 3.13 3.55 3.84 2.88 5.65 5.52

Table 6.24: One-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part 2
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6.3.1.5 ARMAX - Forecasting Future Multi-Step Ahead Demand

Table 6.22 above, shows the overall Multi-Step Ahead MAPE is 154.78%. The first test was

to see how well the 182 day model would forecast 14 days ahead (i.e. starting from known

values every 14 days). The results are shown in Tables 6.25 and 6.26, where, again, the

Period Date is the start date for each of the forecasts. Figures 6.14 shows the 14 days ahead

results for the 182 winter days. Table 6.27 shows the average forecast statistics for these

same periods. The aim in recalculating every 14 days is to improve on the results shown in

Tables 6.25, 6.26 and 6.27. Note that the first 7 days Multi-Step Ahead forecasts for each

period are also included in the tables.

Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 02/10/10 16/10/10 30/10/10 13/11/10 27/11/10 11/12/10 25/12/10

14 5.34 5.42 6.39 17.88 4.50 14.83 14.33

7 5.23 4.93 7.16 10.43 3.43 6.00 8.96

Table 6.25: 182 Day - Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand
Model - Part 1

Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 08/01/11 22/01/11 05/02/11 19/02/11 05/03/11 19/03/11

14 11.42 9.78 37.32 6.14 9.24 7.93

7 6.36 5.70 25.40 4.62 9.01 7.57

Table 6.26: 182 Day - Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand
Model - Part 2
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Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

14 days 0.58 1.42 4.26 11.58% 7.46/138/65.07% -3.41/ 98/-21.57%

7 days 0.03 0.83 1.29 7.25% 4.91/132/43.82% -2.23/159/-18.28%

Table 6.27: Average Forecast Statistics for Various ARMAX Multi-Step Ahead Daily De-
mand starting 02/10/2010 for 182 days

Figure 6.14: 14 day ahead - Multi-Step Forecast for 182 days
Model AR(1,2)/MA(1,2,7,8,9)
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The modeling process was then run for each of the 14 day periods, and the results of

the recalculations are shown in the Tables 6.28 and 6.29. In this case the forecasts were

calculated for 1 to 7 days ahead as well as the full 14 day interval.

Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 02/10/10 16/10/10 30/10/10 13/11/10 27/11/10 11/12/10 25/12/10

14 5.34 4.10 7.80 7.34 4.12 9.10 5.25

7 5.23 3.89 8.11 5.13 2.24 2.71 3.06

6 5.40 4.51 7.76 4.03 2.45 1.73 3.54

5 4.72 4.09 7.29 4.51 2.01 2.05 3.45

4 4.51 3.22 7.54 5.07 1.49 2.52 3.56

3 4.75 2.21 7.05 5.01 1.57 2.53 4.25

2 2.60 2.91 5.41 3.41 2.18 2.73 4.10

1 0.47 1.75 4.53 2.37 2.87 2.09 2.51

Table 6.28: Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part
1
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Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 08/01/11 22/01/11 05/02/11 19/02/11 05/03/11 19/03/11

14 3.81 3.72 10.37 3.22 4.17 8.39

7 3.18 2.47 9.12 1.59 4.13 11.04

6 3.29 1.48 9.39 1.81 4.73 10.63

5 3.73 1.71 8.25 1.96 4.49 9.00

4 4.06 1.80 8.71 1.91 3.55 6.02

3 4.40 0.59 8.84 2.02 4.47 4.52

2 2.71 0.20 8.50 2.33 5.39 3.08

1 0.54 0.20 7.60 4.43 5.05 1.70

Table 6.29: Multi-Step Ahead - MAPE (%) Values - ARMAX Daily Demand Model - Part
2
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6.3.2 Summary of ARMAX Results

In conclusion, for the One-Step Ahead forecasts, the 14 day ahead MAPE (%) values in

Tables 6.23 and 6.24 are all very similar or improved values when compared to the full

winter forecast of 6.09% MAPE value in Table 6.22, except for the last fortnight in March

2011 (Period 13). The high forecast error in Period 13 is due to a very high variability in

the temperature during this period associated with the end of Winter and Central Heating

being turned off. The 7 days ahead forecasts are all lower than the 6.09% for each of the

periods. Hence, again, this may indicate that re-evaluating the model every 7 days, or less,

could be a solution for improvement (see overall conclusions in Chapter 7).

Comparing the Multi-Step ahead forecasts, for each of the recalculated models in Tables

6.28 and 6.29 with the 14 days ahead forecasts of the original model in Tables 6.25 and 6.26

the recalculated models produce an improved or similar MAPE (%) values except for the

final Period (Period 13). The same is true for the 7 days ahead forecasts. The remaining

results in Tables 6.28 and 6.29 are mostly all lower than the MAPE (%) values in Table

6.27, indicating that re-calculating the model every 14 or 7 days improves the forecasting

capabilities of the model. These results will now be compared to the NARMAX methodology

using the same data.



198 Daily Modeling and Forecasting

6.3.3 NARMAX Modeling and Forecasting with Actual Temperature

As in the previous Section, the X-Gas Daily Demand and the Daily Effective Tempera-

tures described in Figures 4.6 and 4.7 are the start point again for the analysis using the

Polynomial NARMAX methodology. The same start point was selected for modeling, i.e.

Saturday 04/10/2008 and the end point was Friday 01/10/2010 (728 days - 104 weeks). The

forecasting period was then set as starting on Saturday 02/10/2010 and running through to

Friday 01/04/2011 (182 days (26 weeks)), covering the Winter period. This data is shown

in Figure 6.10.

6.3.3.1 Transforming the data

The same transformations were performed as for the ARMAX modeling of daily demand

and temperature (Section 6.3.1.2) to produce stationarity, i.e.:

1. The Daily Demand was transformed with a logarithmic transformation

2. The Daily Effective Temperature required no transformation

3. The Log of the Daily Demand and the corresponding Effective Temperature were then

differenced by factors of 1 and 7

The transformed data is shown in Figure 6.11.
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6.3.3.2 NARMAX Parameter Identification of the X-Gas Daily Demand with Temperature

From the ACF and PACF analysis of Section 6.3.1.3, the variables with lags of 364 and 365

were again omitted from the analysis. Running the modeling process first without residuals

(i.e. an ARX Model), the following variables were selected, by the FROLS algorithm, for

demand and temperature; y(k−1), y(k−2) and y(k−7) and x(k), x(k−1) and x(k−2). A

2nd Order NARX model was then tested using the same variables as the linear ARX model

which generated 27 terms. Twelve terms were selected on reaching the thresholds, with an

ERR total of 56%. The ACF of the residuals showed that there was additional information,

to be modeled, especially around lags 7 and 14. The CCF of the Input (Temperature) and

the Residuals showed significant lags at 7.

Several combinations of the Moving Average terms e(k−1) to e(k−7) were tested and

twelve terms were selected by the FROLS algorithm at the threshold with the ERR total

of 67.95%.

The modeling statistics were:

1. F Statistic with 713 data values = 3.38

2. Q Statistic = 460 with 701 degrees of freedom (df) which shows an adequate model

(700 df χ2 value is 762 at 5% level, and the 750 df is 814 at 5%).

The terms selected for the model are shown in Table 6.30.
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Index Model Parameter ERR(%)

term

1 yk−7 -0.082 27.94

2 xk -0.023 14.75

3 ek−7 0.707 8.95

4 xk−1 -0.018 10.72

5 ek−1 0.180 2.93

6 xk−2 -0.006 0.87

7 xk−2 ∗ yk−2 0.014 0.47

8 ek−2 0.137 0.39

9 yk−1 -0.127 0.42

10 y2k−1 0.322 0.23

11 xk−2 ∗ yk−1 0.017 0.23

12 xk−2 ∗ xk 0.001 0.06

Table 6.30: Results of the FROLS algorithm for the 2nd Order NARMAX Model
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6.3.3.3 NARMAX Forecasting Future One-Step Ahead Demand

One-Step Ahead Predicted Output for the NARMAX model are shown in Figures 6.15 for

the 182 days of winter starting from 02/10/2010 through to 01/04/2011 and the correspond-

ing forecast statistics in Table 6.31.

Figure 6.15: 182 Day One-Step Ahead Forecast for the 2nd Order NARMAX Model
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

182 Day -0.03 0.63 0.79 5.67% 2.28/77/13.60% -2.22/69/-13.69%

Table 6.31: 182 Day - One-Step Ahead Forecast Statistics for Daily Demand (2nd Order
NARMAX Model)

The Multi-Step Ahead forecast for the 182 Winter days, again, veers away from the

actuals between the first 14 and 28 days, as in Section 6.3.1.4, and hence the model was

re-evaluated every 14 days for both One-Step and Multi-Step Ahead forecasts. The MAPE

for the different One-Day Ahead forecasts for each of the 14 days ahead models is shown in

Tables 6.32 and 6.33.

One Step Ahead MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 02/10/10 16/10/10 30/10/10 13/11/10 27/11/10 11/12/10 25/12/10

14 5.77 6.31 3.30 4.26 4.31 3.84 8.53

7 4.52 4.07 2.45 4.63 3.71 4.93 6.84

Table 6.32: One-Step Ahead - MAPE (%) Values - NARMAX Daily Demand Model - Part
1
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One Step Ahead MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 08/01/11 22/01/11 05/02/11 19/02/11 05/03/11 19/03/11

14 4.96 3.11 6.00 3.62 5.16 8.08

7 3.67 4.07 4.76 3.03 5.83 5.52

Table 6.33: One-Step Ahead - MAPE (%) Values - NARMAX Daily Demand Model - Part
2
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6.3.3.4 NARMAX Forecasting Future Multi-Step Ahead Demand

Starting from the 2nd Order NARX model (described above), the analysis of the Multi-Step

Ahead residuals (ACF, CCF and Nonlinear Validity tests), indicate again that the following

Moving Average terms e(k − 1), e(k − 2) and e(k − 7) were significant. For the generated

model (14 terms), the ERR total was 69.87% and the ACF, CCF and the three Nonlinear

Validity tests showed a small number of significant lags but each close to the significant

level. The model terms and values are shown in Table 6.34.

Index Model Parameter ERR(%)

term

1 yk−7 -0.043 29.34

2 xk -0.024 15.32

3 xk−1 -0.018 8.81

4 ek−7 0.770 11.40

5 ek−1 0.209 1.77

6 ek−2 0.197 1.26

7 xk−2 -0.006 1.05

8 xk−2 ∗ yk−2 0.014 0.23

9 xk−1 ∗ yk−1 -0.028 0.25

10 x2k−1 -0.001 0.11

11 x2k -0.001 0.14

12 yk−1 -0.058 0.0.07

13 xk−1 ∗ xk−2 -0.001 0.07

14 xk−2 ∗ xk -0.008 0.05

Table 6.34: Results of the FROLS algorithm for the 2nd Order NARMAX Model

This model was then used to forecast future values. The 182 day forecast values,

again, start to veer from the actuals between 14 and 28 days, the 14-day Multi-Step Ahead

forecasts were calculated using the model in Table 6.34 and the MAPE results for each
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period are shown in Tables 6.35 and 6.36. Table 6.37 shows the average forecast statistics

for the 14-day Multi-Step Ahead forecast, and Figures 6.16 graphs the results. The aim in

recalculating every 14 days is to improve on the results shown in Tables 6.35, 6.36 and 6.37.

Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 02/10/10 16/10/10 30/10/10 13/11/10 27/11/10 11/12/10 25/12/10

14 4.22 5.46 6.39 20.93 4.67 19.04 7.56

7 4.55 5.57 6.95 11.80 3.30 8.62 5.67

Table 6.35: 182 Day - Multi-Step Ahead - MAPE (%) Values - NARMAX Daily Demand
Model - Part 1

Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 08/01/11 22/01/11 05/02/11 19/02/11 05/03/11 19/03/11

14 13.27 10.97 39.93 9.15 8.71 6.78

7 6.16 6.89 27.10 5.41 9.18 8.79

Table 6.36: 182 Day - Multi-Step Ahead - MAPE (%) Values - NARMAX Daily Demand
Model - Part 2
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Model Over Prediction Under Prediction

NARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

14 days 0.80 1.50 5.24 12.08% 8.14/ 84/49.87% -3.30/125/-25.67%

7 days -0.08 1.69 1.68 8.18% 5.49/ 77/32.81% -2.45/ 84/-15.03%

Table 6.37: NARMAX Average Forecast Statistics for Various Multi-Step Ahead Daily
Demand
starting 02/10/2010 for 182 days

Figure 6.16: 14 day ahead - Multi-Step Forecast for 182 days - 2nd Order NARMAX Model
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The model was recalculated every 14 days as in Section 6.3.1.5. The MAPE for the

different Multi-Day Ahead forecasts for each of the 14 days ahead models is shown in Tables

6.38 and 6.39. In this case the forecasts were calculated for 1 to 7 days ahead as well as the

full 14 day interval. It was noted, again, that the FROLS algorithm modified the model

in Table 6.34 slightly each period, adding and removing terms, as well as changing the

parameter values, thus adapting the model Period on Period. This will be discussed in

Chapter 7.

Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Ahead 02/10/10 16/10/10 30/10/10 13/11/10 27/11/10 11/12/10 25/12/10

14 4.22 4.54 5.58 4.26 5.77 9.57 4.31

7 4.55 4.44 5.29 3.64 2.57 6.28 4.52

6 4.49 5.12 5.33 3.88 2.94 3.94 4.33

5 4.50 4.27 5.73 4.16 1.99 1.78 3.48

4 4.88 3.15 6.06 2.71 2.15 1.54 3.34

3 5.62 2.50 4.31 2.74 2.24 1.90 4.03

2 4.07 2.96 3.79 1.33 2.16 2.84 3.96

1 3.25 5.24 2.83 1.02 3.17 0.82 1.24

Table 6.38: Multi-Step Ahead - MAPE (%) Values - Daily Demand Model - Part 1



208 Daily Modeling and Forecasting

Multi-Step Ahead - MAPE (%) Values for the period 02/10/2010 to 01/04/2011

Days Period 8 Period 9 Period 10 Period 11 Period 12 Period 13

Ahead 08/01/11 22/01/11 05/02/11 19/02/11 05/03/11 19/03/11

14 3.57 5.12 7.23 7.02 5.35 7.83

7 2.15 3.20 8.41 2.93 4.22 10.47

6 2.46 1.75 9.77 2.15 4.50 10.64

5 2.49 2.05 9.13 1.73 4.72 9.16

4 3.02 2.40 10.09 1.90 3.59 5.61

3 3.95 0.40 10.80 1.89 3.81 4.54

2 2.24 0.57 10.51 2.65 5.39 4.23

1 1.31 1.05 11.10 4.98 5.44 1.95

Table 6.39: Multi-Step Ahead - MAPE (%) Values - Daily Demand Model - Part 2
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6.3.4 Summary of NARMAX Results

In conclusion, for the One-Step Ahead forecasts, the 14 day ahead MAPE (%) values in

Tables 6.32 and 6.33 are all very similar to the full winter forecast values of 5.67% MAPE

value in Table 6.31, except for the Christmas fortnight (Period 7) and Period 13 (large

temperature variability period). The 7 days ahead forecasts is similar or slightly lower than

the 5.67% for each of the periods except the Christmas fortnight, again.

Comparing the Multi-Step Ahead forecasts for each of the recalculated models in Tables

6.38 and 6.39 with the 14 days ahead forecasts of the original model in Tables 6.35 and 6.36;

the recalculated models produce an improved or similar MAPE (%) values for all the periods,

with the exception of Period 13. The MAPE (%) values were all lower than the average

14 days MAPE of 12.08% in Table 6.37. For the 7 day ahead forecasts, all were below the

8.18% except for the Period 13. The comparison of these results with the ARMAX modeling

on the same data will be covered in Section 6.4.
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6.4 Daily Forecasting Summary and Conclusions

6.4.1 Introduction

The two previous sections have shown again that the Polynomial NARMAX methodology

has the capabilities to model Daily Gas Demand. The focus of the research was on the

Winter Days for each set of data, as this is the most sensitive time period for gas demand

supply/demand match.

For the Benchmark tests, the One-Step Ahead MAPE for the 182 Winter days shown

in Tables 6.41 and 6.42 for both ARMAX (4.33% and 6.09%) and NARMAX (4.12% and

5.67%) are smaller than the Persistence Model values in Table 4.2, i.e. 6.37% and 6.45%.

Also the results of the 182 Day One-Step Ahead forecasts are within or close to the 4-6%

value set by DNV GL. However, the ERR total in the NARMAX modeling, for both time

periods, was around the 75% level, indicating that other information is missing to achieve

the 95% level without modeling on 100s of terms. This missing information will be discussed

in the Chapter 7 on future work opportunities.

For the Multi-Step Ahead both models (and both periods), produced forecasts for 182

days which veered away from the actuals between the 14 and 28 days horizon. However,

using the models to forecast every 14 days did not produce MAPE values within the Bench-

mark level of 4-6%. Hence the conclusion to recalculate the models every 14 days. Table

6.40 shows the MAPE value forecasting every 14 days with the 182 Day Model, and the

recalculated 14-day model forecasts. As can be seen, the two modeling techniques (ARMAX

and NARMAX) produce similar results. The 14 day models have a much improved MAPE

value and fall within the 4-6% Benchmark criteria.

The Sections 6.4.2 and 6.4.3 summarize the results of the Daily Demand forecasting

for the two time periods of 1974-1975 and 2010 to 2011.



6.4 Daily Forecasting Summary and Conclusions 211

ARMAX 1970/75 182 Day Model 14 Day Model

14 Days ahead 8.07 5.81

7 Days ahead 7.10 5.39

NARMAX 1970/75 182 Day Model 14 Day Model

14 Days ahead 7.78 5.49

7 Days ahead 6.90 4.87

ARMAX 2001/11 182 Day Model 14 Day Model

14 Days ahead 11.58 5.90

7 Days ahead 7.25 4.76

NARMAX 2001/11 182 Day Model 14 Day Model

14 Days ahead 12.08 5.73

7 Days ahead 8.18 4.82

Table 6.40: Multi-Step Ahead MAPE (%) Values Comparison
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6.4.2 Daily Summary and Conclusions (1970-1975)

For the One-Step Ahead forecasts, both modeling methods produce similar statistics for the

182 day ahead forecasts (Table 6.41). Both models had difficulty with the Christmas Period

(Period 7) and the Periods 2, 3 and 12 where the heating systems are turned on and off at

the start and end of the lower temperatures of the Winter period. The MAPE results in

Table 6.41 meet the benchmark criteria, i.e. less than the Persistence model MAPE (6.38%)

and within the 4-6% (DNV GL).

Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

ARMAX 0.01 0.33 0.17 4.33% 1.09/32/12.01% -1.37/96/-18.04%

NARMAX 0.02 0.31 0.15 4.12% 0.99/32/11.00% -1.34/93/-16.27%

Table 6.41: 182 Day - One-Step Ahead Forecast Statistics Comparison (1970-1975)

For the Multi-Step ahead forecasts, both the ARMAX and NARMAX forecasts veer

away from the actuals between 14 and 28 days ahead from the start of the 182 day forecast

period. Hence the choice to re-calculate the model every 14 days. The models were very

similar (from an MAPE perspective) for the 14-day ahead forecasts (Figure 6.17). Both

models had difficulty with the Christmas period (Period 7). Figure 6.18 compares the two

models for Period 1 (start point 29/9/1974).
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Figure 6.17: 14-day ahead Forecast - MAPE (%) Values Comparison ARMAX vs NARMAX
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Figure 6.18: Period 1 - 14 Day Multi-Step Ahead Forecast - Comparison ARMAX vs NAR-
MAX



6.4 Daily Forecasting Summary and Conclusions 215

6.4.3 Daily Summary and Conclusions (2001-2011)

For the One-Step Ahead forecasts, both modeling methods produce similar statistics for

the 182 day ahead forecasts (Table 6.42). The MAPE results are close to the benchmark

criteria, i.e. less than the Persistence model MAPE (6.38%) and close to 4-6% (DNV GL).

Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

ARMAX 0.02 0.68 0.69 6.09% 2.28/77/13.65% -2.40/69/-14.79%

NARMAX -0.03 0.63 0.79 5.67% 2.28/77/13.60% -2.22/69/-13.69%

Table 6.42: 182 Day - One-Step Ahead Forecast Statistics Comparison (2001-2011)

For the Multi-Step ahead forecasts, both the ARMAX and NARMAX forecasts veer

away again from the actuals between 14 and 28 days ahead from the start of the 182 day

forecast period. The models were very similar (from an MAPE perspective) for the 14 day

ahead forecasts (Figure 6.19). Figure 6.20 compares the two models for Period 1 (start

point 02/10/2010).
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Figure 6.19: 14-day ahead Forecast - MAPE (%) Values Comparison ARMAX vs NARMAX
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Figure 6.20: Period 1 - 14 Day Multi-Step Ahead Forecast - Comparison ARMAX vs NAR-
MAX



Chapter 7

OVERALL CONCLUSIONS AND FUTURE

RESEARCH OPPORTUNITIES

7.1 Overall Conclusions

Gas demand forecasting has significant implications on the costs and security of the energy

supply. Accurate forecasting models are needed for secure and reliable energy system oper-

ation. In this research traditional Box and Jenkins ARMAX and the Polynomial NARMAX

methodologies are applied to the Gas Demand forecasting problem. These methodologies

are compared with each other in terms of the superiority in forecasting performance with the

hypothesis that ”Non-Linear Modeling of Gas Demand and Temperature using Polynomial

Autoregressive Moving Average with eXogeneous Inputs (NARMAX) models, and Forward

Regression with Orthogonal Least Squares (FROLS) estimation procedure can produce as

good or better forecasts than the traditional linear Autoregressive Moving Average with or

without eXogeneous Inputs (ARMAX/ARMA) modeling techniques for short term forecasts

in the Gas Domain”.

The thesis studied weekly and daily forecasting for several Gas Regions in the UK using

data from the 1960s-70s and 2000s. The focus of the research was on the Winter periods,

as this is the most critical period for gas delivery and security. The summary of the results,

the conclusions and future research potential are presented below, and show that the goal

of the thesis has been achieved.

Additionally, from an operational point of view the NARMAX methodology associated

with the FROLS algorithm offers a major advantage over the ARMAX methodology (even

for linear models), in the fact that the FROLS algorithm updates the model over time by

including and removing terms automatically to react to the changing conditions over the

218



7.1 Overall Conclusions 219

winter period, thus removing the need for a high level of modeling expertise within the

operational environment. This was noted in Chapter 6 with the rolling 14-Day models,

where from a set list of variables and a 2nd Order NARMAX model, the terms selected,

by the FROLS algorithm for each of the 13 different 14-Day models, were slightly different

Period on Period. Using the ARMAX methodology the adaptation to the model(s) would

have to be performed manually.

7.1.1 Weekly Conclusions

Weekly Demand forecasting was performed with four different data scenarios. For the

models based on the 52 weeks, described in Sections 5.4 and 5.5, the Polynomial NARMAX

methodology produced slightly improved results over the ARMAX methodology for both

One-Step Ahead and Multi-Step Ahead forecasts for both the 1963/73 and the 2001/11 data

sets. These are shown in Table 7.1. The MAPE values are within or close to the Benchmark

Data of 4-6%. The One-Step ahead MAPEs are both less than the Persistence model MAPE

values of 8.25% and 11.83%. The large Over and Under Estimates for the 52 week forecasts

occur mostly in the summer weeks, hence further improvements are possible by applying

corrections to summer temperature data. This is described, below, in the Section 7.2 on

future research areas.

52 Weeks MAPE

Data Model One-Step Ahead Multi-Step Ahead

MAPE % MAPE %

1963-1973 ARMAX Yearly Model 4.06 6.04

NARMAX Yearly Model 3.97 5.97

2001-2011 ARMAX Yearly Model 5.28 5.03

NARMAX Yearly Model 4.46 4.79

Table 7.1: 52 Weeks - Model Forecast MAPE Summary

The first two developed models (Sections 5.2 and 5.3) were based on the winter weeks

only. Although this method is applied today, by DNV GL, the disadvantage is that the low
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AR terms select the end of Winter data of the previous year, which will impact the forecasts

until the AR terms start to select the current winter data. For these models, the One-Step

Ahead forecasts were slightly superior for NARMA(X) over ARMA(X), and slightly inferior

for the Multi-Step Ahead and are shown in Table 5.44. However, when developing models

for the full year and forecasting the Winter period ONLY, the ARMAX and NARMAX

models produces similar MAPE results for the 1963/73 data and the 2nd Order NARMAX

model produces superior MAPE results for the 2001/11 data as shown in Table7.2. Again

the MAPE values fall within the Benchmark Data of 4-6% and are less than the Persistence

Model MAPE values of 7.41% and 10.10% (Table 4.1).

26 Winter Weeks MAPE

Data Model One-Step Ahead Multi-Step Ahead

MAPE % MAPE %

1963-1973 ARMAX Yearly Model 3.05 2.98

NARMAX Yearly Model 2.98 3.23

2001-2011 ARMAX Yearly Model 4.41 3.69

NARMAX Yearly Model 3.69 2.75

Table 7.2: 26 Winter Weeks - Model Forecast MAPE Summary

The results above are encouraging and warrant further research. The goal of the

thesis is met and shows that Polynomial NARMAX offers the capabilities of an additional

methodology for Gas Demand Weekly forecasting.

7.1.2 Daily Conclusions

Daily Demand forecasting was performed with two different data scenarios (daily data from

1970-75 and 2001-2011). The focus, again, was on the Winter period, a 182 day forecast

horizon was selected (starting the first week in October of each forecast year). For the One-

Step Ahead forecasts, the Polynomial NARMAX methodology produced slightly improved

results over the ARMAX methodology for both time horizons and the results are shown in

Table 7.3. Both modeling techniques fall within the 4-6% Benchmark (although the results
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with the 2001-2011 data are close to the upper limit), as well as being lower than the Daily

Persistence MAPE values of 6.37% and 6.45% (Table 4.2).

182-Day Model - One-Step Ahead MAPE

Data Model One-Step Ahead

MAPE %

1970-1975 ARMAX Yearly Model 4.33

NARMAX Yearly Model 4.12

2001-2011 ARMAX Yearly Model 6.09

NARMAX Yearly Model 4.46

Table 7.3: 182-Day Model - One-Step Ahead Model Forecast MAPE Summary

For the 182-Day Model Multi-Step Ahead forecasts, both methodologies started to veer

away from the actuals between the 14 and 28 day forecast horizon. The choice was made

to recalculate the model every 14 days. The ERR total in all cases was only 75%, which

indicated that information was missing from the modeling process (see Section 7.2 below).

The forecast values were calculated for each period for 14, 7, 6, 5, 4, 3, 2 and 1 day ahead

and their MAPE values calculated. The average values are shown in Table 7.4.

Average Multi-Step Ahead MAPE (%) Values for 14-Day Models

Days

Data Model 14 7 6 5 4 3 2 1

1970-1975 ARMAX Daily Model 5.81 5.39 5.25 5.16 4.48 3.83 3.62 3.01

NARMAX Yearly Model 5.49 4.87 4.82 4.80 4.7 3.74 3.19 2.70

2001-2011 ARMAX Daily Model 5.90 4.76 4.62 4.40 4.15 4.03 3.48 4.98

NARMAX Daily Model 5.72 4.82 4.72 4.25 3.88 3.83 3.59 3.34

Table 7.4: 14-Day Models - Average MAPE (%) Values Summary

The Multi-Step Ahead results in Table 7.4 are all within the 4-6% Benchmark level, and

improve as the days ahead calculations become shorter. This indicates that recalculating
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the model on a shorter time scale could improve the results (see Section 7.2). Although the

methods are very similar in the results achieved, there is a major advantage of the NARMAX

methodology over ARMAX. This became clear during the Daily forecasting chapter where

the model was recalculated every 14 days, and as the two week models moved across the

winter period, the FROLS algorithm modified the selected terms automatically. With the

ARMAX methodology, this action would have to be manually performed. This benefit will

be described below in possible future research. Both methods adapt the parameter values

as the models move across the winter period.

Again, the results above are encouraging and warrant further research. The goal of the

thesis is met and shows that Polynomial NARMAX offers the capabilities of an additional

methodology for Gas Demand Daily forecasting.

7.2 Future

There are many opportunities for future work with the Polynomial NARMAX methodology

in the Gas Demand forecasting domain. These future work opportunities fall into two

categories - Application Areas and Technical Research Areas, and are described below.

7.2.1 Application Areas

1. Daily forecasting - Include additional weather variables, in the modeling process, to

increase the ERR Total (which is around 75% in this thesis for Daily Modeling and

Forecasting). Many candidates exist, including different average temperature calcula-

tions, maximum and minimum daily temperatures, wind speed, humidity, chill factors

etc

2. Optimal number of days ahead model calculation - Table 7.4 above, shows that the

MAPE average decreases as the days ahead horizon decreases, hence developing models

which recalculate fewer days ahead (7, 6, 5 days etc) to produce the optimal days ahead

remodeling horizon. This work would then lead to a model which would re-calculate

the parameter values, add or remove terms on each recalculation to match the periods

specificity automatically. A major improvement over the manual intervention required



7.2 Future 223

for the ARMAX methodology.

3. Day models - Develop Daily models which represent each day of the week, as the gas

consumption profile is potentially different for each day of the week.

4. Data correction - Apply data correction to temperature data over a certain level,

which would impact the spring and summer calculations, as well as special days e.g.

Christmas and Bank Holidays, to help the models over these periods. This is the

technique used by DNV GL, and none were applied in this thesis.

5. In-day forecasting - Develop Models and Forecasts for In-day periods using hourly

data. In-Day forecasting is an important operational time horizon for Grid Controllers

and a major part of DNV GL’s application suite.

6. Number of historical days data for modeling? - Study why the daily models in Chapter

6 used a different number of days for the ARMAX modeling, compared to NARMAX

modeling.

7. Summer months modeling and forecasting - Most of the work in this thesis has focused

on the Winter period, hence similar application study could be performed on the

Summer period.

7.2.2 Research Areas

In addition to the application areas described above, there are some technical research areas

worth pursuing.

1. The advantage of the NARMAX methodology of automatically selecting variables and

terms was challenged during the Weekly Demand modeling in Chapter 5. The FROLS

algorithm had difficulty in selecting relevant terms after the first term due to the fact

that the first term, x(k) (the future temperature at time k), represented over 85% of

the system output value as measured by ERR. Research into fine tuning the algorithm

for situations like this would alleviate the need for manual intervention of removing

obvious spurious term selections.
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2. There are some interesting areas of new research in the area of time varying param-

eters and their impact on forecast accuracy. There appears to have been little work

published using the above techniques to Demand Load Forecasting and specifically

integrating time variant parameters into the polynomial model itself (Liu and Peng

(2009) and Huang et al. (2009)). These include:

(a) The impact of the time change in winter? The day for this time change varies

each year. This could benefit Daily forecasting.

(b) The impact of holidays, which move with time, like Christmas Day and New

Year’s Day. This could benefit Daily forecasting.

(c) The impact on demand of temperatures close to daylight and nightfall hours.

This could benefit In-Day forecasting.

(d) The impact of the major temperature changes at the start and end of the Winter

period. This could benefit all time frames.

7.2.3 Publications

No papers have been published from this work so far. Also there appears to have been little

work published using the Polynomial NARMAX methodology to the Gas Demand Forecast-

ing domain which provides an opportunity for disseminating the work. The references in

the Bibliography are published in a variety of journals, hence offering a wide possibility for

publications. There are five Journals of interest for publishing the work which stand out:

1. The International Journal of Forecasting

2. The International Journal of Applied Forecasting

3. The Journal of Control

4. The Journal of Applied Energy

5. Pipeline Simulation Interest Group (PSIG)
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Finally, the data was provided under NDA for X-Gas (as well as other regions and

additional weather variables) and the results have met the Benchmark they indicated, i.e.

between 4 and 6% MAPE. The opportunities described above could provide continued

relationship between DNV GL and the University of Sheffield to enhance industrial collab-

oration. The research produced in this thesis has been exciting and rewarding, and I hope

it will be of benefit to future researchers.



BIBLIOGRAPHY

Abecasis, S. M., Lapenta, E. S. and Pedreira, C. E. (1999), ‘Performance metrics for financial

time series forecasting’, Journal of Computer Intelligence in Finance 7(4), 5–22.

Abiodun, L. (2012), ‘National Grid - Short term gas demand forecasting’.

URL: http://www2.nationalgrid.com/uk/

Adhikari, R. and Agrawal, R. (2013), ‘An introductory study on time series modeling and

forecasting’, Lambert Academic Publishing, Germany .

Ahmed, R. and Jamaluddin, H. (2001), ‘Orthogonal least squares algorithm and its appli-

cation for modeling suspension system’, Journal of Technology 34A, 71–84.

Akkurt, M., Demirel, O. and Zaim, S. (2010), ‘Forecasting Turkey’s natural gas consumption

by using time series methods’, European Journal of Economic and Political Studies 3-2, 1–

21.

Akpinar, M. and Yumusak, N. (2016), ‘Year ahead demand forecast of city natural gas using

seasonal time series methods’, Energies 9, 727–754.

Almeshaiei, E. and Soltan, H. (2011), ‘A methodology for electric power load forecasting.’,

Applied Energy 50, 137–144.

Antcliffe, D., Nicholson, H. and Sterling, M. (1975a), ‘Survey and Application of Mathe-

matical Methods to Gas Demand Forecasting. The application of Autoregressive Integrated

Moving Average Models to the modeling and forecasting of Weekly demand within a gas

region’, British Gas Report 1 .

Antcliffe, D., Nicholson, H. and Sterling, M. (1975b), ‘Survey and Application of Mathe-

matical Methods to Gas Demand Forecasting. The application of Autoregressive Integrated

Moving Average Models to the modeling and forecasting of Weekly demand within a gas

region’, British Gas Report 2 .

226



BIBLIOGRAPHY 227

Antcliffe, D., Nicholson, H. and Sterling, M. (1975c), ‘Survey and Application of Mathe-

matical Methods to Gas Demand Forecasting. The application of Autoregressive Integrated

Moving Average Models to the modeling and forecasting of Weekly demand within a gas

region’, British Gas Report 3 .

Antcliffe, D., Nicholson, H. and Sterling, M. (1975d), ‘Survey and Application of Mathe-

matical Methods to Gas Demand Forecasting. The application of Autoregressive Integrated

Moving Average Models to the modeling and forecasting of Daily demand within a gas

region’, British Gas Report 4 .

Antcliffe, D. and Sterling, M. (1974), ‘A technique for the prediction of water demand from

past consumption data’, Journal of the Institution of Water Engineers pp. 413–420.

Aras, H. and Aras, N. (2004), ‘Forecasting residential natural gas demand.’, Energy Sources

26, 463–472.

Armstrong, J. (2005), ‘The forecasting canon: nine generalizations to improve forecast

accuracy’, The International Journal of Applied Forecasting 1, 29–35.

Assaad, M., Bone, R. and Cardot, H. (2008), ‘A new boosting algorithm for improved

time-series forecasting with recurrent neural networks’, Information Fusion 9, 41–55.

Azadeh, A., Asadzadeh, S. and A.Ghanbari (2010), ‘An adaptive network-based fuzzy in-

ference system for short-term natural gas demand estimation: Uncertain and complex en-

vironments’, Energy Policy 38, 1529–1536.

Batey, D., Sterling, M., Antcliffe, D. and Billings, S. (1975), ‘The design and implementation

of an interactive data analysis package for a process computer’, Computer-Aided Design

7(4), 265–269.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (2006), Nonlinear Programming. Theory

and Algorithms. 3rd Edition, Wiley, New Jersey.

Beccali, M., Cellura, M., Brano, V. and Varguglia, A. (2004), ‘Forecasting daily urban

electric load profiles using artificial neural networks’, Energy Conversion and Management

45, 2879–2900.



228 BIBLIOGRAPHY

Berrisford, H. (1965), ‘The relation between gas demand and temperature: A study in

statistical demand forecasting’, Operational Research Society 16(2), 229–246.

Billings, S. A. (2013), Nonlinear System Identification: NARMAX Methods in the Time,

Frequency, and Spatio-Temporal Domains, Wiley, Chichester, UK.

Billings, S. and Coca, D. (2001), Identification of NARMAX and related models, Technical

report, Department of Automatic Control and Systems Engineering, University of Sheffield.

Billings, S. and Voon, W. (1986), ‘Correlation based model validity tests for non-linear

models’, International Journal of Control 44-1, 235–244.

Billings, S. and Wei, H. (2005), ‘The Wavelet-NARMAX representation: A hybrid model

structure combining polynomial models with multiresolution wavelet decompositions’, In-

ternational Journal of Systems Science 36(3), 137–152.

Billings, S. and Zhu, Q. (1994), ‘Non-linear validation using correlation tests’, International

Journal of Control 60-6, 1107–1120.

Box, G. and Cox, D. (1964), ‘An analysis of transformations’, Journal of the Royal Statistical

Society - Series B 26, 211–243.

Box, G. and Jenkins, G. (1970), Time series analysis: Forecasting and Control, Holden-Day,

San Francisco.

Box, G. and Pierce, D. (1970), ‘Distribution of residual autocorrelation in autoregressive in-

tegrated moving average time series models’, Journal of the American Statistical Association

pp. 1509–1526.

Brabec, M., Konar, O., Maly, M., Kasanicky, I. and Pelikan, E. (2015), ‘Statistical models

for disaggregation and re-aggregation of natural gas consumption data’, Journal of Applied

Statistics 42(5), 921–937.

Brabec, M., Konar, O., Pelikan, E. and Maly, M. (2008), ‘A methodology for electric power

load forecasting.’, International Journal of Forecasting 24, 659–678.



BIBLIOGRAPHY 229

Burges, C. (1998), ‘A tutorial on support vector machines for pattern recognition’, Data

Mining and Knowledge Discovery 2, 121–167.

Cancelo, J., Espasa, A. and Grafe, R. (2008), ‘Forecasting the electricity load from one day

to one week ahead for the Spanish system operator.’, International Journal of Forecasting

24, 588–602.

Chang, C. (2009), ‘A non linear ARMAX for short term load forecasting’, Journal of Statis-

tics and Management Systems 12(4), 749–758.

Chen, B., Chang, M. and Lin, C. (2004), ‘Load forecasting using support vector machines:

a study on EUNITE competition 2001’, IEEE Transactions on Power Systems 19-4, 1821–

1830.

Chen, Q., Shi, Y. and Xu, X. (2013), ‘Combination model for short-term load forecasting.’,

The Open Automation and Control Systems Journal 5, 124–132.

Chen, S., Billings, S. and Luo, W. (1989), ‘Orthogonal least squares methods and their ap-

plication to non-linear systems identification’, International Journal of Control 50-5, 1873–

1896.

Cheng, Y., Wang, L. and Hu, J. (2011), ‘A two-step scheme for polynomial NARX model

identification based on MOEA with prescreening process’, IEEJ Transactions on Electrical

and Electronic Engineers 6, 253–259.

Cho, H., Goude, Y., Brossat, X. and Yao, Q. (2012), ‘Modeling and forecasting daily elec-

tricity load curves: A hybrid approach’, Journal of the American Statistical Association

108(501), 7–21.

Cooray, T. and Peiris, T. (2010), ‘Daily, day and night, load forecasting for peak values in

Sri Lanka’, Proceedings of the Regional Conference on Statistical Sciences pp. 57–73.

Cross, G. and Galiana, F. (1987), ‘Short-term load forecasting’, Proceedings of the IEEE

75(12), 1558–1573.

Cugliari, J. (2011), Prevision non parametrique de processus a valeurs fonctionnelles : ap-

plication a la consommation d’electricite, PhD thesis, Universite Paris-Sud XI.



230 BIBLIOGRAPHY

Czernichow, T., Germond, A., Dorizzi, B. and Caire, P. (1995), ‘Improving recurrent net-

work load forecasting’, Neural Networks 2, 1–6.

Dagher, L. (2012), ‘Natural gas demand at the utility level - an application of dynamic

elasticities’, Energy Economics 34, 961–969.

Darbellay, G. and Slama, M. (2000), ‘Forecasting the short-term demand for electricity. Do

neural networks stand a better chance?’, International Journal of Forecasting 16, 71–83.

de Chaisemartin, C. (2011), ‘Ordinary least squares: the multivariate case’, Paris School of

Economics, Paris, France .

de Gooijer, J. and Hyndman, R. (2006), ‘25 years of time series forecasting’, International

Journal of Forecasting 22, 443–473.

Demirel, O., Zaim, S., Caliskan, A. and Ozuyar, P. (2012), ‘Forecasting natural gas con-

sumption in Istanbul using neural networks and multivariate time series methods.’, Turkish

Journal Electrical Engineering and Computer Science 20(5), 695–711.

Deng, J. and Jirutitijaroen, P. (2010), ‘Short-term load forecasting using time series, anal-

ysis: A case study for Singapore’, IEEE Conference on Cybernetics and Intelligent Systems

(CIS) pp. 231–236.

Dwijayanti, S. (2013), Short term load forecasting using a neural network based time series

approach, Master’s thesis, Graduate College of the Oklahoma State University.

Energy Information Administration - USA (2013), ‘International energy outlook 2013 with

projections to 2040’, US Government Printing Office .

Erdogdu, E. (2010), ‘Natural gas demand in Turkey’, Applied Energy 87, 211–219.

Ervural, B., Beyca, O. and Zaim, S. (2016), ‘Model estimation of ARMA using genetic

algorithms: A case study of forecasting natural gas consumption’, Social and Behavioral

Sciences 235, 537–545.

Espinoza, M., Suykens, J. and Moor, B. D. (2006), ‘Structured kernel based modeling: An

exploration in short-term load forecasting’, Neurocomputing pp. 1–30.



BIBLIOGRAPHY 231

Fagianin, M., Squartini, S., Gabrielli, L., Spinsante, S. and Piazza, F. (2015), ‘A review of

datasets and load forecasting techniques for smart natural gas and water grids: Analysis

and experiments’, Neurocomputing 170, 448–465.

Fildes, R., Randall, A. and Stubbs, P. (1997), ‘One day ahead demand forecasting in the util-

ity industries: Two case studies’, The Journal of the Operational Research Society pp. 15–24.

Filipovic, V. (2015), ‘Recursive identification of multi-variable ARX models in the presence

of a priori information: Robustness and regularization’, Signal Processing 116, 68–77.

Fischer, M. (2010), Modeling and forecasting energy demand: Principles and difficulties,

Springer Science and Business Media B.V.

Forouzanfar, M., Doustmohammadi, A., Menhaj, M. and Hasanzadeh, S. (2010), ‘Modeling

and estimation of the natural gas consumption for residential and commercial sectors in

Iran’, Journal of Applied Energy 87(1), 268–274.

Fung, E., Wong, Y., Ho, H. and Mignolet, M. (2003), ‘Modeling and prediction of machining

errors using ARMAX and NARMAX structures’, Applied Mathematical Modeling 27, 611–

627.

Gardner, E. (2005), ‘Exponential smoothing: The state of the art - Part II’, Bauer College

of Business, Houston Texas, USA .

Gascon, A. and Sanchez-Ubeda, E. (2017), ‘Automatic specification of piecewise linear

additive models: application to forecasting natural gas demand’, Statistics and Computing

27, 1–17.

Geen, S. (2012), ‘National Grid - Gas demand forecasting methodology’.

URL: http://www2.nationalgrid.com/uk/

Ghalehkhondabi, I., Ardjmand, E., Weckman, G. and Young, W. (2016), ‘An overview of

energy demand forecasting methods published in 2005–2015’, Energy Systems 7, 1–37.

Gorucu, F. B. and Gumrah, F. (2004), ‘Evaluation and forecasting of gas consumption by

statistical analysis’, Energy Sources 26, 267–276.



232 BIBLIOGRAPHY

Guo, Y., Guo, L., Billings, S. and Wei, H. (2015), ‘An iterative orthogonal forward regression

algorithm.’, International Journal of Systems Science 46(5), 776–789.

Hahn, H., Meyer-Nieberg, S. and Pickl, S. (2009), ‘Electric load forecasting methods - tools

for decision making.’, Journal of the Operational Research 119, 902–907.

Hanand, L., Dingand, L., Zheng, Z., Yanming, L. and Yunfeng, N. (2004), ‘Research on

natural gas load forecasting based on support vector regression.’, Proceedings of the 5Ih

World Congress on Intelligent Control and Automation pp. 3591–3595.

Hippert, H., Bunn, D. and Souza, R. (2005), ‘Large neural networks for electricity load

forecasting: Are they over-fitted?’, International Journal of Forecasting 21, 425–434.

Hippert, H., Pedreira, C. and Souza, R. (2001), ‘Neural networks for short-term load fore-

casting:a review and evaluation’, IEEE Transactions of Power Systems 16-1.

Hong, T. and Fan, S. (2016), ‘Probabilistic electric load forecasting : A tutorial review’,

International Journal of Forecasting pp. 1–25.

Hong, X., Mitchell, R., Chen, S., Harris, C., Li, K. and Irwin, G. (2008), ‘Model selection

approaches for non-linear system identification: a review.’, International Journal of Systems

Science 39(10), 925–946.

Hooshmand, R., Amooshahi, H. and Parastegari, M. (2013), ‘A hybrid intelligent algorithm

based short term load forecasting approach’, Electrical Power and Energy Systems 45, 313–

324.

Hrolenok, B. (2009), ‘Recurrent Neural Networks. Course material - George Mason Univer-

sity. URL = http://www.cc.gatech.edu/grads/b/bhroleno’.

Huang, C., Hung, S., Su, W. and Wu, C. (2009), ‘Identification of time variant model pa-

rameters using time-varying autoregressive with exogenous input and low-order polynomial

function’, Computer Aided Civil and Infrastructure Engineering 24–7, 470–491.

Hyndman, R. (2002), ‘Seasonal ARIMA models. Course material - Monash University, Mel-

bourne, Australia. URL = https://www.otexts.org/fpp/8/9’.



BIBLIOGRAPHY 233

Ivezic, D. (2006), ‘Short-term natural gas consumption forecast’, Faculty of Mining and

Engineering (FME) Transactions 34, 165–169.

Jazayeri, P., Rosehart, W. and Westwick, D. (2007), ‘A multistage algorithm for identifi-

cation of nonlinear aggregate power systems loads’, IEEE Transactions on Power Systems

22(3), 1072–1079.

Jukic, D., Kralikb, G. and Scitovski, R. (2004), ‘Least-squares fitting Gompertz curve’,

Journal of Computational and Applied Mathematics 169, 359–375.

Kalekar, P. (2004), ‘Time series forecasting using Holt-Winters exponential smoothing’.

URL: https://labs.omniti.com/people/jesus/papers/holtwinters.pdf

Karatasou, S., Santamouris, M. and Geros, V. (2006), ‘Modeling and predicting building’s

energy use with artificial neural networks: Methods and results’, Energy and Buildings

38-8, 949–972.

Karimi, H. and Dastranj, J. (2014), ‘Artificial neural network-based genetic algorithm to

predict natural gas consumption.’, Energy Systems 5, 571–581.

Khan, M. (2015), ‘Modelling and forecasting the demand for natural gas in Pakistan’,

Journal of the American Statistical Association 49, 1145–1159.

Khotanzad, A., Elraga, H. and Lu, T. (2000), ‘Combination of artificial neural-network fore-

casters for prediction of natural gas consumption.’, IEEE Transactions on Neural Networks

11(2), 464–473.

Korenberg, M., Billings, S., Liu, Y. and McIlroy, P. (1988), ‘Orthogonal parameter esti-

mation algorithm for non-linear stochastic systems’, International Journal of Control 48-

1, 193–201.

Kumru, M. and Kumru, P. (2015), ‘Calendar-based short-term forecasting of daily average

electricity demand.’, International Conference on Industrial Engineering and Operations

Management .

Lee, C. (2002), ‘Applied cluster rule NARMAX method to short term loading forecasting’,

Masters Thesis - Graduate Institute of Automatic Control Engineering Taiwan .



234 BIBLIOGRAPHY

Leguet, B. (2010), ‘Tendances Carbone’, CDC Climat Recherche 44.

Liu, G. (2011), Comparison of regression and ARIMA models with neural network models to

forecast the daily stream flow of White Clay Creek, Master’s thesis, University of Delaware.

Liu, Y. and Peng, C. (2009), Time-variation Nonlinear Systems Identification Based on

Bayesian-Gaussian Neural Network, Vol. 1, Fifth International Conference on Neural Com-

putation, pp. 353–357.

Ljung, G. and Box, G. (1978), ‘On a measure of a lack of fit in time series models’,

Biometrika 65(2), 297–303.

Lyness, F. (1984), ‘Gas demand forecasting’, Journal of the Royal Statistical Society - Series

D (The Statistician) 33-1, 9–21.

Metaxiotis, K., Kagiannas, A., Askounis, D. and Psarras, J. (2003), ‘Artificial intelligence

in short term electric load forecasting: a state-of-the-art survey for the researchers’, Energy

Conversion and Management 44, 1525–1534.

Miao, J. (2015), ‘The energy consumption forecasting in China based on ARIMA model’, In-

ternational Conference on Materials Engineering and Information Technology Applications

pp. 192–196.

Mills, T. (1990), Time series techniques for economists, Cambridge University Press.

Milne, R. (2010), ‘Lack of storage and more imports increase UK vulnerability. an ECC

Report’, Utility Week 32-5, 1–2.

Mirasgedis, S., Sarafidis, Y., Georgopoulou, E., Lalas, D., Moschovits, M., Karagiannis,

F. and Papakonstantinou, D. (2006), ‘Models for mid-term electricity demand forecasting

incorporating weather influences’, Energy 31, 20–227.

Mishra, S. (2008), Short term load forecasting using computational intelligence methods,

Master’s thesis, Department of Electronics and Communication Engineering National Insti-

tute Of Technology. Rourkela, Odisha, India.



BIBLIOGRAPHY 235

Mitchell, M. (1999), An Introduction to Genetic Algorithms, A Bradford Book. The MIT

Press.

Mordukhovich, B. and Nam, N. (2000), ‘Applications of variational analysis to a generalized

Fermat-Torricelli problem, URL = https://arxiv.org/abs/1009.1594’.

Murray, F. and Ringwood, J. (1994), ‘Improvement of electricity consumption forecasts

using temperature inputs.’, Simulation Practice and Theory 2, 121–139.

Newton, P. (2010), ‘UK demand for gas forecast to be static until 2019’, Utility Week -

April 2010 .

Norizan, M., Maizah, H. and Zuhaimy, I. (2010), ‘Short term load forecasting using double

seasonal ARIMA model in Malaysia’, Proceedings of the Regional Conference on Statistical

Sciences pp. 57–73.

Olagoke, M., Ayeni, A. and Hambali, M. (2016), ‘Short term electric load forecasting us-

ing neural network and genetic algorithm’, International Journal of Applied Information

Systems 10(4), 22–28.

Ozdemir, G., Aydemir, E., Olgun, M. and Mulbay, Z. (2016), ‘Forecasting of Turkey natural

gas demand using a hybrid algorithm’, Energy Sources, Part B: Economics, Planning, and

Policy 11:4, 295–302.

Pai, P. and Hong, W. (2005a), ‘Forecasting regional electricity load based on recurrent

support vector machines with genetic algorithms’, Electric Power Systems Research 74-

3, 417–425.

Pai, P. and Hong, W. (2005b), ‘Support vector machines with simulated annealing algo-

rithms in electricity load forecasting’, Energy Conversion and Management 46-17, 2669–

2688.

Panapakidis, I. and Dagoumas, A. (2017), ‘Day-ahead natural gas demand forecasting based

on the combination of wavelet transform and ANFIS/genetic algorithm/neural network

model’, Energy 118, 231–245.



236 BIBLIOGRAPHY

Pang, B. (2012), The impact of additional weather inputs on gas load forecasting, Master’s

thesis, Marquette University.

Pankratz, A. (2009), Forecasting with Univariate Box-Jenkins Models: Concepts and Cases

(Vol. 224), John Wiley and Sons.

Pedregal, D. and Young, P. (2008), ‘Development of improved adaptive approaches to elec-

tricity demand forecasting.’, Journal of the Operational Research 59, 1006–1076.

Pelgrin, F. (2011-2012), ‘Lecture 1: Fundamental concepts in Time Series Analysis (part 2),

University of Lausanne. Ecole des HEC. Department of mathematics (IMEA-Nice). URL

= http://www.cc.gatech.edu/grads/b/bhroleno’.

Pepper, M. (1985), ‘Multivariate Box -Jenkins analysis’, Energy Economics pp. 168–178.

Perchard, T. and Whitehand, C. (2000), ‘Short term gas demand forecasting’, Pipeline

Simulation Interest Group(PSIG) .

Pesaran, M. H. (1999), ‘An autoregressive distributed lag modelling approach to cointegra-

tion analysis’, Cambridge University World Proceedings pp. 134–150.

Peter, D. and Silvia, P. (2012), ‘ARIMA vs. ARIMAX - which approach is better to analyze

and forecast macroeconomic time series?’, Proceedings of 30th International Conference

Mathematical Methods in Economics pp. 136–140.

Petrov, B. and Csak, B. (1973), ‘Akaike, H. information theory and an extension of the

maximum likelihood principle’, Second International Symposium on Information Theory

pp. 267–281.

Piggott, D. J. (2003), ‘Accurate load forecasting – ”you cannot be serious’, Pipeline Simu-

lation Interest Group(PSIG) .

Piltan, M., Shiri, H. and Ghaderi, S. (2012), ‘Energy demand forecasting in Iranian metal

industry using linear and nonlinear models based on evolutionary algorithms.’, Energy Con-

version and Management 58, 1–9.



BIBLIOGRAPHY 237

Piroddi, L. and Spinelli, W. (2003), ‘An identification algorithm for polynomial NARX mod-

els based on simulation error minimization.’, International Journal of Control 76(17), 1767–

1781.

Potocnik, P. and Govekar, E. (2016), ‘Applied short-term forecasting for the slovenian

natural gas market’, 13th International Conference on the European Energy Market (EEM)

2016, 1–5.

Potocnik, P., Soldo, B., Simunovic, G., Jeromen, A. and Govekar, E. (2014), ‘Comparison

of static and adaptive models for short-term residential natural gas forecasting in Croatia.’,

Applied Energy 129, 94–103.

Prestwich, S., Rossi, R., Tarim, S. and Hnich, B. (2014), ‘Mean-based error measures for in-

termittent demand forecasting’, International Journal of Production Research 52-22, 6782–

6791.

Prudencio, R. and Ludermir, T. (2001), Design of neural networks for time series prediction

using case-initialized genetic algorithms, Proceedings of the Eighth International Conference

on Neural Information Processing.

Roweis, S. (2000), ‘Levenberg-Marquardt Optimization. Course material - Department of

Computer Science - New York University, USA’.

URL: https://www.cs.nyu.edu/ roweis/notes/lm.pdf

Sabo, K., Scitovski, R., Vazler, I. and Zekic-Susac, M. (2011), ‘Mathematical models of

natural gas consumption’, Energy Conversion and Management 52(3), 1721–1727.

Senter, A. (2010), ‘Time Series Analysis - Course material - San Francisco State University,

USA. URL = http://userwww.sfsu.edu/efc/classes/biol710/timeseries/timeseries1.htm,’.

Shaikh, F. and Ji, Q. (2016), ‘Forecasting natural gas demand in China - logistic modeling

analysis.’, Electrical Power and Energy Systems 77, 25–32.

Shakouri, H. and Kazemi, A. (2016), ‘Selection of the best armax model for forecasting

energy demand: case study of the residential and commercial sectors in iran’, Energy Effi-

ciency 9, 339–352.



238 BIBLIOGRAPHY

Sheikh, S. and Unde, M. G. (2012), ‘Short term load forecasting using ANN techniques’,

International Journal of Engineering Sciences and Emerging Technologies 1(2), 97–107.

Siddique, S. (2013), Automation of energy demand forecasting, Master’s thesis, Marquette

University.

Smith, P., Husein, S. and Leonard, D. (1996), ‘Forecasting short term regional gas demand

using an expert system’, Expert Systems with Application 10-2, 265–273.

Smunek, M. and Pelikan, E. (2008), ‘Temperatures data preprocessing for short-term gas

consumption forecast’, IEEE International Symposium on Industrial Electronics pp. 1192–

1196.

Soares, L. and Medeiros, M. (2008), ‘Modeling and forecasting short-term electricity load -

a comparison of methods with an application to Brazilian data’, International Journal of

Forecasting 24, 630–644.

Soldo, B. (2012), ‘Forecasting natural gas consumption.’, Applied Energy 92, 26–37.

Stefanowski, J. (2010), ‘Artificial neural networks - basics of MLP, RBF and Kohonen Net-

works. Course material - Institute of Computing Science, Poznan University of Technology,

Poland’.

URL: https://pdfs.semanticscholar.org/c439/4eb6bb82c023f6e619bb4587f3dccc708a75.pdf

Szoplik, J. (2015), ‘Forecasting of natural gas consumption with artificial neural networks’,

Energy 85, 208–220.

Tan, B. (2008), ‘Cobb-Douglas production function’.

URL: http://docentes.fe.unl.pt/ jamador/Macro/cobb-douglas.pdf

Taspinar, F., Celebi, N. and Tutkun, N. (2013), ‘Forecasting of daily natural gas con-

sumption on regional basis in Turkey using various computational methods.’, Energy and

Buildings 56, 23–31.

Taylor, J. and Buizza, R. (2003), ‘Using weather ensemble predictions in electricity demand

forecasting’, International Journal of Forecasting 19, 57–70.



BIBLIOGRAPHY 239

Taylor, J., de Menezes, L. and McSharry, P. (2006), ‘A comparison of univariate methods

for forecasting electricity demand up to a day ahead’, International Journal of Forecasting

22, 1–16.

Timmer, R. and Lamb, P. (2007), ‘Relations between temperature and residential natural

gas consumption in the central and eastern United States’, Journal of Applied Meteorology

and Climatology 46, 1993–2013.

Tsekouras, G., Dialynas, E., Hatziargyriou, N. and Kavatza, S. (2007), ‘A non-linear multi-

variable regression model for midterm energy forecasting of power systems’, Power Systems

Research 77, 1560–1568.

Tzafestas, S. and Tzafestas, E. (2001), ‘Computational intelligence techniques for short

term electric load forecasting’, Journal of Intelligent and Robotic Systems 31, 7–68.

Unknown (2015), ‘Autocorrelation’, Notes-3, GEOS 585A, Laboratory of Tree-Ring Re-

search - University of Arizona pp. 1–8.

Vajk, I. and Hetthessy, J. (2005), ‘Load forecasting using nonlinear modeling’, Control

Engineering Practice 13-7, 895–902.

Vall, O. M. M. and M’hiri, R. (2008), ‘An approach to polynomial NARX-NARMAX sys-

tems identification in a closed-loop with variable structure control’, International Journal

of Automation and Computing 05(3), 313–318.

Vondracek, J., Pelikan, E., Konar, O., Cermakova, J., Eben, K., Maly, M. and Brabec, M.

(2008), ‘A statistical model for the estimation of natural gas consumption’, Applied Energy

85–5, 362–370.

Vrieze, S. (2012), ‘Model Selection and Psychological Theory A Discussion of the Differences

Between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion

(BIC)’, Psychological Methods 17(2), 228–243.

Wadud, Z., Dey, H., Kabir, M. and Khan, S. (2011), ‘Modeling and forecasting natural gas

demand in Bangladesh’, Energy Policy 39, 7372–7380.



240 BIBLIOGRAPHY

Wang, C., Grozev, G. and Seo, S. (2012), ‘Decomposition and statistical analysis for regional

electricity demand forecasting.’, Energy 41, 313–325.

Watanabe, S. (2013), ‘A Widely Applicable Bayesian Information Criterion’, Journal of

Machine Learning Research 14, 867–897.

Wei, H. and Billings, S. (2006), ‘Model structure selection using an integrated forward

orthogonal search algorithm interfered with squared correlation and mutual information’,

Research Report No. 918 - Department of Automatic Control and Systems Engineering. The

University of Sheffield pp. 1–34.

Wei, H., Billings, S. A., Sharma, A., Wing, S., Boynton, R. J. and Walker, S. N. (2011),

‘Forecasting relativistic electron flux using dynamic multiple regression models’, Annales

Geophysicae 29, 415–420.

Wei, H. L., Billings, S. A. and Liu, J. (2004), ‘Term and variable selection for non-linear

system identification’, International Journal of Control 77-1, 86–110.

Willmott, C. and Matsuura, K. (2005), ‘Advantages of the mean absolute error (MAE)

over the root mean square error (RMSE) in assessing average model performance’, Climate

Research 30, 79–82.

Xu, G. (2004), ‘Mid-long term load forecasting in power system by genetic programming’,

Research Report - Department of Electrical Engineering, Shanghai Jiaotong University .

Yalcinoz, T. and Eminoglu, U. (2005), ‘Short term and medium term power distribution

load forecasting by neural networks’, Energy Conversion and Management 46, 1393–1405.

Yanting, L. and Lianjie, S. (2014), ‘An ARMAX model for forecasting the power output of

a grid connected photo-voltaic system.’, Renewable Energy 66, 78–89.

Yu, F. and Xu, X. (2014), ‘A short-term load forecasting model of natural gas based on

optimized genetic algorithm and improved bp neural network’, Applied Energy 134, 102–

113.

Zeng, B. and Li, C. (2016), ‘Forecasting the natural gas demand in China using a self-

adapting intelligent grey model’, Energy 112, 810–825.



BIBLIOGRAPHY 241

Zhang, C., Liu, Y., Zhang, H., Huang, H. and Zhu, W. (2011), ‘Research on short-term gas

load forecasting based on support vector machine model - Center for Public Safety Research,

Department of Engineering Phyiscs, Tsinghua University, 100084, Beijing, China’.

Zhang, G., Patuwo, B. and Hu, M. (1998), ‘Forecasting with artificial neural networks – the

state of the art’, International Journal of Forecasting 14, 35–62.

Zhang, Y., Hua, X. and Zhao, L. (2012), ‘Exploring determinats of house prices: A case

study of chinese experience in 1999 to 2010’, Economic Modeling 29-6, 2349–2361.

Zhoua, H., Sub, G. and Lib, G. (2011), ‘Forecasting daily gas load with OIHF-Elman

neural network.’, The International Symposium on Frontiers in Ambient and Mobile Systems

5, 754–758.

Zhu, L., Li, M., Wu, Q. and Jiang, L. (2015), ‘Short-term natural gas demand prediction

based on support vector regression with false neighbours filtered.’, Energy 80, 428–436.



Appendix A

SEARCH CRITERIA AND SITES/JOURNALS

This Appendix lists the search terms used and the journals researched for the thesis.

The papers reviewed as part of the learning process, or reviewed relative to the content of

the thesis are found in the Bibliography.

A.1 Search Criteria

� ARIMA

� ARMA

� ARMAX

� Box and Jenkins

� Electricity Demand Forecasting

� Forecasting

� Gas Demand Forecasting

� Load Forecasting

� NARIMAX

� NARMAX

� NARX

� Non Linear ARMA(X)

� Non Linear Modeling

� Polynomial Modeling

� Short Term Energy Forecasting

� Transfer Functions
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A.2 Sites/Journals 243

A.2 Sites/Journals

� American Institute of Chemical Engineers - AIChE Journal

� Annual Reviews in Control

� Applied Mathematical Modeling

� Asian Journal of Control

� Automatica

� Communications in Nonlinear Science and Numerical Simulation

� Computers in Industry

� Control Engineering Practice

� Electric Power Systems Research

� Engineering Applications of Artificial Intelligence

� Expert Systems with Applications

� Google Scholar

� IEEE Transactions on Power Systems

� IEEE Xplore

� Information Sciences

� International Journal of Applied Simulation and Modeling

� International Journal of Forecasting

� International Journal of Power and Energy Systems

� International Journal of Robust and Nonlinear Control

� Institute of Business Forecasting

� Institute of International Forecasters

� Journal of Forecasting

� Journal of Natural Gas - Science and Engineering

� Journal of Process Control

� JSTOR

� Mathematics and Computers in Simulation

� Nonlinear Analysis

� Nonlinear Dynamics of Production Systems

� Pipeline Simulation Interest Group (PSIG) - simulation and forecasting



244 Search Criteria and Sites/Journals

� Research Gate

� Science Direct

� SciVerse

� Simulation Modeling Practice and Theory

� Sheffield On-line Library

� Southern Gas Association (SGA) the Forecaster Forum (October each year) is a con-

ference specifically covering forecasting in the US market - dominated by a university

/ business partnership that do most of the forecasting services in the US

� Systems & Control Letters

� Wiley

Last search : 1/3/2017



Appendix B

TRANSFORMATION OF WEEKLY DEMAND

DATA WITH SNET

B.1 Correction to Seasonal Normal Effective Temperature (SNET)

To correct the winter demand in Figure 5.1 to SNET some simple relationship must be

found between demand and effective temperature. Figure B.1 shows the relationship of

demand against effective temperature for the winter months for each of the years 1963 to

1973. It is clear that the spread is too large to produce a single linear relationship between

demand in therms and effective temperature in degrees Celsius, which will be appropriate

for a 10 year period.

245



246 Transformation of Weekly Demand data with SNET

Figure B.1: S. Gas - Winter Demand /Temperature 1963 to 1973
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Table B.1 gives the values for gradient and constant for each of the 10 years, and

also the correlation coefficient (R) of each line. The correlation coefficients for demand

against effective temperature are all over -0.95, thus indicating that there is a strong linear

relationship between demand and effective temperature for each of the 10 years.

Year Gradient A 105 Therms/C◦ Constant B 105 Therms Correlation Coefficient R

63/4 -1.23 40.37 -0.96

64/5 -1.57 48.36 -0.96

65/6 -1.99 58.24 -0.96

66/7 -2.65 70.12 -0.96

67/8 -3.21 80.31 -0.99

68/9 -3.90 96.24 -0.98

69/70 -4.26 104.74 -0.99

70/71 -5.03 122.40 -0.98

71/72 -6.00 147.03 -0.98

72/73 -7.02 167.87 -0.98

Table B.1: Demand/Temperature Parameters



248 Transformation of Weekly Demand data with SNET

The relationship between demand and effective temperature is shown in equation B.1.

yi = AiT
i +Bi i = 63, . . . , 72 (B.1)

where

yi represents the weekly demand of year i

T i represents the weekly temperature of year i

Ai and Bi are the regression coefficients for year i

Therefore demand will be corrected, to SNET, by a different relationship each year,

using the values in Table B.1. The demand-temperature relationship is shown in equation

B.2.

dit = yit −Ai(T it − SNETt) (B.2)

where

t = 1, . . . , 26 (corresponding to the 1st week in October to the last week in March)

dit = demand corrected to SNET in year i at week t

yit = measured demand in year i at week t

Ai = slope of demand/temperature graph for year i

T it = Average weekly effective temperature for year i at week t

SNETt = Seasonal Normal Effective Temperature at week t (Figure 5.3)

Finally, each year’s data is then combined into a single series dt, t = 1, . . . , N, where

N = 260, which represents the winter weekly demand corrected to SNET for Southern Gas

from 1963 to 1973. This is shown in Figure B.2.

NOTE:

At the time I worked on the problem for British Gas, they used the SNET profile and did

not take into account the relationship year on year. I suggested the model above and applied
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it to my work to show the weekly demand forecast was better than their simple method.

Analyzing the same data during my original thesis work, I found that the relationships for

A and B were, in fact, not linear, (Ai’s fits a 3rd Order polynomial better, and Bi’s fits a

2nd order polynomial) and hence could possible improve the forecasts. The reason for the

non linearity, I believe was that the growth on S. Gas demand was starting to flatten off in

the early 1970s.

For this thesis, I have used the linear relationship for the values of the Ai’s and the

Bi’s themselves fit to straight lines when plotted against time (t):

Ai = −0.63t− 0.23 t = 1, . . . , 10 (B.3)

Bi = +13.89t+ 17.61 t = 1, . . . , 10 (B.4)

and hence it was possible to predict the demand/temperature relationship for future

years.
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Figure B.2: S. Gas - Winter Corrected Demand 1963 to 1973

B.2 Conclusion

In conclusion, in calculating the relationship between demand and effective temperature, it

was found that the gradient increases in absolute value from 1963 to 1973. This indicates

that the demand for Southern Gas became less temperature sensitive due to the increase in

the domestic consumption component. This change to temperature sensitivity was possibly

due to economic factors that came into play in this period; prosperity in the south of

England, hence less price conscious, as well as population growth of affluent people into the

area.



Appendix C

ARMA WINTER WEEKLY MODELING AND

FORECASTING WITH SNET (1963-1973)

C.1 Introduction

This appendix provides the details which culminated in the results described in Section 5.2.

The starting point is the Corrected Winter Weekly Demand time series, which is

described in Appendix B. This data is shown in Figure 5.4. The transformation of the

data was described in Section 5.2.1.2.

C.2 Parameter Identification to the Corrected Demand data

The Transformed Corrected Demand data wt, t = 1, . . . , 207 is shown in Figure 5.5. The

first 9 years will be used for modeling and the last year will be use to compare with the

predicted values of the model selected.

The general form of the Box and Jenkins ARMA model is described in Chapter 3

(subsection 3.2.2.2). The original research selected the following model structure (equation

C.1). The model has and Autoregressive term of 1 and Moving Average terms 1, 26 and 27.

(1− φ1B)wt = (1− θ1B)(1−ΘB26)at (C.1)

where φ1 is an autoregressive parameter of order 1, θ1, is the moving average parame-

ter of order 1, and Θ is the periodic moving average parameter and at is a series of residuals.
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The programs used to estimate the parameters were written in Fortran and run on a

UNIVAC 1100 at the British Gas Research Center. The results obtained for φ1, θ1 and Θ

were :

(1− 0.16B)wt = (1− 0.72B)(1− 0.85B26)at (C.2)

However, when re-evaluating the above data with MATLAB using the Econometrics

Toolkit, several other models performed equally well from a modeling perspective as well

as for their forecasting capabilities. The advantage of the Econometrics Toolkit over the

Systems Identification Toolkit, for ARMA modeling, is that specific model parameters and

terms can be selected. The possible models are shown in List C.2, AR(1)/MA(1,26,27) O

is the model from the original work in the 1970s, and AR(1)/MA(1,26,27) N is the revised

version using MATLAB. For each of the models, the constant c was almost zero and hence

is not included.

AR(1)/MA(1,26,27) O - (1− 0.16B)wt = (1− 0.72B)(1− 0.85B26)at

AR(1)/MA(1,26,27) N - (1 + 0.19B)wt = (1− 0.80B)(1− 0.58B26)at

AR(1,2,3,4)/MA(26) - (1− 0.59B − 0.48B2 − 0.33B3 − 0.13B4)wt = (1− 0.59B26)at

AR(1,2)/MA(1,2,26,27,28) - (1−0.67B+0.11B2)wt = (1+0.05B−0.64B2)(1−0.59B26)at

AR(1,2)/MA(1,2,3,26,27,28,29) - (1+0.18B−0.77B2)wt = (1−0.83B+0.80B2−0.51B3)(1−

0.60B26)at

AR(0)/MA(1,2,26,27,28) - wt = (1− 0.60B − 0.15B2)(1− 0.58B26)at

AR(0)/MA(1,26,27) - wt = (1− 0.69B)(1− 0.57B26)at

AR(1)/MA(1,2,26,27,28) - (1− 0.75B)wt = (1 + 0.1B − 0.58B2)(1− 0.59B26)at

List C.2: List of Possible Models



C.2 Parameter Identification to the Corrected Demand data 253

Table C.1 shows the measurements from the modeling stage for each of the possible

models in List C.2. The AIC measure and F statistic are all very similar. The Q Statistic

was calculated for each model with m as 52 (the point at which the ACF values can be

considered as zero), and the number of parameters of each individual model used to define

the degrees of freedom. The 5% point for a χ2 with 40 degrees of freedom is 55.75 and 50

degrees of freedom is 67.50, indicating again that there is no reason to believe the models

in List C.2 are in anyway inadequate. Significant lags (greater than 2 times the standard

deviation) are listed for each of the models. The lags 30 and 77 appear in some models, but

seem to have little relevance to any specific cycle. In summary, there is little to distinguish

between the possible models (although AR(1,2)/MA(1,2,3,26,27,28,29) appears to be the

best, statistically) and hence forecast values were calculated for each model before selecting

the best model.

Model AIC F Significant Q Degrees of

ARMA Values Lags Value Freedom

AR(1)/MA(1,26,27) O 0.423 43.16 48

AR(1)/MA(1,26,27) N -659 0.478 30,77 35.5 48

AR(1,2,3,4)/MA(26) -655 0.483 37.88 47

AR(1,2)/MA(1,2,26:28) -656 0.469 30 33.34 45

AR(1,2)/MA(1,2,3,26:29) -656 0.461 27.61 43

AR(0)/MA(1,2,26:28) -657 0.477 30,77 36.21 47

AR(0)/MA(1,26,27) -657 0.480 77 38.06 49

AR(1)/MA(1,2,26:28) -658 0.472 34.80 46

Table C.1: Model Fit Comparisons for Weekly Demand
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C.3 Forecasting Future One-Step Ahead Demand

One step ahead forecasts were calculated for each of the models in Table C.1 for the winter

of 1972. The forecasts values ŵt+i have then to be inverse-transformed to produce actual

forecasts in 100,000 therm units (using equations 3.17 and 3.18 in Section 3.2.2.6).

Table C.2 shows the balanced set of forecast metrics for each of the models in Table

C.1. Although the model AR(1,2)/MA(1,2,3,26:29) appeared to produce the best modeling

results in Table C.1, the model AR(1,2,3,4)/MA(26) produce the best results in Table C.2

from a prediction standpoint. The MAPE was used as the final selection choice. The results

of the best model are described in Section 5.2.1.4.

Model Over Prediction Under Prediction

ARMA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(1)/MA(1,26,27) O 1.88 3.64 22.20 3.33% 13.11/259/12.47% -8.24/244/-6.36%

AR(1)/MA(1,26,27) N 0.29 4.07 25.03 3.77% 7.38/21/5.76% -12.27/10/-9.47%

AR(1,2,3,4)/MA(26) 0.23 4.02 24.15 3.71% 7.22/21/5.63% -11.94/10/-9.21%

AR(1,2)/MA(1,2,26:28) 0.28 4.13 26.43 3.80% 7.87/21/6.13% -13.13/10/-10.12%

AR(1,2)/MA(1,2,3,26:29) 0.29 4.35 26.72 4.03% 8.94/13/7.61% -12.14/10/-9.36%

AR(0)/MA(1,2,26:28) 028 4.21 26.57 3.88% 7.82/21/6.10% -12.88/10/-9.93%

AR(0)/MA(1,26,27) 0.27 4.09 25.33 3.78% 7.52/21/5.86% -12.57/10/-9.70%

AR(1)/MA(1,2,26:28) 0.27 4.13 26.57 3.80% 7.91/21/6.16% -13.23/10/-10.20%

Table C.2: 26 week - Statistics for One-Step Ahead Weekly Demand Forecast

Note: In Tables C.1 and C.2, due to space requirements, the terms 26,27,28 have been

rewritten as 26:28, etc.

C.4 Forecasting Future Multi-Step ahead Demand

This is described in detail in Section 5.2.1.5 and not duplicated here.



Appendix D

NARMA WINTER WEEKLY MODELING AND

FORECASTING WITH SNET (1963-1973)

D.1 Introduction

This appendix provides the details which culminated in the results described in Section 5.2.3.

D.2 Term Selection for the Linear Model

For this set of data there are no input variables, and a linear model will be considered

initially. For linear models, the model terms and the model variables are exactly the same.

After testing various combinations of terms, 29 terms for output variable y were selected

(yk−1, yk−2 . . . yk−29). As there are no error variables on the first iteration, we will end up

with a AR model. Note: The 29 terms were selected after trials of multiples of 26 (the

seasonal period). This represents the polynomial:

w(t) = (φ1B + φ2B
2 + . . .+ φpB

29)wt + at (D.1)

or

w(t) = φ1wt−1 + φ2wt−2 + . . .+ φ29wt−29 + at (D.2)

where w(t) is the transformed demand data.

This linear AR model gave the ERR profile shown in Figure D.1 and the list of terms

shown in Table D.1.
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Figure D.1: ERR Profile for Transformed Weekly Demand (linear AR model)

Index Model Parameter ERR(%)

term

1 yk−26 -0.505 27.93

2 yk−1 -0.627 5.72

3 yk−2 -0.511 5.68

4 yk−3 -0.312 6.16

5 yk−27 -0.327 2.60

6 yk−28 -0.192 2.41

• • • •

18 yk−5 -0.042 0.12

Table D.1: Results of the FROLS algorithm applied to Linear Model - 18 terms
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D.3 Forecasting using the Linear AR Model

From the 18 most significant terms 50% of the value is produced by 6 terms (the remainder

added approximately 1% of the value). The 18 term model and the 6 term model were

then both used to forecast future demand. The difference between the two models was

insignificant, and hence the simpler 6 term model is shown below. Table D.2 shows the new

parameter values and their ERR% when only the 6 terms above are included.

Index Model Parameter ERR(%)

term

1 yk−26 -0.53 27.99

2 yk−1 -0.57 5.62

3 yk−2 -0.463 5.78

4 yk−3 -0.248 6.00

5 yk−27 -0.306 2.57

6 yk−28 -0.21 2.35

Table D.2: Results of the FROLS algorithm applied to the Linear Model - 6 terms

As in the ARMA modeling, the F and Q statistics were calculated. The Q statistic

shows the model is adequate.

1. F Statistic with 178 data values = 0.42

2. Q Statistic = 31.99 with 46 degrees of freedom (df) (52-6) which shows an adequate

model (46 df χ2 value is 62.83 at 5% level)

The ACF of the residuals has no significant lags, hence the residuals can be considered

as a white noise sequence. However, the model was rerun a second time with the residuals

included in the calculations to test if including MA terms would improve the model from a

forecasting perspective. The results produced were worse with an MAPE of >4%. Hence in

the linear case no Moving Average (MA) terms exist in the model. Also, the model validity
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tests (described in chapter 5 of reference Wei et al. (2004)) cannot be run for linear models

with no input, but will be seen later Chapters, when actual temperature is included in the

modeling process.

One-Step Ahead Predictions for the year 72/73 using the 6 significant terms are shown

in Figure D.2. The forecast data statistics are shown in Table D.3.

The MAPE for this linear model was 3.74% which is equivalent to the ARMA model

developed in this section above. Note including all 18 terms, the MAPE was 3.63%.

Figure D.2: Predicted vs Actual Demand for the Winter of 72/73 (AR model)
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Model Over Prediction Under Prediction

AR MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR 0.86 3.86 22.25 3.74% 10.75/10/8.29% -7.76/25/-7.39%

Table D.3: 26 week - Statistics for One-Step Ahead Weekly Demand Forecast
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D.4 2nd Order Model for Winter Weekly Demand

The next step was to look at possible model orders (i.e. non linear components which would

generate a NAR or NARMA model), and a variety of variables and terms.

Starting again from parameters yk−1 to yk−29, the parameters yk−1, yk−2, yk−3, yk−26,

yk−27, yk−28 and yk−29 and their associated terms produced the most improved ERR profile

for the 2nd Order model. A 2nd Order model and these 7 variables of y , generates 35

terms, which when entered into the FROLS algorithm, 27 terms were selected generating

an ERR total of 67% (an improvement over the linear AR model and shown in Figure D.3).

Figure D.3: ERR Profile for Transformed Weekly Demand (2nd Order)

Again, the ERR profile does not attain the 95%, indicating there is still information

missing from the model. The terms selected and their values are described in Table D.4.

Note that 12 terms generate 60% of the ERR total, but when compared to the 27 term
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model, it did not improve the modeling statistics or the forecasts for the year 1972/73.

Index Model Parameter ERR(%)

term Value

1 yk−26 -0.474 27.93

2 yk−1 -0.530 5.72

3 yk−2 -0.486 5.68

4 yk−3 -0.280 6.16

5 yk−27 ∗ yk−28 -3.11 3.58

6 yk−26 ∗ yk−27 5.08 1.90

7 yk−26 ∗ yk−28 4.36 2.49

8 yk−29 -0.021 1.74

9 y2k−3 0.47 1.15

10 y2k−26 2.081 0.8

11 yk−26 ∗ yk−28 1.65 1.4

12 yk−1 ∗ yk−28 -2.26 1.15

• • • •

27 yk−2 ∗ yk−26 -0.95 0.11

Table D.4: Results of the FROLS algorithm applied to the 2nd Order NAR Model

Following the selection of the 27 most significant terms, the model was used to generate

one step ahead predicted values for the model data. The modeling statistics for the 27 term

model are:

1. F Statistic with 178 data values = 0.28

2. Q Statistic = 24.28 with 25 degrees of freedom (df) (52-27) which shows an adequate

model (25 df χ2 value is 37.65 at 5% level)

The ACF of the residuals, again, showed no values above/below the threshold, which

indicates the error part of the model is white noise. The model validity tests again, cannot
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be run for 2nd Order model with no input, but will be seen in later Chapters.

Finally, predictions for the year 72/73 are performed using all 27 terms and are shown

in Figure D.4.

Figure D.4: Predicted Values for the Winter of 72/73 (2nd Order NAR Model)

The forecast statistics are shown in Table D.5. The NARMA methodology, produced a

NAR model with improved results over the ARMA model for this data, producing a MAPE

of 3.26%.

A second run was performed including the residuals into the modeling process, to

evaluate if any MA terms would improve both the modeling statistics and the forecasts.

The residual terms initially chosen were ek−1 to ek−30 inclusive. Also no interaction was set

up between the residual terms and the input and delayed output variables. The results are

now described in Section 5.2.3.3.
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Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

NAR -0.99 3.47 16.90 3.26% 8.52/4/10.08% -5.72/19/-4.10%

Table D.5: 26 week - Statistics for One-Step Ahead Weekly Demand Forecast

D.5 Forecasting Future Multi-Step ahead Demand

As in the ARMA modeling section of this chapter, the 2nd order NAR model was evaluated

for the ability to forecast multiple steps ahead using the calculated forecast values for future

values.

Figure D.5 shows the result of the 26 week Multi-Step ahead forecast for the 2nd order

NAR model. Again (as with the ARMA model) the values start to drift from the actuals as

the forecast horizon advances in time. The statistics for the model are shown in Table D.6.

Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

NAR 9.73 8.51 114.51 8.51% 19.90/25/18.93% -0.60/2/-0.80%

Table D.6: 26 week - Statistics for Multi-Step Ahead Weekly Demand Forecast

The ACF of the residuals from the MPO first cycle, showed significant lags at 1, 2 and

26, indicating that there was information in the residuals to be modeled. The process was

rerun including the residual values in the calculations. The model, thus becomes a NARMA

model.

Again the results are now described in Section 5.2.3.
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Figure D.5: 26 week - Multi-Step Ahead Forecast for 2nd Order NAR Model



Appendix E

ARMAX WINTER WEEKLY MODELING AND

FORECASTING WITH TEMPERATURE

(1963-1973)

E.1 Introduction

This appendix provides the details which culminated in the results described in Section 5.3.

The starting point is the Winter Weekly Demand time series, which is described in

Chapter 4. This data is shown in Figures 5.13 and 5.14. The transformation of the data

was described in Section 5.3.1.2.

E.2 Parameter Identification

Several potential models were initially considered (based on their AIC and BIC values),

and these are shown in List E.2. The constant is zero in all cases. Table E.1 contains

the modeling statistics for each of these models. Model AR(1,2)/MA(1:3,26:29) and

AR(1)/MA(26,27) appear to produce the best results from a modeling perspective. Note

that none of the models analyzed have any lags from the analysis of the residuals outside

the 95% confidence limits.
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AR(1,2)/MA(1:3,26:29) - (1 + 0.40B + 0.42B2)wt = −0.04xt + (1 − 0.97B − 0.31B2 +

0.28B3)(1− 0.44B26)at

AR(1)/MA(26,27) - (1 + 0.27B)wt = −0.04xt + (1− 0.77B)(1− 0.43B26)at

AR(0)/MA(26,27) - wt = −0.04xt + (1− 0.56B)(1− 0.43B26)at

AR(1:3)/MA(26) - (1− 0.48B − 0.26B2 − 0.08B3)wt = −0.04xt + (1− 0.42B26)at

AR(1,2)/MA(26) - (1− 0.46B − 0.22B2)wt = −0.04xt + (1− 0.43B26)at

E.2: List of Models

Model AIC F Significant Q Degrees of

ARMAX Values Lags Value Freedom

AR(1,2)/MA(1:3,26:29) -711 0.35 29.19 43

AR(1)/MA(26,27) -708 0.38 29.35 48

AR(0)/MA(26,27) -706 0.38 33.79 49

AR(1:3)/MA(26) -699 0.39 34.46 48

AR(1,2)/MA(26) -699 0.39 35.62 49

Table E.1: Model Fit Comparisons for Weekly Demand
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E.3 Forecasting Future One-Step Ahead Demand

One step ahead forecasts were again calculated for each of the models in Table E.1 for the

winter of 1972. Table E.2 shows the balanced set of metrics for each of the models.

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

AR(1,2)/MA(1:3,26:29) 0.03 4.42 28.71 4.16% 9.97/21/8.38% -11.88/7/-10.24%

AR(1)/MA(26,27) 0.07 4.10 24.82 3.86% 7.87/21/6.13% -13.13/7/-10.12%

AR(0)/MA(26,27) -0.01 4.18 25.95 3.96% 8.69/21/7.30% -12.09/7/-10.42%

AR(1:3)/MA(26) 0.03 4.11 25.79 3.85% 8.61/21/7.24% -12.21/7/-10.52%

AR(1,2)/MA(26) 0.02 4.20 26.45 3.97% 8.65/21/7.27% -12.28/7/-10.59%

Table E.2: Model Statistics Comparisons for Weekly Demand Forecasts

The models AR(1,2)/MA(1:3,26:29) and AR(1)/MA(26,27) appeared to produce the

best modeling results in Table E.1. The models AR(1:3)/MA(26) and AR(1)/MA(26,27)

produce the best results in Table E.2 from a prediction standpoint with similar MAPE

values of 3.85% and 3.86% respectively. Model AR(1)/MA(26,27) was finally chosen due

to the smaller Overestimate and Underestimate predicted demand values. The One-Step

Ahead results for this model is described in detail in Section 5.3.1.4.

E.4 Forecasting Future Multi-Step ahead Demand

This is described in detail in Section 5.3.1.5 and not duplicated here.
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NARMAX WINTER WEEKLY MODELING

AND FORECASTING WITH TEMPERATURE

(1963-1973)

F.1 Introduction

This appendix provides the details which culminated in the results described in Section 5.3.3.

The starting point is the Winter Weekly Demand time series, which is described in

Chapter 4. This data is shown in Figures 5.13 and 5.14. The transformation of the data

was described in Section 5.3.1.2.

F.2 Model Analysis - ARX

As in Section 5.2.3, a first step analyzed a Linear model (ARX), followed by inclusion

of residuals, thus creating an ARMAX model. Following the linear model analysis,

2nd and 3rd order terms will be introduced (both without and with residuals NARX

and NARMAX), to find the most appropriate model from a modeling and especially a

forecasting perspective. The best results will then we explained (as well as the results from

the other models).

Using the cross correlation, variables 1 to 30 for both Demand and Temperature were

initially included in the NARMAX model (no residuals in this first run, hence representing

a ARX model). The terms 1,2 and 26 were selected for both demand and temperature, and
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the ERR profile is shown in Figure F.1 and the terms selected generate nearly 92% of the

total (Table F.1). The profile shows again the significance of the temperature at time t on

the demand at time t, generating 87% of the ERR value.

Figure F.1: ERR Profile

The modeling statistics for the 7 term model are:

1. F Statistic with 178 data values = 0.31

2. Q Statistic = 33.48 with 45 degrees of freedom (df) (52-7) which shows an adequate

model (45 df χ2 value is 61.67 at 5% level)

Although the ACF of the residuals , shows no major significant lags, there seems to be

some value still in the residuals around the 26th lag. The four Nonlinear Validity Tests for
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Index Model Parameter ERR(%)

term

1 xk -0.042 87.09

2 xk−2 -0.011 0.84

3 yk−1 -0.424 0.41

4 xk−1 -0.017 1.54

5 yk−2 -0.188 0.69

6 yk−26 -0.327 0.23

7 xk−26 -0.012 0.79

Table F.1: Results of the FROLS algorithm applied to Linear ARX Model

this linear ARX model shows a few significant missing terms/variables (Figure F.2), hence,

there does appear to be value in the residuals, which will be checked in the next section.
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Figure F.2: Linear ARX Model Validity Tests
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One-Step Ahead Predicted Output for this linear ARX model are shown in Figure F.3.

The corresponding forecast statistics are shown in Table F.2. .

Figure F.3: Predicted vs Actual Demand for the Winter of 72/73 (ARX model)
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Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

Linear ARX Model 0.05 4.18 25.96 3.98% 8.93/13/8.12% -9.03/7/-7.79%

Table F.2: Model Statistics Comparisons for Weekly Demand Forecast (ARX Model)
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F.3 Model Analysis - ARMAX

As described above, following the results of the Linear ARX model, residual terms were

incorporated into the data, thus generating an ARMAX model and the process repeated.

The ACF of the residuals indicated some value around the 26th lag, and the Non-Linear

validity tests also showed some significant lags, although not apparently relevant to the

periodicity of the data, several combinations of ek−1 to ek−26 were analyzed. The term

ek−26 was found to add the most value, and two runs with this residual were necessary to

stabilize the terms’ parameter values. The ERR total was 91.49% and the terms in the

model are shown in Table F.3 :

Index Model Parameter ERR(%)

term

1 xk -0.045 87.14

2 ek−26 -0.168 0.74

3 yk−1 -0.447 0.90

4 xk−1 -0.019 1.32

5 xk−2 -0.013 0.53

6 yk−2 -0.226 0.62

7 yk−26 -0.182 0.18

8 xk−26 -0.006 0.08

Table F.3: Results of the FROLS algorithm applied to Linear ARMAX Model

The modeling statistics are :

1. F Statistic with 178 data values = 0.34

2. Q Statistic = 36.57 with 44 degrees of freedom (df) (52-8) which shows an adequate

model (44 df χ2 value is 60.48 at 5% level)
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One Step Ahead Predicted Output for the linear ARMAX model is shown in Figures

F.4. The corresponding forecast statistics for this model are shown in Table F.4.

Figure F.4: Predicted vs Actual Demand for the Winter of 72/73 (ARMAX model)
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Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

ARMAX Model 0.14 3.84 21.72 3.66% 8.54/13/7.77% -8.60/7/-7.41%

Table F.4: Model Statistics Comparisons for Weekly Demand Forecast (ARMAX Model)
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F.4 Model Analysis - NARX

The next step was to test different model orders, thus generating a possible NARX or

NARMAX model. A 2nd Order NARX model was tested, initially, using the same variables

as the linear ARX model (i.e. yk−1, yk−2, yk−26 and xk, xk−1, xk−2, xk−26). This generated

35 terms. Nine terms were selected on reaching the thresholds, with an ERR total of 91.78%.

The selected terms are shown in Table F.5. The second order terms, however, appear to

add little value to the ERR total.

Index Model Parameter ERR(%)

term

1 xk -0.042 87.09

2 xk−2 -0.010 0.84

3 yk−1 -0.426 0.41

4 xk−1 -0.017 1.54

5 yk−2 -0.168 0.69

6 yk−26 -0.356 0.23

7 xk−26 -0.014 0.79

8 xk−1 ∗ xk 0.001 0.15

9 yk−2 ∗ xk -0.007 0.05

Table F.5: Results of the FROLS algorithm applied to 2nd Order NARX Model

The modeling statistics are :

1. F Statistic with 178 data values = 0.31

2. Q Statistic = 33.76 with 43 degrees of freedom (df) (52-9) which shows an adequate

model (45 df χ2 value is 59.30 at 5% level)
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The ACF and the PACF of the residuals showed no significant lags, but the four

Nonlinear Validity tests showed a few lags slightly over the 95% significance levels. One-

Step Ahead Predicted Output for the 2nd Order NARX model are shown in Figures F.5;

and the corresponding forecast statistics for this model are in Table F.6.

Figure F.5: Predicted vs Actual Demand for the Winter of 72/73 (NARX model)

Incorporating residuals into the model generating a full NARMAX model are described

in Section 5.3.3.3.
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Model Over Prediction Under Prediction

MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

NARX Model 0.21 4.29 27.28 4.11% 8.52/13/7.74% -9.52/7/-8.21%

Table F.6: Model Statistics Comparisons for Weekly Demand Forecast (NARX Model)

F.5 Forecasting Future Multi-Step ahead Demand

This is described in detail in Section 5.3.3.4 and not duplicated here.



Appendix G

ARMAX YEARLY WEEKLY MODELING AND

FORECASTING WITH TEMPERATURE

(1963-1973)

G.1 Introduction

This appendix provides the details which culminated in the results described in Section 5.4.

The starting point is the Yearly Weekly Demand time series, which is described in

Chapter 4. This data is shown in Figures 4.1 and 4.2. The transformation of the data was

described in Section 5.4.1.2.

G.2 Parameter Identification

Using the results of the autocorrelation of both the Transformed Winter Demand and

Temperature, several models were tested for their AIC and BIC values. The lowest values

were produced with AR and MA variables with delays of 1, 2, 3, 51, 52, 53, 54 and 55. The

various combinations of these variable lags were then tested to find a balance between the

modeling and forecast statistics. Additionally, several delays were applied to temperature

series, but a delay of zero always produced the best results. This implies again that future

demand at time t is dependent on the corresponding temperature at t, and past weeks

demand values.

The list of models which generated the best balance of statistics are shown below in

280
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List G.2 and Table G.1. Model AR(1,2,51,52,53,54)/MA(52), produces the best results

from a modeling perspective. Note that each of the models have a few lags outside the 95%

confidence limits when analyzing the ACF of the residuals. However, the value of these

lags is only just above or below the + or - 95% limits and do not indicate the models are

inadequate in anyway.

� AR(1,2,51,52,53,54)/MA(52) - (1− 0.43B − 0.20B2 + 0.19B51 + 0.37B52 + 0.34B53 +

0.26B54)wt = −0.04xt + (1− 0.84B52)at

� AR(1,2,52,53,54)/MA(52) - (1− 0.40B− 0.18B2 + 0.35B52 + 0.34B53 + 0.26B54)wt =

−0.04xt + (1− 0.85B52)at

� AR(1,2)/MA(52) - (1− 0.40B − 0.18B2)wt = −0.04xt + (1− 0.56B52)at

� AR(1,2,3)/MA(52) - (1− 0.40B − 0.19B2 − 0.01B3)wt = −0.04xt + (1− 0.56B52)at

List G.2: List of Possible ARMAX Models

Model AIC F Significant Q Degrees of

AR/MA Values Lags Value Freedom

1,2,51,52,53,54/52 -1435 0.73 4,22,185 41 45

1,2,52,53,54/52 -1425 0.75 22,25,51, ... 48 46

1,2/52 -1406 0.80 22,25,51,53, ... 65 49

1,2,3/52 -1404 0.80 22,25,51,53, ... 66 48

Table G.1: Model Fit Comparisons for Weekly Demand

G.3 Forecasting Future One-Step ahead Demand

One step ahead forecasts were again calculated for each of the models in Table G.1 for the

period April 1972 though to March 1973. Table G.2 shows the balanced set of metrics for

the models in List G.2 for all of the 52 weeks.



282 ARMAX Yearly Weekly Modeling and Forecasting with Temperature (1963-1973)

Model Over Prediction Under Prediction

AR/MA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

1,2,51,52,53,54/52 -0.09 3.02 15.05 4.06% 6.95/11/14.40% -9.96/52/-9.45%

1,2,52,53,54/52 -0.06 3.13 16.16 4.15% 8.24/47/6.93% -9.91/33/-8.55%

1,2/52 -0.01 3.19 16.54 4.20% 8.83/47/7.42% -11.53/33/-9.94%

1,2,3/52 -0.01 3.20 16.58 4.21% 8.83/47/7.42% -11.54/33/-9.95%

Table G.2: 52 Week - One-Step Ahead Model Forecast Comparisons for Weekly Demand

The model AR(1,2,51,52,53,54)/MA(52) produced the best 52 week One-Step Ahead

forecast statistics. The One-Step Ahead results for this model is described in detail in

Section 5.4.1.4.

G.4 Forecasting Future Multi-Step ahead Demand

Multi step ahead forecasts were again calculated for each of the models in Table G.1 for the

period April 1972 to March 1973 (i.e. 52 weeks). In this case the last actual demand used

in the last week of March 1972. Table G.3 shows the balanced set of metrics for each of the

models in List G.2 for all of the 52 weeks.

Model Over Prediction Under Prediction

AR/MA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

1,2,51,52,53,54/52 -1.16 3.88 21.03 6.04% 6.74/11/13.97% -12.12/7/-16.82%

1,2,52,53,54/52 -0.87 4.24 23.53 6.77% 8.07/11/16.71% -10.79/7/-14.97%

1,2/52 -1.89 4.51 27.44 6.78% 8.69/21/7.30% -12.09/7/-10.42%

1,2,3/52 -1.84 4.49 27.15 6.77% 8.61/21/7.24% -12.21/7/-10.52%

Table G.3: 52 Week - Multi-Step Ahead Model Forecast Comparisons for Weekly Demand

Additionally, starting from the actual demand of the last week of September 1972,

the 26 Winter Weeks statistics (October 1972 to March 1973) for the models, are shown in

Table G.4.
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Model Over Prediction Under Prediction

AR/MA MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

1,2,51,52,53,54/52 -1.90 3.06 13.52 2.98% 5.39/25/5.65% -7.09/1/-10.68%

1,2,52,53,54/52 -2.57 3.63 18.06 3.46% 3.93/25/4.12% -8.01/20/-5.96%

1,2/52 -3.89 4.42 28.40 4.23% 3.18/25/3.33% -9.54/7/-8.23%

1,2,3/52 -3.82 4.39 27.82 4.19% 3.22/25/3.37% -9.47/7/-8.17%

Table G.4: 26 Week - Multi-Step Ahead Model Forecast for the Winter Weekly Demand

The model statistics for AR(1,2,51,52,53,54)/MA(52) produced the best 52 and 26

week Multi-Step MAPE and are described in Section 5.4.1.5 and 5.5.1.6.



Appendix H

NARMAX YEARLY WEEKLY MODELING

AND FORECASTING WITH TEMPERATURE

(1963-1973)

H.1 Introduction

This appendix provides the details which culminated in the results described in Section 5.4.3.

The starting point is the Yearly Weekly Demand time series, which is described in

Chapter 4. This data is shown in Figures 4.1 and 4.2. The transformation of the data was

described in Section 5.4.1.2.

A first step analyzed a Linear model (ARX), followed by inclusion of residuals, thus

creating an ARMAX model. Following the linear model analysis, 2nd and 3rd order terms

were introduced (both without and with residuals NARX and NARMAX), to find the most

appropriate model from a modeling and especially a forecasting perspective. The results

are explained below.

H.2 Model Analysis - ARX/ARMAX

Using the cross correlation, variables 1 to 52 for both Demand and Temperature were

initially included in the NARMAX model (no residuals in this first run, hence representing

an ARX model). The terms 1, 2 and 52 were selected for both demand and temperature,

and the ERR profile is shown in Figure H.1 and the terms selected generate nearly 89% of

284



H.2 Model Analysis - ARX/ARMAX 285

the total (Table H.1). The profile shows again the significance of the temperature at time

t on the demand at time t, generating 83% of the ERR value.

Figure H.1: ERR Profile

The ACF of the residuals of the above ARX model, shows significant lags at 104 and

22, as well as values close to significant around lag 52. Hence Moving Average components

will be included, generating an ARMAX model.

Several combinations of ek−1 to ek−104 were analyzed. The terms ek−52 and ek−104

were found to add the most value. However, the value added of the term xk−52 was so small

it was dropped from the input terms. The effect on the ERR total increased slightly to

90.56%. Two runs with the error terms e included were required to stabilize the ACF of the

generated residuals. The resulting terms and values in the model are shown in Table H.2.

The modeling statistics are :
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Index Model Parameter ERR(%)

term

1 xk -0.041 82.77

2 yk−52 -0.38 0.94

3 xk−52 -0.014 2.38

4 yk−1 -0.40 0.59

5 xk−1 -0.016 1.11

6 xk−2 -0.011 0.19

7 yk−2 -0.21 0.59

Table H.1: Results of the FROLS algorithm applied to Linear ARX Model

1. F Statistic with 311 data values = 0.76

2. Q Statistic = 47.02 with 44 degrees of freedom (df) (52-8) which shows an adequate

model (44 df χ2 value is 60.48 at 5% level)

The ACF and the four Nonlinear Validity Tests for this linear ARMAX model (shown

in Figure H.2) shows few significant values.

The 52 week and 26 Winter weeks One Step Ahead forecast for this ARMAX model

is shown, in Figure H.3. The corresponding forecast statistics for this model are shown in

Table H.3.
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Index Model Parameter ERR(%)

term

1 xk -0.045 85.08

2 ek−52 0.41 1.32

3 ek−104 0.29 0.68

4 yk−1 -0.48 0.68

5 xk−1 0.21 1.59

6 xk−2 -0.013 0.27

7 yk−2 -0.23 0.64

8 yk−52 -0.01 0.01

Table H.2: Results of the FROLS algorithm applied to Linear ARMAX Model

Model Over Prediction Under Prediction

ARMAX MPE MAE MSE MAPE Value/Loc/% Value/Loc/%

52 week 0.08 2.74 12.29 3.82% 9.78/11/20.27% -7.75/24/-13.82%

26 Winter weeks 0.47 2.80 12.15 2.60% 6.42/13/5.84% -7.59/7/-6.54%

Table H.3: Model Forecast Comparisons for 52 weeks and 26 Winter Weeks Demand (AR-
MAX Model)
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Figure H.2: Linear ARMAX Model Validity Tests
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Figure H.3: Predicted vs Actual Demand for 1972/73 (ARMAX model)
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H.3 Model Analysis- NARX/NARMAX

The next step was to test different model orders, thus generating a possible NARX or

NARMAX model. A 2nd Order NARX model was tested, initially, using the same variables

as the linear ARX model (i.e. yk−1, yk−2, yk−52 and xk, xk−1, xk−2). This generated 27

terms. Eight terms were selected on reaching the thresholds, with an ERR total of 87.48%.

However, the ACF of the residuals showed that there was additional information especially

around lags 52 and 104. Hence Moving Average terms (linear) were added e(k − 52), and

e(k − 104). The details are described in Section 5.4.3.2

H.4 Forecasting Future Multi-Step ahead Demand

This is described in detail in Section 5.4.3.4 and not duplicated here.


