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Abstract 
 
Currently the electronic industry has a market demand for over a billion multi 
layer ceramic capacitors per annum. Electrical characterisation of the 
electroceramic component of these devices is required for optimisation of existing 
materials and to aid material discovery. Impedance spectroscopy is a technique 
that is commonly used to characterise the electrical properties of electroceramics. 
Experimental data is analysed using an equivalent circuit (usually some 
combination of resistors and capacitors connected in series and/or in parallel) to 
extract resistances and capacitances for specific components of a microstructure, 
e.g. bulk (grains), core-shell grains and grain boundaries. The ability to extract this 
information depends on the use of an appropriate equivalent circuit and on how to 
analyse the impedance data. Here an investigation of how the physical 
microstructure of an electroceramic can affect its impedance response using finite 
element modelling (FEM) is presented. By using a simulation-based approach the 
simulator can use the same methodology that would be used experimentally to 
obtain information on different microstructural components with prior knowledge 
of what the values should be, since the simulator has defined them. By comparing 
the values extracted to those originally inputted into the simulation allows the 
accuracy of the data analysis methods used to extract information to be evaluated 
and under what conditions these methods can be applied. The results presented in 
this thesis (chapters four to six) are divided into three studies. 
 Chapter four considers the characterisation of core-shell grain 
microstructures by estimating core and shell volume fractions from the core to 
shell capacitance ratio. FEM simulation of the impedance response of a core-shell 
microstructure allows the capacitance ratio of the core and shell to be obtained 
from the electric modulus formalism. Several microstructures were considered: a 
nested cube; nested truncated octahedra; and a series layer model (SLM). The first 
two microstructures are approximations for a core-shell grain and were simulated 
using FEM. The layer model is an idealised case that can be solved analytically and 
with FEM for validation purposes. Here the relative permittivity of the core and 
shell regions is fixed at a value of 100 and the core has a conductivity three orders 
of magnitude greater than the shell. As the core volume fraction decreases, the 
core volume fraction extracted from the SLM is always accurate but becomes 
increasing inaccurate for the other models. This discrepancy agrees with the 
results of effective medium theory proving that our conclusions are physically 
reasonable. Plots of the electrical microstructure using a stream tracer method to 
view current flow showed increased heterogeneity in the current density in the 
core and shell. A quantitative study of the electrical microstructure showed the 
formation of conduction pathways through the parallel shell and increased 
curvature of the pathways through the core as the core volume fraction decreased. 
The electrical microstructure no longer resembled the physical microstructure, 
making extraction of volume ratios increasingly unreliable. Only for core volume 
fractions of 0.7 or greater could the core volume fraction be extracted from 
capacitance ratios with errors of less than 25%. 
 Chapter five also considers the extraction of volume fractions from core-
shell grains and other idealised microstructures. Here the conductivity of the core 
and shell regions is fixed and the permittivity of the core is greater than the shell. 
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The impedance responses of an encased model, SLM and a parallel layer model 
(PLM) are simulated. The response of the encased model is shown to be more 
similar to the SLM than the PLM, implying serial connectivity in the encased model. 
Due to the difference in permittivity in the core and shell regions, the core volume 
fraction could not be obtained from capacitance ratios but only from resistance 
ratios obtained from the impedance formalism. The core-shell volume fractions of 
the encased model and SLM were varied and then extracted using resistance ratios. 
Similar trends to chapter four were observed, in chapter five, where the volume 
fraction could be accurately obtained for the SLM from resistance ratios for all 
input volume fractions. For the encased model, the error when extracting the core 
volume from resistance ratios increased as the core volume fraction decreased. 
Again, this error was in excess of 25% when the core volume fraction was less than 
0.7. Finally, a stream tracer investigation of electrical microstructure revealed 
heterogeneous current density in the encased model caused by the formation of 
capacitive pathways through the microstructure. 
 Chapter six examines the case where the microstructure is fixed and the 
material properties are varied. An encased model with a core volume fraction of 
0.8 was chosen as it had been shown in the previous chapters that larger core 
volume fractions minimised the effects of conduction and capacitive pathways 
through the parallel shell but was still comparable to the volume fractions of core-
shell microstructures in the literature. The core conductivity and relative 
permittivity was fixed at 0.1 mSm-1 and 2000, respectively. The shell conductivity 
was varied from 0.1 mSm-1 to 0.1 μSm-1 and the relative permittivity from 2000 to 
10. One hundred combinations over a range of shell properties was simulated. The 
resultant spectra were then fitted with three equivalent circuits where the fits 
were compared to find the best equivalent circuit using all four impedance 
formalisms. The first circuit was based upon a SLM with the same material 
properties and volume fractions inputted into the encased model. The second was 
called the series brick layer model (SBLM) and based on the encased model but 
neglecting the contribution of the parallel shell region. The third circuit was called 
the parallel brick layer model (PBLM) which included a separate resistor capacitor 
branch for the parallel shell region. The SLM provided a poor fit for all encased 
simulations with errors between ±34 to ±163%. The SBLM and PBLM provided 
better fits to the encased simualtions with errors from ±0.7 to ±20% and from 
±0.55 to ±20%, respectively. Analysis showed that the SBLM provided the best fit 
when both the conductivty and the permittivity values of the core and shell were 
more than an order of magnitude different. The PBLM was best when either the 
shell conductivty or permititvty was within an order of magnitude of the core 
values. Finally, the best equivalent circuit for a given set of shell material 
properties was used to extract values of conductivity and permittivity (for both the 
core and shell) in all four impedance formalisms. The accuracy of the extracted 
values was calculated with respect to the input values for the simulation. This 
allowed the most reliable form of data analysis (i.e. formalism) for extracting 
conductivity and permittivity values for a given combination of material properties 
to be established. The accuracy of  the most reliable formalism was mapped out for 
every material property combination. This optimal methodology was used to show 
the best case accuracy that could be achieved for extracting intrisic material 
properties from a core shell microstructure as the shell properties were 
systematically varied.   
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Chapter 1: Introduction and Theory 
 
In this chapter the motivation for the study of electroceramics will be discussed in 
the context of the dielectric ceramics considered in this project. Firstly the 
applications, industrial requirements and environmental challenges facing these 
materials will be reviewed. Then the mathematics needed to describe impedance 
will be derived and converted into the four impedance formalisms (impedance, 
electric modulus, admittance and complex capacitance). Comparison of the 
formalisms will give an overview of under what circumstances each formalism 
should be used. Finally the strengths and limitations of impedance spectroscopy 
will be discussed. 
 

1.1. Motivation 
 
1.1.1. Ceramics for Dielectric Applications 
 
Within this study, the primary concern is impedance spectroscopy of dielectric 
ceramics. There is a large group of ceramic materials called electroceramics 
(sometimes functional oxides) that dielectric ceramics belong to. Broadly speaking 
electroceramics do something useful when we allow an electric current to flow 
through them: a piezoelectric will actuate; and a ferroelectric will become 
polarised1.  
 The results in this work can be applied to a variety of electrical composite 
materials. However, due to our emphasis on dielectric ceramics and impedance 
spectroscopy, the assumptions behind the simulations discussed in this thesis are 
more specific: 
 

• The frequency range considered is from mHz to MHz. Therefore induction 
effects can be neglected. 

• Ferroelectric domains are not included explicitly in calculations as 
simulation methods that include these are computationally demanding2. 

• Materials that have a high permittivity due to ferroelectric domains are 
simply assigned a higher value of permittivity (εr) 

• The permittivity is assumed to be isotropic. 
 
 Dielectric materials inhibit the flow of electric current. This makes them 
useful for electrical insulation but if the dielectric material is used to block current 
so that charge builds up at a conductor-dielectric interface, we have a capacitor or 
a device that can store charge. A simple implementation of this is the parallel plate 
capacitor (see fig. 1). 
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Fig. 1. Schematic of a parallel plate capacitor where d is the plate separation in m, A 
is the area of the plates in m2 and εr is the relative permittivity of the dielectric 
medium (dimensionless). 
 
 The capacitance (C) of a parallel plate capacitor can be calculated as: 
 
 

𝐶 = 
𝜀𝑟𝜀0𝐴

𝑑
 

(1.1) 

 
where 0 is the permittivity of free space in Fm-1. If the classic parallel plate 
capacitor is used, the value of εr will be roughly one, as only air will be present 
between the plates. If a higher capacitance is desired for given capacitor 
dimensions, a dielectric medium with a higher εr should be considered. 
Ferroelectric materials that exhibit domain structures can have very high values of 
the permittivity. Currently barium titanate (BT) is the material of choice for XR7-
type capacitors3 which will be discussed in more depth later in this chapter. 
Another approach would be to use a material that has a microstructure with the 
internal barrier layer capacitor (IBLC) effect. These materials allow space charge 
to migrate through conductive or semi-conductive regions and build up on more 
resistive ‘barrier’ components. Calcium copper titanate (CCTO) has an IBLC type 
microstructure, made up of semi conducting cores surrounded by resistive shells4. 
IBLC microstructures can give very large value of εr but this is offset by frequency 
dependent permittivity, high dielectric loss and low breakdown voltages. 
 To improve components such as capacitors it is vital to understand the 
dielectric properties of the material used for the dielectric medium. Impedance 
spectroscopy is a powerful tool for the electrical characterisation of materials and 
how it achieves this shall be detailed in the impedance section of this chapter. First 
we must consider the motivation for materials discovery and hence electrical 
characterisation required for dielectric materials. 
 
1.1.2. Demand of Electronics and the Environment 
 
In the modern world, we are surrounded by consumer electronics. A drive towards 
miniaturisation pushes the limits of what materials can achieve in terms of devices 
meeting their specifications.  Higher performance, energy efficiency and reliability 
whilst reducing weight are highly desirable. Materials chemists can attack this 
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problem by optimising the composition of materials for improved properties, 
whilst materials scientists and process engineers can optimise microstructure for 
the same purpose. Unfortunately, to get the best performance from materials often 
requires the use of highly toxic and/or expensive additives. Their use is thus 
inhibited by increased awareness of and legislation on their environmental effects.  
A good example of this is the piezoelectric material lead zirconate titanate (PZT). 
This material offers some of the best properties in its class but contains poisonous 
lead. Alternative materials are being developed but have not displaced PZT’s 
dominant position in the market5.  
 Many key materials used in the electronics industry have their properties 
enhanced by doping with small concentrations of rare earth elements (REE). 
Despite the name ‘rare earth’ these elements are fairly abundant in the Earth’s 
crust but rarely concentrated in economically extractable deposits. Geo-political 
issues plague the global supply of rare earth elements. The few deposits that are 
used commercially are mostly concentrated in China but due to export restrictions 
there are plans to open new mines in other parts of the world6. It would be 
desirable to reduce the dependence on REEs, to do so requires optimisation of 
device microstructure and hence the methods used to characterise them.  
 
1.1.3. Multi Layer Ceramic Capacitors 
 
The connection of REEs to this work is their use for creating core-shell 
microstructured barium titanate, which is used industrially as a dielectric in multi 
layer ceramic capacitors (MLCCs). These are lamellar devices, composed of 
alternating layers of ceramic dielectric and nickel electrode layers. This 
configuration (see fig. 2) gives a high surface area (of electrode) to volume (of the 
device) ratio and hence a high capacitance to volume ratio. This is required to 
allow for a large network of capacitors to be placed on printed circuit boards for 
current smoothing and decoupling alternating and direct current signals. A 
common application of this is to give a clean electric signal that microprocessors 
require to function (see fig. 2). Given that many millions of microprocessors are 
sold every year and that hundreds of capacitors are required for each of them to 
function, the global market for capacitors is of the order of billions of units sold per 
annum3.  

 
Fig. 2. Application of multi-layer ceramic capacitors on a printed circuit board with 
device schematic and microstructure. 
 
 Doping BT used for MLCCs with rare REE achieves two goals. Firstly it 
significantly improves the reliability of the device - the mechanism is not currently 
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understood but is the subject of much curiosity3. As previously mentioned, the 
second use of REE doping in BT is to form a core-shell microstructure7. As the 
ceramic is sintered segregation of the various dopants occurs, leading to a 
microstructure that can be roughly approximated as grains consisting of a core of 
pure (undoped) BT surrounded by a shell of dopant-rich BT8.  
 The core-shell microstructure is also useful as it extends the temperature 
range in which a capacitor can operate to specification. Pure BT has a sharp peak 
in permittivity at its Curie temperature at 120°C as it undergoes a transition from a 
tetragonal to a cubic crystal structure. The Curie temperature for the dopant-rich 
shell is at a lower temperature and has a smaller but broader peak. The 
combination of the sharp core-BT peak and broad shell peak gives BT a more 
temperature-stable capacitance (see fig. 3). This is important for meeting industry 
standards. REE doped BT is typically used for XR7 rated capacitors. Here the 
capacitance must be within 15% of the room temperature capacitance over a 
temperature range of -55 to 125 °C. 

 
Fig. 3. Schematic of a core-shell grain structure and the resulting 
capacitance/temperature profile produced. 
 
 

1.2. Theory of Impedance Spectroscopy 
 
1.2.1. Basic Theory 
 
Broadly speaking, impedance can be considered as the AC analogue to DC 
resistance. The key difference between the two is that impedance includes a phase 
difference between the current and voltage. When a sinusoidal voltage is applied, 
the induced current sinusoid may not take its maximum value at the same time. 
This phase difference is expressed as an angle in radians. The phase difference is 
defined here as θ instead of the usual because  is used later for the potential 
and the lower case ϕ for the volume fraction. The measurement of impedance 
requires the value of θ in addition to the maxima of the current and voltage 
sinusoids (Imax and Vmax respectively, see fig. 4).  
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Fig. 4. Relationship between the phase and magnitude of current/voltage sinusoids 
and impedance. 
 
 The value of θ varies depending on the properties of the medium that has 
an AC signal applied to it. The electrical properties of a material comprise (or are a 
combination of) transport, polarisation and magnetic processes. These can be 
considered as resistive, capacitive and inductive processes, respectively. Let us 
consider the ideal electrical response of a pure resistor, capacitor and inductor. 
When an AC voltage V(t) is applied to any component, it is defined as: 
 
 𝑉(𝑡) = 𝑉𝑚𝑎𝑥sin (𝜔𝑡) (1.2) 
 
where ω is the angular frequency in radians per second (ω=2πf), where f is the 
frequency in Hz) and t is time in seconds. For a pure resistor of resistance R, the 
time dependent current I(t) is always directly proportional to V(t) as it follows 
Ohm’s law: 
 
 

𝐼(𝑡) =
𝑉𝑚𝑎𝑥
𝑅
sin (𝜔𝑡) 

1

1
(1.3) 

 
As I(t) has the same proportionality to frequency and time as V(t) there can be no 
phase difference between I(t) and V(t). Hence at all frequencies the impedance of a 
resistor can be calculated by dividing equation (1.2) by (1.3): 
 
 

𝑍∗ =
𝑉(𝑡)

𝐼(𝑡)
= R 

1

1
(1.4) 
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Hence the impedance of a resistor is real and takes the value of the resistor’s 
resistance at all frequencies. 
 The AC current in a capacitor is proportional to the rate of change of V(t) 
and the capacitance of the capacitor. Differentiating equation (1.2) with respect to 
time and multiplication by the capacitance gives: 
 
 

𝐼(𝑡) = 𝐶 (
𝑑𝑉(𝑡)

𝑑𝑡
) = 𝜔𝐶𝑉𝑚𝑎𝑥cos (𝜔𝑡) 

1

1
(1.5) 

 
As sin(x) = cos(x-90), equation (1.5) can be re-written showing that I(t) is -90° out 
of phase with V(t). The phase difference is easier to handle by rewriting the 
sinusoidal function as a complex exponential using: 
 
 𝑉𝑚𝑎𝑥 sin(𝜔𝑡) =  𝑉𝑚𝑎𝑥𝐼𝑚(ℯ

𝑗𝜔𝑡) (1.6) 
 
where e is Euler’s number, using the relation: 
 
 ℯ𝑗𝑡 = cos(𝑡) + 𝑗. sin (𝑡)  
   
 ∴ Im(ℯ𝑗𝑡) = sin (𝑡) (1.7) 
 
Substitute equation (1.7) into (1.5): 
 
 

𝐼(𝑡) = 𝐶 (
𝑑(𝑉𝑚𝑎𝑥𝐼𝑚(ℯ

𝑗𝜔𝑡))

𝑑𝑡
) = 𝐶𝑉𝑚𝑎𝑥𝐼𝑚(𝑗𝜔ℯ

𝑗𝜔𝑡) 
1

1
(1.8) 

 
Using Ohm’s law divide equation (1.6) by (1.8): 
 
 𝑉(𝑡)

𝐼(𝑡)
=

𝑉𝑚𝑎𝑥𝐼𝑚(ℯ
𝑗𝜔𝑡)

𝐶𝑉𝑚𝑎𝑥𝐼𝑚(𝑗𝜔ℯ𝑗𝜔𝑡)
 

1

1
(1.9) 

 
Take a factor of Im(jω) from the denominator and cancel like terms: 
 
 𝑉(𝑡)

𝐼(𝑡)
=

1

𝐼𝑚(𝑗𝜔). 𝐶
 

1

1
(1.10) 

 
Im(jω) is simply jω, then multiply equation (1.10) by j over j: 
 
 𝑉(𝑡)

𝐼(𝑡)
=

1

𝑗𝜔𝐶
.
𝑗

𝑗
 

 

   
 

𝑍∗ =
𝑉(𝑡)

𝐼(𝑡)
= −

𝑗

𝜔𝐶
 

1

1
(1.11) 

 
Here the impedance of a pure capacitor has only an imaginary component that is 
inversely proportional to the product of ω and capacitance. 
 Finally, for completeness, an inductor induces a voltage V(t) when a 
sinusoidal current I(t) passes through it: 
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 𝐼(𝑡) = 𝐼𝑚𝑎𝑥sin (𝜔𝑡) (1.12) 
 
The voltage is proportional to the rate of change of current passing through the 
inductor of inductance L: 
 
 

𝑉(𝑡) = 𝐿 (
𝑑𝐼(𝑡)

𝑑𝑡
) = 𝐿 (

𝑑(𝐼𝑚𝑎𝑥sin (𝜔𝑡))

𝑑𝑡
) 

1

1
(1.13) 

   
 

𝑉(𝑡) = 𝐿 (
𝑑𝐼(𝑡)

𝑑𝑡
) = 𝜔𝐿𝐼𝑚𝑎𝑥cos (𝜔𝑡) 

1

1
(1.14) 

 
Similar to the capacitor, the cosine indicates the current and voltage are out of 
phase for an inductor. Here I(t) is +90° out of phase with V(t). Again we will 
rewrite equation (1.12) as a complex exponential and substitute it into equation 
(1.13): 
 
 

𝑉(𝑡) = 𝐿 (
𝑑𝐼(𝑡)

𝑑𝑡
) = 𝐿 (

𝑑(𝐼𝑚𝑎𝑥𝐼𝑚(ℯ
𝑗𝜔𝑡))

𝑑𝑡
) 

 

   
 𝑉(𝑡) = 𝐿𝐼𝑚𝑎𝑥𝐼𝑚(𝑗𝜔ℯ

𝑗𝜔𝑡) (1.15) 
 
Using Ohm’s law, divide equation (1.15) by (1.12) written as complex exponentials 
to give an expression for the impedance: 
 
 

𝑍∗ =
𝑉(𝑡)

𝐼(𝑡)
=
𝐿𝐼𝑚𝑎𝑥𝐼𝑚(𝑗𝜔ℯ

𝑗𝜔𝑡)

𝐼𝑚𝑎𝑥𝐼𝑚(ℯ𝑗𝜔𝑡)
 

1

1
(1.16) 

 
Take a factor of Im(jω) from the numerator and cancel like terms: 
 
 𝑍∗ = 𝐼𝑚(𝑗𝜔)𝐿  
 
As the imaginary component of Im(jω) is jω: 
 
 𝑍∗ = 𝑗𝜔𝐿 (1.16) 
 
 
 
Here the impedance of an inductor has only an imaginary component that is 
proportional to ωL. 
 Real materials are effectively a combination of resistive, capacitive and 
inductive processes. From equations (1.2) to (1.16) it is easy to see that the 
electrical response of a material can be highly frequency dependent. As stated 
previously, here we are concerned with dielectric ceramics, where inductance is 
negligible and resistance and capacitance are the main contributors to the 
ceramic’s electrical response over our considered frequency range. The interplay 
between capacitance and resistance has significance when interpreting impedance 
data. Within a microstructure different microstructural components (bulk, grain 
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boundaries, secondary phases etc.) all have resistances and capacitances 
associated with them. If we multiply the resistance and capacitance we have a time 
constant (τ) with units of seconds: 
 
 𝜏 = 𝑅𝐶 (1.17) 
 
Taking the inverse of equation (1.17) gives a quantity with units of inverse seconds 
(or Hz). This is frequency and is represented as an angular frequency, where ω has 
units of rads-1 and f is the frequency in Hz. Rearranging (1.17) gives: 
 
 

𝜔𝑚𝑎𝑥 =
1

𝜏
=
1

𝑅𝐶
 

 

   
 𝜔𝑚𝑎𝑥𝑅𝐶 = 1 (1.18) 
 
The angular frequency is denoted ωmax as it represents an angular frequency 
where the real and imaginary components of impedance have the same value. 
Removing the factor of 2π gives fmax, which is the characteristic relaxation 
frequency or Debye frequency of an RC circuit. This relationship is a useful result 
for understanding impedance spectroscopy. 
 The frequency dependent electrical behaviour of basic circuit elements not 
only illustrates where the electronic behaviour of materials comes from but also 
allows us to model it. Once a material’s impedance spectrum has been measured, 
the data must be related back to the physical process occurring within the 
material. Typically this is achieved by constructing an equivalent circuit. This 
circuit contains basic elements that represent different parts of the material.  
 Using the example of a polycrystalline ceramic with resistive grain 
boundaries, a feasible equivalent circuit may contain two resistors. One resistor 
with a higher resistance than the other could represent the grain boundary and the 
less resistive resistor could represent the bulk. From equation (1.4) the impedance 
of a resistor is frequency independent; hence we would not be able to distinguish 
between the two resistors as frequency varies. While our assignment of bulk and 
grain boundary resistances is correct we must not neglect the capacitances.  
 Assuming the relative permittivity of the grain boundary and bulk is the 
same and the ceramic has micron-sized grains, it would be expected from equation 
(1.1) that, as the grain boundary is much thinner than the bulk, the grain boundary 
would have a higher capacitance than the bulk. As the capacitance and resistance 
of the grain boundary is greater than the bulk, from equation (1.18) the relaxation 
frequency of the grain boundary should be lower than the bulk. If the relaxation 
frequencies have sufficient separation (time constants varying by greater than two 
orders of magnitude) then there will be a distinct response from the bulk and the 
grain boundary regions in the ceramic’s impedance spectra. Indeed a popular 
equivalent circuit for polycrystalline ceramics is two parallel capacitors and 
resistors connected in series9. The development of this equivalent circuit is 
detailed in the next chapter. 
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1.2.2. Derivation of Impedance Formalisms and Equivalent Circuits 
 
Here we will derive the impedance response of some common equivalent circuits 
demonstrating how we use the impedance of resistors and capacitors derived in 
equations (1.2) to (1.16) in combination. A summary of the impedance of a 
resistor, capacitor and inductor is given in equations (1.19) to (1.21): 
 
 𝑍∗ = 𝑅 1

1
(1.19) 

 
𝑍∗ = −

𝑗

𝜔𝐶
 

1

1
(1.20) 

 𝑍∗ = 𝜔𝐿 (1.21) 

Impedance data can be viewed in several formalisms (see table. 1). It will be 
shown how the transformations of impedance weight different connectivity 
(whether circuits are connected in series or parallel) and magnitudes of resistance 
or capacitance differently.  
 
Formalism Symbol Relation to Z* 
Impedance Z* Z* 
Admittance Y* (Z*)-1 

Electric modulus M* jωZ* 
Complex capacitance E* (jωZ*)-1 
 
Table. 1. List of complex formalisms where j is the square root of minus one and ω is 
the angular frequency (ω=2πf)10. E* and M* are absolute formalisms, multiplication 
of the Z* term by the cell capacitance (C0) will give relative values. 
 
First consider a resistor and capacitor connected in series (see fig 5); this will be 
referred to as circuit one: 
 

 
Fig. 5. Equivalent circuit consisting of a resistor and capacitor connected in series. 
 
First we will derive Z* for circuit one. As impedances add in series, add equations 
(1.19) and (1.20): 
 

𝑍∗ = 𝑅 −
𝑗

𝜔𝐶
 

1

1
(1.22) 

 
From (1.22) the real component of Z* (Z’) takes the values of R (see fig. 6A) and the 
imaginary component is inversely proportional to ωC (see fig 6B). Plotting Z* in 
the Nyquist format (real versus imaginary component) gives a straight line of Z’=R 
with frequency increasing towards the real axis (see fig. 6C). 
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Fig. 6. Schematics of (A) Z’ versus frequency, (B) Z’’ versus frequency and (C) Z’’ 
versus Z’ for a resistor and capacitor connected in series. 
 
Now transform Z* into M*. From table (1) multiply (1.22) by jω: 
 
 

𝑀∗ = 𝑗𝜔𝑅 −
𝜔𝑗2

𝜔𝐶
 

 

   
 𝑀∗ = 𝐶−1 + 𝑗𝜔𝑅 (1.23) 
 
From (1.23) the real component of M* (M’) takes the values of 1/C (see fig. 7A) and 
the imaginary component is proportional to ωR (see fig 7B). Plotting M* in the 
Nyquist format (M’’ versus M’) gives a straight line of Z’=1/C with frequency 
increasing away from the real axis (see fig. 7C). 
 

 
Fig. 7. Schematics of (A) M’ versus frequency, (B) M’’ versus frequency and (C) M’’ 
versus M’ for a resistor and capacitor connected in series. 
 
Transform Z* into Y*. From table one, take the inverse of equation (1.22): 
 
 

𝑌∗ =
1

𝑅 −
𝑗
𝜔𝐶

 
1

1
(1.24) 

 
Multiply top and bottom of equation (1.24) by ωC: 
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𝑌∗ =

𝜔𝐶

𝑅𝜔𝐶 − 𝑗
 

1

1
(1.25) 

 
Multiply top and bottom of equation (1.25) by its complex conjugate to remove j 
from the denominator: 
 
 

𝑌∗ =
𝜔𝐶

𝑅𝜔𝐶 − 𝑗
.
𝑅𝜔𝐶 + 𝑗

𝑅𝜔𝐶 + 𝑗
 

 

   
 

𝑌∗ =
𝑅(𝜔𝐶)2 + 𝑗𝜔𝐶

(𝑅𝜔𝐶)2 + 1
 

1

1
(1.26) 

 
Split into real and imaginary parts and multiply by R over R: 
 
 

𝑌∗ =
𝑅

𝑅
. (

𝑅(𝜔𝐶)2

(𝑅𝜔𝐶)2 + 1
+

𝑗𝜔𝐶

(𝑅𝜔𝐶)2 + 1
) 

 

   
 

𝑌∗ =
1

𝑅
.
(𝑅𝜔𝐶)2

(𝑅𝜔𝐶)2 + 1
+
1

𝑅
.

𝑗𝜔𝑅𝐶

(𝑅𝜔𝐶)2 + 1
 

1

1
(1.27) 

 
Consider the frequency limits of the real part (Y’) of equation (1.27): 
 
 

𝑌′ =
1

𝑅
.
(𝑅𝜔𝐶)2

(𝑅𝜔𝐶)2 + 1
 

1

1
(1.28) 

   
Low frequency: 

𝜔 → 0 𝑌′ →
1

𝑅
.
(0)2

(0)2 + 1
 

 

   
 𝑌′ → 0  
   

High frequency: 
𝜔 → ∞ 𝑌′ →

1

𝑅
.
(∞)2

(∞)2 + 1
 

 

   
 

𝑌′ →
1

𝑅
 

 

 
Plotting Y’ as a function of frequency (logarithmic scale), Y’ increases with 
frequency until it reaches ~1/R and then plateaus (see fig. 8). 
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Fig. 8. Schematic of the relation of Y’ versus frequency for a resistor and capacitor in 
series with intercepts. 
 
Consider the frequency limits of the imaginary part (Y’’) of equation (1.27): 
 
 

𝑌′′ =
1

𝑅
.

𝜔𝑅𝐶

(𝑅𝜔𝐶)2 + 1
 

1

1
(1.29) 

   
Low frequency: 

𝜔 → 0 
𝑌′′ →

1

𝑅
.
(0)

(0)2 + 1
 

 

   
 𝑌′′ → 0  
   

High frequency: 
𝜔 → ∞ 

𝑌′′ →
1

𝑅
.
(∞)

(∞)2 + 1
 

 

   
 𝑌′′ → 0  

 
Equation (1.29) contains a Debye function, at the Debye frequency when ωRC = 1: 
 

At Debye 
frequency: 
𝜔𝑅𝐶 = 1 

𝑌′′ =
1

𝑅
.
(1)

(1)2 + 1
 

 

   
 

𝑌′′ =
1

2𝑅
 

 

 
Considering the frequency limits and Debye function of (1.29) gives a single peak 
of height 1/2R at fmax when Y’’ is plotted as function of frequency (see fig. 9). 
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Fig. 9. Schematic of the relation for Y’’ versus frequency for a resistor and capacitor 
in series with intercepts. 
 
Plotting Y’’ versus Y’ (a Nyquist plot) gives a semicircle of height 1/2R and width 
1/R with frequency increasing away from the origin (see fig. 10). The top of the 
semicircle coincides with fmax where ωRC = 1. 

 
Fig. 10. Schematic of a Nyquist plot for Y* (Y’’ versus Y’) with intercepts for a resistor 
and capacitor in series. 
 
Finally transforming M* to E*. From table (1) and equation (1.23): 
 

𝐸∗ = (𝑀∗)−1 =
1

(𝐶−1 + 𝑗𝜔𝑅)
 

1

1
(1.30) 

 
Remove j from the denominator by taking the complex conjugate of the 
denominator and multiplying top and bottom by it: 
 
 

𝐸∗ =
1

(𝐶−1 + 𝑗𝜔𝑅)
.
(𝐶−1 − 𝑗𝜔𝑅)

(𝐶−1 − 𝑗𝜔𝑅)
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𝐸∗ =

𝐶−1 − 𝑗𝜔𝑅

𝐶−2 + (𝜔𝑅)2
 

1

1
(1.31) 

 
Split into real and imaginary component and multiply top and bottom by C2: 
 
 

𝐸∗ = (
𝐶−1

𝐶−2 + (𝜔𝑅)2
−

𝑗𝜔𝑅

𝐶−2 + (𝜔𝑅)2
) .
𝐶2

𝐶2
 

 

   
 

𝐸∗ =
𝐶

1 + (𝜔𝑅𝐶)2
−

𝑗𝜔𝑅𝐶2

1 + (𝜔𝑅𝐶)2
 

1

1
(1.32) 

 
Rewrite (1.32) in a more convenient form for spotting the Debye function:  
 
 

𝐸∗ = 𝐶.
1

1 + (𝜔𝑅𝐶)2
− 𝑗𝐶.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.33) 

 
First consider the frequency limits of the real component (E’) of (1.33): 
 
 

𝐸′ = 𝐶.
1

1 + (𝜔𝑅𝐶)2
 

1

1
(1.34) 

   
Low frequency: 

𝜔 → 0 
𝐸′ → 𝐶.

1

1 + (0)2
 

 

   
 𝐸′ → 𝐶  
   

High frequency: 
𝜔 → ∞ 

𝐸′ → 𝐶.
1

1 + (∞)2
 

 

   
 𝐸′ → 0  

 
We plot E’ as a function of frequency (logarithmic scale). Initially E’ has a plateau 
with a value of C, then decreases to zero as frequency increases (see fig. 11).  

 
Fig. 11. Schematic of the relation for E’ versus frequency for a resistor and capacitor 
in series with intercepts. 
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Consider the frequency limits of the imaginary part (E’’) of equation (1.33): 
 
 

𝐸′′ = 𝐶.
𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.35) 

   
Low frequency: 

𝜔 → 0 
𝐸′′ → 𝐶.

(0)

1 + (0)2
 

 

   
 𝐸′ → 0  
   

High frequency: 
𝜔 → ∞ 

𝐸′′ → 𝐶.
(∞)

1 + (∞)2
 

 

   
 𝐸′′ → 0  

 
Equation (1.35) contains a Debye function, at the Debye frequency when ωRC = 1: 
 

At Debye 
frequency: 
𝜔𝑅𝐶 = 1 

𝐸′′ = 𝐶.
(1)

1 + (1)2
 

 

   
 

𝐸′′ =
𝐶

2
 

 

 
Considering the frequency limits and Debye function of (1.35) gives a single peak 
of height C/2 at fmax when E’’ is plotted as function of frequency (see fig. 12). 

 
Fig. 12. Schematic of the relation for E’’ versus frequency for a resistor and capacitor 
in series with intercepts. 
 
Plotting E’ versus E’’ (a Nyquist plot) gives a semicircle of height C/2 and width C 
with frequency decreasing away from the origin (see fig. 13). The top of the 
semicircle coincides with fmax where ωRC = 1. 
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Fig. 13. Schematic of a Nyquist plot for E* (E’’ versus E’) with intercepts for a resistor 
and capacitor in series. 
 
Next we will consider a resistor and capacitor connected in parallel (see fig. 14). 
This configuration will be referred to as circuit two: 

 
Fig. 14. Equivalent circuit consisting of a resistor and a capacitor connected in 
parallel. 
 
As Y* and E* add in parallel we find these formalisms have simpler solutions for a 
resistor and a capacitor connected in parallel than for the serial case.  
 
Consider Y*: as admittance adds in parallel, take the inverse of equations (1.19) 
and (1.20) and add them. Then multiply the imaginary part by j over j to remove j 
from the denominator: 
 
 

𝑌∗ =
1

𝑅
−
𝜔𝐶

𝑗
.
𝑗

𝑗
 

 

   
 

𝑌∗ =
1

𝑅
+ 𝑗𝜔𝐶 

1

1
(1.36) 

 
From (1.36) the real component of Y* (Y’) takes the values of 1/R (see fig. 15A) and 
the imaginary component (Y’’) is proportional to ωC (see fig 15B). Plotting Z* in the 
Nyquist format (real versus imaginary component) gives a straight line of Y’=1/R 
with frequency increasing away from the real axis (see fig. 15C). 
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Fig. 15. Schematics of (A) Y’ versus frequency, (B) Y’’ versus frequency and (C) Y’’ 
versus Y’ for a resistor and capacitor connected in parallel. 
 
Consider E*: from table one, multiply equation (1.36) by 1/jω and multiply the 
imaginary part by j over j to remove j from the denominator: 
 
 

𝐸∗ =
𝑌∗

j𝜔
=
𝑗

𝑗
.
1

𝑅j𝜔
+
𝑗𝜔𝐶

j𝜔
 

 

   
 

𝐸∗ = 𝐶 −
𝑗

𝜔𝑅
 

1

1
(1.37) 

 
From (1.37) the real component of E* (E’) takes the values of C (see fig. 16A) and 
the imaginary component (E’’) is inversely proportional to ωR (see fig 16B). 
Plotting Z* in the Nyquist format (imaginary versus real component) gives a 
straight line of E’=C with frequency decreasing away from the real axis (see fig. 
16C). 

 
Fig. 16. Schematics of (A) E’ versus frequency, (B) E’’ versus frequency and (C) E’’ 
versus E’ for a resistor and capacitor connected in parallel. 
 
 
Conversely Z* and M* have more complicated solutions for the parallel case. 
 
Consider Z*: Take the inverse of equation (1.36) and multiply by R over R:  
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𝑍∗ = (𝑌∗)−1 =

𝑅

𝑅
.

1

1
𝑅 + 𝑗𝜔𝐶

 
 

   
 

𝑍∗ =
𝑅

1 + 𝑗𝜔𝑅𝐶
 

1

1
(1.38) 

 
Multiply top and bottom by the complex conjugate of the denominator to remove j 
from the denominator:  
 
 

𝑍∗ =
𝑅

1 + 𝑗𝜔𝑅𝐶
.
1 − 𝑗𝜔𝑅𝐶

1 − 𝑗𝜔𝑅𝐶
 

 

   
 

𝑍∗ =
𝑅 − 𝑗𝜔𝑅2𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.39) 

 
Rearrange to isolate the real and imaginary component and to reveal a Debye 
function in the latter: 
 
 

𝑍∗ = 𝑅.
1

1 + (𝜔𝑅𝐶)2
− 𝑗𝑅.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.40) 

 
Consider the frequency limits of the real part (Z’) of (1.40): 
 
 

𝑍′ = 𝑅.
1

1 + (𝜔𝑅𝐶)2
 

                                        
1

1
                             (1.41) 

   
Low frequency: 

𝜔 → 0 
𝑍′ → 𝑅.

1

1 + (0)2
 

 

   
 𝑍′ → 𝑅  
   

High frequency: 
𝜔 → ∞ 

𝑍′ → 𝑅.
1

1 + (∞)2
 

 

   
 𝑍′ → 0  

 
Plotting Z’ as a function of frequency (logarithmic scale), initially Z’ has a plateau 
with a value of R then decreases to zero as frequency increases (see fig. 17). 
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Fig. 17. Schematic of the relation for Z’ versus frequency for a resistor and capacitor 
in parallel with intercepts. 
 
Consider the frequency limits of the imaginary part (Z’’) of equation (1.40): 
 
 

𝑍′′ = 𝑅.
𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
                      

1
(1.42) 

   
Low frequency: 

𝜔 → 0 
𝑍′′ → 𝑅.

(0)

1 + (0)2
 

 

   
 𝑍′′ → 0  
   

High frequency: 
𝜔 → ∞ 

𝑍′′ → 𝑅.
(∞)

1 + (∞)2
 

 

   
 𝑍′′ → 0  

 
Equation (1.43) contains a Debye function, at the Debye frequency when ωRC = 1: 
 

At Debye 
frequency: 
𝜔𝑅𝐶 = 1 

𝑍′′ = 𝑅.
(1)

1 + (1)2
 

 

   
 

𝑍′′ =
𝑅

2
 

 

 
Considering the frequency limits and Debye function of (1.42) gives a single peak 
of height R/2 at fmax when Z’’ is plotted against frequency (see fig. 18). 
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Fig. 18. Schematic of the relation for Z’’ versus frequency for a resistor and capacitor 
in parallel with intercepts. 
 
Plotting Z’ versus Z’’ (a Nyquist plot) gives a semicircle of height R/2 and width R 
with frequency decreasing away from the origin (see fig. 19). The top of the 
semicircle coincides with fmax where ωRC = 1. 
 

 
Fig. 19. Schematic of a Nyquist plot of Z* (Z’’ versus Z’) with intercepts for a resistor 
and capacitor in series. 
 
Consider M*: from table (1) multiply equation (1.42) by jω: 
 
 

𝑀∗ = 𝑗𝜔𝑍∗ = 𝑗𝜔 (𝑅.
1

1 + (𝜔𝑅𝐶)2
− 𝑗𝑅.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
) 

 

   
 

𝑀∗ = 𝑗𝜔𝑅.
1

1 + (𝜔𝑅𝐶)2
− 𝑗2𝑅𝜔.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
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𝑀∗ =  𝑅𝜔.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
+  𝑗𝜔𝑅.

1

1 + (𝜔𝑅𝐶)2
 

 

   
 

𝑀∗ = 
𝜔2𝑅2𝐶

1 + (𝜔𝑅𝐶)2
+  𝑗.

𝜔𝑅

1 + (𝜔𝑅𝐶)2
 

1

1
(1.43) 

 
Multiply (1.43) by C over C then rearrange to reveal a Debye function in the 
imaginary component: 
 
 

𝑀∗ = 
𝐶

𝐶
.
𝜔2𝑅2𝐶

1 + (𝜔𝑅𝐶)2
+  𝑗

𝐶

𝐶
.

𝜔𝑅

1 + (𝜔𝑅𝐶)2
 

 

   
 

𝑀∗ = 
1

𝐶
.
𝜔2𝑅2𝐶2

1 + (𝜔𝑅𝐶)2
+  𝑗

1

𝐶
.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.44) 

 
Consider the frequency limits of the real component (M’) of equation (1.44): 
 
 

𝑀′ =
1

𝐶
.
𝜔2𝑅2𝐶2

1 + (𝜔𝑅𝐶)2
 

1

1
          (1.45) 

   
Low frequency: 

𝜔 → 0 
𝑀′ →

1

𝐶
.
(0)

1 + (0)2
 

 

   
 𝑀′ → 0  
   

High frequency: 
𝜔 → ∞ 𝑀′ →

1

𝐶
.
(∞)2

1 + (∞)2
 

 

   
 

𝑍′ →
1

𝐶
 

 

 
Plotting M’ as a function of frequency (logarithmic scale), M’ increases with 
frequency until it reaches ~1/C and then plateaus (see fig. 20). 
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Fig. 20. Schematic of the relation for M’ versus frequency for a resistor and capacitor 
in parallel with intercepts. 
 
Consider the frequency limits of the imaginary part (M’’) of equation (1.44): 
 
 

𝑀′′ =
1

𝐶
.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.46) 

   
Low frequency: 

𝜔 → 0 
𝑀′′ →

1

𝐶
.
(0)

1 + (0)2
 

 

   
 𝑀′′ → 0  
   

High frequency: 
𝜔 → ∞ 

𝑀′′ →
1

𝐶
.
(∞)

1 + (∞)2
 

 

   
 𝑀′′ → 0  

 
Equation (1.46) contains a Debye function, at the Debye frequency when ωRC = 1: 
 

At Debye 
frequency: 
𝜔𝑅𝐶 = 1 

𝑀′′ =
1

𝐶
.
(1)

1 + (1)2
 

 

   
 

𝑍′′ =
1

2𝐶
 

 

 
Considering the frequency limits and Debye function of (1.46) gives a single peak 
of height 1/2C at fmax when M’’ is plotted against frequency (see fig. 21). The full 
width half maximum of the peak is 1.14 decades of frequency. 
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Fig. 21. Schematic of the relation for M’’ versus frequency for a resistor and 
capacitor in parallel with intercepts. 
 
Plotting M’ versus M’’ (a Nyquist plot) gives a semicircle of height 1/2C and width 
1/C with frequency increasing away from the origin (see fig. 22). The top of the 
semicircle coincides with fmax where ωRC = 1. 
 

 
Fig. 22. Schematic of a Nyquist plot of M* (M’’ versus M’) with intercepts for a 
resistor and capacitor in series. 
 
Finally we will consider the impedance response of two parallel resistors and 
capacitors connected in series (see fig. 23). This circuit will be referred to as circuit 
three. 
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Fig. 23. Schematic of two parallel resistor capacitor elements connected in series. 
 
The impedance response of circuit three is derived in a similar manner to circuits 
one and two but the derivations are significantly longer. The reader is directed to 
appendix (A.1) for the full derivations. For the purpose of consistency when 
showing the relations between the real and imaginary components versus 
frequency it is assumed that R2 >> R1 and C2 >> C1. The final equations are given 
below: 
 
Consider Z*: 
 
 

𝑍∗ =
𝑅1 − 𝑗𝜔𝑅1

2𝐶1
1 + (𝜔𝑅1𝐶1)2

+
𝑅2 − 𝑗𝜔𝑅2

2𝐶2
1 + (𝜔𝑅2𝐶2)2

 
1

1
(1.47) 

 
Consider the frequency limits of the real part (Z’) of (1.29): 
 
 

𝑍′ =
𝑅1

1 + (𝜔𝑅1𝐶1)2
+

𝑅2
1 + (𝜔𝑅2𝐶2)2

 
 

   
Low frequency: 

𝜔 → 0 
𝑍′ =

𝑅1
1 + (0)2

+
𝑅2

1 + (0)2
 

 

   
 𝑍′ → 𝑅1 + 𝑅2 (1.48) 
   

High frequency: 
𝜔 → ∞ 

𝑍′ =
𝑅1

1 + (∞)2
+

𝑅2
1 + (∞)2

 
 

   
 𝑍′ → 0 (1.49) 

 
Since R2 >> R1 and C2 >> C1, from equation (1.17), the Debye frequency of R2C2 
(fmax2) will occur at a lower frequency then the Debye frequency of R1C1 (fmax1). If 
we consider the contribution of R2C2 and R1C1 to Z’ in the intermediate frequency 
range between fmax2 and fmax1: 
 
For R2C2: 

𝑍′ =
𝑅2

1 + (𝜔𝑅2𝐶2)2
 

 

   
At fmax2: 
𝜔𝑅2𝐶2 = 1 

𝑍′ →
𝑅2

1 + (1)2
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𝑍′ →

𝑅2
2

 
1

1
(1.50) 

   
As frequency 

increases 
beyond fmax2: 
𝜔 → ∞ 

𝑍′ →
𝑅2

1 + (∞)2
 

 

   
 𝑍′ → 0 (1.51) 

 
Now considering R1C1, at fmax2 ωR1C1 will tend to zero as we are far from fmax1 
hence: 
 
For R1C1: 

𝑍′ =
𝑅1

1 + (𝜔𝑅1𝐶1)2
 

 

   
At fmax2: 
𝜔𝑅2𝐶2 = 1 

𝑍′ =
𝑅1

1 + (0)2
 

 

   
 𝑍′ = 𝑅1 (1.52) 

 
At higher frequencies increasing towards fmax1: 
 
𝜔𝑅1𝐶1 → 1 

𝑍′ → +
𝑅1

1 + (1)2
 

 

   
 

𝑍′ → +
𝑅1
2

 
1

1
(1.53) 

 
 
Consider equations (1.48) to (1.53) over the entire frequency range. From 
equation (1.48), at low frequency Z’ will plateau at Z’=R1+R2. At intermediate 
frequencies past fmax2 the contribution of R2C2 to Z’ will drop to zero from (1.50) 
and (1.51). The contribution of R1C1 to Z’ will decay from a value of R1 and then to 
R1/2 from (1.52) and (1.53), respectively. The decay of R2C2 will be quicker than 
R1C1 as the frequency is > fmax2 but < fmax1 leading to a plateau of Z’=R1. Finally as 
frequency increases beyond fmax1 Z’ will drop off to zero from (1.49). This gives two 
plateaus of Z’=R1+R2 and Z’=R1 at low and high frequencies, respectively (see fig. 
24). 
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Fig. 24. Schematic of the relation for Z’ versus frequency for two parallel resistors 
and capacitors connected in series with intercepts. 
 
Considering the imaginary parts of equation (1.47): 
 
 

−𝑍′′ = 𝑅1.
𝜔𝑅1𝐶1

1 + (𝜔𝑅1𝐶1)2
+ 𝑅2.

𝜔𝑅2𝐶2
1 + (𝜔𝑅2𝐶2)2

 
1

1
(1.54) 

 
We see that there are two Debye functions, which will have peaks of values R1/2 
and R2/2 when frequency equals fmax1 and fmax2, respectively. If the time constants 
of the two parallel RC circuits are sufficiently different there will be two distinct 
Debye peaks in the Z’’ spectroscopic plot (see fig. 25). 
 

 
Fig. 25. Schematic of Z’’ versus frequency for two resistors and capacitors in parallel 
connected in series with intercepts. 
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Combining the Z’ and Z’’ as a Nyquist plot gives two arcs of diameters R1 and R2 and 
heights R1/2 and R2/2, respectively. The peaks of the arcs coincide with fmax1 and 
fmax2 (see fig. 26). 
 

 
Fig. 26. Schematic of a Nyquist plot for Z* (Z’’ versus Z’) with intercepts for two 
parallel resistors and capacitors connected in series with intercepts. 
 
Consider M*: 
 
 

𝑀∗ = 
1

𝐶1
.
𝜔2𝑅1

2𝐶1
2 + 𝑗𝜔𝑅1𝐶1

1 + (𝜔𝑅1𝐶1)2
+ 
1

𝐶2
.
𝜔2𝑅2

2𝐶2
2 + 𝑗𝜔𝑅2𝐶2

1 + (𝜔𝑅2𝐶2)2
 

1

1
(1.55) 

 
First consider the frequency limits of the real part (M’) of (1.55): 
 
 

𝑀′ = 
1

𝐶1
.

𝜔2𝑅1
2𝐶1

2

1 + (𝜔𝑅1𝐶1)2
+ 
1

𝐶2
.

𝜔2𝑅2
2𝐶2

2

1 + (𝜔𝑅2𝐶2)2
 

1

1
(1.56) 

   
Low 
frequency: 
𝜔 → 0 

𝑀′ → 
1

𝐶1
.
(0)2

1 + (0)2
+ 
1

𝐶2
.
(0)2

1 + (0)2
 

 

   
 𝑀′ →  0 (1.57) 
   
High 
frequency: 
𝜔 → ∞ 

𝑀′ → 
1

𝐶1
.
(∞)2

1 + (∞)2
+ 
1

𝐶2
.
(∞)2

1 + (∞)2
 

 

   
 

𝑀′ → 
1

𝐶1
+ 
1

𝐶2
 

1

1
(1.58) 

 
Since R2 >> R1 and C2 >> C1, from equation (17), the Debye frequency of R2C2 (fmax2) 
will occur at a lower frequency than the Debye frequency of R1C1 (fmax1). If we 
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consider the contribution of R2C2 and R1C1 to M’ in the intermediate frequency 
range between fmax2 and fmax1: 
 
For R2C2: 

𝑀′ =
1

𝐶2
.

𝜔2𝑅2
2𝐶2

2

1 + (𝜔𝑅2𝐶2)2
 

 

   
At fmax2: 
𝜔𝑅2𝐶2 = 1 𝑀′ =

1

𝐶2
.
(1)2

1 + (1)2
 

 

   
 

𝑀′ =
1

2𝐶2
 

1

1
(1.59) 

   
As frequency 

increases 
beyond fmax2: 
𝜔 → ∞ 

𝑀′ →
1

𝐶2
.
(∞)2

1 + (∞)2
 

 

   
 

𝑀′ →
1

𝐶2
 

1

1
(1.60) 

 
Now considering R1C1, at fmax2 ωR1C1 will tend to zero as we are far from fmax1 
hence: 
 
For R1C1: 

𝑀′ =
1

𝐶1
.

𝜔2𝑅1
2𝐶1

2

1 + (𝜔𝑅1𝐶1)2
 

 

   
At fmax2: 
𝜔𝑅2𝐶2 = 1 𝑀′ →

1

𝐶1
.
(0)2

1 + (0)2
 

 

   
 𝑀′ → 0 (1.61) 

 
At higher frequencies increasing towards fmax1: 
 

At fmax1: 
𝜔𝑅1𝐶1 → 1 𝑀′ →

1

𝐶1
.
(1)2

1 + (1)2
 

 

   
 

𝑀′ →
1

2𝐶1
 

1

1
(1.62) 

 
Consider equations (1.57) to (1.62) over the entire frequency range. At high 
frequency it can be seen that M’ tends to 1/C1 + 1/C2 from equation (1.48). As 
frequency decreases M’ then decays. The contribution of R1C1 decays from 1/C1 to 
1/2C1 between frequencies of ∞ and fmax1, from equations (1.58) and (1.62). 
However the contribution of R2C2 to M’ decays from 1/C2 to 1/2C2 over a larger 
frequency range (∞ to fmax2) from equations (1.60) and (1.59). This means over the 
intermediate frequency range (fmax1 to fmax2) the 1/C2 term will dominate causing a 
plateau of value 1/C2. As frequency decreases from fmax2 to zero, M’ will decay to 
zero from equation (57). This leads to two plateaus of 1/C2 and 1/C1 + 1/C2 if M’ is 
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plotted as a function of frequency for two resistors and capacitors in parallel 
connected in series (see fig. 27). 

 
Fig. 27. Schematic of the relation for M’ versus frequency for a two resistors and 
capacitors in parallel connected in series with intercepts. 
 
Considering the imaginary parts of equation (1.55): 
 
 

𝑀′′ = 
1

𝐶1
.

𝜔𝑅1𝐶1
1 + (𝜔𝑅1𝐶1)2

+ 
1

𝐶2
.

𝜔𝑅2𝐶2
1 + (𝜔𝑅2𝐶2)2

 
 

 
We see that there are two Debye functions, which will have peaks of values 1/2C1 
and 1/2C2 when the frequency equals fmax1 and fmax2, respectively. If the time 
constants of the two parallel RC circuits are sufficiently different there will be two 
distinct Debye peaks in the M’’ spectroscopic plot (see fig. 28). 

 
Fig. 28. Schematic of the relation for M’’ versus frequency for two parallel resistors 
and capacitors connected in series with intercepts. 
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Combining the M’ and M’’ as a Nyquist plot gives two arcs of diameters 1/C1 and 
1/C2 and heights 1/2C1 and 1/2C2, respectively. The peaks of the arcs coincide with 
fmax1 and fmax2 (see fig. 29). 

 
Fig. 29. Schematic of a Nyquist plot for M* (M’’ versus M’) with intercepts for two 
parallel resistors and capacitors connected in series with intercepts. 
 
 
 
 
Consider Y*: 
 

𝑌∗ = 

((
1

𝑅1𝑅2
) + 𝑗𝜔 (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝜔2𝐶1𝐶2)((

1
𝑅1
+
1
𝑅2
) − 𝑗𝜔(𝐶1 + 𝐶2))

(
1
𝑅1
+
1
𝑅2
)
2

+ 𝜔2(𝐶1 + 𝐶2)2
 

1

1
(1.63) 

 
Expand equation (1.63) and collect the real components, an extra term is revealed 
from multiplying the two jω terms: 
 
 

𝑌′ = 

1
𝑅1𝑅2

(
1
𝑅1
+
1
𝑅2
) + 𝜔2(𝐶1 + 𝐶2) (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝜔2𝐶1𝐶2 (

1
𝑅1
+
1
𝑅2
)

(
1
𝑅1
+
1
𝑅2
)
2

+ 𝜔2(𝐶1 + 𝐶2)2
 

1

1
(1.64) 

 
Consider the frequency limits of equation (1.64):  
 
Low frequency: 

𝜔 → 0 𝑌′ → 

1
𝑅1𝑅2

(
1
𝑅1
+
1
𝑅2
) + (0)2 − (0)2

(
1
𝑅1
+
1
𝑅2
)
2

+ (0)2
 

 

   
 

𝑌′ →

1
𝑅1𝑅2

(
1
𝑅1
+
1
𝑅2
)

(
1
𝑅1
+
1
𝑅2
)
2  

(
1
𝑅1
+
1
𝑅2
)

(
1
𝑅1
+
1
𝑅2
)
2 (1.65) 
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Cancel like terms and rearrange equation (1.65) to give: 
 

 

𝑌′ →

1
𝑅1𝑅2

(
1
𝑅1
+
1
𝑅2
)

(
1
𝑅1
+
1
𝑅2
)
2  

 

   
 

𝑌′ →
1

(
𝑅1𝑅2
𝑅1

+
𝑅1𝑅2
𝑅2

)
 

 

   
 

𝑌′ →
1

𝑅1 + 𝑅2
 

1

1
(1.66) 

 
At high frequency the ω2 terms dominate: 
 

High 
frequency: 
𝜔 → ∞ 

𝑌′ → 
(𝐶1 + 𝐶2) (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝐶1𝐶2 (

1
𝑅1
+
1
𝑅2
)

(𝐶1 + 𝐶2)2
 

1

1
(1.67) 

 
Expand the numerator of (1.67): 
 

 

𝑌′ → 

𝐶1
2

𝑅2
+
𝐶1𝐶2
𝑅1

+
𝐶1𝐶2
𝑅2

+
𝐶2
2

𝑅1
−
𝐶1𝐶2
𝑅1

−
𝐶1𝐶2
𝑅2

(𝐶1 + 𝐶2)2
 

 

   
 

𝑌′ → 

𝐶1
2

𝑅2
+
𝐶1𝐶2
𝑅1

+
𝐶1𝐶2
𝑅2

+
𝐶2
2

𝑅1
−
𝐶1𝐶2
𝑅1

−
𝐶1𝐶2
𝑅2

(𝐶1 + 𝐶2)2
 

 

   
 

𝑌′ → 

𝐶1
2

𝑅2
+
𝐶2
2

𝑅1
(𝐶1 + 𝐶2)2

 

1

1
(1.68) 

 
Hence the high frequency intercept of Y’ is a composite term. Applying the 
assumptions made about the relative magnitude of R1, R2, C1 and C2: 
 

R2>> R1 
∴
𝐶1
2

𝑅2
+
𝐶2
2

𝑅1
 ~
𝐶2
2

𝑅1
  

 

   
C2>> C1 ∴ (𝐶1 + 𝐶2)

2~ 𝐶2
2  

   
 

∴ 𝑌′~ 

𝐶2
2

𝑅1
𝐶2
2  

 

   
 

∴ 𝑌′~ 
1

𝑅1
 

1

1
(1.69) 
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Hence Y’ plateaus at a value of 1/R1 + 1/R2 at low frequency and increases to a 
composite value at high frequency that can be approximated as 1/R1 if R2>> R1 and 
C2>> C1 (see fig. 30).  
 

 
 
Fig. 30. Schematic of the relation for Y’ versus frequency for two parallel resistors 
and capacitors connected in series with intercepts. 
 
Now expand equation (1.63) and consider the imaginary components: 
 
 

𝑌′′ = 
−𝜔 (

𝐶1 + 𝐶2
𝑅1𝑅2

) + 𝜔 (
𝐶1
𝑅2
+
𝐶2
𝑅1
) (
1
𝑅1
+
1
𝑅2
) + 𝜔3(𝐶1 + 𝐶2)𝐶1𝐶2

(
1
𝑅1
+
1
𝑅2
)
2

+ 𝜔2(𝐶1 + 𝐶2)2
 
( )

( )

(1.70) 

 
Consider the frequency limits of (1.70): 
 

Low 
frequency: 
𝜔 → 0 

𝑌′′ → 
(0) + (0) + (0)

(
1
𝑅1
+
1
𝑅2
)
2

+ (0)2
 

 

   
 𝑌′′ →  0 (1.71) 
 
At high frequency the terms that do not contain powers of ω can be neglected: 
 

High 
frequency: 
𝜔 → ∞ 

𝑌′′ → 
𝜔3(𝐶1 + 𝐶2)𝐶1𝐶2
𝜔2(𝐶1 + 𝐶2)2

 
 

   
 

𝑌′′ → 
𝜔(𝐶1 + 𝐶2)𝐶1𝐶2
(𝐶1 + 𝐶2)2
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 𝑌′′ → 
∞

(𝐶1 + 𝐶2)2
  

   
 𝑌′′ →  ∞ (1.72) 
 

From equations (1.71) and (1.72) Y’’ must rise from near zero at low 
frequency and tends to infinity as frequency tends to infinity. Further expansion of 
equation (1.70) results in a large amount of coefficients. A more direct route to 
understanding its relationship with frequency is obtained through consideration of 
how the paths of least resistance would alter with frequency through circuit three. 
From equation (1.20) the impedance of a capacitor is inversely proportional to 
frequency, hence at a higher frequency more current will pass through a capacitor. 
At low frequency the impedance of the capacitors in circuit three (C1 and C2) will 
be high, blocking current and forcing it to flow through the two resistors (R1 and 
R2, see fig. 31A).  
 From equation (1.19) the impedance of a resistor is independent of 
frequency and has no imaginary component. Hence Y’’ tends to zero in agreement 
with (1.71). As the frequency increases to fmax2 the impedance of C2 will decreases 
until it is equal to the impedance of R2. When the frequency increases beyond fmax2 
the impedance of C2 will be less than R2, shorting R2 out (see fig. 31B). As C1 < C2, 
there will be a frequency range where C2 can bypass R2 but C1 cannot bypass R1. 
Here circuit three resembles a resistor and a capacitor connected in series and is 
referred to as a parasitic capacitance. From equation (29), the form of Y’’ for a 
resistor and a capacitor connected in series as a function of frequency has a Debye 
peak. Here the Debye peak will be proportional to 1/2R1 and occur at fmax=1/R1C2. 
As the frequency increases past the Debye frequency of the parasitic capacitance 
the contribution of R1 will decrease. 
 When the frequency exceeds fmax1 the impedance of C1 will be less than R1 
hence all current will flow through the two capacitors (see fig. 31C). This leads to 
an equivalent circuit of two capacitors connected in series. As the impedance of a 
capacitor decreases with frequency, from table 1, impedance is the inverse of 
admittance hence Y’’ will increase with frequency past fmax1 in agreement with 
equation (1.72). 
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Fig. 31. Variable AC pathways through two parallel resistors and capacitors 
connected in series, where R2>>R1 and C2>>C1 and the effective equivalent circuit as 
the pathway changes with frequency. At frequencies (A) from DC to less than fmax2, 
(B) from over fmax2 to less than fmax1 and (C) greater than fmax1. 
 
 The trend of Y’’ with frequency is the  addition of a growth term with a 
Debye function of height 1/2R1 at the relaxation frequency of the parasitic 
capacitance (see fig. 32). Combining the real and imaginary components of Y* as a 
Nyquist plot gives a semi circle offset from the origin by 1/(R1 + R2). The height of 
the semicircle is equal to 1/2R1 and their maximum coincides with the relaxation 
frequency of the parasitic capacitance. The high frequency intercept of the 
semicircle equals 1/R1. A further increase in frequency results in a spike of Y’=1/R1 
(see fig. 33). 

 
Fig. 32. Schematic of the relation for Y’’ versus frequency for two parallel resistors 
and capacitors connected in series with intercepts. 
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Fig. 33. Schematic of a Nyquist plot for Y* (Y’’ versus Y’) with intercepts for two 
parallel resistors and capacitors connected in series with intercepts. 
 
 
 
Consider E*: 
 
From table (1): 
 

𝐸∗ =
1

𝑗𝜔𝑍∗
=
𝑌∗

𝑗𝜔
 (1.73) 

 
Substituting (1.73) into (1.63): 
 
 

𝐸∗ = 

((
1

𝑅1𝑅2
) + 𝑗𝜔 (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝜔2𝐶1𝐶2)((

1
𝑅1
+
1
𝑅2
) − 𝑗𝜔(𝐶1 + 𝐶2))

𝑗𝜔 (
1
𝑅1
+
1
𝑅2
)
2

+ 𝑗𝜔3(𝐶1 + 𝐶2)2
 

1

1
(1.74) 

 
Multiply by j over j to make the denominator real: 
 
 

𝐸∗ = 

𝑗 ((
1

𝑅1𝑅2
) + 𝑗𝜔 (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝜔2𝐶1𝐶2)((

1
𝑅1
+
1
𝑅2
) − 𝑗𝜔(𝐶1 + 𝐶2))

−𝜔 (
1
𝑅1
+
1
𝑅2
)
2

−𝜔3(𝐶1 + 𝐶2)
2

 

 
 

   
 

𝐸∗ = 

(𝑗 (
1

𝑅1𝑅2
) − 𝜔 (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝑗𝜔2𝐶1𝐶2)((

1
𝑅1
+
1
𝑅2
) − 𝑗𝜔(𝐶1 + 𝐶2))

−𝜔 (
1
𝑅1
+
1
𝑅2
)
2

−𝜔3(𝐶1 + 𝐶2)
2

 

(1.75) 

 
Expand (1.75) and isolate the real component (E’): 
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𝐸′ = 
𝜔(𝐶1 + 𝐶2) (

1
𝑅1𝑅2

) − 𝜔 (
𝐶1
𝑅2
+
𝐶2
𝑅1
) (
1
𝑅1
+
1
𝑅2
) − 𝜔3𝐶1𝐶2(𝐶1 + 𝐶2)

−𝜔 (
1
𝑅1
+
1
𝑅2
)
2

−𝜔3(𝐶1 + 𝐶2)
2

 

 

   
 

𝐸′ = 
(
𝐶1
𝑅2
+
𝐶2
𝑅1
) (
1
𝑅1
+
1
𝑅2
) + 𝜔2𝐶1𝐶2(𝐶1 + 𝐶2) − (𝐶1 + 𝐶2) (

1
𝑅1𝑅2

)

(
1
𝑅1
+
1
𝑅2
)
2

+𝜔2(𝐶1 + 𝐶2)
2

 

 
(1.76) 

 
Now consider the frequency limits of equation (1.76): 
 

Low 
frequency: 
𝜔 → 0 

𝐸′ → 
(
𝐶1
𝑅2
+
𝐶2
𝑅1
) (
1
𝑅1
+
1
𝑅2
) + (0)2 − (𝐶1 + 𝐶2) (

1
𝑅1𝑅2

)

(
1
𝑅1
+
1
𝑅2
)
2

+ (0)2
 

 
(1.77) 

 
Multiply and cancel the numerator of (1.77): 
 
 

𝐸′ → 

𝐶1
𝑅2𝑅1

+
𝐶2
𝑅2𝑅1

+
𝐶1
𝑅2
2 +

𝐶2
𝑅1
2 −

𝐶1
𝑅2𝑅1

−
𝐶2
𝑅2𝑅1

(
1
𝑅1
+
1
𝑅2
)
2  

 
 

   
 

𝐸′ → 

𝐶1
𝑅2
2 +

𝐶2
𝑅1
2

(
1
𝑅1
+
1
𝑅2
)
2 

 
(1.78) 

 
Rearrange the denominator of (1.78) and multiply top and bottom by R12R22: 
 
 

𝐸′ → 

𝐶1
𝑅2
2 +

𝐶2
𝑅1
2

(
𝑅1 + 𝑅2
𝑅1𝑅2

)
2 .
𝑅1
2𝑅2

2

𝑅1
2𝑅2

2 

 

   
 

𝐸′ → 
𝐶1𝑅1

2 + 𝐶2𝑅2
2

(𝑅1 + 𝑅2)2
 

(1.79) 

 
Applying the assumptions that R2>>R1 and C2>>C1: 
 
 

𝐸′ → 
𝐶1𝑅1

2 + 𝐶2𝑅2
2

(𝑅1 + 𝑅2)2
~
𝐶1𝑅1

2 + 𝐶2𝑅2
2

𝑅2
2  

 

   
 

𝐸′ → 
𝐶1𝑅1

2 + 𝐶2𝑅2
2

(𝑅1 + 𝑅2)2
~
𝐶1𝑅1

2

𝑅2
2 + 𝐶2 

 

   
 

𝐸′ → 
𝐶1𝑅1

2 + 𝐶2𝑅2
2

(𝑅1 + 𝑅2)2
~(0) + 𝐶2 

(1.80) 
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Now consider E’ at high frequency, neglecting the terms in (1.76) without ω: 
 

High 
frequency: 
𝜔 → ∞ 

𝐸′ → 
∞2𝐶1𝐶2(𝐶1 + 𝐶2)

∞2(𝐶1 + 𝐶2)2
 

 
 

   
 

𝐸′ → 
𝐶1𝐶2

(𝐶1 + 𝐶2)
 

(1.81) 

 
Again, applying the assumption that C2>>C1: 
 

 
𝐸′ → 

𝐶1𝐶2
(𝐶1 + 𝐶2)

~
𝐶1𝐶2
𝐶2

 
 

   
 

𝐸′ → 
𝐶1𝐶2

(𝐶1 + 𝐶2)
~𝐶1 (1.82) 

 
Equations (1.80) and (1.82) indicate that if R2>>R1 and C2>>C1, at low frequency E’ 
will plateau at a value of C2 and will decrease to another plateau of value C1 at high 
frequency (see fig. 34). If the assumption is not true the low and high frequency 
plateaus will be the composite values given in equations (1.79) and (1.81), 
respectively. 

 
Fig. 34. Schematic of the relation for E’ versus frequency for two parallel resistors 
and capacitors connected in series with intercepts. 
 
Now expand (1.68) and isolate the imaginary component (E’’): 
 
 

𝐸′′ = 
(
1

𝑅1𝑅2
) (
1
𝑅1
+
1
𝑅2
) + 𝜔2 (

𝐶1
𝑅2
+
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𝑅1
) (𝐶1 + 𝐶2) − 𝑗𝜔

2𝐶1𝐶2 (
1
𝑅1
+
1
𝑅2
)

−𝜔 (
1
𝑅1
+
1
𝑅2
)
2

−𝜔3(𝐶1 + 𝐶2)
2

 

(1.83) 

 
Expand and rearrange the numerator of (1.83): 
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1
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(1.84) 

 
Consider the frequency limits of equation (1.84): 
 

Low 
frequency: 
𝜔 → 0 

𝐸′′ → 
−(

1
𝑅1𝑅2

) (
1
𝑅1
+
1
𝑅2
) − (0)2

(0) + (0)3
 

 

   
 𝐸′′ →  ∞ (1.85) 
   

High 
frequency: 
𝜔 → ∞ 

𝐸′′ → 
−(

1
𝑅1𝑅2

) (
1
𝑅1
+
1
𝑅2
) − (∞)2 (

𝐶1
2

𝑅2
+
𝐶2
2

𝑅1
)

(∞) (
1
𝑅1
+
1
𝑅2
)
2

+ (∞)3(𝐶1 + 𝐶2)2
 

 

   
 

𝐸′′ → 
−(∞)2

(∞)3
→ 0 

(1.86) 

 
From equations (1.85) and (1.86) we can see that E’’ must decay from infinity at 
low frequency and tend to zero at high frequency. Similarly to Y’’ a parasitic 
capacitance will form at frequencies between fmax1 and fmax2 where the equivalent 
circuit will reduce to a series connection of R1 and C2 (see fig. 31). From equation 
(1.35) it can be seen that E’’ for a resistor and capacitor connected in series results 
in a Debye peak. In this case the peak will occur at a frequency of fmax = 1/R1C2 and 
the height will be proportional to C2/2. The relationship between E’’ and frequency 
will be a combination of the Debye peak and the decay term (see fig. 35). Plotting 
E’’ and E’ together as a Nyquist plot will give a semicircle displaced from the origin 
by the value of C1 along the E’ axis. The other real intercept of the semicircle will 
have a value of C2. The semicircle will have a height of C2/2 where the maximum 
point will coincide with the Debye frequency of the parasitic capacitance. After the 
C2 intercept, as frequency decreases there will be a spike as the imaginary term 
tends to infinity (see fig. 36). 
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Fig. 35. Schematic of the relation for E’’ versus frequency for two parallel resistors 
and capacitors connected in series with intercepts. 

 
Fig. 36. Schematic of a Nyquist plot for E* (E’’ versus E’) with intercepts for two 
parallel resistors and capacitors connected in series with intercepts. 
 
 Comparing the derivations of the impedance response of circuits one to 
three explains the weightings of the four formalisms. For circuit one (a resistor and 
capacitor in series) the intercepts were straightforward for Z* and M* but more 
complex for Y* and E*. Conversely, for circuit two (a resistor and capacitor 
connected in parallel) the intercepts of Y* and E* were simple while Z* and M* 
were more complicated. This shows that Y* and E* are better for displaying the 
impedance data of parallel processes whilst Z* and M* are better for serial 
connectivity.  
 For all three circuits the main intercepts are common within each 
formalism. For Z* the intercepts are resistances whilst for Y* they are inverse 
resistances. Hence when examining the impedance response of a transport process 
Z* would be used for more resistive processes whilst Y* would be better suited to 
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more conductive processes. The same logic can be applied to capacitive processes. 
As M* has intercepts that are inverse capacitances it would be a better formalism 
for probing processes with capacitances of small magnitude whilst E* would be 
better for large capacitances. 
 When using impedance spectroscopy to characterise a material it may not 
be known what the connectivity or magnitudes of resistance and capacitance are 
present in a material. Hence it is important to study the impedance data in all four 
formalisms to fully probe all behaviour within a material. The strengths of each 
formalism are summarised in table 2. Circuit three is often used in the field of 
electroceramics and is typically analysed using Z*. M* should not be neglected as it 
can provide additional information about the capacitances present in the system. 
The intercepts of Y* and E* are more convoluted for circuit three due to the series 
connection of the two RC elements but can reduce to simpler expression if certain 
assumptions are valid. In this work spectroscopic plots of E’ and Y’ are used when 
the time constant separation allows for it or to probe how well time constants are 
separated. 
 
 
 
 
 

Formalism Preferential 
connectivity 

Good for Example material 

Z* Serial Large 
resistances 

 

Insulator 

Y* Parallel Small 
resistances 

 

Conductor 

M* Serial Small 
capacitances 

Secondary phases 
with comparable 
thickness to bulk 

 
E* Parallel Large 

capacitances 
High permittivity 

dielectric 
 
Table. 2. Summary of the strengths of all four impedance formalisms. 
 
1.2.3. Experimental Setup  
 
To measure the impedance of a ceramic, a pellet is produced and then the top and 
bottom surfaces are electroded. Leads are held in contact with the electrode 
surface using a spring-loaded clamp, allowing the sample to be connected to an 
impedance analyser (see fig. 37). Two common methods of calculating the 
impedance use bridge balancing and Fourier transformation11. For the balancing 
method, the sample is used as one of four resistors in a bridge circuit (see fig. 38). 
The resistance of a variable resistor is changed until its resistance ratio with the 
sample matches the other two fixed resistors. When the ratios match, a null 
detector will detect no potential difference, implying no current flow. The sample’s 
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resistance and hence impedance may be calculated as it is the only unknown. 
Originally, the bridge balancing was done by hand but now this is automated. 
Impedance measurements must still be taken sequentially for each frequency. 
Alternatively, all frequencies can be applied to the sample at once and then 
deconvoluted using Fourier transformations. 
 

 
Fig. 37. Schematic of a typical setup of an impedance spectroscopy experiment 
measuring a ceramic sample. 

 
Fig. 38. Schematic of an AC bridge balance circuit. Where R1 and R2 are resistors of 
known resistance, Rv is a variable resistor and Rx is the sample which the impedance 
is to be calculated. 
 
1.2.4. Strengths and Weaknesses of Impedance Spectroscopy. 
 
Impedance spectroscopy has advantages over traditional direct current (DC) and 
fixed frequency measurements as it has the potential to uncover more information 
from the subject of investigation. DC electrical measurements will be dominated by 
the most resistive components and fixed frequency measurements will be 
dominated by the component that is most electrically active at a given frequency12. 
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Measuring over a spectrum of frequencies mitigates this issue but it is still possible 
for a process to be out of the frequency window measured. Very resistive 
processes may have such a low fmax that measuring them would take an unfeasibly 
long time. Experimentalists can counter this by taking measurements at higher 
temperatures, reducing the energy barrier for such a process to occur. Likewise, 
phenomena that occur at frequencies too high to be measured can be brought 
down into the frequency window by cooling the sample down. The sample must 
also be less resistive than electronics of the impedance measuring instrument. 
 The strength of impedance spectroscopy can also be its weakness. 
Measuring the impedance over a range of frequencies can retrieve information 
regarding many of the electrical processes within a material. Simply put, the more 
data acquired the more involved the fitting will be. In addition, often many 
equivalent circuits can fit the same data13. Basing the equivalent circuit used for 
fitting the impedance spectra on processes known to occur within the material can 
counter this ambiguity and increases the confidence in the fit. Comparing the 
equivalent circuit fit with the data in all four formalisms offers a robust method to 
refine the fit. A good equivalent circuit will be able to mimic the measured data in 
all the weightings the four formalisms provide. However, this is a time- consuming 
process. 
 When assigning capacitances obtained from spectra to microstructural 
components the magnitudes of the capacitances should be considered as a rough 
guide. Thicker components will typically have a lower capacitance. A summary of 
typical magnitudes of the capacitance for common microstructural features is 
given in table 3.  
 
 
 
 
Microstructural feature Capacitance/Fcm-1 
Bulk ceramic 10-12 

Secondary phase 10-11 

Grain boundary 10-11 to 10-8 

Electrode/ceramic interface 10-7 to 10-5 
 
Table. 3. List of typical capacitances normalised to sample geometry for 
microstructural features14. Note the units favoured in the literature are Farads per 
centimetre; conversion to Farads per metre would be achieved by multiplying the 
present values by 100. 
 
 It is possible to make assumptions for equivalent circuits based upon 
microscopy data, however an important concept for impedance is physical 
microstructure versus electrical microstructure. The physical microstructure is 
essentially what is traditionally thought of as microstructure - how the different 
phases, defects and dopants are distributed throughout a material (see fig. 39A). 
The electrical microstructure is how space charge is distributed throughout a 
material (see fig. 39B). When an impedance measurement is taken, it is the 
electrical not the physical microstructure that will define the spectra. Previously 
we have discussed how the relative thickness of bulk and grain boundary will 
affect their capacitances. Space charge is known to extend past grain boundaries15. 
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If this space charge was responsible for a grain boundary capacitance its effective 
thickness would be larger than the physical dimensions of the grain boundary. The 
conditions under which the electrical microstructure is representative of the 
physical microstructure of dielectric ceramics will be a significant topic for this 
thesis. 

 
Fig. 39. (A) The physical microstructure of a core-shell grain of barium titanate. (B) 
The electrical microstructure of the same grain as an electric field (E) is applied to it. 
 
 Another issue for impedance spectroscopy is that although we can attempt 
to fit impedance spectra with ideal circuit elements or even parallel or series 
combinations of circuit elements, real spectra display non-ideal impedance 
responses. Non-ideal responses take the form of depressed semicircles in Nyquist 
plots or broadening of Debye peaks in spectroscopic plots, leading to a full width 
half max (FWHM) greater than 1.14 decades in frequency (see figs 40 and 41). 
There are many theories on the exact cause of these departures from ideality. 
Large deviations have been observed in samples with microscopic defects (e.g. 
pores), but also in what appear to be well-defined microstructures with high 
density samples or single crystals16. This has led to theories that try to explain 
non-ideality as either a mesoscopic or a nanoscopic phenomenon.  

 
Fig. 40. Comparison of ideal Debye response and depressed non-ideal response in Z* 
arcs.  
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Fig. 41. A Debye peak for a Z’’ spectroscopic plot. For an ideal response the FWHM 
will measure 1.14 decades on a log(f) scale. Typically this is broader in real samples. 
 
 Work by Jonscher has fitted this non-ideality as a universal frequency 
dispersion (see fig 42) using a power law17. A general form of this is given in 
equation (1.87)18. This equation is often referred to as the universal power law, as 
it can be used to fit many different systems19, 20, 21.  
 
 𝜎𝜔 = 𝜎0𝐴𝜔

𝑛 (1.87) 
 
where σω is the AC conductivity, σ0 is the DC conductivity, A is a temperature 
dependent parameter and n has a value between 0 and 1. This has led to the belief 
that a there is a universal mechanism responsible for high frequency dispersion. At 
the time of writing, this mechanism has not been found, and so the universal 
power law is still an empirical fit. However, as the power law can fit such a variety 
of systems (it has been applied to ceramics, glasses and polymers), its significance 
should not be discounted. 
 

  
Fig 42. (A) High frequency dispersion in admittance spectroscopic plot for a system 
with a single time constant, (B) ideal behaviour for the same graph. 
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 Another school of thought is that discrete mechanisms must be present in 
different materials. Popular mechanisms include distributions of relaxation times 
(DRT)22 and distributions of hopping probabilities (DHP)23. Whereas traditional 
theory would assign a single time constant (with a degree of non ideality) to an 
extracted resistance and capacitance. DRT, as its name implies, assumes that there 
is a distribution of relaxation times (or time constants) with their values 
distributed so that their mean value is centred on what would be the traditional 
time constant. The spread of time constants would cause a broadening of the 
Debye peak, as their responses would merge (time constants do not have enough 
separation). It is thought that the cause of DRT could be due to electrical 
heterogeneity in materials (differing lengths of conduction pathways, caused by 
defects etc.). DHP is similar to DRT, but instead of relaxation times it is theorised 
that a distribution of hopping probabilities causes non-Debye responses. It has 
been suggested that for DRTs to exist in a material there must be a DHP causing 
it17.  
 A major argument against the DRT and DHP theories is that while they are 
mathematically sound, it is very difficult to prove the existence of such 
distributions experimentally24. With more computational power available, 
simulations may be able to probe the cause of non-ideality, particularly with 
regards to phenomena occurring within materials during relaxation processes. 
There is also the difficulty of applying these distribution-based theories to all 
materials that show non-ideality that can be described by Jonscher’s ‘universal 
power law’ in their admittance response. Bowen and Almond managed to model 
power law behaviour with a random resistor-capacitor network based on an 
idealised microstructure made from porous lead zirconate titanate (PZT) 
impregnated with water25 . The PZT was 78% of the theoretical density, leaving 
porous regions for the impregnated water to reside. This gave a microstructure 
with pockets of water (a relatively conductive phase, modelled as a resistor) and 
PZT (resistive phase, modelled as a capacitor). The different geometries of the 
water and PZT regions lead to a distribution of values of the resistance and 
capacitance which depend on the material. Both computer simulations and 
physical modelling (using the PZT-water system) exhibited a high frequency 
dispersion.  
 A common method of modelling non-ideality in equivalent circuits is the 
use of constant phase elements (CPEs). A CPE is a mathematical construct with an 
admittance (Y*CPE) definied as: 
 
 𝑌𝐶𝑃𝐸

∗ = 𝐴(𝑗𝜔)𝑛 (1.88) 
 
that, depending on assigned values of the n parameter, can behave as an ideal 
capacitor (n = 1) or as an ideal resistor (n = 0). Values of n between 0 and 1, give a 
non-ideal capacitor with a resistive component (e.g. current leakage in a 
capacitor). It is common for a CPE to be used in parallel to a resistor and capacitor 
to model a non ideal RC element13 (CPE-RC). The impedance for a CPE-RC element 
is defined by a frequency dependent relationship (see 1. 89), leading to a greater 
dispersion at higher frequencies. A method developed to fit CPEs involves 
obtaining values of n and A from a log-log plot of Y’ verses ω. The n parameter is 
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taken from the gradient of the high frequency dispersion (HFD) and A from the Y’ 
intercept of the dispersion (see fig 43A) 13. 
 
 𝑌′ = 𝑅−1 + 𝐴𝜔𝑛cos (𝑛𝜋/2) (1.89) 
 
 These intercept impedance measurements must be taken in a temperature range 
containing the HFD and the low frequency DC conductivity plateau (without the 
plateau it is difficult to say where the HFD begins). CPEs can be used in conjunction 
with resistors, capacitors and inductors to fit data using software that can simulate 
equivalent circuits (Zview is a commonly used package26 ). An RC element can be 
modified to account for non-ideality by adding a CPE in parallel (see fig 43B). 

 
Fig. 43. (A) Intercepts required to estimate A and n parameters for equations (1.88) 
and (1.89), (B) equivalent circuit modified with a CPE to fit non-ideality. 
 

 
 
 
1.3. Conclusions 
 
Impedance spectroscopy is a powerful technique that can be used to probe the 
frequency-dependent electrical microstructure of functional oxides. However, it is 
important to understand the limitations of impedance spectroscopy and use 
additional techniques to confirm observations. In-depth understanding of the 
limitations of impedance spectroscopy can be provided by computer modelling. By 
simulating the electrical response of a material where the simulator has defined 
the microstructure and intrinsic properties of a material it is possible to use an 
experimental methodology to extract intrinsic properties. Then the value of 
extracted properties can be compared to the original inputs allowing the accuracy 
of the experimental methodology to be evaluated. 
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Chapter 2: Literature Review 
 
 
Here an overview of existing simulation and modelling work on the impedance 
response of electrical composites that exists in the literature is given for areas that 
are relevant to all sections of this thesis. A summary of more specific literature 
results is given as required in the results chapters. Key findings are summarised 
and knowledge gaps identified.  
 

2.1. Modelling of Electroceramics 
 
Modelling the electrical properties of a ceramic at scales greater than micrometres 
and towards engineering length scales can be divided into two broad categories, 
analytical and numerical approaches. Earlier attempts typically use analytical 
methods as, for simple cases, electrical composites can be modelled using simple 
mixing laws and simplified microstructures. Using equivalent circuits to model the 
electrical microstructure of a ceramic is common practice. In this chapter the 
development of equivalent circuits used for electro- ceramics is detailed in 
addition to analytical approaches. For the theory under pinning equivalent circuits, 
the reader is directed to chapter one. More recently, the increased availability of 
computational resources has made numerical methods increasingly viable. This 
allows the simulation of more complex microstructures possible where convenient 
analytical solutions do not exist.  
 
2.1.1. Development of the Brick Work Layer Model 
 
A measured impedance spectrum is usually fitted using an equivalent circuit, 
where the electrical response of a ceramic is modelled using a collection of circuit 
elements representing polarisation and transport processes within the material. 
To extract data using equivalent circuits, intercepts and inflection points of the 
experimental data and the equivalent circuit are matched up and the behaviour of 
the components of the circuit matched to the frequency-dependent impedance 
responses of the ceramic1. For example, take a typical dual arc impedance (Z*) 
spectrum from a polycrystalline ceramic with resistive grain boundaries (see fig. 
1A). This is usually modelled with two parallel resistor–capacitor circuits (RC 
element) connected in series (see fig. 1B). The bulk has a RC element with a low 
resistance and capacitance, whilst the grain boundary is modelled by an RC 
element with a higher capacitance and resistance (see fig. 1C). The difference in 
resistances accounts for the more resistive grain boundary and the higher 
capacitance is due to the grain boundary being thinner than the bulk. Using simple 
AC circuit theory it can be shown that the Z* arc diameters give the resistances and 
the capacitances can then be found as a function of the resistances and angular 
frequency (see fig. 1A). This approach can be extended to other impedance 
formalisms, which is covered at length in chapter one. 
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Fig. 1. (A) Schematic of intercepts for the dual impedance arc response of a 
polycrystalline ceramic with resistive grain boundaries. (B) An equivalent circuit 
consisting of two parallel resistor–capacitor circuits connected in series, used to 
model polycrystalline ceramics. (C) Schematic of a ceramic microstructure with 
circuit element assignment annotated. 
 
 The dual parallel RC element equivalent circuit was first used by Bauerle to 
model electrolyte polarisation in yttria-stabilised zirconia2. Beekmans used RC 
circuits to model bulk and grain boundaries of calcia-stabilised zirconia3. By 
assuming that all grain boundary and bulk material had the same respective time 
constants and applying a uniform electric field, a large network of equivalent 
circuits reduces to a single R-RC circuit (capacitance of the bulk was not 
considered). Beekmans converted this equivalent circuit into a boundary layer 
model (see fig. 2A), which was later referred to by Verkerk as the Brick Layer 
Model (BLM). The BLM can be described as nested cubes, the inner cube 
representing the bulk (grain) and the area between the outer and inner cube 
representing the grain boundary (see fig. 2B). If these nested cubes are stacked 
together, the bulk cubes can be thought of as ‘bricks’ and the interconnected 
boundary regions as ‘mortar’, hence the name of the model. 
 Making the same assumptions as Beekmans (homogenous applied field and 
fixed time constants) allows the parallel pathways (through the resistive boundary 
‘mortar’) to be neglected. The rationale for this is that the current will take the 
path of least resistance through the BLM, flowing through the less resistant bulk 
cubes in preference to the parallel boundary mortar (see fig. 2C). A contribution to 
conductivity by the parallel mortar was considered by Naffe4. This parallel version 
of the BLM was applied to nano-grained ceramics by Hwang5. His reasoning was 
that, in the nano regime, the thickness of grain boundaries is similar size to the 
diameter of the bulk grain resulting in higher boundary conductivity than typically 
found in micro-grained ceramics. Hence, it is only reasonable to neglect the 
parallel boundary if the resistance of the core is less than the parallel mortar. 
Another system where use of the BLM becomes problematic is the case of 
conductive grain boundaries; here the current percolates through the boundaries 
and completely avoids the bulk.  
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Fig. 2. (A) Schematics of Beekmans’ boundary layer model and (B) ‘bricks and 
mortar’ nested cubes of the BLM. (C) Schematic of the BLM showing the parallel and 
series conduction paths through the grain boundary (GB). 
 
 
2.1.2. Effective Medium theory and Maxwell’s Layer Models 
 
 Perhaps one of the most simple models for describing an electrical 
composite is Maxwell’s layered condenser model6. It considers two layers either 
connected in series (see fig. 3A) or in parallel (see fig. 3B) with a fixed electrode 
area (A in m). The series configuration is referred to as the Series Layer Model 
(SLM) and the parallel configuration as the Parallel Layer Model (PLM). Each layer 
has a volume fraction () defined by a thickness (d) in addition to a permittivity 
(r) and conductivity (). The SLM and PLM are analytically solvable. A resistance 
(R in ) and capacitance (C in F) for each layer can be calculated for each layer 
using equations (2.1) and (2.2) respectively: 
 
 

𝑅 =  
𝑑

𝜎𝐴
 

1

1
(2.1) 

   
 

𝐶 = 
𝜀𝑟𝜀0𝐴

𝑑
 

1

1
(2.2) 

 
where 0 is the permittivity of free space in Fm-1 and A is the area in m. Values for 
the total resistances and capacitances of both layer models can be calculated by 
adding resistances in series and capacitances reciprocally for the SLM. Likewise, 
total values are calculated for the PLM by adding capacitances and adding 
resistances reciprocally. The SLM impedance response is equivalent to two parallel 
RC elements connected in series (see fig. 3A), whilst the PLM is equivalent to a two 
parallel RC elements connected in parallel (see fig. 3B). This makes the layer 
models useful for comparison purposes. 
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Fig. 3. (A) Physical microstructure of the Series Layer Model. (B) Physical 
microstructure of the Parallel Layer Model. 
 
An alternative method for modelling electrical composites is effective medium 
theory (EMT). The various EMTs have a common origin, being developed from 
Maxwell’s equations6. Originally Maxwell’s EMT was only designed to work for DC 
conductivity but Wagner showed that it could also be used for AC complex 
conductivity7. It is important to note that Maxwell’s EMT is only valid in the dilute 
limit where the inclusion phase is a sufficiently small volume fraction that 
individual inclusions do not interfere with each other electrically. EMTs are based 
upon a hypothetical microstructure made up of spherical inclusions imbedded into 
a matrix (see fig. 4). Here the conductivity of the inclusions is different to that of 
the matrix. An effective composite conductivity (t) can be calculated for the 
resultant composite or effective medium. EMT can also be used to describe 
composite materials with different permittivities present in the inclusions and 
matrix. 
  There are variations of EMT that use different shape factors to represent 
other shapes, such as ellipsoids instead of just spheres and additional functions to 
represent particle orientation8. When the inner sphere is set to the lower 
conductivity and the outer region set to the higher conductivity, the EMT is at its 
lower bound of allowed conductivity. Conversely, if these conductivity 
assignments are reversed the upper bound of conductivity is revealed. Maxwell’s 
EMT was extended to work beyond the dilute limit by Maxwell Garnett9, 10, 
resulting in the Maxwell Garnett equation (a modern review is given by Markel11)*. 
The Maxwell Garnett equation allows the modelling of the entire range of possible 
volume fractions of matrix and inclusions. The lower and upper bounds of Maxwell 
Garnett equations are mathematically equivalent to the bounds of the Hashin-
Shtrikman equations; first used to model magnetic permeability12. If a composite 
conductivity falls within the upper and lower bounds of an EMT, it is said to be a 
physically reasonable value of composite conductivity (see fig. 5). This approach 

                                                 
* It should be noted that James Clerk Maxwell and James Clerk Maxwell Garnett are 
separate people. The Maxwell Garnett relation is the work of Garnett as detailed in 
references 9 and 10. 
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has been used before to evaluate conductivity measurements predicted by 
models13. 
 

 
 
Fig. 4. Schematic of the physical microstructure considered by effective medium 
theory. 
 

 
Fig. 5. Conductivity bounds predicted by the Hashin-Shtrikman equations for a two-
phase composite, with σ1 = 100 μSm-1 (core phase) and σ2 = 0.1 μSm-1. 
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 Bonanos and Lilley combined EMT with Bauerle’s dual RC circuit to derive a 
set of equations to predict values of resistance and capacitance from phase volume 
fractions, conductivities and permittivities14. The equations were derived by 
equating the response from Maxwell’s EMT for insulators for a unit cube of 
material to a dual RC circuit. An important consideration of this approach is that 
the equations for both the high and low frequency resistances and capacitances 
contain permittivity and conductivity terms from both phases implying an 
interaction between the two. The set of equations was successfully used to model 
the complex electric modulus diameters for Suzuki phase precipitates (Cd☐Na6Cl8) 
in sodium chloride for low volume fractions of the Suzuki phase. If the 
permittivities of the Suzuki phase and sodium chloride were the same, it can be 
assumed that the capacitance of each phase is proportional to the geometry and 
hence to the volume fraction. Using an impedance formalism that is weighted in 
favour of small capacitances (the electric modulus, with arc diameters equal to the 
inverse capacitance) can probe capacitance ratios and hence estimate volume 
fractions.  
 The assumptions made in this approach are that all phases present have an 
equal relative permittivity (whether this is applicable is material dependent) and 
that the entire microstructure contributes to the impedance response. If 
percolation is present in a microstructure, regions of low conductivity may 
experience less current flow, reducing the contribution to electrical behaviour by 
the resistive phase. Costa used this approach to study volume fractions associated 
with core-shell microstructures in calcium copper titanate (CCTO). While 
increasing sintering temperature, it was found that the modulus predicted that he 
volume fractions of a semi-conductive phase increased15. Costa made the 
observation that, without intricate knowledge of the CCTO 3D microstructure 
(electron microscopy can only provide information for a 2D plane), the 
comparison of electric modulus diameters can only give qualitative information 
about volume fractions. The exact geometry of the microstructure would have to 
be known in 3D to extract quantitative volume fractions.  
 An EMT developed by Zuzovsky and Brenner to model conduction 
problems (thermal, electric and diffusion processes) offers a better approximation 
to ceramic microstructures than most EMTs, as it consists of conductive spheres 
situated cubically in a less conductive matrix phase (see fig. 6A)16. A flaw in this 
approach is that if the conductive phase’s volume fraction exceeds ~0.52 the 
diameters of the spheres will be the same length as the unit cell (see fig. 6B). This 
causes percolation through the conductive phase reducing the conductivity 
contribution of the matrix to nothing. Therefore Zuzovsky’s model cannot be used 
to describe systems with thin grain boundaries. Kidner compared Zuzovsky’s 
model with the series BLM and his own 3D BLM, finding that Zuzovsky’s EMT was 
applicable to small bulk volume fractions. If unwanted, percolation effects can be 
avoided by having both phases adopt the same shape, scaling down the filler phase 
(see fig. 6C). Perhaps unintentionally, the BLM’s resistance to percolation has 
resulted in the success of attempts based on computer modelling to simulate 
electroceramics. This has allowed for visualisation of the electrical microstructure 
of the BLM, as both Kidner and Flieg have shown17, 18. Sometimes it is difficult to 
acquire reliable measurements of the microstructure-related parameters (grain 
boundary thickness may not be constant and hard to measure reliably) so EMT 
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should not be neglected, particularly when only conductivity extraction is 
required.  
 

 
Fig. 6. (A) Microstructure of Zuzovsky’s EMT. (B) Unit cell of Zuzovsky’s EMT with 
conductive phase volume fraction at the percolation limit. (C) Two phase composite 
with both materials adopting the same shape to allow a range of volume fractions 
without percolation for regular and irregular geometries. 
 
2.1.3. Finite Difference Methods 
 
A recent development of the BLM is a 3D finite difference model developed by 
Kidner et al17. The BLM was represented by a nested cube structure built up by 
voxels. Each voxel consisted (electrically) of six orthogonal RC elements that were 
connected to its six nearest neighbours to produce a 3D equivalent circuit (see fig 
7). Due to complexity of the system, Kidner’s model had no analytical solution and 
had to be solved numerically. Whether a voxel was in a bulk or grain boundary 
(GB) region determined what properties were assigned to its RC elements. For 
example, to simulate resistive grain boundaries a GB voxel would have a higher 
resistance assigned to its RC element. This model was deemed to be more suitable 
for the simulation of nano-grain ceramics where the GB has similar thickness to 
the grain bulk or systems where the space charge extends outwards from GBs 
producing an electrical microstructure where the GBs are more significant19. 
 
 

 
Fig 7. (A) A single ceramic grain made up from voxels, darker voxels indicate grain 
boundary, lighter voxels indicate bulk. (B) Schematic of orthogonal RC connectivity 
for a single voxel. 
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 Kidner’s model produced impedance spectra for a range of bulk volume 
fractions that were deemed to fall within bounds that were physically reasonable 
composite conductivity for a two-phase electrical composite (calculated using the 
Maxwell-Garnett effective medium theory). The 3D BLM was compared to other 
models including the analytical BLM variants (with and without parallel grain 
boundary paths) and Zuzovsky’s EMT. Out of all these methods, only the 3D BLM 
and Maxwell’s EMT could model an entire range of volume fractions. The series 
BLMs could only model thin grain boundaries. This was theorised to be because 
the serial BLM (see fig. 8A) neglects the contribution of the parallel GB, which 
become significant when the GB is of similar thickness to the bulk ceramic. The 
parallel BLM (see fig. 8B) becomes physically unreasonable, as it cannot model 
current leakage between the parallel GB and bulk material. Kidner was successful 
in extracting inputted material properties (conductivity and permittivity) using 
the Bonanos-Lilley equations14, 19. 

Fig. 8. (A) Serial BLM equivalent circuit and representative microstructure. (B) 
Parallel BLM equivalent circuit and representative microstructure. 
 
 It was noted that the calculated DC conductivity bounds for the 3D BLM 
were above the lower bound of the Hashin-Shtrikman equations. This can be 
explained by considering the shape of the high conductivity material used in both 
approaches. For the 3D BLM the high conductivity inclusions are cubes, whilst the 
Hashin-Shtrikman equations are based on EMT and therefore the conductive 
inclusions are spheres. If we consider the surface area provided by a sphere and a 
cube of the same volume, the surface area of the cube is larger. In the context of 
conduction this means that the cube presents more area for current to flow 
through. This was studied quantitatively by Mansfield et al, who calculated 
intrinsic conductivity factors for different shapes of unit volume20. Cubes had the 
largest conductivity factor whereas spheres had the lowest. The 3D BLM (being 
cube-based) had a higher conductivity than the (sphere-based) EMT, leading to 
higher conductivity bounds for the 3D BLM. 
 A final development to the 3D BLM was the addition of variations in the 
properties of the grain boundary region21 . This was achieved with a cubic ‘onion’ 
structure (see fig. 9). The grain boundary region was divided into three zones, each 
making up another layer of the ‘onion’. The zone closest to the bulk had a 
conductivity and permittivity of 50% of the normal assigned properties, the middle 
zone 100% and the outer zone 150%. This approximated a gradual variation of the 
grain boundary properties that theoretically could be caused by space charge 



 Chapter 2: Literature Review  57 

layers extending past structural boundaries or a gradient in composition. This 
produced an increase in the model’s resistance (taken from a Z* Nyquist plot) and 
also an increase in the low frequency Z* arc depression. The change in resistance 
was not of much concern, as the change in layer properties had been chosen 
arbitrarily - not obeying any laws of mixture. However, the increase in Z* arc 
depression could prove to be a cause of deviation from the Debye type responses 
in impedance spectroscopy. 
 

 
Fig. 9. Cross section of Kidner’s 3D BLM nested cube ‘onion’, where (a) is the bulk and 
(b) to (d) represent the grain boundary with decreasing conductivity and 
permittivity of each layer away from the bulk. 
 
 A potential issue with Kidner’s approach is that conduction is limited to the 
orthogonal connections of the pixels. Obviously this would be a problem when 
modelling a material where conduction is not limited to just the XYZ axes. The 
effect of this can be minimised with increased pixel resolution. For simple cases, 
the 3D BLM shows how the series BLM is good for thin grain boundaries (micron 
grain-sized regime). The parallel BLM can become useful when faced with grain 
boundaries of similar thickness to the bulk (nano grain-sized regime) and neither 
of the traditional models work well for intermediate bulk volume fractions. 
 
2.1.4. Finite Element Modelling 
 
More recent work has forgone the use of equivalent circuits (for the actual 
simulation of impedance spectra, equivalent circuits are still used for analysing 
spectra). By using finite element modelling (FEM), regions of a model can be 
assigned intrinsic material properties (e.g. conductivity) instead of extrinsic 
properties as used for circuit elements (e.g. resistance). The basic principle of FEM 
is to break a complicated problem (often too difficult to solve analytically) into 
smaller problems that can be solved locally; local equations can then be used to 
solve the global equation numerically22. A more in depth overview of the FEM code 
used in this project is given in chapter three. First applied to solve 2D plane stress 
on the wings of early military jets23, FEM was improved upon and, with increasing 
availability of computers in the late 20th century, became an industry standard for 
solving mechanical problems. The technique has been expanded into other areas of 
physics, allowing for the simulation of heat flow, electromagnetism and other 
dynamical systems 24, 25, 26. 
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 In the context of solving AC impedance by FEM, initial work was pioneered 
by Fleig and Maier first in 2D27 and later in 3D28 . Both approaches gave reasonable 
results, producing a dual arc response for simulated ceramic microstructures with 
resistive grain boundaries and single-sized cubic grains (analogous to the BLM). 
Fleig made the argument that the BLM would not be able to analyse the impedance 
data of all microstructures due to the limits of equivalent circuits. For an 
equivalent circuit to be an exact representation of a microstructure, several 
conditions must be met28. Assuming a cube of material with a single permittivity 
and conductivity, if the sides that are perpendicular to the applied voltage have a 
uniform potential difference between them and if no current can leak out of the 
free sides parallel to the applied voltage, all the current can be assumed to flow 
from the surface with the higher potential to the surface with the lower potential 
(see fig. 10A). Here the cube’s electrical response is mathematically equivalent to a 
single RC element. 
 Taking the same cube and dividing its volume into two layers with a 
perfectly flat interface stacked perpendicular to the applied voltage, we arrive at 
the SLM. If each layer has its own value of permittivity and conductivity, the same 
conditions hold, as the interface between the two layers will also be equipotential 
(see fig. 10B). Here the cube can be represented exactly as a two RC elements 
connected in series. If the configuration of the two materials of the cube is altered 
so that not all interfaces are perpendicular to the applied voltage, the remaining 
perpendicular interfaces will not be equipotential (see fig. 10C, surface 2) and so 
current will be able to flow between any parallel interfaces (see fig. 10C, surface 3). 
Here an equivalent circuit will not be an exact representation even if extra parallel 
branches are added. It should be noted that just because an equivalent circuit is 
not a mathematically exact representation of an electrical microstructure does not 
mean that it is necessarily a bad approximation. It is important to test under what 
conditions such an approximation is appropriate. 

 
Fig. 10.  Several cross sections of a cube of material that has a uniform potential 
difference (∆Φ) applied between the top and bottom surfaces (blue) and the 
condition that no current may flow through any of the other free sides (orange). (A) 
Situation where the cube has only one material of conductivity σ1 and permittivity εr1 
and can be represented by a single RC element. (B) Situation where the cube is a 
layered composite material with one region having a conductivity σ1 and permittivity 
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εr1 and the other having a conductivity σ2 and permittivity εr2, and can be 
represented by two RC elements connected in series as surface 1 (red) is 
equipotential. (C) Situation where the cube is a composite material with one region 
having a conductivity σ1 and permittivity εr1 and the other having a conductivity σ2 
and permittivity εr2, and cannot be represented exactly by two RC elements connected 
in series as surface 2 (green) will not be equipotential and surface 3 (turquoise) will 
have current flowing through it28.  
 
 Fleig has shown that even small deviations from homogenous layers can 
lead to a frequency dependent potential distribution18, 27, 28, 29. At low frequency, 
the potential is distorted around microstructural features that offer paths of least 
resistance and at higher frequencies the potential becomes less distorted as 
capacitive pathways short out the conduction pathways. An example of this was a 
2D simulation of an imperfect electrode, consisting of a layer of ceramic with an air 
gap between the ceramic and the electrode27. The air gap was significantly more 
resistive than the ceramic and a small part of the electrode infiltrated the air gap to 
make contact with the ceramic layer. This configuration can approximate poorly 
wetting electrode paste or poorly contacted foil electrodes. At low frequency the 
potential drop was greater around the electrode contact point (see fig. 11A). 
Potential contours were highly distorted around the contact point also. As 
frequency increased, the potential drop was spread more evenly across the model 
and the potential contours were less distorted at the contact point (see fig. 11B).  

 
Fig. 11.  Schematic of the potential distribution through a ceramic with a poorly 
contacted electrode at (A) low frequency and (B) high frequency. 
 
 Two arcs were found in an impedance Nyquist plot. The high frequency arc 
had the same resistance and capacitance to a ceramic layer with a perfect 
electrode. The low frequency arc was deemed to be a composite containing the 
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effect of the air gap capacitance and the bulk ceramic resistance. This effect was 
also present in a 3D equivalent of the same study28, showing that heterogeneity in 
the electrical microstructure can lead to a distinct impedance response. 
 A 2D investigation of grain boundary morphology30 showed that, when 
grain boundaries are thin and more resistive than the bulk ceramic, small 
deviations from the ideal microstructure of the BLM (see fig. 12A) also altered the 
impedance response. Constructing single-sized grains from a variety of shapes (see 
figs 12B to F) altered the potential distribution throughout the grains, particularly 
at low frequency. This altered the low frequency arc diameter in impedance 
Nyquist plots by up to a factor of two. The reason for this deviation was a change in 
the area of grain boundary presented to the incoming current. If a greater area of 
grain boundary was presented, the effective resistance of the grain boundary was 
reduced. At high frequency, the potential distribution was homogenous and the 
bulk arc was not affected. A model using randomised grain shapes deviated less 
from the BLM-predicted grain boundary resistance. Fleig suggested that, for a 
randomised grain shape, some areas of the microstructure will present more grain 
boundary area to the incoming current, others less and hence will average out to 
some extent. This implies that for experimental analysis of polycrystalline 
ceramics with thin and resistive grain boundaries, the BLM is a good 
approximation for the electrical response.  

 
Fig. 12.  Schematic of a Brick Layer Model and several 2D microstructures that 
deviate from the Brick Layer Model by alteration of their grain boundaries. (A) Brick 
Layer Model; (B) parallel sloping grain boundaries; (C) zigzag grain boundaries; (D) 
displaced brick layer grain boundaries; (E) hexagonal grain boundaries; and (F) 
perpendicular sloping grain boundaries. 
 
 Larger deviations from the BLM occurred when attempting to simulate 
more complex microstructures such as inhomogeneous distributions of grain size 
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and grain boundary properties. Heterogeneity in microstructure was shown to 
cause inhomogeneous potential distributions, implying current flowing through 
the path of least resistance (see fig. 13), missing out more resistive regions (such 
as clusters of smaller grains, giving a higher density of grain boundaries and hence 
a greater resistance for the current to overcome)30.  
 Similarly if a microstructure forces current to pass through a more resistive 
region it was found that the current will disperse throughout the ceramic 
boundary; maximising the area to reduce the effective resistance31. Simulations of 
micro contacts placed on individual grains demonstrated this. If the grains were 
mono-sized cubes and all grain boundaries had the same properties (more 
resistive than the grains), current only passed through the minimum amount of 
grain boundaries required to flow from one micro-contact to the other (see fig. 
14A). A simulation of the same model, but where the resistance of the grain 
boundaries that the current had flowed through was increased and the remaining 
grain boundaries had the original value of resistance, showed the current 
detouring past the altered grain boundaries and flowing through the less resistive 
grain boundaries (see fig. 14B). Using a 2D simulation of a randomised ceramic 
microstructure (with a distribution of grain sizes and shapes to mimic a real 
microstructure), Fleig used current density distribution plots to show that on 
average a larger current density passed through the larger grains, providing visual 
evidence of current taking the path of least resistance through the model 32.  
 

 
Fig. 13.  Schematic of current avoiding regions of the microstructure that have a 
higher density of grain boundaries. Given the grain boundaries are more resitive than 
the bulk, the regions with a higher density of grain boundaries will be more resistive 
over all presenting an obstruction to current flow. Hence the current will detour 
through the region that has lower grain boundary density. 
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Fig. 14.  Schematic of micro contact impedance analysis simulations. (A) Current 
curvature to pass through two non-blocking grain boundaries. (B) Current taking a 
longer path of least resistance to avoid blocking grain boundaries.  
 
 One of the main limitations of Fleig’s approach was due to the limited 
availability of computer processing power at the time of his studies. The models he 
produced could only be meshed with fewer elements than comapared with more 
recent studies (producing a smaller system of equations to solve) and, for more 
complex problems, 2D simulations had to be used. A finer mesh allows for a more 
accurate simulation and gives a better resolution when using visualisation 
techniques. This was utilised by Dean et al33 to show current density distributions 
and how their inhomogeneity leads to departures from ideal Debye behaviour.  
 Several microstructures were simulated. The first was a layered structure 
analogous to Maxwell’s SLM6 (see fig. 15A and B) and the second was a nested 
cube model (referred to as the encased model, see fig. 15C and D). Both models 
were composed of two regions, representing core and shell materials. The core 
was three orders of magnitude more conductive than the shell and both materials 
had the same permittivity. First, a comparison of both models was made where the 
volume of core and shell was the same. Giving the same amount of material a 
different configuration in space was found to alter the resistances and capacitances 
of the core and shell material. The SLM agreed with analytical predictions; the 
encased model deviated from predictions. Another finding was that the Full Width 
at Half Maximum (FWHM) of the high frequency imaginary electric modulus 
component measured 1.15 decades on a log frequency scale for the SLM and a 
larger 1.23 decades for the encased model (see fig. 15E). As discussed in the theory 
section of chapter one, a FWHM of 1.14 decades would be expected for an ideal 
Debye response. Examining the current density of each model revealed 
homogenous current density in each layer of the SLM whereas the current density 
in the encased model was more heterogeneous 
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Fig. 15. (A) Cross-section of the series layer model with (B) three dimensional 
representation. (C) Cross-section of the encased model with (D) three-dimensional 
representation with part of the shell removed to show the core. (E) Spectroscopic plot 
of the imaginary component of the electric modulus formalism. Note the increase in 
the Full Width at Half Maximum of the encased model’s high frequency peak. These 
simulations have been reproduced using the same FEM code as Dean et al30; more 
detailed discussion is presented in chapter four. 
 
 These results imply that although each component of an electrical 
composite may have relatively homogenous electrical properties, the configuration 
of the physical microstructure can produce a heterogeneous electrical 
microstructure. This heterogeneity will be reflected by increased deviations from 
an ideal Debye response in impedance spectra. It was shown that the deviations 
from ideality were increased as the volume fraction of the shell material in the 
encased model increased. This correlated to increased heterogeneity in current 
density as the shell volume fraction increased. Dean et al also repeated these 
simulations with a randomised 3D microstructure using Voronoi tessellation30. 
The average grain size was comparable to the previous models allowing for 
comparison. It was found the FWHM of the high frequency imaginary electric 
modulus peak further increased to a maximum 1.32 decades when the volume 
fraction of the shell material was highest (with a value of 0.5). More current 
density plots showed increased heterogeneity in the random Voronoi 
microstructures. It was also shown that current flowed through preferred paths of 
least resistance in good agreement with theory and previous simulation work13, 32.   
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2.2. Summary of findings 
 
It is possible to model the AC characteristics of electrical composites with several 
approaches. The variants of the BLM provide approximations of an electro- 
ceramic microstructure allowing for its use in data extraction from spectra, but can 
be unreliable if the correct version is not used for the grain boundary volume 
fraction presented. Simple layer models such as the SLM and PLM are useful for 
modelling electrical composites that have only serial and parallel connectivity 
respectively, but cannot model more complex scenarios where significant parallel 
and serial conduction pathways exist within the same microstructure. EMT can 
model a whole range of volume fractions but has a microstructure that is very 
different to a real ceramic, making it unsuitable for visualisation. 
 FEM and finite difference modelling can be used to simulate impedance 
numerically, allowing any bulk volume fraction to be studied with microstructures 
at least as realistic as the BLM. Using advanced model generation it is possible to 
surpass the BLM in terms of microstructure realism33. Where simulated 
microstructures are relatively simple, FD can be more computationally efficient 
than FEM but FD is less flexible when simulating complex geometries compared to 
FEM. This is due to FEM’s ability to discretise space with an unstructured mesh (or 
a non-regular sized numerical grid). An additional advantage of an unstructured 
mesh is the ability to vary the resolution of the mesh depending on the accuracy of 
the calculation required locally within a model. An example of this could be having 
a finer mesh around an important microstructural feature and a coarser mesh 
where accuracy is not so important. Perhaps the greatest strength of computer 
modelling is the ability to study the internal behaviour of a model and how it 
governs output spectra. Already studied qualitatively21, 33, it is possible to see what 
parameters can lead to departures from simple Debye-like behaviour. The 
development of new analysis techniques will allow quantitative analysis of such 
deviations, potentially providing insight into the origins of non-ideal behaviour.  
 

2.3. Gaps in our knowledge 
 
As computational power becomes more readily available the versatility of FEM will 
prove attractive over the more performance- friendly (simpler to implement and 
less computationally intensive to run) finite difference based approaches. The 
ability of FEM to handle complex geometries has already been utilised for 
simulations of impedance spectroscopy of ceramics at the device scale. Recent 
work has used serial sectioning technology to produce 3D models of portions of 
multi-layer capacitors for conversion into meshed models34, 35, 36. These models 
were then used to simulate electric field distributions and hence investigate 
reliability issues. The models had averaged properties for the ceramic layers (grain 
boundaries and secondary phases were consolidated into the bulk properties) in 
order to capture detail at a larger scale, such as the interface roughness. This 
approach can be applied on a smaller scale to simulate more local detail in ceramic 
microstructures and therefore allow the influence of grain boundaries, pores and 
secondary phases to be considered in full 3D. Shape effects considered by Kidner13 
et al were calculated from analytical solutions20. Such effects can easily be 



 Chapter 2: Literature Review  65 

simulated by FEM allowing shape effects to be studied in less ideal, randomised 
microstructures where no exact analytical solutions exist. 
 Kinder21, Dean33 and Flieg29 observed non-ideality in simulated impedance 
spectra. For Kidner this was due to many time constants of similar magnitude 
being present, in good agreement with some of the theory present in the literature 
that considers distributions of relaxation times (see chapter one for a detailed 
discussion). For Fleig and Dean, such behaviour occurred in systems with only two 
well-separated time constants. The apparent non-ideality was due to 
heterogeneity in the electrical microstructure. This would imply that there is a 
contribution to non-ideality from microstructural effects in addition to the well-
discussed intrinsic effects. Whilst FEM and other continuum approaches are 
unsuitable for studying the intrinsic contribution to non-ideality in impedance 
spectra, due to the most likely atomistic nature of the intrinsic contribution. 
However, FEM is ideal for the study of microstructural contribution to non-
ideality. Techniques for the quantitative analysis of current density or potential 
distributions throughout a simulated microstructure should be developed to study 
how the electrical microstructure correlates with non-ideal impedance spectra. 
 Another consequence of heterogeneity in electrical microstructures is the 
reduced applicability of fitting with equivalent circuits28 (see fig. 10). The 
simulations of Dean et al 33 showed that, as the shell of an encased model became 
thicker, the current density in the core becomes more heterogeneous. An encased 
model with a thick shell can approximate a core-shell microstructure. Previously a 
BLM analysis has been used to extract volume fractions from core-shell 
microstructures15, 37. A FEM study could test this analysis by performing an exact 
calculation where core-shell volume fractions are known and then extract volume 
fractions using the BLM. This would show under what conditions such analysis is 
accurate and what magnitude of error(s) could be present (see fig. 16). This 
approach can also be applied to equivalent circuit fitting. Hwang et al attempted to 
fit nano-grained ceria with the parallel BLM equivalent circuit5. Again, FEM could 
be used to simulate a nano-grained ceramic (grain boundary similar thickness to 
the bulk) and, by extracting known values of permittivity and conductivity using 
the parallel BLM, could evaluate the methodology.  

 
Fig. 16. Methodology for evaluation of the BLM by comparison of input and output 
data from a computer model. 
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 Generally, previous studies simulating impedance spectroscopy have used 
the complex impedance formalism (Z*) to analyse data. While a few previous 
works have used an alternative formalism, such as the work of Dean et al which 
used a combination of Z* and the electric modulus (M*). As stated in chapter one, 
impedance data can be analysed using several formalisms, each with its own 
weighting to different magnitudes of resistance and capacitance. It would be 
beneficial for a computational study to analyse data using all four formalisms and 
compare extracted values of conductivity and permittivity with pre-defined values. 
This could show practitioners what formalism (or combination of formalisms) is 
best for a given scenario (microstructure and/or material properties).  
 Finally, not much attention has been given to the impedance response of 
materials with more than one permittivity present. Several of the studies discussed 
above have assigned different permittivities to the bulk and grain boundary 
regions, typically to ensure that the time constants of bulk and grain boundary are 
sufficiently different. There have been no studies of the impedance spectroscopy of 
a material where the conductivity is fixed throughout the entire microstructure 
and only the permittivity is varied. The closest work to this in the literature is in 
the field of microwave dielectrics but is limited to DC38 or fixed frequency39 
measurements. Once the effect of a difference in permittivity is understood in 
isolation, a more complex analysis of materials with mixed conductivity and mixed 
permittivity can be attempted.  
 In summary this gives five research questions that are the subjects of the 
work presented in this thesis: 
 

• How do shape effects affect the impedance response of physical 
microstructures that have no analytical solution? 

• What is the cause of non-ideality observed in previous modelling studies on 
impedance spectroscopy that did not contain the intrinsic contribution to 
non-ideality present in real materials? 

• Can the brick layer model be applied to the analysis of core-shell 
microstructures or nano-grained ceramics where the current density 
distribution is more heterogeneous than in ceramics with thin grain 
boundaries and could a parallel version of the brick layer model be applied 
to these systems? 

• For a given microstructure and material properties, what is the best 
impedance formalism for the extraction of material properties by 
comparison of extracted values to the original input values? 

• How does the impedance response of a material with homogenous 
conductivity and heterogeneous permittivity vary with the microstructural 
configuration of the low and permittivity material? 
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Chapter 3: Methodology 
 

In this chapter the methodologies used in this work are detailed. The mathematics 
specific to our finite element code is described. For a more general overview of the 
finite element method, the reader is directed to the FEM section in the literature 
review (chapter 2). Model generation is also covered here. Finally algorithms 
written to analyse the physical and electrical microstructure are explained. 
 

3.1. Finite Element Modelling 
 
3.1.1. Applying the finite element method to impedance spectroscopy 
 
In this study a finite element code, developed in-house, called ElCer (Electro 
Ceramics) is employed1. This software uses Maxwell’s equations2 to calculate the 
impedance response of a ceramic microstructure with electrode contacts over a 
given frequency range. The mathematics behind ElCer is described in greater detail 
in a recent publication1. Here we highlight the key steps to show the general 
methodology, the assumptions made and the implications for this work.  

We first consider Maxwell’s continuity equation2. 
  

 ∂ρ

∂t
+ ∇. 𝐣 = 0   

1

1
(3.1) 

 
where ρ is the charge density, t is time and j is the current density. To find the 
current flowing through the microstructure we must evaluate ∇. 𝐣. The current 
density has two components: a conductive term (jc) and a displacement current 
term (jd). These terms are: 

  
 𝐣𝐜 =  σ𝐄 (3.2) 
   
 

𝐣𝐝 = 
∂𝐃

∂t
 

1

1
(3.3) 

   
 ∇. 𝐣 = ∇. (𝐣𝐜 + 𝐣𝐝) (3.4) 

 
where D is the electric displacement, 𝜎 is the conductivity and E is the electric 
field. The material simulated obeys Ohm’s Law, is isotropic and has no time 
dispersion. We can therefore approximate the permittivity of the material, ε(r), as 
simply a function of position. We can therefore write D as: 

         
 𝐃(𝐫, t) = ε(𝐫)𝐄(𝐫, t)   (3.5) 
 
Substituting (3.3) into (3.5) gives: 
 

 
𝐣𝐝 =  ε(𝐫)

∂𝐄(𝐫, t)

∂t
 

1

1
(3.6) 

 
Substituting (3.6) and (3.2) into (3.4), ∇. 𝐣 becomes: 
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∇. 𝐣 = ∇. (σ𝐄 + ε(𝐫)
𝜕

𝜕𝑡
𝐄(𝐫, t)) 

1

1
(3.7) 

 
 As the frequency range for measuring impedance spectroscopy 
experimentally is within the millihertz to megahertz range, inductive effects are 
ignored as generally they are dominated by capacitive effects in resistive ceramics 
up to the terahertz frequencies. This allows E to be written as a function of the 
electric potential (Φ(r,t)).  

 
   𝐄 = −∇Φ(𝐫, t) (3.8) 

 
where Φ(𝐫,t) can be approximated using shape functions for a given mesh element. 
Substituting (3.8) into (3.7) gives a partial differential equation for ∇. 𝐣 where, 
given values of permittivity and conductivity, the electric potential can be 
obtained: 

 
 

∇. 𝐣 = −∇. (σ∇Φ(𝐫, t) + ε(𝐫)
∂

∂t
∇Φ(𝐫, t)) 

1

1
(3.9) 

 
 Using the Galerkin scheme3 for time discretisation allows the local values of 
electric potential to be obtained given three boundary conditions. A Dirichlet 
boundary condition sets the electric potential to known values at the electrode 
surfaces of the model. This is analogous to applying a potential difference in a real 
impedance measurement (see fig. 1). A Neumann condition is applied to the free 
surfaces of the model, setting the current density to zero at the ceramic-air 
boundary. This confines the current density inside the model. Finally there is the 
internal boundary condition (considering the boundary of an individual element) 
that allows current to flow from one element to its neighbours. This allows current 
to flow freely through the model.  
 

 
Fig. 1. How the three boundary conditions used in the FEM model relate to an 
experimental impedance measurement. 
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 Once the local values for Φ have been found, local values of j and E can be 
back- calculated using equations (3.7) and (3.8) respectively. These can be plotted 
as a function of position in order to visualise the electrical microstructure. The 
global values of j and E can then be calculated by the integration of the local values 
over the whole microstructure. Current (I) flowing through the electrode surface at 
any time step is calculated by integrating the global current density over the 
electrode surface (SEl): 

 

 
I(t) = ∬𝐉(𝐫, t). 𝐧dA 

 

SEl

 
1

1
(3.10) 

 
where J(r,t) is the global current density, n is the unit vector normal to the 
electrode surface and A is the area of a given element present on the electrode 
surface. 
 At the top of the model there is always a layer of elements with only a 
conductivity assigned to it (permittivity is set to zero) called the reference layer. A 
zero value for permittivity means, mathematically, that the layer is a pure resistor 
with no capacitance. This is, strictly speaking, unphysical but is computationally 
convenient since it makes the current flowing through the reference layer 
frequency independent, simplifying the calculation. The known current in the 
reference layer gives the code a point of reference with which to compare the 
current in the rest of the model. This current will be frequency dependent since the 
materials in the microstructure have permittivity and conductivity values assigned 
to them. As both the current flowing through the electrode and the potential 
applied across it are known at any time step, a current-voltage characteristic can 
be obtained for a given frequency. The difference in phase between the current and 
voltage sinusoids can then be calculated. The impedance can then be found by 
combining the phase difference with the ratio of the amplitudes of the current and 
voltage. This process is repeated over the frequency range defined by the user, 
producing an impedance spectrum (see chapter 1). 
 The benefit of this approach is that it allows the study of how a three 
dimensional physical microstructure affects the electrical microstructure. This is 
unlike previous studies which considered only two dimensions4 allowing the 
electrical microstructure to be studied in full 3D at any time step – which is 
particularly difficult (and expensive) to do experimentally. The geometry of the 
modelled microstructure is limited only by what can be drawn (with a computer 
aided design package) and whether that geometry can be sub-divided into a mesh. 
Then, by assigning intrinsic physical properties (conductivity and permittivity) to 
distinct microstructural regions (individual grains and boundaries), a rigorous 
representation of 3D microstructures is produced. 
 
3.1.2. Work flow for the finite element simulation 

 
Our approach for setting up a simulation is first to draw a representative 3D 

model of the desired microstructure. Voronoi tessellation is used to automate the 
generation of polycrystalline ceramic microstructures (detailed in the next 
section).  An overview of the approach used to generate models in this project is 
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shown in fig. 2. Firstly a wire frame of the desired microstructure is drawn creating 
distinct volume regions and meshed using the open source software Gmsh5. A 
meshed volume is then attached to the top of the model to form the reference 
layer. Next, material properties are assigned to individual regions depending on 
what parts of the microstructure the elements are describing. Finally boundary 
conditions are assigned to nodes on the outer surface of the model. 

 
Fig. 2. The process for making a finite element model of a bi-layer from wire frame to 
meshed volume with boundary conditions. 
 

Once the model is set up, the finite element code can be used to solve for the 
impedance response of the model over a frequency range defined by the user. In 
this study models have been constructed typically with over one million elements. 
It is possible to run these simulations on a desktop computer. To acquire a large 
volume of results, however, access to high power-computing resources is 
advisable. Calculating the real and imaginary components of the impedance at each 
frequency produces the complex impedance spectrum. Typically, these spectra are 
plotted using specialist software such as Zview6 that allows data to be plotted in 
any representation of the impedance and offers equivalent circuit fitting tools. 
Should it be desired, the electrical microstructure (current density, electric field or 
electric potential) can also be visualised at a chosen frequency and time step. 
Typically, this involves re-running the simulation at specific frequencies that 
coincide with points of interest on the impedance spectra. For a model with a high-
resolution mesh, the corresponding electrical microstructure plots can require 
over 1GB of storage each so data storage limits must be taken into consideration.  
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3.2. Microstructure Model Generation 
 
3.2.1. Voronoi tessellation 
 

To produce complex granular models that represent polycrystalline 
ceramics efficiently and automatically, this project has made extensive use of 
Voronoi Tessellation7. This can be used to produce a cellular geometry by 
bisecting space around points (sometimes referred to as a Voronoi diagram). 
For ease of visualisation a 2D example is given in fig. 3. Firstly, several points 
are defined (fig. 3A). A Delaunay triangulation is performed on the points 
connecting all the nearest neighbours without crossing any lines8  (see fig. 3B). 
The mid point on each Delaunay triangulation line is found (in green, see fig. 
3C). Finally, the midpoints of the Delaunay lines are bisected perpendicularly 
(see fig. 3D). The bisecting lines terminate when they meet each other or the 
boundary of the Voronoi diagram. This can be extended to 3D systems (see fig. 
4). 

 
Fig. 3. (A) How Voronoi tessellation creates a cellular structure from a set of 
points in a Voronoi diagram. (B) Delaunay triangulation of points. (C) Finding 
midpoints and (D) bisecting midpoints. 

  
Fig. 4. Progressively higher dimensional objects produced using Voronoi 
tessellation: (a) line, (b) square and (c) cube. 
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 There are many methods for constructing Voronoi diagrams with different 
algorithms for the Delaunay triangulation and additional features. In this work 
the open source implementation Voro++9 has been used. Voro++ allows 
weighting factors to be included for individual cells. A larger weight assigned to 
a given point will generate a larger cell around it. This allows greater control 
over size distribution. It can also provide statistics such as the volume and 
areas of individual faces for each cell. Voro++ also provides accurate grain size 
distributions and connectivity information. 
 

 
3.2.2. Using voronoi tessellation to build granular models  

 
Many groups have used Voronoi tessellation to produce cellular or granular 

systems in 2 and 3D for a wide range of applications10. Changing how the points 
used for Voronoi tessellation are distributed greatly alters the shapes that can 
be produced. Regular lattices of points produce regular tessellating shapes (see 
fig. 5A and B). Dispersing the points randomly will produce a collection of 
random space-filling volumes (see fig. 5C). 

 
Fig. 5. How different distributions of Voronoi points affect the shape of the cells 
produced. (A) A cubic lattice produces tessellating cubes. (B) A body centred cubic 
lattice produces tessellating truncated octahedra and (C) randomly placed points 
produce random space filling cells. The colours highlight each individual grain. 
 
 A microstructural package has been developed in-house to produce granular 
microstructures based upon all three of the morphologies shown above. This 
package also allows the user to add a random disturbance to the Voronoi point 
location allowing randomised shapes based on the cubic or tessellating truncated 
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octahedra seen in figure 5 to be modified to more realistic structures as shown in 
fig. 6.  

 
Fig. 6. (A) Cubic volumes created with disturbed Voronoi points. (B) The same 
approach applied to truncated octahedra. The colours highlight each individual 
grain. 
 
 Each Voronoi cell is considered to be an individual ceramic grain. Additional 
microstructural features can be generated from the initial model.  For example, 
three distinct microstructural regions can represent core-shell microstructures: a 
core, a surrounding shell and a thin grain boundary encapsulating the whole 
structure. To generate this, first the overall grain shape is produced (see fig. 7A). 
Using the Voronoi point that generated the volume as the centroid of the grain, a 
grain boundary can be formed by shrinking the surface of the Voronoi cell towards 
its centre by a pre-determined value (see fig. 7B).  The volume between the initial 
geometry and the shrunken one can then be defined as the grain boundary. This 
process can then repeated, shrinking the newest geometry closer to its centroid 
leaving a thicker volume between the grain boundary and itself (see fig. 7C). This 
region can then be attributed as a shell (doped) material. The remaining innermost 
volume is the grain core. This process can be used to construct layered particles of 
regular and irregular shape (see Fig. 7E). 
 Each microstructural region can have its own mesh size, allowing for 
variable levels of detail. This can be useful when dealing with large grain sizes. 
There are large regions of bulk ceramic that can be adequately represented by a 
coarse mesh. Microstructural features that can greatly distort the electrical 
microstructure (such as pore and interface roughness) require a finer mesh. 
Representing very thin features can also be an issue. Typically the models are 
meshed with tetrahedra. However, in thin regions, a large number of (very small) 
tetrahedra are required to fill space. This leads to a finer mesh than would be 
required for the calculations to converge, resulting in a longer simulation time with 
diminishing returns on accuracy. To address this issue, the thin regions are 
meshed with prism elements (see fig. 7F). These elements can fill thin spaces much 
more efficiently. 
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Fig. 7. Overview of the microstructure generation of layered structures. (A) The 
initial grain shape. (B) The grain boundary is formed by shrinking a copy of the 
initial structure. (C) Another shrinking forms the shell and core volumes. (D) The 
plane marks the cross sections of a 3D model corresponding to (A-C). (E) The 
resulting 3D layered structure with a segment removed. (F) A cross section of the 
mesh where the outer (blue) layer has been meshed with prism elements, the grey 
and red regions are meshed with tetrahedra. 
 
 

3.3. Stream Tracing 
 
3.3.1. Visualising vector fields with stream tracing 
 
 One of the key advantages of using FEM to simulate impedance 
spectroscopy is the ability to study the electrical microstructure in full 3D. This 
requires the analysis of a 3D data set. Although this is possible, it is quite complex 
to extract information, to reduce the complexity we can visualise a 2D slice of the 
electrical microstructure. This allows slices of the microstructure to be compared 
qualitatively with one another. Fig. 14A and B shows an example of an electrical 
microstructure of a nested cube system at low and high frequency.  A quantitative 
analysis can be performed for a line scan of a 2D slice (see fig 14C and 14D) giving 
a direct comparison between the two electrical microstructures. 
 As this is a 2D slice it may miss important details above and below the plane 
visualised. One possible improvement is to take many slices through the electrical 
microstructure, with a fixed separation. This can then show how the data varies 
with depth (see fig. 15A). An additional approach is to section the data 
orthogonally (see fig. 15B). This approach depends on the data being symmetrical. 
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Fig. 14. Analysis of a 2D slice of a nested cube microstructure. (A) Current density 
plot at low frequency. (B) Current density plot at high frequency. (C) Position of line 
scan. (D) Current density (j) plotted against position on the line scan for both 
frequencies 
 
 

 
Fig. 15. Different approaches for analysing sectioned 3D data. A current density plot 
of a nested cube microstructure is used for demonstration. (A) Serial sectioning with 
indicated cross sections. (B) Orthogonal sectioning with indicated sections for the x, y 
and z planes. 
 
 In this work the 3D data are either the current density or the electric field 
as a function of position in a microstructure. There are strong analogies with 
computational fluid dynamics (CFD) simulations, particularly for the current 
density. The current density is a vector field describing how current flows through 
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a microstructure. For CFD, the corresponding vector field is the flow velocity. A 
popular way of visualising a velocity field is to use stream traces, also referred to 
as streamlines12. The general principle for streamlines is to place a massless 
particle in a velocity vector field and track its position as it moves through the field 
(see fig. 16). The trajectory is calculated by finding the resultant vector on the 
particle and integrating the product of the resultant vector and the change in 
time13. Plotting the trajectories of the streamlines enables interesting features such 
as stagnation points to be seen. 
 

 
Fig. 16. 2D schematic of how a stream trace is produced for a vector field calculated 
for a FEM mesh. 
 
 
 
3.3.2. Distributions of conduction pathway lengths 
 
In this work stream traces have been employed for data analysis as well as just for 
visualisation. Visualisation is useful as three-dimensional animations of the current 
pathways can be made by rotating the model. However, it is important to be able to 
represent data in a manner that retains meaning when presented in 2D media (e.g. 
a journal page). A method for gaining quantitative data from vector fields has 
therefore been developed. Consider a basic FEM simulation of a cube of material of 
length d with homogenous conductivity and permittivity. Applying the usual 
boundary conditions (see fig. 17A), current will flow linearly from the maximum 
potential (top surface) to the minimum potential (bottom surface), see fig. 17B. All 
the pathways through the cube have a length equal to d.  Obviously this leads to the 
mean path length being d and a zero standard deviation.  
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Fig. 17. Schematic of stream trace of current density of a homogenous cube. (A) The 
potential is applied to the top and bottom. (B) Current flows linearly through from 
the top to the bottom surface. 

 

 
Fig. 18. (A) Cross section of a nested cube model with overlaid conduction pathways.  
(B) A 3D schematic of how conduction pathways curve through the model. 
 

Let us now consider the case where there are two material regions in the 
cube and that these regions possess different material properties. In fig. 18A, two 
materials are present in nested cubes. The material of the inner cube (red) is more 
conductive than the outer region (blue). This difference in conductivity will lead to 
preferential pathways through the microstructure, resulting in curvature of the 
conduction pathways (see fig. 18B).  This increases the conduction path lengths 
through the microstructure. Statistical analysis of the distribution of conduction 
path lengths will give a quantitative measure of the degree of curvature in the 
current flow. 

In this work, Paraview software11 has been used to  generate and visualise  
stream traces. To perform a stream trace of vector data in Paraview the user must 
first define a source. This is a single point or a collection of points that act as the 
initial positions for the massless tracer particles. Our source is defined as a plane 
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divided into a regularly spaced grid. For consistency, the grid is always placed 20 
nm below the top surface of the model (i.e. the one at maximum potential). The 
slight displacement is necessary because if the starting position of the stream trace 
is exactly on the surface, the stream trace algorithm defines the initial positions to 
be out of the bounds of the vector field and fails to start. Once Paraview has 
calculated the stream trace of the vector field, the positions of the tracer particles 
can be extracted for all time steps. We then process this data to find the length of 
each stream and perform statistical analysis upon the many tracer particle 
trajectories. A practical problem in Paraview is that the stream traces may end 
prematurely due to errors in the integration step. This can lead to conduction path 
lengths that are lower than the distance between the known potential surfaces, 
analogous to electrode separation. These path lengths are considered unphysical. 
To prevent the short lengths from skewing the statistics, the measurement 
program ignores any path lengths that are smaller than the minimum electrode 
separation.  

  
Fig. 19. Convergence of the distribution of conduction pathway lengths for an 
arbitrary microstructure with non-linear current flow. 
 

To determine how many stream traces are required and hence the source 
plane resolution needed, a convergence study was performed. As fig. 19 shows, as 
the number of stream traces increases, the statistics of the distribution of 
conduction paths lengths converge. For more complex microstructure models, the 
number of stream traces required is likely to increase, however our results show 
there is a characteristic distribution for each microstructure. For the case shown in 
fig. 19, 20,000 stream traces provided a good compromise between convergence 
and simulation time. 
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Chapter 4: Core-Shell Microstructures 
 

 
 Core-shell microstructures are used in many applications. Tailoring the 
properties of the core and shell materials produces composites that make use of 
the best aspects of both components. In the context of this work, we are interested 
in the application of core-shell microstructures for use in multi-layer ceramic 
capacitors (MLCCs). Such microstructures provide temperature stability of 
capacitance in MLCCs, which is discussed in more detail in the literature review 
(chapter 2). Here we will focus on characterisation of core-shell microstructures 
and present simulations demonstrating how such structures affect the electrical 
microstructure and raise issues for characterisation using impedance 
spectroscopy. 
 

4.1. Core-shell Characterisation Literature 
 

 An industry standard figure of merit for MLCCs is the temperature 
coefficient of capacitance (TCC). This is a profile of capacitance, normalised to the 
room temperature capacitance, as a function of temperature (see fig 1). The 
deviation from the room temperature capacitance value and the temperature 
range over which this is achieved defines the industrially-recognised specification 
for a capacitor1. A recent study found that the volume fraction of the core (or shell) 
regions in rare-earth-doped barium titanate MLCCs is important in controlling this 
behaviour. Jeon et al2 used electron microscopy to characterise the volume 
fractions of core and shell regions. This was related to fixed frequency capacitance 
measurements to gauge the effects of physical microstructure on the dielectric 
properties. Although there are problems with extrapolating volume fractions from 
two-dimensional sections from microstructures3, there is clearly a trend. Given that 
these microstructural effects are probably present in other electrically composite 
materials, a robust three-dimensional characterisation is desirable. 

 
Fig. 1. Schematic for a TCC profile that would fit the XR7 specification (±15% 
deviation from room temperature capacitance from -55 to 125 °C). 
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 Recent advances in tomography allow ceramic microstructures to be 
imaged in three dimensions4; however, these techniques are time-consuming and 
expensive. If only volume fractions are desired, a more accessible approach is to 
use capacitance ratios. The microstructural regions probed in this manner must 
have well-resolved impedance responses. If impedance arcs overlap it will be 
impossible to resolve volume ratios with any confidence. The magnitude of an 
impedance response can indicate what microstructural feature causes it. As 
capacitance is inversely proportional to thickness, a thinner feature such as a grain 
boundary often has a larger capacitance than the bulk. This assumes that the 
permittivity of the two features is similar. If a brick layer model5 (approximation of 
a ceramic microstructure, see chapter 1) is assumed for the ceramic 
microstructure, the inverse capacitance ratio of  the micro-structural components 
will be equal to the volume ratio (see fig. 2). 

 
Fig. 2. Brick layer model approximation of a core shell microstructure allowing the 
core-shell volume ratio to be inferred from the capacitance ratio assuming a fixed 
area (A). r is the relative permittivity and 0 is the permittivity of free space. 
 
 Bonanos and Lilley first used this method to characterise volume fractions 
of Suzuki phases in cadmium-doped sodium chloride6. They also found that the 
electrical response of the composite could be modelled using Maxwell’s dispersed 
phase model7, particularly at lower volume fractions of a Suzuki phase. To model 
the capacitance ratio measured, equations were derived by expressing Maxwell’s 
dispersed phase model as the electrical response of a dual resistor- capacitor 
equivalent circuit. This gave an analytical solution for the high and low frequency 
resistances and capacitances for given values of conductivity and permittivity 
assigned to each phase. These equations are commonly referred to as the Bonanos-
Lilley equations6 in the literature. 
 Sinclair and West extended the technique of probing volume ratios using 
capacitance ratios to study the positive temperature coefficient of resistance 
(PTCR) of barium titanate ceramics that had a core-shell microstructure8. They 
estimated that the core made up 80% of the ceramic’s volume. Using conductive 
atomic force microscopy to image the electrical microstructure of PTCR barium 
titanate ceramics provided good agreement with the estimate from capacitance 
data9. This method was also used by Costa et al to demonstrate the existence of a 
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core-shell micro-structure in calcium copper titanate and how processing 
conditions affected the volume ratio10. 
 All three groups used the electric modulus (M*) impedance formalism to 
resolve their capacitance data. A useful feature of the electric modulus analysis is 
its sensitivity to small capacitances11. This method weights impedance data 
towards microstructural components that are thicker, such as bulk ceramic and 
secondary phases. Often these features can be missed when analysing impedance 
data as other formalisms are dominated by regions with higher capacitances and 
resistances12. Assuming well-separated time constants, a capacitance ratio can be 
obtained from an M* Nyquist plot (see fig. 3.), where the M* arc diameters are 
equal to inverse capacitances. 

 
Fig. 3.  (A) Schematic of the M* Nyquist plot for a dual RC circuit (B) where R1 > R2 
and C1 > C2. Adapted from13. 
 
 Previous finite element simulations by Dean et al14 showed that a change in 
physical microstructure could alter the electrical microstructure. Changing the 
configuration of two material types from a layered to a nested cube structure 
(whilst keeping the volume fractions of the materials constant) gave different 
impedance spectra. This implies that there is an electrical contribution from the 
physical microstructure independent of material properties. The change in 
capacitance and resistance measured from the spectra meant that values for the 
permittivity and conductivity extracted using geometric factors deviated from the 
expected known values. Current density plots showed a heterogeneous current 
density for the regular nested cubes and randomised shapes using Voronoi 
tessellation compared to the layered model. This gave values of the full width at 
half maximum of the Debye peak for the imaginary electric modulus (M’’) that 
exceeded the theoretical value of 1.14 decades on a logarithmic frequency scale. If 
practitioners want to gain information about microstructures from electrical 
measurements, they must check how electrical microstructures match or differ 
from physical microstructures for a given scenario. 

Cubic grains have been used in numerous simulation studies14, 15, 16 as they 
are simple geometries to produce and analyse. Although real grains are not regular 
cubes, the wide applicability of the brick layer model5 to ceramics indicates that it 
is a good approximation for grains with thin, resistive grain boundaries. Here we 
investigate whether this approach can be transferred to other systems. Recent 
advances in ceramics processing have allowed cubic grains to be produced. Kato et 
al have used aqueous processing routes to produce nano-sized cubes of BaTiO317, 

18. So far only permittivity data has been published, but advances in this field may 
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allow for direct comparison of experimental and simulated results for complete 
impedance data. 

 
 

 
 
 

4.2. Core-Shell Volume Fractions from Capacitance Ratios 
 
  In this section we investigate when core-shell volume fractions can be 

extracted reliably from capacitance ratios†. This has often been attempted8. 

However, using finite element simulations allows us to test the assumptions 
behind the methods used. In our simulations, the true volume fraction is known, as 
we have generated artificial microstructures. Initially we compared two basic 
microstructures. Each had two distinct material regions. One region modelled a 
semi-conducting core material and the other a resistive shell material. Both had 
equal permittivity. The material properties are listed in Table 1. These material 
properties were chosen for ease of simulation and data analysis. This allows us to 
examine the effects of the physical microstructure in isolation without a mismatch 
in permittivity values affecting results. Both microstructures were contained in a 2 
μm long cube. 
 

Material Conductivity/(μS cm-1) Relative Permittivity 
Core 100 100 
Shell 0.1 100 

Table 1. Material properties used for core and shell regions in the simulations. 
 

The first microstructure is called the series layer model (SLM) and was first 
derived by Maxwell7. As its name implies, the SLM consists of homogenous layers 
of material stacked perpendicularly to the applied voltage (see fig. 4A and B). 
Series equivalent circuits can represent the SLM when each layer has a single value 
for permittivity and conductivity and the potential () is homogenous across the 
top and bottom surfaces so the current flows perpendicularly between these 
surfaces19 (see fig. 5). This allows the SLM to be solved analytically using the basic 
equations for capacitance and resistance. In this study we have chosen to simulate 
the electrical response of the SLM with finite element modelling (FEM) as well as 
solve it analytically. Comparison of the analytical and FEM results for the SLM was 
used to validate the FEM code. 

                                                 
† Some work reported in this section has been published in the Journal of the 
American Ceramics Society by the author. All figures reproduced have been 
referenced in accordance to the creative commons attribution license. 
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Fig. 4. (A) Cross-section of the series layer model with (B) three dimensional 
representation. (C) Cross-section of the encased model with (D) three-dimensional 
representation with part of the shell removed to show the core. 

 
Fig. 5. The conditions where a region in a microstructure can reduce exactly into an 
RC equivalent circuit assuming only one conductivity () and permittivity () is 
present. The potential () must be homogenous at the top and bottom surface and 
the current must flow only between the potential surfaces (current density (j) is zero 
at the free surfaces). 
 

Our second microstructure is a nested cube that approximates the core-
shell microstructure and is referred to as the encased model. This consists of an 
inner cube of core material encased in an outer volume of shell material (see fig. 4C 
and D). Since there are now parallel pathways as well as the series pathway 
through the core (see fig. 6), the electrical response of the encased model must be 
solved numerically using FEM. The electrical response of the encased model can 
then be compared to the SLM. 
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Fig. 6. Schematic of parallel and series pathways available in the encased model. 
 

In order to find a suitable mesh size for both the SLM and encased model a 
convergence study was performed (for a definition of mesh size, see chapter 1). 
Ideally a convergence study would be performed for every change in model 
microstructure. This would take a very long time given the number of volume 
fractions simulated. To get a good estimate for convergence, we tested a model 
with equal core and shell volumes. For the SLM the mesh size was decreased and 
the capacitance ratio of core and shell material measured. This was compared with 
the analytical solution for the SLM. The magnitude of the difference between the 
analytical solution and the FEM results was expressed as a percentage of the 
analytical solution (see fig. 7). The error appears to be independent of the mesh 
size and is very small (less than ±0.12%). The random spread is a combination of 
rounding errors within the FEM code and that FEM method is an approximation to 
the true solution.  
 A different method was used to find a suitable mesh size for the encased 
model, as there is no analytical solution. Here an encased model with equal 
volumes of core and shell was simulated with decreasing mesh division. The arc 
diameters for both the high and low frequency M* arcs were extracted (see fig. 8) 
and convergence found. It was established that the high frequency arc diameters, 
associated with the core, converged faster than the lower frequency arc diameters, 
associated with the shell. Sufficient convergence was achieved for a 0.08 μm mesh. 
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Fig. 7. Graph of mesh division size against the error in the FEM simulation compared 
to the analytical solution for a SLM with equal volumes of core and shell regions. 

 
Fig. 8. Convergence of high and low frequency electric modulus (M*) arc diameters 
for an encased model with equal volumes of core and shell as the mesh division size is 
decreased. 
 
 As acceptable convergence for the SLM and encased model was achieved, 
the modulus spectra could now be compared. First, we consider the case where 
both microstructures have equal volumes of core and shell material. For the SLM 
we have two arcs of equal diameter (see fig. 9A). This implies an equal capacitance 
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for each layer and hence a core volume fraction (core) of 0.5 is obtained. For the 
equivalent encased model the arc diameters are different (see fig. 9B). The high 
frequency arc is larger than the low frequency arc. Given that the time constant 
()for the shell should be around 3 orders greater than that of the core and that  is 
the inverse of the Debye frequency, it is reasonable to assign the low frequency arc 
to the shell and the high frequency arc to the core. This implies that the value of 
core measured from the capacitance ratio is greater than 0.5, as the M* arc 
diameter is greater for the core than the shell.  
 To understand the discrepancy in volume fractions obtained from 
capacitance ratios between the SLM and encased model, the electrical 
microstructure must be examined. Current density plots were obtained at the 
highest applied voltage for a given frequency. This showed the largest current 
density in the region of the microstructure that should be associated with a given 
frequency. Current density plots at the indicated frequencies for the SLM (see fig. 
9C) and the encased model (see fig. 9D) show how the electrical microstructure is 
dependent on the physical microstructure and frequency. The most important 
frequencies are the Debye points, the maxima of the imaginary M* component. For 
the SLM at the low frequency Debye point (fig. 9C i) the current density is greatest 
in the shell layer. Increasing frequency to the high frequency Debye point (fig. 9C 
iii), current density is concentrated in the core layer. For the SLM at all frequencies 
the current density is homogenous in each layer.  
 For the encased model, at the low frequency Debye point (fig. 9D iv) there is 
higher current density in the shell but only for the series component. At the high 
frequency Debye point (fig. 9D vi) the current density is concentrated relatively 
homogenously in the core. For the encased model this implies that there is only a 
partial response from the shell material but a full response from the core. Hence 
the volume fraction of the core material is over-estimated. 

  
Fig. 9. (A) Electric modulus Nyquist plot for the SLM, (B) electric modulus Nyquist 
plot for the encased model, (C) current density plots taken at the indicated points on 
the SLM M* plot, (D) current density plots taken at the indicated points on the 
encased M* plot. All current density plots have units Am-2. Note for the electric 
modulus formalism, frequency increases away from the origin (opposite to 
impedance). Figure adapted from13. 
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 The comparison of the SLM and encased model was repeated over a range 
of known core volume fractions. Extracting core from capacitance ratios showed 
that the magnitude of the discrepancy between the SLM and encased model varied 
with the inputted core (see fig. 10A). A reasonable fit of this behaviour is provided 
by the Bonanos-Lilley equations6 using the same volume fraction, permittivity and 
conductivity values. Given the wide applicability of the effective medium theory 
that they are based on, this gives us confidence that these results are physically 
meaningful. If we consider the extracted value of core as a percentage of the known 
value, it is found that the extracted value deviates the most at lower values of core 

(see fig. 10B). 

 
Fig. 10. (A) core values extracted from capacitance ratios of the simulated modulus 
spectra for the SLM and encased model against the known values of core. A line for 
the Bonanos-Lilley equations is also plotted. (B) Extracted core values as a 
percentage of the known core values against the known core values for the encased 
model. Figure adapted from13. 
 
 Another fit for the encased model’s deviation from the behaviour of the SLM 
used an equivalent circuit derived from the electrical microstructure. We will refer 
to it as the series brick layer model (SBLM). From the evidence of the frequency-
dependent current density distribution in the electrical microstructure of the 
encased model (see fig. 9), it can be seen that the low frequency impedance 
response is dominated by the series component of the shell material, whereas at 
high frequency the core region dominates. Taking the geometries of the core and 
series shell components and their respective conductivity and permittivity values, 
allows the resistance and capacitance for each microstructural component to be 
calculated (see fig. 11). Using the capacitance ratios predicted by this model, the 
volume ratios can be calculated, neglecting the capacitance contribution from the 
parallel components of the shell. The SBLM provided a better fit to the encased 
models capacitance ratio than the SLM but not as good as the Bonanos-Lilley 
equations (see fig. 12). 
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Fig. 11. (A) Electrical microstructure of the encased model at low and high frequency 
(top and bottom, respectively). Plots are current density where lighter colour 
indicates a higher value. (B) Geometries of the series shell and core components 
(subscript 1 and 2, respectively) with their intrinsic properties. (C) Equivalent circuit 
derived from intrinsic properties of the microstructural components and their 
geometries. 

 
Fig. 12. core values extracted from capacitance ratios of the simulated modulus 
spectra for the SLM and encased model against the known values of core.  Lines for 
the Bonanos-Lilley equations and the SBLM are also plotted.  
 
 A study of the difference in the core values obtained from the encased 
model simulations and the SBLM revealed an interesting trend with the known 
values of core (see fig. 13). The difference varied with core with a peak at  
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core~0.2. This trend proves to be significant in a more rigorous analysis of the 
electrical microstructure and is discussed at the end of this section. 

 
Fig 13. (A) Encased model deviation from SBLM predicted core against input core 
(B) How this deviation is calculated. 
 
 Further understanding was provided by extracting the resistance and 
capacitance values from the M* arc intercepts (as explained in fig. 3). Analysis of 
the SLM M* arcs gave time constants for the core and shell layers of 8.65 μs and 
8.75 ms, respectively for all core volume fractions. This agreed well with the 
inputted values of permittivity and conductivity. For the encased model the shell 
response was also 8.75 ms for all values of core but the core response increased as 
core decreased (see fig. 14). This does not agree with the principle that time 
constants are geometry independent. The resistance and capacitance geometric 
factors should cancel20. The M* Nyquist plots in fig. 14 show that, as core 
decreases, the core response merges with the shell response. The greatest 
uncertainty, obtained by measuring arc overlap, for the core arc was ±30%. This 
alone could not explain why the core time constant is nearly five times greater for 
the encased model than for the SLM. 

 
Fig. 14. Plot of core material time constants extracted from simulated modulus plots 
for the SLM and encased model with M* Nyquist plots at indicated volume fractions. 
Figure adapted from ref. 13. 
 
 In order to understand why the core time constant did not behave as 
expected, the extracted resistance and capacitance values were examined 
individually. Fig. 15 shows how these vary over all simulated volume fractions. The 
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core and shell resistances of the SLM (fig. 15 A and B, respectively) vary linearly 
with core volume fraction. All core and shell capacitances for both microstructures 
are inversely proportional to the core and shell volume fractions, respectively (see 
fig. 15 C and D). The behaviour of the encased model’s shell and core resistances 
(fig. 15 A and B) is non-linear. There are also transitions in the encased core 
resistance as core varies. The core resistance increases linearly as values of core 
fall from near unity to 0.4, then gradually tapers off for core values from 0.4 to 0.2, 
finally reducing rapidly as core goes to zero. Clearly the conductive behaviour is 
likely to be responsible for the unusual encased core time constant values. 
  

 
Fig. 15.  Values for (A) shell resistance, (B) core resistance, (C) shell capacitance and 
(D) core capacitance for the SLM and encased models extracted from M* Nyquist 
plots for a range of volume fractions. Figure adapted from ref 13. 
 
 To probe the conductive behaviour of the encased model further, current 
density plots taken at high frequency to obtain the Debye response of the core 
region were calculated for a range of core values (a selection is presented in fig. 
16A). A stream trace analysis was used to display conduction pathways; this is 
overlaid in green. The conduction pathways become more curved as core 
decreases resulting in increased heterogeneity in the current density. The full 
width at half maximum (FWHM) of the imaginary modulus (M’’) Debye peaks also 
broadened as core decreased (see fig. 16B). A 19 by 19 grid of stream tracers was 
used for quantitative analysis of the distribution of conduction path lengths 
(DCPL). The methodology used to extract the DCPL is described in greater detail in 
chapter 3. Later an improved version of this technique was developed, that 
allowed a much greater resolution of stream tracers within a practical calculation 
time. The DCPL gives a quantitative measure of the curvature of current flowing 
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through a model - the broader the distribution, the more non-linear the current 
flow. The DCPL increases as core is reduced, roughly correlating with broadening of 
the M’’ FWHM (see fig. 16C). 
 

 
Fig. 16.  (A) Current density plots (j in Am-2) for encased models of core = 0.65, 0.10 
and 0.02 (i, ii and iii, respectively) with overlaid stream traces highlighting 
conduction pathways. The initial positions for the stream tracers are evenly spaced 
for (i) and (ii). For (iii) the initial points are chosen to show the largest conduction 
pathways. (B) M’’ spectroscopic plots for encased models with core = 0.65 (i) and 0.10 
(ii). (C) The standard deviation of the DCPL and FWHM of the M’’ Debye peak as a 
function of core. The solid black line is a guide to the eye for the DCPL. Figure 
adapted from ref 13. 
 
 To understand the effect of decreasing core size on current flow linearity, 
the electric field present in the microstructures was examined. For the SLM, the 
electric field was homogenous in each layer just like the current density (see fig. 17 
A). For the encased model, the electric field was relatively homogenous in the core 
region for larger values of core (see fig. 17 B), however as core decreased the 
electric field became more heterogeneous in the core region. 
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Fig. 17. Electric field (E in Vm-1) plots taken at the core materials high frequency 
Debye response for (A) the SLM with core = 0.50 and (B-D) encased models with core 
= 0.65, 0.10 and 0.02, respectively. (E-H) Core regions of A to D, surrounded by a 
black line but enlarged. Figure adapted from ref 13. 
 
 The stream trace analysis of conduction pathways between electrode 
surfaces was also repeated for current density plots taken at the low frequency M’’ 
Debye peak associated with the shell material. Statistical analysis found a peak in 
the low frequency DCPL at a core value just below ~0.20 (see fig. 18). This peak 
coincided with the difference between core values extracted from the encased 
models and those predicted by the series brick layer models (see fig. 13). Plotting 
the difference between the encased model and SBLM against the low frequency 
DCPL revealed a positive correlation (see fig. 19). There were outliers at the 
extremes of volume fraction and at core  = 0.10. The deviation at extreme volume 
fractions may be due to poor meshing solutions. For a high value of core the shell 
region will be meshed with flattened tetrahedrons reducing the quality of the 
mesh, whereas for low values of core the mesh elements are becoming comparable 
in volume to the core also reducing the mesh quality. Further investigation did not 
reveal the cause of the anomaly at  
core = 0.10. 
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Fig. 18.  Standard deviation of conduction pathway length distribution for the low 
frequency current density plot of the encased model against core  
 

 
Fig. 19. Standard deviation of path lengths plotted against the encased model’s 
deviation from the SBLM. Note the circled outliers. 
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4.3. Grain Shape 
 
4.3.1. Truncated Octahedral Grains 
 

Real ceramic grains are rarely cubic and have more complex and irregular 
shapes. In order to use a more faceted shape for the grains without introducing a 
grain size distribution, regular truncated octahedral grains were used. These were 
produced using Voronoi tessellation as described in chapter 3.  In order to fit a 
truncated octahedra into the same two micron cube as the previous 
microstructures, nine grains were used. One is in the centre of the model and the 
other surrounds this at the corners of the cube (see fig. 20) producing a tessellated 
structure. The surface of the grains could be shrunk inwards to produce core and 
shell volumes using the same method as the encased model. This allowed us to 
repeat the previous study on estimating volume fractions from capacitance ratios 
for a different grain shape.   

 

 
Fig. 20. Arranging two truncated octahedral grains to tessellate in a cube. 
 

As before, a mesh convergence study was performed. The value of the high 
and low frequency M* arc diameters was measured as a function of mesh size (see 
fig. 21). It was found that a truncated octahedral model with equal volumes of core 
and shell required a finer mesh to reach convergence. Adequate convergence was 
achieved with a mesh consisting of ~770,000 nodes giving a mesh division size of 
0.038 µm. The high frequency arc converges somewhat faster than the low 
frequency arc but this was not as obvious as for the encased model. 
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Fig. 21. Convergence of high and low frequency modulus (M*) arc diameters for an 
encased model with equal core and shell volumes as mesh division size decreases. 
 
 The impedance response of the truncated octahedral model was simulated 
over a range of core values. Using M* Nyquist plots, the ratio of core to shell 
capacitances was found and core estimated (see fig. 22). A similar trend to that of 
the encased model was observed; core was over estimated compared to the known 
values. This over-estimate of core fell between the values given by the Bonanos-
Lilley equations and the values extracted for the encased model. 

 
Fig. 22. Comparison of core extracted from capacitance values with the true value 
for the SLM, encased model and truncated octahedral model. The solid line is the 
Bonanos-Lilley equations for the same volume fractions, conductivity and 
permittivity values. 
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Fig. 23. A comparison of the frequency-dependent electrical microstructure (current 
density in Am-2) and physical microstructure for truncated octahedral core-shell 
microstructures of the indicated core values. 
 

The electrical microstructure of the truncated octahedral model showed 
similar features to the encased model (fig. 23). At low frequency the current 
density was heterogeneous in the shell region with large concentrations in the 
series component of the shell. As the core volume fraction reduced, more current 
density was seen in the parallel component of the shell. At high frequency, the 
current density concentrates in the core and becomes more heterogeneous as core 
falls. The full width at half maximum (FWHM) of the high frequency M’’ peak 
associated with the core region broadens at lower values of core (fig. 24). 

 
Fig. 24. FWHM of the high frequency core M’’ peak for the encased and truncated 
octahedral models for a range of core values. 
 
 Examination of resistance and capacitance values for the truncated 
octahedral models show that the core time-constants depend on geometry 
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whereas shell time-constants do not (see fig. 25). Like the encased model, the 
unexpected core time-constant values were caused by transitional behaviour in 
the core resistance as a function of core compared to less dramatic but still non-
linear behaviour in the shell resistance (see fig. 26). Values of the core and shell 
capacitances are inversely proportional to the core and shell volume fractions, 
respectively (see fig. 27). The general trends in all measured properties of the 
truncated octahedral simulations are very similar to the encased models. 
 

 
Fig. 25. Plot of the core and shell material time constants extracted from simulated 
modulus plots for the truncated octahedral models. 

 
Fig. 26.  Values for shell resistances and core resistances for the truncated 
octahedral models extracted from M* Nyquist plots for a range of volume fractions. 
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Fig. 27.  Values for shell capacitances and core capacitances for the truncated 
octahedral models extracted from M* Nyquist plots for a range of volume fractions. 
 

4.4. Polycrystalline Simulations  
   

In previous studies, simulations of regular and mono-sized grains with the 
same shape and size were carried out on the smallest fraction of the grain volume 
that allowed generation of the full grain by symmetry operations. This reduction 
was justified by the symmetry of these idealised systems19 (see fig. 28). Here, we 
have opted to simulate the whole grain. This allows us to simulate a single grain in 
great detail, achieving a convergence of calculated values and high resolution plots 
of the electrical microstructure. It is possible to simulate polycrystals with many 
grains. In this section, results for poly-crystals made from 6x6x6 nested cube 
grains are presented to demonstrate the equivalence to single grain simulations. 
For larger systems it is impractical to attempt a convergence study to optimise the 
mesh size. Instead the nested cube models were meshed with 1.1 million elements. 
Using more elements than this can have issues with lack of computer memory and 
long simulation times (months). As there is uncertainty in the convergence of these 
simulations, the results obtained should be treated as illustrative. 

 
Fig. 28. (A) Nested cube polycrystal, (B) reduction of the polycrystal to a single grain 
as used in this study and (C) reduction of a single nested cube grain to minimise 
computation cost, as used in ref. 19.  
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 In order to show that a single nested cube grain is representative of a 
polycrystal with all grains the same, the impedance response of several 6x6x6 
nested cube microstructures was simulated for a range of core. The resulting 
spectra were analysed with the M* formulism to obtain the core and shell 
capacitances, from which volume fractions could be extracted as for the previous 
studies. It was found that the polycrystalline models had similar core values to the 
single grain simulations (see fig. 29).  
 

 
Fig. 29. Comparison of core extracted from M* arc diameters against the true value 
of core for the SLM, encased model and polycrystalline encased model. 
 
 As with the single grain encased model, a stream trace analysis of current 
density at high and low frequency was performed. Since they have a larger area 
than the single grain models, the convergence of the conduction pathway for 
polycrystals as more stream tracers were added was slower (see fig. 30). Similar 
trends were found for the distribution of conduction pathway lengths (DCPL) at 
low frequency and high frequency for polycrystals to the single grain encased 
model but there was more scatter in the data points (see fig. 31). 

 
Fig. 30. Convergence of the DCPL for an increasing number of stream tracers for (A) 
single grain encased models, (B) polycrystalline encased models. 
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Fig. 31. Standard deviation of the DCPL for polycrystalline models at (A) the shell 
material’s Debye frequency and (B) the core material’s Debye frequency. 
 
 

4.5. Discussion 
 
 It is clear, even from our early results comparing the impedance response of 
the SLM and the encased model, that the physical microstructure can affect the 
electrical microstructure. The results of the SLM show that a system with purely 
series connections in the microstructure allows values of resistance and 
capacitance of all material regions to be extracted with exact agreement with a 
dual RC circuit (provided that all materials present have sufficiently different time 
constants). The surfaces and interfaces of the SLM that are parallel to the 
‘electrode’ boundary conditions are equipotential at all frequencies and hence the 
current density is homogenous in each layer (see fig. 9). Hence the time constants 
of the core and shell regions are geometry-independent. In the case of the SLM the 
electrical microstructure is representative of the physical microstructure (see fig. 
32 A and B), allowing volume fractions to be extracted accurately from capacitance 
ratios (see fig. 10). The good agreement of our FEM simulations of the SLM with 
the analytical results provides a validation for our FEM method. 

When we change the distribution of core and shell material to an encased 
model we do not have purely series connections. The addition of parallel pathways 
has a profound effect on the electrical microstructure (see fig. 9). At low frequency, 
the current will flow relatively homogenously through the series component of the 
shell, as the current has nowhere else to go. When presented with parallel 
pathways through the core and shell, the current takes the path of least resistance 
through the microstructure, flowing through the conductive core region to avoid 
the more resistive shell region. This reduces the shell contribution to the 
impedance response at low frequency (see fig. 32C). 
 At high frequency the current density is concentrated in the core region 
(see fig. 32 D). Although the current density can be heterogeneous in the core, the 
average magnitude of core current density is relative high compared to the parallel 
shell regions, giving the core a strong contribution to the impedance response at 
high frequency. This mismatch in the core and shell impedance contributions leads 
to an over-estimation of core when extracting core from capacitance ratios. This 
over-estimation is present, with variation in its magnitude, at all values of core 
input into the model (see fig. 10A).  
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Fig. 32. Schematic showing which regions in the SLM and encased microstructure 
are active at high and low frequency. (A) SLM low frequency shell layer response, (B) 
SLM high frequency core layer response, (C) encased low frequency series shell 
response and (D) encased high frequency core response. 
 

We attempted to predict the overestimation of core made by conventional 
equivalent circuits by deriving a dual RC circuit whose constituent elements were 
based upon the electrical microstructure (as shown in fig. 9D). The values for the 
low and high frequency RC elements were functions of the shell and core 
geometries when in series and their respective intrinsic material properties (see 
fig. 11). This fit was not successful, as it does not account for curvature of current 
flow through the microstructure as revealed by a stream trace of the low frequency 
current density (fig. 18). The differences between the core values extracted from 
the encased model and those predicted by the series brick layer model (SBLM) 
were proportional to the curvature of the current flow as measured by a stream 
trace analysis (see fig. 19). The Bonanos-Lilley equations provided a better fit (see 
fig. 10) in good agreement with the work of Kidner et al15, 21 but these equations 
are further removed from a real ceramic micro-structure than a nested cube model 
and still underestimate core. 
 Examination of the core and shell resistances and capacitances (see fig. 15) 
revealed that there was a transition in conduction behaviour in the core region. 
Current density plots (see fig. 16) and electric field plots (see fig. 17), taken for the 
high frequency response of the core, showed that as core became smaller, the 
electrical microstructure of the core became more heterogeneous and did not 
represent the physical microstructure. When the electrical microstructure was no 
longer homogenous in the core and that heterogeneity varied with core the core 
time constant was not independent of geometry. This contrasted with the encased 
model’s shell time constant. This was geometry independent because the current 
density spreads relatively homogenously through the series component of the 
shell in order to minimise resistance, in good agreement with a previous modelling 
study22. In the more traditional view of the brick layer model, all time constants 
are independent of geometry as the geometric terms in the basic equations for 
resistance and capacitance cancel20. For the encased model, these equations cannot 
describe capacitances and resistances derived from the more complex electrical 
microstructures. 
 Examination of the high frequency imaginary modulus (M’’) Debye peaks 
showed that they became broader as core decreased. A mathematically ‘perfect’ 
Debye peak has a full width at half maximum (FWHM) of 1.14 decades on a 
logarithmic scale of frequency; however, this is rarely observed experimentally23. 
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There are many theories for this departure from Debye-like behaviour. These are 
discussed in the literature review in this thesis. However none of these are 
incorporated into the finite element simulation. Another possibility is that a 
distribution of time constants is present. In this study there are only two time 
constants present and these have three orders separation in magnitude. Therefore 
this is unlikely to be the cause. This implies that there is a contribution to the FEM 
response that causes a non-Debye like response and that this is independent of the 
material properties. 
 A simple explanation for the non-Debye like response could be that there is 
an extra time constant present at intermediate frequencies when the current flows 
through the capacitive part of the shell and the resistive component of the core 
(see chapter one, fig. 31B) resulting in a time constant that is the product of the 
shells resistance and the cores capacitance. If this extra time constant were 
significant it would be present regardless of microstructure and hence would exist 
in the FEM and equivalent circuit simulations of the SLM. The SLM simulations had 
core and shell time constants of 8.65 μs and 8.75 ms respectively. These values 
were in good agreement with the theoretical core and shell time constants of 8.85 
μs and 8.85 ms respectively, implying there was no significant contribution of the 
effective equivalent circuit at intermediate frequency. Hence there must be some 
other effect causing the non-ideality in the encased model. 

A stream trace analysis of the high frequency current density that is 
associated with the core’s Debye response explains the deviations from predicted 
behaviour (see fig. 16A). It was observed that, as core decreases, the conduction 
pathways increasingly curve towards the core (see fig 33A), increasing the 
distribution of conduction pathway lengths (DCPL). For particularly small core 
values the conduction pathways that pass through the core have extremely large 
curvatures due the heterogeneous electric field experienced by the core.  Small 
values of core mean much thicker shells. Due to the increase in shell thickness, the 
effective resistance of the parallel component of the shell is reduced. This allows 
parallel conduction pathways through the shell to form (see fig. 33B). A 
combination of short parallel pathways and highly curved series pathways through 
the core gives a very broad DCPL. There is some correlation between the FWHM of 
the high frequency M’’ Debye peak and the DCPL (see fig. 16C). The parallel 
pathways have a low current density and hence do not contribute to the magnitude 
of the impedance response but can broaden the high frequency M’’ Debye peak.  

As the current flowing through the encased model is non-linear at the 
characteristic frequencies of the core and the shell, it is no surprise that a BLM 
analysis that depends on core is of limited use. Using the values selected in this 
study for conductivity and permittivity we found that, if core was reduced below 
0.7, the error in extracting core from core-shell capacitance ratios exceeded 25% of 
the true value and up to 250% for a core value of 0.02. Clearly care should be taken 
when attempting to use capacitance ratios to extract volume ratios from core-shell 
microstructures for encased models or any other system where the physical 
microstructure does not resemble the electrical microstructure. 
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Fig. 33. Schematic showing encased model with a (A) medium and (B) small core 
volume fraction and how parallel conduction pathways form in the latter. 
 

Results for nested cube poly-crystals agreed with single grain simulations 
(see fig. 29 and 31). This demonstrates that using symmetry is a valid strategy to 
reduce the simulation cost for polycrystals with single-size, regular grains as used 
in previous studies13, 14, 15, 19. However, the difficulties in reaching convergence of 
extrinsic properties extracted from impedance spectra (see fig. 30) shows that 
either more computational power or more efficient numerical techniques are 
required to simulate poly-crystals with realistic microstructures at the same level 
of detail and accuracy.  

Finally, contrasting the results of the encased model, truncated octahedral 
model and the Bonanos-Lilley equations reveals shape effects in regular grains. All 
three approaches model a two-material electrical composite consisting of a high 
conductivity inclusion material surrounded by a low conductivity matrix material. 
The main difference between the three models is the shape of the conducting 
inclusion. For the encased model the inclusion is a cube; for the truncated 
octahedral model it is a truncated octahedron; and a sphere for the Bonanos-Lilley 
equations. Going from the encased model to the Bonanos-Lilley equations, these 
inclusions become more faceted (a sphere can be thought of as infinitely faceted, 
see fig. 34). Whilst all three approaches are in good agreement for the core values 
extracted for a given volume ratio of conductive and resistive material and fixed 
intrinsic properties, there are small deviations that follow a trend at all input 
values of core. The encased model gave the largest overestimate of core from 
capacitance ratios whilst the Bonanos-Lilley equations overestimated core the 
least (see fig. 22). In other words: the less faceted the conductive inclusion the 
more core will be overestimated. 

The reason for this small shape effect is probably the intrinsic conductivity 
of shapes. Mansfield et al showed by a simulation study that, for a fixed 
conductivity and volume, shapes that are less faceted are more conductive24. In 
terms of percentage difference from the actual core, this effect only becomes 
significant for very small values of core. At a core value of 0.25 the difference 
between percentage errors of core extracted from capacitance ratios of the encased 
and Bonanos-Lilley equations is ~20%, increasing to ~64% for a core value of 0.02. 
Conversely at a core value of 0.80 this difference is only ~0.5%. From this result, it 
is clear that the existence of a mixture of active parallel and series pathways 
through the microstructure rather than the shape of a conductive inclusion 
dominates a materials electrical response for grains with larger values of core 
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Fig. 34. Schematic showing cross-sections of the encased, truncated octahedral and 
Bonanos-Lilley microstructures with an arrow indicating the level of faceting. (A) 
Nested cube, (B) truncated octahedral and (C) nested sphere (Bonanos-Lilley). 

 
4.6. Conclusion 
 
 Here the extraction of volume fractions from capacitance ratios obtained 
from impedance data has been investigated using FEM. The effect of variables 
including the volume of core and shell, grain shape effects and the distribution of 
materials in a microstructure were examined. Key results are: 
 
• For an electrical composite material where phases of different 

conductivities are present, the electrical microstructure depends on the 
path of least resistance that the electric current will flow through. 

• Application of the BLM to core-shell microstructures becomes increasingly 
unreliable as core decreases. The error in estimating volume fractions from 
capacitance ratios exceeds 25% when core is lower than 0.70 for the 
parameters used in this study. This is because, as core decreases, the 
electrical microstructure becomes increasing different from the physical 
microstructure. 

• Non-ideality in impedance spectra can be influenced by heterogeneous 
current flow that is a result of microstructure and is independent of a 
distribution of relaxation times and atomistic mechanisms. 

• Regions of low current density in a microstructure have a lower 
contribution to the magnitude of an impedance response but, if their 
resistance is low enough, can give rise to parallel conduction pathways that 
can broaden high frequency Debye peaks. 

• Grain shape effects can affect extracted capacitance values, particularly at 
low values of core, but not to the same extent as the presence of series and 
parallel pathways.  

• Heterogeneous current flow can cause extracted time constants of a 
material to have geometry dependence. 
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  Chapter 5: The influence of permittivity on 
capacitive pathways in selected physical 

microstructures 
 

In chapter 4 the effect of a core-shell microstructure on the electrical response of 
ceramics was considered for the case when the core and shell permittivity were 
fixed at the same value and the shell conductivity was three orders lower than that 
of the core.  Here the core and shell conductivity are fixed and the effect of a 
difference in permittivity between the two material regions is tested. Simulations 
of parallel and series layer models as well as the encased model used previously 
are analysed when the volume fractions of the low and high permittivity material 
are equal. Finally, an encased model, where the volume fractions are varied to 
study the effect of physical microstructure on electrical microstructure, is 
investigated for the case where a two phase electrical composite has uniform 
conductivity and different values of permittivity. 
 

5.1. Literature 
 
The impedance response of electrically heterogeneous materials can be 
deconvoluted if the time constants present in the material are sufficiently 
different1. For example, impurities segregating to the grain boundaries may greatly 
alter the transport properties of the grain boundary regions giving them different 
(or a distribution of) time constants. The grain boundary and bulk components 
may have the same (or similar) permittivity but the grain boundary is usually 
much thinner than the bulk ceramic2. From the basic equation for a capacitor, see 
equation (2.2), we see that for the same permittivity and area the thinner grain 
boundary would have a higher capacitance. This allows for separation of the bulk 
and grain boundary impedance responses by the magnitudes of their capacitance. 
For other materials, the presence of dopants can also affect the permittivity of a 
material region. In the case of rare earth-doped barium titanate, the core of 
undoped-barium titanate (BT) is ferroelectric giving a high measured permittivity 
whereas the shell is paraelectric, due to the presence of dopants, and thus has a 
lower permittivity3, 4. To further complicate matters, depending on the processing 
conditions the core can be semi-conducting whilst the shell is more resistive. Core-
shell BT can have different conductivities and permittivities present5. To 
understand the consequences for analysing the impedance spectra of electrically 
heterogeneous materials, it is important first to test the case where the 
conductivity of the two regions is the same but the permittivity of the two regions 
start to differ.  
 There have been several studies on electrical composites with mixed 
permittivities, typically attempting to calculate an effective permittivity for the 
whole composite. Wu et al considered direct current permittivity bounds for a 
cube of material subdivided into 30 x 30 x 30 sub-cubes6. A randomly selected 
portion of the sub-cubes had a higher permittivity than the rest. The number of 
sub-cubes selected was varied, creating a range of volume fractions of low and 
high permittivity material. The effective permittivity of the whole cube was then 
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calculated; this was then compared to values obtained using different mixing rules. 
There has also been interest in modelling materials with mixed permittivities for 
microwave applications. Padurariu et al performed fixed frequency simulations of 
how different configurations of physical microstructure affected the total 
capacitance and other figures of merit relevant to their field7. Neither approach 
considers conductivity explicitly. 
 Previously it has been shown that a difference in conductivity can result in 
preferential conduction pathways forming throughout a microstructure8. When 
core and shell conductivity have the same value there can be no alternative 
conduction pathways present. The impedance of a pure capacitor has only an 
imaginary component with a dependence on frequency given by9 : 
 
 

𝑍′′ = −
1

𝜔𝐶
 

(5.1) 

 
where Z’’ is the imaginary component of impedance in Ω, ω is the angular 
frequency in rad/s (where  = 2f and f is the applied frequency in Hz) and C is 
capacitance in F. The impedance of a pure resistor is frequency independent.  
 Consider an equivalent circuit consisting of two parallel resistor-capacitor 
(RC) elements connected in series. For simplicity we will assume that the resistors 
have the same resistance, R, and that one capacitor has a higher capacitance of 70 
fF (C1). The other has a lower capacitance of 0.35 fF (C2). As the capacitances of C1 
and C2 differ, the impedance of the capacitors will reduce at different rates as the 
frequency increases (see fig. 1A) as per equation (5.1). At zero frequency (DC), the 
impedance of both capacitors will be infinite and the current must flow through 
the two resistors (see fig. 1B i). As the frequency increases the impedance of C1 
will eventually become lower than the resistance before C2. Thus the current will 
preferentially flow through C1 instead of R for the first RC element but will 
continue to be blocked by C2, flowing through R in the second RC element (see fig. 
1B ii).  Finally, at still higher frequencies the impedance of C2 will become less than 
R and the current will preferentially flow through C1 followed by C2 and therefore 
bypass the resistors (see fig. 1B iii). Different capacitive pathways will be available 
for an alternating current (AC) to flow through the circuit as frequency varies. As 
impedance spectroscopy uses variable frequency, capacitive pathways must be 
considered.  This chapter investigates whether capacitive pathways can have 
similar effects to conduction pathways and therefore influence the electrical 
microstructure of three-dimensional physical microstructures. 
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Fig. 1. (A) Relationship between the magnitude of impedance and frequency for two 
resistors with equal values of resistance and two capacitors where the capacitance of 
C1 = 200 C2 assuming a configuration of two parallel RC elements connected in 
series. (B) How the path of least impedance changes at the indicated frequency 
ranges for the equivalent circuit. 
 

 
5.2. Methodology 
 
The methodology here was similar to that used in chapter 4. All models consisted 
of two materials; both with a fixed conductivity of 0.1mSm-1 and permittivities of 
10 and 2000 giving a difference in time constants that can be resolved. The 
impedance response of all microstructures was simulated using finite element 
modelling (FEM) over a frequency range of 1 Hz to 10 MHz and an applied 
alternating voltage of 100 mV. The first simple models simulated were equivalent 
to Maxwell’s series layer (SLM, fig. 2A) and parallel layer models (PLM, fig 2B)10. 
The SLM and PLM consist of layers of low and high permittivity material stacked 
parallel and perpendicular to the electrode surface (expressed using the 
appropriate boundary conditions), respectively. Due to their simplicity both these 
models can be solved analytically and hence can validate the finite element model 
for the fixed conductivity, varied permittivity case. 

 
Fig. 2. Schematic of the (A) series layer model and (B) parallel layer model composed 
of two material regions of equal volume fraction and the permittivities indicated. 
Note the conductivity of each region is fixed at 0.1 mSm-1 and the field is across the 
samples, from top to bottom.  
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 The next model was the same nested cube structure as used previously8, 11 
that we refer to as the encased model (see fig. 3A), consisting of a cube of high 
permittivity material encased in a shell of low permittivity material (see fig. 3B). 
The electrical response of this configuration is more complex and does not have an 
analytical solution. Hence we must use the finite element code to solve the encased 
model’s material response. 

 

 
Fig. 3. Schematic of the (A) encased model composed of two material regions of 
equal volume fraction and the permittivities indicated. Note the conductivity of each 
region is fixed at 0.1 mSm-1. (B) Three dimensional image of the encased model with 
some of the shell material removed to show the nested cube structure. 
 
 For the PLM and SLM a mesh division of 0.1 μm was used as in the previous 
study8. For the encased models, a mesh size of 0.08 μm was used as in the 
convergence study used in chapter four. Stream tracing was employed to visualise 
curvature in plots of electrical microstructure. Unless stated otherwise, all stream 
traces are started from the bottom free surface of the model where a Dirichlet 
boundary condition applies the AC voltage (see fig. 4). 

 
Fig. 4. Schematic of initial positions of stream tracers. 

 
 In chapter 4 when considering the core-shell microstructure, core volume 
fractions (core) were estimated from capacitance ratios. The electric modulus 
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formalism was used to extract core and shell capacitances as this formalism had 
resolved arcs better than the impedance for most values of core. The reason for 
this can be demonstrated using an equivalent circuit simulation in Zview12. Here 
we have two parallel resistor-capacitor circuits connected in series. Circuit 5A(i) 
consists of two capacitors both with a capacitance of 10 fF and two resistors with 
resistances of 2.5 and 250 Grespectively. Likewise, circuit 5A(ii) consists of two 
resistors fixed at 2.5 Gand capacitors with capacitances of 10 fF and 0.1 fF (see 
fig. 5A). 
 When examining the impedance response of circuit 5A(i) as an impedance 
Nyquist plot (see fig. 5B), the response of R2 dominates the smaller resistance of 
R1. A partial arc is observed in the high frequency region near the origin (see inset 
graph, fig. 5B). Displaying the data as a modulus Nyquist plot reveals two arcs of 
equal diameter due to C1 equalling C2 (see fig. 5C). There are two arcs since the 
difference in R1 and R2 gives a different time constant for each parallel RC 
element. 
 If we examine circuit 5A(ii) in the same manner, we observe two arcs fully 
resolved in an impedance Nyquist plot (fig. 5D), whereas it is difficult to resolve 
both RC elements from the modulus Nyquist plot (see fig. 5E, the higher 
capacitance arc is just visible in the inset graph). Again, the arcs have equal 
diameter but this time it is due to the equal resistors. This indicates that, when 
analysing microstructures that have fixed conductivity and differing permittivity, 
better arc resolution can be achieved with the impedance formalism. It is also 
possible to estimate volume fractions using resistance ratios instead of capacitance 
ratios for the fixed conductivity case as the resistance ratio will be related to the 
thickness ratio of the materials present. This may become less accurate if 
microstructural effects are significant in non-ideal microstructures as has been 
demonstrated previously8. To probe microstructural effects, current density plots 
are examined. It will be shown that, when the conductivity is homogenous and the 
permittivity varies, the electrical microstructure is more complex than the results 
shown in chapter four. 
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Fig. 5. (A) The two equivalent circuits simulated. Relevant element values given. (B) 
Impedance Nyquist plot with enhancement of the high frequency region (inset) and 
(C) electric modulus Nyquist plot of equivalent circuit (i). (D) Impedance Nyquist plot 
and (E) electric modulus Nyquist plot with enhancement of the high frequency region 
(inset) of equivalent circuit (ii). 

 
5.3. Results 
 
5.3.1. Series Layer Model 
 
The first microstructure simulated was the Series Layer Model (SLM) with equal 
volumes of high and low permittivity material (see fig. 6A). Due to the simplicity of 
the SLM, values for the resistance and capacitance of both layers can be calculated 
analytically using the intrinsic conductivity and permittivity of each layer and their 
geometries. These values were used in a dual parallel RC element equivalent 
circuit to fit the SLM’s impedance response (see fig. 6B). The impedance response 
from 0.1 Hz to 10 MHz was calculated using FEM. Examining the simulations 
revealed two responses in all four formalisms, these values are summarised in 
table 1. All FEM simulated values were in good agreement with those obtained 
using the equivalent circuit. 
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Table 1. Comparison of analytical values for both RC elements used to model the 
SLM with values extracted from simulation by FEM and equivalent circuits. Note Ct 
denotes the total capacitance of the model. 
 

Circuit 
element 
 

Element value Formalism FEM extracted 
values 

Equivalent 
circuit 
extracted 
value 

 
R1 

 
2.500 GΩ 

Z* 2.490 GΩ 2.503 GΩ 
M*  2.467 GΩ 2.503 GΩ 
Y’ 2.504 GΩ 2.525 GΩ 
E’ - - 

 
C1 

 
0.354 fF 

Z* 0.346 fF 0.337 fF 
M* (Ct) 0.352 fF 0.352 fF 
Y’ - - 
E’ 0.352 fF 0.352 fF 

 
R2 

 
2.500 GΩ 

Z* 2.510 GΩ 2.497 GΩ 
M* - - 
Y’ 2.490 GΩ 2.475 GΩ 
E’ - - 

 
C2 

 
70.80 fF 

Z* 73.49 fF 69.66 fF 
M* - - 
Y’ - - 
E’ 17.80 fF 17.79 fF 

 
 A Nyquist plot of the electric modulus had difficulty resolving both 
responses as the plot was dominated by C1 (see fig. 6C). The beginnings of C2’s 
response can be seen at low frequency close to the origin (see fig. 6C inset). This 
arc is not resolved well enough to extract RC values.  Taking the total diameters of 
both arcs as the inverse of the total capacitance agrees exactly with the analytical 
solution. 
 Two plateaus were observed (see fig. 6D) in a spectroscopic plot of the real 
admittance (Y’). The apparent dispersion at high frequency for Y’ is present in all 
FEM Y’ spectroscopic plots due to the reference layer which is required for the 
finite element calculation (see chapter three) and is considered to be an artefact. 
The low frequency plateau was 0.2 nS or the value of the direct current (DC) 
conductance. The high frequency plateau was at 0.396 nS. This was interpreted as 
R1 because R1C1 has a lower time constant and hence relaxes at higher frequency.  
An impedance Nyquist plot gave two well-defined arcs of equal diameter each 
measuring ~2.5GΩ (see fig. 6E). The high and low frequency arcs are interpreted 
as R1 and R2 respectively, in good agreement with the analytical solution. 
Equating the volume ratio of the two layers to the resistance ratios extracts the 
exact volume fraction of 0.5. 
 The real component of the capacitance (E’) plotted against frequency also 
gives two plateaus (see fig. 6F). The high frequency plateau gives a capacitance of 
0.352 fF, which is close to the analytical solution and the equivalent circuit. The 
low frequency plateau gives a capacitance of 17.8 fF, lower than the 70.8 fF 
predicted by equation (2.2) for C2. E’ is more suited to resolving capacitances in 
parallel systems. The values obtained from the plateaus do agree with the solution 
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for the low and high frequency E’ plateaus for a series dual RC circuit. These 
solutions contain composite terms including the values of resistance and 
capacitance (see chapter one) and only tend to the high and low frequency 
capacitances where the magnitudes of both the capacitances and resistances are 
very different. Here the resistances are the same and so this approximation fails. 
 

 
Fig. 6. (A) Physical microstructure of the series layer model (SLM). (B) Equivalent 
circuit used to model the SLM with resistance and capacitance values of individual 
circuit elements, the volume fractions and time constants of the low and high 
permittivity layer (1, 2, 1 and 2, respectively). FEM simulated impedance spectra 
for the SLM with equivalent circuit fit (blue line) and intercepts for equivalent circuit 
element values (red lines) plotted as: (C) a modulus Nyquist plot, (D) real component 
of the admittance spectroscopic plot, (E) impedance Nyquist plot and (F) the real 
component of capacitance spectroscopic plot. 
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 Two arcs were observed in the impedance Nyquist plot (see fig. 7). 
Previously it has been found that the electrical microstructure at the Debye 
frequencies defines the impedance spectra8. To probe the electrical microstructure 
of the SLM, current density plots were taken in a plane perpendicular to the 
interface at the indicated frequencies (see fig. 8). The apparent jaggedness at the 
interface is an artefact of interpolation by the visualisation software across the 
elements at that surface. The interface is perfectly flat as indicated in fig. 2. At both 
frequencies the current density was concentrated in the low permittivity layer but 
there was a much greater difference between the magnitudes of the current 
density in both layers at higher frequency. 
 A stream trace of the current density vector field was performed using a 
grid of initial positions of the tracer particles placed at the bottom of the model (as 
outlined in the methodology chapter, chapter 3). This showed the conduction 
pathways to be straight for the low frequency Debye response (see fig. 8A). This 
was also the case for the high frequency Debye response (see fig. 8B) but the 
stream trace terminated at the interface. Repeating the stream trace with starting 
positions defined at the reference layer interface for the low and high frequency 
Debye responses (see fig. 9A and B, respectively) showed the low frequency 
stream trace to be unaffected. However, the stream trace for the high frequency 
response travels through the low permittivity layer and stops at the interface. This 
would imply the termination of the stream trace is an effect of the interface 
between regions of different permittivity rather than one of the individual layers. A 
model where the order of the layers was reversed was also simulated producing 
identical impedance spectra. All trends in the electrical microstructure were 
reversed as expected.  
 

 
Fig. 7. Impedance Nyquist plot of the series layer model with Debye frequencies 
indicated.  
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Fig. 8. Current density plots of a series layer model with equal volume fractions of 
high and low permittivity material taken at the indicated frequencies. A stream trace 
of the current density vector field is plotted as black lines. These plots were taken at 
the instance of maximum current on the current sinusoids. Units are Am-2 

 

 
Fig. 9. Repeat of figure 8 with stream trace seed points placed underneath the 
reference layer. 
 
 Additional current density plots were taken at very low frequency (1 Hz, 
see fig. 10A) and very high frequency (10 MHz, see fig. 10B). At very low frequency 
there was a slight concentration of current density in the high permittivity layer 
although this heterogeneity was only observable at the third decimal place. As the 
FEM code is accurate to at least six decimal places (assuming scientific notation) 
and the change in current density correlates with a change in physical 
microstructure, this indicates a physically meaningful response. At 10 MHz it was 
observed that the current density was still concentrated in the low permittivity 
layer but the stream trace could now travel through the interface. 
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Fig. 10. Current density plots of a series layer model with equal volume fractions of 
high and low permittivity material taken at the indicated frequencies. A stream trace 
of the current density vector field is plotted as black lines. These plots were taken at 
the instance of maximum current on the current sinusoids. Units are Am-2. Note the 
scale of (B) is logarithmic and covers a larger range of values than (A). 
 
5.3.2. Parallel Layer Model 
 
 A parallel layer model (see fig. 11A) was also simulated as this would show 
if current prefers to flow down the low or high permittivity layer. Only one 
impedance response was observed in the impedance spectrum, which was 
modelled with two parallel RC elements connected in parallel (see fig. 11B). Single 
arcs were present in impedance (see fig. 11C) and modulus (see fig. 11E) Nyquist 
plots. Single plateaus were found in spectroscopic plots of the real components of 
the admittance (see fig. 11D) and real capacitance (see fig. 11F). The resistances 
and capacitances extracted from these arcs and plateaus corresponded to the total 
resistance and capacitance of two RC elements connected in parallel. All values 
extracted from the FEM and equivalent circuits agreed with the analytical 
solutions (see table 2). The PLM collapses into a single response with a composite 
value of both RC elements added in parallel.  
 
Table 2. Comparison of analytical values for both RC elements used to model the 
PLM with values extracted from simulation by FEM and equivalent circuits. 

Circuit 
element 
(composite) 

Element value Formalism FEM extracted 
values 

Equivalent 
circuit 
extracted 
value 

 

(
1

𝑅1
+
1

𝑅2
)
−1

 

 
5.000 GΩ 

Z* 5.000 GΩ 5.000 GΩ 
M* 5.120 GΩ 5.148 GΩ 
Y’ 5.000 GΩ 5.000 GΩ 
E’ - - 

 
(𝐶1 + 𝐶2) 

 
17.79 fF 

Z* 18.22 fF 18.32 fF 
M* 17.79 fF 17.80 fF 
Y’ - - 
E’ 17.78 fF 17.80 fF 
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Fig. 11. (A) Physical microstructure of the parallel layer model (PLM). (B) 
Equivalent circuit used to model the PLM with resistance and capacitance values of 
individual circuit elements, the volume fractions and time constants of the low and 
high permittivity layer (1, 2, 1 and 2, respectively). FEM simulated impedance 
spectra for the PLM with equivalent circuit fit (blue line) and intercepts for 
equivalent circuit element values (red lines) plotted as: (C) an impedance Nyquist 
plot, (D) real component of admittance spectroscopic plot, (E) modulus Nyquist plot 
and (F) real component of capacitance spectroscopic plot. For (D) and (F) the circuit 
element values and equivalent circuit fits overlap. 
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 Plots of current density for several frequencies were obtained to visualise 
the electrical microstructure. The frequencies examined coincided with: the Debye 
frequencies (fmax) of the impedance (Z*) and electric modulus (M*) arcs; the two 
frequencies at the full width at half maximum of the peaks of the imaginary 
components of Z* and M*; and the end members of the frequency range (see fig. 
12). While heterogeneity in the current density was observed in the reference 
layer (see fig. 13 for the location) generally the current density appeared to be 
homogenous in both layers of the PLM (see figs. 14 A to F). Inside the reference 
layer at 1Hz the current density was concentrated over the low permittivity layer 
of the PLM (see fig. 14A). For all higher frequencies the current density was 
concentrated over the high permittivity layer. A stream trace of the current density 
vector field was straight for 1 Hz to 7055 Hz. For frequencies of 10 MHz and 1 GHz 
the stream trace bent towards the high permittivity layer. The curvature of the 
stream trace increased with frequency. 

 
Fig. 12. Modulus Nyquist plot of the parallel layer model with frequencies of interest 
indicated. 

 
Fig. 13. Schematic of the PLM with the location of the reference layer. 
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Fig. 14. Current density plots of a parallel layer model with equal volume fractions of 
high and low permittivity material taken at the indicated frequencies. A stream trace 
of the current density vector field is plotted as black lines. These plots were taken at 
the instance of maximum current on the current sinusoids. Units are Am-2. Note that 
the range of current density is frequency dependent and is much greater as frequency 
increases. 
 
 The stream trace of current density deviated from uniformity at high 
frequencies. This implies that there was some heterogeneous current density in 
the parallel layers, not just within the reference layer. Altering the visualisation 
software’s scale so that it was not dominated by the high current density in the 
reference layer revealed a higher concentration of current density at the interface 
between the parallel layers (see fig. 15A). This effect is more pronounced at higher 
frequency (see fig. 15B). Here the contours of current density show preferential 
current flow from the interface to the high permittivity layer. 

 
Fig. 15. Current density plots of a parallel layer model with equal volume fractions of 
high and low permittivity material taken at the frequencies indicated. A stream trace 
of the current density vector field is plotted as black lines. These plots were taken at 
the point of maximum current on the current sinusoids. Units are Am-2. Note: the 
scales have been manipulated from figure 13 to show detail at low current density. 
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5.3.3. Encased Model 
 
After comparing the purely series and purely parallel connectivity for materials 
with heterogeneous permittivity, the same methodology was employed for the 
encased model (see fig. 16A) with equal volumes of low and high permittivity 
material. Unlike the PLM and SLM, the encased model has no analytical solution. 
However, similarly to the SLM, two responses were observed in all impedance 
formalisms (see table 3 for summary) so a comparison was made with the 
analytical solution and equivalent circuit of the SLM (see fig. 16B).  
 Two well-defined arcs were visible in an impedance Nyquist plot (see fig. 
16C). The low and high frequency arc diameters measured 3.885 and 1.090 GΩ, 
respectively. This did not agree with the prediction of equal arc diameters since 
the volume fraction of the core and shell are the same. Time constants calculated 
from R and C values extracted from impedance Nyquist plots gave 0.87 s and 0.15 
ms for the low and high frequency arcs, respectively. This is in good agreement 
with the values calculated for the SLM indicating that the high frequency response 
was due to the shell and the low frequency response was due to the core. This 
allowed the core to shell resistance ratio to be calculated. Using the resistance ratio 
to estimate the volume ratio gave a core value of 0.78. 
 An electric modulus Nyquist plot was poorly resolved (see fig. 16D). While 
individual capacitances could not be extracted, the total capacitance was 0.743 fF, 
just over twice the value of the SLM’s total capacitance (0.352 fF). Conductances 
extracted from the low and high frequency plateaus of the real part of the 
admittance spectroscopic plot (see fig. 16E) were 0.201 and 0.850 nS, respectively. 
These corresponded to the total conductance (low frequency) and shell 
conductance, respectively. This gave a deviation of the core to shell resistance ratio 
from the SLM predicted value, as found with the value extracted from the 
impedance spectra.  
 Two plateaus from a real capacitance spectroscopic plot (see fig. 16F) were 
extracted. The low frequency plateau measuring 17.88 fF was in good agreement 
with the equivalent circuit, but lower than the analytical value for C2. This is 
consistent with the behaviour displayed by the SLM, where the E’ plateaus are 
composites of all R and C terms for a dual RC circuit. The high frequency plateau 
had a value of 0.76 fF, which is more than double the 0.352 fF measured for the 
same plateau of the SLM. 
 



 Chapter 5: The influence of permittivity on capacitive pathways  126 

 
Fig. 16. (A) Physical microstructure of the encased model. (B) Equivalent circuit used 
to model the SLM with resistance and capacitance values of individual circuit 
elements, the volume fractions and time constants of the low and high permittivity 
layer (1, 2, 1 and 2, respectively). FEM simulated impedance spectra for the 
encased model with equivalent circuit fit (blue line) and intercepts for equivalent 
circuit element values (red lines) plotted as: (C) an impedance Nyquist plot, (D) 
modulus Nyquist plot, (E) real part of admittance spectroscopic plot and (F) real part 
of capacitance spectroscopic plot. Note: the equivalent circuit fit and intercept values 
are for the SLM with equal volumes of low and high permittivity material. 
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Table 3. Comparison of analytical values for both RC elements used to model the 
SLM with values extracted from simulation by equivalent circuits and a simulation of 
the encased model by FEM. Note Ct denotes the total capacitance of the model. 
 

Circuit 
element 

Element value Formalism FEM extracted 
values 

Equivalent 
circuit 
extracted 
value 

 
R1 

 
2.500 GΩ 

Z* 1.090 GΩ 2.503 GΩ 
M* 1.170 GΩ 2.503 GΩ 
Y’ 1.177 GΩ 2.525 GΩ 
E’ - - 

 
C1 

 
0.354 fF 

Z* 0.798 fF 0.337 fF 
M* (Ct) 0.743 fF 0.352 fF 
Y’ - - 
E’ 0.760 fF 0.352 fF 

 
R2 

 
2.500 GΩ 

Z* 3.885 GΩ 2.497 GΩ 
M* - - 
Y’ 3.798 GΩ 2.475 GΩ 
E’ - - 

 
C2 

 
70.80 fF 

Z* 29.58 fF 64.31 fF 
M* - - 
Y’ - - 
E’ 17.88 fF 17.79 fF 

 
 Viewing the electrical microstructure of the encased model as current 
density plots showed that the electrical microstructure did not resemble the 
physical microstructure. Current density plots were taken at 1 Hz and at the low 
and high frequency Debye frequencies on the encased model’s impedance Nyquist 
plot (see fig. 17A). At 1 Hz the current density is slightly concentrated in the core 
region but current leakage into the parallel component of the shell can be observed 
(see fig. 17B). A stream trace at this frequency showed that there was no curvature 
in the current density vector field. At the frequency that corresponded to the low 
frequency Debye response the current density is concentrated in the series shell 
component directly above the core (see fig. 17C). There is a notable decrease in 
current density in the series shell that is adjacent to the parallel component of the 
shell. This is reinforced by the stream trace showing slight bending away from the 
parallel shell component. Finally at a frequency associated with the high frequency 
Debye response the current density is seen to be also concentrated in the series 
shell directly connected to the core (see fig. 17D). Here the stream trace shows a 
preferential pathway avoiding the parallel shell. 
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Fig. 17. Current density plots of an encased model with equal volume fractions of 
high and low permittivity material taken at the indicated frequencies. A stream trace 
of the current density vector field is plotted as black lines. These plots were taken at 
the instance of maximum current on the current sinusoids. Units are Am-2. Note: the 
range of current density is frequency dependent and is much greater as frequency 
increases. 
 
5.3.4. Encased Model Volume Fraction 
 
In the previous chapter, volume fractions of the core and shell material of an 
encased model were estimated from the core to shell capacitance ratio, where the 
permittivity of both materials was fixed and the core was more conductive than 
the shell. It was established that, as the physical microstructure was altered by 
increasing core, the error in extracting core from the capacitance ratios was 
reduced. Here this methodology is extended to an encased model where the 
conductivity of the core and shell material is fixed and the core has a higher 
permittivity than the shell. From the methodology of this chapter it is 
demonstrated that calculating resistance ratios from impedance Nyquist plots is 
more appropriate for estimating volume fractions for physical microstructures 
where the conductivity is homogenous throughout and the permittivity varies 
depending on the material region. For clarity, the results obtained for this chapter 
will be referred to as the fixed conductivity case and those obtained in chapter four 
as the fixed permittivity case.  
 A fixed conductivity encased model with the same material properties as 
the SLM, PLM and encased models with equal volume fractions examined earlier in 
this chapter had its core value varied from 0.02 to 0.98. At each volume fraction the 
impedance response was simulated by FEM and a resistance ratio was calculated 
from the impedance Nyquist plots. Applying the time constant analysis used for the 
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encased model discussed previous in this chapter, the low frequency resistance 
(R2) was assigned to the core and the high frequency (R1) resistance assigned to 
the shell. The Ratio of R1 to R2 was used to calculate core using: 
 
 
 

𝜙𝑐𝑜𝑟𝑒 = 
𝑅2

𝑅1 + 𝑅2
 

(5.2) 

 
 
 For the fixed permittivity case, all values of core extracted from resistance 
ratios (core output) were greater than the exact value (core input). The trend of the 
output core with input core for the fixed conductivity case was identical to the 
trend observed for the fixed permittivity case (see fig. 18). Resistances predicted 
by an analytical model based on the electrical microstructure of the encased 
model, neglecting the parallel shell component (see figs. 17D and 19), called the 
series brick layer model (SBLM) could not fit the difference between the known 
volume fraction and that estimated from resistance ratios. 
 The agreement between the fixed permittivity and conductivity cases also 
extended to the conversion of the error in core estimated by resistance or 
capacitance ratios into a percentage of core input (see fig. 20). For the fixed 
conductivity case with core input values of ≥ 0.8, the deviation of core output was 
less than 20%. This deviation increased to 192% for core input = 0.1 in good 
agreement with the fixed permittivity case. Plotting the difference between the 
output values of core and values predicted by the SBLM for the fixed conductivity 
case also showed the same trend with the fixed permittivity case (see fig. 21). 

 

 
Fig. 18. core values extracted from resistance ratios of the simulated impedance 
spectra for the SLM and encased model against the known (input) values of core. 
Note: the line for the core values extracted from capacitance values for the encased 
model with a fixed permittivity in the core and shell regions studied in chapter 4 
(blue triangles). A line for the SBLM predicted values is plotted in green. 
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Fig. 19. Schematic showing how the equivalent circuit for the series brick layer 
model is derived from the microstructure of the encased model. 

 
 
 

 
Fig. 20. Extracted core values as a percentage of the known (input) core values 
against the known core values for the encased model. Note: the line for the core 
values extracted from capacitance values for the encased model with a fixed 
permittivity in the core and shell regions studied in chapter 4 (blue triangles). 
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Fig. 21. Deviation of the encased model from series brick layer model predicted 
values. Note: the line for the core values extracted from capacitance values for the 
encased model with a fixed permittivity in the core and shell regions studied in 
chapter 4 (blue triangles). 
 
 Current density plots for an encased model with a large core (core = 0.8) 
and a small core (core = 0.1) were obtained at low frequency (1 Hz) and at the 
Debye frequencies (see fig 22A and 23A). Previously it was found (in chapter four) 
that the electrical microstructure changed considerably with core. For the encased 
model with core = 0.8, at 1 Hz there was a slight concentration of current density in 
the core and parallel shell component (see fig. 22B). Although the change in 
current density concentration can be visualised, it is only of the order of 1 mAm-2. 
A stream trace showed the current density vector field was straight. 
 At the low frequency Debye response, the highest concentration of current 
density is within the series component of the shell material (see fig. 22C). There 
was also a noticeable concentration in the parallel shell (although the magnitude 
was slightly less than in the series component). Here a stream trace showed a 
small amount of curvature towards the core material. The current density of the 
high frequency Debye response was concentrated in the series shell with 
significantly lower current density within the core and parallel shell (see fig. 22D). 
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Stream tracing revealed the vector field avoiding the parallel shell in favour of the 
higher permittivity core. 
   

 

 
Fig. 22. Current density plots of an encased model with a large core (core = 0.8) 
taken at the indicated frequencies. A stream trace of the current density vector field 
is plotted as black lines. These plots were taken at the point of maximum current on 
the current sinusoids. Units are Am-2. Note: the range of current density is frequency 
dependent and is much greater as frequency increases. 
 
 The encased model with a smaller core (core = 0.1) also had two arcs in an 
impedance Nyquist plot (see fig. 23A). The low frequency arc was now larger than 
the high frequency arc. The current density at 1Hz again had a slight increase in 
current density in the core region, however there was not as much in the parallel 
shell as in the larger core model (see fig. 23B). The stream trace was straight. The 
current density at the low frequency Debye response was concentrated in the 
series shell but was more heterogeneous than that for the larger core model (see 
fig. 23C). A stream trace of current density showed increased bending towards the 
core. Finally, the high frequency Debye response current density was also 
concentrated in the series shell component (see fig. 23D). The current density was 
both more heterogeneous and the stream trace showed more curvature than that 
for the low frequency Debye response. 
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Fig. 23. Current density plots of an encased model with a small core (core = 0.1) 
taken at the indicated frequencies. A stream trace of the current density vector field 
is plotted as black lines. These plots were taken at the point of maximum current on 
the current sinusoids. Units are Am-2. Note: the range of current density is frequency 
dependent and is much greater as frequency increases. 
 

5.4. Discussion 
 
Comparing the impedance response of the SLM, PLM (see figs. 6 and 11) and 
encased models for the case where there are equal volumes of low and high 
permittivity material gives an insight into how heterogeneity in permittivity can 
affect series and parallel pathways in microstructures. All three physical 
microstructures were modelled using two parallel RC elements connected in series 
(SLM and encased model) or parallel (PLM) as appropriate. The low permittivity 
material was assigned the R1C1 element and the high permittivity material the 
R2C2 one. In the discussion section these material regions will be referred to as the 
low and high permittivity material, respectively. For the SLM, two responses were 
observed whereas for the PLM only one response was present. These responses 
agree with equivalent circuit calculations based on simple circuit theory (see 
tables 1 and 2). It is important to note that the PLM collapses into a single response 
with a composite value of both RC elements added in parallel.  
 The encased model is similar to the SLM in that it has two impedance 
responses (see fig. 16). Extracting capacitances from impedance Nyquist plots it 
was found that the magnitude of the high and low frequency responses of the 
encased model (0.798 and 29.85 fF, respectively) did not match the SLM values 
(0.346 and 73.49 fF, respectively) but are of the same order of magnitude. 
Individual capacitances could not be obtained for the PLM but a value for the total 
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capacitance could be obtained from the electric modulus formalism, measuring 
17.79 fF. Obtaining the total capacitance for the SLM and the encased model by the 
same method gave values of 0.352 fF and 0.743 fF, respectively. For the SLM and 
encased model the lower capacitance values dominate the total capacitance, 
whereas for the PLM the higher capacitance dominates. As capacitors add in 
parallel and add reciprocally in series, the lower total capacitances of the SLM and 
encased models are consistent with series pathways dominating within the 
encased model. The encased total capacitance is larger than that of the SLM due to 
the reduction in thickness of the shell presented to the applied potential difference 
than the thicker layer of the SLM (see fig. 24). 

 
Fig. 24. Schematic showing the difference in thickness of the low permittivity 
material presented to the applied potential difference between the encased and series 
layer model for a given core volume fraction. 
 
 Since the magnitude of the two resistances of the encased model (3.885 GΩ 
and 1.090 GΩ for the low and high frequency response, respectively) do not agree 
with those of the SLM (2.510 GΩ and 2.490 GΩ) and the low frequency resistance 
of the core material is larger than the high frequency resistance of the shell, we 
conclude that the whole volume of the shell is not contributing fully to the 
impedance response. Combining this with the evidence of a series pathway 
through the encased model suggests a similar effect to that encountered in the 
previous chapter where a conductivity difference in the physical microstructure of 
the encased model led to an alteration of the electrical microstructure. 
 Examining the electrical microstructure of the three configurations (figs. 8, 
14 and 17 for the SLM, PLM and encased model, respectively) allowed us to 
visualise the series and parallel pathways through the microstructure. For the SLM 
at very low frequency (1Hz) the current density was slightly concentrated in the 
high permittivity material (see fig. 25A). At both the low and high frequency (fmax) 
Debye response the current density was concentrated in the low permittivity layer 
(see figs. 25 B and C, respectively). The stream trace of the SLM current density 
was straight at all frequencies as would be expected from purely series 
connectivity with no alternative pathways available. The stream trace halted at the 
interface between layers at the high frequency fmax Debye response. Reversing the 
initial position of the tracer particles confirmed this to be an interface related 
effect. 
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Fig. 25. Schematic showing how the electrically active region in the SLM varies with 
frequency. (A) At 1Hz, (B) at fmax of the low frequency Debye response and (C) at fmax 
of the high frequency Debye response. 
 
 For the PLM, the current density was generally homogeneous and its vector 
field straight at most frequencies. This is consistent with the parallel model 
simulated by Padurariu7. Some heterogeneity could be observed in the reference 
layer. To understand why this results in a single impedance arc we must examine 
the electrical microstructure of the PLM. Only at very high frequency can we see 
heterogeneity in the current density outside the reference layer (visible just to the 
right of the interface, see fig. 26A). If the scale is altered to stop the current density 
in the reference layer dominating the plot, current density can be seen building up 
at the interface between the reference layer and the low permittivity layer 
appearing to flow towards the high permittivity layer (see fig. 26B).  
 Changing the plot to show the locations of the two materials and then 
examining the stream trace shows this effect more clearly (see fig. 26C). If a stream 
trace is close enough to the interface it will cross it. Note the starting position of 
the stream trace has been changed to be just under the reference layer to show 
current flow from the reference layer better. Usually changing the starting position 
of the stream trace has no effect, however the current density is asymmetrical, 
resulting in an asymmetrical stream trace. Finally, a line scan of current density 
across the interface (see fig. 26D) shows the increase in current density in the high 
permittivity layer just left of the interface, confirming that current density leaks 
into the low permittivity layer at high frequency. It is possible that, if the frequency 
were increased further, the current would become more heterogeneous and an 
additional response would become visible in the impedance spectra. To obtain fig. 
26 the frequency was in the region of GHz and therefore well outside the range 
used experimentally and the frequency range where the assumptions 
underpinning the FEM code hold. The heterogeneity observed was also very small. 
The difference between the maximum and minimum current density outside the 
reference layer was less than 0.4Am-2. For the permittivities considered, the effect 
of parallel capacitive pathways is minimal over the frequency range of interest. 
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Fig. 26. (A) Current density plot of PLM at 1 GHz where the scale is current density in 
Am-2 and is logarithmic and stream traces in black. (B) Same plot with high current 
density removed from the scale to better show current heterogeneity outside the 
reference layer; scale is current density in Am-2 and is linear. (C) Plot of material type 
with 1GHz stream trace and line scan position overlaid. (D) Current density versus 
position on line scan for PLM at 1 GHz. 
  
 The current density of the encased model showed complex behaviour. At 1 
Hz the current density was slightly concentrated in the high permittivity core 
region, similarly to the SLM, however the marginal increase of current density also 
extended into the parallel component of the shell (see fig. 27A). A current density 
plot of the frequency associated with the low frequency Debye response showed 
current density concentrating in the series shell component adjacent to the core 
but it did not spread to the series shell above and below the parallel component of 
the core (see fig. 27B). For the high frequency Debye response, the current density 
was still concentrated in the series shell but had spread across the whole of the 
series component (see fig. 27C). This can also be compared to the electrical 
microstructure visualised by Padurariu et al. One of their simulations considered a 
cube of low permittivity material with high permittivity spherical inclusions. A 
concentration of electric field was observed in the low permittivity matrix 
perpendicular to the applied potential between the inclusions7. This area is 
equivalent to the series shell component in this work. 
 The frequency-dependent configuration of heterogeneous current density 
in the encased model is explained by a stream trace analysis. At low frequency, the 
stream trace is straight implying a uniform current flow (see fig. 28A). Here the 
frequency is too low for capacitive pathways to form, from equation (5.1). Hence 
the conductive pathways dominate. As the core and shell conductivity is equal, 
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only straight conduction pathways are available and the current density builds up 
in the core due to its higher time constant. At the first Debye response, the 
capacitive pathways in the core region become favourable before those in the shell 
due to the higher permittivity of the cores. As the impedance of the core capacitive 
pathways is only marginally greater than the pathways available in the shell, some 
conductive pathways remain through the parallel component of the shell (see fig. 
28B). This would explain why current density only builds up adjacent to the core. 
It can still flow through the parallel shell. For the high frequency Debye response, 
the impedance of the capacitive pathways through the core has become so low that 
the capacitive pathways curve into the core, by-passing the parallel shell (see fig. 
28C). Current density now concentrates in the series shell. The contribution (and 
equivalent circuit fitting) of the parallel shell’s impedance response in the encased 
model is evaluated in depth in the next chapter.  

 
Fig. 27. Schematic showing which components of the encased model are electrically 
active at key frequencies. (A) 1 Hz, (B) the low frequency Debye Response and (C) the 
high frequency Debye response.  

 
Fig. 28. Schematic showing where conductive and capacitive pathways form in the 
encased model as frequency increases. (A) 1 Hz, (B) the low frequency Debye 
Response and (C) the high frequency Debye response. 
 
 Due to the current density heterogeneity, the electrical microstructure of 
the encased model did not resemble the physical microstructure. The features of 
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the electrical microstructures of models with a homogenous conductivity and 
varied permittivity were not as simple as those presented in chapter four.  We 
recall that, for the fixed permittivity case, the low and high Debye fmax values of the 
models correspond with low and high conductivity regions being electrically 
active8. The fixed conductivity with varied permittivity models presented here 
appear to show a transition from the core to the series shell for the low frequency 
Debye response and a stronger signal from the series shell for the high frequency 
response.  
 Assuming that the low frequency response is mainly due to the core and 
that the high frequency response is due to the shell, which agrees well with the 
time constants for the two materials, there are similarities to the encased models 
in chapter four. Extracting a core volume fraction (core) from core-shell resistance 
ratios of the fixed conductivity case simulations (as detailed in the methodology 
section) gave a core value of 0.78 for the encased model with equal volume 
fractions of core and shell. Note that this is the same value as that extracted for an 
encased model from the fixed permittivity case using capacitance ratios (in chapter 
four), where the volume of core and shell are the same. The high frequency shell 
response discussed in this chapter shared the reduced impedance contribution of 
the parallel shell observed in the low frequency encased shell response in chapter 
four. Clearly the preferential pathway through the series shell and the evidence in 
capacitance magnitudes pointing to series connection dominated behaviour show 
that the two systems have much in common. 
 Repeating some of the encased models with variable core-shell volume 
fractions but with fixed conductivity and extracting core values from resistance 
ratios showed near exact agreement with the trends observed for the fixed 
permittivity case (see figs 18, 20, 21). Current density plots also showed increased 
heterogeneity as core decreased (see figs. 17, 22, 23). Thus, volume fractions can 
be accurately extracted from resistance ratios where core is greater than 0.8. It is 
likely that the trends observed for the fixed conductivity case using a more 
qualitative analysis of distributions of conduction (or capacitive) path lengths 
would also agree well with those observed with the varied conductivity case. 
Before undertaking a more robust analysis of electrical microstructure vector data 
there are important issues that must be resolved.  
 When plots of the electrical microstructure are produced, they are taken at 
specific frequencies, either at the maximum value for current or voltage (Imax or 
Vmax) from the I-V sinusoids simulated by the FEM code to calculate impedance 
spectra (see fig. 29A). This approach has worked well for the fixed permittivity - 
varied conductivity case, as the low conductivity material was more active at the 
low frequency Debye response and the high conductivity material was more active 
at the high frequency Debye response. This agreed with the time constants for the 
two materials. For models of the fixed conductivity case with series connectivity 
(SLM and encased), there were two Debye responses present but current density 
plots taken at these frequencies showed concentration of current density in the 
low permittivity material. Given that the low frequency Debye response of the 
fixed conductivity models had a time constant associated with the high 
permittivity material, we would expect that the high permittivity material would 
have the greatest concentration of current density at the low frequency Debye 
point. The high permittivity material has only a very small concentration of current 
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density at much lower frequency (~ 1Hz) than the low frequency Debye, fmax, 
contradicting this prediction. 
 It is possible that the maximum of current or voltage is not the correct point 
on the sinusoid to consider when studying electrical microstructure. When there 
are different permittivities present in the microstructure there are capacitive 
pathways that have different frequency dependencies. This creates a more 
complex dependence on frequency and therefore on time. The present approach 
does not adequately probe the electrical microstructure through all time steps 
simulated and may miss important features on a given sinusoid. Another 
possibility is that the FEM code is not simulating the exact current where we wish 
to interrogate it. The code simulates a finite number of time steps or data points 
for the applied voltage using a sinusoid. The current, due the phase difference to 
the applied voltage, does not perfectly align with the voltage sinusoid (see fig. 
29B). This means that finding and simulating the exact maximum current plot is 
very hard. This is more of an issue when simulating the extreme case of 
composites with homogenous conductivity and mixed permittivity. This may be a 
limitation of the FEM approach used in this work. Additional work could clarify 
whether specific points on a sinusoid or an average of electrical microstructure 
over a whole sinusoid would be a better option for vector data analysis. 
 

 
Fig. 29. (A) Current and voltage sinusoids used to calculate the total impedance of a 
given model. (B) Schematic of an enlargement of the current maximum where points 
calculated by the FEM program will not be exactly at the maxima of the sinusoid. 
 

5.5. Conclusions 
 
Electrical composites with homogenous conductivity and heterogeneous 
permittivity have been investigated. Several simple microstructural configurations 
have been simulated and their impedance spectra analysed. A method of extracting 
volume ratios from capacitance ratios has been extended to use resistance ratios. 
Key findings are: 
 
• When a material has regions with different permittivities but the same 

conductivity the electrical microstructure can be affected by the configuration 
of the physical microstructure. This is caused by capacitive pathways forming 
between the regions that are electrically active at a given frequency due to 
their time constants. 
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• Capacitive pathways can alter the electrical microstructure so that it no longer 
resembles the physical microstructure, which can cause complications when 
applying a brick work layer model analysis to impedance data. 

• Series capacitive pathways have a greater effect on electrical microstructure 
than parallel ones given that the magnitude of the total capacitance for both the 
SLM and encased simulation tended towards a lower value, implying reciprocal 
addition of capacitors in series. 

• It is more effective to extract volume fractions from resistance ratios than from 
capacitance ratios when permittivity varies and conductivity is fixed. 

• Similar trends emerge when the core volume fraction of an encased model is 
varied and its value extracted from resistance ratios as the case where 
conductivity is varied and permittivity is fixed for the same microstructure. The 
brick layer model therefore works well for modelling the impedance response 
of the varied permittivity encased model when the core volume fraction is > 
0.7. Core volume fractions < 0.7 will have errors > 25% when extracted using 
resistance ratios. 
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Chapter 6: Resolving Material Properties 
 

In the previous chapter the effect of the microstructure was studied with fixed 
material properties.  Here the microstructure is fixed and the material properties 
are varied. Having the benefit of knowing the assigned intrinsic material 
properties (conductivity and permittivity) allows us to compare directly to the 
extracted material properties using the standard methodology employed 
experimentally. By comparing the extracted values with the known values, it is 
possible to map out where material properties can be reliably extracted and what 
is the best methodology to do so. 
 
 

6.1. Literature 
 
Theoreticians have the luxury of choosing idealised parameters to input into their 
models. This approach has its merits as it can be much easier to analyse data and 
spot trends but the idealised parameters can be far from what could occur in the 
real world. An example is barium titanate which, depending on processing 
conditions and dopant chemistry, can lead to a wide range of electrical properties1. 
This work aims to investigate how different combinations of material properties 
can alter the impedance spectra and the confidence in the extraction of accurate 
material properties. 
 Typically, impedance spectra are analysed using equivalent circuits. The 
different electrical processes that occur within a material can be modelled by a 
network of capacitors, resistors and other circuit elements. An issue with using 
equivalent circuits is that it is possible to produce the same spectra with different 
equivalent circuits2.  To get the correct equivalent circuit one must consider 
whether all physical processes are represented in the circuit. By comparing the 
impedance response of a material to the spectra of an equivalent circuit in multiple 
impedance formalisms it is possible to examine the impedance data with different 
weights. An example of this is the commonly used impedance (Z*) formalism, 
which is weighted towards large resistances. In contrast, the electric modulus (M*) 
is more weighted towards small capacitances. This principle has been used to 
characterise the electrical microstructure of positive temperature coefficient of 
resistance barium titanate3. Work by Abram et al selected an equivalent circuit 
that fitted doped lanthanum gallate samples better by using multi-formalism 
analysis4. 
 In the field of electroceramics a popular equivalent circuit is two parallel 
resistor and capacitor elements (RC element) connected in series. This was 
originally proposed by Bauerle5, and has been since referred to as the brick layer 
model. One RC element represents a grain boundary response; the other 
represents the bulk (grain) ceramic response (see fig. 1). The brick layer model 
(BLM) has been very successful in modelling ceramics with thin resistive grain 
boundaries as it considers only grain boundaries that are parallel to either the 
electrodes or the series pathway through the microstructure and neglects the grain 
boundaries that run perpendicular to the electrode (as the bulk ceramic would be 
an easier conduction pathway).  
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Fig. 1. Schematic of the brick layer model where subscript 1 indicates grain 
boundary parameters and subscript 2 denotes bulk parameters. 
 
There have been attempts to modify the BLM to account for these parallel grain 
boundaries. For example, scenarios where the grain boundaries are thicker, 
reducing their effective resistance, and where the grain boundaries are a more 
conductive material than the ceramic bulk, parallel pathways may need to be 
accounted for. This parallel version of the BLM was first proposed by Näfe6, who 
considered only conductivity, and was later extended by Hwang7 to include 
dielectric properties. Hwang’s work was concerned with nano-grain sized cerium 
dioxide. Here the grain boundary is of comparable thickness to the bulk grain. It is 
arguable that similar methods could be used to characterise core-shell 
microstructures, where the shell is thicker than a grain boundary and may have 
different electrical properties depending on the dopant chemistry and conditions 
of materials processing. 

 

6.2. Methodology 
 
6.2.1. Simulation of Material Properties 
 
Previously, the effect of varying core-shell volume fractions on impedance 
spectroscopy was investigated8. It was found that, for a core volume fraction (core) 
larger than 0.8, extracting volume fractions from capacitance ratios gave errors of 
less than ±25%. This study used idealised material properties for the core and 
shell region to aid simulation and analysis. The following work investigates the 
impact of varied material properties on impedance measurements for a core-shell 
like system. The physical microstructure was fixed as a nested cube configuration 
with a core of 0.8. The core material properties were constant and based upon 
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semi-conducting barium titanate whilst the shell properties varied from being 
those of the core to a more resistive shell material (see fig. 2). 

 
Fig. 2. Schematic of the physical microstructure and the range of material properties 
simulated. 
 
 It is important to note that the permittivity and the conductivity are varied 
simultaneously. A finite element simulation of the impedance response of the 
nested cube structure is conducted for each variation of conductivity and 
permittivity producing a two dimensional array of 100 points that will be referred 
to as a material property space. The frequency range simulated was 1 Hz to 10 
MHz based upon experimental practice. More data points were gathered in the 
region where the core and shell time constants were similar, in an attempt to 
better resolve the behaviour (see fig. 3).   
 

 
Fig. 3. Schematic showing the placement of more simulations on the material 
property space where the core and shell properties become similar. 
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6.2.2. IS analysis and Equivalent Circuits used 
 
FEM-simulated impedance spectra were analysed using Nyquist plots of 
impedance (Z*) and electric modulus (M*). Spectroscopic plots of the real 
component of the complex admittance (Y’) and the real component of complex 
capacitance (E’) were also used. While this is not the full set of available impedance 
formalisms, this analysis is sensitive to capacitances and resistances of varying 
magnitude (see table. 1) whilst keeping the data analysis of a large system 
manageable. 
 
Table. 1. Table of the formalisms used, their relation to Z* and their sensitivities. ω is 
the angular frequency (ω=2πf), f is frequency (in Hz), Z’ and Z’’ are the real and 
imaginary components of Z*, respectively. 
 
Formalism Relation to Z* Sensitive to: 
Z* - Large resistances 
M* jωZ* Small capacitances 
Y’ 1/Z’ Small resistances 
E’ 1/ jωZ’’ Large capacitances 
 
 Three equivalent circuits were used to analyse the FEM spectra. These were 
the series layer model (SLM), the series brick layer model (SBLM) and the parallel 
brick layer model (PBLM). Each of these equivalent circuits has a simplified 
microstructure associated with it (see fig. 4). The values of resistance (R) and 
capacitance (C) for the constituent elements are calculated using the basic 
equations for resistance and capacitance given in equations (2.1) and (2.2) 
respectively. The same intrinsic values of conductivity (σ) and permittivity (εr) as 
inputted into the FEM code and the geometry of the constituents of the simplified 
microstructures are used to evaluate equations (2.1) and (2.2) for a given 
combination of material properties. 
 The SLM is the simplest representation of a two phase electrical composite 
and was first described by Maxwell9. In this work, there are two layers of fixed 
area and thickness varying to make up the volume fractions of core and shell 
material (see fig. 4A). Previously it has been shown that microstructures that have 
more complex connectivity cannot be fitted using the SLM as it assumes there are 
no preferential conduction pathways through the microstructure and that all the 
volume of the core and the shell material contribute to the impedance response8. 
For completeness, we will test how well the SLM can model systems with varied 
material properties. 
 Previously8 an equivalent circuit based upon the electrical microstructure 
of a core-shell system was derived called the SBLM. By assuming a nested cube 
approximation of the core-shell structure, the parallel component of the shell 
material is neglected (see fig. 4B). This approach is valid for the case where the 
shell is thin and resistive, as the current will preferentially flow through the core 
instead of the parallel shell. 
 Finally, a third configuration was used for when the parallel component of 
the shell cannot be neglected, the PBLM (see fig. 4C). Whilst the shell region is 
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relatively thin in this material properties study, σ and εr are variable. This could 
cause preferential pathways to form through the parallel shell regions. This 
equivalent circuit is interpreted in a similar manner to the dual RC circuits in that 
its impedance spectra only have two responses. One might expect that there would 
be three responses as there are three RC elements.  This is not the case as the 
series and the parallel shell components have the same time constant since they 
are derived from the same values of σ and εr and the geometric factor cancels10.  
 
 

 
Fig. 4. Equivalent circuits and the physical microstructures they represent for (A) the 
SLM, (B) SBLM and (C) PBLM. 
 
 The SLM and SBLM result in two parallel RC circuits in series, whilst the 
PBLM requires an additional RC circuit for the parallel shell. Derivations for the 
impedance responses of the dual and triple RC circuits are given in appendices one 
and two, respectively. A summary of intercepts, plateaus and their meanings is 
given in figure 5 and table 2, respectively. The possible arc diameters, plateaus and 
Debye frequencies provide 12 extracted values to consider for each impedance 
response. This data was obtained for the FEM simulations and each of the three 
equivalent circuit spectra. These four plots of the impedance data are functions of 
the same parameters but weight the data differently. As discussed in the theory 
section (Chapter 1), for different combinations of material properties certain 
formalisms will not display all responses within the system whilst others will. 
Obtaining the intercepts and plateaux for more than one formalism will increase 
the accuracy of fully characterising the system in question. 
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Fig. 5. Intercepts and plateaus for (A) Z* Nyquist plot, (B) M* Nyquist plot, (C) Y’ 
spectroscopic plot and (D) E’ spectroscopic plot. Subscripts one and two denote the 
low and high frequency response, respectively. Note that the plateaus for (C) and (D) 
are approximations that hold if R1>>R2 and C1>>C2, see appendix one. 
 
Table. 2. Table of impedance spectra intercepts and plateaus with their physical 
meaning for the double and triple RC circuits shown in fig. 4. Subscript s-shell is a 
series shell, subscript p-shell is a parallel shell and subscript core is core. 
 
Intercept/Plateau Dual RC Triple RC 
R1 Rs-shell Rs-shell 
C1 Cs-shell Cs-shell 
R2 Rcore 1/(Rcore-1 + Rp-shell-1) 
C2 Ccore (Ccore + Cp-shell) 
 
 
6.2.3. Finding the best equivalent circuit 
 
In order to select the best equivalent circuit for a given set of material properties, a 
comparison of the twelve impedance values extracted was made between the FEM 
spectra and each equivalent circuit. For each comparison, the root mean squared 
(RMS) deviation was calculated using: 
 

𝐷𝑟𝑚𝑠 = √(𝑥𝐸𝐶 − 𝑥𝐹𝐸𝑀)2                                         (6.1) 
 
where Drms is the RMS deviation, xEC is the response from the equivalent circuit 
value and xFEM is the extracted FEM value. We assume that an equivalent circuit 
should fit the impedance spectra in all formalisms, thus if an equivalent circuit 
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does not have the same number of impedance responses for a given formalism, 
that equivalent circuit was deemed invalid. If the FEM spectra and an equivalent 
circuit fit had the same number of impedance responses the Drms values were 
calculated and used to calculate a mean value of Drms where the equivalent circuit 
with the lowest value of Drms was chosen as the best equivalent circuit for the given 
set of material properties. This process is summarised in fig. 6. 
 
 

 
Fig. 6. Flowchart showing how the equivalent circuit that best represents the FEM 
simulated impedance spectra is selected. 
 
 As the collecting of all key values for different impedance formalisms was 
performed by hand, a protocol was established to ensure that data was collected in 
a repeatable manner. For the case of the Z* and M* Nyquist plots it would be 
expected that there would be one or two arcs present depending on how similar 
the core and shell time constants were. To ensure consistency, when the arcs were 
merged so that there were no intermediate minima (for an example of this see fig. 
7A) it was defined that only one response was present. It is possible to fit 
semicircles to merged spectra (see fig. 7B), however this adds additional 
uncertainty to the analysis and, depending on how you fit the semicircles, a variety 
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of arc diameters can be achieved. The presence of a minimum provided a simple 
criterion for accepting the presence of two measurable arcs (see fig. 7C). 
 

 
Fig. 7. (A) Schematic of Z* Nyquist plot with two merged arcs, (B) same plot with 
semicircles fitted, note the uncertainty of the overlap of the semi circles and (C) Z* 
Nyquist plot with two arcs with separation defined by a minimum in Z’’. 
 
 Another issue arises when extracting data from Y’ spectroscopic plots. A 
limitation of the FEM code is an artefact in the Y’ spectrum caused by the reference 
layer (see fig. 8). The reference layer is a purely resistive layer included for the 
finite element calculation (covered in in chapter 3). The material properties of the 
reference layer are chosen so that it has a minimal influence on the simulated 
impedance spectra but the effect is most pronounced when viewing the data in Y’. 
The resulting dispersion can completely dominate the high frequency Y’ 
spectroscopic plateau meaning that this impedance response is not recorded. As 
this dispersive effect is not present in the equivalent circuits, it would cause the 
equivalent circuits to be deemed inadequate and as such, the high frequency 
plateau of Y’ would be removed from the selection criteria. 

 
 
Fig. 8. Schematics of Y’ spectroscopic plots for: (A) an equivalent circuit simulation 
with two plateaus and no dispersion, (B) a FEM simulation with two plateaus and a 
resistive dispersion term and (C) a FEM simulation where only the low frequency 
plateau is present as the high frequency plateau has been swamped by the dispersion. 
Note the change in scale from (A) to (B) to show the dispersion in (B), the plateau 
heights are the same. 
 
 Once the best equivalent circuit for given material properties is identified, 
we must investigate the core and shell time constants so that we assign core and 
shell responses to the correct part of the impedance spectra. Time constants are 
detailed in chapter one. We recall that a material with a larger time constant will 
have a Debye response at a lower frequency than a material with a smaller time 
constant. In chapter four it was found that, for an encased model with a core 
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volume fraction of 0.8, the core time constant did not vary significantly due to 
curved conduction pathways forming through the core8. From this result, it will be 
assumed that the core time constants in this chapter are geometry independent. 
The analytical time constants (τ) were calculated with: 
 
 𝜏 =

𝜀0𝜀𝑟 
𝜎

 
𝜀0𝜀𝑟 
𝜎
(6.2) 

   
Using equation (6.2) to calculate the core and shell time constants for each point 
on the material property space so the core and shell responses were correctly 
assigned to the low or high frequency parts of the impedance spectra. Whichever 
material had the larger time constant was assigned to the low frequency response 
and the material with the smaller time constant was assigned the high frequency 
response.  
 Values of σ and εr can now be extracted for the core and shell materials. For 
the SLM and the SBLM equivalent circuits, the low frequency resistance and 
capacitance values (R1 and C1) and the high frequency resistance and capacitance 
values (R2 and C2) are substituted into equations (2.1) and (2.2), respectively. 
These values can be then compared to the known (inputted) values. The process is 
the same for the low frequency shell properties of the PBLM, but the high 
frequency resistance and capacitance values are a composite of the core and the 
parallel shell properties. Since the shell properties are already known from the low 
frequency data, substituting the best values for the shell conductivity into equation 
(2.1) and (2.2) gives: 
 
 

𝜎2 =
1

𝐺2
((
1

𝑅2
) − (𝜎1𝐺3)) (

1

𝑅2
) (6.3) 

   
 

𝜀𝑟2 =
1

𝐺2𝜀0
(𝐶2 − (𝜀0𝜀𝑟1𝐺3)) (

1

𝑅2
) (6.4) 

 
 
where G2 the geometric factor of the core (area over length), G3 is the geometric 
factor of the parallel shell material, R2 is the high frequency resistance, σ1 is the 
shell conductivity, σ2 is the core conductivity, εr1 is the shell permittivity, εr2 is the 
core permittivity and C2 is the high frequency capacitance. 
 Once the high and low frequency intrinsic values have been calculated for 
each formalism, it is possible to map out the most accurate intrinsic values that can 
be obtained from impedance data under these conditions and identify which 
formalism(s) is needed to obtain it. This process is summarised in fig. 9. Due to the 
large number of data points, a computer program was written to automate the 
calculation of intrinsic values and comparisons of the equivalent circuits and 
possible impedance formalisms. 
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Fig. 9. Flowchart showing how the impedance formalism that is most accurate for 
obtaining intrinsic values from impedance spectra is selected. 
 

6.3. Results 
 
6.3.1. Optimal Equivalent Circuit 
 
 To find the optimal equivalent circuit, a large range of material property 
combinations were simulated using FEM along with the equivalent circuits using 
the Zview program11. Using the methodolgy previously outlined, a measure of how 
well each equivalent circuit fitted the FEM-simulated impedance data was 
obtained. For the SLM, the deviation was higher than for the SBLM and PBLM for 
all combinations of material properties (see fig. 10A); its size rising from ±34 to 
±163%. There were also large regions where the SLM completely failed to replicate 
the impedance response of the FEM simulation. This occurred where the shell 
permittivty or conductivity was very different to that of the core.  
 Both the SBLM and the PBLM did better that the SLM (see fig. 10B and C, 
respectively). For the SBLM, the deviation ranged from ±0.7 to ±20% and for the 
PBLM from ±0.55 to ±20%.  There were some combinations of material properties 
that the SBLM failed to replicate. However, the PBLM produced the same number 
of impedance responses in all formalisms as the FEM data. Typically the SBLM was 
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better for scenarios where the conductivity and permittivity for the core and shell 
were very different (see fig. 10D region i). For regions where the material 
properties were similar, the PBLM generally was found to be the best equivalent 
circuit (see fig. 10D region ii). However when the permittivity of the shell was 
lower than that of the core, both regions had a similar conductivty and the PBLM 
worked well (see fig. 10D region iii). Also when the conductivity of the core and 
shell were very different but the permittivities were similar, again the PBLM was 
superior (see fig. 10D region iii). This is shown by a plot of which equivalent circuit 
had the lowest value of deviation (see fig. 10D). It should be noted that, when the 
SBLM provided the best fit, the minimum and maximum absolute differences 
between the deviations of the PBLM and SBLM are ±0.03 to ±0.4%. The difference 
is more significant when the PBLM is the best fit where the minimum and 
maximum absolute differences are ±0.01 to ±14.22%, where the greatest 
difference is where the core and shell have matching or close to matching 
permittivity and conductivity. 
 
 
 

 
Fig. 10. Plots of the RMS deviation of (A) the SLM, (B) the SBLM and (C) the PBLM 
compared to the FEM-simulated results for all simulated combinations of material 
properties. The deviation uses a log scale; white spaces show areas where an 
equivalent circuit did not have the same number of impedance responses as the FEM 
simulation and is considered invalid. (D) shows which equivalent circuit has the 
lowest RMS deviation and is considered to be the best fit. This depends on material 
properties and the dashed lines enclose several regions (i to iv) that are discussed in 
the text. The straight lines plotted on top of the contours show the ratio between the 
theoretical core and shell time constants. 
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 From the map showing which equivalent circuit provides the best fit of the 
FEM data, several points of interest were selected to examine the equivalent circuit 
fits in the four impedance formalisms (see fig. 11). These points were selected to 
show how the impedance spectra differed for the region where the SBLM provided 
the best fit of the FEM data and several points in the region where the PBLM was 
selected as the best fit. A summary of the material properties of the four points of 
interest is given in table 3 along with reasons for their selection. Table 4 gives the 
RMS deviation for each equivalent circuit at the four points of interest. 
 

 
Fig. 11. Four points of interest on the material properties plots showing where the 
SBLM or PBLM fitted the FEM simulated impedance spectra best. 
 
Table. 3. Material properties of points of interest A to D with reasons for selection. 
 
Position Shell εr Shell σ/Sm-1 Comment 
A 100 6.31E-5 Low shell εr and high σ. 
B 215 1E-6 Lowest deviation of SBLM from FEM 

results. 
C 1260 2.51E-5 High shell εr and high σ. 
D 1122 1e-6 High shell εr and low σ. 
    
Table. 4. RMS deviation values for each equivalent circuit at points of interest A to D. 
Note N/A indicates that an equivalent circuit did not have the same number of 
intercepts as the FEM simulation and was discarded from selection. 
 
Position Shell εr Shell σ/Sm-1 RMS deviation/% 

SLM SBLM PBLM 
A 100 6.31E-5 N/A 9.49 5.43 
B 215 1E-6 117.44 0.72 1.12 
C 1260 2.51E-5 44.41 9.57 3.45 
D 1122 1e-6 N/A N/A 4.04 
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 At point A, where the shell permittivity was 100 and its conductivity was 
0.0631 mSm-1, the PBLM provided the best fit. Comparing the three equivalent 
circuits with the FEM spectra (plotted as impedance Nyquist plots, see fig. 12A) 
showed that the SLM overestimates the total resistance by over 50%. The PBLM 
and SBLM were much closer to the FEM spectra, overestimating the total 
resistance by 10 and 20%, respectively. A modulus Nyquist plot (see fig. 12B) 
showed the SLM underestimating the total capacitance by over 100%. The SLM 
also did not have a definable minimum between the core and shell arcs, discarding 
its fit from selection. The SBLM and PBLM fitted the FEM data exactly. 
Spectroscopic plots of the real admittance (fig. 12C) and real capacitance (fig. 12D) 
again showed that SLM provided the worst fit whereas the SBLM and PBLM 
plateaus tended to the same value at high and low frequency. Although it was not 
included in the selection criteria, the PBLM provided a much closer fit for the 
transitions between the high and low frequency plateaus, particularly for the real 
capacitance. 

 
Fig. 12. Comparison of the impedance response simulated with FEM (circles) with 
the three equivalent circuits fits (solid lines) for position A: (A) Impedance Nyquist 
plot, (B) modulus Nyquist plot, (C) real admittance spectroscopic plot and (D) real 
capacitance spectroscopic plot. 
 
 For point B, where the shell permittivity was 215 and its conductivity was 1 
μSm-1, the SBLM provided the best fit but was not a significant improvement over 
the PBLM. For impedance Nyquist plots (see fig. 13A) the SLM overestimated the 
total resistance by 300% whereas the SBLM and PBLM matched the FEM spectrum 
well. A modulus Nyquist plot (see fig. 13B) showed that the SLM overestimated the 
M* arc diameters by over 100%. The SLM also did not predict the position of a 
minimum between the core and shell arcs correctly whereas the SBLM and PBLM 
did.  
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 The SLM underestimated the position of the low and the high frequency 
plateaus of a real admittance spectroscopic plot (see fig. 13C). The SBLM and PBLM 
predicted the low frequency Y’ plateau but underestimated the height of the high 
frequency plateau. Finally, for a spectroscopic plot of the real capacitance (see fig. 
13D) the SLM underestimated both plateaus whereas the PBLM and SBLM gave 
good agreement with the FEM data. The main contribution to the difference in RMS 
deviation between the PBLM and the SBLM was in the M* arcs and the high 
frequency E’ plateau with a difference in the deviations of ~1% each. Despite the 
SBLM giving the lowest average RMS deviation, it should be noted that the PBLM 
gave a much better fit for the transition between the high frequency and low 
frequency plateaus for E’ and Y’. 
 

 
Fig. 13. Comparison of the impedance response simulated with FEM (circles) with 
the three equivalent circuit fits (solid lines) for position B. (A) Impedance Nyquist 
plot, (B) modulus Nyquist plot, (C) real admittance spectroscopic plot and (D) real 
capacitance spectroscopic plot. 
 
 The impedance response of point C (permittivity of 1260 and conductivity 
of 25.1 μSm-1) showed significant merging of the two regions’ responses, which is 
not surprising given the proximity of the core and shell time constants. Here the 
PBLM was the most effective equivalent circuit. Nyquist plots of impedance (see 
fig. 14A) and modulus (see fig. 14B) showed a single arc for all equivalent circuits. 
The diameters of both the Z* and M* arcs were significantly overestimated (by 
~100 and ~50% respectively) by the SLM. The SBLM fitted the arcs within 10% 
and the PBLM provided the best fit. For spectroscopic plots of Y’ and E’ (see figs. 
14C and D, respectively), all equivalent circuits underestimated the heights of the 
low and high frequency plateaus in both cases. The SLM provided the worst fit, 
followed by the SBLM, whilst the PBLM provided the best fit. 
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Fig. 14. Comparison of the impedance response simulated with FEM (circles) with 
the three equivalent circuits fits (solid lines) for position C. (A) Impedance Nyquist 
plot, (B) modulus Nyquist plot, (C) real admittance spectroscopic plot and (D) real 
capacitance spectroscopic plot. 
 
 The final point of interest, D with a conductivity of 1 μSm-1 and permittivity 
of 1122 was fitted best by the PBLM. Once again the SLM overestimated the total 
resistance as seen in an impedance Nyquist plot (see fig. 15A) where the total arc 
diameter was out by nearly 300%. Here the PBLM and SBLM proved to be 
excellent fits of the FEM data. For a modulus Nyquist plot (see fig. 15B) the SLM 
predicted a minimum between the core and shell arcs that did not exist for the 
FEM spectrum and overestimated the M* arc diameters. The PBLM and SBLM both 
fitted the low frequency M* arc but the SBLM overestimated the high frequency arc 
in contrast to the near exact fit of the PBLM.  
 Spectroscopic plots of the real admittance (see fig. 15C) showed that the 
SLM underestimated the heights of the low and high frequency plateaus. The SBLM 
and PBLM provided a near exact fit of the low frequency plateau and both 
underestimated the high frequency plateau by a lesser degree than the SLM. 
Finally, spectroscopic plots of the real capacitance (see fig. 15D) showed that the 
PBLM provided the best fit to the FEM data for the plateau heights and the low to 
high frequency transition. The SBLM fitted the plateau heights but did not correctly 
predict the transition frequency. The SLM underestimated both the E’ plateau 
heights. 



 Chapter 6: Resolving Material Properties  157 

 
Fig. 15. Comparison of the impedance response simulated with FEM (circles) with 
the three equivalent circuits fits (solid lines) for position D. (A) Impedance Nyquist 
plot, (B) modulus Nyquist plot, (C) real admittance spectroscopic plot and (D) real 
capacitance spectroscopic plot. 
 
 All three equivalent circuits overestimate the high frequency real 
admittance plateau leading to an overall better fit of the capacitances present in 
the FEM data than the resistances. The PBLM provides the best fit for the 
transition between low and high frequency plateaus for E’ and Y’ spectroscopic 
plots for all points of interest. There are several cases where the SLM predicts 
behaviour that is very different to the FEM data. 
 
6.3.2. Extracting Shell Conductivity 
 
 Using the best equivalent circuit, values for the conductivity and 
permittivity could be extracted using equations (2.1), (2.2), (6.3) and (6.4). These 
equations require a value of capacitance or resistance (for a permittivity or 
conductivity, respectively) that can be obtained from a range of impedance 
formalisms. Using the methods detailed in section 6.2.2 it is possible to find the 
impedance formalism that gives the most accurate value for a given intrinsic 
material property. The different methods for obtaining resistance and capacitance, 
with the shorthand notation used to define them, are summarised in table 5. 
Diagrammatic examples of which parts of the spectra the short hand notations 
refer to are given in fig. 16. 
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Table. 5. Table defining notation for different impedance formalisms to find 
resistance and capacitance values for extracting intrinsic property values. 
 
Notation Conductivity or permittivity extracted from: 
M’1 Capacitance from low frequency M* arc diameter. 
M’W1 Resistance from low frequency M* arc diameter and Debye frequency 

using RCω=1. 
M’2 Capacitance from high frequency M* arc diameter. 
M’W2 Resistance from high frequency M* arc diameter and Debye frequency 

using RCω=1. 
Z’1 Resistance from low frequency Z* arc diameter. 
Z’W1 Capacitance from low frequency Z* arc diameter and Debye frequency 

using RCω=1. 
Z’2 Resistance from high frequency Z* arc diameter. 
Z’W2 Capacitance from high frequency Z* arc diameter and Debye 

frequency using RCω=1. 
E’LF Capacitance approximated from low frequency E’ spectroscopic 

plateau.  
E’HF Capacitance approximated from high frequency E’ spectroscopic 

plateau.  
Y’LF Conductivity approximated from low frequency E’ spectroscopic 

plateau.  
Y’HF Conductivity approximated from high frequency E’ spectroscopic 

plateau.  
 

 
 A plot of the RMS deviation of the shell conductivity extracted using the 
formalism that gave the lowest value is shown in fig. 17A. This shows that it is 
more accurate to extract the shell conductivity when the difference between the 
core and shell conductivity is larger or the difference between the core and shell 
permittivity is larger. The shell conductivity can be extracted with less than ±10% 
RMS deviation from the input value when the shell conductivity falls below 3.16 
μSm-1 or the permittivity is less than or equal to 31.6.  Two regions are not covered 
by the previous statement. The first region, for conductivities of 0.1 mSm-1 to 63.1 
μSm-1, extends the region where the shell conductivity can be extracted to within 
±10% to shell permittivities of 100. The second region, where the shell 
permittivity is 2000 to 1122, extends the resolvable region to 15.8 μSm-1. A 
schematic showing which impedance formalism was best for extracting the shell 
resistance and hence giving the most accurate shell conductivity is given in fig. 
17B. Regions where the extracted conductivity has deviated by ±25% from the 
known value have been discarded as being too inaccurate. The geometric factor 
used to convert resistance to conductivity is based upon the equivalent circuit that 
offered the best fit of the FEM data for the given material properties as discussed 
in section 6.2.2. 
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Fig. 16. Schematics of impedance data annotated with abbreviations used for the 
intercepts. (A) Modulus Nyquist plot where the shell and core capacitances are 
extracted from inverse arc diameters are defined as M’1 and M’2, respectively. 
Resistances extracted from the Debye angular frequencies (ωmax) and capacitances 
are defined as M’W1 and M’W2 (for the shell and core). (B) Impedance Nyquist plot 
where the shell and core resistances are extracted from inverse arc diameters are 
defined as Z’1 and Z’2, respectively. Capacitances extracted from the Debye angular 
frequencies (ωmax) and capacitances are defined as Z’W1 and Z’W2 (for the shell and 
core). (C) Admittance spectroscopic plot where the shell and core resistances 
extracted from the low and high frequency plateaus are defined as Y’LF and Y’HF, 
respectively. (D) Capacitance spectroscopic plot where the shell and core 
capacitances extracted from the low and high frequency plateaus are defined as E’LF 
and E’HF, respectively. These plots assume that the shell time constant is greater 
than the core time constant. 

 
Fig. 17. (A) Plot of the lowest RMS deviation when extracting the shell conductivity 
using the optimal equivalent circuit and impedance formalism. Note the scale is 
logarithmic. (B) Schematic showing which impedance formalism gave the lowest 
deviation for the combinations of material properties. Note: Regions with an RMS 
deviation of over 25% from the input shell conductivity have been discarded leaving 
white space. 
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 Fig. 17B shows that there are distinct regions of material properties where 
certain impedance formalisms are best for extracting the shell conductivity. An 
enlargement of fig. 17B is shown in fig. 18 with the addition of several (blue) lines 
corresponding to regions of interest that will be examined in further detail 
(regions i to iv).  In region i, where the shell conductivity varies from 0.1 mSm-1 to 
63.1 μSm-1 and the shell permittivity varies from 10 to 100, the resistance 
calculated from the shell imaginary modulus Debye frequency (M’W1) gives the 
most accurate value for the shell conductivity. In region ii, where the shell 
permittivity is 10 and shell conductivity ranges from 39.8 μSm-1 to 1 μSm-1, 
Nyquist low frequency arc diameters of impedance (Z’1) are the best. Region iii is a 
diagonal band between where the shell time constant is equal to the core time 
constant (τcore and τshell, respectively) and τshell = 10τshell. Here M’W1 is best. Finally, 
for region iv, there is a transition from Z’1 to where the shell real admittance 
plateau (Y’LF) gives the best value as the shell conductivity decreases from 1 μSm-1 
to 0.1 μSm-1. 
 

 
Fig. 18. Schematic showing which regions of interest (blue lines, labelled i to iv) are 
examined to find why different formalisms are better for extracting the shell 
conductivity. 
 
 Since the shell conductivity is being extracted, there are four impedance 
plots that are significant: spectroscopic plots of admittance which will allow the 
Y’LF to be taken from the shell plateau; impedance Nyquist plots which give Z’1 
from the shell arc diameter; and a combination of spectroscopic plots of the 
imaginary modulus and modulus Nyquist plots which give a Debye frequency and 
capacitance respectively, allowing the calculation of M’W1. For region i these plots 
are given in fig. 19. 
 Due to the material properties within region i, the shell time constants 
calculated analytically are smaller than the core time constant (which is fixed). 
This means that the shell response occurs at a higher frequency than the core 
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response and so the high frequency arcs and plateaus are assigned to the shell. 
Spectra studied in region i have the same conductivity as the core (0.1 mSm-1) and 
their permittivities vary from 10 to 100.  Despite the fact that the conductivity of 
the core and shell is the same, a spectroscopic plot of the real admittance shows 
(see fig. 19A) high frequency plateaus that vary with the shell permittivity. Hence 
in region i the admittance is not suitable for extracting the shell conductivity. The 
high frequency arcs of impedance Nyquist plots (see fig. 19B) were merged with 
the low frequency arc making extraction of a value unreliable or impossible. 
Spectroscopic plots of the imaginary modulus (see fig. 19C) had well-defined high 
frequency peaks where the shell Debye frequency could be obtained and modulus 
Nyquist plots (see fig. 19D) had high frequency arcs where a diameter could be 
obtained. Despite the merging of the modulus arcs at higher shell permittivity 
values, the shell conductivity calculated using M’W1 proved to be the most 
accurate, giving values within ±0.5 to ±6% of the value inputted into the FEM 
package. 
  
 

 
Fig. 19. Impedance response for region i for extracting the shell conductivity plotted 
as: (A) real admittance spectroscopic, (B) impedance Nyquist, (C) imaginary modulus 
spectroscopic and (D) modulus Nyquist.  
 
 For region ii, where Z’1 had performed the best, M’W1 did not work as well. 
This is because the arcs of modulus Nyquist plots (see fig. 20A) were too merged to 
give a reliable capacitance for calculating M’W1 despite the well-defined peaks 
present in spectroscopic plots of the imaginary modulus (see fig. 20B). It is 
possible that, despite being well defined, the imaginary modulus peaks are a 
merged response of both the core and shell. The shell plateaus of spectroscopic 
plots of the real admittance (see fig. 20D) give less accurate values for shell 
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conductivity, roughly ±13% than impedance Nyquist plots (see fig. 20C). When the 
shell impedance arc is well-defined (see fig. 20E), the deviation in extracting the 
shell conductivity from Z’1 can be as little as ±4%. As the shell conductivity 
decreases further, the low shell conductivity dominates the arc giving an accurate 
resistance. 
 

 
Fig. 20. Impedance response for region ii for extracting the shell conductivity plotted 
as: (A) modulus Nyquist, (B) imaginary modulus spectroscopic, (C) impedance 
Nyquist, (D) real admittance spectroscopic and (E) impedance Nyquist (enlargement 
of origin of plot C’s origin). The shell permittivity is 10 for all plots. 
 
 In region iii, M’W1 gave the most accurate shell conductivity values. The 
reader should note that a portion of region iii was discarded, as the lowest possible 
deviation was unacceptably high where the shell conductivity was ~3.16 μSm-1 
and shell permittivity ~464. The shell time constant is always larger than that of 
the core for region iii. Hence the low frequency response is assigned to the shell 
here. As the magnitude of τshell is less than an order of magnitude greater than τcore 
the approximation that the high and low frequency plateaus of admittance 
spectroscopic plots tend to separate resistance values is not valid here. Fig. 21A 
shows that the Y’ spectroscopic plateaus are merged and unsuitable for extracting 
Y’LF.  
 Imaginary modulus spectroscopic plots (see fig. 21B) show single peaks. 
Nyquist plots of modulus and impedance (see figs. 21C and D, respectively) show a 
single arc. An enlargement of the spectroscopic plots of the imaginary impedance 
and imaginary modulus (see figs. 22A and B, respectively) to show the high shell 
permittivity peaks reveals that the impedance Debye peaks contain a shoulder at 
low frequency. This indicates a composite response of multiple time constants and 
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is not (visibly) present in the M’’ peaks. For both Z’1 and M’W1 in region iii, the 
deviation was greatest for higher shell conductivity (±70.11 and ±24.21%, 
respectively), decreasing at low shell conductivity to ±7.03 and ±4.32%, 
respectively. The gains in accuracy are more significant at higher shell 
conductivities. It is likely that the modulus response is slightly more dominated by 
the shell and hence M’W1 gives more accurate values than Z’1 for region iii. 
 

 
Fig. 21. Impedance response for region iii for extracting the shell conductivity 
plotted as: (A) real admittance spectroscopic, (B) imaginary modulus spectroscopic, 
(C) modulus Nyquist and (D) impedance Nyquist. 
 
 

 
Fig. 22. Enlargements of the imaginary spectroscopic plots of (A) impedance and (B) 
modulus. Note the decrease in symmetry of the impedance peaks for shell εr = 2000 
and 1122. 
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 Region iv is the remaining property space. It is surrounded by region iii as 
τshell becomes increasingly larger than τcore, hence the low frequency response is 
assigned to the shell. Here the best formalism for extracting the shell conductivity 
changes from Z’1 to Y’LF as the conductivity falls below 1 μSm-1. Here modulus 
Nyquist and M’’ spectroscopic plots (see figs. 23A and B, respectively) either do not 
have low enough frequency to resolve the Debye peak or are too merged to 
successfully use M’W1 to obtain the shell conductivity. Likewise, the low frequency 
Z* Nyquist arc (see fig. 23C) cannot be resolved for shell conductivities of 0.316 
μSm-1 or lower with the frequency range used in this study. Where the frequency is 
sufficiently low to resolve the Z* arcs, Z’1 provides the most accurate value of shell 
conductivity (±3.39 to ±7.03% deviation for the Z’1 versus ±15.06 to ±33.54% 
deviation for Y’LF as shell conductivity decreases). When the Z* arcs cannot be 
resolved, Y’ spectroscopic plots (see fig. 23D) are the only alternative and Y’LF is 
the best formalism for extracting the shell conductivity, giving values with 
deviations of ±4.05 and ±0.35% for shell conductivities of 0.316 and 0.1 μSm-1 
respectively. 
 

 
Fig. 23. Impedance response for region iv for extracting the shell conductivity plotted 
as: (A) modulus Nyquist, (B) Imaginary modulus spectroscopic, (C) impedance 
Nyquist and (D) real admittance spectroscopic. Note (A) and (B) have been enlarged 
to show the low frequency shell response. The shell permittivity is 2000 in all plots. 
 
6.3.3. Extracting Shell Permittivity 
 
The methods used to extract the shell permittivity in this study are: the shell arc 
diameter of a modulus Nyquist plot (M’1); the shell plateau of a spectroscopic plot 
of the real capacitance (E’LF); and using the diameter of the shell arc of an 
impedance Nyquist plot with the Debye frequency obtained from a spectroscopic 
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plot of the imaginary impedance (Z’W1). A plot of the lowest possible RMS 
deviation from the known values of shell permittivity when using the best 
equivalent circuit and formalism for a range of material properties is given in fig. 
24A. Similar to the extraction of shell conductivity, the extraction of the shell 
permittivity becomes more accurate as the shell permittivity becomes more 
different to that of the core or the shell conductivity becomes more different to 
that of the core. Generally, the deviation is less than ±10% when the shell 
conductivity is less than 3.16 μSm-1 or the shell permittivity is less than 80. This is 
expanded to a shell permittivity of 100 when close to the permittivity axis (for 
shell conductivities of 0.1mSm-1 to 63.1 μSm-1) and to conductivities as high as 10 
μSm-1 close to the conductivity axis from shell permittivities of 2000 to 1122. A 
schematic of what formalism is best for extracting the shell permittivity for varied 
shell properties is given in fig. 24. 

 
Fig. 24. (A) Plot of the lowest RMS deviation when extracting the shell permittivity 
using the optimal equivalent circuit and impedance formalism. Note the scale is 
logarithmic. (B) Schematic showing which impedance formalism gave the lowest 
deviation for the combinations of material properties. Note: regions with an RMS 
deviation of over 25% from the input shell permittivity have been discarded leaving 
white space. 
  
 An enlargement of fig. 24B is given in fig. 25 with blue lines to show regions 
of interest selected for further study. There are distinct regions where certain 
formalisms are better than others for extracting the shell permittivity. Regions 
where the shell permittivity cannot be extracted to within ±25% of the true value 
have been discarded. Region i, similarly to the plot for low frequency conductivity, 
is a region where the modulus formalism works well. Modulus Nyquist plots can be 
used to find the shell capacitance (M’1). This area is for shell permittivities 
between 10 and 100 and shell conductivities between 0.1 mSm-1 and 63.1 μSm-1. 
 Region ii, where the shell conductivity varies from 63.1 to 0.316 μSm-1 and 
the shell permittivity varies from 10 to 31.6 gives the most accurate values for 
shell permittivity when using the shell plateaus in spectroscopic plots of the real 
capacitance. The majority of the remaining property space where shell 
conductivity is lower than 1 μSm-1 is split between  region iii, where extracting 
shell permittivity from the Debye frequency of spectroscopic plots of the imaginary 
impedance is best and region iv, where it is best to use the shell arc diameters of 
the modulus Nyquist plots. Region iii also extends to shell conductivities increasing 
to 3.16 μSm-1 for shell permittivities greater than 1410. 
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Fig. 25. Schematic showing which regions of interest (blue lines, labelled i to iv) are 
examined to find why different formalisms are better for extracting the shell 
permittivity. 
  
 In region i τcore is greater than τshell, hence the high frequency response is 
assigned to the shell. Spectroscopic plots of E’ (see fig. 26A) give distinct plateaus 
but, due to the proximity of the core and shell time constants, values of extracted 
shell permittivity were between ±10 to ±44% off the true value. The high 
frequency response of Nyquist plots of impedance and spectroscopic plots of the 
imaginary impedance (see figs. 26B and C, respectively) were too well-merged to 
extract resistances and Debye frequencies to calculate the shell permittivity from 
Z’W1. Modulus Nyquist plots (see fig. 26D) showed a distinct high frequency arc 
that could be used to extract the shell permittivity with deviation from the true 
value of ±8%, reducing to ±4% as the shell permittivity reduced to 10. This is due 
to the M* arc diameter increasing, which reduces the uncertainty arising from the 
merging between the low and high frequency arcs. 
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Fig. 26. Impedance response for region i for extracting the shell permittivity plotted 
as: (A) real capacitance spectroscopic, (B) impedance Nyquist, (C) imaginary 
impedance spectroscopic and (D) modulus Nyquist.  
 
 For region ii, E’LF was the best method for extracting the shell permittivity. 
Here τcore is greater than τshell, hence the high frequency response is assigned to the 
shell. Both a modulus Nyquist plot and a spectroscopic plot of the imaginary 
impedance (see figs. 27A and B, respectively) showed merged responses making 
extraction of the shell permittivity using M’1 or Z’W1 unreliable. The most viable 
method studied was to use spectroscopic plots of E’ (see fig. 27C) that had a high 
frequency plateau with a value of 2.23 fF giving the shell permittivity to within 
±10% of the true value.  
 

 
Fig. 27. Impedance response for region ii for extracting the shell permittivity plotted 
as: (A) modulus Nyquist, (B) imaginary impedance spectroscopic and (C) real 
capacitance spectroscopic. The shell permittivity is 10 for all plots. 
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 Region iii examines the transition between Z’W1 and M’1 for a fixed shell 
conductivity of 0.1 μSm-1 as the shell permittivity increases. Here τshell is greater 
than τcore and so the low frequency response is assigned to the shell. At shell 
permittivities of 10 to 31, the modulus Nyquist arcs are merged (see fig. 28A) 
making extraction of the shell capacitance using M’1 unreliable. As the shell 
permittivity increases beyond 100 the modulus Nyquist arcs become distinct for 
the shell and core (see fig. 28B for an enlargement of the high shell permittivity 
arcs) permitting reliable use of M’1. Conversely, as the permittivity increases, 
impedance Nyquist arcs do not have low enough frequency to be resolved (see fig. 
28C). Spectroscopic plots of the imaginary impedance (see fig. 28D) have well-
defined peaks allowing the shell Debye frequency to be extracted. The impedance 
Nyquist plots show only one arc. However these are dominated by the low 
conductivity of the shell in region iii allowing accurate measurement of the shell 
resistance when the frequency is low enough to resolve it. When the shell 
permittivity is low enough to resolve the impedance Nyquist arcs the shell 
resistance and Debye frequency can be used to calculate the shell permittivity 
accurately using Z’W1. Spectroscopic plots of E’ (see fig. 29) have well-defined 
plateaus for the core and shell. This formalism consistently extracts the shell 
permittivity in region iii with a deviation of ~±6%. E’LF is not selected over M’1 or 
Z’W1 because, in the permittivity range where these formalisms work well, the 
deviation is as low as ~±2 and ~±3% respectively.    

 
Fig. 28. Impedance response for region iii for extracting the shell permittivity plotted 
as: (A) modulus Nyquist, (B) enlargement of origin of (A), (C) impedance Nyquist and 
(D) imaginary impedance spectroscopic. Note the shell conductivity for all plots is 0.1 
μSm-1. 
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Fig. 29. Real capacitance spectroscopic plot of region iii for extracting the shell 
permittivity. 
  
 Region iv examines the transition between the Z’W1 and M’1 methods for a 
fixed shell permittivity of 2000. Between shell conductivities of 3.16 μSm-1 and 1 
μSm-1 Z’W1 is the best method for extracting the shell permittivity with a deviation 
of ±0.04 and ±5.78%, respectively. As the conductivity decreases to first 0.316 
μSm-1 and then 0.1 μSm-1, M’1 provides the most accurate shell permittivity with 
deviations of ±5.97 and ±1.17%, respectively. Here the low frequency response is 
assigned to the shell. Modulus Nyquist plots (see fig. 30A) showed distinct arcs for 
lower shell conductivities, hence M’1 could be used for the more resistive shells. 
Conversely, impedance Nyquist plots (see fig. 30B) only had low enough 
frequencies to resolve the higher shell conductivities.  
 Spectroscopic plots of the imaginary impedance (see fig. 30C) had 
extractable Debye peaks for all but the lowest shell conductivity. In order to 
calculate the shell permittivity using Z’W1, well resolved Z* Nyquist arcs are 
required; hence Z’W1 is only usable for higher shell conductivities. Spectroscopic 
plots of E’ (see fig. 30D) showed low frequency plateaus that appeared to vary with 
shell conductivity, given that the shell permittivity was fixed. E’LF gave the shell 
permittivity to within ~±6% for a shell conductivity of 0.1 μSm-1. However, this 
increased to ~±54% for a shell conductivity of 3.16 μSm-1 making the extraction of 
shell permittivity by E’LF increasingly unreliable. 
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Fig. 30. Impedance response for region iv for extracting the shell permittivity plotted 
as: (A) modulus Nyquist, (B) impedance Nyquist, (C) impedance spectroscopic and 
(D) real capacitance spectroscopic. Shell permittivity is 2000. 
 
6.3.4. Extracting the core conductivity 
 
This study employs three methods to calculate the core conductivity: resistances 
taken from impedance Nyquist core arcs (Z’2); the core plateau of real admittance 
spectroscopic plots (Y’HF); resistances calculated by the capacitance and Debye 
frequency of modulus Nyquist and imaginary spectroscopic plots, respectively 
(M’W2). Where the PBLM was selected as the best fit of the FEM impedance data, 
the core response also contains the parallel shell component. This means that 
extraction of the core conductivity requires the shell conductivity. In this work, the 
extracted best value of conductivity is substituted into equations (6.3) and (6.4) to 
obtain the core conductivity.  
 A plot of the lowest deviation possible for extracting the core conductivity is 
given in fig. 31A. The extraction of the core conductivity became less reliable when 
the shell had significantly different conductivity and permittivity to the core. The 
core conductivity could be extracted to within a deviation of ±10% when the shell 
conductivities were less than 10 μSm-1 or shell permittivities were greater than or 
equal to 1000. There was an extension to the low deviation region for shell 
conductivities below 1 μSm-1 and shell permittivities greater than 100. A schematic 
of what formalisms were best for extracting the core conductivity for varied shell 
properties is given in fig. 31B. 
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Fig. 31. (A) Plot of the lowest RMS deviation when extracting the core conductivity 
using the optimal equivalent circuit and impedance formalism. Note the scale is 
logarithmic. (B) Schematic showing which impedance formalism gave the lowest 
deviation for the combinations of material properties. Note: regions with an RMS 
deviation of over 25% from the input core conductivity have been discarded leaving 
white space. 
  
 Several distinct areas where specific formalisms are best for extracting the 
core conductivity exist. An enlargement of fig. 31B is given in fig. 32. Here several 
lines (blue) have been plotted to show regions (i to iii) for further study. Region i 
has a fixed core and shell conductivity of 0.1 mSm-1 and the shell permittivity 
varies from 10 to 2000. Here the best formalism changes from Z’2 to M’W2 as the 
shell permittivity increases to 100. Region ii is centred on the transition of Y’HF to 
Z’2 along the conductivity axis for shell conductivities of 39.8 μSm-1 to 3.16 μSm-1. 
Finally, region iii examines a region where M’W2 out-performs Z’2 and Y’HF as the 
shell permittivity increases for a fixed shell conductivity of 0.1 μSm-1.    
 

 
Fig. 32. Schematic showing which regions of interest (blue lines, labelled i to iii) are 
examined to find why different formalisms are better for extracting the core 
conductivity. 
  
 In region i, τcore is greater than τshell. Hence the low frequency response is 
assigned to the core except when the core properties are the same as the shell. 
When the shell permittivity is low, Nyquist plots of impedance (see fig. 33A) reveal 
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two separate arcs allowing for the shell conductivity to be extracted accurately 
using Z’2. For a shell permittivity of 10 the extracted core conductivity only 
deviated by ±8.53%. As the impedance Nyquist arcs become more merged as the 
shell permittivity increases, the high frequency shell arc disappears in modulus 
Nyquist plots (see fig. 33B) leaving a single arc that permits extraction of the core 
capacitance. Combining the core capacitance with a Debye frequency taken from 
spectroscopic plots of the imaginary modulus (see fig. 33C) allowed more accurate 
calculation of the core conductivity for shell permittivities of 1000 to 2000 using 
M’W2 within ±14.32% (for a shell permittivity of 1000). Spectroscopic plots of Y’ 
(see fig. 33D) show a single plateau for shell permittivities of 1000 and 2000. Here 
τcore and τshell are of the same magnitude making the extraction of the core 
conductivity by Y’HF unreliable.  
 

 
Fig. 33. Impedance response for region i for extracting the core conductivity plotted 
as: (A) Impedance Nyquist, (B) modulus Nyquist, (C) imaginary modulus 
spectroscopic and (D) real admittance spectroscopic. Note the inset graphs for (B) 
and (C). 
 
 Region ii examines the transition of Y’HF to Z’2 at a shell conductivity of 
~10 μSm-1 where the shell permittivity is 2000. In this region τshell > τcore, hence 
the high frequency response is assigned to the core. Modulus Nyquist plots (see fig. 
34A) show merged arcs making the extraction of core capacitances unreliable. This 
means that it was not possible to combine the core capacitance with core Debye 
frequencies from spectroscopic plots of the imaginary modulus (see fig. 34B) and 
so it was not possible to calculate the core conductivity from M’W2. Impedance 
Nyquist plots (see fig. 35C) had discrete core and shell arcs at lower shell 
conductivities. This means that core resistances could only be measured for more 
resistive shell conductivities, allowing the core conductivity to be calculated using 
Z’2. For shell conductivities of 3.16 and 1 μSm-1, the Z’2 method extracted core 
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conductivities with a deviation of ±1.65 and ±0.52%, respectively. Spectroscopic 
plots of Y’ (see fig. 34D) always had a high frequency plateau in region ii. As the 
shell conductivity decreased from 39.8 to 1 μSm-1 the deviation increased from 
±14.23 to ±21.52%. For the models where the difference between the shell and 
core conductivity was much less than an order of magnitude, Y’HF was selected as 
it was the only method that could give a value for the core conductivity. 
 

 
Fig. 34. Impedance response for region ii for extracting the core conductivity plotted 
as: (A) modulus Nyquist, (B) imaginary modulus spectroscopic, (C) impedance 
Nyquist and (D) real admittance spectroscopic plot. 
 
 Region iii describes a region where M’W2 performs best for fixed shell 
conductivity of 0.1 μSm-1 as the shell permittivity decreases. Here τshell > τcore, 
hence the high frequency response is assigned to the core. Nyquist impedance 
plots (see fig. 35A) showed merged arcs. An enlargement of the origin of the 
impedance Nyquist plots (see fig. 35B) revealed that, despite the merging of the 
core and shell arc, at higher permittivities the core arc could be made out. This 
allowed the core conductivity to be extracted using Z’2 for shell permittivities of 
1260 and 2000 but with deviations of ±26.12 and ±15.31%, respectively. M’W2 
works the best for extracting core conductivity because there are well-defined 
modulus Nyquist arcs (see fig. 35C) and imaginary modulus spectroscopic Debye 
peaks (see fig. 35D), allowing the calculation of the core conductivity using M’W2. 
Deviations in region iii ranged between ±0.96 to ±7.82% for M’W2. Spectroscopic 
plots of Y’ showed that, despite the shell conductivity being fixed, the core plateau 
heights varied with shell permittivity (see fig. 35D). This shows the accuracy of 
approximating the core conductance to the high frequency plateau decreases as 
τshell and τcore become more similar in magnitude. As the shell permittivity 
increased, the deviation in Y’HF varied from ±80.62 to ±12.22% in region iii. 
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Fig. 35. Impedance response for region iii for extracting the core conductivity plotted 
as: (A) Impedance Nyquist, (B) enlargement of the origin of (A), (C) modulus Nyquist, 
(D) imaginary modulus spectroscopic and (E) real admittance spectroscopic. 
 
6.3.5. Extracting the core permittivity 
  
 The three methods used to calculate the core permittivity in this work 
were: extracting the capacitance from modulus Nyquist arc diameters (M’2); using 
the core plateau of the real capacitance (E’HF); calculating the core capacitance 
from impedance Nyquist arc diameters and the core Debye frequency from the 
imaginary component of impedance (Z’W2). A plot of the lowest RMS deviation 
when extracting the core permittivity is given in fig. 36A. Similar to the core 
conductivity, the core permittivity could be extracted with greater accuracy if the 
core and shell conductivity were similar or the core and shell permittivity were 
more similar. The core permittivity could be extracted with less than ±10% 
deviation when the shell conductivity is greater than 25.1 μSm-1 or a shell 
permittivity less than 215. The low deviation region was extended to shell 
conductivities as low as 10 μSm-1 at low shell permittivities (10 to 31) and for shell 
permittivities as low as 100 for shell conductivities between 1 and 0.1 μSm-1. A plot 
of the impedance formalisms that were most successful in extracting the core 
permittivity is given in fig. 36B. 
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Fig. 36. (A) Plot of the lowest RMS deviation when extracting the core permittivity 
using the optimal equivalent circuit and impedance formalism. Note the scale is 
logarithmic. (B) Schematic showing which impedance formalism gave the lowest 
deviation of the combinations of material properties. Note: regions with an RMS 
deviation of over 25% from the input core permittivity have been discarded leaving 
white space. 
 
 The three methods used to extract the core permittivity occupied distinct 
areas of the material property space (see fig. 37 for enlargement of fig. 36B). Z’W2 
performed best for shell conductivities greater than 39.8 μSm-1 and shell 
permittivities less than ~1260. M’2 worked for shell conductivities lower than 
0.316 μSm-1 and shell permittivities greater than 100. For the remaining material 
property space where shell permittivity was greater than ~464, E’HF was the best. 
Two regions where Z’W2 and M’2 met the space occupied by E’HF (regions i and ii, 
respectively) were considered for further study to see why the preferred 
formalism changed at this point. Region i had a fixed core and shell conductivity of 
0.1 mSm-1. Region ii had a fixed core and shell permittivity of 2000. 
 

 
Fig. 37. Schematic showing which regions of interest (blue lines, labelled i and ii) are 
examined to find why different formalisms are better for extracting the core 
permittivity. 
 
 For region i, impedance Nyquist plots (see fig. 38A) and spectroscopic plots 
of the imaginary impedance (see fig. 38B) had merged responses that gave spectra 
consistent with a encased model composed of only core material with a 
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conductivity of 0.1 mSm-1 and permittivity of 2000. The measured Debye 
frequency of the composite response changed from 950 Hz (when the shell 
permittivity was 2000) to 1000Hz for the other three models. Hence the change in 
shell permittivity could not be resolved accurately. It was assumed that the core 
response dominated the impedance Nyquist and imaginary impedance 
spectroscopic plots. Modulus Nyquist plots (see fig. 38C) gave merged arcs where a 
difference in shell permittivity could be resolved but, as this was a highly 
composite response, accurate values of the core permittivity could not be obtained.  
 Spectroscopic E’ plots showed two plateaus (see fig. 38D) for all but the 
model with a shell permittivity of 2000. When two plateaus were present it was 
assumed that the core plateau was at lower frequency, as its time constant was 
larger than that of the shell. Both the high and low frequency plateaus were 
significantly affected by the reduction in shell permittivity. The transition of E’HF 
to Z’W2 is probably due to the model with equal core and shell properties having a 
single plateau in E’ that gives better values for the core permittivity. As soon as 
multiple time constants are present in the model the plateaus for E’ become 
composites of the core and shell properties, making the extraction of the core 
permittivity unreliable. Then the core-dominated response of the Impedance 
Nyquist and spectroscopic plots became preferable to use for analysis. 
 
 
 
 
 

 
Fig. 38. Impedance response for region i for extracting the core permittivity plotted 
as: (A) Impedance Nyquist, (B) imaginary impedance spectroscopic, (C) modulus 
Nyquist, (D) real capacitance spectroscopic. 
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 For region ii, the core response occurs at high frequency as τshell > τcore. Here 
M’2 performs best at low shell conductivities and E’HF is best for higher shell 
conductivities. At low shell conductivities, the high frequency arcs of modulus 
Nyquist plots (see fig. 39A) are well resolved, allowing the core permittivity to be 
calculated from M’2. Models with shell conductivities of 0.1 and 0.316 μSm-1 have 
deviations for extracting the core permittivity with M’2 of ±0.22 and ±1.34%, 
respectively. As the shell conductivity increases beyond 1 μSm-1 the modulus 
Nyquist arcs are too well merged to obtain the core capacitance reliably. The 
impedance Nyquist core arcs (see fig. 39B) are distinguishable for shell 
conductivities of 0.1 to 3.16 μSm-1 but are always merged, making Z’W2 unreliable. 
For spectroscopic plots of imaginary impedance (see fig. 39C) high frequency 
peaks are merged and are not always usable due to a lack of impedance Nyquist 
arc diameters. Finally, E’ spectroscopic plots had well defined plateaus for the core 
and shell. Here, as soon as the modulus Nyquist plots became too merged to 
extract data, the approximation offered by the E’ plateaus becomes the most 
accurate way to extract the core permittivity. For shell conductivities of 1 and 3.16 
μSm-1, E’HF gave deviations in the extracted core permittivity of ±0.02 and ±0.12%, 
respectively. 
 

 
Fig. 39. Impedance response for region ii for extracting the core permittivity plotted 
as: (A) modulus Nyquist, (B) impedance Nyquist, (C) imaginary impedance 
spectroscopic, (D) real capacitance spectroscopic. 
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6.4. Discussion 
 
In this chapter, the fits provided by several equivalent circuits for an encased 
model with fixed core properties and varied shell properties were compared. It is 
important to note that the resistances and capacitances were derived from the 
geometries associated with the hypothetical microstructures associated with the 
three equivalent circuits (see fig. 4) and the intrinsic conductivity and permittivity 
values inputted into the finite element simulation. No additional refinements were 
made. The equivalent circuit fits are purely analytical. If an analytical fit such as 
these equivalent circuits can model the impedance response of a finite element 
simulation in all four impedance formalisms, there is a strong indication that the 
equivalent circuit in question offers a good representation of the physical 
behaviour of FEM simulation. 
 Of the three equivalent circuits the SLM performed the worst. Comparing 
the impedance response in the four different formalism plots gave a minimum 
average deviation of ±34% and a maximum of ±163%. There were large regions of 
the material property space where the SLM completely failed to replicate the FEM 
simulated data. This was defined as the equivalent circuit not having the same 
number of arcs or plateaus as the FEM simulation. The majority of the material 
regions where the SLM failed were when the core and shell time constants differed 
by greater than an order of magnitude (see fig. 40). As the SLM assumes purely 
serial connectivity, all the material in each layer experiences a homogenous 
current flow and will contribute to the electrical response equally. As the core and 
shell time constants become closer in value the impedance response of the SLM 
will be similar to a electrically homogenous cube of materal. However, for the 
encased model, as the core and shell permittivity and conductivity values become 
increasingly different, it will be possible for additional conductive or capacitative 
pathways to form through the microstructure (as observed in chapters 4 and 5). 
This means that the encased model increasingly deviates from the SLM at lower 
shell conductivities and permititivies.  

 
Fig. 40. Plots of the RMS deviation of the SLM compared to the FEM simulated results 
for all simulated combinations of material properties with dashed lines seperating 
the regions where the SLM fails completely and the region where the values of the 
core and shell time constants are close enough for the SLM to work but not 
effectively. Note the deviation uses a log scale, white spaces show areas where an 
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equivalent circuit did not have the same number of impedance responses as the FEM 
simulation and is therefore considered invalid. Note the straight lines plotted on top 
of the contours show the ratio between the theoretical core and shell time constants. 
 
 Both the SBLM and PBLM provided a better fit of the FEM simulation than 
the SLM, both with a maximum deviation of ±20%. The SBLM provided a 
marginally better fit (maximum difference beween SBLM and PLBM of ±0.4%) in 
material regions where the core and shell had very different properties (see fig. 
41A). Here there is only a small difference between the SBLM and PBLM because 
the additional parallel pathways through the PBLM are not favourable enough to 
attract sufficient current to significantly affect the impedance response. The 
regions where the SBLM could not replicate the FEM data (white spaces) were due 
to the SBLM predicting minima between the core and shell impedance Nyquist arcs 
that were not present in the FEM data (see fig. 42). This instance is a borderline 
case where an equivalnet circuit has failed the selection criteria but still predicts a 
similar form to the FEM data. The PBLM was most favourable when either the shell 
and core permittiviy or conductivity were very similar (see fig. 41B). Here the 
difference in deviation from the FEM data for the PBLM and SBLM was ±14%. It is 
easy to understand why the PBLM works well when the shell conductivty is close 
to that of the core (0.1 mSm-1) as the conduction pathways through the parallel 
shell become increasingly favourable in good agreement with the literature6, 7, 12.  
 

 
Fig. 41. Plots of the RMS deviation of (A) the SBLM and (B) the PBLM compared to 
the FEM simulated results for all simulated combination of material properties. Note 
the deviation uses a log scale, white spaces show areas where an equivalent circuit 
did not have the same number of impedance response as the FEM simulation and is 
considered invalid. Note the straight lines plotted on top of the contours show the 
ratio between the theoretical core and shell time constants. 
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Fig. 42. Impedance Nyquist plot of an encased model with a shell conductivity of 3.16 
μSm-1 and shell permittivity of 1122 with corresponding SBLM equivalent circuit fit. 
   
 It is harder to see why the PBLM performs well when the shell permittivity 
is the same as or close to the core permittivity of 2000 and the shell conductivity is 
lower than that of the core. Here it would be expected that the current would flow 
preferentially through the core, producing an electrical microstructure that 
resembles the SBLM8. It is possible that, since the high shell permittivty means that 
the capacitance of the parallel shell will have a lower impedance than its resistance 
at a lower frequency, leading to an increase in current flow through the parallel 
shell. A current density plot taken at the core Debye frequency  for an encased 
model with a shell conductivity of 0.1 μSm-1 and permittivity of 2000 showed that 
the current density was 0.02 Am-2 in the series shell and 0.05 Am-2 in the parallel 
shell (see fig. 43A and B). Given that the core current density was 5.3 Am-2 it is 
surprising that this very small difference in current density would have any 
significance but the PBLM did fit the FEM data better here with a deviation of 
±3.25% versus ±8.59% for the SBLM. Further work should be undertaken to clarify 
why the PBLM performs better here. 

 
Fig. 43. Current density plots of an encased model with a shell conductivity of 0.1 
μSm-1 and permittivity of 2000 where (A) shows the full range of current densities on 
a logarithmic scale and (B) shows only the lower current densities on a linear scale; 
note the higher current denisty in the parallel shell region. Units are Am-2. 
 
 When extracting values of permittivity and conductivity for the shell and 
core regions, several patterns were revealed (see fig. 44). For the shell properties 
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the most accurate values were obtained when the shell had lower conductivity or 
permittivity than the core (see figs. 44A and B). Here the difference in shell 
properties allows reliable (less than ±10% deviation) extraction of the shell 
conductivity or permittivity at shell conductivities lower than 3.16 μSm or shell 
permittivities lower than 31.6. This is true even for material regions where the 
theoretical core and shell time constants are the same. It is possible that the 
measured time constant is changing due to geometry effects similar to what was 
observed in chapter four.  
 When extracting the core intrinsic properties the trends observed with the 
shell properties are reversed somewhat (see figs. 44C and D). When the core and 
shell permittivities or conductivities are similar the extracted values are more 
accurate. This could simply be due to the fact that, as the core volume fraction is 
0.8, when the core and shell properties are very similar the core response will 
dominate since there is more of it. Both the SBLM and PBLM assume the same 
cubic geometry for the core, so extracting a response that is merged from the core 
and shell is only undestimating the volume by 20%. 
 It is important to consider that, when the core properties are extracted 
using the PBLM, the shell conductivity or permittivity is required for equations 
(6.3) and (6.4) adding an additional uncertainty to the process. In this work the 
most accurate value is obtained for the shell intrinsic properties is inputted to 
equations (6.3) and (6.4), which from figs. 44A and B, can be a factor of two out 
from the actual value. This suggests that there could have been some favourable 
cancelling of errors when using incorrect values of the shell intrinsic properties to 
calculate the core properties. Finally, there are regions where either the shell 
conductivity is the same as or close to the core value but the shell and core 
permittivities are very different or both permittivities are the same and the 
conductivities are different. As seen in chapters four and five, when the 
permittivity of the core and shell is fixed to the same value and the conductivity 
varied, conduction pathways form and alter the impedance response. Likewise, 
when there is a difference in permittivity but conductivity is fixed, capacitive 
pathways form. This behaviour causes extensions to the region of low deviation 
along the conductivity and permittivity axes for the core and shell intrinsic 
propeties. 
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Fig. 44. (A) Plot of the lowest RMS deviation when extracting intrinsic material 
properties using the optimal equivalent circuit and impedance formalism. (A) Shell 
conductivity, (B) shell permittivity, (C) core conductivity and (D) core permittivity. 
Note the scale is logarithmic.  
 
 When examining which impedance formalism could be used to extract the 
extrinsic shell and core resistances and capacitances that gave the most accurate 
values of conductivity and permittivity, it was found that there were distinct 
regions where certain formalisms performed better than others. For the shell 
intrinsic properties, there were similarities between the formalisms used in 
extraction of shell conductivity and permittivity. These were divided into five 
regions (see fig. 45).  In region i the arc diameters of Nyquist plots of impedance 
and modulus provided the most accurate values for conductivity and permittivity, 
respectively. As the shell time constant was over 100 times greater than the core 
time constant, the Nyquist arcs were well defined. There were instances where 
there was no data at low enough frequencies to resolve the low frequency arcs. 
Here spectroscopic plots of Y’ and E’ could be used. However, if Nyquist plots 
included low enough frequencies they provided slightly more accurate intrinsic 
values. 
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Fig. 45. Schematic of regions where specific formalisms obtain the shell intrinsic 
material properties more accurately. 
 
 For region ii, the core and shell time constants become closer in magnitude. 
Hence Nyquist plots become merged and the plateaus of E’ and Y’ spectroscopic 
plots produce increasingly composite values of the core and shell properties. Here 
spectroscopic plots of the imaginary components of impedance and modulus 
performed best. These spectroscopic plots gave a Debye frequency that had to be 
combined with a resistance or capacitance (for a permittivity or conductivity 
respectively, see table 3) acquired from Nyquist plots. Although the Nyquist plots 
were merged, it is likely that the merged arcs were dominated by the shell 
properties or that there was favourable cancelling of errors. 
 Region iii had deviations from ±28 to ±86% and hence was discarded as a 
region. It cannot be resolved with the limitations of impedance spectroscopy. 
Region iv could be resolved using the modulus formalism with Nyquist arc 
diameters to calculate the shell permittivity and spectroscopic plots of the 
imaginary modulus to find the shell conductivity. The modulus formalism is 
sensitive to small capacitances (arc diameters equal to inverse capacitances, see 
chapter one) and has worked well here because the shell permittivity is low (10 to 
100) and hence has a low capacitance.  
 Finally, for region v when the shell permittivity is 10, impedance Nyquist 
plots provide the best shell conductivities. For extracting shell permittivity, E’ 
spectroscopic plots are the best and can be used while the shell permittivity is 100 
or less. Y’ spectroscopic plots and modulus Nyquist plots are too merged to be 
useful. 
 Finding the best formalisms to extract the core properties also gave regions 
that were shared between conductivity and permittivity. Fig. 46 shows the four 
regions identified. In region i it was found that the Debye peaks of spectroscopic 
plots of impedance and modulus allowed the most accurate calculation of the core 
permittivity and conductivity. However, for shell permittivities less than 100, the 
core conductivity was extracted most accurately using impedance Nyquist arcs. 
When the shell permittivity was greater than 100 the Nyquist arcs and imaginary 
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Debye peaks (Z* and M*) only showed one impedance response. Given the larger 
volume fraction of the core material, it would be expected that resolving a merged 
response would give intrinsic properties weighted towards the core. Spectroscopic 
plots (of Y’ and E’) do not work here because their high and low frequency plateaus 
become functions of both the core and shell properties making extraction of 
individual properties difficult. 
 Region ii was discarded for having too high deviation (from ±25 to ±98%). 
Region iii varied in what formalism worked best. For the core permittivity, 
spectroscopic plots of E’ provided the most accurate values, as E’ is sensitive to the 
large capacitance of the core. For the core conductivity, the best formalism 
changed from Y’ at high shell conductivities to impedance Nyquist plots at low 
shell conductivities. This is due to impedance Nyquist arcs giving exact resistances 
when the arcs are not merged. Otherwise the admittance is the only remaining 
option. 
 In region iv the modulus formalism provides the best values for core 
conductivities and permittivities. Here the core and shell arcs were less merged 
than in impedance Nyquist plots (see figs. 35A to C and 39A to B). As the Nyquist 
plots are required for calculation using the Debye peaks of M’’ and Z’’ 
spectroscopic plots, the modulus formalism was best for calculating the core 
conductivity. Spectroscopic plots of Y’ and E’ gave good values but were typically a 
few per cent out when compared to the modulus.  

 
Fig. 46. Schematic of regions where specific formalisms obtain the core intrinsic 
material properties more accurately. 
 
 There are several limitations in the work presented in this chapter that 
could be improved upon in future work. Firstly, there are a few additional methods 
of data collection that could be used. The imaginary components of admittance and 
capacitance have a Debye peak that correlates with a parasitic capacitance (see 
chapter one). It is also possible to approximate the Nyquist arc diameters by 
doubling the height of an imaginary spectroscopic Debye peak. These methods 
could be added to the comparison. The frequency range studied could also include 
lower frequencies, down to 0.1 Hz, allowing the impedance spectra for some of the 
more resistive models to be fully resolved. Finally, to keep the size of this study 
reasonable, several parameters were kept fixed. By increased automation of data 
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collection, it would be feasible to vary core-shell volume fractions and the 
properties of the core as well.  
 

6.5. Conclusions 
 
In this chapter, the impedance response of an encased model approximation of a 
core-shell microstructure was simulated using FEM. The core volume fraction, 
conductivity and permittivity values were fixed to 0.8, 0.1 mSm-1 and 2000, 
respectively. The shell properties varied with conductivities from 0.1 mSm-1 to 0.1 
μSm-1 and relative permittivities from 10 to 2000. Three equivalent circuits were 
compared to the FEM data to assess which provided the best fit. Using the best 
equivalent circuit, the intrinsic conductivities and permittivities of the core and 
shell regions were extracted using four impedance formalisms. The extracted 
values were compared to the values originally inputted into the finite element 
program, allowing the most accurate impedance formalism for a given situation to 
be established (for the range of properties investigated). Key findings are: 
 

• The SLM is inadequate for fitting the encased model simulated in this 
chapter; the SBLM or PBLM should be used instead. 

• The SBLM provided the best fit when both the core and the shell properties 
(permittivity and conductivity) have a difference of at least an order 
magnitude. 

• When either the conductivity or permittivity of the shell is within an order 
of magnitude of the core value, the PBLM is the best equivalent circuit for 
the case studied. 

• Multi-formalism analysis of impedance data is vital to extract the most 
accurate properties for the microstructure investigated and the limitations 
of a given study. 

• Extracting intrinsic properties from the shell of a core-shell microstructure 
is most accurate when either the shell conductivity or shell permittivity is 
significantly different to those of the core. 

• Extracting the intrinsic properties of the core of a core-shell microstructure 
is most accurate when either the shell conductivity or shell permittivity is 
very similar to that of the core. 
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Chapter 7: Conclusions and Future Work 
 

Motivated by the large market for dielectric ceramics the effect of physical 
microstructure on the electrical microstructure has been studied using finite 
element modelling. The finite element package used allows the generation and 
simulation of polycrystalline materials. Possible microstructural features that can 
be generated include bulk material, grain boundaries, pores and secondary phases, 
allowing for variable grain size and phase volume fractions. In this work core-shell 
microstructures have been the focus. During electrical characterisation, 
particularly by impedance spectroscopy, measurements are defined by the 
electrical microstructure. If the electrical microstructure does not resemble the 
physical microstructure, correlating the electrical characterisation to the physical 
microstructure becomes unreliable. Here the effects of paths of least impedance 
have been investigated to find under what conditions capacitive and conduction 
pathways form. This can be due to a change in the physical microstructure and/or 
the material properties. 
 

7.1. Conclusions 
 
In chapters four and five it has been shown that, if the conductivity or permittivity 
of a material varies with position within a physical microstructure, the 
configuration of the physical microstructure can influence the resulting electrical 
microstructure even if the volume fractions of different material regions are 
constant. Three physical microstructures were investigated: the series layer model 
(SLM, see fig. 1A); the parallel layer model (PLM, see fig. 1B); and the encased 
model (see fig. 1C). The SLM and PLM are the series and parallel variants of 
Maxwell’s layered condenser model1. These models are useful as they are 
equivalent to two parallel resistor-capacitor elements connected in series (for the 
SLM, see fig. 1D) or parallel (for the PLM, see fig. 1E) and describe pure serial and 
parallel connectivity, respectively. The SLM and PLM can be solved analytically, 
therefore allowing validation of equivalent finite element simulations. Simulations 
that have more complex microstructures, such as the encased model, can be 
compared to the SLM and PLM to find out whether serial or parallel connectivity is 
dominant in a given model. The encased model is a nested cube approximation of a 
core-shell microstructure. In chapters four and five it was found that the encased 
model could not be modelled by the SLM accurately when the core volume fraction 
was less than 0.7 (see fig. 1F). This was due to the electrical microstructure. 
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Fig. 1. Schematics of the physical microstructures of (A) the SLM, (B) the PLM and 
(C) the encased model. (D) and (E) show equivalent circuits for the SLM and PLM, 
respectively. (F) The approximate equivalent circuit for an encased model when the 
core volume fraction (1) is greater than 0.7. This approximation assumes that either 
the permittivity of the core and shell is fixed and the core is less resistive than the 
shell (chapter 4) or the conductivity of the core and shell is fixed and the core 
permittivity is greater than the shell (chapter 5). 
 
 A change in electrical microstructure will alter the resultant impedance 
spectra and can have ramifications for any further analysis of the impedance data. 
This is evidenced by the change in the impedance response when changing the 
physical microstructure from an encased model to a series layer model (SLM), 
where the core and shell regions of the encased model and the layers of the SLM 
have different properties. In chapter four, the two materials had a fixed 
permittivity and a core material that was less resistive than the shell2. These 
material properties could be applied to CaCu3Ti4O12 ceramics that were found to 
have semi conductive grains with resistive grain boundaries3. In chapter five, the 
conductivity was fixed and the permittivity was greater in the core region. This 
could be applied to BaTiO3 nano-powders that have suppressed ferroelectricity at 
the particle surfaces due to a transition from a tetragonal (ferroelectric) to cubic 
(paraelectric) crystal structure4. The work in this thesis could be applied to many 
electrical composite materials but these examples demonstrate some of the 
applications in the field of functional oxides. In both chapters, the impedance 
response was altered with a reduced contribution from the shell. This was due to 
the formation of conduction or capacitive pathways (in chapters four and five, 
respectively) forming within the microstructure. Given the interplay between 
capacitive and conduction effects it is simpler to think of these preferable 
pathways as paths of least impedance. 
 The difference between the SLM and the encased model’s impedance 
response varied with the volume fraction of the core region (core), with the 
difference between the two models increasing as the core became smaller. This is 
due to pathways of least impedance forming in the region of the shell parallel to 
the core as the shell thickness become similar to the core. The current density was 
less in these parallel pathways and hence did not affect the magnitude of the shell’s 
impedance response but could cause broadening of the Debye peaks in 
spectroscopic plots of the imaginary component of the electric modulus. In chapter 
six, it was observed that an equivalent circuit that modelled the parallel shell with 
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an additional parallel resistor-capacitor branch fitted the transition between high 
and low frequency plateaus of spectroscopic plots of real admittance and real 
capacitance, showing that parallel pathways can alter the form of an impedance 
response. 
 There are many instances in this thesis where the advantages of using 
multiple formalisms to analyse impedance data is demonstrated. In chapter four, 
the impedance response of core and shell regions was better resolved using the 
electric modulus formalism than by using the impedance because the more 
resistive shell dominated the impedance response. Conversely in chapter five, for a 
similar encased structure, the electric modulus formalism was dominated by the 
low permittivity of the shell and the impedance provided better resolution of the 
core and shell responses. In chapter six, when evaluating the fits of several 
equivalent circuits it was observed that in some cases an equivalent circuit would 
fit the finite element simulation very well in some formalisms but less well in other 
formalisms. This shows that it is not adequate to fit an equivalent circuit to just 
one formalism. A summary of key results is presented below: 
 

• Application of the brick layer model to core-shell microstructures becomes 
increasingly unreliable as core decreases. The error in estimating volume 
fractions from capacitance (or resistance) ratios exceeds 25% when core is 
lower than 0.70 for the parameters used in this study. This effect is present 
when the conductivity of the core is greater than the shell for a fixed 
permittivity and when the permittivity of the core is greater than the shell 
for fixed conductivity (chapters four and five, respectively).  

• Non-ideality in impedance spectra can be influenced by heterogeneous 
current flow that is a result of physical microstructure and is independent 
of a distribution of relaxation times caused by a variation in material 
properties (chapter four). 

• When a material has regions with different permittivities but the same 
conductivity, the electrical microstructure can be affected by the 
configuration of the physical microstructure. This is caused by capacitive 
pathways forming between the regions that are electrically active at a given 
frequency due to their time constants (chapter five). 

• It is more effective to extract volume fractions from resistance ratios than 
from capacitance ratios when permittivity varies and conductivity is fixed 
(chapter five). 

• The series layer model is inadequate for fitting the encased model 
simulated in chapter six; the series brick layer model or parallel brick layer 
model should be used instead. 

• Multi-formalism analysis of impedance data is vital to extract the most 
accurate properties for the microstructure investigated and to assess the 
limitations of a given study. 

 

7.2. Future Work 
 
There are several areas which future work should investigate: 

• In this study, plots of the electrical microstructure are taken at the 
maximum current or voltage on an AC sinusoid for a given frequency. This 
approach has worked well for the material properties studied in chapter 



 Chapter 7: Conclusions and Future Work  190 

four but became more complex in the later chapters. Additional work 
should be undertaken to find when the most representative electrical 
microstructure occurs on a current or voltage sinusoid at any given 
frequency.  

• In chapter four, the series brick layer model could fit the encased model 
simulations only at high core values. At lower core values the existence of 
parallel pathways was established. It should therefore be investigated 
whether the parallel brick layer model provides a better fit in these 
circumstances. 

• The quantitative analysis of the electrical microstructure used in chapter 
four should be extended to probe the distribution of capacitive pathway 
lengths present in the encased models in chapter five.  

• The material property space studied in chapter six should be extended to 
include variable core properties and multiple volume fractions of the 
encased model. 

• The simulations in chapter six should have all measured time constants 
calculated to investigate whether they have any geometry dependence. 

• It has been shown that both conduction and capacitive pathways can form 
alternate routes for current to flow through a model (e.g. through the 
encased model’s parallel shell component) if the conductivity or 
permittivity varies with position through the microstructure. Further work 
should investigate under what circumstances conduction or capacitive 
pathways are more dominant. 

• Additional microstructural features such as porosity and interface 
roughness should be simulated and their effect on impedance spectroscopy 
characterised. 

• At present, all conductivity and permittivity values assigned to a model are 
constant during the simulation. Additional work should be undertaken to 
study the frequency and electric field dependency of material properties 
and how this may alter the electrical response as measured by impedance 
spectroscopy. 
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Appendix 
 

A.1. Derivations for the impedance response of two parallel 
resistor capacitor elements connected in series 
 
Here we will consider the impedance response of two parallel resistor capacitor 
elements connected in series (see fig. A1) which will be referred to as circuit A1. 
The impedance response of this circuit will be derived for all four impedance 
formalisms to the final equations that were then manipulated to find the intercepts 
and plateaus in chapter one. Hence appendix one gives the derivation of equations 
(1.47) for the impedance (Z*), (1.55) for the electric modulus (M*), (1.63) for the 
admittance (Y*) and (1.74) for the complex capacitance (E*). 
 

 
Fig. A1. Schematic of two parallel resistor capacitor elements connected in series. 

 
Consider Z*: 
 
Since Z* adds in series the total impedance of circuit A1 is simply the addition of 
the impedance response of two parallel resistor capacitor elements. Equation 
(1.39) gives the impedance response of a parallel resistor capacitor element as: 
 
 

𝑍∗ =
𝑅 − 𝑗𝜔𝑅2𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.39) 

 
Addition of (1.39) with itself with R1, C1, R2 and C2 substituted into the two 
equations gives: 
 
 

𝑍∗ =
𝑅1 − 𝑗𝜔𝑅1

2𝐶1
1 + (𝜔𝑅1𝐶1)2

+
𝑅2 − 𝑗𝜔𝑅2

2𝐶2
1 + (𝜔𝑅2𝐶2)2

 
1

1
(1.47) 

Consider M*: 
 
Take the M* response for a single parallel resistor capacitor element given in 
(1.44): 
 
 

𝑀∗ = 
1

𝐶
.
𝜔2𝑅2𝐶2

1 + (𝜔𝑅𝐶)2
+  𝑗

1

𝐶
.

𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(1.44) 

 
Add the real and imaginary part of (1.44): 
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𝑀∗ = 
1

𝐶
.
𝜔2𝑅2𝐶2 + 𝑗𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
 

1

1
(𝐴. 1) 

 
Addition of (A.1) with itself with R1, C1, R2 and C2 substituted into the two 
equations gives: 
 
 
 

𝑀∗ = 
1

𝐶1
.
𝜔2𝑅1

2𝐶1
2 + 𝑗𝜔𝑅1𝐶1

1 + (𝜔𝑅1𝐶1)2
+ 
1

𝐶2
.
𝜔2𝑅2

2𝐶2
2 + 𝑗𝜔𝑅2𝐶2

1 + (𝜔𝑅2𝐶2)2
 

1

1
(1.55) 

 
Consider Y*: 
 
Given the total impedance (Z*) of circuit A1 is the addition of the impedance of the 
two parallel resistor capacitor elements (Z*1 and Z*2 respectively): 
 
 𝑍∗ = 𝑍1

∗ + 𝑍2
∗  

 
The admittance is the inverse of impedance, therefore:  
 
 

𝑌∗ =
1

𝑍1
∗ + 𝑍2

∗ 
1

1
(𝐴. 2) 

 
Substitute the admittance of parallel resistor capacitor elements R1C1 and R2C2 (Y*1 
and Y*2, respectively) into equation (A.2). 
 
 

𝑌∗ =
1

1
𝑌1
∗ +

1
𝑌2
∗

 
1

1
1

(𝐴. 3) 

 
Multiply top and bottom of equation (A.3) by Y*1Y*2: 
 
 

𝑌∗ =
𝑌1
∗𝑌2
∗

𝑌2
∗ + 𝑌1

∗ 
1

1
1

(𝐴. 3) 

  
The admittance for a single parallel resistor capacitor element is given in equation 
(1.36), substituting into (A.3) gives: 
 
 

𝑌∗ =
(
1
𝑅1
+ 𝑗𝜔𝐶1) (

1
𝑅2
+ 𝑗𝜔𝐶2)

(
1
𝑅1
+ 𝑗𝜔𝐶1) + (

1
𝑅2
+ 𝑗𝜔𝐶2)

 

 

   
 

𝑌∗ =

((
1

𝑅1𝑅2
) + 𝑗𝜔 (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝜔2𝐶1𝐶2)

(
1
𝑅1
+
1
𝑅2
) + 𝑗𝜔(𝐶1 + 𝐶2)

 

(
1
12
)

(
1
12
)
(𝐴. 4) 
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Multiply top and bottom of (A.4) by the complex conjugate of the denominator of 
(A.4) giving equation (1.63):  
 
 
 
 

𝑌∗

= 

((
1

𝑅1𝑅2
) + 𝑗𝜔 (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝜔2𝐶1𝐶2)((

1
𝑅1
+
1
𝑅2
) − 𝑗𝜔(𝐶1 + 𝐶2))

(
1
𝑅1
+
1
𝑅2
)
2

+ 𝜔2(𝐶1 + 𝐶2)2
 

1

1
(1.63) 

 
 
Consider E*: 
 
The relation between E* and Y* is: 
 

𝐸∗ =
𝑌∗

𝑗𝜔
 

1

1
(𝐴. 5) 

 
Substitute equation (1.63) into (A.5) to derive E* for circuit A1 to give equation 
(1.74): 
 
 

𝐸∗ = 

((
1

𝑅1𝑅2
) + 𝑗𝜔 (

𝐶1
𝑅2
+
𝐶2
𝑅1
) − 𝜔2𝐶1𝐶2)((

1
𝑅1
+
1
𝑅2
) − 𝑗𝜔(𝐶1 + 𝐶2))

𝑗𝜔 (
1
𝑅1
+
1
𝑅2
)
2

+ 𝑗𝜔3(𝐶1 + 𝐶2)2
 

1

1
(1.74) 

 
A.2. Derivation for the Parallel Brick Layer Model equivalent 
circuit 
 
Here the impedance response of the Parallel Brick Layer Model (PBLM) is derived 
for all four impedance formalisms. First consider the sub circuit consisting of two 
parallel resistor capacitor elements connected in parallel in isolation (see fig. A2). 
  

 
Fig. A2. Schematic of the PBLM equivalent circuit separating the sub circuit 
consisting of two parallel resistor capacitor elements connected in parallel in 
isolation.  
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Consider Y*: 
 
For a single RC element the impedance response is given by equation (1.38): 
 
 
 

𝑍∗ = 𝑅 +
1

𝑗𝜔𝐶
 

1

1
 (1.38) 

 
Considering admittance (Y*) is the inverse of impedance (Z*) and adds in parallel, 
for the sub circuit: 
 
 

𝑌∗ =
1

𝑍∗
=
1

𝑅2
+
1

𝑅3
+ 𝑗𝜔𝐶2 + 𝑗𝜔𝐶3 

1

1
 (𝐴. 6) 

 
Giving the real (Y’) and imaginary (Y’’) component of (A.6) as: 
 
 

𝑌′ =
1

𝑅2
+
1

𝑅3
  

1

1
 (𝐴. 7) 

   
 𝑌′′ = 𝜔𝐶2 + 𝜔𝐶3 (𝐴. 8) 
 
Consider E*: 
 
 
The relation between E* and Y* is given by equation (A.5). Substituting (A.6) into 
(A.5) gives: 
 
 
 

𝐸∗ = 𝐶2 + 𝐶3 +
1

𝑗𝜔𝑅2
+

1

𝑗𝜔𝑅3
  

1

1
 (𝐴. 9) 

 
The real and imaginary components of (A.9): 
 
 𝐸′ = 𝐶2 + 𝐶3  (𝐴. 10) 
   
 

𝐸′′ = −
1

𝜔𝑅2
−

1

𝜔𝑅3
 

1

1
(𝐴. 11) 

 
Consider Z*: 
 
Writing equation (A.6) as: 
 
 

𝑌∗ = (
1

𝑅2
+
1

𝑅3
) + 𝑗𝜔(𝐶2 + 𝐶3 )  (

1

1
) (𝐴. 12) 

 
Then divide both sides by the bracketed resistance term: 
 



 Appendix  195 

 𝑌∗

(
1
𝑅2
+
1
𝑅3
)
= 1 + 𝑗𝜔

(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
  

(1)

(
1
1)
 (𝐴. 13) 

 
Take the inverse of equation (A.13) and divide by the reciprocal resistance term: 
 
 

𝑍∗ = 
1

(1 + 𝑗𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

.
1

(
1
𝑅2
+
1
𝑅3
)
  

1

(
(12)

(
1
1)
)

 (𝐴. 14) 

 
Multiply top and bottom of (A.14) by the complex conjugate of the denominator: 
 
 

𝑍∗ = 

1

(
1
𝑅2
+
1
𝑅3
)

(1 + 𝑗𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

 .

(1 − 𝑗𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

(1 − 𝑗𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

 

(
(
1
1)

(
1
11
)
)

1
(𝐴. 15) 

 
Giving: 
 
 

𝑍∗ =  

1

(
1
𝑅2
+
1
𝑅3
)
− 𝑗𝜔

(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
2

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2  

(
(
1
1)

(
1
11
)
)

1
(𝐴. 16) 

 
Consider the real component (Z’) of (A.16): 
 
 

𝑍′ =  

1

(
1
𝑅2
+
1
𝑅3
)

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2  

(
(
1
1)

(
1
11
)
)

1
(𝐴. 17) 

 
Consider the frequency limits of (A.17) 
 
Low frequency 
ω0: 

𝑍′ →  

1

(
1
𝑅2
+
1
𝑅3
)

1 + (0)2
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𝑍′ → 

1

(
1
𝑅2
+
1
𝑅3
)
  

1

(
1
12
)
 (𝐴. 18) 

   
High frequency 
ω∞: 
 𝑍′ →  

1

(
1
𝑅2
+
1
𝑅3
)

1 + (∞)2
 

 

   
 𝑍′ → 0  (𝐴. 19) 
 
Consider the imaginary component (Z’’) of (A.16): 
 
 

𝑍′′ =  

𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
2

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2 

 

   
 𝑍′′

=  
1

(
1
𝑅2
+
1
𝑅3
)
 

𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2 

(12)

(
1
𝑅13

)
2

(
(13 )

(
1
1)
)

2 (𝐴. 20) 

 
Consider the frequency limits of  (A.20): 
 
At low frequency 
ω0: 
 

𝑍′′ →
1

(
1
𝑅2
+
1
𝑅3
)
 
(0)

1 + (0)2
 

 

   
 𝑍′′ → 0  (𝐴. 21) 
   
At high frequency 
when ω∞: 

𝑍′′ → 
1

(
1
𝑅2
+
1
𝑅3
)
 

∞

1 + (∞)2
 

 

   
 𝑍′′ →  0  (𝐴. 22) 
 
Consider the Debye function present in (A.20) when: 
 
 

𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
= 1  

1

1
1

(𝐴. 23) 
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Substitute equation (A.23) into (A.20): 
 
 

𝑍′′ = 
1

(
1
𝑅2
+
1
𝑅3
)
 

1

1 + (1)2
 

 

   
 

𝑍′′ = 
1

(
1
𝑅2
+
1
𝑅3
)
 
1

2
  

1

(
1
12
)
(𝐴. 24) 

 
Consider M*: 
 
M* is related to Z* by: 
 
 𝑀∗ = 𝑗𝜔𝑍∗  (𝐴. 25) 
 
Hence multiply equation (A.16) by jω: 
 
 

𝑗𝜔𝑍∗ = 𝑗𝜔

1

(
1
𝑅2
+
1
𝑅3
)
− 𝑗𝜔

(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
2

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2  

 

   
 

𝑀∗ =

𝜔2
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
2 + 𝑗𝜔

1

(
1
𝑅2
+
1
𝑅3
)

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2  

(12)

(
1
𝑅13

)
2

(
(13 )

(
1
1)
)

2 (𝐴. 26) 

 
Consider the real component (M’) of (A.26): 
 
 

𝑀′ =

𝜔2
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
2

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2 

(12)

(
1
𝑅13

)
2

(
(13 )

(
1
1)
)

2 (𝐴. 27) 

 
Consider the frequency limits of (A.27): 
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Low frequency 
ω0: 
 

𝑀′ →

(0)2
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
2

1 + (0)2
 

 

   
 𝑀′ → 0  (𝐴. 28) 
   
High frequency 
when ω∞: 
 

𝑀′ →

∞2
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
2

1 +∞2
(𝐶2 + 𝐶3 )2

(
1
𝑅2
+
1
𝑅3
)
2

 

 

   
 

𝑀′ →
1

(𝐶2 + 𝐶3 )
  

1

(𝐶2)
 (𝐴. 29) 

 
Consider the imaginary component (M’’) of (A.26): 
 
 

𝑀′′ =

𝜔
1

(
1
𝑅2
+
1
𝑅3
)

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2 

(12)

(
1
𝑅13

)
2

(
(13 )

(
1
1)
)

2 (𝐴. 30) 

 
Multiply equation (A.30) by the capacitive term over its self: 
 
 

𝑀′′ =

𝜔
1

(
1
𝑅2
+
1
𝑅3
)

1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2 .
(𝐶2 + 𝐶3 )

(𝐶2 + 𝐶3 )
 

 

   
 

𝑀′′ =

𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)

(𝐶2 + 𝐶3 )

(

 1 + (𝜔
(𝐶2 + 𝐶3 )

(
1
𝑅2
+
1
𝑅3
)
)

2

)

 

 

(12)

(
1
𝑅13

)
2

(
(13 )

(
1
1)
)

2 (𝐴. 31) 

 
Consider the frequency limits of (A.31): 
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At low frequency 
ω0: 

𝑀′′ →
(0)

(𝐶2 + 𝐶3 )(1 + (0)2)
 

 

   
 𝑀′′ → 0  (𝐴. 32) 
   
At high frequency 
ω∞: 

𝑀′′ →
(∞)

(𝐶2 + 𝐶3 )(1 + (∞)2)
 

 

   
 𝑀′′ → 0  (𝐴. 33) 
 
Consider the Debye function present when equation (A.23) holds, substitute (A.23) 
into (A.31): 
 
 

𝑀′′ =
1

(𝐶2 + 𝐶3 )(1 + (1)2)
 

 

   
 

𝑀′′ =
1

(𝐶2 + 𝐶3 )(2)
 

1

(𝐶2)
(𝐴. 34) 

 
 Considering the total resistance (Rt) and capacitance (Ct) for the sub circuit. 
Equation (A.7) gives the Y’ conductance plateau as 1/R2 + 1/R3. Equations (A.18) 
and (A.24) gives an impedance Nyquist plot arc of diameter 1/(1/R2 + 1/R3) and 
height 1/2(1/R2 + 1/R3), respectively. From these two results the total resistance 
for the sub circuit is: 
 
 

𝑅𝑡 =
1

1
𝑅2
+
1
𝑅3

  
1

1
𝑅2

 (𝐴. 35) 

 
Equation (A.10) gives an E’ capacitance plateau of C2 + C3. Equations (A.29) and 
(A.34) gives an modulus Nyquist plot arc of diameter 1/(C2 + C3) and height 1/2(C2 
+ C3), respectively. From these two results the total capacitance for the sub circuit 
is: 
 
 𝐶𝑡 = 𝐶2 + 𝐶3  (𝐴. 35) 

 
Consolidating these values as a single RC element allows the main circuit to be 
simplified into a dual RC circuit where one time constant is the product of R1C1 and 
the other RtCt. 

 
 
 
 


