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Abstract 

 

Due to its optimal balance of strength and toughness, AISI 8630M low alloy steel forgings are 

extensively used as structural components for subsea applications in the oil and gas energy 

sector. However, considering the high pressures and low temperatures conditions in deep water 

environments the oil and gas industry has continuously been demanding higher reliability 

levels on the structural integrity of large steel forgings in order to avoid in-service premature 

failures. In particular, special attention has been given to the CTOD fracture toughness as a 

critical parameter for structural design.  Heat treatment is the last stage in the manufacturing 

sequence of large forgings and to certain extent, defines the metallurgical characteristics of 

final component. The cooling rate during industrial quenching treatment represents one of the 

most important processing parameters controlling the microstructure before tempering 

treatment.  

 

The research programme involved industrial-scale experimental heat treatments in which large-

scale forged segments with two different cross-sections (100 and 250 mm) were separately 

subjected to water, aqueous polymer solution and vegetable oil quenching and then tempered 

at 590°C, to evaluate the influence of cooling rate on the microstructure and mechanical 

properties produced under industrial conditions. Tensile, CVN and CTOD fracture toughness 

properties were measured at RT, -30 °C and 0°C respectively as per specification requirements. 

Microstructural evolution and fracture surfaces were evaluated by high resolution scanning 

electron microscopy. A CCT diagram was constructed by means of quenching dilatometry in 

order to validate the microstructural changes produced during industrial quenching.    

 

In summary, the present investigation, showed that irrespective of the cross section, the faster, 

intermediate, and slower cooling times between 800°C and 500°C (λ, t 8/5) were obtained by 

water, polymer and vegetable oil respectively. Kinematic viscosity may be the main variable 

controlling the cooling performance of the different cooling media evaluated due to changes in 

the thermophysical properties of the quenchants. In addition, the predominant microstructures 

for the different thickness-quenchant conditions were found to be associated with mixtures of 

tempered bainite and tempered martensite. This was evidenced by the fact that the majority of 
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the industrial cooling curves fell within a similar microstructural region of the CCT (0.03 -

1˚C/s) dilatometric diagram which consisted of mixtures of martensite and bainite.  

 

Accordingly, the mechanical properties evaluated were similar among the different thickness-

quenchant conditions investigated. In this sense, all conditions evaluated showed strength and 

impact toughness properties well above the material specification limit for the selected forged 

component. It can be argued that the strength and impact toughness are controlled by changes 

in the distribution and size of carbide precipitates and packet substructure associated with the 

different fractions of tempered martensite and tempered bainite generated by changes in 

cooling rate. Accordingly, the higher strength and impact toughness values were observed at 

mixtures of tempered martensite (TM) and tempered bainite (TB) with proportions of 85% 

(TM) -15% (TB). The above due to partitioning effect of the acicular lower bainite on the 

austenitic grains in association with tempered martensite.  Regarding the fracture toughness 

assessment, it can be argued that the yield strength variation between the selected specimens, 

along with the carbide size variation observed between tempered martensite and tempered 

bainite, were not large enough to induce significant changes leading to negligible variation in 

the final CTOD properties.  

 

Construction of CCT diagrams by means of quenching dilatometry has proven to be an 

effective technique to predict the microstructures industrially produced at the central part of 

large forgings, although the unavoidable effect of macro segregation must be considered for 

comprehensive analyses. Finally, in spite of the fact that vegetable oil provided slow quench 

rate compared with those of water or aqueous polymer quenchants, it is true that the mechanical 

properties produced by this bio-quenchant were similar to those produced by water and 

polymer quenching. As such, this finding indicates the possibility of implementing vegetable 

oil as an alternative quenchant in material specifications used in the production of large scale 

forgings made of low alloy steels, in particular when a balance between mechanical properties, 

dimensional stability (distortion) and reduced crack susceptibility is desired after quenching 

and tempering. 
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1 Introduction  

 

Steel continues to be a main element in the industrial development of the modern society. 

Industries such as the oil and gas, power generation and wind energy sectors, use steel due to 

its optimal combination of strength-toughness properties and low production costs. As 

illustrated in Figure: 1-1, the offshore  industry uses low alloy steels for the fabrication of 

forged components for subsea applications due to the high pressures and low temperatures 

conditions in deep water environments [1].  

 

 

Figure: 1-1 Schematic illustration of subsea system [2]. 

 

However, as seen in Figure 1-2 the oil and gas exploration and production is continuously 

displaced to even more environmental challenging conditions such as ultra-deep waters and 

artic regions in order to satisfy the global energy demand [1, 3]. The aforementioned conditions 

have led the industry to design low alloy steel forged components with thicker walls to contain 

higher pressures in the critical components of the subsea systems [4].  

 

The mechanical properties of low alloy steels are often governed by the chemical composition, 

geometry of the component, manufacturing route and the resultant microstructural features. 

One of the main concerns of thick-wall forgings is the microstructural heterogeneity developed 

through the thickness of the large-scale forging due to variations in the cooling rate along the 

geometry of the part during quenching treatment. The microstructural heterogeneity generated 

by the fluctuations in cooling rate can lead to non-uniform mechanical properties which in turn 

may affect the performance or functionality of the final component [5]. 
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Figure 1-2: Increase in exploration and production of oil and gas in deep-waters in the Gulf of 
Mexico between 1960 and 2010 [6].   

 

The production of oil and gas from deep water wells provides technical challenges in the 

development of materials to provide safe and reliable service at reasonable cost. In this sense, 

large size forgings are required e.g. for blow-out preventers, subsea systems and connectors. 

They are usually made of alloy steel such as F22, 8630 and 4130 material grades. Nickel alloy 

weld overlay (grade 625) is applied on all process wetted areas to prevent corrosion. 

 

Subsea flowlines are used for the transportation of crude oil and gas from subsea wells, 

manifolds, off-shore process facilities, loading buoys, subsea to beach, as well as re-injection 

of water and gas into the reservoir. Achieving successful tie-in and connection of subsea 

flowlines is a vital part of a subsea field development. Generally, these are vertical and 

horizontal tie-in systems. 

 

Vertical connections are installed directly onto the receiving hub in one operation during tie-

in. Since the Vertical Connection System does not require a pull-in capability, it simplifies the 

tool functions, provides a time efficient tie-in operation and reduce the length of Rigid Spools.  
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Figure 1-3: General overview of subsea and connection system [7]. 

 

Stroking and connection is carried out by the Connector itself, or by the ROV operated 

Connector Actuation Tool (CAT) System. Factory adjusted reaction ring made of AISI 

8630/8630 mod/1.6591 low alloy steel establishes precise, repeatable connector preload 

settings.  

 

As mentioned previously, AISI 8630/8630 mod/1.6591, low alloy steel is frequently used by 

OEMs (Original Equipment Manufacturers) for the fabrication of structural components with 

high strength requirements. This material fully develops its mechanical properties by a 

combination of forging operations and heat treatment processes. The balance between strength 

and toughness for this steel is obtained by heat treatment cycles composed of normalizing, 

quenching and tempering treatments producing in consequence tempered martensitic or 

bainitic structures. 
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Figure 1-4: Schematic view of tie-in connection system including the reaction ring (AISI 
8630M) component selected for the present study. 

 

In general, the majority of international forgings suppliers are capable to produce thin wall 

forgings connectors in accordance with specifications for subsea equipment. However, the 

implementation of new designs including connectors with wall thicknesses greater than 100 

mm and the implementation of new requirements such as CTOD (Cracking Tip Opening 

Displacement) fracture toughness testing, has hindered the production of thick- wall forgings 

within the specifications required by the oil and gas industry [8].  

 

During the last years FRISA, and international forging company with facilities in Mexico and 

USA has been collaborating with major oil companies to produce large-scale connectors with 

a cost-benefit approach which involves increased service life of materials, restricted limits on 

mechanical properties and reduced production times. Additionally, these large-scale 

connectors are employed in subsea systems exposed to low temperatures and high pressures 

where a combination of high strength - high toughness is required in order to avoid in service 

failures. The company implemented different strategies to design robust manufacturing 

processes for large-scale forgings. These strategies covered modifications to chemical 

composition and steel-making parameters, changes in the forging-product design, and finally 

modifications in the cooling media employed on industrial quenching. During the evaluation 

stage of the different cooling media, vegetable oil, a non-conventional quenchant for large 
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forgings applications was used to validate its potential as replacement for established 

quenching media such as water an aqueous polymer. In spite of the fact that vegetable oil 

provides slow quench rates if compared with water or aqueous polymer quenchants, which are 

the most widely industrially accepted cooling media for large-scale forgings; vegetable oil was 

used as part of the modification strategies implemented by the company due to the following 

reasons: it is a relative low-cost quenchant that requires less bath maintenance in comparison 

with aqueous polymer. Additionally, with the increasing environmental regulations, vegetable 

oil, with its characteristics of high biodegradability has the potential to be used as an 

environmentally friendly quenchant for large scale forgings. Finally, the absence of film 

boiling stage during vegetable oil quenching may increase the cooling uniformity in large-scale 

forgings. 

 

Although the results of the experimental forgings quenched in vegetable oil were satisfactory 

and within specification, the implementation of this bioquenchant as an accepted cooling media 

for critical forgings was not possible since the final user argued that there had been a lack of a 

thorough explanation of the specific causes that led to the aforementioned results  including 

the metallurgical aspects  and  implications involved in using slow quenchants such as  

vegetable oil for large forgings. The unsuccessful implementation of an alternative quenchant 

for large-scale forgings, pointed out the need of the forging industry and major oil companies 

for systematic industrial research focused on the fundamental aspects of the manufacture 

process of large scale forgings.  

 

The efficiency of quenching to achieve martensite or bainite is generally determined by a 

cooling curve testing where small (~12.7 mm diameter) standard probes usually made of 

Inconel are quenched to determine the cooling characteristics of commercial quenchants such 

as water, oils and polymer solutions [9]. However, as indicated by Kummar et al. [10]  relevant 

quenching parameters such as steel chemical composition, phase transformations during 

cooling, and quenching tank agitation are not considered by these type of cooling curves testing 

since they are conducted under laboratory conditions. In this sense, it has been acknowledged 

[11] that a more suitable method to evaluate the relationships between cooling media, tank 

characteristics, and workpiece is to perform direct measurements of the cooling conditions 

during industrial quenching in a real workpiece. Consequently, this approach would allow to 

measure not only the cooling conditions inside a large forging but as well to evaluate the 

microstructure and mechanical properties developed after industrial quenching.  
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Furthermore, recently the forging company has focused its attention in the CTOD parameter 

since it has been difficult to identify the main manufacturing process variables controlling this 

property in large forgings. In addition, the company has struggled to develop correlations 

between CTOD parameter and CVN impact toughness. In this regard, Pous-Romero et al. [12] 

pointed the relevance of factors such as prior austenite grain size, tempering parameter and 

cooling rate variation on the strength and toughness of large scale forgings heat treated under 

industrial conditions. It is clear that a further understanding of the relationships between 

industrial heat treatment conditions, mechanical properties (strength, impact toughness and 

CTOD) and relevant microstructural features of large forgings is required in order to enable 

the development and production of large forgings that can comply with the string requirements 

of the offshore industry. The aims of the present research are: 

 

 Determine the microstructures on relevant locations of large-scale forgings submitted 

to normalizing, quenching and tempering treatments under industrial conditions, and 

identify the main microstructural changes introduced in the large forgings due to 

modifications in the cooling conditions during quenching. 

 

 Develop further understanding on the influence of industrial cooling rates and 

microstructure on the strength, impact toughness and CTOD properties of large-scale 

forgings industrially quenched in three different cooling media.  

 

 Evaluate the effectiveness and implications of using Continuous Cooling 

transformation diagrams to predict the microstructures of large-scale forgings 

industrially heat treated. 

 

The acquired knowledge obtained from this research is expected to be transmitted to the forging 

company to clarify the influence of industrial heat treatment conditions on the structural 

integrity of large forgings and as well to contribute to design robust heat treatments for subsea 

connectors. Finally, the results of this investigation are expected to contribute with the 

development of more realistic material specifications for subsea forgings considering the lack 

of knowledge of what can be achieved in terms of mechanical properties by using industrial 

heat treatment processes.  
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1.1 Thesis Structure 

 

The structure of the thesis follows a coherent sequence necessary to develop a clear 

understanding of the broader context of the present research and its implications. Considering 

that this research work aimed to develop new technological processes, the literature review in 

Chapter 2, not only provides details of the scientific background of the project but also appraise 

the industrial and technological aspects involved in the manufacturing of large scale forging 

subjected to different quenching conditions. Relevant topics, such as heat transfer mechanisms 

during industrial quenching; phase transformations on both,  continuous and exponential 

cooling, and the relationships between CTOD (Cracking Tip Opening Displacement) fracture 

toughness  and key metallurgical aspects are covered in this section. Chapter 3, describes the 

production method of the experimental workpiece (large-scale forging segments) including 

relevant aspects of steel making, open-die forging, and ring rolling, machining and cutting 

operations involved in the manufacture of the part. The second section reports heat treatments 

carried out at industrial level to produce different cooling rates in large ring segments of AISI 

8630M low alloy steel, whereas the third section describes the quenching dilatometric 

measurements carried out under laboratory conditions in order to assess the effect of cooling 

rate on the microstructure of  AISI 8630M steel specimens.  The last section provide 

information regarding the comprehensive mechanical testing and characterization plan 

conducted over the selected specimens.  

 

In Chapter 4, the results of the quenching treatments conducted on three experimental ring 

segments separately quenched in water, aqueous polymer solution and vegetable oil, under 

industrial conditions are presented. By analysing the shape of the different cooling curves 

studied, it was possible to approximate the heat transfer stages taking place during quenching, 

such as vapour phase, nucleate boiling and convective heat transfer. In addition the main 

critical parameters such as the cooling time parameter (λ) and the maximum cooling rate 

(CRMax)   were determined during the industrial quenching in an attempt to establish 

correlations with the microstructure and properties of the experimental ring segments. Finally 

the onset of the martensitic and bainitic transformations during industrial quenching were 

estimated by identifying the inflexions points in the cooling rates produced by the latent heat 

release. 
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In Chapter 5 the measured data obtained from the quenching dilatometer were used to 

determine the transformations temperatures for the different heating and cooling conditions 

which in combination with the microstructural characterisation allowed to build the continuous 

cooling transformation diagram for the selected material.  

 

The effect of the different cooling rates on the mechanical properties and microstructures 

corresponding to the three segments quenched in water, polymer and vegetable oil after 

tempering treatment at 590°C for 10 hours are presented in Chapter 6. Finally a summary of 

the principal observations and economic impact of the research, and suggestions for future 

work are presented in Chapter 7. 
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2  Literature Review 

 

2.1 Manufacturing Process of Large-Scale Forgings for the Oil and Gas  

Energy Sector 

 

The production of large scale forgings is a complex manufacturing process which 

fundamentally involves steel-making, hot working, heat treatment and machining processes as 

illustrated in Figure 2-1. This complexity relies on the intrinsic dependence of the final 

mechanical properties of the forged component on the several processing parameters involved 

in the steel-making, hot working and heat treatment processes [12]. On this regard, forging 

companies require a strict control, monitoring and analysis of the relevant processing 

parameters in order to full-fill the requirements established by the offshore industry for the 

production of large-scale forgings. However, despite its relevance, the monitoring of 

processing parameters is not always feasible due to the difficulty to install measuring or 

recording devices either on the industrial equipment or directly in the component.    

 

 

Figure 2-1: Typical manufacturing sequence for large scale forging connectors made of 8630 
low alloy steel. (Courtesy of FRISA) 
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2.2 Steel Making 

 

The steel making process constitutes a relevant part in the development and production of 

large scale forgings due to the fact that critical aspects such as non-metallic and segregation 

are generated during production of steel ingots.  

 

Due to the higher solubility of oxygen in liquid iron the formation of non-metallic inclusions 

is inevitable in steelmaking process. On the other hand, Segregation refers, to the changes in 

chemical composition produced in liquid or solid phases during the solidification process. 

 

Due to its detrimental effect on the hydrogen induced cracking and brittle fracture of low alloy 

steels, non-metallic inclusions and segregation are one the most important factors related to the 

steel making process [13, 14]. This section briefly describes the manufacturing process of steel 

ingots and the main processing parameters affecting the production high-quality ingots for the 

production of large forgings.  

 

As seen in Figure 2-2, the steel making process starts by the melting different types of scrap in 

an electric arc furnace (EAF) with electrodes of different dimensions depending on the melting 

power input. Oxygen is injected to reduce carbon and phosphorus content during the scrap 

melting process in the EAF. During tapping of the furnace ladle, deoxidizers, fluxes and 

ferroalloys are added. In order to reduce the oxygen level, aluminium is added during tapping 

process to enable refining process. Once the tapping operation in the electric arc furnace is 

finished the raw liquid steel is moved to secondary steel making unit where the following 

operations are carried out: 

 

 Full deslagging of the melt down slag 

 Precipitation deoxidation with aluminium  

 Start of arc-reheating and addition of new slag 

 Alloying and superheating for vacuum treatment 
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The ladle is then moved to the injection-vacuum stations to carry out the following operations: 

 

 Injection of calcium oxide (CaO) or calcium silicon (CaSi) 

 Vacuum treatment with argon gas and induction stirring 

 Final alloy trimming 

 Temperature control 

 

 

After finishing the vacuum degassing, the steel is bottom poured into the required ingot 

dimensions [15]. 

            

Figure 2-2:  Electric arc furnace located in the recently open melting shop of FRISA. 
(Courtesy of FRISA) 

In his work about the factors controlling the micro-cleanliness of bottom-poured ingots Manzo 

et al. [15]  established the main processing parameters involved in the steel making process of 

large low alloy steel ingots for forging applications: 

 

 Hydrogen content 

 Teeming temperature 

 Teeming flux 

 Teeming rate 

 Hot-top design and volume 

 Mold design 

 Mold surface condition 
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 Refractory hollowware quality 

 Argon shrouded teeming 

 Ingot solidification time 

 Hot transfer of ingots 

 Ingot annealing 

 

The section demonstrates that even a well understood and researched process such as steel 

making may still be challenging in particular when producing large ingots where the difficulty 

to control the main processing parameters at industrial-scale level is increased. However, as 

explained in the following section, it should be pointed out that subsequent processes such as 

open die forging and ring rolling might aid to reduce, until certain extent the detrimental effect 

of non-metallic inclusions in the mechanical properties of large forgings. 

 

2.3 Hot Working (Forging and Rolling) 

 

Hot working is regarded as a critical step in the manufacture of structural components [16]. 

The plastic deformation produced during hot working allows the obtention of the geometry of 

the component and a more homogeneous microstructure, that in combination with subsequent 

heat treatment define the final mechanical properties of the component. Figure 2-3 illustrates 

the open die and ring rolling processes of critical components for subsea applications. 

 

 

Figure 2-3: a) Open die and b) ring rolling processes of critical components for subsea 
applications (Courtesy of FRISA). 
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The grain microstructure of low alloy steels submitted to forging is dependent on the recovery, 

recrystallization and grain growth mechanisms taking place during (dynamic recrystallization) 

and after (static recrystallization) hot working process. In turn, these mechanisms are affected 

by key forging parameters such as degree of plastic deformation, temperature, time and design 

of deformation passes [17]. 

 

As seen in Figure 2-4, during hot working process, the heterogeneous grain structure of the 

ingot is refined and orientated in the direction of the main material flow. In addition, the plastic 

the deformation generated during hot working is responsible for the closure of internal voids 

related to the ingot solidification. Besides the enhancement in grain size uniformity and void 

closure, the plastic deformation as well contributes to the reduction of non-metallic inclusion 

by breaking them into smaller particles and redistribute them uniformly along the part [18]. 

Furthermore, high plastic deformation levels also contribute to reduce the thickness of 

segregated bands after hot working process [19]. 

 

However, when producing large forgings is not always possible to achieve high degrees of 

plastic deformation and internal penetration required to produce void closure and uniform 

microstructure [20]. Usually these issues are caused either by technological limitations on the 

hot working equipment or by cost constraints to acquire larger ingots. 

 

 

Figure 2-4: Schematic illustration of recrystallization and grain growth mechanisms taking 
place during open die forging process [21].  
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The problem of penetration and plastic deformation inside large steel forgings was studied by 

Ali [22]. In this research, it is stated that the penetration of plastic deformation in 34CrNiMo6 

steel large scale forgings is higher in the surface of the part and decreases with depth up the 

central zone, leading to heterogeneous grain size distribution along the part thickness producing 

large variation in the mechanical properties even after heat treatment. 

 

Despite the improvement on its properties after hot working, large forgings cannot be used in 

the “as-forged” condition since the microstructure and mechanical properties are still not within 

the specification requirements for subsea applications. Accordingly, further processing is 

required in order to develop the bainitic and martensitic structures that provides the essential 

mechanical properties for subsea connectors.  

 

2.4 Heat Treatment 

 

Heat treatment is the last thermal process in the manufacturing sequence of large steel forgings 

that determines the final microstructure and mechanical properties of the component [23]. The 

design of heat treatment process consists in the definition of critical parameters such as of 

heating rate, temperatures, soaking times and cooling rates in order to achieve the desired 

microstructure and mechanical properties. These parameters have been widely researched over 

the last four decades, however with the continued development of new heat treatment 

technology including massive furnaces and quenching tanks to satisfy the demanding 

requirements of the offshore industry there is uncertainty in the forging industry to guarantee 

the mechanical properties of large scale forgings due to the potential microstructural variation 

associated to with heat treatment of large forgings. 

 

2.4.1 Normalizing 

 

There are three main concerns about the microstructure of large forgings after open-die forging 

and ring rolling operations. First, the grain flow is preferentially oriented depending on the 

severity of the plastic deformation on the longitudinal or transverse axis of the forging. This 

microstructural anisotropy results in different mechanical properties between the longitudinal 

or transverse orientations of the forging.  Second, due the cooling rate variation experienced 

during cooling down process after hot working operations, a heterogeneous microstructure 
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could be formed along the wall-thickness of the forging leading in consequence to variation in 

the internal structure [24]. In this sense, normalizing treatment has the potential to reduce the 

heterogeneity and microstructural anisotropy developed after hot working due to its ability to 

homogenize and refine the structure of low alloy steels. Normalizing involves heating the 

material from to austenitic phase (face-centered cubic structure), holding it at austenitizing 

temperature until complete transformation is reached along the dimensions of the forging and 

finally cooled down in air to room temperature. In terms of microstructure, a ferritic-pearlitic 

microstructure is usually expected on large scale components after normalizing treatment [24]. 

 

As a result of the high forging temperatures (1100°C - 1250°C) employed during hot working 

operations, a coarse grain structure is produced in the part after forging process, however this 

coarse structure is in fact refined after normalizing process by using temperature between 900 

and 950˚C. Figure 2-5 shows the microstructural evolution of a EN355B low carbon steel 

flange before (“as-forged” condition) and after normalizing treatment. The grain refinement 

effect of normalizing treatment can be clearly seen. 

 

 

Figure 2-5: Light microscopy images of  EN355B low carbon steel forging a) after forging 
and b) after normalizing treatment.(Courtesy of FRISA) 

 

The main processing parameters of normalizing treatment are: heating rate, temperature, 

soaking time and cooling rate. The heating rate depends on the heating capacity and control of 

the furnace while the temperature is determined based on the chemical composition of the 

material. In turn, the soaking time and cooling rate depend on the thickness and mass of the 

material [25]. Usually, 8630M low alloy steel forged components for offshore applications are 

normalized between 900°C-930°C with soaking times of 60 minutes per 25 mm thickness. The 

low austenitizing temperatures, in combination with the dissolution of carbides and the 
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formation of fine aggregates of ferrite and pearlite, represent the main mechanisms responsible 

in the refinement and homogenization of the microstructure after normalizing treatment [25]. 

 

2.4.2 Quenching 

 

2.4.2.1 Introduction 

 

Although, as previously mentioned, the microstructure of large forgings is significantly 

optimized after normalizing, quenching treatment is still required in order to promote the phase 

transformations required to achieve the desired properties in the final component. Figure 2-6 

shows an example of how a large ring looks during industrial quenching process. 

 

 

Figure 2-6: Industrial quenching process of a rolled ring carried out in cylindrical tank 
(Courtesy of FRISA). 

 

Quenching can be regarded as a key technological process used in the forging industry to tailor 

the microstructure and properties of low and high alloy steels [26]. This complex process can 

be summarized as follows: initially the component is heated to its austenitic range, then after 

the soaking time is over, the material is removed from the furnace and transferred to a 

quenching tank where the component is immersed in a quench medium to promote fast cooling 

in order to avoid the development of undesired structures [27]. If the cooling rate is fast enough, 

the austenitic structure may transform into meta-stable structures such as martensite or bainite 

depending on the non-equilibrium cooling conditions generated during quenching, the 
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chemical composition and section size of the forging. Nevertheless, this basic description does 

not reveal the intricacy of quenching in which relevant heat transfer mechanisms occur in the 

surface of the forging and the cooling media during cooling from the austenitizing temperature 

[24, 28]. This complexity is further discussed in the following section. 

 

2.4.2.2 Heat transfer mechanisms during quenching – Wetting kinematics. 

 

Since the boiling temperature of the quenching medium is often lower than the initial 

temperature of the material being cooled, heat transfer during quenching is frequently 

associated with boiling [11]. As schematically explained in Figure 2-7, during quenching in 

liquid media, three phases of heat removal usually take place. The first stage is the generation 

of a vapour film immediately after full immersion of the workpiece. The second stage is 

nucleate boiling whereas the third stage is convection heat transfer. In the first stage, after full 

immersion, the high temperature (between 700-950°C) of the workpiece allows the 

vaporization of the quenchant, promoting the formation a vapour blanket in the interphase 

between surface of the component and the coolant. Due to the insulating effect of the vapour 

blanket, the cooling rate in the first stage of quenching is relatively slow. Eventually, the 

breakdown of the vapour film takes place when the temperature of the workpiece falls below 

the Leidenfrost temperature (the temperature above which the vapour film stage takes place) 

leading to the nucleation boiling stage. The release of vapour bubbles produced by the 

evaporation of the liquid in contact with the surface of the component results in high cooling 

rates due to strong convection produced during the nucleate boiling stage. Finally, when the 

temperature of the metal is lower than the boiling point of the quenchant, slow cooling rates 

are produced in the workpiece associated to the wetting effect taking place over the surface of 

the component. Additionally, on this last stage the slow cooling rate are controlled by the rate 

of convection and the viscosity of the liquid [24].  
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Figure 2-7: Schematic illustration of wetting kinematics during quenching process [26]. 

 

Wettability is defined as the tendency for a liquid to spread on a solid and it’s characterized by 

the degree and the rate of wetting. The degree of wetting indicates the extent up to which the 

liquid wets the surface [11]. It is well established that the cooling characteristics during 

quenching are strongly affected by the wetting-front process occurring on the surface of a 

material during quenching. As summarized by Hernandez-Morales et al. the velocity and 

geometry of the wetting front as well as the shape of the workpiece are important factors 

controlling the time-temperature distributions within the workpiece. Consequently, the 

heterogeneity level of the rewetting process associated to the aforementioned factors can lead 

to non-uniform hardening and some other quenching problems such as distortion and quench-

cracking [29].  Figure 2-8, shows an example of wetting process taking place during quenching 

as a function of time. 
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Figure 2-8: Wetting process of a cylindrical Cr–Ni-steel specimen 25-mm diameter100 mm quenched from 850°C into 

distilled water at 30°C with an agitation rate of 0.3 m/s [30]. 

 

The use of wetting kinematics to evaluate the cooling performance of quenching medium is 

demonstrated in the work of Prabhu et al. [31]. They investigated the applicability of pongamia 

pinnata vegetable oil as cooling medium for industrial heat treatment. Based on this study it 

was found that the early collapse of the vapour blanket promotes a fast rewetting during 

quenching of pongamia vegetable oil resulting in higher heat transfer rates during nucleate and 

convective cooling stages. Figure 2-9 shows the wetting kinematics of an Inconel probe 

quenched in pongamia pinnata, palm and mineral oil where a uniform wetting front can be 

observed in the probe quenched in pongamia pinnata oil. 

 

 

Figure 2-9: Wetting kinetics of Inconel probed submitted to quenching in  (a) pongamia 
pinnata (b) palm and (c) mineral oils [31]. 
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2.4.2.3 Quenching fluids 

 

The quenching power can be defined as the ability of cooling media to extract heat from a 

workpiece to achieve the microstructure and mechanical properties desired. In this context,  

extracting heat from the surface, and even from central zones of the workpiece represents the 

main requirement that should be met by every quenchant to guarantee the achievement of “fast” 

microstructures such as martensite or bainite  that allow the obtention of high strength and 

toughness after heat treatment [11].  

 

Water is an economical cooling media that has been used for years in the forging industry for 

quenching of parts with simple geometries like blocks, cylinders and rings. Due to its high 

specific heat of vaporization and high specific heat capacity, water is capable to develop high 

heat transfer rates during quenching. This characteristic is particularly attractive for steels with 

low hardenability where high cooling rates are required to avoid the formation of pearlitic and 

ferritic structures. However, the high cooling rates produced by water quenching can induce 

residual stresses in the part that may lead to distortion and cracking. Furthermore, water 

requires strict temperature controls and high agitation flow to enable its maximum quenching 

power [11].  

 

When minimum distortion is required, and the strength and toughness are not critical for the 

performance of the material, mineral oils can be an alternative to water due to its cooling 

uniformity, low quenching power and thermal stability. However, the use of mineral oils is 

restrictive due to its high fire hazard severity and detrimental effects on the environment [9].   

 

Aqueous polymer quenchants represent an alternative between water and mineral oils since a 

wide range of cooling rates can be achieved by controlling the polymer concentration, bath 

temperature and intensity of agitation [27]. The use of polymer solutions such as poly alkylene 

glycol (PAG), poly vinyl pyrrolidone (PVP), enables the development of high strength and 

toughness comparable to those of water quenching but with the advantage of low distortion 

levels. The reduced distortions obtained after quenching in aqueous polymer solution are due 

to the formation of a polymer film during quenching which promotes uniform cooling near to 

the martensitic transformation point [32]. The main disadvantage of using aqueous polymer 

solutions is that strict maintenance and monitoring of the quenching tank required in order to 
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avoid the degradation of the viscosity of the polymer media which may cause a reduction in 

the heat transfer rates. Additionally, high temperature of the tank, low agitation, oxidation and 

contaminants such as oils and lubricants are the main factors promoting degradation in aqueous 

polymers [9].  

 

With increasing environmental regulations in the forging industry, vegetable oils have attracted 

great attention due to its characteristics of high biodegradability. Souza et al. [33] Studied the 

cooling performance of different vegetables oils such as canola oil, cottonseed oil, corn oil, 

sunflower oil, and soybean oil. It was found that the heat transfer during quenching with these 

particular vegetable oils was completely dominated by convection and no presence of vapour 

film and nucleate boiling stages were observed. The absence of vapour film and nucleate 

boiling during vegetable oil quenching can be explained by the fact that the boiling point of 

vegetable is extremely high in comparison with water and polymer. These results highlighted 

the possibility that vegetable may not require the use of expensive and complex agitation 

systems to break the vapour film since as mentioned, vegetable oil does not experience vapour 

film and nucleate boiling during quenching [33]. However other authors such as Prabhu [34] 

have in fact detected the presence of nucleate boiling stage during quenching with different 

vegetable oils. Further, they reported that the maximum heat transfer coefficient occurred 

within the nucleate boiling stage during quenching. 

 

The cooling performance in small specimens and wetting kinematics of water, aqueous 

polymer, vegetable and mineral oils has been well researched for over 30 years [11, 9, 35, 32]. 

Nonetheless, during the last decade nanofluids have attracted the attention of many researchers 

[36, 37]. Usually the production of nanofluids for quenching is carried out by mixing CuO, 

Al2O3 and TiO2 particles (average size < 100 nm) in base fluids such as water. The fundamental 

reason why nanofluids have become of research interest is due to its high heat transfer 

coefficient and thermal conductivity in comparison with conventional coolants such as water, 

polymer solutions and oils [37]. Prabhu and Ramesh [38] indicated that the wetting kinematics 

and critical heat flux during boiling stage of conventional fluids can be enhanced by the 

incorporation of nanoparticles. The enhancement of the heat transfer conditions by using 

nanofluids can in consequence foster the microstructure and mechanical properties of low alloy 

steels. However, the application of nanofluids has yet not been proven to be effective at 

industrial level. 
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2.4.2.4 Critical Variables  

 

In practice, one of the main challenges in heat treatment is related to the myriad of factors that 

per se influence the quenching process including: quenching tank design (agitation system, 

dimensions, temperature control, distance from the furnace to the quenching tank, etc.), 

chemistry, geometry and surface finish of the component, and as mentioned before, the 

characteristics of the cooling media used during quenching. In general, the industry has been 

trying not only to monitor but as well to control some of these critical factors during industrial 

heat treatment. However, due to the great number of parameters involved in the analysis of 

industrial quenching, it is often difficult to determine with a decent degree of accuracy which 

factor or set of factors are in fact responsible, for example for the inferior mechanical properties 

observed in a large forged component after heat treatment. In this context the present section 

attempts to describe the most important parameters involved in quenching process under 

industrial conditions. 

 

2.4.2.4.1 Cooling rate 

 

If a low alloy steel is submitted to a slow cooling rate from its austenitizing point, pearlite and 

ferrite microstructures will precipitate in the material. Nevertheless, these microstructures are 

not suitable for components with high strength - high toughness requirements since these type 

of structures possess a coarse grain structure that is detrimental for the strength and toughness 

of low alloys steels. On the contrary, when higher cooling rates are applied to low alloy steels 

during quenching, the formation of bainite and martensite is promoted. The preferential 

distributions of carbides and the relatively fine gran structure and substructure of martensite 

and bainite allow the achievement of superior strength and toughness properties compared to 

those of ferritic-pearlitic structures [39]. This explanation highlights the relevance of cooling 

rate to determine the microstructure and mechanical properties of low alloy steels [9].As 

illustrated in Figure 2-10, the plot shows the influence of cooling rate in the microstructural 

evolution represented in a continuous cooling transformation diagram (CCT). The upper 

critical (UC) cooling rate is the minimum cooling rate at which martensite can be formed, 

whereas, with further increasing in the cooling rate, there is a limit in which pearlitic structure 

starts to be inhibited. This limit is the lower critical (LC) cooling rate [24]. It is important to 

point out that the “noses” of the bainitic, pearlitic and ferritic ranges, can be shifted to the right 
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side of the CCT diagram by increasing the amount of alloying elements such as manganese, 

chromium and nickel and by the effects of segregation [19]. This displacement may allow the 

obtention of martensite even with slower cooling rates. However, increasing the alloying 

elements in low alloy steels forgings not only increases the steel-making costs but as well 

increases the possibility of cracking and distortion during or after quenching. 

 

 

Figure 2-10: Schematic CCT diagram of 1040 steel, F (Ferrite), P (Pearlite), B (Bainite), Ms 
(Martensite Start), UC (Upper Critical Cooling Rate), LC (Lower Critical Cooling Rate) [24].  

 

 

Figure 2-11: Relevance of critical parameters on strength and toughness [12]. 
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Pous-Romero et al. [12] Developed a method based on neural networks to predict the strength 

and toughness of A508 low alloy steel large forgings. In this work, industrial experimental data 

were collected and used as input data for the neural network model. As illustrated in Figure 

2-11, they found that with exception of testing temperature, industrial cooling rate is one of the 

most important parameters controlling the performance of the material. 

 

In order to enhance the structural integrity of 34CrNiMo6 large scale forgings, Hughes [40] 

and colleagues developed a heat transfer model to predict the cooling conditions and 

mechanical properties on specific locations along the geometry of the forged component. 

Initially, the heat transfer model was used to predict the cooling rates at different locations of 

a 480 mm billet, then representative samples were heated and then cooled down according the 

cooling rates predicted by the heat transfer model. After cooling, the samples were tempered 

and impact toughness tested. The results corresponding to the cooling - rate impact toughness 

correlation are displayed in Figure 2-12. Based on this study, it was concluded that the 

increasing formation of martensite as the cooling rate is increase lead to superior impact energy 

in the specimens after tempering.  

 

The methodology developed by Hughes to predict the toughness of 34CrNiMo6 steel appears 

to be a practical alternative to correlate cooling rate and mechanical properties at industrial 

level, however, in this work the effect of segregation on the samples cooled at different rates 

was not considered in the analysis of the results. As explained later in this chapter, if segregated 

and non-segregated samples are cooled down at the same rate, different microstructures can be 

produced after cooling even if the same cooling rate was applied for both samples [36]. 

 

 

Figure 2-12: Dependence of impact toughness with respect to cooling rate during quenching 
of 34CrNiMo6 low alloy steel, adapted from [40].         
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2.4.2.4.2 Quenching tank temperature 

 

An increase in the temperature of the cooling media is expected during quenching process, 

especially when large components with excessive weight are immersed in the quenching tank. 

As reported by Fontecchio et al. [41]  the temperature rise during immersion quenching may 

cause a detrimental effect on the wetting kinematics of different quench media which in 

consequence may adversely affect the final properties of the part. For example, as the tank 

temperature is increased during water or polymer solution quenching, the thickness of the 

vapour film becomes larger generating a reduction in the cooling rates during the vapour film, 

nucleate boiling and convection heat transfer stages. This reduction in the cooling rate may be 

responsible for the formation of diffusional products such as pearlite and ferrite. This is the 

reason why a restriction of maximum 55˚C on the bath temperature is usually is suggested by 

polymer quenchant suppliers when PAG (Polyalkylene glycol) polymer solution is selected as 

preferred cooling media. The reason behind this temperature restriction is due to the polymer 

chains might chemically dissociate from the water solution provoking a loss of the inherent 

cooling characteristics of the polymer solution. Finally, the standard practice suggest a 

temperature range of 50-65°C for mineral and vegetable oils to avoid deterioration in the 

cooling rate conditions during industrial quenching [9]. The effect of quenching tank 

temperature on the cooling rate of Inconel 600 specimens quenched in water can be seen in 

Figure 2-13.  

 

Besides the restrictions in temperatures and times during heat treatment cycles, some material 

specifications for large scale forgings for offshore applications have strict requirements on the 

bath quenching temperatures in order to avoid undesirable mechanical properties after heat 

treatment. Accordingly, the temperature requirements of the quenching tank before quenching, 

either in water or in polymer solutions, must be in the range of 20 - 25°C, whereas, the 

temperature of tank once the quenching process is finished, shall not exceed 35°C. In order to 

fulfil these sorts of requirements, forging and heat treatment companies must install heat 

exchangers to maintain the temperature of the quenching tanks within the specified 

requirements. 
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Figure 2-13: Effect of bath temperature on cooling curves measured in the center of an 
Inconel 600 probe (12.5-mm diameter x 60 mm) quenched into water flowing at 0.25 m/s 

[24]. 

 

2.4.2.4.3 Intensity of agitation 

 

As mentioned, one of the most vital aspects during the design process of quenching technology 

is the agitation system [9]. Its relevance is due to the fact that a high flow velocity during 

immersion quenching induces an instability in the vapour film stage by decreasing its duration, 

and at the same time, increasing the heat transfer by convection during quenching.  

 

The reduction of the vapour film allows to obtain higher cooling rates between the vapour film 

stage and nucleate boiling stage [24].  Figure 2-14, shows the effect of agitation on the cooling 

rate of Inconel probes (diameter = 12.5 mm, length = 60 mm) submitted to quenching in PEG 

(Polyethylene Glycol) aqueous polymer solutions. Furthermore, Figure 2-15, illustrates the 

hardness results produced after quenching a test-piece (diameter = 30 mm, height = 105 mm) 

in a tank with agitation rates of 0.25 and 1.2 m/s. It is clear that superior hardness penetration 

can be achieved by using higher agitation rates (1.2 m/s) during polymer quenching at 20°C. 
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Figure 2-14: Cooling data for a 10 % solution of PEG-6000 tested at 30°C: (a) 
temperature/time curves; (b) temperature/cooling rate curves [42]. 

 

 

Figure 2-15: Hardness penetration in the wedge sample (AISI 5038) steel influence of the 
velocity of the liquid, adapted from [11]. 

 

2.4.2.4.4 Cooling uniformity 

 

Another critical parameter involved in the quenching process of large forgings is the cooling 

uniformity. During industrial quenching, heterogeneous hardness distributions can be 

developed due to non-uniform fluid flow inside the quenching tank [43]. Agitation flow 

measurements taken at different depths inside of an industrial quenching tank property of 

FRISA are illustrated in Figure 2-16. Usually these type of measurements are carried out by 

immersing an anemometer in the desired locations inside the quenching tank. Referring to this 

figure, the results indicate that the average agitation flow at 150 cm depth is approximately 

0.15 m/s while the measurements at 50 cm result in an average flow of 0.35 m/s.  
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The higher agitation flow observed at 50 cm depth could be due to the proximity of the agitation 

source to the area selected for agitation measurement. It is evident that near to this area the 

agitation intensity would be expected to be high in comparison with the 150 cm depth 

measurement where the intensity of the agitation is reduced as the distance from the agitation 

source is increased.  

 

 

 

Figure 2-16: a) Schematic design of industrial quenching tank, b) locations to measure 

agitation flow inside quenching tank, c) agitation flow measures at 150 cm depth and d) 

agitation flow measurements at 50 cm (Courtesy of FRISA). 

 

In addition, the flow rate uniformity of the cooling media in a quenching system mainly relies 

on the type of agitation and the design of the flow baffles. For example, as shown in Figure 

2-17,    immersion quenching tanks for processing of large forgings are usually agitated either 

by propellers or submerged nozzles systems depending on the quenching tank dimensions as 

well as the intensity and uniformity of agitation required. 
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Figure 2-17: : Illustration of (a) propellers and (b) nozzles for the agitation of liquid 
quenchants (Courtesy of FRISA). 

 

2.4.2.4.5 Effect of Thickness 

 

There are several alternatives to achieve the desired microstructure and properties on thin-wall 

components. Modifications such as; increasing alloying elements, increasing the plastic 

deformation during hot working or increasing the cooling rate during quenching can contribute 

to achieve optimal microstructures that eventually allow the obtention of the desired 

mechanical properties. However, in the case of forgings with large cross sections the cooling 

rate at the central part of the components is limited by the thermal conductivity of the material. 

As illustrated in Figure 2-18 , as the cross section of cylindrical steel specimens subjected to 

quenching is increased the cooling time becomes larger [44]. Due to the slow cooling rates 

produced in thick-wall sections, undesired microstructures such as pearlite and ferrite could be 

formed in the center of the part after heat treatment leading in consequence to non-uniform 

distribution of strength and toughness properties along the geometry of the forging. One of the 

alternatives available to overcome this limitation is to increase the alloying elements in the 

material by increasing the amount of martensitic transformation at center of the forging. 

However, this alternative is not always feasible due to cost constraints involved in increasing 

expensive alloying elements such as chromium, nickel and molybdenum. As expected, the 

section size of the forged component also affects the wetting kinematics due to the slow cooling 

rate during quenching process. Fernandes and Prabhu observed that during quenching of 1040 

steel specimens with  diameters of 44 mm and 28 mm, the nucleate boiling stage was 

significantly delayed in the thick specimen in comparison with the thin one [45]. 
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Figure 2-18: Plot showing the effect of diameter of experimental cooling curves at the center 
of the selected steel specimens, adapted from [44] . 

 

2.4.2.4.6 Quenchant selection – Viscosity 

 

The viscosity of a fluid can be defined as its resistance to flow. The performance of the vast 

majority of cooling media is in fact affected by its dynamic viscosity [11]. Usually a cooling 

media with high viscosity is associated with low heat transfer rates, while a quenchant with 

low viscosity is related to high heat transfer rates.  In turn, viscosity changes with temperature 

and usage. Ramesh and Prabhu investigated the effect of thermal conductivity and viscosity of 

water, mineral, brines and polymers solutions during quenching process by using standard 

ISO/DIS 9950 Inconel 600 quench probe. Cooling curve analyses showed that the change in 

thermophysical properties of the quench media had significant effect on the cooling history of 

the quench probe indicating that viscosity was the most important characteristic controlling the 

cooling performance of commercial cooling media [46]. The thermal conductivities and 

viscosities of the selected quenchants used by the aforementioned authors is elucidated in Table 

2-1. 
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Table 2-1. Thermophysical properties of selected quenchants, adapted from [46]. 

 

2.4.2.4.7 Hardenability 

 

As briefly explained earlier in this section, the forging and heat treatment industries apply the 

concepts of hardenability, critical cooling rate and ideal critical diameter to improve the 

mechanical properties at center of large forgings. The relations between these metallurgical 

concepts can be elucidated as follow; The lowest rate of cooling at which a martensitic structure 

is formed is called critical cooling rate. For example, an unalloyed steel requires high cooling 

rates to produce martensite at its geometrical center, whereas, an alloyed steel with the same 

dimensions will produce martensite at the same position with relatively lower critical cooling 

rates. This effect can be understood by the hardenability concept, which can be defined as the 

ability of the material to reach either a certain hardness or martensite level along the cross 

section of the component [24]. On this regard, the chemical composition is the most important 

factor determining the hardenability of a material. The elements Cr, Mo, Mn, Si, Ni and V all 

retard the phase transformation from austenite to ferrite and pearlite. The most commonly used 

elements are Cr, Mo and Mn. The retardation is due to the need for redistribution of the alloying 

elements during the diffusional phase transformation from austenite to ferrite and pearlite. 

Carbon controls the hardness of the martensite. Increasing the carbon content increases the 

hardness of steels up to about 0.6wt%. At higher carbon levels, the formation of martensite is 

depressed to lower temperatures and the transformation from austenite to martensite may be 

incomplete, leading to retained austenite. The solubility of the elements varies between the 

different phases, and the interface between the growing phases cannot move without diffusion 

of the slowly moving elements. There are quite complex interactions between the different 

elements, which also affect the temperatures of the phase transformation and the resultant 

microstructure. Steel compositions are sometimes described in terms of a carbon equivalent 

which describes the magnitude of the effect of all of the elements on hardenability. An alloyed 
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steel with high hardenability will consequently require lower cooling rates to produce 

martensite at the center of the part compared to steels with low hardenability. Finally, 

hardenability is often estimated by using the critical diameter (Dcr) parameter which can be 

regarded as the largest bar diameter in which full hardening is produced along the cross section 

of the part. An example of a hardenability testing is illustrated in Figure 2-19. 

 

 

Figure 2-19: Measuring hardness on a Jominy test specimen (100 mm long by 25 mm 
diameter round bar) austenitized between 870-900˚C and quenched in water and plotting 

hardenability curves [11]. 

 

2.4.2.4.8 Summary 

 

As explained at the beginning of this section, it is clear that quenching can be treated as a 

complex heat transfer phenomenon in which many variables related to quenching tank design, 

cooling media, geometry and chemistry of the part, contribute in some degree to the overall 

performance of quenching treatment. However, as explained in the following section, the 

tempering treatment is as well a crucial step in the heat treatment process of large scale forgings 

due to its ability to reduce the high internal stresses and brittle microstructures associated to 

the martensitic transformation. 
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2.4.3 Tempering 

 

Tempering treatment is required after quenching process since the as-quench martensite is 

brittle, hard and consequently not suitable for structural applications. Tempering consists of 

heating the previously obtained martensitic structure to a determined temperature for a specific 

time period and the cooling in still air. The tempering time is calculated based on the thickness 

of the part, usually one hour per inch (25 mm) of thickness of the component, while the 

selection of the tempering temperature depends on the desired mechanical properties [24]. 

Abdollah-zadeh and Salemi in reference [47]  investigated the effect of tempering temperature 

on the strength and toughness of a NiCrMoV steel by austenitizing selected specimens at 870°C 

for 1 h, quenched in oil and then tempered between 200 - 600°C. It was observed that the rising 

temperature causes a reduction in the yield strength and ultimate tensile strength. On the other 

hand, as illustrated in Figure 2-20, a reduction in the toughness is observed as the tempering 

temperature in increased. The reduced yield strength and increased toughness observed on the 

specimens as tempering temperature was increased is associated to a reduction in the residual 

stresses and high dislocation density inherent to the martensitic transformation. Further, the as-

quench martensite is transformed into tempered martensite during tempering which consists of 

a acicular ferrite matrix with carbides precipitates located either in the prior austenite grain size 

boundaries or within the lath substructure [48]. It is noteworthy to mention that the maximum 

temperature used during tempering treatments must be below the lower critical temperature Ac1 

(austenite start temperature transformation on heating) in order to avoid austenite 

transformation.  

 

 

Figure 2-20: Variation of a) yield, ultimate tensile strength and b) impact toughness with 
tempering temperature,  adapted from [47]. 

 



 

   34 
 

The tempering process of martensite involves three main process associated to reconstructive 

modes that involve movement of atoms. The initial stage of tempering (100-200°C) involves 

the formation of Fe2.4C carbides also known as Ɛ-carbides. During the second stage, the 

retained austenite from the previous quenching operation transforms into a mixture of ferrite 

and cementite between 200-350°C. The third stage occurs between the ranges of 250–750 °C. 

In this temperature range, depending on the chemical composition of the material, the 

formation of either Fe3C cementite or M3C carbides takes place, leading to the termination of 

the bct (body-centered tetragonal) tetragonality of martensite and progressively reducing its 

stress level [24].Consequently, the dimensions, morphology, chemistry, distribution and 

orientation of the carbide precipitates formed during tempering of a martensite structure 

determine the mechanical properties of the material. 

 

2.4.3.1 Tempering embrittlement 

 

As indicated by Arabi and co-workers, the segregation of impurities (P, S, Sn, As, and Sb) to 

grain boundaries during tempering in the range of 370-550° can reduce the impact toughness 

of low alloy steels [49]. This phenomenon is known as temper embrittlement and can be 

produced either by cooling the material at slow cooling rates or by isothermal heating in the 

temperature range previously mentioned. The formation of brittle phases produced by the 

migration of impurities generally promotes embrittlement at grain boundaries which may cause 

intergranular failure on the component.  Industrially, temper embrittlement might cause 

reworks (repetition of heat treatment cycles) and potential rejection of the part if the toughness 

is not improved even after repeating the heat treatment process. In particular, forged 

components with large cross sections can be subjected to slow cooling rates from the tempering 

temperature selected. In order to avoid this, usually large forgings are cooled down in water 

instead of air in order to avoid the critical interval of temperature (370 -550°C). However, 

cooling in media different that of air, is not always accepted as standard practice in some 

material specifications for large forgings used in offshore applications since cooling in water 

may induce residual stresses in the part after heat treatment. Another alternative used by the 

industry to cope with temper embrittlement is to increase the purity of the low alloy steel by 

reducing the composition of detrimental elements such as P, S, Sn, As, and Sb, this in turn may 

reduce the sensitivity of the material to temper embrittlement [49]. 
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2.4.3.2 Critical Parameters on Tempering 

 

The hardness, strength and toughness properties are quite sensitive to tempering temperature 

and tempering time parameters since the formation of carbides generated by the diffusion of 

carbon and alloying elements is dependent on temperature and time parameters [50]. Besides 

temperature and time, the cooling rate and chemistry of the material are also critical tempering 

parameters. Due to the variety of chemical compositions and dimensions of forged components 

for oil and gas applications, the heat treating industry employs different methods to determine 

the effect of temperature-time parameters on the properties of low alloy steels.  As indicated 

by Canale et al. [51], one of the most used methods to predict hardness based on tempering 

parameters is the Holloman-Jaffe equation: 

 

 
H = f [t expି

୕
ୖ] 

 

(1) 

 

Where: 

H = hardness 

t = the time at tempering temperature 

T = the tempering temperature (absolute) 

R = the ideal gas constant 

Q = the activation energy for the structural changes involved in the tempering process of the steel 

f = an appropriately selected function. 

 

The Holloman-Jaffe equation has been a useful method for many years to determine the effect 

of tempering temperature and time for steels under isothermal conditions (only the time at the 

tempering temperature), However, this equation does not address the non-isothermal 

conditions (total time in the furnace) experienced during industrial tempering which includes 

the heating and cooling process during the complete tempering treatment. These limitations 

may to lead to erroneous predictions of hardness due to the fact that critical stages during 

tempering such as the heating up and cooling-down processes are not considered for the 

quantification of the tempering-time parameters. 
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2.4.4 Advances on Heat Treatment Simulation 

 

Due to the importance of quenching technology in defining the final properties of structural 

components, Computer Fluid Dynamics (CFD) has been used recently to evaluate the 

uniformity and intensity conditions of flow rate during immersion quenching. Currently the 

majority of the state of the art quenching systems installed in forging and heat treatment 

companies are initially designed using CFD techniques. CFD was used by Bogh to evaluate 

the flow heterogeneity of nozzles located in different positions inside the tank during 

immersion quenching [52]. It was determined that by using CFD it is possible to predict the 

liquid flow characteristics during immersion quenching. Figure 2-21, illustrates the high flow 

velocity near to the quenching nozzles (agitation source) and how it’s gradually decreased as 

the distance from the nozzles in increased. 

 

 

Figure 2-21: Streamline variation in an industrial quenching tank indicating the variation of 
agitation flow around the quenching zone, (Courtesy of FRISA). 

 

2.5 Continuous Cooling Transformations 

 

The time-temperature dependence of phase transformations is graphically represented by 

transformation diagrams. The kinetics of phase transformation of steels is generally described 

by TTT (time-temperature-transformation) and CCT (continuous-cooling-transformation) 

diagrams. The TTT diagram measures the degree of transformation at an isothermal 

temperature by cooling specimens as rapidly as possible from the austenitic zone to a 

determined constant temperature between Ac3 and Ms critical points. However, these diagrams 

are not suitable for industrial heat treating of since during cooling, the temperature and the rate 

of cooling are not constant along the thickness of the part [9]. 
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2.5.1 CCT Diagrams 

 

A CCT diagram quantifies the rate of microstructural transformation as a function of time and 

temperature by heating up predetermined specimens to the austenitizing temperature, and then 

cooled down at constant cooling rate. As seen in Figure 2-22, the start and the end of the phase 

transformations during continuous cooling are determined by dilatometry with the volume 

change resulting from the start and finish of phase transformations. The construction of this 

diagram is carried out by representing the selected cooling rates on a time-temperature plot and 

overlapping the start and finish phase transformation points on each cooling curve profile. 

Finally, the transformation temperatures points for all the cooling rates are connected as 

illustrated in Figure 2-23. The microstructural evolution during continuous cooling is often 

validated by performing a metallographic analysis on each specimen subjected to the different 

continuous cooling rates [53].    

 

 

 

Figure 2-22: Dilatometry plot of a 37MnNiMo6-4-3 low alloy steel indicating the phase 
transformation temperatures associated to the formation of mixtures of martensite and bainite 

during continuous cooling [54].  
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Figure 2-23: Continuous cooling transformation diagram of an A508 type RPV steel (Wt. %: 
0.25 C, 1.2 Mn, 0.72 Ni, 0.49 Mo and <0.05 Cr)   austenitized at 1100°C for 30 minutes. The 
dotted lines represent the critical cooling rates of the different phases [55]. 

 

2.5.2 Continuous Cooling Versus Exponential Cooling 

 

According to the above mentioned it is clear that construction of CCT diagrams by means of 

dilatometry is useful tool for the design of heat treatments and microstructure prediction. 

However, the determination of phase fractions during industrial quenching (exponential 

cooling) of large-scale parts by using CCT diagrams can be ambiguous. Investigations carried 

out in steels demonstrated that considerable variations in the phase fractions of bainite can be 

obtained by applying constant and exponential cooling rates even if the cooling time for both, 

the constant and exponential rates is similar [56]. As seen before, despite the advantages of 

using CCT diagrams for the prediction of microstructures under different cooling conditions, 

direct measurements of the microstructure and properties in the real part continues to be one of 

the most effective and reliable methods to establish relationships between microstructure, 

properties and cooling conditions during industrial heat treatment. Although it is also true that 

a better correlation between the specific cooling rate applied and its corresponding 

microstructure can be obtained by using CCT dilatometry related to small dimensions of the 

dilatometric specimen. 
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2.6 Phase Transformations during Heat Treatment 

 

As seen in the previous sections, the heating and cooling rates involved in the heat treatment 

of low alloy steels strongly influence the microstructure and properties of the forged 

component. This section aims to point out the main microstructures produced on large forgings 

after heat treatment. The microstructure evolution of steels during heating or cooling can be 

described in function of its mechanisms of transformation. In this sense, Bhadeshia [57] 

proposed a classification system for microstructures of steels based on the mechanisms of 

transformation as illustrated in Figure 2-24. The generation of allotriomorphic ferrite, 

idiomorphic ferrite, massive ferrite, pearlite, carbide, and austenite is carried out by 

reconstructive transformations. This type of transformation involve uncoordinated diffusion of 

substitutional atoms through a determined temperature range but without compositional 

changes. On the other hand, Widmanstätten ferrite, acicular ferrite, bainite and martensite occur 

by displacive transformations, where the structural arrangement of atoms is altered by an 

invariant plain strain-shape deformation without diffusion of iron or substitutional solutes 

during the transformation process [58]. 

 

 

Figure 2-24:  Classification of steel microstructure evolution during heating and cooling 
based on the mechanism of transformation adapted from [24]. 
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2.6.1 Characteristics of Martensitic and Bainitic Phase Transformations 

 

2.6.1.1 Morphology of Martensite 

 

Due to the high cooling rates produced during quenching, the FCC (faced centered cubic) 

austenite structure, can be transformed into BCT (body center tetragonal) martensitic structure. 

The martensitic transformation can be regarded as a difussionless process (no atomic 

movement) where the austenite lattice is deformed during cooling and a large shear and volume 

expansion are induced in the transformed area. This is the reason why the mechanism of 

transformation of martensite is referred as difussionless shear transformation process. 

Additionally, the morphology of martensite consists of thin plates or laths due to spatial 

restrictions during its formation [39]. It is well known that martensitic laths are 

crystallographically related to the parent austenite by the Kurdjumov–Sachs (K–S) orientation 

relationships in which the prior austenite grain is subdivided into packets and blocks of 

martensitic laths respectively. Accordingly, the strength and toughness properties are 

influenced by these packets and blocks and the mode in which these microstructural features 

partition the austenite grain [59]. 

 

The following aspects also represent important features of martensitic transformation [24]:  

 

 The carbon content on austenite and martensite is equivalent even after transformation. 

 The lattice structure of martensite in the as-quench consists of a supersaturated solid 

solution of carbon in ferritic iron. 

 Martensite transformation occurs athermally along a specific temperature range, 

regarded as martensite start temperature (Ms) and martensite finish temperature (Mf). 

The Ms and Ms Points are in turn dependent on the chemical composition of the alloy 

steel.  
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Figure 2-25: Transmission electron micrograph showing packet lath morphology of as-
quench martensite [60]. 

 

2.6.1.2 Morphology of Bainite  

 

The transformation mechanisms related to the formation of bainite remain controversial even 

nowadays [61]. One line of thought [62, 63] suggests that bainitic transformation is of 

displacive nature. On the contrary, some other researchers [64, 65] propose a diffusion-driven 

transformation mechanism. As pointed out by Fielding in reference [61] the controversy is still 

open considering that both schools of thought agree that “direct experimental evidence for 

either theories are difficult to obtain”. In general, lower and upper morphologies are the two 

main forms of bainite produced in steels isothermally heat treated. Lower and upper bainite are 

morphologically differentiated by the distribution of carbide precipitates formed at low and 

high transformation temperatures. As illustrated in Figure 2-26 and Figure 2-27, the structure 

of upper bainite consists of parallel ferritic plates with cementite precipitated along the plate 

boundaries. Usually upper bainite is formed at transformation temperatures between 400 and 

550°C.  During this period, cementite precipitates from the remaining austenite between the 

ferritic laths (interlath morphology). Lower bainite is quite similar to that of upper bainite, 

however the main difference in lower bainite is that cementite precipitates within the ferritic 

plates (intralath morphology). In addition, the intralath carbides are orientated at some angle to 

the major axis of the plate according to its Bagaryatski orientation relationship. In general, the 

transformation temperature range for lower bainite takes place between 400 and 250°C [39].  
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Figure 2-26: TEM micrographs corresponding to 100Cr6 steel showing (a) lower bainite at 
260˚C for 2500 s, (b) upper bainite at 500˚C for 1200 s; :αB bainitic ferrite, GB: grain boundary 
[66]. 

 

However, the classical morphologies of bainite produced by isothermal treatment are not 

always suitable to be compared with the bainitic microstructures formed during continuous 

cooling. In this sense, Bramfitt and Speer [67], demonstrated the presence of continuous cooled 

bainitic microstructures which are not easily defined in terms of any of the "classical" bainitic 

morphologies such as lower and upper bainite. For example, a non- classical bainitic structure 

consisting of both intralath and interlath carbides cooled at a rate of 7500˚C/min was reported 

by the authors. As result of this investigation the authors proposed a classification system based 

on into three categories depending on whether the acicular ferrite is related with (a) intralath 

precipitates, (b) interlath particles/films, or (c) isolated regions of secondary transformation 

products such as M/A constituent. 
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The mechanical properties of bainite are also sensitive not only to the distribution but as well 

to the size of the carbide precipitates in which lower bainite usually exhibit higher toughness 

in comparison with upper bainite due to fine dispersion of carbides associated to the slow 

carbon diffusion rate experienced by these particles into the residual austenite [68]. Finally, as 

elucidated by Barbacki, the following microstructural aspects of the bainitic structure also 

influence the mechanical properties of low alloy steels [69]: 

 

 Packets of lathlike ferrite grains with low disorientation between grains within a packet 

variable, but generally high, dislocation density. 

 Solid solution hardening, mainly by carbon, nitrogen and substitutional alloying 

elements. 

 Regions of martensite and retained austenite of enhanced carbon content between the 

ferrite laths. 

 Large carbides at ferrite lath, packet and prior austenite grain boundaries and smaller 

carbides dispersed within the ferrite laths. 

 

 

 

Figure 2-27: Schematic representation of upper and lower bainitic transformations during 
cooling [39]. 
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2.6.2 Tempering of Martensitic and Bainitic Structures  

 

One of the most important factors associated to the tempering of bainitic and martensitic 

mixtures is the fact that bainite undergo auto-tempering during quenching. In this context, some 

of indications of auto tempering process are associated the relocation of carbon from the 

supersaturated ferrite into the residual austenite, and the fast precipitation of carbides during 

the bainitic reaction.  

 

As illustrated in Figure 2-28, the microstructure at the central part of a 100 mm cross section 

8630M steel forging after polymer quenching consists of mixtures of as-quench martensite and 

bainite. It can be appreciated that there is no carbide precipitation in the martensitic structure. 

This absence of carbide precipitation is due to the fact that carbon still remains in the highly-

stressed supersaturated Fe-C solution.  

 

On the other hand, the presence of carbide precipitates is evident in the bainitic structure due 

to the auto tempering effects mentioned previously. Usually this type of mixed structures can 

lead to low fracture toughness since that as-quench martensite is highly unstable due the high 

stresses induced by carbon in the BCT structure and the high dislocations density. In order to 

increase the mechanical properties, large forgings with mixed structures, must be tempered in 

order to promote the precipitation of carbides by reducing residual stresses and dislocations 

density in the martensitic structure.  

 

The simultaneous tempering of martensite and bainite structures affect them to a different 

extent. At the beginning of the tempering process the bainitic microstructure already contains 

cementite or carbide precipitates inherent to its phase transformation during quenching. With 

martensite, the tempering process effectively induces an initial precipitation of cementite 

located between the lath boundaries. The afore mentioned discrepancy in the initial conditions 

of each microstructure has an effect on the sensitivity of each structure during and after 

tempering process due to fact that unlike martensite, bainite only contain small amount of 

carbon in solid solutions. In consequence only a few changes occur in the recovery and 

morphology of carbide precipitates on bainite during tempering. On the other hand, since most 

of the carbon remains in the solid solution of martensite, during tempering the strength of 

martensite is reduced dramatically as carbon precipitates from the solid solution during 
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tempering.  Figure 2-29, shows the variation of cementite size as a function of tempering time 

in which as the tempering time is increased, the bainitic structure maintains a fine carbide size 

in comparison with martensite. In summary, as elucidated by Bhadeshia in reference [57]:  

“The bainitic microstructure is coarse to begin with because of the tempering inherent in the 

formation of bainite. With martensite the tempering induces the precipitation of cementite, with 

considerable intra lath cementite and a larger overall number density of particles. Therefore, 

the coarsening rate is much larger for martensite; the bainitic microstructure shows greater 

stability to tempering. A consequence is that the matrix microstructure remains fine over a 

longer time period for bainite than for martensite”. 

 

As indicated by Zhang and Knott [70], the relevance of the distribution and size of carbide 

precipitates in martensitic and bainitic structures is based on the fact that these microstructural 

features have a strong influence on the fracture toughness of low alloy steels. Correspondingly, 

small carbides are associated to a lower stress since the ferritic matrix is capable to deform 

plastically instead of fracturing, while large carbides are more prone to generate cleavage 

initiation sites in the cementite-ferrite boundaries due to the less ductility experienced by the 

matrix in the presence of large particles. However it is also important to mention that prior 

research has demonstrated that effective grain size on martensitic structures is finer than that 

of bainite leading in consequence to superior toughness properties for martensitic structures 

[71]. 
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Figure 2-28: Microstructure with mixtures of  (M) martensite and (B) bainite corresponding 
to 8630Mod alloy steel specimen continuously cooled at 0.5 °C/s using Dilatometry 

technique [72]. 

 

 

Figure 2-29: Variation of cementite size as a function of tempering time at 700°C The data 
are for a Fe-0.45C-0.22Si-0.62Mn Wt% steel, the bainite was produced by isothermal 

transformation, [57]. 
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2.7 Mechanical Properties of subsea forgings 

 

The mechanical properties requirements for subsea forgings are designed in according with the 

environmental and reservoir conditions established on the subsea system. Accordingly, this 

section describes the main mechanical properties required by the offshore and subsea industry 

and its relevance on the design of oil and gas structures.  

 

2.7.1 Yield Strength and Ultimate Tensile Strength 

 

The offshore and subsea systems are complex structures which consist of several components 

with specific functions. Due to the increasingly movement of oil and gas exploration to ultra-

deep waters, the overall weight and dimensions of these structures and components has become 

larger. In consequence the critical components, either in the offshore or subsea systems are 

subjected to heavy loads and high stresses during operation [3, 73]. In this sense, the yield 

strength and the ultimate tensile strength are used by the offshore designers for general 

structural design of subsea and offshore components.  

 

From a metallurgical perspective, yield strength and ultimate tensile strength are intimately 

related to the plastic deformation characteristics of the steel. In turn, the main mechanism 

responsible for the plastic deformation of steels is the movement of dislocations. In this regard, 

the free and easy movement of dislocations during the application of tensile loads can lead to 

low strength properties. However, the strength of low alloy steels can be significantly enhanced 

by reducing or hindering the free movement of dislocations, increasing in consequence the 

external loads required to trigger plastic deformation. Correspondingly, the main mechanisms 

involved in the obtention of superior yield and tensile strength by restraining dislocation 

motions are; strengthening by grain size refinement, solid solution strengthening and strain 

hardening [74]. 
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2.7.2 Impact Toughness and CTOD Fracture Toughness  

 

During service, offshore and subsea components can experience low and high speed impacts 

from different sources such as ship impacts, explosions or dropped objects. On this regard, the 

ability of the material to absorb the energy involved in these sorts of impacts without fracturing 

represent a critical performance characteristic of offshore and subsea components [75]. 

 

2.7.2.1 Impact Toughness 

 

The oil and gas industry has used the Charpy V-notch impact testing for around 100 years to 

evaluate the toughness of steel components. The impact toughness testing measures the energy 

absorbed by a standardized notched specimen subjected to a sudden application of an impact 

loading [76]. 

 

After impact testing, generally two types of fracture modes can be produced on the broken 

specimens. These failure modes are frequently regarded as ductile and brittle fracture.  Ductile 

mechanism is often desired on subsea components since when a component fails in a ductile 

fashion the material undergoes a large amount of plastic deformation before fracturing. 

Consequently, a component subjected to ductile deformation before breaking can be either 

replaced or subjected to preventive maintenance before catastrophic failure which may cause 

leaking oil to the marine environment. On the other hand, brittle fracture occurs rapidly without 

any deformation before fracture reducing the possibilities to enable any replacement of 

maintenance in the structure. These type of failure have been responsible for the most 

catastrophic environmental damages in the oil and gas industry during the last 3 decades. As 

indicated by Abd-Allah and co-workers, the brittle fracture behaviour of a material subjected 

to impact testing is enhanced by increased stress triaxiality, low temperatures and high strain 

rates [77]. 
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2.7.2.2 CTOD Fracture Toughness 

 

As mentioned previously, CVN test can be regarded as a simple, economic and standardized 

method which is commonly used to determine the DBTT (ductile-brittle transition temperature) 

of low alloy steels [78]. Nevertheless, offshore designers cannot use CVN test for quantitative 

safety assessment since it only measures the absorbed energy necessary to cause complete 

failure under plane stress conditions. On the other hand, the CTOD test in fact determines the 

fracture toughness of a material by measuring the critical value of the stress intensity factor 

(K≈√𝜋𝛼, where “σ” is the applied stress and “α” the crack length) at the crack tip of the 

specimen under plane strain conditions [79]. Considering this, the offshore industry has 

recently incorporated the CTOD test a critical material requirement for large forgings used on 

subsea applications.  

 

Besides the fundamentals differences mentioned above, fracture toughness is affected by the 

temperature, strain rate, crack tip (notch blunt or sharp crack) and the geometry of the specimen 

(thickness effect). The apparent changes in fracture toughness due to variation in specimen 

dimensions and crack tip shape are not quantified at all by CVN test, since, according to the 

standard method for impact testing, the CVN specimen always must be fabricated with a 0.25 

mm blunt notch with a thickness of 10 mm as illustrated in Figure 2-30 [75]. 

 

 

Figure 2-30: Standard full CVN specimen according to ASTM A370 [80]. 
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One of the most important advantages of the CTOD testing is the fact the specimen sizes can 

approximate the actual thickness of the final component, allowing a more accurate prediction 

of the performance of the material. It is important to point out that as the thickness of the 

specimen is increased, the fracture toughness results in lower values. This is due to the fact that 

as the thickness is increased the material at the centre of the fatigue pre-crack is subjected to 

plane strain conditions, being unable to plastically deformed therefore leading to low fracture 

toughness [81, 82]. As mentioned, this so-called thickness effect is not considered in the CVN 

test since the specimen is always 10 mm thick as is carried out according to the corresponding 

specification standard. 

 

Regarding the effect of crack tip geometry, Ritchie et al. [79], suggested that the variations 

between CVN and fracture toughness testing can be associated to a different response of the 

microstructure to the crack tip geometry, in particular to different stress distributions in the 

sharp crack and blunt notch. Finally, Chen et al. [83] investigated the effect of grain size and 

carbides size on the cleavage fracture of blunt notched and pre-cracked specimens made of low 

carbon steel. It was found that the cleavage crack propagation in notched specimens is 

controlled by the grain size, while the carbide particles are the main factor governing cleavage 

cracking on pre-cracked specimens. 

 

2.7.2.3 CTOD Equation according to British Standard BS7478 

 

δ CTOD parameter is determined by using the following equation [84]:  

 

 𝛿ௌ =  𝛿,ௌ +  𝛿,ௌ 
 

δ =  
మ(ଵି௩మ)

ଶఙೞா
+



ାା௭
 

 

 

(2) 

Where, 𝛿,ௌ represent the elastic component of 𝛿ௌ, while 𝛿,ௌ is the plastic component of   

𝛿ௌ, K is the stress intensity factor, 𝑣 is the Poisson’s ratio. E is the Young’s modulus, 𝜎௬௦ is 

the 0.2% proof strength, 𝑟  is the plastic rotational factor,  𝑉 is the plastic component of the 

clip gauge opening displacement, Vg, a, is the crack length, b is the uncracked ligament width 

and z is the distance if the knife edge measurement point from the front face SEB (single edge 

notch bend) specimens [85]. 
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 As seen in Figure 2-31, the physical meaning of CTOD can be explained by the degree of 

crack blunting displayed at the crack tip where the larger the crack blunting and mouth opening, 

the better the material resistance to crack propagation resulting in high CTOD values. On the 

contrary, a low CTOD value reflects a brittle-type behaviour with small or null extension of 

crack blunting [81]. CTOD can be considered as a strain-based estimate of fracture toughness. 

However, it can be separated into elastic and plastic components. The elastic part of CTOD is 

derived from the stress intensity factor, K. In some standards, the plastic component of CTOD 

is obtained by assuming that the specimen rotates about a plastic hinge. The plastic component 

is derived from the crack mouth opening displacement (measured using a clip gauge). The 

position of the plastic hinge is given in test standards for each specimen type. 

 

 

Figure 2-31: The physical meaning of CTOD [86]. 

 

2.7.2.4 Fracture Modes  

 

Depending on factors such as loading history, environmental conditions and material quality, 

the fracture modes of steels can be either ductile or brittle. As seen in Table 2-2, brittle failure 

can occur either by transgranular cleavage (crack propagation through grains) or intergranular 

separation (crack propagation along grain boundaries).  

 

As explained by Knott [5] in his work on cleavage fracture on structural steels, ductile (plastic 

collapse) and brittle failure are the two main failure mechanisms that can affect the integrity of 

structural components. However brittle fracture is of greater importance since this failure 

mechanism occurs rapidly with little or no indication of plastic deformation which can lead to 

human, environmental and financial losses.   
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Table 2-2: Failure mechanisms on steels, adapted from [81]. 

 

2.8 Metallurgical Factors Controlling Fracture Toughness of Low Alloy 

Steels 

 

The fracture toughness of low alloy steels is not only affected by the microstructure produced 

after heat treatment. Metallurgical aspects such as non-metallic inclusions and segregation 

inherent to the steel making process, as well as the grain size distribution achieved after hot 

working processes, represent critical processing parameters which also affect the structural 

integrity of large forgings. This section aims to provide a review on the main metallurgical 

factors controlling fracture toughness of low alloy steels.  

 

2.8.1 Influence of Non-metallic Inclusions 

 

Any type of fracture requires a stress concentrator to enable the structure to fail either in ductile 

or brittle fashion. In this sense, non-metallic inclusions, which are unavoidable oxidation 

products from the steel making process, can be regarded as stress-concentrating features, since 

its size strongly affects the fracture mechanisms of crack initiation and propagation as 

illustrated in Figure 2-32, shows cleavage micro crack nucleated from a particle (MnS non-

metallic inclusion) and arrested in the surrounding matrix. 
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Figure 2-32: Cleavage micro crack nucleated from a particle (MnS inclusion) and arrested in 
the surrounding matrix [87]. 

 

 
𝐾௫ = 0.5𝜎  ට𝜋√𝑎𝑟𝑒𝑎 

 

 

(3) 

Where: 

𝐾௫ = Stress Intensity Factor 

𝜎  = Stress amplitude 

Area = cross section area of inclusion 

 

In addition, under loading conditions non-metallic inclusions might act as crack initiation sites 

decreasing the fracture toughness of the material by reducing its fracture stress as the size of 

the inclusion is increased as illustrated in  

 [88, 5]. 

 

 𝜎ி =   ൛𝜋 𝐸௬
ᇱ 𝐶⁄ ൟ

.ହ
 

 

   

(4) 

Where: 

𝜎ி = Fracture stress 

E = Young’s Modulus 

yp = Effective work of fracture required for the brittle micro crack to extend into and cross    

the ferritic matrix 

C = size of the brittle nucleus 
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2.8.2 Influence of Segregation 

 

On the solidification process of low alloy steels, alloying elements are heterogeneously 

distributed in the dendritic structure leading to compositional variations along the ingot. This 

compositional variation is usually regarded as macro or micro segregation [89]. One of the 

main effects of segregation is the formation of a banded structure upon solidification on the 

ingot. As seen in Figure 2-33, under the optical microscope, two types of bands, one bright and 

one dark, are generally found in segregated low alloy steels. Different alloying elements such 

as chromium and nickel, can either enrich or deplete these bands leading to compositional 

variations. As reported by Penha et al. [19], large compositional variations on the banded 

structure, can lead to the formation of non-uniform microstructures such as martensite or 

bainite on each band, leading to non-uniform mechanical properties in the final component 

even after heat treatment. 

 

Furthermore, Pickering and Bhadeshia investigated the effects of as-cast macro segregation on 

the microstructure of a representative section of a large SA508 Grade 3 steel forged component 

submitted to continuous cooling. They concluded that after quenching the segregated areas led 

to distinct microstructures such as lower bainite, martensite-austenite islands, and some 

Widmanstätten ferrite while the microstructure of the non-segregated area consisted mostly of 

Widmanstätten ferrite. In addition, it was also observed that the distinct microstructures 

developed on the segregated and non-segregated areas led to hardness variations in the as-

quenched and as-tempered conditions [90]. 

 

 

Figure 2-33: Chemical Segregation observed on a quenched and tempered 8630 low alloy 
steel, (Courtesy of FRISA). 
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2.8.3 Influence of Effective Grain Size 

 

The beneficial effect of grain size refinement lies on the fundamental fact that grain size 

boundaries and sub-boundaries (packets and blocks), act as obstacles, limiting or retarding the 

fast cleavage crack propagation along {100} planes, enhancing the fracture toughness of fine-

grained steels as consequence of increasing the resistance to brittle crack propagation [91]. As 

illustrated in Figure 2-34, lath martensite has a complex hierarchical microstructure, in which 

prior austenite grain structure consists of several packets. These packets in turn contain blocks 

which are further partitioned by laths [92]. In general, each one of these structural units possess, 

either high or low angle boundaries depending on their misorientation angle. According to 

Wang et al. [93] the microstructure unit controlling cleavage crack propagation in lath 

martensitic steels, is the high-angle packet structure rather than the low-angle prior austenite 

grain boundaries. High-angle boundaries are more effective than low-angle boundaries 

retarding or deviating cleavage cracks since more energy is required for the propagating crack 

to cross a large angle boundary. In general, a high-angle boundary has a misorientation angle 

larger than 15° where the effective grain size can be defined as the smallest microstructural 

unit over which the cleavage crack propagates in a continuous manner [93, 94]. 

 

 

Figure 2-34: Hierarchical microstructure in martensitic structure, adapted from [92].  
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As elucidated in Figure 2-35 , EBSD (Electron Back Scatter Diffraction) is one of the most 

powerful characterization techniques to determine the effective grain size by measuring the 

misorientation angle of grain size boundaries and sub-boundaries. However, several authors 

have pointed out the difficulty to use EBSD to determine the effective grain size on quenched 

and tempered low alloy steels  due to the complex similarities (orientation relationships) in of 

tempered martensite and tempered bainite [95, 71]. 

 

 

Figure 2-35: Light microscopy image (a), and EBSD image (b) showing orientation 
relationships. The black lines indicates high-angle boundaries (misorientation angle > 15°), 
from [93]. 

 

2.8.4 Influence of Microstructure 

 

The main microstructural change of industrial interest developed after tempering is the 

evolution of carbides precipitates due to its strong correlation with the final properties of the 

component [57]. Carbide particles in steels are usually characterized through their 

crystallography, chemical composition, size, morphology, and distribution. To determine the 

chemical composition of the carbide metallic constituent (M), energy dispersive x-ray 

spectroscopy (EDX) along with transmission electron microscopy (TEM) is mainly used. In 

this sense M3C is the predominant carbide type in low-carbon, low alloy steels in the absence 

of strong carbide-forming elements as illustrated in Figure 2-36 [96]. In general, the 

microstructure of 8630M large low alloy steel forgings after heat treatment consists of mixtures 
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of martensite and bainite in the as-tempered condition. As seen in Table 2-3, the size of 

cementite changes according to the type of microstructure and heat treatment history. Bowen 

et al. [97] investigated the effect of martensitic and bainitic structures on the cleavage fracture 

of A533 pressure vessel steel after heat treatment. It was found that, the fracture toughness in 

auto-tempered martensite is higher than that of upper and lower bainitic structures. The 

superior toughness exhibited by the auto-tempered martensite is associated to fine distribution 

of carbides precipitated in the martensitic structure. On the contrary, the coarse carbide 

distribution of the bainitic structures lead to detrimental fracture toughness results. 

 

 

Figure 2-36: TEM characteristics of M3Ccarbide: (a) morphology of analysed particle, (b) 
EDX spectrum, (c) electron diffraction pattern, (d) evaluation of diffraction pattern [96]. 

 

 

Table 2-3: Cementite particle size as function of microstructure [97]. 
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The effect of carbide thickness (C, in equation 4) on the local fracture stress (the critical stress 

for the fast propagation of a micro crack into the ferritic matrix) is elucidated in Figure 2-37, 

where the fine distributions of carbides in martensite result in local fracture stresses of 3100–

4000 MPa, whereas that of coarse bainite is between 1100–2200 MPa. According to this 

evidence it’s clear that, due to its carbide size distribution, bainitic structure is more brittle than 

tempered martensite. 

 

 

Figure 2-37: Distribution of fracture stresses as a function of temperature for different 
microstructures. The values of σF, which are, at most, weakly dependent on temperature, fall 
into two classes: some 3200–3800MPa for the fine distributions found in auto-tempered 
martensites and lower bainites; 1200–2200MPa for the coarser upper bainites and other 
ferrite/carbide mixtures [97]. 
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2.8.5 Summary 

 

The appraisal of the literature presented in this chapter, highlights the complex relationships 

between processing route, microstructure and properties of low alloy steels. In particular, how 

the structure and properties of low alloy steels can be altered by modifying relevant 

metallurgical parameters such as chemical composition (steel making), degree of deformation 

(forging) or cooling rate (quenching). Furthermore, the relevance of heat treatment as an 

essential step in the manufacturing route of large forgings is elucidated, considering the 

complexity of the mixed microstructures produced after quenching and tempering, and more 

importantly how these microstructural features affect the fracture toughness properties of the 

final component. However, there is still a lack of understanding on the effect of industrial heat 

treatment conditions on the microstructure evolution of thick-wall forgings and how these 

microstructures influence relevant properties such as CTOD parameter. The present research 

attempts to cover quenching processes by using three different cooling media and subsequent 

tempering treatments of thick-wall forgings to explore the effect of industrial cooling 

conditions on the microstructure and mechanical properties of subsea connectors as illustrated 

in the following chapters.   
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3 Experimental Procedure 

 

3.1 Introduction 

 

In heat treatment operations, many variables are involved in determining the performance of 

large forgings for subsea applications. Quenching processing parameters such as heating rate, 

austenitizing temperature, soaking time, transfer time (transfer of the workpiece from the 

furnace to the quenching tank), dwelling time (period of time at which the workpiece remains 

inside the quenching tank) and cooling rate, have a great impact on the microstructure and 

properties of the material subjected to heat treatment. Under industrial heat treatment 

conditions, knowledge is scarce regarding the variation on cooling rate and its effects on the 

fracture toughness properties of thick wall forgings made of 8630M low alloy steel. 

Considering this, the experimental work was designed in order to provide information on the 

microstructure and mechanical properties evolution by changing the cooling rate during 

quenching process of large ring segments. The cooling rate changes were induced by using 

three different cooling media (water, aqueous polymer solution and vegetable oil) with 

different heat removal rates. In addition, the microstructures obtained during the industrial 

experimentation were validated by producing a CCT diagram under laboratory conditions using 

dilatometric techniques.   

 

The first section of this chapter describes the production method of the experimental forging 

including relevant aspects of steel making, open-die forging, and ring rolling, machining and 

cutting operations involved in the manufacture of the experimental part. The second section 

reports heat treatments carried out at industrial level to produce different cooling rates in three 

ring segments of 8630 modified low alloy steel. The normalizing treatment of the three 

segments was carried out at FRISA (Monterrey, Mexico) using a temperature of 900°C for 5 

hours. Then each ring segment was austenitized at 890°C for 6 hours and then separately 

quenched in water, aqueous polymer and vegetable oil. The heat treatment (normalizing, 

quenching and tempering) process of the two segments quenched in water and aqueous polymer 

was carried out at FRISA, while the heat treatment process (quenching and tempering) of the 

segment quenched in vegetable oil was carried out at SORBIT (Lecco, Italy). All the 

experimental ring segments were subsequently tempered at 590°C for 10 hours and the cooled 

down in still air.  
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The third section explores the effect of cooling rate on the microstructure of 8630 steel 

specimens by means of quenching dilatometry under laboratory conditions. The dilatometric 

measurements were carried out in TA Instruments (Hüllhorst, Germany) whereas the 

specimens were machined down at Sheffield University.  The last two sections describe the 

comprehensive mechanical testing (tensile, impact and CTOD testing) and characterization 

performed over the specimens removed from selected locations on the three ring segments after 

tempering treatment.  

 

3.1.1 Material selection 

 

Since the forging company (FRISA) wanted to further comprehend the effects of using 

conventional and non-conventional cooling media for the quenching process of large forgings, 

and their implications on its mechanical properties; a double cross section connector was 

selected for this research. These type of forging connectors are generally employed as structural 

components in offshore and subsea systems [7]. After machining process, which represents the 

last step in the manufacturing route, the forged connector has an approximate weight of 1500 

kg and consists of two cross sections of 100 and 250 mm respectively, as illustrated in Figure 

3-1. 

 

 

Figure 3-1: Dimensions of double cross section forged connector selected as experimental 
workpiece. 

 

As shown in Table 3-1, the chemical composition of the selected component corresponds to an 

AISI 8630 modified low steel. In order to meet specification requirements, 8630M steel 

connectors are normalized, quenched and tempered to produce a balance between strength and 

toughness after heat treatment. In combination with carbon, carbide formers elements such as 
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chromium and molybdenum are added to 8630M steel to increase its hardenability. In addition, 

molybdenum also contributes to reduce temper embrittlement. 8630M steel is also alloyed with 

nickel, a non-carbide alloying element, to increase hardenability and enhance toughness [24].  

 

Table 3-1: Chemical composition of AISI 8630 Modified low alloy steel (Appendix A). 

 

The mechanical properties requirements specified for large forgings used in subsea applications 

are illustrated in Table 3 2. The minimum and maximum YS requirements are 750 and 900 

MPa correspondingly, while the minimum UTS is 900 MPa. The minimum and average impact 

requirements are 28 and 42 J respectively. Finally, it is important to point out that there is not 

a CTOD fracture toughness parameter established in the materials specification (final user) 

applied for this application, however internally (FRISA), an aim value of δ = 0.25mm was 

established by the company based on CTOD requirements for similar applications.   

 

 

Table 3-2: Material specification for large forgings used in offshore applications. 
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3.2 Production Method of Large-scale Experimental Ring 

 

3.2.1 Introduction 

 

The manufacturing process of the experimental forging is schematically illustrated in Figure 

3-2, initially a 22 Ton tapered ingot was converted into a forged bar through a series of hot 

working operations. The cylindrical block required to produce the experimental part was 

removed from the center of the bar length via saw cutting and then transformed into a square 

ring by means of ring rolling operations. After ring rolling, and contour machining the full-

scale ring was saw cut into three equal segments of 530 kg each. On this regard, considering 

the effect of mass on the cooling rate, finite element simulations were carried out to validate 

the representativeness of the ring segment (˜530 kg) in comparison with the full ring part 

(˜1600). According to the simulation in Appendix B:  Quenching Simulations ,the 

mass/dimensions of the experimental ring segment proposed, were capable to satisfactory 

reproduce the cooling rate conditions of a full scale forging. After saw cutting the three ring 

segments were normalized, austenitized and then each segment was separately quenched in 

water, vegetable oil, and aqueous polymer solution respectively. Finally, after quenching, the 

segments were tempered at 590°C for 10 h followed by cooling in still air. 

 



 

   64 
 

 

Figure 3-2: Manufacturing route for experimental rolled ring 8630 modified low alloy steel. 

 

3.2.2 Steel making process 

 

The weight and dimensions of the tapered ingot used to fabricate the experimental forging are 

displayed in Table 3-3. The ingot was initially electric furnace melted, then ladle refined and 

subsequently vacuum degassed, followed by bottom pouring into a tapered big ingot mold. The 

big end up design of the ingot geometry optimize the cleanliness and soundness of the ingot. 

According to the steel-making supplier, the surface hardness of the ingot after thermal 

treatment was lower than 285 BHN. 

 

 

Table 3-3: Ingot weight and dimensions. 
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3.2.3 Open-die Forging and Ring Rolling 

 

The ingot was initially heated in a gas furnace up to 1300°C (forging temperature) in an 

oxidising atmosphere (air). After the heating cycle was completed, the ingot was forged on a 

5000 - ton hydraulic open die press using a series of forging and heating operations to produce 

a 610 mm diameter billet. Due to confidential reasons, details about forging operations, 

dimensions and deformation steps, were not available to be displayed in this document.  

 

As displayed in Figure 3-3, after open die forging, a ˜2- ton section (cylindrical block) was 

removed from the center of the billet length via saw cutting and subsequently heated, preformed  

and ring rolled to produce the experimental ring. In this regard, the cylindrical block was 

removed from the center of the billet length to reduce as much as possible the effect of 

segregation located at the top and bottom sides of the tapered ingot [98]. After being removed 

from the billet, the cylindrical block was charged directly into a gas furnace and heated up to 

1250°C, after heating time was accomplished, the billet was removed from the furnace and 

transferred to a 4500- ton hydraulic blanking press to perform the upsetting, punching and 

piercing operations. Illustrations of the real open die and ring rolling processes in FRISA 

industries are shown in Figure 3-4. 

 

 

Figure 3-3: Section of the forged billet removed to fabricate experimental ring. 
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3.2.4 Machining and Sectioning of Ring Segments 

 

After ring rolling, the experimental ring was cooled down until room temperature and 

subsequently machined according to the dimensions in Figure 3.1 with an approximate final 

weight of 1600 Kg. Although initially, the experimental proposal was to fabricate three full-

scale rings to be separately quenched in the three selected cooling media, it was eventually 

realised that cutting three sections from different locations in the billet would inevitably result 

in different level of segregation on each one of three experimental rings. Considering the effect 

of segregation on the microstructure of steels during quenching [90] and its potential to mask 

the real effect of cooling rate changes on the mechanical properties, a decision was made to 

produce only one experimental ring which would be subsequently cut into three equal segments 

to reduce as much a possible the effect of segregation. As illustrated in Figure 3-6, the double-

cross section ring was segmented into three equal sections of approximate 533 kg using an 

industrial saw cutting machine. The weight of the three segments was further verified using a 

precision industrial scale resulting in a final weight of 530 kg +/- 2 kg (tolerance) for each ring 

segment. 
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Figure 3-4: Open die and ring rolling processes in FRISA Industries. (a) start of open die 
process (cogging operation), (b) end of open die process (cogging operation), (c) forged bar 
after cogging, (d) section of the forged bar being removed from furnace to start ring rolling, 
(e) start of upsetting operation, (f) end of upsetting operation, (g) punching and piercing 
operations, and (h) ring rolling operation. (Company archive) 
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3.3 Industrial Heat Treatment of Ring Segments 

 

As illustrated in Figure 3-5, after hot working, machining and saw-cutting operations, the three 

ring segments were industrially heat treated (normalizing, quenching and tempering) using 

different quenchants to examine the effect of industrial cooling rates on the microstructure and 

properties of 8630M low alloy steel. 

 

 

Figure 3-5: Scheme of industrial heat treatment for the 8630 modified low alloy steel ring 
segments. 

 

3.3.1 Normalizing Treatment 

 

In order to refine the prior austenite grain size coarsened due to the high temperatures used 

during hot working operations, the three ring segments were normalized in FRISA at 900°C 

for 5 hours and then cooled down in still air to room temperature. The selected normalizing 

temperature was in according with the specification requirements whereas, the soaking time 

was defined based on the thicker section (critical section, 250 mm) of the ring segments using 

a time-thickness ratio of 1/2 hour per 25 mm of thickness. The normalizing process of the three 

ring segments was carried out in chamber furnace heated by natural gas with a 15.0-ton 

capacity. The temperature tolerance and uniformity of the furnace were monitored according 

the API 6A Annex M 20th Ed. method. 
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Figure 3-6: Experimental large-scale ring segments after saw-cutting operation: (a) ring 
segment for water quenching, (b) ring segment for polymer solution quenching and (c) ring 

segment for vegetable oil quenching. 

 

3.3.1.1 Microstructure after Normalizing treatment 

 

A 12 mm thick slice was removed from one of the ring segments after normalizing to evaluate 

its microstructure. One cubic-shape specimen (10 mm x 10 mm x 10 mm) was cut near to the 

centre of the thick cross section as seen in Figure 3-7, then mounted and prepared using 

metallographic methods described in 3.6.1.  

 

Figure 3-7: Specimen position for SEM characterization after normalizing treatment. 
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The specimen was pre-etched for 3 seconds with 3% Nital solution then immediately re-etched 

with 10% Sodium Metabisulfite solution for a period of 20 seconds. As seen in Figure 3-8 the 

microstructure mostly consisted of pearlite, with a small amounts of granular bainite. 

 

 

Figure 3-8: SEM Image of 8630M low alloy steel ring segment specimen normalized at 
900°C for 5 hours and cooled in still air showing mostly pearlitic structure. 
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3.3.2 Quenching in Water, Aqueous Polymer, and Vegetable Oil. 

 

After normalizing process, one segment was packed and shipped to SORBIT (Italy) to carry 

out the quenching process in vegetable oil; whereas the other two segments remained in FRISA 

(Mexico) for subsequent quenching in water and aqueous polymer solution as seen in Figure 

3-9.  In order to examine the effects of cooling rate produced by the different quenchants, two 

K-type thermocouples were inserted into each ring segment to measure the temperature-time 

conditions during the three quenching processes. Two 3.2 mm holes were drilled at the mid-

wall location of the 100 and 250 mm cross sections to a depth of 125 mm as shown in Figure 

3-10, then the thermocouples were inserted into the holes and insulated with ceramic fiber to 

prevent liquid infiltration during quenching operations. The measured cooling curves were 

recorded by using a QUADTEMP2000 4-channel data-logger with a sampling rate of 1 per 

second. Figure 3-11, illustrates the specification of data logger and K-type thermocouples used 

to measure the temperature-time conditions during industrial quenching. 

 

 

 

Figure 3-9: Image of the industrial quenching tanks at FRISA: (a) polymer quenching tank 
and (b) water quenching tank (company archive). 
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Figure 3-10: Schematic (a)isometric and (b)transverse view of the three ring segments with 
thermocouples holes, and (c) real experimental ring segment with thermocouples inserted on 

the thin and thick sections.   

 

 

Figure 3-11: Specification of data logger and type K-type thermocouples used to measure the 
temperature-time conditions during industrial quenching of experimental ring segments [99]. 
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The data logger applies a calibration equation to convert the voltage to temperature. The most 

accurate way to fit the thermocouple data is by using rational polynomial functions as 

elucidated in Equation 5 , where 𝑇 represents the thermocouple temperature (°C), 𝑣 is the 

thermocouple voltage (in millivolts), and 𝑇, 𝑣, and the 𝑝 and 𝑞 are coefficients [100].  

 

 

 
𝑇 = 𝑇 +  

(𝑣 − 𝑣)൫𝑝ଵ +  (𝑣 −  𝑣)൯൫𝑝ଶ +  (𝑣 −  𝑣)൯൫𝑝ଷ + 𝑝ସ(𝑣 − 𝑣)൯

1 +  (𝑣 −  𝑣)൫𝑞ଵ + (𝑣 − 𝑣)൯൫𝑞ଶ + 𝑞ଷ(𝑣 −  𝑣)൯
 

(5) 

 

3.3.2.1 Evaluation of cooling capacity of quenching media 

 

Before proceeding to carrying out the industrial quenching of the three experimental ring 

segments, the cooling capacity of the three quenchants used in this research was evaluated 

under laboratory conditions by using an IVF® smart quench quenchometer, with 12.5 mm 

diameter 8630 low alloy steel probes as illustrated Appendix C. The probes were heated to 

875°C and then separately quenched for 80 s in water, hazelnut vegetable oil, and 10 % aqueous 

solution of a PAG (Polyalkylene glycol) polymer. As elucidated in Figure 3-12, the maximum 

cooling rates for, water, aqueous polymer solution and vegetable oil were 87.6, 67.1 and 

60.8°C/s respectively. The results indicate that water media produced the higher cooling rate, 

in contrast vegetable oil developed the slower cooling rate while the cooling rate of aqueous 

polymer solution was between those of water and vegetable oil. 

 

 

Figure 3-12: Cooling curves and cooling rate plots of Ø12.5 mm 8630M low alloy steel 
specimens quenched in water, aqueous polymer solution and vegetable oil. 
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3.3.2.2 As-quenched microstructure of Ø12.5 mm specimens after quenching in different 

cooling media 

 

A 2 mm thick slice was removed from each one of the 12.5 mm probes after quenching under 

laboratory conditions to evaluate their microstructure. One penny-shaped specimen (12.5 x 2 

mm) was cut near to the tip of the three steel probes, then mounted and prepared using 

metallographic methods described in 3.6.1. 

 

The specimens were pre-etched for 3 seconds with 3% Nital solution then immediately re-

etched with 10% Sodium Metabisulfite solution for a period of 20 seconds. Figure 3-13, shows 

a typical as-quenched martensitic structure formed in the three probes quenched in water, 

polymer solution and vegetable oil. 

 

 

Figure 3-13: As-quenched martensitic structures of the small 8630M steel probes quenched in 
(a) water, (b) polymer solution and (c) vegetable using the IVF smart quenching system. 

 

3.3.2.3 Water quenching process 

 

The first ring segment was subjected to quenching in water media with a viscosity value of 

0.987 mm2/s. Initially the ring segment was charged into a furnace preheated at 650°C for 1 

hour, to promote uniform temperature distribution and then the temperature was raised to 

890°C and hold it for 6 hours to obtain austenite structure all along the geometry of the part. A 

chamber furnace heated by natural gas with a 15.0-ton capacity was used for the austenitizing 

process and the temperature tolerance and uniformity of the furnace were monitored according 

the API 6A Annex M 20th Ed. Method. As seen in Figure 3-14 (a), after the soaking time was 

concluded, the ring segment, in its austenitic condition was removed from the furnace, 

transferred to quenching tank in 65 s and immersed into water media for approximate 2 hours 
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in order to reduce the temperature at the centre of the thick section (250 mm) below the 

martensite start transformation point. The quenching tank used for water quenching has volume 

of 90 m3 and counts with a propeller system to uniformly circulate the fluid to agitation levels 

of 0.30-0.60 m/s average. Finally, the temperature of the water at the start and completion of 

the quenching process were 25 and 29°C respectively. 

 

3.3.2.4 Polymer quenching process 

 

The second ring segment was subjected to quenching in a 10 % aqueous solution of a PAG 

(Polyalkylene glycol) polymer with a viscosity value of 2.93 mm2/s. Initially the ring segment 

was charged into a furnace preheated at 650°C for 1 hour, to promote uniform temperature 

distribution and then the temperature was raised to 890°C and hold it for 6 hours to obtain 

austenite structure all along the geometry of the part. A chamber furnace heated by natural gas 

with a 10.0-ton capacity was used for the austenitizing process and the temperature tolerance 

and uniformity of the furnace were monitored according the API 6A Annex M 20th Ed. 

Method. As seen in Figure 3-14 (b), after the soaking time was concluded, the ring segment, 

in its austenitic condition was removed from the furnace, transferred to quenching tank in 65 s 

and immersed into polymer solution for approximate 2 hours in order to reduce the temperature 

at the centre of the thick section (250 mm) below the martensite start transformation point (Ms). 

The quenching tank used for water quenching has volume of 90 m3 and had propeller system 

to uniformly circulate the fluid to agitation levels of 0.25-0.50 m/s average. Finally, the 

temperature of the polymer solution at the start and completion of the quenching process were 

23 and 26°C respectively. 

 

3.3.2.5 Vegetable oil quenching process 

 

The last ring segment was subjected to quenching in hazelnut oil with a viscosity value of 42.33 

mm2/s as shown. Unfortunately, the preheating step of 650°C-1 h of this latter segment was not 

reproduced due to difficulties to control the temperature of the furnace during heating. In this 

setup the ring segment was heated directly to 890°C and hold it for 6 hours to obtain austenite 

structure all along the geometry of the part. After the soaking time was concluded, the ring 

segment, in its austenitic condition was removed from the furnace, transferred to quenching 

tank in 50 s and immersed into vegetable oil for approximate 2 hours in order to reduce the 
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temperature at the centre of the thick section (250 mm) below the martensite start 

transformation point. The quenching tank used for water quenching has volume of 70 m3 and 

counts with a propeller system to uniformly circulate the fluid to agitation levels of 0.30-0.70 

m/s average. Finally, the temperature of the vegetable oil at the start and completion of the 

quenching process were 49 and 54°C respectively. No pictures of the quenching process were 

allowed to be taken inside SORBIT facilities. 
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Figure 3-14: Illustration of the (a) water and (b) polymer solution quenching processes of 
8630M low alloy steel ring segments carrying out in FRISA. 
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3.3.3 Tempering Treatments 

 

After quenching process, the ring segment quenched in vegetable oil in SORBIT (Italy) was 

send back to FRISA (Mexico) to be subjected to tempering along with the two ring segments 

quenched in water and aqueous polymer solution. The three ring segments were then tempered 

at 590°C for 10 hours and then cooled down in still air to room temperature. Although the 

tempering temperature range (566 - 650°C) indicated in the material specification was not too 

restrictive, the selected tempering temperature was determined by using regression equations 

used for the company to estimate the appropriate tempering temperature to achieve yield 

strength values above 750 MPa and CVN impact properties above 28 J.As shown in Figure 

3-15,  these type of regression equations, employ historical data such as key heat treatment 

parameters, chemical composition and mechanical properties results as input parameters to 

correlate tempering temperature and mechanical properties. On the contrary the soaking time 

of 10 hours was strictly defined in the material specification. The tempering process of the 

three ring segments was carried out in a chamber furnace heated by natural gas with a 15.0 t 

capacity. The temperature tolerance and uniformity of the furnace were monitored according 

the API 6A Annex M 20th Ed. method. 

 

 

Figure 3-15: Relationships between YS, UTS and CVN with tempering temperature designed 
for 170 -250 mm thick-wall forgings made of 8630M low alloy steel (company data). 
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3.4 Dilatometry Measurements of AISI 8630 Low Alloy Steel 

 

Dilatometric investigations were carried out at TA Instruments Laboratories (Hüllhorst, 

Germany) using a quenching dilatometer DIL805 A/D. Samples were cut from the centre of 

the thick (250 mm) cross section of a slice removed from the experimental forging after 

normalizing treatment. Hollow cylindrical specimens of 4 mm x 2 mm x 10 mm were then 

machined in Sheffield University according to DIN 2310 – IK standard as illustrated in Figure 

3-16. 

 

Figure 3-16: Quenching hollow sample used for dilatometric studies. 

 

After machining process, the specimens where packed and shipped to TA Instrument 

laboratories for subsequent dilatometric work. An induction system was used to heat the 

specimens at 890°C for 10 minutes using heating rate of 500°C/min. Following to holding time, 

the specimens were continuously cooled over a range of cooling rates from 0.01 to 50 °C/s. 

Additionally, one specimen was firstly heated at constant rate of 2°C/min to determine the 

transformation temperatures on heating (Ac1 and Ac3) of the selected steel.  

 

Considering that the decomposition of austenite into different transformation products such as 

ferrite, pearlite, bainite and martensite is accompanied by a change in specific volume 

associated to lattice structural changes during cooling; it is feasible to determine the start and 

finish transformation temperatures for the aforementioned transformation products. The start 

transformation point can defined as the temperature at which the linear thermal expansion first 

deviates from linearity.  Location of the point at which the deviation occurs is obtained by 

extrapolating the linear portion of the thermal expansion curve. Similarly, the transformation 

finish temperature is determined by extrapolating the linear portion of the curve after 
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transformation [53]. An example of the decomposition of austenite into bainite and martensite 

can be seen in Figure 3-17. 

 

 

Figure 3-17: Cooling dilatometric curve showing start and finish transformation temperatures 
for low carbon manganese steel (Fe – 0.07C–1.56Mn–0.41Si) after cooling at a rate of 234 K 

s/-1. [53] 

 

Plots of length change against temperature during cooling were obtained after quenching 

dilatometry, then the start and the end of the phase transformations were determined based on 

the volume changes resulting from the initiation and termination of phase transformations. 

Finally, the selected cooling rates were represented on a time-temperature plot, overlapping 

and connecting the start and finish phase transformation points on each cooling curve profile. 

After cooling, the specimens were cut and metallographically prepared for subsequent 

microstructural characterization. The metallographic evaluation of the specimens prior to the 

dilatometric measurements revealed an average prior austenite grain size of 8-8.5 per ASTM 

E112 for the different specimens evaluated. 
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3.5 Mechanical Testing 

 

Tensile, impact and CTOD testing were performed on specimens removed from the 

experimental pieces using different combinations of cooling media (water, aqueous polymer 

and vegetable oil) and cross sections (100 and 250 mm). However as illustrated in Table 3-4, 

not all the conditions could be assessed by CTOD testing mainly due to economic constraints. 

Nevertheless, an attempt was made to cover the most relevant conditions based on the 

variations observed on the yield strength properties, considering the well-known correlation 

between this property and CTOD parameter. This relationship (Yield strength – CTOD) will 

be further explained in the following chapters.  

 

 

Table 3-4: Summary of mechanical tests performed on the experimental ring segments after 
heat treatment. Specimens 2 and 6 were not subjected to CTOD testing. 
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3.5.1 Extraction Location of Specimens 

 

After tempering treatment, specimens for tensile, impact and CTOD testing were taken from 

the ring segments previously quenched in water, polymer and vegetable oil. The material to 

fabricate the tensile and impact specimens was removed from the mid-thickness of the 100 mm 

and 250 mm wall sections as close as possible to the measuring point of thermocouple as shown 

in Figure 3-18 and Figure 3-19. 

  

 

Figure 3-18: Position sampling of (a) tensile and (b) impact and specimens on the ring 
segments. 

 

 

Figure 3-19 Sampling location zone for (a) tensile, impact and (b) CTOD testing specimens 
on the ring segments. Units in millimetres.  
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3.5.2 Tensile Testing 

 

In order to determine the tensile properties of the ring segments subjected to the different 

cooling conditions, tensile tests were carried out at room temperature using a 300 kN hydraulic 

universal testing machine (Tinius Olsen). Round tension specimens according to ASTM 

standard E8/E8M − 16a [101]  were machined with the following dimensions: gauge length 

(G) of 50 mm, diameter (D) of 12.5 mm, radius of fillet (R) of 10 mm and length of reduced 

section (A) of 56 mm. The specimens were machined along the transverse rolling direction as 

this direction represents the minimal (critical) grain flow orientation in the experimental rolled 

ring. 

 

3.5.3 Impact Testing 

 

Impact tests were carried out at -30°C using a pendulum impact tester model IT406, Tinius 

Olsen. V-notch specimens according to ASTM standard E23 − 16b [102] were machined with 

the following dimensions: length (L) of 55 mm, width (W) of 10 mm, thickness (T) of 10 mm, 

notch radius of 0.25 mm and notch angle of 45° The notch of the impact specimens was 

orientated along the transverse rolling direction of the experimental rolled ring. A low 

temperature chamber cooled by propylene glycol and dry ice was used to induce the required 

temperature. All the tensile and impact tests were carried out in FRISA Laboratories. Figure 

3-20 shows the tensile and impact specimens after machining process. 

 

 

Figure 3-20: Illustration of (a) tensile and (b) impact specimens after machining process. 
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3.5.4 CTOD Testing 

 

Compact Tension C (T) specimens with integral knife edges were machined from the forging 

segments in accordance with latest version of BS7448 Part 1 [84]. The specimens were 

removed from the mid-thickness of the 100 mm and 250 mm cross section next to the 

thermocouple locations as shown in Figure 3-21  and each specimen had a nominal thickness 

of 25 mm and an effective width of 50 mm (see Appendix D). 

  

 

Figure 3-21: Position sampling of CTOD specimens on the ring segments. 

 

The specimens were notched by electro discharge machining (EDM) and fatigue pre-cracked 

to a target a/W value of 0.5 (where a is the initial crack length and W is the effective width).   

All specimens were orientated in a similar manner as for the impact testing using in the L-C 

(Longitudinal-Circumferential) direction and tested at 0°C using an INSTRON 8500 B107 

servo hydraulic machine. A low temperature chamber cooled by nitrogen was used to induce 

the required temperature and two thermocouples were welded to the specimens to control and 

monitor the temperature of the specimens. The CTOD parameter for specimens 1 to 6 was 

determined according to Equation 2 at the first attainment of maximum force. Figure 3-22, 

illustrates C (T) specimen 1 inside the chamber after fracture toughness testing. 
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Figure 3-22: illustration C(T) specimen 1 inside the chamber after fracture toughness testing. 

 

3.6 Materials Characterization 

 

3.6.1 Optical and Scanning Electron Microscopy (SEM) 

 

Specimens for microstructure characterization were polished up to 0.05 µm by using an 

automatic grinding and polishing equipment. Detailed sample preparation steps are illustrated 

in Table 3-5. After finishing the polishing process, the specimens were cleaned with distilled 

water and ethanol and subsequently pre-etched for 3 seconds with 3% Nital solution, then 

immediately re-etched with 10% Sodium Metabisulfite solution for a period of 20 seconds. 

After etching process, the specimens were placed in a desiccator for further optical and SEM 

evaluation. The microstructure evaluation and fracture surface analysis was carried out on the 

crack propagation face of the broken CVN and CTOD specimens. The light microscopy 

examination was carried out using a microscope (Leco DM 400) whereas the scanning electron 

microscopy examination was conducted using a FEI Inspect-F50 scanning electron microscope 

field emission gun (FEG) operated at 20kV with a spot size (dp) of 2.0 and a working distance 

range of 9 – 12 mm. 
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Table 3-5: Sample preparation steps for analysis by optical and SEM microscopy.  

 

3.6.2 Fracture Surface Analysis 

 

The fracture surface analysis was carried out on the ductile and brittle zones as illustrated in 

Figure 3-23. The fractographic analysis was conducted using FEI Inspect-F50 scanning 

electron microscope field emission gun (FEG) operated at 20kV with a spot size (dp) of 2.0 

and a working distance range of 9 – 12 mm. Before SEM examination, the fracture surfaces 

were fully immersed in xylene and isopropanol and successively immersed in an ultrasonic 

bath for 20 minutes to remove the oil (protective coat) and any other potential source 

contamination.  

 

 

Figure 3-23: Two fracture surfaces of a  Compact tension C (T) specimen after CTOD testing 
indicating distinctive zones.  
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3.6.3 Grain Size Evaluation 

 

Although, grain size evaluation is out of the scope of this study due to the forging conditions 

an austenitizing temperatures were the same for the three ring segments; some grain size 

measurements were carried out on some specimens after tempering only for information 

purposes.  

 

Revealing prior austenite grain boundaries on low alloy steels after tempering can be difficult 

particularly if the phosphorus content of the material is low and tempering temperatures used 

are high [103]. However, Vander Voort [103], successfully etched tempered low alloy steel 

specimens by using a hot solution consisting of  picric acid (saturated with water),  1ml 

hydrochloric (HCL) acid and  14.18 gr of Nacconal90G® (wetting agent). In this sense, 

material near to crack propagation faces on the CVN specimens was removed and 

metallographically prepared as described in section 3.6.1. The mounted samples were then 

etched using a modified version of the Vander Voort procedure as illustrated in Table 3-6.  The 

grain size measurements were carried out in an image analyser (Omni Met, Buehler) using 

linear intercept methodology according to ASTM E112 − 13 [104].  

 

 

Table 3-6: Etching procedure to reveal PAGB on AISI 8630M low alloy steel specimens after 
590°C. 

 

The results corresponding to the grain size measurements carried out on a CVN specimen 

corresponding to the thick section (250 mm) of the forging segment quenched in polymer and 

tempered are illustrated in Figure 3-24 and Figure 3-25. As seen in these pictures, the material 

analysed specimen showed an average prior austenite grain size of 18 µm. 
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Figure 3-24: Quench and tempered AISI 8630M steels showing grain boundaries in specimen 
1. Etched according Vander Voort Method. 500X. 

 

 

Figure 3-25: Quench and tempered AISI 8630M steels showing grain boundaries in specimen 
2. Etched according Vander Voort Method. 500X. 
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3.6.4 Microstructural Evaluation 

 

As reported by several authors [95, 71, 105] , determine the percentage of constituents for 

mixtures of martensitic and bainitic structures can be complex a task due to the great 

morphological similarities between tempered martensite and tempered bainite. As explained 

below, a method proposed by Kim et al. [105] and Ramesh et al. [106] was followed. On their 

work about characterization of tempered bainitic and martensitic microstructures, Kim and co-

workers quantitatively characterize the microstructure of quench-and-tempered specimens in 

the as-quenched condition; since by doing this it is actually possible to distinguish between 

martensite and bainite. The above, bearing in mind that on the as-quench condition, martensite 

lacks of carbide precipitation whereas extensive carbide precipitation can be easily observed 

on bainite after quenching. However, using this method directly on the experimental parts used 

in the present investigation, would be extremely difficult, considering that, in practice, is very 

difficult saw-cutting large sections of material after quenching due to its high surface hardness 

and due to technological limitations associated to the saw-cut equipment. In this context, 

Ramesh and Prabhu [106], successfully quantified the microstructures produced during 

quenching in different cooling media by superimposing measured cooling curves of (W) water 

and (PS) polymer solutions on a CCT diagram as displayed in Figure 3-26.  

 

 

Figure 3-26: CCT curve of AISI 1080 steel along with measured cooling curves of  (W) water 
and (PS) polymer solutions quenching. 
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Based on this study a decision was then made to estimate the phase fractions of the industrially 

heat treated segments by overlapping the industrial cooling rates on the CCT diagram produced 

by dilatometry for the AISI 8630M steel used in this research as illustrated in Chapter 5. 

Subsequently, the dilatometry specimens associated to the industrial cooling curves were 

metallographically prepared and characterized by using the method proposed by Kim et al. 

described above. Finally, the microstructures were manually selected and identified using 

Image J software. Then a colour white was assigned to the martensite structure and black colour 

was assigned for the bainite structure then the software determined what fraction of the area of 

the image was black and what fraction was white, resulting in the obtention of volume fraction 

measurements for the analysed specimens. Finally, it is important to point out, that the accuracy 

of the method proposed might not be accurate enough when estimating the constituent’s 

fractions on the experimental forging so a level of certainty related to the constituents fractions 

might be expected. 
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4 Effect of Water, Aqueous Polymer and Vegetable Oil 

Quenchants on Cooling Characteristics of Ring Segments 

Industrially Heat-Treated 

 

4.1 Introduction 

 

This chapter presents the results of the quenching treatments conducted on three experimental 

ring segments separately quenched in water, aqueous polymer solution and vegetable oil, under 

industrial conditions. The cooling conditions during quenching strongly determine the 

microstructure and properties after heat treatment, where in general, depending on their 

position on the CCT diagram and the chemistry of the material in question, a fast cooling rate 

is associated to martensite, whereas a slow cooling rate might be associated to the formation 

of structures such as ferrite or pearlite. In addition, relevant heat transfer mechanisms occurring 

during quenching, such as vapour film, nucleate boiling and convective cooling can be 

estimated by analysing the shape of the cooling curves produced during quenching. In this 

regard, several methods such as the ASTM D6200-01(2012) [107] , ASTM D6482-06(2016) 

[108] and ISO 9950 [109] standard test methods have been developed for determination of 

cooling characteristics of water, aqueous polymers and oil quenchants. However, these 

methods present some limitations since they are performed under laboratory conditions using 

small Inconel probes and do not reflect the real cooling conditions of an industrial quenching 

process which is strongly affected by the agitation system, tank design, and geometry of the 

part being quenched. Considering this, the purpose of this study was to characterise the cooling 

curves developed during a real industrial quenching process of large ring segments quenched 

in different cooling media. For the sake of simplicity, the six combinations of cooling media 

and cross sections investigated in this research were defined as “conditions” and each 

“thickness-cooling” condition, in turn was identified as follows: “100-W” and 250-W” 

respectively stand for the 100 and 250 mm cross sections of the ring segment quenched in 

water, whereas “100-P” and 250-P” stand for the 100 and 250 mm cross sections of the ring 

segment quenched in polymer, finally “100-O” and 250-O” stand for the 100 and 250 mm cross 

sections of the ring segment quenched in vegetable oil. Furthermore, from this section on, the 

100 mm cross section of the ring segments might refer as “thin section” and the 250 mm cross 

section might be correspondingly referred as “thick section”.  
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4.2 Results 

 

4.2.1 Cooling characteristics on the 100 mm section of the ring segments   

 

4.2.1.1 Cooling curves 

 

Before quenching in water, polymer and vegetable oil the thermocouples registered 

austenitizing temperatures of 887, 894 and 889°C in the thin section of the three segments. 

Respectively as illustrated in Figure 4-1. During the first 50 s, the drop in temperature at the 

center of the thin section of the segments quenched on the different cooling media was very 

small. The slight drop in temperature during this period indicates the transfer of the ring 

segments from the furnace to their respective quenching tanks. The average temperature drop 

recorded during this period was around 5°C for the three conditions. After 70 - 75 s the ring 

segment quenched in water was fully immersed into the agitated cooling media. At this point 

the thermocouples indicated a temperature of 825 - 840°C. On the other hand, the ring segment 

quenched in polymer was fully immersed at a time of 60 - 65 s with a corresponding 

temperature of 880-884°C. The ring quenched in vegetable oil was fully immersed at a time of 

55 - 60 s with a corresponding temperature of 885 - 888°C. Once the quenching process started 

for the three segments, it could be observed that from 800 to 500°C (cooling time parameter, 

λ), water and vegetable oil generated the faster and slower cooling times corresponding to 154 

s and 253 s respectively, while an intermediate cooling time of 231 s between those of water 

and vegetable oil, was achieved by aqueous polymer.  

 

Approximately between 420 and 350°C (black dots in Figure 4-1) a change in the slope was 

observed in three cooling curves. This alteration in the cooling regime is attributed to the effect 

of latent heat release due to the onset of phase transformation in the material during quenching. 

On this regard, the approximated start transformation temperatures for the segments quenched 

in water, polymer and vegetable oil were 353, 369 and 405°C respectively. Finally, at 

temperatures near to 100°C, an isothermal step could be observed in the water and aqueous 

polymer curves, which can be associated to the boiling point of water. This phenomenon was 

not observed in the vegetable oil since its boiling point is much higher than those of water and 

aqueous polymer solution.   
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Figure 4-1: Cooling curve profiles recorded by the thermocouples located at the center of the 

100 mm cross sections of the ring segments quenched in water, polymer and vegetable oil. 

 

4.2.1.2 Cooling rates 

 

The first derivatives (change rate of temperature with time) of the cooling curves for the three 

cooling conditions studied in this research were determined in order to observe with more detail 

the wetting kinetics, and phase transformations during industrial quenching as a function of 

temperature. Figure 4-2 shows the cooling rates produced on the thin section of the ring 

segments quenched in the different media.  

 

Once the quenching started, the cooling rates for the three ring segments were very similar 

regardless of the cooling media, however after cooling rate values around 1°C/s were reached, 

the three segments starting to experience changes in their cooling rate pattern. As the 

temperature decreased, the effect of the different cooling media became stronger, leading to 

different maximum cooling rates of 2.17, 1.52 and 1.61°C/s on thin section of the segments 

quenched in water, polymer and vegetable oil respectively. It is noteworthy to mention that the 

maximum cooling rate reached by polymer was lower than that of vegetable oil. This was 

unexpected considering the higher transfer rates usually obtained with aqueous solutions of 

polymer. After reaching the maximum cooling rate, an expected reduction on the rate of 
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cooling is observed in the water, polymer and vegetable quenchants due to the prior onset of 

the nucleate boiling stage, however the cooling rate curve corresponding the polymer 

quenching exhibited a small hump around 500°C which could be attributed to the reformation 

of a polymer film during nucleate boiling [32]. Around 470°C, an even smaller hump was 

observed on the cooling curve corresponding the vegetable oil, the reason for this it’s not clear 

however it might be argued that a similar thermal arrest mechanism as the one describe above 

occurred during the nucleate boiling stage with vegetable oil. As stated previously, between 

420°C and 350°C the latent heat effects due to the onset of the phase transformations were 

clearly displayed in all the cooling curves and cooling rate profiles. In this sense, According to 

the continuous cooling transformation diagram for AISI 8630 low alloy steel built by Atkins 

[110], the transformation temperatures generated during industrial quenching in water, polymer 

and vegetable oil may be related to the onset of bainite and martensite. Finally, as previously 

described in section 4.2.1.1, the peaks associated to the boiling point of water and polymer 

around 100°C were also observed in their corresponding cooling rate profiles. 

 

 

Figure 4-2: Cooling rate profiles recorded by the thermocouples located at the center of the 

100 mm cross sections of the ring segments quenched in water, polymer and vegetable oil. 
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4.2.2 Cooling characteristics on the 250 mm section of the ring the segments   

 

4.2.2.1 Cooling curves 

 

Before starting the quenching process in water, polymer and vegetable oil the thermocouples 

registered austenitizing temperatures of 893, 899 and 889°C in the thick section of the three 

segments as illustrated in Figure 4-3. In a similar fashion like section 4.2.1.1 during the first 

50 s, the drop in temperature at the center of the thick section of the three ring segments was 

very small. The slight drop in temperature during this period indicates the transfer of the ring 

segments from the furnace to their respective quenching tanks. The average temperature drop 

recorded during this period was around 5°C for three conditions. After 70 - 75 s the ring 

segment quenched in water was fully immersed into the agitated cooling media. At this point 

the thermocouples indicated a temperature of 885 - 890°C. On the other hand, the ring segment 

quenched in polymer was fully immersed at a time of 60 - 65 s with a corresponding 

temperature of 883 - 897°C. The ring quenched in vegetable oil was fully immersed at a time 

of 55 - 60 s with a corresponding temperature of 880 - 885°C. Once the quenching process 

started for the three segments, it could be observed that from 800 to 500°C (cooling time 

parameter λ), water and vegetable oil generated the faster and slower cooling times 

corresponding to 387 s and 608 s respectively, while an intermediate cooling time of 515 

between those of water and vegetable oil, was achieved by aqueous polymer.  

 

Approximately between 450 and 480°C a change in the slope was observed in the three cooling 

curves. As mentioned, this alteration is attributed to the effect of latent heat release due to the 

onset of the phase transformations during quenching. The estimated start transformation 

temperatures on the thick section of the segments quenched in water, polymer and vegetable 

oil were 460, 475 and 474°C respectively. Finally, at temperatures near to 100°C, the 

isothermal step due to the boiling point of water and polymer observed in the thin sections was 

also observed in the corresponding cooling curves of the thick sections.  
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Figure 4-3 Cooling curve profiles recorded by the thermocouples located at the center of the 

250 mm cross sections of the ring segments quenched in water, polymer and vegetable oil 

 

4.2.2.2 Cooling rates 

 

Figure 4-4, illustrates the cooling rates on the thick section of the segments quenched in the 

different cooling media. 

 

Once the quenching started, the cooling rates for the three ring segments were very similar 

regardless of the cooling media, however after a cooling rate of 0.4°C/s was reached, the three 

segments starting to experience changes in cooling rate. As the temperature decreased the effect 

of the different type of quenchants became stronger, leading to different maximum cooling 

rates of 0.80, 0.65 and 0.60°C/s on the thick section of the ring segments quenched in water, 

polymer and vegetable oil respectively. Opposite to the behaviour observed in the maximum 

cooling rates of the thin sections, where polymer produced a lower maximum cooling rate than 

that of vegetable oil. The maximum cooling rate on the thick section reached by aqueous 

polymer was higher than that the maximum cooling rate on the corresponding thick section 

quenched in vegetable oil. This is an expected behaviour considering the superior heat transfer 

characteristics of aqueous polymer in comparison with vegetable oil. After reaching their 

corresponding maximum cooling rates, an anticipated reduction on the rate of cooling is 
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observed in the water, polymer and vegetable quenchants due to the prior onset of the nucleate 

boiling stage. Unlike the cooling rates of the thin sections quenched in vegetable oil and 

polymer media illustrated in section 4.2.1.2, the cooling rates of the thick sections cooled in 

vegetable oil and polymer did not show any disruption between 700 and 500°C. The continuous 

reduction - without any disruption - of the cooling rate between 700 and 500°C for the three 

quenchants could be explained by the fact that the thick sections are capable to contain more 

heat than the thin sections therefore stabilizing the effect of the vapour film, allowing a 

“natural” cooling rate reduction between 700 and 500°C. The latent heat effects due to phase 

transformation are clearly displayed in all of the cooling rate profiles between 350 and 410°C. 

According to the continuous cooling transformation diagram for 8630 low alloy steel built by 

Atkins [110], the transformation temperatures generated during industrial quenching in water, 

polymer and vegetable oil may be related to the onset of bainite transformation. Finally, as 

previously described in section 4.2.1.1, the peaks associated to the boiling point of water and 

polymer around 100°c are also observed in their corresponding cooling rate profiles. 

 

 

Figure 4-4: Cooling rate profiles recorded by the thermocouples located at the center of the 

100 mm cross sections of the ring segments quenched in water, polymer and vegetable oil. 
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4.3 Discussion 

 

4.3.1 Cooling stages 

 

As seen in section 4.2, characterizing the cooling conditions for water, polymer and vegetable 

oil during industrial quenching is complicated since two phenomena such as wetting kinetics 

(quenching stages) and phase transformations are occurring almost simultaneously. However 

as seen below relevant metallurgical aspects could be identified by analysing the shape of the 

six cooling rates studied in this research. On this regard, Figure 4-5 illustrates the stages of 

cooling produced in the thick section of the ring segment during industrial quenching in 

aqueous polymer. Where vapour phase, nucleate boiling and convective heat transfer stages 

can be observed. For the sake of brevity, only the cooling rate analysis corresponding to the 

thick section quenched in polymer is shown below since similar cooling stages were observed 

on the rest of the thickness-cooling conditions evaluated. 

 

 

Figure 4-5: Plot of cooling rate and temperature as a function of time during quenching of the 
ring segment (thick section) in an aqueous polymer solution. 
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The vapour phase stage was estimated based on the fact that during this stage slow cooling is 

promoted either by the formation of a vapour blanket during water or polymer quenching or by 

the formation of a strong heated liquid layer during vegetable oil quenching, as explained in 

the work of Ramesh and Prabhu [27]. Whereas the boiling phase was determined considering 

that this stage results from the collapse of the vapour blanket (water and polymer) or the heated 

liquid layer (vegetable oil), leading to fast cooling during and maximum cooling rates. Finally 

as indicated by Ikkene and colleagues [42] , slow cooling is experienced once the temperature 

of the different media reached their boiling point, which marks the beginning of the convection 

stage. 

 

The prior analysis might be valid for all the cooling conditions due to the similarities found in 

the cooling regimes for the six cooling rates. Additionally, the cooling stages were estimated 

based on the fundamentals of wetting kinematics on quenching, and are in line with the work 

of Prabhu and Fernandes [111], about heat transfer mechanisms during quenching treatment.  

 

4.3.2 Effect of type of quenchant on cooling conditions 

 

The cooling time parameter (λ) and the maximum cooling rate (CRMax) are among the most 

important quenching parameters controlling the mechanical properties of steels forgings after 

industrial heat treatment. As explained in section 2.4.2.4, long cooling times associated to slow 

cooling rates during quenching could lead to low strength and toughness properties on the 

component due the formation of undesired microstructures such as ferrite and pearlite. In turn, 

short cooling times associated to high cooling rates are capable to produce high strength and 

toughness after quenching due to the formation of martensitic and bainitic structures. In this 

sense, considering the results obtained during industrial quenching, where water, polymer and 

vegetable oil produced the fastest, intermediate and slowest cooling times on both cross 

sections, it is important to elucidate which the main variables are controlling the cooling 

performance of the different cooling media used in this research. 

 

Prabhu [46] carried out a number of cooling curve analyses on Inconel probes in order to 

determine the effect of the thermal and physical properties on the cooling performance of water, 

polymer and mineral oils. It was determined that the dynamic viscosity is the most important 

aspect governing the cooling performance and quench severity of the different cooling media 

investigated.  In addition Ma [112], established that the maximum cooling rate of oil 
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quenchants is increased as the viscosity is decreased. This can be explained by the fact that as 

the viscosity of a determined cooling media is decreased, its motion is increased leading to a 

stronger boiling stage which in turn is reflected as an increase in the heat transfer coefficient 

and shorter cooling times during quenching. 

 

In agreement with the results of Prabhu [46] and Ma [112], in the present investigation, similar 

relations between viscosity and critical cooling parameters were obtained during industrial 

quenching as illustrated in Table 4-1, where a decreasing viscosity results in shorter cooling 

times and higher cooling rates.  

 

However, as described in the previous chapter, the maximum cooling rate corresponding to the 

thin section of the segment quenched in polymer (100 - P) was the only parameter that does 

not follow this tendency, where a lower maximum cooling rate was obtained compared to that 

of vegetable oil, this, in spite of the lower viscosity of polymer. Possibly this is due to the 

higher sensitivity of the polymer film to variations in agitation and temperature compared to 

that of vegetable oil [42]. These variations observed on polymer quenching, could lead to heat 

transfer oscillations at different locations of the component. On the contrary, the convective 

heat transfer regime and the strong heated layer formed during quenching in vegetable oil might 

provide more uniform thermal gradients between the part and the quenchant [46, 36].  

 

As seen in Figure 4-6, other aspects can be explained on the basis of viscosity and wetting 

kinetics during industrial quenching. For example, the small disruption (dotted square in Figure 

4-6) in the cooling rate of the thin section quenched in polymer can be due to the reformation 

and dissolution of an unstable polymer film which consequently alters the  vapour and nucleate 

boiling regimes in the thin section of the ring segment [32, 113]. On the contrary, the thick 

section quenched in the same media does not undergo this reduction since it is capable to 

contain more heat than the thin section by stabilizing the vapour film, allowing a “natural” 

cooling pattern [114]. 
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Figure 4-6: Cooling rate as a function of temperature in aqueous polymer quenching. 

 

Table 4-1 illustrates the main critical parameters determined during the industrial quenching of 

the experimental forgings. On this regard it can be concluded that the differences in the cooling 

conditions on both, the thin and thick sections of the ring segments quenched in the three 

cooling media can be elucidated in terms of the wetting kinetics and viscosities of each 

quenchant where high heat removal rates were obtained with water due to high instability of 

the vapor film which collapses in a short period of time and therefore generates high heat 

transfer rates. On the contrary, the slow cooling produced with vegetable oil can be attributed 

to the formation of a strong and uniform heated liquid layer around the part reducing the 

thermal gradients and heat transfer during quenching.  Aqueous polymer, in turn, produces a 

polymer film during quenching which encapsulates and stabilizes the vapour blanket reducing 

the thermal gradient between the liquid and the part leading in consequence to cooling times 

between those of water and vegetable oil [42, 27]. 
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Table 4-1: Critical cooling parameters and viscosity of water, aqueous polymer and vegetable 
oil. 

 

As mentioned previously, viscosity strongly affects the heat transfer characteristics of cooling 

media during quenching, where the heat transfer coefficient tends to decrease as viscosity 

increases. Besides this, the cross section of the component represents another important aspect 

controlling the heat transfer conditions during quenching. The combined effect of these two 

variables is incorporated in the cooling time parameter, and its effect on the maximum cooling 

rate produced for the different conditions during industrial quenching are illustrated in Figure 

4-7. 

 

 

Figure 4-7: Plot of viscosity against cooling time parameter (λ) for the different thickness-
cooling condition. 
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4.3.3 Microstructural evolution 

 

As expected, the microstructure evolution during the industrial quenching of the ring segments 

was affected by the wetting kinetics produced by water, polymer and vegetable oil [115]. As 

can be seen in Figure 4-2 to Figure 4-4, the cooling rates for the different conditions were very 

similar during the initial period of quenching. Possibly, during this stage the thermal properties 

of the material have not changed yet, and regardless of the cooling media, the thin and thick 

sections of the three ring segments were still in the austenitic condition [10]. At the onset of 

austenite decomposition, the effect of the different type of quenchants became more 

pronounced along the thin and thick sections resulting in different cooling regimes for each 

thickness - cooling condition. When plotting the CRMax against the transformation start 

temperature, it can be elucidated that, as the maximum cooling rate is increased, the 

transformation start temperature for the different conditions is decreased as displayed in Figure 

4-8. This can be explained by a decreasing atomic diffusion rate as the cooling rate is increased 

[116]. These observations are similar to the results obtained by Zhao et al. [117]. As stated 

previously, the probable onset of the bainitic and martensitic reactions for the different 

thickness – cooling conditions were estimated by identifying the inflexions points in the 

cooling rates produced by the latent heat release. These estimations are in line with the work 

of Cerda et al. [118]. Nevertheless, as described in the following chapter, the transformation 

temperatures were further validated via dilatometric analysis (CCT diagram). 

 

 

Figure 4-8: Plot of CR Max against transformation start temperature for the six thickness – 
quenchant conditions. 
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4.3.4 Effect of Thickness 

 

When comparing the cooling curves of the thin and thick sections quenched in the same cooling 

media, it is possible to observe the effect of the section size on the cooling conditions and its 

subsequent influence on the transformation temperatures. Figure 4-9, illustrates the cooling 

curves corresponding to the six thickness – cooling conditions investigated. As described in 

Equation 6, the differences in the cooling conditions observed in the thin and thick sections of 

the ring segments quenched in the different media can be explained by the fact that the heat 

transfer rate during quenching is strongly influenced by the wall thickness of the part, where, 

as the thickness is increased the heat transfer is decreased producing longer cooling times 

associated to slower cooling rates. 

 

 

Figure 4-9: Cooling curve profiles recorded by the thermocouples located at the center of the 

100 and 250 mm cross sections of the ring segments quenched in water, polymer and 

vegetable oil. 
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𝑞 =  

𝐾𝐴 (𝛥𝑇)

𝐿
 

(6) 

 

Where: 

 

q = Heat flow 

K = Thermal conductivity (J/s m°C) 

A= Cross sectional area (m2) 

ΔT= Thermal gradient (T2 – T1, °C) 

L= Thickness (m) 
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5 Development of a Continuous Cooling Transformation 

Diagram for and AISI 8630 Modified Low Alloy Steel using 

Dilatometry 

 

5.1 Introduction 

 

As demonstrated by Ramseh and Prabhu [106] on their work about cooling performance during 

immersion quenching, it is possible to quantify the effect of quenching media on the 

microstructure by superimposing experimental cooling curves on a CCT diagram with 

chemistry of interest. However, despite the technological relevance and widely use of AISI 

8630M low alloy steels on the offshore industry, it is very difficult to find accurate CCT 

diagrams on the scientific literature that possess similar composition and also similar grain size 

as the one used in this research. Considering this, a CCT diagram for the selected steel was 

developed by means of dilatometry, first, in order to establish correlations between continuous 

cooling rate and microstructure under controlled conditions and second, to estimate the 

microstructures produced during industrial quenching. 

 

A large range of cooling rates can be developed through the cross section of large forgings 

during industrial quenching. In turn, these cooling rates, in combination with the chemical 

composition and the austenitizing conditions define the microstructure of the component after 

quenching. Recently, attention has been focused on the mechanical properties at the centre of 

the cross section of large forgings since this region represents one of the most critical aspects 

affecting the overall performance of the component due to the low mechanical properties and 

undesired microstructures such as pearlite and ferrite associated to slow cooling rates produced 

in this region of the forging. Although, inserting a thermocouple into a forging it is still one of 

the most reliable methodologies to evaluate the real microstructure produced on the forging 

after quenching; it is not always possible to use this method mainly due to time and economic 

constraints. Therefore, the use of CCT diagrams might represent a valuable metallurgical tool 

to establish correlations between cooling rate and microstructure which can be subsequently 

used to predict the microstructures at different locations inside large forgings after quenching. 

In this sense, it is important to mention that cooling curves produced during industrial 

quenching are of exponential nature (i.e. a maximum cooling rate is reached during quenching) 



 

   107 
 

and evidently the cooling rate is not constant during the quenching process, on the other hand 

the cooling rates used to construct the CCT diagram are in fact constant during the cooling-

down process. However as explained in reference [56], there is evidence which indicates that 

remarkable differences on the volume fraction of bainite could be observed between constant 

and exponential cooling rate. 
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5.2 Results 

 

5.2.1 Analysis of Dilatometer Data 

 

The measured data obtained from the dilatometer were used to determine the transformations 

temperatures for the different heating and cooling conditions. Figure 5-1 to Figure 5-6, 

displays selected dilatometer curves showing critical transformation temperatures such as 

austenite, bainite, bainite-martensite and martensite transformation points.  

 

As seen in Figure 5-2, the Ac1 and Ac3 temperatures were 724 and 798˚C correspondingly. 

These temperatures were determined by heating the specimen at a rate of 10˚C/min. As seen in 

Chapter 4, the austenitizing temperature used for the industrial heat treatment of the 

experimental forgings was 890˚C. This temperature might look high if compared with the Ac3 

temperature obtained from the dilatometer testing, however the selection of this temperature 

was defined considering the temperature dropped experienced during the transfer of the part 

from the furnace to the quenching tank. Ac1 and Ac3 transformation temperatures obtained by 

dilatometry were compared against a CCT diagram for AISI 8630M steel developed in JMatPro 

software with a grain size number of 8-8.5 ASTM at an austenitizing temperature of 890 ᵒC as 

shown in Figure 5-1. The calculated Ac1 and Ac3 temperatures were 729 and 768˚C 

respectively, indicating a variation of 5˚ and 29˚C respectively with respect to the experimental 

results obtained by dilatometry. In their work on kinetics of austenite formation, Cota et al. 

[119], found that the critical temperature for austenite formation increases with increasing 

heating rate, so it could be argued that the differences between the experimental and calculated 

Ac1 and Ac3 temperatures observed in the present work could be associated to variation in the 

heating rates used during the dilatometric testing. 
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Figure 5-1: CCT diagram for AISI 8630M steel with grain size of 8 ASTM at austenitizing 
temperature of 890 ᵒC (JMatPro software). 

 

As illustrated in Figure 5-3  when a cooling rate of 0.05 ˚C/s is applied, a complete bainitic 

transformation between 488.5 (Bs) and 300.5˚C (Bf) can be observed. Full bainite 

transformation was also observed on the specimens cooled down a rates of 0.10 and 0.20˚C/s, 

whereas the specimens cooled below 0.05˚C/s showed mixtures of, ferrite-pearlite and 

presumably granular bainite.  

 

Although not clearly displayed on the dilatometric curves corresponding to the range of 0.3 to 

1.0 ˚C/s (Figure 5-4) the presence of mixtures of martensite and bainite was confirmed by 

microstructural analysis. In this regard, due to the complexity involved to determine the Ms 

point directly from the dilatometric curves, the first derivative of the dilatation curve was 

determined. The advantage of using this technique is that small amounts of phase 

transformation can be detected on the first derivative curve [120]. As seen in Figure 5-5, 

approximately at 318˚C, a disruption associated to the formation of martensite (Ms) can be 

observed on the first derivative of the dilatation curve. This methodology was also used to 

determine the Ms Temperature on the specimens cooled at 0.3 and 0.5˚C/s which also formed 
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mixed structures of martensite and bainite and its applicability is further demonstrated in 

references [120, 121]. It should be pointed out that determination of the start transformation 

temperatures for the martensite on the specimens with mixed constituents might not be accurate 

enough due to the approximate nature of the methodology applied to determine the Ms points 

on the specimens with mixed constituents. Finally, a full martensitic structure is produced when 

the cooling rate is increased above 2˚C/s as illustrated in Figure 5-6. 

 

 

Figure 5-2: Dilatometric curve with corresponding first derivative on heating at a rate of 
10˚C/min to determine Ac1 and Ac3. 
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Figure 5-3: Dilatometric curve on cooling at 0.05˚C/s from 890˚austenitising temperature 
showing full bainitic transformation. 

 

 

Figure 5-4: Dilatometric curve on cooling at 1.0˚C/s from 890˚austenitising temperature 
showing bainitic and martensitic transformation. 
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Figure 5-5: Estimation of Ms point by the first derivative of the dilatation curve. 

 

 

Figure 5-6: Dilatometric curve on cooling at 2.0˚C/s from 890˚austenitising temperature 
showing full martensitic transformation. 
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5.2.2 Effect of Cooling Rate on Microstructures 

 

The transformation reaction temperatures (start and finish points) obtained from the dilatation 

curves were superimposed on the corresponding cooling profiles and plotted in the form of a 

continuous cooling diagram as illustrated Figure 5-7. According to the transformation points, 

the formation of ferrite pearlite and bainite occur along slow cooling rates ranging from 0.01 

to 0.03˚C/s. industrially, these type of microstructures are expected to be produced at the center 

of large forgings, slowly cooled in air during normalizing treatment. Whereas, full bainitic 

microstructure is perceived at cooling rates between 0.03 and 0.2˚C/s with and average start 

transformation temperature of 490˚C. As the cooling rate is increased from 0.3 to 1˚C/s, 

mixtures of bainite and martensite are the dominant microstructure in the aforementioned 

range. With further increasing cooling rates above 2˚C/s, a full martensitic structure is 

generated at temperatures below 330˚C (average Ms in this cooling rate range).  

 

 

Figure 5-7: Continuous cooling transformation diagram for AISI 8630M built by quenching 
dilatometry. 
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In order to identify the microstructures related to the different transformation temperatures 

observed during continuous cooling, selected dilatometric specimens were examined by means 

of SEM as illustrated in Figure 5-8 to Figure 5-13. In this regard, Figure 5-8 and Figure 5-9, 

illustrate the microstructural complexity developed at slow cooling rates. It can be seen in this 

figures that the microstructure of the specimen cooled down at a continuous rate of 0.03˚C/s, 

mainly consists of degenerated pearlite and presumably granular bainite. Similar morphologies 

of degenerated pearlite on continuous cooling were reported by Shanmugam et al. [122] and 

its formation mechanisms are also addressed by the author. Essentially, the formation of 

degenerated pearlite involves the nucleation of cementite at the boundaries between austenite 

and ferrite, and the reason why no layer structure is observed on degenerated pearlite is 

associated to the scarce carbon diffusion available to promote a lamellae structure as the one 

observed on classic pearlite. Habraken in the late 50s firstly described granular bainite on 

continuous cooled steels which consisted of coarse ferritic plates with granular aspect and 

islands of retained austenite and martensite [123]. Eventually it was confirmed that the coarse 

ferritic plates observed by Habraken were in fact bainitic ferrite with small regions of austenite 

associated to low carbon concentration [57]. The mechanisms of formation of granular bainite 

are similar to those of bainite, although carbide precipitation is not observed on granular bainite 

since during cooling carbon migrates to the parent austenite leading to the formation of islands 

of carbon-rich regions of austenite upon cooling [124].  

 

The classic morphology of lower bainite is illustrated in Figure 5-10. As is well known the 

main characteristic of this morphology of bainite is the extensive carbide precipitation within 

the bainitic lath which is arranged in a single crystallographic variant with an angle of 60˚ from 

the main bainitic lath axis [57]. Similar morphologies of lower bainite formed on continuous 

cooling are reported elsewhere [125].At intermediate cooling rates, the specimen cooled at a 

rate of 0.5 ˚C/s displays a microstructure which consists of a mixture of lower bainite and 

martensite as illustrated in Figure 5-11. The differentiation between these two microstructures 

is made on the basis that bainitic transformation involves extensive carbide precipitation during 

cooling, on the contrary no precipitation shall be observed on the as quench martensite 

microstructure since the carbon remain within the supersaturated solid solution after quenching 

[126]. Figure 5-12, shows a high resolution image of the same specimen (0.5˚C/s) at the 

interface between lower bainite and martensite, where the absence of carbide precipitation is 

evident on the martensite, on the contrary extensive carbide precipitation is observed on the 
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bainitic structure. At higher cooling rate above 2˚C/s, full martensitic structure is the dominant 

microstructure as illustrated in Figure 5-13. The detailed mechanisms of formation of bainite 

and martensite were already defined in section 2.6.1. In general, the microstructural 

observations listed above are in line with the work of Radwański [127]. In this work, the author 

develops a methodology to characterise the morphology of diverse constituents of multiphase 

steels by using field emission gun scanning electron microscopy (FEG-SEM). 

 

 

 

Figure 5-8: Low magnification SEM micrograph showing (DP) degenerated pearlite and (F) 
ferrite on specimen continuous cooled at rate of 0.03 ˚C/s. 
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Figure 5-9: Low magnification SEM micrograph showing (LB) lower bainite and granular 
bainite constituent on specimen continuous cooled at rate of 0.03 ˚C/s. 

 

 

Figure 5-10: High magnification SEM micrograph showing (LB) lower bainite, on specimen 
continuous cooled at rate of 0.03 ˚C/s. 
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Figure 5-11: SEM micrograph showing (M) martensite  and (LB) lower bainite on specimen 
cooled at a rate of  0.5 ˚C/s. 

 

 

Figure 5-12: High magnification SEM micrograph showing (M) martensite  and (LB) lower 
bainite on specimen cooled at a rate of  0.5 ˚C/s. 
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Figure 5-13: SEM micrograph showing full martensite on specimen cooled at a rate of 2 ˚C/s. 
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5.2.3 Comparison of Industrial and Continuous cooling curves 

 

With the CCT diagram defined in the previous section, it is now feasible to evaluate the effect 

of the different industrial quenching conditions on the microstructure of the selected steel. To 

evaluate this effect, the cooling curves measured during industrial quenching in water, polymer 

and vegetable oil were superimposed on the CCT diagram built by dilatometry as elucidated in 

Figure 5-14. Surprisingly, despite the different cooling conditions promoted by water, polymer 

and vegetable oil, mostly, all the cooling curves fell within the mixed region (˜0.03 to ˜1˚C/s) 

of martensite and bainite, with the only exception of 100-W condition which cooling curve fall 

between continuous cooling rates of 1 and 2 ˚C/s associated to a full martensite structure. 

Considering that the highest cooling rate of all the industrial cooling conditions was in fact 

developed on the 100-mm section quenched in water, it reasonable to expect that the 

microstructure of 100-W condition consisted of a full martensite structure, which was produced 

as well at high continuous cooling rates. As the cooling rate is decreased, the first industrial 

cooling curve which apparently enters the mixed region of martensite and bainite is 100-P 

condition. Furthermore, it can be seen on the CCT diagram that the cooling profile of 100-P 

condition is close to the continuous cooling profile corresponding to 1˚C/s. On the other hand, 

the cooling curves corresponding to 100-O and 250-W conditions can be observed between 

continuous cooling rates of 0.5 and 1˚C/s. Finally, the slow industrial cooling curves 

corresponding to 250-P and 250-O conditions, are within the range of 0.3 to 0.5˚C/s. 

 

The phase fraction of the continuous cooling specimens associated to the different industrial 

cooling curves were determined in an attempt to predict the microstructures present under 

industrial conditions as illustrated in Table 5-1. The specimen cooled at 2˚c/s, associated to 

100-W condition, showed a fraction of 100% martensite. Whereas the martensite fraction on 

the specimens cooled at 1˚C/s (100-P), 0.5˚C/s (100-O and 250-W) and 0.3˚C/s (250-P and 

250-O) were 85%, 48% and 19% respectively. It is clear that as the cooling rate is decreased 

from 2˚C/s to 0.3˚C/s, the amount of martensite decreases with a corresponding increase in the 

fraction of bainite. In their work on Ni–Cr–Mo low alloy steels, Lee and co-workers [128] also 

reported that a decreasing cooling rate effectively reduces the amount of martensite while 

increasing the amount of bainite. 
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Figure 5-14: CCT of 8630 mod. Steel along with measured industrial cooling curves of water, 
aqueous polymer and vegetable oil media. 

 

 

Table 5-1: Phase fractions of martensite and bainite on mixed region of the CCT diagram and 
industrial cooling conditions associated to continuous cooling rate. 
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5.3 Discussion 

 

According to the results described above, the cooling rate appears to be determinant in 

controlling the phase transformations taking place on AISI 8630M low alloy steels during 

quenching. At very slow cooling rates (<0.03˚C/s) ferrite and pearlite are the dominant 

constituents. On the contrary the formation of full martensite is promoted at high cooling rates 

(>2˚c/s). Interestingly, at the intermediate cooling region of the CCT diagram, martensite and 

bainite both coexist between rates of cooling in the range of 0.3 and 1˚C/s. In this sense, it can 

be concluded that the the majority of the industrial cooling curves fall within the range of 

martensite-bainite structure on the CCT diagram. Thus, the discussion is focused on relevant 

aspects associated to the coexistence of bainite and martensite, in particular considering that 

prior research indicates that the presence of lower bainite on tempered martensitic structure is 

beneficial for the mechanical properties. 

 

It is well established that the steel chemistry is one of the most important factors governing the 

phase transformation temperatures, which in turn are dependent on the stabilization of the 

parent austenite phase [129]. This is why the vast majority of equations to predict the Ms and 

Bs temperatures are mainly based on the chemical composition [130]. However as 

demonstrated in this research, the transformation temperatures are also affected by changes in 

cooling rate. Although, it is noteworthy to mention that, similar relations between start 

transformation temperatures and cooling rate on low alloy steels have been reported elsewhere 

[131].  

 

As observed on the phase transformation temperatures corresponding to the industrial cooling 

curves, the Bs (bainite start) temperature of the continuous cooling curves obtained by 

dilatometry also showed an increasing trend with a decreasing cooling rate. As mentioned in 

the previous chapter, it can be argued that this increase in Bs temperature could be due to an 

increase on the diffusion atomic coefficient at higher transformation temperatures [117]. It can 

also be observed that the increasing Bs temperature due to the decreasing cooling rate is 

accompanied by a decrease in the Ms temperature at the intermediate cooling region of the 

diagram. The variation on the Ms and Bs temperatures associated to the changes in cooling rates 

are in fact reflected on the different proportions of martensite and bainite obtained after 

continuous cooling as illustrated in Table 5-1, where, as the cooling rate is decreased from 
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2˚C/s to 0.3˚C/s, the amount of martensite decreases with a corresponding increase in the 

fraction of bainite. In this sense, Bohemen et al., [129] observed that an increasing fraction of 

bainite induced a decrease in the martensite-start temperature on a 41Cr4 low alloy steel 

submitted to continuous cooling. As explained by the Bohemen, the reason why martensite 

start transformation decreases with increasing fraction of bainite might be due to the 

mechanical stabilization of the remaining austenite. The origin of mechanical stabilization is 

the shape change associated with the bainitic transformation which causes the accumulation of 

dislocations in the surrounding austenite. 

 

In the decade of the 1980's, Tomita and Okabayashi [132, 133, 134] initially reported that the 

presence of bainite in a martensitic structure increases the strength and toughness of quenched 

and tempered low and medium alloy steels. They postulated that the mechanism responsible 

for this enhancement would be associated with a grain size refinement of the austenite by the 

lower bainitic sheaves. As explained in reference [135], the carbon partitioning promoted by 

bainite would consequently increase the strength of the martensite by refining its packet 

structure. Furthermore, the constraint associated to the deformation of bainite by the 

surrounding martensite (stronger) would also lead to a strengthening effect on the bainitic 

structure [136]. 

 

According to the experimental data developed by Tomita and Kobayashi in reference [134] the 

optimal mix proportion of lower bainite and tempered martensite related to a peak of strength 

in 0.40% C-Ni-Cr-Mo steel, would be approximately 20% lower bainite - 80% tempered 

martensite. As seen in Table 5-1, similar proportions of bainite and martensite were developed 

on the specimen cooled at 1˚c/s, associated to 100-P condition. According to this theory, it 

would be reasonable to expect superior strength properties on the thin section of the ring 

segment quenched in polymer identified as 100-P condition. This assumption will be confirmed 

in the following chapter.  
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6 Effect of Industrial Cooling rate on Microstructure and 

Mechanical Properties of Large Forging Segments 

 

6.1 Introduction 

 

This chapter presents the results from the three segments quenched in water, polymer and 

vegetable oil after tempering treatment at 590°C for 10 hours. As discussed in the previous 

section, with the exception of condition 100-W, where the as-quench microstructure predicted 

was predominately lath martensite, all the other predicted conditions showed different 

proportions of martensite and bainite. The tempering treatment is of particular importance since 

it improves the strength-toughness balance of low alloy steels by promoting carbide 

precipitation and reducing stress concentrations on martensite. On the contrary, bainite is less 

sensitive to tempering treatment than martensite, where the major changes observed on 

tempered bainite are associated to a slight coarsening of cementite precipitates. In this regard, 

the main objective of this chapter was to investigate the influence of the different mixtures of 

microstructures produced during industrial heat treatment, on the strength and toughness of 

three forged segments made of AISI 8630 Modified low alloy steel. Particular attention was 

paid to the morphological and orientation relationships differences of the carbides precipitates 

between the martensitic and bainitic structures. 
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6.2 Results 

 

6.2.1 Morphology of Tempered Microstructures 

 

6.2.1.1 Optical Microscopy 

 

Optical microscopy was carried out in order to get a first insight into the microstructures after 

tempering treatment. However, due to the complexity of the tempered microstructures, the 

characterization was further complemented by SEM in order to distinguish the main features 

of the various microstructures produced after industrial heat treatment. Figure 6-1 shows 

optical microstructures of the normalized, quenched and tempered ring segments. For the fast 

cooling rates / short cooling times produced on the thin sections of the ring segments, a fine 

microstructure with an acicular morphology was obtained for 100-W, 100-P and 100-O 

conditions. In this sense, Hoseiny et al. [137] and Penha et al. [19] reported similar 

morphologies for martensitic and bainitic structures after quenching and tempering treatments. 

Prior research [48] on quenched and tempered low alloy steels indicates that tempered 

martensite and lower bainite share some morphological similarities when observed under the 

optical microscope. Consequently, these similarities complicated the differentiation between 

these two structures when observed under the optical microscope. On the contrary, for the slow 

cooling rates / long cooling times produced on the thick sections of the ring segments, mixed 

microstructures with acicular and granular morphologies were obtained for 250-W, 250-P and 

250P conditions. The granular morphology detected in the thick sections has also been reported 

by Du et al. [138]. It is clear that optical microscopy is not capable to reveal the main 

characteristics of the various microstructures mainly due to the small size of their metallurgical 

features, however as seen in next section, SEM technique was employed to clarify the main 

features of the microstructures developed after industrial heat treatment. 
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Figure 6-1: Optical micrographs for (a) 100-W, (c) 100-P and (e) 100-O conditions, showing 

a fine microstructure with an acicular morphology, whereas (b) 250-W, (d) 250-P and 250-O 

conditions show a mixed microstructure with acicular and granular regions. 
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6.2.1.2 Scanning Electron Microscopy 

 

Tempered martensite and tempered lower bainite were the main microstructures observed on 

the six conditions studied, although it should be emphasized that distinguishing between 

tempered martensite and tempered bainite using FEG-SEM technique has a certain level of 

difficulty due the similarities shared by these two constituents after tempering treatment. In 

addition a nonclassical bainite morphology was also found on 250-P condition. The nature of 

the formation of this microstructure is discussed into more detail in section 6.3.1. 

 

Figure 6-2 and Figure 6-3 illustrates high magnification SEM micrographs emphasizing the 

main morphological characteristics of the tempered martensite and tempered lower bainite 

produced under industrial heat treatment conditions, whereas Figure 6-4 illustrates the non-

classical morphology of bainite found in 250-P condition. Finally, Figure 6-5 to Figure 6-10, 

display low magnification SEM micrographs of all the microstructures in order to observe them 

in a broader perspective. 

 

Figure 6-2, shows tempered martensite which consists of multivariant (crystallographic 

variant) carbide precipitation within the martensite laths and extensive precipitation on the lath 

boundaries [139, 57]. In this sense, Hoseiny et al. [137] determined, by means of TEM-EDS, 

that M3C carbides are precipitated after quenching and tempering of a low alloy steel with 

chemical composition (wt. %) of 0.36% C, 1.97% Cr and 1.0% Ni. In general, M3C carbide is 

known as cementite and it is transformed from ɛ-carbide during tempering. Additionally, it can 

be observed how carbides are orientated in two main directions (Widmanstätten arrays, [57]) 

within the laths and along the lath boundary in the axial direction. Accordingly, this 

morphology and carbide distribution are characteristics of tempered martensite.  

 

Figure 6-3 displays tempered lower bainite which, unlike tempered martensite, consists of 

carbide precipitates arranged in a single crystallographic variant (Bagaryatski orientation 

relationship, [57]) within the bainitic laths. Furthermore, the absence of inter-lath carbides on 

its boundaries can also be observed. These observations are agreement with those of Caballero 

et al. [125]. As stated by Bhadeshia [57], in lower bainite carbides precipitate from a carbon 

supersaturated ferrite adopting a single orientation at 60° from the lath axis.  
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As the cooling rate further decreased, and non-classical morphology of bainite became visible 

on 250-P condition. As seen in Figure 6-4, this so-called featureless bainite consists of coarse 

carbides on the prior austenite grain size and a mixture of elongated and blocky carbide 

precipitates randomly distributed within the bainitic matrix. 

 

The tempered microstructures corresponding to the 100 mm cross section of the ring segments 

quenched in water, polymer and vegetable oil are displayed in Figure 6-5 to Figure 6-7. 100-

W condition, with a λ parameter of 154 s (CRMAX = 2.17 °C/s) consists of full tempered 

martensitic structure with interlath and intralath fine cementite precipitates. 100-P condition 

with a λ parameter of 231 s (CRMAX = 1.52°C/s) presumably shows mixtures of tempered 

martensite and tempered bainite. It can be argued that 100-O condition with a λ parameter of 

253 s (CRMAX = 1.60°C/s) also shows mixtures of tempered martensite and tempered bainite 

but with lower bainite fraction as discussed in previous chapter 5.  

 

The tempered microstructures corresponding to the 250 mm cross section of the ring segments 

quenched in water, polymer and vegetable oil are displayed in Figure 6-8 to Figure 6-10. As 

seen in these figures, the microstructures of the 250-W, 250-P and 250-O might consist of 

tempered martensite and tempered bainite with cooling times, λ of 387 (CRMAX = 0.85°C/s), 515 

(CRMAX = 0.65°C/s), and 608 s (CRMAX = 0.60°C/s), respectively. A similar tendency was also 

observed on the thick cross sections were as cooling time increases, the amount of tempered 

martensite is reduced while at the same time the amount of tempered bainite is increased. 

Furthermore, extensive carbide precipitation at the austenite grain boundaries is also observed 

on 250-P and 250-O conditions. During the FEG-SEM evaluation it could be observed that the 

average carbide size thickness for tempered martensite, tempered lower bainite and featureless 

bainite were 0.04, 053 and 0.081 µm respectively.   
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Figure 6-2: SEM micrograph of tempered martensite observed in 100-P condition. 

 

 

Figure 6-3: SEM micrograph of tempered lower bainite observed in 100-O condition. 
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Figure 6-4: SEM micrograph showing “featureless” bainite found in 250-P. (FB) featureless 
bainite. 

 

 

Figure 6-5: SEM micrograph corresponding to 100-W condition, showing a full tempered 
martensitic structure. 
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Figure 6-6: SEM micrograph corresponding to 100-P condition, showing distribution of 
tempered microstructures (martensite and bainite). 

 

 

Figure 6-7: SEM micrograph corresponding to 100-O condition, showing distribution of 
tempered microstructures (martensite and bainite). 
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Figure 6-8: SEM micrograph corresponding to 250-W condition, showing distribution of 
tempered microstructures (martensite and bainite). 

 

 

Figure 6-9: SEM micrograph corresponding to 250-P condition, showing tempered lower 
bainite along with featureless bainite (FB). 
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Figure 6-10: SEM micrograph corresponding to 250-O condition, showing mostly tempered 
lower bainite. 
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6.2.2 Tensile Properties 

 

The yield strength (YS), and ultimate tensile strength (UTS) properties for the various 

thickness-cooling conditions are illustrated in Figure 6-11. Initially it can be seen that all the 

conditions resulted in yield strength values over 760 MPa, which complies with the minimum 

yield strength level of the material specification for the selected component. Correspondingly 

the UTS values also were well above the minimum UTS requirement (900 MPa) as per the 

material specification. The YS and UTS values of the three 100 mm cross sections varied from 

925 to 979 MPa, 1041 to 1065 MPa respectively, whilst the YS and UTS of the three 250 mm 

sections varied from 839 to 924 MPa, 989 to 1040 MPa. Overall, the maximum YS and UTS 

was achieved in 100-O. On the other hand, the minimum YS and UTS were achieved in 250-

P, this behaviour was unexpected, as aqueous polymer showed faster cooling conditions as 

compared to the cooling conditions produced in 250-O (slower cooling condition). The reasons 

associated to the unexpected strength and toughness results are thoroughly discussed in section 

6.3.2. 

 

6.2.3 Impact Properties 

 

The CVN impact energy properties for the various thickness-cooling conditions are provided 

in Figure 6-12. Initially it can be seen that all the conditions resulted in impact values over 42 

J, which complies with the impact energy level of the material specification for the selected 

component. The CVN values of the three 100 mm cross sections varied from 83 to 98 J, whilst 

the CVN values of the three 250 mm sections varied from 76 to 85 J. The maximum CVN 

impact energy was achieved in 100-P. On the other hand, the minimum CVN impact value was 

achieved in 250-P, again this was unexpected as aqueous polymer showed faster cooling 

conditions as compared to the cooling conditions produced in 250-O (slower cooling 

condition).  
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Figure 6-11: Tensile properties of the tested material at room temperature. 

 

 

Figure 6-12: Impact properties of the tested material at -30°C. 
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As seen in Table 6-1 no relationship is observed between the cooling parameters (CRMAX and 

λ) and the mechanical properties. This inconsistency between the cooling conditions and 

mechanical properties, along the unexpected results described above might be explained in 

terms of the microstructural changes produced after industrial heat treatment. This will be 

explain later in section 6.3.2 after discussing the effects of quenching and tempering on the 

microstructural evolution. 

 

 

Table 6-1: Tensile and CVN Impact properties at RT and -30°C respectively. 

 

6.2.4 CTOD Properties 

 

As briefly explained in section 3.5.4, the specimens for CTOD testing were selected based on 

the yield strength values produced by the different thickness-cooling conditions. In this sense, 

the minimum (839 MPa / 250-P) and maximum (979 MPa / 100-O) yield strengths where 

selected along with two locations (925 MPa / 100-W and 941 MPa / 100-P) which showed 

intermediate values between the maximum and minimum yield strengths.  

 

CTOD fracture toughness results are provided in Table 6-2. A first observation is that the 

CTOD value for all the conditions varied from 0.242 to 0.249 mm. it is evident that this 

variation is almost negligible and it can be argued that CTOD parameter for all the conditions 

is almost the same, regardless of the changes in yield strength. In addition, it is noteworthy to 

mention that these CTOD values were very close to 0.25 mm which corresponds to the aim 

value originally proposed by the company.  

 

Additionally, the stable crack extensions (ductile tearing fracture) for 100-W, 100-P 100-0 and 

250-P conditions were 2.30, 1.48, 2.35 and 2.44 mm respectively. In line with the observations 

made for the CTOD values, the stable crack extension was also very similar for all the 
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conditions with the only exception of 100-P which resulted in a crack extension value of 1.48 

mm. Furthermore, the maximum forces for 100-W, 100-P 100-0 and 250-P conditions were 

111.45, 108.57, 116.57 and 111.13 kN respectively.  

 

Finally, as illustrated in the force - displacement curves provided in Appendix E, the 100-W, 

100-O and 250-P specimens experienced a gradual decrease in load immediately after reaching 

maximum force without fracturing (no complete separation). This behaviour could be an 

indication of a relatively high ductility on the specimens even after reaching maximum load. 

On the contrary, 100-P specimen immediately break into two parts after reaching its maximum 

load.  

 

Table 6-2: CTOD properties tested at °0 C. Yield strengths values are included for reference. 

 

In summary, it can be argued that irrespective of the yield strength variations associated the 

different thickness-cooling conditions, the CTOD values were almost the same for the various 

studied conditions, and more importantly they were very close to the aimed value originally 

proposed for this research project. In this sense, one question arises immediately: what are the 

reasons behind the similarity in CTOD properties for different thickness-cooling conditions? 

As seen in section 6.3.4, this question is addressed in terms of the microstructural evolution 

not only during heat treatment but as well during the previous manufacturing operations.    

 

Additionally, it is interesting to note that 100-P specimen showed the lowest values of stable 

crack extension and maximum load, although it should be pointed out that these variations do 

not alter significantly its corresponding CTOD value. However as further explained in section 

6.3.4 , these variations were associated to chemical segregation remaining after industrial heat 

treatment.  
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6.2.4.1 CTOD Fracture Surface Analysis 

 

In view of the complexity of the relationships between CTOD fracture toughness and 

microstructure, a detailed fracture surface analysis was carried out on the C (T) specimens in 

order to clarify the fracture mechanisms controlling the performance of large forgings heat 

treated under industrial conditions. In this sense Figure 6-13, illustrates the typical fracture 

modes observed in all the C(T) specimens extracted from the selected thickness-cooling 

conditions, whereas Figure 6-14 to Figure 6-16, display high magnification fractographs of the 

ductile, transition and cleavage regions for each condition evaluated. 

 

The characteristic fracture modes observed in the four C (T) specimens are illustrated in Figure 

6-13. A dimple structure, characteristic of ductile fracture was observed immediately after the 

fatigue precrack tip as illustrated in Figure 6-13 (a). Frequently, this ductile fracture mode is 

identified as ductile tearing zone or stable crack extension and it’s a consequence of the 

blunting process taking place at the fatigue precrack tip during crack growth [140, 141].       

 

 

 

Figure 6-13: Typical fracture modes observed on the fracture surface of 100-O specimen 
quenched in aqueous polymer and tempered at 590°C: (a) Fatigue precrack, (b) Ductile 

tearing zone, (c) Ductile-Cleavage transition zone  and (d) cleavage zone. 
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Hausild et al. [141], investigated the effect of ductile tearing on fracture energy at 0°C and 

90°C of an A508 Cl. Steel, their results suggest a correlation between the ductile area and 

fracture toughness of C (T) specimens tested at 0°C, i.e., higher ductile area leads to higher 

fracture toughness. However, no such correlation was found on the C (T) specimens tested at -

90°C.  

 

As the ductile crack front propagates through the specimen, eventually a transition between the 

ductile tearing and cleavage zones becomes evident as displayed in Figure 6-13 (b). As 

elucidated by Soboyejo and co-workers [140], this zone is of relevance since in general, the 

critical CTOD value is reached in this transition region. As explained by the same author in 

reference [140], the rationale behind the occurrence of a critical CTOD value in the 

aforementioned region can explained by  the interruption of the stable ductile tearing imposed 

by  cleavage cracking. The above mentioned cleavage cracks initiate ahead of the ductile zone, 

and propagate in the opposite direction of the crack growth until they coalesce with the ductile 

tearing zone as elucidated in Figure 6-13 (c). Finally, Figure 6-13 (d) shows a representative 

area of the cleavage fracture observed in all the C (T) specimens which fracture mode is 

predominantly transgranular.  

 

As described in section 2.7.2.4, ductile fracture mechanism involves the nucleation growth and 

coalescence of voids. In addition, as explained by Broek et al. [142], second particles such as 

non-metallic inclusion are preferred initiation sites for void nucleation. In this regard, as 

illustrated in Figure 6-14 , some non-metallic inclusions (dotted square) were observed inside 

the voids structure associated to the stable ductile tearing. The diameter of the non-metallic 

inclusions varied from 2 to 5 µm in all the specimens. The chemical composition of the non-

metallic inclusions was not determined as this sort of analysis is out of the scope of the present 

work. However, according to the chemical composition of the selected steel, sulphides (MnS, 

CaS), and oxides (MnO, MgO, Ca) non-metallic inclusions are usually presented in the selected 

steel after solidification process.  

 

Considering that the size and distribution of non-metallic inclusions are in fact not significantly 

affected by changes in cooling rate during quenching, it is therefore expected that the ductile 

tearing zones produced on all the specimens are very similar between each other.  
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The transition from the ductile tearing to cleavage fracture for the 100-W, 100-P, 100-O and 

250-P specimens is illustrated in Figure 6-15. As seen in this figure, all the specimens display 

a well-defined transition zone where cleavage cracking interrupts the stable crack extension 

which correspondingly represents the region in which critical CTOD is obtained. Brittle 

fracture surfaces of the C (T) specimens corresponding to all the studied conditions are shown 

in Figure 6-16. 100-W, 100-O and 250-P conditions display a similar fracture mode, which 

can be defined as a transgranular quasi-cleavage mode. This fracture mode is characteristic of 

a ductile material and its fracture surface it’s distinguished by the presence of concave facets, 

micro-cracks and areas of dimple rupture, which form tear ridges with the cleavage steps. On 

the contrary, as illustrated in Figure 6-16 (b), 100-P condition shows a well-defined cleavage 

fracture mode which unlike all the conditions consists of large and flat-like facets. In addition, 

dimple rupture was occasionally observed on the fracture surface of this specimen as illustrated 

in Figure 6-17. In this type of fracture mode the cleavage facets are flatter than those of quasi-

cleavage fracture and its chevron patterns are usually pointing to the fracture origin [143]. 

According to the observations of Balart and Knott the fracture mode differences between 100-

P and the rest of conditions could be associated to microstructural variations associated to 

changes in carbide size distribution. In this sense, triggering brittle fracture, involves a number 

of factors which contribute to the nucleation and propagation of cleavages cracks. Under the 

application of external load, microcracks are generated ahead of the macroscopic crack. These 

microcracks in turn are developed at carbide precipitates which serve as cleavage nucleation 

sites as explained by Ritchie et al. [144].Correspondingly, these discontinuities act as stress 

risers contributing to exceed the atomic bond strength therefore promoting cleavage crack 

nucleation. If the stress ahead of the macroscopic crack is higher than the fracture stress (σf) 

the microcrack propagates into the matrix leading to cleavage fracture [81].   

 

In summary, it can be argued that inclusions (void nucleators) and carbides (crack nucleators) 

are the main microstructural features associated to the different fracture mechanisms observed 

under the different thickness-cooling conditions. Although, it also true that a correlation exists 

between the packet size (sub-grain structure) and facet size. However, the work of Johnson and 

Becker [145], clearly indicates that the main characteristic controlling the fracture toughness 

of tempered bainitic structures is the distribution of and size of the carbide precipitates.  
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Figure 6-14: SEM fractographs of ductile tearing zones on (a) 100-W, (b) 100-P, (c) 100-O 
and (d) 250-P. 
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Figure 6-15: SEM fractographs of ductile tearing cleavage transition zones on (a) 100-W, (b) 
100-P, (c) 100-O and (d) 250-P. 
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Figure 6-16: SEM fractographs of cleavage fracture zones on (a) 100-W, (b) 100-P, (c) 100-O 
and (d) 250-P. 

 

Figure 6-17: Dimple rupture (white arrows) forming tear ridges or steps between cleavage 
facets on 100-P condition. 
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6.2.4.2 Subsurface Microstructures near to initiation sites 

 

In order to identify the main microstructural features controlling the CTOD fracture toughness, 

a microstructural evaluation was carried out near to the ductile-brittle transition zone in all the 

C (T) specimens since this is the area in which critical CTOD is obtained. Initially, an attempt 

was made to locate cleavage initiation sites in the different specimens analysed, however, as 

seen in Figure 6-18, only in the specimen corresponding to 250-P condition a cleavage 

initiation site was located. As explained by Bowen et al. [146], the reason for this difficulty to 

find initiation sites could be associated to a reduced sampling volume characteristic of sharp 

crack specimens. In this sense, Lin and Ritchie [147] defined the sampling zone as: “the volume 

of material within the plastic zone required to ensure the presence of an eligible particle where 

the fracture criterion can be met”. As seen in this figure it can be seen how cleavage initiation 

site is located ahead of the ductile tearing zone. In addition, non-metallic inclusions with 

average size of 3µm can also be observed near to initiation site in Figure 6-18 (c) and (d), 

nevertheless these features cannot be regarded as the main features triggering cleavage since 

they are in fact located at the bottom of dimple voids associated to ductile fracture. As 

mentioned previously, the reason why the non-metallic inclusion are not potential initiation 

sites for cleavage could be associated to the fact that the higher stresses are located further 

ahead of the blunted precrack tip (and not near to the inclusions) therefore it might be unlikely 

triggering cleavage promoted by non-metallic inclusion. 

 

The microstructure of the cross-section near to the cleavage initiation site is illustrated in 

Figure 6-19 and Figure 6-20. In these figures, it can be observed how the cleavage crack paths 

are mainly changed by the prior austenite grain boundaries or occasionally by the sub-grain 

boundaries additionally, it can also be observed how the cleavage cracks are arrested by the 

prior austenite grain boundaries or by the sub-grain boundaries. These observations are in line 

with the work of Kim et al. [148], in which it is demonstrated the packet substructure 

determines the cleavage fracture unit. 
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Figure 6-18: SEM micrographs of the main cleavage initiation site in the precracked C (T) 

specimen 250-P condition showing: (a) cleavage initiation area ahead of the precrack tip, (b) 

ductile and brittle fracture near to initiation site, (d) and (c) detail of the fracture initiation 

site. 
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Figure 6-19: SEM micrograph of the cross-sectioned area beneath the fracture surface of the 
precracked C (T) specimen 250-P condition, showing the crack propagation path changed by 

(a) prior austenite grain boundaries and (b) sub-grain boundaries. It is also noted that 
cleavage cracks are arrested by packet boundaries. 
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Figure 6-20: SEM micrograph of the cross-sectioned area beneath the fracture surface of the 
precracked C (T) specimen 250-P condition, showing the crack propagation path changed by 

(a) prior austenite grain boundaries and (b) sub-grain boundaries. It is also noted that 
cleavage cracks are arrested by packet boundaries. 
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6.3 Discussion 

 

6.3.1 Effect of industrial heat treatment on Microstructural evolution 

 

As described in Chapter 5, the microstructural evolution during quenching is greatly influenced 

by the applied cooling rate. In turn, the strength and toughness behaviour is determined by the 

microstructures produced after quenching and tempering. In this regard, it can be elucidated 

that the fast cooling rate produced on the thin section of the ring segment quenched in water 

(100-W) promote the formation a fully martensitic structure (see Figure 6-5), which as 

explained by Bhadeshia and Khan [149], begins its formation at imperfections of the austenite 

(parent phase) such as dislocation arrays. As per CCT diagram in Chapter 5, constant cooling 

rates greater than 1°C/s are required to allow to formation of a full martensitic structure during 

industrial quenching by avoiding the bainitic nose of the diagram. It is noteworthy to mention 

the formation of full martensite in 100-W condition it is not only dependent on the high heat 

transfer rates produced by water, but also is affected by the thin wall of the ring segment which 

contributes with relatively high heat removals rates in comparison, for example, with the thick 

wall of the ring segment (250-W). A seen in Figure 6-6 to Figure 6-10, the rest of the 

conditions; 100-P-100-O, 250-W, 250-P and 250-O, resulted mostly in the formation of mixed 

structures of tempered martensite and tempered bainite. Correspondingly, mixtures of 

martensite and bainite can be obtained between 1 and 0.3°C/s, according to the CCT diagram 

in Chapter 5. In this regard, the formation of these microstructures under industrial quenching 

can be explained by the heat transfer conditions produced by the type of quenchant and the 

cross section of each ring segment. The effect of the type of quenchant and cross section size 

on the cooling conditions produced during industrial quenching were already discuss in detail 

in section 4.3.2. As observed in Table 5-1, as the constant cooling rate decreased from 1 to 

0.3°C, lower bainitic structure become visible and its phase fractions increases as the cooling 

rate is further decreased. At the same time the volume fraction of tempered martensite 

decreased with a decreasing cooling rate. Regarding the bainitic transformation during 

quenching, it has been addressed by Bohemen et al. [129]  that its formation strongly depends 

on the prior austenite grain size, however in the present research the prior austenite grain size 

it is assumed to be in a similar range considering that, in principle, the austenitizing conditions 

(temperature –time) were the same for the three ring segments quenched in water, polymer and 

vegetable oil.  
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Although, it should be pointed out that the heating rates during austenitizing process were not 

necessarily the same since the three ring segments were austenitized in different furnaces with 

correspondingly different heating rate capacities.  

 

As explained in section 2.6.2, tempering treatment is of great importance for the determination 

of the mechanical properties, where the main mechanism occurring during the tempering of 

martensite is the precipitation of carbides while the tempering of bainite mainly involves a 

slight coarsening effect of the carbides precipitates already formed during quenching. As 

described in 6.2.1.2, the carbide precipitates in tempered martensite were finer than those of 

tempered bainite. This aspect is of considerable relevance since the size and distribution of 

carbides represent one of the main factors controlling the fracture toughness of low alloy steels 

[97].  There are a couple of explanations associated to observed differences between the carbide 

size precipitates of tempered martensite and tempered bainite. In principle, the bainitic 

structure is already coarse before tempering treatment due to the autotempering process 

occurring during quenching [57] and any additional re-tempering only further contributes to 

its coarsening process. On the contrary the precipitation of carbides in the martensitic structure 

in fact begins during actual tempering treatment. However as explained in section 2.6.2, bainite 

is less sensitive to tempering treatment in comparison with martensite. The second aspect is 

associated to the high transformation temperatures of bainite in comparison with those of 

martensite. As explained by Albrecht et al [150], at high transformation temperatures the 

diffusion rate is also high, leading to precipitation of coarse cementite which nucleates and 

grows from the carbon supersaturated ferrite. In addition, a relation between the cooling rate 

and transformation temperatures can be observed either for the exponential (industrial 

quenching) and constant (CCT) cooling where, as the cooling rate decreased the transformation 

temperature for bainite is increased. Considering this, it can be concluded that high 

transformation temperatures and slow cooling rates associated to the formation of bainite in 

combination with the industrial tempering treatment are the main factors contributing to the 

slightly coarse carbide precipitates compared to those of tempered martensite.   

 

Another important difference between tempered martensite and tempered lower bainite can be 

observed in Figure 6-2 and Figure 6-3. The lack of interlath precipitates it is evident on 

tempered bainite, where only intralath precipitation is observed. On the contrary, extensive 

interlath precipitates are observed between the laths of tempered martensite.  
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For martensite, this behaviour can be explained in terms of its nucleation and growth 

mechanisms during tempering where interlath, intralath and grain boundaries are preferential 

sites for the nucleation and growth of carbides [39]. The explanation for the precipitation 

behaviour on bainite obeys to its kinetic of phase transformation, where the slow diffusion rates 

(in comparison, for example with those of upper bainite) allow the penetration of some carbon 

in the bainitic ferrite which in turn promotes the formation of fine intralath rather than interlath 

precipitates. As seen in Figure 6-9 and Figure 6-10, extensive carbide precipitation can be 

elucidated at the prior austenite grain boundaries of 250-P and 250-O. As described in reference 

[151], the reason for this could be associated to longer time available  for carbides to precipitate 

along the grain boundaries due to the high diffusion rates associated to high transformation 

temperatures / slow cooling rates produced under the aforementioned conditions.  

 

Another important aspect observed in 250-P was the formation of a so-called featureless 

bainite, as observed in Figure 6-4. The reason for the formation of this microstructure on the 

thick section of the ring segment quenched in polymer is not clear. However, Pickering and 

Bhadeshia [90] observed that macrosegregation generated during the solidification of large 

ingots might lead to the formation of unexpected microstructures after quenching and 

tempering. It is also reported in this work, that during tempering at 645°C for 6 h, the austenite-

martensite island formed during quenching decomposes into mixtures of ferrite and cementite. 

It was reported as well that these austenite-martensite islands were found in segregated regions. 

In addition, Habraken and Economopoulos [152] revealed that nonclassical bainites can be 

formed during continuous cooling, including carbide-free acicular bainite, and granular bainite. 

Interestingly, as explained by Samuel and co-workers [153] granular bainite consists of a 

bainitic-ferrite matrix with martensite-austenite islands which upon tempering, decompose into 

mixtures of ferrite and cementite. Based on the previous context, it could be argued that 

possibly, the presence of featureless bainite observed in 250-P could be due to chemical 

segregation from ingot solidification which promotes the formation of non-uniform 

microstructures after heat treatment. Further analysis might be required to determine the type 

of segregation (enrichment or depletion) and the segregated chemical elements associated to 

the formation of this microstructure.  Presumably this so called featureless bainite could be in 

fact associated to mixtures of ferrite and cementite after tempering treatment.  
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Finally, it is well known that upon quenching treatment, martensite and bainite might contain 

certain amounts of retained austenite. Nevertheless, as seen in the previous section no evidence 

of retained austenite was found on the different tempered conditions studied. The reason for 

this is due to the fact that any austenite retained after quenching is decomposed during 

tempering at temperatures above 400°C and transformed into mixtures of ferrite and cementite, 

the above, bearing in mind that the ring segments were tempered at 590°C [53]. 

 

6.3.2 Effect of Microstructure on Tensile Properties 

 

The first observation that becomes clear from the YS and UTS results (Figure 6-11) is that 

despite the changes in cooling rate produced by the different cooling media during quenching, 

the resultant properties were similar for both the thin and thick cross sections of the ring 

segments. The above, considering the expected scatter inherent in an industrial process.  These 

similarities can be discussed in terms of the microstructures produced after quenching and 

tempering. By analysing the microstructures (section 6.2.1.2) developed on the ring segments 

after industrial quenching, and as well the microstructures obtained on the CCT diagram 

(section 5.2), it is evident that the similarities observed on the YS and UTS are associated to 

the formation of different mixtures of tempered martensite and tempered bainite for both, the 

thin and thick cross sections of the ring segments, with the only exception of 100-W which 

microstructure consisted of full martensite. The question which arises now, is how similar 

properties can be obtained with full tempered martensite (100-W) and mixtures of tempered 

martensite and tempered bainite (100-P, 100-0, 250-W, 250-P and 250-O). This question was 

addressed by Ohmori et al. [154], they demonstrated that tempered duplex structures 

(martensite and bainite) are capable to reach strength levels as high as full tempered martensite. 

The high strength levels reached by the dual microstructure can be explained by the fact that 

the bainitic laths partition the austenite grain size, therefore producing a refining effect on the 

overall microstructure. Interestingly, when analysing the YS and UTS values produced on the 

100 cross section of the three ring segments as described in section 6.2.2, it can be observed 

how the YS and UTS properties of 100-W condition were lower than those of 100-P and 100-

O conditions. In fact, these two conditions developed the highest YS and UTS values of all the 

conditions studied.  
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The superior YS and UTS properties experienced on 100-P and 100-O could be explained by 

the combined effect of the following aspects:  the first aspect is associated with the argument 

already explained before regarding the refining effect on the PAGBs caused by the presence of 

bainitic laths. The second aspect, is associated to the resistance to dislocation motion promoted 

by the fine distribution of small carbide precipitates in tempered martensite as explained by 

Balart and Knott [155] .  

 

On the other hand, when analysing the YS and UTS properties produced on the 250 mm cross 

section of the three ring segments, it can be seen that these results are slightly inferior than 

those corresponding to the 100 cross sections. Additionally, it can also be observed that the YS 

and UTS decreased in order of water, polymer and vegetable oil. On his work about the 

cleavage fracture toughness on tempered martensitic Ni–Cr–Mo steels, Kim et al. [128] 

observed that yield strength is increased as the amount tempered martensite increases in the 

Ni–Cr–Mo low alloy steel. As explained by the author, the reason for the improvement on yield 

strength is due to a packet-refining mechanism provided by tempered martensite after 

tempering treatment. Hence, it could be argued that the decreasing amount of tempered 

martensite (small carbides) observed on 250-W, 250-P and 250-O respectively, along with the 

increasing amount of tempered bainite (large carbides) could be the main microstructural 

aspects responsible for the slightly inferior strength properties observed on the 250 mm cross 

section of the three ring segments. Nevertheless, it is important to mention that the featureless 

bainite observed on 250-P condition could have also contributed to the reduced YS and UTS 

properties displayed on 250-P, which in fact were the lowest strength values among all of the 

thickness-cooling conditions. The detrimental effect of the featureless bainite could due to the 

inability of its coarse carbide precipitates to restrict the movement of dislocations, therefore 

promoting a reduction in strength properties.  

 

It can be concluded that the strength properties industrially produced on the 100 and 250 mm 

cross sections of the ring segments after quenching (W, P and O) and tempering, are 

surprisingly very similar and well above the material specification. In general, these similarities 

could be explained in terms of the microstructures produced after quenching in which, 

regardless of the cross section (100 or 250 mm) or the quenching media (water, polymer and 

vegetable oil), similar microstructures (mixtures of tempered martensite and tempered bainite) 

were formed on the ring segments after heat treatment.  
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Although, it also true that the small differences observed between each conditions could be 

related to the different fractions of tempered martensite and tempered bainite which provide 

fine carbide precipitates and packet refining correspondingly.  

 

Interestingly, the higher tensile and impact properties of all the thickness-cooling conditions 

evaluated were produced with mixtures of tempered martensite and tempered martensite with 

proportions of 85% (TM) -15 %( TB). These results are in line with experimental data reported 

by Tomita and Okabayashi in references [133, 134, 132].In this context, it can be summarized 

that the main factors controlling the strength properties could be the distribution and size of 

carbide precipitates in which tempered martensite (mean carbide size: 0.04 µm) unlike 

tempered bainite (mean carbide size: 0.053 µm) provides slightly higher strength properties. 

Finally, it should be also noted that, the strength properties can also be affected by the formation 

of unexpected microstructures such as the featureless bainite observed on 250-P condition, 

which formation might be attributed to the effects of the chemical segregation as discussed 

6.2.1.2.   

 

6.3.3 Effect of Tempered Microstructures on Impact Properties 

 

As observed in the strength properties, the impact properties (CVN) for all the cooling 

conditions are also similar and within material specification. However, a higher scatter is 

observed on the CVN values compared to the scatter observed on the tensile properties, this 

scatter could be attributed to a higher sensitivity of this mechanical testing to the specimen 

geometry associated to the stress distributions during mechanical testing. The blunt notch 

region of the CVN specimen induces a stress field ahead of the notch of higher magnitude in 

comparison with the round tensile specimen. Consequently, the higher stresses ahead of the 

notch are more capable to effectively induce cracking on small carbides precipitates, this, 

considering the fact that the smallest particles require the largest stresses to promote fracture. 

On the contrary as explained by Lin and Ritchie [147] the lowest stresses with the large 

sampling zone in the tensile testing might not be sufficient to sample small carbides and in 

consequence producing cracking only on the large carbide precipitates which could be more 

uniformly distributed. 
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In addition, the difference between the maximum (100-P), minimum (250-P) and average (rest 

of conditions) CVN values can be explained in terms of different microstructures produced 

after industrial heat treatment. In line with the tensile properties, 100-P condition also produced 

the highest impact properties. As mentioned previously, the reason for the superior strength-

toughness properties developed on 100-P could be due to the mixtures of tempered martensite 

and tempered martensite with proportions of 85%(TM) -15%(TB) produced under this 

conditions which as mentioned could be related to the combined effect of the refining 

mechanism on the PAGBs and to the fine distribution of small carbide precipitates in tempered 

martensite. As explained by Hausild et al [141], cleavage fracture on CVN testing is controlled 

by the presence of second phase particles which can induced “local stress amplifications” so it 

can be deduced that the fine precipitates observed on 100-P condition  could have contributed 

to reduce the possibility of  triggering cleavage fracture, therefore increasing the impact energy. 

On the other hand, as explained by Chakrabarti and co-workers in reference [156], the grain 

size is also important since once cleavage crack is nucleated, the grain boundaries are able to 

control the crack propagation. Regarding the 250-P condition, as with the strength properties, 

the impact properties were also the lowest of all the thickness-cooling conditions. The 

explanation for this, is essentially the same as that given for the strength properties, which 

related to the formation of featureless bainite decorated with randomly distributed coarse 

carbides. 

 

6.3.4 Effect of Tempered Microstructure on CTOD Properties 

 

The first question that naturally arises regarding the CTOD properties is why, despite the 

variation in yield strength produced by the different thickness-cooling conditions, the resultant 

CTOD properties were virtually the same as illustrated in Table 6-2. Furthermore, considering 

that at first glance, CTOD and CVN can be regarded as toughness measurements, the CTOD 

results raises the question of why there is not a correlation between CTOD and CVN properties. 

As seen below these questions are discussed in terms of the stress gradients ahead of the 

macroscopic crack for each specimen and the microstructural features eligible for fracture. 
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As indicated by Shin and co-workers [157], it is well known that from a mechanical 

perspective, yield strength is proportional to CTOD, this proportionality should be rationalized 

considering that yield strength, essentially indicates the point in which the material starts to 

deform plastically. In this sense, it is clear that if the plastic deformation is increased the CTOD 

parameter increases, since with the application of load the material deforms plastically instead 

of fracturing. Based on this proportionality, the offshore designers sometimes impose a 

restriction in the maximum yield strength of subsea forgings for deep-water applications. This 

could be explained by the fact that a high yield strength can result in a plastic flow that could 

be higher than the fracture stress therefore leading to brittle fracture or a low CTOD parameter.  

This is in fact the reason why many offshore designers prefer keeping the yield strength at low 

values to avoid compromising the CTOD parameter. All these arguments are certainly true, 

however Qiu et al. [158], demonstrated that although there exists a relationship between yield 

strength and CTOD, this one is not linear but rather exponential as illustrated in Figure 6-21. 

As seen in this figure, the red square roughly indicates the region in which the present CTOD 

values would be hypothetically located on this plot, from this perspective it could be argued 

that the reason why no relation between YS and CTOD is observed on the studied conditions, 

is because the variation in the yield strengths properties is not high enough to generate a 

significant change on the CTOD properties. 
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Figure 6-21: Plot of CTOD against yield strength for 0.10% C, 0.16% C,  and 0.45% C ferrite-

cementite steels heat treated to produce different grain size. R, represents the correlation 

coefficient and the red square roughly indicates the area corresponding to the CTOD values 

obtained on the present work. (From, Hai Qiu et al., Influence of Grain Size on the Ductile 

Fracture Toughness of Ferritic Steel, ISIJ International, Vol. 54 (2014), No. 8, pp. 1958–1964) 

 

Now, it would be prudent to approach the similarity in CTOD results from a mechanical-

microstructural perspective. As mentioned previously the stress field produced by either a 

round tensile specimen or a blunt-notch (CVN) specimen, can in fact activate different 

microstructural features, i.e., depending on the stress field ahead of the notch, different 

microstructural features can be eligible to trigger cleavage or ductile fracture. This also applies 

for the CTOD testing which possesses a sharp crack.  

 

As illustrated in Figure 6-22, the fracture stresses can fluctuate considerably in function of the 

specimen geometry. This in turn has an effect on the sampling volume, for instance, it has been 

validated that the sampling zone of a CTOD specimen, which contains a sharp crack, is 

significantly smaller than the sampling zone of a CVN specimen with a blunt notch. In other 

words, it can be interpreted that the fracture process on a CTOD specimen relies on the small 

carbide precipitates due to the higher stresses induced on the small sampling zone by the sharp 

crack, whereas the fracture process on CVN specimens depends on the large carbide 

precipitates due to the lower stresses induced on the large sampling zone by the sharp crack.  
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The above considering the basic mechanism in which higher stresses are required to fracture 

small particles whereas lower stresses are required to fracture large particles. In view of this 

scenario, it is reasonable to argue that one of the reasons why the CTOD properties were 

similar, regardless of the different microstructures, is because the group of “small” carbides, 

either on the tempered martensite, tempered bainite or featureless bainite were within a similar 

size range, which lead to similar CTOD parameters. In the same fashion, it can be inferred that 

the CVN properties showed a higher scatter probably due to a higher variation in the group of 

“large” carbide precipitates in the larger sampling zone. 

 

 

Figure 6-22: Model predictions of the critical microscopic fracture stress,  for cleavage 
fracture in AISI 1008 steel ahead of a sharp-crack (i.e. K,.), rounded-notch (i.e. Charpy) and 
uniaxial tensile ductility specimens. S, is the lower bound strength (of the largest observable 

particle) [147]. 

 

In spite of the similar CTOD results observed on the three conditions, attention was drawn to 

100-P condition which showed a smaller stable crack extension and a lower maximum load 

compared to those of 100-W, 100-O and 250-P. Clearly, the smaller stable crack extension 

would mean that cleavage cracks ahead of the ductile zone, presumably nucleated and 

propagated before than the rest specimens therefore stopping the stable crack extension and 

maximum load earlier than the rest of the conditions.  
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Considering this, cross sections corresponding to 100-W and 250-P specimens were 

metallographically prepared and assessed under the optical microscope. As seen in Figure 6-23 

and Figure 6-24, the results indicate that the C (T) specimen related to 100-P conditions 

presented a higher level of segregation compared to that of 100-W and 250-P conditions. As 

previously discussed in section 2.8.2, chemical segregation can lead to the formation of 

enriched zones with alloying elements such as chromium, therefore promoting the formation 

of hard phases, such as martensite, which in this case would be a sort of low-tempering 

martensite with characteristics of brittleness, high yield strength and higher internal stresses, 

and potentially, a preferred site for nucleation of cleavage cracking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   158 
 

 

Figure 6-23: Illustration of CTOD fracture surfaces and corresponding Force – 
Displacements plots for 100-P, 250-P and 100-W conditions.  

 

 

Figure 6-24:  Illustration of macrostructure and microstructures observed on a 5 mm section 
of CTOD specimens corresponding to 100-P, 250-P and 100-W conditions. The three 

specimens were equally etched with 3% Nital (3 s) and 10% Sodium Metabisulfite solution 
(20 s). 
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6.3.4.1 Implications  

 

The outcomes of the present research suggest that the fracture mechanism governing the CTOD 

properties of the three conditions can be regarded as ductile fracture toughness since no 

evidence of pop-in events (cleavage cracks) were observed on the load-displacement (see 

Appendix E) plots before reaching maximum load. Presumably, the reason why no pop-in 

events (cleavage cracks) were observed before reaching maximum load is because the non-

metallic inclusions present on the different specimen do not reach the critical size to nucleate 

a cleavage crack. In this sense, Bowen and co-workers [146], determined a lower critical size 

of 9µm on low alloy steels to prevent cleavage fracture. In addition, it can be elucidated that 

the ductile fracture is governed by the critical fracture strain once the plastic strain ahead of the 

crack tip reached a critical value. The application of monotonic load result in crack opening 

promoted by the blunting process. Non-metallic inclusions are preferred initiation sites during 

stable crack extension, and the stable tearing process is related to the decohesion of the non-

metallic inclusions from the ferritic matrix. Once decohesion is completed, microvoid 

coalescence mechanism becomes the main fracture mode. After this process, the transition 

from ductile tearing to cleavage fracture takes place when the hydrostatic stresses reach a 

critical value for cleavage crack nucleation. As elucidated by Lin and Ritchie [147], the sharp 

crack on the C (T) specimen give rise to a complex stress distribution ahead of the macroscopic 

crack. These high stresses in combination with a relatively small sampling zone implicate that 

the dominant particle or group of particles are the small carbide precipitates. Presumably, the 

similar dimensions of the small carbides precipitates during quenching and tempering of the 

bainitic and martensitic structure resulted on of similar CTOD parameters for the different 

thickness-cooling conditions studied. Finally, it should be recognised that given the dimension 

of the experimental forgings and the industrial conditions, it is clear that segregation is 

determinant for the obtention of uniform mechanical properties along the part, regardless of 

the quenching media or tempering process. 
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7  Summary and Outlook of the Project 

 

7.1 Summary 

 

As mentioned before, the structural integrity of large scale forgings employed in the energy 

sector is strongly affected by key processing parameters involved in the manufacture of these 

components. Considering this, the aim of the present research was to study the effects of 

cooling rate on the microstructure and mechanical properties of an AISI 8630M low alloy steel 

heat treated under industrial conditions. It is recognized that, at an industrial level, major 

microstructural changes occur at the centre of the cross section of the forging due to the 

combined effect of steel-making, forging and heat treatment processes. Therefore, large-scale 

experimental forgings were industrially heat treated and subsequently evaluated and 

characterised. The key findings for each chapter were as follows: 

 

Chapter 4: Effect of Water, Aqueous Polymer and Vegetable Oil Quenchants on Cooling 

Characteristics of Ring Segments Industrially Heat-Treated 

 

1. Cooling curve analysis led to the conclusion that for both the thin and thick cross-

sections of the forging, water and vegetable oil produced the fastest, and slowest 

cooling times, whereas intermediate cooling times between those of water and 

vegetable oil were achieved by aqueous polymer.  

 

2. The time to cool from 800 to 500˚C the thin cross sections quenched in water, polymer 

and vegetable oil, was 154, 231 and 253 s, respectively. Further, the time to cool from 

800 to 500˚C the thick cross sections quenched in water, polymer and vegetable oil, 

was 387, 515 and 608 s, respectively. 

 

3. Vapour phase, nucleate boiling and convective heat transfer stages were generally 

observed on the ring segments quenched in water, polymer and vegetable oil. The 

maximum cooling rate and phase transformation zone were found to be located within 

the boiling phase regime. The boiling point of water and aqueous polymer was found 

to be approximately 100˚C and marked the beginning of the convective heat transfer. 
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4. The estimated start transformation temperatures on the thin cross-section were between 

350 and 410˚C, whereas the ones corresponding to the thick cross section were between 

460 and 480˚C. These temperature ranges were later confirmed to be associated the 

formation of bainite and martensite during industrial quenching. 

 

5. Cooling conditions are also affected by the thickness of the forging. Longer cooling 

times were observed on the thin sections compared to thick ones due to a reduced heat 

flow associated with a larger cross section. A more uniform cooling pattern was also 

observed on the thick cross sections apparently associated to a higher stability of the 

vapour film on the thick sections of the ring segments.  

 

Chapter 5:  Development of a Continuous Cooling Transformation Diagram for and AISI 

8630 Modified Low Alloy Steel using Dilatometry 

 

1. Successful, identification of microstructural constituents was carried out by means of 

scanning electron microscopy and dilatometry. The microstructures formed in 

continuously cooled specimen were degenerated pearlite, ferrite, granular bainite, lower 

bainite and martensite, depending on the applied cooling rate. 

 

2. Mixtures of degenerated pearlite, bainite, and small amounts of ferrite and M/A 

constituent were observed at cooling rates between 0.01 and 0.03˚C/s, whereas, full 

bainitic microstructure was perceived at cooling rates between 0.05 and 0.2˚C/s. In 

addition, from 0.3 to 1˚C/s, a mixture of bainite and martensite was the dominant 

microstructural constituent. Finally, a full martensitic structure appeared at cooling 

rates above 2˚C/s. 

 

3. Pearlite – Ferrite mixtures were formed at average temperatures between 700 and   

600˚C. Average bainite start and finish temperatures in the range of full bainitic 

structure (0.05 and 0.2˚C/s) were 490 and 300˚C respectively. Whereas, average 

martensite start and finish temperatures in the range of full martensitic structure (higher 

than 2˚C/s) were 330 and 170˚C respectively. 
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4. Within the bainite-martensite mixed zone, it was found that the fraction of lower bainite 

increases along with a decreasing cooling rate with a corresponding decrease in 

martensite fraction. Also, the bainitic start temperature increases with decreasing 

cooling rate accompanied by a decrease in the martensite start temperature. 

 

5. The superimposing of the industrial cooling curves on the CCT diagram revealed that 

the majority of the thickness-cooling conditions fell within the mixed region of 

martensite and bainite (0.03 to 1˚C/s), with the only exception of 100-W condition 

which cooling curve fell between continuous cooling rates of 1 and 2 ˚C/s associated to 

a full martensite structure. 

 

Chapter: 6 Effect of Industrial Cooling rate on Microstructure and Mechanical Properties 

of Large Forging Segments 

 

1. With the exception of condition 100-W, in which the microstructure was predominately 

tempered martensite, the rest of conditions predominantly exhibited a microstructure 

consisting of mixtures of tempered martensite and tempered bainite after industrial heat 

treatment. 

 

2. As previously observed in the CCT specimens, the industrially heat treated specimens 

corresponding to the different thickness-cooling conditions also exhibited an increasing 

bainitic fraction with a decreasing cooling rate accompanied by a corresponding 

decrease in the martensitic fraction. 

 

3. The microstructure of tempered martensite consisted of multivariant (crystallographic 

variant) carbide precipitation within the martensite laths and extensive precipitation on 

the lath boundaries, whereas the tempered bainitic structure displayed a lower type 

morphology with carbide precipitates arranged in a single crystallographic variant 

(Bagaryatski orientation relationship) within the bainitic lath. 

 

4. In general, it was elucidated that the strength and impact toughness properties 

industrially produced on the 100 and 250 mm cross sections of the ring segments after 

quenching (W, P and O) and tempering, were similar and well above the material 

specification. Although, the  higher strength and impact toughness values were 
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observed at mixtures of tempered martensite and tempered bainite with proportions of 

85%(TM) -15%(TB) in line with the observations of Tomita and Okabayashi [133, 134, 

132]. The subtle differences observed between each thickness-cooling conditions could 

be related to the variation on the distribution and size of carbide precipitates and packet 

substructure associated the different fractions of tempered martensite and tempered 

bainite with changes on cooling rate. 

 

5. Small amounts of a featureless microstructure became visible on 250-P condition which 

consisted of coarse carbides along the prior austenite grain size and a mixture of 

elongated and blocky carbide precipitates randomly distributed within the bainitic 

matrix. The formation of this microstructure remained unclear, however it could be 

associated with the decomposition of granular bainite during tempering promoted by 

chemical segregation from the ingot solidification process. Furthermore, the lower 

strength and impact values observed on 250-P conditions were found to be associated 

to the presence of this so-called featureless microstructure. 

 

6. The CTOD properties for the selected specimens were very similar regardless of the 

yield strength and microstructure. This would be an indication that the variation in the 

yield strengths properties and carbide size distribution were not high enough to generate 

a significant change on the CTOD properties. 

 

7. The fracture mechanisms governing the CTOD properties of the three conditions were 

found to be associated to ductile fracture since no evidence of pop-in events (cleavage 

cracks) were observed on the load-displacement plots before reaching maximum load. 

 

8. Finally, it is noteworthy to mention that in spite of the fact that vegetable oil provided 

the slow quench rates if compared with those water or aqueous polymer quenchants, 

the mechanical properties produced by this quenchant were similar to those produced 

by water and polymer quenching. As such, this finding indicates the possibility of using 

vegetable oil as potential replacement for water or aqueous polymer within the studied 

conditions 
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7.2 Economic Impact of the Research 

 

In view of the results obtained with vegetable oil, where it was demonstrated that in spite of  

it’s slow heat extraction rates characteristics, the aforementioned bio-quenchant is in fact 

capable to develop similar properties in large scale forgings, compared with those produced 

with commercial quenchants such as water a aqueous polymer solutions; it is therefore 

necessary to elucidate the potential savings in using vegetable oil as an alternative cooling 

media for material grades with similar composition as the AISI 8630M low alloy steel. 

 

1. Cost of quench tank body with complete engineering and agitation system: 
 

 Vegetable Oil (bio-temproil® ) : 501,000 € 
 Aqueous solution with  23% concentration of polymer: 805,000 € 

 

It can be clearly seen that the cost of a quenching tank system for vegetable oil media is cost-

effective in monetary terms (37% less expensive than polymer) when compared with a 

quenching tank for polymer solution purposes. The reason behind this is due to the fact that, a 

larger quenching tank and a more complex agitation system is mandatory when polymer 

solutions is the desired option. 

 

2. Cost of quenchants for the first filling: 
 

 Vegetable Oil (bio-temproil® ) : 826,500 € 
 Aqueous solution with  23% concentration of polymer: 276, 000 € 

 

Although the initial investment for the first filling using vegetable oil is more expensive than 

polymer solution it is also true that the ROI (Return on investment) after the third year would 

be around 60,000 € (3% difference between vegetable oil and polymer solutions) , with an 

annual average return of 3-5% over the subsequent years. 
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3. In addition, there are other factors that might represent potential savings if vegetable 

oil is used as alternative quenching media in the forging industry: 

 

a) Cost per Year on 30,000 Tons Basis (after first filling):  
 
 Vegetable Oil (bio-temproil®): 174,000 €. 
 Aqueous solution with 23% concentration of polymer: 270, 000 €. 

 

b) Minimum distortion and cracking issues. (No re-works needed such as straightening 
operations). 
 

c) Homogeneous hardness distribution. 
 

d) Cost of waste product for disposal:  
 

 
 Vegetable Oil (bio-temproil®): 85,500 €. 

 Aqueous solution with 23% concentration of polymer: 480, 000 €. 

 

e) Reduced CO2 emissions (eco-conception): Fixed price 2017 of CO2 equivalent = 6 €/ 

Ton. 
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7.3 Suggestions for Future Work 

 

 

• Quantitative and qualitative measurements of carbide precipitates were not carried out 

due to time limitations, however, considering the relevance of carbide thickness as preferred 

sites for the nucleation and propagation of cleavage cracks, and in-depth analysis of this 

metallurgical aspect would further expand the understanding of the effects of carbide 

precipitation on the mechanical properties of industrially heat treated large forgings. A 

combination of transmission electron microscopy (TEM), energy dispersive spectroscopy 

(EDS) and X-ray diffraction can be used to determine the morphology, spatial distribution, and 

elemental composition of carbide precipitates. 

 

• As discussed in Chapter 6, the detrimental effect of segregation was evidenced by the 

low strength and impact toughness properties found on the thick section of the ring segment 

quenched in aqueous polymer (250-P). Considering this, it’s clear that more research is 

required in order to determine the influence of segregated elements on the formation of 

unexpected microstructures after quenching and tempering under industrial conditions. As 

reported in reference [90] electron probe microanalysis (EPMA) represent a potential technique 

to perform chemical analysis either on segregated and non-segregated areas. 

 

• Considering the expected scatter in fracture toughness, a larger number of CTOD tests 

on the different locations of the forging would be desirable aiming to increase the 

representativeness of the CTOD results associated to the different thickness-cooling conditions 

evaluated. It would also be desirable to explore the possibility of developing an alternative 

fracture toughness testing, which allows to reduce costs associated to the CTOD testing. As 

elucidated in Appendix F, an initial attempt was made to develop a low-cost CTOD procedure 

by exploring the validity of Crack Tip Opening Angle (CTOA) as a geometry independent 

fracture parameter using digital image correlation (DIC) technique on a series of sub-size 

specimens. Continuing research on this line of thought would potentially facilitate the 

evaluation of the structural integrity of large scale forgings by means of fracture toughness 

testing. 
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8 Appendix A: Chemical Composition Certified Test Report 
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9 Appendix B:  Quenching Simulations 

 

Model Properties: 

 

 

 

Mesh arrangement and selected zones for simulation:  
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Flow chart for the determination of HTC using DEFORM: 

 

 

 

Calculated HTC (Heat Transfer Coefficient) for the different zones, divided by: a) vertical; b) 

horizontal; c) external; d) internal, 
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Cooling Rate Simulation (Full Scale Ring):  

 

 

 

Cooling Rate Simulation (Segment Ring): 
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10 Appendix C:   Smart-Quench System 
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11 Appendix D: C(T) Specimen Drawing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   173 
 

12 Appendix E: CTOD Test Results 

 

100-P Condition: 
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100-P Condition: 
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250-P Condition: 
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250-P Condition: 
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100-W Condition: 
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100-W Condition: 
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100-O Condition: 

 

 

 

 



 

   180 
 

100-O Condition: 
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13 Appendix F: Digital Image Correlation (DIC) Analysis 
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20 mm Sub-Size C(T) Specimen:  
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15 mm Sub-size C(T) Specimen  - DIC Analysis 

X-Displacement: 

 

 
 

20 mm Sub-Size C(T) Specimen - DIC Analysis 

X-Displacement: 
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25 mm Sub-Size C(T) Specimen - DIC Analysis 

X-Displacement: 

 

 

 

15 mm Sub-Size C(T) Specimen - DIC Analysis 

Z-Displacement: 
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20 mm Sub-Size C(T) Specimen - DIC Analysis 

Z-Displacement: 

 

 

 

25 mm Sub-Size C(T) Specimen - DIC Analysis 

Z-Displacement: 
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