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CHAPTER SIX

Application of The Finite Element

Analysis and Discussion

6.1	 Aims and Scope 
the

This chapter deals with analyse of a series of

infill and frame combinations which are believed to be

relevant for multi-storey buildings. For such analyses

program 'NEPAL' has been used. As described in chapter 5,

this program is written by the author particularly for the

purpose of analysis of infilled frames emphasizing the

requirements outlined in Table 2.2. The results of the

analysis are presented in this chapter in a fairly detailed

but concise fashion in order that useful discussions can be

made.

6.2	 Infill Size and Proportion

Fig 6.1 and Table 6.1 show the loading setup and

the typical finite element subdivision layout and also the

dimensions used in the analysis. As shown the infill

consisted of a 140mm thick wall with three different sizes

and proportions designated as; S for square, R for

rectangular and B for big square. The finite elements

along the boundary and within the corners of the wall were

set smaller so that the high strain and stress gradients in

the loaded corners can be simulated.
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Figure 6.1 Infilled Frame under Diagonal Load

Table 6.1 F.E Subdivision and Dimensions of Infilling Walls

Infill
Type

Length
mm

Height
mm

Thickness
mm

Aspect
Ratio

x/1 18c yili
Ratios

S 2709 2709 140 1.000 1/6

R 4743 2709 140 0.572 1/6

B 4743 4743 140 1.000 1/10



The frame, the infill and their interfaces were

modelled using the newly developed beam, the 4-node

isoparametric and the newly developed interface elements

respectively. These elements are described in Chapter 3

6.3	 Frame Members 

Three types of beams and columns from the standard

universal sections were chosen to represent weak, medium and

strong beams and columns designated as 'W', 'M' and 'S'

respectively. Table 6.2 summarizes the properties of these

sections.

After running the program for a few infilled

frames, it was found that the universal sections, alone,

could not take the high shear forces developed in the loaded

corners. Plasticity initiated at the centroid of the web

well before the plastic resisting moment of the member has

reached. Therefore adequate web stiffeners were combined

with the standard universal sections. These arrangements

are detailed in Table 6.2. The mechanical behaviour model

of steel has been described in chapter 4.

6.4	 Infill Material 

The infill material was assumed to be uniform and

proposed to have mechanical properties equivalent to those

of blockwork, made of structural 140mm thick solid blocks

with 15 N/mm2 nominal strength laid on designation (iii)

mortar, BS5628. The assumed mechanical properties of infill

are listed in Table 6.3. The mechanical behaviour model of

the inf ill material has been described in chapter 4.
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E.

V.

at

ac

Cc

18.5 ICN/mm2

0.175

1.5 N/mm 2

11.3 N/mm 2

0.00175

0.25

3.5

1.17

0.0

1.5

4.0

Initial modulus of elasticity,

Initial Poisson's ratio,

Direct tencile strength,

Unconfined compressive strength,

Strain at peak unconfined uniaxial stress,

Factor A (see Section 4.5.3)

Factor R (see Section 4.6.4)

Factor fTc (see Section 4.5.2)

Co efficient of friction at crack surface

Crack dilatancy factor

Designated straining ratio at crushing

Kn

Ks

atb

asb

Ksru

i-t

100000 N/mm 3

50000 N/nun 3

0.05 N/mm2

0.07 N/mm2

50 N/mm 3

0.64

Normal stiffness

Shear stiffness

Tensile bond strength

Shear bond strength

Shear stiffness after debonding

Co efficient of friction

Table 6.3 Mechanical Properties of Assumed Infill Material

Table 6.4 Mechanical Properties of Frame-Infill Inteface



6.5	 Frame-Infill Interface 

Table 6.4 lists the mechanical properties of the

frame-infill interfaces. As seen these interfaces are given

a very high shear and normal stiffness values , 50000 and

100000 N/mm3, when they are intact. When debonded they are

assumed to have much lower shear stiffness, 50N/mm3, so that

quick convergence can be achieved during deflection

increments especially when a joint slip is involved.

Considering the scale of the structure, this value is

approximately equivalent to the value taken by Liauw (24) et

al, Table 4.2. Taking higher values for shear stiffness did

not make any significant change in the results, but slowed

down the convergence of the solution .

No stiffness was allowed for a separated

interface. The coefficient of friction of the interfaces

was adopted from reference 77, Table 4.2. A fairly small

bond strength was given to the interfaces, because infill

normally loses its bond to the frame as a result of

shrinkage and variation of temperature. The mechanical

behaviour model of interfaces is discussed in chapter 4.

6.6	 Infilled Frames Analysed

The following factors have been the major concerns

in combining the frame and the infill for analysis.

i) Study of a group of infilled frames with the same beam:

, but various column strengths.
e

ii) Study of the effect of the aspect ratio of the infill.

iii) Study of the effect of eliminating the frame-infill

interface frictional resistance.
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iv) Study of the effects of the relative stiffness and

strength of the frame and the infill

Table 6.5 lists the chosen infilled frames for the

analysis, based on the above needs. As seen all the

infilling walls have been made of the assumed uniform

material. Three frames with names ending with NF were

analysed with assumption of no frictional strength and

stiffness at the infill boundary interfaces.

The table also lists the values of stiffness and

strength parameters defined by various authors; kh by

Stafford Smith( 12 ) , m by Wood (20) and ml to m3 by Liauw

et al (25) . These parameters are described in chapter 2.

Table 6.5 Stiffness and Strength Parameters of The Infilled Frames Considered

Frame Type i'/h' Ah mn m m1 m2 m3

WMUR2, WMUR2NF 1.75 8.17 0.016 0.031 0.154 0.328 0.190

MMUR2, 1.75 4.90 0.031 0.068 0.276 0.378 0.213

SMUR2, SMUR2NF 1.75 3.34 0.031 0.068 0.433 0.378 0.213

SWUR2, SWUR2NF 1.75 3.25 0.013 0.027 0.417 0.250 0.187

WWUS2, 1.00 8.27 0.041 0.111 0.149 0.143 0.187

MWUS 2 1.00 4.96 0.041 0.111 0.251 0.143 0.187

SWUS2 1.00 3.38 0.041 0.111 0.417 0.143 0.187

SSUS2, 1.00 3.65 0.329 1.266 0.496 0.406 0.331

WWUB 2, 1.00 12.24 0.013 0.027 0.085 0.082 0.173

Notes;
Underlined m values denote the minimum values, ie the ones which applies in Liauw method
Letters conforming the Frame type name signify its column type, beam type, infill material
and infill shape respectively from left to nght as follows:

Column types; W= Week, M = Medium strength, 	 S = Strong
team type;	 W= Week, M = Medium strength, 	 S = Strong
Infill material; U = Uniform material (concrete), M = Masonry, 0= Open(empty)
Infill shape;	 R = Rectangular, 	 S = Square
Letters 'NF' at the end of a frame type denotes that the frame-mull interface is perfectly

smooth, ie. no frictional stress develops at such interface.
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6:7	 Open Frames 

In order to study the significance of the effects

of the inf ill, the behaviour of the companion open frames

needed to be studied.

Fig 6.2 shows a typical load deflection diagram

resulting from finite element analysis of an open frame. As

seen such a load deflection relation can be simulated by two

straight lines representing the linear-elastic and perfect

plastic behaviour of the frame material (steel).

Table 6.6 lists the elastic and plastic horizontal

load capacity and also the corresponding deflections for the

chosen frames resulting from the analysis. The designated

names in this table contains 4 letters signifying column

type, beam type, infill type (0=Open) and infill size and

proportion listed in Table 6.5.

Table 6.6 also lists the calculated values of the

horizontal load capacity of each frame using the limit

analysis of plasticity (98) . As seen these values are fairly

close to those obtained by the proposed finite element

analysis . The computed plastic strength values, though,

were about 5% lower than the computed ones. This may be due

to the effects of shear and axial stresses and also the

effect of the corner blocks which are ignored in the hand

plastic analysis.

The open frame load-deflection diagrams are shown

also in Figs 6.3 to 6.7 for the purposes of comparison with

the load-deflection diagrams of the companion infilled

frames.



Figure 6.2 Typical Open Frame Load-Deflection Diagram

Table 6.6 Elastic and Plastic Horizontal Load Capacity of Open Frames

Frame Finite Element Limit Analysis

Ali y

mm

H 0

ICN

Hou

ICN

Kf

KN/mm

Hoy

ICN

Hou

KN

WMOR2 36.33 86.9 102.3 2.4 84 107

MMOR2 30.64 165.8 192.2 5.41 168 209

SMOR2 24.68 166.3 199.7 6.74 168 209

SWOR2 32.56 76.7 88.1 2.35 73 92

WWOS 2 38.3 72.8 86.8 1.90 73 92

MW0S2 22.0 78.5 90.0 3.57 73 92

SW0S2 18.52 79.9 94.0 4.31 73 92

SSOS2 16.85 607.2 707.0 36.03 598 740

WW0B2 115.3 43.5 50.0 0.38 42 52.6

N.B.	 In the Limit analysis of plasticity, Ho= 4 Mp/h'
and H may be approximated as H Me/Mp

oy	 ou
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6.8	 Infilled Frames 

6.8.1	 General 
This section deals with the presentation of the

finite element analysis results for the horizontally loaded

single bay infilled frames listed in Table 6.5. The frames

were loaded monotonically using the deflection increment

approach. As shown in Fig 6.1, the loading set up was so

arranged that becomes equivalent to the diagonal loading.

The results generally consisted of the load-

deflection and also the force and stress distribution

diagrams within various parts of the structure at marked

stages. Such results are classified and described in the

following subsections.

6.8.2	 Load-Deflection Diagrams 

Figs 6.3 to 6.7 show the load-deflection diagrams

of the infilled frames. The companion open and no-friction

infilled frames are also shown in these figures in order

that a direct comparison is possible. The term no-friction

used here, refers to the same frame with assumption of

perfectly smooth frame-infill interface, i.e. 11=0. Full

results are reported by the program at nominated stations in

the analysis. These are described below and are indicated

in Figs 6.3 to 6.7.

The point signified by "1" is defined to correspond

. approximately to 50% of the peak load. At this load

stresses neither in the frame nor in the infill have
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reached the peak values, but separation and slip has

occurred along significant parts of the frame-infill

interface. This load level may also be considered as

representing the maximum likely load occurring during

the service usage of the structure.

ii) The point signified by "2" indicates the station at or

close to the onset of the infill diagonal cracking.

iii) The points signified by "3", "4" and "5" refer to the

station at or close to the peak, post peak and a point

well beyond the peak load respectively.

In addition, the key events in the response are indicated as

follows:

i) I refers to the load at which the infill material

experiences the peak stress level in one or both loaded

corners.

ii) F refers to the load at which frame initiates

plasticity.

iii) C refers to the onset of diagonal cracking.

Figs 6.3 to 6.7 do not show the complete diagrams

for open frames, because the deflection scale was set to

suit the infilled frames deflection. The complete open

frame load deflection diagrams can be determined from Tables

6.6 and Fig 6.2.
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6.8.3	 Frame Forces 

Beams and columns were subjected to thrust, shear

and bending moment. As shown typically in Figs 6.8(a) and

6.9(a) these forces were generally concentrated in the

loaded corners. These figures refer to infilled frame MMUR2

at stations 1 and 3. i.e. at service and the peak loads

respect ively . The complete results for all the marked

stations and for all the frames analysed are given in

Appendix E.



6.8.4	 Infihl Stresses 
The infills were subjected to biaxial compression

concentrated in the loaded corners. The central area of the

infills were, however, subjected to biaxial tension-

compression.

Figs 6.8(b) and 6.9(b) show the infill principal

stress contours before and after diagonal cracking, i.e. at

stations 1 and 3 respectively.

Tables E.1 to E.12 in Appendix E summarize the

stress values in the loaded corners and also at the centre

of the infill at various stations for infilled frames

analysed.

6.8.5	 Frame-Infill Interaction

In all the frames analysed, frame-infill

separation occurred at very early stages of loading.

Contact, however remained in the loaded corners. The length

of contact rapidly increased as either the non-linearity

started within the infill, or plasticity initiated in the

frame. This can be seen by comparing Fig 6.8(b) with

Fig 6.9(b) which show the frame-infill contact stress

distribution diagrams for frame MMUR2 at the service and

peak loads. The complete results for all the chosen

stations are given in Tables E.1 to E.12 in Appendix E for

all the frames analysed.

The analyses showed that all the infilled frames

developed considerable shear forces at the frame-inf ill

interfaces in contact.
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6.9	 Discussion of Overall Behaviour of Infilled Frames 

6.9.1	 Chnumd 

The graphical representations given in Section

5.5.5 and the results obtained from the finite element

analyses, Tables E.1 to E.12, showed that apart from the

state of the infill, the state of the frame can be

classified with relation to the generalized load-deflection

characteristics shown in Fig 6.10(a). These states are

described in the following sections.

6.9.2	 Elastic State 

Up to a load close to the peak load the frame

behaves in an elastic manner while the inf ill becomes non-

linear in the loaded corners and remains linear elastic in

the rest of the area. Infill/frame separation occurs, but

contact remains at the loaded corners of the infill both at

the beam and column interfaces. Normal stress at these

interfaces increase as the diagonal load increments to

higher levels. The length of contact and also the offset of

the resultant of the normal stress, b/h', remains nearly

constant,	 Fig 6.10(b).

6.9.3	 Elastoplastic State 

As the load increases, the frame initiates

plasticity at the loaded corners at a load close to the peak

lolad. The position of this event on the load deflection

diagrams is designated by letter F, Fig 6.10(a). From this

point on, the state of the infilled frame can be called

"Elastoplastic". Increasing further the load, leads to
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strain softening in the loaded corners of the infill and

formation of two plastic hinges at the loaded corners of the

frame followed by plastic rotation at these points. This

trend continues up to point P on the load deflection diagram

designating the peak load. The load-deflection diagram,

Fig 6.10(a), thence follows a falling branch through to much

higher deflections accompanied by inf ill crushing and

increase in b/h' and also increase in the frame sagging (or

hugging) bending moments.

6.9.4	 Plastic State 

Because difficulties arose in achieving

convergence due to excessive non-linearities occurring in

the materials, the finite element analyses were halted at a

deflection about twice that at the peak load. However, the

trend of the changes in the frame bending moments indicates

formation of new plastic hinges at the unloaded corners and

perhaps in the members of the frame, at a higher deflection.

Formation of these additional plastic hinges turns the frame

into a plastic collapse mechanism by which it would undergo

perfect plasticity. This state can be referred to as the

plastic state. Strong frames with weak infill also may

eventually develop a load even higher than the initial peak

load as shown in Fig 6.10(a). Such a case was not

encountered in this work, but occurred in the tests carried

out by Saneinejad( 29 ) for an infilled frame with extremely

strong frame.
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6.10.2	 Effect of Infill Aspect Ratio 

Square infills developed almost equal normal

stress at the interfaces with the beams and columns.

Rectangular infills, however, transferred much of the

resulting diagonal force to the columns rather than to the

beams. This is because the projection of such a diagonal

force on the normal of the column is greater than that of

the beam. But the straight forward rule of dividing the

diagonal force into components acting to the beam and column

did not agree with the finite element analysis results.

6.10.3	 Effect of Beam to Column Strength Ratio 

As shown in table 6.7, variation of the equivalent

normal stress at the beam interface, anb, was strongly

dependent on the beam/column strength ratio. However, the

normal stress at the column interface, anc, was almost

unaffected by the beam/column strength ratio for both the

square and rectangular infills.

6.10.4	 Effect of Frame/Infill Strength Ratio

As seen in table 6.7, this parameter did not

affect the normal stress at column interface anc, but it had

a significant effect on the normal stress at the beam

interface, anb. The length of the stress block, 2b,

increased as the strength of the adjacent frame member

increased.,
•



6.10.5	 Effect of Diagonal Cracking

Diagonal cracking rapidly increased the lengths of

contact, ac and ab, thus reducing by approximately 30% the

equivalent normal stresses, anc and unb respectively, while

the total normal forces at the interfaces remained almost

constant. This can be verified by comparing the results of

the identical frames, with and without an "*" in Table 6.7.

6.10.6	 Effect of Coefficient of Friction

As seen in Table 6.7, the no-friction infilled

frames developed significantly higher normal stresses both

at the column/infill and at the beam/infill interfaces.

This was much more effective for rectangular frames.

6.11	 Discussion on Shear Force at Frame-infill Interface 

All the infilled frames analysed were assumed to

have a coefficient of friction, II, equals to 0.64 at the

frame-inf ill interfaces. The resulting total normal and

shear forces acting to each frame member at the peak load, C

and F respectively taken from Tables E.1 to E.12, are

summarized in Table 6.8. Also listed in this table are the

results of the analyses of three no-friction infilled frames

for comparison.

Like the normal forces, the frictional forces are

also dependent on infill aspect ratio, beam/column strength

ratio, frame/infill strength ratio and infill cracking. It

wa5 found convenient to study the frictional forces only in

relation to their corresponding normal forces leading to the

following conclusions.
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i) State of the beam-infill interface remains slipping,

thus the maximum possible shear develops at the

beam-infill interface. i.e:

Fb = gqb	 (6.1)

As seen in Table 6.8 this relation agreed with all the

rectangular infilled frame analysis results with up to

only 1% difference. However, for square inf ills the

differences varied between 0 to 10%.

ii) Shear force at the column interface is strongly

dependent on the aspect ratio of the infill. The

following relation was found to be simple and also

reasonably accurate for predicting the shear force at

the infill-column interface:

h')2
rc = P. (— Cc

l'
(6.2)

As shown in table 6.8, this relation gives Fc between 0

to 16% lower than the results obtained for rectangular

infills and 0 to13% higher than the results obtained

for square infills.

Analysis of frame SSUS2 led to a fairly high

infill-column length of contact as a result of the high

frame strength and stiffness. The frictional force at the

column, Fc, was 32% less than given by Eq 6.2. As will be

seen in Chapter 7 this discrepancy will be rectified by

reducing the 11 value to satisfy the equilibribm conditions

preventing inf ill rigid body rotation.
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Table 6.8 Shear Transferred at Frame -infill Interface

Frame Column Beam

Cc

[KN]

Fc [PM] Cb

[KN]

Fb [KNI]

F.E Eq 6.2 F.E Eq 6.1

WMUR2* 568.3 141.5 119.1 398.1 254.3 254.8
Mv1UR2* 796.5 186.8 167.0 497.2 317.8 318.2
5W13R2* 900. 218.0 188.6 351.9 225.0 225.2

MMUR2 746.3 157.3 156.4 447.9 286.5 286.6
SMUR2 1021.7 213.3 214.1 469.4 299.8 300.4
SWUR2 899.3 194.3 188.5 335.1 197.4 214.4

WWUS2 420.7 256.4 269.2 429.7 260.0 275.0

WWUS2 414.2 245.7 265.1 416.1 259.0 266.3
MWUS2 540.4 317.8 345.9 419.7 267.8 268.6
SWUS2 728.0 414.0 465.9 400.9 255.7 256.6
SSUS2 925.4 402.7 592.3 1023.9 621.0 655.3

WWUB2 424.3 268.4 271.6 430.2 272.0 275.3

WMUR2NF 610.3 0 0 409.8 0 0
SMUR2NF 1038.9 0 0 528.7 0 0
SWUR2NF 948.0 0 0 475.0 0 0

*Maximum load occured at diagonal cracking load or

6.12	 Discussion on Infihl Stress Distribution 

6.12.1	 General 

Figs 6.8(b) and 6.9(b) show the infill stress

contours for infilled frame MMUR2 at the working stress and

at the peak loads respectively. As shown, two distinct

stress combinations can be pointed out, typically, in the

regions described in the following sections.

6.12.2	 Loaded Corners 

The loaded corners are subjected to highly

variable biaxial compression extending over the area

surrounded by the beam and column lengths of contact.

The ratio of the minor to major principal stress

at the critical points within these regions, increases as
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the infill gradually becomes non-linear and the state of the

infilled frame becomes elastoplastic. As shown in Tables

E.1 to E.12, this ratio was between 0.2 to 0.4 for the

critical points of the region at the peak load. These ratio

limits together with the experimental results of helmut

Kupfer( 55 ), the Von Mises criterion and the proposed

criterion, Eq4.31 are shown in Fig 6.11. As can be seen the

peak of the most compressive principal stress must be at

least 15% higher than the unconfined uniaxial compressive

strength.

All the frames analysed in this study collapsed

eventually as a result of failure of the infill material in

the loaded corners. The straining ratio of infill (defined

as the ratio of the biaxial strains at the most critical

point in the loaded corner, to the biaxial strains

corresponding to the biaxial peak stresses) may be

interpreted as the degree of plasticity occurring in the

infill at the peak load. As shown in Tables E.1 to E.12

this ratio was 2.2 to 2.6, for all the frames studied,

except frame SSUS2, in which the above ratio was 1.43. This

particular infilled frame had a very strong frame and

consequently long lengths of contact at the beam and column

interfaces.

6.12.3	 Central Region

The central region of infill is subjected to

nearly uniform biaxial tension and compression, directed

nearly normal and parallel to the loaded diagonal of the

infill respectively, Fig 6.8(b). The infill material
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behaves in linear elastic manner within this region.

The ratio of compressive to tensile principal

stress remains almost constant during the process of loading

until the onset of a diagonal cracking, Fig 6.9(b). As can

be seen in TabiesE.1 to E,12 and also Table 6.9, this ratio

ranged from 2.44 to 3.57 for the frames analysed. The

limits of this ratio are mapped on the biaxial stress

coordinates together with the failure criteria of concrete

as shown in Fig 6.11. It is interesting to note that

because of the similarity of the behaviour the ratio of

biaxial stresses at the centre of a concrete cylinder

specimen subjected to the standard splitting test (39) , also

falls within the above fairly limited range. Therefore this

standard test suits best examining the tensile failure of

infill, i.e:

61(at the cracking load) = tensile splitting strength

The load deflection diagrams, Figs 6.3 to 6.7,

show that the infill cracking load must not be considered as

the ultimate load, but rather a load limit for

serviceability considerations. This is because a diagonally

cracked infill may withstand higher lateral loads through

the diagonal struts formed after cracking.

Comparison of the load-deflection diagrams leads

to the conclusion that the infill cracking load is not much

affected by the frame strength but rather depends on the

geometry and strength of the infill. As seen in Figs 6.3 to

6.6 and also as experimentally observed by Saneinejad(29),

diagonal cracking is sudden, inducing an abrupt deflection.
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Von MIGes
Criteri0h.

o Ref.55 ( 6c =/8.N/rnm2 )
• p i-55 (i7c =31 Nirrinil)

Table 6.9 Stress Combination at Centre of Infill Resulted
from Finite Element Analysis

Fran a 02 -01/02 01/0t

WUR2 1.32 - 4.35 3.29 0.88

NEUR2 1.37 - 3.68 2.69 0.91

SMUR2 1.36 - 3.64 2.68 0.91

SWUR2 1.30 - 4.65 3.57 0.87

WWUS2 1.36 - 3.58 2.63 0.91

XNUS2 1.36 - 3.55 2.61 0.91

SWUS2 1.30 - 3.96 3.05 0.87

SSUS2 1.35 - 3.88 2.87 0.90

WWUB2 1.31 - 3.20 2.44 0.87

01 and 02 denote the tensile and compressive principal
stresses respectively. These stresses have been adapted from
Tables 6.7 to 6.18 and adjusted to correspond Diagonal-cracking
Load of the infill.

‘2=a)	 - 1.0 Ca-71ressive
ex leCcentrca

Figure 6.11 Biaxial Stress Combinations of Infill in Highly
Stressed Regions Leading to Crushing or Cracking
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6.13	 Discussion on Frame Forces 

6.13.1	 Cierl(Nral 

As discussed in section 6.9, the frame remains in

an elastic state up to a load close to the peak load. See

symbol 'F' on the load-deflection diagrams in Figs 6.3 to

6.7. Two plastic hinges gradually form at the loaded

corners before the peak load is reached. The frame forces

at the peak load are discussed in the following sections.

6.13.2	 Axial Forces 

Development of shear stress at the frame-infill

interface in the loaded corners produces significant axial

force in the frame members, the no-friction frames developed

almost no axial force in their members (see Ni in

Table 6.10). Table 6.10 gives the ratio of Ni to the squash

load, Np. As seen this ratio for the weak members of the

frame is higher. Theoretically (98) , the axial forces

lowered the effective plastic resisting moment of the frame

members only up to 7%. Notice that if the effect of non-

diagonal loads produced as a result of service and lateral

loads were included into the analysis, the total axial load

would have been much higher.

Diagonal loads are defined here as the external

horizontal and vertical in-plane loads acting on only the

diagonally-compressed corners of the frame while keeping it

in equilibrium. Non-diagonal loads, however, are defined as

any other additional in plane loads such as the vertical

service loads acting on the frame members while again

keeping the frame in equilibrium. The infilled frames
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analysed in this study were all subjected to diagonal loads

only. This was necessary	 to maintain a consistent

condition in assessing the behaviour of the structure

avoiding the effect of non-diagonal loads which may be

arranged in different ways according to the actual needs.

In almost all the frames analysed, the axial load

in the frame members at the unloaded corners, N2, was

insignificant, Table 6.10.

6.13.3	 Shear Forces 

Development of normal stress at the frame infill

interface in the loaded corners produce significant shear

force in the frame members. Table 6.10 lists 'Si' and also

the ratio of Si/Sp, where Si denotes the maximum shear force

produced in the frame member in question, and Sp signifies

the maximum shear force that the same member would have

resist if no bending moment presented.

As concluded by Horne et al( 98 ), for Sl/Sp<=0.5

the shear force has no effect on the plastic resisting

moment of the frame member under consideration and for

0.5<S1<0.75 such a reducing effect is in the range of only a

few percent, and may thus be ignored. Once Sl/Sp approaches

unity the member undergoes shear plasticity, no matter what

the value of bending moment. Therefore, the possibility of

shear plastic failure must be avoided in the analysis and

design of the infilled frames.

In the present study, the frames computed had been

made of the selected universal beams and columns with

additional web stiffeners, Table 6.2, so as to avoid Si/Sp
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becoming greater that 0.75. However, as seen in Table6.10,

there have still been few cases that S1/Sp have exceeded

this limit. This did not reduce the reserved plastic

resisting moment of the frame members. Because the Si/Sp

ratios shown in Table 6.10, which are calculated for the

very end of the frame members, were not used to examine the

strength of the material of this end element. In the finite

element analysis, which uses the analogy of the proposed

beam elements, the values of axial and shear forces are

assumed to be uniform along each beam element. These

uniform stress values correspond to the centre of the

element. In the very end element in the loaded corners of

the frame, such uniform stress values are appreciably lower

than the axial and shear forces at the very end of the

element. Notice that the first series of the analysis using

plain I sections (without shear stiffeners) led to frame

shear plasticity and failure well before the plastic

resisting moment of the frame members had been reached.

Since such a behaviour was unacceptable from the design

point of view, all such results were excluded from the

comparison scheme.

Variation of shear force in the frames analysed,

was such that the maximum shear occurred at the loaded end

of the member and decreased rapidly between this end and the

point of separation, Figs 6.8 and 6.9. The uniform shear

force between the point of separation and the unloaded end

of the members was insignificant, see the ratio S2/Si in

Table 6.10.



6.13.4	 Bending Moment

The analyses showed, typically, that the peak load

always follows the formation of the plastic hinges at the

loaded corners. The ratio of strength or stiffness of the

frame, relative to the inf ill do not change this trend.

As shown in Table 6.10, the bending moment at the

unloaded corners, M4, was generally so small such that it

could be neglected unless the frame was very stiff.

Infilled frame SSUS2 with a very stiff frame developed

significant bending moment at the unloaded corners. This

moment was still well below the plastic resisting moment of

the weakest element approaching these corners. This

indicates that if the frame was yet stiffer, it might have

developed plastic hinges at the unloaded corners at the peak

load.

Normal stress acting at the frame-infill interface

produced sagging (or hogging) bending moment in the frame

members, but in none of the infilled frames analysed did any

plastic hinge occur between the corners of the frame at the

peak load. The bending moment at the point of separation,

M3, is listed in Table 6.10 for all the frames analysed. As

shown, this moment was generally below 25% of the plastic

resisting moment of the frame member under consideration, no

matter what the frame stiffness or strength.

The low sagging (or hogging) bending moment may be

attributed to the limited plastic deformation (ductility)

that the adjacent infill material could undergo while under

high biaxial compression. As shown in Tables E.1 to E.12 in

Appendix E, higher sagging (or hogging) bending moment would
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avelop in the frame members, only well after the peak load.

The preceding discussion in this section indicates

hat all the previous finite element analyses that used a

erfect plasticity or a perfect elasticity model for infill

aterial might have led to misleading frame bending moments.

:
,

e



Table 6.10 Frame Thrust, Shear and Moment Distribution

Frames and

MEgbers

Thrust Shear Moment

Ni N2/N1 N1/Np Si IS21 S2/S1 S1/Sp NO/Mp 144/j

WmuR2*	 C 104.4 0.350 0.068 560.2 8.0 0.014 0.833 0.236 0.026
B 268.4 0.050 0.152 400.4 2.3 0.006 0.541 0.007 0.100

MMUR2*	 C 144.8 0.290 0.039 769.5 27.0 0.007 0.589 0.200 0.033
B 319.0 0.004 0.181 502.2 5.0 0.010 0.679 0.020 0.100

SWUR2*	 C 219.1 0.005 0.029 843.5 56.6 0.067 0.389 0.134 0.170
B 168.7 0.333 0.152 353.7 1.8 0.005 0.752 0.036 0.087

NVUIR2	 C 141.9 0.108 0.038 721.3 25.0 0.035 0.552 0.165 0.056
B 270.0 0.061 0.153 446.5 1.3 0.003 0.604 0.091 0.064

SMUR2	 C 206.6 0.027 0.028 931.0 87.7 0.094 0.430 0.151 0.178
B 217.3 0.380 0.123 472.2 2.6 0.006 0.639 0.079 0.137

SWUR2	 C 188.3 0.032 0.025 812.0 87.3 0.108 0.375 0.132 0.177
B 114.4 0.726 0.103 335.9 0.8 0.002 0.714 0.037 0.085

WWUS2*	 C 256.4 0.000 0.168 420.8 0.0 0.000 0.626 0.068 0.018
B 258.7 0.005 0.234 429.0 0.7 0.002 0.912 0.198 0.052

WWUS2	 C 234.5 0.063 0.153 407.3 6.7 0.016 0.606 0.068 0.018
B 230.7 0.123 0.208 409.6 9.8 0.025 0.870 0.198 0.059

NWUS2	 C 314.9 0.008 0.085 521.7 18.7 0.036 0.399 0.040 0.000
B 225.0 0.190 0.203 412.5 7.3 0.017 0.877 0.146 0.006

SWUS2	 C 428.2 0.033 0.057 690.4 37.6 0.054 0.319 0.069 0.332
B 188.8 0.354 0.170 396.4 4.5 0.011 0.842 0.176 0.038

SSUS2	 C 463.0 0.130 0.062 914.3 10.8 0.012 0.422 0.166 0.304
B 609.9 0.018 0.163 1084.2 60.4 0.055 0.715 0.117 0.278

WWUB2	 C 267.3 0.004 0.175 423.0 1.3 0.003 0.629 0.067 0.014
B 270.7 0.005 0.244 429.1 1.1 0.003 0.91 0.062 0.014

WMUR2NF	 C 52.6 1.000 0.034 601.6 8.7 0.014 0.895 0.133 0.034
B 8.7 1.000 0.005 411.9 2.0 0.005 0.557 0.006 0.091

SIIIJR::NF	 C 5.2 1.000 0.001 980.6 58.3 0.060 0.453 0.137 0.175
B 58.3 1.000 0.033 530.0 5.2 0.010 0.717 0.029 0.117

SWURZNF	 C 0.4 1.000 0.000 893.0 55.0 0.060 0.412 0.126 0.112
B 55.0 1.000 0.050 474.6 0.4 0.001 1.009 0.063 0.035

* Maximum load occured at diagonal-cracking load or inf ill did not
crack.

NB: All axial loads are compressive.
Mp refers to the Plastic resisting moment of the element in
question.
Mpj referes to the lesser of the plastic resisting moment of the
frame members approaching the loaded corners.



CHAPTER SEVEN

Proposed Method of Analysis

and Comparison

7.1	 Introduction 

7.1.1	 Ckmemd 

As discussed in Chapter 2, Wood( 20 ) used a perfect

plasticity theory in developing a method of analysis based

on four plastic collapse mechanisms at the peak load. In

order to complete the work he adjusted the high resulting

collapse load by imposing a penalty factor,yp , to reduce

the inf ill compressive strength. Liauw( 24 ), on the other

hand, allowed for rather similar plastic collapse mechanisms

and reduced the resulting high collapse load by neglecting

the shear forces acting at the frame infill interfaces. As

seen both methods tried to adjust (reduce) the infill

strength so as to narrow the large gap between the

theoretical and experimental results.

Contrary to the assumptions made in their methods,

the finite element analysis results discussed in Chapter 6,

proved that at the peak lateral load the frame has not

developed a plastic collapse mechanism and still has

considerable capacity to withstand higher stresses. The

colapse however is merely due to compressive failure of the

infill mainly at the loaded corners. Therefore should the

solution to the problem be needing a penalty factor, such an

adjustment must be imposed to the frame strength rather than
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the infill's. In other words the limit analysis of perfect

plasticity( 98 , 39 ) based on the lower and upper-bound

theorems used in all the previous plastic analysis

(20,22,24)methods	 , may not be the most accurate approach to

the analysis of infilled frames. This is because no plastic

collapse mechanism exists at the peak load. As will be

shown later in this chapter such a discrepancy between the

existing plastic methods and the true behaviour of infilled

frames leads to misleading predictions of shear and normal

forces as well as the bending moments in the frame members.

Therefore a new method of analysis was developed

by the author as described in this chapter. The method is

based on a rational elastic and plastic analysis allowing

for limited ductility for the infill, and thus limited

deflection for the frame at the peak load. The method

results in the necessary information for design purpose such

as collapse load, cracking load, stiffness and deflection of

the infilled frame and also shear, normal and bending moment

diagrams of the frame members. The proposed method also

allows for the major practical imperfections such as lack of

fit and shrinkage of the inf ill. It is concluded that the

effects of pin and semi-rigid joints at the column-beam

connections can also be accommodated. Variations such as

the aspect ratio of the infill and also beams having

different strength and stiffness from those of the columns

are accounted for in the proposed method. The results of

the proposed method are compared with the results of the

finite element analyses, experiments and other

previous methods at the end of this chapter.
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7.1.2	 Basis of The Analysis 

The finite element analysis results discussed in

Chapter 6 showed that at the peak lateral load, the infilled

frame failure initiated in the infill and collapse is merely

due to excessive compressive strain accompanied by loss of

strength (strain softening) at the loaded corners of the

infill. The frame, however, at the peak load still has

considerable capacity to withstand higher stresses and to

develop additional plastic hinges in far later stages of

loading. Therefore no distinct plastic collapse mechanism

and thus, no upper-bound solution exists at the peak load.

In the absence of an upper-bound solution at the

peak load, many lower-bound solutions can be imagined. i.e.

many force distribution patterns can be proposed satisfying

the equilibrium of the external and internal forces. In

order to find a solution close to the exact one, the

following facts were concluded from the work described in .

Chapter 6.

i) The strength of an infilled frame is mainly contributed

by the infill. Increase in the lateral deflection of

the inf ill accompanies a gradual increase in the

lateral load up to only a limited deflection beyond

which the infill gradually loses its strength at the

loaded corners and the load falls due to limited infill

ductility.

ii) Development of plastic hinges at the loaded corners of

the frame precedes the peak load. However, this might

not be the case for infilled frames having frame/infill
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strength and stiffness parameter beyond the range

studied.

iii) Because of the limited infill ductility and thus

limited frame deformation at the peak load the bending

moment at the unloaded corners of the frame, rarely

reaches the joint plastic resisting moment of the

frame. The unloaded corner moment is negligible for

infilled frames with weak or medium strength frames.

The joint plastic resisting moment is defined as the

least of the plastic resisting moments of the members

meeting the joint and also their connections to the

corner.

iv) The sagging or hogging bending moments in the frame

members remain well below the plastic resisting moment

of the member in question. These moments are nearly

proportional to the plastic resisting moment of the

corresponding frame members.

These conclusions led to definite solutions based

on distinct elastoplastic deformation modes (instead of

mechanisms used in the limit analysis) for different values

of frame/infill strength and also stiffness ratios. The

proposed analysis method will be described in the following

sections.

7:2	 Frame-infill Interaction

Fig 7.1(a) shows the frame-infill interaction

forces for an infilled frame loaded diagonally up to the

peak load. As discussed in chapter 6, the frame separates

from the inf ill, but contact remains in the loaded corners
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to transfer the diagonal force to the infill. It is

proposed that the frame-infill interactive forces are
be

assumed to distributeduniformly over the proposed lengths of

contact, ach' and abl', resulting in uniform normal and

shear contact stresses acting to the beams and columns

designated by, arm, anb, T0 and Tip respectively. h' and l'

denote the height and length of the infill respectively.

Plastic hinges develop at the loaded corners of the frame.

The moment diagram and also the forces acting on the left

hand side column are shown in Figs 7.1(c) and 7.1(b)

respectively. Similar forces act on the other members of

the frame. Mpj designates the frame joint plastic

resisting moment, which is defined as the least of the

plastic resisting moment of the beam and column and their

Figure 7.1 Proposed Frame-Infill Interaction Forces;
a)wall, b)column, c)moment diagram
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connections to the corner. ac and ab denote the ratios of

the lengths of contact of the column and beam to the height

and length of the infill respectively.

In order to calculate the frame bending moments it

was found convenient to study the column and beam

deformations separately. Fig 7.2(a) illustrates the lateral

deflection of an infilled frame resulting from the

flexibility of only columns of the frame and also

deformation of the inf ill only in horizontal direction.

The deflection produced by such a system may be signified by

Ahx. This deflection can be incorporated into an elastic

analysis allowing for only the column end at the loaded

corners to move and rotate, leading to the fixed end moment

of this column written as:

1	 3EcIc	 1

Mjc = --- M1c +—Ahx - —ancth'2ac2(2_ac2)
	

(7.1)

2	 h'2	 8
Fig 7.2(c) shows the step oy step p r °ceder to derive Eq 7-1

Similar deformation can be envisaged for the bottom beam,

Fig 7.2(b), leading to its fixed end moment as:

3Ebib1	 1
anbtl ,2ab2(2_ab2)Mjb =	 Mlb +	 Ahy -	 (7.2)

2	 1'2	 8

where infill and beams are assumed to undergo only vertical

deformation and the columns assumed to be extremely stiff.

Ah denotes the vertical deflection of the infilled frameY

due to only beams flexibility. In the above analysis the

eccentricity of the infill-frame frictional forces to their

offset from neutral axis of the frame members were neglected

for simplicity. The effects of these are insignificant
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Figure 7.2 Deformation of Infilled Frames;
a) columns only, b) beams only, c) Forces distribution
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in this calculation because the lever arms are small in

relation to the lever arms for the normal forces.

Superposition of the above two systems gives the

overall infilled frame deformation. This can be achieved by

rotating the second system (clockwise) such that the bottom

beam becomes horizontal. This results in the overall

horizontal deflection as:

Ah = Ahx +Ahy(h'/1')	 (7.3)

The fixed end moments are equal for equilibrium, therefore

mjb asmic = Mj and Mlc = Mlb = M1
	 (7.4)

Combination of Eqs 7.1 to 7.4 leads to the frame moment at

the unloaded corners as follows:

1	 Kc	 1
Mj = —M1 +3Ahx--- --A
	

(7.5)
2	 h'	 8

and
(h'/24)(A-B) + KbAh

Ahx-
Kc+Kb

(1'/24) (B-2) + KcAh/K

Kc+Kb
where

A = ancth' 2ac2(2_ac2)

B = anbtl' 2ab2(2-ab2)

EcIc	 EbIb
Kc 	  and
	

Kb =
h'	 1'

Where Ec and Eb denote modulus of elasticity and 1c and lb
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designate the moment of inertia of columns and

beams respectively. The finite element analysis results

described in chapter 6 showed that at the peak load, plastic

hinges developed at the loaded corners in all the frames

studied. Therefore Eq 7.5 becomes:

1	 Kc	 1
Mj =	 3Ahx— - —A
	

(7.6)
2	 h'	 8

The above elastic analysis for the exceptional case when

Mi<Mpj will be dealt with later in Section 7.14. Eq 7.6

involves the stiffness and strength of the frame and inf ill

materials. Solution of this equation requires determining

the length-of-contact ratios, ac and ab, and the racking

deflection of the frame at the peak load, Ah. These

parameters are highly indeterminate. The study of the

finite element analysis and also the conclusion made in the

previous section, provided grounds to propose some constant

values to make the above parameters determined. These are

discussed in the following sections.

7.3	 Frame-infill Contact Lengths 

Equations of equilibrium of the left hand side

column and the top beam, Fig 7.1, can be written and solved

for the shear forces at points D and B respectively

leading to:-

ac mwmi
SD = anct(ach')(--) 	

2	 h'
(7.7)

ab
SB = anbt(abl')(---) -

2	 1'
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The regularities observed in the magnitude of the

sagging or hogging moment produced in the frame members

described in section 6.13.4, leads to the proposed following

approximate but convenient relations to estimate the shear

forces at the unloaded corners.

SD = ( PCMpc-MWh'

SB = ( P1Mpb-Mj)/1'
(7.8)

Where pc and pb are constant factors yet to be determined.

If either of them become unity the frame member in question

would have developed a plastic hinge due	 to excessive

sagging or hogging bending moment. As discussed earlier,

becaus of limited ductility of infill material such a

plastic hinge may not occur. Therefore p values take values

less than unity. A single constant value of 0.2 ,referred

to as p was found to be a reasonable value for pc and ND

when the inf ill is made of concrete.

Substituting for SD and SE1 from Eqs 7.8 into

Eqs 7.7 leads to the lengths of contact as:-

V2Mpi + 2pcnoc
ac = 	

ancty2

(7 . 9)

V2Mpj + 2fibbliob
ab = 	

anbt1,2

Notice that Mj vanished during the above derivation. This

permits the length of contact to be calculated independently
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7. 44	 Infill Boundary Stresses 

Fig 7.3 shows the proposed typical uniform stress

and force distribution at the frame/infill interface. As

discussed in section 6.11 at the peak lateral load the

following relations agreed well with the F.E. analysis

results:

Fc = POCc	 and rb = gcb

1,4 abf',„i
1	 I C b

t an b

( a )

( b )	 ( c )

Figure 7.3	 Proposed Infill Boundary Stresses;
a)boundary stresses, b)at column interface
c)at beam interface
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Factor Ki has been proposed to adjust the standard

compressive strength (either fc' or fcu or the unconfined

compressive strength, ac, used throughout this work) to the

effective strength accounting for the following effects:

i) Errors due to the assumption of uniform stress block

ii) Reserve of strength because of using a simplified Von

Mises criterion in biaxial compression(see Fig 6.11).

iii) Difference between the standard compressive strength

and the effective uniaxial compressive strength for

this particular structure.

A value of unity for Ki gave results that agreed well with

the F.E. analysis and also various experimental results from

different sources examined at the end of this chapter

provided the unconfined compressive strength, ac, has been

taken (see also Section 7.19.5 for the choice of variable Ki

value). Combining Eq 7.11 with Eq 7.10 leads to the

proposed infill normal stresses acting on the columns and

beams, respectively, in the loaded corners as follows:

anc —
fc

1/1.1.3gc2K4

(7.13)

fc
anb0—

1+3gb2

Subscripts c and b refer to the column and beam respectively

f
	 Failure of the infill in the loaded corners does

not have to occur at the beam and column interfaces

simultaneously. Comparison of the above proposed stresses
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ab -

and the F.E. analysis results, Table 6.7, showed that all

the rectangular infills failed because of excessive anc

alone. Therefore the calculated value for anb, signified as

anb0, should be regarded as only its upper limit value. The

value of anb can be derived by applying the condition to

prevent rigid body rotation of the infill panel, ie:

Cc(h'-ach')-	 Fbh'= 0	 (7.14)

The external forces acting on the infill, Fig 7.3, can be

written as:

Cc = anct(ach') ,	 rc = Tct(ach')
(7.15)

Cb = anbt(abl')	 Fb = Tbt(abl')

Substituting for these forces, Eq 7.14 leads to:

anbab( 1 -ab-gbK) - ancacK2 (1-ac-gcK) = 0	 (7.16)

Solving Eq 7.16 for anb gives:

ac 1-ac-gcK

anb = ancK2(----) 	
ab 1-ab-gbK

Combining the above equation with Eqs 7.9 leads to ab as:

1-gbK
> 0	 (7.17)

1+A
where

1 -ac-gcK	Mpj4-0cMpc
A-

ac	 Mpj+PbMpb

Now Eq 7.9 can be solved fortinb resulting in:
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anb -

where

2Mpj+20bMpb

ti,2a1,2

< gnbo	 (7.18)

anb0 -
fc

1/1 + 3gb2

The value of ab resulting from Eq 7.17 was positive for all

the frames analysed and is therefore very unlikely to become

negative. Value of anb, however, may exceedanb0 especially

for square infills. This is not physically possible because

it implies a stress exceeding the infill failure stress and

this will be discussed later in section 7.12.

It must be noted that for a uniform frame where

Mpc equals Mpb and Pc equals fib and also gc equals gb,

Eq 7.17 reduces to:

ac = ab

7.5	 Lateral Deflection

Comparison of the load-deflection diagrams of the

infilled frames studied, Fig 6.3 to 6.7, led the author to

assume that the infill deflection at the peak load is

proportional to the following parameters.

i) The reference diagonal band width of the infill, w',

first introduced by Mainstone( 9 ) (see section 2.2 and

Fig 2.1b), where:

w' = 2h'cos0	 (7.19)
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q = 11 ac24.ab2 (7.20)

ii) A function relating to both the beam and the column

length of contact ratios, ac and ab. The following

function was found appropriate for this purpose.

iii) The infill failure strain reference, Eu, proposed as:

Cu = KCc

where Ec denotes the infill strain corresponding to

its peak unconfined compressive strength.

These assumptions lead to the infilled frame lateral

deflection at the peak load proposed as:

Ah = qw'eu

A Ke value of 2.75 gave results that agreed well with the

finite element analysis results.

The effect of the expansion and contraction of the

infill such as changes in temperature, shrinkage, and lack

of fit on the horizontal deflection, may now be calculated

by a simple manipulation in terms of their equivalent

horizontal and vertical strains exr and Eyr. Inclusion of

these residual strains leads to the following expression for

total lateral deflection of the panel as:

Ah = 2keech'cos0 „11/ ac2.1.ab2 _ Exrl'-Eyrh'tane
	

(7.21)

where an expansive strain is regarded as +ve. Deflection

values calculated using this equation will be compared with

some experimental results from different sources later in
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this chapter. In the above simple analysis the effect of

the axial deformation of the frame members resulting from

non-diagonal loads (section 6.13.2) has not been included.

Such additional deflections can be incorporated separately

in the overall frame analysis.

7.6	 Frame Bending Moments 

As discussed in Section 7.2, occurrence of the

plastic hinges at the loaded corners always preceded the

peak load in the frames analysed. Therefore bending moment

at these corners equals the plastic resisting moment of the

joint, Mpj. However the conditions leading to Mi<Mpi at

the peak load is discussed in Section 7.17 as an exceptional

case. At the other corners the frame develops a smaller

bending moment, Mj, which now can be calculated from Eq 7.6

using the proposed values of a and an and also Ah calculated

from Eqs 7.9, 7.13, 7.17, 7.18 and 7.21. In most cases in

finite element analysis, Mj became so small that it could be

easily neglected(see Table 6.10). However, the infilled

frame SSUS2 with a fairly stiff frame relative to the

inf ill, developed a significant bending moment at its

unloaded corners. This moment was still well below the

plastic resisting moment of the joint in question. It may,

therefore, be concluded that the stiffer the frame is

relative to the inf ill, the higher the bending moment at the

unloaded corners becomes. These characteristics are well

reflected in the proposed Eq 7.6.
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7:7	 Frame Forces 

Fig 7.4 shows all the horizontal forces acting on

the frame leading to the frame horizontal forces. Similarly

vertical forces lead to the vertical frame forces. The

resulting frame forces at the peak load are summarized in

Table 7.1. The unloaded end shear forces of the beams and

columns, SD and SB, are given by Eq 7.7. The external

forces, Cc, Cb, Fc and Fb, and also the bending moment at

the unloaded corners, Mj, are given by Eqs 7.15 and Eq 7.6

respectively.

Figure 7.4 Frame forces; a)Horizontal Forces Equilibrium,
b) Column forces,
c) Column Bending Moment Diagram
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Table 7.1 Frame Forces

Force Column Beam

Normal Ni = SB-Fc

N2 = SB

Ni = SD-Fb

N2 = SD

Shear Si = Cc-SD

S2 =-SD

Si = Cb-SB

S2 =-SB

Moment M1 '141Di

M2 = 0.5(eh')Si-mpj

where: eh'= Si/(a ct )

M3 = SE0 (1-ac)h'+Mj

M4 = Mj

M1 =-24pj

M2 = 0.5e1'Si-Mpi

where: el'= S1/(at)

M3 = SB(1-ab)1'+Mj

M4 m Mj

Notes: a) M2 is valid only when e<a has been ensured.
b) subscripts 1 and 2 used with N and S Designate

the member end at the loaded and unloaded
corners respectively.

c) Notice that a negative axial force specifies
compression.

d) Mpj is to be replaced by the smaller value
given in Section 7.15 for very weak infill.

7.8	 Peak Horizontal Load

From Fig 7.4, the proposed peak load becomes:

Hc = Cc +Fb -2N2(beam)
	

(7.22)

It must be noted that infilled frames with astrong frame,

relative to the infill,	 under	 increasing deflections

eventually undergo a mechanism and develop a plastic load

well after the infill compressive failure. If the frame is

extremly strong, such a plastic load could exceed the load

estimated by Eq 7.22 leading to the peak load g iven by:

4Mpj

Huf —
	 (7.23)

h'
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7.9	 Modes of Displacement and Failure 

7.9.1	 Frame Failure 

At the peak lateral load the frame normally

develops plastic hinges at only the loaded corners. The

bending moment at the other corners, Mi, remains well below

Mpj. In an infilled frame having an extremly strong frame,

the calculated Mj from Eq 7.6 may possibly exceed Mpj. In

such a case new plastic hinges must have developed at the

unloaded corners and the mode of failure of the frame may be

referred to as "Shear mode" (S). A frame with shear mode of

failure develops a mechanism at the peak load which is

coincident with the infill failure. The possible

combination of frame and infill failure modes are classified

in section 7.9.3.

7.9.2	 Infill Failure 

Generally the mode of failure of the infill at the

peak lateral load must be regarded as "Corner Crushing"

(CC). In this mode, the stronger or stiffer the frame

member is, the higher the length of contact becomes. But

there is an upper limit for this length. Imagine an

infilled frame with an extremly strong frame subjected to

lateral load to the peak level, Fig 7.6. If the small

diagonal inf ill contraction and expansion developed at the

central area of the infill, are ignored the racking

deformation of the inf ill can be attributed to only

deformation of the loaded corners of the infill. The

horizontal displacement of the infill at the loaded corners,

AA' and C'C, induced by contraction of the infill, permits
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:he beams to move over and produce a gap, BB' and D'D,

Detween the opposite column and the infill in the unloaded

:orners such that AA'=BB' and DD'=CC'. Because of the

symmetry of the loaded corners AA'=C'C, combination of these

equations leads to AA'=D'D and BB'=C'C and consequently

PLE=DE and, thus, AE=0.5h'. Therefore the length of contact

would not exceed half the length of the corresponding side

of the infill.

When the length of contact of either the column or

beam approaches this limit the mode of failure of the inf ill

may be referred to as "Diagonal Compression" (DC), because

the biaxial compression zones of the infill have expanded to

the maximum size along the inf ill diagonal. In an infilled

A A' 
r
i 

	

1	 I	 --.. --,1

1

1

1

	

1	
/	

.,..	 --...

	E 	 ./
0	

F

V "r------	 /r/.
.......	 /

	

........	 I-..,
--..

CC

Figure 7.5 Upper Limit for Length of Contact
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frame undergoing DC mode the ratio of the length of the

proposed rectangular interface stress block to the

corresponding side dimension of the infill, can generally be

written as:

ai = 0.5K2	 (7.24)

where K2 is an adjusting factor to cater for the errors due

to the proposed simple rectangular stress block and i

denotes either column or beam as the case may be. As will

be shown later, K2 equals to 2/3 was found to give results

that agree well with the finite element results for the

practical range of stress and stiffness of infill material.

This leads to ai=1/3.

For an infilled frame with ac becoming greater

than 0.5K2, thus DC mode, the value of Pc must be adjusted

to correspond to ac=0.5k2. Substituting for the value of ac

from Eq 7.24 into Eq 7.9 leads to:

(1/8)K2 2ancth' 2 -1410i

Pc	 	  < Pc
	

(7.25a)
(new)	 Mipc	 (old)

Similar adjustment must be carried out for Pb to

correspond to ab=0.5K2, should the Pb becomes greater than

0.5K2. Substituting for ab from Eq 7.24 into Eq 7.17 and

solving for Pb leads to:

:	 1 [S
, Pb	 =	 (Mpj+DcMipc) -Miod < Pb	 (7.25h)

(new)	 Mipb P	 (old):-
where

1-ac-gc	 1-gbK
s=	 and P= 	  -1

ac	 0.5K2
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Notice that the above adjustments are independent

of each other. A proposed chart for calculating ac and

also adjusting Pc will be described in section 7.13.

7.9.3	 Infilled Frame Failure 

Sections 7.9.1 and 7.9.2 described the

requirements for frame and inf ill failure modes

respectively. Infilled frame failure modes can now be

categorized by combining these modes as shown

diagrammatically in Fig 7.6 and as defined below;

i) Corner Crushing (CC), referred to inf ill corner

crushing with presence of no frame plastic mechanism.

ii) Diagonal Compression (DC), referred to infill diagonal

compression failure with presence of no frame plastic

mechanism.

iii) Sheared Corner Crushing (SCC), referred to infill

corner crushing with presence of frame shear plastic

mechanism.

iv) Sheared Diagonal Compression (SDC), referred to infill

diagonal compression failure with presence of frame

shear plastic mechanism.

Modes CC and DC normally involve flexural failure

of the frame with single plastic hinges at the loaded

comers. Modes SCC and SDC involve plastic hinges at all

four corners of the frame, but these two latter modes were

not encountered in the infilled frames studied in this work.

They may possibly occur only in infilled frames with
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extremely strong frame and inf ills with very low modulus of

elasticity and high ductility, i.e. high Ec value.

Figure 7.6	 Graphical Representation of Failure Modes

7.10	 Cracking LAMA 

Cracking of the infill has been studied in

Section 6.12.3. As discussed the cracking strength of the

infill is proportional to the following parameters:

i) Tensile splitting strength, ft', which was proved to be

the best cracking strength reference for this

particular type of structure.

ii) Infill geometry represented by the infill effective

diagonal band area, A = w't (see Eq 7.19). Note that
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this parameter has been taken also by Mainstone( 9 ) for

the same purpose.

Introducing an adjusting factor, 1/2kt, these lead to the

infill diagonal cracking load as;

Rt = (1/2)ktw'tfe	 (7.26)

The multiplier 1/2 is incorporated only for convenience in

later manipulation. Converting Rt into its horizontal

component, Eq 7.26 leads to the cracking load of the infill

as:

liti= (1/2)Ktw'tfecose	 (7.27)

Mainstone( 9 ) suggested almost the same formula as

Eq 7.27 for cracking load using the compressive strength of

the infill as the strength reference and related Kt to the

frame/infill stiffness parameter, Aia. Variation of Ma only

changes the length of contact of the frame and the infill at

the loaded corners (9). Comparison of the load-deflection

diagrams of the infilled frames with different Xla value,

WWUS2 and SWUS2 in Figs 6.5 and 6.6, leads to the conclusion

that for infilled frames with Xh>3.4 the Saint Venant's

Principle (38) applies to the cracking strength of the

infill. i.e. the centre of the infill which is the point

where cracking starts, is sufficiently far from the regions

where the external loads are applied, so that the cracking

load is not affected by the way the load is distributed over

thp loaded corners. Therefore Kt can be taken a constant

value. Substituting for w' from Eq 7.19, Eq 7.27 leads to

- 320 -



the proposed infill cracking load as:

Hti = ktfeh'cos 2 0	 (7.28)

In order to verify the value of Kt, one may study

the elastic analysis of a cube under diagonal load carried

out by Davis et al (described by Chen( 59 )). This analysis

led to the diagonal strength of the cube in terms of the

tensile strength of the material as;

TC

Q — 

	

	 tw' ft'
1. 6-VI

This also gave results fairly close to the limit analysis of

plasticity(59). This relation can be converted into the

horizontal component of the load and written in a fashion

that can be compared with Eq 7.28, as:

Hti = 2.78 feth'cos20

Comparison of this equation and Eq 7.28 leads to Kt equals

to 2.78. The finite element analysis results agreed safely

and well with the Eq 7.28 with kt taken as 2.70 which is

only 3% lower than the theoretical value. As will be shown

later, this constant value leads to a more comparable and

consistent cracking load than given by the empirical

equations of Mainstone(9).

To the infill cracking load, Eq 7.28, the frame
:

contribution must be added. This combination (see Fig 7.4)
e

leads to the cracking load of the infilled frame as:

Ht = 2.70feth'cos 2 0 -2N2b'
	

(7.29)
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where N2b' denotes the beam axial force (comp., -ve.) at

the unloaded corners at the onset of cracking. The frame

forces may be assumed to be nearly proportional to the

horizontal load. Therefore N2b' can be calculated as:

Et
N2b' = (---) N2b

Hc
(7.30)

where N2b denotes the beam axial force at the peak load and

at the unloaded corner. Substituting for N2b' from

Eq 7.30 and also substituting for N2(b) from Table 7.1 into

Eq 7.29 leads to:

Ht = 2.70feth'cos20(1+4)
	

(7.31)

where the frame contribution ratio, Q, is written as:

-2SD
4	 	 	 (7.32)

Cc+Fb

SD can be obtain from Eq 7.7 and Cc and Fb are listed in

Eqs 7.15. It must be noted that the value of the frame

contribution ratio, Q, may take a positive or a negative

value. If Q takes a small positive or negative value, it

may be neglected. When Q takes a negative and significant

value it may not be neglected. This implies that ac is

rather high (see Eq 7.7). As discussed earlier in this

section a frame with a long length of contact (i.e low XII )
,

withstands a higher cracking load, because the diagonal load
r

has been distributed over a large area of corners. The

beneficial effect of such a reserve strength may be assumed
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to compensate for the effect of the negative Q value and,

thus, both the effects may be neglected. As shown later in

this chapter the cracking loads calculated neglecting the

negative Q values improved significantly.

7.11	 Stiffness 

The secant stiffness of an infilled frame to a

particular load level can be written as:

K =
Ah

This equation can be written for the peak load as:

Hc
Kc =

	

	
(7.33)

Ah

where Ah is given by Eq 7.21. The load deflection diagrams,

Figs 6.3 to 6.7, show that the secant stiffness of an

infilled frame within its linear elastic range of loading,

is approximately twice as high as its secant stiffness at

the peak load i.e.

2Hc
Ko =

	

	 (7.34)
Ah

7.12	 Special cases with Sq are Infills 

As concluded in section 7.4 the normal stress at

the beam interface, anb, may not exceed i s maximum possible

vaiue, anb0 . This is not physically possible because it

impliesimplies that a stress exceeding the infill failure stress at

the beam infill interface. If however the calculated value

of anb exceeds unbO, it must be taken equal to anb0. This
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13b - (7.36)

where

P c =

(7.37)

Pc- (7.38)

requires that either Pb or pc to be adjusted so that the

infill equilibrium is maintained.

Assuming pc remains unchanged, Pk) must be

adjusted. Solving Eq 7.16 for ab leads to:

1-	 1_1.1bK	 11(1bK 2
ab - 	 Pb

2	 2
where

'arm
Pb = (-----)K2ac(1-ac-PbK)

anb0

(7.35)

Now pb can be calculated from Eq 7.9 as:

0.5anbot1' 2 ab2 - Mpj

M b

The largest pb value that also is less than the old Ob value

must have led to the true solution.

If, however, none of the calculated Pb values

satisfies the above condition, Ob must be taken equal to its

original value and pc is to be adjusted. Solving Eq 7.16

for ac leads to:

ac =
1-110K 	 .\/(1-gcK 2

2	 2

Glib° ab
(—X—) (1-ab-pa)

anc K2

Now Pc can be calculated from Eq 7.9 as:

0.5ancth' 2ac2 _ mpj

pc
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The largest Pc value that also is less than the old Pc value

must have led to the true solution.

In order to have significant results from

Eqs 7.35 and 7.37, the inequality of:

2 
) 
2 

— Pi >0

must be satisfied. If this is not the case, gi must be

adjusted so that

=.< (
1-111K

)
2

Pi 
2

is secured. Solving for psi the above equation leads to:

(7.39)

The highest possible gi value can be obtained using the

equal sign. The value of Pi is a function of gi. Therefore

gi can be calculated by a trial and error approach.

After such adjustments have been completed, ai can

be calculated by either of Eqs 7.35 and 7.37 and Pi can be

calculated from Eqs 7.36 and 7.38 for beams and columns

respectively.

7.13	 Balancing Friction a I fill Boundary

Equilibrium of the infill (the condition to
-

prevent infill rigid body rotation) has already discussed

and led to Eq 7.16. As seen the forces transferred from the

columns tend to rotate the infill clockwise. Eq 7.16
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implies that the inequality of 1 -ac- lIcK>=0 must always be

satisfied, otherwise the column-infill interactive forces

tend to rotate the infill anti-clockwise which opposes the

direction of the load. Therefore, if the above condition

has been violated the coefficient of friction, 	 should be

adjusted to a lesser value, 'Ida, defined as the interface

balancing shear such that:

1 -ac-IlcbK = 0	 (7.40)

As discussed also in Section 6.11 such an adjustment favours

effectively the agreement between this proposed method and

the finite element analysis. Combining Eq 7.40 with Eqs 7.9

and 7.13 leads to Ilcb as:

where

= [1 -mc ;/(1+311cb21(4)] /1(

112Miloi+206Mpc

MC =

fcth'2

(7.41)

'lab can be calculated from Eq 7.41 by trial and error with a

quick convergence. Alternatively it may be calculated using

the chart introduced in the following section, by reading qc

which then must be entered into Eq 7.44 to give:

qc4 _ 1

Lcb =

	

	 (7.42)

3K4

7.14	 Design Omit

As discussed earlier in this chapter, the value of

ac can be calculated from Eq 7.9 directly. In some cases,
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ac may be subjected to either or both of the following

adjustments:

i) Adjusting	 value so as to maintain the inf ill

equilibrium, Section 7.13

ii) Adjusting Pc value so as to reduce ac to 0.5K2 to meet

the requirements for DC mode, Section 7.9.2.

Such adjustments can be carried out as described in Sections

7.9.2 and 7.13. Alternatively they may be worked out using

the proposed chart given in Fig 7.7. Two non-dimentional

parameters are involved in this chart defined as the

column/infill strength parameter, mc, as:

V2Mioji-2130.110c
mc =

fcth,2

and the inf ill parameter of geometry, qc as:

qc	 1/14.31102K4

(7.43)

(7.44)

Comparison of these parameters with Eq 7.9 leads to ac as:

ac = mcqc	 (7.45)

This equation gives a series of m curves in the chart for m

taking values from 0.05 to 0.7 which are plotted in a0-q0

coordinates.

In order to simulat he infill balancing

condition, Ileb derived from Eq 7.40 must replace 11c in

Eq 7.44 leading to:

qc =
	 1+3K2(1-ac)2
	

(7.46)
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Figure 7.7	 Chart for adjusting Pc, Pc and ac

- 328 -



oCc

t

This equation gives a series of K curves which are plotted

in Fig 7.7.	 In order to specify the new state of an

infilled frame for K taking values between 0.2 to 1.0 with

DC mode of failure, a horizontal line at ac=0.5K2 must be

drawn. Fig 7.8 illustrates the application of the chart.

The arrows connecting the points marked by the same number

indicate the adjustments procedure.

qc

Figure 7.8 Application of The Chart

- 329 -





The Ml value normally exceeds Mpj and the frame develops

plastic hinges at the loaded corners. If however, Mi<mpi

the frame may not experience plasticity prior to the peak

load. Therefore, Mpj must be replaced by Ml in all previous

equations in this chapter. This is a rare case and happens

to only the infilled frames with very weak infill. Such

frames undergo DC mode. As seen in Section 7.9.2, in DC

mode ac and/or ab remain unchanged and are equal to 0.5k2.

This indicates that Ml can be calculated independently with

no relation to the calculation of Mi,	 Eq 7.5.

7.16	 Comparison Programme 

In the following Sections the proposed method

described in this chapter and the five previously existing

methods described in chapter two, are compared with the

experimental results from three different sources as well as

with the finite element analysis carried out in the present

work. The infilled frames subjected to comparison cover the

variation of the following parameters.

i) Relative strength and stiffness of the frame and infill

ii) Aspect ratio of the panel, h'/1'

iii) Relative strength of the beams and columns.

iv) Pin-jointed and also semi-rigid jointed frames

v) Frame-infill lack-of-fit i 	 ced by shrinkage, changes

in the temperature and also poor workmanship.

Aswill be shown later compared with the previously existing'

methods, the estimations of the proposed method agree best

with the actual results.
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7.17	 Results used in The Comparison Programme 

7.17.1	 The Finite Element Analysis Results 

The infilled frames subjected to finite element

analysis consisted of frames made of universal steel

sections and square or rectangular infills with a variety of

beam/column strength and stiffness combinations likely to be

used in practice. A perfect fit was assumed for the

frame/infill interfaces. These have been described in

Chapter 6 and the results of the analysis are listed in

Tables E.1 to E.9. Tables E.13(a) to E.21(a) also summarize

the properties assumed for these infilled frames.

7.17.2	 Experimental Results 

There exists many experiments reported on model

steel frames infilled by micro concrete walls. It was found

convenient to use the test results from three different

sources so that the effect of possible individual testing

errors can be minimized in the process of the present

comparison. The properties and the geometry of the test

specimens are given in part (a) of Tables E.22 to E.39 in

Appendix E. The following paragraphs describes these tests

in more detail

Experiments of Saneinejad( 29 ) are one of the

series of tests chosen for comparison. These experiments

consisted of two identical seri	 of 9 model 300x300mm

square infilled frames loaded diagonally to complete

destruction. The frames had been made of three types of

solid rectangular steel sections, fully welded at the

corners and infilled by micro concrete or sand-browning
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plaster mix with a variety of thicknesses to match the

desired frame/infill strength and stiffness parameters. The

results of the identical frames were averaged so that the

testing errors are minimized. The infilled frames tested

covered Ala values ranging 3.6 to 15.0 and m values ranging

0.03 to 8.358. The complete properties and geometry data of

these series of tests, Al to A9, are listed in Part (a) of

Tables E.22 to E.30.

Types B, C and D of the tests carried out in the

Building Research Station reported by Mainstone(9)

(Figs 2.17 and 2.19), were also included into the present

comparison. These series of model infilled frames had been

made of micro-concrete infills combined with a weak frame, a

strong frame and a strong frame with weak joints

respectively. The reported compressive strength of the

infills of type C frames included also the strength of the

companion specimens of the frames subjected to repeated

loading which showed much higher cracking strength, compared

with the frames subject to only normal loading. Therefore

the frames type C were excluded from the comparison scheme

to avoid The difficulties in determining the strength of the

inf ill. The complete properties and geometry data of these

tests, Ml to Mg, are listed in part (a) of Tables E.31 to

E.34 in Appendix E.

Tests carried out by Stafford Smith (12) are the

tlird series of tests included in the present comparison.

These tests consisted of model square steel frames filled by

154x154x19mm micro concrete infill. The frames had been

made of solid rectangular steel sections of 5 different
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thicknesses to cover the desired range for variation of Xh.

Five identical test specimens had been tested for each type,

results of which have been averaged for use in this work.

The complete list of the properties of these tests are

listed in Tables E.35 to E.39.

In addition to the above descriptions the

following assumptions were also made to complete the

information needed:

i) The value of the co-efficient of friction at the

frame-inf ill interfaces had not been reported by the

original investigators. Therefore it was decided to

take 11=0.45 for all the test series. This value is

slightly higher than the 0.41 reported by King et

al (42) and also by Liauw et al (24) , but it is lower

that the 0.65 reported by Robbat et al(77).

ii) In the process of interpreting the compressive

strength of the inf ill material it was decided to

increase by 25% the result of the standard 100mm cube

or cylindre compression tests, so as to cater for the

effect of scaling-down (100) which applied to some of

the test series under consideration.

iii) The compressive strength reported in Tables E.22 to

E.39, ac, denotes the unconfined uniaxial compressive
strength of the infill estimated as(32):

ac = 0.95fc'

where the standard cylinder strength was taken as (32)

fe= 0.8fcu
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iv) Tensile strength for the infill material had not been

reported by Mainstone( 9 ) and Stafford smith(-2).

Therefore the tensile splitting strength was taken as

0.12ac for the weak concrete used by Mainstone( 9) and

0.10ac for the rather strong concrete used by Stafford

Smith. These values agree with the values suggested by

standard texts (32)•

v) In order that a realistic comparison between the test

results and the theoretical predictions can be made,

the actual lack of fit induced as a result of shrinkage

of the infill was estimated( 32 ) to

millistrain in both the horizontal

directions. For the sand-browning

however, one millistrain was found

appropriate value.

be equivalent to 2

and vertical

plaster infills,

to be the most

7.18	 The Methods of Analysis Involved in Comparison

Five previously existing methods and also the

newly proposed method of analysis were involved in the

comparison programme. These methods are listed as follow:

SC The method which developed by Stafford Smith and

Carter (13) , Section 2.4.

SR Modification of SC method plus design recommendations

established by Riddington and Stafford Smith(17),

Section 2.6.;
-

M The empirical method recommended by Mainstone(9),

Section 2.5.

The plastic design method developed by Wood(20),
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Section 2.7

W* Wood's method using the penalty factor, yp, proposed by

Ma (96) , Section 2.7.8.

The plastic method of analysis developed by

Liauw et al (25 ), Section 2.8

The proposed method in the present work.

The infilled frames introduced in the previous

section were analysed by the proposed method. The complete

results are listed in Tables E.13(b) to E.39(b)in Appendix

E. The results from all the methods concerned are listed in

part (c) of these Tables. The section (d) of each Table

compares the three most important results (the peak load,

Hc, the cracking load, Ht, and the initial stiffness, Ko) of

the frame in question, calculated from all the previous

methods in a normalised format with respect to the test or

finite element results. The normalised values have been

written in percent format for simplicity and convenience.

Program "ANALIF" was written in the BASIC language so that

all the above mentioned calculations can be carried out

using a micro computer. Some adjustments have been imposed

to the predicted values so that a uniform and realistic

comparison can be made between the methods in question.

These are described in the following paragraphs.

In the SC method the ratio of fe/fe had been

assumed to be 0.1f', Fig 2.10. The actual value of this

ratio depends on the strength and water/cement ratio of the

cohcrete (32 ). Therefore, the offset of fe/fc' from 0.1 has

been adjusted by multiplying Ht to the adjusting factor of
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(fe/fc')/o.l. In this method the curves corresponding to

50% of the peak load in Fig 2.13 was adopted for calculating

the diagonal stiffness of the infilled frames. This load

limit being assumed to be the maximum load that may possibly

occur during normal service loading.

Notice that as described in Chapter 2, the

stiffness calculated from the M method refers to the

stiffness of the infilled frame measured at the vicinity of

the peak load on the load-deflection diagram. It is,

however, the initial stiffness that is needed in practice

whose value can be as high as double the value calculated by

the M method. Therefore, the calculated stiffness values

were doubled so that the results of stiffness, Ko, would be

comparable with those calculated by the other methods.

The SR method had been based on the results

obtained from finite element analysis of infilled frames

with uniform infill even though it was developed

specifically for masonry( 17) . Therefore it was concluded

that it might also be used for concrete infill. This could

be done by simply changing the multiplier 1.12 in Eq 2.36 to

1.68 (see Eqs 2.20 and 2.21). In this case, the cube

strength of the infill must be used in the method as the

compressive strength, because the calculation of the

compressive failure was adapted from Mainstone's work(9).

The compressive strength used in W and L methods

was taken as the cylinder strength, fc . The optional

justification, if, has been accounted for using the

analytical curves proposed by Wood( 20 ), Fig 2.26.
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7.19	 Comparison of Peak Racking Load, Hc

7.19.1	 General 

The results related to Hc in part (d) of Tables

E.13 to E.39 are listed in Table 7.2 so that the overall

performance of each method relative to the others can be

verified. The normalization has been so arranged that the

value of 1.00 refers to a perfect agreement with the test or

finite element results. The upper and lower maximum

deviations and also the standard deviation relative to the

reference value, 1.00, are also reported at the end of the

table. In order to see the performance of each method when

the experimental variations such as changes in material

properties and workmanship are excluded, another set of

deviations are also reported at the end of the table. These

values comprise only the finite element analysis results,

frames WMUR2 to WWU32. As seen these latter values are

smaller than the former values of deviation.

A graphical representation has also given in

Fig 7.9 so that the accuracy of the methods under

consideration can be visualized by one look. The value of

unity represents a perfect match to the test or finite

element results. Only a selective number of frames have

been incorporated into the chart. These consisted of all

the finite element examples, frames No. 1 to 9, and also 3

infilled frames with highest MI, frames No. 10 to No. 12.

This selection of frames covered a wide range of kh, m,

beam/column strength ratio and infill aspect ratio.

In the following sections the performance of each

method of analysis will be discussed in detail.
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Table 7.2 Comparison of The Collapse Racking Load, Hc

NO Frame lh m Hc(test)

KM

Hc(calc.)/Hc(test or comp.)

SC SR M W W*	 L P fp'"'t

1 IINUR.2 8.18 0.082 833.00 1.04 1.37 1.51 1.15 0.54 .83 0.83 0.83
2 MMUR2 4.90 0.161 1098.00 1.31 1.60 1.68 1.01 0.60 .87 0.92 0.92
3 SMUR2 3.34 0.161 1148.00 1.84 2.15 2.25 0.93 0.58 .84 1.01 1.01
4 SWUP2 3.25 0.071 1038.00 2.09 2.43 2.47 0.81 0.40 .81 0.94 0.94
5 WWUS2 8.27 0.186 679.00 1.26 1.08 1.22 0.96 0.63 .95 0.96 0.96
6 MWUS2 4.96 0.186 747.00 1.91 1.55 1.61 1.17 0.57 .86 1.05 1.05
7 SWUS2 3.38 0.186 879.00 2.38 1.84 1.91 1.00 0.49 .73 0.95 0.95
8 SSUS2 3.65 1.496 1530.00 1.26 0.99 1.38 0.87 0.81 .97 1.09 1.09
9 WWUB2 12.24 0.061 696.00 1.45 1.31 1.49 1.22 0.61 .92 0.94 0.94

10 SSUSA1 3.60 8.358 2.31 0.97 0.76 1.16 2.43 2.29 .13 0.95 0.95
11 SSUSA2 4.16 4.697 3.50 0.99 0.78 1.03 1.77 1.64 .78 1.04 1.04
12 MMUSA3 5.39 2.435 2.28 0.95 0.78 0.92 1.36 1.23 .41 1.12 1.12
13 SSUSA4 5.98 0.507 16.58 1.34 1.11 1.28 0.84 0.80 .14 1.15 1.09
14 SSUSA5 6.91 0.284 25.49 1.35 1.14 1.29 0.81 0.70 .05 1.00 0.98
15 SSUSA6 7.40 0.217 33.83 1.24 1.06 1.19 0.77 0.60 .90 0.87 0.86
16 MMUSA7 8.44 0.186 11.56 1.56 1.30 1.51 1.03 0.80 .20 1.15 1.11
17 MMUSA8 10.31 0.084 26.62 1.23 1.09 1.23 0.76 0.52 .78 0.75 0.79
18 WWUSA9 14.96 0.030 22.76 1.24 1.14 1.32 0.72 0.45 .68 0.66 0.82

19 WWUSM1 7.16 0.412 28.60 1.07 0.90 1.02 0.73 0.69 .03 0.99 0.95
20 WWURM2 7.06 0.178 32.14 1.00 1.19 1.32 0.96 0.66 .94 0.88 0.85
21 WW0RM.3 6.71 0.131 27.58 1.08 1.47 1.62 1.07 0.69 .00 0.92 0.89
22 WWUSM4 3.32 0.328 64.20 1.29 1.00 1.09 0.41 0.34 .55 0.86 0.79

23 WIUSS 14.33 0.038 10.50 1.12 1.03 1.18 0.72 0.44 .66 0.63 0.90
24 W2USS 10.69 0.085 12.60 1.25 1.11 1.26 0.84 0.55 .82 0.79 0.93
25 M1USS 8.80 0.147 14.00 1.36 1.18 1.33 0.93 0.65 .97 0.93 1.03
26 M2USS 6.60 0.334 19.82 1.29 1.08 1.23 0.80 0.69 .04 0.99 1.03
27 SlUSS 4.15 1.146 35.55 1.14 0.90 1.22 0.71 0.71 .88 1.06 1.04

For all frames:
Deviations -0.05 -0.24 -0.08 -0.59 -0.66 -0.45 -0.37 -0.21

1.38 1.43 1.47 1.43 1.29	 1.13 0.15 0.12

Standard deviation 0.49 0.46 0.54 0.38 0.49	 0.33 0.14 0.11

FOR F.E. results only:
Deviations 0.04 -0.01 0.22 -0.19 -0.60 -0.27 -0.17 -0.17

1.38 1.43 1.47 0.22 -0.19 -0.03 0.09 0.09

Standard deviation 0.80 0.79 0.87 0.14 0.46	 0.16 0.08 0.08

Note: Forcalculating the standard deviation, the normalized values
were compared with the normalized test values (1.0). 	 ie.;

S = [E 1/7;77.71 ] /1 (N-1) (N=the number of samples)

*	 Using Ma's penalty factor
** Using variable Kl	 •

Frame Nos. 1-9 FE, 10-18 Ref(2 9), 19-22 Ref(9), 23-27 Ref(12)
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7.192	 Methods Based on Stiffness Parameter XJ1

Methods SC, SR and M, introduced in

Section 7.18, are all based on the stiffness parameter,

As discussed in Chapter 2 these methods are also based on

the following assumptions.

i) Frame members behave in linear and elastic manner at

all the stages of loading up to the peak load.

ii) Frame is uniform.

Amid the tests used for comparison in Table 7.2, the tests

No. 10, to No. 12 were the only cases that satisfied the

both assumptions. This was confirmed by the proposed method

which accounts for both the elastic and plastic behaviour of

the frame material. Comparison of Ml, M3c and M3b from part

(b) of Tables E.22 to E.24, with Mpj, Mpc and Mpb

respectively in these Tables, shows that the members of

these frames remains in linear and elastic state up to the

peak load. Therefore, it is not surprising to see a fairly

good agreement between the predictions of SC method and the

test results for these particular tests, the largest

deviation was only 5% below the test value. The M method

also leads to a consistent and good agreement with

deviations ranging between -8 to +16. However, the SR

method leads to consistently low values, because this method

neglects the contribution of the frame, which is quite
;

appreciable in these particular cases.

If either the above assumptions (i and ii) ceases -

to be met, the SC, SR and M methods lead to generally far

over-estimated results. Infilled frames No. 1, 2, 5, 8, 9

SHEFFIRD
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md also No. 13 to No. 27 in Table 7.2, were made of almost

miform members and, thus, satisfied the second assumption,

nat they violate the first assumption and develop plastic

inges at the loaded corners before the peak load has been

eached. Maximum deviation of predictions of the methods of

C, SR and M reached to 56, 60 and 68% respectively. This

s because the frame underwent yielding at the loaded

orners and, thus, failed to take higher bending moments at

hese sections, not being able to develop the length of

ontact predicted by the elastic analysis used in SC method.

uch discrepancy becomes more dramatic for infilled frames

ith weak frame, e.g. frame 9 in Table 7.2. These frames

evelop plastic hinges at a load level much lower than that

f the peak.

Fig 2.10 shows that the SC method does not reflect

he effect of rectangular infill on the compressive strength

if the infill as much as it should since, it estimates an

yen a narrower diagonal band width for infilled frames with

igher l'/h' ratio. As a result of this the estimated peak

Dads have been shifted in the opposite direction to the

Efect of the plasticity of the frame, resulting in,

Dparently, fairly accurate results for a few rectangular

lfilled frames, frames No. 1 and 20. As can be seen for

:ane 1 in Fig 7.1, such a counter balancing is not

msistent for rectangular infilled frames. On the other
;
md, the methods SR and M over-estimate the effect of

!etangular infills. The infilled frames No. 4 and 7 in

.g 7.2 have a similar frame and infill but different panel

qpect ratio. Therefore the inaccuracy of the three methods
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of SC, SR and M can be calculated respectively for frame

No.4 having an aspect ratio of h'/1' =0.5722 as:

100[(2.09/2.38)-1.00] = -12%

100[(2.43/1.84)-1.00] = +32%

100[(2.47/1.91)-1.00] = +29%

This comparison is not affected by experimental errors due

to variation of properties of the materials and workmanship,

because the source of comparison is a non-linear finite

element analysis. Therefore the inaccuracies are purely due

to the theoretical assumptions of the method in question.

Further study of this matter showed that the

results from SC, SR and M methods would considerably improve

if the strength of the infill were related to only the

length of the smaller side of the infill. Assuming h'<1'

this assumption leads to the peak diagonal load as:

Ric = IrTach'tfc

and for the peak racking load to:

Hic = iri- coseach'tfc	 (7.50)

ac equals to a/h',Eq 2.6 , for SC method and equals to

Weche, Eqs 2.14 and 2.20, for SR and M methods. The

multiplier adjusts Ric to become identical to those

predicted by the method in question for square infill, so

that the values of ac that has been proposed by the same

method can be used in Eq 7.50 directly. Having implemented

this modification the discrepancy of SC, SR and M methods

(due to only converting from square to rectangular panel
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7.19.3	 Wood Method (W) 

As discussed in Chapter 2, Wood's method uses the

strength parameter, m, and is based on the following major

assumptions for the state of the infill and frame materials

at the peak load:

i) Infill stress has reached to a simplified biaxial

failure surface over the proposed stressed area.

ii) Frame has developed one of the proposed plastic

collapse mechanism.

Although an experimentally based variable penalty

factor Tp, has been proposed by Wood to cater for the errors

due to the simple assumptions made for the infill behaviour,

there is still a question of whether this factor, alone, can

reasonably do the job. In order to answer this question

frames 10, 11 and 12 in Table 7.2, must be excluded from the

comparison Table because they did not meet the second

assumption which may have indirect effects on yp. These

frames had very high m values (2.28 to 3.50) and will be

discussed later. Although The remaining frames did not

develop a plastic collapse mechanism at the peak load they

partially met the second assumption by developing plastic

hinges only at the loaded corners. Since this is generally

the case, one may conclude that the proposed penalty factor,

yp, actually accounts for also the reserved strength left in

the frame at the peak load before it develops a complete

pl'astic collapse mechanism. Having excluded the above

mentioned three frames and also frame No 22 which had very -

weak joints relative to the strength of the beams and

columns, the results from Wood's method deviated from the
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actual results ranging between -29% to +22%. The comparison

included infilled frames with rectangular panels and frames

with weak beams relative to the columns and also infilled

frames having XII and m values covering a wide range.

Considering the variations due changes of the properties of

the materials and workmanship the above deviations prove

that the W method predicts the peak load within a reasonably

accurate range. Performance of the method can be judged in

a more precise comparison by considering only the finite

element analysis results which are independent of any

inconsistency of material properties and workmanship. Such

a comparison leads to deviations ranging between -19% to

+22% with an standard deviation equals to 14%.

The W method, however, underestimates by 59% the

collapse load of a semi-rigid frame (frame No. 22 in

Table 7.2) with beams and columns 20 times stronger than the

joints. Details of this frame including the plastic

resisting moments of beams, columns and joints ( MO), Mpc and

ME0) are listed in Table E.34.

The method also over-estimated up to 143% the

collapse load of the infilled frames with strong frame and

very weak infill, frames 10 to 12 in Table 7.2. According

to the results of the newly proposed method (Tables E.22(b),

23(b) and 24(b)), the frame members of these infilled frames

behaved linear and elastic throughout the loading up to the
;

peak load. Therefore, the above mentioned large deviation

ise because the second of the main assumptions of the method,-

mentioned earlier in this section, has been entirely

violated.
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will be discussed later). Having done this the deviations

of the calculated values of the collapse load, from those of

the actual and finite element analysis would be -27% to

+20%. Excluding also the test results from the comparison

so as to eliminate the errors due to changes of properties

of the materials and workmanship, the range of deviations

reduces to -27% to -3% with the standard deviation of 16%,

Table 7.2. This shows that like the W method the L method

also predicts the peak load within a reasonably accurate

range for the group of the frames selected for comparison.

Such an agreement also proves that the aforementioned

counter effects is definitely the case.

Study of the method in predicting the collapse

load of the infilled frame with semi-rigid joints, frame 22

in Table 7.2 showsthat the L method underestimated 45% the

collapse load. The estimated value was, however, 34% higher

than that of the W method. This implies that like the W

method the L method is incompatible with the infilled frames

having semi-rigid joints.

Like the W method, the L method over-estimated

greatly (113%) the collapse load of frames No. 10 to 12 in

Table 7.2. The same discussion as made for the W method in

previous section applies also 	 the L method.

The L method predicted 32% and 34 % lower collapse

loads for infilled frames 18 and 23. This is because of the

assumption of the simple stress block in the loaded corners

which will be discussed in the following section.
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7.19.5	 Proposed Method (P) 

As discussed earlier in this Chapter, the proposed

method uses linear elasticity theories with allowance for

occurrence of plastic hinges at the loaded corners of the

frame and is based on the following major assumptions at the

peak load.

i) Infill stress has reached a simplified biaxial

Von Mises criterion at either column or infill

interfaces in the loaded corners.

ii) Infill has developed a specified (limited) strain in

the loaded corners

iii) Frame may have developed plastic hinges at the loaded

corners only, but no plastic collapse mechanism has

occurred.

Contrary to the existing plastic methods the

proposed method gives fairly accurate results for frames

No. 10, 11 and 12. Because the method accounts for both the

elastic and plastic behaviour of the frame, the deviations

ranged between only -5 to +12%. These frames were found to

be in an elastic state at the peak load. Unlike W and L

methods the proposed method gives a relatively accurate

result for the semi-rigid frame (frame No 22) with only -14%

deviation, Table 7.2.

The proposed method gave results with deviations

ranging between -17 to +15% for all the frames listed in

Table 7.2, except those with small lengths of contact

relative to the thickness of the infill. These were frames -

17, 18, 23 and 24 which are listed in Table 7.3 in the order

of the ratio of the length of contact, ach', to the
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thickness of the infill, t.

Table 7.3 Deviation of Hc(%) for Frames with Low
ac Value

No Frame ac ach'it Deviations(%)

Ki=0.95 Ki,	 Eq 7.52

23 WIUSS 0.058 0.46 -37 -10
18 WWUA9 0.052 0.59 -34 -18
24 W2USS 0.086 0.69 -21 - 7
17 MMUSA8 0.086 1.21 -25 -21

As seen the smaller is this ratio, the lower is the

predicted value of the peak load, relative to the actual

value. This can be attributed to the inf ill confinement

induced by the frame acting as solid platens over the

regions in contact. Such a confinement produces an out-of-

plane compressive stress and, thus, postpones the failure of

the infill which is also subjected to biaxial compression in

the plane of the infill. This additional strength is

neglected in the proposed method as Ki in Section 7.4 was

taken as a constant value for all cases. However, this

contribution is, indirectly, allowed for in W method,

because Wood( 20) used an empirical approach to establish the

variation of the penalty fa 	 r, yp. This can be accounted

for also in the proposed method by relating the effective

strength, fc, to ach'it value as follow .

The additional strength induced because of the

col:Inning effects of the platens in the test of a cylinder

spesimen under uniaxial compression, has been studied by

Gonnerman (101) . The proposed curve which has been reported
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also by Neville (42) , haS been converted by the author into

a simple formula, relating the compressive strength to the

height/diameter ratio of the cylinder as follows:

fc	 0.217
_	 + 0.875	 (7.51)

fc'	 (h/d)-0.266

fc denotes the effective compressive strength of the

specimen and fc' is the standard cylinder compressive

strength for h/d=2.0. Assuming that the effect of the

ach'it on the strength of the infill is similar to the

effect of the h/d on the cylinder strength, h/d in Eq 7.51

may be replaced by ach'it to give the effective compressive

strength of the infill as:

0.217
fc=k1fc' where Ki +0.875	 (7.52)

(ach'It)-0.266

Ki from Eq 7.52 replaces the value proposed in Section 7.4.

Having imposed the modified Ki value, deviations

of the calculated values of Hc from the actual values reduce

to the values given in the last column of Tables 7.2 and

Table 7.3. As seen the deviations have decreased

effectively. The range of deviation for all the frames

listed in Table 7.2 becomes -21% to +12% and the standard

deviation drops to 11% (see the last column of Table 7.2).

As can be seen from Table 7.2 and Fig 7.9, unlike

the previously existing methods, the proposed method gives

consistent and safe predictions for Hc over a wide range of

yp and m values and for the practical range of panel

proportion and frames with lack of fit and semi-rigid joints
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7.20	 Comparison of the Estimated Cracking Load, 

Table 7.4 and Fig 7.10(a) compare the normalized

value of cracking load (ratio of the calculated to the test

result) estimated by SC, SR, M and the proposed method, P.

These results lead to standard deviations of 44, 28, 26 and

9% respectively. The W and Lmethods are not applicable for

determination of the diagonal cracking load. The deviations

shown in Table 7.4 are because of;

a) Variation of the strength of the infill relative to

those of the companion specimens.

b) Errors due to the assumptions made in the method

concerned.

In order to verify the errors due to only the

theories, the results of the tests may be excluded from the

comparison scheme, i.e. considering only the finite element

analysis results. This leads to smaller deviations as given

separately in Table 7.4 . These results also have been

plotted in a bar chart, Fig 7.10(a), which also includes the

results of the tests No. 10, 11 and 12 so that the

comparison chart covers a wide range of Xia and m values. As

seen the results of the proposed method and the finite

element agree remarkably well with each other with a

standard deviation of only 3% showing that the theory that

has been used in the proposed method s fairly realistic

and, thus, reliable. The previously existing methods,

however, do not follow any particular trend and give rather

disappointing results with deviations up to 88%.



Table 7.4	 Comparison of Diagonal Tension Load, Ht

No Frame Ht (test) Ht(calc.)/Ht(test or f.e.)

Xh KN SC	 SR	 M

2 MMUR2 4.90 0.161 1098.00 1.70	 1.40	 1.09	 0.95
3 SMUR2 3.34 0.161 1101.00 1.78	 1.40	 1.27	 0.95
4 SWUR2 3.25 0.071 1038.00 1.88	 1.48	 1.32	 1.00
5 WWUS2 8.27 0.186 679.00 1.33	 1.30	 0.99	 1.02
6 MWUS2 4.96 0.186 684.00 1.41	 1.29	 1.15	 1.01
7 SWUS2 3.38 0.186 714.00 1.45	 1.23	 1.28	 0.97
8 SSUS2 3.65 1.496 811.00 1.27	 1.09	 1.47	 1.01

10 SSUSA1 3.60 8.358 2.00 1.04	 0.87	 0.76	 0.86
11 SSUSA2 4.16 4.697 2.95 1.19	 1.05	 0.74	 0.91
12 MMUSA3 5.39 2.435 1.96 1.40	 1.28	 0.70	 1.01
13 SSUSA4 5.98 0.507 14.21 1.33	 1.24	 1.03	 0.98
14 SSUSA5 6.91 0.284 23.97 1.35	 1.32	 1.01	 1.03
15 SSUSA6 7.40 0.217 31.57 1.34	 1.31	 0.98	 1.03

19 WWUSM1 7.16 0.412 26.80 1.05	 1.02	 0.82	 0.80
22 WWUSM4 3.32 0.328 33.20 1.22	 1.04	 1.14	 0.81

24 W2USS 10.69 0.085 13.30 1.29	 1.31	 1.10	 1.03
25 MlUSS 8.80 0.147 13.30 1.35	 1.31	 1.17	 1.03
26 M2USS 6.60 0.334 13.30 1.40	 1.31	 1.32	 1.03
27 SlUSS 4.15 1.146 17.30 1.14	 1.01	 1.51	 0.80

For all frames:
Deviations 0.04 -0.13 -0.30	 -0.20

0.88	 0.48	 0.51	 0.03

Standard deviation 0.44	 0.28	 0.26	 0.09

For F.E. analysis frames only:
Deviations 0.27	 0.09 -0.01	 -0.05

0.88	 0.48	 0.47	 0.02

Standard deviation 0.64	 0.36	 0.29	 0.03

Note: For calculating the standard deviation, the normalized values
were compared with the normalized test values (1.0).	 ie.;

S = [	 (Xi-1)2 ] // (N-1)	 (N=the number of samples)

Frame Nos. 1-9 FE, 10-18 Ref(2 9), 19-22 Ref(9), 23-27 Ref(12)
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7.21	 ONTIlmrison of the Estimated Initial Stiffness, N2

Table 7.5 and Fig 7.10(b) compare the normalized

value of the initial stiffness (ratio of the calculated to

the test result) estimated by SC, SR, M and the proposed

method resulting in standard deviations of 67%, 35%, 28% and

23% respectively. The deviations are because of:

a) Variation of the modulus of the infill relative to

those of the companion specimens.

b) Errors due to the assumptions made in the method

concerned.

C) Variation of the lack of fit induced by shrinkage of

the infill.

Mainstone (9) found that the stiffness of an infilled frame

subjected to racking load, is strongly affected by shrinkage

of the inf ill, Fig 2.19. In order to eliminate such unknown

error from the comparison table, only the results of finite

element analysis may be brought into consideration as listed

at the end of Table 7.5. By this approach the effects may

be verified independently. As seen comparison of the results

of the proposed method with the finite element analysis

leads to reasonably accurate stiffnesses with standard

deviation of 10% and deviations ranging -19% to +15%. Amid

the previously existing methods, only the M method leads to

rather consistent results with standa d deviation of 18%.

The SC and SR methods leads to over and under estimations.

Fig 7.10(b) compares the performances of the

methods under consideration. This comparison includes also

frames No. 10 to 12 covering a wide range of Ah value.
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Table 7.5 Comparison of Stiffness, KO

No Frame )4.h m KO(test K0(calc.)/K0(test or f.e.)

KNmm SC	 SR M	 W	 L P

1 WMUR2 8.18 0.082 192.60 1.72	 1.01 1.03 0.96
2 MMUR2 4.90 0.161 211.10 1.94	 0.92 0.99 1.04
3 SMUR2 3.34 0.161 238.20 1.88	 0.82 1.03 0.97
4 SWUR2 3.25 0.071 234.60 1.91	 0.83 1.04 0.97
5 WWUS2 8.27 0.186 187.90 1.34	 0.69 0.81 1.10
6 MWUS2 4.96 0.186 210.33 1.38	 0.61 0.76 1.01
7 SWUS2 3.38 0.186 246.60 1.26	 0.52 0.75 0.81
8 SSUS2 3.65 1.496 299.30 1.04	 0.43 0.71 1.11
9 WWUB2 12.24 0.061 150.50 1.50	 0.86 0.89 1.15

10 SSUSA1 3.60 8.358 4.97 0.62	 0.25 0.45 0.64
11 SSUSA2 4.16 4.697 4.96 1.07	 0.45 0.68 1.07
12 MMUSA3 5.39 2.435 3.40 1.18	 0.54 0.75 1.09
13 SSUSA4 5.98 0.507 15.71 1.28	 0.61 0.82 1.08
14 SSUSA5 6.91 0.284 16.40 2.09	 1.04 1.32 1.52
15 SSUSA6 7.40 0.217 23.90 1.88	 0.94 1.15 1.24
16 MMUSA7 8.44 0.186 11.56 1.81	 0.95 1.11 1.18
17 MMUSA8 10.31 0.084 23.66 1.91	 1.03 1.13 0.95
18 WWUSA9 14.96 0.030 22.99 2.24	 1.32 1.29 0.81

19 WWUSM1 7.16 0.412 22.85 1.48	 0.74 0.92 0.93
20 WWURM2 7.06 0.178 26.74 1.73	 0.91 1.04 0.73
21 WWURM3 6.71 0.131 25.34 1.89	 1.05 1.04 0.60
22 WWUSM4 3.32 0.328 26.20 1.84	 0.74 1.84 1.34

23 W1USS 14.33 0.038 25.90 1.63	 0.88 0.87 0.62
24 W2USS 10.69 0.085 33.60 1.26	 0.68 0.74 0.66
25 MlUSS 8.80 0.147 38.50 1.15	 0.59 0.68 0.71
26 M2USS 6.60 0.334 43.80 1.09	 0.52 0.61
27 SlUSS 4.15 1.146 48.60 1.08	 0.47 0.72 1.19

For all frames:
Deviations -0.38	 -0.75 -0.55 -0.40

1.24	 0.32 0.84 0.52

Standard deviation 0.67	 0.35 0.28 0.23

For F.E analysis only:
Deviations 0.04 -0.57 -0.29 -0.19

0.94	 0.01 0.04 0.15

Standard deviation 67	 0.33 0.18 0.10

Note: For calculating the standard deviation, the normalized values
were compared with the normalized test values (1 0).	 ie.;

s -	 [E 11/17777 ] /(N-1)	 (N=the number of samples)

Frame Nos. 1-9 FE, 10-18 Ref(29), 19-22 Ref(9), 23-27 Ref (12)





7.22	 Comparison of Estimated Frame Bending Moments 

Frame internal forces may not be easily obtained

from experiment. Finite element analysis results, however,

give these forces in full detail as listed in Tables E.1 to

E.12 . For design purposes, the bending moments at the

loaded and unloaded ends of the frame members and also the

sagging or hogging bending moments somewhere within the span

of the beams and columns are needed. Tables E.13(c) to

E.21(c) list these moments (M1, M4, M3c and M3b) resulting

from the finite element analysis computer program and the

previously existing methods, if applicable, and the proposed

method. These are rearranged into Tables 7.6 to 7.8 as

follows:

Finite element analysis showed that all the frames

analysed developed plastic hinges at the loaded corners of

the frame at the peak load, i.e. M1=Mpj. Table 7.6 compares

the predicted value of Ml/Mpj ratio for all the methods

under consideration. As seen the finite element analysis

and also W, L and P methods permit occurrence of plastic

hinges at the loaded corners. However, the other existing

methods, (SC, SR and M methods) either are not applicable or

give very scattered results with deviations between -89% to

+242%.

Table 7.7 compares the ratio of 1.14/Mice3 . As seen,

excluding the infilled frame No 8, SSUS2, the value of this

ratio from the finite element analysis ranges 0.01 to 0.14.

All the previously existing methods give dramatically over-

estimated values. The proposed method, however, gives

results generally within the same range as given by the
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finite element analysis, but over-estimates only the results

for frames No. 6 and 8. A safe and economical value for M4

maybe taken as the higher of the two values of 0.2 Mpj and

the calculated value using the proposed method.

Table 7.8 compares the ratio of the sagging or

hogging bending moment of the column, M3c, to the plastic

resisting moment of the columns, Mpc, using the finite

element results and the predicted values. As seen the

previously existing methods are either not applicable or

gave dramatically high values. The finite element analysis

results gave M3c/Mpc ratios ranging between 0 to 0.24 and

the results from the proposed method fall within the range

of 0.07 to 0.18. Therefore, 0.25 Mpc should be a safe

estimate for M3c. Similarly M3b may be taken as 0.25Mpb

rather than the values given by the proposed method.

Table 7.6 Comparison of bending moment at the loaded

corners

No. Frame MPj

KNm

Ml/Mpj

SC SR M W,L,P

1 WMUR2 72.37 N.a 1.10 0.25 1.00
2 MMUR2 142.00 II 0.93 0.43 1.00
3 SMUR2 142.00 It 1.20 0.56 1.00
4 SWUR2 62.35 3.42 0.54 1.00
5 WWUS2 62.35 II 0.98 0.24 1.00
6 MWUS2 62.35 II 1.22 0.46 1.00
7 SWUS2 62.35 VI 1.66 0.60 1.00
8 SSUS2 501.60 II 0.23 0.86 1.00
9 WWUB2 62.35 " 2.00 0.11 1.00

Frame Nos. 1 - 9 FE, 10- 18 Ref(29), 19- 22 Ref(9), 23 -27 Ref(12)



Table 7.7 Comparison of bending moment at unloaded
corners

No. Frame M4/Mpj

F.e SC SR M W L P

1 WMUR2 0.03 N.a 1.11 0.25 1.00 1.00 0.03
2 MMUR2 0.10 " 0.89 0.41 1.00 1.00 0.03
3 SMUR2 0.14 " 1.25 0.58 1.00 1.00 0.06
4 SWUR2 0.09 " 2.92 0.46 1.00 1.00 0.01
5 WWUS2 0.00 " 0.85 0.21 1.00 1.00 0.04
6 MWUS2 0.01 " 1.34 0.51 1.00 1.00 0.34
7 SWUS2 0.04 " 1.88 0.67 1.00 1.00 0.06
8 SSUS2 0.28 " 0.22 0.81 1.00 1.00 0.59
9 WWUB2 0.01 " 1.84 0.11 1.00 1.00 0.08

Frame Nos. 1-9 FE

Table 7.8 Comparison of column bending moment, M3c

No. Frame M3c/Mpj

F.e SC SR M W L P

1 WMUR2 0.24 0.00 N.a N.a 1.00 1.00 0.17
2 MMUR2 0.20 0.00 " " 1.00 0.77 0.16
3 SMUR2 0.15 0.00 " It 1.00 0.49 0.15
4 SWUR2 0.14 0.00 ty

" 1.00 0.45 0.16
5 WWUS2 0.00 0.00 " " 1.00 0.96 0.17
6 MWUS2 0.04 0.00 t, It 1.00 0.57 0.15
7 SWUS2 0.07 0.00 " " 1.00 0.34 0.15
8 SSUS2 0.17 0.00 " " <1.00 0.67 0.07
9 WWUB2 0.07 0.00 " " 1.00 0.96 0.18

Frame Nos. 1-9 FE



7.23	 Comparison of the Predicted Frame Axial Forces 

Frame members are subjected to axial and shear

forces. These forces may not be easily obtained from

experiment. The finite element analysis, however, gives

detailed information about the axial forces and their

variations along the the frame members. Using Tables

E.13(c) to E.21(c), Table 7.9 has been established and lists

the ratio of the estimated/computed values of the columns

axial forces for frames No 1 to 9. As seen all the

previously existing methods resulted in either zero or

extremely underestimated values for the column axial forces.

The proposed method, however, leads to results with moderate

deviations ranging generally between -19% and +11%. Infilled

frame No. 8, SSUS2, having a very strong frame relative to

the inf ill, developed a much lower than predicted shear

force at the infill/column interface. Therefore, the

estimated value of the column axial force has been 75%

higher than the computed value of the column axial force

induced by the shear forces transferred at the infill/column

interface. For the same reason the column axial force is

strongly dependent on the coefficient of friction of the

frame/infill interfaces. Therefore, a safe design value for

axial force should allow for possible variation of the co-

efficient of friction and also the deviation of the

estimation of the proposed method from the actual values.



7.24	 Comparison of Estimated Frame Shear Forces 

Estimation of shear force is very important for

design purposes because the frame members have normally a

limited shear capacity. Table 7.10 gives the ratios of

calculated to computed values of column shear forces. Only

proposed method gaves reasonable results with a standard

deviation of 0.15.

Table 7.9 Comparison of Column Axial Force, Ncl

No. Frame Ncl

KN

Nci(calc.)/Ncl(comp.)

SC SR M w L P

1 WMUR2 104.56 0.00 0.00 0.07 0.00 0.00 0.96
2 MMUR2 146.00 0.00 0.00 0.17 0.00 0.00 1.09
3 SMUR2 206.64 0.00 0.00 0.17 0.00 0.00 1.00
4 SWUR2 224.80 0.00 0.00 0.05 0.00 0.00 0.81
5 WWUS2 256.40 0.00 0.00 0.04 0.00 0.00 0.99
6 MWUS2 314.90 0.00 0.00 0.07 0.00 0.00 1.01
7 SWUS2 428.20 0.00 0.00 0.07 0.00 0.00 1.11
8 SSUS2 463.10 0.00 0.00 0.65 0.00 0.00 1.75
9 WWUB2 267.30 0.00 0.00 0.01 0.00 0.00 0.95

Frame Nos. 1-9 FE

Table 7.10 Comparison of Column Shear Force, Sc.

No. Frame Scl

KN

Scl(calc.)/Sci(comp.)

SC SR M W L P

1 WMUR2 560.29 N.a 1.07 0.02 0.85 1.24 0.90
2 MMUR2 776.00 N.a 1.21 0.06 0.71 1.09 1.24
3 SMUR2 934.40 N.a 1.41 0.07 0.57 1.03 1.00
4 SWUR2 865.40 N.a 1.55 0.02 0.49 0.97 0.94
5 WWUS2 420.80 N.a .93 0.02 0.78 1.53 0.94
6 MWUS2 521.70 N.a 1.18 0.04 0.84 1.23 0.95
7 SWUS2 690.40 N.a 1.25 0.04 0.64 0.93 0.97
8 SSUS2 914.60 N.a 0.88 0.33 0.72 0.68 1.24
9 WWUB2 423.00 N.a 1.15 0.01 1.01 1.52 0.80

Deviations: -0.12 -0.99 -0.51 -0.32 -0.20
+0.55 -0.67 +0.01 +0.53 +0.24

Standard Deviations: 0.29 0.99 0.32 0.31 0.15

Frame Nos. 1-9 FE
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7.25	 Comments 

The comparison described in Sections 7.16 to 7.24

revealed that all the previously existing methods failed to

predict the strength and stiffness of infilled frames with

consistently reasonable accuracy, if the strength parameter,

m, varies between 0.04 to 8.4. This is mainly because they

either do not allow for limited frame resisting moment

(occurrence of plastic hinges), or limited infill ductility

(crushing of the infill prior to the formation of a plastic

collapse mechanism in frame).

These methods also failed to predict the frame

forces within an acceptable range of accuracy. This is

because of the same reason mentioned earlier and also

because of the simplifications made in allowing for the

shear forces transferred at the frame-inf ill interfaces.

The proposed method, however, provides all the

information for design purposes within a reasonable range of

accuracy. This is mainly because this method accounts for

both the elastic and plastic behaviour and interactions of

the three structural constituents, frame, infill and their

interfaces.

The proposed method also is compatible with frames

having semi-rigid or even pin joints. This leads to a

simple design approach for semi-rigid or pin-jointed

infilled frames in which the beams can be designed

continuously using a plastic design approach whereas the

columns maybe designed with the assumption of no sway and

pin-jointed condition, saving the cost of the material and

labour used in fully rigid connections. The possible

- 362 -



bending moment developed in the frame members as a result of

the frame inf ill interaction (0.25 Mpc and 0.25 Mpb for

columns and beams respectively, Table 7.8) have a small

effect on the shear and axial load capacity of the frame

members ( 98 ) .



CHAPTER EIGHT

Conclusions and Recommendations

8.1	 Conclusions 

The following sections contain the conclusions

drawn from the present work.

8.1.1	 Investigation Approach

The behaviour of infilled frames have been studied

either experimentally or theoretically. The following

conclusions on the application of these approaches can be

made.

1) Using current test equipment, an experimental approach

may not, alone, lead to all the necessary information

for understanding the behaviour of infilled frames

under in-plane loading. The experimental results

(loads and deflections) may be strongly affected by

testing approach and unintended changes of mechanical

properties of the materials.

2) The theoretical analysis using the finite element

method should be capable of providl g almost all the

necessary information to assist in the understanding of

the behaviour of infilled frames. But misleading

results may be obtained from previous . such analyses

because of the simple assumptions made.
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3) Theoretical investigation on the subject can usefully

employ finite element analysis. Such an analysis must

include reasonably accurate models for;

a) non-linearity of materials and

b) behaviour of frame/infill interfaces and

should prevent errors occurring due to:

i) incompatible elements in the mesh subdivision.

ii) unnecessary damages occurred to the material in

the process of the finite element iterative solution

using irrelevant acceleration procedures and simple

material models

8.11	 Present Finite Element 

A non-linear finite element computer program has

been developed to analyse plane structures under static

loading. The method gave results which agreed fairly well

with the actual results up to and beyond the peak load. The

program has many advantages over other programs that have

been written for analysis of infilled frames. The following

conclusions can be made:

1) The mathematical models suggested for simulating the

, non-linear behaviour of materials are numerically
-

stable and reasonably accurate.
e

2) The techniques used to achieve a fast convergence for



the finite element solution equations leads to

satisfactory convergence without any significant

unnecessary damage to the materials.

3) The proposed beam element accurately simulates the

displacement function of the frame members involving

axial, shear and flexural deformations.

4) The proposed interface element assists in obtaining

detailed accurate stress distribution diagrams over the

frame-inf ill interfaces in contact.

5) The proposed loading jack and support elements

distribute the external load or reaction forces,

uniformly, over the bearing surfaces. These elements

also act as a spring to simulate a loading jack or

platen, respectively, with limited flexibility in

process of the proposed displacement increment approach

used in the program.

6) The three proposed elements significantly improve the

accuracy and performance of the analysis.

7) The proposed displacement increment approach assists in

obtaining a complete load-deflection diagram for the

structure, monitoring even	 such as diagonal cracking

and corner crushing of the infill as well as the

occurrence of the plastic hinges and p ssibly of

formation of a plastic collapse mechanism. This extra

information was found useful for understanding the

behaviour of the infilled frames.
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8.1.3	 Chnimil Behaviour of Infilled Frames 

Finite element analysis of infilled frames with

practical range of strength and stiffness loaded

monotonically to destruction, led to the following

conclusions:

1) Three major states for the frame can be recognized;

i) At a load close to the peak load the infill is,

partly, in a state of strain hardening in the loaded

corners and remains linear elastic over the rest of the

area, while the frame remains entirely in the elastic

state. During the loading up to this load level, The

frame-inf ill contact lengths remain almost constant.

This state may be referred to as "elastic state."

ii) Increasing the load, the state of the infilled

frame alters into the "elastoplastic state" as the

frame initiates plasticity (yielding) at the loaded

corners leading to formation of two plastic hinges at

these points. The lengths of contact increase and

excessive compressive strain in the loaded corners of

the infill follows the peak load and the load then

falls and eventually crushing of the inf ill in the

loaded corners occurs. This state continues until

further plastic hinges develop.

;
- iii) At the limit of the elastoplastic state which is

!. at a load considerably lower than the peak load where

the infill has partially crushed, the frame initiates

further plastic hinges followed by a plastic collapse
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mechanism. This may be termed "perfect plastic state"

2) Infill non-linearity which is associated with permanent

strains (plasticity) starts at a load well below the

peak load. This indicates that repetition of the load

may result in gradual deterioration of the infill at a

much higher rate than is normally seen in ordinary

structures.

3) The major parameters affecting the normal stress acting

at the frame-infill interfaces at the peak load, are as

follows:

i) Square infills develop almost equal normal stress

at the beam and column interfaces. The aspect ratio of

the infill (h'/1') has a strong effect on distribution

of the infill diagonal force to the beam and column

interfaces in contact. Rectangular infills transfer

much of the resulting diagonal force to the columns.

The straightforward rule of dividing the diagonal force

into the components acting normal to the beams and

columns does not agree with the finite element results.

ii) The beam/column strength ratio has a strong effect

on the beam/infill normal stress. This parameter,

however, has almost no effect on the column/infill

normal stress.

iii) The frame/infill strength ratio has no effect on

the normal stress acting at the column/infill

interface, but it has a significant effect on the

normal stress acting at the beam/infill interface.
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iv) Variation of the coefficient of friction of the

frame-inf ill interfaces changes the normal stress

acting at these surfaces. The lower the coefficient of

friction is the higher the normal stress becomes.

4) Shear stresses at the frame/infill interfaces in contact

are generally proportional to the normal stresses with

the following additional considerations.

i) At peak load the shear stress developed at the

beam-infill interface is almost equal to its maximum

possible value, ganb, and may not becomes less than

0.90ganb. Therefore it can be concluded that the state

of the beam/infill interface remains slipping up to the

peak load.

ii) Shear stress developed at the column-inf ill

interface is strongly affected by the aspect ratio of

the infill.

5) Diagonal compression failure of infilled frames occur

as a result of the Biaxial compression failure of the

inf ill material in the loaded corners.

6) Unless the infill is subjected to vertical load or it

is somehow prestressed, the lengths of contact may not

exceed one half of the infill dimension under

, consideration.

Diagonal cracking of the infill occurs as a result of

the tensile failure of the infill at the central area.

The cracking load must not be considered as the peak
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4) These methods give fairly accurate predictions for the

peak load for infilled frames with very strong and

uniform frame members relative to the infill (m>2.43).

Deviations from the actual values ranged -12% to +16%.

8.1.5	 Wood's Plastic Method

Comparison of the peak load calculated by the

plastic method proposed by Wood( 20 ) with the proposed finite

element analysis results and also the results from three

experimental sources, led to the following conclusions.

1) Not including the frames discussed in clauses 2 and

3 below, the method predicts the peak load reasonably
IY

accurate with a standard deviation of 14%. The maximum

deviations were -19% and +22%

2) The method, however, significantly underestimates the

collapse load for semi-rigid frames. Up to 59% under-

estimation was encountered.

3) Contrary to the methods based on Aia, Wood's method

leads to very high predictions for the infilled frames

with weak infill and very strong frame. Deviations

ranging +36% to +143% were obtained for infilled frames

with m=2.43 to 8.36 respectively. This is because the

method assumes occurrence of a plastic collapse

mechanism which was was not the case for these frames.

4) Excluding the frames discussed in clause 3 above the

uniform and simplified yp value proposed by Ma(96)

- 372 -



gives safe but uneconomical collapse load. Excluding

the frames discussed in clauses 2 and 3 above the

standard deviation became 46%.

8.1.15	 Liamv et al Plastic Method 

Comparison of the peak load calculated by the

plastic method proposed by Liauw et al( 25 ) with the proposed

finite element analysis results and also the results from

three experimental sources led to the following conclusions.

1) This method ignores the beneficial effect of shear

stress acting at the frame/infill interfaces in

contact. The method also ignores the loss of strength

due to lack of ductility of infill and formation of

plastic hinges only at the loaded corners rather than

development of a plastic collapse mechanism. These

errors counter-balance and the method results in a

reasonably accurate collapse load with deviations

ranging -27% to -3% from the actual values and a

standard deviation of 16%.

2) Similar conclusions as made in clauses 2 and 3 in

Section 8.1.5 are applicable for this method.

3) Unlike Wood's method, this method leads to

underestimated values for the collapse load of the

infilled frames with a thick infill relative to the

dimensions of the biaxially loaded corner blocks of the

infill).



8.1:7	 New Hand Method of Analysis 

Because of the shortcomings of the existing

methods, a new method was developed allowing for the limited

infill ductility and also combined elastic and plastic

deformations of the frame at the peak load. Comparison of

the peak load calculated by the proposed method, with the

proposed finite element analysis results and also the

results from three experimental sources led to the following

conclusions.

1) This method predicts the collapse load within

a fairly accurate range for all the infilled frames

studied. These include frames with non-uniform members

and frames with semi-rigid and even pin joints and also

frames with rectangular panels. None of these infilled

frame types led to the calculated collapse load

deviating more than -21% and +12% from the actual

results. The standard deviation using this theory was

only 8%.

2) The proposed method predicts fairly accurate the

diagonal cracking load. Compared to the results of the

proposed non-linear finite element analysis, the

standard deviation became only 3%. The previously

existing methods, however, give mixed results deviating

from the actual values up to 88%.

3) All previous methods give scattered results for

infilled frame stiffness. This may be attributed to

the effects of shrinkage and lack of fit. The proposed

- 374 -



method however gives rather consistent results and has

the advantage of-being capable of adjusting the

stiffness for variation of lack of fit and shrinkage.

4) The proposed method provides all the necessary

information for design purpose including the deflection

at the diagonal cracking and at the peak loads and also

the internal forces of the frame members within a

reasonable range of accuracy. This permits the

inclusion of both the limit states of collapse and

serviceability into the design criteria for infilled

frames.

Recommendations for Future Work

8.2.1	 Extension of Program NEPAL

The program NEPAL may be extended to carry out the

following analyses:

1) Infilled frames with masonry infill can be included

into the program. Such an analysis may be executed by

the current version of the program taking,

comparatively, much more CPU time than for a similar

infilled frame with a uniform infill. Development of a

super-element for masonry material as introduced in

Section 3.9.7 was found to be significantly helpful in

reducing the CPU time.

2) Although analysis of multi-bay and multi-storey

infilled frames can be executed by the current version

of the program such computations have been impractical
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using the IBM mainframe computer in the Computing

Centre of Sheffield University. This problem may be

overcome by making some simplifications in the non-

linear finite element solution procedure and reducing

the number of nodes to reduce the CPU time.

Alternatively one may wait and use a much faster

computer that might become available sometime in the

future

8.2.2	 Experimental Investigation 

The effects of load repetition and reversal are

expected to be significant. Little information is available

on this area and further experimental work would be

valuable.

8.2.3	 Application of Finite Element Analysis 

The programme of this work involved finite element

analysis on 12 infilled frame examples selected from most

practical types and dimensions. The programme may be

extended to cover also the following:

1) Panels with smaller aspect ratio, i.e. h'/1'<0.57.

2) Presence of gaps around the infill and also a gap only

at the top of the wall. The experimental data reported

by Riddington( 34 ) may be used for comparison.

:

3) Frames with pin and semi-rigid joints .
e

4) Panels with opening of different size and position.



5) Masonry infill.

6) Reinforced concrete frame

. 7) Multi-bay and Multi-storey infilled frames.

8.2.4	 Design Procedure 

Application of the proposed method as a design

approach is briefly described in section 7.24. This can be

extended into more detail to conform with codes of practice

for design of infilled frames using the safety factors

involved.
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A.2	 Input Data

A.2.1	 Structure Geometry
Ii
Cl
12 13 14

Il = The problem execution number
Cl = Name of the example
12 2= (see Section A.3.1)

A.2.2	 Zone Properties: one set for each zone 
Ii 12 13 14 15 16 17 R1 R2 R3 R4 R5 R6

Ii = The zone order number
12 = An integer number to specify the zone element type

(see section A.3.2)
13 = Structural type of the zone;

1 for frame
2 for uniform wall
3 for masonry wall
4 for interface
5 for loading jack mechanism
6 for support mechanism

14 = Reinforcement type; 0 for no reinforcement
15,16 = Number of columns and rows of elements within the

zone respectively; not to be more than 9
17 = Element code

0 for all cases except:
1 for a zone formed by 4-node beam elements
2 for a zone formed by 4-node column elements
3 for a zone formed by 5-node beam elements
4 for a zone formed by 5-node column elements
5 for a zone formed by 6-node beam elements
6 for a zone formed by 6-node column elements
ijk for either a masonry wall or an interface
zone (see Section A.3.3).

R1-R3 = Dimensions of the zone in [mm] in x, y and z
directions respectively

R4,R5 = Lack of fit for a masonry wall or an interface
in mm in X and Y directions respectively
(see Section A.3.4)

1 R6 = The total weight of the zone in Newton;
input 0.0 when the effect of zonal weight is to be
neglectede

13	 = Total number of nodes
14	 = Total number of zones



A.2.3
	

Zone Topology
Ii	 12	 ..	 • .	 I(n+2)

Ii = zone number
12 = The total number of nodes, n, needed to determine

the topology of the zone
I3-1(n+2) =Node numbers showing the topology of the zone;

to be typed in the order as shown in Section A.4

A.2.4	 Nodal Displacement Output Data
Ii	 12	 ..	 O0	 00	

• 

0
	 I (m+1)

= m, the total number of nodes whose displacement
values are to be output

12-I(m+1)=The node numbers whose displacements desired
to be output

A.2.5	 Properties of The Materials 

= The total number of material types used in the
structure

Then one dataset for each material type as follows:

Ii R1 R2 .

a) For Brittle Materials:

Ii = Material type number
R1 = Initial modulus of elasticity (KN/mall2)
R2 = Initial Poisson's ratio
R3 = Direct tensile strength (N/m2)
R4 = Unconfined compressive strength; 0.95Xfc' (N/mm2)
R5 = 10 3X(strain at peak uniaxial compressive strength)
R6 = 'A' factor; Eq 4.36

Input 0; 'A' will be calculated automatically
R7 = 'C' factor; Eq 4.32

2 for mortar
3 for concrete

R8 = 'R' factor; Eq 4.58
input 0; 'R' will be set to 3.5 automatically

R9 = fbe, ratio of equal biaxial/uniaxial strength
input 0; fbe will be calculated by Eq 4.31

R10 = 'K' factor, specifying the tangent of the
interlocking angle in cracked surfaces

- A3 -



b) For Ductile Materials (Steel):

I1,R1,R2 Same as (a)
R3,R4 = Direct tensile and compressive strength which

must be the same (N/mm2)
R5-R10 = 0

c) For Interfaces:

R1 = Normal stiffness of the interface, kn (KN/mm3)
R2 = Shear stiffness of the interface, Ks (KNimm3)
R3 = Tensile bond strength (Nimm2)
R4 = Shear bond strength (Nimm2)
R5 = Shear stiffness after debonding, Ksru (Knimm3)

R6-R7 = 0
R8 = To, related to the yielding criterion (N/mm2)
R9 = g', slope of the yielding criterion
R10 = coefficient of friction of the interface

d) For Masonry Wall:

Four lines of material property data are to input as
follows:
i)Masonry unit properties, are to be input Same as (a

ii)Masonry internal joints, are to be input Same as (c
iii)Masonry sides and bottom interfaces, are to be input

Same as (c and
iV)Masonry top interface, are to be input Same as (c

e) For Loading Jack and Support Elements:

Il R1

Ii = Material type number
R1 = Stiffness of the element (KNimm2)

For Support elements, a high value must be taken
for R, say 10000 times the structure stiffness.
A very high value also is hurmful and produces
precision errors. For loading element a value
equals 10 to 50 times the structure stiffness is
relevant.

A.2.6	 Reinforcement Properties Data

= Total number of reinforcement arrangements
within the structure;
I=0 shifts onto Section A.2.8

R1 R2	 . •	 ..	 .. R7	 . . R11 R12
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R1 = El of link bars, Fig A.3
R2	 = E2
	

VI	 11	 II

R3 = El of main bars	 II

R4	 = E2 "
	

11	 It	 II

R5 = El of steel flanges in a steel beam
R6	 = E2 "	 VI	 VI	 II	 II	 it	 Il

R7 = Fy of link bars, Fig A.3
R8	 = Fu "	 VW	 WV	 II

R9 = Fy of main bars 	 1/

R10 = Fu "	 11	 II	 II

Rll = Fy of steel flanges
R12 = Fu "	 VW	 II

Note: If any of bar types(link, main or steel flanges) not
exists, its corresponding values must be assigned 0

A.2.7	 Reinforcement Geometry: one set for each group 
IR1	 R2	 ..	 ..	 ..	 ..	 ..	 ..	 R9	 R10

I = Reinforcement arrangement order number
R1 = RX1 percentage of bottom bars in X direction
R2 = RX2	 VI	 II	 top	 WV	

" X	 Il

R3	 = RY1	 WW	 VI	 left	 VI	 II y	 II

R4	 = RY2	 WI	 II	 right	 II	 II y	 WI

R5 = RLX	 11	
" uniformly distributed bars in X

R6	 = RLY	 VI	 11	 VI	 It	 WW	 II y

R7 = X1R1 Absissa of the left main bars, Section A.4
R8 = X1R2	 u	 ti	 u 

right 
VI
	

It	 VI

R9 = ETAR1	 VI	
" " bottom "	 11	 II

R10 = ETAR2	 "	 " "	 top	 NN	 NN	 11

A.2.8	 Structural Restraint Data
Il 12 13

Ii = Degree of freedom per node
Total number of components of stress and strain
Total number of restrained nodes

Restrained node number
11-13 = Restraining condition of the node in X, Y, Z

directions respectively as follows:
:	 Direction	 Restraint	 Free

Ii X 1 0
12 Y 2 0
13 Z 3 0

N.B. 13 must be ommitted when the degree of
freedom of the structure is 2.

12 =
13 =

I =

,

e
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A.2.9	 Loading Data

I	 = Number of loaded nodes. Input 0 to shifts onto
section A.2.10.

Input one data set for each loaded node as follows:

Ii R1 R2 R3

Ii = Node number
R1 = Load in X direction (N)
R2 = " U y

R3	 =
	

tt	 tI	 It	 II

A.2.10	 Material Non-linearity Data
R1 Ii 12 R2 R3 13

R1 = Acceptable norm for rate of convergence
11,13 = 0, 1 or 2 to select the tangent modulus of

elasticity of brittle material and reinforcement
respectively as follows:
0 to select the apparent tangent value
1 "	 unloading	 It

2 "	 average of the above
12 = 0, 1 or 2 to select the tangent value of the

Poisson's ratio of brittle material as follows:
0 to select the apparent tangent value
1	 II	 It initial value
2 It	 It	 It average of the above

R2 = 0.0 to 1.0 to specify the rate of allowance for
change in the Poisson's ratio

R3 = Crushing strain limit (as a ratio to the strain
at peak stress). Input 0 or any value less
than 1.0 then	 ( 3/ D)+1 will be set which
allows yielding up to s=0.25 before concrete
crushes.

A.2.11	 Deflection Increment Characteristics Data
R1 R2 R3 Ii R4

R1 = Minimum deflection increment
1 R2 = Maximum	 II	 II

- R3 = Specified maximum deflection
R4 = Specified early increments

• Ii = Number of times R4 must be repeated



A.2.12	 Output Results Characteristics Data
I	 R1 R2	 Ri

I	 =i
Rl-Ri = Deflections at which results are to be output

A.2.13	 Iterations Characteristics Data
Il 12 13 14 R1 15 16 R2 17

Ii = Desired number of iterations
12 = Specified maximum allowed number of iterations
13 = Maximum CPU time allocated to the computation
14 = 0 or 1; magnification of bond strength. set 14=1

to flag the magnifying process
R1 = Rate of reducing the stiffness of slipping

interfaces to accelerate convergence (this option
is not effective, input 0 for R1)

15 = 0 or 1 to flag the choice of the interface
mechanics as follows:
15=0, interfaces undergo a parabolic tensile
bond criterion and no yielding and gradual
debonding is permitted.

16 = 0 or 1, 16=0 flags unsymmetric equations solving
R2 = Rmu which is greater than unity and denotes the

rate of reducing the coefficient of friction of an
slipping joint. This option is not effective,
input 1.0

17 = Flag to select the desired choice of incremental
[D] for slipping interface.

17=0	 [D] gripped will be taken
17=1	 Clamping routine willbe taken (very

effective)
17=2	 Ks=0 will be set

A.3	 Notes 

A.3.1	 Note 1 (see AL2.1) 

12 is the dimensionality of the problem. Since the computer
program NEPAL deals with Plane problems only, 12 must be
assigned 2.

A,3.2	 Note 2 (see A.2.2)

a) Zones other than Loading Jack or Support

12 is a 4-digit number 'ijkl' indicating the type of element
and the arrangement of gaussian points within the elements

- A7 -



of the zone. i and j are the number of nodes on the
horizontal and vertical sides of the element respectively.
To be compatible with NEPAL, the combination of i and j are
limited to:

22 23 32 24 42 33

ij = 22 must be assigned to masonry, interface, 4-node
isoparametric and also 4, 5 and 6-node beam and column
elements. 'ij' values other than 22 may be assigned to other
types of isoparametric elements only.

k and I are the number of columns and rows, respectively, of
the gaussian points attributed to each element of the zone
under consideration.

The following limitations must be born in mind:

i) Horizontal interface elements may not have more than
one row and less than 2 columns of gaussian points.

ii) Vertical interface elements may not have more than one
column and less than 2 rows of gaussian points.

iii) The maximum number of columns and rows of gaussian
points are limited to 7 in this program.

iv) In order to prevent a possible singularity of the
global stiffness matrix and malfunctionality of the
solution, the minimum number of gaussian points is
better to be limited to 2x2 for any type of element
except for interface elements, see notes (i) and (ii)

v) 5 and 6-node beam and column elements must have more
than 2 rows and columns of gaussian integration
points, respectively.

b) Loading Jack and Support Elements:

12 is a single digit number indicating the total number of
nodes of the element.

A.3.3	 Note 3 (see section A.2.2) 

a) Masonry Wall

17 is a 3-digit integer number, ijk, where i and j specify
the number of columns and rows of the gaussian integration
points, respectively, of each unit element located within
any corner of the zone not more than two elements apart from
the corner. It is important to specify a closer gaussian
integration points for masonry unit elements located at the
vicinity of the masonry wall corners because, these corners
undergo a high stress gradient as a result of the diagonal .
load concentration.

i and j also specify the number of gaussian points of bed
and head joints respectively on the entire masonry wall.
k is the number of gaussian points of each boundary
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interface element of masonry.

b) Interface:

17 is a 3-digit integer number, ijk, where i is 1 or 2 for
horizontal or vertical interface zone respectively.
j is the order number of the node with a wide angle at the
bottom or the left side of the zone and k is the order
number of the node with a wide angle at the top or at the
right side of the zone in a vertical or horizontal interface
zone respectively.

If no wide angle corner exist, the value of j or k should be
assigned to zero for the appropriate side of the interface.
Fig. A.1 gives some examples.

C) Jack and Support

17 must be assigned to 1 or 2 for a horizontal or vertical
loading or support element respectively.

A.3.4	 Note 4 (see A.2.2) 
Lack of fit is applicable to an interface element only. For
a uniform wall, lack of fit may be permitted for the
boundary interfaces. However, in a masonry wall, since
boundary interfaces are included with the wall, lack of fit
must be attributed to the masonry wall zone. The lack of
fit value assigned to the side interfaces of a masonry will
splits between the two sides of the wall, but the value
given to the horizontal interfaces will be given to the top
interface only.

Infilled Frame Examples 

A.4.1	 Masonry Infilled R.C. Frame 
Figures A.2 and A.3 show the elements of input data for one
of the masonry infilled R.C. frame test series carried out
by Samai (8) . The corresponding data list is given in table
A.1.

A.14.2	 Micro Concrete Infilled Steel Frame 
Figure A.4 show the elements of input data for one of the
micro concrete infilled steel frame test series carried out
by Saneinejad( 29 ). The corresponding data list is given in
table A.2.
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Figure A.2 R.0 Masonry-infilled Frame Subdivision Lay-out;
a) node numbering and b) zone numbering.



3.25mm Dia. steel bar
(link bars)

50f 
36

50 

4x 8rrm Dia. main bars
(r=2.0%)

3.25rrm Dia. link bars
55mm O.0 (r=0.3%)

E = 1711.0 KNAmm2

FU=520.0
Nium2

Fy=400.0

8mm Dia. steel bar
(main bars)

Fy=200.0

1.17	 2.00	 3.60
srain x 1000

(a)

50 

50 1< 36 )1

(b)

Figure A.3 Reinforcement Data of The Frame Tested by
Samai(8); a) stress-strain characteristics
and b) beam and column reinforcement geometry.
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Figure A.4 Steel Concrete-infilled Frame Subdivision Lay-out;
a) node numbering and b) zone numbering.
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Table A.1 Data Listing for Reinforced Concrete Frame
with lightweight Concrete Blockwork,
Frame "IHW2" Tested by Samai(8)

1
'IHW2'
2	 344 17
1	 3 6 0 1	 1 2	 0.0 0.0 0.0 0.0 0.0 0.0
2	 3 6 0 1	 1 2	 0.0 0.0 0.0 0.0 0.0 0.0
3	 3 6 0 1 1 1	 0.0 0.0 0.0 0.0 0.0 0.0
4	 3 5 0 1 1 1	 0.0 0.0 0.0 0.0 0.0 0.0
5	 3 6	 0 1 1 1	 0.0 0.0 0.0 0.0 0.0 0.0
6	 3 6	 0 1 1 1	 0.0 0.0 0.0 0.0 0.0 0.0
7	 3 6	 0 1	 1 2	 0.0 0.0 0.0 0.0 0.0 0.0
8	 3 6	 0 1 1 2	 0.0 0.0 0.0 0.0 0.0 0.0
9 2233 1 3 1 1 0100.0 100.0 100.0 0.0 0.0 0.0

10 2233 1 3 1 1 0100.0 100.0 100.0 0.0 0.0 0.0
11 2233 1 3 1	 1 0100.0 100.0 100.0 0.0 0.0 0.0
12 2233 1 3 1	 1 0100.0 100.0 100.0 0.0 0.0 0.0
13 2224 1 1 8	 1 5810.0 100.0 100.0 0.0 0.0 0.0
14 2224 1	 1 8	 1 5810.0 100.0 100.0 0.0 0.0 0.0
15 2242 1 2 1	 8 6100.0 810.0 100.0 0.0 0.0 0.0
16 2242 1 2 1	 8 6100.0 810.0 100.0 0.0 0.0 0.0
17 2211 3 0 8	 8 222	 810.0 810.0 35.0 0.0 0.0 315.0
13

1 3 4
23

2 12 13
33

14 32 3
43

31 13 42
53
314 332 303
63
331 313 342
73
343 333 332
83
344 342 341
92

3 32
10	 2

12 41
11	 2

303 332
12	 2

312 341
13118

-	 4 33 15 16	 17	 18 19	 20 21 22 23 24 25	 26
27 28 29 30

14!18
304 333 315 316 317 318 319 320 321 322 323 324 325
326 327 328 329 330
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2.8	 28.0	 2.0	 0.0 3.0 3.5	 1.15	 1.75

2.22 0.0
0.0533 0.0
0.0533 0.0
0.0533 0.0

4
1
28.0	 0.175
3
8.27	 0.175	 0.9	 6.93
0.25	 0.1067	 0.4	 0.6
0.25	 0.1067	 0.1	 0.15
0.25	 0.1067	 0.1	 0.15
5

2.0 3.5 1.15 1.75
0.0 1.25 0.025 1.20
0.0 1.25 0.025 0.76
0.0 1.25 0.025 0.76

Table A.1 (cont.)

15 25
32	 69 103 135 169 201 235 267 303 67 68 101 102

133 134 167 168 199 200 233 234 265 266 271 272
16 25

41	 73 107 139 173 205 239 273 312 71 72 105 106
137 138 171 172 203 204 237 238 269 270 301 302

17 34
43	 55 75 88 109 121 141 154 175 187 207

220 241 253 275 288 33 70 104 136 170 202 236
268 304 41 73 107 139 173 205 239 273 312

32
33	 35 37 39 41 43 45 48 51 54

304 306 308 310 312 288 291 294 97 300
104 170 236 88 154 220 107 173 239 100 166 232

500.0
6

10000000000.0
3

171.0 171.0 200.0 90.22 0 0 200.0 200.0 400.0 520.0 0 0
1	 1.0	 1.0	 0.0	 0.0	 0.0	 0.3	 0.0	 0.0	 0.72	 0.72
2	 0.0	 0.0	 1.0	 1.0	 0.3	 0.0	 0.72 0.72 0.0	 0.0
3	 1.0	 1.0	 1.0	 1.0	 0.3 0.3 0.72 0.72 0.72	 0.72
2
3
8

	

1	 1	 2

	

2	 1	 2

	

14	 0	 2

	

31	 1	 2

	

314	 1	 2

	

331	 0	 2

	

343	 1	 0

	

344	 1	 0
0

0.002	 0	 0	 1.0	 0.0	 0
-0.05 -0.10 -15.0	 2	 -0.03

7

	

-0.035 -0.42 -0.9	 -3.5	 -4.8	 -9.7	 -13.5
-9	 13	 10	 0	 1.0 0 1	 1.0	 1



Table A.2 Data Listing for Steel Frame with Concrete
Infill, Frame "SMUR2" analysed in this study.

1
'SMUR2'
2 222 42
5 2222 1 3 1 1 0 368.3 251.5 40.0 0.0 0.0 0.0
6 2222 1 3 1 1 0 368.3 251.5 40.0 0.0 0.0 0.0
7 2222 1 3 1 1 0 368.3 251.5 40.0 0.0 0.0 0.0
8 2222 1 3 1 1 0 368.3 251.5 40.0 0.0 0.0 0.0
9 2223 1 1 2 1 5 789.0 251.5 20.0 0.0 0.0 0.0
10 2223 1 1	 4 1 5 3156.0 251.5 20.0 0.0 0.0 0.0
11 2243 1 1 2 1 5 789.0 251.5 20.0 0.0 0.0 0.0
12 2243 1 1 2 1 5 789.0 251.5 20.0 0.0 0.0 0.0
13 2223 1 1 4 1 5 3156.0 251.5 20.0 0.0 0.0 0.0
14 2223 1 1 2 1 5 789.0 251.5 20.0 0.0 0.0 0.0
15 2232 1 2 1 2 6 368.3 451.5 40.0 0.0 0.0 0.0
16 2232 1 2 1 4 6 368.3 1806.0 40.0 0.0 0.0 0.0
17 2234 1 2 1 2 6 368.3 451.5 40.0 0.0 0.0 0.0
18 2234 1 2 1 2 6 368.3 451.5 40.0 0.0 0.0 0.0
19 2232 1 2 1 4 6 368.3 1806.0 40.0 0.0 0.0 0.0
20 2232 1 2 1 2 6 368.3 451.5 40.0 0.0 0.0 0.0
21 2211 2 0 2 2 0 789.0 451.5 140.0 0.0 0.0 0.0
22 2211 2 0	 4 2 0 3156.0 451.5 140.0 0.0 0.0 0.0
23 2222 2 0 2 2 0 789.0 451.5 140.0 0.0 0.0 0.0
24 2211 2 0 2 4 0 789.0 1806.0 140.0 0.0 0.0 0.0
25 2211 2 0	 4 4 0 3156.0 1806.0 140.0 0.0 0.0 0.0
26 2211 2 0 2 4 0 789.0 1806.0 140.0 0.0 0.0 0.0
27 2222 2 0 2 2 0 789.0 451.5 140.0 0.0 0.0 0.0
28 2211 2 0 4 2 0 3156.0 451.5 140.0 0.0 0.0 0.0
29 2211 2 0 2 2 0 789.0 451.5 140.0 0.0 0.0 0.0
30 2221 4 0 2 1 120 789.0 0.0 140.0 0.0 0.0 0.0
31 2241 4 0 4 1 100 3156.0 0.0 140.0 0.0 0.0 0.0
32 2241 4 0 2 1 103 789.0 0.0 140.0 0.0 0.0 0.0
33 2241 4 0 2 1 110 789.0 0.0 140.0 0.0 0.0 0.0
34 2241 4 0	 4 1 100 3156.0 0.0 140.0 0.0 0.0 0.0
35 2221 4 0 2 1 104 789.0 0.0 140.0 0.0 0.0 0.0
36 2212 4 0	 1 2 240 0.0 451.5 140.0 0.0 0.0 0.0
37 2214 4 0	 1 4 200 0.0 1806.0 140.0 0.0 0.0 0.0
38 2214 4 0	 1 2 203 0.0 451.5 140.0 0.0 0.0 0.0
39 2214 4 0 1 2 210 0.0 451.5 140.0 0.0 0.0 0.0
40 2214 4 0	 1 4 200 0.0 1806.0 140.0 0.0 0.0 0.0
41 2212 4 0 1 2 202 0.0 451.5 140.0 0.0 0.0 0.0
1 3 6 0	 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0
2 3 5 0 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0
3 3 6 0	 1 1 2 0.0 0.0 0.0 0.0 0.0 0.0
4 3 6 0	 1 1 2 0.0 0.0 0.0 0.0 0.0 0.0
42 3 6 0	 1 1 2 0.0 0.0 0.0 0.0 0.0 0.0
1 3

,
2	 ,

30	 13
3

41

194 211 183
3	 f' 3

1 3 4
4 3

2 12 13
42 3
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Table A.2 (cont.)

222 211 212
5	 2

3 31
6	 2

12 40
7	 2

183 211
8	 2

192 220
9	 6

4 32 14 15 16 17
10	 10

6 34 18 19 20 21 22 23 24 25
11	 6

38 26 27 28 29

12	 6
184 212 195 196 197 198

13	 10
186 214 199 200 201 202 203 204 205 206

14	 6
190 218 207 208 209 210

15	 7
31 55 72 51 52 68 69

16	 13
72 89 106 123 140 85 86 102 103 119 120 136 137

17	 7
140 157 183 153 154 170 171

18	 7
40 66 83 53 5 70 71

19	 13
83 100 117 134 151 87 88 104 105 121 122 138 139

20	 7
151 168 192 155 156 172 173

21	 3
42 57 74

22	 3
44 59 76

23	 3
48 63 80

24	 5
74 91 108 125 142

25	 5
76 93 110 127 144

26	 5
80 97 114 131 148

27	 3
142 159 174

28-	 3
144 161 176

29:"	 3
148 165 180

30	 4
32 42 34 44

31	 4
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Table A.2 (cont.)

	

34	 44 38 48
32 4

38 48 40 50
33 4

174 184 176 186
34 4

176 186 180 190
35 4

180 190 182 192
36 5

	

32	 56 73 42 74
37 7

	

73	 90 107 124 141 74 142
38 5

141 158 184 142 174
39 5

	

50	 65 82 40 83
40 7

	

82	 99 116 133 150 83 151
41 5

150 167 182 151 192
28

	

3	 4 12 13 40	 41	 50	 65	 82	 99	 116 133
150 167 174 175 176 177 178 179 180 181 182
183 184 192 211 212

5
2
18.46 0.175 1.5	 11.3	 1.75 0.0	 2.5 0.0	 0.0	 1.5

1
200.0	 0.25	 245.0 245.0	 0.0 0.0	 0.0	 0.0	 0.0	 0.0
4
100.0	 50.0	 0.05	 0.07	 0.05 0.0	 0.0	 0.0	 0.0	 0.64
5

10000.0
6

1.0D+8
3
0.0 0.0 0.0 0.0 200.0 199.0 0.0 0.0 0.0 0.0 244.0 245.0
1 21.56 21.56 0.0	 0.0	 0 0	 0.0 0.0	 0.9658 0.9658
2 0.0	 0.0 53.652 53.652 0 0 0.9354 0.9354 0.0 	 0.0
3 21.56 21.56 53.652 53.652 0 0 0.9354 0.9354 0.9658 0.9658
2
3
5

	

1	 10

	

2	 12

	

30	 1 2

	

194	 1 2

	

222	 1 2

0002	 1	 1	 1.0	 4.0	 0
0.1	 0.15 150.0	 10	 0.2

11
2.9	 6.9	 9.3	 9.6	 9.9	 10.2	 10.6	 11.0	 13.0	 14.0	 25.0

8	 16 5150	 0	 0.0	 0 1 1.0	 1
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Answer 1 Answer 2 Answer 3

Action 1 Action 2 Action 3

APPENDIX B

Structure of Program

NEPAL

The finite element computer Program 'NEPAL' is

structured in the sense of Dijkstra described by Smith(37).

The main feature exibited by this program will be seen to be

a nested structure and representations called 'structure

charts', (rather than flow charts) will be used to describe

their actions. The main features of these charts are:

i) The Block

Do this

Do that

Do the Other

This will be used for the outermost level of each

structure chart. Within a block, the indicated

actions are to be performed separately.

ii) The Choice

QUESTION?



For i from 1 to n

ACTION

(To be repeated n times)

This corresponds to the if 	  then 	  else kind of

construct.

iii) The Loop; This comes in various forms, but it will

usually concern with 'DO' loop.

Using these notations the main structure of

program 'NEPAL' has illustrated in Table B.1. The variable

names sre listed in Table B.2 and the way data must be input

is described in Appendix A. the listing of the program is

filed with the University of Sheffield.



I
For all Gaussian pointos of the element

Read [B] from workfile 'BEES'
Form [D]
Form element tangent stiffness matrix [ELK]

i

convergence achieved?

Yes	 No

CONV= 1

Table B.1 The Structure Charts of Program 'NEPAL'

START

Input data, output data
Form [B] matrices and store them into workfile
Calculate the half band width of the global

stiffness matrix

For all elements

Determine the element properties

Assemble [ELK] with the Global system tangent
Stiffness matrix [SYSK]

INC = 0

For all increments up to 'DELTA'

CONV = 0
Apply deflexion increment 'DEF'
ITR = 0

For all iterations up to Convergence

Update iteration counter ITR, (ITR = ITR + 1)
Solve the equations to obtain changes in the

structure nodal displacements

Calculate total nodal displacements 'NODIS'
Zero [UBNF] and [SYSK]
Include internally applied loads into [UBNF]
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f	 )
For all elements

Calculate the element properties
Zero [ELK]
Calculate element nodal total displacement

'ELDIS'

n
For all Gaussian integration points

Read [B] from the workfile, 'BEES'

Calculate the total strains at the Gaussain
point,	 [TSTRN]

Read the old state of the G.P from array 'STATE'
Deduct the previously occurred plastic strains
Read the old mechanical properties of G.P. from

[ULOAD], cracks angles and unloading modulus
Determine the new state of the material
Calculate the current stresses [STRS]
Form Tangent [D]
Transform [D] into Global co-ordinates

CONV?

CONV = 1	 CONV = 0

Include the
Include the

output results continue

effect of [STRS]	 into
contribution of G.P.

[EQNF]
into	 [ELK]

Update	 [UBNF]	 ([UBNF] = [UBNF]
Include	 [ELK] with	 [SYSK]

-	 [EQNF])

Table B.1 Cont.

STOP

END
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Table B.2 List Of Variable Names Used in Program 'NEPAL'

Integer Variables:

ADDRES	 A flagging integer
COMB	 A flagging integer
CONV	 A flagging integer-To flag for convergence
DIF	 Maximum freedom order difference within an

element
DIMEN	 Dimensionality DIMEN = 2 for 2-D structures
DIRECT	 Direction 1 for x and 2 for y
DITR	 Desired number of iterations
DOFEL	 Total No. of degrees of displacement freedom

of the element
DOFNOD	 Degree of freedom per node
ETBAR	 Specifier for the way the tangent modulus of

the reinforcing bars should be chosen
ETVAL	 The same as ETBAR but for other materials
FDM	 Freedom order number
GH	 Element Gaussian point counter (17y column)
GV	 Element Gaussian point counter (by row)
HBAND	 Half Band-width of the global stiffness matrix
HNN	 Number of nodes on each horizontal side of an

element
INC	 Deflection increment counter
ITEST	 ITEST remain zero when no error is faced.

ITEST>0 notifies that an error has
discovered by one of the program Libraries.

ITR	 Iteration counter
JNBE	 Recording order number of B matrix of the Jack

element within the workfile 'BEES'
JNEL	 Jack element order number
JNNEL	 Another Jack element order number when it has

5 nodes
JNZ	 The Jack element zone number
LAM	 Direction number

LAM = 1	 Horizontal interface or adjusting
element

LAM = 2	 Vertical
LAM = 0	 Ordinary element

LODNOD	 Number of externally loaded nodes
MAXITR	 Specified maximum number of iterations
MAJOR	 State of major crack or interface

State Ordinary material	 Interface
0	 Intact	 Fully bonded
1	 Gripped	 Partially bonded
2	 Interlocked	 Debonded
3	 Open	 N.A

MAJOR	 State of minor crack or interfaces
State Ordinary material	 Interface

0	 Intact	 Gripped or elastic -
Gripped	 Debonding or slip

2	 N.A	 Yielding
3	 Open	 Open

MAX	 Order number of the principal direction
having the most tensile stress
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Table B.2 Cont.

MIN	 Order number of the principal direction
having the least tensile stress

NBE	 Recording order number of B matrices in file
'BEES'

NEL	 The element order number
NNEL	 Another element order number when the element

has 5 or more nodes
(Up to 10 modes are allowed)

NETYP	 Number of types of element within a zone
NE	 Element type number within the current zone
NGPH	 Number of columns in Mesh of the element

Gaussian points
NGPV	 Number of rows in Mesh of the element

Gaussian points
NMTYP	 Number of types of material used in the

structure
NODEL	 Number of nodes per element
NQP	 Total number of Gaussian point per element

other than reinforcement
NQPRX	 Number of columns in Mesh of the element

reinforcement Gaussian points
NQPRY	 Number of rows in Mesh of the element

reinforcement Gaussian points
NRSLT	 Number of times that a detailed output or

results is wanted
NRTYP	 Number of types of reinforcement in the

structure
NUCONV	 Specifier for convergence of the Poisson's

ratio
NUCONV = 0	 not converged
NUCONV = 1	 converged

NUMSS	 Number of terms in the stress or strain vector
NUTVAL	 Specifier for the choice of the Tangent

poisson's ratio
Zone counter

NM	 Material counter
PLAST	 An ordinary material state specifier
PRINT	 If PRINT=0 results will not output at the

current iteration
If PRINT=1 results will output

QUAD	 The order number of Gaussian points
RESNOD	 Total number of restraint nodes
SIGN	 Taking values of +1 or -1 to indicate a + or

- value
STRESS	 STRESS = 0 OR 1 to specify whether the stress

transformation matrix is required
SW3INC	 Number of Current Subincrement(if applicable)
TOTDOF	 Total number of displacement freedoms within

the global system
TOTEL	 Total number of elements within the system
TOTNOD	 Total number of nodes within the system
TOTZON	 Total number of zones within the system
TQUAD	 Total number of Gaussian points within the

system other than the reinforcement GPs

- B6 -



Table B.2 Cont.

TRQUAD	 Total number of Reinforcement Gaussian points
within the system

TSINC	 Specified total number of subincrements(if
applicable)

VNN	 Number of nodes on each vertical side of an
element Array Size Names (Integer)

Integer Array Size Names:

DD	 Maximum expected Number of co-ordinate
directions subjected to
integration and derivation

FE	 Maximum expected number of displacement
freedom per element

FN	 Maximum expected nodal displacement freedom
GG	 Maximum expected rows or colums of Gaussian

points within an element
GGG	 Dimension of array GAUSS ,GGG = 2
SS	 Maximum expected number of stress components
MFDM	 Maximum expected displacement freedom within

the system
NN	 Maximum expected number of nodes per element
QQ	 Maximum expected total number of Gaussian

points within the system (other than
reinforcement Gaussian points)

RQ	 Maximum expected number of reinforcement
Gaussia points within the system

ZZ

	

	 Maximum expected total number of zones
NB, Single letter integers, usually I, J etc. used

as simple counters are not listed.
Multiple letter integers beginning with I and J,
for example IELTOP, are the reference size of the
appropriate array, ELTOP in this case.

e.g. ELTOP (IELTOP, JELTOP)

Double Precision Variables:

ALFA	 Ratio of the most tensile to the most
compressive equivalent uniaxial strain

ANGLE	 angle
DEF	 The total current deflection
DELTA	 The total specified deflection up to which the

analysis should be carried on
DET	 Determinant of Jacobian matrix-multiplier to;	 obtain the element stiffness matrix
EApJ	 Modulus of elasticity of a loading Jack or

support element
EMAX	 Specified maximum straining ratio at which the

material loses all its strength crushes
EO	 Initial modulus of elasticity
EE	 Secant modulus at ehe crest of the unconfined

uniaxial stress-strain curve
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Table B.2 Cont.

ES	 Secant modulus at the crest of the
stress-strain curve

EP	 Plastic straining ratio
EPE	 Plastic straining ratio after unloading
EPR	 Plastic straining ratio at the current stress

level
EPSC	 Strain at the peak unconfined uniaxial stress
ER	 Current straining ratio
ERR	 Degree of inaccuracy
ET	 Tangent modulus
ETA	 Normalized co-ordinate (vertical)
ETAR1	 Abcissa of botton reinforcement
ETAR2	 Abcissa of top reinforcement
EUL	 Unloading modulus
EULC	 Unloading modulus at peak unconfined uniaxial

stress
FA	 A
FBC	 fbc
FC	 C
FD	 D
FDD	 D
FG	 g
FM	 m
FNU	 related To the Poisson's ratio
FR	 R
GAMA	 Angle of the major crack to x direction
GAMA2	 Angle of minor crack to major crack directions
KH	 Horizontal weight of Gaussian point for

numerical integration
KT	 Breadth of the element for numerical

integration
KV	 Vertical weight of Gaussian point for

numerical integration
KN	 Normal stiffness of an interface
KS	 Tangential stiffness of an interface
FIRSTD	 Specified first deflection increment
MINDEF	 Specified allowed minimum deflection increment
MAXDEF	 Specified allowed maximum deflection increment
MAXNRM	 Maximum inaccuracy found in calculation of the

the norm of the convergence
MU	 Co-efficient of friction
NORM	 Norm of convergence
NORMS	 Acceptable norm of convergence
NU	 The Poisson's ratio
NUO	 The initial Poisson's ratio
NUT	 Tangential Poisson's ratio
NUVAR	 Specifier for allowance for variation of

Poisson's ratio
NUVAR = 0 to 1.0

RCii	Compressive to tensile strength of brittle
material

REF	 Reference for convergence
RLX	 Steel ratio (horizontal link bars)
RLY	 Steel ratio (vertical link bars)
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Integer Arrays:

NF(INF,FN)
NODEF(INODEF)

Table B.2 Cont.

RTC
RX1
RX2
RY1
RY2
RUL
SBOND
SEP2
SLIP2
SHEAR
SIGMAC
SIGMAT
SNC

SSC

STRNSL
STRNSP
SUBDEF
TBOND
TETA

TOTDEF
TSDEF
X1
X1R1
X1 R2

Tensile to compressive strength of material
Steel ratio (horizontal or bottom bar)
Steel ratio (horizontal or top bar)
Steel ratio (vertical or left bar)
Steel ratio (vertical or right bar)
Ratio of unloading
Shear bond strength of an interface
Cracking strain (secondary cracks)
Slip at the secondary cracks
The absolute value of shearing strain
Unconfined uniaxial compressive strength
Direct tensile strength
Ratio of strain at thepeak stress to that of

the unconfined uniaxial test
Ratio of stress at the peak stress to that of

the unconfined uniaxial test
Slip strain at the major cracks
Separation at major crack
Subdeflection
Tensile bond strength
Angle of the least tensile principal stress

directions to x direction
Current total deflection
Total subdeflection increment
Normalized co-ordinate
Abcissa of vertical or left reinforcement
Abcissa of vertical or right reinforcement

RESTR(IRESTR,JRESTR)

RSTAT(RQ)

3TATE(QQ)

3TEER(FE)
npRiaP(ZZ,JZPROP)
?iTOP(ZZ,JZTOP)
k(28)

Mi'OP(IELTOP,JELTOP)

Holds the nodal freedom order numbers
Holds the node numbers whose

displacements are desired to be
output

Holds restraint nodes and their
restrainment situation

Holds the states of reinforcement at
the element reinforcement
Gaussian points

Holds the state of material at the
Gaussian points

Holds the element nodes order numbers
Holds the zones properties
Holds the zones topology
Array used by subroutine timdat in

purpose of calculating the CF time
Holds the topology of all the elements

ELTOP (NEL, 5)	 = 10 * NZ + NE -
ELTOP (NEL, 6)	 = 100 * Q + P
ELTOP (NEL, 1.-4) = Element nodes

order numbers when NODE < 4
ELTOP (NNEL, 1...6) = Element nodes

order numbers when NODE > 4
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B(SS,FE)
BT(FE,SS)
BTDB(FE,FE)
BTS(FE)
D(SS,SS)
DI
DB
DT
EBAR (6)
ELDIS(FE)
ELK(FE,FE)
EQNF(FE)

EPSB(6)
EPSBP(3)
EUS(3)
EUSEL(3)

GEOM(NN,DIMEN)
GDER(DIMEN,10)

Table B.2 Cont.

Double Precision Arrays:

Strain displacement matrix, [B]
Transpose of [B]
[B]T[D][B]
Product of B T and stress vector
Elasticity matrix (tangent), [Dt]
Initial [Dt]
[D][B]
[D][T]
Holds the modulus of steel bars
Element nodal displacements vector
Holds the element stiffness matrix
Holds the element equivalent nodal

force vector
A vector
A vector
Equivalent uniaxial strain vector
Elastic equivalent uniaxial strain

vector
Geometry of the element nodes
Holds the element shape functions

Derivatives



APPENDIX C

Proposed 3-D Equivalent

4-node Plane Element

A symmetry plane is attributed to any plane

element having a uniform finite thickness, Fig 3.7. When an

element is perfectly plane and subjected to a set of out-of-

plane forces acting symmetrically about its symmetry plane,

the resulting out-of-plane displacements are also symmetric

about this plane. Under such a loading condition The

symmetry plane remains stationary. Therefore it may be

called the reference plane of the element.

Taking advantage of existence of such a reference

plane an 8-node solid element whose thickness forms the

thickness of the plane element, may be assigned only four

nodes at the corners of the reference plane as shown in

Fig 3.7.

Assuming a linear variation for lateral

displacement of The lateral surfaces of the element, the

linear shape founctions of 4-node isoparametric element,

Eq 3.23, can also be proposed for the lateral displacement

of'these surfaces as follows:

Ni= (1/ 4 ) ( 1+44i) (1+Trni)	 (C.1)
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[v I=

The 3-D displacement functions of the proposed

?element may now be written in matrix form as:

or:	 fel =

Ni	 0

0	 Ni

0	 0

[N]{a}

0	 .	 .

0	 .	 .

Ni.	 .

.	 N40	 0

.	 0	 N40	 1

.	 00	 N4

m"

xi
Yj

Zi

• •

Z4

Y4

Z4

(C.2)

Zi to Z4 denote the out-of-plane changes in thickness of the

element at nodes 1 to 4 respectively and w designates the

change of thickness of the element at an arbitrary point

within the area of the element.

As shown in Fig 3.7, the strain components of an arbitrary

point within the reference plane and also at the

corresponding points on either lateral surfaces of the

element, can be worked out as given in Table C.1.

Table C.1 Strain Distribution in the Plane
3-D Equivalent Element

Strain reference plane side surface Mean values

EX

Ey

EX

yxy

yyz

yzx

blliaX

DV/DY

(w/2)/(t/2)

Du/ay+av/Ox

0

0

1.1/aX

3Nriel7

(w/2)/(t/2)

6u/Dy+Dv/ax

3(w/2)/aY

a(w/2)/x

DU/aX

ZVia Y

w/t

Du/ay+DvWx

(1/4)Dwny

(1/4)Dw/axy
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In this table, t denotes the thickness of the element. In

order to avoid any integration in z direction, only the mean

values of the strain produced on the reference plane and the

lateral surfaces may be used. This procedure is equivalent

to a numerical integration over two gaussian points located

at (1/4)t apart from the reference plane. The relations

listed in Table C.1 can be written in matrix form as:

ex - Vox o 0

ey 0 Dien' 0

EZ 0 0 lit

-

=

yKy	 WDY	 Wa x	 0

yyz	 0	 0	 (1/4)/y

ozx .,	 , 0	 0	 (1/4)a/axy

or:
	

(e) = [L]{e}	 (C.3)

Substituting for (e) from Eqs C.2, the element [B] matrix

can be obtained as follows:

Defining:

Hence:

{e} = [L] [N] {a}

[B] = [L] [N]

{e} = [ B] {a}

The stiffness matrix of the element can be formed by the
f

standard procedure described in Section 3.4.5



APPENDIX D

Proposed Beam Element

D.1	 General 

The development of the beam element has been

briefly reviewed in Chapter 3. As a compromise between

accuracy and economy it appears that the 6-node rectangular

element developed by Wilson et al (44 ) is the best, to date,

available 2D beam element. However this element has the

following disadvantages:

i) Since the curvature induced by bending is controlled

by internal independent shape functions (N5 and N6

vide Section 3.11.2), the element is a Co continuity

element i.e. the slope continuity is violated between

the element in question and the adjacent ones.

ii) The parabolic bending shape functions, N5 and N6,

are not compatible with curvature of a beam involving

a point of inflexion.

iii) The element is not compatible with the shear

deformation and does not account for the parabolic

shear strain distribution developed across the beam.

A new element has therefore been developed, as

discussed in Section 3.11.3. The proposed element is a Cl

continuity element, i.e the slope continuity is maintained,
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Figure D.1 Deformation of a Beam Segment under Arbitrary
Forces; (a) geometry, (b) axial deformation,
(c,d) shear-free bending, (e) relative dis-
placement of the neutral axis and (f)pure shear
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and is fully compatible with shear deformation and also

permits a parabolic shear strain distribution to develop

across the beam. The algorithm of this element is given in

the following sections.

D.2	 Proposed Rectangular Ci Beam Element

Dal	 The General Concept

A beam segment is shown in Fig D.1(a). When the

beam is arbitrary loaded, this segment of the beam would

deform and its configuration mode would generally be limited

to the modes shown in Fig D.1 or combinations of them. In

order to relate such configuration modes to certain nodal

displacements, four principal corner nodes may be assigned

to this element each having two in plane degrees of freedom.

Displacement of these nodes should, independently, force the

element to deform into a mode that first, the "functional

completeness" (vide Zienkiewicz( 36 ), pp 33) is satisfied and

second; the slope continuity is maintained between the

adjacent elements so that the curvature induced by bending

is continuously followed. Such modes were indeed possible

to introduce as illustrated in Fig D.2, but they can only

produce shear-free configurations shown in Fig D.1(b), (c)

and (d). In such shear-free modes of displacement, shear

strain is somehow restrained, say by a field of surface

forces, and the displacement contours remain perpendicular.

Obviously by combining the nodal displacements shown in Fig

D.? all the shear-free modes of configuration (visualized in

Fig D.1(b,c,d)) can be simulated.
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igure D.2 Modes of Deformation of The Proposed Beam
Element Resulting from Nodal Displacements;
(a,b,c,d) horizontal nodal displacements and
(e,f,g,h) vertical nodal displacements
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In order that the beam element simulate The shear

deformation, it requires additional degrees of freedom.

This will be discussed in Section D.2.4. The shear-free

shape functions for displacement of the corner nodes are

derived in the following sections.

D.2.2	 Shape Functions for Horizontal Nodal Displacements 

Consider node 3 of the element in Fig D.2(c) while

this node has taken unit displacement in the positive

direction of x. The left hand side of the element, while

remaining straight has rotated, clockwise, causing the top

and bottom faces of the beam to move upwards producing a

curve containing a point of inflexion.

Displacement of an arbitrary point, p (t,n), within

the element is a function of the local normalized

coordinates, t and 11 ie:
NuX3 = Fi(t,n)

(D.1)
NvX3 = F2(4,n)

where Nux3 and Nvx3, namely the shape functions for

horizontal displacement of node 3, signify the horizontal

and vertical displacements respectively of point P resulted

from unit displacement of node 3 in x direction. At the

remote ends of the element, NuX3 and Nvx3 must satisfy the

following conditions:

For t=-1:

NuX3 = 0	 and
	

NvX3 = 0
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Hence:

Nux3 = (1+t)121

Nvx3 = (1+t)P2

For t=+l, Fl is a linear function of /I and Nvx3 = 0. Hence:

Nux3 = (1 + 4) (fin + f2)
	

(D.3)

Nvx3 = (1 + t) (1 - )f3
	

(D.4)

where fi and f2 are functions of t only. Now the element

strain components can be examined using the chain rule of

differentiation as follows:

	

Ex = ( NuX3Mt)(24/ c)x ) = ( 1 /a ) ONuX3/g)

	
(D.5)

	

Cy = ( DNvX3/a 11)(a1 iaY) = ( 1 /C ) (2Nvx3/D1)
	

(D.6)

Yxy= (bNux3/DTO(Drl ia y) + (DNvx3 /a txd4tax)

	

(1/00Nux3/D*4-(1/a)(DNvx3/d4)
	

(D.7)

It must be mentioned that the terms involving 3thy orDT1/dx

have zero value. Substituting for Nvx3 into Eq D.6 results

in:

Cy =	 (1-42) ('Jf3/D /1)

Since the depth of the beam remains constant for any value

of t, Ey equals to zero requiring that af3/cyri becomes zero.

Therefore f3 is also a function of t only.

Substituting for Nux3 and Nvx3 from Eq D.3 and

D.4, respectively, into Eq D.7 and equating it to zero

gives:
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Yxy = ( 1 /a ) kl-V)(awat) -2tf3]+ (1/c) (1+t)f i	0	 (D.8)

The first and the third terms of Eq D.8 would

become zero if t takes the value -1.0 requiring also the

second term of this equation to become zero for the same

value of t, ie:

f3 = A(1-1-t)	 (D.9)

where A is assumed to be a constant so that Nvx3 have one

point of inflexion. Substituting for f3 from Eq D.9 into

Eq D.8 and solving for fi gives:

fl = (c/a)A(3t-1)	 (D.10)

Substituting for fl from Eq D.10 into Eq D.3 gives:

NuX3 = (1+t) [(c/a)A(3t-1)t +

For t=+1 and n=0, Nux3 must become 0.5. This requires that:

f2 = 1/4 + B(1-t)	 (D.11)

Substituting for fi and f2 from Eq D.10 and D.11 into

Eq D.3, Nux3 becomes:

Nux3 = (1+t) [(c/a)A(3t-1)i+1/4+B(1-t)]	 (D.12)

For t=+1 and n=+1, Nux3 should become +1. Applying this

condition, A results in:
f

A = (1/8)(a/c)	 (D,13)
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Substituting for A from Eq D.13 into Eq D.12, Nux3 may be

derived as follows:

Nux3 = (1/8) (1+4) [(34-1)1 +2 +B' (1-4)]	 (d.14)

The nodal displacement under consideration is a

combination of a uniform axial tensile displacement and the

left end rotation as shown in Fig D.1(b) and (d)

respectively. The former deformation produces a tensile

longitudinal stress and the latter produces no stress along

the beam on its centre line. Therefore, for all the points

on the centre line of the element, Ex must have a constant

value for the above combination. This condition allows the

value of B' to be determined as follows:

Ex = (1/a) ONun/a4)	 = a Constant value
or:

ex = (1/4) [(1 /a) - B' 4] = a Constant value

ie:
B' = 0

Substituting for B', Eq D.14 becomes:

Nux3 = (1/8) (1+4) [1 ( 3 - 1 ) +2]+2]	 (D .15)

Substituting for A from Eq D.13 into Eq D.9 and also

substituting for f3 from Eq D.9 into Eq D.4 leads to the

following expression giving Nvx3 in terms of 4.	 (D.16)

Nvx3 = (1/8) (a/c) (1-42 ) ( 14-4)

Using the same procedure as used above, the shape

functions for horizontal displacement of the other 3 nodes

can be derived. These shape functions may generally be
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expressed as follows:

Nuxi = ( 1 / 8 ) ( 1+44)[11. 11( 344- 1 ) +2]

Nvxi = (1/8) (1/y)4in i (1+44) (1_2)

where y is the aspect ratio of the beam given as:

y = c/a = h/1	 (D.19)

The index i denotes the order number of the node in question

and 4i and li are the normalized coordinates of node i

taking either values of +1 or -1.

D.2.3	 Shape Functions for Vertical Nodal Displacements 

Consider node 3 of the element in Fig D.2(g) while

this node has taken unit displacement in y direction. The

left side of the element, while remaining straight, has

uniformly stretched upwards and only the top side of the

element has moved away producing a curve having a point of

inflexion. The horizontal and vertical displacement shape

functions for such a nodal displacement may be expressed as:

Nuy3 = F3(4,1)
	

(D.20)

Nvy3 = F4(4,11)
	

(D.21)

These functions must satisfy the boundary conditions; ie.

for either 4=-1 or 11=-1, Nvy3 must become zero. These

conditions require that:

NvY3 = ( 1+)(1+1)4	 (D.22)

Since the displacement contours are perpendicular (shear-
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free deformation), the top face of the element at t=2:1 must

have zero slope. ie:

Nr/D4 = 0

or:
	

(1+71) [( 1 -1-)(41/34) 4- 41] = 0	 (for •= t1)	 (D.23)

The first term of the above equation becomes zero for 4=-1.

Therefore, the second term must also become zero for the

same value of t. This condition requires that:

41 = Pl(1+t)
	

(D.24)

where Pi is a linear function of t so that Nvy3 becomes a

function of third degree in 4. This is a necessary

condition for this function as to have one point of

inflexion. Now Pi can be written as:

P1 = A4 4- B
	

(D.25)

Substituting for Pi and Qi from Eq D.25 and

Eq D.24 respectively into Eq D.23 and setting 4 equal to +1

and Eq D.23 to zero, B can be derived in terms of A as

follows:

B = -2A

And Eq D.22 becomes:

Nvy3 = ( 1+) 2 (1+11 ) ( 2)A

Ibr

For 4=+1 and 11=+1 the value of Nvy3 must become unity.

Hefice, A=1/8 and Nvy3 becomes:

Nvy3 = (1/8) (1+t) 2 (1+11) (2-)
	

(D.26)
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The boundary conditions for horizontal displacements require

that:

NuY3 = 0
	

(for 4 = ± 1)

NvY3 = 0
	

(for n = - 1)

Hence:

NuY3 = (1-t2 )(1+1) 122	 (D.27)

Enforcing a zero shear strain all over the element using Eq

D.27, Eq D.26 and Eq D.7 the following equation results:

(1/4) (1/a) (l+n) (14-) (2-4) - (1/8) (1/a) (1411 ) (1+)2

+ (1/c) (1-t2 ) [42+ cas22/aii) (1+1= 0	 (D.28)

For 71=-1 the first, second and fourth terms of the above

equation become zero. Therefore, the third term must also

become zero for the same value of n i.e:

42 = D ( 1411) 	 (D.29)

Substituting for Q2 from Eq D.29 into Eq D.28 solving for D

the above equation gives:

D = -(3/16)(c/a)

Substituting for D from the above into Eq D.29 and also

substituting for Q2 from Eq D.29 into Eq D.27, leads to the

shape function for horizontal displacement of node 3 as

follows:

:

NuY3 --= -(3/16) (c/a) (1+1)2(1_2)

The shape functions for vertical displacement of the other 3



nodes can be derived by the same procedure as used for node

3. This allows all these shape functions to be written in

only two general expressions as follows:

NuYi =-4i 11i( 3 /16 )7( 1 -42 )( 1+1i1) 2 	 (D.30)

NvYi = ( 1 / 8 ) ( 1+44) 2 ( 1411i1) ( 2-44)	 (D.31)

where y is the aspect ratio of the beam given by Eq D.19.

D.2.4	 Proposed Shape Functions for Shear Deformation

The shape functions for displacements of corner

nodes of the element, illustrated in Fig D.2, only produce

the horizontal and vertical strains. The equilibrating

shear forces are, therefore, taken by, say, a set of

frictional stresses acting on both side surfaces of the

element preventing the element from taking the shear

deformation shown in Fig D.1(c and d). Such a restraint may

be attributed to an imaginary internal node. Displacement

of such an internal node must be independent of the other

nodal displacements involved in the element. i.e,

displacement of the proposed fifth node must produce no

displacement at the corners of the element. Such a

condition can be met by combining the pure shear mode of

deformation shown in Fig D.1(f) and the shear-free

deformation of the modes shown in Fig D.2(b) and (c) imposed

in the opposite direction. This combination is illustrated

in Fig D.3 where X5, shown in Fig D.3(c), may be considered

as the displacement of the imaginary internal node whose

location is not a matter of importance. The displacement
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shape function of the above combination can be obtained by a

superimposition as given below:

Nux5 = Nu(a) - (NuX2+NuX3)
	

(D.32)

Nvx5 = Nv(a) - (Nvx2+NvX3) 	 (D.33)

where Nu(a) and Nv(b) denote the horizontal and vertical

displacement shape functions, respectively, of the pure

shear deformation shown in Fig D.3(a) or Fig D.1(f). These

are derived as follows:

For 11=- 1, m-u(a) must become zero. Hence,

Nu(a) = (1441)(23
	

(D.34)

where Q3 is a function of q only since variation of does

not affect the horizontal displacement of the point in

question. Since the strain variation across the beam is

parabolic, shear strain at 1=1_1 is zero. Hence,

for 1=-11:
Yxy = Z Nu (a) /ay = 0

i.e:	
Yxy = ( 1/0[43 + (1+11)(aQ3/a11)] = 0 	 (D.35)

Since the second term of the above equation becomes zero for

n.-1, its first term should also become zero for the same

value of 1. This follows that:

43 = P3(1+71)
	

(D.36)

where P3 is a linear function of Ti because yxy is a

parabolic function of 71. Substituting for Q from Eq D.36

into Eq D.35 and simplifying leads to:
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(1+71)(2P3) + (1+.0 2 (ap3 /all) . 0 (for n=f1)

Allowing for 1.1 .--+ 1 gives:

P3 + ( apvan) = 0

Setting:
P3= ATI + B

and substituting for P3 from Eq D.38 into Eq D.37 and

(D.37)

(D.38)

solving for B gives:

B = -2A

Substituting for value of B from the above equation and P3

from Eq D.38 and Q3 from Eq D.36 into Eq D.34 leads to:

Nu(a) = A(1+1)2(1-2)

This function should equal to +1 for 1=+1. This boundary

condition requires that:

A = -1/4

Hence:
Nu(a) = (1/4)(1411) 2 (2-11) 	 (D.39)

The shape function for the vertical displacement, u, is

simply determined as:

Nv(a) = 0	 (D.40)

Notice that the standard finite element

formulation (vide Eq 3.11) requires that the external work

done by the forces applied to the nodal points is equal to

the total strain energy absorbed by the element. Since the
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proposed shear deformation of Eq D.39 resulted from a set of

frictional forces acting over the area of element,

calculation of the external energy as a direct product of

the imaginary nodal displacement, X5, and the corresponding

nodal force, Fx5, is not applicable. The external energy

(due to such shearing deformation) may, however, be

calculated as follows:

W= iquciA

A

Where q denotes the function of the surface frictional

stresses as shown in Figs D.1(f) and D.3(a) and u is the

horizontal displacement function of the element induced by

these surface stresses given by Eq D.39. Examination of the

beam element showed that in order to avoid such an

integration, Eq D.39 may be adjusted by simply dividing it

by 1.2. This adjustment is an exact necessary and

sufficient allowance for the effect of the above integral

for beam elements of any material and geometry. Therefore

equation D.39 becomes:

Nu(a) = (1/4.8)( 1+1) 2 ( 2 -1) 	 (D.41)

Now the shearing displacement shape functions can be derived

from Eq D.32 and Eq D.33 using Eqs D.41, D.40, D.17, and

Eq D.18 to give:
t

NuX5 = (1/24)(-5113-181-12+2111-2)
	

(D.42)

Nvx5 = -(1/4)(1/Y)4(1-2)
	

(D.43)
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Figure D.3 Deformation of The Proposed Beam Flement Due to
Displacement of The Proposed Fictitous 5th Node
(a)pure shear, (b)shear-free bending and (c)com-
bination of a and b as the 5th node displacement
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D.2.5	 Proposed Shape Function for Relative Displacement

of the Centre Line of the Beam

In addition to the deformation discussed in

Sections D.2.2 to D.2.4, when the beam segment is subjected

to bending, another deformation mode is expected to occur as

shown in Fig D.1(e). This mode consists of displacement of

the centre line of the beam relative to its top and bottom

sides as a result of the effect of the Poisson's ratio and

the bending stress diagram across the beam. Such deformation

can be controlled by two more degrees of freedom operating

at the remote ends and immediately inside the element as

shown in Fig. D.4. Since the bending stress is linearly

distributed across the beam, the strain diagram resulting

from such stresses may also be taken as linear as shown in

Fig D.4(a) and (b). Consequently, the vertical displacement

function must be parabolic because it is the integral of the

vertical strain. The shape function for the left node (node

5) may, therefore, be expressed as:

NvY 5 = (1-4)P

where P(11) is a parabolic function of n. The factor (1-4)

permits this function to take the value of zero at the other

end of the element. At the left hand side of the element,

the value of the function must also become zero for 71.±1

and it must become unity for 71=0. These require that the

above shape function to be expressed as:

Nvy5 = (1/2)(1-4)(1-1 2 )
	

(D.44)



I

vertical st.rain
dia9ra.rn

i
(a)

Using the same procedure, the shape function for the

vertical displacement of node 6 results in:

Nvy6 = ( 1 /2 )( 1+) ( 1-71 2 )	 (D.45)

Since the vertical displacements of the fictitious nodes, Y5

and Y6, produce no horizontal displacement, therefore:

Nuy5 = 0	 and	 Nuy6 = 0	 (D.46)

( b)
verticat strain
dia3rarn

:
-

.,-

Figure D.4 Displacement of Centre Line of a Beam Due to
Effect of the Poisson's Ratio; (a)left end
moment, node 5, and (b)right end moment, node 6
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D.2.6	 The Proposed Beam Element Stiffness Matrix 

The shape functions of the proposed beam element

given in Sections D.2.2 to D.2.5 can be packed into Eq 3.5

to form N matrix. The B matrix of the element can then be

generated from Eq 3.7. This matrix can be used in Eq 3.11

to form the element K matrix. Notice that the eleventh

degree of freedom of the element, X6, is redundant and must

be set restrained so that singularity of the stiffness matrix

is prevented. The non-zero terms of the 3X12 [B] matrix are

listed for the principal axis of the element as follows:

131,1 = +(1/4)(1/a)(1-1-31)

B1 , 2 = +(3/8) (c/a2)(1-11)2

B1 , 3 = -B1,1 -(1/2)(1/a)

B1,4 m -(3/8)(c/a2)4(1+71)2

B1,5 m -B1,1 +(1/2)(1/a)1

B1,6 m -B1,4

B1,7 m -B1,5 +(1/2)(1/a)

B1,6 m -B1,2

B1,9 m -(3/2)(1/a)l

B2,2 m -(1/8)(1/c)(1-)2(2+)

.B2,4 m -B2,2

82,6 m + (1/8) (1/c) (1+0 2 (2-)

82,9 m -B2,6

82,10 m -(1/c)1(1-4)

B2,12 m -(1/c)1(1+4)

83,9 = + (5/8) (1/c) (1-12)

B3,10 m - (1/2) (1/a ) (1-T12)

83,12 -= + (1/2) (1/a) (1-12)
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The stations specified as; working, crack, peak, post peak

and ultimate in the first column of Tables E.1 to E.12,

correspond to the stations 1 to 5 shown on the corresponding

load deflection diagrams, Figs 6.3 to 6.7.

Tables E.13 to E.39 list the results of the

analysis of 27 finite element examples and tests of infilled

frames computed by program "ANALIF" using the previously

existing and also the proposed methods of analysis. The

following abbreviations and symbols represent the methods

and the finite element or test series data used in the

comparison programme:

Sc	 The Stafford Smith and Carter method(13).

SR	 The Stafford Smith and Riddington method(18).

M	 The Mainstone empirical method(9).

W The Wood plastic method(20).

W*	 The Wood method using the penalty factor

proposed by Ma(96).

L The Liauw et al plastic method(25).

P The author's proposed method

FE	 The finite element examples, comparison

Tables E.13 to E.21.

A	 The test carried out by Saneinejad(29),

comparison Tables E.22 to E.30.

M	 The test carried out in the Building Research

Station reported by Mainstone( 9 ), comparison

Tables E.31 to E.34.

SS	 The test carried out by Stafford Smith(12),

comparison Tables E.,35 to E.39.
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Table E.13 Analysis of Infilled Frame WMUR2

0 Data
General data:	 Frame Data:	 Inf ill Data

g=0.640	 E	 = 200.00 KN/mm2	 ac=11.300 N/mm2
K1=1.000	 Mpc=	 72.37 KNm	 at= 1.350
K2=0.667	 Mpb= 142.00	 E =18.460 KN/mm2
Ke=2.750	 Mpj=	 72.37	 Cc= 0.00175

0 =0.200	 LFT-0.00	 (strain)	 lxhxt=4734x2709x140 mm

W Results using the proposed method
Column	 Beam

Hc	 =	 688.00 KN	 a	 -	 0.126	 0.142
Ht	 = 1041.39	 0	 -	 0.200	 0.200
Huf =	 106.86	 an -	 10.622	 3.192 Nina-a

Eh	 =	 7.476	 mm	 T	 =	 2.226	 2.043
Ahx =	 3.267	 Ni = -100.05	 -185.92 KN
KO	 =	 184.05 KN/mm	 N2 =	 6.46	 6.14
Kc	 =	 92.03	 Si =	 502.07	 293.65
Mode=	 CC	 S2 -	 -6.14	 -6.46
Mj	 =	 -2.17 KNm	 M1 =	 -72.37	 -72.37 KNm

4	 = -0.0175	 M2 =	 12.39	 24.11

anb0=	 7.569	 N/mm2	 M3 =	 12.37	 24.06
w'	 = 4702	 mm	 M4 =	 -2.17	 -2.17

0 Table of Comparison

FE Test SC	 SR	 m	 W	 W*	 L P

He 833.00 864.60	 1120.31	 1257.67	 957.81	 451.64	 693.44 688.00
Ht N.a 1733.10	 1538.93 1014.26 1041.39
KO 192.60 330.97	 194.69	 198.86 184.05
Nc 104.56 0.00	 0.00	 7.67	 0.00	 0.00	 0.00 100.05
Nb 268.46 0.00	 0.00	 13.40	 0.00	 0.00	 0.00 185.92

Sc 560.29 597.58	 13.40	 478.90	 225.82	 693.44 502.07

Sb 400.36 341.96	 7.67	 274.05	 129.22	 396.81 293.65 i

M1 73.24 0.00	 80.94	 18.15	 72.37	 72.37	 72.3/ 72.37	 1

/43c 17.13 0.00	 72.37	 72.37	 72.37 12.37

Mb 1.08 0.00	 142.00	 142.00 < 66.67 24.06

M4 1.90 0.00	 80.94	 18.15	 72.37	 72.37	 72.37 2.17

Mode CC CC	 CC	 m1=0.154 CC

Xh= 8.18	 Q=0.022 mn=0.016	 m2=0.328

a = 0.192	 0.082	 m3=0.190

I:0 Table of Comparison,	 (Calculated/Test values) 	 X 100

:
. FE Test SC	 SR	 m	 w	 W*	 L P

He 833.00 104	 135	 151	 115	 54	 83 83-
ko 192.60 172	 101	 103 96

Note: N.a= Not applicable,	 N.r= Not recorded
*using the Ma's penalty factor
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Table E.14 Analysis of Infilled Frame MMUR2

a) Data
General data:	 Frame Data:	 Infill Data

LL =0.640	 E	 = 200.00 KN/mm2	 ac=11.300 N/mm2
K1=1.000	 Mpc= 321.00 KNm	 at= 1.350
K2=0.667	 Mpb= 142.00	 E =18.460 KN/mm2
Ke=2.750	 Mpj= 142.00	 EC= 0.00175
p =0.200	 LFT=0.00	 (strain)	 lxhxt=4734x2709x140 mm

b) Results using the proposed method
Column	 Beam

Hc	 = 1010.09 KN	 a	 -	 0.194	 0.170
Ht	 = 1041.39	 p	 -	 0.200	 0.200
Huf =	 209.67	 on =	 10.622	 3.773 N/mm2
Ah	 =	 9.173	 mm	 '1	 "'	 2.226	 2.415
Ahx =	 3.029	 Ni = -158.94	 -249.25 KN
KO	 =	 220.22 KN/mm	 N2 =	 5.19	 22.28
Kc	 =	 110.11	 Si =	 760.83	 419.08
Mode=	CC	 S2 =	 -22.28	 -5.19
Mj	 =	 3.85 KNm	 M1 = -142.00	 -142.00 KNm	 •
4	 = -0.0422	 M2 =	 52.64	 24.26
anb0-	 7.569	 N/mm2	 m3 -	 52.47	 24.23

4702	 mm	 m4 -	 3.85	 3.85

C) Table of Comparison

FE Test SC	 SR	 m	 w	 w*	 L P

Hc 1098.00 1443.35 1758.92 1844.59 1103.77	 660.72	 959.66 1010.09
Ht 1098.00 1866.42 1538.93 1200.43 1041.39
KO 211.10 408.84	 194.69	 209.49 220.22
Nc 146.00 0.00	 0.00	 24.51	 0.00	 0.00	 0.00 158.94
Nb 322.00 0.00	 0.00	 42.84	 0.00	 0.00	 0.00 249.25
Sc 776.00 938.09	 42.84	 551.89	 330.36	 959.66 760.83
Sb 506.00 536.81	 24.51	 315.81	 189.05	 549.16 419.08
M1 136.00 0.00	 127.06	 58.02	 142.00	 142.00	 142.00 142.00
M3c 65.00 0.00	 321.00	 321.00 <247.73 52.47
M3b 2.80 0.00	 142.00	 142.00 < 80.23 24.23
M4 14.30 0.00	 127.06	 58.02	 142.00	 142.00	 142.00 3.85

Mode CC CC	 CC	 m1=0.276 CC
Xh= 4.90	 Q=0.049 mn=0.031	 m2=0.377.
a - 0.32	 m =0.161	 m3=0.213

d) Table of Comparison,	 (Calculated/Test values) X 100

:. FE Test SC	 SR	 m	 w	 w*	 L P

.pc 1098.00 131	 160	 168	 101	 60	 87 92.
.lit 1098.00 170	 140	 109 95
KO 211.10 194	 92	 99 104

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.15 Analysis of Infilled Frame SMUR2

a) Data
General data:	 Frame Data:	 Infill Data
g =0.640	 E	 = 200.00 KN/mm2	 ac=11.300 N/mla
K1=1.000	 Mpc= 999.40 KNm	 at= 1.350
K2=0.667	 Mph= 142.00	 E =18.460 KN/mra
Ke=2.750	 Mpj= 142.00	 EC= 0.00175
0 =0.200	 LFT=0.00	 (strain)	 lxhxt=4734x2709x140 mm

b) Results using the proposed method
Column	 Beam

Hc	 = 1163.45 KN	 a	 -	 0.250	 0.156
Ht	 = 1041.39	 P	 =	 0.200	 0.200
Huf =	 209.67	 an =	 10.622	 4.487 N/mm2
Dh	 = 10.023	 mm	 T	 l=	 2.226	 2.872
Dhx =	 1.988	 Ni = -207.19	 -225.62 KN
KO	 =	 232.15 KN/mm	 N2 =	 4.13	 70.52
Kc	 =	 116.08	 Si =	 937.84	 458.58
Mode=	 CC	 S2 =	 -70.52	 -4.13
Mj	 =	 8.83 KNm	 M1 - -142.00	 -142.00 KNm
4	 = -0.1081	 M2 =	 153.73	 25.37
anb0=	 7.569	 N/mra	 M3 =	 152.06	 25.36
w'	 = 4702	 mm	 M4 =	 8.83	 8.83

c) Table of Comparison

FE Test Sc	 SR	 m	 w	 w*	 L P

Hc 1148.00 2117.69 2464.65 2586.34 1065.60	 660.72	 959.66 1163.45
Ht 1101.00 1955.30	 1538.93 1400.26 1041.39
KO 238.20 447.78	 194.69	 244.26 232.15
Mc 206.64 0.00	 0.00	 34.82	 0.00	 0.00	 0.00 207.19
Nb 217.30 0.00	 0.00	 60.85	 0.00	 0.00	 0.00 225.62
Sc 934.40 1314.48	 60.85	 532.80	 330.36	 959.66 937.84
Sb 472.20 752.20	 34.82	 304.89	 189.05	 549.16 458.58
M1 147.80 0.00	 178.05	 82.42	 142.00	 142.00	 142.00 142.00
M3c 152.90 0.00	 999.40	 999.40 <491.62 152.06
M3b 11.20 0.00	 142.00	 142.00 < 80.23 25.36
M4 19.40 0.00	 178.05	 82.42	 142.00	 142.00	 142.00 8.83

Mode CC CC	 CC	 m1=0.433 CC
Xh= 3.34	 Q=0.049 mn=0.031	 m2=0.377
a - 0.47	 in =0.161	 m3=0.213

d) Table of Comparison, 	 (Calculated/Test values) X 100

% FE Test SC	 SR	 m	 w	 w*	 L P

,Hc 1148.00 184	 215	 225	 93	 58	 84 101.
IHt 1101.00 178	 140	 127 95
KO 238.20 188	 82	 103 97

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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a) Data

General data:
g =0.640
K1=1.000
K2=0.667
Ke=2.750

Frame data:	 Inf ill data
E = 200.00 KN/mm2	 ac=11.300 N/mm2
Mpc= 999.40 KNm	 at= 1.350
Mpb= 62.35	 E =18.460 KN/mm2
Mpj= 62.35	 ec= 0.00175

0 =0.200	 LFT=0.00	 (strain)	 lxhxt=4734x2709x140 mm

b) Results using the proposed method
Column	 Beam

Hc	 = 978.71 KN a = 0.219 0.083
Ht	 = 1041.39 p	 = 0.200 0.200
Huf = 92.06 an = 10.622 6.908 N/mm2

Ah	 = 8.605	 mm T	 = 2.226 4.421
Ahx = 1.852 Ni = -182.36 -169.53 KN
KO	 = 227.47 KN/mm N2 = 2.72 73.94
Kc	 = 113.73 Si = 809.18 377.71
Mode= CC S2 = -73.94 -2.72
Mj	 = -0.43 KNm M1 = -62.35 -62.35 KNm
Q	 = -0.1313 M2 = 157.81 11.40
anb0= 7.569	 N/mn2 M3 = 155.97 11.40
w'	 = 4702	 mm M4 = -0.43 -0.43

c) Table of Comparison

Table E.16 Analysis of Infilled Frame SWUR2

FE Test SC	 SR	 m	 w	 w*	 L P

Hc 1038.00 2171.76 2519.94 2562.20 	 844.88	 416.31	 842.05 978.71
Ht 1038.00 1955.30	 1538.93 1370.50 1041.39
KO 234.60 447.78	 194.69	 242.82 227.47
Nc 224.80 0.00	 0.00	 12.09	 0.00	 0.00	 0.00 182.36
Nb 173.10 0.00	 0.00	 21.13	 0.00	 0.00	 0.00 169.53
Sc 865.40 1343.97	 21.13	 422.44	 208.15	 842.05 809.18
Sb 362.90 769.08	 12.09	 241.74	 119.11	 481.86 377.71
M1 53.25 0.00	 182.04	 28.62	 62.35	 62.35	 62.35 62.35
M3c 137.00 0.00	 999.40	 999.40	 <448.17 155.97
M3b 2.30 0.00	 62.35	 62.35 <	 46.64 11.40
M4 5.60 0.00	 182.04	 28.62	 62.35	 62.35	 62.35 0.43

Mode CC CC	 CC	 m1=0.417 CC
Xh= 3.25	 4=0.017 mn=0.013	 m2=0.250
a = 0.483	 m =0.071	 m3=0.187

d) Table of Comparison, 	 (Calculated/Test values)	 X 100

:
- FE Test SC	 SR	 m	 w	 w*	 L P

ilic 1038.00 209	 243	 247	 81	 40	 81 94.
'Ht 1038.00 188	 148	 132 100
KO 234.60 191	 83	 104 97

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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a)	 Data
General data: Frame data: Inf ill data
g =0.640 E	 = 200.00 KN/mm2 ac=11.300 N/mm2
K1=1.000 Mpc=	 72.37 KNm at= 1.350
K2=0.667 Mpb=	 62.35 E =18.460 KN/mm2
Ke=2.750 Mpj=	 62.35 EC= 0.00175
=0.200 LFT=0.00	 (strain) lxhxt=2709x2709x140 mm

b) Results using the proposed method
Column

Hc = 649.34 KN	 a =	 0.141
Ht = 691.20	 =	 0.200
Huf =	 92.06	 an =	 7.569
Ah = 6.280 mm	 T -	 4.844
Mix = 3.166	 Ni = -252.78
KO = 206.79 KN/mm	 N2 =	 5.44
Kc = 103.40	 Si = 397.30
Mode= CC	 S2 = -6.17
mj =	 -2.27 KNm	 M1 = -62.35

= -0.0187	 M2 =	 12.13
anb0= 7.569 N/mm2 	 M3 =	 12.10
w' = 3831	 mm	 M4 = -2.27

C) Table of Comparison

Beam
0.141
0.200
7.569 N/mar2
4.844

-252.05 KN
6.17

398.03
-5.44

-62.35 KNm
12.40
10.40
-2.27

Table E.17 Analysis of Infilled Frame WWUS2

FE Test SC	 SR	 m	 w	 W*	 L P

Hc 679.00 854.40	 735.96	 828.33	 655.06	 426.95	 643.64 649.34
Ht 679.00 905.10	 880.64	 671.99 691.20
KO 187.90 251.98	 129.22	 152.60 206.79
Nc 256.40 0.00	 0.00	 9.54	 0.00	 0.00	 0.00 252.78
Nb 258.70 0.00	 0.00	 9.54	 0.00	 0.00	 0.00 252.05
Sc 420.80 392.51	 9.54	 327.53	 213.47	 643.64 397.30
Sb 429.00 392.51	 9.54	 327.53	 213.47	 643.64 398.03
M1 54.32 0.00	 53.17	 12.92	 62.35	 62.35	 62.35 62.35
M3c 0.00 0.00	 72.37	 72.37 <	 69.45 12.10
M3b 1.65 0.00	 62.35	 62.35	 62.35 10.40
M4 0.00 0.00	 53.17	 12.92	 62.35	 62.35	 62.35 2.27
Mode CC CC	 CC	 m1=0.149 CC

Xh= 8.27	 Q=0.024 mn=0.041	 m2=0.143
a = 0.19	 m =0.186	 m3=0.187

d) Table of Comparison, 	 (Calculated/Test values) 	 X 100

;
- FE Test SC	 SR	 m	 w	 w*	 L P

,Hc 679.00 126	 108	 122	 96	 63	 95 96-
Ht 679.00 133	 130	 99 102
KO 187.90 134	 69	 81 110

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.18 Analysis of Infilled Frame MWUS2

a)	 Data
General data:	 Frame data:	 Inf ill data
Lt =0.640	 E	 = 200.00 KN/mm2	 ac=11.300 N/mm2
K1=1.000	 Mpc= 321.00 KNm	 at= 1.350
K2=0.667	 Mpb=	 62.35	 E =18.460 KN/mm2
Ke=2.750	 Mpj=	 62.35	 cc= 0.00175
0 =0.200	 LFT=0.00	 (strain)	 lxhxt=2709x2709x140 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 784.99 KN	 a	 =	 0.180	 0.180
Ht	 =	 691.20	 0	 =	 0.200	 0.200
Huf =	 92.06	 an =	 7.569	 7.569 N/mm2
Ah	 =	 7.406	 mm	 T	 =	 4.844	 4.844
Ahx =	 0.895	 Ni = -319.00	 -298.65 KN
KO	 =	 211.98 KN/mm	 N2 =	 12.35	 31.40
Kc	 =	 105.99	 Si =	 486.34	 503.35
Mode=	 CC	 S2 =	 -31.40	 -12.35
Mj	 =	 -20.99 KNm	 M1 =	 -62.35	 -62.35 KNm
Q	 = -0.0741	 M2 =	 49.25	 57.19
anb0=	 7.569	 N/mm2	 M3 =	 48.73	 6.46
w'	 = 3831	 mm	 M4 =	 -20.99	 -20.99

C) Table of Comparison

FE Test SC	 SR	 m	 w	 w*	 L P

Hc 747.00 1426.32	 1155.32	 1202.08	 877.28	 426.95	 643.64 784.99
Ht 684.00 966.65	 880.64	 786.76 691.20
KO 210.33 290.75	 129.22	 159.85 211.98
Nc 314.90 0.00	 0.00	 23.38	 0.00	 0.00	 0.00 319.00
Nb 225.00 0.00	 0.00	 23.38	 0.00	 0.00	 0.00 298.65
Sc 521.70 616.17	 23.38	 438.64	 213.47	 643.64 486.34
Sb 412.50 616.17	 23.38	 438.64	 213.47	 643.64 503.35
M1 68.20 0.00	 83.46	 31.67	 62.35	 62.35	 62.35 62.35
M3c 12.80 0.00	 321.00	 321.00 <182.88 48.73
M3b 9.10 0.00	 62.35	 62.35	 62.35 6.46
M4 0.36 0.00	 83.46	 31.67	 62.35	 62.35	 62.35 20.99

Mode CC CC	 CC	 m1=0.251 CC
Ah= 4.96	 Q=0.040 mn=0.041 	 m2=0.143
a =0.317	 m =0.186	 m3=0.187

d) Table of Comparison, 	 (Calculated/Test values)	 X 100
:.

FE Test SC	 SR	 m	 w	 w*	 L P

:tic 747.00 191	 155	 161	 117	 57	 86 105"
Ht 684.00 141	 129	 115 101
KO 210.33 138	 61	 76 101

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.19 Analysis of Infilled Frame SWUS2

a)	 Data
General data:	 Frame data:	 Inf ill data
g =0.640	 E	 = 200.00 KN/mm2	 Oc=11.300 N/mm2
K1=1.000	 Mpc= 999.40 KNm	 at- 1.350
K2=0.667	 Mpb=	 62.35	 E =18.460 KN/mm2
Ke=2.750	 Mpj=	 62.35	 EC= 0.00175
p =0.200	 LFT=0.00	 (strain)	 1xhxt=2709x2709x140 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 831.71 KN	 a	 =	 0.260	 0.153
Ht	 =	 691.20	 p	 =	 0.200	 0.200
Huf =	 92.06	 an =	 7.569	 6.226 N/mm2
Ah	 =	 8.289	 mm	 2	 =	 4.844	 3.985
Ahx =	 1.905	 Ni = -473.83	 -158.68 KN
KO	 =	 200.69 KN/mm	 N2 =	 3.28	 72.46
Kc	 =	 100.34	 Si =	 673.03	 357.87
Mode=	 CC	 S2 =	 -72.46	 -3.28
Mj	 =	 3.58 KNm	 M1 =	 -62.35	 -62.35 KNm
Q	 = -0.1484	 M2 =	 151.38	 11.12
anb0=	 7.569	 N/mm2	 M3 =	 148.90	 11.11
w'	 = 3831	 mm	 M4 =	 3.58	 3.58

C) Table of Comparison

FE Test SC	 SR	 m	 w	 w*	 L P

Hc 879.00 2092.71 1618.88 L660.66	 B77.2S	 426. .55	 543.64 831.71
Ht 714.00 1031.81	 880.64	 915.13 691.20
KO 246.60 310.13	 129.22	 186.13 200.69
Nc 428.20 0.00	 0.00	 30.91	 0.00	 0.00	 0.00 473.83
Nb 188.80 0.00	 0.00	 30.91	 0.00	 0.00	 0.00 158.68
Sc 690.40 863.40	 30.91	 438.64	 213.47	 643.64 673.03
Sb 396.40 863.40	 30.91	 438.64	 213.47	 643.64 357.87
M1 70.20 0.00	 116.95	 41.86	 62.35	 62.35	 62.35 62.35
M3c 68.70 0.00	 999.40	 999.40 <342.72 148.90
M3b 11.00 0.00	 62.35	 62.35	 62.35 11.11
M4 2.40 0.00	 116.95	 41.86	 62.35	 62.35	 62.35 3.58

Mode CC CC	 CC	 m1=0.417 CC
Xh= 3.38	 Q=0.038 mn=0.041 	 m2=0.143
a = 0.464	 in =0.186	 m3-0.187

d) Table of Comparison,	 (Calculated/Test values) X 100

:
- FE Test SC	 SR	 M	 W	 W*	 L P

Mc 879.00 238	 184	 191	 100	 49	 73 95.
lHt 714.00 145	 123	 128 97
KO 246.60 126	 52	 75 81

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.20 Analysis of Infilled Frame SSUS2

a)	 Data
General data:	 Frame data:	 Infill data
g =0.640	 E	 = 200.00 KN/mm2	 ac=11.300 N/mm2
K1=1.000	 Mpc= 999.40 KNm	 at= 1.350
K2=0.667	 Mpb= 501.60	 E =18.460 KN/rnrn2
Ke=2.750	 Mpj= 501.60	 cc= 0.00175
0 =0.200	 LFT=0.00	 (strain)	 1xhxt=2709x2709x140 mm

b) Results using the proposed method
Column	 Beam

Hc	 = 1665.04 KN	 a	 =	 0.333	 0.219
Ht	 =	 815.82	 p	 =	 -0.047	 -0.628

Huf =	 740.64	 an =	 7.980	 7.569 N/mm2
Ah	 =	 9.988	 mrn	 t	 =	 4.619	 4.844
Ahx =	 5.039	 Ni = -809.97	 -529.48 KN
KO	 =	 333.39 KN/mm	 N2 = -226.23	 -127.17
Kc	 =	 166.70	 Si = 1135.56	 854.84
Mode=	DC	 S2 =	 127.17	 226.23
Mj	 =	 298.01 KNm	 M1 = -501.60	 -501.60 KNm
Q	 =	 0.1803	 M2 =	 75.53	 -156.80
anb0=	 7.569	 N/mm2	 M3 =	 68.29	 -180.63
w'	 = 3831	 mm	 M4 =	 298.01	 298.01

C) Table of Comparison

FE Test SC	 SR	 M	 W	 W*	 L P

Hc 1530.00 1935.17	 1511.38 2109.75	 1325.63 1235.63 1490.63 1665.04
Ht 811.00 1031.81	 880.64 1192.73 815.82
KO 299.30 310.13	 129.22	 212.08 333.39
Nc 463.10 0.00	 0.00	 299.31	 0.00	 0.00	 0.00 809.97
Nb 610.20 0.00	 0.00	 299.31	 0.00	 0.00	 0.00 529.48
Sc 914.60 805.94	 299.31	 662.82	 617.82	 1490.63 1135.56
Sb 1084.40 805.94	 299.31	 662.82	 617.82	 1490.63 854.84
M1 472.20 0.00	 109.16	 405.42	 501.60	 501.60	 501.60 501.60
M3c 166.20 0.00	 <999.40 <999.40 <666.94 68.29
M3b 58.70 0.00	 <501.60 <501.60 <408.94 180.63
M4 139.50 0.00	 109.16	 405.42	 501.60	 501.60	 501.60 298.01

Mode DC S	 S	 m1=0.496 DC
Xh= 3.65	 Q=0.396 mn=0.329	 m2=0.406
a = 0.43	 m = 1.496	 m3=0.331

d) Table of Comparison,	 (Calculated/Test values)	 X 100

7.

-
FE Test SC	 SR	 M	 W	 w*	 L P

elic 1530.00 126	 99	 138	 87	 81	 97 109.
'Ht 811.00 127	 109	 147 101
KO 299.30 104	 43	 71 111

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.21 Analysis of Infilled Frame WWUB2

a)	 Data
General data:	 Frame data:	 Infill data

g =0.640	 E	 = 200.00 KN/man2	 ac=11.300 N/Hart2
K1=1.000	 Mpc=	 72.37 KNm	 at= 1.350
K2=0.667	 Mpb=	 62.35	 E =18.460 KN/mm2
Ke=2.750	 Mpj=	 62.35	 cc= 0.00175

p =0.200	 LFT=0.00	 (strain)	 1xhxt=4734x4734x140 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 653.35 KN	 a	 =	 0.080	 0.080
Ht	 = 1207.88	 p	 =	 0.200	 0.200
Huf =	 52.68	 an =	 7.569	 7.569 N/mm2

Ah	 =	 7.565	 mm	 'I	 =	 4.844	 4.844
Ahx =	 3.813	 Ni = -254.47	 -254.05 KN
KO	 =	 172.73 KN/mm	 N2 =	 3.75	 4.17
Kc	 =	 86.37	 Si =	 399.30	 399.71
Mode=	 CC	 S2 =	 -4.17	 -3.75
Mj	 =	 -5.30 KNm	 M1 =	 -62.35	 -62.35 KNm
4	 = -0.0126	 M2 =	 12.88	 13.04

anb0=	7.569	 N/mm2	 M3 =	 12.86	 11.04
w'	 = 6695	 mm	 m4 =	 -5.30	 -5.30

C) Table of Comparison

FE Test SC	 SR	 m	 w	 w*	 L P

Hc 696.00 1008.94	 910.91	 1039.10	 852.28	 426.95	 643.65 653.35
Ht N.a 1518.40	 1538.93	 1025.47 1207.88
KO 150.50 226.14	 129.22	 134.44 172.73
Nc 267.30 0.00	 0.00	 2.78	 0.00	 0.00	 0.00 254.47
Nb 270.70 0.00	 0.00	 2.78	 0.00	 0.00	 0.00 254.05
Sc 423.00 485.82	 2.78	 426.14	 213.48	 643.65 399.30
Sb 429.10 485.82	 2.78	 426.14	 213.48	 643.65 399.71
M1 57.60 0.00	 114.99	 6.59	 62.35	 62.35	 62.35 62.35
M3c 4.90 0.00	 72.37	 72.37 <	 69.80 12.86
M3b 3.90 0.00	 62.35	 62.35	 62.35 11.04
M4 0.90 0.00	 114.99	 6.59	 62.35	 62.35	 62.35 5.30

Mode CC CC	 CC	 m1=0.085 CC

Xh=12.24	 Q=0.005 mn=0.013 	 m2=0.082
m =0.061	 m3=0.173

d) Table of Comparison,	 (Calculated/Test values) X 100

1
FE Test SC	 SR	 m	 w	 w*	 L P

flic 696.00 145	 131	 149	 122	 61	 92 94-
KO 150.50 150	 86	 89 115

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.22 Analysis of Infilled Frame SSUSA1

a)	 Data
General data:	 Frame data:	 Infill data:
g =0.450	 E	 =175.0000 KN/mm2	 ac= 1.160 N/mm2
K1=1.000	 Mpc=	 0.3540 KNm	 at= 0.240
K2=0.667	 Mph=	 0.3540	 E = 1.800 KN/mm2
Ke=2.750	 Mpj=	 0.3540	 ec= 0.0011
0 =0.200	 LFT=	 0.0010 Strain	 lxhxt=300x300x14.05 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 2.201	 KN	 a	 =	 0.3329	 0.3333
Ht	 =	 1.727	 0	 = -0.7865	 -0.8112
Huf =	 4.720	 an =	 1.0787	 0.9515 N/mm2
Ah	 =	 1.377	 mm	 '1	 =	 0.2463	 0.1616
Ahx =	 0.739	 Ni = -0.6049	 -0.4572 KN
KO	 =	 3.197	 KN/mm	 N2 = -0.2593	 -0.2302
Kc	 =	 1.598	 Si =	 1.7437	 1.5960
Mode=	 DC	 S2 =	 0.2302	 0.2593
Mj	 =	 0.0446 KNm	 M1 = -0.1000	 -0.1000 KNm
Q	 =	 0.2645	 M2 =	 N.a	 N.a
anb0=	 1.113	 N/mm2	 M3 = -0.0014	 -0.0073
w'	 = 424.0	 mm	 M4 =	 0.0446	 0.0446

C) Table of Comparison

A	 Test SC	 SR	 m	 w	 10	 L P

Hc 2.3100 2.2378	 1.7447	 2.6911	 5.6184	 5.2847	 4.9226 2.2009
Ht 2.0000 2.0744	 1.7400	 1.5115 1.7268
KO 4.9700 3.0980	 1.2645	 2.2143 3.1966
Nc N.r 0.0000	 0.0000	 0.4732	 0.0000	 0.0000	 0.0000 0.6049
Nb N.r 0.0000	 0.0000	 0.4732	 0.0000	 0.0000	 0.0000 0.4572
Sc N.r 0.9305	 0.4132	 2.6092	 2.6424	 4.9226	 1.1431
Sb N.r 0.9305	 0.4732	 2.8092	 2.6424	 4.9226	 1.5960
M1 N.r 0.0000	 0.0140	 0.0710	 0.3540	 0.3540	 0.3540J	 0.1000
M3c N.r 0.0000	 <0.3540 <0.3540 <0.3540 0.0014
M3b N.r 0.0000	 <0.3540 <0.3540	 0.3540 0.0073
M4 N.r 0.0000	 0.0140	 0.0710	 0.3540	 0.3540	 0.3540 0.0446
Mode DC s	 s	 m1=0.959 DC

Ah= 3.60	 Q=0.542 mn=1.839 	 m2=0.959
m =8.358	 m3=1.086

d) Table of Comparison,	 (Calculated/Test values)	 X 100

r.

A	 Test SC	 SR	 m	 w	 w*	 L P

vlic 2.3100 97	 76	 116	 243	 229	 213 95-
at 2.0000 104	 87	 76 86
KO 4.9700 62	 25	 45 64

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.23 Analysis of Infilled Frame SSUSA2

a)	 Data
General data:	 Frame data: Inf ill data

g =0.450	 E	 =175.0000 KN/mm2 ac= 1.160 N/mm2
K1=1.000	 Mpc=	 0.3540 KNm at= 0.240
K2=0.667	 Mph=	 0.3540 E = 1.800 KN/mm2
Ke=2.750	 Mpj=	 0.3540 Cc= 0.0011

p =0.200	 LFT=	 0.0010 Strain lxhxt=300x300x25 mm

b) Results using the proposed method
Column Beam

Hc	 =	 3.642	 KN	 a	 =	 0.3327 0.3327
Ht	 =	 2.673	 0	 = -0.6781 -0.6774
Huf =	 4.720	 an =	 0.9149 0.9149 N/mm2

Ah	 =	 1.376	 mm	 T	 -	 0.4117 0.4117
Ahx =	 0.688	 Ni = -1.1931 -1.1931 KN
KO	 =	 5.292	 KN/mm	 N2 = -0.1656 -0.1657
Kc	 =	 2.646	 Si =	 2.4488 2.4489
Mode=	 DC	 S2 =	 0.1657 0.1656
Mj	 =	 0.0375 KNm	 M1 = -0.1262 -0.1262 KNm
Q	 =	 0.1001	 M2 =	 N.a N.a

anb0=	 0.915	 N/mm2	 M3 =	 0.0043 0.0043
w'	 = 424.0	 mm	 M4 =	 0.0375 0.0375

C) Table of Comparison

A	 Test SC	 SR	 m	 w w*	 L P

Hc 3.5000 3.4477	 2.7347	 3.6179	 6.2044 5.7249	 6.2425 3.6419
Ht 2.9500 3.5002	 3.0960	 2.1776 2.6732
KO 4.9600 5.2875	 2.2500	 3.3977 5.2917
Nc N.r 0.0000	 0.0000	 0.4416	 0.0000 0.0000	 0.0000 1.1931
Nb N.r 0.0000	 0.0000	 0.4416	 0.0000 0.0000	 0.0000 1.1931
Sc N.r 1.4585	 0.4416	 3.1022 2.8624	 6.2425 2.4488
Sb N.r 1.4585	 0.4416	 3.1022 2.8624	 6.2425 2.4489
M1 N.r 0.0000	 0.0219	 0.0662	 0.3540 0.3540	 0.3540 0.1262
M3c N.r 0.0000	 <0.3540 <0.3540 <0.3540 0.0043
M3b N.r 0.0000	 <0.3540 <0.3540 <0.3540 0.0043
M4 N.r 0.0000	 0.0219	 0.0662	 0.3540 0.3540	 0.3540 0.0375
Mode DC S S	 m1=0.719 DC

Ah= 4.16	 Q=0.323 mn=1.033 m2=0.719
m =4.697 m3=0.683

d) Table of Comparison,	 (Calculated/Test values)	 X 100

r. A	 Test SC	 SR	 m	 w w*	 L P

,Hc 3.5000 99	 78	 103	 177 164	 178 104.
Ht 2.9500 119	 105	 74 91
KO 4.9600 107	 45	 68 107

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.24 Analysis of Infilled Frame MMUSA3

a) Data
General data:	 Frame data:	 Inf ill data:

L =0.450	 E	 =200.0000 KN/mm2	 ac= 1.160 N/mm2
K1=1.000	 Mpc=	 0.1490 KNm	 at= 0.240
K2=0.667	 Mpb=	 0.1490	 E = 1.800 KN/mm2
Ke=2.750	 Mpj=	 0.1490	 EC= 0.0011

p =0.200	 LFT=	 0.0010 Strain	 lxhxt=300x300x20.3 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 2.550	 KN	 a	 =	 0.3327	 0.3327
Ht	 =	 1.973	 0	 = -0.3790	 -0.3786
Huf =	 1.987	 an =	 0.9149	 0.9149 N/mm2
Ah	 =	 1.376	 mm	 T	 =	 0.4117	 0.4117
Ahx =	 0.688	 Ni = -0.7651	 -0.7652 KN
KO	 =	 3.705	 KN/mm	 N2 =	 0.0691	 0.0691
Kc	 =	 1.853	 51 =	 1.7848	 1.7849
Mode=	 DC	 S2 = -0.0691	 -0.0691
Mj	 =	 -0.0001 KNm	 M1 = -0.0719	 -0.0719 KNm
Q	 =	 -0.0514	 M2 =	 0.0139	 0.0139
anb0=	 0.915	 N/mm2	 M3 =	 0.0137	 0.0137
w'	 = 424.0	 mm	 M4 = -0.0001	 -0.0001

C) Table of Comparison

A	 Test SC	 SR	 m	 w	 w*	 L l
P

Hc 2.2800 2.1621	 1.7689	 2.0877	 3.0993	 2.8026	 3.2229 2.5500
Ht 1.9600 2.7388	 2.5140	 1.3670 1.9732
KO 3.4000 4.0194	 1.8270	 2.5590 3.7051
Nc N.r 0.0000	 0.0000	 0.1041	 0.0000	 0.0000	 0.0000 0.7651
Nb N.r 0.0000	 0.0000	 0.1041	 0.0000	 0.0000	 0.0000 0.7652
Sc N.r 0.9434	 0.1041	 1.5497	 1.4013	 3.2229 1.7848
Sb N.r 0.9434	 0.1041	 1.5497	 1.4013	 3.2229 1.7849
M1 N.r 0.0000	 0.0142	 0.0156	 0.1490	 0.1490	 0.1490 0.0719
M3c N.r 0.0000	 <0.1490 <0.1490 <0.1490 0.0137
M3b N.r 0.0000	 <0.1490 <0.1490 <0.1490 0.0137
M4 N.r 0.0000	 0.0142	 0.0156	 0.1490	 0.1490	 0.1490 0.0001

Mode DC s	 s	 m1=0.518 DC
kh= 5.39	 0=0.111 mn=0.536	 m2=0.518

m =2.435	 m3=0.434

d) Table of Comparison,	 (Calculated/Test values) 	 X 100

% A	 Test SC	 SR	 m	 w	 w*	 L P

eHc 2.2800 95	 78	 92	 136	 123	 141 112.
'Ht 1.9600 140	 128	 70 101
KO 3.4000 118	 54	 75 109

Note: N.a= Not applicable, N.r= Not recorded
* using the Ma's penalty factor
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Table E.25 Analysis of Infilled Frame SSUSA4

a)	 Data
General data:	 Frame data:
g =0.450	 E	 =175.0000 KN/man2

Inf ill data:
ac=32.200 N/mm2

K1=1.000	 Mpc=	 0.3540 KNm at= 4.100
K2=0.667	 Mpb=	 0.3540 E =23.000 KN/mm2
Ke=2.750	 Mpj=	 0.3540 ec= 0.002
0 =0.200	 LFT=	 0.0020 Strain lxhxt=300x300x8.35 mm

b) Results using the proposed method
Column Beam

Hc	 =	 19.093	 RN	 a	 =	 0.2110 0.2110
Ht	 =	 13.865	 0	 =	 0.2000 0.2000
Huf =	 4.720	 an = 25.3969 25.3970 N/mm2
Ah	 =	 2.242	 mm	 T	 = 11.4286 11.4286
Ahx =	 1.121	 NJ. = -5.8552 -5.8553 KN
KO	 =	 17.032	 RN/mm	 N2 =	 0.1850 0.1850
Kc	 =	 8.516	 Si = 13.2377 13.2378
Mode=	CC	 S2 = -0.1850 -0.1850
Mj	 =	 0.0153 KNm	 M1 = -0.3540 -0.3540 KNm
Q	 =	 -0.0190	 M2 =	 0.0592 0.0592
anb0=	 25.397	 N/mm2	 M3 =	 0.0591 0.0591
w'	 = 424.0	 mm	 M4 =	 0.0153 0.0153

C) Table of Comparison

A	 Test SC	 SR	 m	 w w*	 L P

Hc 16.5800 22.2391	 18.4251 21.2511	 13.8522 13.2625	 18.8357 19.0930
Ht 14.2100 18.8821	 17.6653	 14.6601 13.8652
KO 15.7100 20.1653	 9.6025	 12.8276 17.0319
Nc N.r 0.0000	 0.0000	 0.7550	 0.0000 0.0000	 0.0000 5.8552
Nb N.r 0.0000	 0.0000	 0.7550	 0.0000 0.0000	 0.0000 5.8553
Sc N.r 9.8267	 0.7550	 6.9261 6.6312	 18.8357 13.2377
Sb N.r 9.8267	 0.7550	 6.9261 6.6312	 18.8357 13.2378
M1 N.r 0.0000	 0.1474	 0.1132	 0.3540 0.3540	 0.3540 0.3540
M3c N.r 0.0000	 <0.3540 <0.3540 <0.3540 0.0591
M3b N.r 0.0000	 0.3540 0.3540 <0.3540 0.0591
M4 N.r 0.0000	 0.1474	 0.1132	 0.3540 0.3540	 0.3540 0.0153
Mode CC SR SR	 m1=0.236 CC

Xh= 5.98	 Q=0.076 mn=0.111 m2=0.236
m =0.507 m3=0.222

d) Table of Comparison, 	 (Calculated/Test values) 	 X 100

:
, A	 Test SC	 SR	 M	 w w*	 L P	 P**

efic 16.5800 134	 111	 128	 84 80	 114 115 109
' Ht. 14.2100 133	 124	 103 98	 98
KO 15.7100 128	 61	 82 108	 101

Note: N.a= Not applicable, N.r = Not recorded
* Using the Ma's penalty factor,	 ** Allowing for variable Kl
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a) Data
General data:
Ii. =0.450
K1=1.000
K2=0.667
Ke=2.750
=0.200

Frame data:
E =175.0000 KN/mm2
Mpc= 0.3540 KNm
Mpb= 0.3540
Mpj= 0.3540
LFT= 0.0020 Strain

Infill data:
ac=32.200 N/mm2
at= 4.100
E =23.000 KN/mm2
cc= 0.00200
lxhxt=300x300x14.9 mm

b) Results using the proposed method
Column

Hc	 = 25.590 KN a	 = 0.1579
Ht	 = 24.741 = 0.2000
Huf = 4.720 an = 25.3969
Ah	 = 2.059 mm T	 = 11.4286
Ahx = 1.030 Ni = -7.8643
KO	 = 24.856 KN/mm N2 = 0.2044
Kc	 = 12.428 Si = 17.7260
Mode= CC S2 = -0.2044
Mj	 = 0.0095 KNm M1 = -0.3540
Q	 = -0.0157 M2 = 0.0612
anb0= 25.397 N/mm2 M3 = 0.0611
w'	 = 424.0 mm M4 = 0.0095

C) Table of Comparison

Beam
0.1579
0.2000
25.3970 N/En2
11.4286
-7.8643 KN
0.2044

17.7261
-0.2044
-0.3540 KNm
0.0612
0.0611
0.0095

Table E.26 Analysis of Infilled Frame SSUSA5

A	 Test SC SR m w w* L P

Hc 25.4900 34.3354 28.9455 32.7788 20.6882 17.7163 26.7084 25.5903
Ht 23.9700 32.3979 31.5224 24.3100 24.7415
KO 16.4000 34.2700 17.1350 21.5752 24.8556
Nc N.r 0.0000 0.0000 0.7022 0.0000 0.0000 0.0000 7.8643
Nb N.r 0.0000 0.0000 0.7022 0.0000 0.0000 0.0000 7.8643
Sc N.r 15.4376 0.7022 10.3441 8.8582 26.7084 17.7260
Sb N.r 15.4376 0.7022 10.3441 8.8582 26.7084 17.7261
M1 N.r 0.0000 0.2316 0.1053 0.3540 0.3540 0.3540 0.3540
M3c N.r 0.0000 0.3540 <0.3540 <0.3540 0.0611
M3b N.r 0.0000 0.3540 0.3540 0.3540 0.0611
M4 N.r 0.0000 0.2316 0.1053 0.3540 0.3540 0.3540 0.0095
Mode CC CC SR m1=0.177 CC

Xh= 6.91 4=0.045 mn=0.062 m2=0.177
m =0.284 m3=0.198

d) Table of Comparison, (Calculated/Test values) X 100

11

-
A	 Test SC SR m w w* L P	 P*

elic 25.4900 135 114 129 81 70 105 100	 98
'Ht 23.9700 135 132 101 103 103
KO 16.4000 209 104 132 152 147

Note: N.a= Not applicable, N.r= Not recorded
* Using the Ma's penalty factor,	 ** Allowing for variable K1
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a) Data
General data:
g =0.450
K1=1.000
K2=0.667
Ke=2.750
5 =0.200

Frame data:
E =175.0000 KN/mm2
Mpc= 0.3540 KNm
Mpb= 0.3540
Mpj= 0.3540
LFT= 0.0020 Strain

Inf ill data:
ac=32.200 N/mm2
at= 4.100
E =23.000 KNimm2
Cc= 0.00200
lxhxt=300x300x19.5 mm

b) Results using the proposed method
Column

KN	 a = 0.1381
= 0.2000

an = 25.3969
mm	 T = 11.4286

Ni = -9.0190
KN/mm	 N2 = 0.2115

Si = 20.3008
S2 = -0.2115

Mj =	 0.0073 KNm	 M1 = -0.3540

	

= -0.0142	 M2 = 0.0621
anb0= 25.397 N/mm2	 M3 = 0.0620
w' = 424.0	 mm	 M4 = 0.0073

C) Table of Comparison

Hc = 29.320
Ht = 32.380
Huf = 4.720
Dh = 1.985
Dhx = 0.993
KO = 29.535
Kc = 14.767
Mode= CC

Beam
0.1381
0.2000

25.3970 Nimm2
11.4286
-9.0190 KN
0.2115

20.3009
-0.2115
-0.3540 KNm
0.0621
0.0620
0.0073

A	 Test SC SR W*

Hc 33.8300 42.0125 35.7043 40.2672 25.9261 20.2674 30.5542 29.3198
Ht 31.5700 42.3999 41.2542 30.8852 32.3798
KO 23.9000 44.8500 22.4250 27.5401 29.5350
Nc -1.0000 0.0000 0.0000 0.6790 0.0000 0.0000 0.0000 9.0190
Nb -1.0000 0.0000 0.0000 0.6790 0.0000 0.0000 0.0000 9.0190
Sc -1.0000 19.0423 0.6790 12.9631 10.1337 30.5542 20.3008
Sb -1.0000 19.0423 0.6790 12.9631 10.1337 30.5542 20.3009
M1 -1.0000 0.0000 0.2856 0.1019 0.3540 0.3540 0.3540 0.3540
M3c -1.0000 0.0000 0.3540 0.3540 <0.3540 0.0620
M3b -1.0000 0.0000 0.3540 0.3540 0.3540 0.0620
M4 -1.0000 0.0000 0.2856 0.1019 0.3540 0.3540 0.3540 0.0073

Mode CC CC CC m1=0.154 CC
XII= 7.40 Q=0.035 mn=0.048 m2=0.154

m =0.217 m3=0.191

d) Table of Comparison, (Calculated/Test values) X 100

e•c
St
KO

33.8300
31.5700
23.9000

124
134
188

106
131
94

119
98

115

77 60 90 87	 86
103 103
124 123

A Test
	

SC	 SR
	

W*

Table E.27 Analysis of Infilled Frame SSUSA6

Note: N.a= Not applicable, N.r= Not recorded
* Using the Ma's penalty factor, 	 ** Allowing for variable Kl
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a) Data
General data:
g =0.450
K1=1.000
K2=0.667
Ke=2.750
p =0.200

Frame data:
E =200.0000 KN/mm2
Mpc= 0.1490 KNm
Mpb= 0.1490
Mpj= 0.1490
LFT= 0.0020 Strain

Infill data:
ac=32.200 N/mm2
at= 4.100
E =23.000 KN/mm2
cc= 0.002
lxhxt=300x300x9.55 mm

b) Results using the proposed method
Column

Hc = 13.283 KN	 a = 0.1280
Ht = 15.858	 p = 0.2000
Huf =	 1.987	 an = 25.3969

Ah =	 1.947 mm	 T = 11.4286
Ahx =	 0.973	 Ni = -4.0804
KO = 13.646 KN/mm	 N2 = 0.1105
Kc =	 6.823	 Si = 9.2025
Mode=	 CC	 S2 = -0.1105
Mj = -0.0034 KNm	 M1 = -0.1490
Q	 = -0.0164	 M2 = 0.0256

anb0= 25.397 N/mm2	 M3 = 0.0256
w' = 424.0	 mm	 M4 = -0.0034

Beam
0.1280
0.2000

25.3969 N/mm2
11.4286
-4.0804 KN
0.1105
9.2025

-0.1105
-0.1490 KNm
0.0256
0.0256
-0.0034

C) Table of Comparison

Table E.28 Analysis of Infilled Frame MMUSA7

A	 Test SC	 SR	 M	 w	 w*	 L P

Hc 11.5600 18.0315	 15.0619	 17.5076	 11.9334	 9.2018	 13.8723 13.2829
Ht N.a 20.3498	 20.2040	 14.3445 15.8578
KO 11.5600 20.8668	 10.9825	 12.8770 13.6461
Nc N.r 0.0000	 0.0000	 0.1807	 0.0000	 0.0000	 0.0000 4.0804
Nb N.r 0.0000	 0.0000	 0.1807	 0.0000	 0.0000	 0.0000 4.0804
Sc N.r 8.3033	 0.1807	 5.9667	 4.6009	 13.8723 9.2025
Sb N.r 8.3033	 0.1807	 5.9667	 4.6009	 13.8723 9.2025
M1 N.r 0.0000	 0.1245	 0.0271	 0.1490	 0.1490	 0.1490 0.1490
M3c N.r 0.0000	 0.1490	 0.1490 <0.1490 0.0256
M3b N.r 0.0000	 0.1490	 0.1490	 0.1490 0.0256
M4 N.r 0.0000	 0.1245	 0.0271	 0.1490	 0.1490	 0.1490 0.0034
Mode CC CC	 CC	 m1=0.143 CC

Xh= 8.44	 Q=0.021 mn=0.041	 m2=0.143
m =0.186	 m3=0.187

d)	 Table of Comparison,	 (Calculated/Test values) 	 X 100

%

A	 Test SC	 SR	 M	 w	 w*	 L P

9-ic 11.5600 156	 130	 151	 103	 80	 120 115-
KO 11.5600 181	 95	 111 118

Note: N.a= Not applicable, N.r= Not recorded
* Using the Ma's penalty factor,	 ** Allowing for variable Kl
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Table E.29 Analysis of Infilled Frame MMUSA8

a)	 Data
General data:	 Frame data:	 Inf ill data:

Ii =0.450	 E	 =200.0000 KN/mm2	 ac=32.200 N/mn2
1(1=1.000	 Mpc=	 0.1490 KNm	 at= 4.100
K2=0.667	 Mph=	 0.1490	 E =23.000 KN/nn2
Ke=2.750	 Mpj=	 0.1490	 cc= 0.002
0 =0.200	 LFT=	 0.0020 Strain	 lxhxt=300x300x21.25 mm

b) Results using the proposed method
column	 Beam

Hc	 =	 19.913	 KN	 a	 =	 0.0858	 0.0858
Ht	 =	 35.286	 0	 =	 0.2000	 0.2000
Huf =	 1.987	 an = 25.3969	 25.3969 N/mn2
Dh	 =	 1.772	 mm	 T	 = 11.4286	 11.4286
Dhx =	 0.886	 Ni = -6.1364	 -6.1364 KN
KO	 =	 22.475	 KN/mm	 N2 =	 0.1151	 0.1151
Kc	 =	 11.238	 Si = 23.7770	 21.7770
Mode=	 CC	 S2 = -0,1151	 -0,1151	 I
mi	 =	 -0.0047 KNm	 M1 = -0.1490	 -0.1490 KNm
4	 =	 -0.0114	 M2 =	 0.0268	 0.0268
anb0=	 25.397	 N/mm2	 M3 =	 0.0268	 0.0268
w'	 = 424.0	 mm	 M4 = -0.0047	 -0.0047

C) Table of Comparison

A	 Test SC	 SR	 m	 w	 w*	 L P

Hc 26.6200 32.8510 29.0529	 32.8397 20.2750	 13.7262 20.6931 19.9134
Ht N.a 44.3568	 44.9565 29.7355 35.2856
KO 23.6600 45.2094 24.4375 26.8375 22.4754
Nc N.r 0.0000	 0.0000	 0.1635	 0.0000	 0.0000	 0.0000 6.1364
Nb N.r 0.0000	 0.0000	 0.1635	 0.0000	 0.0000	 0.0000 6.1364
Sc N.r 15.4949	 0.1635	 10.1375	 6.8631 20.6931 13.7770
Sb N.r 15.4949	 0.1635	 10.1375	 6.8631 20.6931 13.7770
M1 n.r 0.0000	 0.2324	 0.0245	 0.1490	 0.1490	 0.1490 0.1490
M3c N.r 0.0000	 0.1490	 0.1490 <0.1490 0.0268
M3b N.r 0.0000	 0.1490	 0.1490	 0.1490 0.0268
M4 N.r 0.0000	 0.2324	 0.0245	 0.1490	 0.1490	 0.1490 0.0047
Mode CC CC	 CC	 m1=0.096 CC

Xh=10.31	 4=0.010 mn=0.018	 m2=0.096
m =0.084	 m3=0.176

d) Table of Comparison,	 (Calculated/Test values) X 100

;
A	 Test SC	 SR	 m	 w	 w*	 L P	 P**

eHc 26.6200 123	 109	 123	 76	 52	 78 75	 79
'K0 23.6600 191	 103	 113 95 101

Note: N.a= Not applicable, N.r= Not recorded
* Using the Ma's penalty factor, 	 ** Allowing for variable Kl

- E32 -



Table E.30 Analysis of Infilled Frame WWUSA9

a)	 Data
General data:	 Frame data: Inf ill data:

g =0.450	 E	 =197.0000 KN/mm2 ac=32.200 N/mra
K1=1.000	 Mpc=	 0.0670 KNm at= 4.100
K2=0.667	 Mpb=	 0.0670 E =23.000 KN/mm2
Ke=2.750	 Mpj=	 0.0670 Cc= 0.002

0 =0.200	 LFT=	 0.0020 Strain lxhxt=300x300x26.4 mm

b) Results using the proposed method
Column Beam

Hc	 =	 14.938	 KN	 a	 =	 0.0516 0.0516
Ht	 =	 43.837	 0	 =	 0.2000 0.2000
Huf =	 0.893	 an = 25.3969 25.3969 N/gur0
Dh	 =	 1.608	 mm	 T	 = 11.4286 11.4286
Dhx =	 0.804	 N1 = -4.6136 -4.6136 KN
KO	 =	 18.583	 KN/mm	 N2 =	 0.0589 0.0589
Kc	 =	 9.292	 51 = 10.3244 10.3244
Mode=	 CC	 S2 = -0.0589 -0.0589
Mj	 =	 -0.0043 KNm	 M1 = -0.0670 -0.0670 KNm
4	 =	 -0.0078	 M2 =	 0.0125 0.0125
anb0=	 25.397	 N/mm2	 m3 =	 0.0125 0.0125
w'	 = 424.0	 mm	 M4 = - 0.0043 -0.0043

C) Table of Comparison

A	 Test SC	 SR	 m	 w w*	 L P

Hc 22.7600 28.1223 26.0076 30.0600 	 16.3682 10.2593	 15.4665 14.9380
Ht N.a 55.1068	 55.8518	 32.7897 43.8372
KO 22.9900 51.6120	 30.3600	 29.6967 18.5834
Nc N.r 0.0000	 0.0000	 0.0375	 0.0000 0.0000	 0.0000 4.6136
Nb N.r 0.0000	 0.0000	 0.0375	 0.0000 0.0000	 0.0000 4.6136
Sc N.r 13.8707	 0.0375	 8.1841 5.1297	 15.4665 10.3244
Sb N.r 13.8707	 0.0375	 8.1841 5.1297	 15.4665 10.3244
M1 N.r 0.0000	 0.2081	 0.0056	 0.0670 0.0670	 0.0670 0.0670
M3c N.r 0.0000	 0.0670 0.0670 <0.0670 0.0125
M3b N.r 0.0000	 0.0670 0.0670	 0.0670 0.0125
M4 N.r 0.0000	 0.2081	 0.0056	 0.0670 0.0670	 0.0670 0.0043
Mode CC CC CC	 m1=0.058 CC

Xh=14.96	 Q=0.003 mn=0.007 m2=0.058
m =0.030 m3=0.170

d) Table of Comparison, 	 (Calculated/Test values) X 100

: A	 Test SC	 SR	 m	 w w*	 L P	 P**-

,Hc 22.7600 124	 114	 132	 72 45	 68 66	 82
'K0 22.9900 224	 132	 129 81 104

Note: N.a= Not applicable, N.r= Not recorded
* Using the Ma's penalty factor,	 ** Allowing for variable Kl
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Table E.31 Analysis of Infilled Frame WWUSM1

a)	 Data
General data:	 Frame data:	 Infill data:
g =0.450	 E	 =200.0000 KN/mm2	 ac=18.240 N/mm2
K1=1.000	 Mpc=	 0.6100 KNm	 at= 2.190
K2=0.667	 Mpb=	 0.6100	 E =18.000 KN/mm2
Ke=2.750	 Mpj=	 0.6100	 EC= 0.00175
p =0.200	 LFT=	 0.0020 Strain	 1xhxt=387x387x18.75 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 28.213	 KN	 a	 =	 0.1904	 0.1904
Ht	 =	 21.453	 p	 =	 0.2000	 0.2000
Huf =	 6.305	 an = 14.3863	 14.3863 N/mm2
Dh	 =	 2.646	 mm	 T	 =	 6.4738	 6.4738
Dhx =	 1.323	 Ni = -8.6415	 -8.6415 KN
KO	 =	 21.323	 KN/mm	 N2 =	 0.3010	 0.3010
Kc	 =	 10.661	 Si = 19.5712	 19.5712
Mode=	 CC	 S2 = -0.3010	 -0.3010
Mj	 =	 0.0055 KNm	 M1 = -0.6100	 -0.6100 KNm
Q	 =	 -0.0209	 M2 =	 0.1000	 0.1000 ,
anb0=	 14.386	 N/mm2	 M3 =	 0.0998	 0.0998
w'	 = 547.0	 mm	 M4 =	 0.0055	 0.0055

C) Table of Comparison

M	 Test SC	 SR	 m	 w	 w*	 L P

Hc 28.6000 30.4935 25.8141 29.1622 20.9309	 19.6349 29.4669 28.2128
Ht 26.8000 28.0919 27.3328 22.0073 21.4531
KO 22.8500 33.7500	 16.8750 20.9772 21.3228
Nc N.r 0.0000	 0.0000	 0.5520	 0.0000	 0.0000	 0.0000 8.6415
Nb N.r 0.0000	 0.0000	 0.5520	 0.0000	 0.0000	 0.0000 8.6415
Sc N.r 13.7675	 0.5520	 10.4654	 9.8175 29.4669 19.5712
Sb N.r 13.7676	 0.5520	 10.4654	 9.8175 29.4669 19.5712
M1 N.r 0.0000	 0.2664	 0.1068	 0.6100	 0.6100	 0.6100 0.6100
M3c N.r 0.0000	 <0.6100 <0.6100 <0.6100 0.0998
M3b N.r 0.0000	 0.6100	 0.6100 <0.6100 0.0998
M4 N.r 0.0000	 0.2664	 0.1068	 0.6100	 0.6100	 0.6100 0.0055
Mode CC SR	 SR	 m1=0.213 CC

Xh= 7.16	 Q=0.039 mn=0.091	 m2=0.213
m =0.412	 m3=0.212

d) Table of Comparison, 	 (Calculated/Test values)	 X 100

:
M	 Test SC	 SR	 m	 w	 w*	 L P	 P**

?10 28.6000 107	 90	 102	 73	 69	 103 99	 95
' Ht 26.8000 105	 102	 82 80	 80
KO 22.8500 148	 74	 92 93	 89

Note: N.a= Not applicable, N.r= Not recorded,
* Using the Ma's penalty factor,	 ** Allowing for variable Kl
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Table E.32 Analysis of Infilled Frame WWURM2

a) Data
General data:	 Frame data: Inf ill data:

L =0.450	 E	 =200.0000 KN/mm2 ac=19.000 N/mm2
K1=1.000	 Mpc=	 0.6100 KNm at= 2.280
K2=0.667	 Mpb=	 0.6100 E =18.600 KN/mm2
Ke=2.750	 Mpj=	 0.6100 ec= 0.00175

0 =0.200	 LFT=	 0.0020 Strain 1xhxt=591x387x18.75 mm

b) Results using the proposed method
Column Beam

Hc	 =	 28.144	 KN	 a	 =	 0.1701 0.1701
Ht	 =	 31.264	 0	 =	 0.2000 0.2000
Huf =	 6.305	 an = 18.0202 7.7269 N/mart2

Ah	 =	 2.894	 mm	 T	 =	 3.4771 3.4771
Mix =	 1.145	 Ni = -4.0786 -6.2285 KN
KO	 =	 19.448	 KN/mm	 N2 =	 0.2130 0.3252
Kc	 =	 9.724	 Si = 21.9156 14.3508
Mode=	 CC	 S2 = -0.3252 -0.2130
Mj	 =	 -0.0039 KNm	 M1 = -0.6100 -0.6100 KNm

4	 =	 -0.0226	 M2 =	 0.1007 0.1007

anb0=	 14.986	 N/mar2	 M3 =	 0.1006 0.1006
se	 = 648.0	 mm	 M4 = -0.0039 -0.0039

0 Table of Comparison

M	 Test SC	 SR	 m	 w w*	 L P

Hc 32.1400 32.1981	 38.0919	 42.3259	 30.9615 21.1375 30.2111 28.1441
Ht N.r 47.0589	 43.4562	 31.7254 31.2638
KO 26.7400 46.3766	 24.4087	 27.7078 19.4484
Nc N.r 0.0000	 0.0000	 0.3167	 0.0000 0.0000	 0.0000 4.0786
Nb N.r 0.0000	 0.0000	 0.4837	 0.0000 0.0000	 0.0000 6.2285
Sc N.r 20.3157	 0.4837	 15.4808 10.5688	 30.2111 21.9156
Sb N.r 13.3032	 0.3167	 10.1372 6.9207	 19.7829 14.3508
M1 N.r 0.0000	 0.3931	 0.0936	 0.6100 0.6100	 0.6100 0.6100
M3c N.r 0.0000	 0.6100 0.6100	 0.6100 0.1006
M3b N.r 0.0000	 0.6100 0.6100 <0.6100 0.1006
M4 N.r 0.0000	 0.3931	 0.0936	 0.6100 0.6100	 0.6100 0.0039
Mode CC CC CC	 m1=0.209 CC

Xh= 7.06	 Q=0.023 mn=0.037 m2=0.319
m =0.178 m3=0.210

cl) Table of Comparison, 	 (Cal	 ated/Test values) 	 X 100

:
- M	 Test SC	 SR	 m	 w W*	 L P

=Ho 32.1400 100	 119	 132	 96 66	 94 88	 85
KO 26.7400 173	 91	 104 73	 70

Note: N.a= Not applicable, N.r= Not recorded
*Using the Ma's penalty factor,	 ** Allowing for variable Kl
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Table E.33 Analysis of Infilled Frame WWURM3

a) Data
General data:	 Frame data: Infill data:

L =0.450	 E	 =200.0000 KN/mm2 ac=16.720 N/mm2

K1=1.000	 Mpc=	 0.6100 KNm at= 2.000

K2=0.667	 Mph=	 0.6100 E =17.600 KN/mm2

Ke=2.750	 Mpj=	 0.6100 cc= 0.00175

0 =0.200	 LFT=	 0.0020 Strain lxhxt=794x387x18.75 mm

b) Results using the proposed method
Column Beam

Hc	 =	 25.240	 KN	 a	 =	 0.1781 0.1781

Ht	 =	 31.662	 p	 =	 0.2000 0.2000

Huf =	 6.305	 an = 16.4405 3.9057 N/mm2

Ah	 =	 3.301	 MM	 T	 =	 1.7576 1.7576

Ahx =	 1.082	 Ni = -2.1095 -4.3281 KN
KO	 =	 15.294	 KN/mm	 N2 =	 0.1615 0.3314

Kc	 =	 7.647	 Si = 20.9123 10.1928

Mode=	 CC	 S2 = -0.3314 -0.1615

Mj	 =	 -0.0062 KNm	 M1 = -0.6100 -0.6100 KNm

Q	 =	 -0.0256	 M2 =	 0.0993 0.0993

anb0=	 13.187	 N/mm2	 M3 =	 0.0992 0.0992
w'	 = 696.0	 mm	 M4 = -0.0062 -0.0062

0 Table of Comparison

M	 Test SC	 SR	 M	 W W*	 L P

Hc 27.5800 29.8381	 40.5024	 44.6838	 29.5646 19.0707 27.5367 25.2404

Ht N.r 58.7044 51.2130 32.6378 31.6620

KO 25.3400 47.9975 26.6653 26.3774 15.2942

Nc N.r 0.0000	 0.0000	 0.2168	 0.0000 0.0000	 0.0000 2.1095

Nb N.r 0.0000	 0.0000	 0.4448	 0.0000 0.0000	 0.0000 4.3281

Sc N.r 21.6013	 0.4448	 14.7823 9.5353 27.5367 20.9123

Sb N.r 10.5286	 0.2168	 7.2050 4.6476	 13.4215 10.1928

M1 N.r 0.0000	 0.4180	 0.0861	 0.6100 0.6100	 0.6100 0.6100

M3c N.r 0.0000	 0.6100 0.6100	 <0.6100 0.0992

M3b N.r 0.0000	 0.6100 0.6100 <0.6100 0.0992
M4 N.r 0.0000	 0.4180	 0.0861	 0.6100 0.6100	 0.6100 0.0062

Mode CC CC CC	 m1=0.222 CC

kh= 6.71	 Q=0.020 mn=0.024 m2=0.456
m =0.131 m3=0.216

cl) Table of Comparison,	 (Cal	 ated/Test values) 	 X 100

:
M	 Test SC	 SR	 M	 w w*	 L P	 P**

eft 27.5800 108	 147	 162	 107 69	 100 92	 89

'K0 25.3400 189	 105	 104 60	 58

Note: N.a= Not applicable, N.r = Not recorded, using P from Ma's work

*Using the Ma's penalty factor,	 ** Allowing for variable Kl
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Table E.34 Analysis of Infilled Frame WWUSM4

a)	 Data
General data:	 Frame data:	 Inf ill data:

m =0.450	 E	 =200.0000 KN/mm2	 sc=22.960 N/rturt2
K1=1.000	 Mpc= 12.2000 KNm	 st= 2.760
K2=0.667	 Mpb= 12.2000	 E =20.600 KN/mm2
Ke=2.750	 Mpj=	 0.6100	 ec= 0.00175
b =0.200	 LFT=	 0.0020 Strain	 lxhxt=387x387x18.75 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 55.155	 KN	 a	 =	 0.3327	 0.3327
Ht	 =	 27.037	 p	 =	 0.1807	 0.1806
Huf =	 6.305	 an = 18.1090	 18.1091 N/mm2
Dh	 =	 3.142	 mm	 T	 =	 8.1491	 8.1491
Dhx =	 1.571	 Ni =-15.5532	 -15.5544 KN
KO	 =	 35.113	 KN/mm	 N2 =	 4.1220	 4.1215
Kc	 =	 17.557	 Si = 39.6008	 39.6021
Mode=	 SDC	 S2 = -4.1215	 -4.1220
Mj	 =	 0.6100 KNm	 M1 = -0.6100	 -0.6100 KNm
Q	 =	 -0.1300	 M2 =	 1.6993	 1.6995
anb0=	 18.109	 Winin2	 M3 =	 1.6743	 1.6744
w'	 = 547.0	 mm	 M4 =	 0.6100	 0.6100

C) Table of Comparison

M	 Test SC	 SR	 M	 w	 W*	 L P

Hc 64.2000 82.8169	 63.9283 70.2333 26.5684 22.0294 35.4605 55.1552
Ht 33.2000 40.3600	 34.4469 37.9161 27.0368
KO 24.7200 48.2813	 19.3125	 45.4205 35.1134
Nc N.r 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000 15.5532
Nb N.r 0.0000	 0.0000	 0.0000	 0.0000	 0.0000	 0.0000 15.5544
Sc N.r 34.0951	 0.0000	 13.2842	 11.0147	 35.4605 39.6008
Sb N.r 34.0951	 0.0000	 13.2842	 11.0147	 35.4605 39.6021
M1 N.r 0.0000	 0.6597	 0.0000	 0.6100	 0.6100	 0.6100 0.6100
M3c N.r 0.0000	 12.2000<12.2000<12.2000 1.6743
M3b N.r 0.0000	 12.2000	 12.2000<12.2000 1.6744
M4 N.r 0.0000	 0.6597	 0.0000	 0.6100	 0.6100	 0.6100 0.6100

Mode DC CC	 SR	 m1=0.615 SDC
Xh= 3.32	 Q=0.099 mn=0.072	 m2=0.615

m =0.328	 m3=0.203

d) Table of Comparison,	 (Calculated/Test values) X 100

7.
M	 Test SC	 SR	 m	 w	 W*	 L P

eHc 64.2000 129	 100	 109	 41	 34	 55 86	 79
'Ht 33.2000 122	 104	 114 81	 81
KO 26.2000 184	 74	 184 134 130

Note: N.a= Not applicable, N.r= Not recorded, using P from Ma's work
* Using the Ma's penalty factor, 	 ** Allowing for variable Kl
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Table E.35 Analysis of Infilled Frame W1USS

a)	 Data
General data:	 Frame data:	 Infill data:

L =0.450	 E	 =200.0000 KN/mm2	 ac=35.200 N/mm2
K1=1.000	 Mpc=	 0.0170 KNm	 at= 3.500
K2=0.667	 Mpb=	 0.0170	 E =24.000 KN/mm2
Ke=2.750	 Mpj=	 0.0170	 cc= 0.00200
0 =0.200	 LFT=	 0.0020 Strain	 lxhxt=152x152x19 mm

b) Results using the proposed method
Column	 Beam

Ho	 =	 6.667	 KN	 a	 =	 0.0577	 0.0577
Ht	 =	 13.682	 0	 =	 0.2000	 0.2000
Huf =	 0.446	 an = 27.7631	 27.7630 N/mm2
Ah	 =	 0.833	 mm	 T	 = 12.4934	 12.4934
Ahx =	 0.416	 Ni = -2.0579	 -2.0579 KN
KO	 =	 16.015	 KN/mm	 N2 =	 0.0297	 0.0297
Kc	 =	 8.007	 51 =	 4.6095	 4.6095
Mode=	 CC	 S2 = -0.0297	 -0.0297
Mj	 =	 -0.0011 KNm	 M1 = -0.0170	 -0.0170 KNm
4	 =	 -0.0088	 M2 =	 0.0031	 0.0031
anb0=	 27.763	 N/mm2	 M3 =	 0.0031	 0.0031
w'	 = 216.0	 mm	 M4 = -0.0011	 -0.0011

C) Table of Comparison

ss Test SC	 SR	 m	 w	 w*	 L P

Hc 10.5000 11.7316	 10.7938	 12.4384	 7.5699	 4.5838	 6.9103 6.6674
Ht N.a 17.1990	 17.4315	 13.2803 13.6817
KO 25.9000 42.1800 22.8000 22.6001 16.0146
Nc N.r 0.0000	 0.0000	 0.0182	 0.0000	 0.0000	 0.0000 2.0579
Nb N.r 0.0000	 0.0000	 0.0182	 0.0000	 0.0000	 0.0000 2.0579
Sc N.r 5.7567	 0.0182	 3.7850	 2.2919	 6.9103 4.6095
Sb N.r 5.7567	 0.0182	 3.7850	 2.2919	 6.9103 4.6095
M1 N.r 0.0000	 0.0439	 0.0014	 0.0170	 0.0170	 0.0170 0.0170
M3c N.r 0.0000	 0.0170	 0.0170	 <0.0170 0.0031
M3b N.r 0.0000	 0.0170	 0.0170	 0.0170 0.0031
M4 N.r 0.0000	 0.0439	 0.0014	 0.0170	 0.0170	 0.0170 0.0011
Mode CC CC	 CC	 m1=0.065 CC

Xh=14.33	 Q=0.003 mn=0.008	 m2=0.065
m =0.038	 m3=0.171

d) Table of Comparison,	 (Calculated/Test values) X 100

:
SS Test SC	 SR	 m	 w	 w*	 L P	 P**

dic 10.5000 112	 103	 118	 72	 44	 66 63	 90
'KO 25.9000 163	 88	 87 62	 92

Note: N.e= Not applicable, N.r= Not recorded, using P from Ma's work
* Using the Ma's penalty factor,	 ** Allowing for variable K1
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Table E.36 Analysis of Infilled Frame W2USS

a)	 Data
General data:	 Frame data:	 Inf ill data:

L =0.450	 E	 =200.0000 KN/mm2	 ac=35.200 N/nn2
K1=1.000	 Mpc=	 0.0383 KNm	 at= 3.500
K2=0.667	 Mpb=	 0.0383	 E =24.000 KN/mm2
Ke=2.750	 Mpj=	 0.0383	 EC= 0.002
0 =0.200	 LFT=	 0.0020 Strain	 lxhxt=152x152x19 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 9.974	 KN	 a	 =	 0.0866	 0.0866
Ht	 =	 13.682	 0	 =	 0.2000	 0.2000
Huf =	 1.005	 an = 27.7631	 27.7630 N/mm2
Ah	 =	 0.902	 mm	 T	 = 12.4934	 12.4934
Ahx =	 0.451	 N1 = -3.0720	 -3.0720 KN
KO	 =	 22.115	 KN/mm	 N2 =	 0.0614	 0.0614
Kc	 =	 11.057	 Si =	 6.9019	 6.9019
Mode=	 CC	 S2 = -0.0614	 -0.0614
Mj	 =	 -0.0017 KNm	 M1 = -0.0383	 -0.0383 KNm
4	 =	 -0.0122	 M2 =	 0.0069	 0.0069
anb0=	 27.763	 N/mm2	 M3 =	 0.0068	 0.0068
w'	 = 216.0	 mm	 M4 = -0.0017	 -0.0017

C) Table of Comparison

SS Test SC	 SR	 M	 W	 W*	 L P

Hc 12.6000 15.7281	 13.9706	 15.8175	 10.5776	 6.8802	 10.3722 9.9739
Ht 13.3000 17.1990	 17.4315	 14.5856 13.6817
KO 33.6000 42.1800 22.8000 24.7489 22.1146
Nc N.r 0.0000	 0.0000	 0.0688	 0.0000	 0.0000	 0.0000 3.0720
Nb N.r 0.0000	 0.0000	 0.0688	 0.0000	 0.0000	 0.0000 3.0720
Sc N.r 7.4510	 0.0688	 5.2888	 3.4401	 10.3722 6.9019
Sb N.r 7.4510	 0.0688	 5.2888	 3.4401	 10.3722 6.9019
M1 N.r 0.0000	 0.0568	 0.0052	 0.0383	 0.0383	 0.0383 0.0383
M3c N.r 0.0000	 0.0383	 0.0383 <0.0383 0.0068
M3b N.r 0.0000	 0.0383	 0.0383	 0.0383 0.0068
M4 N.r 0.0000	 0.0568	 0.0052	 0.0383	 0.0383	 0.0383 0.0017
Mode CC CC	 CC	 m1=0.097 CC

Xh=10.69	 Q=0.009 mn=0.019	 m2=0.097
m =0.085	 m3=0.176

d) Table of Comparison,	 (Calculated/Test values) X 100

:
SS Test SC	 SR	 m	 w	 W*	 L P	 P**

eHc 12.6000 125	 111	 126	 84	 55	 82 79	 93
Ht 13.3000 129	 131	 110 103 103
KO 33.6000 126	 68	 74 66	 80

Note: N.a= Not applicable, N.r= Not recorded, using p from Ma's work
* Using the Ma's penalty factor, 	 ** Allowing for variable Kl

- E39 -



a) Data
General data:
g =0.450
K1=1.000
K2=0.667
Ke=2.750
p =0.200

b) Results using the

Frame data:	 Inf ill data:
E =200.0000 KN/mra	 ac=35.200 N/mm2
Mpc= 0.0660 KNm	 at- 3.500
Mpb= 0.0660	 E =24.000 KN/mra
Mpj= 0.0660	 Cc= 0.00200
LFT= 0.0020 Strain lxhxt =152x152x19 net

proposed method

Hc
Ht

13.062
13.682

KN a	 -
p

Column
0.1137
0.2000

Beam
0.1137
0.2000

Huf = 1.732 an = 27.7631 27.7630 N/mm2
Dh 0.960 ITtIll T	 = 12.4934 12.4934
Dhx = 0.480 Ni = -4.0174 -4.0174 KN
KO	 = 27.208 KN/mm N2 = 0.0960 0.0960
Kc	 = 13.604 Si = 9.0449 9.0449
Mode= CC S2 = -0.0960 -0.0960
Mj	 = -0.0014 KNm M1 = -0.0660 -0.0660 KNm

= -0.0145 M2 = 0.0115 0.0115
anb0= 27.763 N/mra M3 = 0.0115 0.0115
w'	 = 216.0 mm M4 = -0.0014 -0.0014

C) Table of Comparison

Table E.37 Analysis of Infilled Frame MlUSS

SS Test SC	 SR	 m	 w	 w*	 L P

Hc 14.0000 19.1080	 16.5810	 18.6556 13.0599	 9.0317	 13.6158 13.0622
Ht 13.3000 17.9156 17.4315 15.6072 13.6817
KO 38.5000 44.4600 22.8000 26.3646 27.2081
Nc N.r 0.0000	 0.0000	 0.1668	 0.0000	 0.0000	 0.0000 4.0174
Nb N.r 0.0000	 0.0000	 0.1668	 0.0000	 0.0000	 0.0000 4.0174
Sc N.r 8.8432	 0.1668	 6.5299	 4.5159	 13.6158 9.0449
Sb N.r 8.8432	 0.1668	 6.5299	 4.5159 13.6158 9.0449
M1 N.r 0.0000	 0.0674	 0.0127	 0.0660	 0.0660	 0.0660 0.0660
M3c N.r 0.0000	 0.0660	 0.0660 <0.0660 0.0115
M3b N.r 0.0000	 0.0660	 0.0660	 0.0660 0.0115
M4 N.r 0.0000	 0.0674	 0.0127	 0.0660	 0.0660	 0.0660 0.0014
Mode CC CC	 CC	 m1=0.127 CC

MI= 8.80	 Q=0.018 mn=0.032	 m2=0.127
m =0.147	 m3=0.183

d) Table of Comparison, 	 (Calculated/Test values) X 100

. ss Test SC	 SR	 m	 w	 w*	 L P	 P**

MC 14.0000 136	 118	 133	 93	 65	 97 93 103
' lit 13.3000 135	 131	 117 103 103
KO 38.5000 115	 59	 68 71	 80

Note: N.a= Not applicable, N.r= Not recorded, using P from Ma's work
* Using the Ma's penalty factor,	 ** Allowing for variable Kl
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Table E.38 Analysis of Infilled Frame M2USS

a)	 Data
General data:	 Frame data:	 Inf ill data
g =0.450	 E	 =200.0000 KN/mm2	 ac=35.200 N/mnL2
K1=1.000	 Mpc=	 0.1500 KNm	 at= 3.500
1(2=0.667	 Mpb=	 0.1500	 E =24.000 KN/mm2
Ke=2.750	 Mpj=	 0.1500	 cc= 0.00200
p =0.200	 LFT=	 0.0020 Strain	 lxhxt=152x152x19 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 19.655	 KN	 a	 =	 0.1714	 0.1714
Ht	 =	 13.682	 p	 =	 0.2000	 0.2000
Huf =	 3.937	 an = 27.7631	 27.7630 N/mm2
Ah	 =	 1.071	 mm	 T	 = 12.4934	 12.4934
Ahx =	 0.535	 Ni = -6.0377	 -6.0377 KN
KO	 =	 36.720	 KN/mm	 N2 =	 0.1635	 0.1635
Kc	 =	 18.360	 Si = 13.6169	 13.6169
Mode=	 CC	 S2 = -0.1635	 -0.1635
Mj	 =	 0.0051 KNm	 M1 = -0.1500	 -0.1500 KNm
4	 =	 -0.0164	 M2 =	 0.0258	 0.0258
anb0=	 27.763	 N/mm2	 M3 =	 0.0257	 0.0257
w'	 = 216.0	 mm	 M4 =	 0.0051	 0.0051

C) Table of Comparison

ss Test SC	 SR	 M	 W	 W*	 L P

Ho 19.8200 25.4839 21.3626 24.3115 15.8999 13.6158 	 20.5267 19.6546
Ht 13.3000 18.6322 17.4315 17.6117 13.6817
KO 43.8000 47.8800 22.8000 29.2473 36.7200
Nc N.r 0.0000	 0.0000	 0.6216	 0.0000	 0.0000	 0.0000 6.0377
Nb N.r 0.0000	 0.0000	 0.6216	 0.0000	 0.0000	 0.0000 6.0377
Sc N.r 11.3934	 0.6216	 7.9499	 6.8079 20.5267 13.6169
Sb N.r 11.3934	 0.6216	 7.9499	 6.8079 20.5267 13.6169
M1 N.r 0.0000	 0.0868	 0.0474	 0.1500	 0.1500	 0.1500 0.1500
M3c N.r 0.0000	 0.1500 <0.1500 <0.1500 0.0257
M3b N.r 0.0000	 0.1500	 0.1500	 0.1500 0.0257
M4 N.r 0.0000	 0.0868	 0.0474	 0.1500	 0.1500	 0.1500 0.0051

Mode CC CC	 SR	 m1=0.192 CC
Xh= 6.60	 Q=0.054 mn=0.074	 m2=0.192

m =0.334	 m3=0.203

d) Table of Comparison,	 (Calculated/Test values) X 100

:
SS Test SC	 SR	 M	 W	 W*	 L P	 P**

,Ec 19.8200 129	 108	 123	 80	 69	 104 99 103
lHt 13.3000 140	 131	 132 103 103
KO 43.8000 109	 52	 67 84	 88

Note: N.a= Not applicable, N.r= Not recorded, using p from Ma's work
* Using the Ma's penalty factor, 	 ** Allowing for variable Kl
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Table E.39 Analysis of Infilled Frame SlUSS

a)	 Data
General data:	 Frame data:	 Infill data:
m =0.450	 E	 =200.0000 KN/mm2	 ac=35.200 N/mm2
K1=1.000	 Mpc=	 0.5140 KNm	 at 	 3.500
K2=0.667	 Mpb=	 0.5140	 E =24.000 KN/mm2
Ke=2.750	 Mpj=	 0.5140	 ec= 0.002
0 =0.200	 LFT=	 0.002	 Strain	 lxhxt=152x152x19 mm

b) Results using the proposed method
Column	 Beam

Hc	 =	 37.570	 KN	 a	 =	 0.3173	 0.3173
Ht	 =	 13.897	 b	 =	 0.2000	 0.2000
Huf =	 13.491	 an = 27.7631	 27.7630 N/mm2
Ah	 =	 1.304	 mm	 T	 = 12.4934	 12.4934
Mix =	 0.652	 Ni =-11.7699	 -11.7699 KN
KO	 =	 57.603	 KN/mm	 N2 = -0.2907	 -0.2907
Kc	 =	 28.801	 Si = 25.8000	 25.8000
Mode=	CC	 S2 =	 0.2907	 0.2907
Mj	 =	 0.1471 KNm	 M1 = -0.5140	 -0.5140 KNm
Q	 =	 0.0157	 M2 =	 N.a	 N.a
anb0=	 27.763	 N/mm2	 M3 =	 0.1169	 0.1169
w'	 = 216.0	 mm	 M4 =	 0.1471	 0.1471

C) Table of Comparison

ss Test SC	 SR	 m	 w	 w*	 L P

Hc 35.5500 40.4869 32.1053	 43.3065 25.2632 25.2632 31.3277 37.5699
Ht 17.3000 19.7072	 17.4315 26.0367 13.8968
KO 48.6000 52.4400	 22.8000	 34.8474 57.6027
Nc N.r 0.0000	 0.0000	 5.6006	 0.0000	 0.0000	 0.0000 11.7699
Nb N.r 0.0000	 0.0000	 5.6006	 0.0000	 0.0000	 0.0000 11.7699
Sc N.r 17.1228	 5.6006 12.6316 12.6316 31.3277 25.8000
Sb N.r 17.1228	 5.6006	 12.6316 12.6316 31.3277 25.8000
M1 N.r 0.0000	 0.1305	 0.4268	 0.5140	 0.5140	 0.5140 0.5140
M3c N.r 0.0000	 <0.5140 <0.5140 <0.5140 0.1169
M3b N.r 0.0000	 <0.5140 <0.5140 <0.5140 0.1169
M4 N.r 0.0000	 0.1305	 0.4268	 0.5140	 0.5140	 0.5140 0.1471

Mode CC s	 s	 m1=0.355 CC
Xh= 4.15	 Q=0.349 mn=0.252	 m2=0.355

in =1.146	 m3=0.293

d) Table of Comparison,	 (Calculated/Test values)	 X 100

:
ss Test SC	 SR	 m	 w	 w*	 L P	 P**

o 35.5500 114	 90	 122	 71	 71	 88 106 104
Ht 17.3000 114	 101	 151 80	 80
KO 48.6000 108	 47	 72 119	 116

Note: N.a= Not applicable, N.r= Not recorded, using p from Ma's work
* Using the Ma's penalty factor,	 ** Allowing for variable Kl
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APPENDIX F

Constitutive Formulation

for Masonry

General 

The finite element representation of masonry has

briefly been discussed in Section 3.9. Of the element types

studied, the 4-node element made of the proposed plane-

stress equivalent material, representing both the units and

the joints, separated by interface elements, Fig 3.9, was

found to be the most economical, practical and simplest

available choice. The proposed 2-D material facilitates

the possibility of simulating the masonry behaviour beyond

its peak stress. Such a representation constitutes two

distinct stiffness and strength contributors as follows:

i) The proposed plane-stress masonry equivalent material

which must (on the basis of plane stress-strain

constitutive relationship) simulate the combined 3-D

mechanical behaviour of masonry units and mortar joints

while assuming the interface of the equivalent material

, elements remain intact.

ii) The interfaces of the proposed equivalent material
e
' elements. These line elements are assumed to pass

through the midplane of the bed and head joints. Such
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interfaces must simulate all the inelastic behaviour of

the joints such as debonding, slip and separation.

The following sections deal with analysing the 3-D

mechanical behaviour of masonry so as to determine a set of

mechanical properties for the proposed masonry equivalent

material and the interfaces in order to operate in plane

stress system with the same planar strengths and stiffnesses

as those of the masonry.

Masonry under Uniaxial Compression

E2.1	 Mechanics of Masonry in Compression

Masonry is composed of two materials with,

normally, quite different properties; relatively soft

cement-lime mortar and stiff bricks or blocks, Fig F.1.

When subjected to uniaxial compression, since

mortar is more flexible, it tries to expand laterally more

than the bricks. Because the mortar and brick are bonded

together the mortar is therefore subjected to lateral

confining stresses as shown in Fig F.1. Conversely, the

masonry units are subjected to tangential edge forces

producing an internal state of stresses which consists of

lateral tension coupled with axial compression. When

masonry units are rather slender, the edge forces will be

concentrated nonuniformly over a short distance from the

edge of the unit as shown in Fig F.1(b). This has been

concluded also in the 3rd paragraph of Section 3.2.3. The

distribution of edge forces has been studied also by

Khoo et al(72).

- F.2 -



(a)

(b)

Figure F.1	 Stress Distribution within The Components of
Masonry under Uniaxial Compression;
(a) brickwork and (b) blockwork
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axb = azb ay	 (F.1)

Experiments of Khoo et al( 72 ) on mortar and brick

showed that mortar in masonry undergoes significant non-

linearity and plasticity with no sign of crushing while

bricks remain almost linear and elastic before failing by

vertical cracks or spalling. Two categories of failure

theory have been established for masonry (with emphasis on

brickwork) using either the stiffness or strength parameters

of the unit and joint materials. These and a newly proposed

method are discussed in the following sections.

F.2.2	 Compressive Strength of Masonry using the 

Stiffness Parameters of Masonry Materials 

The elasticity equations for joint and unit,

Fig F.1, can be combined with equations of equilibrium

between the two masonry constituents. This combination

results in the lateral stresses as a function of vertical

stress, ay, as follows:

Eb
vb - vm(--)

Em

Eb h

(1-vb) (1-vm)(—)H
Em j

where E and v values are the secant elastic modulus and the

Poisson's ratio of the indicated material at the stress

level in question, subscripts b and m indicate the unit and

the joint material respectively. This equation was first

deived by Francis et al( 82 ) in 1971. Combination of this

equation with a linear tension-compression failure criterion
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AcTzb - ACTI,	 (F.3)

for brick, Fig 4.26, leads to the uniaxial compressive

strength of masonry written as:

1	
vb - vm--(-)

Em

-1Eb

abw = acb +
atb Eb	 h

(1-vb) + (1-Vm)(---)(--)
Em	 j	

1

(F.2)

where Gcb and atb are the unconfined uniaxial compressive

and direct tensile strengths of the masonry unit

respectively.

In 1983, a similar formula to Eq F.1 was suggested

by Atkinson( 83 ) for incremental changes of stresses in which

the E and v terms were replaced by Et and Vt so as to

indicate the tangential values. These values were

considered to be functions of the current stresses. Scott

McNary et al (84) found that the strength predictions

resulting from the above incremental method are roughly 30%

lower than corresponding experimental results.

The author believes that this discrepancy is

likely to be due to assuming a uniform Poisson's ratio in

all directions. If however this is rectified, Eq F.1 in its

incremental form becomes:

Etb

v*zyb - V*zym (----)
Etm

1



abw

- -1

(F.4)

where he is an effective height of the masonry unit, to be

taken as the smaller of h or t so that the effect of slender
masonry units on the lateral displacement equilibrium is

accounted for, Fig F.1. v *zxb and v *zxm are almost constant

and equal to their initial values, Vb and vm , respectively.

This can be verified from Eq 4.64 and the fact that azb

approximately equals axb

Combining the secant version of Eq F.3 with a

linear tension-compression failure criterion leads to

Eq F.4 as follows:

fEbx
Vb

1	 1	 Em

lacb atb	 Eb he \
(1-Vb0)	 (1-V111°)(---)	 1Em

This proposed equation replaces Eq F.2. A rough comparison

of the masonry strength calculated by Eq F.4 and the

experiments of Scott McNary et al (84) leads to a fair

agreement, within only ± 10% difference. An accurate

comparison was not possible since the modulus of elasticity

and the Poisson's ratio of brick had not been reported by

Scott McNary et al (84)

F.2.3	 Compressive Strength of Masonry using the Strength

Parameters of Masonry Materials 

An alternative approach to deriving masonry

strength was proposed in 1969, by Hildorf (85) - In this

method the multiaxial compression failure criterion of
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mortar and a simplified compression-tension failure

criterion for brick were combined. This approach was taken

up by Khoo et al (72) who, experimentally, established and

refined the two failure criteria for brick and mortar as

follows:

Gy azb 0.546
= 1 -(-) (F.5)

Gcb

Gy

atb

azm 0•805
= 1 2.91( ----) (F.6)

acm
+

acm

where am denotes the unconfined uniaxial compressive

strength of mortar. They derived a failure criterion for

compressive strength of brickwork by combining these

equations with the equilibrium condition of the unit-joint

interface forces as shown in Fig F.1 (a) and written as

follows:

azb =	 azm
	 (F.7)

This approach agreed fairly well with the experimental

results( 78 ) and seems to be more convenient than Eq F.4,

because only the strength parameters of the masonry

components are involved.

In the following section this approach is

generalized so as to be applicable to all types of masonry

inbluding blockwork.



F.2.4	 Proposed Generalized Approach for predicting the 

Compressive Strength of Masonry 

The approach described in Section F.2.3 can be

generalized by replacing the compression-tension failure

criteria of brick Eq F.5 with the proposed compression-

tension failure criteria for brittle materials, Eq 4.35, as

follows:

Gy 2 uzb 2	 ay azb
+ H) +

a	 att)cb	 acb atb
= 1	 (F.8)

The value of A can be adjusted to fit the masonry unit

material in question. For a typical solid tired tyrick.

A = 5 gives the best agreement with the experiments of

Khoo et al (72). For concrete block masonry, A can be

adjusted to fit the experimental data of the block material.

If such data are not available, A can be calculated from Eq

4.36. The value of A varies from 0.25 to about 0.5 for weak

to strong blocks.

The effect of non-uniform tensile stress

distribution within the masonry unit may also be accounted

for by replacing h in Eq F.7 by the effective height of the

unit, he, and writing:

azb =	 azm
	 (F. 9)

he

z
-

where he is to be taken as the smaller of t and h, Fig F.1.

Combination of Eqs. F.6, F.8 and F.9 leads to the

failure criteria of masonry in compression as follows.

- F.8 -



= -0.5AK + 14/0.25A2K2 + ( 1 -K2 ) (F.10)
abw

G cb

or

abw 2	 abw
(----) + AK —

acb	 - acb

+ K2 =1

where

azbabw 1	 1.2422
K =	 = 0.26534R—)	 - 1]	 (F.11)

atb	 acb i3

and

. ( i acb 1 \ J	 acma
and	 [3 =	 (F .12)

I atb I / he	 acb

The compressive strength of masonry, abw, can be

calculated from Eq F.10 and Eq F.11 using a simple trial and

error procedure or, using a more advanced numerical

approach, such as the Newton-Raphson method. The above

criterion has been plotted in Figs F.2(a to e). These

charts can be used directly or to obtain the first estimate

for the numerical approach chosen.

The proposed equations agree well with the actual

behaviour of brickwork since they lead to an almost

identical criterion to the fairly reliable criterion

proposed by Khoo et al (72) . Table F.1 compares the proposed

theoretical prediction (Eqs F.10 and F.11) and the

experimental values of strength of brickwork tested by Scott

McNary et al(84).

The charts in Fig F.2 show that for concrete block

masonry the mortar/unit strength ratio has only a small
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effect on the strength of masonry. Such an effect is

insignificant for p taking a value of 0.6 or higher. This

fact discredits the simplified assumption of the tendency of

the mortar to squeeze out of the bed-joints of blockwork in

compression. This has been concluded also by Drysdale(78).

Table F.1 Comparison of The Proposed Calculated
with Experimental Compressive Strength
of Brickwork.

Strength N/mm2

a p
Brickwork

Brick Mortar

acm

Strength N/mm2

acb atb Calc. Test(84)

60.0

41.0

6.0

4.1

36.0

19.7

9.5

3.9

36.0

19.7

9.5

3.9

2.0 0.6

0.328

0.158

0.065

0.878

0.48

0.232

0.095

48.4

38.9

32.0

26.9

38.9

30.4

24.1

19.7

48.2

40.9

32.5

29.9

37.7

34.7

27.0

19.7
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F.2.5	 Stress-strain Relationship of Masonry under

Uniaxial Compression

Compression tests on brickwork have shown that its

typical stress-strain curve is parabolic( 31 ). Fig F.2.

Only three major parameters: abw, Ebw and Ecbw are needed

so that the unconfined uniaxial stress-strain curve of a

given type of brickwork or blockwork can be calculated.

These may be obtained either directly from a uniaxial

unconfined test on masonry or can be calculated using the

elastoplastic constitutive formulation proposed in the

following sections.

a)	 Initial Modulus of elasticity, Ebw

The modulus of elasticity of masonry may be

calculated theoretically assuming the joints and the units

are under multiaxial stresses, but the approach is neither

simple nor accurate. Mortar joints are bonded to masonry

units and are normally under tensile stresses developed

radially, within the plane of the joint, as a result of

shrinkage. Such tensile stresses prevent the confining

stresses from developing within the unit at early stages of

loading. Therefore a realistic tangential modulus of

elasticity may be calculated on the basis of adding up the

flexibility of the masonry units and the bed-joints as

follows:

h + J

Ebw	 Em	 Eb



Hence
h + j

Ebw - 

	

	 	 (F.13)
j/Emili/Eb

b) Compressive Strength, Cnnw

The compressive strength of masonry can be

calculated from Eq F.10 and F.11 or directly from the

charts in Fig F.2.

c) Strain at the Peak Uniaxiai Compressive &UUSS, F-cfrw

The masonry vertical strain corresponding to the

peak compressive stress, ccbw, may be obtained from a

displacement controlled unconfined compressive test.

Alternately, if the mechanical properties of mortar and unit

are known or can be estimated, the strain at peak load,

Edw, can be calculated by summing the contribution for the

units and the mortar joints as follows:

hecu + Jecj
ecbw - 	 	 (F.14)

h + J

Where Ecu and Ecj are the strains at the peak stress normal

to the bed-joints for unit and bed-joint materials

respectively while they are bonded together. They can also

be calculated in terms of the peak vertical and lateral

stresses by use of the constitutive formulation proposed for

brittle materials (Eqs. 4.57 to 4.62). The lateral stresses

within the masonry unit and mortar joint are calculated from

Eq:F.11 and F.9 respectively.



E3	 Masonry Subjected to In-plane Stresses 

E3.1	 Historical Review 

The behaviour of masonry under in-plane stresses

has been studied in the past by many researchers

(79,81,86,88,89,90). There has been a number of attempts to

develop failure criteria for masonry to be used in the

Finite Element analysis. Page (79) , 1978, incorporated his

experimental data on model brickwork into a finite element

analysis of a masonry wall on a beam up to the occurrence of

the first crack. In 1981, Hamid et al (90) established a set

of criteria for failure of grouted and ungrouted blockwork

taking into consideration the anisotropic nature of the

composite material. Dhanasekar et al (88) , 1985, developed a

set of criteria for failure of brickwork masonry using the

experimental data provided by Page (87 ). Since each of the

above attempts was specific to a particular masonry type and

material properties, a new formulation has been established

for the present study described in the following sections.

F.3.2	 Cimmil Considerations 

The following modes have been observed and

Classified for failure of brickwork under biaxial

stresses( 79 ), Fig F.3.

i) cracking of masonry units.

ii) lateral splitting of masonry units

111) plastic shear deformation of bed joints

iv) bond failure at unit-joint interfaces followed by

slip and/or separation
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These failure modes reveal that at least three

failure criteria must be sought with respect to the three

masonry strength contributors; masonry unit, joint and the

joint-unit interface. The third and fourth classified

failure modes have been discussed in Section 4.10. The

first two failure modes, however, must be studied while

assuming the third and fourth modes (interface failure) are

somehow prevented.

Determination of the strengths of the elements of

masonry while subjected to plane stresses are a very complex

problem to deal with theoretically. Previous attempts have

been purely empirical and covered only a limited range of

masonry types and properties. With some simplifications,

however, it has been possible to use an analytical approach

to develop a set of proposed criteria for failure of a wide

range of masonry types and properties, step by step from a

simple to more general and complicated plane stress loading

examples as follows.

F.3.3	 Masonry under Compression and Shear

Assume a masonry element subjected to compression

and shear, an and T, as shown in Fig F.4(b). If the masonry

units and mortar joints are independently free to move

laterally, their failure criterion in the an - T plane can

be derived as described below.

t	 The failure criterion of brittle materials in
,I.

terms of principal compression-tension stresses is given by

Eq 4.35. This equation may be divided by 3c2 throughout and

rearranged to give:-
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= [0.5+B2+ 1/0.25+B2 +72 (0.5+B2 - -sti:/:-;7--FB2) +AyB2 ]

where:
ac 1

Y = 1 ---
at

an

ac

(F.15)

where ac and at denote the unconfined compressive and

direct tensile strengths respectively and al and a3 are the

most tensile and the most compressive principal stresses

respectively. According to the principles of the Mohr

circle, Fig F.4(d), the principal stresses can be related to

an and T as:

a3
=	 1/2 + 1/1/4 +B2 (F.16)

CYn

al
.	 1/2 - 1/1/4 +B2 (F.17)

an

where:

T

RT
B =

1
(F.18)— .

an -On

Substituting for a3 and al from Eqs. F.16 and F.17

into Eq F.15 leads to:

a.

The shear strength corresponding to a =0, ie. To, can also
f

be' calculated by dividing Eq F.19 by B2 and putting the 1/B

terms to zero to lead to:
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I to	

-0.5

---1 =( 1 + y2 + Ay)	 (F.21)
ac

The above criterion, Eq F.19, is plotted by broken lines in

Fig F.4(a) for the unit and mortar of a brickwork example.

Now consider that the masonry units and mortar

joints are laterally confined by each other by frictional

resistance of their interfacing planes. This requires that

the proposed failure criteria to be modified. The modified

failure surfaces must satisfy the following conditions:

i) The masonry units and joints when the masonry wall is

under pure shear (i.e. a1 =0) are not subjected to any

confinement. They behave like two separate materials

under the applied shear stress. Therefore the shear

strength of the masonry components in question at

an=0 equals the shear strength of the same material in

the unconfined situation, 'rob and Tom in Fig F.4(a).

ii) When the masonry wall is subjected to normal stress

only (i.e. T= 0) its components, unit and joint, may

be assumed to fail at the same stress level by tensile

cracking and compression respectively. The uniaxial

compressive strength of masonry, abw, applies for this

case. The uniaxial compressive strength of masonry

has already been discussed in Section F.2.4.

The curves representing the failure criterion of

th6 confined masonry unit and joint may still be simulated

by Eq F.20. But the corresponding A values must be

- F.18 -



-0.5an
= [0 . 5+B2+ 1/0 . 25+B2 + y2mm (0 . 5+B2 -	 )+.AmmymmB2]

(F.23)
abw

adjusted so as to satisfy the conditions set up above. The

failure surfaces are then written as:

a) For Masonry unit:

= {0 . 5+B2+ 	 +y2bm (0 . 5+B2- -%/1757—i-B2 )+Abm-yipmB2]

(F.22)

b) For joints:

an

abw

-0.5

where,	
Yhm = l abw/atbl	 and	 Ymm =labw/atml

The adjusted A values, Abm and Amm can be

determined by allowing for a very small value for an and

substituting for T=T ob and T=lom from Eq F.21 into Eqs F.22

and F.23 respectively as follows:

Abm= (141,b2+Ablb) - 11	 -yhm (F.24)

Ybm	 acb

1	 abw 2

Amm (141m2+Amym) _ 1] _ymm (F.25)

Ynm	 acm

The A values for the brickwork example shown in Fig F.4
-

become:

1 2Obw

Abm = 3.0618
	

and	 Amm = 0.482



The confined brick and mortar failure criteria,

Eq F.22 and F.23, are represented by the dash-dot curves

in Fig F.4(a). The lower of the two criteria is highlighted

by a heavy solid line so as to indicate the lower bound for

strength. As shown these criteria characterize the two

failure modes; masonry unit cracking and bed joint shear

plasticity or yielding. The transition of these failure

modes can be determined by combining

Eq F.22 and F.23 or combining their equivalents written for

principal stresses using the format of Eq F.15, and use of

the appropriate A and y values from Eqs F.24 and F.25.

Such a manipulation leads to the following conclusion:

i) If la1/031<y masonry is potentially subjected

to the joint yielding mode

ii) If l al /a31 >7 masonry is potentially subjected

to the unit cracking failure mode

where:

Abmvam - Ammynm
(F.26)

ymm2 - ybm2

and al and a3 are the tensile and compressive principal

stresses in the plane of the wall respectively.

The typical masonry unit-joint interface failure

criterion is also shown in Fig F.4(a). As can be seen, the
-

bed joint yielding mode is normally overruled by at least

one of the interface inelastic events such as: debonding,

slip and/or separation so that the joint yielding failure
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(b)
Bond	 Joint
IlUrQ 1 	 shear plasticity,..

110.05

b

0
	 0.1

\ 04

(c)

1.00.40.2 0.3

mode is restricted only to the shaded triangle shown in

Fig F.4(a). Therefore the joint yielding mode may be

ignored prticularly for blockwork masonry having only a

small mortar and block compressive strength difference.

Should one, however, desire to bring the joint yielding mode

into account, this effect may be included in the adjacent

interface mechanical behaviour model as discussed in

Section 4.10.

This simplification reduces the masonry failure

criterion to Eq F.22 while subjected to combined normal and

shear stresses in the On-T plane. Such a simplified

criterion may be written in the format of Eq F.15 in terms

of the in-plane principal stresses as follows:

4

(d)	 (e)
Unit cracking	 •	 Mortar	 Unit

15 50
2.5 5

A 0.1 5
0-7-5	 The	 example	 Data

13
,, Unconfined u •

---".**111111811177141411/1441)14111\
Unconfined mortar

Mortar in masonry
(II) Unit in masonry

Figure F.4	 Masonry Subjected to Compression and Shear;
(a) masonry failure criteria, (b) loading,
(c) stresses, (d) Mohr circle and
(e) principal stresses
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(F.27)

where amin and amax are the compressive and tensile

principal peak stresses respectively. The graphical

representation of this equation is shown in

Figs F.5(a,b,c).

E3. 41	 Masonry under Biaxial Compression

Page (87) showed that brickwork under biaxial

compression fails suddenly by splitting in a plane parallel

to the free surface of the specimen at mid-thickness

regardless of the bed joint angle, Fig F.3(a). However he

observed that change of the orientation angle of the bed

joints with respect to the applied principal stresses would

alter the mode of failure from lateral splitting to one of

the joint or interface failure modes only when one principal

stress was very dominant.

From a complete series of biaxial tests on full

scale grouted concrete masonry, Hegemier et al (81) found

that the influence of the bed joint angle was insignificant

and the behaviour essentially isotropic.

As shown on Figs F.5(a,b,c), the experiments of

Page( 87) imply that a failure criterion surface must take a

bulb shape and the magnitude of the strength under equal

biaxial compression is independent of the bed joint

orientation. These led the author to propose Eq 4.30 as the

masonry failure criterion in biaxial compression as well.
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Considering the very limited experimental data available,

setting fbc equals unity should safely fit all types of

masonry. Therefore Eq 4.30 reduces to:

al2 4- a22 - a2a1 = abw2
	

(F.28)

where al and a2 are the in-plane biaxial peak compressive

principal stresses. Eqs. F.27 and F.28 are plotted in

Figs F.5(a,b,c) to generate the complete failure criterion

of masonry under plane stresses provided that the joint-unit

interface failure is prevented.

FA	 Examination of the Proposed Failure Criteria

A complete failure criterion for masonry can be

constructed using the following:

i) Cracking of masonry units, Eq F.27

ii) Lateral splitting of masonry units, Eq F.28 and

Fig F.3(b),

iii) Plastic shear failure of bed joints, Eq 4.170

iv) Joint-unit interface failure;

-shear bond failure, Eq 4.168

-Tensile bond failure, Eq 4.171

These proposed failure surfaces are compared with

the experimental data reported by Page (87) and others (88) in

Figs F.5 to F.7 showing a good agreement. Since the

proposed criterion claims to be applicable to all types of

masonry, further experiments based on a variety of masonry

types are needed to examine the proposed criterion further.

This is not, however, possible in the current investigation.
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(F.30)Ecju = Ecbw

Determination of The Stiffness Properties of

Masonry Components 

As discussed in Section F.1, the finite element

representation of masonry required that masonry be defined

as a combination of the units made of the proposed masonry

masonry-equivalent material and the interfaces of these

units, Fig 3.9. These two components have, each, their own

specific failure criteria listed in Section F.4. They also

have their own stiffness properties as determined below.

Interfaces have zero thickness. Therefore, they

have, theoretically, zero flexibility - especially when they

are bonded. But for the sake of economy in obtaining an

acceptable convergence within a reasonable number of

iterations, these interfaces must have some flexibility so

that the inelastic displacements due to debonding can

numerically be developed. This may simply be achieved by

allowing for a small amount of flexibility for all bonded

interfaces and deducting the same from the total flexibility

of masonry leading to:

E—3u —
[ 1 1	 -1

Ebw	 (J + h) En -I

(F.29)

abw

+ h)Kn

whbre Eju and ecju denote the adjusted initial tangent

modulus and the strain at peak uniaxial stress respectively

for the proposed equivalent material. Ebw and Ecbw are

given by Eqs. F.13, F.14. En denotes the prescribed normal
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Ks0 — (F.31)

stiffness of the interface.

The masonry joint-unit interfaces must be given a

shearing flexibility in proportion to their normal

flexibility. Since the source of the interface flexibility

is ordinary brittle material (mortar), the relation of the

shearing and normal stiffness may be established according

to the elasticity theory formulation as follows:

Kn

2(1 + vm)

where vm denotes the Poisson's ratio of mortar and KO

signifies the shear stiffness of the interface.

To the proposed flexibility, some additional

flexibility must be added should the interface debond and

become looser. As mentioned in Section 4.10.3.2, Table 4.2

may be used as a guide if no reliable experimental data is

available for this purpose.
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Figure F.5	 Comparison of the Proposed Masonry Failure
Criteria with Experimental Data; 0=45.

«2

(b)

Figure F.6
	

Comparison of the Proposed Masonry Failure
Criteria with Experimental Data; 0=67.5.
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Figure F.7	 Comparison of the Proposed Masonry Failure
Criteria with Experimental Data; 0=67.5.
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