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SUMMARY

This thesis is concerned with the analysis of
pbuilding frames acting compositely with infilling wall
panels. The significance of the composite action is
emphasized and previous work on infilled frames is reviewed.
The existing methods of analysis are categorized and their
analytical assumptions are highlighted. It is concluded
that more accurate results may be obtained from the
development of a non-linear finite element analysis. The
finite element method is reviewed and new elements for
representing beams, interfaces and loading are developed.
Failure criteria for concrete under multiaxial stress and
also failure criteria for masonry under uniaxial compression
are developed. The non-linear elastoplastic behaviour of
concrete is modelled using the concept of equivalent
uniaxial strain and the model is extended for cracked
materials. Elastoplastic models are also developed for
ductile materials(steel) for secant and incremental changes
of stresses and strains. These models and the newly
developed elements are incorporated into the finite element
analysis which is numerically implemented by a new computer
program, NEPAL. A number of steel frames with concrete
infills covering the practical range of beam, column and
infill strengths and also wall panel aspect ratios, are
analysed using this program. The finite element results are
compared with the predictions of a range of existing methods
of analysis and their limitations are discussed in detail.

A new method of hand analysis is developed, based on a
rational elastic and plastic analysis allowing for limited
ductility of the infill and also limited deflection of the
frame at the peak load. The new method is shown to be
capable of providing the necessary information for design
purposeswith reasonable accuracy, taking into account the
effects of strength and stiffness of the beams and columns,
the aspect ratio for the infill, the semi-rigid joints and
the condition of the frame-infill interfaces (co-efficient
of friction and lack of fit). It is concluded that simple
and economical design approaches can be established for
frames with infilling walls.
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CHAPTER ONE

Introduction

Framed buildings normally contain wall panels
whose prime function is to either separate spaces within the
building or to complete the building envelope. The
properties of these walls and their position within the
structural frame may be so chosen that they can also have a
significant influence on the response of the structure
subjected to side sway. Such structural configurations are
termed "Infilled Frames" and have been investigated by a

number of researchers.

The history of work on infilled frames dates back
to the mid 1950’s when the design of rigid-jointed multi-
storey frames was being revolutionized as a result of work
done by Wood et al(l,2), Beaufoy et al(3) and Chandler (4)
and Livesley et al(3), wherein "The degree of restraint
method" and application of the critical load in the new
elastoplastic design of these structures were being
developed. According to the new design method, which was
reported later by "The Joint Committee(6)", the stability of
rigid multistorey framed structures would significantly
improve and considerable economy would be achieved if side
sway is resisted separately by walls and floors or bracing.
However, in this method no allowance was given for the

contribution of the infilling walls in limiting side sway of



framed structures due to the lack of understanding of the
pehaviour of infilled frames. Wood(7), 1958, concluded that
"there had been a heglect in the past to study the

stiffening effect of cladding of tall buildings."™ He listed
a series of in-plane racking tests, Table 1.1, on encased
steel frames with various wall panel infillings. This table
shows the significance of the infilling walls in reducing
side sway of multistorey buildings.

Since then even though the potential economy and
efficiency of infilled frame construction has always been
evident, its use still has not been widely accepted,
primarily due to lack of theory. During the last three
decades a few analytical approaches have been developed. A
summary of previous work is given in Chapter 2. These
methods can generally be classified into the following

categories:

i) The approaches based on linear elasticity theories.

ii) The approaches using perfect plasticity theories.

The assumptions made in these approaches vary widely, and
the predictions of strength and stiffness also vary widely.
Attempts to verify these approaches using
experimental results have not been totally successful
because the experimental data are significantly affected by
variations in the properties of the materials. It is not
feasible to measure all the necessary information, such as
stresses in the infill and also in the frame members.

The finite element method, however, as a powerful

and fast growing technique, has become a popular method for



solving highly indeterminate problems. Therefore, quite a
few finite element analyses have ben developed for infilled
frames during the past ten years mainly using either pure
elasticity or perfect plasticity theories with allowance for
separation and slip of the joints. The results of these
analyses have been used to examine the aforementioned
elastic and plastic methods. These are reviewed in Chapter
2. The rather lafge discrepancy between the two groups of
approaches indicates that study of infilled frames still
lacksa rational analysis accounting for both elastic and
plastic behaviour of the structure.

The prime objective of this study has therefore,
been to develop a finite element program particularly
written for the analysis of infilled frames and examine the
existing methods. It was desirable that such a program
should be capable of simulating the non-linear behaviour of
frame, infill and their interfaces as accurately as
possible. 1In order to satisfy these requirements it was
necessary to investigate the materials behaviour in detail
and to develop suitable mathematical models for their
mechanical response. This work is covered in Chapter 4. 1In
order to improve the accuracy and economy of the finite
element analysis, new elements such as beam, interface and
loading elements needed to be developed. These elements and
also the basis of the finite element method are described in
Chapter 3. These efforts led to the finite element analysis
computer program "NEPAL" written by the author. This
program is introduced in Chapter 5. This chapter also

reports the tests carried out to examine the performance of



the program in solving some non-linear structural problems.

The next phase of the work was to study the
behaviour of infilled frames within practical ranges of
beam, column and infill strength and also the infill aspect
ratio. Computation and results of analysis of these frames
are described and discussed in Chapter 6 leading to the
necessity of proposing a new hand method of analysis based
on both elastic and plastic behaviour of the materials and
limited infill strain at collapse load. Development of such
a method is described in Chapter 7. This chapter also deals
with comparison of the results of the newly developed method
with the results of the finite element analysis and
previously existing experiments and methods.

The final chapter presents the conclusions drawn
from the present investigation and recommendations and

suggestions to carry on the work in the future.



Table 1.1 Racking Tests on Encased Steel
Frames with Various Wall-Panel

Infillings (after Wood7))

Type of frame and infill First visible crack Ultimate | Hori-
load: zontal
tons | deforma-

Load: | Horizontal| Approxi- tion
Racking load tons | deforma- | mate at
Encased tion ratio ultimate
stee! frame (
\‘ 4y inch | deforma- load:
"f—— tion/ inches
5 Yarlous height:

2 5 wall-panel 4u/H

e » Infillings

0 10"

J&—Il' appr.—

Frame Type 1
Horizontal girders 10 in. x 4% in.

(125)
Vertical stanchions 10in.x 8 in.

(I 55) (weak way)
6-in. x 4-in. % 4-in. bolted cleat

connexions to top and bottom

flanges of each beam .
Open bareframe . . . . . 7 10{;‘3&} — 93 60
Encased frame . 14 10 1/100 20 23
Encased frame with 4i~m brick

panel 35 |03 1/350 49 25
(Repeat test) with 4i—m bnck

panel . . 30 |0-28 1/400 56 28
Brick-on-edge mﬁllmg . e 21 |[0-27 1/400 40 20
3-in. clinker block . 22 | 025 1/450 35 0-8
(Repeat test) 3-in. clinker block. 24 |0-28 1/400 36 08
3-in. hollow clay block . . . 22 (040 1/275 30 1-5
134-in. brick . . 110 |0-26 1/425 135 06
43-in. brick, with door opemng 13 (011 1/1000 38 21
Fr%me Tiy)pe 2(somewhat stiffer thanA

ype
Horizontal girders 13 in.x 5 in.

(135)
Vertical stanchions 10 in.x 8 in.

(I 55) (strong way)
6-in. X 4-in. x -in. cleat connex-

ions .
Encased frame . . . . . 17 |10 1/100 23 22
44-in, brick infilling . . . . 37 {028 1/400 75 15




CHAPTER TWO

Review of Previous Work

2.1 Introduction

The composite behaviour of an infilled frame is a
complex statically indeterminate problem. Since 1958 this
topic has been the subject of several separate
investigations at various institutions throughout the world.
The approaches to the problem have varied widely.
Considering the different assumptionsmade, it is not
surprising that the predictions of stiffness and strength
have also varied widely. A detailed review of previous
experimental and theoretical investigations has been given
by Samai(8). 1In this chapter the intention is to briefly
review the behaviour of infilled frame and to summarize the
main stages in the development of its analysis and

understanding of its behaviour.

2.2 Behaviour of Infilled Frames under Racking Load

Fig 2.1 shows a rectangular single bay single
storey infilled frame under racking load, H.
Mainstone (9) described the behaviour of this composite
structure as follows:

If, before loading, the infill fits the frame
perfectly, its initial behaviour will lie somewhere between

the extremes illustrated in Figs 2.2(a) and 2.2(b). The



maximum possible contribution to resisting the load will be
achieved by a state of uniform shear throughout, calling
for continuous transfer of shear along the interfaces with
the frame plus continuous tension on beams and continuous
compression on columns for non-square frames, Fig 2.2 (a).
Considered as a diagonal strut, the infill may then be said
to have an effective width, w’, Fig 2.1(b).

At the other extreme, the interface reactions will
be concentrated to the corners and the distribution of
stress will be highly non-uniform, leading to a behaviour
equivalent to that of a much narrower strut Fig 2.2 (b).

Between the two extremes the interface reactions
will always be distributed over finite lengths of the beams
and columns i.e, BF and BG in Fig 2.4, unlike the
concentrated reactions of a true diagonal strut, Fig 2.2(b).
Some changes in the mode of deformation of the frame will be
induced leading to a further increase in the composite
stiffness. Diagonal cracking, if it precedes crushing of
the infill, will modify this initial behaviour by creating,
in effect, two or more struts in place of the original one,
Figs 2.2(c), 2.2(d). Quite marked changes in the mode of
deformation of the frame may then result from redistribut-
ions of the interface reactions.

If, before loading, the infill does not fit
perfectly, the interface reactions and the resulting
beﬁaviour will be further modified. A continuous gap at the
tog, for instance, will mean that load can be transmitted to-
the infill only by compression and shear on the vertical

faces. The alignment of the effective strut will then be



Figure

Flgure 2.2 Behaviour of Infilled Frame;
uniform shear,

2.

1 Notations
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(a)infill under

(b)infill as a diagonal bracing,

(c and d)infill as behaving between (a) and (b),
(e)infill with lack of fit and (f)infilled

frame loaded diagonally (after Mainstone (9))



somewhat different initially, Fig 2.2(e), and there will be
a tendency for the infill to slip and rotate until it bears
on the beam and column at the loaded corners.
An infilled frame may be loaded diagonally as shown in Fig
2.2(f). This type of loading produces compression in the
windward column in place of tension that would arise in
practice as shown in Fig 2.2(a) to (e).

The real behaviour of an infill in resisting a
racking load is more complex than that of a simple diagonal
strut. However the early work on the subject was based on

idealization of the infill as a simple diagonal strut

2.3 Early Work and the Concept of Diagonal Strut

Serious experimental and analytical investigation

on infilled frames was started in 1958 by Polyakov (10)
He suggested the possibility of considering the effect of
the infilling wall in each panel as equivalent to diagonal
bracing Fig 2.3(b). This suggestion was later taken up by
Holmes(11), 1961. He represented the infill by a pin-
jointed strut connecting the loaded corners as shown in
Fig 2.3(b). He also concluded that, at failure, the
deflection of the composite wall and frame is small in
comparison with the deflection of the bare frame.

the

Therefore, the frame members remain in elastic stage up to

failure load. Accordingly, he calculated the change in the

frame diagonal, &d, as:

H—R(h')30036 Ic
8d = [1+ Cot6] Cosb (2.1)
24EIo Ip




The shortening of the equivalent strut at failure was also

calculated as:

dd = gecd (2.2)

8d = ech’/Sinf (2.3)

where €¢ denotes the strain in the infill at failure.
The value of €c was taken as 0.002 as a safe limiting value
for concrete infill. From Eq 2.1 and 2.3 the horizontal

load at failure, H, was derived by Holmes(ll) as follows:

24EIcEc
H = + AfCosf (2.4)
Ic :
h’2 [1 +— Cote] Sin6CosH
Ib

Where R is replaced by the product of the cross sectional
area, A, of the equivalent strut and the crushing strength
of the infill, fo. Holmes(1ll) showed that, for strength
purposes, td/3 best represents the value of A for the
infilled frames tested. However, the theoretical
deflections at the ultimate load, corresponding to the
proposed value of A, were generally much lower than those of
the companion experimental deflections.

The Holmes one third rule for determining the
width of the diagonal strut is independent of infill/frame
strength and stiffness parameters. However, as will be seen
later in this chapter, the behaviour of an infilled frame is

highly dependent on these parameters.
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Figure 2.3 1Infilled Frame Under Diagonal Loading;
(a) frame deformation and (b)idealization of

infill as diagonal strut (after Holmes (11))
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Holmes (11) 7 approximation, although crude, may be
considered as the basis for later work especially the work
done by Stafford Smith(12), 1966, which is summarized in the

following sections.

2.4 Theories Based on Infill/Frame Stiffness Parameter
2.4.1 General

Stafford Smith(12), 1966, carried out a wide range

of tests on 150mm square micro-concrete model infills
bounded by steel frames subjected to diagonal load, Fig 2.4.

According to his observation, he adopted the equivalent

Figure 2.4 Diagonally Loaded Infilled Frame and Interactive
Forces (after Stafford Smith(12))
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diagonal strut in representing the effect of infill.
However, Stafford Smith did not share the view of the one
third rule proposed by Holmes (11l) which is described in
Section 2.3. Instead, he pointed out that the width of the
equivalent diagonal strut is determined by the finite
lengths of contact between the frame and the infill at the
loaded corners, Fig 2.4.

Stafford Smith and Carter(13), 1969, expanded the
work of Stafford Smith to deal with rectangular and
multistorey infilled frames. Also they further studied the
stiffness of such structures. A review of their work is

given in the following sections.

2.4.2 Stafford Smith Observations on the Behaviour of
Infilled Frames Subjected to Racking I.oad

When an infilled frame is under either horizontal
or diagonal load, Fig 2.4, the infill and the frame separate
over a large part of the length of each side and contact
remains only adjacent to the corners at the ends of the
compression diagonal. As the load is increased, failure
occurs eventually in either the frame or the infill as

follows:

i) frame failure results from tension in the windward
column or from shearing of the columns or beams.

Infill failure is initially by cracking along the

o ape
-
~

compressive diagonal. The final failure results from
crushing near one of loaded corners or, in the case of

a comparatively very stiff frame, crushing over a more
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general interior region of the infill. However, if
the infill is of brick masonry an alternative

possibility of shearing failure along the plane of the

bed-joints may arise.

Typical load deflection curves obtained by

Stafford Smith(12) for cracking and non-cracking concrete

infills are shown in Fig 2.5.

I Cracking -—
1,11l Crushing }

Figure 2.5 Typical Load-Deflection Curve for Concrete
Infilled Steel Frame (after Stafford Smith and

Ccarter (13))
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24.3 Stafford Smith’s Theoretical Analysis

stafford Smith(12) carried out extensive

theoretical work using elasticity theory to derive the
length of contact and strength and stiffness of infilled
frames as follows.

Fig 2.4 shows a square infill frame subjected to
diagonal load illustrating the model infilled frames tested
by Stafford Smith(12),  Consider the side AFB, in Fig 2.4,
of which FB remains in contact with the infill. Assuming a
triangularly distributed reaction along FB, the bending and
equilibrium equations were derived for the separate lengths,
AF and FB; these then were related by the continuity
conditions at point F. A further equation for the energy of
AB and one-quarter of the infill, allowed Stafford Smith to
reduce the whole set to a single equation in terms of Ah and

a/h’ where:
4 Ejti
Ah = h EE— (2.5)
4EfIfh’

represents the infill/frame stiffness parameter. A similar
analysis was carried out, using a parabolic distribution of
the reaction along FB to produce an alternative equation
relating a/h’ and Ah. The solutions of these equations
yielded the two curves given in Fig 2.6 which also shows the
Stafford Smith’s experimental results for length of contact.
The close alignment of the two curves, and the satisfactory

agreement of the experimental results, could lead to the
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adoption of either curve. However, the third curve shown in
Fig 2.6 also agreed closely with the experimental results

and the two other curves. This additional curve is given

by:
a T
= (2.6)
h’ 2\h
30 |
i
1
25 < Q
\!
20
. O TESTS 201-204
IS \ & TESTS 211-215
D TESTS 221- 225
N /Eq 2.6
\}
\y
\3
10 .
N\
N o]
TRIANGULAR =
SOLUTION N
PARABOLIC . oA
SOLUTION S
5 =
<§§%$Esssssis
o1 02 0.3 0.4 0.5
: 2
h’

Figure 2.6 Length of Contact as Function of Ah (after
Stafford Smith(12))



which was adapted from the equation for the length of
contact of a free beam on an elastic foundation subjected to
a concentrated load, following the analysis of Hetenyi et
al{l4) | Because the third curve was more conveniently
expressed algebraically than the other two, and in other
respects was equally acceptable, it was adopted by Stafford
Smith for later use in the analysis.

The stiffness parameter, Ah, was later generalized
by Stafford Smith and Carter(13) to allow for rectangular

walls as follows:

4 Ejti
Ah =h - Sin26 (2.7)
4EcIch’

Since an elastic theory was used in the analysis, the length

of contact remained constant during the course of loading.
Having derived the length of contact, it became
possible to isolate the infill from the frame, Fig 2.4, and
to represent the frame-infill interaction forces, R, by only
a set of normal forces distributed triangularly over the
length of contact as shown in Fig 2.4 i.e, no frictional
force was allowed for at the frame infill interface. Thence
for various lengths of contact ranging between 1/8 to 5/8 of
the height of infill, Stafford Smith(12) developed a set of
two dimensional finite difference analyses and plotted the
co;responding stress diagrams to relate the interior

stresses to the boundary forces of the infill, as typically

shown in Fig 2.7.
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In order to study the contribution of the frame,
Stafford Smith, this time, represented the infill
interaction forces by triangularly distributed normal forces
acting over the length of contact on each side of the frame,
Fig 2.4. Thence, he calculated the load carried by the
frame alone, F, by developing an energy analysis of the
redundant system which was repeated for various lengths of

contact within the same range as above.

8 UNITS

3 UNITS |

UNITS PANEL OF UNIT THICKNESS

J UNITS

8 UNITS

—== LINE OF UNIFORM PRINCIPAL COMPRESSIYE STRESS
==-—e= LINE OF UNIFORM PRINCIPAL TENSILE STRESS

" PRINCIPAL COMPRESSIVE STRESS TRAJECTORY
- PRINCIPAL TENSILE STRESS TRAJECTORY
VALUES OF SYRESS GIVEN IN LOAD UNITS PER SQUARE LENGTH UNIT

Figure 2.7 1Infill Theoretical Stress Diagram for a/h’=3/8
(after Stafford Smith(12))
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The above analysis for frame and infill allowed
the total carrying load, P, of the infilled frame to be

calculated as follows:

Fig 2.8 shows the variation of significance of the diagonal
load carried by the frame, F, in comparison with the infill
load, R, as a function of Ah for square infilled frames. As
shown, the contribution of F is less than only 5% of the
infill carrying load, R, when Ah, is more than 3.8.

However, for infilled frames with Ah, less than 3.8 (weak
infill) the contribution of the frame to the total diagonal

carrying load, R, rapidly becomes significant.

116

14

112 \ - ‘P
S| te
STy \
E 102 \
: " T
5' )\h

Figure 2.8 P/R as Function of Ah (after Stafford Smith (12))
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24.4 Lateral Strength of Infilled Frames

In order to simplify the analysis, Stafford
smith(12) ignored the diagonal load transferred through the
frame as shown in Fig 2.8 and as discussed in the last
paragraph of Section 2.4.3. The lateral strength of
infilled frames then can simply be obtained from static
analysis of the frame in which the infills are replaced by
equivalent diagonal pin-jointed struts as shown in Fig 2.9.
It should be noted that, in reality, the above assumption
does not necessarily mean that the flexural stiffness of the
frame is neglected since the flexural stiffness of the frame
has already allowed for in determination of the length of

contact in Egs 2.6 and 2.7.

(2) - (v)

P
.

Figure 2.9 1Infilled Frame; (a) laterally loaded infilled
frame and (b) equivalent frame (after Stafford

Smith and Carter (13))
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Collapse of an infilled frame may occur through
failure either of the frame or of the infill. Failure of
the frame can result from tension in windward columns or
shear in the beams, columns or their connections. If
however, the frame is adequately strong, collapse will
eventually occur by compression failure of the infill
propagating from one of the loaded corners or, in the case
of a comparatively very stiff frame, crushing over a more
general interior region of the infill. Compressive failure
of infill may be preceded by a diagonal cracking along the
compressive diagonal.

Infill failure modes and loads were formulated by
Stafford Smith(12) for square panels. The work was later
generalized for masonry infills, rectangular panels and
multi-storey infilled frames by Stafford Smith and

Carter(13), These are described as follows.

a) Diagonal Cracking of Infill

The diagonal force necessary to cause cracking of
the infill, Ryt, is that which would produce a maximum
principal tensile stress in the infill equal to the tensile
failure strength of the infill material. From the maximum
principal tensile stress values taken from the infill stress
diagrams, Fig 2.7, and Eq 2.6 a series of curves were
constructed by Stafford Smith and Carter(13) to relate the
diégonal cracking load, Rut, to Ah for various panel
lez.agth/height proportions. Fig 2.10 shows these curves
where Ft’ is replaced by 0.1fg’, a reasonable value for

concrete tensile strength, thus allowing the basic parameter
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for expressing the cracking strength, Rut/(ft’h’t), to be
converted to Ryce/(fc’h’t) and thereby permitting a direct
comparison of the cracking and compressive failure curves on
the same graph. Fig 2.10 also shows that the greater is the
length/height proportion of the infill, or the smaller 1is
the value of Ah, i.e the stiffer is the column relative to

the infill, the greater is the diagonal cracking strength of

infill.

b)  Compressive Failure of Infill

The onset of this mode of failure is gradual.
Therefore, the collapse may be assumed to be due to a
plastic like failure within one of the loaded corners
surrounded by lengths of contact, a. Allowing for a uniform
crushing stress, fg’, within this region, the diagonal

compressive failure load, Ryce, was derived as follows.
Ryc = atjfce’Sech (2.8)

Substituting for a from Eq 2.6 the above equation may be

written in its non-~dimensional form as:

Ruc T

SecH (2.9)
fo'h’t 2\h

which is also plotted in Fig 2.10. The above theoretical

tensile and compressive infill failure loadsand the test

results obtained by Stafford Smith(12) are compared in

Fig 2.11 showing a fairly good agreement.
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2.4.5 Lateral Stiffness of Infilled Frames

Using the typical infill stress diagrams shown in

Fig 2.7, the strainsalong the loaded diagonal were computed
by Stafford Smith(12) and the equivalent strut width ratio,
wek’'/d, was deduced. For stiffness purposes the equivalent
strut width ratio was plotted as a function of a/h’ in
Fig 2.12. As shown, the theoretical values of wek’/d are
consistently higher than the experimental values. Stafford
Smith first attributed this discrepancy to the non-linear
behaviour of the infill around the loaded corners. However
a further series of diagonal loading tests on steel frames
with infills of epoxy resin- a relatively linear material-
gave results similar to that with mortar infills.
Therefore, Stafford smith(12) concluded that the excessive
theoretical predictions were due partly to assuming a
triangular interaction stress distribution which, perhaps,
should have been more heavily loaded towards the corner,
and partly due to the inexactness of the finite difference,
method especially in the region near the application of thkhe
load.
Despite this conclusion, Stafford Smith and

Carter (13) concluded that the effective width of an infill
acting as a diagonal strut is influenced by the following
factors:

i) the relative stiffness of the column and the infill

ii) the length/height proportion of the infill
iii) the stress-strain relationship of the infill material

iv) the magnitude of the diagonal load acting on the

infill
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They modified the previous work of Stafford
smith(12) py allowing for non-linearity of the infill
material and length/height proportion of the infill resulted

in a series of curves shown in Fig 2.13.
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Figure 2.12 Experimental and Theoretical Effective Width of
Diagonal Strut as Function of Length of Contact

(after Stafford Smith(12))
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2.4.6 Behaviour of Masonry Infilled Frames under
Racking T.oad

The in-plane deformation and failure of masonry is

influenced by the properties of its components, the units
and the mortar. The influence of mortar joints is
significant, as these joints act as planes of weakness.
Experimental observations(13,15,16) nave shown that when a
masonry infilled frame is subjected to in-plane racking
loads, failure of the infill may occur by one of the
following modes:
a)Shear cracking along the interface between the bricks
and mortar
b)Tension cracking through the mortar joints and the
units
c)Local crushing of the masonry or mortar in one of the
loaded corners of the infill
Failure modes (b) and (c) are similar to those
which occur in concrete panels. Therefore the infill/frame
stiffness parameter, Ah, can be used in the same manner to
estimate the compressive failure and diagonal cracking
loads. However the failure mode (a) is particular to
masonry infillings. The load to cause such failure was
calculated by Stafford Smith and Carter(13) as follows:
Fig 2.14 shows the commonly used masonry joint
shear failure criterion(31), This criterion was
inéorporated into the finite difference stress analysis,
carried out for different height/length ratio panels, and
resulted in a series of curves relating the diagonal shear

failure load, Ruys, to Ah as shown in Fig 2.15.
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Figure 2.14 Shear Failure Criterion for Masonry Under
Vertical Compression and Horizontal Shear;
(a)the criterion and (b)applied stresses

30

. \ Tikao. .
\ 25 Y
25
\ 20:¢ p=06
20 . \ 151 ITIRYS
\ 10- 1 E-06
~
Ny 5 \:‘\%‘ Lih=25:] — #—:°=
o) -~ =2l [ Fso ]
W& [y e D At U SR S 1Y
P S~ Lo | #oo
3 It ——T—
o
T T R, lkdiagonal force
’ carried by Infill
05 f—mv h
]
3 | |
: 0 4 8 12 16 2
: Ah

Figure 2.15 Shear Strength of Infill as a Function of Ah
(after Stafford smith and Carter(13))
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2.5 Empirical Method of Analysis Based on Stiffness
Parameter Ah
2.5.1 Empirical Data and Analysis of Infill

Mainstone(9), 1971, discussed an extensive series

of tests, carried out at the Building Research Station, on
model frames with infills of model brickwork and micro-
concrete and also a much smaller number of full-scale tests.
He concluded that the range of possible behaviour of an
infilled frame is much wider than that envisaged by any .
theoretical analysis that had been undertaken. Fairly wide
variations may be observed even between nominally identical
specimens as a result, presumably, of different local
variations of elasticity and strength of the infill

materials and slight variation in the initial fit of the
infill. Therefore for design purposes, only a fairly simple
method seems to be justified. In order to develop such a
method, Mainstone (9) adopted the idea of representing the
infill by a pin-jointed equivalent diagonal strut, though he
believed that it can be justified theoretically only for
behaviour prior to cracking. He plotted the aforesaid test
results against Ah, Figs 2.16 to 2.19, and formulated,
empirically, the equivalent diagonal strut widths W’ eg,

Wet, and W ek for compressive failure, tensile failure and

stiffness of infilling wall respectively as follows:

For Ah<5: Concrete Brickwork

Ok= w'ek/w’ = 0.115(kh)=0.4 0.175(Ah)~0.4 (2.10,11) -

U= wot/w’ = 0.255(Ah)~0.4 0.170(Ah)~0.4 (2.12,13)
. 14

Oc= Ww'ec/w’ = 0.840(An)=0.88  0.560( h)~0.88 (5 14 15,



For 5<Ah<8:

0kx= w'ek/w’ = 0.110(Ah)-0.3 0.160(Ah)~0.3 (2.16,17)

ot= W et/w = 0.220(Ah)-0.3 0.150(Ah)~0.3 (2.18,19)

Oc= W ec/w = 0.780(Ah)-0.8 0.520 (Ah)~0.8 (2.20,21)
the

The scatter in results obtained, especially for ak
as shown in Fig 2.19, were due to variation of some other
affecting factors such as shrinkage and lack of fit. It is
worth mentioning that the equations given by Mainstone
in the later paper, are identical to these equations but
they have been presented in a different format.

For the above eguations, the infill/frame

stiffness parameter, Ah, is defined as:

4/ h4Eit31Sin20
Ah = (2.22)

4EcIch’

Considering Fig 2.1, the diagonal failure load of infill can

be calculated as follows:

Ri = we'tifji (for concrete infill)

Substituting for we’ gives:

Ri = ow tifi
From the geometry of the infill, Frig 2.1, w’ can be written
in terms of h'as follows:

w = 2h'cos6

or Ri = 20h’cosOtifj (2.23)



The horizontal component of Ri leads to:

Hi = 2ch’cos20tjifj

The peak value of the racking load, Hjy, is then written as:

Hiy = 20h’ cos20tifes’ (2.24)

where o takes the either value of o ©oOr «o¢ 1in order to

and
correspond the crackingVcompression failure loads,Hjut and

Hiuc respectively.
Diagonal deflection of the infill can also be

derived in terms of the infill diagonal load, Rji, as:

Rj
Ad = d
wek’'tiEj
h'Ri
Ad =

SinO wek’/tiEji

Substituting for h’ in terms of w’leads to:

w/Rji

Ad =
Sin20 wek ' tiEji
Substituting for Ri and Ad in terms of Hj and Ah using the

geometry of the infill, Fig2.1l, gives:

Hi

where Kji = aktiEisinZE)cosze (2.25)

Ah

Ki

Ki denotes the secant stiffness of the infill to either the

cracking load or to 90% of the compressive failure load.
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2.5.2 Analysis of Frame

Diagonal compression of the infill permits the
frame to deform diagonally and resists a portion of the

diagonal load, ie.

R = Ry + Rf

This relation for the horizontal loads is written as:

H = Hi + Hf

The stiffness of the composite structure becomes:

K = Ki + Kf where K¢ = Hf/Ah

Mainstone (9) concluded that "provided that the
peripheral joints between the infill and the frame are well
filled, the composite elastic stiffness of the infilled
frame will usually be that of the infill."™ He then
suggested to neglect the frame contribution irtmhgalculation
of the cracking load and stiffness. For the collapse load,
however, he suggested either to neglect the frame
contribution or allow for the full plastic strength of the
frame while assuming no infill exists. 1In order to
establish a consistent approach for the later references in
this study, the author decided to account for the elastic
contribution of the frame assuming that no infill exists.
and the strength of the frame may not exceed the plastic
collapse load of the bare frame. This modification is

described below.

Using the elastic approach suggested by
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Holmes(11l), Eq 2.1 to 2.4, the frame contribution to

diagonal load has been derived by the author as follows:

Hf = Ah/Kf (2.26)

where Kf, the frame stiffness is written as:

24EfIc
Kf =

h’3 [1+ (Ic/Ib) Cote]

Substituting for Ah from Eq 2.25 and replacing the
appropriate terms of stiffness by Ah in accord to Eq 2.22

the above relation can be arranged to give:

Hf = QHj (2.27)

where:
6 (h/h’)

Q =
ok (Ah) 4 [1+ (Ib/Ic) cotG] cos29

2.5.3 Comments

Fig 2.20 compares the Mainstone(g) empirical
equations and the theoretical method of Stafford Smith and
Carter (13), As seen the two methods generally follow the
same trend. However for length/height ratios greater than
unity, the predictions of the two methods for compressive
failure of the infilled frame are quite different.

Later Stafford Smith and Riddington(18) modified
the theoretical method of Stafford Smith and Carter(13) so
as, presumably, to make it closer to the experimental
results formulated by Mainstone(9). This is described in the

following section.
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2.6 Design Recommendations for Elastic Analysis of
Infilled Steel Frames

261  General
Riddington and Stafford Smith(17), further

developed the elastic analysis of infilled frames using the
finite element method. They allowed for frictional forces
and slippage between the infill and the frame as well as
multi-storey and multi-bay systems. No plasticity and non-
linearity due to the materials were allowed for in the
analysis. This work and the previous work of Stafford Smith
and Carter(13) and also the empirical equations of
Mainstone (9) were incorporated by Stafford Smith and
Riddington(18) to establish a method of analysis for
commonly used masonry infilled frames. This method is

described in detail in the following sections.

2.6.2 The Basis of the Method

A convenient procedure for the design of an

infilled frame building is to initially design the frame to
carry the vertical loads. The thickness of the wallswhich
are to serve as bracing infills are then decided on the
basis of acoustic or fire requirements whilst also having to
satisfy the minimum requirements for stability as given in
masonry codes of practice. The strength of the components
working together as an infilled frame would then be checked
against the estimated racking load and increased in size, if
necessary. Consideration of the analogous structure in Fig
2.9 leads intuitively to the proposal that axial forces in

the frame members and equivalent diagonal struts can be
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estimated by a static analysis of the equivalent pin-jointed
braced frame. The finite element analysis of infilled
frames provided convincing support to this approach as shown

in Table 1 of reference (18).

2.6.3 Infill Design

The development of a design method for a masonry

infill requires consideration of the three possible modes of
failure: by diagonal tension, by shear or by corner
compressive failure (see also section 2.4.6). The stresses
to cause these modes of failure are: Odt, Oy and Txy,
diagonal tension, normal and shear stress respectively at
the centre of the infill and Ode, diagonal compressive
stress caused by diagonal compression.

Stafford Smith and Riddington (18) found that the
state of the material in the central region of the infill
is linear-elastic. Therefore the stresses within this
region were addpted from their finite element analysis which

were approximated as follows:

Ty = 1.43 H / 1'¢t (2.28)
Odt = 0.58 H / 1't (2.29)
oy = (0.8 h’/1’ - 0.2)H / (1't) (2.30)

where Txy, Odt and Oy are horizontal shear, diagonal tension
and vertical compressive stresses respectively. Having
these stresses, the corresponding failure loads were

calculated as follows:



a)  Shear failure:

Shear failure is assumed to be initiated in the
infill along the joints at the centre of the infill. The
shear strength of masonry can be represented by friction

type equation of the form:

Txy’ = fgp + H,GY, (2.31)

in which fspand | are the shear bond strength and the
coefficient of friction respectively of the unit-mortar

interfaces. Combination of Egs 2.28, 2.30 and 2.31 gives:

1.43Hys/1't = fgp + 0.8(h"/1') = 0.2Hyg/l't

Hence:
fFspl’t
= (2.32)

Hysg =
1.43 - u(0.8 h’/1’-0.2)

where Hyg is shear failure load of the masonry infill. The
values fsp and QL may vary due to the type of mortar and

masonry unit.

b) Diagonal tension failure:

Tensile failure in a masonry infill initiates from
the centre of the infill as one or more diagonal cracks
extending along the loaded diagonal passing through mortar
joints and units. As there was little information available
on the diagonal tensile strength of masonry Stafford Smith
and Riddington(ls) estimated this value equal to the tensile
strength of mortar. This was approximated as one-tenth of

the mortar compressive strength i.e:

cdt’ = 0.1fp (2.33)
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Combination of Egs 2.33 and 2.29 results in:

Hut = 0.172 £ 1t (2.34)

Eq 2.34 estimates the diagonal cracking load, Hyt, for

masonry infill.

¢)  Compressive failure of the infill corners:

Stafford Smith and Riddington (18) found that
unlike the stress within the central region of the infill,
the compressive stresses occurred in the loaded corners were
extremely sensitive to the Ah value which was simplified for

design purposes as follows:

4 Eitih’3
Ah = (2.35)

4EcIc

It should be noted that, in the above equation the term
Sin20 is omitted and the difference between h’ and h is
ignored as compared to Eq 2.7.

Since compressive failure occurs, presumably, in a
plastic manner and the results obtained from the linear-
elastic finite element analysis(17) were not sufficiently
accurate, Stafford Smith and Riddington(18) adopted the
empirical equation of Mainstone (9), Egs 2.15, to derive the
horizontal compressive collapse load, Hye, as follows:

w’/ and w’ec may be substituted in Eq 2.15 as:

w’ = 2h’/Cosb
W ec = Ruc/fprt

to give:
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(Ruc/fprt)

= 0.56(\h)~0.88
(2h’CosH )

The horizontal compressive failure load, Hye, can be related

to Ryg as:

Hye = Ruccose
Substituting for Ryc leads to:

Hyc = 1_12(7\_11)—0.88h’tfprc0526 (2.36a)

This equation for concrete becomes:

Hyc = 1.68(X\h) -0.88h'tfc'00329 (2.36b)

N

2.6.4 Design of Frame

a)  Axial forces in frame members:

The axial forces due to vertical loads should be
calculated on the basis of the tributary areas. The axial
forces in the members due to horizontal loading can be
estimated by a simple static analysis of an equivalent frame
with the columns pin-jointed at each storey level, the beams
pin-jointed at their ends and the infills considered as

diagonal pin-jointed bracing struts.

b)  Bending moments and shear forces in frame members:

Frame members must be also able to withstand

beriding moments and shear forces induced as a result of

inéxactness of the assumption of the infill acting as a pin-

jointed diagonal bracing. In reality the infill bears

., SHEFFIELD
L= UNIVERSITY
LIBRARY



against the beam and column members over part of their
lengths. The finite element analysis(17) showed that the
bending moment in the frame members are not likely to exceed
5% the total horizontal force, H, times the height of the
columns, h’. Therefore the columns must be able to resist a
bending moment of Hh’/20 and a shear force equal to H.

The beams must also be designed for bending
moments and shear forces in addition to the axial forces
calculated as above. If an upper beam of an infilled panel
is not restrained by an infill above, it should be designed
to withstand a mid-span hogging moment of Hh’/20 in
combination with the moment due to vertical dead loads. The
beam and its connections must be able to carry an upwards
shear force of Hh’ /1’ in combination with the shear force
due to vertical dead loads.

Where the beam below an infill is not restrained
by an infill below, the beam must be able to withstand a
mid-span sagging moment of Hh’/20 in addition to the moment
due to dead and live loads. The beam and its connections
must be able to carry a downwards shear force of Hh’/l’ in

addition to the shear force due to dead and live loads.

¢)  Deflection of frame:

A crude but conservative, ie. excessive estimate
of horizontal deflection of infilled frame, can be made by
tré'ating the frame as pin-jointed and each infill as a
diagonal pin-jointed bracing strut with a cross-sectional
area equal to one-tenth of its diagonal length times its

thickness and an elastic modulus of 7x103 N/mmz.
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2.6.5 Comparison

Fig 2.20 compares the calculated loads using the
design method of Stafford Smith and Riddington(18) and those
of the empirical equations of Mainstone(9). The results of
the compressive failure load, Rut, were obviously coincident
since, the new method(18) uses the empirical equations(9).

The infill tensile cracking strength, Rut,
obtained from the design recommendations is rather unsafe
for rectangular infills, Fig 2.20(b). A Detailed comparison

is made in Chapter 7.

0.8 0.8
\\ H Y hl\_:i
0-6 i \ N I' 0'6 \ v l,
\ \ M= p ~\ I'= 2n
S o4 f\ 0.4 \ *\‘\\“‘-'*"L
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N \ \\ \-\Y“C
ol t\\ \-\-..\_..___l \f
R R o 5 i e o2 L]
[ ]
0 0
0 4 8 12 16 o 4 8 12 16
An Ah
(a) (b)
Mainstone (9)
—————— — Stafford Smith and Carter (13)
~—t—nem.—.—  Stafford Smith and Riddington (18)

°© Actual tensile strength(29)
® Actual compressive strength(29)

Figure 2.20 Comparison of Various Methods of Analysis Based
on Ah; (a)square infill, (b) non-square infill.
Note: T = Tensile strength C = Compressive strength
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2.7 Theories Based on Frame/Infill Strength Parameter
2.7.1 General

The theoretical investigations on the behaviour of

infilled frames, up to 1978, were based generally on
elasticity theories. However as discussed in Section
2.6.3(c) these theories fail to establish a rational
criteria for compressive failure of the infill. Because
such failure occurs gradually and is associated with
distinct modes of distortion of the frame, it indicates the
existence of particular mechanisms by which plastic like
collapse occurs. This was well understood by Wood(20) who
published his paper titled "Plasticity, Composite Action and
Collapse Design of Reinforced Shear Wall Panels in Frames"
and opened a new chapter in the analysis and understanding
of the behaviour of infilled frames. He identified four
possible modes of collapse as illustrated in Fig 2.21 and
developed a rational plastic analysis based on a
frame/infill strength parameter utilizing Nielsen(21) square
yield criterion within yielding zones.

Later, in 1981, an alternative treatment of the
plastic analysis was given by May(22) . He used the same
principles as Wood except he used the yield line method of
analysis in plasticity theories. The results were identical
to those of Wood. This method was also capable of
predicting the collapse loads and modes of infills with

openings.
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2.1.2 Wood Classification for Collapse of Infilled Frame

Wood (20) studied a large number of tests carried
out at the Building Research Establishment by various
investigators. The majority of the tests involved masonry
panels. Four distinct types of plastic collapse modes were

identified as follows:

a)  Shear mode "S"

Fig 2.21(a) shows the collapse mode of
a very strong frame and a weak wall where plastic hinges
formed at the joints of the frame. The beams and the
columns remained straight producing a pure shear strain in

the wall. This referred to as the shear mode "S".

b)  Shear rotation mode "SR"

Fig 2.21(b) shows the collapse mode of a
relatively stronger wall where a plastic hinge appeared in
each beam at the intersection of the discontinuity lines
which clearly separate apparently unstrained rigid corner
regions (top left and bottom right) from a central shear
region where massive distortion has taken place. The
unstrained corners merely undergo a rigid body rotation, and

therefore, this mode is called the shear rotation mode "SR".

¢)  Diagonal compression mode "DC"

The stronger is the wall relative to the frame,
the.. greater is the distance between the unstrained corner
and the plastic hinge in the beam. With a very strong wall,

or weak frame, the hinge appears nearer the opposite corner
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and a similar plastic hinge appears in the columns as shown
in Fig 2.21(c). This indicates a heavily stressed wall

diagonal in compression. This mode is called the diagonal

compression "DC".

d)  Corner crushing mode "CC"

The special case when only the corner is crushed,
Fig 2.21(d), (instead of a complete diagonal band) is called

the corner crushing mode "CC".
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Figure 2.21 1Idealized Plastic Failure Modes for Infilled

Frames (after Wood(20)); (a) shear mode ’S’
(b) shear rotation mode ’SR’, (c) diagonal
compression mode 'DC’ and (d) corner crushing
mode ’CC’
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2.7.3 Wood’s Plastic Analysis of Infilled Frames

Wood (20) stated that "the elastic analysis of

Stafford Smith can 6nly predict the starting width of an
idealized compressive diagonal band. This is a crude
approach to an equivalent plastic diagonal. No parameter
from the theory of elasticity can predict changes of

collapse modes". Wood concluded that "ideally, with many
more test results, collapse modes should be plotted in terms
of both plasticity and elasticity, as has already done for
frame instability in tall buildings (e.g. the Merchant-
Rankine (7) formula) with plasticity predominating. Meanwhile
the Stafford Smith approach is useful for designers for
predicting other limit states, such as cracking and working
deflections, at working conditions."™ For collapse analysis,
however, Wood proposed an analysis using the standard

perfect plasticity theories as described below.
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Figure 2,22 perspective View of Nielsen’s (21) Square Yield
Criterion for Unreinforced Wall (after Wood(zo))
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Combining Nielsen(21) idealized plastic yield
criterion, Fig 2.22, for membranes which either are crushed
at a constant yield stress or cracked at zero (ie. constant)
tensile stress, with standard plastic theory for frameworks,
modes S, SR and DC were predicted in proper order of

decreasing relative frame/infill strength ratio, m, as

shown below:

Mode Range of m Stress Distribution

S 1.0 <m Fig 2.23

SR 0.25 < m<«< 1 Fig 2.24 (2.37)
Cc,DC 0 <m< 0.25 Fig 2.25

where the equilibrium of stress fields are shown in

Fig 2.23 to 2.25 and m is defined as:

m = 8Mp/(0ctl’?2) (2.38)

Mp is the minimum plastic . moment of the frame

members. The horizontal collapse load is given as:

Hy = £[4Mp/n’ + 0.50ct1’] (2.39)
where: £f=1 (for S mode)
and f=£fg + Af (for modes SR, CD, CC) (2.40)
where:
2
fg = (2.41)

e

and Af is a correction to £ accounting for the effects of
stronger beams or columns and rectangular panels. Af is
plotted in Fig 2.26 in terms of m for selected ratios of 1/h

and U where U=Mph/Mpe and Mpp and Mpc are the plastic
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resistance moments of beams and columns respectively. ©¢ in
Eq 2.38 and 2.39 is the effective yield strength of infill

material and it is given as:

C¢ = Ypfc’ (for concrete infill) (2.42)

C6c = Ypfpr (for masonry infill) (2.43)

where £’ and fpr are standard uniaxial cylinder crushing
strength of concrete and prism strength of masonry infilling
walls respectively. Yp is proposed as a penalty factor
so as to lower the strength of the infill in order to cater
for the discrepancy between the theoretical predictions and
experimental results. Figs 2.27 plots the values of Yp in
terms of the nominal values of mandmn, for masonry and micro-

concrete infills respectively. The values of mp can simply

be calculated as follows:

my = 8Mp/ (£’ ctl’2) (for concrete) (2.44)
mp = 8Mp/ (fprtl’2) (for masonry) (2.45)
i.e, assume the wall is made of a perfect plastic

material and the proposed yield criterion is exact.

The ranges of the nominal value of the strength
parameter, mp, for S, SR, DC and CC modes can be calculated
by combining the corresponding Yp curves to the ranges of m
values given in Eq 2.37. These are shown in Fig 2.27 and

are also summarized below.

S 0.23 < mnp
SR 0.075 < mp < 0.23 (2.46)
DC,CC 0 < mp < 0.075
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Figure 2.23 1Infilled Frame Shear Mode of Collapse, Mode
"S’; Distortion Mechanism and Lower Bound
Stress Field (after Wood(20))

~Rigid region
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Figure 2.24 1Infilled Frame Shear Rotation Mode of
Collapse, Mode ’'SR’; Distortion Mechanism and

Lower Bound Stress Field (after wood (20))
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[‘7

Figure 2.25 1Infilled Frame Diagonal Compression Mode of
Collapse, Mode ’'DC’; Distortion Mechanism and
Lower Bound Stress Field (after Wood (20))

"
09 1-0

J=Mpp 7 Mpg

If g2 | (strong beams), use chart direct
It u<| (weak beams) and |/h=1, use p values in brackecs
If u< | (weak beams) and |/h=15 or 2:0, use p= ) curve for all values of »

Figure 2.26 Design Chart for Determination of Optional
Correction to fg (after Wood(20))
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(after Wood(zo))

Note: the correction due to Sims’ discussion(23) has been
included.



2.74 Axial and Shear Forces in Frame Members

The plastic moments are altered by both axial and
shear forces. For a simplified design, Wood (20) suggested
that the axial forces in frame members may be calculated by
assuming that infills act as bracing members, or diagonal
strut. Shear forces in the frame members may approximately
be calculated giving one half the diagonal force to beams
and the other half to the columns.

Reinforced concrete frames are sensitive to high
hydrostatic pressure from the wall (Figs 2.23 to 2.25) which
may induce failure in the frame, particularly if there is
tension in columns on the windward side. Wood(20) has shown
Yp as low as 0.05 for some tests subjected to tension and
shear in windward column. He commented that this was
obvious and makes it necessary for special safeguards for
combined tension, shear and bending to be devised so that
designers using reinforced concrete frames can avoid ruining

composite action.

2.7.5 Analysis of Multi-bay and Multi-Storey Frames

If all adjoining bays and storeys are occupied by
walls, this tends to enforce a pure shear failure (Mode S).
However it is necessary to divide Mp between the two panels,
sharing the element (beam or column) under consideration, to
avoid including Mp twice in summing individual panel
strength. If there are no walls above and below, the
available plastic moment resisting of the beam equals the
actual plastic moment resisting of the beam in question

minus the required plastic moment for floor loads.
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The columns completely free of wall panels are to
be designed by any acceptable no-sway design method. Columns
involved in shear panel design, must be relatively free of
buckling effects. It is suggested(20) that P/Pguler should

not exceed 0.5 with rigid joints or 0.25 with pinned joints.

2.1.6 Discussion of Wood Method

Wood’s plastic method was discussed by Mainstone,

Stafford Smith and Sims(23), A summary of the major points
of this discussion is given below.

Mainstone referred to the enforced shear mode
tests (with weak frame joints) carried out in British
Research Station. In these tests, infill strain was far
from uniform, both when the panel reached its peak strength
and subsequently. Therefore he suggested that the shear
mode S to be regarded as an ideal limit rather than as a
real material mode.

Sims felt that the role of Yp is more complex than
just being a penalty for the use of idealized plasticity
theory for a material showing limited plasticity. 1In
deriving it from test results, it must also contain effects
from other parameters not considered in the basic theory,
e.g. the effect of elastic deformations and the use of an
idealized yield criterion.

Admitting the Sims’ view(23), Wood himself stated
thdt "The next important advance must come from finite
elgment or similar analysis allowing for elastoplasticity of-
infilling wall with restricted plastic strain. Outstanding

research now lies in determining an extra theory to deal
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with plastic strain limitation -better than just Yp~ as Mr
Sims suggested."

Table 2.1 evaluates the design example of Wood (20)
using the methods proposed by various authors for the
purpose of comparison of only their prediction of the
compression collapse load. This comparison showed that the
plastic methods enforce much greater frame bending moments.

Detailed comparison is made in Capter 7.

Table 2.1 Comparison of Compressive Strength and
Frame’s Moments. (after Wood (20))

Author Horizontal load Column Moment
KN KNm

Stafford Smith 466 0
and Carter(13)
Mainstone (9) 285 29
Stafford Smith 285 36.4
Riddington (18)
Wood (20) 383 142 Mode SR
Liauw et al(26)x 240 142 Mode 3

* Added by the author, see aiso»Section 2.8

2.1.7 Plastic Analysis of Infilled Frames with
Application of the Yield Line Method

May(22) introduced a new type of yield line,

termed "Rotational Yield Line" permitting linearly variable
compressive and tensile plastic deformations normal to the
yield line. He used this type of yield line to model the
regional crushing and cracking normally observed in test.

This method was used to reanalyse all the modes previously
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examined by Wood(20) and was shown to give identical results.

As discussed in Section 2.7.6, May’s work showed
that although the infill strain is far from uniform, the
shear mode S should be regarded as a real mode and not just
as an ideal limit as Mainstone (23) suggested.

The yield line method was also used for design of
square panels withacentrally placed square opening. It was
concluded (22) that the method can also be used for
rectangular panels withanopening located anywhere within the
panel.

Ma(96) adapted bi-linear models for both the steel
frame and concrete infill using, thus, a perfect- plastic
material model implemented into the finite element analysis,
mainly for the purpose of examining the results of the yield
line method proposed by May(22). His analyses and

experiments led him to suggest an empirical Yp value

relating to only the aspect ratio of the wall, Fig 2.28.

0-2 .\\\
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Figure 2.28 variation of Yp against aspect ratio of panel.
(after Mal(96))
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2.8 Liauw et al Plastic Method
2.8.1 Finite Element Analyses

. As discussed in Section 2.7.6, the plastic method
of analysis of Wood(20) is highly dependent on the penalty
factor, Yp, which varies considerably in terms of the
frame/infill strength ratio parameter, m. Yet yp is an
empirical factor. 1In order to refine Yp, Wood(23)suggested
a Finite Element or similar analysis should be utilized.
Such numerical analysis should allow for elastic-plastic
stress-strain characteristic of both the frame and the
infill materials.

Liauw et al(24), 1982, developed a F.E. analysis
for infilled frames. To the knowledge of the author, this
was the first attempt at development of a non-linear finite
element analysis for infilled frames with allowance for
limited plasticity of the infilling wall. Joint slip and
separation criterion for the interface between the frame and
infill and also crack modeling were also incorporated into
the analysis. The biaxial behaviour of the infill was,
however, simplified as forthSniaxial case, i.e, a square
yield criterion was adopted. The analysis example was a
four-storey steel frame with micro-concrete infilling walls
as shown in Fig 2.29(a). The results otEh;.E analysis were
compared to the experimental values and showed fairly good
agreement, Fig 2.29(b). The numerical analysis gave fairly

detailed information about frame forces and infill stresses

both before and after crushing of the infill, Fig 2.30.
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Basing on the above F.E. analysis results(24),

Liauw et al(23) pointed out that:

"the penalty factor Yp in WoodSplastic method of analysis
(described in Section 2.7.3) might not be due as much to
the lack of plasticity of the infilling wall, but as a
consequence of the excessive friction assumed at the
frame infill interfaces and the negligence of separation
in the composite shear mode (mode S in Wood failure mode

classification) ."

From the work of Liauw et al(25), it may be
concluded that frame-infill separation occurs at early
stages of loading, even though it might not be visible, or
even might not be measurable in the experiment. Frictional
force, at beam-infill interface was reported as small as 12%
of the racking load initially but rapidly increased to 33%
during and after crushing of the infill, Fig 2.30(c). This
additional information allowed Liauw et al(23) to establish
a new plastic method for design of infilled frames as

outlined in the following section.

2.8.2 Collapse Modes and Loads

When a single-storey infilled frame is subjected

to racking load, the mode of failure depends on the panel
proportions and the relative strengths of the columns, beams
and the infill. With relatively weak column and strong
infill, failure occurs in the columns with subsequent

crushing of the infill in the loaded corners. The most
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compressive principal stress is directed almost normal to
the column. Therefore, the small shear and normal forces at
the beam interface may be neglected and regarded as strength
reserve. This is referred to as "the corner crushing mode
with failure in columns" (mode 1). Fig 2.31 shows the
results of F.E analysis and the proposed collapse mechanism
of mode 1. With relatively weak beams and strong infill,
failure occurs in the beams with subsequent crushing of the
infill in the loaded corners. The \argestcompressive stress
is directed almost normal to the beam. Therefore, the small
shear and normal forces at the column interface may be
neglected and regarded as strength reserve. This mode of
failure is termed "corner crushing mode with failure in
beams" (mode 2). Fig 2.32 shows the results of F.E analysis
and the proposed collapse mechanism of mode 2. With
relatively strong frame and weak infill, failure occurs in
the infill by crushing in the loaded corners with
subsequent failure in the joints of the frame at the loaded
corners. The most compressive principal stress is assumed
to be directed normal either to the columns or beams
depending on whether the height of the panel is smaller or
bigger than its length respectively. Therefore, shear and
normal forces of the contact length of the other two sides
of the panel may be neglected. This mode of failure is
termed "diagonal crushing mode" (mode 3). Fig 2.33 shows
the results of F.E analysis and the proposed collapse

mechanism of mode 3.
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Figure 2.32
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Examination of upper and lower bound solutions
(carried out by Liauw et al(25,33)) and minimization of the
horizontal collapse racking load,Hy, led to the following

relations:

Hy = mOcth’

m is the minimum of the following values:

1/2
For mode 1: m] = mjg =[2 (ij+Mpc)/(ccth’2)] (2.48)

2 172
For mode 2: m2 = mjp/tand = [2 (Mpj+Mpb) / (tanbocth’ 2)] (2.49)

For mode 3: m3 = m32+k/6 = 4Mpj/(Octh’2)+k/6 (2.50)

where k is given as:

For h' /1'<1: k = (2/3)B - (1/2)p2 (2.51)

For h'/1'>1: k

[(2/3)[5 - (1/2)B2]Cot29 (2.52)

p may be taken as 1/3 so as to match with the experimental
results. The indexed m values are frame/infill strength

parameters. The indices denote the part of the frame under
consideration; b for beam, ¢ for column and j for joint. og¢
is the compressive strength of the infill. Liauw et al (25)
did not specify whether f£o’ or feuy was meant by Oc, but it
may reasonably be taken as fg’ for concrete and fpr for

masonry.

2.8.3 Comparison With Experimental Results

The experimental results of Barua and
Mallick (26), Mallick and Severn(27), Mainstone(9) and Kadir

and Hendry (28) yere partly compared with the proposed method in
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Fig 2.34 showing a fairly good agreement. Examination of
the values of B ranging between 1/4 to 1/2 showed (25) that
p equal to 1/3 givés reasonably accurate and also on the
safe side results. Table 2.2 compares this method with all
the other available methods for predicting the collapse load

and column plastic moment of a masonry infilled frame.

2.84 Using the Liauw et al Plastic Method for Analysis
of Single-Bay Multi-Storey Infilled Frames

The collapse modes of multi-storey infilled frames
are basically the same as those of single-storey. However
many different combinations are possible; some typical
collapse modes are shown in Fig 2.35.

Liauw et al(23) proposed that the design of such structures
should be carried out storey by storey based on simple
design rules. They developed the standard energy approach

and derived the m values for the top storey as:

mj = mjc
m2 = mjb/tand (2.53)
m3 = mj2+(1/6)k

and for other storeys as:

ml = mg
m2 = mp/tand (2.54)
m3 = m32+(1/6)k

where:
mec = 4Mpc/ (Geth’2)
mp = 4Mpb/ (ceth’2) (2.55)

_66_



2.8.5 Discussion of Liauw et al Method

May, Ma, Wood and Sims(33) made a comprehensive

discussion on the Liauw et al(25) pethod mainly in the area
of upper and lower bound solutions of the proposed modes of
distortion. Correspondingly, Liauw et al gave additional
clarifications by carrying out both the upper and lower
bound solutions for all the proposed modes of distortion.
These solutions were identical for each mode. However, the
significance of the major approximations, due to ignorance
of the tangential forces on the contact surfaces and also
neglecting the normal stress acting on the minor side of the
loaded corners, deserve further verification especially for
infilled frames having a heigh¥length ratio different from

those studied by Liauw et al(25), Fig 2.29.
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Figure 2.34 Comparison of Liauw et al Estimated Loads (25)
with Experimental Results; (a)Barua et al(26),
(b)Mallick et alf(27) (after Liauw et al(25))
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2.9 Conclusion From The Literature Review

Attempts at developing a design method for
infilled frames have resulted in two distinct categories of
methods;

a) The methods based on the infill/frame stiffness
parameter, Ah, described in Sections 2.3 to 2.6 and
b) The methods based on the frame/infill strength
parameter, m, described in Sections 2.7 and 2.8.
The former methods assume the frame remains in an elastic
state up to the peak load. The latter methods, however, use
the plasticity theories, thus indicating that both the frame
and the infill experience plasticity before the peak load
hageigached when the frame undergoes a plastic collapse
mechanism upon which the peak load can be calculated.

The current investigation, thus, may be extended
to study the true behaviour of infilled frames. By an
experimental approach, one may not discover whether the
frame or infill experiences plasticity first. However,
previous experiments (20,29) have provectihgccurrence of the
frame plasticity only after the peak load.

On the other hand, the Finite Element method has
proved to be a powerful device in solving highly
indeterminate problems. Wood (23), discussing his plastic
method, stated that "The next important advance must come
from Finite Element analysis, allowing for elastoplasticity
of infilling wall with restricted plastic strain.™ Such a

Finite Element analysis should simulate the infilled frame

behaviour as truly and as accurately as possible.
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Table 2.2 lists the features, which will enhance
he analysis, if they can be incorporated with a finite
lement analysis.
able 2.2 also lists those features (marked by x) that have
een included in some previously developed Finite Element
nalysis programs, written particularly for infilled frame
tructures.

The main objective of this study is, thus, to
evelop a Finite Element analysis program, enhanced by as
any as possible of the desired features listed in
able 2.2. Such a program may then be used to examine the
egree of accuracy of the existing methods. Also, it is
esirable to examine the significance of the effect of those
arameters and variables that are not included in these
ethods. The next step, then, would be the inclusion of the
ariables and parameters, which have proven to have
ignificant effects on the behaviour of infilled frames.

Having developed such a program, it is possible to
arry out a parametric study and to examine the effects of
he variables on the overall behaviour of infilled frames.
uch variables include material properties, dimension of the
rame or infill, vertical loading, lack of fit,
recompression, order of application of loads, position and
ize of any opening, other frame combinations such as multi-
‘torey and multi-bay panels and degree of réstraint of frame
onnections (rigid, semi-rigid, hinge). Such a parametric
itudy could provide a set of data for development of a code

f practice for design of infilled frames.
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The criteria for design of infilled frame
structures can be established with respect to the following
requirements:

i) Limit states of serviceability such as: deflection,
cracking, separation, slip (if desired to be prevented
or limited for structures of particular purpose), and
spalling of the infill material at the loaded corners,
should it happen well before the peak load has reached.

ii) Limit state of collapse; permitting an acceptable

range of plastic strain for the material in question.
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Table 2.2 Summary of The Effects That Are Desirable to be
Accounted for in a Finite Element Computer
Program for Analysis of Infilled Frames.

EFFECTS

ACCOUNTED FOR IN:

(REFERENCES)
17 24 34 35 %% P

IN THE MATERTIAL MODELING
Non-linearity of materials

Strain softening of infill material
Loading-unloading characteristics
Variation of the Poisson’s ratio
Biaxial failure criterion

Crack modeling, opening and closing
The behaviour of interlocked cracks
Occurrence of secondary cracks

Biaxial failure criteria for masonry

IN THE INTERFACE MODELING
Lack of fit

Bond resistance

Friction-slip characteristics

Separation and recontacting

IN THE FINITE ELEMENTS
Axial deformation of frame members
Shear deformation of frame members

Masonry bound in the subdivision mesh

Weight of the structure

THE

Post-peak-load behaviour

X X X
X X
X X
X
X X
X X X
X
X
X
X X X
X X X
X X X X X KX
X X X X X
X X X
X X X
X X
X
X X

P= The proposed finite element computer program, NEPAL
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. CHAPTER THREE

The Finite Element Technique

31 General

The review of previous work on the behaviour of
infilled frames led to selection of The finite element
technique for study of the non-linear behaviour of infilled
frames in this investigation.

The finite element method is described in
standard texts, eg. Zienkiewicz(36) ., 1In this chapter, only
the principles will briefly be described in order to
establish a notation for the later descriptions and
developments.

In order to simulate the actual behaviour of
infilled frames as close as possible, all the features
listed in Table 2.2 will be regarded as the minimum
requirements for the proposed finite element analysis

computer program.

32 Finite Element Concept

The finite element method is a technique used for
solving partial differential equations by discretizing these
equations in their space dimensions to give finite elements.
The regional matrix equations, written for nodal points of
elements, are summed resulting in global matrix equations.

In structural engineering applications of this
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method, the body of the structure is subdivided into
elements being linked together by nodes. The global matrix

equations take the form of:

{P} = [Kl{a} (3.1)

which relates the nodal forces vector, {P}, to the nodal
displacements vector, {a}, where [K] denotes the stiffness
matrix of the structure under consideration. 1In a linear
symmetric
elastic analysis [K] is a square matrix of constant terms
resulting from the geometry and the mechanical properties of
the materials of the structure. Egs 3.1 are, thus, a set of
linear simultaneous equations which can be solved directly.
When non-linearity of material is desired to be accounted
for, [K] becomes a function of current nodal displacements
causing the Eqs 3.1 to become non-linear. Such equations
cannot be solved directly. However, there are numerical
solutions to such equations as described in the following

section.

3.3 Newton Raphson Iteration

The most frequently used iteration schemes for the
solution of non-linear finite element equations are of the
Newton Raphson type (36) jillustrated in Fig 3.1. 1In this
method, equilibrium conditions, at completion of each load

increment, are satisfied by successive approximation of the

form:

{Ri(n)} = {Pi-qi(n)} = [Ki(n-1)1{Aai(n)} (3.2)
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in which [Ki(n-1)] denotes the tangent stiffness matrix of
the structure at completion of (n-1)th iteration. ({Aaj(n)}
is the nth correction to the current nodal displacements
vector and {Pi} signifies the total externally applied loads
vector at the load increment station i. {qi(n)} denotes the
nodal forces vector corresponding to the current stresses,
so called "equivalent nodal forces vector." ({Ri (n)} is
termed "The vector of unbalanced nodal forces." The nodal
displacement increment correction vector, {Aai(n)}, is used

to obtain the next displacement approximation;

Pi
iy
2 |
® |
]
o |
- i
|
3 . | .
YR F(1-1) | - Uaag,
| ke
: |
| aadiy |
Al | : %
| to
| l
. aj4 aj1y ai(z,_i?
83

' Displacement

Figure 3.1 Newton Raphson Iteration
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{ai(n)} = {ai(n-1)} + {Aai(n)} (3.3)

Iterations are repeated, Fig 3.1, until an appropriate

convergence criterion is satisfied. When such convergence
is achieved the external loads vector, {P}, is increased to
a higher level. The procedure is continued until a desired
load level is reached or complete failure of the structure

takes place.

34 Finite Element Formulation
34.1 General

Non-linear finite element analysis reduces to

solution of linear tangential displacement equations, Egs
3.2, involving the tangent stiffness matrix of the

structure, [K]. [K] is a matrix of currently constant terms
which are computed by assembling the terms of the elements’
tangent stiffness matrices, [K]®. The technique of
assembling is widely described in standard finite element
texts (36, 37), An element tangent stiffness matrix, [K]®,
relates the element unbalanced nodal forces vector, {AF}, to

the element nodal displacements vector, {Aa}®, as follows:

{AF} = [K]€{Aa}® (3.4)

The overall equivalent nodal forces vector, {q},
also results from assembling the elements equivalent nodal
forces, {q}®. Derivation of [K]® and {q}® are given in
standard texts of finite element (36, 37) but it is

convenient to review the principles in order to establish a

notation for later descriptions. For the sake of
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simplicity, in the following subsections, the superscript
‘e’ is omitted, and all the stiffness values are meant to be

tangential unless otherwise specified.

.3.4.2 Element Displacement Functions

Displacement components, u and v, of an arbitrary
point within the area of an element may linearly be related
to the element nodal displacements. For a two dimensional

n-node element, such relationships may be expressed as

follows:

u = Zn(NuxiXi+Nuini)
i=1

n
v = Z(viixi"‘vaiYi)
i=1

Where Nuyxi etc. are a set of independent functions of the
co-ordinates of the point under consideration, so called the
element shape functions, and, Xj and ¥Yj are displacement
components of node i. The element displacement functions

may be written in matrix form as follows:

u Nuxl Nuyl .. Nuxn Nuyn ..
.o (3.5a)
v Nyxl Nyyl .. Nyxn Nyyn .

Orz {e} = [Nl{a} - -

¢

where e denotes the element displacement vector. For

incremental values, the above relation becomes:
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{Ae} = [N]{Aa} (3.5b)
If, for all .the values of i, Nuxi=Nyyi and
Nuyi=Nyxi=0, [N] reduces to:

N1 O N2 O .o N O
[N] =
0 N1 O N2 .. O Nn

This form of displacement shape function matrix is common

with all quadrilateral isoparametric CQ elements (36)

343 Element Strain Functions

Components of strains vector at an arbitrary point

within a plane structure, are given(38) gag:

{e} = {ex= du/dx, ey= Iv/py, Yxy= du/dy+dv/dx }T

where u(x,y) and v(x,y) are displacement functions of the

structure. The above relations can be written in matrix

form as:
(e | [270x o ]
u
€y |= 0 a/DY
v
L’ny_. _D/JY d/dx ]
or: {e} = [L){e} (3.6)

Substituting for {e} from Egs 3.5, Egs 3.6 become:
{e} = [L][N]{a}

Define:

[B] [L] [N] (3.7)
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hence:
{e} = [B]{a} (3.8a)

For incremental changés of nodal displacements, the above

relation becomes:

{Ae} = [B]{Aa} (3.8b)

The [B] matrix is called "The element strain-displacement
matrix" which is independent of the properties of the

material.

344 Stress-strain Relation

In a non-linear elastoplastic material, for small
variation of stress or strain components, the material is
assumed to be linear elastic and the incremental stress-
strain relation is expressed by the well known elasticity

equations. These equations can be written in their matrix

form as follows:

{Ac} = [Dt]{Ae} (3.9)

where the tangent elasticity matrix, [Dt], is a matrix of
constant terms corresponding to the current tangent
mechanical properties of the material. The determination of
the tangent elasticity matrix is discussed, in Chapter 4.
For a plane stress isotropic continuous material, the

elasticity matrix follows ’Hookeslaw and is given as:

1 v* 0
Et
[Dt] = —— v* 1 0 (3.10)
(1-v™)
0 0 (1-v*)/2




where Et and v* are the tangent values of modulus of

elasticity and Poisson’s ratio of the material respectiv)y.

3.4.5 Element Stiffness Matrix

Since changes in internal stresses and strains are
due to changes in element nodal forces and displacements,
one of the energy methods may be used to derive the
stiffness matrix of an element as shown below.
If the material behaviour is linear-elastic
between the two stations, the total internal strain energy

may be calculated as:

U= 1/2ﬁAe}T{c}W
v

Substituting for {o} from Egs 3.9, gives:

U= 1/2ﬁAe}T[Dt] {Ae}av

v

Substituting for {Ae} from Eqs 3.8b, leads to:

U = (1/2) {Aa}T [j[B]T[Dt] [B]dV] {Aa}

v

The work done by external nodal forces may also be

calculated as:

W = (1/2) {Aa}T{AF)}
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where AF denotes the changes in the nodal forces vector.
Equating the internal and external energy, U and W, AF can

be derived as follows:

{AF} = [ﬁB]T[Dt] [B] dV] {Aa}

v

Comparison of the above equation with Eq 3.4 leads to the

element tangent stiffness matrix as follows:

[K]e = f[B]T[Dt] [B]dV (3.11)

v

Note that the integration must be carried out over the

volume of the element.

3.4.6 Element Equivalent Nodal Forces

Using the same energy method as used in previous
section, the equivalent nodal forces vector, q, may be

derived in term of the stress vector as follows:

U=1/2 ﬁe}T{c}W

v

Substituting for {e} from Egs. (3.8a), gives:

U= (1/2){a}Tj[BJT{o}dv
v
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The work done by the nodal forces may be written as:

W= (1/2){a}T{q}e

Equating U and W and solving for {q}®, leads to:

{q}e = f[B]T{G}dV (3.12)
v
3.5 Local Normalized Coordinates

3.5.1 Definitions

Fig 3.2 shows mapping of a quadrilateral element
into normalized local coordinates, £ and M. The origin of
the normalized coordinates, 0(§=0, N=0), is located at the
intersection of bisectors of opposite sides of the
quadrilateral. Normalization of the local co-ordinates

requires that,

E2=-1, na=+1
E3=+1, n3=+1

E4=+1, n4=-1

It is convenient to convert Egs 3.11 and 3.12 into
local normalized coordinates because,
a) The element shape functions are normally worked out in
terms of local normalized coordinates in order to be
‘ independent of geometry and location of the element.

b) Local normalized coordinates allow the integrations of
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Eqs 3.11 and 3.12 to be carried out numerically using

Gaussian quadrature over quadrilateral regions(36)

n

2 1 3

1 [} “

(2) (e)

Figure 3.2 Geometry of a Quadrilateral Element;
(a) in global co-ordinates and (b) mapped into
normalized co-ordinates

352 Evaluation of the Integrals in Terms of Local

Normalized Coordinates

Expressions 3.11 and 3.12 involve matrix [B] which
depends on dNi/dx and JONi/)y. These derivatives can be

derived by the chain rule of partial differentiation as

follows:
ONi/Jdx -1 [9Ni’ /)8
=[J] (3.13)
oNi/py INi’ /M

or: [DERIV] = [J]~1 [DER]
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where Ni’ is the displacement shape function of the ith node
of the element in terms of local normalized coordinates,
£ and M, and [J] is the Jacobian matrix expressed as:

Ix/&  y/d&

[(J] = (3.14)
dx/n  py/om

The terms of [J] matrix can be calculated only
when coordinates of any arbitrary point in global
coordinates are known in terms of the normalized
coordinates, ie. x = P(§,n) and y = Q(§,Mm). When the
element is isoparametric (i.e the shape functions defining

geometry and function are the same), x and y are given(36)

as follows:
n
x = N1’X1+N2’X2+ ... Np’Xn = ZNi'xi
i=1
n
y = N1’Y1+N2’Y2+ ... Np’'Yn = ZNi’Yi

i=1

where Xi and Yi are coordinates of the nodal points of the
element in global coordinates system. Substituting for x
and y into relation 3.14, the [J] matrix can be derived in
terms of & and N and the coordinates of nodal points of the
element as follows:

FX], Y1
ON1’/0E ... JNa’ /P& ]|.. ..

[J] = (3.15)
ON1’/om ... aNa’/Pmf{| .. ..

Or; [J] = [DER] [COORD]
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Even when the element is not isoparametric, the
Jacobian matrix can still be calculated using a new set of
shape functions, Ni", (specially used for this purpose)
being compatible with the geometry of the element.

The determinant of Jacobian matrix, [J], must also
be evaluated for transformation of the integrals involving

dxdy as follows (39):
+1 +1

£(,M)dv = t j ff(&,n) |7 |agan (3.16)
-1 -1

Where t denotes the thickness of the element and £(§,M)

signifies either functions of Egs 3.11 or Egs 3.12.

3.6 Numerical Integration
the
Calculation of element stiffness matrix, [K]®, and

equivalent nodal forces, {q}®, led to integrals of type:

+1 +1
I=t¢t ff(é,n)IJldﬁdn
-i -1

Analytical evaluation of such integral at this
form is impractical as far as applications of numerical
analysis is concerned. Therefore, in practice,
such integrals are evaluated pumerically using gaussian
quadrature over quadrilateral regions. The quadrature rules

are all of the form:

_85_



G=n

I=t ZHiij(éj,ni) |7 |33 (3.17)
G=1

Where t denotes the thickness of the element. Hj and Hy are
weights and &; and Mj are abscissa of the region under
consideration as shown in Fig 3.3. Values of weights and
abscissas of the quadrilateral regions, in the gaussian

quadrature rule, are available in standard finite element texts;

eq. Zienkiewicz (36) . Such integration is an approximation.
The exact solution may be obtained if the number of gaussian

points is optimal; one for parabolic, two for cubic and

three for quadratic functions (36,37) .
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Figure 3.3 Numerical Integration
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3.7 Contribution of Reinforcement to R.C Elements
371 General

It has beeﬁ customary to consider the two

constituents, concrete and steel reinforcement, as separate
contributors to the overall stiffness and strength using the
principle of superposition.

It is common to assume full kinematic continuity
between concrete and steel, at least at nodal points on
element boundaries. However, the two materials are highly
unequal in their behaviour; Young’s modulus for steel bar is
one order higher than that of concrete, and unlike that aqf
concrete, the stress-strain relation of steel is symmetric
in tension and compression. The limited reinfarcement-
concrete bond strength results in:

a) bond failure and sliding of reinforcing bars,
b) local deformation of reinforcement in cracked concrete
(doweling effect) and
c) tension stiffening effect of uncracked concrete
between cracks.
In order to reduce the errors due to such effects, wvarious
adjustments in properties of constituent materials have been
specified, Chen(3%9) . These are discussed in Chapter 4.
Having made such adjustments, reinforcement may
be modeled as:
a) two-node bar element or
b) anisotropic equivalent solid layer stuck on the
surface of the element where it is applicable or
¢) Single bar stuck on the surface of the element.

The choice of two-node bar element greatly increases the
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size of the global stiffness matrix. Therefore, the other
two models were adopted in this work.

Contribution of reinforcement is to be
superimposed to that of the concrete as described in the

following sections.

3.7.2 Uniformly Distributed Reinforcement

As shown in Fig 3.4(a, b), a uniformly distributed
reinforcement with rate of rg may be modeled by an
anisotropic steel layer with thickness of rgt and having
full strength and stiffness in direction of the
reinforcement and zero strength and stiffness normal to this
direction, where t is the thickness of the element.

The contribution of reinforcement of this type to
the element properties may be computed in exactly the same
way as described for the element itself. This contribution

may be superimposed directly. i.e:

I=Ic+ Is (3.18)

Where I denotes either integrals of Egs 3.11 and 3.12 and
subscripts ¢ and s specify concrete and steel materials
respectively.

In the particular case when reinforcement is
uniformly distributed, the second integration, Ig, can be
eliminated by including the mechanical properties of the

stéel layers into that of the concrete as follows:

7 [D]
{c}

[Dec]l + rs1[Ds1] + rg2[Ds2] + ... (3.19)

{oc} + rg1{os1} + rg2{os2} + ... (3.20)
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where [Dgi] denotes the stress-strain relation matrix for
ith layer of reinforcement. This will be studied in

Section 4.9.6.

373 A Single Bar Parallel to One of the Element I ocal
Coordinates

A single bar within an element is assumed to be
stuck on the surface of the element and follows the
displacement function of the element Fig 3.4 (c, d). The
contribution of such a bar can be computed by dividing it
into parts and integrating the contribution of these parts
numerically. When the reinforcing bar is extended parallel
to one of the local co-ordinates, say § as shown in
Fig 3.4(c), the numerical integration of its contribution

can be computed as follows:

Is = ) 2trsH3f(£3,Ms) |T1s3 (3.21)

The multiplier 2trg represents the integration of the rate
of reinforcement, trg, between Mm=-1 to N=+1.

By altering the corresponding indices in Eq 3.21,
Eq 3.22 can be written for a steel bar extended parallel to

N as follows:

Ig = ZZtrsHif(§5rT]i)|Jlis (3.22)

-
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Figure 3.4 Reinforcement Modelling;
(a)uniformly distributed horizontal reinforcement
(b)uniformly distributed vertical reinforcement,
(c)horizontal single reinforcement and
(d)vertical single reinforcement.
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38 Some Regquirements of the F.E Discretization

The finite element method requires that the
structure be discretized into finite elements. "The choice
of elements depends on the particular application and the
loading characteristics. 1In plane problems, isoparametic
elements have proven to be the most versatile elements to
model different problems in engineering mechanics, because
the number of nodes and the order of integration are
adjustable," Meyer and Bath(40) . Fjg 3.5 summarizes the
most frequently used isoparametic elements in one
dimensional truss, 2-D plane and 3-D solid structures.
Displacement shape functions of these elements are available
in standard texts; eg. Zienkiewicz (36)

The isoparametric 4-node plane element,

Fig 3.5(b), has linear displacement shape functions of the

form:

Ni =(1/4) (14&Ei) (1+Mn3i) (3.23)

where Nj is the shape function of node i defined as the
displacement component u(§,n) or v(§,m) of an arbitrary
point within the element when node i is given a unit
displacement in eitheo; tgg—ordinate directions of & or m
respectively and &i and Mji denote the position co-ordinates
of node i; eqg, for i=1 €j=-1 and Mi=-1. As can be seen, Nj

is a linear function of the position co-ordinates of the

point under consideration. The value of Nj becomes unity
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when the point under consideration is located at node i and
becomes zero when the point is located at any other nodal
points. This is a necessary condition for a displacement
shape function(36), For any element configuration, the

sides of an isoparametic 4-node element remain straight.
However, in an 8-node element, Fig 3.5(c), the sides follow
a parabolic curve. Therefore, the shape functions of an
8-node plane element are to the second power of the position
coordinates of the point under consideration as presented

below.

i=1,3,5,7; Ni = (1/4) (1+&81) (1-nni) (E€i+nmi-1)
i=2,6; Ni=(1/2) (1+&E3) (1-n2) (3.24)

i=4,8; Ni=(1/2) (1+nni) (1-£2)

Isoparametric 12-node (cubic) element, Fig 3.5(d), has yet
more flexibility to follow the displacement variations.
Nowadays there is a tendency to use more elaborate elements
for the sake of economy and accuracy (36)

In non-linear finite element analyses of
structures, the displacement equations must be solved
several times, involving a considerable amount of
computation time. The computation time for equation solving
is approximately in proportion to N2W. Where N and W are the
total number of nodal displacement freedoms and the half-
band-width of the global stiffness matrix respectively.
Therefore, considerable care must be used in choosing the

type of elements and the way the structure is subdivided and the

- 92 -



nodes are numbered in order that the size of the global
stiffness matrix becomes as small as possible. The size of
the stiffness matrix may considerably be reduced by a coarse
subdivision of parabolic or even cubic elements. But the
choice of element is also structure dependent. Therefore,
the efficiency and compatibility of a selected element must
be examined for the structure in question. For this
purpose, the computer program "ELCO", which is the
linear and elastic version of program "NEPAL", was
used. Program "ELCO" is capable of solving linear problems
with almost any type of element including some new proposed
elements described in the following sections. Program
"NEPAL" will be discussed in Chapter 5.

Application of the finite element method in the

analysis of infilled frame structures requires specific

considerations in:

a)the finite element discretization of:
i) infilling wall,
ii) frame and
iii) wall/frame interfaces.

b)the mechanical modeling of the materials.

These are studied in the rest of this chapter and Chapter 4.
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gure 3.5 The Most Used Isoparametric Elements; (a)2-node
H 1-D, (b)4-node plane linear quadrilateral,

(c) 8-node plane (parabolic quadrilateral),

(d) 12-node plane (cubic quadrilateral),

(e) 8-node 3-D solid and (f) 20-node 3-D solid
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19 Masonry Wall Discretization
1.9.1 General

Masonry is made of mortar joints and masonry units

rith different mechanical properties. When masonry is
subjected to in-plane loading, some out-of-plane interactive
‘orces develop at interfaces of mortar joints and masonry
imits as a result of effects of the poisson’s ratio and
blasticity of the mortar joints. Therefore, the behaviour

)f masonry is three dimensional and elastoplastic.

19.2 Standard 3-D Elements

Standard finite element procedure suggests masonry

’e discretized into a set of 8-node and 6-node solid 3-D
slements as shown in FIG 3.6. Also a set of 3-D interface
slements with zero thickness must be included with the
subdivision in order that the mechanical behaviour of
anit/joint interfaces can be allowed for. This involves 72
nodal displacement freedoms per masonry unit. Such a high
number of displacement freedoms demands a very expensive
finite element analysis.

Therefore, the number of displacement freedoms
should somehow be reduced. The following sections discuss
some other choices with lesser number of displacement

freedoms.

o
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39.3 Newly Developed 3-D  Four-node Element

A symmetry plane is attributed to any plane
element having a uniform finite thickness. When a plane
element is perfectly plane and subjected to a set of out of
plane forces acting symmetrically about its symmetry plane,
the induced out-of-plane displacements are also symmetric
about the symmetry plane of the element. The symmetry plane
does not move in the third direction. Therefore, it may be
treated as a reference plane for all the out-of-plane
displacements occurring within the thickness of the element.

Taking advantage of such a reference plane, an
8-node solid element may be assigned only four nodes located
at the corners of the reference plane as shown in Fig 3.7.
The algorithm of such element is given in detail in Appendix
C.

The efficiency of the above element was examined
by elastic analysis of a plate under laterally symmetric
loading along the edges of the plate. The results showed
that the out of plane displacement extends, effectively,
only up to half of the thickness of the plate from its edge.
Therefore, the thicker the elements are (relative to their
area), the more accurately they simulate the actual out of
plane deformation of the structure.

Use of this element reduces the number of nodes
and consequently the number of displacement freedoms down to
36=.per masonry unit. Since, to the knowledge of the author,
a éonstitutive formulation for 3-D cracked material does not
exist, the newly developed element may be used for the

elements loaded only up to occurrence of the first crack.
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(2) : (b)

Figure 3.6 Masonry 3.D Finite Element Subdivision;
(a) masonry bonds (b) subdivision mesh

—Reference plane

. - —— ——"""/? ——7,2 /2

B ERK

-

Figure 3.7 3.D Equivalent 4-node Element
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394 Plane-Stress Equivalent Elements

A diagonally loaded masonry infilling wall usually
cracks well before its ultimate strength is reached. Since
a constitutive formulation for three dimensionally loaded
cracked materials does not exist, the problem has to be
reduced to two dimensions. In order to bring the problem
into 2-D space, same finite element subdivision as shown in
Fig 3.6 may be adopted provided that the mechanical
properties of the mortar joints and masonry units are
adjusted to allow for the effect of three- Dimensionality.
The problem, then, involves 24 displacement freedoms per
masonry unit, Fig 3.6.

The number of displacement freedoms can further be
decreased by combining either the mortar joint and interface
elements named "laminar joint elements" shown in Fig 3.8 or
combining the masonry units and the adjacent mortar joint
elements called "masonry equivalent elements" shown in

Fig 3.9. These are described in the following sections.

39.5 Plane-stress Equivalent Units and Laminar Joints

In order to further reduce the number of nodes,
The mechanical behaviour of the unit/mortar interfaces may
be included into the bed and head joints eliminating the
interface elements. By this device the joint elements
betome laminar, vide Zienkiewicz(38). Inclusion of laminar
beg and head joints, brings the number of displacement
fr;eedoms down to 12 per masonry unit, Fig 3.8.

The element shape functions matrix, [N], and the strain
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displacement matrix, [B], are not influenced by such
laminarity because these matrices are independent from the
material properties. However, the weakening effect of
laminarity must be included in the stress-strain

relationship of the joint material. The author’s effort led
to the conclusion that, should the joint material crack in
one or two directions and also slip or separate at the
discontinuity planes of the material, an explicit

constitutive formulation leading to a symmetric element
stiffness matrix cannot be achieved. Therefore, laminar

elements can only be used for uncracked materials.

’-

Figure 3.8 2-D Masonry finite element subdivision using
laminar joint element
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3.9.6 Plane-stress Masonry-Equivalent and Interface

Elements

As discussed in Section 3.9.4, the number of nodes
of a masonry subdivision mesh may further be reduced by
combining the masonry units and the adjacent mortar joint
elements called "masonry-equivalent element". This approach
reduces the number of displacement freedoms per masonry unit
down to 12. As shown in Fig 3.9, masonry is, therefore,
assumed to be made of a single material with mechanical
properties equivalent to those of masonry ignoring the
weakening effect of interfaces. Whereas these effects are
accounted for by the interface elements described in Section
3.10 and 3.11. The masonry equivalent material is discussed

in Sections F.3.2 to F.3.4.

——

Figure 3.9 2-D Masonry Finite Element Subdivision Using
Masonry-equivalent Elements and Zero Thickness
Interfaces
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3.9.7 Super Element of Masonry

The size of the stiffness matrix could, be further
reduced using a super.element of masonry, provided that such
an element can be developed. The idea is that, if the
mechanical properties of interface elements can be included
into the masonry-equivalent elements discussed in
Section 3.9.6, a super element of masonry is created. Such
an element must have a set of potential crack planes as
shown in Fig 3.10.

Development of a super element of masonry was
found to be rather complicated and was not pursued. It is
worth attempting sometime in the future because masonry
walls can then be subdivided into any type of isoparametric
element providing a considerable economy to the finite

element analysis of masonry structures.

3.9.8 Conclusions on the Choices of Masonry Elements

Comparison of the six choices discussed in

Sections 3.9.2 to 3.9.7 shows that, should a non-linear
elastoplastic analysis up to complete failure of masonry
beyond cracking and joint failure be carried out, the choice
of masonry-equivalent element surrounded by interface
elements with only 12 degrees of freedom per masonry unit
described in Section 3.9.6, appears to be a practical and
economical finite element representation of masonry walls.

This type of element and masonry subdivision has first been

used by Page (86) in 1987.
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Note: 2 more discontinuity angles exists; which are

Figure 3.10 The Modes of Joint Failure in a Masonry Super
(a) concrete block masonry,
(b) failure through bed joints and
(c,d,e,) failure through bed and head joints



3.10 Interface Discretization
3.10.1 General

The significance of the behaviour of the frame-

infill interface was discussed in section 2.2. The
mechanical properties of interfaces are described in
Chapter 4. 1In this section, only the geometry of the
interfaces is discussed.

The geometry of interfaces was first modeled by
Goodman (41) in 1968 for finite element analysis of rocks.
The Goodman’s interface element consists of a four-node
element having 8 degrees of freedom and zero thickness.
Since the stiffness matrix of this element resulted from a
direct algebraic integration rather than the standard
numerical summation, such an element can be considered to
have only one sampling point representing the whole length
of the interface held by the element.

An equivalent element but much simpler element
than that of Goodman, is the well known two-node linkage
element with four degrees of freedom used by Riddington (17)
and also by Liauw et al(24), Linkage elements have a
variety of applications in the finite element method; eg.
reinforcement-concrete bond problems, cracking and rock
joints. The stiffness matrix of a linkage element is given
in Section 3.10.2 as to provide a basic notation to the
suk?ject.

p In this study, however, the popular linkage

element was not satisfactory, as so many elements were

required to obtain a detailed stress distribution diagram
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over the length of contact between frame and the infill.
Instead, a new four-node element with eight degrees of
freedom was developed. Unlike the linkage and Goodman
interface elements, the proposed element uses the standard
numerical integration procedure and is capable of handling
as many sampling points as desired along the interface
element leading to accurate and detailed results with only a
small number of elements. The algorithm of this element is

given in Section 3.10.3.

3102  Algorithm of Linkage Element

The application of linkage element was briefly
pointed out in Section 3.10.1. Fig 3.11 illustrates the
geometry of this element. The vectors of nodal forces, {F},
nodal displacements, {a}, and relative displacements, {e},

are also shown in Fig 3.11 and are expressed in matrix form

as follows:
¥ ] i 1
Fx1 X1
Fyl Y1 s

{F} = ’ {a} = ’ {e} =

Fx2 X2 w
F
°Y2 Y2

The stiffness matrix of this element may be derived as

described below.

The external work done by the vector of the nodal

forces may be calculated as:

W= (1/2)s(Fx2-Fx1) + (1/2)w(Fy2-Fy1) (3.25)

The internal work done at the interface may be written as:
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U = (1/2)A(ts+0nw)

Substituting for T and Opn from Eq 4.172 gives:

U = (1/2)A(Kgs2+Kpw2) (3.26)

where, A, denotes the area of the interface held by the

linkage element and T and Op are the tangential and normal

N\ N

Section

Zero (Initially)

Figure 3.11 Modelling of an Interface by Linkage Elements
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stresses uniformly distributed over this area. Kg and Kp

are the tangential and normal stiffnesses of the interface
expressed as Newtons per cubic millimeter (N/mm3).

Substituting for the relative displacements, s and w, into

Eqs 3.25, and 3.26, where:

s = X2 - X1 and w=Y2 - Y1

and equating these equations, gives:

2
(X2-X1) (Fx2-Fx1) + (Y2-¥1) (Fy2-Fy1) = A[Rs(X2-X1) +Kn(Y2‘Y12)]

Equating the independent terms from the both sides of the

above equation leads to:
Fx2 - Fxl1 = RKg(X2-X1)

Fy2 - Fyl = AKp (Y2-Y]1)

Allowing the external forces to act independently, the above

equations result in:

Fx1 = A(+KgX1-KgX2)

Fy1 = A(+KnY1-KnY2)
Fx2 = A(-KgX1+KgX2)
Fyz = A(-KnY2+KnY2)

which can be written in their matrix form as:

Fx1 W Kg 0 -Kg 0 X1
Fy1l 0 Kn 0 -Kn Y1
Fx2 =R -Kg 0 Kg 0 X2
LFYZ | I 0 -Kn 0 Kn . -Y2




or: (F} = [K]®{a} (3.27)

where [K]® denotes the stiffness matrix of the linkage
element.

| Since this linkage element permits only a uniform
stress to develop over the area of the interface, a new
interface element was developed as described in the

following section.

3.10.3 Newly Developed Interface Element

The stress and strain gradients along the length
of contact between frame and the infill (especially within
the regions close to the loaded corners) are significant.
Therefore, a reasonably acceptable interface element should
permit, at least, linearly variable relative displacements
along the length of the element. Therefore a new interface
element was developed to satisfy such requirement as
described below.

Fig 3.12(a) shows a segment of a horizontal
interface. This segment may be represented by a four node
element and mapped into normalized co-ordinates with,
originally, zero thickness as shown in Fig 3.12(b). Define
8 and w as the relative transversal and normal displacements
of an arbitrary point along the interface. The proposed
sign convention for s and w is given in Fig 3.12(c).

The relative displacements, 8 and w, may be

related to the nodal displacements vector, {a}, as follows:

s = N1X1 + N2X2 + N3X3 + N4gX4

w = N1Y¥Y1 + N2Y2 + N3Y¥3 + N4gY4
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Figure 3.12 Modelling of an Interface Segment by the
Proposed 4-node Element; (a) actual geometry,

(b) geometry of the proposed element,
(c)sign convention
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or: 'xf
Y1
s N1 0 N2 0 N3 0 Ng O X2
Y2
X3
w 0 N1 0O N2 0O N3 0O Nja||¥3
X4
Y4

or: {e} = [N]{a} (3.28)

where N] to N4 denote the relative displacement shape
functions of node 1 to node 4 respectively, ie. Ni is the
relative interface displacement at any point along the
interface due to the nodal displacement of node i equals ta
unity. Since there are only two nodes on each side of the
element, a set of linear shape functions best suit the
relative displacements of the interface. Such shape

functions are proposed as:
N1 = -(1/2) (1-¢)

N2 = +(1/2) (1-§)

N3

+(1/2) (1+£)

Ng = -(1/2) (1+8)

or generally expressed as only one equation:

Ni = (1/2)ni (1+EE3) (3.29)

where €1 and Mj are the normalized co-ordinates of node i.

The external work done by the nodal forces vector,

{Ff, can be written as:

<
.

W= (1/2){a}T{F} (3.30)
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where:

{a}T = {x1, Y1, X2, Y2, X3, Y3, X4, ¥4}

and
(F})T = {Fx1,Fy1,Fx2,Fy2, Fx3,Fy3,Fx4,Fy4}

The internal work done over the area of the

interface can be written as:

U= (1/2)[{e}T{6}dA
A
or.:
1
U= (1/2)tﬁe}T{6}dx (3.31)
0

The stress vector, {0}, is related to the relative displace-

ments, Eq 4.172, as follows:

T Ks 0 S
On 0 Kn|lw

[Dl{e} (3.32)

{c}

or:

{c}

Substituting for {6} from Eq 3.32 into Eq 3.31 and
converting the integral into the normalized coordinates

leads to:

+1

U= (1/4)ltﬁe}T[D]{e}d§ (3.33)
-1

Substituting for {e} from Eq 3.28 and equating to Eg 3.30

gives:
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+1

(1/2){a}T{F} = (1/4){a}T[1t ﬁN]T[D] [N]dé]{a}

-1
or.
+1
{F} = [(1/2)1tﬁN1T[D1 [N]d&]{a}
-1
Defining:
{F} = [Kl®{a}
and solving for [K]® leads to:
+1
[K]® = (1/2)ltf[N]T[01 (N1g§ (3.34)
-1

where [K]® denotes the element stiffness matrix of the
proposed element. When small nodal displacements is
involved, [D] must be replaced by [Dt]. 1In the form of
numerical integration, the expression 3.34 becomes:
i=n )
[K]® = (1/2)1t Zﬂi[Ni]T[Di.] [Nji] (3.35)
i=1
where Hi signifies the weight of the ith sampling point.

Using the same energy approach the egquivalent

nodal forces, {q}®, can be derived as:

+1.

{q}® = tlf[N]T{o}dé

-1

and the numerical integration leads to:
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i=n
{q}e = (1/2)ltZHi[Ni]T{oi} (3.36)

i=1

It should be mentioned that if only one sampling point is
assigned to this element, it becomes identical to the
linkage element.

The proposed element permits as many Gaussian
integration points as required to be allocated within each
element. This feature allows partial slip and/or partial
separation within only one element. As will be shown in
Section 5.5.5, the proposed linear interface element
significantly enhances the simulation of the mechanical

behaviour of an interface.

3.11 Frame Discretization
3111 General

A frame can be subdivided into its components;

beams, columns, and connection blocks. These components are
normally subjected to bending moment, axial and shear

forces. In computer aided analyses mainly for design
purposes, frame members are normally replaced by

2-node bending elements with allowance for only their

bending flexibility(36) ., King et al(42) and Liauw et al (24)
used this standard beam element in their finite element
analyses of concrete infilled steel frames. For infilled
frame structures, however, such an element may not be
acceptable even if the effect of either or both the axial

and shear forces are included into the element algorithm for
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the following reasons:

a) By ignoring the thickness of the members and the
resulting corner blocks at the beam-column connections,
the geometry may be significantly different from that
of the actual structure and this may affect the frame-
infill interaction behaviour and,

b) Should the material become partially non-linear and/or
plastic somewhere in the beam element, a numerical
integration across the element cannot be carried out,
because the integration is done algebraically over the
depth of the element based on the assumptions of linear

elasticity.

Therefore a planar element with finite thickness is needed
so that the above requirements can be fulfilled.

An appropriate beam element may be sought within
the family of isoparametric quadrilateral elements shown in.
Fig 3.5(b, ¢, d). Riddington(1l7) used the 4-node linear
elements packed into two rows as shown in Table 3.1. It has-
been shown(36) that such a simple element cannot simulate
the curvature induced by bending, its deflection is 40% less
and its bending and shear stresses are approximately four
times greater than those resulting from beam theory(38),
Table 3.1. Riddington ignored these discrepancies, perhaps,
because he specifically concentrated on the axial
deformation of the frame members.

The efficiency and accuracy of the results would,
however, rapidly improve by using a more sophisticated

element within the family of isoparametric quadrilateral
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elements including some non-standard elements such as 6 and
10-node elements, whose shape functions can be derived with
ninor effort (36) . This was investigated by carrying out a
number of trial analyses with different elements. Table 3.1
compares the finite element analysis results of a cantilever
beam subdivided into variety of such elements with the
result obtained from the well known elasticity theory
described by Timoshenko et al(38) ., Notice that this theory
allows for the effects of shear deformation and the
Poisson’s ratio. Table 3.1 shows that 10-node element leads
to fairly accurate results with allowance made for parabolic
shear strain distribution across the beam. Its computation
time, however is approximately 6 times greater than that of
the 4-node element used by Riddington(17),

Attempts to develop an efficient beam element have

led to:

a) a 6-node non-conforming rectangular element developed
by Wilson et al(44) in 1973 and
b) the proposed 6-node element developed by the

Author.

These are discussed in sections 3.11.2 and 3.11.3

respectively.

3112  Non-Conforming Rectangular Element
: Wilson et al(44) introduced two additional
displacement shape functions to the linear quadrilateral
element, as illustrated in Fig 3.13(b, c¢). The new element

became a 6-node element with corner-node shape functions of:
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Ni = (1/4) (1+MMi) (1+4&E3) (3.37)

and two imaginary internal independent nodes with the

following shape functions.

N5

(1-£2) (3.38)

(1-12) (3.39)

Ng

Clearly, the deformations between the adjacent
elements are non-conforming. Table 3.1 shows that by using
this type of element, the computed deflections and stresses
for the cantilever beam example considerably improves in
comparison with the conforming linear 4-node element. The
deflections are only 2% lower than the exact wvalues
calculated by beam theory.

Further tests on the above element showed(36) that
when the cantilever beam is loaded in such a way that no
shear force is produced in the beam, the computed deflection
would become much closer to the exact value indicating that
this element does not allow for shear deformation.

It is also worth mentioning that the parabolic
shape functions N5 and Ng do not comply with the true
bending curvature of that segment of the beam which contains
a point of inflexion. Points of inflexion are always
expected in frame members especially close to the loaded
corners.

In order to ensure allowance for shear deformation
and to maintain the true beam curvature, a new beam element

was developed as described in the following section.
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3113 Proposed Rectangular Beam Element

Included in Table 3.1, is also a newly developed
planar quadrilateral element with two internal independent
nodes and eleven displacement degrees of freedom in total.
The algorithm for this element is described in Appendix D.

As shown in Table 3.1, the proposed 6-node beam
element is the most suitable element. Its computation time
has proved to be about 4 times less than that of 10-node
element which is almost equally sophisticated. Further,
unlike the 10-node element the 6-node proposed beam element
can readily handle more than two columns of gaussian
integration points -reader may refer to Zienkiewicz{(36}for
the requirements concerning the optional number of gaussian
points. This is of great significance in this particular
study, since bending moments within the frame members,
especially close to the loaded corners are highly variable.
Therefore a greater number of gaussian points are needed so
that the plastic hinges to occur in their right location and
in the right time.

Flexibility of the proposed element in selecting
the number of gaussian points permits the number of elements
and consequently the computation time to be reduced
iramatically. For example, the cantilever beam shown in
lable 3.1 can be solved by only one beam element with 10
zolumns of gaussian points. However, in a non-linear
slastoplastic analysis such a dramatic reduction in the
wmber of elements is not recommended, because events such
1s occurrence of a plastic hinge or major local cracking or

rushing produce abrupt changes in slope of the beam which
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is not compatible with the continuous shape functions of the

proposed beam element.
As will be shown in Chapter5, a reasonable number
of beam elements in the analysis of a reinforced concrete

beam, loaded to destruction, well simulate the experimental

behaviour.

|
3
+
I

Figure 3.13 Wilson et al(44) Non-Conforming Beam Element;
(a)4-node linear element as a beam element and
(b,c)converting into Wilson et al beam element
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312 Choice Of Masonry Infilled Frame Subdivision

Blockwork infilling walls of single storey
normally consist of a-t least 12 courses of blockwork. The
exact subdivision of such a masonry panel into single block
elements, when the masonry equivalent and interface elements
described in Sections 3.9.6 and 3.9.8 are used, involve
12x6x12 = 864 nodal displacements, added to which there are
the nodal displacements of the boundary frame. Solution of
such a high number of equations several times in a non-
linear elastoplastic analysis is uneconomical.

The computation time of the problem can be
reduced, however, by the choice of a subdivision mesh based
on imaginary larger masonry units and proportionally thicker
mortar joints and consequently lesser number of courses of
blockwork, while keeping the size of the panel unchanged.
This choice is acceptable provided that such a subdivision
mesh is still fine enough to maintain a reasonable accuracy
of stress distribution and also not to change the state and
pattern of the cracks and the state of bed and head joints.

In order to select a suitable subdivision mesh
some elastic finite element analyses were carried out on 12,
10, 8 and 4-course blockwork infills allowing for no joint
failure. The results are plotted in Fig 3.14 comparing the
stress distribution along the infill diagonal and the frame-
infill boundary for the examples tested. As shown, the
reéults of 12 and 10-course blockwork infills are identical
shewing that these meshes are sufficiently fine. The

results of

8-course blockwork infill is in a fairly good agreement with
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those of 12 and 10-course blockwork infills. However, a
4-course blockwork panel led to very poor results.

Although 8-‘course masonry infill subdivision is
sufficiently fine as far as the degree of accuracy of stress
distribution is concerned, its bed and head joints failure
pattern leads to a slightly different pattern from that of
the 12-course blockwork infill. Such a difference can be
seen from Fig 3.15. As shown the difference is minor and
does not affect any conclusion that one may come to.

The number of gaussian integration points had a
slight effect on the computed stresses of the infill.

However, in a non-linear elastoplastic analysis of such an
infill, it is convenient to provide sufficient number of
gaussian points within the elements that are likely to be
subjected to plasticity, cracking or a high stress gradient.

The above examination showed that a single panel
of 12-course blockwork can be scaled into an 8-course
blockwork panel without any harmful effect. Having reduced
the number of courses from 12 to 8 the computation time
would decrease by about 6 times. Fig A.2 shows an 8-course

masonry infill subdivision.
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313 Choices of Concrete Infilled Frame Subdivision

The same infill as studied in the previous section
was examined for 4 and 8-node element subdivisions with

different choices of gaussian integration points as listed

in Table 3.2:

Table 3.2 Choices of Infill Subdivision

Division Element Gaussian pts.
8x8 4-node 1
8x8 4-node 2x2
4x4 8-node 2x2
2x2 8-node 2x2
The infill assumed iS$ made of a uniform

material with the same stiffness properties as those of the
masonry infill discussed in section 3.12. The results of
diagonal and vertical stresses are plotted in Fig 3.14 to
compare with the results corresponding to the 12-course
blockwork infill plotted in this Figure. As shown, the
results of an 8x8 subdivision of 4-node element with 2x2
gaussian points gives the best results. However, the 4x4
subdivision of 8-node (parabolic) elements do not suit the
high gradient double curvature stress diagrams near the
loaded corners. An even more efficient mesh may be
generated by allowing for finer elements in the vicinity of
the loaded corners as shown in Fig A.4. The choice of

concrete infill subdivision will, further, be studied in

Section 5.5.5.
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CHAPTER FOUR

Constitutive Formulation of
Materials

41 General

The F.E formulation has been described in
Chapter 3. Calculation of the incremental stress-strain
relation matrix, [Dt], and also the current stress vector,
[6], in terms of the current strains and loading history
are dependent on the mechanical behaviour of the
materials which is discussed in this chapter.

The mechanical behaviour of the material normally
used in infilled frames are non-linear and elastoplastic.
The significance of the effect of non-linearity and
plasticity of material in the analysis of infilled frames
has been discussed in Chapter 2 and the various sources of
non-linearity has been outlined in Table 2.2. It has also
been concluded in Section 2.9, that an acceptable infilled
frame analysis must be enhanced by a set of fairly accurate
material models so as to simulate the elastoplastic
behaviour of the constituents of the structure (frame and
infill) as well as the interface between these constituents.
Since different materials behaves differently, the commonly

used materials may be categorized into the following groups;
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i) Brittle materials; concrete and masonry.
ii) Ductile materials; steel
iii) Interfaces; the joints between masonry units and the
infill/frame interface.
Sections 4.2 to 4.8 deal with brittle materials
and sections 4.9 and 4.10 deal with ductile materials and

interfaces respectively.

4.2 The Existing Fracture Models

The several existing constitutive formulations can
be categorized into six groups as shown in Figs 4.1 to 4.5

as listed below;

i) Linear elasticity theory (Fig 4.1)
ii) Non-linear elasticity fracture model (Fig 4.2)
iii) Elastic-perfect plasticity fracture model (Fig 4.3)
iv) Elastic-work hardening plasticity fracture model
(Fig 4.4)
v) Endochronic plasticity theory
vi) Representation of given experimental data using curve
fitting method, interpolation or mathematical
function, (Fig 4.5).
The existing theories based on the models of group
(i) to (iv) are described in detail by Chen(39). The
linear elasticity theory, Fig 4.1, is the most commonly used
maf’:erial model. This model ignores non-linearity and
plgsticity of the material and is normally used for analysis-
of the elements of the structure which are loaded within the

range that would not undergo any plasticity or failure.
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The models of groups (ii) to (iv), illustrated in
Figs 4.2 to 4.4 respectively, are based on idealization of
material by an elastic or plastic model. These models are
neither exact nor impressively accurate but even so they
may be rather complicated. Because of the idealization of
the behaviour of the material, these models are disconti-
nuous material models dividing the material responses into
several stages. However, the actual behaviour of a non-
cracked material is continuous. Further, such discontinuous
models, while simplifying the problem, are the source of
numerical difficulties(39) ., Nevertheless the elastic-
perfect plasticity fracture model (for both tension and
compression) suits steel material. This will be discussed
in section 4.9.

The endochronic theory has received much attention
in recent years because it is based on a continuous model.
This model was originated by Valanis(45) (1971) for metal,
based on the concept of “Entrinsic time." The theory does
not require a specific definition of yielding. Bazant (46)
(1976) extended the theory to describe the behaviour of
brittle materials. For concrete, the formulation of the
endochronic model is based on an extensive set of functions
which fit nearly all the experimentally observed effects.
However, "this model involves a rather high number of
material parameters. Therefore further research in refining
this theory is needed," Chen(39),

Since the aforesaid purely theoretical models
involve extensive numerical work, in practice, either a

simple uniaxial model is generalized to form a three-
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dimensional model or one of the methods of group (vi) is

used. The methods in this group are not related to any
specific theory, but ekperimental observations and may
therefore be expected to provide the best accuracy. These
methods have mostly been developed for biaxial behaviour of
material (plane stress problems). The most efficient method
of this group seems to be the analytical method of Darwin

and Pecknold (47), (1977), developed for concrete in plain
stress problems. Fig 4.5 illustrates this model. 1In this
method, the concept of equivalent uniaxial strain, described
in section 4.6.2, is utilized. It is also assumed that
concrete behaves as an orthotropic material with a wvariable
Poisson’s ratio. However the variation of Poisson’s ratio
under biaxial compression stress is ignored and the

formulation involves a significant discrepancy between the
proposed values of Poisson’s ratio when the state of biaxial
stress combination alters from compression-tension to
compression-compression. Nevertheless Darwin and Pecknold’s
rethod reasonably predicts the actual behaviour of concrete
inder biaxial loading and a number of F.E. programs have

een written using this method(48,49) ., Because of the
ssumption of orthotropy, it is very difficult to expand

his method for triaxial loading. In this project, however,
t was decided to develop a new constitutive formulation for
rittle materials using the concept of "Equivalent Uniaxial
@ﬁnﬂ EUS. The proposed model allows for triaxial

ading but ignores the orthotropy of uncracked materials.

ie new proposed model will be described later in this

\apter.
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43 Proposed Constitutive Formulation for Brittle

Materials Under Uniaxial Compression

43.1 Stress-Strain Relation

The typical stress-strain relationship for
concrete subjected to uniaxial compression is shown in Fig
4,6(a). Concrete has a nearly linear-elastic behaviour up
to about 30 percent of its compressive strength o©¢. For
stresses above this point the stress-strain curve shows a
gradual increase in curvature up to the peak point, Gg, due
to extension of microcracks. Beyond this peak, the stress-
strain curve has a falling branch until crushing failure
occurs at some ultimate strain, &y.

Wischers (50) (1978) carried out a series of
uniaxial loading tests on necked specimens in order to
exclude the confinement effect of the end platens. The
results of these tests are plotted in Fig 4.7. As shown the
shape of the stress-strain curve is similar for concrete of
low, medium and high strength. However, a high-strength
concrete behaves in a more brittle manner, the stress
dropping off more sharply than it does for concrete with
lower strength.

For the rising branch of the stress-strain curves,

the well known Saenz (51) equation may be adopted as follows;

o = Ep - (4.1)
Ep € € .2
1+ (?c' - 2)(;;—)4' (e—c)

¢

there ¢ and € are the stress and strain and EQ and Eg

(Ec=0¢/€c) are the initial tangent and secant modulus at
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peak respectively and €¢ is the strain at peak stress.
Eq 4.1 for EQ/Ee<2 gives an unrealistic point of inflexion
somewhere on the curve. The following proposed equation

thus may be used when EQ/E¢c<2;

€
c = EQ (4.2)
EQ € g
()
Ec €c
where
1 EQ
= and < 2 (4.3)
1 - Ec/EQ Ec

It should be noted that for EQ/Ec=2 equations 4.2
and 4.1 are identical, thus continuity between the two
is maintained.

For the falling branch of the stress-strain curve,
several observations and data (50 to 60) and especially the
work of Wischers(50), Fig 4.7, were studied and compared, to

derive the following proposed simple equation:

Oc
g = (4.4)
€ 2
1+ n(— - 1)
€c
where for concrete:
Cc 2.15
D =10 ( ) £ 0.25 (4.5)
100

It should be mentioned that Eq 4.4 is independent of the
initial stiffness of the material. The tangent value of the
modulus of elasticity, Et, may be derived by differentiation

of Eqs 4.1, 4.2 and 4.3 in terms of € for EQ/Eqc > 2 as:
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€c
E¢ = (4.6)
EQ € € 2.2
(-9 +(5) ]
Ec €c €c
and for EQ/Ec < 2 as:
€ \g
Eo[l —(—) ]
€c
Et = (4.7)
EQ € g2
[+ (- 9]
Ec €c
and for the falling branch as:
€
~2E¢D (—-1)
€c
Et = (4.8)
€ 242
[+ p(—-1)]
€c

As shown in Fig 4.7 the proposed Egs 4.1 to 4.5 agree well
with a wide range of possible concrete and mortar strengths.
These equations were not examined for brittle materials

other than concrete and mortar but it seems only Eq 4.5

needs some adjustments should a brittle material other than
concrete be used.

The above formulation requires only the initial
tangent modulus, EQ, and the strain at peak, €c, and the
unéonfined uniaxial strength, O¢, to be determined by test
orrany other means for the complete uniaxial stress-strain

curve to be plotted.
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43.2 Poisson’s Ratio

Poisson’s ratio, v, for concrete under uniaxial
compression ranges from 0.15 to 0.22. The ratio v remains
constant until approximately 80 percent of C¢ or
approximately 0.5€¢ at which stress (so called critical
stress) the apparent Poisson’s ratio begins to increase,

Fig 4.6(a,b) . At the peak stress, the Poisson’s ratio
increases up to about 2vQ. Using the above experimental
knowledge, the following formula was developed to represent

the variation of Poisson’s ratio in uniaxial loading;

€ .n
v = vo [1+k(—) ] (4.9)
Ec

Comparison of the experimental data of Kupfer et al(55) yith
Eq 4.9 led to n = 3 and k = 0.85 to obtain a good fit.
The incremental value of the Poisson’s ratio may

be derived as follows;

Substituting for v from Eq 4.10 gives;

€ n
*

Ve =V0 [1 + (n+1)k(—) ] (4.10)
€¢

where € denotes the strain in the radial direction normal
to the direction of the applied load.
Eq 4.10, beyond the peak load, gives a rather high

value for the incremental Poisson’s ratio. Although this is
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evident in uniaxial compression test, in fact the apparent
extensive volume expansion may be not so much due to

yielding of the material as due to disintegration and lack
of confinement. A small degree of confinement may greatly
reduce the radial expansion of the specimen. Assuming a
constant incremental Poisson’s ratio beyond the peak stress,
may be a realistic way to exclude the disintegration from
the Poisson’s effect. Therefore the following expressions

replace Eqs 4.9 and 4.10 for €/ec greater than unity.

v¥ = vo[l + (n+1)k]

v = vp [1 +k (4—3(-e—c))]

€

V/ve > 1.0 (4.11)

Fig 4.8 compares the equations 4.9 to 4.11 to the
experimental results of Kupfer et al(335) showing a good

agreement .
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Figure 4.8 Comparison of the Propbsed Poisson’s Ratio with
the Experimental Results of Kupfer et al (55)
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433 Loading-Unloading-Reloading Behaviour

Previous work on this type of loading is limited
to concrete and mortar under uniaxial load, (references 59
to 64). Work done by many investigators particularly Karsan

and Jersa(60) led to the following information:-

a) When a uniaxially loaded specimen of concrete is
unloaded down to zero stress, the stress-strain
diagram follows a curved line similar to EP in
Fig 4.9. This induces some plastic residual strain,
€p, as a result of energy dissipation and damage
caused by preceding loading.

b) When the specimen is reloaded, the stress-strain
diagram follows a curve similar to PR. Where R is a
point on the stress-strain curve beyond the unloading
point, point E.

¢) The envelope of the stress-strain curve is not
affected by any partial or complete previous
unloading reloading cycle. Therefore the stress-
strain curve in uniaxial monotonic loading is also

called "The envelope curve" which is unique.

Karsan and Jersa(60) proposed the following
equation to estimate the plastic residual strain induced

after a full unloading.

ER.2 EE
ep = £c [0.145(—) + o.127(—)] (4.12)
€c €c

where €g is the strain corresponding to the point on the

envelope curve at which strain unloading has been started.
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This equation agreed with the mean experimental results of
concrete specimens with £’ equal to 24.1 to 34.5 N/mm2.

The aforesaid assumption and Eq 4.12 were adopted
by Darwin and Pecknold(49) and also Ghoneim, et al. (48) to
develop a plane-stress and a three-dimensional F.E. analysis
respectively. In these analyses, the unloading and
reloading curves were simplified to multi-linear
approximations as shown in Fig 4.5.

The unloading-reloading stress-strain diagram may
also be idealized by the straight line of EP in Fig 4.9.

The unloading and reloading modulus can thu;‘s be written as:;

Eyl = o/ (e - €p) (4.13)

where 6 and €p can be calculated from Egs 4.1, 4.2, 4.4 and
4,12,
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44 Brittle Materials Subjected to Uniaxial Tension

Concrete and other brittle materials behave in an
almost linear-elastic fashion in tension. Therefore, in
practice they are modeled by a linear-elastic-fracture model
as shown in Fig 4.1. Previous work(55,64,65,66), nowever,
shows that concrete under uniaxial tension undergoes some
non-linearity and plasticity and the tensile stress-strain
curve is similar to that for uniaxial compression. Eq 4.1
or 4.2 therefore, may also be used to represent the tensile
stress-strain relationship provided that E¢ and g¢ are
replaced by Ect and gct respectively. Some experimental

values for Eqct/EQ are listed below from different sources;

Kupfer et al (55) 0.90

Tassuji et al(65) 0.65-0.70
Cook et al(64) 0.70-0.75
Evans et al (66) 0.40-0.60

These experimental values led to propose Eg as a value in

between EQ and E¢ as follows:

- (L+ _1_.) (4.14)

For a medium strength concrete (Ec=0.45EqQ), Eq 4.14 gives
Ect/Ep = 0.62 which is the mean value of the last three of
the above experimental data resulted from different

test procedures. The strain corresponding to peak tensile

stress, €qt, may now be calculated as follows:

Ot
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0y

Ect

tct = (4.15)

Concrete and other brittle materials show little ductility
in tension. The ultimate strain (the strain at the onset of
cracking) is therefore, proposed to be limited to €e¢t
beyond which strain concrete cracks in a plane normal to
direction of the tensile stress and the tensile stress drops
immediately to zero as shown in Fig 4.10.

Because of allowance for non-linearity, the above
proposed model explains the cause of delay in cracking in
the tensile region of the standard beams tested for
determination of the modulus of rupture. The proposed model
explains well the difference between the direct tensile
strength and the modulus of rupture.

The Scanlon(®7) model which is also shown in
Fig 4.10, has received much attention in recent years for
its ability to simulate the effect of tensile stiffening.

But this model is unrealistic for unreinforced concrete.

¢ / , /
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: | -
: lP €, €
¢ Ep Su .

Figure 4.10 Stress strain Curve of Concrete in Tension
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5 Failure Criteria
5.1 General

In formulating failure criteria for materials, a
:oper definition of failure must be defined. Criteria such
; yielding, initiation of cracking, load-carrying capacity,
id extent of deformation have been used to define failure.
| this section failure is defined as the maximum load-
rrying capacity of a test specimen or an element.

e strength of materials under multiaxial stresses is a
nction of the state of stress and cannot be predicted by
mitation of simple compressive and shearing stresses
dependently of each other.

A failure criterion of isotropic materials based
on state of stress must be an invariant function of the
ate of stress, ie, independent of the choice of the
ordinate system by which stress is defined. One method of
presenting such a function is to use the principal

resses ie,

£(01,02,03) = K (4.16)

indicate the general functional form of the failure
iterion. It is known(39) that any invariant symmetric
1ction of the state of stress can also be expressed in

rms of the three stress invariants of I1, J2 and J3 or 13,
-and 8 , where 0 is the angle from the positive o1 axis

i lies in the deviatoric plane, Chen(39). Thus one can

»lace Eq 4.16 by:
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£(11,92,93) = K (4.17)

or:

£(I1,32,0 ) =K (4.18)
where:

I] = o1 + 02 + O3 (4.19)
1 2 2 2

J2 = —[ (01-02) + (62-03) + (03-01) ] (4.20)
6

33 = — (s13,823,833) = sis2s3 (4.21)
3

-1[ 201-02-0C3 ]

0 = Cos ’ 01>02>03 (4.22)
24332
s1 = 61-Om 8$2= 02-Om 83 = 03-Om
(4.23)
om = 1/3(01+02+03) = I1/3

Chen(39) has described several failure criteria
developed by various investigators. The most commonly used
ones are illustrated in Figs 4.11 and 4.12. These are
algebraically expressed as follows:

i) Von Mises yield criterion;

2
£f=3J2 -~-oy =0 (4.24)

1) Tresca yield criterion;

£ = 24/32 Sin(8+n/3) - oy = 0 (4.25)
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iii) Mohr-Coulomb failure criterion;

1 Y J2
f = —1I1Sin¢ +»\/stin(9+n/3) +
3

Cos (6+1m/3)Sing
3

-cCosp = 0 (4.26)

where the material parameters of ¢ and c are the angle of
friction and cohesion of the material respectively.

iv) Drucker-Prager failure criterion;

f=0I1 +4J2 - K=0 (4.27)

where:

2sin¢ 6cCosd
= and K = (4.28)
\/3(3-sin¢) /3 (3-8in¢)

o

The Von Mises and Tresca yield criterion are well
verified in metal plasticity. In this project the Von Miseg
criterion is adopted for steel frame members. For concrete
and other frictional Imaterials the Mohr-Coulomb and its
approximation, Drucker-Prager failure criteria are
frequently used in practice. 1In this project, however,
since the above criteria are particular to concrete only, it
was decided to develop new failure criteria for various
stress combinations. The parameters involved in the
proposed criteria are adjustable so as to suit the different
brittle materials under consideration such as concrete,

and
blockwork mortar. These criteria are described in the

following section.
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Figure 4.11 Drucker-Prager and Von Mises Yield Surface in
Principal Stress Space (after Zienkiewitcz (36))

Mohr-Coulomb ¢ >0

Figure 4.12 Mohr-Coulomb and Tresca Yield Surface in
Principal Stress Space (after Zienkiewitcz (36))
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452 Proposed Failure Criterion of Brittle Materials

under Triaxial Compression

Using the principal stresses, 01, 02 and 63 while:

0 > 01 > 02 > 03 (comp. -ve)

The following stress function is proposed in order to

incorporate the variation in material types;

2
(03-02) (03-01) (062-01) o
f= + - Cc =0 (4.29)
61 .9+2 _ 2 01,942
[1 + c(——) ] foe [1 + kc(—) ]
Jc C¢

where El—)c = fpe/Oc denotes the ratio of equal-biaxial
compressive strength to the unconfined uniaxial compressive
strength. q is a material constant value controlling the
curvature of the failure surface in the tensile and
compressive meridians (Fig 4.14). ¢ is the slope of the
compressive meridian at 01=0¢ and k is a constant relating
the tensile meridian to the compressive meridian. These

constant values may be adjusted to suit any brittle material

using the following approach.
2)  Biaxial Compression
When 01 becomes zero, Eg. 4.29 reduces to:

£f=032 + 022 - (2-1/Fpc2)0203 - G6c2 = 0 (4.30)

- 144 -



In the condition when 02=063 the criterion leads to

063 = 062 = fbelc

Values of 1.14 to 1.18 can be concluded for -f_bc by Kupfer et
al(35), Fig 4.13 compares the proposed biaxial yield

function Eq 4.30, to the experimental data (55). The
agreement is good when Ebc=1-17 is used. Notice that, as
shown in Fig 4.13, an even better agreement can be achieved

by adapting the biaxial stress function to:

f = (03/0c) + 0.26(1.6602/03-1)2 - 1.26 = 0 (4.31)

o G°=18 N/mm?2
o Gc=31 N/mm?

Figure 4.13 Comparison of the Proposed Failure Criteria
for Concrete under Biaxial Compression with

the Experimental Results of Kupfer et al (55)
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b)  Triaxial Tests at Compressive Meridian (0>01=02>03)
Equating 01 and 62 in order to meet the load

combination shown in Fig 4.14(a), Eg 4.29 becomes:

f = 063/0c - 01/6¢c - ¢(061/0¢)T -1 =0 (4.32)

which is the failure criterion at the compressive meridian.
The tests carried out (70,71) on normal concrete led to the

adoption of ¢=3.6 and g=0.8.

¢)  Triaxial Tests at Tensile Meridian (0>61>02=G3)
In order to have the failure criterion at the
tensile meridian (Fig 4.14(b)) one may set 02 equal to 03

in Eq 4.29 to get:

£ = 03/0c - 01/0¢ - fbc [1+kc(01/0c) 9‘] =0 (4.33)

Examination of results of the tests carried out on normal

concrete led to the adoption of k = 0.68.

2 4
N— —
U,=0;>0; 0'l >0; =0;(Comp. -ve-)

(*) ()

Figure 4.14 Typical Triaxial Test Arrangements; (a) at
compressive meridian and (b)at tensile meridian.
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By the same procedure as followed in this section

for normal concrete the constant parameters ;bc, gq, ¢ and k

can be determined for any other brittle materials. While k

and Ebc are expected to have only small variations for

different brittle materials, q and c are expected to vary

considerably. The experimental results of Khoo and

hendry (72) suggest e=1.91 and g=0.73 for the mortar types

commonly used in masonry.

453 Proposed Failure Criterion for Brittle Materials

under Triaxial Compression-Tension

Using the principal stresses, while:

063 < 02 <0< 01 (comp. -ve)
the failure surface function is proposed as follows:

f=(03-02)2 +(001)2 +A(a01) (03+02) +(1/£fpc2) 6203 -Ge2 = 0

(4.34)
there 0. denotes the ratio of unconfined uniaxial compressive

strength, Og, to direct tensile strength, o, and A is a

constant controlling the curvature of the failure surface in

biaxial compression-tension. This constant is highly

variable and can be adjusted for any brittle material as

will be discussed later. The above criterion may be examined

using the available test results as follows:

8-  Biaxial Compression (01=0)
! When 01 equals zero, Eq 4.34 becomes identical to -

Eq 4.30. This proves the continuity of Eq 4.34 and Eq 4.29.
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D) Zero Intermediate Stress (62=0)

Eq 4.34 with 02=0 becomes:

f = 032 + (001)2 + ANG103 - Gc2 = 0 (4.35)

The experimental results of the tests carried out by
Kupfer et al(55) on normal concrete of various strength were
compared with Eq 4.35 to determine the wvalue of A. This

examination led to the following proposed relation.

A

0.25 + 0.0006(|Cc|-10)2 (4.36)

The value of A may be determined by the same procedure as
given above for any brittle material. The experimental
results of Khoo and Hendry(72) may be used to give A=5.0 for
fired clay brick. Fig 4.15 compares the biaxial
compression-tension failure criterion, Eq 4.35, to the

experimental results of Kupfer et al (53) and shows a good

agreement.
C) Equal-Compression Tension (62=03)
When 02=063, Eq 4.34 leads to:
f = 632/fpc2 + (001)2 + 2A(001)03 - Gc2 = O (4.37)

There is little experimental data for concrete under such
stress combination, but it is known that the intermediate

stress, 02, has little effect on the total strength(37),
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454 Proposed Failure Criterion for Brittle Materials

Under Tension-Compression

A very limited number of experimental data in this

zone (03<0<02<01), have been reported by Hobbs et al (57),
They suggest that the effect of 02 is insignificant.
Therefore Eq 4.35 may also be used for this stress

combination while 62 may take any value between 01 and zero.

4.5.5 Proposed Failure Criterion for Brittle Materials

Under Triaxial Tension
It is believed(57,55) that the failure of brittle

material under triaxial tension (01>02>63>0) is governed

by only the most tensile principal stress, o1.

The criterion thus reduces to:

61 - ot = 0 (4.38)
v
[} o ° ? S
(.) ] T T T T T T U
0-9 -8 o7 06 05 04 0-3 o!2 Ofi 0
[ 3
1} e
T e
~ Q b=
o o > N l
e ]
(b) e
. l
0-9 o8 07 0-8 o-'s 0-4 ofa o-'z 01 [0,
Q 0 172 ¢ - -
(¢) ~f—
l T T ¥ T
Compressive %9 08 07 08 o5 04 03 oz or o
/0o Aotual (55) o
Proposed —
Egq. 4-33

figure 4.15 Comparison of Proposed Failure Criteria with

Experimental Results of Kupfer et al(53) for
Concrete Under Combined Tension and Compression

(a) 6c=18.6, (b)0c=30.9, (c)CGe=57.9 N/mm?
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Proposed Constitutive Formulation for Brittle

4.6
Materials Under Multiaxial Stresses
4.6.1 General

The behaviour of concrete under multiaxial loads
has been studied by several investigators(47,55,56,57,65,73,

74) . The manner of loading in the laboratory is normally
monotonic and proportional in consistent principal
For such loading and assuming the concrete

directions.
the stress-

material remains isotropic up to cracking stage,

strain relationship according to the Hookés Law is given as

follows:
€1 1 -vi2 -vi3| |o1
1
g2 = — [-v21 1 -v23]| |02
E
€3 -v31 -V32 1 o3
or.:
1
{e} = —[C]{6}
‘B
and -1
{c} = E[C] (€}
{c} = [D]{¢e} (4.39)

Where E signifies the secant elastoplastic modulus and Vv

values denotes the secant Poisson’s ratios in directions

shown by their indices. 1In order to keep the [D] matrix

symmetric the following relations must be satisfied:
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V12=v21 ,  V13=V31 , v23=V32 (4.40)

Since the material behaves in a non-linear and
elastoplastic fashion, the solution involves four material
properties; E, V12, V23 and V31 which are all functions of
stress or strain level. These values can be formulated
using the available experimental data.

Fig 4.16 shows the stress-strain curves plotted by
Kupfer et al(53) from biaxial loading tests. These curves
are widely referred to as a set of reliable experimental
data which can be used together with some other experimental
data in other areas of loading, eg. the experiments reported
by Hobbs et al(57), to formulate the above mentioned
material properties.

Such data cannot be easily utilized for this
purpose since, for each stress combination, the stress-
strain curves for the three principal directions are quite
dissimilar. Instead it is convenient to define the
"equivalent uniaxial strain™ vector (EUS) described in the
following section, so that the formulation can be developed
step by step, initially excluding the effect of Poisson’s
ratio from the actual strains.

It will be seen later in section 4.6.4 that the
EUS can be simply transformed to the real strains and
ﬁ@ally the theoretical stress-strain curves can be plotted.
Cmﬁarison of the proposed model and the experimental

results is given in section 4.6.4 ,Fig 4.20 and Fig 4.21.

- 151 -



5
<=L, = -328 kplem? (4650 psi)
t; p'_A_I )
e i =S 1.2—‘.'35, ,"" ‘\\g: .
& \\u\ ;; 1/ /,4 -
AN WA VZE RN
) Wee 7 <
N
A‘ 0“ ],
“\ 61/6;
*6 J\ | / 1163
6% o ——
331 Jlﬁ \‘ ,'// -———— ~1/-052
— 1
20 5am(2in) I'
|
£.6.8
+3 - ol 0 -1 -2 -3 e {C00NRY 1N

tensile strain

compressive stroin

5
T2 (px - 328 kpiom? (4650psi)
2
1
&L | b__
S— / e
B G i
&/ o5
—_— 10 _
~——= -1/ 0052 < —
—— -1/0103 g 5
----- 170204 - T,
S 0 Semzimn)
(29n)
€. E2E,
-10 -5 -2D mm/m (COMMin/in)
lensile stroin compressive strain
L (4200 psi
P» fp =~ 25 kp/om? psi)
2
\}
) 0 ()
=) .t —
—_—le - _?_5:_009 — 701 #3 5 IC‘
\ ] /
‘ - - P!
\ \ ', /V'
7 —1t £
Al | V4
R Y 4 i
516 |\ i VA4 57 "0 —
—1/0 Y. / ,// £ 1
—_n v f— oot
W4 20t5em(2Din)
----- 17055 " (29in)
1y
; €365
-004 -002 0 «02 (107 s o8 a0 012 meven@ocnind
compressive stroin tensile strain

v oer

(¢)

Experimental Stress-strain Relationship of
Concrete under Biaxial Loading;

(a) compression-compression,

(b) tension-compression and

(c) tension-tension (after Kupfer et al(55))

Fiéure 4.16

152



4.6.2 Equivalent Uniaxial Strains (EUS)

The EUS vector is defined as follows:

1
{€u} = — {o}
E
or: T r 1
€lu [1 0 0 o1
1
€2u = — |0 1 0 o2 (4.41)
E
€3u 0 0 1J o3
and
{c} = E{ey}

The EUS comprise only that part of the strains that result
from application of each stress component and occur in the
same direction as that of the stress itself. ie, the
strains due to the Poisson’s ratios are excluded.

Comparison of Eq 4.39 and Eq 4.41 leads to:

{e} = [C]l{ey}

or
{eu} = [C171l{e} (4.42)

which relate the real strains to EUS or vice-versa. The [C]

matrix is given in Eq 4.39.

4.6.3 Proposed  Stress-EUS Relationship Formulation

Egs 4.41 imply that in a monotonic proportional

loading EUS are proportional to their corresponding stresses

at any particular stress level. 1i.e;

Ci €iu €iuc ci’
o = = = = (4.43)




Where 0i’ and eiuc denpte the material strength and its
corresponding EUS in ith principal direction and i denotes
the ratio of the principal stress component in i direction
to the stress of the most compressive principal direction.
The stress ratios remain constant throughout the loading
process, because a proportional loading is assumed.

The proportionality of the EUS implies also that
the three principal stress-EUS curves are proportional as
shown typically in Fig 4.17, such that the magnitude of ©i
and €§y are reduced by the corresponding stress ratio aj.
This similarity reduces the task to that of formulating only
03 in terms of €3u which are the most compressive principal
stress and EUS respectively.

As will be seen later in Section 4.6.5 the stress-
EUS curves are parabolic-like and are smooth with an
initial modulus of elasticity of EQ, such that the same
formulas as for uniaxial loading (Eq 4.1 to 4.5) can be

proposed with new notations as follows:

EO/ES > 27
€iu
gi = Eg (4.44)
EQ Eiu €iu 2
1+ (—-2)(—) +(
Eg €iuc €iuc
EQ/Eg < 2;
. €iu
0i = Eqg (4.45)
Eo €iu g9
e .
Eg €iuc
where:
9 = 1/(1-Eg/Ep) (4.46)
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and for the falling branch:

oci’
(4.47)

Ci
Eiu 2

- 1)

the secant modulus at peak stress

1+D
€iuc

Where Eg=0i’/€iuc denotes

and €juc Signifies the EUS corresponding to the peak stress.
The above equations are convenient to be written
in their normalized form so as to represent all the three

curves shown in Fig 4.17 as given below:

EO/ES > 2:
Eg e
s =( (4.48)
Es' 1 + (E9/Eg-2)e + e2
Eg/Eg < 2;
EQ e
; =( (4.49)

Eg 1 + (Eg/Eg-1)e9

and for the falling branch:

1
(4.50)

1 + D(e-1)2

where:
S = 03/0i’ and e = €iju/€iuc

The stress-EUS relationship given by Eq 4.44 to
4.47 depend on the values of 0i’ and €jye, (L =1, 2, 3) or
03; and €3ye and the stress ratios a1 and a2. The values of
pedk stresses were discussed in Section 4.5 under "Failure

Criteria"™. €3uyc is formulated in the following Section.
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Figure 4.17 Equivalent Uniaxial Stress-strain Curves

4.6.4 EUS at Peak Load

Determination of €3uc may be formulated using the

available experimental data. In order to accommodate such

formulation, the relation between €3y and the real strains
is derived below for both biaxial and triaxial loading.
In a proportional biaxial loading where ¢i=0, ie.

0i=0 and €jy=0, combination of Eqs 4.42 and 4.43 leads to:

[ei]  [-vij -vik
aj83u
ej = 1 ‘ij (4 .51)
Ak€3u
2 R R ¥ 1

Because of the condition of isotropy and symmetry discussed

ln section 4.6.1, Vjk=Vkj and the second and third of
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Eqs 4.51 can be solved for vjk and €3y to give;

akEj - Ok
Vik = Vkj = (4.52)
®jej — OkEk

Ok€k - OjEJ
€3u = (4.53)
k2 - a2

Triaxial loading tests are normally carried out at
one of the meridians. i.e. Ok # O6i = 63j. As a result of

such a multiaxial stress combination, Eq 4.42 reduces to:

i€3u
€i 1 -vij -Vvix
= ®j€3u (4.54)
€k -Vki -~Vkj 1
akeE3y

Because of the equality of 0ji and 0j no relative plasticity
is expected between the two principal directions of i and j
requiring that vij = v0. Also because of the condition of

isotropy and symmetry discussed in section 4.6.1:

Vkj = Vik = Vik = Vki = V # V0

Now the two equations of 4.54 can be solved for O3y and Vv

to give:

V= —

1 (1-v0) (ai2+052)
Fi + 0 - voaj] (4.55)
Ol OkEk-Ci€i=-OjES

akEk - Qi€i = O4Ej

(4.56)

E€3u
ox2 - (1-vg) (ai2+0j2)
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Egs 4.53 and 4.56 were used to calculate €3ue¢ with the aid

of the experimental data ( €1, €2, €3, 01 and a2) of Kupfer

et al(55), Hobbs et al(57) and Tassuji et al(65) ., These

values were entered into a nondimensional coordinate system

of 03" /0c versus €3u/€c as shown in Fig 4.18. Also are

plotted in this figure, the following relations proposed to

calculate €3uc/tc.

For 03'<0¢: (comp., -ve)
€3uc G3’ c3’ Eq
= + R( - 1)(1-—) (4.57)
£c Cc Cc EQ
T _C
w5
f M
7/
a7 [
(ﬁ;&ﬁ‘
Eo/Ec' H'gr‘
1 .
B E
fool —_—— _
// | E’?,\
/ 3 ' Q’}}
2 | R
/4 sS,
] o,
lI Actual
| O Ref (57)
I g ©G5)
55
A (55) J’ )
O ]'00 Il 3.00
’
E3uc /ec

Figure 4.18 Comparison of The Proposed Analytical
Prediction of Equivalent Uniaxial Strains at

Peak Load with Some Experimental Data
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For 0>03’>0¢g:

€3uc o3’ Ec Ec G3’, 2R
( )= 0.5(——) [(l+—) + (1__— (._) ] (4.58)
€c Oc Eo EQ O¢c
and for 03’>0
€3uc Ec A 03’
= o.5(1 +—)— (4.59)
Eo Oc

€c

where R 1s a material constant. R=3.5 suits normal concrete.

4.6.5 Transformation of EUS to Real Strains and

Vice-versa
EUS and real strains can be converted to each

other using Egs 4.42. These equations involve the [c]

matrix defined in section 4.6.1. In a multiaxially and

proportionally loaded isotropic material, this matrix

involves 3 independent Poisson’s ratios as follows:

V12=V21, V23=V32 and  V13=v31

The Poisson’s ratios can be formulated according

to the available experimental data. Egs 4.52 and 4.55

relate the Poisson’s ratios at any stress level to the
strains of a biaxially and triaxially loaded material

respectively. Examination of the experimental results of
Kupfer et al(S5) 1led to an expansion of Eq 4.9 (proposed for

uniaxial loading) to account for biaxial and multiaxial

loading as follows:

Vii = Vij = vo[l + kfij(e)n] (4.60)
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where e denotes the straining ratio i.e. e = €iu/€iuc
and k and n are material constants. k= 0.85 and n = 3

suits normal concrete. fij is proposed as follows:

For o1’ < 0: (comp. -ve)

[(c17-057)/oc]
£ij = (4.61)
01\ q
1+ c(—)
Gc
For o1’ > 0:
£i5 = [(0i’-0§")/oc| - 2|01’ /0c| (4.62)

where ¢ and q are defined in section 4.5.2 and O1’ denotes

the most tensile stress at the peak. These formulas agree

well with the experimental results of Kupfer et al(53) at

peak loads as shown in Fig 4.19. Eq 4.60 covers all the

possible states of load combination.

The incremental and secant values of Poisson’s

ratios are related as follows:

vij dej = d(vijeij)

where vij and vij are the incremental and secant Poisson’s
ratios respectively for calculating the strain in the ith

principal direction induced by the strain in the jth

principal direction. From the above relation the

incremental and secant values of Poisson’s ratios can be

calculated in terms of each other as follows:
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h/%}j.e
(4 63)

Vij = —————
e
These equations can now be used to develop the

tangent and post peak stress Poisson’s ratios as follows:

Vigy = vo[l + (n+1)kfijen] (4.64)

where vij denotes the incremental Poisson’s ratio between

ith and jth principal directions and,

Vig = vo[l + (n+1)kfij]
(4.65)

vVij = vo[l + kfij(4—3/e)]

where the strains has past the strains corresponding to the

peak stresses i.e, e = €jy/€juc > 1.0. Egs 4.60, 4.64 and

4.65 are valid only when the increment of stresses are

proportional to the current stresses.

Having formulated the Poisson’s ratios, the real
strains ( €1, €2, €3 ) can be calculated from Eq 4.42. The
proposed constitutive formulation and failure criteria
(sections 4.5 and 4.6) are compared with the experimental

results of Kupfer et al(355) in Figs 4.20 and 4.21 and good

agreement can be seen.
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Figure 4.21

4.6.6 Proportional Unloading and Reloading

The unloading-reloading behaviour of uniaxially

loaded concrete has been studied in detail(59,64) ., This has

been discussed in section 4.3.3, where the stress-strain

relationship for a cycle of unloading and reloading was
modeled by a straight line, EP, as shown in Fig 4.9. Unlike
the uniaxial case there is no experimental data available
for unloading-reloading behaviour of concrete under biaxial

and multiaxial loading. Therefore, in this project the

basic principles of parts (a) to (c) of section 4.3.3 were
generalized to include concrete under multiaxial loading.
Accordingly the proposed linear model of unloading-reloading

was generalized into stress-EUS curves as shown in Fig 4.22.
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Figure 4.22 Stress and Equivalent Uniaxial Strain
Relationship of Concrete under Proportional

Multiaxial Unloading and Reloading

The generalized linear unloading-reloading
behaviour implies that no plasticity takes place during a

complete or partial unloading-reloading cycle. Therefore,

the material can be treated as linear elastic with constant
modulus of elasticity, Eyl, and constant poisson’s ratio,
V0, in any direction within the material.

For the sake of simplicity, taking advantage of
the stress proportionality, the three stress-EUS envelope
curves may be mapped into one non-dimensional envelope
curve, Fig 4.23 where s and e denote the stressing and

straining ratios respectively defined as follows:

e = giu/€iuc
(4.66)

s = 0i/oi’
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Proposed Model for Relationship of Normalized
Values of Stress and Equivalent Uniaxial Strain

of Concrete under Proportional Multiaxial
Unloading and Reloading

Figure 4.23

The proposed formula of Karsan and Jersa(GO),
Eq 4.12, is no longer'valid, since this formula was proposed

for concrete under uniaxial loading with limited range of

plasticity. However, in multiaxial compression the

specimen may undergo much greater plasticity and in a
triaxial tension-compression it shows far less plasticity
than in a uniaxial loading test. Thus, a factor of
plasticity potential may be defined as EQ/Eg. This may be
expected to affect the residual plastic strain, €iup, and

the unloading modulus, Eyl. Therefore a set of non-

dimensional formulas is proposed as follows:
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For eE<1.0;

Eul

2

Eo

For eg>1.0;

Eul

2 + (E9/Eg-1)egl-59

1

Eo

where g and m

(1+4EQ/Esg) (0.5+0.3m+0.8m2)

are to be calculated as:

(

(

eg - 1)4/D

lccl 2.15
) > 0.25 (for concrete)

100

EQ/Eg

Eg/Eg - 1

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

The residual plastic EUS after a full unloading in its

normalized form, ep = Eiup/ﬁiuc, can be derived using

Fig 4.23 as follows:

e

e - ep

Solving for ep leads to:

1

Eus/EQ EQ/Eg

(4.72)

where sg and eg denote the stressing and straining ratios
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corresponding to the point on the normalized stress-strain
envelope curve at which the unloading started. Fig 4.24
shows the variation of Eyl/EQ against straining ratio, eg.,
and also a wide range of EQ/Eg ratio. Also shown in this
figure is the plot of Eul/EQ against eg calculated from the
Karsan and Jersa(60) proposed formula, (Eq 4.12), in
comparison with the proposed Egs 4.67 and 4.68. Although
these curves agree well over most of the length of the
curves, the Karsan and Jersa(60) formula gives Eyl larger
than EQ at the beginning of the envelope curve and this is a
source of numerical problems. Another numerical problem
with the Karsan and Jersa formula will be encountered by

having a negative Eyl when eg is high, Fig 4.24.

Eq 412 | Ref- (60)

i

[
Proposed Eqs. 4.64 & 4.68

Ir-.. ———

o 1.0 2.0 30 4.0 5.0 10-0

Straining ratio (e)

Figure 4.24 Comparison of the proposed Prediction of
Unloading Modulus of Elasticity with Karsan

and Jersa(60) Formula. Note: the straining
ratio e’ refers to the unloading point on the

envelope curve
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4.6.7 Proposed Incremental Stress-strain Relationship

In a non-linear elastoplastic but monotonic and
proportional loading the principal directions are
consistent. Under such loading the incremental stress-
strain relation matrix [Dt], can be formed using Eq 4.39 and
including the terms for shear stresses and strains and also
the incremental values of modulus of elasticity and
poisson’s ratios as follows:

For biaxial loading and in the principal

directions of stress Eq 4.39 becomes:

. - o - -
do1 1/¢ v-12/9¢ 0 de1
do2 | = Et |v12/¢ 1/¢ 0 de2 (4.73)
1
dt12 0 o] dY12
L L 2(1+v-12)] L
¢=1-v, 2

and for multiaxial loading and in the principal directions

of stress leads to:

g
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[ do1 [D11 D12 D13 0 O O deyg |
dc2 D22 D23 O 0 0 de2
do3 D33 O 0 0 .d£3
= (4.74)
dr12 Dgg O O dyi12
dt23 Dss O dy23
Symmetry
d31 De6 | [dy31
b o o " B -



where:

D11 = (1-v-232)/¢ D33 = (1-v-122)/9

D12 = (V31y23+v'12)/¢ D44 = Et/[2(1+v-12)]
D13 = (V12v-23+v-31)/¢ D55 = Et/[2(14v-23)]
D22 = (1-v-312)/¢ Dg6 = Et/[2(1+v-31)]

D23 (v-12v-31+v-23) /9

2 2 2
¢ = [1-v-12-v-23-V:31-2Vv-12V-23V-31]/Et

The incremental poisson’s ratios, V12, V23, V31, are given
by Egs 4.64 and 4.65. Et denotes the incremental modulus
shown in Figs 4.17 and 4.23. Et can be calculated by
differentiation of the stress against strain using Eqgs 4.44

to 4.47. i.e,

doi

Et
d€ju

When the material is subjected to unloading or
reloading (Line EP on Fig 4.23), behaves in an isotropic and

elastic manner as described in section 4.6.6, i.e:

Et = Eul

Ve = V0

Eyl is calculated as described in section 4.6.6 and VQ
denotes the initial tangent poisson’s ratio which is uniform
in all directions. The tangent elasticity matrix, [Dt], for
unloading and reloading can be adapted from Egs 4.150 and

4.151 for plane stress and 3-D loading respectively with
replacing Eg by Eqy1.
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[Dt] may be transformed into the global
coordinates as follows:
[Dt] = [TI1T[Dt][T] (4.75)
(Global) (Principal)
where [T] denotes the strain transformation matrix which

transforms the strains from the global co-ordinates to the

principal directions as follows:

{de} = [T] {d&} (4.76)
Global 0 Principal

0 is the angle from the principal directions to the global
co-ordinates measured anticlockwise.
The transformation matrix [T] for plane stress

problems is written(39) as:

[ cos26 sinZ20 SinBCosb

[T] = | Sin2f Cos26 -SinfCosh (4.77)

_-ZSinGCose 2SinfCos6 Cos20-sin20

This matrix for 3-D problems when the old and the new out of

plane coordinate directions coincide, becomes;

Cos20 Sin20 0 Sin6BCosH 0 0 |
sinZ20 Cos20 0 -Sin6Cosb 0 0
0 0 1 0 0 0
[T] = (4.78)
-25inHCosH 2SinbCosO 0 Cos20-Sin20 0 0
0 0 0 0 CosO -Sinf
0 0 0 0 Sinf® Coso
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Based on the proposed model, when the material is
subjected to unloading or reloading the transformed [Dt]
becomes identical to the original one because the poisson’s
ratio is uniform in all directions and no variation in the

mechanical properties can be imagined for changing the

coordinate directios.

4.7 Non-proportional _Loading
4.7.1 Stress-strain _Relationship

The model described in sections 4.6.1 to 4.6.7 is

proposed for proportional loading. But the behaviour and
deformation of an infilled frame are associated with some
discontinuities and non-proportionalities as a result of

lack of fit, plasticity and also the following events:

-occurrence of plastic hinges in frame members.

-shear failure or slip at joints
-cracking in either frame or infill materials.

-local crushing especially at the loaded corners of panel

These events induce some stress redistributions

which are not necessarily proportional to the current

stresses. As a result, the principal directions may rotate
and in some regions the material may be subject to unloading

while the external loads have not changed.

In order to account for such non-proportional
changes, the following approach has been employed to

determine the true path in the stress-strain co-ordinate

system,
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Assume a particle subjected to a set of multiaxial
strains and stresses represented by point E1 on the most
compressive stress-EUS envelope curve shown in Fig 4.25.

When this particle is further loaded on line E1R up to the

new strain and stress levels, point R, such a load increment

might not be proportional to the previous one. Therefore it

is convenient to assume that the particle is, first,

unloaded down to the zero stress level, line EjP In this

unloading, the material behaves in a purely elastic and

linear manner as described in section 4.6.6. The plastic

equivalent uniaxial strain, O1P, and the modulus of

elasticity of the material Ey], remain unchanged.

Now the effective equivalent uniaxial strains, Eye

(PR’ in Fig 4.25), can be calculated using the total and the

residual plastic strains, {ep} (O1P in fig 4.25), from

Eq 4.42 as follows:

4
E1”—-+C1=“Qld
|
\‘R C2 I
»n E | '\\\ke‘v
s ok : , ; >
& 7/
y / | | [
/ Lo |
/ | [ |
e 1
/ |
iy /1 Loy !
/ | :
/ Lo I
/ ! .| I
/ JR ) I -
ol 6, P 8iu 8iut:

Equivalent uniaxial strain

Figure 4.25 Proposed Model for Non-proportional Triaxial
Load Increment
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{eue} = [CI171{e - ep} (4.79)

Where [C] involves the secant Poisson’s ratios discussed in
Section 4.6.2.

The effective EUS values permit the new stress
proportions to be calculated and the new stress-EUS envelope
curve, O2E2C2, to be drawn such that the unloading line

(corresponding to the current unloading modulus, Eyl or E2P

in Fig 4.25) matches the unloading line of the old envelope

curve, E1P. This permits the material to be reloaded on the
unloading line up to point E2 on the new envelope curve

while undergoing the new stress proportions.

The loading is further continued with the same
stress proportion as that of the reloading up to point R

where the total effective EUS is met.

Poisson’s Ratios under Non-proportional Loading

4.7.2

The Secant Poisson’s ratios can be calculated from

Eq 4.63 which involves an integration. The integral must be

carried out over the whole path of the stress-EUS curve. As

shown in Fig 4.25, a non-proportional loading can be

converted into a linear elastic branch, line PE2, with a

constant tangential poisson’s ratio equal to the initial

poisson’s ratio, vo, and a non-linear elastoplastic branch,

curve E2R, with variable poisson’s ratio as given by

Egs 4.64 and 4.65. For the case when er is less than unity

the integral can be split into the linear and non-linear

parts. 1ie;

- 173 -



eE eR
1
Vij = — [ﬁode +/;ijde] (4.80)
eRrR
0 eE

Substituting for v-ij4 from Eq 4.64 and executing
J

the integrals leads to:
Vij = vo[l + kfjj (eRn-eE (n'*'l)/eR)] (4.81)

The k and FiJ values are given in section 4.6.5.

4,7.3 Proposed Incremental Stress-strain Relationship
for Non-proportional ILoad Increment

As shown in Fig 4.25 the stress and strain

increments follow the path E1R which is neither tangent to

the old nor to the new envelope curves. An accurately

derived incremental stress-strain relationship has not been’

attempted by the author, but numerical examination of some

practical examples showed that the proportional incremental
stress-strain relationship developed in section 4.6.7 can
successfully be used in the practical examples whose
orientation of principal directions and principal stress

proportions remain nearly consistent in two successive load

increments. If however, such a solution is not successful

for some reason, the unloading elasticity matrix, [Dt],

formed by the overestimated values for stiffness as

leads to a

discussed in Section 4.6.7 i.e Et = Eyl and v-=vp,

secured but rather slow convergence.
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4.8 Cracking and Cracked Materials
4.8.1 Cracking

Cracking of concrete material is generally modeled

by a linear-elastic fracture relationship, Fig 4.1. Two
fracture criteria are commonly used, the maximum principal-
stress criterion and the maximum principal-strain criterion,
Fig 4.26. When a principal stress or strain exceeds its
limiting value, a crack is assumed to occur in a plane

normal to the direction of the offending principal stress or
strain. A more elaborate and realistic criterion is the
proposed strength criterion based on the results of Kupfer

et al(53) described in section 4.5. The proposed criterion

is compared with the two fracture criteria in Fig 4.26.
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figure 4.26 Different Fracture Criteria for Concrete in
Tension

- 175 -



According to the experiment of Kupfer et al(55), at the
biaxial failure surfacé, when the absolute value of the
;atio of tensile to compressive principal stresses exceeds
approximately 1/15, the mode of failure is tension cut off
at.the peak stress. Otherwise the material fails by a
gradual crushing. 1In this project, the above specified
tensile/compressive stress ratio, 1/15, was generalized to
multiaxial loading as the transition between the tensile and
compressive failure modes while the effect of intermediate

principal stress on this transition was ignored.

4.8.2 Cracked Material

Once a crack has formed, it is generally assumed

that no tensile stress can be supported across the crack.
However, material parallel to the crack is still capable of
carrying stress according to the uniaxial or biaxial
conditions prevailing parallel to the crack. On increased
loading, further cracks are allowed to occur.

In reinforced concrete cracks are more frequent
and therefore, the crack width is less than in unreinforced
concrete, The following effects proved to have a major

influence on the behaviour of a cracked reinforced concrete

element (39) .

i) tensile stiffening

(1

=-

i) aggregate interlock

iii) dowel action
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The tensile stiffening effect is usually accounted
for indirectly as follows:
a) By assuming that-the loss of tensile strength in
concrete appears gradually.

b) By increasing the stiffness of steel.

The former choice was first introduced by Scanlon(67)as
shown in pjg 4.10 and is more popular, but the latter choice
seems to be more convenient for infilled frame structures
composed of different materials, including concrete blocks
and mortar which are not necessarily reinforced and for
which the Scanlon model may lead to unrealistic results.

The aggregate interlock is usually accounted for
by assuming a perfect or partial shearing stiffness for
crack surfaces(39), 1In this project, however, the
interlocking behaviour is accounted for by a proposed new
approach to crack modeling given in the following sections.

The dowelling action effect is either ignored or
allowed for by increasing the shearing stiffness at crack
surfaces.

Cracks in a cracked material may close and open
again in later stages of the loading. Opening and closing
of cracks is measured by crack strain, €cr, which is assumed
to be distributed uniformly within the material. 1In the
following sections the mechanical behaviour of a cracked
naEerial is modeled for plane stress condition.

This model also deals with double sets of cracks in

jifferent orientations.
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4.8.3 Proposed Slip-dilatancy Crack Model
4.8.3.1 General _Concept

Consider a particle of brittle material under

5iaxial stresses loaded to failure. When the criteria
outlined in section 4.8.1 are met, the material fails in a
tensile manner i.e. the particle would crack through one or
more planes perpendicular to the most tensile principal
stress direction, Fig 4.27(a). The surface of such cracks
within the material is irregular and rough, Fig 4.27(b).

If normal stress across the crack is constant, any
relative tangential displacement, s, or slip, between the
opposite surfaces of the crack, is always accompanied by a
relative normal displacement, w, or crack width. This is
called "crack dilatancy". Based on this phenomenon the
shape of the crack surface may be idealized as a regular
trapezoidal shape as shown in Fig 4.27(c) with a dilatancy

angle of o where:

w
B=Tano = — (4.82)
s

denotes the dilatancy ratio. The value of P can be adjusted
by changing the angle a in order to agree with the
experiments on the material in question.

A crack may either be closed, interlocked or open
asishown in Fig 4.27. The state of the crack can be
de?ermined as described in Sections 4.8.3.3 to 4.8.3.5. The

following section deals with the stress-strain relationship

of a cracked material under plane stress conditions.
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4.8.3.2 Stress-strain _Relationship for Cracked Materials

under Plane-stress Conditions

Consider the cracked element shown in Fig 4.27(a).

The effective strains are the source of the biaxial

stresses. The effective strains can be obtained by excluding

a)the residual strains resulting from shrinkage,

temperature effect and plasticity of the material and,

b)the crack strains resulting from crack opening or crack

interlocking.

The procedure is, therefore, to exclude the strain of group

(a) from the total strains, and then to transform them into

the crack directions, x’ and y’, as shown in Fig 4.27(a).

The effective strains vector, €, may then be calculated as

follows:

———— g

AN

: (d) (e)

(f)

Figure 4.27 Crack Modelling; (a) orientation, (b) geometry,
(c) idealization of the crack geometry,
(d) interlocked crack (+ve shear),
(e) interlocked crack (-ve shear) and (f) open
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Ex’a = &x’ (4.83)

Ey’e = Ey’- Esp (4.84)

(4.85)

'Yxryl ‘Yxryr- €gl

whgre €g]1 and €sp are the strain-equivalent values for the

tangential and normal relative displacements respectively at

the crack surfaces where:

€s1 = s/dcr (slip strain) (4.86)

Esp = w/dcr (separation strain) (4.87)

and der denotes the cracks spacing.

Now the secant stress-strain relation can be

written as:

{c} = [Dl{¢e}

where: -
b \Y 0
E
[D] = \Y 1 0
1-v2
0 0 (1-v)/2

and v signifies the Poisson’s ratio derived for principal
directions of stress. [D] is independent of co-ordinate
directions because its transformed terms are identical to
its original terms. Therefore the secant stress-strain

relation in crack directions can be written as:

i ro'xr ] rl \Y (0} ] rex’ i
# E
O'y’ = Vv 1 0 EY'-ssp (4.88)
1-v2
|txr g | 0 0 (1-v)/2]|Vx'y’ -€s1]
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Esp and €gl are to be calculated as described in the

following sections.

4.8.3.3 Material with Open Cracks

When cracks are open, the shear and normal

stresses, Oy’ and X'y’ equal zero. Setting these in

Eq 4.88 gives:

ESP = Sy’ + VEx’ (4.89)
€sl = Yx'y’ (4.90)
As can be seen from Fig 4.27 the geometry of the crack
interface requires that for an open crack;
w
— > B (4.91)
Isl|
combining the above with Egs 4.86 and 4.87 gives:
Esp
lesll = < (4.92)
p

Substituting for €sp and €sl from Eqs 4.89 and 4.90 into

Eq 4.92 leads to the necessary and sufficient condition for

an open-cracked material expressed as follows:

Y+ VvXK>P (4.93)
where:
Ex’ Ey’
X= =——— and Y¥s — — (4.94)
1Y%’ y’ | 1<’y |

When cracks are open the separation and slip stwin can be

calculated from Egqs 4.89 and 4.90 respectively.
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4.8.3.4 Material with Closed Cracks

When cracks are closed, no relative displacement

prevails at the crack surfaces i.e: s =w=0. It may,

thus, be concluded from Egs 4.86 and 4.87 that €gl=€sp= 0.
The frictional resistance at a crack may be
assumed to be mainly due to the geometry of the surface,
which was idealized as a trapezoidal shape in Fig 4.27 (c).
Therefore the surface friction over the parts of the crack
surface in contact, may be ignored and it may be assumed

that the forces are transferred normal to these parts as

shown in Fig 4.27(d) or 4.27(e). The above assumptions lead

to the conclusion that should a crack remains closed, the

following inequality must be satisfied:

ITx’y’ | < -Boy’ (4.95)

Substituting for oy’ and Tx’y’ from Eq 4.88 (while equating
€sl and €sp to zero) into Eq 4.95, leads to:

l1-v

2p

(4.96)

Y+ vwX< -

which is the necessary and sufficient condition to ensure

the cracks are closed.

4.8.3.5  Material with Interlocked Cracks
When neither of the conditions of Eq 4.93 and 4.96

are, satisfied, the cracks are interlocked. The interactive

forces, are therefore transferred normal to the surfaces in .

<

contact as shown in Fig 4.27(d) and (e) and the following

relations can be derived:

- 182 -



ITx’y’ | = -Boy’ (4.97)

lesll= _Esp/ﬁ (4.98)

Substituting the normal and shear stresses, Oy’ and Tx'y’,
from Eq 4.88 into Eq 4.97 and combining with Eq 4.98 leads

to the separation and slip strains as follows:

B [(1-v) 17x/y7 | + 2B (vexs+ey’)]

€gp = (4.99)
1-v+2p2
and,
R
€gl = — esp (4.100)
where: R=17Yery' /lYx'y’| (4.101)

The criteria outlined in sections 4.8.3.2 to

4,8.3.4 are represented in Fig 4.28, where the strain space

is divided into three zones each associated with either

states of open, interlocked or closed cracks. A cracked

material may develop another set of cracks. This is
discussed in section 4.8.5
4.8.4 Proposed Incremental Stress-strain Relationship

for Cracked Materials

As described in Section 4.8.3.1 a cracked material

may have open, interlocked or closed cracks. When cracks

are closed the incremental stress-strain relationship can be
established as for a non-cracked material as discussed in
section 4.6.7. When cracks are open the material is under

uniaxial stress parallel to the cracks. Therefore the

stress-strain relation can be written as:
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{do} = [Dt]{de} (4.102)

where:
) 0

[Dt] =Et (0 0 O (4.103)

Et is the tangent modulus of the material described in

section 4.3.1. [Dt] must be transformed into the global

co-ordinates, x and y, using Eq 4.75.

When cracks are interlocked the elasticity matrix

may be derived taking into account the relative

displacements at the interlocking interfaces. The

mathematical work has been avoided by adopting the [Dt]

matrix derived by Bazant et al(73) for a cracked material

with interlocked cracks.
This [Dt] matrix is a nonsymmetric matrix

involving the co-efficient of friction, k, and dilatancy

The author’s proposed model requires that K=f.

ratio, B.
This condition causes the Bazant et al [Dt] matrix to become

symmetric. This is given below in a different format and

notations so as to match the notation used in this text:

[1+42B2/ (1-v) v -Rvp
Et
[De] = — v 1 -RB (4.104)
¢
| -RvVB -Rf p2

where: :
¢ = 1-v2+2B2/(1-v) and R=1Yxy' /lYx’y’ |
Note that the first and second rows and columns of the
Bazant et al proposed [Dt] matrix had to be interchanged to

correspond to the proposed crack directions. The proposed
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[D¢] matrix can be transformed into global co-ordinate
directions using Eq 4.75. Fig 4.29 compares the actual K
and p values(76) and the proposed approximation based on

K=f For two different normal stress levels.

Figure 4.28 Possible States of a Single Cracked material.
Note: The diagram is plotted for v=0.2 and B=1.5,
O=open, I=interlocked and C=closed
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Figure 4.29 Determination of One Co-efficient for Both
Crack Dilatancy, P , and Crack Friction, K ,
for Different Normal Stress Levels
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4.8.5 Proposed Model for Double Sets of Cracks
4.8.5.1 General Concept and Definitions

While the primary cracks of a material in a plane
stress structure are either closed or interlocked, the
maferial is subjected to biaxial stresses and another set of
cracks may develop normal to the most tensile principal
stress direction provided that the criteria of tensile
failure outlined in section 4.5 are violated.

As shown in Fig 4.30 the new cracks may develop at
an angle Y2 to the first crack set where -m/2<y2<mn/2 .

As the surface of the new cracks are rough, the same model
as proposed for the first crack set described in section
4.8.3 could also be applied for the new crack set. But
since these lately developed secondary cracks are less
likely to become interlocked they may for simplicity be
assumed smooth or frictionless while separated and perfectly
rough while closed. These cracks hereinafter will be called
minor cracks. The minor cracks can be either open or closed
only. The six major and minor crack state combinations
shown in Table 4.1 are thus the only possible major and
minor crack state combinations. These will be discussed in
the following sections.

Note that a more sophisticated model permitting
the minor cracks to become interlocked will improve the
meihod and may accommodate a faster convergence. Such a

cohplicated model was not attempted by the author.
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Figure 4.30 Double Cracked Material

Table 4.1 The Possible Major and Minor Crack
State Combinations

Major Cracks Minor Cracks Code
1 Open Open 00
2 Open Closed oC
3 Interlocked Open I0
4 Interlockeq Closed IC
5 Closed Open CO
6 Closed Closed cC

4.8.5.2 Material with Closed Minor Cracks

When the minor cracks are closed the same

procedure as for single cracked materials described in
Section 4.8.3 can be applied to determine the state of the
major cracks. While examining the major cracks the normal
stress at minor cracks must also be examined to see whether
it is compressive, ie. contact at the minor cracks

!s secured. The rest of this section, therefore, deals with

development of the criteria to ensure Oy" < 0. The
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effective strains in major crack directions (x’ and y’) can
be transformed into the minor crack directions (x" and y")
using the transformation matrix of Eq 4.77 as follows:

{€e} = [T] {€el} (4.105)
(X",Y") ;Yz (xI,yl)

where Y2 denotes the angle of minor to major crack
directions and {€e}(x’,y’) is given by Eq 4.83 to 4.85.

The secant stress-effective strain relationship in
minor crack directions can be worked out by the same
procedure as was used to derive Eq 4.88 as follows:

{c} = [D] {€e} (4.106)
(x",y")

Where [D] (x",y") is given by Eq 4.88. Substituting for

{€e} (x",y") from Eq 4.105 into Eq 4.106 leads to:

{c} = [D] [T] {ce} (4.107)
(X", y™") (x",¥y") 72 (x’",y")

From Eq 4.107, Oy" can, now, be written in terms of the
effective strains as follows:
oy" =¢2BK2+V)exr+(1+vK2)(ey'-esp)-K(l'V)(Yx’y"ﬁslﬂ (4.108)

Where 62 = E/ [(1-v2) (14K2)]

and K

Tany2

The value of Oy" can now be determined for various major

crack states as follows:
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a) Major cracks open:

Osp and Ogl must, therefore, be substituted from

Eq 4.89 and 4.90 respectively into Eq 4.108 to give:

K2
o'yn = =——— Efx’
1+K2
or: Oy" = ¢38x’ (4.109)
where:
K2
¢3 = E
1+K2

b) Major cracks closed:

esp and €s1 are both zero and Eq 4.108 becomes:

Oy" = ¢2[(K2+v)exr+(1+vK2)eyr-K(1-v)Yx'y'] (4.110)

c) Major cracks interlocked:
esp and €sgl should be substituted from Eq 4.99 and

4.100 into Eq 4.108 to give oOyv.

Fig 4.31 gives a graphical representation for the
criteria established to determine the state of cracks of a
double cracked material within a normalized strain space

defined by:

X = gxrjlyx:yl| and Y = gyyll'yxryll
Fi§ 4.31(a) is for the case when Y2 = -45 and Fig 4.31(b) is
for Y2 = +45. The thick solid line in each graph indicates

the transition between the states of closed and open minor

cracks as discussed in this section.
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When minor cracks are closed the separation and
slip strains can be calculated from Egs 4.89 and 4.90 or
Egs 4.99 and 4.100 when the major cracks are open or

interlocked respectively.

4.8.5.3 Materials with Open Minor Cracks

As proposed in section 4.8.5.1 the minor cracks

are assumed to be rough when they are closed and perfectly

smooth when they are open.

At an open minor crack, stresses are as follows:

Ox" = ngue
oy" = 0 (4.111)
'txnyu =0

where €x"g denotes the effective strain parallel to the
minor cracks which is independent of the separation and slip
strains of these cracks. &xg can be calculated in terms of
effective strains in the major crack directions using the

transformation matrix given by Eq 4.77 as follows:

Ex"g = CoszYzex'e + Sinz'YzeY'e + Sin‘yzCos‘yzyx'y'e (4.112)

The only non-zero stress component, OGx", may be transformed

into major crack directions as follows:

ox’ = Cos2Y2 (Eex"e)
Oy’ = Sin2Y2 (Eex"e) (4.113)
Tx’y’ = Siny2CosY2 (Etx"e)

Having derived these stress components the state
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of the major cracks can thence be verified as described

below:

a) Major cracks interlocked (IO):
From Eq 4.97 the necessary condition for

equilibrium of stresses at major cracks can be written as:
RTx’y’ = -Boy’ (4.114)

Substituting for 1tx’y’ and Oy’ from Eq 4.113 leads to:
R
K = Tany2 = = —— (4.115)
B

Eq 4.115 is the only condition for an open-minor-crack
material to become interlocked at its major cracks. This
condition is independent of the effective strains, but it
depends on the angle of the minor cracks to the major ones,
Y2. Any arbitrary major crack separation strain,esp, leads
to a unique €xe" which is the only non-zero stress
component. This will be further verified below.

We may define an arbitrary major crack separation
strain, €sp, and its corresponding slip strain, €g1, and

write Eq 4.112 in terms of the total strains as follows:
Ex"e = Cos2Yoexs + SinzYz(eyr-ssp) + Siny2CosY2 (yYx’y’ -€sl)

Substituting for €s1 as given by Eq 4.100 leads to:

-~
(2

Ex"e = cOszYzexr + Sin272€y’ + Sin'ychS'YZ’Yx'yl

-es1(sin2Y2 + (R/P)Siny2Cosy2)
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Substituting the value of R/P from Eq 4.115, the 4th term of
the above equation vanishes showing that the values of major
crack strains do not affect the value of ex"e and
subsequently the values of the stresses of Eq 4.113 have no
influence on Exvg.

The above conclusion proves that the state of
interlocked-open, IO, may occur only when the angle of minor
to major cracks takes a certain value given by Eq 4.115 and
it is only a mechanism by which material can alter from IO
to CO state without any influence on the existing stresses.

Therefore the I0 state may be substituted by its alternative

state, CO, without any harming effect.

b) Major cracks closed (CO):

When the stress normal to the major cracks is
compressive, the state of these cracks is either interlocked
or closed. Since with open minor cracks any interlocked
major cracks can alter into closed major cracks, as
discussed in the preceding subsection, the condition of
Oy’<0 is the necessary and sufficient condition in an open-
minor-crack material for its major cracks remain closed.

Considering Eq 4.113, such a condition can be written as:
Ex"e < O (4.116)

Si@ce major cracks are closed, €x"e=€x" and the above

condition can be written as:

ex" < 0 (4.117)
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Using the transformation matrix of Eq 4.87, Eq 4.117 can be

written in terms of the major crack direction strains as:

Cos2Yoex’ + Sinzyésy' + Siny2Cosy2yx’y’ < O

or:

1 1
—Ex’ + Eyr + ——-‘Yxlyl <0 (4.118)
K2 K

Eq 4.118 is the necessary and sufficient condition for an
open-minor—-crack material to have closed major cracks.
The minor crack separation and slip strains, €sp2

and €g12, may now be calculated. Allowing for zero stresses

at minor cracks, Eq 4.106 leads to:

vex" + (gyn—gspz) =0
(4.119)

'yx"y" - €g12 =0

The values of the total strains in minor crack directions
can be written in terms of the strains in the major crack

directions using the transformation matrix of Eq 4.371 as

follows:

{€} = [T] {e} (4.120)
(x",y") 2 (x'y’)

Substituting for {€}(x"y") from Eq 4.120 into Eq 4.119 and

solving for €g12 and €gp2 leads to:

-
-

1

Eisp2 =

BV+K2)£x' + (VK2+1)eyr —K(I-V)Yx’yil (4.121)
1+K2
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1

€g12 = [2K(8y"-8x') + (1—K2)’Yx'y'] (4.122)

1+K2

Cc) Major cracks open (OO):
A material with open minor cracks may also have

open major cracks. The double crack combination states are

graphically represented in Fig 4.31.

4.8.6 Proposed Incremental Stress-strain Relationship
for Double Cracked Materials

The incremental stress-strain relationship of a

double cracked material can be determined using a similar

approach to that given in Section 4.8.4 as follows:

a)Either major or minor cracks open (OC or CO):
[D¢] must be taken the same as in Eq 4.103, but it must
be written for the directions of the open cracks.
b) The both crack sets open (00):
The material has no stiffness; [Dg] = 0.
c) Interlocked-closed (IC):
[Dt] is to be formed as given by Eq 4.104

d)Closed-closed (CC):

[Dt] is to be formed as if no crack exists.

The above calculated [Dt] must be transformed into the

global co-ordinates using Eq 4.75.
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(b) ¥ =45, 9=02, A=1s5

Figure 4.31 Possible States of Double Crack
Note: O=open, I=interlocked and C=closeq
Note: CO (closed-open state) is not valid for (b)

ed Materials.

above
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4.9 Constitutive Formulation for Steel
4.9.1 General Characteristics of Steel

The general characteristics of steel are described
in the standard text books, eg. Chen(39), only a brief
description is given here in order to establish the basis
and notations upon which the constitutive formulation for
steel is structured.

Fig 4.32 shows some typical stress-strain curves
for different qualities of steel. The stress-strain curves
for steel grades 40, 50 and 60 which are normally used in
steel structures, are characterized normally by the
following general features:

i) An initial linear-elastic part up to (Oy, &y);
ii) a yield plateau from &y to €st (the typical ratio of
Est/ey is 8 to 15),
iii) a strain-hardening part from €gt to the ultimate
strain, €&y, then a strain softening part (eu to €f),
iv) an ultimate strength of 1.55 times the yield strength,

As the strength of the steel increases, its
capacity for inelastic deformation, or ductility decreases.
As shown in Fig 4.32, for grade 75 and higher the yield
plateau in the stress-strain curve disappears.

The stress-strain curves for steel are generally
assumed to be identical in tension and compression. The
st?ess—strain relationship for steel subjected to unloading
ang reloading is approximately linear-elastic with a
st}ffness equal to the initial modulus of elasticity of

steel, Fig 4.32 (b).
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figure 4.32 Stress-strain Curves for Steel (after Chen(39));
(a) typical curves for reinforcement under
monotonic loading and (b) typical curves for
cyclic loading
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49.2 Proposed Model for Stress-Strain Relationship of
Steel Material under Uniaxial Stress

The uniaxial stress-strain relationship of steel
is normally simplified into a multilinear model which can be
adﬂusted to suit the experimental results. This is
typically shown in Fig 4.32(a).

In this project a trilinear elastic-work hardening
plasticity fracture model defined in section 4.2 is
proposed. Fig 4.33(a) illustrates the model in more detail.
As shown it is well adjustable to the experimental results
of high strength steel bars normally used in RC elements.

If however the steel material is of a low grade, the work
hardening plasticity of the model, line AB in Fig 4.33(b),
can be eliminated such that the horizontal part of the
model, line BC, represents the plateau normally occurring
immediately after the yield point, point A. Such a model,
thus, is a-‘linear-elastic perfect-plastic model which has
already been introduced in section 4.2. 1Initially the
unloading and reloading stress-strain curves are straight
lines with slope equal to the initial modulus of the
material so as to satisfy the typical steel behaviour,

Fig 4.32(b). As the material is loaded beyond the yield
point, Point A in Fig 4.33(b), it gains plastic strain
such that after a full unloading to the zero stress the
ref:sidual strain, would be considered as the total plastic
'st;rain gained during the preceding loading and unloading.
The new yield point is thus the point at which strain

unloading has started (point R in Fig 4.33) and the new
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stress-strain curve is PRC in the bilinear model and PRBC in

the trilinear model as shown in Fig 4.33(a) and 4.33(b)

respectively.
4.9.3 Failure Criteria of Steel

Strength of steel material under multiaxial
stresses is different from the uniaxial strength normally
recorded by standard tests. As discussed in section 4.5.1
Von Mises and Tresca yield criteria are well verified in
metal plasticity. The graphical representation of these
yield surfaces are given in Fig 4.11 in 3-D space. In this
project the popular Von Mises yield criterion is used. The

general form of this criterion is given as:
f = 3J2 = Oy2 (4.123)

where J2 is defined as the second invariant of the

deviatoric stress tensor and is given(39) as follows:

2 2 2 2 2 2
2= | ]

(ox-Oy) + (Oy-0z) + (0z-Ox) +1xy +Tyz +7zx

o | w

(4.124)

For plane stress problems the Von Mises criterion becomes:

2 2 2 2
f = Ox + Oy - OxOy + 3txy = Oy (global) (4.125)
and
. 2 2 2
- f = 01 + 02 - 0102 = Oy (principal) (4.126)

This elliptic biaxial yield criterion is plotted in Fig 4.34
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494 Stress-strain _Relationship of Ductile Material

4.9.4.1 Definitions and Basis of Elastic-Perfect
Plasticity _Theory

The uniaxial stress-strain relation discussed in

section 4.9.2 led to a linear elastic-Perfect plasticity

fracture model as shown in Fig 4.33. A similar model may be

adopted for multiaxially loaded material. The general

behaviour under a complex stress state can be defined by the

following statements (39),

The material is elastic until it reaches the yield

limit i.e, until a function of the stress components reaches

a certain value. This is known as the yield function, yield

surface or yield criterion. Such a function, as discussed

in section 4.5.1, is generally given as follows:

£(0ij) =K (4.127)
In the Von Mises criterion the yield surface is given as:

floj5)=4/372 = oy

or

1
floj; )= 92 = —oy? = &2 (4.128)
3
Then plastic deformation takes place without
limit. For the plastic flow to continue, the state of

stress must remain on the yield surface. This is known as

the criterion for loading or consistency condition(39)

of

df = doij = 0 (4.129)

O 0ij
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This flow strain is permanent; i.e. it remains
when the stresses are removed or when the stress intensity
drops below the yield value. This is known as the criterion

for unloading algebraically expressed as:

DE

90ij

dcij < 0 (4.130)

In general the yield function, Eq 4.128, represents a six
dimensional stress space. Only a 2-D representation of this
function is shown in Fig. 4.34. The stress point cannot go
outside the yield surface and plastic flow occurs when the
stress point is on the yield surface and the additional

loading dojj must lie in the tangent plane as shown in

Fig 4.34.

It is not obvious whether there exists a necessary
connection between £ and the plastic strain-increment vector
deij(p) - In general, we can introduce the concept of
plastic-potential function g(0ij), which enables us to write

the equations of plastic flow in the form

g
2 (4.131)

deij(p) = d)
00ij

Where d)\is a positive scalar factor of proportionality.
It is normally acceptable in metal plasticity to
assume that the yield function and plastic potential

coincide; i.e. £ = g. Thus,

of

30ij

(4.132)

deij(p) = dA
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and plastic flow develops along the normal to the yield

surface. Relation 4.132 is called the associated flow

rule (39) .

4.9.4.2  Stress-Strain Relationship under Multiaxial Stress

Conditions

Based on the particulars of the elastic-perfect
plasticity theory outlined in Section 4.9.4.1, the overall
stress~-strain relation has been developed as follows:

When a particle of a ductile material is loaded to
the yield surface, it is actually forced to a new strain

level which includes plastic strains such that:

{e} = {ee} + {ep} + {Aep} (4.133)

where {€} and {€e} denote the total elastoplastic strain and
the total elastic strain vector respectively. {gp}
signifies the accumulated plastic strain vector not
including the plastic strains, {Aep}, achieved during the
current load increment.

The stresses are directly related to the elastic
strains as given in Eq 4.73 or 4.74 for 2 and 3 dimensional

stress space respectively. These relations may generally be

written as:

{oc} = [Del{etel

{ee} = [Nel{o} (4.134)

The secant form of the elasticity matrix, [Del, and its
inverse matrix, [Nel, are formed by the elastic poisson’s

ratio vg and the initial tangent elasticity modulus, EQ.
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Substituting for {€g} from Eq 4.134 into Eq 4.133 leads to:
{e’} = {e-gp} = [N]{o} + {Aep} (4.135)
A stress-strain relation may be established from
Eq 4.135 only when {Aep} can be related to the current

stress vector {6}. This may be achieved by writing Eq 4.132

for the Von Mises yield criterion as follows:

£ =J2 ; as given by Eq 4.128

292

Aeij(p) = Alb

Substituting for J2 from Eq 4.124 leads to:
Aeij(p) = A\sij
where sjij denotes the deviatoric stresses. For principal

directions, the above relation leads to:

Ag ;M= AX(Gi-Om) (4.136)

where Op is the hydrostatic stress defined as:

1
Om = — (01+02+03) (4.137)
3
Substituting for om from Egs 4.137, Eq 4.136 can be written

in matrix form as:

2 -1 -1
1
{Aep} = —A)X]-1 2 -1 ({o} (4.138)
3
-1 -1 2
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or
{Aep} = [C]{o} (4.139)

Substituting for {Aep} from Eq 4.139 into Eq 4.135, for
principal directions, leads to:
{¢’} = [N+C]{c} (4.140)

Solution of Eq 4.140 leads to the elastoplastic secant

stress-strain relation as follows:

{c} = [Depl{e’} (4.141)
where
a b b
Eo
[Dep] =— | Db a b
b b a
¢ = (1-2vQ) (1+vo+EQAQ)
a = (1/3)EgAN+1-vg
b = (1/3)EoAl+vo
Combining Eq 4.141 and the yield function, Eq 4.128, and
solving for AA leads to:
1 1+v
AX = \/[(51"52')2"'(82"53')2+(83'—81')2] - (4.142)
EQ

Y20y

where {€’} denotes the effective strain defined as given in
Eq 4.135. When A\ becomes negative or zero, it indicates
that no plastic flow has taken place. In such a case the
value of A} must be taken as zero and [Dep] (Eq 4.141)
reduces to the standard elastic matrix, [D], Eq 4.74.

The above model of plasticity based on the

Von Mises yield criterion and its associated flow rule is
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known as the Prandtl-Reuss material which is the most widely
used model (39)

Eq 4.136 statesthat:

1) The increment of plastic strains is proportional to
the state of the deviatoric stresses.

2) The principal axes of stress and of plastic strain
increment tensors coincide.

3) No plastic volume change can occur during plastic
flow.

4) The ratios of plastic strain increments in the
different directions are specified, but the actual
magnitudes of the increments are determined by the
magnitude of the actual increment in the work of
plastic deformation dWp. This is simply expressed(39)

as.:

AWp = 0,3 deij(p) = AACijsij = 2ANT2
or:

(2/3)AAcy2

AWp

4.9.4.3  Stress-Strain Relationship for Plane Stress
Loading

The stress-strain relationship for multiaxial

loading derived in section 4.9.4.2 led to Egs 4.141 and

4.142. 1If the structure is subjected to plane stresses; ie:

c3 =0 (4.143)

The principal effective strain in this direction, &3/, is

unknown. €3’ can however be derived by combining Eq 4.143
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and 4.141 leading to:

(v+(1/3) EoA%)(elwez')
e3’ = - (4.144)
1-v+(1/3)EQAA

A\ and €3’ may now be calculated from Eq 4.144 and 4.142

using an iterative numerical method.

4.9.5 Incremental _Stress-Strain Relationship for Ductile
Materials
4.9.5.1 In Elastic State

The incremental stress-strain relation for an

isotropic material loaded within the elastic range can be
formed with the aid of the Hooke’s "Elasticity Law" and use
of "Indicial Notation" convention described by standard text

books (3%), as follows:

doij = K.dskk.Sij + 2G.deij

(4.145)
1 1
dej§ = —— Okk.8ij + sij
9K 2G

The first of the above can be written in the preferable form

d6ij = Dijmn (e) -dfmn (4.146)
where:

Dijmn(e) = 2G.8im.8jn+(K-(2/3)G).8i5.5mn (4.147)

In the above relations, d0ij and demn denote the incremental
stress and strain tensors respectively. deij signifies the

incremental deviatoric strain tensor and Dijmn(e) denotes
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the incremental elasticity matrix [De]. The symbol & is a

special matrix (Kronecker Delta) written as:

1 0 0
d=1{0 1 0 (4.148)
0 0 1

The components of this matrix, 0ij, are unity if i=j and
zero if i=j. The shear and bulk modulus, G and K, are

defined as:

EQ Eo
G = and K= ——ue (4.149)
2 (1+v) 3(1-2v)

The above standard incremental stress-strain matrix for

plane stress condition becomes:

dOox 1 v 0 dex
Eo
doy = \Y 1 0 dey (4.150)
1-#2
dO'xy 0 0 (1-v) /2 d’ny

and for multiaxial stress condition leads to:

- - r
rdcx ra v v 0 0 0 dex
doy a v 0 0 0 dey
doz a 0 0 O deg
= ¢ (4.151)
dey b 0 0 dny
diyz symmetry b 0 dyyz
: 5 dtzx ] i b ] _d‘{zx |
where:
EQ 1-2v
= , a=1-v and b =
(1+v) (1-2v) 2
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4.9.5.2 In Flastoplastic State

When the material has shown some plasticity and

the criterion of loading, Eq 4.129, has been met at the end
of the previous iteration, the material will undergo

elastoplasticity; 1i.e:

{de} = {deg} + {dep} (4.152)

Substituting for {deg} and {dep} from Eq 4.145 and 4.132

respectively leads to:

1 1 df
dej§ = — d6kk.0ij + ——dsij + dA (4.153)
9K 2G 00ij

Combining the above with the consistency condition,

Eq 4.129, and the Von Mises criterion, Eq 4.128 leads to:

G .
doij = K.dexk.0ij + 2G.dejij - —smn.demn 8ij (4.154)

K2

Derivation of Eq 4.154 is given in detail elsewhere (39),

This equation may be written in its preferable form as:

dGij = Dijmn(ep) -d€mn (4.155)

where: Dijmn (ep) = Pijmn(e) + Dijmn(p) (4.156)

Substituting for Dijmn(e) from Eq 4.147 Eq 4.156 leads to:
G

Dijmn(p) = = = Smn.S8ij (4.157)
K2

- 209 -



where K2 is defined by Eq 4.128 and Dijmn(e) denotes the
elasticity matrix given by Eq 4.151. The matrix Dijmn (ep)
is referred to as the elastoplastic constitutive matrix(39).
Notice that if the incremental stresses are
determined in the principal directions, no shear stress
exists in these directions and smn or 8ij is zero for m¥#n or
i#j respectively, indicating that for such cases Dijmn (p) =0

and Eq 4.157 for its non-zero terms, leads to

G
Dijmn(p) = Dim(p) = - ——; Si.sSnm (4.158)
K

where i and m denote the order number of the principal

directions. Therefore Eq 4.156 reduces to:

[Dep] = [De]l + [Dpl] (4.159)
6X6 6x6 3x3
where:
s12  s1s2  s1s3
G
[Dp] = —— |s281 822 8281 : (4.160)
k2
s3s1 s3s2 s32
and
01+02+03
8i = 06i -
3
where k2 = (1/3)0‘y2 and 01,062 and 63 denote the current

principal stresses which satisfy the Von Mises yield
criterion, Eq 4.128. The resultant [Dep] matrix formed for
the principal direction must be transformed into global

coordinates by the transformation rule, Eq 4.75
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4.9.5.3 Under Plane Stresses and in Elastoplastic State

Most of the problems encountered in practice and

research work are concerned with plane stress loading. The
steel frames used in infilled frame construction fall into
this category. When the material in question is subjected

to'plane stresses the following is the only extra condition

to satisfy:

do3 = 0 (4.161)

The elastoplastic constitutive matrix is, thus, a 3 x 3
matrix derived by the author as described below.

The stress components in 3-D principal directions

can be written as:

dol = D11del + Di2de2 + Di3de3 (4.162)
do2 = D21de1 + D22de2 + D23de3 (4.163)
do3 = D31de1; + D32de2 + D33de3 (4.164)

where the terms Dim denote the elastoplastic incremental
stess—-strain matrix terms whereas the "ep" identifier has

been dropped for simplicity.
Combining Eq 4.164 and 4.161 and solving for de3

gives:
D31 D32
de3 = = ——deg - des (4.165)
D33 D33

Substituting de3 from Eq 4.165 into Egs 4.162 and 4.163

leads to:
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D132 D13D23

doy = (D11 - -———-)d£1 + (D12 - )d£2
D33 D33
D23D13 D232

do2 = (D21 - —————-)d£1 + (D22 - )d£2

D33 D33

These relations lead to the plane stress incremental stress-

strain relation matrix as follows:

{do} = [Depl{de}

where:
D11 D12 0
[Depl = | D21 D22 0 (4.166)
0 0 D33
where:,
Di3Dg3
Dig = Dig -
D33
D33 = D44

In these matrices D terms denote the corresponding terms

of 3-D elastoplastic constitutive matrix as per Eq 4.1589.

4.9.6 Stress-Strain Relationship for Reinforcement

Steel bars may be modeled as anisotropic steel
layer or as single bars as described in sections 3.7.2 and
3.7.3 respectively. Since in the both cases the steel
material is under uniaxial stress, the stress-strain
relation matrix becomes;

for horizontally extended bars:
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(Esirsi 0 0
[Dsi] = 0 0 0 (4.167a)
0 0 0
and for vertically extended bars:
0 0 0
[Dgi] = 0 Egirsi 0 (4.167Db)
0 0 0

where Egi and rgi denote the incremental modulus of
elasticity and the ratio of the group i steel bars

respectively, within the integration zone under

consideration. For an inclined group of bars, [Dgil] may be

computed by transforming Eq 4.167a into the appropriate

angle using Eq 4.77.

4.10 Constitutive Formulation for Mechanical Behaviour
of Interfaces and Joints

4.10.1 General
The step by step development of the F.E

representation of interfaces has been discussed in detail in

Chapter 3, leading to the new proposed interface element

described in section 3.10.3. While the geometrical
formulation was accomplished by introducing the proposed

shape functions, the mechanical behaviour of interfaces is

yet to be modelled. This constitutes the following:

i) The criteria under which yielding, slip and/or

separation occur.
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ii) The strain-relative displacement relationship of the
interfaces both for the incremental changes and for

the overall wvalues.

These are discussed in the following sections.

4.10.2 Yielding, Slip and Separation Criteria

The shear strength and behaviour of interfaces and
joints has been studied by mamy investigators(76 to 81)
The shear strength of a bonded interface is generally

considered as comprising:

i) bond shear strength of the interface

ii) the frictional resistance of the interface

The frictional resistance of the interface is
normally calculated as the product of the normal stress ©Op
and the coefficient of friction, H, where | is normally
assumed to be constant for all normal stress levels. These

lead to the "bond shear failure criterion" of the interface

expressed algebraically as follows:

IT] = Obs = MOn
or: (4.168)

RT = Obs — HOn
where R is assigned either +1 or -1 when T is positive or

negative respectively and the sign of On is considered to be

-ve. for compression.

- When the interface is not bonded or it has totally

debonded in the course of loading, the first term in the
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above function vanishes and Eq 4.168 becomes the "slip

criterion” of the-interface written as:

RT = -UOn (4.169)

These criteria (Eq 4.168 and 4.169) are graphically shown in

Fig 4.35 by lines BC and OD respectively.

D, /‘"
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T Y 11/ subse&uent bond shear
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]
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| Ght normal stress (-ve)

Fi@ure 4.35 Criteria for Inelastic Behaviour of an
Interface

- 215 -



When the interface constitutes a thin layer of a
relatively soft material, like mortar in the bed joints of
masonry structures, another effect may become the source of
£he permanent shear displacement by mean of plastic shear
deformation or yielding of the confined joint material.

This has been studied by Page(73) and Hegemier (8l) for the
bed joints of brick and grouted hollow concrete block
masonry respectively. Such a criterion may be idealized by
a straight line (line GE) with U’ slope. As shown in
Fig 4.35 the joint "yielding criterion" can be algebraically

expressed as:

RT = 10 - U'On (4.170)

Fig 4.35 also shows the proposed "bond tensile
failure criterion", represented by line AB to specify the
normal tension and frictional shear stresses causing this
type of failure. The function to represent the bond tensile
failure criterion is, thus, written as:

RT On

+ =1 {(4.171)
Obs Obt

where Obs and Obt denote bond shear and tensile strength of
the interface respectively.
Table 4.2 lists some experimentally recorded

values of the mechanical properties of interfaces and joints

dealt with in practice.
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Table 4.2 Experimental Data for Interfaces,Joints and
Cracks
Type of Interface Bond Strength . Ksru
or joint
Tensile| Shear
Ref| N/mm?2 | N/mm2 | p, p’ N/mm3
Interfaces:
Steel on Concrete 77 0.38 0.65 1500
24 0.41 145
42 0.41 0.65
Mortar on Steel 42 0.44 0.76
Brick on Steel 42 0.5 0.67
Brick on Concrete 42 .02 0.52
Mortar on Concrete 42 0.42 0.54
Concrete on Concrete|42 0.44 0.63
Masonry bed Joints:
Wire Cut Clay 78 0.30 0.50
Solid Sand-lime 78 0.20 0.84
Clay brick 79 0.29 0.19 0.87,0.11} 18.01
(70 = 1.91)
Hollow block 80 0.40 0.52 1.07
(net area)
Hollow grouted block| 81l 0.55 0.55 0.68 1.80
( t0 = 0.70)
Lightweight Block 8 0.15 0.25 0.76
Concrete Cracks 76 53.00
Notes:
KL = slope of the slipping criterion
KB’ = slope of yielding criterion

Ksru = tangential stiffness of the interface after

debonding

[
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4.10.3 Stress-Displacement Relationship of Interfaces
4.10.3.1 General

The general relationship between stresses and
relative displacements of the opposite surfaces of an
interface is given by Eq 3.32. It is numerically convenient
to write Eq 3.32 in terms of the effective relative

displacements ,(feg), as follows:

{c} = |[Dl{ee} (4.172)
where:
Se s - 80 T
{ee} = = s {5}=[ J (4.173)
We w - w0 0;!

sp and wQ are the total tangential and normal residual
relative displacements. They comprise the lack of fit,
yielding, slip and the separation effects (if any). 8 and w
are the total tangential and normal relative displacements
respectively. [D] denotes the secant stiffness matrix of
the interface corresponding to the current f{eeg} The
effective relative displacement vector is purely elastic and
there is no cross effect between its components. The shear
and normal stresses are, therefore, independent of each
other such that [D] can be written as:

Kg 0

[D] = (4.174)
0 Kn

In the following sections the values of Kg and
Kn will be discussed for all the possible states of an

interface.
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4.10.3.2 Proposed Model Based on Experimental

Observations

Fig 4.36(a) shows a number of shear-tangential
displacement curves resulting from tests of concrete on
steel carried out by King et al{42) using a shear box at
different normal stress level. King et al idealized these
curves by bilinear diagrams shown in Fig 4.36(b). The steep
and straight line shows the elastic behaviour of the
interface with a fairly high shear stiffness, Kgru, and the
horizontal lines characterize the slip occurring under
constant normal and shear stresses. This behaviour is
exactly the same as that of the elastic-perfect plastic
fracture model discussed for ductile materials. Such a
simplification seems to be a fair idealization provided the
interface has no bond resistance.

If however the interface is initially bonded, the
shear stress-tangential displacement diagram must show an
additional shearing resistance. This is in fact evident as
shown in the tests carried out by Hegemier (81) on bed-joints
of a prototype concrete blockwork, Fig 4.37. These
experiments also indicate that the event of bond shear
failure is gradual and the higher is the absolute value of
normal/shear stress ratio the more gradual the debonding
process becomes.

All the above experimental observations may be put
together to obtain a typical shear stress-relative
displacement diagram as shown in Fig 4.38(a). The curves
shown by dotted line up to yielding, represent the shear

stress-tangential displacement relation provided the bond
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shear failure and slip have been prevented.

From these experimental observations the shear
stress-relative tangential displacement relation can be
idealized as shown in Fig 4.38(b). The trilinear diagram
OABE in this figure constitutes three distinct behaviours as

foilows:

i) The linear elastic behaviour for bonded interface
(Line OA with a very steep slope, Kg)
ii) The gradual debonding (Line AB), i.e. gradual decrease

in the shear stiffness from Kg to Kgru

-
'_l-
=-
A el

The plateau characterizing slip while the shear and
normal stresses and the shear stiffness, Kgru,

remain unchanged.

The proposed debonding model, Line AB, requires
that an unloading at Point D, Fig 4.38(b), follows line DO
with slope Kgr and the subsequent reloading follows the
same line up to point D, as shown in Fig 4.38(b). In such
a case, the interface can be called a partially bonded
interface with a subsequent bond shear failure criterion,
Line OC’ as shown in Fig. 4.35.

No experiment with recorded stiffness data is
available (to the knowledge of the author) for bonded
interfaces under tensile normal stress. Nevertheless, as it
is evident,Fig 4.37, that for interfaces under a low
compressive normal stress, the event of debonding is rather
brjttle, interfaces under tensile stress may be expected to
behave in a similar brittle fashion. 4i.e, immediately

following a linear elastic deformation up to the peak
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stress, Point F in Fig 4.38(b), the interface loses all
its bond strength and the shear stress suddenly drops down
to =u0on (Point F" as shown in Fig 4.38(b)).

Some experimental data obtained from different
soufces are listed in table 4.2. As shown in this table, a
very high discrepancy can be noticed between the values of
Kgru reported by different researchers. This may be
attributed to either the unit convergsion error (eg. taking
N/mm2 instead of N/mm3) or the difficulties associated with
refining and measuring a relatively high interface stiffness
while the other materials conforming the interface
demonstrate relatively much higher flexibility. Such a

discrepancy becomes more obvious as different workers used

different test approaches.

NE o,mr. Normal stress NE o-10}
£ 020 N/mm?2 E 2
\ .
= 0.08 Z0.08- 0-20 N/mm
n
[7;]
® 0.06 045 0.06} 015
g 004 010 oot o
b
c
2 0.02} 0-02} 0-05
c 005
e of
0o L — 0 02 04 06 08 mm

0O 02 04 06 08 mm
Tangential displacement

(2) (b)

Figure 4.36 Concrete-on-steel Shear-relative Displacement
Relationship; (a) actual and (b) idealized

(after King and Pandy (42))
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No experimental data is available for shear and
normal stiffness of a fully bonded interface. Theoretically,
they must be set to very high values. When the interface
has a finite thickness (bed and head-joints in masonry), the
ébove discussed values of stiffness must also include the
additional flexibility induced by the finite thickness and
presumably soft mortar joints. This will be discussed later

in Section 4.11

4.10.4 Determination of the State of an Interface
4.10.4.1 General

Assume 8 and w are the tangential and normal

relative displacements at a gaussian point within an
interface from which the previously acquired yielding and
slip, and also the initially specified lack of fit, are
excluded. Further assume that the interface inelastic
behaviour (yielding, debonding, slipping and separation)
during the current iteration is somehow prevented.

i.e. 80 = wg = 0. Using s and w from Eq 4.172 and the
latest values of the shearing stiffness, Kgr, the shear and
normal stresses may then be calculated. These stresses can
be coupled with the criteria by which the interface would
possibly undergo one of the inelastic events as shown in
Figs 4.39 to 4.41.

As shown in these figures the calculated stresses
simply indicate that what is going to happen to the
inéerface as a result of the current changes in the relative
di;placements. This permits the changes to the inelastic

relative displacements to be calculated and the new state of
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the interface to be determined as discussed in the following

sections.

4,10.4.2 New State of a Previously Fully Bonded Interface

As shown in Fig 4.39(b) Lines EF, FC and CG divide
the stress space into 4 zones indicating whether the
interface is subjected to debonding leading to separation,
debonding possibly leading to slip, yielding or resuming the
elastic state. These lines have already been defined in
Section 4.10.2 by Egs 4.171, 4.168 and 4.170 as bond tensile
failure; bond shear failure, and the interface (Joint)
yielding criteria respectively. If point P ( the point
representing the shear and normal stresses calculated in the
manner described in Section 4.10.4.1) takes a position above
one of these lines the indicated inelastic event would take
place. The induced inelastic displacements and the

subsequent stresses can be calculated as follows:

a) Debonding Interface Leading to Separation
The graphical representation of this state is
shown for point P4 on Fig 4.39. 1In a separated interface no

shear and normal stress develops. Therefore:

new slip = sgl = s and separation = wgp = W (4.175)

and 6n =1T=0 (4.176)

b)f. Debonding Interface Leading to Partial Debonding

Allow the interface to debond gradually until
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point P1 drops down to P1’ on the appropriate subsequent
debonding surface as shown in Fig 4.39. Clearly, such a
drop is possible by assuming a partially debonded interface
with shear stiffness of Kgr rather than that of the fully
bonded interface, KgQ. The new stiffness, Kgr, may also be
uséd to specify the rate of debonding as shown in
Fig 4.39(a). Kgr can be calculated as follows:

Line AB in Fig 4.39(a) can be formulated using the

co-ordinates of points A and B i.e.

Y - YA Y - ¥YB
= (4.177)
X - XA X - XB
where
Obs — HUOn ~HOn
Ks0 Ksru
A and B
Cbs = HOn ~HOn

using the unknown partially debonded shearing stiffness,

Kgr, Line OP1’ can be written as:
y = Kgrx (4.178)
Elimination of y from these two equations leads to Kgr in

terms of the absolute value of the shear displacement Rsj

(the x co-ordinate of intercept of the two lines) as

follows.
1 [.lO'n/Ksru + Rs
K_sr = — [-[J.O'n + Obs ] (4.179)
: Rs Hon/Ksru + (Obs-HOn)/Ks0

v

The stresses may now be calculated as:
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on = WKn and T = gKgyr (4.180)

Since the interface is still partially bonded no separation

or slip can occur. R takes the value either +1 or -1 so as

to make Rs always positive.

c) Debonding Interface Leading to Total Debonding

For point P3 in Fig 4.39, the absolute value of
shear displacement, Rs3, may exceed 8p indicating that the
interface has totally debonded and some slip has taken

place. This case will be discussed in Section 4.10.4.4 (b)

d) Fully Bonded Interface Undergoing Yielding

Allow for a prescribed residual yielding
displacement, sy, for point P2 as shown in Fig 4.39(a) so
that the new position of this point, P2’, meets the yielding

criterion, Line CG. Then sy can be calculated from

Fig 4.39(a) as:

-w’ on + 10
- (4.181)

RKg0

and
T = Kgo(s - Sy) and On = Knw (4.182)

e) Fully Bonded Interface Resuming Elastic State

No separation or slip has occurred and the already

-

calculated elastic stresses are the true values. 1ie,

T = 8Kg0 and On = wWKp (4.183)
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11043 New State of a Previously Partially Bonded

Interface

Fig 4.40 shows the zones and criteria of all the
oossible states for a partially bonded interface in terms of
the new displacements. Calculation of the inelastic
displacements and the true stresses are given in the

following sections.

9  Debonding Interface Leading to Separation

As discussed in part (a) of Section 4.10.4.2

b  Debonding Interface Undergoing Partial Debonding
The debonding criterion of a partially bonded

interface, Fig 4.40(b), has not yet been developed. But The
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same approach as used in part (b) of Section 4.10.4.2 may be

employed. For the value of current On and previous value of

Kgr and from Fig 4.40(a), the value of Rtd can be calculated

for point D on the debonding criterion (Line AB) as follows:
1-8

Rtd = ~UOn + Obs (4.184)
Obs
1-8

HOn
where
Ks0/Kgr -1

B = (4.185)
Kg0/Kgru - 1

Kgr is the shear stiffness of the interface at the end of
the previous iteration. Now if the absolute value of shear
(say for point P1) is higher than Rtq, the interface is
subjected to further debonding and the procedure to
calculate the new value of Kgr and stresses is exactly the
same as given in part (b) of Section 4.10.4.2. Note the
location of point C’ calculated in Clause (d) of this

section.

¢) Debonding Interface Leading to Total Debonding

This will be discussed in Section 4.10.4.4(b)

d) Partially Bonded Interface Undergoing Yielding
Permit a residual yielding shear displacement, Sy,
and proceed as described in part (d) of Section 4.10.4.2
leading to:
-H’on + 10

Sy = 8 - (4.186)
RKgr
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T = Ksr(s - sy)

(4.187)
On = Knw
Note that the absissa of point C’ can be derived by
combining Egs 4.170 and 4.184 to give:
1 1-B
oot = —— [To - Ops ] (4.188)
[ Obs

n(oc)

where B is calculated form Eq 4.185 using the previous value
of Kgr. Eq 4.188 may be calculated for o¢" numerically by
trial and error approach. The graphical representation of

yielding is given for point P2 in Fig 4.40.
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Figure 4.40 Proposed Constitutive Model for Partially
: Bonded Interface; (a) shear stress-shear
displacement curves and (b) criteria for the
inelastic events.
Note: D=debonding, E=linear elastic, O=open, S=slipping and
Y=yielding
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e)  Partially Bonded Interface Resuming Elastic State

As concluded in Clause (e) of Section 4.10.4.2:

T = sKgr and On = wWKp

4104.4 New State of a Totally Debonded Interface

Fig 4.41 shows the zones and criteria of all

possible states for a debonded interface in terms of the new
displacements. Calculation of the inelastic displacements

and the true stresses are given in the following sections.

a)  Separated Interface

proceed as discussed in Section 4.10.4.2(a)

b)  Slipping Interface

The graphical presentation of slip is given in
Fig 4.41 for point P1. As shown slip can be derived by
coupling the slip criterion and the frictional stress-

tangential displacement relationship formulation as follows:

HOn
sgl = 8 + (4.189)
RKgru
and
On = WKp
(4.190)
T = (s -sgl) Kgru

The above formulation can also be used for a previously

bonded interface leading to complete debonding.
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¢)  Yielding Interface

As discussed in part (d) of Section 4.10.4.3,

-u’on + 10

sy = 8 - (4.191)
RKgru
T = Ksru(s - sy)
(4.192)
On = Knw

d) The Interface Resuming Elastic State

As concluded in part (e) of Section 4.10.4.2

T = sKsru

(4.193)

Cn = WKn

© -
4
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E I
. /|
o P, |
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Ul |
. ©
e Pl—__'}_—l—
: e i
o Slip : §
- Ksru = |
! I I
0] Rsq Rs,
Tangentia displacement Normal stress

(2) (b)

Flgure 4.41 Proposed Constitutive Model of Totally Debonded
Interface; (a) shear stress-shear displacement
relationship and (b) criteria for inelastic
behaviour and various possible states.

Note: O=open, E=elastic, ¥Y=yielding and S=slipping
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4.10.4.5 Proposed Incremental [D] Matrix

The incremental stress-relative displacement

relation in its general form can be written as:

drt ds
= [D¢] (4.194)
don dw

When the interface is separated, no stress will be
transferred through the interface requiring, thus, the [Dt]
matrix to be a null matrix.

If the incremental changes have not produced any
gradual inelastic changes, such as yielding, debonding or
contacted slip, the shear and normal components of the
incremental stresses and displacements are independent of
each other. Therefore Egs 4.194 can be written as:

dr Ks o} ds

= (4.195)
don 0 Kn dw

where Kg is the current elastic shear stiffness of the
interface taking values of Kgg, Ksr or Kgru for a fully
bonded, partially bonded or a totally debonded interface
respectively, Figs 4.39 to 4.41.

If however one of the gradual inelastic events
occurs during the incremental displacements, a precise
tangent elasticity matrix [Dt] can be derived by
di%ferentiation of the stress components, T and Op, from the
fo?mulation provided in Sections 4.10.4.2 to 4.10.4.4 as

follows:

- 232 -



i) Differentiation of T and 6n from Eq 4.190 with respect
to 8 and w leads to a non-symmetrical [Dt] for a

slipping interface as follows:

0 -RUKn
[Dt] = [ ] (4.196)
0 Kn

ii) Differentiation of T and Opn from either of Egs. 4.182,
4,187 or Eq 4.191 with respect to s and w gives a non-

symmetrical [Dt] for a yielding interface as follows:

0 -RIL'Kn
[Dt] = (4.197)
0 Kn

Notice that if p’ is sufficiently small it can be
neglected and,thus, the second term of the first row
becomes zero and, therefore [Dy] becomes symmetric.
iii) Similar differentiations as in (i) and (ii) above can
be conducted to derive [Dt] for a debonding interface
using Eq 4.180. Such a [Dt] is again non-symmetric as

follows:

D11 D12
[Dt] = (4.198)

0 D22

It must be noted that these non-symmetrical [Dt]

matrices are not compatible with the standard F.E. programs

which require, for the sake of economy, an overall symmetric
stiffness matrix. A straightforward and safe solution is to

adopt the overstiff unloading shear stiffness as shown by
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the heavy dotted lines in Figs. 4.39 to 4.41. Even so it
causes a slow convergence. Therefore Eq 4.195 may be
considered as the general incremental stress-displacement
relationship, unless a solution of unsymmetric equations is
incorporated with the F.E program. Such a solution is

included with the program "NEPAL".

4.11 Constitutive Formulation for Masonry

The finite element representation of masonry has

briefly been discussed in Section 3.9. Of the element types
studied, the 4-node element made of the proposed plane-
stress equivalent material, representing both the units and
the joints, separated by interface elements, Fig 3.9, was
found to be the most economical, practical and simplest
available choice. The proposed 2-D material facilitates
the possibility of simulating the masonry behaviour beyond
its peak stress. Such a representation constitutes two
distinct stiffness and strength contributors as follows:

i) The proposed plane-stress masonry equivalent material
which must (on the basis of plane stress-strain
constitutive relationship) simulate the combined 3-D
mechanical behaviour of masonry units and mortar joints
while assuming the interface of the equivalent material

elements remain intact.

-
[

The interfaces of the proposed equivalent material

- elements. These line elements are assumed to pass
through the midplane of the bed and head joints. Such
interfaces must simulate all the inelastic behaviour of

the joints such as debonding, slip and separation.
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The strength and stiffness of these contributors
can be determined experimentally. Analytical approaches are
also available which are rather complicated. A new approach
has also been developed by the author to calculate the
mechanical properties of masonry. Since these approaches
were not actually used in the finite element analysis, they

will be described in Appendix F.
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CHAPTER FIVE

Numerical Implementation
and Programming

5.1 General

This chapter deals with the numerical
implementation of the finite element technique described in
Chapter 3, using the material constitutive formulations
developed in Chapters 4. The numerical analyses are
incorporated into the finite element computer program
"NEPAL" developed by the author. This program may be used
for plane stress problems in general and for infilled frame
structure in particular. A guide to running program NEPAL
is given in Appendix A followed by a number of notes and
examples. Appendix B describes the structure of the program

and lists the variable names involved.

5.2 Characteristics of Program NEPAL

Table 2.2 lists The characteristics that are

incorporated into the computer program NEPAL. As seen this
program accounts for almost all the desirable features
listed in the table. It is also possible with this program
to account for the weight of the structure and lack of fit
of the infill. However implementation of masonry as a

been

single material ha®& not yet accomplished. But masonry

regarded as a composition of the units and the joints, can
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be analysed as described in Section 4.11. The analytical
study of Appendix F ma;efurther advanced in the future to

lead to a theory for calculating the properties of masonry
as a single material.

The post peak stress behaviour of materials has a
significant effect on the overall behaviour of structure.
This is particularly important for infilled frame structures
in which it is not yet certain whether the infill or the
frame material starts yielding first. As described in
Chapter 4, such effects are all incorporated into the
program.

Some convergence difficulties may arise for

structures in which discontinuities such as cracking, joint

debonding and/or slip occur. This has been overcome as

discussed in Sections 5.3 and 5.4.

5.3 Loading Procedure

As described in Section 3.3, the non-linear

equations of displacements are solved by the Newton-Raphson
method based on application of load increments. When the
load reaches its peak value, this solution may not be
further carried on because no further increase in load is
possible. 1In this project, however, the complete load
deflection curve of the structure is desired to be computed.
Such a curve must include rising and falling branches and
also a plateau, if any, indicating the ultimate plastic
strength of the structure.

A popular method to avoid the above problem

consists of prescribing an incremental value of displacement
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component at the loaded node and evaluate the corresponding
force reaction. Only one variable load is applicable. This
technique was first described by Argyris(91),

Another alternative for eliminating the problem
has been suggested by Sharifi et al(92), This method
infroduces fictitious springs to keep the slope of the load
deflection curve of the combined structure positive
throughout the load deflection curve. For a single load and
only one spring this method is straightforward and easy to
apply. The method cannot, however, be easily justified,
when several springs are added to the system, due to
difficulty of deriving suitable spring constants.

A method similar to the second of the above has
been used in this project by introducing a fictitious jack
combined with a spring. This combination may be called the
"Load increment adjusting element." This element can be
coupled with the structure at the point and direction of the
applied load, Fig 5.1(a,b). The load-deflection diagram and
the convergence strategy for such a coupled structure are
shown in Fig 5.1 (c).

As shown, the structure is loaded by deflection
increments, Aajk, applied by the Jjack. These applied
deflection increments will be taken by the spring, Aasg,
and the structure, Aag, in proportion to their
flexibilities. If the stiffness of the spring, Ksg, is
tagen as a very high value, relative to the stiffness of the
stiucture, Kt, the system will be equivalent to the
deflection increment method described by Argyris(91), 1t is

desirable to take a reasonably low stiffness value for the
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spring so that the structure undergoes a gradual increase in
the load and deflection, in a similar fashion to the
behaviour of a real-structure. If a very stiff spring is
used the behaviour will simulate a displacement control load

in which some unloading may occur.

54 Criteria for Convergence

The iteration must continue until the convergence
criteria are met. To examine the convergence of the
iteration, basically, three solution variables can be used:
the incremental displacements, the out-of-balance forces and
the incremental internal energy(40) ., Since the incremental
approach used in this project is based on nearly uniform
deflection increments, the first of the above variables was
found to be most convenient. Therefore the convergence was
based on the examination of the nodal displacement vector as
follows.

The solution for the corrections to the nodal
displacements is said to be converged when the maximum of
the absolute value of these corrections (so called the
maximum norm) becomes smaller than a prescribed displacement

tolerance. This can be expressed as:

Aa (max)
€ = —_—— <y (5.1)
REF

Aakmax)=The maximum of the absolute value of change in the

nodal displacements.
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REF= A reference value related to the deflection
increments which is normally taken as the current

deflection increment but in this project it is

defined as:

REF = 1/2(Amax + Amin) (5.2)

so as to maintain a uniform precision throughout the

analysis.

Amax and Amin = the specified maximum and minimum allowed

deflection increments.

Y= A prescribed displacement tolerance taking a value

of order 10~3 to 10-%, Bergan et al(93),

For this particular type of structure (infilled
frames) 'y=2x10'3 was found to give results not more
than 1% different from that of y= 1076, A high value for Y
is tempting from the view point of economy, but it may lead
to severe inaccuracy and divergence.

The iterative scheme described previously would
converge only if the non-linearities occurring in the
current step are sufficiently small. The more severe the
non-linearities are, or the greater the number of
discontinuity events is, the smaller the step that must be
taken to ensure convergence. In practice, the magnitude of
the next load or deflection increment will be decided using
thé magnitude of the previous step and the number of
itérations taken to get into convergence. In order to keep

the number of iterations close to the desired number of
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iterations, DITR, Crisfield(94) suggested a very simple

formula to calculate the length of the next incremental step

as follows:

DITR
A1) = A(i-1) —m (5.3)
ITR(i-1)
A(i-1) = The value of the previous load increment

ITR(i-1)= The number of iterations taken in the previous

step

Program NEPAL, however, uses a newly proposed

formula as follows:

EITR(i-1)

Ai) = 1.67[1 - ] REF + A(i-1) (5.4)

DITR
where DITR denotes the specified desired number of
iterations within each increment and EITR(i-1) denotes the
effective number of iterations.

This formula was found to suit better the analysis
of infilled frames involving so many discontinuity events
such as: cracking, crushing, interfaces or joints debonding
or slip, which demand a greater number of iterations in
order to deal with the sudden changes in the course of
convergence. The effective number of iterations is to be

calculated as follows:

i EITR(i-1) = ITR(i-1) - I (5.5)

where I equals to the number of iterations within the last
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increment during which at least one damaging event
(cracking, crushing ér debonding) has taken place. The
total number of iterations within each load or deflection
increment may be restricted to a prescribed number, MAXITR
so as to prevent a possible divergence.

No straightforward rule is available to determine
the values of DITR, MAXITR, Amax and Amin so that a
guaranteed convergence and a reasonable accuracy can be
ensured. The following guideline has however been
established by the author after several examinations on

highly non-linear problems including infilled frames:

Amin = 1/20 to 1/40 of the expected deflection
at the peak load.
Amax = 2 X Amin
DITR = 4 to 6
MAXITR = 2 x DITR
5.5 Examination of The Proposed F.E Analysis
5.5.1 General

In Chapter 3 a number of examinationswere carried
out to test the performance of the proposed elements and the
proposed subdivision layouts using the standard elastic
material model. In the following sections the intention is
to further examine those elements and also examine the
performance of the proposed non-linear and elastoplastic

finite element analysis approach, ie. Program NEPAL, 1in

- 243 -



predicting the strength, stiffness and the mode of failure
and distortion of the structures. The following sections
discuss such examinations carried out on two reinforced

concrete beams, a model steel frame with micro-concrete

55.2 R.C. Beam Without Shear Reinforcement

Fig 5.2 compares the experimental and the finite

element analysis results of a reinforced concrete beam with
no shear reinforcement tested by Bresler et al(93) ., The
analytical predictions of the strength, stiffness and the
mode of failure are in a good agreement with the
experimental results. The following observations are,
however, worth mentioning.

The load-deflection curve from the finite element
analysis, Fig 5.2(c), remains below the experimental one
after the flexural tensile cracks develop. This is obvious
as the tensile stiffening due to cracked concrete is
ignored. 1If, however, this effect was accounted for by
increasing the modulus of elasticity of the tensile steel
bars, the two curves would have agreed much better.

As shown in Fig 5.2, the 6-node beam element
proved to be advantageous over the 10-node isoparametric
element.

Variation of the interlocking factor, B, described
in:Section 4,.8.3.5, between 1.0 and 1.5 does not affect the
reéults indicating the fact that a crack would be unlikely

to become interlocked when no reinforcement crosses it.
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Failure occurs finally due to fracture of concrete
at the top-most pa;t of the beam where concrete is under
compression tension principal stresses. This type of
failure is very sensitive to factor A described in Section
4.5.3. A small adjustment of this material constant would
reduce the peak load down to the experimental value. The
comparatively high analytical strength maybe, partly,
because of the assumption of continuously distribution of
shear deformation over the area of the elements which
extended over the entire depth of the beam. This is not true
in a diagonally cracked beam. Therefore it may be concluded
that although the large sophisticated elements are
significantly economic and accurate but they might not
be a relevant choices for a careful non-linear analysis
involving brittle materials that are supposed to carry load
well beyond the onset of cracking. Nevertheless,
considering the variation of material in the test, the
proposed beam element has led to results that are fairly

close to the actual wvalues.

5.5.3 R.C. Beam with Shear Reinforcement

Fig 5.3 compares the finite element analysis and
the experimental results of almost the same beam, as
discussed in Section 5.5.1, with the inclusion of link bars.
The following points (in addition to the ones made for the
beam without shear reinforcement) are worth mentioning.

The interlocking factor, P, affects the behaviour
only when the cracks that are developed due to diagonal

tension have well developed and, thus, the link bars have
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become effective.

The abrupt drop in the applied load at the
occurrence of the major diagonal cracks could not have been
recorded by the loading machine, with no control on
deflection, used by Bresler et al(93)., This reasoning would
exélain the experimental curve with no such an abrupt load
decrease. The same conclusions as drawn for the beam

without link bars also apply this case.

l l Concrete;
500 - 0;;- 23.2 N/mmz
1 Oi= 2.4
| Y V = 0175
] E =30
400 €c = 1.9x1073
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K Steel bars;
> Main Links
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Fiéure 5.3 Comparison of The finite element Analysis of
4 Reinforced Concrete Beam (With Shear
reinforcement) under Centre Point Load

with Experimental results of Bresler et al(95)
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5.54 Square Steel Frame Subjected to Racking

Fig 5.4 compares the finite element analysis

results of an open steel frame with experimental results
recorded by the author(29) ., As shown they agree well,
indicating that both the proposed beam element and the
adopted ductile material model would well simulate the
geometry and the mechanical behaviour of the structure.
Nevertheless, the following points are worth mentioning.

Apparently the modulus of elasticity of the frame
material, steel, must have been slightly lower than reported
in the experiment. It seems only 5 percent reduction in
the modulus of elasticity would bring the first part of the
two curves together.

The analytical load deflection curve looks like a
multi-linear line. This may be due to the stepwise
numerical integration approximation over the plastic regions
at the vicinity of the corners. Increasing the number of
Gaussian points in both horizontal and the vertical
directions within the elements attached to the corners will
improve the analytical curve so as to look more natural and
smooth. But such an upgrading involves extra computation
time.

The ultimate strength of steel must have been more
than the experimentally recorded value. This can be

adjusted by increasing the value of Fu of steel by only 2%.
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Figure 5.4 Comparison of The Finite Element Analysis of an
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Experiments (29)

5.5.5 Micro-concrete infilled Steel Frame Subjected to
Racking
the

In order to examine performance of the proposed
interface element and also further examine the proposed beam
element in a zone with a high bending moment gradient, the
model steel micro-concrete-infilled frames (Frame series
No. 5) tested by Saneinejad(29), were analyzed under the same
type of loading as used in the experiment (Fig 5.5). The
reason that this particular experiment was selected for
examination of program NEPAL was because the test had been

carried on well beyond the peak load up to an obvious

- 249 -



plateau shown in the load deflection curve, indicating
formation of a mechanism and thus plastic distortion. The
mechanical properéies of the materials related to this frame
are listed in Table 5.1.

As shown in Fig 5.5, the load-deflection curve
résulting from the finite element analysis falls between the
two experimental curves recorded from two almost identical
infilled frames (Frames No. 105 and 205). The analytical
plastic load capacity (plateau) is, however, somewhat
higher than those of the experimental ones. This difference
may be attributed to development of rather extensive damage
to the structure as a result of release of the energy stored
within both the structure and the elements of the testing
machine immediately after the peak load has reached. Such a
damage could have been partly prevented by using a
displacement-controlled testing machine.

Figs 5.6 to 5.9 diagrammatically show the frame
forces and distortion modes and the interface and the infill
stress distributions at the marked stations. These figures
show that the proposed finite element analysis predictions
of the strength, stiffness and the mode of failure of
infilled frames agree well with the actual behaviour of
these structures.

It is worth mentioning that with the aid of the
proposed beam and interface elements accurate and finely
detailed frame forces and interface stress distribution are
nqﬁerically established with the use of a substantially low
computation time compared to the existing equivalent

choices. It is still possible to further increase the
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accuracy of the analysis by simply increasing the number of
gaussian points within the zones at the vicinity of the
loaded corners. Alternatively, the size of the corner
elements may further be reduced without increasing the total
number of elements and nodes and gaussian points. This
chbice would be efficient for infilled frames with a strong
infill in which the diagonal stresses would concentrate
within tiny zones at the loaded corners.

The actual final mode of distortion at station 5
shown in Fig 5.5, indicates that because of non-uniformity
in the geometry and material of both the frame and the
infill at the loaded corners, the infill normally crushes at
only one loaded corner and the frame presumably becomes
plastic only at the crushed corner. The numerical analysis,
however, treats both the loaded corners the same because of
the exact symmetry assumed for the structure, material and
the loading. It is believed that the actual behaviour may
be simulated by changing, slightly, the thickness of the

infill at one of the loaded corners.

Table 5.1 Properties of The materials related to Fig 5.5

Frame Infill Interface

175 KN/mm2 | E 25 KN/mm2 Kn = 1000 KN/mm3
v = 0.25 v = 0.175 Ks = 500 KN/mm3

=
Il

"Fy = 252 N/mm? ot = 4.0 N/mm? Otb = 0.0
Oc = 35 N/mm? 6sp = 0.0
€c = 2.1X10-3 Ksru= 0.5 KN/mm3
B =2.0 B = 0.6
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5.6 Conclusions

The finite element analysis tests carried out in

this chapter assisted to examine the computer program

"NEPAL" against the requirements outlined in table 2.2. The

results also led to the following conclusions:

1) The proposed material and interface models simulated,
closely, the behaviour of the structuresat the peak and

beyond the peak load.

2) The proposed incremental [D]ep matrix developed for
ductile material (steel) subjected to plane stress

condition, Eq 4.166, performs exelently.

3) Although significantly economic, the choice of large
elements with sophisticated shape functions is not the
most accurate choice for a non-linear analysis
involving materials subjected to discontinuous
displacements such as a cracked concrete carrying load

well beyond the onset of cracking.

4) Considering the variation of material in the test, the
proposed beam element leads to results that are

fairly close to the actual values.

5) The effect of tensile stiffening on the stiffness of
r.c. beams is significant. This can be accounted for
by increasing the modulus of elasticity of the tensile
steel bars after the tensile cracks,caused by flexure,

are developed.
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6)

7)

8)

9)

10)

11)

The crack interlocking affects the results of strength
and stiffness only when the cracks are intereepted by

reinforcing bars. These reinforcements become

- effective after the cracks have well developed.

The proposed crack interlocking model well simulated
the behaviour of r.c beams with shear reinforcement

subjected to high shear force.

the proposed crack modeling well simulated occurrence
of the secondary cracks. These cracks develop only
after the primary cracks become interlocked and

are under a high shear stress.

The proposed interface element together with the
proposed interface mechanics model, well simulates the
behaviour of the interfaces resulting in smooth and
fairly accurate stress distribution diagrams involving
four possible states of bonded (intact), gripped,

slipping and open.

The proposed deflection increment approach assists
preventing the errors such as unnecessary cracking of
the material, and debonding and/or over-slipping the

interfaces.

The proposed finite element analysis can be extended
successfully well beyond the peak load with
satisfactory convergence. However for structures
subjected to a sudden failure such as a beam subjected

to shear failure, the analysis may not be continued

much beyond the peak load.
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