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SUMMARY

This thesis is concerned with the analysis of

building frames acting compositely with infilling wall

panels. The significance of the composite action is

emphasized and previous work on infilled frames is reviewed.

The existing methods of analysis are categorized and their

analytical assumptions are highlighted. It is concluded

that more accurate results may be obtained from the

development of a non-linear finite element analysis. The

finite element method is reviewed and new elements for

representing beams, interfaces and loading are developed.

Failure criteria for concrete under multiaxial stress and

also failure criteria for masonry under uniaxial compression

are developed. The non-linear elastoplastic behaviour of

concrete is modelled using the concept of equivalent

uniaxial strain and the model is extended for cracked

materials. Elastoplastic models are also developed for

ductile materials(steel) for secant and incremental changes

of stresses and strains. These models and the newly

developed elements are incorporated into the finite element

analysis which is numerically implemented by a new computer

program, NEPAL.	 A number of steel frames with concrete

inf ills covering the practical range of beam, column and

infill strengths and also wall panel aspect ratios, are

analysed using this program. The finite element results are

compared with the predictions of a range of existing methods

of analysis and their limitations are discussed in detail.

A new method of hand analysis is developed, based on a

rational elastic and plastic analysis allowing for limited

ductility of the infill and also limited deflection of the

frame at the peak load. The new method is shown to be

capable of providing the necessary information for design

purposes with reasonable accuracy, taking into account the

effects of strength and stiffness of the beams and columns,

the aspect ratio for the infill, the semi-rigid joints and

the condition of the frame-infill interfaces (co-efficient

of friction and lack of fit). It is concluded that simple

and economical design approaches can be established for

frames with infilling walls.
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NOTATIONS

a = Length of contact between column and infill

a = Vector of nodal displacements

a = Length of element

A = A constant controlling failure criteria of brittle
material under biaxial compression-tention

b = Height of element

[B] = Element strain function matrix

c = A constant value used in failure criteria of brittle
material under multiaxial compression

d = Diagonal length of a panel

D = A parameter controlling the falling branch of stress-
strain curve

[D] = Stress-strain relation matrix

[Dt]= Tangent stress-strain relation matrix

e = Normalized EUS; e = Eius/aiuc

eE = Normalized EUS on the envelope stress-strain curve

ep . Normalized plastic EUS

E = Secant modulus

Eo . Initial tangent modulus

Eb . Modulus of elasticity of beams of a frame

Ec . Modulus of elasticity of columns of a frame

Ec . Secant modulus at peak unconfined uniaxial compression
:

Eff. = Modulus of elasticity of frame members

Ei= . Initial modulus of elasticity of infill

Es = Secant modulus at peak stresses

Est = Secant modulus at peak uniaxial tension



Et = Tangent modulus

Eui = Tangent modulus in proportional unloading

EUS = Equivalent Uniaxial Strain

fc' = Standard cylinder strength of concrete

fcu = Standard cube strength of concrete

fbc = Equal biaxial compression strength
_
the = fbc/ac

= A parameter related to variation of poisson's ratio

F = Diagonal load transferred by frame alone

ft = Direct tensile strength of concrete

ftb . Joint tensile bond strength

fsb = Joint shear bond strength

fm = Mortar compressive strength on cylinder

fpr = Masonry prism strength

g = A parameter controlling EUS curves

h' = Height of infill

h = Height of column measured o/c of beams

H = Weighting coefficient in numerical integration

H = Horizontal load carried by an infilled frame; index u
indicates the ultimate load and indices t and c
signify the tensile and compressive failure modes
respectively

I = Moment of inertia

If = Moment of inertia of frame members

Ib = Moment of inertia of the beams in a frame

Ic = Moment of inertia of the columns in a frame

[K] = Structure stiffness matrix

[Kt] = Structure tangent stiffness matrix

[K] e Element stiffness matrix

[Kt] e=Element tangent stiffness matrix
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k = Material constant controling the Poisson's ratio

l' = Length of infill

1 = Length of beams measured o/c of columns

m = Strength parameter in Wood's Theory

Mp = Plastic resisting moment of frame members

[N] = Strain/stress relation matrix

N = Shape function

P = Total diagonal load transferred by infilled frame

{P} Vector of external loads

q = A constant controling the failure criterion of brittle
material under multiaxial compression

NI Vector of equivalent nodal forces

{q} e= Vector of element equivalent nodal forces

R = Diagonal load transferred by an infilled frame;
index u indicates the ultimate load and indices
t and c signify the tensile and compressive failure
modes respectively

{R} = Vector of out-of-balanced nodal forces

S = Normalized principal stress

t = Wall or element thickness

ti . Thickness of infill

ts . Thickness of equivalent steel layer

[T] = Transformation matrix

u,v = Total displacement components along x and y coordinate
respectively

w = Overall change in thickness

w = width of opening of a crack or an interface

w : = An specified width of diagonal strut of infilled frame

we' = Effective width of diagonal strut of infill (indices
k, c and t denote the values corresponding to
the diagonal compressive strength and diagonal
cracking load respectively)

x,y,z =Structure coordinates



11) = Penalty factor in Wood's method

{c} = Vector of total strain.

fejp) = Vector of total plastic strain

{es1} =Vector of total equivalent-joint-slip strain in joint
material

fes0 =Vector of total equivalent-joint-separation strain in
joint material

{CI} = Vector of EUS

eiu = EUS in principal coordinates

eilic= Equivalent uniaxial strain at peak stress

Cc = Strain corresponding to ac in uniaxial unconfined

loading

Et = Strain corresponding to at in uniaxial direct tension

{e12} =Vector of projection of equivalent uniaxial strain on
equivalent uniaxial envelope curves

eiuE= The component of {euE} corresponding to the principal
coordinate

{cup} =Vector of equivalent uniaxial plastic residual strain
after full unloading

eiup= The component of {&up} corresponding to ith principal
direction

Stiffness parameter in Stafford Smith method

Poisson's ratio

vo	 Initial Poisson's ratio

v * , V • Incremental Poisson's ratio

Coefficient of friction of interface

Volumetric steel ratio of its equivalent layer

0 Normal and shear stresses respectively.
a , Vector of stress in structure coordinates

faI T = [ ax, ay, az, Yxy,Yyz,Yzx]

ac	 Unconfined uniaxial compressive strength. (-ye)

ac = - ( 0.90 to 0.96)fc' (-ye)



pa',T 1 =Normal and shear stresses on yield surface;

they appear with various suffixes:-
al', 02'and G3' (for principal directions),
ale, ay', aZ', Txy', Tyz', Tzx' (for an arbitrary
diresctions)

6dt = Diagonal tensile stress at centre of the infill to

cause tensile failure

Normalized coordinates



CHAPTER ONE

Introduction

Framed buildings normally contain wall panels

whose prime function is to either separate spaces within the

building or to complete the building envelope. The

properties of these walls and their position within the

structural frame may be so chosen that they can also have a

significant influence on the response of the structure

subjected to side sway. Such structural configurations are

termed "Infilled Frames" and have been investigated by a

number of researchers.

The history of work on infilled frames dates back

to the mid 1950's when the design of rigid-jointed multi-

storey frames was being revolutionized as a result of work

done by Wood et al (1,2), Beaufoy et al( 3) and Chandler(4)

and Livesley et al (5) , wherein "The degree of restraint

method" and application of the critical load in the new

elastoplastic design of these structures were being

developed. According to the new design method, which was

reported later by "The Joint Committee( 6 )", the stability of

rigid multistorey framed structures would significantly

improve and considerable economy would be achieved if side

sway is resisted separately by walls and floors or bracing.

However, in this method no allowance was given for the

contribution of the infilling walls in limiting side sway of



framed structures due to the lack of understanding of the

behaviour of infilled frames. Wood( 7) , 1958, concluded that

"there had been a neglect in the past to study the

stiffening effect of cladding of tall buildings." He listed

a series of in-plane racking tests, Table 1.1, on encased

steel frames with various wall panel infillings. This table

shows the significance of the infilling walls in reducing

side sway of multistorey buildings.

Since then even though the potential economy and

efficiency of infilled frame construction has always been

evident, its use still has not been widely accepted,

primarily due to lack of theory. During the last three

decades a few analytical approaches have been developed. A

summary of previous work is give n	 in Chapter 2. These

methods can generally be classified into the following

categories:

i) The approaches based on linear elasticity theories.

ii) The approaches using perfect plasticity theories.

The assumptions made in these approaches vary widely, and

the predictions of strength and stiffness also vary widely.

Attempts to verify these approaches using

experimental results have not been totally successful

because the experimental data are significantly affected by

variations in the properties of the materials. It is not

feasible to measure all the necessary information, such as

stresses in the infill and also in the frame members.

The finite element method, however, as a powerful

and fast growing technique, has become a popular method for
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solving highly indeterminate problems. Therefore, quite a

few finite element analyses have ben developed for infilled

frames during the past ten years mainly using either pure

elasticity or perfect plasticity theories with allowance for

separation and slip of the joints. The results of these

analyses have been used to examine the aforementioned

elastic and plastic methods. These are reviewed in Chapter

2. The rather large discrepancy between the two groups of

approaches indicates that study of infilled frames still

lacksa rational analysis accounting for both elastic and

plastic behaviour of the structure.

The prime objective of this study has therefore,

been to develop a finite element program particularly

written for the analysis of infilled frames and examine the

existing methods. It was desirable that such a program

should be capable of simulating the non-linear behaviour of

frame, infill and their interfaces as accurately as

possible. In order to satisfy these requirements it was

necessary to inve .stigate the materials behaviour in detail

and to develop suitable mathematical models for their

mechanical response. This work is covered in Chapter 4. In

order to improve the accuracy and economy of the finite

element analysis, new elements such as beam, interface and

loading elements needed to be developed. These elements and

also the basis of the finite element method are described in

Chapter 3. These efforts led to the finite element analysis

computer program "NEPAL" written by the author. This

program is introduced in Chapter 5. This chapter also

reports the tests carried out to examine the performance of



the program in solving some non-linear structural problems.

The next phase of the work was to study the

behaviour of infilled frames within practical ranges of

beam, column and infill strength and also the infill aspect

ratio. Computation and results of analysis of these frames

are described and discussed in Chapter 6 leading to the

necessity of proposing a new hand method of analysis based

on both elastic and plastic behaviour of the materials and

limited infill strain at collapse load. Development of such

a method is described in Chapter 7. This chapter also deals

with comparison of the results of the newly developed method

with the results of the finite element analysis and

previously existing experiments and methods.

The final chapter presents the conclusions drawn

from the present investigation and recommendations and

suggestions to carry on the work in the future.

:

.-
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Table 1.1 Racking Tests on Encased Steel
Frames with Various Wall-Panel
Infillings(after Wood7))

Type of frame and infill First visible crack Ultimate
load:
tons

Hod-
zontal

deforma-
Load : Horizontal Approxi- tion

hamooad
Emoted

tons deforms-
tion

mate
ratio

at
ultimate

steel (rune	 (	 \
•e• 4H: inch deforma-

tion/
height:
Lhillf

load:
inches

•
Various
waIlldam.

_ .7,;,	 InnIrip
II

11,4r

lg.,

mappt

Frame Type 1
Horizontal girders 10 in. x 4 .1 in.

(I 25)
Vertical stanchions 10 in. x 8 in.

(I 55) (weak way)
6-in, x 4-in. x 1-in, bolted cleat

connexions to top and bottom
flanges of each beam

Open bare frame 	 7 , .,,f First}
' nyield

_ 9.3 6.0

Encased frame	 .	 .	 .	 .	 . 14 1 .0 1/100 20 2.3
Encased frame with 41-in, brick

panel	 .	 .	 .	 .	 .	 .	 . 35 0. 3 1/350 49 2.5
(Repeat test) with 4i-in. brick

panel	 .	 .	 .	 .	 .	 .	 . 30 0 . 28 1/4.00 56 2.8
Brick-on-edge infilling 	 .	 .	 . 21 0 .27 1/400 40 2.0
3-in, clinker block	 .	 .	 .	 . 22 0 .25 1/450 35 0-8
(Repeat test) 3-in, clinker block. 24 0 .28 1/400 36 0.8
3-in, hollow clay block	 .	 .	 . 22 0 .40 1/275 30 1.5
131--in. brick	 	 110 0.26 1/425 135 0.6
4I-in, brick, with door opening . 13 0 . 11 1/1000 38 2.1

Frame Type 2 (somewhat stiffer than
Type 1)

Horizontal girders 	 13 in. x 5 in.
(I 35)

Vertical	 stanchions	 10 in. x 8 in.
(I 55) (strong way)

6-in. x 4-in. x fin, cleat connex-
.

ions .
Encased frame	 	 17 1-0 1/100 23 2.2
41--in. brick milling	 .	 .	 .	 . 37 0 .28 1/400 75 1.5



CHAPTER TWO

Review of Previous Work

2.1	 Introduction 

The composite behaviour of an infilled frame is a

complex statically indeterminate problem. Since 1958 this

topic has been the subject of several separate

investigations at various institutions throughout the world.

The approaches to the problem have varied widely.

Considering the different assumptionsmade, it is not

surprising that the predictions of stiffness and strength

have also varied widely. A detailed review of previous

experimental and theoretical investigations has been given

by Samai (8) . In this chapter the intention is to briefly

review the behaviour of infilled frame and to summarize the

main stages in the development of its analysis and

understanding of its behaviour.

22	 Behaviour of Infilled Frames under Racking Load

Fig 2.1 shows a rectangular single bay single

storey infilled frame under racking load, H.

Mainstone( 8 )described the behaviour of this composite

structure as follows:

If, before loading, the infill fits the frame

perfectly, its initial behaviour will lie somewhere between

the extremes illustrated in Figs 2.2(a) and 2.2(b). The
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maximum possible contribution to resisting the load will be

achieved by a state of uniform shear throughout, calling

for continuous transfer of shear along the interfaces with

the frame plus continuous tension on beams and continuous

compression on columns for non-square frames, Fig 2.2(a).

Considered as a diagonal strut, the infill may then be said

to have an effective width, w', Fig 2.1(b).

At the other extreme, the interface reactions will

be concentrated to the corners and the distribution of

stress will be highly non-uniform, leading to a behaviour

equivalent to that of a much narrower strut Fig 2.2(b).

Between the two extremes the interface reactions

will always be distributed over finite lengths of the beams

and columns i.e, BF and BG in Fig 2.4, unlike the

concentrated reactions of a true diagonal strut, Fig 2.2(b).

Some changes in the mode of deformation of the frame will be

induced leading to a further increase in the composite

stiffness.	 Diagonal cracking, if it precedes crushing of

the infill, will modify this initial behaviour by creating,

in effect, two or more struts in place of the original one,

Figs 2.2(c), 2.2(d). Quite marked changes in the mode of

deformation of the frame may then result from redistribut-

ions of the interface reactions.

If, before loading, the infill does not fit

perfectly, the interface reactions and the resulting

behaviour will be further modified. A continuous gap at the

tog, for instance, will mean that load can be transmitted to-

the infill only by compression and shear on the vertical

faces. The alignment of the effective strut will then be



-T

4.

.
.il

/
/ (E I , f, t)

o'

0

I'EIb

(a)
	

(b)

(d)
	

( a )
	

f)

.n-•••

(a)
	

(b)

Figure 2.1 Notations

Figure 2.2 Behaviour of Infilled Frame; (a)infill under
uniform shear, (b)infill as a diagonal bracing,
(c and d)infill as behaving between (a) and (b),
(e)infill with lack of fit and (f)infilled
frame loaded diagonally (after Mainstone(9))
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H-R(h')3C0se	 Ic
	 [1+ — Cote] Cos0

24EIc	 Ib
sd (2.1)

somewhat different initially, Fig 2.2(e), and there will be

a tendency for the infill to slip and rotate until it bears

on the beam and column at the loaded corners.

An infilled frame may be loaded diagonally as shown in Fig

2.2(f). This type of loading produces compression in the

windward column in place of tension that would arise in

practice as shown in Fig 2.2(a) to (e).

The real behaviour of an infill in resisting a

racking load is more complex than that of a simple diagonal

strut. However the early work on the subject was based on

idealization of the infill as a simple diagonal strut

2.3	 Early Work and the Concept of Diagonal Strut

Serious experimental and analytical investigation

on infilled frames was started in 1958 by Polyakov(10).

He suggested the possibility of considering the effect of

the infilling wall in each panel as equivalent to diagonal

bracing Fig 2.3(b). This suggestion was later taken up by

Holmes (11) , 1961. He represented the inf ill by a pin-

jointed strut connecting the loaded corners as shown in

Fig 2.3(b). He also concluded that, at failure, the

deflection of the composite wall and frame is small in

comparison with the deflection of the bare frame.
the

Therefore, the frame members remain in elastic stage up to

failure load. Accordingly, he calculated the change in the

frame diagonal, Esd, as:

9



The shortening of the equivalent strut at failure was also

calculated as:

8d = Ecd
	

(2.2)

8d = ech'/Sin0
	

(2.3)

where ec denotes the strain in the infill at failure.

The value of Ec was taken as 0.002 as a safe limiting value

for concrete infill. From Eq 2.1 and 2.3 the horizontal

load at failure, H, was derived by Holmes( 11 ) as follows:

24EIcEc
+AfcCose	 (2.4)

IC
h' 2 [1 + — Cote] Sin0Cos0

Ib

Where R is replaced by the product of the cross sectional

area, A, of the equivalent strut and the crushing stmength

of the infill, fc• Holmes (11 ) showed that, for strength

purposes,td/3 best represents the value of A for the

infilled frames tested. However, the theoretical

deflections at the ultimate load, corresponding to the

proposed value of A, were generally much lower than those of

the companion experimental deflections.

The Holmes one third rule for determining the

width of the diagonal strut is independent of infill/frame

strength and stiffness parameters. However, as will be seen

later in this chapter, the behaviour of an infilled frame is

highly dependent on these parameters.
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D I , C

( b )

Figure 2.3 Infilled Frame Under Diagonal Loading;
(a)frame deformation and (b)idealization of
infill as diagonal strut (after Holmes(--))



Holmes (11 )' approximation, although crude, may be

considered as the basis for later work especially the work

done by Stafford Stith( 12 ), 1966, which is summarized in the

following sections.

2. 41	 Theories Based on Infill/Frame Stiffness Parameter

2.4.1

Stafford Smith( 12 ), 1966, carried out a wide range

of tests on 150mm square micro-concrete model infills

bounded by steel frames subjected to diagonal load, Fig 2.4.

According to his observation, he adopted the equivalent

e
Figure 2.4 Diagonally Loaded Infilled Frame and Interactive

Forces (after Stafford Smith(12))
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diagonal strut in representing the effect of inf ill.

However, Stafford Smith did not share the view of the one

third rule proposed by Holmes( 11 ) which is described in

Section 2.3. Instead, he pointed out that the width of the

equivalent diagonal strut is determined by the finite

lengths of contact between the frame and the infill at the

loaded corners, Fig 2.4.

Stafford Smith and Carter( 13 ), 1969, expanded the

work of Stafford Smith to deal with rectangular and

multistorey infilled frames. Also they further studied the

stiffness of such structures. A review of their work is

given in the following sections.

2.4.2	 Stafford Smith Observations on the Behaviour of

Infilled Frames Subjected to Racking Load 

When an infilled frame is under either horizontal

or diagonal load, Fig 2.4, the infill and the frame separate

over a large part of the length of each side and contact

remains only adjacent to the corners at the ends of the

compression diagonal. As the load is increased, failure

occurs eventually in either the frame or the infill as

follows:

i) frame failure results from tension in the windward

column or from shearing of the columns or beams.

ii) Infill failure is initially by cracking along the

compressive diagonal. The final failure results from

crushing near one of loaded corners or, in the case of

a comparatively very stiff frame, crushing over a more

- 13 -



II

II

/
I Cracking

11,111 Crushing

A

general interior region of the infill. However, if

the infill is of brick masonry an alternative

possibility of shearing failure along the plane of the

bed-joints may arise.

Typical load deflection curves obtained by

Stafford Smith (12) for cracking and non-cracking concrete

infills are shown in Fig 2.5.

Figure 2.5 Typical Load-Deflection Curve for Concrete
Infilled Steel Frame (after Stafford Smith and
Carter (13))
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2.4.3	 Stafford Smith's Theoretical Analysis 

Stafford - Smith( 12 ) carried out extensive

theoretical work using elasticity theory 	 to derive the

length of contact and strength and stiffness of infilled

frames as follows.

Fig 2.4 shows a square infill frame subjected to

diagonal load illustrating the model infilled frames tested

by Stafford Smith( 12) .	 Consider the side AFB, in Fig 2.4,

of which FB remains in contact with the infill. Assuming a

triangularly distributed reaction along FB, the bending and

equilibrium equations were derived for the separate lengths,

AF and FB; these then were related by the continuity

conditions at point F. A further equation for the energy of

AB and one-quarter of the infill, allowed Stafford Smith to

reduce the whole set to a single equation in terms of Xh and

a/h' where:

Eiti
A.h =h

	

	
(2.5)

4EfIfh'

represents the infill/frame stiffness parameter. A similar

analysis was carried out, using a parabolic distribution of

the reaction along FB to produce an alternative equation

relating a/h' and Ala. The solutions of these equations

yielded the two curves given in Fig 2.6 which also shows the

Stafford Smith's experimental results for length of contact.

The close alignment of the two curves, and the satisfactory

agreement of the experimental results, could lead to the
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h'	 2Xh

OA	 0.2	 0.3	 0.4	 0.5

a

h'

Eq 2.6

TRIANGULAR --"f
SOLUTION

PARABOLIC
SOLUTION

O TESTS 201-204

• TESTS 21-215

• TESTS 221- 225

30

25

20

15

X h'

10

adoption of either curve. However, the third curve shown in

Fig 2.6 also agreed closely with the experimental results

and the two other curves. This additional curve is given

by:

a	 it

(2.6)

Figure 2.6 Length of Contact as Function of Xh (after
Stafford Smith(12))
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which was adapted from the equation for the length of

contact of a free beam on an elastic foundation subjected to

a concentrated load, following the analysis of Hetenyi et

al (14) . Because the third curve was more conveniently

expressed algebraically than the other two, and in other

respects was equally acceptable, it was adopted by Stafford

Smith for later use in the analysis.

The stiffness parameter, Xh, was later generalized

by Stafford Smith and Carter( 13) to allow for rectangular

walls as follows:

4. / Eiti
XII = h	 	  Sin20
\ 

4EcIch'

(2.7)

Since an elastic theory was used in the analysis, the length

of contact remained constant during the course of loading.

Having derived the length of contact, it became

possible to isolate the infill from the frame, Fig 2.4, and

to represent the frame-infill interaction forces, R, by only

a set of normal forces distributed triangularly over the

length of contact as shown in Fig 2.4 i.e, no frictional

force was allowed for at the frame infill interface. Thence

for various lengths of contact ranging between 1/8 to 5/8 of

the height of infill, Stafford Smith (12) developed a set of

two dimensional finite difference analyses and plotted the
;

corresponding stress diagrams to relate the interior

stfesses to the boundary forces of the infill, as typically

shown in Fig 2.7.
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100
LOAD
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In order to study the contribution of the frame,

Stafford Smith, this time, represented the infill

interaction forces by triangularly distributed normal forces

acting over the length of contact on each side of the frame,

Fig 2.4. Thence, he calculated the load carried by the

frame alone, F, by developing an energy analysis of the

redundant system which was repeated for various lengths of

contact within the same range as above.

11 UNITS

LINE OF UNIFORM PRINCIPAL COMPRESSIVE STRESS
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Figure 2.7 Infill Theoretical Stress Diagram for a/h'=3/8
(after Stafford Smith(12))
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The above analysis for frame and infill allowed

the total carrying load, P, of the infilled frame to be

calculated as follows:

P = R + F

Fig 2.8 shows the variation of significance of the diagonal

load carried by the frame, F, in comparison with the infill

load, R, as a function of Mia for square infilled frames. As

shown, the contribution of F is less than only 5% of the

infill carrying load, R, when XII, is more than 3.8.

However, for infilled frames with MI, less than 3.8 (weak

infill) the contribution of the frame to the total diagonal

carrying load, R, rapidly becomes significant.

Xh

Figure 2.8 P/R as Function of Xla (after Stafford Smith(12))
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2.4.4	 Lateral Strength of Infilled Frames 

In order to simplify the analysis, Stafford

Smith (12 ) ignored the diagonal load transferred through the

frame as shown in Fig 2.8 and as discussed in the last

paragraph of Section 2.4.3. The lateral strength of

infilled frames then can simply be obtained from static

analysis of the frame in which the infills are replaced by

equivalent diagonal pin-jointed struts as shown in Fig 2.9.

It should be noted that, in reality, the above assumption

does not necessarily mean that the flexural stiffness of the

frame is neglected since the flexural stiffness of the frame

has already allowed for in determination of the length of

contact in Eqs 2.6 and 2.7.

( a )

	

(b)

Figure 2.9 Infilled Frame; (a) laterally loaded infilled
frame and (b) equivalent frame (after Stafford
Smith and Carter(-3))
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Collapse of an infilled frame may occur through

failure either of the frame or of the infill. Failure of

the frame can result from tension in windward columns or

shear in the beams, columns or their connections. If

however, the frame is adequately strong, collapse will

eventually occur by compression failure of the infill

propagating from one of the loaded corners or, in the case

of a comparatively very stiff frame, crushing over a more

general interior region of the infill. Compressive failure

of infill may be preceded by a diagonal cracking along the

compressive diagonal.

Infill failure modes and loads were formulated by

Stafford Smith (12 ) for square panels. The work was later

generalized for masonry infills, rectangular panels and

multi-storey infilled frames by Stafford Smith and

Carter (13) . These are described as follows.

a)	 Diagonal Cracking of Infill

The diagonal force necessary to cause cracking of

the infill, Rut, is that which would produce a maximum

principal tensile stress in the infill equal to the tensile

failure strength of the infill material. From the maximum

principal tensile stress values taken from the infill stress

diagrams, Fig 2.7, and Eq 2.6 a series of curves were

constructed by Stafford Smith and Carter (13) to relate the

d4gonal cracking load, Rut, to XII for various panel

leligth/height proportions. Fig 2.10 shows these curves

where Ft' is replaced by 0.1fc', a reasonable value for

concrete tensile strength, thus allowing the basic parameter
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for expressing the cracking strength, Rut/( ft' h ' t), to be

converted to Ruc/(fc'h't) and thereby permitting a direct

comparison of the cracking and compressive failure curves on

the same graph. Fig 2.10 also shows that the greater is the

length/height proportion of the infill, or the smaller is

the value of Xh, i.e the stiffer is the column relative to

the infill, the greater is the diagonal cracking strength of

infill.

b)	 Compressive Failure of Infill

The onset of this mode of failure is gradual.

Therefore, the collapse may be assumed to be due to a

plastic like failure within one of the loaded corners

surrounded by lengths of contact, a. Allowing for a uniform

crushing stress, fc', within this region, the diagonal

compressive failure load, Ruc, was derived as follows.

Ruc = atifc'Sec0	 (2.8)

Substituting for a from Eq 2.6 the above equation may be

written in its non-dimensional form as:

Ruc	 n

=	 Sea
	

(2.9)
fc'h't	 2Xh

which is also plotted in Fig 2.10. The above theoretical

tensile and compressive infill failure loads and the test

results obtained by Stafford Smith (12) are compared in

Fig 2.11 showing a fairly good agreement.
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2.4.5	 Lateral Stiffness of Infilled Frames 

Using the typical infill stress diagrams shown in

Fig 2.7, the strainsalong the loaded diagonal were computed

by Stafford Smith( 12 ) and the equivalent strut width ratio,

wele/d, was deduced. For stiffness purposes the equivalent

strut width ratio was plotted as a function of a/h' in

Fig 2.12. As shown, the theoretical values of wek'id are

consistently higher than the experimental values. Stafford

Smith first attributed this discrepancy to the non-linear

behaviour of the infill around the loaded corners. However

a further series of diagonal loading tests on steel frames

with infills of epoxy resin- a relatively linear material-

gave results similar to that with mortar infills.

Therefore, Stafford Smith (12) concluded that the excessive

theoretical predictions were due partly to assuming a

triangular interaction stress distribution which, perhaps,

should have been more heavily loaded towards the corner,

and partly due to the inexactness of the finite difference,

method especially in the region near the application of the

load.

Despite this conclusion, Stafford Smith and

Carter (13) concluded that the effective width of an infill

acting as a diagonal strut is influenced by the following

factors:

i) the relative stiffness of the column and the infill

ii) the length/height proportion of the infill

iii)the stress-strain relationship of the infill material

iv) the magnitude of the diagonal load acting on the

inf ill
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They modified the previous work of Stafford

Smith (12) by allowing for non-linearity of the infill

material and length/height proportion of the infill resulted

in a series of curves shown in Fig 2.13.
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2.4.6	 Behaviour of Masonry Infilled Frames under

Racking Load 

The in-plane deformation and failure of masonry is

influenced by the properties of its components, the units

and the mortar. The influence of mortar joints is

significant, as these joints act as planes of weakness.

Experimental observations( 13 , 15 , 16 ) have shown that when a

masonry infilled frame is subjected to in-plane racking

loads, failure of the infill may occur by one of the

following modes:

a)Shear cracking along the interface between the bricks

and mortar

b)Tension cracking through the mortar joints and the

units

c)Local crushing of the masonry or mortar in one of the

loaded corners of the infill

Failure modes (b) and (c) are similar to those

which occur in concrete panels. Therefore the infill/frame

stiffness parameter, Xh, can be used in the same manner to

estimate the compressive failure and diagonal cracking

loads. However the failure mode (a) is particular to

masonry infillings. The load to cause such failure was

calculated by Stafford Smith and Carter (13) as follows:

Fig 2.14 shows the commonly used masonry joint

shear failure criterion (31) 	 This criterion was

inaorporated into the finite difference stress analysis,

carried out for different height/length ratio panels, and

resulted in a series of curves relating the diagonal shear

failure load, Rus, to Xh as shown in Fig 2.15.
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2.5	 Empirical Method of Analysis Based on Stiffness 

Parameter Ah 

2.5.1	 Empirical Data and Analysis of Infill 

Mainstone( 9 ), 1971, discussed an extensive series

of tests, carried out at the Building Research Station, on

model frames with infills of model brickwork and micro-

concrete and also a much smaller number of full-scale tests.

He concluded that the range of possible behaviour of an

infilled frame is much wider than that envisaged by any.

theoretical analysis that had been undertaken. Fairly wide

variations may be observed even between nominally identical

specimens as a result, presumably, of different local

variations of elasticity and strength of the infill

materials and slight variation in the initial fit of the

infill. Therefore for design purposes, only a fairly simple

method seems to be justified. In order to develop such a

method, Mainstone( 9 ) adopted the idea of representing the

infill by a pin-jointed equivalent diagonal strut, though he

believed that it can be justified theoretically only for

behaviour prior to cracking. He plotted the aforesaid test

results against Xh, Figs 2.16 to 2.19, and formulated,

empirically, the equivalent diagonal strut widths Wec,

W et, and W'ek for compressive failure, tensile failure and

stiffness of infilling wall respectively as follows:

For Xh<5: Concrete Brickwork

ak= Wekhe 0.115(2./)-0.4 0.175(?11)-0.4 (2.10,11)

at= leethe 0.255(21)-0.4 0.170(Xh)-0.4 (2.12,13)

ac= 0.840(Xh)-0.88 0.560( h)-0.88 (2.14,15)

- 30 -



For 54k.h<8:

ak= se ek/w '

at= se et/w '

ac= w 'eche

= 0.110(Xh) -0 • 3 0.160(Xh)-0-3 (2.16,17)

= 0.220(Xh) -0 • 3 0.150(Xh)-0•3 (2.18,19)

= 0.780(Xh) -0.8 0.520(Xh)-0.8 (2.20,21)

the
The scatter in results obtained, especially for ak

as shown in Fig 2.19, were due to variation of some other

affecting factors such as shrinkage and lack of fit. It is

worth mentioning that the	 equations given by Mainstone

in the later paper, are identical to these equations but

they have been presented in a different format.

For the above equations, the infillfframe

stiffness parameter, Xh, is defined as:

4h4EitiSinn
Xh =

	

	
(2.22)

4EcIch'

Considering Fig 2.1, the diagonal failure load of infill can

be calculated as follows:

Ri = we'tifi	 (for concrete infill)

Substituting for we' gives:

Ri = aw'tifi

From the geometry of the infill, Fig 2.1, w'can be written

in terms of h'as follows:

w' = 2h'cose

or	 Ri = 2ah'cosOtifi	 (2.23)
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The horizontal component of Ri leads to:

Hi = 2ah'cos2Otifi

The peak value of the racking load, Hiu, is then written as:

Hiu = 2ah'cos 2 9tifc'	 (2.24)

where a takes the either value of at or 0:c in order to

correspond the crackin-T7E-ompression failure loads, Hiut and

Hiuc respectively.

Diagonal deflection of the infill can also be

derived in terms of the infill diagonal load, Ili, as:

Ri
Ad = d

wek'tiEi

h'Ri
Ad

Sin() wek' t±E±

Substituting for h f in terms of veleads to:

w'Ri
Ad -

Sinn wek' tiEi

Substituting for Ri and Ad in terms of Hi and Ah using the

geometry of the infill, Fig2.1, gives:

Hi
Ah =	 where Ki = akt1Eisin28cos 20 	 (2.25)

Ki

Ki denotes the secant stiffness of the infill to either the

cracking load or to 90% of the compressive failure load.
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2.5.2	 Analysis of Frame

Diagonal compression of the infill permits the

frame to deform diagonally and resists a portion of the

diagonal load, ie.

R = Ri + Rf

This relation for the horizontal loads is written as:

H = Hi + Hf

The stiffness of the composite structure becomes:

K = Ki + Kf where Kf = Hf/Ah

Mainstone(9) concluded that "provided that the

peripheral joints between the infill and the frame are well

filled, the composite elastic stiffness of the infilled

frame will usually be that of the infill." He then
the

suggested to neglect the frame contribution in calculation •

of the cracking load and stiffness. For the collapse load,

however, he suggested either to neglect the frame

contribution or allow for the full plastic strength of the

frame while assuming no infill exists. In order to

establish a consistent approach for the later references in

this study, the author decided to account for the elastic

contribution of the frame assuming that no infill exists.

and the strength of the frame may not exceed the plastic

collapse load of the bare frame. This modification is

described below.

Using the elastic approach suggested by
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Holmes( 11 ), Eq 2.1 to 2.4, the frame contribution to

diagonal load has been derived by the author as follows:

Hf = Ah/Ke	 (2.26)

where Kf, the frame stiffness is written as:

24EfIc
Kf-

h'3[1+(Ic/Ib)CotO]

Substituting for Ah from Eq 2.25 and replacing the

appropriate terms of stiffness by X.h in accord to Eq 2.22

the above relation can be arranged to give:

Hf = 4Hi	 (2.27)

where:
6(h/h')

-
ak (?.I) 4 [1+ (Iblic) cote] cos20

2.5.3	 Comments 

Fig 2.20 compares the Mainstone( 9 )	 empirical

equations and the theoretical method of Stafford Smith and

Carter (13 ). As seen the two methods generally follow the

same trend. However for length/height ratios greater than

unity, the predictions of the two methods for compressive

failure of the infilled frame are quite different.

Later Stafford Smith and Riddington (18) modified

the theoretical method of Stafford Smith and Carter( 13 ) so

as, presumably, to make it closer to the experimental

results formulated by Mainstone (9 ). This is described in the

following section.
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2.6	 Design Recommendations for Elastic Analysis of

Infilled Steel Frames 

2.6.1	 General 

Riddington and Stafford Smith( 17 ), further

developed the elastic analysis of infilled frames using the

finite element method. They allowed for frictional forces

and slippage between the infill and the frame as well as

multi-storey and multi-bay systems. No plasticity and non-

linearity due to the materials were allowed for in the

analysis. This work and the previous work of Stafford Smith

and Carter( 13 ) and also the empirical equations of

Mainstone( 9 ) were incorporated by Stafford Smith and

Riddington( 18 ) to establish a method of analysis for

commonly used masonry infilled frames. This method is

described in detail in the following sections.

2.6.2	 The Basis of the Method

A convenient procedure for the design of an

infilled frame building is to initially design the frame to

carry the vertical loads. The thickness of the walls which

are to serve as bracing infills are then decided on the

basis of acoustic or fire requirements whilst also having to

satisfy the minimum requirements for stability as given in

masonry codes of practice. The strength of the components

working together as an infilled frame would then be checked

against the estimated racking load and increased in size, if

necessary. Consideration of the analogous structure in Fig

2.9 leads intuitively to the proposal that axial forces in

the frame members and equivalent diagonal struts can be
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estimated by a static analysis of the equivalent pin-jointed

braced frame. The finite element analysis of infilled

frames provided convincing support to this approach as shown

in Table 1 of reference (18).

2.6.3	 InfiII Design

The development of a design method for a masonry

infill requires consideration of the three possible modes of

failure: by diagonal tension, by shear or by corner

compressive failure (see also section 2.4.6). The stresses

to cause these modes of failure are: adt, ay and Txy,

diagonal tension, normal and shear stress respectively at

the centre of the infill and adc, diagonal compressive

stress caused by diagonal compression.

Stafford Smith and Riddington( 18 ) found that the

state of the material in the central region of the infill

is	 linear-elastic. Therefore the stresses within this

region were addpted from their finite element analysis which

were approximated as follows:

Txy = 1.43 H / l't	 (2.28)

adt = 0.58 H / l't	 (2.29)

ay = (0.8 h'/1' - 0.2)H / (1't)	 (2.30)

where Txy, adt and ay are horizontal shear, diagonal tension

and vertical compressive stresses respectively. Having

these stresses, the corresponding failure loads were

calculated as follows:



a)	 Shear failure:

Shear failure is assumed to be initiated in the

infill along the jOints at the centre of the infill. The

shear strength of masonry can be represented by friction

type equation of the form:

Txy' = fsb	 Ilay'	 (2.31)

in whichfs b and 11 are the shear bond strength and the

coefficient of friction respectively of the unit-mortar

interfaces. Combination of Eqs 2.28, 2.30 and 2.31 gives:

1.43Hus/l't = fsb + 0.8(h'/1') - 0.2Husil't

Hence:

fsbl't
Hug - 	 	 (2.32)

1.43 -	 h'/1'-0.2)

where Hug is shear failure load of the masonry infill. The

values fsb and may vary due to the type of mortar and

masonry unit.

b)	 Diagonal tension failure:

Tensile failure in a masonry infill initiates from

the centre of the infill as one or more diagonal cracks

extending along the loaded diagonal passing through mortar

joints and units. As there was little information available

on the diagonal tensile strength of masonry Stafford Smith

and Riddington (18) estimated this value equal to the tensile

strength of mortar. This was approximated as one-tenth of

the mortar compressive strength i.e:

adt' = 0.1fm
	

(2.33)
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Combination of Eqs 2.33 and 2.29 results in:

Hut = 0.172 fm l't 	 (2.34)

Eci 2.34 estimates the diagonal cracking load, Hut, for

masonry inf ill.

c)	 Compressive failure of the infal corners:

Stafford Smith and Riddington( 18 ) found that

unlike the stress within the central region of the infill,

the compressive stresses occurred in the loaded corners were

extremely sensitive to the 7h value which was simplified for

design purposes as follows:

Eitih' 3
Xh=

	

	
(2.35)

4Ecic

It should be noted that, in the above equation the term

Sinn is omitted and the difference between h' and h is

ignored as compared to Eq 2.7.

Since compressive failure occurs, presumably, in a

plastic manner and the results obtained from the linear-

elastic finite element analysis (17) were not sufficiently

accurate, Stafford Smith and Riddington( 18 ) adopted the

empirical equation of Mainstone (9) , Eqs 2.15, to derive the

horizontal compressive collapse load, Huc, as follows:

w' and w'ec may be substituted in Eq 2.15 as:

w' = 2h'/Cos9

se ec = Ruc/fprt

to give:
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(Ruc/fprt)

0.56(Xh)-0.88
(2h' Cos0 )

The horizontal compressive failure load, Huc, can be related

to Ruc as:

Huc = RucCose

Substituting for Ruc leads to:

Huc = 1.12 ah)-0.88h'tfprcos20

This equation for concrete becomes:

Huc = 1.68010 - 0.88h'tfc'cos2e

(2.36a)

(2.36b)

2.6.4	 Design of Frame 

a) Axial forces in frame members:

The axial forces due to vertical loads should be

calculated on the basis of the tributary areas. The axial

forces in the members due to horizontal loading can be

estimated by a simple static analysis of an equivalent frame

with the columns pin-jointed at each storey level, the beams

pin-jointed at their ends and the infills considered as

diagonal pin-jointed bracing struts.

b) Bending moments and shear forces in frame members:

Frame members must be also able to withstand

bending moments and shear forces induced as a result of

inexactness of the assumption of the infill acting as a pin-

jointed diagonal bracing. In reality the infill bears



against the beam and column members over part of their

lengths. The finite element analysis (17) showed that the

bending moment in the frame members are not likely to exceed

5% the total horizontal force, H, times the height of the

columns, h'. Therefore the columns must be able to resist a

bending moment of Hh'/20 and a shear force equal to H.

The beams must also be designed for bending

moments and shear forces in addition to the axial forces

calculated as above. If an upper beam of an infilled panel

is not restrained by an infill above, it should be designed

to withstand a mid-span hogging moment of Hh'/20 in

combination with the moment due to vertical dead loads. The

beam and its connections must be able to carry an upwards

shear force of Hh'/1' in combination with the shear force

due to vertical dead loads.

Where the beam below an infill is not restrained

by an infill below, the beam must be able to withstand a

mid-span sagging moment of Hh'/20 in addition to the moment

due to dead and live loads. The beam and its connections

must be able to carry a downwards shear force of Hh'/1' in

addition to the shear force due to dead and live loads.

c)	 Deflection of frame:

A crude but conservative, ie. excessive estimate

of horizontal deflection of infilled frame, can be made by

''treating the frame as pin-jointed and each infill as a

diagonal pin-jointed bracing strut with a cross-sectional

area equal to one-tenth of its diagonal length times its

thickness and an elastic modulus of 7x103 Nimm2.
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2.6.5	 Comparison 

Fig 2.20 compares the calculated loads using the

design method of St -afford Smith and Riddington(18) and those

of the empirical equations of Mainstone( 9 ). The results of

the compressive failure load, Rut, were obviously coincident

since, the new method( 18 ) uses the empirical equations(9).

The infill tensile cracking strength, Rut,

obtained from the design recommendations is rather unsafe

for rectangular infills, Fig 2.20(b). A Detailed comparison

is made in Chapter 7.

4
	

8
	

12	 16
	

12

An
	

An

(a)
	

(b)

	 	 Mainstone(9)
n•n•n n111
	 Stafford Smith and Carter(13)

Stafford Smith and Riddington(18)
o	 Actual tensile strength(29)
•	 Actual compressive strength(29)

Figure 2.20 Comparison of Various Methods of Analysis Based
on Xla; (a)square infill,(b) non-square infill.

Note: T = Tensile strength C = Compressive strength -
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2:7	 Theories Based on Frame/Infill Strength Parameter

2.7.1	 General -

The theoretical investigations on the behaviour of

infilled frames, up to 1978, were based generally on

elasticity theories. However as discussed in Section

2.6.3(c) these theories fail to establish a rational

criteria for compressive failure of the infill. Because

such failure occurs gradually and is associated with

distinct modes of distortion of the frame, it indicates the

existence of particular mechanisms by which plastic like

collapse occurs. This was well understood by Wood( 20 ) who

published his paper titled "Plasticity; Composite Action and

Collapse Design of Reinforced Shear Wall Panels in Frames"

and opened a new chapter in the analysis and understanding

of the behaviour of infilled frames. He identified four

possible modes of collapse as illustrated in Fig 2.21 and

developed a rational plastic analysis based on a

frame/infill strength parameter utilizing Nielsen( 21 ) square

yield criterion within yielding zones.

Later, in 1981, an alternative treatment of the

plastic analysis was given by May (22). He used the same

principles as Wood except he used the yield line method of

analysis in plasticity theories. The results were identical

to those of Wood. This method was also capable of

predicting the collapse loads and modes of infills with

openings.



2.7.2	 Wood Classification for Collapse of Infilled Frame 

Wood( 20 ) studied a large number of tests carried

out at the Building Research Establishment by various

investigators. The majority of the tests involved masonry

panels. Four distinct types of plastic collapse modes were

identified as follows:

a) Shear mode "S"

Fig 2.21(a) shows the collapse mode of

a very strong frame and a weak wall where plastic hinges

formed at the joints of the frame. The beams and the

columns remained straight producing a pure shear strain in

the wall. This referred to as the shear mode "S".

b) Shear rotation mode "SIC'

Fig 2.21(b) shows the collapse mode of a

relatively stronger wall where a plastic hinge appeared in

each beam at the intersection of the discontinuity lines

which clearly separate apparently unstrained rigid corner

regions (top left and bottom right) from a central shear

region where massive distortion has taken place. The

umstrained corners merely undergo a rigid body rotation, and

therefore, this mode is called the shear rotation mode "SR".

c) Diagonal compression mode "DC"

The stronger is the wall relative to the frame,

the. greater is the distance between the unstrained corner

and the plastic hinge in the beam. With a very strong wall,

or weak frame, the hinge appears nearer the opposite corner
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Diagonal compression	 CU91cl rly,ons

uI-

d reyion

(c)
	

(d)

and a similar plastic hinge appears in the columns as shown

in Fig 2.21(c). This indicates a heavily stressed wall

diagonal in compression. This mode is called the diagonal

compression "DC".

d)	 Corner crushing mode "02"
The special case when only the corner is crushed,

Fig 2.21(d), (instead of a complete diagonal band) is called

the corner crushing mode "CC".

H	 Mp

lini torm shear
,

-f-f'tti

Figure 2.21 Idealized Plastic Failure Modes for Infilled
Frames (after Wood (20 )); (a) shear mode 'S'
(b) shear rotation mode 'SR', (c) diagonal
compression mode 'DC' and (d) corner crushing
mode 'CC'
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2.7.3	 Wood's Plastic Analysis of Infdled Frames 

Wood( 20 ) stated that "the elastic analysis of

Stafford Smith can only predict the starting width of an

idealized compressive diagonal band. This is a crude

approach to an equivalent plastic diagonal. No parameter

from the theory of elasticity can predict changes of

collapse modes". Wood concluded that "ideally, with many

more test results, collapse modes should be plotted in terms

of both plasticity and elasticity, as has already done for

frame instability in tall buildings (e.g. the Merchant-

Rankine (7) formula) with plasticity predominating. Meanwhile

the Stafford Smith approach is useful for designers for

predicting other limit states, such as cracking and working

deflections, at working conditions." For collapse analysis,

however, Wood proposed an analysis using the standard

perfect plasticity theories as described below.

Pur• shear at D

Figure 2.22 Perspective View of Nielsen's(21) Square Yield
Criterion for Unreinforced Wall (after Wood(20))
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Combining Nielsen( 21 ) idealized plastic yield

criterion, Fig 2.22, for membranes which either are crushed

at a constant yield stress or cracked at zero (ie. constant)

tensile stress, with standard plastic theory for frameworks,

modes S, SR and DC were predicted in proper order of

decreasing relative frame/infill strength ratio, m, as

SIHNM below:

Mode
	

Range of m
	

Stress Distribution

1.0 < m
	

Fig 2.23

SR
	

0.25 < m < 1
	

Fig 2.24
	

(2.37)

CC, DC
	

0	 < m < 0.25
	

Fig 2.25

where the equilibrium of stress fields are shown in

Fig 2.23 to 2.25 and m is defined as:

In = 8Mp/(actl' 2 )	 (2.38)

Hp is the minimum plastic	 moment of the frame

members. The horizontal collapse load is given as:

Hu = f[4Mp/h' + 0.5actll	 (2.39)

where:	 f = 1	 (for S mode)

and	 f = fs + if	 (for modes SR, CD, CC)	 (2.40)

where:
2

fs —
1/7a + 1 /IR;

(2.41)

and Af is a correction to f accounting for the effects of

stronger beams or columns and rectangular panels. Af is

plotted in Fig 2.26 in terms of m for selected ratios of 1/h

and g where g=mpb/mpc and Mpb and Mpc are the plastic
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resistance moments of beams and columns respectively. ac in

Eq 2.38 and 2.39 is the effective yield strength of infill

material and it is given as:

ac = Ypfc'
	

(for concrete infill)	 (2.42)

G C = Ypfpr
	

(for masonry infill)	 (2.43)

where fc' and fpr are standard uniaxial cylinder crushing

strength of concrete and prism strength of masonry infilling

walls respectively. lip is proposed as	 a penalty factor
so as to lower the strength of the infill in order to cater

for the discrepancy between the theoretical predictions and

experimental results. Figs 2.27 plots the values of yp in
and

terms of the nominal values of m mn, for masonry and micro-

concrete infills respectively. The values of mn can simply

be calculated as follows:

ran = 8Mp/(f'ctl'2)
	

(for concrete)
	

(2.44)

Mn = 8mp/(fprt1'2)
	

(for masonry)
	

(2.45)

i.e,	 assume the wall is made of a perfect plastic

material and the proposed yield criterion is exact.

The ranges of the nominal value of the strength

parameter, mn, for S, SR, DC and CC modes can be calculated

by combining the corresponding yp curves to the ranges of m

values given in Eq 2.37. These are shown in Fig 2.27 and

are also summarized below.

0.23 <

SR	 0.075 < mn < 0.23	 (2.46)

DC,CC	 0	 < ran < 0.075
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Figure 2.23 Infilled Frame Shear Mode of Collapse, Mode
'S'; Distortion Mechanism and Lower Bound
Stress Field (after Wood(20))

•011(n..

(1)

Figure 2.24 Infilled Frame Shear Rotation Mode of
Collapse, Mode 'SR'; Distortion Mechanism and
Lower Bound Stress Field (after wood(20))
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1/h	 113
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Figure 2.25 Infilled Frame Diagonal Compression Mode of
Collapse, Mode 'DC'; Distortion Mechanism and
Lower Bound Stress Field (after Wood(20))

=Mpb Mpc

I (strong beams), use chart direct

If p.< I (weak beams) and 1,/,h= I, use is values in brackets

If p< I (weak beams) and 1/,,K= 1 .5 or 10, use is. w I curve for all values of is

Figure 2.26 Design Chart for Determination of Optional
Correction to fs (after Wood(20))
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Figure 2.27 Appropriate Penalty Factor; (a) for brick-
work infilled frames and (b) for micro-
concrete model infilled frames
(after Wood(20))

Note: the correction due to Sims' discussion(23) has been
included.
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2.7.4	 Axial and Shear Forces in Frame Members 

The plastic moments are altered by both axial and

shear forces. For a simplified design, Wood( 20 ) suggested

that the axial forces in frame members may be calculated by

assuming that infills act as bracing members, or diagonal

strut. Shear forces in the frame members may approximately

be calculated giving one half the diagonal force to beams

and the other half to the columns.

Reinforced concrete frames are sensitive to high

hydrostatic pressure from the wall (Figs 2.23 to 2.25) which

may induce failure in the frame, particularly if there is

tension in columns on the windward side. Wood (20) has shown

as low as 0.05 for some tests subjected to tension and

shear in windward column. He commented that this was

obvious and makes it necessary for special safeguards for

=Joined tension, shear and bending to be devised so that

designers using reinforced concrete frames can avoid ruining

composite action.

2.7.5	 Analysis of Multi-bay and Multi-Storey Frames 

If all adjoining bays and storeys are occupied by

walls, this tends to enforce a pure shear failure (Mode S).

However it is necessary to divide Mp between the two panels,

sharing the element (beam or column) under consideration, to

mid including Mp twice in summing individual panel

strength. If there are no walls above and below, the

available plastic moment resisting of the beam equals the

actual plastic moment resisting of the beam in question

minus the required plastic moment for floor loads.

- 53 -



The columns completely free of wall panels are to

be designed by any acceptable no-sway design method. Columns

involved in shear panel design, must be relatively free of

buckling effects. It is suggested( 20 ) that P/PEuler should

not exceed 0.5 with rigid joints or 0.25 with pinned joints.

2.7.6	 Discussion of Wood Method

Wood's plastic method was discussed by Mainstone,

Stafford Smith and Sims (23 ). A summary of the major points

of this discussion is given below.

Mainstone referred to the enforced shear mode

tests (with weak frame joints) carried out in British

Research Station. In these tests, infill strain was far

from uniform, both when the panel reached its peak strength

and subsequently. Therefore he suggested that the shear

mode S to be regarded as an ideal limit rather than as a

real material mode.

Sims felt that the role of yp is more complex than

just being a penalty for the use of idealized plasticity

theory for a material showing limited plasticity. In

deriving it from test results, it must also contain effects

from other parameters not considered in the basic theory,

e.g. the effect of elastic deformations and the use of an

idealized yield criterion.

Admitting the Sims' view (23 ), Wood himself stated

th;tt "The next important advance must come from finite

element or similar analysis allowing for elastoplasticity of-

infilling wall with restricted plastic strain. Outstanding

research now lies in determining an extra theory to deal
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with plastic strain limitation -better than just yp- as Mr

Sims suggested."

Table 2.1evaluates the design example of Wood(20)

using the methods proposed by various authors for the

purpose of comparison of only their prediction of the

compression collapse load. This comparison showed that the

plastic methods enforce much greater frame bending moments.

Detailed comparison is made in Capter 7.

Table 2.1 Comparison of Compressive Strength and
Frame's Moments. (after Wood(20))

Author Horizontal load
KN

Column Moment
KNm

Stafford Smith
and Carter(13)

466 0

Mainstone (9 ) 285 29

Stafford Smith 285 36.4
Riddington(18)

Wood (2 ° ) 383 142	 Mode SR

Liauw et al(28)* 240 142	 Mode 3

.	 _..	 .	 _

e by the author, see also .Section 2.8

2.7.7	 Plastic Analysis of Infilled Frames with

Application of the Yield Line Method

May( 22 ) introduced a new type of yield line,

termed "Rotational Yield Line" permitting linearly variable

compressive and tensile plastic deformations normal to the

yield line. He used this type of yield line to model the

regional crushing and cracking normally observed in test.

This method was used to reanalyse all the modes previously
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examined by Wood( 20 ) and was shown to give identical results.

As discussed in Section 2.7.6, May's work showed

that although the infill strain is far from uniform, the

shear mode S should be regarded as a real mode and not just

as an ideal limit as Mainstone (23) suggested.

The yield line method was also used for design of
a

spare panels with centrally placed square opening. It was

concluded( 22 ) that the method can also be used for
an

rectangular panels with opening located anywhere within the

Ma(96) adapted bi-linear models for both the steel

frame and concrete infill using, thus, a perfect- plastic

material model implemented into the finite element analysis,

mainly for the purpose of examining the results of the yield

line method proposed by May(22). His analyses and

experiments led him to suggest an empirical yp value

relating to only the aspect ratio of the wall, Fig 2.28.

Figure 2.28 Variation of yp against aspect ratio of panel.
(after Ma (96) )
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2.8	 LiatIvy et al Plastic Method

2.8.1	 Finite Element Analyses 

As discussed in Section 2.7.6, the plastic method

of analysis of Wood( 20) is highly dependent on the penalty

factor, yp, which varies considerably in terms of the

frame/infill strength ratio parameter, m. Yet yp is an

empirical factor. In order to refine 7 ,p, Wood(23)suggested

a Finite Element or similar analysis should be utilized.

Such numerical analysis should allow for elastic-plastic

stress-strain characteristic of both the frame and the

infill materials.

Liauw et al(24), 1982, developed a F.E. analysis

for infilled frames. To the knowledge of the author, this

was the first attempt at development of a non-linear finite

element analysis for infilled frames with allowance for

limited plasticity of the infilling wall. Joint slip and

separation criterion for the interface between the frame and

infill and also crack modeling were

the analysis. The biaxial behaviour
the

however, simplified as for uniaxial

also incorporated into

of the infill was,

case, i.e, a square

yield criterion was adopted. The analysis example was a

four-storey steel frame with micro-concrete infilling walls
the

as shown in Fig 2.29(a). The results of F.E analysis were

=pared to the experimental values and showed fairly good

agreement, Fig 2.29(b). The numerical analysis gave fairly

detailed information about frame forces and infill stresses

both before and after crushing of the infill, Fig 2.30.
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Basing on the above F.E. analysis results(24),

Liaum et al( 25 ) pointed out that:

"the penalty factor 113 in Woo&plastic method of analysis

(described in Section 2.7.3) might not be due as much to

the lack of plasticity of the infilling wall, but as a

consequence of the excessive friction assumed at the

frame infill interfaces and the negligence of separation

in the composite shear mode (mode S in Wood failure mode

classification)."

From the work of Liauw et al(25), it may be

concluded that frame-infill separation occurs at early

stages of loading, even though it might not be visible, or

even might not be measurable in the experiment. Frictional

force, at beam-infill interface was reported as small as 12%

of the racking load initially but rapidly increased to 33%

during and after crushing of the infill, Fig 2.30(c). This

additional information allowed Liauw et al (25 ) to establish

anew plastic method for design of infilled frames as

outlined in the following section.

2.8.2	 Collapse Modes and Loads 

When a single-storey infilled frame is subjected

to racking load, the mode of failure depends on the panel

proportions and the relative strengths of the columns, beams

and the infill. With relatively weak column and strong

failure occurs in the columns with subsequent

crushing of the infill in the loaded corners. The most
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compressive principal stress is directed almost normal to

the column. Therefore, the small shear and normal forces at

the beam interface may be neglected and regarded as strength

reserve. This is referred to as "the corner crushing mode

with failure in columns" (mode 1). Fig 2.31 shows the

results of F.E analysis and the proposed collapse mechanism

of mode 1. With relatively weak beams and strong infill,

failure occurs in the beams with subsequent crushing of the

infill in the loaded corners. The targestcompressive stress

is directed almost normal to the beam. Therefore, the small

shear and normal forces at the column interface may be

neglected and regarded as strength reserve. This mode of

failure is termed "corner crushing mode with failure in

beams"(mode 2). Fig 2.32 shows the results of F.E analysis

and the proposed collapse mechanism of mode 2. With

relatively strong frame and weak infill, failure occurs in

the infill by crushing in the loaded corners 	 with

subsequent failure in the joints of the frame at the loaded

corners. The most compressive principal stress is assumed

to be directed normal either to the columns or beams

depending on whether the height of the panel is smaller or

bigger than its length respectively. Therefore, shear and

normal forces of the contact length of the other two sides

of the panel may be neglected. This mode of failure is

termed "diagonal crushing mode" (mode 3). Fig 2.33 shows

the results of F.E analysis and the proposed collapse

mechanism of mode 3.
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Figlire 2.31 Mode 1 - Corner crushing with Failure in
Columns; (a) results of finite element
analysis (24) , (b) theoretical idealization(25)
(after Liauw et al(25))
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Examination of upper and lower bound solutions

(carried out by Liauw et al ( 25 / 33 ) ) and minimization of the

horizontal collapse racking load,Hu, led to the following

relations:

Hu = macth'

m is the minimum of the following values:

1/2
For mode 1: ml = mic = [2 (Mpj+Mpc) / (acth i 2 )]	 (2.48)

2	 1/2
For mode 2: m2 = mib/tane = [2 (Mpj+Mpb) / (tanOacth' 2 )]	 (2.49)

For mode 3: m3 = mi 2+k/6 = 4Mpj/ (acth' 2 ) +k/6	 (2.50)

where k is given as:

For h 1 /1 1 <l: 	k = (2/3)0 - (1/2)02
	

(2.51)

For h 1 /1 1 >1:	 k = [(2/3)13 - (1/2)131Cot20
	

(2.52)

13 may be taken as 1/3 so as to match with the experimental

results. The indexed m values are frame/infill strength

parameters. The indices denote the part of the frame under

consideration; b for beam, c for column and j for joint. ac

is the compressive strength of the infill. Liauw et al (25)

did not specify whether fc' or fcu was meant by ac, but it

may reasonably be taken as fc' for concrete and fpr for

masonry.

2.83	 Comparison With apminmaud Results 

The experimental results of Barua and

Mallick (26) , Mallick and Severn (27) , Mainstone (9) and Kadir

and Hendry (28) were p art ly compared with the proposed method in
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Fig 2.34 showing a fairly good agreement. Examination of

the values of 0 ranging between 1/4 to 1/2 showed( 25 ) that

equal to 1/3 gives reasonably accurate and also on the

safe side results. Table 2.2 compares this method with all

the other available methods for predicting the collapse load

and column plastic moment of a masonry infilled frame.

2.8.4	 Using the Limy et al Plastic Method for Analysis 

of Single-Bay Multi-Storey Intllled Frames 

The collapse modes of multi-storey infilled frames

are basically the same as those of single-storey. However

many different combinations are possible; some typical

collapse modes are shown in Fig 2.35.

Idauw et al( 25 ) proposed that the design of such structures

should be carried out storey by storey based on simple

design rules. They developed the standard energy approach

and derived the m values for the top storey as:

ml = mjc

m2 = mjbitan0

m3 = mj2+(1/6)k

and for other storeys as:

ml = mc

m2 = mbitanO

m3 = mi2+(1/6)k

where:

mc = 4Mpc/(acth'2)

mb = 414pb/(acth'2)

(2.53)

(2.54)

(2.55)
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2.8.5	 Discussion of Liauw et al Method
May, Ma, Wood and Sims( 33 ) made a comprehensive

discussion on the Liauw et al (25 ) method mainly in the area

of upper and lower bound solutions of the proposed modes of

distortion. Correspondingly, Liauw et al gave additional

clarifications by carrying out both the upper and lower

bound solutions for all the proposed modes of distortion.

These solutions were identical for each mode. However, the

significance of the major approximations, due to ignorance

of the tangential forces on the contact surfaces and also

neglecting the normal stress acting on the minor side of the

loaded corners, deserve further verification especially for

infilled frames having a heighVlength ratio different from

those studied by Liauw et al (25), Fig 2.29.

06

Model	 Mode 3

05

04

'o

02

Figure 2.34 Comparison of Liauw et al Estimated Loads (25)
with Experimental Results; (a)Barua et al(26),
(b)Mallick et al (27) (after Liauw et al(25))
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(b)
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(d)

Figure 2.35 Failure modes of Multistorey Infilled Frames;
(a) mode 1, (b) mode 2, (c) mode 3 and
(d) mode 3, (after Liauw et al(25))
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2.9	 Conclusion From The Literature Review 

Attempts at developing a design method for

infilled frames have resulted in two distinct categories of

methods;

a) The methods based on the infill/frame stiffness

parameter, MI, described in Sections 2.3 to 2.6 and

b) The methods based on the frame/infill strength

parameter, m, described in Sections 2.7 and 2.8.

The former methods assume the frame remains in an elastic

state up to the peak load. The latter methods, however, use

the plasticity theories, thus indicating that both the frame

and the infill experience plasticity before the peak load
been

has reached when the frame undergoesa plastic collapse

mechanism upon which the peak load can be calculated.

The current investigation, thus, may be extended

to study the true behaviour of infilled frames. By an

experimental approach, one may not discover whether the

frame or infill experiences plasticity first. However,
the

previous experiments( 20 , 29 ) have proved occurrence of the

frame plasticity only after the peak load.

On the other hand, the Finite Element method has

proved to be a powerful device in solving highly

Indeterminate problems. Wood( 23 ), discussing his plastic

method, stated that "The next important advance must come

from Finite Element analysis, allowing for elastoplasticity

of infilling wall with restricted plastic strain." Such a

Finite Element analysis should simulate the infilled frame

behaviour as truly and as accurately as possible.
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Table 2.2 lists the features, which will enhance

he analysis, if they can be incorporated with a finite

lement analysis.

able 2.2 also lists those features (marked by x) that have

een included in some previously developed Finite Element

nalysis programs, written particularly for infilled frame

tructures.

The main objective of this study is, thus, to

evelop a Finite Element analysis program, enhanced by as

any as possible of the desired features listed in

able 2.2. Such a program may then be used to examine the

egree of accuracy of the existing methods. Also, it is

esirable to examine the significance of the effect of those

arameters and variables that are not included in these

ethods. The next step, then, would be the inclusion of the

ariables and parameters, which have proven to have

ignificant effects on the behaviour of infilled frames.

Having developed such a program, it is possible to

arry out A parametric study and to examine the effects of

he variables on the overall behaviour of infilled frames.

uch variables include material properties, dimension of the

rame or infill, vertical loading, lack of fit,

recompression, order of application of loads, position and

ize of any opening, other frame combinations such as multi-

torey and multi-bay panels and degree of restraint of frame

minections (rigid, semi-rigid, hinge). Such a parametric

tudy could provide a set of data for development of a code

t practice for design of infilled frames.



The criteria for design of infilled frame

structures can be established with respect to the following

requirements:

i) Limit states of serviceability such as: deflection,

cracking, separation, slip (if desired to be prevented

or limited for structures of particular purpose), and

spalling of the infill material at the loaded corners,

should it happen well before the peak load has reached.

ii)Limit state of collapse; permitting an acceptable

range of plastic strain for the material in question.

:
,

e



Table 2.2 Summary of The Effects That Are Desirable to be
Accounted for in a Finite Element Computer
Program for Analysis of Infilled Frames.

EFFECTS ACCOUNTED FOR IN:

17
(REFERENCES)
24 34 35 96 P

IN THE MATERIAL MODELING

Non-linearity of materials X X

Strain softening of infill material

Loading-unloading characteristics X X

Variation of the Poisson's ratio X

Biaxial failure criterion X X

Crack modeling, opening and closing X X X

The behaviour of interlocked cracks X

Occurrence of secondary cracks X

Biaxial failure criteria for masonry X

IN THE INTERFACE MODELING

Lack of fit X X X

Bond resistance X X X

Friction-slip characteristics X X X X X X

Separation and recontacting X X X X X

IN THE FINITE ELEMENTS

Axial deformation of frame members

Shear deformation of frame members

Masonry bound in the subdivision mesh

Weight of the structure

OTHER

Post-peak-load behaviour

P= The proposed finite element computer program, NEPAL
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, CHAPTER THREE

The Finite Element Technique

3.1	 General 

The review of previous work on the behaviour of

irffilled frames led to selection of The finite element

technique for study of the non-linear behaviour of infilled

frames in this investigation.

The finite element method is described in

standard texts, eg. Zienkiewicz( 36 ). In this chapter, only

the principles will briefly be described in order to

establish a notation for the later descriptions and

developments.

In order to simulate the actual behaviour of

infilled frames as close as possible, all the features

listed in , Table 2.2 will be regarded as the minimum

requirements for the proposed finite element analysis

computer program.

12	 Finite Element Concept

The finite element method is a technique used for

solving partial differential equations by discretizing these

equations in their space dimensions to give finite elements.

The regional matrix equations, written for nodal points of

elements, are summed resulting in global matrix equations.

In structural engineering applications of this
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method, the body of the structure is subdivided into

elements being linked together by nodes. The global matrix

equations take the form of:

{P} = [K]{a}	 (3.1)

which relates the nodal forces vector, {P}, to the nodal

displacements vector, {a}, where [K] denotes the stiffness

matrix of the structure under consideration. In a linear
symmetric

elastic analysis [K] is a square matrix of constant terms

resulting from the geometry and the mechanical properties of

the materials of the structure. Eqs 3.1 are, thus, a set of

linear simultaneous equations which can be solved directly.

When non-linearity of material is desired to be accounted

for, pc] becomes a function of current nodal displacements

causing the Eqs 3.1 to become non-linear. Such equations

cannot be solved directly. However, there are numerical •

solutions to such equations as described in the following

section. .

13	 Newton Raphson Iteration

The most frequently used iteration schemes for the

solution of non-linear finite element equations are of the

Newton Raphson type( 36 ) illustrated in Fig 3.1. In this

method, equilibrium conditions, at completion of each load

increment, are satisfied by successive approximation of the

form:

{Ri(n)} = ( Pi-q()} = [Ki(n-1)]{Aai(n)}	 (3.2)
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in which [Ki(n-1)] denotes the tangent stiffness matrix of

the structure at completion of (n-1)th iteration. {Aai(n)}

is the nth correction to the current nodal displacements

vector and	 signifies the total externally applied loads

vector at the load increment station i. {qi(n)} denotes the

nodal forces vector corresponding to the current stresses,

so called "equivalent nodal forces vector." (Ri(n)} is

termed "The vector of unbalanced nodal forces." The nodal

displacement increment correction vector, {Aai(n)}, is used

to obtain the next displacement approximation;

r. Displacement

Figure 3.1 Newton Raphson Iteration
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{ ai(n)} = ( ai(n-1)} + (Aai(n)}	 (3.3)

Iterations are repeated, Fig 3.1, until an appropriate

convergence criterion is satisfied. When such convergence

is achieved the external loads vector, RI, is increased to

a higher level. The procedure is continued until a desired

load level is reached or complete failure of the structure

takes place.

14	 Finite Element Formulation

14.1	 General 

Non-linear finite element analysis reduces to

solution of linear tangential displacement equations, Eqs

3.2, involving the tangent stiffness matrix of the

structure, [K]. [K] is a matrix of currently constant terms

which are computed by assembling the terms of the elements'

tangent stiffness matrices, [K] e . The technique of

assembling is widely described in standard finite element

texts (36 , 37) . An element tangent stiffness matrix, [K]e,

relates the element unbalanced nodal forces vector, {AF}, to

the element nodal displacements vector, {Aa} e , as follows:

{AF) = [K] e {Aa} e	(3.4)

The overall equivalent nodal forces vector, (ql,

also results from assembling the elements equivalent nodal

nv.ces, {q} e . Derivation of [K] a and {ci} e are given in

standard texts of finite element( 36 , 37) but it is

convenient to review the principles in order to establish a

notation for later descriptions. For the sake of
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simplicity, in the following subsections, the superscript

'e' is omitted, and all the stiffness values are meant to be

tangential unless otherwise specified.

3.4.2	 Element Displacement Functions 

Displacement components, u and v, of an arbitrary

point within the area of an element may linearly be related

to the element nodal displacements. For a two dimensional

n-node element, such relationships may be expressed as

follows:

U = E(NuxiXi+NuyiYi)

i=1

V =	 (isivxiXi+NvyiYi)

i=1

Where Nuxi etc. are a set of independent functions of the

co-ordinates of the point under consideration, so called the

element shape functions, and, Xi and Yi are displacement

components of node i. The element displacement functions

maybe written in matrix form as follows:

V

rux1

Nvxl

Nuyl

Nvyl

Nuxn

Nvxn

Nuynl

Nvyn

X1

Y1
•	 •

•	 •

•	 •

(3.5a)

(e) = [N]{a}Or

where e denotes the element displacement vector. For

incremental values, the above relation becomes:
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[

ex

Cy

'Yxy

{AO = [N]{Aa}	 (3.5b)

If, for all the values of i, Nuxi=Nvyi and

Nuyi=Nvxi=0, [N] reduces to:

[Ni 0 N2 0	 Nn 0
[N] =

0 Ni 0	 N2 .. 0	 Nn

This form of displacement shape function matrix is common

with all quadrilateral isoparametric Co elements (38) .

3.4.3	 Element Strain Functions 

Components of strains vector at an arbitrary point

within a plane structure, are given( 38 ) as:

{e} = {Ex= .�0.2/x, Cy= -avlbY, 7xy= .au/OY+6v/Dx 1T

where u(x,y) and v(x,y) are displacement functions of the

structure. The above relations can be written in matrix

form as:

[Dix	 0 1
u

0	 3/Dy

2 /a y	 a/a x

or:
	 {c} = [L]{e}	 (3.6)

Substituting for fe} from Eqs 3.5, Eqs 3.6 become:

fel = (LUNUal

Define:
[B] = [L][N]	 (3.7)

- 78 -



(3.10)

hence:
{e} = [B] (a)	 (3.8a)

For incremental changes of nodal displacements, the above

relation becomes:

{Ae} = [B](Aal	 (3.8h)

The [B] matrix is called "The element strain-displacement

matrix" which is independent of the properties of the

material.

3.4.4	 Stress-strain Relation

In a non-linear elastoplastic material, for small

variation of stress or strain components, the material is

assumed to be linear elastic and the incremental stress-

strain relation is expressed by the well known elasticity

equations. These equations can be written in their matrix

form as follows:

{A} = [DO(Ael	 (3.9)

where the tangent elasticity matrix, [Dt], is a matrix of

constant terms corresponding to the current tangent

mechanical properties of the material. The determination of

the tangent elasticity matrix is discussed, in Chapter 4.

Fora plane stress isotropic continuous material, the

elasticity matrix follows 'Hookeslaw and is given as:

[1	 v*	 o
Et

[Dt] =	 v*	 1	 o
(1-v 

*2)

0	 0 (1-v*)/2
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*where Et and v are the tangent values of modulus of

elasticity and Poisson's ratio of the material respectiviy.

3.4.5	 Element Stiffness Matrix 

Since changes in internal stresses and strains are

due to changes in element nodal forces and displacements,

one of the energy methods may be used to derive the

stiffness matrix of an element as shown below.

If the material behaviour is linear-elastic

between the two stations, the total internal strain energy

may be calculated as:

II = 1/2 (Ae}T{a}ciV

V

Substituting for {a) from Eqs 3.9, gives:

1

	

i

1:7 = 1/2 LAE} T [Dt] {AE}dV

V

Substituting for {Le} from Eqs 3.8b, leads to:

II = (1/2) {Aa} T [f[B1 T [Dt ] [B]dV] {Aa}

V

The work done by external nodal forces may also be

calculated as:

W = ( 1/2) (Aa}T{AF}
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where AF denotes the changes in the nodal forces vector.

Equating the internal and external energy, U and W, AF can

be derived as follows:

{AF} = [f[13] [Dt] [13] dlarl {Aa}

V

Comparison of the above equation with Eq 3.4 leads to the

element tangent stiffness matrix as follows:

iM
e=	 [B]T[Dt][B]dV	 (3.11)

V

Note that the integration must be carried out over the

volume of the element.

3.4.6	 Element Equivalent Nadal Forces 

Using the same energy method as used in previous

section, the equivalent nodal forces vector, q, may be

derived in term of the stress vector as follows:

iU = 1/2 {e}T{a}ciV

V

Substituting for {e} from Eqs. (3.8a), gives:

U = (1/2){a} T [B]T{a}dV

V
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The work done by the nodal forces may be written as:

W= (1/2)(a}T{q}e

Equating U and W and solving for (q) e , leads to:

. {q} e = j([B]T{a}dV
	

(3.12)

V

15	 Local Normalized Coordinates 

3.5.1	 Definitions 

Fig 3.2 shows mapping of a quadrilateral elemer\t

into normalized local coordinates, E, and T. The origii-‘ of

the normalized coordinates, 0(--0, 1=0), is located at the

intersection of bisectors of opposite sides of the

quadrilateral. Normalization of the local co-ordinates

requires that,

711=-1

U=-1 , 12=41

3=-1-1,	 1 3=4-1

4-=-1- 1 ,	 14=-1

It is convenient to convert Eqs 3.11 and 3.12 into

local normalized coordinates because,

a) The element shape functions are normally worked out in

terms of local normalized coordinates in order to be

e independent of geometry and location of the element.

b) Local normalized coordinates allow the integrations of
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2

+1

3

41 -1

.x0

( a ) (b)

Eqs 3.11 and 3.12 to be carried out numerically using

Gaussian quadrature over quadrilateral regions (36)

Figure 3.2 Geometry of a Quadrilateral Element;
(a) in global co-ordinates and (b) mapped into
normalized co-ordinates

3.5.2	 Evaluation of the Integrals in Thins of Local 

Normalized Coordinates 

Expressions 3.11 and 3.12 involve matrix [B] which

depends on bkli/ax and /./j/ay. These derivatives can be

derived by the chain rule of partial differentiation as

follows:

ri/jx1 -1 ri'/otl
=[J]

Z Ni/aY	 OViai

Or:	 [DERrV] = [J] -1 [DER]

(3.13)
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where Ni' is the displacement shape function of the ith node

of the element in terms of local normalized coordinates,

and 1.1, and [J] is the Jacobian matrix expressed as:

[ax/g ay/at
[J] =

axial ay/al
(3.14)

The terms of [J] matrix can be calculated only

when coordinates of any arbitrary point in global

coordinates are known in terms of the normalized

coordinates, ie. x = P(,1) and y = Q(,.11). When the

element is isoparametric (i.e the shape functions defining

geometry and function are the same), x and y are given(36)

as follows:

x = N1'Xi+N2 1 X2+	 Nn'Xn =

i=1

y = N1'Y1+N2'Y'2+	 Nn'Yn =

i=1

where Xi and Yi are coordinates of the nodal points of the

element in global coordinates system. Substituting for x

and y into relation 3.14, the [J] matrix can be derived in

terms of and n and the coordinates of nodal points of the

element as follows:

Xl Yi

[J] =

	

/g	 BITn' /at I

	

brri'/� 71	 aNni/al

(3.15)

Or;	 [J] = [DER][COORD]
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Even when the element is not isoparametric, the

Jacobian matrix can still be calculated using a new set of

shape functions, Ni", (specially used for this purpose)

being compatible with the geometry of the element.

The determinant of Jacobian matrix, 	 must also

be evaluated for transformation of the integrals involving

dxdy as follows (39)

+1 +1

f(t,q)dV = t	 fict,n) IJIdtd1	 (3.16)

-1 -1

Where t denotes the thickness of the element and f(,1)

signifies either functions of Eqs 3.11 or Eqs 3.12.

16	 Numerical Integration
the

Calculation of element stiffness matrix, [K] e , and

equivalent nodal forces, {q} e , led to integrals of type:

+1 +1

I = t f ff (,11) IJIdtd11

-1 -1

Analytical evaluation of such integral at this

form is impractical as far as applications of numerical

analysis is concerned.	 Therefore, in practice,

such integrals are evaluated numerically using gaussian

quadrature over quadrilateral regions. The quadrature rules

are all of the form:



I
I
I

,-,.n:k. \\

Hi

I
i

I
- _ 1

:

I
1

1
1
1

i

i
HI

II
I
I

-	 .
1
I

------
i
1

I

I
- -J, 1r I

i	 ---- -- ,

Ii I
1
1

2

1

G=n

I = t E HiHi f (tjr lii.) I J lij
	

(3.17)

G=1

Where t denotes the thickness of the element. Hi and Hj are

weights and ti and	 are abscissa of the region under
consideration as shown in Fig 3.3. Values of weights and

abscissas of the quadrilateral regions, in the gaussian

padrature rule, are available in standard finite element texts;

eg. Zienkiewicz( 36 ). Such integration is an approximation.

The exact solution may be obtained if the number of gaussian

points is optimal; one for parabolic, two for cubic and

three for quadraticfunctions(36,37).

1Integration zone

3

1123 	 m4

Figure 3.3 Numerical Integration
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3.7	 Contribution of Reinforcement to R.0 Elements 

3.7.1	 General 

It has been customary to consider the two

constituents, concrete and steel reinforcement, as separate

contributors to the overall stiffness and strength using the

principle of superposition.

It is common to assume full kinematic continuity

between concrete and steel, at least at nodal points on

element boundaries. However, the two materials are highly

unequal in their behaviour; Young's modulus for steel bar is

one order higher than that of concrete, and unlike that of

concrete, the stress-strain relation of steel is symmetric

intension and compression.	 The limited	 reinforcement-

concrete	 bond strength	 results	 in:

a) bond failure and sliding of reinforcing bars,

b) local deformation of reinforcement in cracked concrete

(doweling effect) and

c) tension stiffening effect of uncracked concrete

between cracks.

In order to reduce the errors due to such effects, various

adjustments in properties of constituent materials have been

specified, Chen (39). These are discussed in Chapter 4.

Having made such adjustments, reinforcement may

be modeled as:

a) two-node bar element or

b) anisotropic equivalent solid layer stuck on the

surface of the element where it is applicable or

c) Single bar stuck on the surface of the element.

The choice of two-node bar element greatly increases the
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size of the global stiffness matrix. Therefore, the other

two models were adopted in this work.

Contribution of reinforcement is to be

superimposed to that of the concrete as described in the

following sections.

3.7.2	 Uniformly Distributed Reinforcement

As shown in Fig 3.4(a, b), a uniformly distributed

reinforcement with rate of rs may be modeled by an

anisotropic steel layer with thickness of rst and having

full strength and stiffness in direction of the

reinforcement and zero strength and stiffness normal to this

direction, where t is the thickness of the element.

The contribution of reinforcement of this type to

the element properties may be computed in exactly the same

way as described for the element itself. This contribution

maybe superimposed directly. i.e:

I = Ic + I s	 (3.18)

Where I denotes either integrals of Eqs 3.11 and 3.12 and

subscripts c and s specify concrete and steel materials

respectively.

In the particular case when reinforcement is

uniformly distributed, the second integration, Is, can be

eliminated by including the mechanical properties of the

steel layers into that of the concrete as follows:,

e	
[D] = [Do] + rsl[Dsl] + rs2[Ds2] + ...	 (3.19)

{a) = ( ac) + rsl{ asl} + rs2{ as2} + ...	 (3.20)
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where [Dsi] denotes the stress-strain relation matrix for

ith layer of reinforcement. This will be studied in

Section 4.9.6.

3.7.3

	

	 A Single Bar Parallel to One of the Element Local 

Coordinates 

A single bar within an element is assumed to be

stuck on the surface of the element and follows the

displacement function of the element Fig 3.4(c, d). 	 The

contribution of such a bar can be computed by dividing it

into parts and integrating the contribution of these parts

numerically. When the reinforcing bar is extended parallel

to one of the local co-ordinates, say 	 as shown in

Fig 3.4(c), the numerical integration of its contribution

can be computed as follows:

Is =	 2trsHi f(i,11s)	 s;
	

(3.21)

The multiplier 2trs represents the integration of the rate

of reinforcement, trs, between 71=-1 to 11=-1-1.

By altering the corresponding indices in Eq 3.21,

Eg3.22 can be written for a steel bar extended parallel to

Ti as follows:

Is = E2trsili f (s,1ni alis	 (3.22)
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Figure 3.4 Reinforcement Modelling;
(a)uniformly distributed horizontal reinforcement
(b)uniformly distributed vertical reinforcement,
(c)horizontal single reinforcement and
(d)vertical single reinforcement.
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18	 Some Requirements of the RE Discretization

The finite element method requires that the

structure be discretized into finite elements. "The choice

of elements depends on the particular application and the

loading characteristics. In plane problems, isoparametic

elements have proven to be the most versatile elements to

model different problems in engineering mechanics, because

the mmther of nodes and the order of integration are

adjustable," Meyer and Bath (40) . Fig 3.5 summarizes the

most frequently used isoparametic elements in one

dimensional truss, 2-D plane and 3-D solid structures.

Displacement shape functions of these elements are available

in standard texts; eg. Zienkiewicz(36).

The isoparametric 4-node plane element,

Fig 3.5(b), has linear displacement shape functions of the

form:

Ni =(1/4) (1+j)	 (3.23)

where Ni is the shape function of node i defined as the

displacement component u(t,fi) or v(,71) of an arbitrary

point within the element when node i is given a unit
of the

displacement in either co-ordinate directions of t or

respectively and ti and fli denote the position co-ordinates

of node i; eg, for 1=1 ti=-1 and ni=-1. As can be seen, Ni

is a linear function of the position co-ordinates of the

point under consideration. The value of Ni becomes unity
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when the point under consideration is located at node i and

becomes zero when the point is located at any other nodal

pints. This is a necessary condition for a displacement

shape function (36) . For any element configuration, the

sides of an isoparametic 4-node element remain straight.

However, in an 8-node element, Fig 3.5(c), the sides follow

a parabolic curve. Therefore, the shape functions of an

8-node plane element are to the second power of the position

coordinates of the point under consideration as presented

below.

i=1,3,5,7; Ni = (1/4) (1-1-i) (1-Tpu) (tti+ririi-1)

i=2,6;	 Ni=(1/2) (1-Ftti) (1-712)
	

(3.24)

i=4,8;	 Ni=(1/2) (1-Eirrii) (1-t2)

Isoparametric 12-node (cubic) element, Fig 3.5(d), has yet

more flexibility to follow the displacement variations.

Nowadays there is a tendency to use more elaborate elements

for the sake of economy and accuracy(36).

In non-linear finite element analyses of

structures, the displacement equations must be solved

several times, involving a considerable amount of

computation time. The computation time for equation solving

is approximately in proportion to N2W. Where N and W are the

total number of nodal displacement freedoms and the half-

band-width of the global stiffness matrix respectively.

Therefore, considerable care must be used in choosing the

type of elements and the way the structure is subdivided and the
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nodes are numbered in order that the size of the global

stiffness matrix becomes as small as possible. The size of

the stiffness matrix may considerably be reduced by a coarse

subdivision of parabolic or even cubic elements. But the

choice of element is also structure dependent. Therefore,

the efficiency and compatibility of a selected element must

be examined for the structure in question. For this

purpose, the computer program "ELCO", which is the

linear	 and elastic version of program "NEPAL", was

used. Program "ELCO" is capable of solving linear problems

with almost any type of element including some new proposed

elements described in the following sections. Program

"NEPAL" will be discussed in Chapter 5.

Application of the finite element method in the

analysis of infilled frame structures requires specific

considerations in:

a)the finite element discretization of:

i) infilling wall,

ii) frame and

iii) wall/frame interfaces.

b)the mechanical modeling of the materials.

These are studied in the rest of this chapter and Chapter 4.
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( a )

	

( b )

(c) ( d )

( e )

	

( f )

:
r

'igure 3.5 The Most Used Isoparametric Elements; (a)2-node
e	 1-D, (b)4-node plane linear quadrilateral,

(c) 8-node plane (parabolic quadrilateral),
(d) 12-node plane (cubic quadrilateral),
(e) 8-node 3-D solid and (f) 20-node 3-D solid
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1.9	 Masonry INdl Discretization

L9.1	 General 

Masonry is made of mortar joints and masonry units

dth different mechanical properties. When masonry is

;ubjected to in-plane loading, some out-of-plane interactive

forces develop at interfaces of mortar joints and masonry

mits as a result of effects of the poisson's ratio and

Aasticity of the mortar joints. Therefore, the behaviour

)f masonry is three dimensional and elastoplastic.

3.92	 Standard 34) Elements 

Standard finite element procedure suggests masonry

pediscretized into a set of 8-node and 6-node solid 3-D

?lements as shown in FIG 3.6. Also a set of 3-D interface

?lements with zero thickness must be included with the

subdivision in order that the mechanical behaviour of

unit/joint interfaces can be allowed for. This involves 72

nodal displacement freedoms per masonry unit. Such a high

number of displacement freedoms demands a very expensive

finite element analysis.

Therefore, the number of displacement freedoms

should somehow be reduced. The following sections discuss

some other choices with lesser number of displacement

freedoms.
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3.9.3	 Newly Developed 3-1) Four-node Element

A symmetry plane is attributed to any plane

element having a uniform finite thickness. When a plane

element is perfectly plane and subjected to a set of out of

plane forces acting symmetrically about its symmetry plane,

the induced out-of-plane displacements are also symmetric

about the symmetry plane of the element. The symmetry plane

does not move in the third direction. Therefore, it may be

treated as a reference plane for all the out-of-plane

displacements occurring within the thickness of the element.

Taking advantage of such a reference plane, an

8-node solid element may be assigned only four nodes located

at the corners of the reference plane as shown in Fig 3.7.

The algorithm of such element is given in detail in Appendix

C.

The efficiency of the above element was examined

by elastic analysis of a plate under laterally symmetric

loading along the edges of the plate. The results showed

that the out of plane displacement extends, effectively,

only up to half of the thickness of the plate from its edge.

Therefore, the thicker the elements are (relative to their

area), the more accurately they simulate the actual out of

plane deformation of the structure.

Use of this element reduces the number of nodes

and consequently the number of displacement freedoms down to

36zper masonry unit. Since, to the knowledge of the author,

a constitutive formulation for 3-D cracked material does not

exist, the newly developed element may be used for the

elements loaded only up to occurrence of the first crack.
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Figure 3.6 Masonry 3.D Finite Element Subdivision;
(a) masonry bonds (b) subdivision mesh

Figure 3.7 3.D Equivalent 4-node Element
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3.9.4	 Plane-Stress Equivalent Elements 

A diagonally loaded masonry infilling wall usually

cracks well before its ultimate strength is reached. 	 Since

a constitutive formulation for three dimensionally loaded

cracked materials does not exist, the problem has to be

reduced to two dimensions. In order to bring the problem

into 2-D space, same finite element subdivision as shown in

Fig 3.6 may be adopted provided that the mechanical

properties of the mortar joints and masonry units are

adjusted to allow for the effect of three- Dimensionality.

The problem, then, involves 24 displacement freedoms per

masonry unit, Fig 3.6.

The number of displacement freedoms can further be

decreased by combining either the mortar joint and interface

elements named "laminar joint elements" shown in Fig 3.8 or

combining the masonry units and the adjacent mortar joint

elements called "masonry equivalent elements" shown in

Fig 3.9. These are described in the following sections.

3.9.5	 Plane-stress Equivalent Units and Laminar Joints 

In order to further reduce the number of nodes,

The mechanical behaviour of the unit/mortar interfaces may

be included into the bed and head joints eliminating the

interface elements. By this device the joint elements

bmae laminar, vide Zienkiewicz (36 ). Inclusion of laminar

bed and head joints, brings the number of displacement

freedoms down to 12 per masonry unit, Fig 3.8.

The element shape functions matrix, [N], and the strain
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displacement matrix, [B], are not influenced by such

laminarity because these matrices are independent from the

material properties. However, the weakening effect of

laminarity must be included in the stress-strain

relationship of the joint material. The author's effort led

to the conclusion that, should the joint material crack in

one or two directions and also slip or separate at the

discontinuity planes of the material, an explicit

constitutive formulation leading to a symmetric element

stiffness matrix cannot be achieved. Therefore, laminar

elements can only be used for uncracked materials.

Figure 3.8 2-D Masonry finite element subdivision using
laminar joint element
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3.9.6	 Plane-stress Masonry-Equivalent and Interface 

Elements 

As discussed in Section 3.9.4, the number of nodes

of a masonry subdivision mesh may further be reduced by

combining the masonry units and the adjacent mortar joint

elements called "masonry-equivalent element". This approach

reduces the number of displacement freedoms per masonry unit

thm to 12. As shown in Fig 3.9, masonry is, therefore,

assumed to be made of a single material with mechanical

properties equivalent to those of masonry ignoring the

weakening effect of interfaces. Whereas these effects are

accounted for by the interface elements described in Section

3.10 and 3.11. The masonry equivalent material is discussed

in Sections	 R3.2 to	 F.3.4.

Figure 3.9 2-D Masonry Finite Element Subdivision Using
Masonry-equivalent Elements and Zero Thickness
Interfaces
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19.7	 Super Element of Masonry 

The size of the stiffness matrix could, be further

reduced using a super element of masonry, provided that such

an element can be developed. The idea is that, if the

mechanical properties of interface elements can be included

into the masonry-equivalent elements discussed in

Section 3.9.6, a super element of masonry is created. Such

an element must have a set of potential crack planes as

shown in Fig 3.10.

Development of a super element of masonry was

found to be rather complicated and was not pursued. It is

worth attempting sometime in the future because masonry

walls can then be subdivided into any type of isoparametric

element providing a considerable economy to the finite

element analysis of masonry structures.

3.9.8	 Conclusions on the Choices of Masonry Elements 

Comparison of the six choices discussed in

Sections 3.9.2 to 3.9.7 shows that, should a non-linear

elastoplastic analysis up to complete failure of masonry

beyond cracking and joint failure be carried out, the choice

of masonry-equivalent element surrounded by interface

elements with only 12 degrees of freedom per masonry unit

described in Section 3.9.6, appears to be a'practical and

economical finite element representation of masonry walls.

This type of element and masonry subdivision has first been

used by Page(86) in 1987.
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Figure 3.10 The Modes of Joint Failure in a Masonry Super
Element; (a)concrete block masonry,
(b) failure through bed joints and
(c,d,e,) failure through bed and head joints
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110	 Interface Discretization

3.10.1	 General 

The significance of the behaviour of the frame-

infill interface was discussed in section 2.2. The

mechanical properties of interfaces are described in

Chapter 4. In this section, only the geometry of the

interfaces is discussed.

The geometry of interfaces was first modeled by

Goodman (41) in 1968 for finite element analysis of rocks.

The Goodman's interface element consists of a four-node

element having 8 degrees of freedom and zero thickness.

Since the stiffness matrix of this element resulted from a

direct algebraic integration rather than the standard

numerical summation, such an element can be considered to

have only one sampling point representing the whole length

of the interface held by the element.

An equivalent element but much simpler element

than that of Goodman, is the well known two-node linkage

element with four degrees of freedom used by Riddington(17)

and also by Liauw et al( 24 ). Linkage elements have a

variety of applications in the finite element method; eg.

reinforcement-concrete bond problems, cracking and rock

joints. The stiffness matrix of a linkage element is given

in Section 3.10.2 as to provide a basic notation to the

subject.

In this study, however, the popular linkage

element was not satisfactory, as so many elements were

required to obtain a detailed stress distribution diagram
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over the length of contact between frame and the inf ill.

Instead, a new four-node element with eight degrees of

freedom was developed. Unlike the linkage and Goodman

interface elements, the proposed element uses the standard

numerical integration procedure and is capable of handling

as many sampling points as desired along the interface

element leading to accurate and detailed results with only a

gran number of elements. The algorithm of this element is

given in Section 3.10.3.

3.10.2	 Algorithm of Linkage Element

The application of linkage element was briefly

pointed out in Section 3.10.1. Fig 3.11 illustrates the

geometry of this element. The vectors of nodal forces, (F),

nodal displacements, (al, and relative displacements, (e),

are also shown in Fig 3.11 and are expressed in matrix form

as follows:

xl

Fyl Y1
(F) (a) = (e) =

Fx2 X2

Fy2 Y2

{:1

The stiffness matrix of this element may be derived as

described below.

The external work done by the vector of the nodal

forces may be calculated as:

W = (1/2)s(Fx2 -Fxl)	 (1/2)w(Fy2-Fyl)	 (3.25)

The internal work done at the interface may be written as:
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I Yi FY1
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Figure 3.11 Modelling of an Interface by Linkage Elements
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= (1/2)A(Ts+anw)

Substituting for T and On from Eq 4.172 gives:

= (1/2)A(K3 s 2 +Knw2 )	 (3.26)

where, A, denotes the area of the interface held by the

linkage element and T and an are the tangential and normal



stresses uniformly distributed over this area. Ks and Kn

are the tangential and normal stiffnesses of the interface

expressed as Newtons per cubic millimeter (VImm3).

Substituting for the relative displacements, s and w, into

Eqs 3.25, and 3.26, where:

S = X2 - X1 and w = Y2 Y1

and equating these equations, gives:

2
(X2-X1) ( Fx2-Fx1) + (Y2-Y1) (Fy2-Fyi) = A [Ks (X2-X1) +Kn

Equating the independent terms from the both sides of the

above equation leads to:

Fx2 - Fx1 = AK3(X2-K1)

Fy2 - Fyl = AKn(Y2-Y1)

Allowing the external forces to act independently, the above

equations result in:

Fx1 = A(+K3X1-K3K2)

Fyi = A(+KnY1-KnY2)

= A ( -KsX1+K3K2)Fx2

Fy2 = A(-KnY2+KnY2)

which can be written in their matrix form as:

Fxl Ks 0 -Ks 0
Mir

X1

Fyl 0 Kn 0 -Kn Yl
A

Fx2 -Ks 0 Ks 0 X2

Fy2 0 -Kn 0 Kn Y2
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or:	 = [K] e {a}	 (3.27)

where [K] e denotes the stiffness matrix of the linkage

element.

Since this linkage element permits only a uniform

stress to develop over the area of the interface, a new

interface element was developed as described in the

following section.

3.10.3	 Islevity Developed Interface Element

The stress and strain gradients along the length

of contact between frame and the infill (especially within

the regions close to the loaded corners) are significant.

Therefore, a reasonably acceptable interface element should

permit, at least, linearly variable relative displacements

along the length of the element. Therefore a new interface

element was developed to satisfy such requirement as

described below.

Fig 3.12(a) shows a segment of a horizontal

Interface. This segment may be represented by a four node

element and mapped into normalized co-ordinates with,

originally, zero thickness as shown in Fig 3.12(b). Define

s and w as the relative transversal and normal displacements

of an arbitrary point along the interface. The proposed

sign convention for s and w is given in Fig 3.12(c).

The relative displacements, s and w, may be

related to the nodal displacements vector, (a}, as follows:

s = NIX' + N2X2 + N3X3 + N4X4

w = N1Y1 + N2Y2 + N3Y3 + N4Y4
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Filure 3.12 Modelling of an Interface Segment by the
Proposed 4-node Element; (a) actual geometry,
(b)geometry of the proposed element,
(C) sign convention
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or:

or:

Y1

	

[ s

	 Ni 0 N20 N30 N40 X2

Y2
X3

	

w	 0 N1 0 N2 0 N30 N4 Y3
X4
Y4

(el = [N]fa}	 (3.28)

where Ni to N4 denote the relative displacement shape

functions of node 1 to node 4 respectively, ie. Ni is the

relative interface displacement at any point along the

interface due to the nodal displacement of node 1 equals to

unity. Since there are only two nodes on each side of the

element, a set of linear shape functions best suit the

relative displacements of the interface. Such shape

functions are proposed as:

Ni = -(1/2)(1-4)

N2 = +(1/2) (1-4)

N3 = +(1/2) (1+)

N4 = -(1/2)(1+)

or generally expressed as only one equation:

Ni = (1/2)Tli(1+4)	 (3.29)

where 4i and qi are the normalized co-ordinates of node i.

The external work done by the nodal forces vector,

(FY, can be written as:

W = (1/2){a}T{F}	 (3.30)
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U = (1/2) 
Ji
fe}T{6}dA

A

1
or:

U = (1/2)t f e}T{61dx

0

(3.31)

T I rs 0 1r I
{ a } =	 =

an 0 Kn w

or:
{ a } = [D](e) (3.32)

where:

{a}T = (X1, Yl, X2, Y2, X3, Y3, X4, Y4}

and

(F) T = {Fx1,Fyl,Fx2,Fy2,Fx3,Fy3,Fx4,F1,4}

The internal work done over the area of the

interface can be written as:

The stress vector, 0}, is related to the relative displace-

ments, Eq 4.172, as follows:

Substituting for (0 from Eq 3.32 into Eq 3.31 and
converting the integral into the normalized coordinates

leads to:

+1

iU = (1/4)1t fe)T[D]fe)dt
	

(3.33)

-1

Substituting for {a} from Eq 3.28 and equating to Eq 3.30

gives:
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or:

+1

(1/2){a}T{F} = (1/4){a}T[lt iN]T[D][N]cg]{a}

-1

+1

{F} = [(1/2)+T[D][N]d41{a}

-1
Defining:

= [K]e{a}

and solving for [K] e leads to:

+1

[K] e = (1/2)1t iN1T[D1[1,11g

-1

(3.34)

where [K] e denotes the element stiffness matrix of the

proposed element. When small nodal displacements is

involved, [D] must be replaced by [Dt]. In the form of

numerical integration, the expression 3.34 becomes:

i=n

[K] e = (1/2)1t EHi[Ni]T[Di][Ni]
	

(3.35)
i=1

where Hj signifies the weight of the ith sampling point.

Using the same energy approach the equivalent
nodal forces, {q} e , can be derived as:

+1 .

{q} e = tli [N]T{a}g

-1

and the numerical integration leads to:



i=n

{q} e = (1/2)1tEHi[NiVrfai)
	

(3.36)

i=1

It should be mentioned that if only one sampling point is

assigned to this element, it becomes identical to the

linkage element.

The proposed element permits as many Gaussian

integration points as required to be allocated within each

element. This feature allows partial slip and/or partial

separation within only one element. As will be shown in

Section 5.5.5, the proposed linear interface element

significantly enhances the simulation of the mechanical

behaviour of an interface.

3.11	 Frame Discretization

3.11.1	 General 

A frame can be subdivided into its components;

beams, columns, and connection blocks. These components are

normally subjected to bending moment, axial and shear

forces. In computer aided analyses mainly for design

purposes, frame members are normally replaced by

2-node bending elements with allowance for only their

bending flexibility( 36 ). King et al( 42 ) and Liauw et al(24)

used this standard beam element in their finite element

analyses of concrete infilled steel frames. For infilled

frame structures, however, such an element may not be

acceptable even if the effect of either or both the axial

and shear forces are included into the element algorithm for
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the following reasons:

a) By ignoring the thickness of the members and the

resulting corner blocks at the beam-column connections,

the geometry may be significantly different from that

of the actual structure and this may affect the frame-

infill interaction behaviour and,

b) Should the material become partially non-linear and/or

plastic somewhere in the beam element, a numerical

integration across the element cannot be carried out,

because the integration is done algebraically over the

depth of the element based on the assumptions of linear

elasticity.

Therefore a planar element with finite thickness is needed

so that the above requirements can be fulfilled.

An appropriate beam element may be sought within

the family of isoparametric quadrilateral elements shown in.

Fig 3.5(b, c, d). Riddington( 17 ) used the 4-node linear

elements packed into two rows as shown in Table 3.1. It has•

been shown( 36 ) that such a simple element cannot simulate

the curvature induced by bending, its deflection is 40% less

and its bending and shear stresses are approximately four

times greater than those resulting from beam theory(38),

Table 3.1. Riddington ignored these discrepancies, perhaps,

because he specifically concentrated on the axial

deformation of the frame members.

The efficiency and accuracy of the results would,

however, rapidly improve by using a more sophisticated

element within the family of isoparametric quadrilateral
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elements including some non-standard elements such as 6 and

10-node elements, whose shape functions can be derived with

minor effort (36) 	 This was investigated by carrying out a

umber of trial analyses with different elements. Table 3.1

=pares the finite element analysis results of a cantilever

beam subdivided into variety of such elements with the

result obtained from the well known elasticity theory

described by Timoshenko et al (38). Notice that this theory

allows for the effects of shear deformation and the

Poisson's ratio. Table 3.1 shows that 10-node element leads

to fairly accurate results with allowance made for parabolic

shear strain distribution across the beam. Its computation

time, however is approximately 6 times greater than that of

the 4-node element used by Riddington(17).

Attempts to develop an efficient beam element have

led to:

a) a 6-node non-conforming rectangular element developed

by Wilson et al( 44 ) in 1973 and

b) the proposed 6-node element developed by the

Author.

These are discussed in sections 3.11.2 and 3.11.3

respectively.

3.11.2	 Non-Conforming Rectangular Element

Wilson et al( 44 ) introduced two additional

displacement shape functions to the linear quadrilateral

element, as illustrated in Fig 3.13(b, c). The new element

became a 6-node element with corner-node shape functions of:
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Ni = (1/4)(14-iini)(14-tti) 	 (3•37)

and two imaginary internal independent nodes with the

following shape functions.

N5	 (1-0	 (3.38)

N 6	 (1-n2)	 (3.39)

Clearly, the deformations between the adjacent

elements are non-conforming. Table 3.1 shows that by using

this type of element, the computed deflections and stresses

for the cantilever beam example considerably improves in

comparison with the conforming linear 4-node element. The

deflections are only 2% lower than the exact values

calculated by beam theory.

Further tests on the above element showed( 36 ) that

when the cantilever beam is loaded in such a way that no

shear force is produced in the beam, the computed deflection

would become much closer to the exact value indicating that

this element does not allow for shear deformation.

It is also worth mentioning that the parabolic

shape functions N5 and N6 do not comply with the true

bending curvature of that segment of the beam which contains

apoint of inflexion. Points of inflexion are always

expected in frame members especially close to the loaded

corners.

In order to ensure allowance for shear deformation

and to maintain the true beam curvature, a new beam element

was developed as described in the following section.
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3.11.3	 Proposed Rectangular Beam Element

Included in Table 3.1, is also a newly developed

planar quadrilateral -element with two internal independent

nodes and eleven displacement degrees of freedom in total.

The algorithm for this element is described in Appendix D.

As shown in Table 3.1, the proposed 6-node beam

element is the most suitable element. Its computation time

has proved to be about 4 times less than that of 10-node

element which is almost equally sophisticated. Further,

unlike the 10-node element the 6-node proposed beam element

can readily handle more than two columns of gaussian

integration points -reader may refer to Zienkiewicz(36)for

the requirements concerning the optional number of gaussian

points. This is of great significance in this particular

study, since bending moments within the frame members,

especially close to the loaded corners are highly variable.

Therefore a greater number of gaussian points are needed so

that the plastic hinges to occur in their right location and

in the right time.

Flexibility of the proposed element in selecting

the number of gaussian points permits the number of elements

amiconsequently the computation time to be reduced

lramatically. For example, the cantilever beam shown in

Fable 3.1 can be solved by only one beam element with 10

columns of gaussian points. However, in a non-linear

alastoplastic analysis such a dramatic reduction in the

lumber of elements is not recommended, because events such

is occurrence of a plastic hinge or major local cracking or

:rushing produce abrupt changes in slope of the beam which
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0

- -
A

0

is not compatible with the continuous shape functions of the

proposed beam element.

As will be shown in Chapter5, a reasonable number

of beam elements in the analysis of a reinforced concrete

beam, loaded to destruction, well simulate the experimental

behaviour.

	 _

( a )

c

Figure 3.13 Wilson et al( 44 ) Non-Conforming Beam Element;
(a)4-node linear element as a beam element and
(b,c)converting into Wilson et al beam element
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3.12	 Choice Of Masonry Infilled Rune Subdivision

Blockwork infilling walls of single storey

normally consist of at least 12 courses of blockwork. The

exact subdivision of such a masonry panel into single block

elements, when the masonry equivalent and interface elements

described in Sections 3.9.6 and 3.9.8 are used, involve

12x6x12 = 864 nodal displacements, added to which there are

the nodal displacements of the boundary frame. Solution of

such a high number of equations several times in a non-

linear elastoplastic analysis is uneconomical.

The computation time of the problem can be

reduced, however, by the choice of a subdivision mesh based

on imaginary larger masonry units and proportionally thicker

mortar joints and consequently lesser number of courses of

blockwork, while keeping the size of the panel unchanged.

This choice is acceptable provided that such a subdivision

mesh is still fine enough to maintain a reasonable accuracy

of stress distribution and also not to change the state and

pattern of the cracks and the state of bed and head joints.

In order to select a suitable subdivision mesh

some elastic finite element analyses were carried out on 12,

10, 8 and 4-course blockwork infills allowing for no joint

failure. The results are plotted in Fig 3.14 comparing the

stress distribution along the infill diagonal and the frame-

infill boundary for the examples tested. As shown, the

results of 12 and 10-course blockwork infills are identical

showing that these meshes are sufficiently fine. The

results of

8-course blockwork infill is in a fairly good agreement with
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those of 12 and 10-course blockwork infills. However, a

4-course blockwork panel led to very poor results.

Although 8-course masonry inf ill subdivision is

sufficiently fine as far as the degree of accuracy of stress

distribution is concerned, its bed and head joints failure

pattern leads to a slightly different pattern from that of

the 12-course blockwork infill. Such a difference can be

seen from Fig 3.15. As shown the difference is minor and

does not affect any conclusion that one may come to.

The number of gaussian integration points had a

slight effect on the computed stresses of the infill.

However, in a non-linear elastoplastic analysis of such an

it is convenient to provide sufficient number of

gatissian points within the elements that are likely to be

subjected to plasticity, cracking or a high stress gradient.

The above examination showed that a single panel

of 12-course blockwork can be scaled into an 8-course

blockwork panel without any harmful effect. Having reduced

the number of courses from 12 to 8 the computation time

would decrease by about 6 times. Fig A.2 shows an 8-course

masonry infill subdivision.



Frame— infill

normal	 stread

--I9
-1
. Crack Pterne

L.

— Actual

Scaled

I

Infill Diagonal compression

N/mm2

Figure 3.14 Linear Elastic Analysis of Infilled Frame
with Various Subdivision Mesh

Figure 3.15 Effect of Scaling The Size of Masonry
Elements on The Typical Infill Crack Pattern
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3.13	 Choices of Concrete Infilled Frame Subdivision

The same infill as studied in the previous section

was examined for 4 and 8-node element subdivisions with

different choices of gaussian integration points as listed

in Table 3.2:

Table 3.2 Choices of Infill Subdivision

Division Element Gaussian pts.

8x8

8x8

4x4

2x2

4-node

4-node

8-node

8-node

1

2x2

2x2

2x2

The infill assumed IS made of a uniform

material with the same stiffness properties as those of the

masonry infill discussed in section 3.12. The results of

diagonal and vertical stresses are plotted in Fig 3.14 to

compare with the results corresponding to the 12-course

blockwork infill plotted in this Figure. As shown, the

results of an 8x8 subdivision of 4-node element with 2x2

gaussian points gives the best results. However, the 4x4

subdivision of 8-node (parabolic) elements do not suit the

high gradient double curvature stress diagrams near the

loaded corners. An even more efficient mesh may be

generated by allowing for finer elements in the vicinity of

the loaded corners as shown in Fig A.4. The choice of

concrete infill subdivision will, further, be studied in

Section 5.5.5.
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CHAPTER FOUR

Constitutive Formulation of

Materials

41

The F.E formulation has been described in

Chapter 3. Calculation of the incremental stress-strain

relation matrix, (Dt], and also the current stress vector,

NI, in terms of the current strains and loading history

are	 dependent on the mechanical behaviour of the

materials which is discussed in this chapter.

The mechanical behaviour of the material normally

used in infilled frames are non-linear and elastoplastic.

The significance of the effect of non-linearity and

plasticity of material in the analysis of infilled frames

has been discussed in Chapter 2 and the various sources of

mm-linearity has been Outlined in Table 2.2. It has also

been concluded in Section 2.9, that an acceptable infilled

frame analysis must be enhanced by a set of fairly accurate

material models so as to simulate the elastoplastic

behaviour of the constituents of the structure (frame and

infill) as well as the interface between these constituents.

Since different materials behaves differently, the commonly

used materials may be categorized into the following groups;



i) Brittle materials; concrete and masonry.

ii)Ductile materials; steel

iii)Interfaces; the joints between masonry units and the

infill/frame interface.

Sections 4.2 to 4.8 deal with brittle materials

and sections 4.9 and 4.10 deal with ductile materials and

interfaces respectively.

4.2	 The Existing Fracture Models 

The several existing constitutive formulations can

be categorized into six grovps as stown in Figs 4.1 to 4.5

as listed below;

i) Linear elasticity theory (Fig 4.1)

ii)Non-linear elasticity fracture model (Fig 4.2)

iii)Elastic-perfect plasticity fracture model (Fig 4.3)

Elastic-work hardening plasticity fracture model

(Fig 4.4)

v) Endochronic plasticity theory

vi) Representation of given experimental data using curve

fitting method, interpolation or mathematical

function, (Fig 4.5).

The existing theories based on the models of group

(i) to (iv) are described in detail by Chen( 39 ). The

linear elasticity theory, Fig 4.1, is the most commonly used

material model. This model ignores non-linearity and

plasticity of the material and is normally used for analysis-

of the elements of the structure which are loaded within the

range that would not undergo any plasticity or failure.
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The models of groups (ii) to (iv), illustrated in

Figs 4.2 to 4.4 respectively, are based on idealization of

material by an elastic or plastic model. These models are

neither exact nor impressively accurate but even so they

may be rather complicated. Because of the idealization of

the behaviour of the material, these models are disconti-

nuous material models dividing the material responses into

several stages. However, the actual behaviour of a non-

cracked material is continuous. Further, such discontinuous

models, while simplifying the problem, are the source of

numerical difficulties ( 39 ) . Nevertheless the elastic-

perfect plasticity fracture model (for both tension and

compression) suits steel material. This will be discussed

in section 4.9.

The endochronic theory has received much attention

in recent years because it is based on a continuous model.

This model was originated by Valanis (45 ) (1971) for metal,

based on the concept of P Entrinsic time." The theory does

not require a specific definition of yielding. Bazant ( 46 )	 •

(1976) extended the theory to describe the behaviour of

brittle materials. For concrete, the formulation of the

endochronic model is based on an extensive set of functions

which fit nearly all the experimentally observed effects.

However, "this model involves a rather high number of

material parameters. Therefore further research in refining

this theory is needed," Chen (39) .

Since the aforesaid purely theoretical models

involve extensive numerical work, in practice, either a

simple uniaxial model is generalized to form a three-
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dimensional model or one of the methods of group (vi) is

used. The methods in this group are not related to any

specific theory, but experimental observations and may

therefore be expected to provide the best accuracy. These

methods have mostly been developed for biaxial behaviour of

material (plane stress problems) . The most efficient method

of this group seems to be the analytical method of Darwin

and Pecknold (47 ) , (1977) , developed for concrete in plain

stress problems. Fig 4.5 illustrates this model. In this

method, the concept of equivalent uniaxial strain, described

In section 4.6.2, is utilized. It is also assumed that

concrete behaves as an orthotropic material with a variable

Poisson's ratio. However the variation of Poisson's ratio

under biaxial compression stress is ignored and the

formulation involves a significant discrepancy between the

proposed values of Poisson' s ratio when the state of biaxial

stress combination alters from compression-tension to

:ompression-compression. Nevertheless Darwin and Pecknold's

nethod reasonably predicts the actual behaviour of concrete

Inder biaxial loading and a number of F.E. programs have

,een written using this method (48 , 49 ) . Because of the

ssumption of orthotropy, it is very difficult to expand

his method for triaxial loading. In this project, however,

t was decided to develop a new constitutive formulation for

rittle materials using the concept of "Equivalent Uniaxial

tfain", EUS. The proposed model allows for triaxial

)4ding but ignores the orthotropy of uncracked materials.

le new proposed model will be described later in this

lapter.
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4.3	 Proposed Constitutive Formulation for Brittle 

Materials Under Uniaxial Compression

4.3.1	 Stress-Strain Relation 

The typical stress-strain relationship for

concrete subjected to uniaxial compression is shown in Fig

4.6(a). Concrete has a nearly linear-elastic behaviour up

to about 30 percent of its compressive strength ac. For

stresses above this point the stress-strain curve shows a

gradual increase in curvature up to the peak point, ac, due

to extension of microcracks. Beyond this peak, the stress-

strain curve has a falling branch until crushing failure

occurs at some ultimate strain, E.
Wischers (50) (1978) carried out a series of

uniaxial loading tests on necked specimens in order to

exclude the confinement effect of the end platens. The

results of these tests are plotted in Fig 4.7. As shown the

shape of the stress-strain curve is similar for concrete of

low, medium and high strength. However, a high-strength

concrete behaves in a more brittle manner, the stress

dropping off more sharply than it does for concrete with

lower strength.

For the rising branch of the stress-strain curves,

the well known Saenz ( 51 ) equation may be adopted as follows;

E

G = EO 	 	 (4.1)

:.

ghere  a and e are the stress and strain and Eo and Ec
(Ec=adec) are the initial tangent and secant modulus at
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peak respectively and Ec is the strain at peak stress.

Eq4.1 for Eo/Ec<2 gives an unrealistic point of inflexion

somewhere on the curve. The following proposed equation

thus may be used when E0/Ec<2;

6 = Eo 	 	 (4.2)
EO	 e g

1+	 - 1 )(---)
Ec	 cc

where
1	 Eo

g - 	 	 and	 <2
	

(4.3)
1 - E0/E0	 EC

It should be noted that for E0/Ec=2 equations 4.2

and 4.1 are identical, thus 	 continuity between	 the two

is maintained.

For the falling branch of the stress-strain curve,

several observations and data (50 to 60) and especially the

work of Wischers (50) , Fig 4.7, were studied and compared, to

derive the following proposed simple equation:

ac
a - 	 	 ( 4.4)

1 + D(	 -1)
2

EC

where for concrete:

ac	 2.15
D = 10 (-	 5( 0.25

100 )
(4.5)

It should be mentioned that Eq 4.4 is independent of the

initial stiffness of the material. The tangent value of the

modulus of elasticity, Et, may be derived by differentiation

ofEqs 4.1, 4.2 and 4.3 in terms of e for E0/Ec > 2 as:
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Et - (4.6)
E	 C	 E 22

[1 + (— - 2)(—) +
EC	 EC	 CC

and for Eo/Ec < 2 as:

E0[1 - 
E g

ec
Et -	 (4.7)

E 0 	 e g-12
[1 +(_..__ 1)(—)

Ec	 EC

and for the falling branch as:

-2EcD
EC

Et - 	 	 (4.8)
_ 112 ] 2

[1 + D
EC I

As shown in Fig 4.7 the proposed Eqs 4.1 to 4.5 agree well

with a wide range of possible concrete and mortar strengths.

These equations were not examined for brittle materials

other than concrete and mortar but it seems only Eq 4.5

needs some adjustments should a brittle material other than

concrete be used.

The above formulation requires only the initial

tangent modulus, Eo, and the strain at peak, C, and the

unconfined uniaxial strength, ac, to be determined by test

orfany other means for the complete uniaxial stress-strain

curve to be plotted.

- 132 -



tGc

Ev

Volumetric strain x103

(b)

0.5

( a)

Actual (50) ----

Proposed

0".=.27

CC = 15

;

6	 8	 2	 4	 6	 8
Strain x 1000	 Strain x 1000

a
a
I.

•1;
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Complete Stress-strain Curves of Concrete;
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4.12	 Poisson's Ratio 

Poisson's ratio, V, for concrete under uniaxial

compression ranges from 0.15 to 0.22. The ratio v remains

constant until approximately 80 percent of ac or

approximately 0.5Ec at which stress (so called critical

stress) the apparent Poisson's ratio begins to increase,

Fig 4.6(a,b).	 At the peak stress, the Poisson's ratio

increases up to about 2v0. Using the above experimental

knowledge, the following formula was developed to represent

the variation of Poisson's ratio in uniaxial loading;

,C fl
1.	

i
V = vo [ + k H

e.
(4.9)

Comparison of the experimental data of Kupfer et al (55) with

Eq 4.9 led to n = 3 and k = 0.85 to obtain a good fit.

The incremental value of the Poisson's ratio may

be derived as follows;

v* = 
-dE r

=
 d(ve)

de	 dE

Substituting for V from Eq 4.10 gives;

e n

v * = vo [1 + (n+l)kH ]

EG

(4.10)

where Cr denotes the strain in the radial direction normal

to the direction of the applied load.

Eq 4.10, beyond the peak load, gives a rather high

value for the incremental Poisson's ratio. Although this is
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evident in uniaxial compression test, in fact the apparent

extensive volume expansion may be not so much due to

yielding of the material as due to disintegration and lack

of confinement. A small degree of confinement may greatly

reduce the radial expansion of the specimen. Assuming a

constant incremental Poisson's ratio beyond the peak stress,

may be a realistic way to exclude the disintegration from

the Poisson's effect. Therefore the following expressions

Eqs 4.9 and 4.10 for thanreplace eiec greater unity.

Fig 4.8 compares the equations 4.9 to 4.11 to the

experimental results of Kupfer et al (55) showing a good

agreement.

v/vc > 1. 0
{	 v * = vo [1 + (n+1) k]

ec
v = vo [1 +k (4-3ED]

e

(4.11)

0.8

0.6
0-
do
4
I.

;
a.

0.2

:
r	 0

Eq 4.9

• ...1

49

• Ref (55)

0	 05	 10
	

15

f
	

Straning ratio (E/Ec)

Figure 4.8 Comparison of the Proposed Poisson's Ratio with
the Experimental Results of Kupfer et al (55)
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Figure 4.9 Concrete Under Unloading and Reloading

This equation agreed with the mean experimental results of

concrete specimens with f' c equal to 24.1 to 34.5 N/mm2

The aforesaid assumption and Eq 4.12 were adopted

by Darwin and Pecknold( 49 ) and also Ghoneim, et al. (48) to

develop a plane-stress and a three-dimensional F.E. analysis

respectively. In these analyses, the unloading and

reloading curves were simplified to multi-linear

approximations as shown in Fig 4.5.

The unloading-reloading stress-strain diagram may

also be idealized by the straight line of EP in Fig 4.9.

The unloading and reloading modulus can thus be written as;

Eul =	 (e — CP)
	

(4.13)

where a and ep can be calculated from Eqs 4.1, 4.2, 4.4 and

4.12.
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4.4	 Brittle Materials Subjected to Uniaxial Tension

Concrete and other brittle materials behave in an

almost linear-elastic - fashion in tension. Therefore, in

practice they are modeled by a linear-elastic-fracture model

as shown in Fig 4.1. Previous work (55164,65,66), however,

shows that concrete under uniaxial tension undergoes some

non-linearity and plasticity and the tensile stress-strain

curve is similar to that for uniaxial compression. Eq 4.1

or 4.2 therefore, may also be used to represent the tensile

stress-strain relationship provided that Ec and Cc are

replaced by Et and cot respectively. Some experimental_

values for Ect/E0 are listed below from different sources;

Kupfer et al (55)
	

0.90

Tassuji et al (65)
	

0.65-0.70

Cook et al (64) 0.70-0.75

Evans et al (66) 0.40-0.60

These experimental values led to propose Ec as a value in

between Eo and Ec as follows:

1.	 1	 1
k + -

Et	 2	 EO	 Ec
(4.14)

For a medium strength concrete (Ec0.45E0) , Eq 4.14 gives

Ect/E0 = 0.62 which is the mean value of the last three of

the above experimental data resulted 	 from different

test procedures. The strain corresponding to peak tensile

stress, Cot, may now be calculated as follows:

at
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Ect = 
Ct	

(4.15)

Ect

Concrete and other brittle materials show little ductility

In tension. The ultimate strain (the strain at the onset of

cracking) is therefore, proposed to be limited to Ect

beyond which strain concrete cracks in a plane normal to

direction of the tensile stress and the tensile stress drops

immediately to zero as shown in Fig 4.10.

Because of allowance for non-linearity, the above

proposed model explains the cause of delay in cracking- in

the tensile region of the standard beams tested for

determination of the modulus of rupture. The proposed model

explains well the difference between the direct tensile

strength and the modulus of rupture.

The Scanlon (67) model which is also shown in

Fig 4.10, has received much attention in recent years for

its ability to simulate the effect of tensile stiffening.

But this model is unrealistic for unreinforced concrete.

Figure 4.10 Stress strain Curve of Concrete in Tension
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5	 Failure Criteria

5.1	 Chmvmd 

In formulating failure criteria for materials, a

7oper definition of failure must be defined. Criteria such

; yielding, initiation of cracking, load-carrying capacity,

id extent of deformation have been used to define failure.

this section failure is defined as the maximum load-

xrying capacity of a test specimen or an element.

Le strength of materials under multiaxial stresses is a

notion of the state of stress and cannot be predicted by

mitation of simple compressive and shearing stresses

dependently of each other.

A failure criterion of isotropic materials based

on state of stress must be an invariant function of the

ate of stress, ie, independent of the choice of the

ordinate system by which stress is defined. One method of

presenting such a function is to use the principal

resses le,

f(a1,02,03) = K	 (4.16)

indicate the general functional form of the failure

iterion. It is known( 39 ) that any invariant symmetric

lotion of the state of stress can also be expressed in

:xis of the three stress invariants of II, J2 and J3 or

•and 0 , where 0 is the angle from the positive a l axis

1 lies in the deviatoric plane, Chen( 39 ). Thus one can

)lace Eq 4.16 by:
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f ( 11072, 473) = K

f( 11,J210 ) = K
or:

where:
Ii = al + a2 + 03
	

(4.19)

2	 2

J2 = 1 [ (al-a2) + ( 02-a3) + 03- 051;2 ]

	

	 )(4.20

6

1
3 3 s,3 -J3 =	 (si-,s2 . a ) - s1s2s3	 (4.213

3

-14 2al-a2-a3 ]
	 	 ,0 = Cos

	

	 0-1>G2>G3
211iT2-

(4.22)

Si = al-am
	 52= a2-am	 S3 = 63-Gm

(4.23)
Gm = 1/3(al+a2+ $53) = 11/3

Chen (39) has described several failure criteria

developed by various investigators. The most commonly used

ones are illustrated in Figs 4.11 and 4.12. These are

algebraically expressed as follows:

i) Von Mises yield criterion;

2
f = 3J2 - ay =0	 (4.24)

:
7

i) Tresca yield criterion;

f = 2 1/Sin(0+7E/3) - ay = 0	 (4.25)
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iii)Mohr-Coulomb failure criterion;

1	 1/72
%Simi) + 1177-2Sin (8+7c/3) + — Cos (6+7c/3) Sin4)

3	 Iii

-cCos4) = 0	 (4.26)

where the material parameters of 4) and c are the angle of

friction and cohesion of the material respectively.

iv)Drucker-Prager failure criterion;

f = cal + 14/772 - K = 0	 (4.27)

where:

2Sin4)	 6cCos0

a 	 	 and	 K — 	 (4.28)
157(3-Sin0 )	 15-(3-Sin0

The Von Mises and Tresca yield criterion are well

verified in metal plasticity. In this project the Von Mises

criterion is adopted for steel frame members. For concrete

and other frictional materials the Mohr-Coulomb and its

approximation, Drucker-Prager failure criteria are

frequently used in practice. In this project, however,

since the above criteria are particular to concrete only, it

was decided to develop new failure criteria for various

stress combinations. The parameters involved in the

proposed criteria are adjustable so as to suit the different

brittle materials under consideration such as concrete,
and

blockwork mortar. These criteria are described in the

following section.

f=
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Figure 4.11 Drucker-Prager and Von Mises Yield Surface in
Principal Stress Space (after Zienkiewitcz (36) )

Mohr-Coulomb 0 >0

fri=ca=a3

Figure 4.12 Mohr-Coulomb and Tresca Yield Surface in
Principal Stress Space (after Zienkiewitcz (36) )
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4,5.2	 Proposed Failure Criterion of Brittle Materials 

under Triaxial Compression 

Using the principal stresses, al, a2 and u3 while:

0 > al > a2 > a3	 (comp. -ve)

The following stress function is proposed in order to

incorporate the variation in material types;

f - 	  + 	 	 (Ye
2 = 0	 (4.29)

2
03-0.2) (a3-01)(a2-01)

al 12
{1 + c(---)

ac

_2	 al 12
fbc[1 + kc(--)

ac

where fbc = fbc/ac denotes the ratio of equal-biaxial

compressive strength to the unconfined uniaxial compressive

strength. q is a material constant value controlling the

curvature of the failure surface in the tensile and

compressive meridians (Fig 4.14). c is the slope of the

compressive meridian at al=ac and k is a constant relating

the tensile meridian to the compressive meridian. These

constant values may be adjusted to suit any brittle material

using the following approach.

a)	 Biaxial Compression

When al becomes zero, Eq. 4.29 reduces to:

f = 03 2 + 02 2 - (2-1/Fisc2 )a2a3 - ac2 = 0 (4.30)



Inthecondition when 02=03 the criterion leads to

-
03 = 02 = fbcac

_
Values of 1.14 to 1.18 can be concluded for fbc by Kupfer et

al (55) . Fig 4.13 compares the proposed biaxial yield

function Eq 4.30, to the experimental data (55). The
-

agreement is good when fbc=1.17 is used. Notice that, as

shown in Fig 4.13, an even better agreement can be achieved

by adapting the biaxial stress function to:

f = ( a3/ac) + 0.26(1.66a2/a3-1) 2 - 1.26 = 0	 (4.31)

f
Figure 4.13 Comparison of the Proposed Failure Criteria

for Concrete under Biaxial Compression with
the Experimental Results of Kupfer et al(55)
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b) Triaxial Tests at Compressive Meridian (0>a1=c72>$53)
Equating al and a2 in order to meet the load

combination shown in Fig 4.14 (a), Eq 4.29 becomes:

f = a3/ac - allac - c(al/ac) cl - 1 = 0	 (4.32)

which is the failure criterion at the compressive meridian.

The tests carried out (70 / 7 11 on normal concrete led to the

adoption of c=3.6 and q=0.8.

c) Triaxial Tests at Tensile Meridian (0>alx52=(53)

In order to have the failure criterion at the

tensile meridian (Fig 4.14 (b) ) one may set a2 equal to (33

in Eq 4.29 to get:

f = a3/ac - a1/crc - fbc pkc tai/ac) g/ = 0	 (4.33)

Examination of results of the tests carried out on normal

concrete led to the adoption of k = 0.68.

0; >4 =4(Comp. -vs.)

(a)
	 ( b )

Figure 4.14 Typical Triaxial Test Arrangements; (a) at
compressive meridian and (b) at tensile meridian.
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By the same procedure as followed in this section

for normal concrete the constant parameters fbc, q, c and k

can be determined for any other brittle materials. While k

and fix are expected to have only small variations for

different brittle materials, q and c are expected to vary

considerably. The experimental results of Khoo and

Hendry( 72) suggest c=1.91 and q=0.73 for the mortar types

commonly used in masonry.

4.5.3	 Proposed Failure Criterion for Brittle Materials 

under Triaxial Compression-Tension

Using the principal stresses, while:

Y3 < (52 < 0 < al	 (comp. -ve)

the failure surface function is proposed as follows:

f= (a3-2) 2 + ( ccal) 2 +A ( aal) (a3+a2) + ( 1 /Fbc2 ) a2a3 -ac2 = 0

(4.34)

Mere a denotes the ratio of unconfined uniaxial compressive

strength, Cc, to direct tensile strength, at, and A is a

constant controlling the curvature of the failure surface in

biaxial compression-tension. This constant is highly

variable and can be adjusted for any brittle material as

will be discussed later. The above criterion may be examined

using the available test results as follows:

a)- Biaxial Compression (1=0)

When al equals zero, Eq 4.34 becomes identical to -

Eg 4.30. This proves the continuity of Eq 4.34 and Eq 4.29.
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al - at = 0
	

(4.38)
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Eq. 4-35

00-1

00

4.5.4	 Proposed Failure Criterion for Brittle Materials 

Under Tension-Compression

A very limited number of experimental data in this

zone (a3<0<a2<a1), have been reported by Hobbs et al (57)

They suggest that the effect of a2 is insignificant.

Therefore Eq 4.35 may also be used for this stress

combination while a2 may take any value between al and zero.

4.5.5	 Proposed Failure Criterion for Brittle Materials 

Under Triaxial Tension

It is believed (57 , 55) that the failure of brittle

material under triaxial tension (al>a2>a3>0) is governed

by only the most tensile principal stress, al.

The criterion thus reduces to:

Figure 4.15 Comparison of Proposed Failure Criteria with
Experimental Results of Kupfer et al( 55) for
Concrete Under Combined Tension and Compression

(a)ac=18.6, (b)ac=30.9, (c)ac=57.9 N/mm2
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V12=V21 ,
	 V13=V31 7

	 V23=V3 2
	

(4.40)

Since the material behaves in a non-linear and

elastoplastic fashion, the solution involves four material

properties; E, v12, V23 and V31 which are all functions of

stress or strain level. These values can be formulated

using the available experimental data.

Fig 4.16 shows the stress-strain curves plotted by

Kupfer et al( 55 ) from biaxial loading tests. These curves

are widely referred to as a set of reliable experimental

data which can be used together with some other experimental

data in other areas of loading, eg. the experiments reported

by Hobbs et al (57), to formulate the above mentioned

material properties.

Such data cannot be easily utilized for this

purpose since, for each stress combination, the stress-

strain curves for the three principal directions are quite

dissimilar. Instead it is convenient to define the

"equivalent uniaxial strain" vector (EUS) described in the

following section, so that the formulation can be developed

step by step, initially excluding the effect of Poisson's

ratio from the actual strains.

It will be seen later in section 4.6.4 that the

EUS can be simply transformed to the real strains and

finally the theoretical stress-strain curves can be plotted.,

Couerison of the proposed model and the experimental

results is given in section 4.6.4 ,Fig 4.20 and Fig 4.21.
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Figure 4.16 Experimental Stress-strain Relationship of
Concrete under Biaxial Loading;
(a) compression-compression,
(b) tension-compression and
(c) tension-tension (after Kupfer et al(55))
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ai'

a3'
(4.43)

4.6.2	 Equivalent Uniaxial Strains (EUS) 

The EUS vector is defined as follows:

1

or:
Clu

E2u

E3u

{a}

0	 1	 0

I 1

	 0	 0

0	 0	 1 I.

al

a2

a3

(4.41)

{Cu} =

1

and
( 0 } = E{CI}

The EUS comprise only that part of the strains that result

from application of each stress component and occur in the

same direction as that of the stress itself. ie , the

strains due to the Poisson's ratios are excluded.

Comparison of Eq 4.39 and Eq 4.41 leads to:

fel = [c]{eul

or

{ Cu} = [C]1{e}
	

(4.42)

which relate the real strains to EUS or vice-versa. The [C]

matrix is given in Eq 4.39.

4.6.3	 Proposed Stress-EUS Relationship Formulation

Eqs 4.41 imply that in a monotonic proportional

loading EUS are proportional to their corresponding stresses

at any particular stress level. i.e;

ai	 eiU	 Eiuc
ai =

a3	 E3u	 E3uc
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Where ai' and ei lic denote the material strength and its

corresponding EUS in ith principal direction and ai denotes

the ratio of the principal stress component in i direction

to the stress of the most compressive principal direction.

The stress ratios remain constant throughout the loading

process, because a proportional loading is assumed.

The proportionality of the EUS implies also that

the three principal stress-EUS curves are proportional as

shown typically in Fig 4.17, such that the magnitude of ai

and Ciu are reduced by the corresponding stress ratio ai.

This similarity reduces the task to that of formulating only

u3 in terms of E3u which are the most compressive principal

stress and EUS respectively.

As will be seen later in Section 4.6.5 the stress-

EUS curves are parabolic-like and are smooth with an

initial modulus of elasticity of Eo, such that the same

formulas as for uniaxial loading (Eq 4.1 to 4.5) can be

proposed with new notations as follows:

EO/Es > 2;

eiu

0• = EO 	 	 (4.44)

eiu	 2

	

1 + ( 
Eo	 ciu

— 2)(—) + (--)

	

Es	 eiUC	 eiUC

EO/Es < 2;

eiu
ai = Eci 	

Eo	 ciu )g
1 + (--. — 1)(—

Es	 eiuc

Where:

(4.45)

g = 1 /(1-Es/E0)	 (4.46)

- 154 -



and for the falling branch:

- 	 	 (4.47)

1 4. Dru	 1)2

EiUC

Where Es=ai'	 denotes the secant modulus at peak stress

and Eiuc signifies the EUS corresponding to the peak stress.

The above equations are convenient to be written

in their normalized form so as to represent all the three

curves shown in Fig 4.17 as given below:

EØ/E 3 > 2;

EO
S-(---) 	

Es	 1 + (E0/Es -2)e + e2

EO/Es < 2;

EO
s =(--) 	

Es	 1 + (E0/E3-1)eg

(4.48)

(4.49)

and for the falling branch:

1
S	 (4.50)

1 + D(e-1)2

where:
S = ca/cri'	 and	 e = Eiu/Eiuc

The stress-WS relationship given by Eq 4.44 to

4.47 depend on the values of al: and Eiuc, (i = 1, 2, 3) or

av- and E3lic and the stress ratios al and a2. The values of

pe41( stresses were discussed in Section 4.5 under "Failure

Criteria". E3uc is formulated in the following Section.
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Figure 4.17 Equivalent Uniaxial Stress-strain Curves

4.6.4	 EljS at Peak IANId

Determination of E3uc may be formulated using the

available experimental data. In order to accommodate such

formulation, the relation between e3u and the real strains

is derived below for both biaxial and triaxial loading.

In a proportional biaxial loading where a3 =0, ie.

ai=0 and ciu=0, combination of Eqs 4.42 and 4.43 leads to:

Ei-Vij
lajE3u1

Eji =	 1	 -Vjk
alce3u

	

IIA110	 1

(4.51)

Because of the condition of isotropy and symmetry discussed

in section 4.6.1, vjk=Vkj and the second and third of
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e3uc

EC

Eqs 4.53 and 4.56 were used to calculate e3uc with the aid

of the experimental data ( ci, e2, e3, al and a 2) of Kupfer

et al (55), Hobbs et al (57) and Tassuji et al (65) 	 These

values' were entered into a nondimensional coordinate system

of a3'/ac versus E3u/ec as shown in Fig 4.18. Also are

plotted in this figure, the following relations proposed to

calculate Quc/Ec.

For G3'<6c:
	 (comp. -ve)

a3 , 	a3'	 Ec
+ R	 - 1)(1-

Eo )60 aC 

(4.57)

Figure 4.18 Comparison of The Proposed Analytical
Prediction of Equivalent Uniaxial Strains at
Peak Load with Some Experimental Data
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For 0>3'>c:

03 1(21c_). 0 (___) [(i, Ec )

Ec	 ac	 EO

Ec wY3'12R]

EO	 ac
(4.58)

and for 0:73'>0

E3uc

EC

Ec a3f

= 0 .5 (1 +
EO ac

(4.59)

where R is a material constant. R=3.5 suits normal concrete.

4.6.5	 Transformation of E1JS to Real Strains and 

Vice-versa

EUS and real strains can be converted to each

other using Eqs 4.42. These equations involve the [c]

matrix defined in section 4.6.1. In a multiaxially and

proportionally loaded isotropic material, this matrix

involves 3 independent Poisson's ratios as follows:

V12=V21,
	 V23=V32
	

and V13=v31

The Poisson's ratios can be formulated according

to the available experimental data. Eqs 4.52 and 4.55

relate the Poisson's ratios at any stress level to the

strains of a biaxially and triaxially loaded material

respectively. Examination of the experimental results of

Kupfer et al (55) led to an expansion of Eq 4.9 (proposed for

uniaxial loading) to account for biaxial and multiaxial

loading as follows:

v ji = vij = vo 11 + kfij (e) n i 	 (4.60)
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where e denotes the straining ratio i.e. e = Eiu/eiuc

and k and n are material constants. k = 0.85 and n = 3

suits normal concrete. fij is proposed as follows:

For al' < 0:	 (comp. -ve)

1(01'-aj')/aci
f • • - 	'3

al' q
1 + c (—)

ac

(4.61)

For al' > 0:

fij = kai i -aj')/aci - 2 1 al i /aci	 (4.62)

where c and q are defined in section 4.5.2 and al' denotes

the most tensile stress at the peak. These formulas agree

well with the experimental results of Kupfer et al( 55) at

peak loads as shown in Fig 4.19. Eq 4.60 covers all the

possible states of load combination.

The incremental and secant values of Poisson's

ratios are related as follows:

Vij dEj = d(vijeij)

-
where Vij and vij are the incremental and secant Poisson's

ratios respectively for calculating the strain in the ith

principal direction induced by the strain in the jth

principal direction. From the above relation the

incremental and secant values of Poisson's ratios can be

calculated in terms of each other as follows:

d(vij.e)

de
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vi j - (4 63)

These equations can now be used to develop the

tangent and post peak stress Poisson's ratios as follows:

vij = vo [1 + (n+1)kfijen]	 (4.64)

where vij denotes the incremental Poisson's ratio between

ith and jth principal directions and,

= v o n + (n+l)kfiii

vij = vo [1 + k fii (4-3/e)]

(4.65)

where the strains has past the strains corresponding to the

peak stresses i.e, e = eiu/eiuc > 1.0. Eqs 4.60, 4.64 and

4.65 are valid only when the increment of stresses are

proportional to the current stresses.

Having formulated the Poisson's ratios, the real

strains ( El, E2, E3 ) can be calculated from Eq 4.42. The

proposed constitutive formulation and failure criteria

(sections 4.5 and 4.6) are compared with the experimental

results of Kupfer et al( 55 ) in Figs 4.20 and 4.21 and good

agreement can be seen.
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Figure 4.19 Comparison of the Proposed Prediction of The
Poisson's Ratio at Peak Stress, with
Experimental Results of Kupfer et al(55)

0.130

Figure 4.204.20 Comparison of the predicted and actual Stress-
strain Diagrams for concrete under biaxial
Compression; 6 1=0, 62/a3=0.52
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Figure 4.21 Comparison of the predicted and actual Stress-
strain Diagrams for concrete under Biaxial
Compression and tention; a2=0, al/a2=-0.052

4.6.6	 Proportional Unloading and Reloading

The unloading-reloading behaviour of uniaxially

loaded concrete has been studied in detail (59,64). This has

been discussed in section 4.3.3, where the stress-strain

relationship for a cycle of unloading and reloading was

modeled by a straight line, EP, as shown in Fig 4.9. Unlike

the uniaxial case there is no experimental data available

for unloading-reloading behaviour of concrete under biaxial

and multiaxial loading. Therefore, in this project the

basic principles of parts (a) to (c) of section 4.3.3 were

generalized to include concrete under multiaxial loading.

Accordingly the proposed linear model of unloading-reloading

was generalized into stress-MIS curves as shown in Fig 4.22.
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Figure 4.22 Stress and Equivalent Uniaxial Strain
Relationship of Concrete under Proportional
Multiaxial Unloading and Reloading

The generalized linear unloading-reloading

behaviour implies that no plasticity takes place during a

complete or partial unloading-reloading cycle. Therefore,

the material can be treated as linear elastic with constant

modulus of elasticity, Eul, and constant poisson's ratio,

vo, in any direction within the material.

For the sake of simplicity, taking advantage of

the stress proportionality, the three stress-WS envelope

curves may be mapped into one non-dimensional envelope

curve, Fig 4.23 where s and e denote the stressing and

straining ratios respectively defined as follows:

e = eiu/Eiuc
(4.66)

S =
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Figure 4.23 Proposed Model for Relationship of Normalized
Values of Stress and Equivalent Uniaxial Stalin
of Concrete under Proportional Multiaxial
Unloading and Reloading

The proposed formula of Karsan and Jersa(60),

Eq 4.12, is no longer valid, since this formula was proposed

for concrete under uniaxial loading with limited range of

plasticity. However, in multiaxial compression the

specimen may undergo much greater plasticity and in a

triaxial tension-compression it shows far less plasticity

than in a uniaxial loading test. Thus, a factor of

plasticity potential may be defined as EO/Es. This may be

expected to affect the residual plastic strain, eiup, and

the unloading modulus, Eul. Therefore a set of non-

dimensional formulas is proposed as follows:
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EO

For eE>1.0;

Eul

2 + (E0/Es-1)eE1-5g

1

(4.67)
-

For A <1 0.E	 • •

Eul	 2

(4.68)-

Eo	 (1+Eo/Es)(0.5+0.3m+0.8m2)

where g and in are to be calculated as:

in = (e E - 	 (4.69)

D = ilack2.15	
> 0.25 (for concrete)	 (4.70)

'100

Eo/Es
(4.71)

Eo/Es - 1

The residual plastic EDS after a full unloading in its

normalized form, ep = elup/Eiuc, can be derived using

Fig 4.23 as follows:

Eul
	 s E
-

Es	 eE - Gp

Solving for ep leads to:

sE	 1
ep = eE	 (4.72)

Eus/E0	 EO/Es

where s E and eE denote the stressing and straining ratios
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corresponding to the point on the normalized stress-strain

envelope curve at which the unloading started. Fig 4.24

shows the variation of Eui/E0 against straining ratio, GE,

and also a wide range of E0/Es ratio. Also shown in this

figure is the plot of Eul/E0 against e E calculated from the

Karsan and Jersa( 60 ) proposed formula, (Eq 4.12), in

comparison with the proposed Eqs 4.67 and 4.68. Although

these curves agree well over most of the length of the

curves, the Karsan and Jersa( 60) formula gives Eul larger

than Eo at the beginning of the envelope curve and this is a

source of numerical problems. Another numerical problem

with the Karsan and Jersa formula will be encountered by

having a negative Eui when GE is high, Fig 4.24.

o	 1.0
	

2.0
	

30
	

40
	

5 .0	 10.0

Straining ratio ( e )

Figure 4.2 4 Comparison of the proposed Prediction of
Unloading Modulus of Elasticity with Karsan
and Jersa( 60 ) Formula. Note: the straining
ratio 'e' refers to the unloading point on the
envelope curve
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where:

Dll = (1 -V.232)/0 D33 = (1-v•122)/0

D12 = (v31w23+v12)/0 D44 = Et/[2(1+v12)]

D13 = (v12w23+v-31)/4) D55 = Et/[2(1+v'23)]

D22 = (1-v-31 2 ) /4) D66 = Et/[2(1+v.31)]

D23 = (v12w31+v•23)/4)

0 = El_v.122v.232v.33.2_2v-i2v.23v*31] /Et

The incremental Poisson's ratios, v12, v3, vii, are given

by Eqs 4.64 and 4.65. Et denotes the incremental modulus

shown in Figs 4.17 and 4.23. Et can be calculated by

differentiation of the stress against strain using Eqs 4.44

to 4.47. i.e,

dai
Et =

dEiu

V'

When the material is subjected to unloading or

reloading (Line EP on Fig 4.23), behaves in an isotropic and

elastic manner as described in section 4.6.6, i.e:

Et = El

Vt = VO

Eul is calculated as described in section 4.6.6 and VO

denotes the initial tangent poisson's ratio which is uniform

in all directions. The tangent elasticity matrix, [Dt], for

unloading and reloading can be adapted from Eqs 4.150 and

4.151 for plane stress and 3-D loading respectively with

replacing Eo by Eul-
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(4.77)

0

0

(4.78)[T] =

[Dt] may be transformed into the global

coordinates as follows:

[Dt]	 = [T]T[Dt][T]
(Global)	 (Principal)

(4.75)

where [T] denotes the strain transformation matrix which

transforms the strains from the global co-ordinates to the

principal directions as follows:

(4.76)0.0	 = [T] {d&}
Global	 0	 Principal

0 is the angle from the principal directions to the global

co-ordinates measured anticlockwise.

The transformation matrix [T] for plane stress

problems is written (39) as:

	

{ 

Cos 20	 Sin20	 SineCose

[T] =	 Sin2 8	 Cos20	 -Sin0Cose

-2SineCose 2SineCose Cos20-Sin20

This matrix for 3-D problems when the old and the new out of

plane coordinate directions coincide, becomes;

Cos20	 Sin20	 0 SineCos0	 0	 0

Sin2 0	 Cos20	 0 -SineCose	 0	 0

0	 0	 1	 0	 0	 0

	

-2SineCose 2SineCos0 0 Cos 20-Sin20 0	 0

0	 0	 0	 Cos() -Sine

0	 0	 0	 Sine Cos°



Based on the proposed model, when the material is

subjected to unloading or reloading the transformed (Dt]

becomes identical to the original one because the poisson's

ratio is uniform in all directions and no variation in the

mechanical properties can be imagined for changing the

coordinate directios.

4.7	 Non-proportional Loading

4.7.1	 Stress-strain Relationship 

The model described in sections 4.6.1 to 4.6.7 is

proposed for proportional loading. But the behaviour and

deformation of an infilled frame are associated with some

discontinuities and non-proportionalities as a result of

lack of fit, plasticity and also the following events:

-occurrence of plastic hinges in frame members.

-shear failure or slip at joints

-cracking in either frame or infill materials.

-local crushing especially at the loaded corners of panel

These events induce some stress redistributions

which are not necessarily proportional to the current

stresses. As a result, the principal directions may rotate

and in some regions the material may be subject to unloading

while the external loads have not changed.

In order to account for such non-proportional

changes, the following approach has been employed to

determine the true path in the stress-strain co-ordinate

system.
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Ei -....

Assume a particle subjected to a set of multiaxial

strains and stresses represented by point El on the most

compressive stress-EUS envelope curve shown in Fig 4.25.

When this particle is further loaded on line EiR up to the

new strain and stress levels, point R, such a load increment

might not be proportional to the previous one. Therefore it

is convenient to assume that the particle is, first,

unloaded down to the zero stress level, line Ell" In this

unloading, the material behaves in a purely elastic and

linear manner as described in section 4.6.6. The plastic

equivalent uniaxial strain, 01P, and the modulus of

elasticity of the material Eul, remain unchanged.

Now the effective equivalent uniaxial strains, Eue

(PR' in Fig 4.25), can be calculated using the total and the

residual plastic strains, RIO (01P in fig 4.25), from

Eq 4.42 as follows:

A

	lon
P
	

a iu	 Eitic

Equivalent uniaxial strain

Figure 4.25 Proposed Model for Non-proportional Triaxial
Load Increment
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{Cue} = [C1 -1 { e - ep}	 (4.79)

Where [C] involves the secant Poisson's ratios discussed in

Section 4.6.2.

The effective EUS values permit the new stress

proportions to be calculated and the new stress-EUS envelope

curve, 02E2C2, to be drawn such that the unloading line

(corresponding to the current unloading modulus, Eui or E2P

in Fig 4.25) matches the unloading line of the old envelope

curve, ElP. This permits the material to be reloaded on the

unloading line up to point E2 on the new envelope curve

while undergoing the new stress proportions.

The loading is further continued with the same

stress proportion as that of the reloading up to point R

where the total effective EUS is met.

4.7.2	 Poisson's Ratios under Non-proportional Loading

The Secant Poisson's ratios can be calculated from

Eq 4.63 which involves an integration. The integral must be

carried out over the whole path of the stress-EUS curve. As

shown in Fig 4.25, a non-proportional loading can be

converted into a linear elastic branch, line PE2, with a

constant tangential poisson's ratio equal to the initial

poisson's ratio, vo, and a non-linear elastoplastic branch,

curve E2R, with variable Poisson's ratio as given by

Eqs 4.64 and 4.65. For the case when eR is less than unity

the integral can be split into the linear and non-linear

parts. ie ;
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According to the experiment of Kupfer et al (55) , at the

biaxial failure surface, when the absolute value of the

ratio of tensile to compressive principal stresses exceeds

approximately 1/15, the mode of failure is tension cut off

at the peak stress. Otherwise the material fails by a

gradual crushing. In this project, the above specified

tensile/compressive stress ratio, 1/15, was generalized to

multiaxial loading as the transition between the tensile and

compressive failure modes while the effect of intermediate

principal stress on this transition was ignored.

4.8.2	 Cracked Material 

Once a crack has formed, it is generally assumed

that no tensile stress can be supported across the crack.

However, material parallel to the crack is still capable of

carrying stress according to the uniaxial or biaxial

conditions prevailing parallel to the crack. On increased

loading, further cracks are allowed to occur.

In reinforced concrete cracks are more frequent

and therefore, the crack width is less than in unreinforced

concrete. The following effects proved to have a major

influence on the behaviour of a cracked reinforced concrete

element (39)

i) tensile stiffening

fi) aggregate interlock
iii) dowel action



The tensile stiffening effect is usually accounted

for indirectly as follows:

a) By assuming that the loss of tensile strength in

concrete appears gradually.

b) By increasing the stiffness of steel.

The former choice was first introduced by Scanlon( 67 ) as

shown in Fig 4.10 and is more popular, but the latter choice

seems to be more convenient for infilled frame structures

composed of different materials, including concrete blocks

and mortar which are not necessarily reinforced and for

which the Scanlon model may lead to unrealistic results.

The aggregate interlock is usually accounted for

by assuming a perfect or partial shearing stiffness for

crack surfaces (39). In this project, however, the

interlocking behaviour is accounted for by a proposed new

approach to crack modeling given in the following sections.

The dowelling action effect is either ignored or

allowed for by increasing the shearing stiffness at crack

surfaces.

Cracks in a cracked material may close and open

again in later stages of the loading. Opening and closing

of cracks is measured by crack strain, ecrf which is assumed

to be distributed uniformly within the material. In the

following sections the mechanical behaviour of a cracked

naterial is modeled for plane stress condition.

Phis model also deals with double sets of cracks in
e

different orientations.



4.8.3	 Proposed Slip-dilatancy Crack Model 

4.8.3.1	 Clervmd Concept

Consider a particle of brittle material under

biaxial stresses loaded to failure. When the criteria

outlined in section 4.8.1 are met, the material fails in a

tensile manner i.e. the particle would crack through one or

more planes perpendicular to the most tensile principal

stress direction, Fig 4.27(a). The surface of such cracks

within the material is irregular and rough, Fig 4.27(b).

If normal stress across the crack is constant, any

relative tangential displacement, s, or slip, between the

opposite surfaces of the crack, is always accompanied by a

relative normal displacement, w, or crack width. This is

called "crack dilatancy". Based on this phenomenon the

shape of the crack surface may be idealized as a regular

trapezoidal shape as shown in Fig 4.27(c) with a dilatancy

angle of a where:

=Tana = —	 (4.82)

denotes the dilatancy ratio. The value of 0 can be adjusted

by changing the angle a in order to agree with the

experiments on the material in question.

A crack may either be closed, interlocked or open

as=shown in Fig 4.27. The state of the crack can be

determined as described in Sections 4.8.3.3 to 4.8.3.5. The

following section deals with the stress-strain relationship

of a cracked material under plane stress conditions.
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ax' 1

'tx'

	

1

.1	 V	 0 Ilex'

	

V	 1	 0

	

0	 0 (1-V)/2 Yx'y'-Esi

,

(4.88)
1-v2

ey,-esp
E

=

Ex'e	 = ex' (4.83)

Ey'e	 = Cy' - esp (4.84)

Yx'y' = Yx'y'- Cs]. (4.85)

where esi and esp are the strain-equivalent values for the

tangential and normal relative displacements respectively at

the crack surfaces where:

e51 = s/dcr
	 (slip strain)	 (4.86)

Esp = w/dcr
	 (separation strain) 	 (4.87)

and dcr denotes the cracks spacing.

Now the secant stress-strain relation can be

written as:

{a} = [El](40

where:
V 0

E
[D]	 = V	 1

{1

0

}

1-v2
0	 0 (1-v)/2

and v signifies the Poisson's ratio derived for principal

directions of stress. [D] is independent of co-ordinate

directions because its transformed terms are identical to

its original terms. Therefore the secant stress-strain

relation in crack directions can be written as:

:
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4.8.3.4	 Material with Closed Cracks 

When cracks are closed, no relative displacement

prevails at the crack surfaces i.e: 	 $ = w = 0. It may,

thus, be concluded from Eqs 4.86 and 4.87 that es1=Zsp= 0.

The frictional resistance at a crack may be

assumed to be mainly due to the geometry of the surface,

which was idealized as a trapezoidal shape in Fig 4.27 (c).

Therefore the surface friction over the parts of the crack

surface in contact, may be ignored and it may be assumed

that the forces are transferred normal to these parts as

shown in Fig 4.27(d) or 4.27(e). The above assumptions lead

to the conclusion that should a crack remains closed, the

following inequality must be satisfied:

Itx'y'l < -Pay'	 (4.95)

Substituting for ay f and Tx l y , from Eq 4.88 (while equating

es1 and Esp to zero) into Eq 4.95, leads to:

1—v

Y + vX < —	 (4.96)
213

which is the necessary and sufficient condition to ensure

the cracks are closed.

4.8.3.5	 Material with Interlocked Cracks 

When neither of the conditions of Eq 4.93 and 4.96

are,satisfied, the cracks are interlocked. The interactive

forces, are therefore transferred normal to the surfaces in .

contact as shown in Fig 4.27(d) and (e) and the following

relations can be derived:

- 182 -











1

Figure 4.30 Double Cracked Material

Table 4.1 The Possible Major and Minor Crack
State Combinations

Major Cracks Minor Cracks Code

1 Open Open 00

2 Open Closed OC

3 Interlocked Open IO

4 Interlocked Closed IC

5 Closed Open CO

6 Closed Closed CC

4.8.5.2	 Material with Closed Minor Cracks 

When the minor cracks are closed the same

procedure as for single cracked materials described in

Section 4.8.3 can be applied to determine the state of the

major cracks. While examining the major cracks the normal

stress at minor cracks must also be examined to see whether

it is compressive, ie. contact at the minor cracks

!s secured. The rest of this section, therefore, deals with

development of the criteria to ensure ay ,' < 0. The
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effective strains in major crack directions (x' and y') can

be transformed into the minor crack directions (x" and y")

using the transformation matrix of Eq 4.77 as follows:

(Eel )	 = [T] (Ee)	 (4.105)
(x",1'")	 (x' ,y'

where y2 denotes the angle of minor to major crack

directions and (Ce)(x,,yr) is given by Eq 4.83 to 4.85.

The secant stress-effective strain relationship in

minor crack directions can be worked out by the same

procedure as was used to derive Eq 4.88 as follows:

{a} = [D]	 (Ee}
	

(4.106)
(xu,Y")

Where (1)1(x",yn) is given by Eq 4.88. Substituting for

i Etsa(x",y") from Eq 4.105 into Eq 4.106 leads to:

{a}	 = [D]	 (T]
	

(4.107)
(X",y")	 (x",17")

From Eq 4.107, (Tr can, now, be written in terms of the

effective strains as follows:

ay" =02P+V) Ex , +( 1+vK2 )(ey' -esp) -K ( 1-v )(Tx'y' -Es1)] (4.108)

Where

and

(1)2

K

= E/

= Tany2

[(1-v2 ) (1+K2)}

The value of ale, can now be determined for various major

crack states as follows:



or:

where:

a) Major cracks open:

asp and as1 must, therefore, be substituted from

Eq 4.89 and 4.90 respectively into Eq 4.108 to give:

K2

Gy" 	  Eex,
1+K2

ay" = 03ex'

K2
(03

1+K2

(4.109)

b) Major cracks closed:

Esp and esi are both zero and Eq 4.108 becomes:

ay" =	 [ (K2+v)ex,+(l+v1C2)ey,-K(1-v)Yx'Yl	 (4.110)

c) Major cracks interlocked:

Esp and es1 should be substituted from Eq 4.99 and

4.100 into Eq 4.108 to give Glo.

Fig 4.31 gives a graphical representation for the

criteria established to determine the state of cracks of a

double cracked material within a normalized strain space

defined by:

x = ex , / l yx'y'l	 and	 Y = ey,/iYx'y'l

Fig 4.31(a) is for the case when 72 = -45 and Fig 4.31(b) is

for 72 = +45. The thick solid line in each graph indicates

the transition between the states of closed and open minor

cracks as discussed in this section.
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ax" = Eex"e

ay" = 0

Tx”y" = 0

When minor cracks are closed the separation and

slip strains can be calculated from Eqs 4.89 and 4.90 or

Eqs 4.99 and 4.100 when the major cracks are open or

interlocked respectively.

4.8.5.3	 Materials with Open Minor Cracks 

As proposed in section 4.8.5.1 the minor cracks

are assumed to be rough when they are closed and perfectly

smooth when they are open.

At an open minor crack, stresses are as follows:

where Ex ne denotes the effective strain parallel to the

minor cracks which is independent of the separation and slip

strains of these cracks. Ex: canbe calculated in terms of

effective strains in the major crack directions using the

transformation matrix given by Eq 4.77 as follows:

Ex n e = Cos2Y2ex , e + Sin2Y2ey , e + Siny2 CO372Yx f y i e (4.112)

The only non-zero stress component, 03e, may be transformed

into major crack directions as follows:

ax' = COS2Y2(EEKne)

ay, = Sin272(EEK"e)
	

(4.113)

TX 1 y1 = Sin72CO572(Etele)

Having derived these stress components the State
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of the major cracks can thence be verified as described

below:

a)	 Major cracks interlocked (J0):

From Eq 4.97 the necessary condition for

equilibrium of stresses at major cracks can be written as:

Rxx'y' = -Pay'
	

(4.114)

Substituting for Tx'y' and ay , from Eq 4.113 leads to:

K = Tany2 = -	 (4.115)

Eq 4.115 is the only condition for an open-minor-crack

material to become interlocked at its major cracks. This

condition is independent of the effective strains, but it

depends on the angle of the minor cracks to the major ones,

Y2- Any arbitrary major crack separation strain,esp, leads

to a unique Exe" which is the only non-zero stress

component. This will be further verified below.

We may define an arbitrary major crack separation

strain, Esp, and its corresponding slip strain, esl, and

write Eq 4.112 in terms of the total strains as follows:

cycl e = Cos2Y2Ex , + Sin2Y2(Ey , -esp) + Siny2CosY2(Yx'y'-es1)

Substituting for E51 as given by Eq 4.100 leads to:

Exue = Cos2Y2Ex , + Sin2Y2Ey , + Siny2CosY2yx'y'

-esl(Sin2Y2 + (R/13)Siny2Cosy2)
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Substituting the value of R/0 from Eq 4.115, the 4th term of

the above equation vanishes showing that the values of major

crack strains do not affect the value of Ex il e and

subsequently the values of the stresses of Eq 4.113 have no

influence on Ex"e.

The above conclusion proves that the state of

interlocked-open, IO, may occur only when the angle of minor

to major cracks takes a certain value given by Eq 4.115 and

it is only a mechanism by which material can alter from IO

to CO state without any influence on the existing stresses.

Therefore the IO state may be substituted by its alternative

state, CO, without any harming effect.

b)	 Major cracks closed (CO):

When the stress normal to the major cracks is

compressive, the state of these cracks is either interlocked

or closed. Since with open minor cracks any interlocked

major cracks can alter into closed major cracks, as

discussed in the preceding subsection, the condition of

Gy , <0 is the necessary and sufficient condition in an open-

minor-crack material for its major cracks remain closed.

Considering Eq 4.113, such a condition can be written as:

Ex"e < 0
	

(4.116)

Sihce major cracks are closed, exne=E20 and the above,

condition can be written as:

EX" < 0
	

(4.117)
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es12 =
1+1(2 

[2K (Ey' --ex' ) + (1-K2 )Yx'y]
	

(4.122)

c)	 Major cracks open (00):

A material with open minor cracks may also have

open major cracks. The double crack combination states are

graphically represented in Fig 4.31.

4.8.6	 Proposed Incremental Stress-strain Relationship 

for Double Cracked Materials 

The incremental stress-strain relationship of a

double cracked material can be determined using a similar

approach to that given in Section 4.8.4 as follows:

a)Either major or minor cracks open (OC or CO):

[Dt] must be taken the same as in Eq 4.103, but it must

be written for the directions of the open cracks.

b)The both crack sets open (00):

The material has no stiffness; [Dt] = 0.

C) Interlocked-closed (IC):

[Dt] is to be formed as given by Eq 4.104

d)Closed-closed (CC):

[Dt] is to be formed as if no crack exists.

The above calculated [Dt] must be transformed into the

global co-ordinates using Eq 4.75.
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(a )	 X2 = - 45 , %),= 0 .2, 	 1.5

( b) X2 =45 	 1?--T. 0 .2, p4=1.5

Figure 4.31 Possible States of Double Cracked Materials.Note: 0=open, I=interlocked and C=closed
Note: CO (closed-open state) is not valid for (b) above
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4.9	 Constitutive Formulation for Steel 

4.9.1	 ammil Characteristics of Steel 

The general characteristics of steel are described

in the standard text books, eg. Chen (39) . Only a brief

description is given here in order to establish the basis

and notations upon which the constitutive formulation for

steel is structured.

Fig 4.32 shows some typical stress-strain curves

for different qualities of steel. The stress-strain curves

for steel grades 40, 50 and 60 which are normally used in

steel structures, are characterized normally by the

following general features:

i) An initial linear-elastic part up to (ay, Cy);

ii) a yield plateau from Cy to est (the typical ratio of

Est/Cy is 8 to 15),

iii) a strain-hardening part from est to the ultimate

strain, Eu, then a strain softening part (Cu to ef),

iv) an ultimate strength of 1.55 times the yield strength,

As the strength of the steel increases, its

capacity for inelastic deformation, or ductility decreases.

As shown in Fig 4.32, for grade 75 and higher the yield

plateau in the stress-strain curve disappears.

The stress-strain curves for steel are generally

assumed to be identical in tension and compression. The

stress-strain relationship for steel subjected to unloading

and reloading is approximately linear-elastic with a

stiffness equal to the initial modulus of elasticity of

steel, Fig 4.32 (b).
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Grade 60 bars
Grade 40

bars

IOU

1
1
1

It	 1	 1	 1	 1

100f st

II	 I
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Tension0

Compression

Alloy bars

( a )

Strain X 10 3

Cold-drawn wire

b

Ei;pre 4.32 Stress-strain Curves for Steel (after Chen(39));
(a) typical curves for reinforcement under
monotonic loading and (b) typical curves for
cyclic loading
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4.9.2	 Proposed Model for Stress-Strain Relationship of

Steel Material under Uniaxial Stress 

The uniaxial stress-strain relationship of steel

Is normally simplified into a multilinear model which can be

adjusted to suit the experimental results. This is

typically shown in Fig 4.32(a).

In this project a trilinear elastic-work hardening

plasticity fracture model defined in section 4.2 is

proposed. Fig 4.33(a) illustrates the model in more detail.

As shown it is well adjustable to the experimental results

of high strength steel bars normally used in RC elements.

If however the steel material is of a low grade, the work

hardening plasticity of the model, line AB in Fig 4.33(b),

can be eliminated such that the horizontal part of the

model, line BC, represents the plateau normally occurring

immediately after the yield point, point A. Such a model,

thus, is a . linear-elastic perfect-plastic model which has

already been introduced in section 4.2. Initially the

unloading and reloading stress-strain curves are straight

lines with slope equal to the initial modulus of the

material so as to satisfy the typical steel behaviour,

Fig 4.32(b). As the material is loaded beyond the yield

point, Point A in 	 Fig 4.33(b), it gains plastic strain

such that after a full unloading to the zero stress the

residual strain, would be considered as the total plastic

strain gained during the preceding loading and unloading.

The new yield point is thus the point at which strain

unloading has started (point R in Fig 4.33) and the new
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stress-strain curve is PRC in the bilinear model and PRBC in

the trilinear model as shown in Fig 4.33(a) and 4.33(b)

respectively.

4.9.3	 Failure Criteria of Steel 

Strength of steel material under multiaxial

stresses is different from the uniaxial strength normally

recorded by standard tests. As discussed in section 4.5.1

Von Mises and Tresca yield criteria are well verified in

metal plasticity. The graphical representation of these

yield surfaces are given in Fig 4.11 in 3-D space. In this

project the popular Von Mises yield criterion is used. The

general form of this criterion is given as:

f = 3J2 = Gy2	 (4.123)

where J2 is defined as the second invariant of the

deviatoric stress tensor and is given( 39 ) as follows:

02 =	 [(ax-ay) + (ay-az) + ( az-ax) +txy +Tyz -Przx]
6

(4.124)

For plane stress problems the Von Mises criterion becomes:

2	 2	 2	 2
f = ax + ay axoy + aticy = ay (global) (4.125)

and,	 2	 2	 2

e
	 f = al + a2 - ala2 = ay
	 (principal) (4.126)

This elliptic biaxial yield criterion is plotted in Fig 4.34

1
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AB

Ef

Strain

(a)

Comp,

Figure 4.33 Proposed Stress-strain Relationship Model for
Steel; (a) high strength steel and (b) low and
medium strength steel

Tension

Comp

Figure 4.34 Von Mises Yield Criterion on The Co-ordinate
Plane a3=0
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4.9.4	 Stress-strain Relationship of Ductile Material

4.9.4.1	 Definitions and Basis of Elastic-Perfect

Plasticity Theory

The uniaxial stress-strain relation discussed in

section 4.9.2 led to a linear elastic-Perfect plasticity

fracture model as shown in Fig 4.33. A similar model may be

adopted for multiaxially loaded material. The general

behaviour under a complex stress state can be defined by the

following statements (39)

The material is elastic until it reaches the yield

limit i.e, until a function of the stress components reaches

a certain value. This is known as the yield function, yield

surface or yield criterion. Such a function, as discussed

in section 4.5.1, is generally given as follows:

f ( aij) = K
	

(4.127)

In the Von Mises criterion the yield surface is given as:

f Cri j 1/5712 =

or
1

)= J2 = ---ay2 = k2	 (4.128)
3

Then plastic deformation takes place without

limit. For the plastic flow to continue, the state of

stress must remain on the yield surface. This is known as

the criterion for loading or consistency condition(39).

C) f
df =	 daij = 0

	
(4.129)

aij
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a aij
1 a gdzij (p) = dA (4.131)

A 3 f
ClEij (P) = dA (4.132)

3 crij

This flow strain is permanent; i.e. it remains

when the stresses are removed or when the stress intensity

drops below the yield value. This is known as the criterion

for unloading algebraically expressed as:

Df
df -	 daij < 0
	

(4.130)

In general the yield function, Eq 4.128, represents a six

dimensional stress space. Only a 2-D representation of this

function is shown in Fig. 4.34. The stress point cannot go

outside the yield surface and plastic flow occurs when the

stress point is on the yield surface and the additional

loading daij must lie in the tangent plane as shown in

Fig 4.34.

It is not obvious whether there exists a necessary

connection between f and the plastic strain-increment vector

dcii(p)- In general, we can introduce the concept of

plastic-potential function g(aii), which enables us to write

the equations of plastic flow in the form

Where cl,kis a positive scalar factor of proportionality.

It is normally acceptable in metal plasticity to

assume that the yield function and plastic potential

coincide; i.e. f = g. Thus,
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and plastic flow develops along the normal to the yield

surface. Relation 4.132 is called the associated flow

rule (39)

4.9.4.2	 Stress-Strain Relationship under Multiaxial Stress 

Conditions 

Based on the particulars of the elastic-perfect

plasticity theory outlined in Section 4.9.4.1, the overall

stress-strain relation has been developed as follows:

When a particle of a ductile material is loaded to

the yield surface, it is actually forced to a new strain

level which includes plastic strains such that:

10 = { ce} + { ep} + {i tp}	 (4.133)

where (e) and {ee} denote the total elastoplastic strain and

the total elastic strain vector respectively. ielo)

signifies the accumulated plastic strain vector not

including the plastic strains, (A&O, achieved during the

current load increment.

The stresses are directly related to the elastic

strains as given in Eq 4.73 or 4.74 for 2 and 3 dimensional

stress space respectively. These relations may generally be

written as:

la) = [De]fee}

{ Ee} = Plena}	 (4.134)
:.
,

The secant form of the elasticity matrix, [De], and its

inverse matrix, [Ne], are formed by the elastic poisson's

ratio Vo and the initial tangent elasticity modulus, Eo.
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Substituting for feel from Eq 4.134 into Eq 4.133 leads to:

(C) = ( e-E0 = [N]{0} + { AZO	 (4.135)

A stress-strain relation may be established from

Eq 4.135 only when {Aepl can be related to the current

stress vector (al. This may be achieved by writing Eq 4.132

for the Von Mises yield criterion as follows:

f = .72 ;	 as given by Eq 4.128

Aeij(p) = A X 
3.12

3aij

Substituting for J2 from Eq 4.124 leads to:

AEij (P) = Asii

where sij denotes the deviatoric stresses. For principal

directions, the above relation leads to:

Acji(p)= AX(ai-am)	 (4.136)

where am is the hydrostatic stress defined as:

1
am = ---(01+02+a3)
	 (4.137)

3

Substituting for am from Eqs 4.137, Eq 4.136 can be written

in matrix form as:

(AE:pl =
1
---AX
3

2

-1

-1

-1

2

-1

-1

-1

2

{a} (4.138)
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known as the Prandtl-Reuss material which is the most widely

used model(39)

Eq 4.136 statesthat:

1) The increment of plastic strains is proportional to

the state of the deviatoric stresses.

2) The principal axes of stress and of plastic strain

increment tensors coincide.

3) No plastic volume change can occur during plastic

flow.

4) The ratios of plastic strain increments in the

different directions are specified, but the actual

magnitudes of the increments are determined by the

magnitude of the actual increment in the work of

plastic deformation dWp. This is simply expressed(39)

as:

AWp = ala.C1Eij(p) = AAaijSij = 2A11.72

or:

AWp = (2/3)AAay2

4.9.4.3	 Stress-Strain Relationship for Plane Stress 

Loading 

The stress-strain relationship for multiaxial

loading derived in section 4.9.4.2 led to Eqs 4.141 and

4.142. If the structure is subjected to plane stresses; ie:

CY3 = 0
	

(4.143)

The principal effective strain in this direction, e3', is
unknown. e3' can however be derived by combining Eq 4.143
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and 4.141 leading to:

£3' -
	 (v+(1/3)E0,01/4)(el'+e2')	

(4.144)
1-V+(1/3)E0AN

La and £3' may now be calculated from Eq 4.144 and 4.142

using an iterative numerical method.

4.9.5	 Incremental Stress-Strain Relationship for Ductile 

Materials 

4.9.5.1	 In Elastic State 

The incremental stress-strain relation for an

isotropic material loaded within the elastic range can be

formed with the aid of the Hooke's "Elasticity Law" and use

of "Indicial Notation" convention described by standard text

books (39) , as follows:

daij = K.dEkk.Bij + 2G.deij
(4.145)

deij =	 ok1c.8ij + ----sij
9K	 2G

The first of the above can be written in the preferable form

daij = Dijmn(e)Akinn
	 (4.146)

where:

Dijmn (e) = 2G. Sim .3jn+ (K- (2/3) G).45ij.3mn	 (4.147)

In the above relations, daij and &Ina denote the incremental

stress and strain tensors respectively. deij signifies the

incremental deviatoric strain tensor and Dijmn(e) denotes
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the incremental elasticity matrix [De]. The symbol 8 is a

special matrix (Kronecker Delta) written as:

	

1	 0	 0 I

	

8 = [0	 1	 0

	

0	 0	 1

(4.148)

The components of this matrix, Sij, are unity if i=j and

zero if i=j. The shear and bulk modulus, G and K, are

defined as:

E0	 EO
G — 	 	 and	 K — 	 	 (4.149)

2(1+v)	 3(1-2v)

The above standard incremental stress-strain matrix for

plane stress condition becomes:

[dGx	 1	 v	 0 l[dEx 1
E0

day 1 =	 v	 1	 0	 dEy
1-#2

dazy	 0	 0 (1-v)/2 dYxy

(4.150)

and for multiaxial stress condition leads to:

•

n•••n

daz

duY
daz

d'czy

dt yz

citzx-	 -

= 4)

-
a	 v	 v

a	 v

a

symmetry

b

000

000

000

0

b

eV

0

0

b

dEz

dEy

dez

dYxy

dyyz

di(zx.

(4.151)

:

where:

En
	

1-2v
4) - 	  a = 1-v and b =

(1+v)(1-2v)	 2
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In Elastoplastic State 
When the material has shown some plasticity and

the criterion of loading, Eq 4.129, has been met at the end

of the previous iteration, the material will undergo

elastoplasticity; i.e:

{dc} = {dEe} + {dep}	 (4.152)

Substituting for (dee) and (dEp) from Eq 4.145 and 4.132

respectively leads to:

1	 1
dEij =
	

d6kk .sij + ---dsii + dn	 (4.153)
9K	 2G	 aaij

Combining the above with the consistency condition,

Eq 4.129, and the Von Mises criterion, Eq 4.128 leads to:

daij =K.dekk•Oij + 2G.deij -	 smn.demn sij	 (4.154)

K2

Derivation of Eq 4.154 is given in detail elsewhere(39).

This equation may be written in its preferable form as:

daij = Dijmn(ep). dEmn	 (4.155)

where:	 Dijmn(ep) = Dijmn(e) + Dijmn(p)
	

(4.156)

Substituting for Dijmn(e) from Eq 4.147 Eq 4.156 leads to:

Dijmn(p) =
	

smn.sij	 (4.157)
K2
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and

Si = (31

where K2 is defined by Eq 4.128 and Dijmn(e) denotes the

elasticity matrix given by Eq 4.151. The matrix Dijmn(ep)

is referred to as the elastoplastic constitutive matrix(39).

Notice that if the incremental stresses are

determined in the principal directions, no shear stress

exists in these directions and smn or sij is zero for mft or
i0j respectively, indicating that for such cases Dijmn(p)=0
and Eq 4.157 for its non-zero terms, leads to

Dijmn(p) = Dim(p) = -
	 Si.Sm
	 (4.158)

K2

where i and m denote the order number of the principal

directions. Therefore Eq 4.156 reduces to:

[Delp] = [De] + [pp]
	

(4.159)
6x6	 6x6	 3x8

where:

[Dp] =

si2	 s1s2	 s1s3

s2s1	 $2 2	32s1	 •
k2

3331	 s3s2	 33 2

al+024-03

3

(4.160)

where k2 = (1/3)ay2 and 01,02 and a3 denote the current

principal stresses which satisfy the Von Mises yield

criterion, Eq 4.128. The resultant [Dep] matrix formed for

the principal direction must be transformed into global

coordinates by the transformation rule, Eq 4.75
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4.9.5.3	 Under Plane Stresses and in Elastoplastic State

Most of the problems encountered in practice and

research work are concerned with plane stress loading. The

steel frames used in infilled frame construction fall into

this category. When the material in question is subjected

to plane stresses the following is the only extra condition

to satisfy:

da3 = 0	 (4.161)

The elastoplastic constitutive matrix is, thus, a 3 x 3

matrix derived by the author as described below.

The stress components in 3-D principal directions

can be written as:

dal = Dlidel + D12dE2 + D13dE3
	

(4.162)

da2 = D21de1 + D22dE2 + D23dE3
	

(4.163)

da3 = D31de1 + D32dE2 + D33dE3	 (4.164)

where the terms Dim denote the elastoplastic incremental

stess-strain matrix terms whereas the "ep" identifier has

been dropped for simplicity.

Combining Eq 4.164 and 4.161 and solving for dt3

gives:

D31	 D32

dEl -	 dE2
	

(4.165)
D33	 D33

z

Substituting dE3 from Eq 4.165 into Eqs 4.162 and 4.163

leads to:
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Di3D23x
)del + ( D 12 	 -	 )dE2

D33	 D33
dal = (D11 -

D132

da2 = (D21 -
D23D13

D33
)olti + ( D22 - 

D232
)de2

D33

These relations lead to the plane stress incremental stress-

strain relation matrix as follows:

where:

(dal

[Dep] =

= (Dep]{de}

D11	 012

D21	 D22

0	 0{

o

o

Dv

(4.166)

where:,
Di3Dj3

Dij = Dij 	
D33

D33 = D44

In these matrices D terms denote the corresponding terms

of 3-D elastoplastic constitutive matrix as per Eq 4.159.

4.9.15	 Stress-Strain Relationship for Reinforcement

Steel bars may be modeled as anisotropic steel

layer or as single bars as described in sections 3.7.2 and

3.7.3 respectively. Since in the both cases the steel

material is under uniaxial stress, the stress-strain

relation matrix becomes;

for horizontally extended bars:



Esirsi	 0	 o

Psi] =	 0	 0	 0 I	 (4.167a)

0	 0	 0

and for vertically extended bars:

0	 0

0[ p si] =	 0	 Esirsi	 01

I 0	 o	 o

(4.167b)

where Esi and rsi denote the incremental modulus of

elasticity and the ratio of the group i steel bars

respectively, within the integration zone under

consideration. For an inclined group of bars, [Dsi] may be

computed by transforming Eq 4.167a into the appropriate

angle using Eq 4.77.

4.10	 Constitutive Formulation for Mechanical Behaviour

of Interfaces and Joints 

4.10.1	 General

The step by step development of the F.E

representation of interfaces has been discussed in detail in

Chapter 3, leading to the new proposed interface element

described in section 3.10.3. While the geometrical

formulation was accomplished by introducing the proposed

shape functions, the mechanical behaviour of interfaces is

yet to be modelled. This constitutes the following:

i) The criteria under which yielding, slip and/or

separation occur.
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ii) The strain-relative displacement relationship of the

interfaces both for the incremental changes and for

the overall values.

These are discussed in the following sections.

4.10.2	 Yielding, Slip and Separation Criteria

The shear strength and behaviour of interfaces and

joints has been studied by mamy investigators( 76 to 81) .

The shear strength of a bonded interface is generally

considered as comprising:

i) bond shear strength of the interface

ii) the frictional resistance of the interface

The frictional resistance of the interface is

normally calculated as the product of the normal stress an

and the coefficient of friction, g, where is normally

assumed to be constant for all normal stress levels. These

lead to the "bond shear failure criterion" of the interface

expressed algebraically as follows:

IT! = abs - gun
or:
	

(4.168)
RX = abs - gun

where R is assigned either +1 or -1 when T is positive or

negative respectively and the sign of an is considered to be

-ve. for compression.

When the interface is not bonded or it has totally

debonded in the course of loading, the first term in the
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above function vanishes and Eq 4.168 becomes the "slip

criterion" of the interface written as:

Itt = -gan	 (4.169)

These criteria (Eq 4.168 and 4.169) are graphically shown in

Fig 4.35 by lines BC and OD respectively.

/
/' c'
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/////	 I
/	 II. /
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0/ 1
	 subse4uent brond shear

failure surfaces
I

	

I	
I

	

I	 I 

// EA ge ' •

1

Io-
C"	 D6

normal stress (—ye)

:

,
Figure 4.35 Criteria for Inelastic Behaviour of an

Interface
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When the interface constitutes a thin layer of a

relatively soft material, like mortar in the bed joints of

masonry structures, another effect may become the source of

the permanent shear displacement by mean of plastic shear

deformation or yielding of the confined joint material.

This has been studied by Page( 79 ) and Hegemier( 91 ) for the

bed joints of brick and grouted hollow concrete block

masonry respectively. Such a criterion may be idealized by

a straight line (line GE)	 with g' slope. As shown in

Fig 4.35 the joint "yielding criterion" can be algebraically

expressed as:

RE = TO - ll'an	 (4.170)

Fig 4.35 also shows the proposed "bond tensile

failure criterion", represented by line AB to specify the

normal tension and frictional shear stresses causing this

type of failure. The function to represent the bond tensile

failure criterion is, thus, written as:

RT
	

an
+	 = 1	 (4.171)

abs	 abt

where subs and at denote bond shear and tensile strength of

the interface respectively.

Table 4.2 lists some experimentally recorded
-,

values of the mechanical properties of interfaces and joints

dealt with in practice.



Table 4.2 Experimental Data for Interfaces,Joints and
Cracks

Type of Interface
or joint

-
Ref

Bond Strength. .

g,	 pLI

Ksru

NiMM3

.

Tensile
N imm2 .

Shear
N/mm2

Interfaces:
Steel on Concrete 77 0.38 0.65 1500

24 0.41 145

42 0.41 0.65

Mortar on Steel 42 0.44 0.76

Brick on Steel 42 0.5 0.67

Brick on Concrete 42 .62 0.52

Mortar on Concrete 42 0.42 0.54

Concrete on Concrete 42 0.44 0.63

Masonry bed Joints:
Wire Cut Clay 78 0.30 0.50

Solid Sand-lime 78 0.20 0.84

Clay brick 79 0.29 0.19 0.87,0.11 18.01
(	 To =	 1.91)

Hollow block
(net area)

80 0.40 0.52 1.07

Hollow grouted block 81 0.55 0.55 0.68 1.80
(	 TO	 =	 0.70)

Lightweight Block 8 0.15 0.25 0.76

Concrete Cracks 76 - . 53.00

Notes:
p. = slope of the slipping criterion
g' = slope of yielding criterion
Ksru = tangential stiffness of the interface after

debonding



{ee} =
w - WO

4.10.3	 Stress-Displacement Relationship of Interfaces 

4.10.3.1 General 

The general relationship between stresses and

relative displacements of the opposite surfaces of an

interface is given by Eq 3.32. It is numerically convenient

to write Eq 3.32 in terms of the effective relative

displacements 4ei4 as follows:

(a} = [Dflee}	 (4.172)
where:

rr .1

=P	 tei	 ,,	 (4.173)
un

so and wo are the total tangential and normal residual

relative displacements. They comprise the lack of fit,

yielding, slip and the separation effects (if any). s and w

are the total tangential and normal relative displacements

respectively.	 [D] denotes the secant stiffness matrix of

the interface corresponding to the current feel. The

effective relative displacement vector is purely elastic and

there is no cross effect between its components. The shear

and normal stresses are, therefore, independent of each

other such that [D] can be written as:

[Ks 0
[D] = 

	 1

0	 Kn
(4.174)

In the following sections the values of Ks and

Kn will be discussed for all the possible states of an

interface.
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4.10.3.2 Proposed Model Based on Experimental 

Observations 
Fig 4.36(a) shows a number of shear-tangential

displacement curves resulting from tests of concrete on

steel carried out by King et al( 42) using a shear box at

different normal stress level. King et al idealized these

curves by bilinear diagrams shown in Fig 4.36(b). The steep

and straight line shows the elastic behaviour of the

interface with a fairly high shear stiffness, Ksru, and the

horizontal lines characterize the slip occurring under

constant normal and shear stresses. This behaviour is

exactly the same as that of the elastic-perfect plastic

fracture model discussed for ductile materials. Such a

simplification seems to be a fair idealization provided the

interface has no bond resistance.

If however the interface is initially bonded, the

shear stress-tangential displacement diagram must show an .

additional shearing resistance. This is in fact evident as

shown in the tests carried out by Hegemier (81) on bed-joints

of a prototype concrete blockwork, Fig 4.37. These

experiments also indicate that the event of bond shear

failure is gradual and the higher is the absolute value of

normal/shear stress ratio the more gradual the debonding

process becomes.

All the above experimental observations may be put

together to obtain a typical shear stress-relative

displacement diagram as shown in Fig 4.38(a). The curves

shown by dotted line up to yielding, represent the shear

stress-tangential displacement relation provided the bond
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shear failure and slip have been prevented.

From these experimental observations the shear

stress-relative tangential displacement relation can be

idealized as shown in Fig 4.38(b). The trilinear diagram

OABE in this figure constitutes three distinct behaviours as

follows:

i) The linear elastic behaviour for bonded interface

(Line OA with a very steep slope, Ks)

ii) The gradual debonding (Line AB), i.e. gradual decrease

in the shear stiffness from Ks to Ksru

iii) The plateau characterizing slip while the shear and

normal stresses and the shear stiffness, Ksruf

remain unchanged.

The proposed debonding model, Line AB, requires

that an unloading at Point D, Fig 4.38(b), follows line DO

with slope Ksr and the subsequent reloading follotgs the

same line up to point D, as shown in Fig 4.38(b). In such

a case, the interface can be called a partially bonded

interface with a subsequent bond shear failure criterion,

Line OC' as shown in Fig. 4.35.

No experiment with recorded stiffness data is

available (to the knowledge of the author) for bonded

interfaces under tensile normal stress. Nevertheless, as it

is evident,Fig 4.37, that for interfaces under a low

cotipressive normal stress, the event of debonding is rather

brittle, interfaces under tensile stress may be expected to

behave in a similar brittle fashion. i.e, immediately

following a linear elastic deformation up to the peak

-220 -



Normal stress
0-20 N/mm2

045

040

005

(4 040

Z 0-08

! U46

To 0.04

/2042

oio

0 • 20 N/mm2

0;15

u = 0.66 N/mm3
0•10

0•05

0-2	 0 •4	 043	 0 .8 111141

(b)

Z048
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stress, Point F in Fig 4.38(b), the interface loses all

its bond strength and the shear stress suddenly drops down

to -gun (Point
	 as shown in Fig 4.38(b)).

Some experimental data obtained from different

sources are listed in table 4.2. As shown in this table, a

very high discrepancy can be noticed between the values of

Ksru reported by different researchers. This may be

attributed to either the unit convergsiOn error (eg. taking

N/mm2 instead of N/mm3 ) or the difficulties associated with

refining and measuring a relatively high interface stiffness

while the other materials conforming the interface

demonstrate relatively much higher flexibility. Such a

discrepancy becomes more obvious as different workers used

different test approaches.

0 01 0 •4 0 .6 08 mm
Tangential displacement

(a)

Figure 4.36 Concrete-on-steel Shear-relative Displacement
Relationship; (a) actual and (b) idealized
(after King and Pandy(42))
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Figure 4.37 Behaviour of Bed Joints of Grouted Concrete
Block Masonry under Precompression; (a) test
set up and (b) shear-displacement curves

Figure 4.38 Typical Shear Stress-Tangential Displacement
Curves for Interfaces under Constant Normal
Stress; (a) actual (b) idealized model.
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No experimental data is available for shear and

normal stiffness of a fully bonded interface. Theoretically,

they must be set to very high values. When the interface

has a finite thickness (bed and head-joints in masonry), the

above discussed values of stiffness must also include the

additional flexibility induced by the finite thickness and

presumably soft mortar joints. This will be discussed later

in Section 4.11

4.10.4	 Determination of the State of an Interface 

4.10.4.1 General 

Assume s and w are the tangential and normal

relative displacements at a gaussian point within an

interface from which the previously acquired yielding and

slip, and also the initially specified lack of fit, are

excluded. Further assume that the interface inelastic

behaviour (yielding, debonding, slipping and separation)

during the current iteration is somehow prevented.

i.e. so = wO = 0. Using s and w from Eq 4.172 and the

latest values of the shearing stiffness, Ksr, the shear and

normal stresses may then be calculated. These stresses can

be coupled with the criteria by which the interface would

possibly undergo one of the inelastic events as shown in

Figs 4.39 to 4.41.

As shown in these figures the calculated stresses

simply indicate that what is going to happen to the

interface as a result of the current changes in the relative

displacements. This permits the changes to the inelastic

relative displacements to be calculated and the new state of
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the interface to be determined as discussed in the following

sections.

4.10.4.2 New State of a Previously Fully Bonded Interface 

As shown in Fig 4.39(b) Lines EF, FC and CG divide

the stress space into 4 zones indicating whether the

interface is subjected to debonding leading to separation,

debonding possibly leading to slip, yielding or resuming the

elastic state. These lines have already been defined in

Section 4.10.2 by Eqs 4.171, 4.168 and 4.170 as bond tensile

failure; bond shear failure, and the interface (Joint)

yielding criteria respectively. If point P ( the point

representing the shear and normal stresses calculated in the

manner described in Section 4.10.4.1) takes a position above

one of these lines the indicated inelastic event would take

place. The induced inelastic displacements and the

subsequent stresses can be calculated as follows:

a)	 Debonding Interface Leading to Separation

The graphical representation of this state is

shown for point P4 on Fig 4.39. In a separated interface no

shear and normal stress develops. Therefore:

new slip = ssl = s and separation = wsp = w	 (4.175)

and	 an = T = 0	 (4.176)
;

Debonding Interface Leading to Partial Debonding

Allow the interface to debond gradually until
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]
(4.179)

point P1 drops down to Pl f on the appropriate subsequent

debonding surface as shown in Fig 4.39. Clearly, such a

drop is possible by assuming a partially debonded interface

with shear stiffness of Ksr rather than that of the fully

bonded interface, Kso. The new stiffness, Ksr, may also be

used to specify the rate of debonding as shown in

Fig 4.39(a). Ksr can be calculated as follows:

Line AB in Fig 4.39(a) can be formulated using the

co-ordinates of points A and B i.e.

Y - YA	 Y - YB
- (4.177)

x - xA	 x - xl3

where

abs - gan	 -gan
Ks0
	

Ksru
A
	

and	 B
Mos - gan
	 -gan

using the unknown partially debonded shearing stiffness,

Ksr, Line OP' can be written as:

y = Ksrx	 (4.178)

Elimination of y from these two equations leads to Ksr in

terms of the absolute value of the shear displacement Rsi

(the x co-ordinate of intercept of the two lines) as

follows.

Kr. = 1 [	
gan/Ksru + Rs

-gan + abs 	
Rs	 gan/Ksru + (ab5-gan)/Ks0

e

The stresses may now be calculated as:
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an = vaCn	 and	 T = sKsr	 (4.180)

Since the interface is still partially bonded no separation

or slip can occur. R takes the value either +1 or -1 so as

to make Rs always positive.

c) Debonding Interface Leading to Total Dabonding

For point P3 in Fig 4.39, the absolute value of

shear displacement, Rs3, may exceed sb indicating that the

interface has totally debonded and some slip has taken

place. This case will be discussed in Section 4.10.4.4 (b)

d) Fully Bonded Interface Undergoing Yielding

Allow for a prescribed residual yielding

displacement, Sy, for point P2 as shown in Fig 4.39(a) so

that the new position of this point, P2', meets the yielding

criterion, Line CG. Then sy can be calculated from

Fig 4.39(a) as:

-Wan 'CO

Sy = S	 (4.181)

RKSO

and
= KSO( S - Sy)	 and	 an = Knw	 (4.182)

e) Fully Bonded Interface Resuming Elastic State

No separation or slip has occurred and the already

calculated elastic stresses are the true values. ie ,

T = SKS°
	 and an = WKn	 (4.183)
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0 RS4 RS3 RS1
134' 	 Rs2

Tangential displacement Normal	 stress

(a)
	

(b)

'igure 4.39 Proposed Constitutive Model for Fully bonded
Interfaces; (a) shear stress-shear displacement
curves, (b) criteria for the inelastic events

iote: D=debonding, E=linear elastic, 0=open, S=slipping
and Y=yielding

1.10.4.3 New State of a Previously Partially Ekmicled 

Interface 

Fig 4.40 shows the zones and criteria of all the

possible states for a partially bonded interface in terms of

he new displacements. Calculation of the inelastic

displacements and the true stresses are given in the

following sections.

Debonding Interface Leading to Separation

As discussed in part (a) of Section 4.10.4.2

Diebanding Interface Undergoing Partial Debonding

The debonding criterion of a partially bonded

interface, Fig 4.40(b), has not yet been developed. But The
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Sy = S (4.186)

same approach as used in part (b) of Section 4.10.4.2 may be

employed. For the value of current an and previous value of

Ksr and from Fig 4.40(a), the value of 11% can be calculated

for point D on the debonding criterion (Line AB) as follows:

1 - p
ittd =	 + abs 	 	 (4.184)

abs
1 - p

gan
where

KsO/Ksr
(4.185)

Ks°/Ksru - 1

Ksr is the shear stiffness of the interface at the end of

the previous iteration. Now if the absolute value of shear

(say for point P1) is higher than R.Td, the interface is

subjected to further debonding and the procedure to

calculate the new value of Ksr and stresses is exactly the

same as given in part (b) of Section 4.10.4.2. Note the

location of point C' calculated in Clause (d) of this

section.

Debonding Interface Leading to Total f)etxmding

This will be discussed in Section 4.10.4.4(b)

d)	 Partially Bonded Interface Undergoing Yielding

Permit a residual yielding shear displacement, sy,

and proceed as described in part (d) of Section 4.10.4.2

leading to:

+ TO

RKsr
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I.

Rrd
7

,r
Ak r ®e

sr (New)
I	 ii

U
I	 II

T = Ksr( s - Sy)

an = KW

Note that the absissa of point C' can be derived by

combining Eqs 4.170 and 4.184 to give:

11 - 0
oc” - 	  [TO abs 	

obs
1	 0 	

g(OC")

(4.187)

(4.188)

where 3 is calculated form Eq 4.185 using the previous value

of Ksr. Eq 4.188 may be calculated for OC" numerically by

trial and error approach. The graphical representation of

yielding is given for point P2 in Fig 4.40.

0	 Rsi Rs2Rs5	 0n2

U5

Tangential displacement	 Normal stress

(a)
	

(b)

Figure 4.40 Proposed Constitutive Model for Partially
Bonded Interface; (a) shear stress-shear
displacement curves and (b) criteria for the
inelastic events.

Note: D=debonding, E=linear elastic, 0=open, S=slipping and
Y=yielding
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e)	 Partially Bonded Interface Resuming Elastic State

As concluded in Clause (e) of Section 4.10.4.2:

T = SKr	 and	 an = WKn

4.10.4.4 New State of a Totally EM)onded Interface 

Fig 4.41 shows the zones and criteria of all

possible states for a debonded interface in terms of the new

displacements. Calculation of the inelastic displacements

and the true stresses are given in the following sections.

Separated  Interface

proceed as discussed in Section 4.10.4.2(a)

b)	 Slipping Interface

The graphical presentation of slip is given in

Fig 4.41 for point P. As shown slip can be derived by

coupling the slip criterion and the frictional stress-

tangential displacement relationship formulation as follows:

ssl = s + 	 	 (4.189)
RKsru

and

an = WKn
(4.190)

T = (S -ssl) Ksru

The above formulation can also be used for a previously

bonded interface leading to complete debonding.
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an = WKu

0	 Rs/	 Rs2

Tangentia displacement

(4.193)

.170

Un2

Normal stress

0	 Yielding Interface

As discussed in part (d) of Section 4.10.4.3,

-W an TO
Sy = S	 (4.191)

KKsru

T = Ksru(s - Sy)
(4.192)

an = Knw

d)	 The Interface Resuming Elastic State

As concluded in part (e) of Section 4.10.4.2

T = sKsru

(a)
	

(b)

Figure 4.41 Proposed Constitutive Model of Totally Debonded
Interface; (a) shear stress-shear displacement
relationship and (b) criteria for inelastic
behaviour and various possible states.

Note: 0=open, E=elastic, Y=yielding and S=slipping
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4.10.4.5 Proposed Incremental [TO Matrix

The incremental stress-relative displacement

relation in its general form can be written as:

[ids= ]
Pt]

rd:n1	 dw
(4.194)

When the interface is separated, no stress will be

transferred through the interface requiring, thus, the [Dt]

matrix to be a null matrix.

If the incremental changes have not produced any

gradual inelastic changes, such as yielding, debonding or

contacted slip, the shear and normal components of the

incremental stresses and displacements are independent of

each other. Therefore Eqs 4.194 can be written as:

[

dT 1
d un

= [Ks

0

0] rs
Kn	 dw

I
(4.195)

where Ks is the current elastic shear stiffness of the

interface taking values of Kso, Ksr or Ksru for a fully

bonded, partially bonded or a totally debonded interface

respectively, Figs 4.39 to 4.41.

If however one of the gradual inelastic events

occurs during the incremental displacements, a precise

tangent elasticity matrix [Dt] can be derived by
:

differentiation of the stress components, T and an, from the

formulation provided in Sections 4.10.4.2 to 4.10.4.4 as

follows:
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i) Differentiation of T and an from Eq 4.190 with respect

to s and w leads to a non-symmetrical [Dt] for a

slipping interface as follows:

[Dt] =

	

[0	 -141K1

	

0	 Kn

(4.196)

ii) Differentiation of T and an from either of Eqs. 4.182,

4.187 or Eq 4.191 with respect to s and w gives a non-

symmetrical [Dt] for a yielding interface as follows:

[Dt] =

	

][ 

0	 -RA'Kn

	

0	 Kn
(4.197)

Notice that if g' is sufficiently small it can be

neglected and,thus, the second term of the first row

becomes zero and, therefore [Dt] becomes symmetric.

iii) Similar differentiations as in (i) and (ii) above can

be conducted to derive [Dt] for a debonding interface

using Eq 4.180. Such a [Dt] is again non-symmetric as

follows:

[ Dll	 D12 1
[Dt] =	 (4.198)

0	 D22 i

It must be noted that these non-symmetrical [Dt]

matrices are not compatible with the standard F.E. programs

which require, for the sake of economy, an overall symmetric

stiffness matrix. A straightforward and safe solution is to

adopt the overstiff unloading shear stiffness as shown by

- 233 -



the heavy dotted lines in Figs. 4.39 to 4.41. Even so it

causes a slow convergence. Therefore Eq 4.195 may be

considered as the general incremental stress-displacement

relationship, unless a solution of unsymmetric equations is

incorporated with the F.E program. Such a solution is

included with the program "NEPAL".

4.11	 Constitutive Formulation for Masonry 

The finite element representation of masonry has

briefly been discussed in Section 3.9. Of the element types

studied, the 4-node element made of the proposed plane-

stress equivalent material, representing both the units and

the joints, separated by interface elements, Fig 3.9, was

found to be the most economical, practical and simplest

available choice. The proposed 2-D material facilitates

the possibility of simulating the masonry behaviour beyond

its peak stress. Such a representation constitutes two

distinct stiffness and strength contributors as follows:

i) The proposed plane-stress masonry equivalent material

which must (on the basis of plane stress-strain

constitutive relationship) simulate the combined 3-D

mechanical behaviour of masonry units and mortar joints

while assuming the interface of the equivalent material

elements remain intact.

ii) The interfaces of the proposed equivalent material

elements. These line elements are assumed to pass

e through the midplane of the bed and head joints. Such

interfaces must simulate all the inelastic behaviour of

the joints such as debonding, slip and separation.
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The strength and stiffness of these contributors

can be determined experimentally. Analytical approaches are

also available which are rather complicated. A new approach

has also been developed by the author to calculate the

mechanical properties of masonry. Since these approaches

were not actually used in the finite element analysis, they

will be described in Appendix F.



CHAPTER FIVE

Numerical Implementation

and Programming

5.1	 General 

This chapter deals with the numerical

implementation of the finite element technique described in

Chapter 3, using the material constitutive formulations

developed in Chapters 4. The numerical analyses are

incorporated into the finite element computer program

"NEPAL" developed by the author. This program may be used

for plane stress problems in general and for infilled frame

structure in particular. A guide to running program NEPAL

is given in Appendix A followed by a number of notes and

examples. Appendix B describes the structure of the program

and lists the variable names involved.

5.2	 Characteristics of Program NEPAL

Table 2.2 lists The characteristics that are

incorporated into the computer program NEPAL. As seen this

program accounts for almost all the desirable features

listed in the table. It is also possible with this program

to account for the weight of the structure and lack of fit

of the infill. However implementation of masonry as a
been

single material has ' not yet accomplished. But masonry

regarded as a composition of the units and the joints, can
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be analysed as described in Section 4.11. The analytical
be

study of Appendix F may further advanced in the future to

lead to a theory for calculating the properties of masonry

as a single material.

The post peak stress behaviour of materials has a

significant effect on the overall behaviour of structure.

This is particularly important for infilled frame structures

in which it is not yet certain whether the infill or the

frame material starts yielding first. As described in

Chapter 4, such effects are all incorporated into the

program.

Some convergence difficulties may arise for

structures in which discontinuities such as cracking, joint

debonding and/or slip occur. This has been overcome as

discussed in Sections 5.3 and 5.4.

5.3	 Loading Procedure 

As described in Section 3.3, the non-linear

equations of displacements are solved by the Newton-Raphson

method based on application of load increments. When the

load reaches its peak value, this solution may not be

further carried on because no further increase in load is

possible. In this project, however, the complete load

deflection curve of the structure is desired to be computed.

Such a curve must include rising and falling branches and

also a plateau, if any, indicating the ultimate plastic

strength of the structure.

A popular method to avoid the above problem

consists of prescribing an incremental value of displacement

- 237 -



component at the loaded node and evaluate the corresponding

force reaction. Only one variable load is applicable. This

technique was first described by Argyris(91).

Another alternative for eliminating the problem

has been suggested by Sharifi et al (92) 	 This method

introduces fictitious springs to keep the slope of the load

deflection curve of the combined structure positive

throughout the load deflection curve. For a single load and

only one spring this method is straightforward and easy to

apply. The method cannot, however, be easily justified,

when several springs are added to the system, due to

difficulty of deriving suitable spring constants.

A method similar to the second of the above has

been used in this project by introducing a fictitious jack

combined with a spring. This combination may be called the

"Load increment adjusting element." This element can be

coupled with the structure at the point and direction of the

applied load, Fig 5.1(a,b). The load-deflection diagram and

the convergence strategy for such a coupled structure are

shown in Fig 5.1(c).

As shown, the structure is loaded by deflection

increments, Aajk, applied by the jack. These applied

deflection increments will be taken by the spring, hasg,

and the structure, has, in proportion to their

flexibilities. If the stiffness of the spring, Ksg, is

taken as a very high value, relative to the stiffness of the

structure, Kt, the system will be equivalent to the

deflection increment method described by Argyris( 91 ). It is

desirable to take a reasonably low stiffness value for the
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'Symbol

(a)

Proposed mechanism

(b)

t

(c)

Figure 5.1 Proposed Load Application: (a) load application
(b)flexible loading jack (load increment
adjusting element) and (c)convergence strategy
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spring so that the structure undergoes a gradual increase in

the load and deflection, in a similar fashion to the

behaviour of a real structure. If a very stiff spring is

used the behaviour will simulate a displacement control load

in which some unloading may occur.

Criteria for Convergence 

The iteration must continue until the convergence

criteria are met. To examine the convergence of the

iteration, basically, three solution variables can be used:

the incremental displacements, the out-of-balance forces and

the incremental internal energy (40). Since the incremental

approach used in this project is based on nearly uniform

deflection increments, the first of the above variables was

found to be most convenient. Therefore the convergence was

based on the examination of the nodal displacement vector as

follows.

The solution for the corrections to the nodal

displacements is said to be converged when the maximum of

the absolute value of these corrections (so called the

maximum norm) becomes smaller than a prescribed displacement

tolerance. This can be expressed as:

Aa(max)

REF

A4max)=The maximum of the absolute value of change in the

nodal displacements.



REF=	 A reference value related to the deflection

increments which is normally taken as the current

deflection increment but in this project it is

defined as:

REF = 1/2(Amax + Amin)	 (5.2)

so as to maintain a uniform precision throughout the

analysis.

Amax and Amin = the specified maximum and minimum allowed

deflection increments.

Y
	

A prescribed displacement tolerance taking a value

of order 10 -3 to 10 -6 , Bergan et al(93).

For this particular type of structure (infilled

frames)	 y=2x10-3	 was found to give results not more

than 1% different from that of y= 10- 6 . A high value for y

is tempting from the view point of economy, but it may lead

to severe inaccuracy and divergence.

The iterative scheme described previously would

converge only if the non-linearities occurring in the

current step are sufficiently small. The more severe the

non-linearities are, or the greater the number of

discontinuity events is, the smaller the step that must be

taken to ensure convergence. In practice, the magnitude of

the next load or deflection increment will be decided using
,

the magnitude of the previous step and the number of
e

iterations taken to get into convergence. In order to keep

the number of iterations close to the desired number of
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L ( j ) = A (i-i) (5.3)

iterations, DITR, Crisfield( 94 ) suggested a very simple

formula to calculate the length of the next incremental step

as follows:

DITR

ITR(i -1)

A0.-1) = The value of the previous load increment

ITR(i-1).= The number of iterations taken in the previous

step

Program NEPAL, however, uses a newly proposed

formula as follows:

EITR(i-1)]
A(i) = 1.67[1 	  REF + A(i_i)

DITR
(5.4)

where DITR denotes the specified desired number of

iterations within each increment and EITR(i-1) denotes the

effective number of iterations.

This formula was found to suit better the analysis

of infilled frames involving so many discontinuity events

such as: cracking, crushing, interfaces or joints debonding

or slip, which demand a greater number of iterations in

order to deal with the sudden changes in the course of

convergence. The effective number of iterations is to be

calculated as follows:

z.
,	 EITR(i-1) = ITR(i-1) - I	 (5.5)

e

where I equals to the number of iterations within the last
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increment during which at least one damaging event

(cracking, crushing or debonding) has taken place. The

total number of iterations within each load or deflection

increment may be restricted to a prescribed number, MAXITR

so as to prevent a possible divergence.

No straightforward rule is available to determine

the values of DITR, MAXITR, Amax and Amin so that a

guaranteed convergence and a reasonable accuracy can be

ensured. The following guideline has however been

established by the author after several examinations on

highly non-linear problems including infilled frames:

Amin = 1/20 to 1/40 of the expected deflection

at the peak load.

Amax = 2 x Amin

DITR = 4 to 6

MAXITR = 2 x DITR

5.5	 Examination of The Proposed F.E Analysis 

5.5.1	 Genel-a 

In Chapter 3 a number of examinations were carried

out to test the performance of the proposed elements and the

proposed subdivision layouts using the standard elastic

material model. In the following sections the intention is

to further examine those elements and also examine the

performance of the proposed non-linear and elastoplastic

finite element analysis approach, ie. Program NEPAL, in
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predicting the strength, stiffness and the mode of failure

and distortion of the structures. The following sections

discuss such examinations carried out on two reinforced

concrete beams, a model steel frame with micro-concrete

inf ill.

5.5.2	 R.C. Beam Without Shear Reinforcement

Fig 5.2 compares the experimental and the finite

element analysis results of a reinforced concrete beam with

tested by Bresler et al( 95 ). The

of the strength, stiffness and the

a good agreement with the

The following observations are,

however, worth mentioning.

The load-deflection curve from the finite element

analysis, Fig 5.2(c), remains below the experimental one

after the flexural tensile cracks develop. This is obvious

as the tensile stiffening due to cracked concrete is

ignored. If, however, this effect was accounted for by

increasing the modulus of elasticity of the tensile steel

bars, the two curves would have agreed much better.

As shown in Fig 5.2, the 6-node beam element

proved to be advantageous over the 10-node isoparametric

element.

Variation of the interlocking factor, 0, described

in:Section 4.8.3.5, between 1.0 and 1.5 does not affect the

results indicating the fact that a crack would be unlikely

to become interlocked when no reinforcement crosses it.

no shear reinforcement

analytical predictions

mode of failure are in

experimental results.
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Failure occurs finally due to fracture of concrete

at the top-most part of the beam where concrete is under

compression tension principal stresses. This type of

failure is very sensitive to factor A described in Section

4.5.3. A small adjustment of this material constant would

reduce the peak load down to the experimental value. The

comparatively high analytical strength maybe, partly,

because of the assumption of continuously distribution of

shear deformation over the area of the elements which

extended over the entire depth of the beam. This is not true

in a diagonally cracked beam. Therefore it may be concluded

that although the large sophisticated elements are

significantly economic and accurate but they might not

be a relevant choices for a careful non-linear analysis

involving brittle materials that are supposed to carry load

well beyond the onset of cracking. Nevertheless,

considering the variation of material in the test, the

proposed beam element has led to results that are fairly

close to the actual values.

5.5.3	 R.C. Beam with Shear Reinforcement

Fig 5.3 compares the finite element analysis and

the experimental results of almost the same beam, as

discussed in Section 5.5.1, with the inclusion of link bars.

The following points (in addition to the ones made for the

beam without shear reinforcement) are worth mentioning.

The interlocking factor, 0, affects the behaviour

only when the cracks that are developed due to diagonal

tension have well developed and, thus, the link bars have
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5.5.4	 Square Steel Frame Subjected to Racking

Fig 5.4 compares the finite element analysis

results of an open steel frame with experimental results

recorded by the author (29) . As shown they agree well,

indicating that both the proposed beam element and the

adopted ductile material model would well simulate the

geometry and the mechanical behaviour of the structure.

Nevertheless, the following points are worth mentioning.

Apparently the modulus of elasticity of the frame

material, steel, must have been slightly lower than reported

in the experiment. It seems only 5• percent reduction in

the modulus of elasticity would bring the first part of the

two curves together.

The analytical load deflection curve looks like a

multi-linear line. This may be due to the stepwise

numerical integration approximation over the plastic regions

at the vicinity of the corners. Increaskig the number of

Gaussian points in both horizontal and the vertical

directions within the elements attached to the corners will

improve the analytical curve so as to look more natural and

smooth. But such an upgrading involves extra computation

time.

The ultimate strength of steel must have been more

than the experimentally recorded value. This can be

adjusted by increasing the value of ru of steel by only 2%.
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Open SteelFrame under Racking to the
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5.5.5	 Micro-concrete infilled Steel Frame Subjected to

Racking
the

In order to examine performance of the proposed

interface element and also further examine the proposed beam

element in a zone with a high bending moment gradient, the

model steel micro-concrete-infilled frames (Frame series

No. 5) tested by Saneinejad (29) , were analyzed under the same

type of loading as used in the experiment (Fig 5.5). The

reason that this particular experiment was selected for

examination of program NEPAL was because the test had been

carried on well beyond the peak load up to an obvious

4
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plateau shown in the load deflection curve, indicating

formation of a mechanism and thus plastic distortion. The

mechanical properties of the materials related to this frame

are listed in Table 5.1.

As shown in Fig 5.5, the load-deflection curve

resulting from the finite element analysis falls between the

two experimental curves recorded from two almost identical

infilled frames (Frames No. 105 and 205). The analytical

plastic load capacity (plateau) is, however, somewhat

higher than those of the experimental ones. This difference

may be attributed to development of rather extensive damage

to the structure as a result of release of the energy stored

within both the structure and the elements of the testing

machine immediately after the peak load has reached. Such a

damage could have been partly prevented by using a

displacement-controlled testing machine.

Figs 5.6 to 5.9 diagrammatically show the frame

forces and distortion modes and the interface and the infill

stress distributions at the marked stations. These figures

show that the proposed finite element analysis predictions

of the strength, stiffness and the mode of failure of

infilled frames agree well with the actual behaviour of

these structures.

It is worth mentioning that with the aid of the

proposed beam and interface elements accurate and finely

detailed frame forces and interface stress distribution are

numerically established with the use of a substantially low
•

computation time compared to the existing equivalent

choices. It is still possible to further increase the
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accuracy of the analysis by simply increasing the number of

gaussian points within the zones at the vicinity of the

loaded corners. Alternatively, the size of the corner

elements may further be reduced without increasing the total

number of elements and nodes and gaussian points. This

choice would be efficient for infilled frames with a strong

infill in which the diagonal stresses would concentrate

within tiny zones at the loaded corners.

The actual final mode of distortion at station 5

shown in Fig 5.5, indicates that because of non-uniformity

in the geometry and material of both the frame and the

infill at the loaded corners, the infill normally crushes at

only one loaded corner and the frame presumably becomes

plastic only at the crushed corner. The numerical analysis,

however, treats both the loaded corners the same because of

the exact symmetry assumed for the structure, material and

the loading. It is believed that the actual behaviour may

be simulated by changing, slightly, the thickness of the

infill at one of the loaded corners.

Table 5.1 Properties of The materials related to Fig 5.5

Frame Inf ill Interface

E	 = 175 KN /mm2

V	 = 0.25

tFy = 252 N/mm2

r

E	 = 25 KN/mm2

v	 = 0.175

at = 4.0 N/mm 2

GC = 35	 N/mm2

Cc = 2.1X10-3
0 =2.0

Kn	 = 1000 KN/mm3

Ks	 = 500	 KN/mm3

(kb = 0.0

'ash) =	 0.0

Ksru= 0.5	 KN/mm3
g	 = 0.6
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5.6	 Conclusions 

The finite element analysis tests carried out in

this chapter assisted to examine the computer program

"NEPAL" against the requirements outlined in table 2,2. The

results also led to the following conclusions:

1) The proposed material and interface models simulated,

closely, the behaviour of the structures at the peak and

beyond the peak load.

2) The proposed incremental [D]ep matrix developed for

ductile material (steel) subjected to plane stress

condition, Eq 4.166, performs exelentty.

3) Although significantly economic, the choice of large

elements with sophisticated shape functions is not the

most accurate choice for a non-linear analysis

involving materials subjected to discontinuous

displacements such as a cracked concrete carrying load

well beyond the onset of cracking.

4) Considering the variation of material in the test, the

proposed beam element leads to results that are

fairly close to the actual values.

5) The effect of tensile stiffening on the stiffness of

r.c. beams is significant. This can be accounted for

by increasing the modulus of elasticity of the tensile

steel bars after the tensile cracks,caused by flexure,

are developed.
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6) The crack interlocking affects the results of strength

and stiffness only when the cracks are intercepted by

reinforcing bars. These reinforcements become

• effective after the cracks have well developed.

7) The proposed crack interlocking model well simulated

the behaviour of r.c beams with shear reinforcement

subjected to high shear force.

8) the proposed crack modeling well simulated occurrence

of the secondary cracks. These cracks develop only

after the primary cracks become interlocked and

are under a high shear stress.

9) The proposed interface element together with the

proposed interface mechanics model, well simulates the

behaviour of the interfaces resulting in smooth and

fairly accurate stress distribution diagrams involving

four possible states of bonded (intact), gripped,

slipping and open.

10) The proposed deflection increment approach assists

preventing the errors such as unnecessamy cmacking ot

the material, and debonding and/or over-slipping the

interfaces.

11) The proposed finite element analysis can be extended

successfully well beyond the peak load with

satisfactory convergence. However for structures

subjected to a sudden failure such as a beam subjected

to shear failure, the analysis may not be continued

much beyond the peak load.
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