
A Machine Learning Framework for Optimising File
Distribution Across Multiple Cloud Storage Services

ABDULLAH F. ALGARNI

Ph.D
University of York
Computer Science

February 2017

Abstract

Storing data using a single cloud storage service may lead to several potential prob-

lems for the data owner. Such issues include service continuity, availability, perform-

ance, security, and the risk of vendor lock-in. A promising solution is to distribute the

data across multiple cloud storage services , similarly to the manner in which data are

distributed across multiple physical disk drives to achieve fault tolerance and to improve

performance . However, the distinguishing characteristics of different cloud providers,

in term of pricing schemes and service performance, make optimising the cost and per-

formance across many cloud storage services at once a challenge. This research proposes

a framework for automatically tuning the data distribution policies across multiple cloud

storage services from the client side, based on file access patterns. The aim of this work is

to explore the optimisation of both the average cost per gigabyte and the average service

performance (mainly latency time) on multiple cloud storage services . To achieve these

aims, two machine learning algorithms were used: (1) supervised learning to predict file

access patterns; (2) reinforcement learning to learn the ideal file distribution parameters.

File distribution over several cloud storage services . The framework was tested in a

cloud storage services emulator, which emulated a real multiple-cloud storage services

setting in terms of service performance and cost. In addition, the framework was tested

in various settings of several cloud storage services. The results of testing the framework

showed that the multiple cloud approach achieved an improvement of about 42% for cost

and 76% for performance. These findings indicate that storing data in multiple clouds

is a superior approach, compared with the commonly used uniform file distribution and

compared with a heuristic distribution method.

For all those who are most important to me and for whom I did not have enough time while

doing this research, but without whom it would never have been possible.

For my parents; for my wife; for my son.

Contents

Abstract . 1
List of Tables . 8
List of Figures . 12
Acknowledgements . 13
Declaration . 15

1 Introduction and Motivation 17
1.1 Introduction . 17
1.2 Thesis Structure . 21

2 Cloud Computing: Background and Review of the Field 25
2.1 Definitions of Cloud Computing . 25
2.2 Business Drivers and Cloud Benefits 31
2.3 Risks and Challenges . 32
2.4 Cloud Storage Services . 33
2.5 Data Storage Strategies . 35
2.6 Multiple Cloud Storage Solutions . 37
2.7 Summary . 40

3 Machine Learning: Background 43
3.1 Definitions of Machine Learning . 44
3.2 Machine Learning Components . 46

3.2.1 Environment and Data Representation 47
3.2.2 Hypothesis Representation . 50

3.2.2.1 Linear Model . 52
3.2.2.2 Artificial Neural Network Model 53

3.2.3 Optimisation Algorithms . 56
3.2.3.1 Regression Analysis 57
3.2.3.2 Back Propagation 59

3

3.3 Learning Paradigms . 60
3.3.1 Unsupervised Learning . 61
3.3.2 Supervised Learning . 62
3.3.3 Reinforcement Learning . 63

3.3.3.1 State Space Dimensions 66
3.3.3.2 Action Space Dimensions 66
3.3.3.3 Reward Properties 67
3.3.3.4 Building Action Selection Policy 68

3.4 RL with Artificial Neural Network: a Survey 73
3.4.1 TD-Gammon . 74
3.4.2 Neural Fitted Q Iteration (NFQ) 75
3.4.3 Deep Reinforcement Learning 75

3.5 Summary . 76

4 Machine Learning Applications in Cloud Computing 79
4.1 Resource Allocation Management . 80
4.2 Energy Efficiency . 83
4.3 Summary . 84

5 System Architecture and Emulator 87
5.1 OFDAMCSS Framework Architecture 87
5.2 Cloud Storage Emulator . 89
5.3 Summary . 91

6 File Access Pattern Prediction 93
6.1 Prediction of File Access Pattern: A Review 93
6.2 Trace History Files: Collections and Structure 94
6.3 Synthetic Data Generator . 100
6.4 Access Pattern Predictive Model . 103
6.5 Prediction Model Evaluation . 104
6.6 APPM System Overheads . 104
6.7 Summary . 106

7 Intelligent Framework for Optimising File Distribution Across Multiple Cloud
Storage Services 107
7.1 Characteristics of the Reinforcement Learning System 108
7.2 Artificial Neural Network with Reinforcement Learning 109
7.3 Reinforcement Learning Model . 111
7.4 Summary . 117

8 System Evaluation 119
8.1 Experiment Settings . 119
8.2 Evaluation Methods . 122

8.2.1 Mirroring Approach . 122

4

8.2.2 Principle of Standard RAID Distribution Approach 123
8.2.3 Heuristic Distribution Approach 123

8.3 OFDAMCSS: Experiments and Analysis 125
8.3.1 Overall result . 125
8.3.2 Analysis of Results . 129
8.3.3 Developmental of the System 133
8.3.4 Impact of Access Pattern on Distribution Decisions 135
8.3.5 Parameter Effects in the OFDAMCSS Framework 144

8.4 OFDAMCSS Framework Overheads 146
8.5 Summary . 148

9 Conclusion and Future Work 153
9.1 Summary of the Thesis . 153
9.2 Novel Contributions of this Work . 155
9.3 Limitations and Future Work . 156

References 161

List of Symbols 175

Acronyms 177

Glossary 179

Index 183

5

6

List of Tables

2.1 Comparison of online storage types 34
2.2 Common RAID levels with strengths and weaknesses 35
2.3 Comparison among distribution frameworks : Key: S. cost, storage cost;

N. cost, network cost (i.e. transaction cost); O. cost, operation cost (read,
write, and delete). 39

3.1 Comparison among approaches to implementing artificial neural net-
works with reinforcement learning . 76

5.1 Performance range of cloud storage services (measurements by cloud-
harmony.com) . 91

6.1 Attributes of the synthetic datasets . 101
6.2 Attribute variables from which the generator could select values 102
6.3 APPM, measurement evaluation for WS-dataset 1 105
6.4 APPM, measurement evaluation for WS-dataset 2 105
6.5 APPM, measurement evaluation for WS-dataset 3 105
6.6 APPM, measurement evaluation for R-dataset 1 105
6.7 APPM, measurement evaluation for R-dataset 2 105

8.1 Reinforcement learning parameter settings 120
8.2 Artificial neural network parameters settings 121
8.4 Summary statistics for uploading all datasets into all cloud storage using

the SRD method. Latency r, latency of reading; latency w, latency of
writing. 123

8.5 Summary statistics for uploading all datasets into all cloud storage using
the heuristic method. Latency r, latency of reading; latency w, latency
of writing . 125

7

8.6 Summary statistics for uploading all datasets into all cloud storage using
the proposed OFDAMCSS framework. Latency r, latency of reading;
latency w, latency of writing . 126

8.8 Test of parameters settings for generative parameters of OFDAMCSS . 135
8.7 A full statistical analysis of distributing all data sets using SRD, Heur-

istic code and OFDAMCSS frameworks. Where latency r is latency of
read and latency w is latency of write 138

8.9 Percentage change in the storage cost for the writing group 139
8.10 Percentage change in network cost for each file 139
8.11 Percentage change in the storage cost for the reading group 140
8.12 Percentage change in the network cost for the reading group 140
8.13 Percentage change in the storage used for the writing group 141
8.14 Percentage change in the network used for the writing group 141
8.15 Percentage change in the storage used for the reading group 142
8.16 Percentage change in the network used for the reading group 142
8.17 Percentage change in the latency time for the writing group 143
8.18 Percentage change in the latency time for the reading group 143

8

List of Figures

1.1 Structure of the thesis . 23

2.1 A mind-map for cloud computing characteristics, benefits and risks (from
NIST definitions). 26

2.2 High-level architecture of cloud computing layers. All services are housed
in a physical data centre and are typically accessed through Virtual Ma-
chine (VM) technology. 29

3.1 Block representation of process and components of machine learning . 47

3.2 Table matrix to represent data in machine learning 48

3.3 Representation Type . 50

3.4 Block diagram for linear model . 53

3.5 A fully connected feed-forward neural network structure consists of three
layers of nodes: (1) input layer denoted as xi, i ∈ N, (2) hidden layer
denoted as hj , j ∈ N and (3) output layer denoted as yk, k ∈ N 55

3.6 Transfer Function . 56

3.7 Machine Learning Paradigms . 61

3.8 The reinforcement learning paradigm consists of a machine learning sys-
tem interacting with an environment. At each discrete time t, the ma-
chine learning system observes the state of the environment st and per-
forms an action at in order to transition from its current state to a sub-
sequent state st+1. It receives a reward r(t + 1) for the value of that
transition. Over time, the machine learning system learns to improve the
selection of actions that maximise the cumulative reward 64

9

3.9 Modelling Q(s, a) with artificial neural network, Left panel: Naive for-
mulation of Q-value, where the network takes state features and an ac-
tion. Right panel: is more optimised formulation of Q-value, where the
network only takes state features and input and produces multiple Q-
values equal to a number of actions possible in the given state. 71

3.10 A mind-map of a reinforcement learning framework. Reinforcement
learning has four main components that interact with each other to solve
sequential decision problems: environment, action space, reward func-
tion, and action selection policy. 77

5.1 A high-level view of the Distribution Framework Structure, where APPM
estimates how many times each file will be accessed in the future and its
expected lifetime; the reinforcement learning system tunes the distri-
bution parameters (i.e., the proportion of each file that will be located
in each cloud); the distributor manages distribution, taking distribution
policy from the reinforcement learning system ; C1,C2, and CK cloud
storage services where k ∈ N. 88

5.2 Cloud storage emulator: the architecture of classes. The operation class
is responsible for writing and reading from the storage. After each op-
eration, the emulator calculates the latency time based on the speed of
each cloud provider and the total cost based on each cloud provider’s
pricing scheme. The builder class is responsible for building the storage
services based on the configuration file that contains all storage attributes 90

6.1 Usually in SFD, the user creates a vacation file, fills it, then sends it
to the section manager. The manager annotates it and passes it to the
department manager to sign. Finally, the file is passed to HR staff to
process and save . 96

6.2 The payment roll system is used to generate sheets of employees’ salar-
ies. Usually, sheets are generated as drafts at the start of a month. They
then pass through various processes, administered by users in different
departments, before being sent to the bank. 97

6.3 The annual budget system is used to create an annual report on expenses
in the past year and expectations of expenses in the coming year 98

6.4 Research department system for generating research reports 100

10

7.1 Demonstration of how the reinforcement learning system works in the
OFDAMCSS framework. At each discrete time t, the learning system
receives file access pattern attributes (from APPM) that represent the
state features X , which will be passed through an artificial neural net-
work to produce different outputs. Each output will be transformed to an
action ak, which is the proportion of file size that will be located in each
cloud. These actions will be given to the Distributor system to perform.
The agent then receives rewards from each cloud rk, which will be used
by the TD-error (TDK) to evaluate each action separately. The back-
propagation function (BP) will then be triggered to tune the connection
weights (wjk, wij). 112

8.1 Average total cost and average latency time to send the entire data from
all datasets into one cloud storage service 126

8.2 Distributing all files from all datasets across multi-cloud using standard
RAID distribution SRD and OFDAMCSS 127

8.3 Distributing all files from all datasets across multi-clouds, using the heur-
istic approach and OFDAMCSS . 128

8.4 Total cost and average latency time for each cloud provider using SRD . 129
8.5 Total cost and average latency time for each cloud provider using the

heuristic approach . 130
8.6 Total cost and average latency time for each cloud provider using OF-

DAMCSS framework . 131
8.7 The reduction in total cost (in figure (a)) and latency time of reading and

writing (in figure (b)) reduces over time , using OFDAMCSS 132
8.8 Change in the total cost (in figure (a)) and latency time of reading and

writing (in figure (b)) change when a cloud stores was discontinued, (us-
ing OFDAMCSS) . 133

8.9 Change in the cost (in figure (a)) and latency time of reading and writing
(in figure (b)) change when a new cloud stores was added to the system
, using OFDAMCSS layer . 134

8.10 Generative features of OFDAMCSS framework by testing the ability of
the framework to optimise cost and latency time at the same time were
tested for different groups of cloud storage services 136

8.11 Nested meters for three artificial neural network parameters and three
learning algorithms for reinforcement learning 145

8.12 Evaluate the impact of changing the number of hidden nodes on the hid-
den layer . 146

8.13 The impact of α on the performance of learning in the OFDAMCSS . . 147
8.14 The impact of β on the performance of learning in the OFDAMCSS . . 148
8.15 The impact of λ on the performance of learning in the OFDAMCSS . . 149
8.16 The impact of γ on the performance of learning in the OFDAMCSS . . 150
8.17 The impact of η on the performance of learning in the OFDAMCSS . . 151
8.18 The impact of ε on the performance of learning in the OFDAMCSS . . 152

11

12

Acknowledgements

Bismillaah ar-Rahman ar-Raheem, In the name of God, the infinitely Compassionate and

Merciful. All Praise and thanks goes to ALLAH, Lord of the Worlds, and may the peace

and blessings be on his Prophets and Messenger Muhammad and on his family and all

of his Companions.

First and foremost, I would like to acknowledge and thank my father Fayez Hassan

Algarni and my mother Zarah Humood Algarni for their love, support, and encourage-

ment. They made tremendous sacrifices to ensure that I had an excellent education and

attained my current level of knowledge. For this and much more, I am forever in their

debt. It is to them that I dedicate this thesis. I would also like to thank my wife Zainab

for standing beside me throughout my studies. She has been my motivation to achieve

my goals and improve my knowledge.

I would like to thank the vice President and Managing Director of the Saudi Fund

for Development (SFD), H.E. Eng. Youssif Bin Ibrahim Albassam, for his kind support

since I started my career in the SFD, and for allowing me the opportunity to study for

Masters and PhD degrees. In addition, I am deeply grateful to Mr. Mohammed Alsabti

and Mr. Saud Alfantoukh for their tremendous support and encouragement during my

career and studies.

13

14 Acknowledgements

I would like to express special appreciation and sincere thanks to my supervisor Dr.

Daniel Kudenko for his mentorship, understanding and patience over the past four years,

and for allowing me to explore my research interests. I am also grateful to my assessor,

Dr. Radu Calinescu, for his challenging questions and thoughtful discussions about my

work during our scheduled meetings over the past four years.

I would like to thank Dr. Christopher Gatti from the US (http://www.chrisgatti.com/)

for his kind responses to my emails and for his excellent advice. I would also like to

thank all my friends and any individuals who have helped me over the period of my

study, in all ways large and small.

Finally, I would like to thank all my brothers (Muhammed, Hassan, Yossef, Ab-

dulrahman,and Sultan) and my sisters (Fatimah and Rana) for their love and support.

14

Declaration

This thesis has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree other than Doctor of Philosophy of

the University of York. This thesis is the result of my own investigations, except where

otherwise stated. Other sources are acknowledged by explicit references.

I hereby give consent for my thesis, if accepted, to be made available for photo-

copying and for inter-library loan, and for the title and summary to be made available to

outside organisations.

15

16

CHAPTER 1

Introduction and Motivation

1.1 Introduction

Cloud computing is a model for delivering computational resources through the Internet

to users in a cost-effective way. Examples of such resources include computer networks,

servers, storage, and applications. Interest in cloud computing continues to grow, and it

offers many benefits – especially for businesses – compared with building and maintain-

ing resources in-house. One of the main advantages of cloud computing is the scalability

and elasticity of resources in response to load increases and decreases. In addition, it is

easy to use and configure; users pay only for what they use. In general, cloud providers

offer computational resources to users through a service model. The three most popular

models are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software

as a Service (SaaS), with each model consisting of various services.

This work only considers one service of IaaS service, namely a cloud storage service.

Broadly speaking, a cloud storage service allows users to store data using remote storage,

which can be accessed through the Internet. It offers many advantages for users, includ-

ing increased work efficiency and reduced operational costs in the long term. Cloud

17

18 Introduction and Motivation Chapter 1

storage also allows organisations to improve the management of expanding storage ca-

pacity demands with regard to physical storage, which can increase dramatically over

time [Linden 2012] [Rebello 2012].

Despite the advantages and benefits of using a cloud storage service, there are some

underlying concerns about it. They are summarised in the following points:

• Cloud performance: in this thesis, ‘cloud performance’ refers to network latency

time, which is the time a packet (a unit of data made into a single package) takes

to travel from leaving the user-side to being completely stored on the cloud pro-

vider’s servers. The reader should not confuse this term with the general meaning

of the term ‘latency’, which usually refers to the delay that occurs before transfer

of data begins, following an instruction for such data transfer [Oxf 2017]. The

interested reader can access information elsewhere about the different meanings

of ‘latency’ in various contexts [tec 2017]. Latency time is one of the big concerns

to cloud users as it can affect the quality of their business or services. Typic-

ally, latency time is influenced by the distance between the locations of client and

cloud servers, and by network throughput. Network throughput refers to the actual

amount of data that can be transferred from one point to another across a network

in timeframe [Solomon et al. 2014].

• Cloud vendor lock-in: Each cloud provider has a specific application program-

ming interface (API) requirement. The API allows user applications to integrate

and interact with cloud services, but means that cloud users must design and build

their applications based on APIs. The lack of standardisation of APIs, and the di-

vergence between API requirements from one cloud provider to another, incur the

risk of locking a user’s data to a cloud provider [Mu et al. 2012]. Several unified

APIs have been designed and implemented to overcome this problem. Examples

of unified APIs include Libcloud [Libclouds 2016] and Jcloud [Jclouds 2016]. ¥

These unified APIs are designed to allow users to move from one cloud to another

without changing their applications, and enable users to adopt multiple cloud ser-

18

Section 1.1 Introduction 19

vices simultaneously. However, migrating from one cloud provider to another is

still a challenge in terms of time, cost and effort.

• Service Continuity: Cloud services can go out of business with little warning.

For example, Nirvanix Cloud Storage services shut down in October 2013 with

only two weeks’ notice for customers to withdraw their data[Marshall 2013]. Bar-

racuda discontinued Copy Cloud Storage and CudaDrive services in May 2016

[Brinkmann 2016].

• Service Availability: Another issue in adopting cloud services is the number of

cloud services that have suffered outages in recent years. For instance, Amazon

Simple Storage Service (S3) suffered outages three times in 2008, for different

reasons[Armbrust et al. 2010]. In 2008, Gmail was unavailable for about 1.5 hours

due to a problem in the Contacts System [Armbrust et al. 2010]. More recently,

Amazon EC2 and S3 suffered a rare outage in 2015 [Tsidulko 2015] and in 2016

Google Compute Engine cloud service went down for 18 minutes [Bort 2016].

Some researchers have addressed the above issues and suggested using the redundant

array of independent disks (RAID) principle. This principle allows for distribution of

data across multiple cloud storage services instead of relying on a single service (e.g.,

Abu-Libdeh et al. [2010] Papaioannou et al. [2012] Bowers et al. [2009]). Typically,

RAID has been used in traditional storage to avoid problems with using a single hard

disk, by distributing data on multiple hard disks. There are two main objectives in using

RAID: (1) to improve the performance of reading from and writing to hard disks; and

(2) to provide some level of fault tolerance in case one of the hard disks fails.

However, the case of multiple cloud storage is different. Each cloud service has

unique characteristics that affect the connectivity between the client and the cloud ser-

vice. Furthermore, file access patterns and file size play a fundamental role in the cost of

cloud services. More specifically, the cost of cloud storage is based on several factors:

(1) number of operations (typically: read, write and delete); (2) network usage (which

is impacted by number of use and file size) and storage usage (which is affected by the

19

20 Introduction and Motivation Chapter 1

lifetime and by the size of files).

Optimising the cost and latency time of diverse cloud services is difficult because of

differences in service performance and pricing schemes among cloud storage providers.

Additionally, the price scheme and performance of any cloud provider are not stationary.

The cost may change automatically based on how many data are stored or transferred

through the network. Thus, the optimisation should ideally account for long-term cost

and performance, rather than just optimising the current state. Accordingly, it is import-

ant to find a dynamic solution that is capable of optimising cost and latency time, and

can adapt to changes in the states of the various cloud storage services.

This work demonstrates that reinforcement learning is a suitable technique to deal

with these challenges because of its ability to maximise the expected long-term utilities.

Furthermore, this work shows how supervised learning can be used to generate predictive

models of file access patterns within large enterprise workflows. Unfortunately, no real

data for file access log exists which could be used in supervised learning to predict the

future. Thus, this work generated a synthetic dataset based on real workflow systems.

The overall contributions of this work are as follows:

• It provides an intelligent framework for optimising the cost and latency time (per-

formance) when using multiple cloud storage services. In addition, the framework

is designed to be flexible and easily configurable for varying numbers of cloud

storage services, to mitigate the problems of service continuity, availability, and

vendor lock-in. The development of this framework combined two machine learn-

ing methodologies:

1. Reinforcement learning to determine the respective percentage of each file

that would optimally be located in each cloud storage service, based on file

access patterns.

2. Supervised learning to predict the access patterns for each file.

• 2. It describes a novel method to turn multiple state values into actions. This

method is a reinforcement learning approach designed specifically for this work.

20

Section 1.2 Thesis Structure 21

It uses an artificial neural network to produce several continuous actions (concur-

rently) from different independent state values. This contribution can be divided

into two aspects:

1. The approach can turn the output of multiple value functions into actions.

2. The approach can handle multiple continuous actions for distribution pur-

poses.

Note : This approach can only work in a distribution domain, such as distributing

data across several storage devices.

• It created synthetic datasets for trace log files. These datasets were generated

based on an analysis of real workflow systems.

• It predicted numerical values of file access pattern attributes through a supervised

learning algorithm. Two pieces of research in the literature predicate classification

of file access patterns. To the best of our knowledge, our research is the first to

predict (1) a numerical value for a file lifetime; (2) the number of times read access

is used; (3) the number of times write access is used.

• It presents ‘Hints and Tips’ for avoiding many issues related to applying the artifi-

cial neural network as function approximator with reinforcement learning.

1.2 Thesis Structure

As shown in Figure 1.1, after the Introduction, the main body of the thesis begins with

Chapter 2, which gives an overview of cloud computing. An examination of cloud stor-

age services, which are the core of this work, is included. Chapter 2 also outlines the

challenges of adopting cloud storage services, and provides a review of the literature

related to the fundamental concepts in this work. Chapter 3 provides an overview of

the field of machine learning, as the proposed solution is based on algorithms from that

field. Chapter 3 includes a discussion of two subfields in machine learning: supervised

learning and reinforcement learning. Chapter 4 provides a survey of work on machine

21

22 Introduction and Motivation Chapter 1

learning in cloud environments. Details of the architecture and design of the proposed

framework are introduced in Chapter 5. The framework consists of two machine learn-

ing algorithms (supervised learning and reinforcement learning) that are discussed in

Chapters 6 and 7. These chapters describe the methodology used in the experiment to

empirically evaluate the framework. Chapter 8 presents the evaluation and a discussion

of the results. In addition, the evaluation chapter explores the effect of parameters in

reinforcement learning and artificial neural network learning on the performance of the

framework. Finally, Chapter 9 concludes the thesis with a discussion of findings, innov-

ations and possible directions for future work.

22

Section 1.2 Thesis Structure 23

Introduction
Chapter 1

Machine Learning
(ML)

Chapter 3

Cloud Computing
Chapter 2

A Survey of ML in Cloud
Computing

Chapter 4

System Architecture & Emulator
Chapter 5

File Access Pattern Prediction
Chapter 6

OFDAMCSS
Chapter 7

System Evaluation
Chapter 8

Conclusion
Chapter 9

Figure 1.1: Structure of the thesis

23

24

CHAPTER 2

Cloud Computing: Background and Review of the Field

This chapter presents an overview of cloud computing including a discussion of relev-

ant definitions and main service models. This research focuses mainly on cloud storage

services, and most of this chapter examines that service, including its benefits and chal-

lenges. The chapter begins with a discussion of what cloud computing is, and presents

the popular definitions of cloud computing – including its characteristics and services.

Thereafter, the chapter presents the benefits of adopting cloud services (i.e. business

drivers). The risks and concerns that hinder organisations from adopting cloud services

are also discussed. Finally, an in-depth description of cloud storage services is provided,

as is a review of relevant work related to the fundamental concepts on which this research

is based.

2.1 Definitions of Cloud Computing

The term ‘cloud computing’ emerged in the commercial arena in 2006, as a new business

model in the computing world, after Amazon started its Elastic Compute Cloud (EC2)

service [Erl et al. 2013]. Since then, the topic has gained momentum and attention in

25

26 Cloud Computing: Background and Review of the Field Chapter 2

Cloud Computing

Characteristics

On-demand
self-service

Broad
network
access Resource

pooling

Rapid
elasticity

Measured
service

Cloud Actors
Consumers

Providers

Auditor

Broker

Carrier

Deployment
Model

Private
Cloud

Community
Cloud

Public
Cloud

Hybrid
Cloud

Service
Model

IaaS

PaaS

SaaS

Benefits
Cost

Reduction

Organisational
AgilityIT Cost

Planning

Risk and
ChallengesData

Security

Service
Availability

Business
Continuity

Vendor
lock-in

Figure 2.1: A mind-map for cloud computing characteristics, benefits and risks
(from NIST definitions).

both academia and in the world of computing industry. However, around 2006 there was

no widely accepted definition of cloud computing [Voas & Zhang 2009].

The need for a standard meaning for ‘cloud computing’ pushed researchers and or-

ganisations to find a comprehensive definition of the term. In 2008, The Gartner Inc.

was one of first organisations to publish a definition of cloud computing:

26

Section 2.1 Definitions of Cloud Computing 27

A style of computing in which massively scalable IT-related capabilities are

provided as a service using Internet technologies to multiple external cus-

tomers. [Pettey & van der Meulen 2008]

In 2009, they revised this definition and replaced ‘massively scalable’ with ‘scalable

and elastic’. This alteration highlighted the importance of cloud computing’s scalability

characteristic, in particular the ability to scale both up and down – not simply to a large

size [Pettey & Goasduff 2008]. In addition, the new definition included a list of five

attributes for cloud computing services:

1. They share a pool of resources

2. They scale up or down as the consumer demands.

3. They can be tracked with usage metrics to enable multiple payment models.

4. They are accessible through application programming interfaces (APIs).

5. 1. They are available online and can be accessed through the Internet .

Forrester Inc. also published a definition of cloud computing in 2008, which was

widely accepted by the industry at that time. It was also used by several US Federal Gov-

ernment agencies, including the National Institute of Standards and Technology (NIST).

They used it as a resource to create their own definition [Staten 2009] [Erl et al. 2013].

Forrester’s definition described cloud computing as :

standardized IT capability (services, software, or infrastructure) delivered

via Internet technologies in a pay-per-use, self-service way. [Staten et al.

2008]

Starting in 2009 and continuing over several years, NIST also revised many draft

versions of a cloud computing definition, reviewing them with government and industry.

The goal was to create a robust, comprehensive cloud computing definition that suppor-

ted interoperability, portability and security requirements [Mell & Grance 2011]. The

27

28 Cloud Computing: Background and Review of the Field Chapter 2

final version of that work was published in 2011. Since then, this definition has been

widely used in industry and academia. The definition states as follows:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service pro-

vider interaction. [Mell & Grance 2011]

The NIST lists five essential characteristics which are the key attributes for a service

to be considered a cloud service:

1. On-demand self-service – the ability to provide computing capabilities automat-

ically, without human intervention.

2. Broad network access – the availability of computing capabilities online on the

Internet.

3. Resource pooling – the cloud provider’s resources are pooled across multiple cus-

tomers using a multi-tenant model.

4. Rapid elasticity –the capability of cloud infrastructure that can scale up or down

dynamically at any time, to cope with demand peak on a near real-time basis.

5. Measured service – the ability to monitor the usage of cloud services by each

consumer with usage metrics, to facilitate working as a utility service.

The NIST definition outlines four deployment models for cloud infrastructure. Each

model can possess different characteristics to meet different business needs. The deploy-

ment models are:

• Private Cloud – Private cloud – a cloud infrastructure that can be provided by a

single organisation for exclusive use.

28

Section 2.1 Definitions of Cloud Computing 29

SaaS

PaaS

IaaS

Virtual Machines

Data Centre

Figure 2.2: High-level architecture of cloud computing layers. All services are
housed in a physical data centre and are typically accessed through Virtual Machine
(VM) technology.

• Community cloud – a cloud infrastructure that can be provided by a group of

organisations.

• Public cloud – a cloud infrastructure that can be provided by any cloud consumer,

either an individual or an organisation.

• Hybrid cloud – a combination of one or more the above deployment models

Furthermore, NIST lists three fundamental service models (Figure 2.2), all of which

should be designed to serve multiple clients simultaneously:

• Infrastructure as a Service (IaaS) – a virtual layer of the cloud’s physical infra-

structure (i.e. the hardware components) that can be delivered to cloud consumers

through the Internet as virtual machines (VMs). Examples of this model’s services

include servers, networks, operating systems, storage and other raw computing re-

sources. The goal of this model is to provide cloud consumers with a high level

of control over configuration and utilisation. Hence, the computing resources that

29

30 Cloud Computing: Background and Review of the Field Chapter 2

are delivered to the consumer in this model are generally not preconfigured. [Erl

et al. 2013].

• Platform as a Service (PaaS) – a configured (i.e. ready to use) environment

built upon the IaaS model to provide a platform of computing resources with low

control over the underlying resources that host the platform. This model allows

consumers to develop and host their applications or to store their data in the cloud

infrastructure without needing worry about infrastructure settings and mainten-

ance. Providers of this model include Google App Engine and Amazon AWS.

• Software as a Service (SaaS) – various applications that are provided online to

consumers by cloud providers. It is entirely run, maintained and managed by the

cloud provider. An example of this model is web-based email.

Additionally, NIST defines five major actors involved in cloud computing: cloud

consumer, cloud provider, cloud auditor, cloud broker, and cloud carrier. Each of these

actors is an entity- that is,a person or an organisation that takes part in a transaction or

process, or performs a task in cloud computing. In addition, each actor has a fundamental

role in the cloud computing realm. For example:

• Cloud consumers or cloud users – these are the stakeholders who use cloud ser-

vices provided by a cloud provider. They might be persons, enterprises or even

governments.

• Cloud providers – they are responsible for providing one or more of the cloud

service models to the cloud consumers, either directly or through a broker. In

general, a cloud provider carries most of the responsibility for managing and con-

trolling security, privacy, service configuration, service management and business

support. However, many other responsibilities are assigned to them depending on

which service model they provide.

• Cloud auditor – an independent party that examines and evaluates cloud services

30

Section 2.2 Business Drivers and Cloud Benefits 31

according to various factors, and provides their assessment to either to cloud pro-

viders or cloud consumers.

• Cloud broker – an intermediary party that manages the relationship between cloud

consumers and cloud providers. Brokers provide various services to consumers,

including managing performance, managing security and combining multiple ser-

vices into one or more new services, either (from one or many cloud providers).

• Cloud carrier – the connectivity and transport channel between the cloud provider

and cloud consumer.

2.2 Business Drivers and Cloud Benefits

Several primary business drivers encourage cloud consumers, especially enterprises, to

adopt cloud computing services. As an example, planning computational resources to

determine and fulfil the future use of computational resources can be challenging for any

organisation, as such planning requires a good estimation of fluctuation in usage load. A

discrepancy between the resource capacity and usage requirements can result in a system

either over-provisioning or under-provisioning. Over-provisioning mean a company has

too many infrastructure resources, with a resulting unnecessary financial investment.

Under-provisioning refers to resources that cannot fulfil consumer demands at all

times, leading to transaction losses and usage limitations or inefficiency at peak times.

The elasticity characteristic of cloud computing offers a perfect solution for any organ-

isation to cope with a capacity planning problem, and to fit its computational resources

to its needs at all times. Merging the elasticity characteristic with a pay-per-use model

helps organisations to eliminate the cost of acquiring new infrastructure resources and

the cost of ongoing ownership of the infrastructure (operational expenses). Operational

expenses can include hiring technical people to keep the infrastructural resources opera-

tional, paying utility bills, and paying for licenses and support arrangements. Moreover,

any organisation may face a change in business requirements. Such changes might ne-

cessitate an IT response by scaling the computational resources of the organisation up

31

32 Cloud Computing: Background and Review of the Field Chapter 2

or down to meet the change. The changes to the business might be temporary or per-

manent; for example, reducing business expenses by closing branches or decreasing the

number of employees, which requires shrinking computational resources to adapt to the

new situation. By contrast, computational resources might need to expand if the business

is growing.

The characteristics of cloud computing (like on-demand self-service) offer an organ-

isational agility for organisations, allowing IT departments to respond to market changes

by increasing or releasing their computational resources at any time with minimal ma-

nagerial effort. Finally, data storage in any organisation can grow rapidly due to the

increasing reliance on information, especially by businesses. Growth in data storage

requires an increase in IT budgets to maximise computational resources, including stor-

age, cooling systems, floor space, servers, networking and IT staff. Due to this growth,

organisations are increasingly moving their data into cloud storage. Cloud storage ser-

vices, which are the central focus of this research, is the strongest growth among all

cloud computing services [Linden 2012]. Cloud storage is discussed further in Section

2.4.

2.3 Risks and Challenges

Despite the above-mentioned advantages and benefits, many concerns – pertaining mostly

to public cloud services – constrain the movement of organisations towards this new

business model. Moving to cloud computing services means renting off-premises com-

putational resources that are managed by the cloud provider. This raises questions and

concerns about the cloud provider’s procedures to protect data from destructive phys-

ical forces (e.g. fire, flood or earthquake), and to secure the data from any unwanted

actions by unauthorised users. In addition, guarantees of consistent online cloud ser-

vice availability, without disruption from power outages, became a major concern after

many cloud services suffered from outages. Examples include Telstra’s cloud comput-

ing, which suffered a major outage of about 24 hours in April 2013, due to a failure in the

data storage equipment [LeMay 2013]. Another example was an Amazon EC2 site that

32

Section 2.4 Cloud Storage Services 33

went down in North Virginia in 2012 because of thunderstorms in the area. As a result,

many websites and services, including Netflix, Instagram and Pinterest, were affected

and were taken out of service during the outage [Smith 2012]. Additionally, serious con-

cerns exist about cloud service continuity, especially after some cloud providers – such

as Nirvanix Cloud Storage and Copy Cloud Storage [Marshall 2013] and Copy Cloud

Storage [Brinkmann 2016]– discontinued all or some of their services. Finally, the risk

of vendor lock-in is another challenge in cloud computing. Vendor lock-in means that

cloud consumers are unable to move their data or services to another cloud provider

without substantial switching costs. More specifically, each cloud provider requires a

particular API, which means that cloud consumers must develop their applications to

interact with their cloud service. Thus, moving to another provider means the consumer

must redevelop their applications around the new cloud provider’s API requirements. A

lack of API standards in the cloud computing environment is becoming a major prob-

lem for consumers. There is some effort to create a unified API which can interact

with different cloud providers (e.g. Jcloud [Jclouds 2016], Libcloud [Libclouds 2016]).

However, these unified APIs cannot interact with all cloud providers. There have also

been many attempts by non-profit organisations to develop standardised APIs, including

OpenStack, Standards Acceleration to Jumpstart Ad-option of Cloud Computing, and

The Open Group Cloud Computing Work Group. None of these is widely accepted by

cloud providers [Lewis 2013] [Liang 2016].

The rest of this chapter focuses on the concept of cloud storage services. The dis-

cussion includes an examination of the major concerns and issues that are relevant to the

research.

2.4 Cloud Storage Services

Cloud storage refers to virtual data storage devices that are used to store data online.

Broadly, virtualisation uses tools to partition a physical computer (a server, database,

hard disk, etc.) into multiple virtual machine images, so that each behaves like a separate

machine.

33

34 Cloud Computing: Background and Review of the Field Chapter 2

Table 2.1: Comparison of online storage types

Features Drive Cloud Storage

Target consumer Individual users Enterprises

Manner of accessing App or Internet Browser API

Storage space Limited free space Unlimited

Payment mechanism Monthly fee if more space required Pay-per-use mechanism

Cloud storage is gaining considerable attention due to the dramatic increase in data

volume within organisations. As shown in Table 2.1, two different types of online storage

are provided by the cloud provider. The first type is personal online storage for ordinary

cloud consumers, with the consumer accessing their data through an Internet browser

or via an application (which is usually provided by the cloud provider or a third party).

Usually, this type of service offers limited free space and a fixed price per month for extra

space. This type is often called a ‘drive’; examples include GoogleDrive, OneDrive,

Amazon Cloud Drive and Dropbox.

The second type is designed to work as a utility service, mainly for enterprises. Often

this type is called a ‘cloud storage service’. It provides unlimited storage space and sup-

ports a pay-per-use mechanism. This mechanism is usually based on the amount of data

stored and the amount of network bandwidth used, as well as the numbers of operations

performed by the client – including add, update and delete. Providers do not provide an

application for this type. Cloud consumers must integrate their system applications with

these services through an API based on the cloud provider’s requirements. This type of

service is attractive to businesses as it offers benefits such as flexibility, scalability, and

reduced expenditure on technology infrastructure ([Yang & Jia 2014; Furht 2010; Thakur

& Lead 2010]). Examples include Google Cloud Storage, Amazon S3, Microsoft Azure

Storage and RackSpace file cloud. The characteristics of this type are based on the NIST

definition (discussed in Section 2.1.

This research concentrates on the second type, cloud storage services. From now

on in this thesis, the term ‘cloud storage’ refers only to this type. However, before

34

Section 2.5 Data Storage Strategies 35

Table 2.2: Common RAID levels with strengths and weaknesses

RAID Levels Min.Num of
Drives Description Strengths Weaknesses

RAID 0 2
Data striping without re-
dundancy

the highest performance
No reliability, if one
hard-disk fails, all data
are lost

RAID 1 2 Disk mirroring
Good performance and
reliable

High cost overhead for
redundancy , as all data
are duplicated.

RAID 5 3
Data striping with dis-
tributed parity

Good balance between
performance and reliab-
ility

Almost none

RAID 10 4
Combination of RAID 0
and RAID 1

High performance and
high reliability

Same as for RAID 1
(redundancy cost over-
head), as all data are
duplicated. Requires
minimum of four hard-
drives

examining this type of storage in greater detail, it is important to understand how data

storage strategies have developed, and how the issues for traditional hard disks that are

relevant to cloud storage were solved.

2.5 Data Storage Strategies

’Data storage’ refers to technology that allows computers to retain digital data (files,

videos, images, etc.) on a magnetic hard disk. Before 1988, the strategy in most systems

was to use a single large magnetic hard disk, known as a single large expensive disk

(SLED), to store data. The primary concern with this strategy was the possibility of

disk failure (i.e. reliability), which meant that data were susceptible to being lost if the

SLED failed. Data could only be restored if they had been backed up onto another disk

or tape before the disk failed [Johnson 2009] [Stone 1993]. In 1988, researchers at the

University of California published A Case for Redundant Arrays of Inexpensive Disks

(RAID) [Patterson et al. 1988], with the main aim of overcoming the problems of SLED.

The theory of RAID is to spread the data (by striping or mirroring) over an array of

magnetic hard disks, which becomes an alternative to SLED. Broadly, RAID provides

varying degrees of ability to avoid the potential reliability problems inherent in using

35

36 Cloud Computing: Background and Review of the Field Chapter 2

SLED, along with improving the speed of input / output (I/O) transactions between users

and hard disks (I/O performance) [Buyya et al. 2001].

RAID uses several methods to spread data across multiple hard disks. These methods

have been standardised into many levels. Some levels focus primarily on either reliability

or performance, and some combine both aspects [Buyya et al. 2001]. The levels can be

categorised according to three main methods:

• Data striping: dividing data into even segments (blocks) and then spreading them

out over an array of hard disks so that more than one hard disk is read from and

written to simultaneously.

• Data mirroring: replication of data on two or more hard-disks.

• Data striping with parity bits: data are striped into segments and distributed across

an array of disks, with a bit-wise ‘exclusive OR’ (XOR) function to compute a

parity bit value from the array data. This value is used to reassemble the data

segments in case of hard disk failure.

Nowadays, cloud storage is becoming the new trend in data storage strategy devel-

opment. However, adopting a single cloud storage service can lead to temporary issues

of unavailability, which resemble SLED for the duration of unavailability. Hence, organ-

isations are likely to face the same problems as with SLED, which are mainly reliability

and performance issues, but in a different scenario. This raises the question whether

the standard RAID technology can offer solutions for a concern that uses a single cloud

storage service. Few researchers have addressed the issues of single cloud storage; most

provide solutions on multiple storage services. A review of relevant literature is presen-

ted in Section 2.6.

In general, employing RAID for multiple cloud storage services can improve reli-

ability. However, it is hard to optimise performance while reading from and writing to

different cloud storage services concurrently, because many factors affect the perform-

ance of cloud services. Examples of these factors include the distance between the con-

sumer and the cloud servers, and the cloud network structure (e.g.throughput, and access

36

Section 2.6 Multiple Cloud Storage Solutions 37

policies). As a result, performance is restricted to the slower cloud services. This re-

search considers these challenges and proposes an intelligent solution, namely adopting

multiple cloud storage using the principle of RAID.

2.6 Multiple Cloud Storage Solutions

As mentioned in the previous section, several researchers have addressed the issue of

dependence on a single cloud storage service. This section provides a review and dis-

cussion of that work. In general, the literature addresses the problems associated with

dependence on a single cloud provider by adopting multiple cloud storage services. In

brief, adopting multiple cloud storage uses a combination of several independent cloud

services and considers them to be one cloud storage. Some of the advantages of dis-

tributing data over several cloud storage services are increased availability, increased

performance, and reduced probability of losing data. However, this approach can in-

crease the amount of storage and bandwidth used and therefore the cost goes up. This

scenario is not at odds with the earlier statement that performance is restricted to the

slower cloud services, because improvement in performance is indeed restricted to the

slower cloud services. That is, the client application must wait for the slower cloud to

respond each time, which means the fastest cloud will be not noticed because the user

simply waits for the slower one.

Scalia [Papaioannou et al. 2012] introduced a cloud brokerage solution that con-

tinuously adapts the placement of data, based on file access statistics over several cloud

storage services. This approach minimises the storage cost, improves the data availab-

ility, and eliminates the risk of vendor lock-in. However, the work of Scalia focused on

the optimisation of cost and does not evaluate the impact of the solution on latency time

(performance of transaction). The high-availability and integrity layer (HAIL) approach

[Bowers et al. 2009] uses the principle of RAID to distribute files across a collection of

cloud storage services. This approach enhances the availability of data and allows for the

remote management of data security risks (i.e. data integrity) in the cloud, by employing

the proof of retrievability (PORs) system. Although HAIL reduces the storage costs, it

37

38 Cloud Computing: Background and Review of the Field Chapter 2

does not consider the effect of access patterns on the network cost. In addition, the file is

assumed to be static and the impact of the solution on performance is not considered. The

multi-clouds database model (MCDB) [Alzain et al. 2011], is a framework that employs

Shamer’s secret sharing algorithm [Shamir 1979] to improve the data integrity, data in-

trusion, and service availability. The RAID system was also employed [Mu et al. 2012].

Their study describes a prototype system called µLibCloud, which leverages RAID to

improve the availability, read-and-write performance and global access experience of

clouds, along with fault tolerance of cloud storage services. However, this work did not

consider optimising the cost and stated that costs would be subject to increases. [Bessani

et al. 2011] presented a system called DepSky, which employs a cryptographic secret

sharing scheme with erasure codes to avoid vendor lock-in, in addition to enhancing the

availability and efficiency of distributed data. Although DepSky showed an improve-

ment in performance, the authors state that the average cost increased by twice the cost

of single cloud storage. [Paraiso et al. 2016] presented a service-oriented component-

based Platform as a Service (PaaS) for managing elasticity, portability, provisioning,

and availability across multiple cloud providers. High availability in their approach was

achieved in two ways:

(1) The provision of a multiple cloud load balancer service, which fronts traffic for

applications deployed over multiple clouds, and decides where to route traffic when a

cloud suffers from outage. (2) Redundancy is used at all levels to ensure no single

component failure in a cloud provider will affect the system’s availability. This approach

focuses mainly on availability and does not consider optimising the cost and performance

of distribution across multiple cloud services.

[Kajiura et al. 2015] introduced an approach to dynamically determine optimal cloud

storage services, for storing data in heterogeneous multiple cloud services. This ap-

proach is based on the request of the user; for example, the user can require more secure

environment or a lower cost. The approach allows for trading off between cost, availab-

ility, and confidentiality. Their work considered only the the storage cost, and there was

no consideration of network and operational costs. Moreover, Kajiura et al. took no ac-

38

Section 2.6 Multiple Cloud Storage Solutions 39

Table 2.3: Comparison among distribution frameworks : Key: S. cost, storage cost; N.
cost, network cost (i.e. transaction cost); O. cost, operation cost (read, write, and delete).

the goal is to optimise: Tackling problems of # clouds
Framework

S. Cost N. Cost O. Cost Latency time Vendor lock-in Availability Multiple

HAIL X x x x X X X

Scalia X x x x X X X

MCDB x x x x X X X

µLibCloud x x x X X X X

DepSky x x x X X X X

Deco X x x X x x x

soCloud x x x x X X X

Heterogeneous-multi-cloud X x x x X X X

Data management approach X x x x X X X

Proposed framework X X X X X X X

count of the effect of their approach on the performance of distribution. Similarly, [Kanai

et al. 2014] proposed a secret distribution data management approach for multiple cloud

storage services to maintain confidentiality. The motivation behind their approach was

to improve the confidentiality of data. They assessed the storage cost and availability but

not the network and operational costs, and they did not evaluate the performance.

Most of the above solutions neglect the differences in the network characteristics of

cloud services, which affect the connectivity between client and cloud storage services.

Each cloud storage possesses unique network architecture and access policies, which

affect the performance (latency time) of reading and writing the data. Moreover, to our

knowledge no-one has proposed a solution to optimise both cost and performance in the

distribution of files across multiple cloud storage services. However, it is worth men-

tioning that [Zhou et al. 2015] propose a system called ‘Deco’ to optimise cost while

keeping performance at reasonable levels. Even so, the Deco system is designed for dis-

39

40 Cloud Computing: Background and Review of the Field Chapter 2

tributing process tasks across multiple instances in a single cloud for workload purposes.

Furthermore, it does not take account of network and operational costs, or of any change

in the cloud pricing scheme. In addition, the efficiency of the Deco solution is restricted

by the slowest cloud service used, if the approach is implemented across multiple cloud

storage services.

Concerns have been expressed about hybrid cloud computing to solve some of the

above-mentioned challenges, including security and availability [Tanimoto et al. 2013][Tan-

imoto et al. 2013]. Usually, the Hybrid solution is based on using private and public

clouds. This solution is not advisable for small and medium-sized enterprises because of

the problem of high cost to build a private cloud. In addition, researchers have compared

the solution of adopting hybrid clouds and distributing data over multiple clouds, and

concluded that distribution over multiple clouds is more advantageous and flexible than

hybrid clouds [Kajiura et al. 2015][Kajiura et al. 2013]. The main limitation in all the

works discussed above is the lack of a comprehensive solution to optimise both the cost

and the performance of cloud storage concurrently. (Total cost includes storage cost, net-

work cost, and operational cost.) These two factors improve data availability and abolish

the risk of vendor lock-in. Hence, the results presented in this thesis provide an intelli-

gent framework, built on a combination of two machine learning algorithms, to overcome

the issues and limitations of previous solutions. Table (2.3) provides a summary of the

differences between the various solutions mentioned above and the framework proposed

in this thesis.

2.7 Summary

Cloud computing is a dynamic environment. This dynamism means that the pricing

scheme, service performance and service continuity and availability are liable to change

at any time. In addition, optimising both cost and performance in such an environment

is a challenge, and optimising only one factor can unintentionally affect the other factor

adversely. Hence, it is essential for any optimisation solution in the cloud computing

environment to address all these difficulties. Due to their ability to adapt to changing

40

Section 2.7 Summary 41

environments, machine learning algorithms provide a suitable approach to solving many

problems in cloud computing. Hence, the next chapter gives an overview of machine

learning, followed by a survey of the applications of machine learning in the cloud en-

vironment. Thereafter, the proposed framework is introduced.

41

42

CHAPTER 3

Machine Learning: Background

The previous chapter addressed the issues of optimising cost and performance (mainly

latency time) for various cloud services. The difficulty of optimisation arises from the

dissimilarity in service performance and pricing schemes among cloud storage providers.

In addition, the price scheme and performance of any cloud provider can be affected or

changed at any time.

The complexity of cloud structure and services, the dynamics of performance, and

the changing prices in cloud computing all render the environment interesting and chal-

lenging for machine learning researchers. Any proposed solution for solving the cloud

problem should ideally account for long-term cost and performance, rather than just op-

timising the current state. Machine learning algorithms have an excellent ability to learn

to cope with such a dynamic environment. Hence, this chapter provides an overview of

the field of machine learning, including the top branches of supervised learning, unsu-

pervised learning, and reinforcement learning. In general, machine learning is a sub-field

of Artificial Intelligence (AI), which aims to learn from data to solve problems such as

prediction and estimation. Machine learning is discussed in this section, beginning with

43

44 Machine Learning: Background Chapter 3

several definitions of machine learning. This is followed by a review of the key compon-

ents of algorithms of the black-box model in machine learning. Thereafter, an overview

is provided of various learning paradigms in machine learning. Finally, the chapter con-

cludes with a summary of machine learning studies that have examined the prediction of

file access patterns. .

3.1 Definitions of Machine Learning

Machine learning allows a computer to extract knowledge from data automatically. This

field integrates various disciplines, including (but not limited to) statistics and probab-

ility, psychology, computational complexity theory, control theory, information theory,

and neurobiology [Mitchell 1997]. Learning in this context is a process of finding un-

derlying patterns in the data and describing them in the form of a mathematical function.

The story of machine learning can be traced back to the 1950s, when Arthur Samuel

created the first checkers program on IBM’s first stored program computer (computers

that can store and run a program electronically stored in an electronic memory) [Mc-

Carthy & Feigenbaum 1990]. Samuel’s machine learning approach was developed to

learn from experience how to win a checkers game using a heuristic search algorithm.

Since then, the methodologies of this field have evolved, and many learning algorithms

have been introduced in various applications to solve different problems. Such prob-

lems range from detecting email spam to performing face recognition, to developing

an autonomous vehicle that can learn to drive on a public road. Generally, learning

algorithms in this field are categorised into three learning paradigms: supervised learn-

ing, unsupervised learning, and reinforcement learning. Details of these paradigms are

provided in Section 3.3.

The term ‘machine learning’ seems to have been coined by Samuel himself [Naqa

& Murphy 2015]. A number of sources in the literature (e.g. [Khanna & Awad 2015],

[Bell 2015] and [McClendon & Meghanathan 2015]) state that Samuel defined the field

of machine learning in 1959 as follows:

A field of study that gives computers the ability to learn without being expli-

44

Section 3.1 Definitions of Machine Learning 45

citly programmed

Although this definition is popular, unfortunately the main source of the definition

could not be tracked down. However, the above definition provides a clear meaning for

machine learning. The second formal definition of machine learning was published in

1997 in Mitchell’s book, titled simply Machine Learning [Mitchell 1997]:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with the experience E.

This means that in general, experience leads to improved performance when the

computer runs a set of tasks. A further definition was given by Murphy [Murphy 2012]:

Machine learning is a set of methods that can automatically detect patterns

in data, and then use the uncovered patterns to predict future data, or to

perform other kinds of decision making under uncertainty.

Another accurate definition was presented by Marsland [Marsland 2015]:

Machine learning is about making computers modify or adapt their actions

(whether these actions are making predictions, or controlling a robot) so

that these actions get more accurate, where accuracy is measured by how

well the chosen actions reflect the correct ones.

All these definitions share the idea of a computer being able to learn from data to per-

form specific tasks. In general, machine learning uses data-driven methods employing a

large set of algorithms from another branch of knowledge, and combining them with the

power of the computer to learn the relationships among certain data. These relationships

are then represented in some form of model (hypothesis) function.

Machine learning algorithms use black-box and white-box models (the reader will

find more details later in Figure 3.3). In general, a white-box model builds a hypothesis

using readable and interpretable algorithms. Examples of white-box models include

45

46 Machine Learning: Background Chapter 3

decision tree learning [Rokach & Maimon 2014], rule learning [Frnkranz et al. 2012]

and nearest neighbour learning [Duda et al. 2000]et al. 2000]. These models are often

considered to be nonparametric learning algorithms. By contrast, , the black-box model

does not require any prior learning about the data. Usually, a black-box model uses

adjustable parameters to describe a pattern in the data. Examples of black-box modelling

including artificial neural networks and linear regression. All algorithms of machine

learning discussed in this thesis refer only to black-box models; also, the reader should

note that some of the terminology used in this work differs slightly from other literature

in this field. The reasons for that is to keep terminologies consistent with the different

branches of machine learning discussed in this thesis, namely supervised learning and

reinforcement learning.

3.2 Machine Learning Components

As mentioned, this thesis focuses on machine learning algorithms that output a para-

metrised hypothesis – which are mainly black-box models. In general, most machine

learning algorithms that belong to a black-box model structure are based on the interac-

tion between two components, to build an accurately parametrised model that represents

the pattern of the data. This pattern is depicted in Figure 3.1, but it should be noted that

Figure 3.1 is not comprehensive and provides only a high-level overview of machine

learning methods. The parameters of this model are unknown. Hence, the goal of ma-

chine learning is to search through the space of possible hypotheses (parameter values)

to fit the model to the data. The first component is ‘environment’, which consists of data

that need to be learned. The second component is the machine learning system, which

is computer software or tools that are capable of learning from the environment; these

are often called ‘agents’. In general, especially in black-box modelling, the machine

learning system consists of two sub-components:

• Hypothesis representation – a model function that consists of parameters (θ) ¥

which represent a pattern in the data of the environment.

• Optimisation algorithms – these are used to analyse the data and tune the paramet-

46

Section 3.2 Machine Learning Components 47

Data
Representation

Hypothesis
Representation

(~X.θ)

Optimisation
Algorithm

Learner-MachineEnvironment

Hypothesis
Function

~X

Output

adjust θ

Figure 3.1: Block representation of process and components of machine learning

ers (θ) .

Evidently, the key design of a machine learning component is based on the choice

of the hypothesis representation function [Mitchell 1997]. Thus, it is important to de-

termine how the machine will represent its parameters in a mathematical model and

the best algorithm to optimise the model. More information about formulations of hy-

pothesis representation and optimisation algorithms is presented in Sections 3.2.2 and

3.2.3. However, first it is necessary to understand the environment and data that machine

learning can learn from; these topics are discussed below in Section 3.2.1. Please note,

Figure 3.1 is not comprehensive and provides only a high-level overview of machine

learning methods.

3.2.1 Environment and Data Representation

During the learning process, the machine learning system receives or obtains a dataset

(D) that describes the state of its environment. D can be collected and made availableto

the machine learning system after being prepared and cleaned by a human expert, or

the machine learning system can acquire D through iterative interaction with the envir-

onment. The dataset in the broadest sense is represented in the form of a table matrix

(Figure 3.2), where each row is an input vector ~X , called an instance. Instances are char-

acterised by independence of features (denoted xi ∈ ~X, i ∈ N) that measure different

47

48 Machine Learning: Background Chapter 3

Figure 3.2: Table matrix to represent data in machine learning

aspects of the instance [Witten & Frank 2011].

Understanding the effects of feature characteristics in machine learning is a funda-

mental step in choosing the machine learning components that fit the hypothesis function.

These characteristics are summarised in the following points:

• Feature type: this term refers to whether the feature value is numeric or nominal.

A numeric value means the data take numerical values, either real numbers or

integers. By contrast, nominal (or categorical) data refer to a string of characters.

Nominal features require encoding schemes to represent the values numerically

before the learning process can be started.

• Feature continuity: this term refers to whether the feature value is discrete or

continuous. ‘Continuous’ here typically refers to an infinite or very large numeric

feature space [DBL 2005] [Mitchell 1997]. By contrast, discrete values indicate a

small set of values, either numeric or nominal. .

• Feature space dimensionality: this term refers to how many elements are used in

the feature vector to represent the environment. This characteristic can be thought

of as the number of features in D that the machine learning system receives. A

high degree of dimensionality might slow the learning process. Thus it is im-

48

Section 3.2 Machine Learning Components 49

portant to select and extract only the features that are correlated with the problem

being learned.

The fundamental task of machine learning is to learn or discover the pattern of D.

This goal can be accomplished through three learning paradigms:

• Unsupervised learning: In this paradigm,D consists only of input vector (D(xi), xi ∈
~X). Usually, the goal of this paradigm is to search in the data for similarities and to

generate classes of patterns [Bishop 2006]. This paradigm falls outside the scope

of this work, but a brief description is provided in Section 3.3.1.

• Supervised learning: in this paradigm, D consists of two vectors (1) an input

vector xi ∈ ~X and (2) a corresponding supervisory single yk ∈ ~Y : k ∈ N.

The vector ~Y is the desired output , which is either a discrete-valued quantity or a

continuous-valued quantity. In this paradigm, the input vector is an element of a

fixed training dataset ofD, and the output values yk are then assigned to the dataset

, in the form D(xi, yk). The goal is to map the input vector to its corresponding

desired output, ~X → ~Y . More details about this paradigm are discussed in Section

3.3.2.

• Reinforcement learning: This paradigm is similar to supervised learning. How-

ever, instead of the model aiming for an explicit corresponding desired output, the

environment is designed with a reward signal r that tells the machine how appro-

priate its decision or action is. This takes the form D(xi, rp) : p ∈ N. Based on

this reward signal, the machine learning system searches for the best decision or

action (i.e the action that maximises the cumulative reward) that maps the input

vector to an action denoted as ~X → aj . Here, aj refers to the range or list of

actions (aj ∈ A) that are available to the machine learning system in each state.

Another difference between supervised learning and reinforcement learning is that

reinforcement learning does not require a fixed training set from which the input

vectors are taken. Additionally, the reinforcement learning system is embedded

49

50 Machine Learning: Background Chapter 3

Hypotheses
Representation

Nonparametric Al-
gorithms (White-box)

Parametric Al-
gorithms (Black-box)

Linear Model
(section 3.2.2.1)

Neural Network
(section 3.2.2.2)

Radial Basis
Function

Decision Tree

Rule Learning

Nearest neighbour
Learning

Figure 3.3: Representation Type

into an environment in which each action affects the state of the environment, and

is followed by a numerical reward that tells the learning system how good or bad

the action is (i.e. the learning system learns from a trial-and-error technique). By

contrast, supervised learning requires guidance on what to do during the learning

process. The details are discussed further in Section 3.3.3.

In short, machine learning can learn the pattern of a dataset in different ways, based

on the characteristic of the features, the availability of corresponding desired output res-

ults, and the learning target. In general, the machine learning system requires a target

function to determine how the pattern will be represented [Mitchell 1997]. In addition,

the machine learning system requires an optimisation algorithm to tune the representa-

tion function parameter. These components, as they occurred in this research, are dis-

cussed individually in the following sub-sections.

3.2.2 Hypothesis Representation

Hypothesis representation is a model to underline a structural pattern in a dataset; it al-

lows a machine learning system to make a decision or to perform a prediction for the

future. Mostly, the model develops of mathematical expressions that consists of a set of

50

Section 3.2 Machine Learning Components 51

coefficient parameters (denoted here θ) that represents a knowledge (pattern) in a given

D. Many formulations of representation model have been used in machine learning

to represent the hypothesis based on the data structure and the target of learning. The

simplest and most basic form of representation is a look-up table [Witten & Frank 2011],

which in some literature is called a tabular representation [Sammut & Webb 2011]. How-

ever, this type of representation is usually limited to relatively small and discrete feature

spaces, due to memory constraints [Sammut & Webb 2011][Marsland 2015]. Further-

more, this kind of representation is used mainly with reinforcement learning problems

rather than with supervised learning problems. However, when the feature space is con-

tinuous or grows to a larger size, some form of function approximator with parameters

may be used instead. Indeed, the function approximator outperforms the look-up table

because of its ability to generalise and estimate between feature values [Marsland 2015].

In addition, it is more practical to represent continuous feature space. The linear model

is one of the most widely used as a function approximator in machine learning. It is a

powerful and simple mathematical model that can be used to make an estimation based

on a linear combination of the input and output variables. Another approximator is an

artificial neural network model, which has been used in various of capacities for machine

learning. Although many other function approximators have been used to solve different

types of problems, as shown in Figure 3.3, the scope of this work concerns only linear

function and artificial neural network models.

The learning process of most machine learning algorithms is implemented through

two passes. The first is called the forward pass, when the input vector is applied, and the

output is calculated using a function approximation. The second pass is called the back-

ward pass, which in general means adjusting or tuning the parameters of the function

approximation to optimise the accuracy of the output, using some form of optimisation

method. In this thesis, the two passes are discussed separately. For the forward pass,two

of the most popular function approximations are considered, namely the linear model

(Section 3.2.2.1) and an artificial neural network (Section 3.2.2.2). For the backward

pass, regression and back propagation are discussed in Section 3.2.3 as optimisation of

51

52 Machine Learning: Background Chapter 3

algorithms.

3.2.2.1 Linear Model

A linear model is a black-box model. More specifically, it is a simple mathematical

equation that represents a relationship between one or more independent variables xi, i ∈

N, and one dependent variable y. This relationship is shown by a straight line when

plotted on a k ∈ N-dimension graph. There are main two types of linear equation.

The first is a simple linear model in which the linear equation involves one independent

variable xi, i = 1. The second type is called a multiple linear model, , which involves

than one independent variable, xi, i > 1. In general, machine learning applications

consider the multiple linear model, which takes the general form:

ŷ = b+
n∑
i=1

wi × xi (3.1)

where b is the intercept (In machine learning it is known as bias [Hastie et al. 2009])

which is the value of ŷ when ~X = 0; wi ∈ θ is the slope of the line. This form of the

linear model has been widely used in machine learning and statistical learning to define

the pattern of a dataset in linear algebraic relation [Witten & Frank 2011]. Figure 3.4 is a

a high-level block diagram that illustrates the relationship between the input vector and

the output variables.

The values of parameters b and w are unknown. Hence, at the beginning of the learn-

ing process, these values are set arbitrarily. The machine learning system then optimises

them using optimisation algorithms to fit the data points to a straight line. The most

widely used optimisation algorithms with the linear mode is regression analysis. More

information about this kind of optimisation algorithm is presented in Section 3.2.3.1

. However, often a linear function is not appropriate for modelling a non-linear rela-

tionship between the output and input vectors. In addition, if the dimensionality of the

feature space is very high, representing the output using a linear model becomes intract-

able.

52

Section 3.2 Machine Learning Components 53

x2 w2 Σ y

Output

x1 w1

Weights

x3 w3

b

Features

Figure 3.4: Block diagram for linear model

3.2.2.2 Artificial Neural Network Model

An Artificial Neural Network is an alternative black-box model approach to approxim-

ate an output (y) from a given dataset D. It is a powerful and complicated mathematical

model that can represent complex linear and non-linear functions [Mitchell 1997]. Fig-

ure 3.5 depicts the basic implementation uses of an artificial neural network, within a

feed-forward neural network. It consists of three layers of computational neuron units

called nodes. Typically, the first layer- called the input layer- takes the input features

xi ∈ X, where i ∈ N is the index of the input feature. The second layer is called the

hidden layer (denoted hj), where j ∈ N is the index of hidden nodes. The last layer is

called the output layer (denoted yk) where k ∈ N is the index of output nodes. Each

node in each layer is fully connected with all nodes in the next layer and each link is

associated with a weight value, denoted here as w ∈ θ. The value of the nodes in the

hidden layer is computed by the following equation:

hj = bj +
n∑
i=1

xiwij (3.2)

where n is the number of inputs and bj is the bias for hidden nodes, similar to the

method described above for linear models (Section 3.2.2.1). The term wij refers to the

connection weight between input node i and hidden node j. In addition, the output nodes

53

54 Machine Learning: Background Chapter 3

is computed as follows:

yk = bk +
m∑
j=1

hjwjk (3.3)

where m is the number of all hidden nodes, bk is another bias for output nodes, and

wjk is the connection weight between hidden node j and output node k.

One of the main characteristic elements of an artificial neural network is the trans-

fer function [Haykin 2007]. This function restricts the output range of each node in

the hidden and the output layer between two small values. One of the benefits of using

a transfer function is to allow the artificial neural network to learn non-linear relation-

ships. Many mathematical functions can be used to transfer values in an artificial neural

network. These include linear function (for the output nodes only), sigmoid function,

step function, ramp function, gaussian function, and hyperbolic tangent function. Two

types of transfer function (Figure 3.6) are discussed here. The most common form is the

sigmoid function [Haykin 2007], which can be stated as:

ϕ(z) =
1

1 + e−z
(3.4)

where z is any output variable from hidden or output nodes. This function graph can

be thought of as an S-shaped curve that bounds the output values between [0,1]. The

second function is the hyperbolic tangent function (tanh for short), which is defined as

the ratio between the value of hyperbolic sine and cosine functions [-1,1]. It takes the

following form:

ϕ(z) = tanh(z) =
sinh(z)

consh(z)
=
e(z) − e−(z)

e(z) + e−(z)
(3.5)

The block diagram (Figure 3.5) shows a basic artificial neural network structure with

three input nodes, three hidden nodes, and one output node. This structure can be exten-

54

Section 3.2 Machine Learning Components 55

x2 Σ ϕ Σ

Output Layer
(k ∈ N>0)

ϕ

Transfer
function

yk

x1

Input layer
(i ∈ N>0)

Σ

Hidden Layer
(j ∈ N>0)

ϕ

Transfer
function

xi

.

.

.

.
Σ

.

.

.

ϕ

Bias bj

Bias bk

v11

Weights
v[i, j]

v12
v1j

v21

v2j

v22

v11

v32

vij

w11

Weights
w[j, k]

w21

wj1

Features X

Figure 3.5: A fully connected feed-forward neural network structure consists of
three layers of nodes: (1) input layer denoted as xi, i ∈ N, (2) hidden layer denoted
as hj , j ∈ N and (3) output layer denoted as yk, k ∈ N .

ded to include any number of hidden nodes or multiple hidden layers, and may also have

several output nodes.

The use of an artificial neural network for machine learning is attractive for many

reasons. First, unlike the linear model, it provides a robust approach to approximate

different output values, including continuous output from a complex dataset structure

[Mitchell 1997]. This power comes from the ability of the hidden layer(s) to extract

implicit features or information that cannot be defined in the input vectors [Haykin

2007].This feature is also, one of the benefits of using the transfer function. Artificial

neural networks usually use a back-propagation algorithm as an optimisation function to

adjust the connection weights via the gradient descent method. More information on this

topic appears in Section 3.2.3.2

As state earlier, in this research the forward pass algorithm is separate from the

optimisation algorithm (backward pass). Algorithm 1 is the forward pass algorithm for

the artificial neural network.

55

56 Machine Learning: Background Chapter 3

−5.0 −4.0 −3.0 −2.0 −1.0 1.0 2.0 3.0 4.0 5.0

−1.0

−0.5

0.5

1.0

x

y
f(x) = ex−e−x

ex+e−x

f(x) = 1
1+e−x

Figure 3.6: Transfer Function

Algorithm 1 Artificial neural network framework, forward action algorithm

Require: : Initialise array weight wij , wjk with random values
Require: : Initialise bias bj = 1, bk = 1

1: for <each hidden node j> do
2: compute hj . according to Eq. 3.2
3: hj = ϕ(hj) . according to Eq. 3.4 or 3.5
4: end for
5: for <each output node k> do
6: compute yk . according to 3.3
7: yk = ϕ(yk) . according to Eq. 3.4 or 3.5
8: end for
9: Return y

3.2.3 Optimisation Algorithms

As shown in previous sections, the coefficient parameters (θ) of the function approxim-

ator are unknown. Hence, the machine learning system requires a method to analyse

the given dataset D and search through the hypotheses space to find θ that best fit the

D. These methods are called optimisation algorithms. The optimisation algorithm is a

fundamental element in each function approximation model; it aims to select the best

parameters from the set of available alternatives. In the previous section, the forward

pass function for computing the machine learning system output was discussed. In this

section, the backwards pass to adjust the value of the hypothesis parameters θ is dis-

56

Section 3.2 Machine Learning Components 57

cussed.

Several optimisation algorithms have been used in machine learning. This research

considers two algorithms: regression analysis and back propagation. These are the most

common algorithms to tune the hypothesis-parameter for hypothesis representation, es-

pecially in the linear and artificial neural network models. The reason for this suitability

is that these two algorithms offer good convergence that they offer to different hypotheses

[Witten & Frank 2011][Mitchell 1997]. Both algorithms adjust the model’s parameters

by specifying a measure of the error E between the predicted output ŷ and the desired

output y (often called the residual). This measure can be stated as:

Ek = (yk − ŷk) (3.6)

where k is the index number of predicted output that has been produced by the rep-

resentation. Indeed, the desired output can be pre-defined and provided to the machine

learning system, if the problem is one of supervised learning, or if it is computed based

on a reward signal from the environment (i.e. reinforcement learning problem). Further

details are presented in Section 3.3.2 and Section 3.3.3.

3.2.3.1 Regression Analysis

Regression analysis is one of the optimisation algorithms that are used to tune paramet-

ers, especially in a linear model. Specifically, it is a statistical method for modelling

relationships between variables [Montgomery et al. 2015] and it is extremely widely

used statistical techniques [Montgomery et al. 2015]. In general, many types of regres-

sion analysis can be used to fit a given dataset into different formulations. Types of

regression analysis include logistic regression [Hosmer Jr & Lemeshow 2004], polyno-

mial regression [Fan & Gijbels 1996], stepwise regression [Cohen et al. 2013], ridge

regression [Birkes & Dodge 2011], lasso regression [Li et al. 2005], elastic net regres-

sion [Hans 2011] , and linear regression. Linear regression is the most popular method

and is used to modify the bias (intercept) and slopes so that the data points fall on a

straight line.

57

58 Machine Learning: Background Chapter 3

Linear equation 3.1 stated that b and ~wi are unknown constants, which represent the

intercept and slopes respectively. The goal of the regression function is to find the best

values of these parameters to fit a line to a given D. The first step is to measure the error

E (Equation 3.6), so that Equation 3.1 can be rewritten as follows:

ŷ = b+
(n∑
i=1

wi × xi
)

+ E (3.7)

where n = |D|.

Equation 3.7 is a multiple linear regression model. The second step is to employ a

method to reduce the value of E; the most common approach in this regard is to use the

least mean squares (LMS) method. The LMS method is a mathematical procedure for

estimating the b and wi, so that the sum of squares (SS) of the residuals E is minimised.

SS =
n∑
i=1

E2 (3.8)

The estimators for b and wi (denoted here as b̂ and ŵ , respectively) are derived

through calculus to find the values that minimise SS. The final estimators of b̂ and ŵi

are stated as follows:

b̂ = ȳ − ŵx̄ (3.9)

and

ŵ =

∑n
i=1 yi(xi − x̄)∑
i=1 n(xi − x̄)2

(3.10)

where ȳ and x̄ refer to the means of y and x, respectively:

58

Section 3.2 Machine Learning Components 59

ȳ =

∑n
i=1 yi
n

x̄ =

∑n
i=1 xi
n

(3.11)

The analysis of residuals then plays a crucial role in checking the adequacy of the fit-

ted regression model. The process might iterate several times before an adequate model

is obtained [Montgomery et al. 2015].

3.2.3.2 Back Propagation

Another approach to adjusting the representation parameters θ, which is widely used

with the artificial neural network model, is back propagation. This method employs

gradient descent (denoted δ) to adjust θ (θ also called the connection weights w), in

order to minimise the error (E) between the network predicted output ŷk and the desired

output yk.

In general, the weight update equation in the back-propagation algorithm can be

stated as follows:

w = w +4w (3.12)

where 4w is the weight correction, for weight 4wjk connection from nodes in the

hidden layer hj to nodes in the output layer yk, which takes the form:

4 wjk = α× E × f ′(yk)× hj (3.13)

where α is the learning rate parameter that modulates the magnitude of the weight

adjustment. The term f ′(yk) is the derivative of the transfer function ϕ(yk) evaluated at

the induced local field hj , which takes the general form:

f ′(z) = z × (1− z) (3.14)

where z can be replaced with the induced local field at the hidden or output nodes. In

59

60 Machine Learning: Background Chapter 3

addition, the weight update equation can be extended to update the weights 4wij con-

necting nodes from the input layer xi to nodes in the hidden layer hj . This is expressed

as follows:

4 wij = β × E ×

(∑
j

(f ′(hj)× wjk)

)
× f ′(yk)× xi (3.15)

where f ′(hj) is the derivative of the transfer function ϕ(hj) evaluated for the induced

local field hj , as expressed in Equation 3.14. The parameters β are another learning

rate to modulate the weight adjustment equation for the input-hidden connection weight.

Generally, these two learning rates (α and β) take different values in the interval [0,1].

Algorithm 2 describes the backward pass used to optimise the parameters θ in the

artificial neural network model.

Algorithm 2 Back propagation algorithm

Require: : Initialise α and β
1: for <each output node : k > do
2: compute E ← yk − ŷk . according to equation 3.6
3: compute f ′(yk)← yk × (1− yk)
4: for <each hidden node : j > do
5: compute4wjk . according to equation 3.13
6: Update network weight wjk = wjk +4wjk
7: compute f ′(hj)← hj × (1− hj)
8:

9: for <each input node : i > do
10: compute4wij . according to equation 3.15
11: Update network weight wij = wij +4wij
12: end for
13: end for
14: end for
15: Return ~w

3.3 Learning Paradigms

In the past few decades, a vast set of learning algorithms has been introduced and de-

veloped to learn from different types of data and to solve a wide variety of tasks. These

60

Section 3.3 Learning Paradigms 61

Learning Paradigms

Learning WITH teacher learning WITHOUT teacher

Unsupervised
Learning (Section
3.3.1)
Reinforcement
Learning (Section
3.3.3)

Supervised Learn-
ing (Section 3.3.2)

Figure 3.7: Machine Learning Paradigms

algorithms are classified into two broad categories, as shown in Figure 3.7. The first

covers learning with a ’teacher’, also called supervised learning (Section 3.3.2). The

term ’teacher’ refers here to a dataset, represented by a set of input-output examples,

D(xi, yk). The second category of algorithms involves learning without a teacher, which

has two subdivisions: unsupervised learning (Section 3.3.1) and reinforcement learning

(Section 3.3.3). This research focuses primarily on reinforcement learning and super-

vised learning. Therefore, unsupervised learning is discussed at a high level without

going into the details.

3.3.1 Unsupervised Learning

The unsupervised learning paradigm is a data analysis technique that aims to find mean-

ingful information from given data without prior knowledge of that data and without any

guidance. More specifically, in contrast to supervised learning and reinforcement learn-

ing, there are no corresponding desired outputs or environmental feedback associated

with each input.

One of the sub-fields of unsupervised learning is clustering. In general, cluster-

ing aims to organise the data into meaningful subgroups. Each subgroup that emerges

throughout data analysis defines a smaller set of data that shares a degree of similarity.

Clustering is a useful method for structuring information and deriving significant rela-

61

62 Machine Learning: Background Chapter 3

tionships between data [Raschka 2015]. Examples of clustering algorithms include hier-

archical clustering [Flach 2012:p.253] and the k-means algorithm [Flach 2012:p.247].

Another important sub-field in unsupervised learning is dimension reduction (or di-

mensionality reduction). This sub-field is useful with data of high dimensionality of

feature space. In a broad sense, dimension reduction is a process of reducing the number

of features by removing noise from the data. Information about this sub-field can be

found in [Sugiyama 2016] and [Kramer 2013]. The high dimensionality of feature space

can present a challenge for the performance of machine learning, and can also affect

storage space. Because unsupervised learning lies beyond the scope of this work, this

paradigm and its algorithms are not discussed further here. More information can be

found in [Bishop 2006].

3.3.2 Supervised Learning

Supervised learning is a type of machine learning algorithms, which use labelled datasets

to learn how to perform actions or predictions about the future [Hastie et al. 2009][Mitchell

1997]. The approach relies on a ”teacher” to gain knowledge from the data. The teacher

in this context is a labelled dataset of input-output pairs Ta = (xi, yi)
N
i=1. From this

teacher, the machine learning system learns the parameters underlying the relationship

between the input vector x and the desired output value y, in order to predict an efficient

decision in the future. Here Ta is called the training set, where Ta ∈ D, and N is the

number of training sets used to train the model.

Supervised learning problems can be divided into two broad categories:

• Classification: In this category, the goal is to assign a label from a discrete class

to the observations. That is, the output of the model is nominal, such as ’right’ or

’left’; ’white’ or ’black’. Applications include medical disease diagnosis, docu-

ment categorisation, and social network analysis [Aggarwal 2015].

• Regression: In this category, the goal is to predict numerical values that are either

continuous or discrete, such as ’prices’, ’ages’, or ’percentages’. Examples of

62

Section 3.3 Learning Paradigms 63

regression include forecasting stock prices or variations of economic variables

[Mohri et al. 2012].

To illustrate this learning paradigm, a machine learning system learning might learn

how to predict the weather for the the immediate future based on historical weather

records. There are two types of prediction in weather forecasting that supervised learning

can be deployed to solve. The first is to predict the temperature, which is a continuous

variable. This kind of prediction is called a regression problem. The second is to predict

the class of weather forecasts, such as sunny, cloudy, rainy, or snowy and so on, where

the output of this prediction type is a discrete (nominal) value. This second kind of

prediction is known as a classification problem.

3.3.3 Reinforcement Learning

In contrast to supervised learning, the reinforcement learning paradigm uses numerical

feedback to evaluate the machine learning system’s decisions. Reinforcement learning is

a machine learning method used to tackle sequential decision-making problems through

a trial-and-error technique to search for effective actions [Sutton & Barto 1998]. It is

defined as a way of instructing the machine learning system by using a reward and pun-

ishment (feedback) signal without needing to specify how the task is to be achieved

[Kaelbling et al. 1996]. In the broadest sense, a machine learning system, using the rein-

forcement learning paradigm, interacts with a single environment ; it observers the state

of that environment, selects an action, and receives a scalar reward or feedback for the

action. The process is depicted in Figure 3.8.

The environment, in this paradigm, is characterised by a set of states, S, in which

every state is constructed from a vector of features (called state features). The machine

learning system consists of a set of actions, A, that are applicable to perform on the

environment (Figure 3.8). A machine learning system1 interacts with its environment

at each time of a sequence of discrete or continuous time steps, t = 0, 1, 2, 3 · · · The

interaction takes place through a repeated cycle of three steps:

1In most literature on reinforcement learning, machine learning systems are called the ”agent”. However,
in this thesis the term machine learning system is consistently used, to avoid confusion

63

64 Machine Learning: Background Chapter 3

State
Representation

action-
selection

policy

Hypothesis
Representation

Optimisation
Algorithm

Machine Learning System

Environment

~S(X)

r

~a
adjust ~W

ŷ

Figure 3.8: The reinforcement learning paradigm consists of a machine learning
system interacting with an environment. At each discrete time t, the machine learn-
ing system observes the state of the environment st and performs an action at in
order to transition from its current state to a subsequent state st+1. It receives a re-
ward r(t+1) for the value of that transition. Over time, the machine learning system
learns to improve the selection of actions that maximise the cumulative reward

(1) sensing the state of the environment at t st ∈ S;

(2) performing an action at ∈ A(st), where A(st) is a set of actions that are admiss-

ible for the state st; that is, A(st) ⊂ A;

(3) receiving a scalar reward, which in general cases is defined as R : S → R, which

specifies the reward obtained in each state.

For the reward function, there are two other definitions. The first is thatR : S×A→

R, which means the reward is given for performing an action in a state. The second

is R : S × A × S → R, which refers to the reward obtained for a transition from

one particular state to another, after performing an action. These two definitions are

interchangeable, but the second one is more convenient in model-free algorithms because

they require both the starting state and the resulting states to obtain the value [van Otterlo

& Wiering 2012]. Throughout this work ,the definition R(st, at, st+1) is used primarily,

64

Section 3.3 Learning Paradigms 65

where st is the given state, st+1 is the next state and t is the time steps. In general,

the reward function indicates the utility of the action taken in the given state without

specifying what the best or the worst possible action is.

At each time step t, the machine learning system interacts with its environment with

the goal of building an action selection policy (denoted πt) , which maps the states to the

actions π : S → A, where πt(a|s) is the probability of At = a if St = s. The goal of

this policy is to maximise the reward signal that represents a long-term objective. Thus,

the policy is a fundamental step in understanding the characteristics of the reinforce-

ment learning components before building any reinforcement learning application; the

components are the environment state space, the machine learning system action space,

and the reward space. These components of reinforcement learning can be formalised

using a Markov decision process (MDPs) framework, especially if the state and action

space are discrete. The MDPs are a standard formalism for learning sequential decision

making [Wooldridge & Jennings 1995]. They are tuples (S,A, Tr,R) where:

• S is the set of environment states, which can take a broad range of forms. For in-

stance, state spaces can be defined by continuous variables such as velocity, price,

performance, torque etc., called continuous state-spaces (|S| ∈ N); Alternatively,

they can be defined by a discrete state-space if the number of states is discrete.

• A is the set of possible actions available to the machine learning system.

• Tr is the state transition function. It is defined as Tr(st, at, st+1)→ [0, 1], where

Tr represents the probability of reaching state st+1 ∈ S by applying action a ∈

A(st) in state st ∈ S. A characteristics of this function is that it is deterministic.

This refers to the probability of the learning system being in some state st+1 after

taking action at from state st, or ρatstst+1
. State transition determinism occurs when

ρatstst+1
= 1. By contrast, if ρatstst+1

< 1 the transition is non-deterministic or

stochastic.

• R is the reward function: R(st, at, st+1) → R. It provides an immediate indica-

tion when an action at ∈ A(st) is taken in state st and moves the machine learning

65

66 Machine Learning: Background Chapter 3

system into a subsequent state st+1 ∈ S.

Figure 3.10 shows a mind-map of the reinforcement learning components and their

features. The following sections present a formal description of the characteristics of

these components, followed by a discussion of how to build an action policy, how to

represent it and how to optimise ~w = θ (from Section 3.2.2).

3.3.3.1 State Space Dimensions

This section describes the basic characteristics that are associated with the state space

of the environment. Each state is characterised by features that can be represented in

the form of a table matrix, as described in Section 3.2.1. Through interaction with the

environment, a machine learning system observes features of st+1 in the form of input

vector ~X . In Section 3.2.1 it was explained that the state feature vector has several of

characteristics such as being continuous or discrete. Although many problems (espe-

cially benchmark problems) of reinforcement learning have discrete feature spaces, such

as Grid-world [van Haaelt 2012], many real-world problems have continuous states, such

as helicopter controls [van Haaelt 2012]. In the most challenging cases, it can be very

complex for a machine learning system to learn whether the environment is characterised

by an infinite or a very large number of states [Gatti 2015]. In this research the number

of states is referred to as complexity (Section 3.2.1).

3.3.3.2 Action Space Dimensions

This section describes the basic characteristics associated with the action space of the

machine learning system. Actions are used by the machine learning system to control its

states. In most reinforcement learning problems, the machine learning system consists

of a set of actions A, where the size of the action space is discrete. However, there

are many real-world problems in which the machine learning system includes a large or

infinite action space. In such cases, the action space is called continuous. Often there

is some relation between the action space and the state space, such that continuous state

spaces have continuous action spaces and vice versa [Gatti 2015]. The final characteristic

of action space is the branching factor which refers to the number of actions that can be

66

Section 3.3 Learning Paradigms 67

taken in any given state. More specifically, some domains may have a constant number

of actions that can be performed from all states. By contrast, other domains may have a

different number of possible actions in each state [Sutton & Barto 2012] [Gatti 2015].

3.3.3.3 Reward Properties

This section describes the basic characteristics that are associated with the reward space

of the environment. Generally, the reward signal guides the machine learning system to

achieve a goal that is not explicitly defined. The term reward describes any numerical

feedback, whether positive or negative, which the machine learning system obtains after

visiting a state or performing actions in a state. Although broadly the reward provides

an indication of the utility of actions in the immediate sense, it is also used to build a

value for each state; rewards are accumulated to show the longer-term benefit, denoted

as V (s) where s ∈ S. This state value allows the machine learning system to plan for

the future before performing any action. The value of the state can be denoted as:

V π(st) =

∞∑
i=0

γirt+i (3.16)

where rt+i is the reward values received after the i−th transition starting from st at time

t, and γ ∈ [0, 1] is the discount factor, which is a constant that determines the importance

of future rewards. Meaning, if γ value is set to 0 then only the immediate reward is

considered; but as if the value is set closer to 1, future rewards become more important

for the machine learning system. A reinforcement learning system actually requires a

policy (π) to use equation 3.16. Further discussion the policy appears in Section 3.3.3.4.

The reward can be deterministic, which means each state s ∈ S has a fixed reward

value provided to the machine learning system when it visits the same state at each

distinct time t. However, the reward value can be stochastic (non-deterministic) when it

is a fraction of the time, which is relatively more challenging for the machine learning

system. Furthermore, the reward signal can be distributed over state space in a different

manner. For instance, the mountain car problem has a single reward state which is the

67

68 Machine Learning: Background Chapter 3

state when the car reaches its goal. By contrast, Tic-tac-toe has multiple states that all

provide a reward signal of equal magnitude, because there are many ways to win the

game. However, in Backgammon the reward signals are of equal magnitude because

there are different types of wins. [Gatti 2015] defined several cases that represent the

most common reward distributions and magnanimities:

• Single reward state with a positively valued reward only.

• Two reward states, one state with a positive reward value and the other with a

negative reward value, where each has the same magnitude.

• Multiple reward states. each state has either positive or negative reward values,

and all have the same magnitude

• Multiple reward states, each state has either positive or negative reward values, but

rewards do not have the same magnitude.

Moreover, in most applications, the reward function is stationary. This means the re-

wards distribution does not change over time.

The vast majority of reinforcement learning problems have a stationary reward func-

tion that does not change over time with different types of distribution characteristics.

However, in this research, the reward function is non-stationary. In addition, it is con-

structed from multiple values with different magnitudes, which makes this research more

challenging.

3.3.3.4 Building Action Selection Policy

The action policy (for short, ’policy’, denoted by π) for reinforcement learning defines

how the machine learning system behaves in each state s ∈ S at each discrete time t.

More specifically, a policy is a computable function for selecting the best action at ∈ A

to be taken by the machine learning system when it is in a state st ∈ S, at t; that is,

π(st) = at. This process is known as mapping each state of the environment to an

action. However, often each state might be assigned to a set of admissible actions; thus,

the goal of reinforcement learning algorithms is to find the best action for each state, to

68

Section 3.3 Learning Paradigms 69

maximises the cumulative reward of a machine learning system over several time steps.

The result is called the ’optimal policy’ (π∗).

Almost all reinforcement learning applications learn the optimal policy by comput-

ing the state value (Equation 3.16). The state value can be achieved by following a policy

π starting from a state st as follows:

V π(st) = Eπ

[∞∑
t=0

γrt|st = s

]
(3.17)

This function is called the expected value of state s under policy π, where 0 ≤ γ < 1

is a factor used to discount the future reward, and Eπ is the expectation assuming the

machine learning system follows policy π. The goal of the machine learning system is to

find the optimal policy that returns the greatest V (s) for a given state s, which is called

the ’optimal value function’ and is denoted by V ∗(s). The best way to do this is by

employing the Bellman optimality equation [Bertsekas 1987] for each state, which takes

the following form:

V ∗(st) = max
at∈A(st)

∑
st∈S

Tr(st, at, st+1)
(
R(st, at, st+1) + γV ∗(st+1)

)
(3.18)

The Bellman equation indicates that the value of being in a state (st) and performing

an action (at) under an optimal policy (denoted π∗(s)) will be equal to the expected

return for the best action in that state. The optimal policy function for selecting the best

action in a given state takes the following form:

π∗(st) = arg max
at∈A(st)

∑
st∈S

Tr(st, at, st+1)
(
R(st, at, st+1) + γV ∗(st+1)

)
(3.19)

In other words, the optimal value function for each state s ia associated with any

69

70 Machine Learning: Background Chapter 3

optimal policy π∗, such that V π∗(s) ≥ V π(s) ∀s ∈ S and for all policies π. Keeping

track of all state values, as well as finding the optimal policy, therefore requires memory

to retain and update each state value, which is called Representation (as discussed in

Section 3.2.2).

A basic method to perform representation is to explicitly store each state value in a

look-up table consisting of the values of each state under different policies. The table

can be extended to add actions a ∈ A to the table columns, so that the value of executing

each legal action in each state can be computed. The result is called a state-action pair

value Q(st, at).

Qπ(st, at) = Eπ

[∞∑
t=0

γrt|st = s, at = a

]
(3.20)

However, the look-up table approach is computationally infeasible for a problem with

continuous state or/and continuous action. In such cases, a better method is to approx-

imate the state value or the state-action pair value using a parametrised function approx-

imation such as an artificial neural network (Section 3.2.2.2). This research followed that

approach. Moreover, the machine learning system requires algorithms to evaluate and

update the value of each state. For this purpose, a broad set of algorithms has been intro-

duced to update and learn the V (s) or Q(s, a) within the representation, called here the

optimisation algorithm. However, since reinforcement learning problems have no cor-

responding target output (as is the case for supervised learning problems), most learning

algorithms in reinforcement learning are built on the basis of the Temporal Difference

error (TD-error) function. This function predicts the error and allows the machine learn-

ing system to evaluate the action and learn the value of the state. The TD-error can be

expressed as follows:

TE =
[
rt + γV (st+1)

]
− V (st) (3.21)

where the quantity inside the brackets can be thought of as the target value; rt is the

70

Section 3.3 Learning Paradigms 71

x1

x2

xi

al

Σ

Σ

Σ

Σ

Σ Q(s, a)

State
Features

action

x1

x2

xi

Σ

Σ

Σ

Σ

Σ

Σ

Q(s, a1)

Q(s, an)

State
Features

Q
-value

foreach
possible

action

Figure 3.9: Modelling Q(s, a) with artificial neural network, Left panel: Naive
formulation of Q-value, where the network takes state features and an action. Right
panel: is more optimised formulation of Q-value, where the network only takes state
features and input and produces multiple Q-values equal to a number of actions
possible in the given state.

reward signal; V (st+1) is the value of the subsequent state and V (st) is the value of the

current state. Based on this prediction error function, the update function for the V (s)

and Q(s, a) can take the following general forms:

V (st) = V (st) + (α× TE) (3.22)

and

Q(st, at) = Q(st, at) + (α× TE) (3.23)

where α is the learning rate.

There are two approaches to model Q(s, a) through an artificial neural network, as

illustrated in Figure 3.9. Firstly, the artificial neural network takes as input the fea-

tures of a state st along with action a ∈ A(s) available for this state and produces a

single output that represents the value of Q(s, a). This process is shown in the left panel

of Figure 3.9. However, this approach leads to a practical issue because the policy of

the machine learning system is to take an action that maximises the Q-value; that is:

71

72 Machine Learning: Background Chapter 3

π∗(a|s) = arg maxQ(s, a). Therefore, with this approach, when the machine learning

system wants to perform an action it would have to iterate over all actions, then evaluate

Q for each one, and take the action that gave the highest Q [Karpathy 2014] [Matiisen

2015]. Alternatively the network could take only the state features as input and produce

several Q-values for each possible action, where each was interpreted as the Q-value of

taking that action in the given state. This approach has the advantage of choosing the ac-

tion that fulfils the policy π = arg max (the action with the highest Q-value). It requires

performing only one forward pass through the network and all Q-values for all actions

are available immediately. This second approach is the more optimised architecture for

formulating Q-values using an artificial neural network model.

Thus far, the thesis has provided a discussion of the most popular methodology to

approximate the optimal policy π∗, through the estimation of the optimal value function

(V ∗ and Q∗). This means that rather than estimating π∗ directly, V ∗ and Q∗ are es-

timated. This methodology is often called ’value approximation’. However, in some of

the literature it is called the ’critic-only’ algorithm, where the critic is the approximate

value function [Grondman et al. 2012][Heidrich-Meisner et al. 2007][Grondman 2015].

Evidently, the value function (critic-only) methodology assumes that the action space

is independent of state space and also consists of a fixed number of discrete actions.

Therefore, using this approach in continuous state and action spaces can be non-trivial

and time consuming [van Haaelt 2012]

Two other methodologies can be used to estimate the policy. The first estimates the

policy directly without estimating the critic. This method is often called the direct policy-

search [Ng et al. 1999] or actor-only algorithm [Konda & Tsitsiklis 1999]. Usually,

algorithms in this method rely on optimising parametrised policies, usually by gradient

descent [Grondman et al. 2012] [Konda & Tsitsiklis 1999]. The advantage of this method

is the ability to generate actions in the complete continuous action space [Grondman

et al. 2012] [Grondman 2015]. However, a conceivable drawback of this methods is

that it might suffer from a large variance in the estimates of the gradient, leading to

slow learning [Grondman 2015] [Konda & Tsitsiklis 1999]. Furthermore, the method

72

Section 3.4 RL with Artificial Neural Network: a Survey 73

does not use temporal-difference learning algorithms, which means that a new gradient

is estimated independently of past estimates. For this reason, there is no learning in the

sense of accumulation and consolidation of older estimations [Konda & Tsitsiklis 1999].

The second methodology combines the advantages of the critic-only and actor-only

methods. It is called the actor-critic. The critic uses an approximation architecture to

estimate a value function, which is then used to update the actor’s policy parameters.

Hence, this method can deal with continuous state and action space problems more suc-

cessfully than the previous methods [van Haaelt 2012]. As the name implies, actor-critic

methods rely on two functions: (1) the actor function which is used to implement a

stochastic policy that maps state to action, and (2) the value function (described above,

Equation 3.22 and Equation 3.23); this function is used to estimate and evaluate the value

of each state [Crites & Barto 1994]. Evaluations and updates are based on the TD-error

function (Equation 3.21). More specifically, at each time t, the reinforcement learning

machine learning system approximates the value of the current state V (st) and selects

an action at based on the actor function. It then computes the TD-error based on the

V (st+1) and V (st). Finally, the machine learning system updates the actor by adjusting

the action probabilities using the TD-error value, and by improving the state-value func-

tion using the same TD-error value. The problem in updating the actor function is that if

the TD-error value is negative, the action performs relatively poorly and its probability

will be decreased. Therefore, actor-critic algorithms usually update their actor only if

the TD-error is positive [van Hasselt & Wiering 2007] [Wiering & van Hasselt 2007].

Additionally, actor-critic methods assume the actor function is independent of the critic

function and select a single action at each time t step.

3.4 RL with Artificial Neural Network: a Survey

Artificial neural network is a popular and attractive candidate as a function representation

in reinforcement learning (RL) applications. It has the capacity to represent complex

functions and is able to generalise effectively from a few training examples [Lange et al.

2012] [Whiteson 2012].

73

74 Machine Learning: Background Chapter 3

As mentioned previously in this chapter (Section 3.3.3.4), actions of machine learn-

ing systems can be represented by the artificial neural network in two ways (Figure 3.9).

Moreover, the input vector in the artificial neural network corresponds to a state feature,

such that the value of these features together describes the state of the machine learn-

ing system. In general, traditional reinforcement learning systems assume discrete state

and action spaces [Smart & Kaelbling 2000]. However, many real-world problems have

continuous states and action spaces; the current study is a good example of that [van

Haaelt 2012][Gatti 2015]. This section introduces several approaches to implementing

the artificial neural network with reinforcement learning, and demonstrates their action

policies. Table 3.1 shows the differences between the approaches (mentioned in this sec-

tion) of using the artificial neural network to model the Q − value and build the action

policy. All these approaches mainly interact with a single environment and perform one

action at each time step, selecting from action spaces. The approach in this work differs

in that it interacts with multiple environments and therefore performs multiple actions

simultaneously.

3.4.1 TD-Gammon

Perhaps one of the oldest and best-known successful implementations of reinforcement

learning with an artificial neural network is TD-Gammon [Tesauro 1992]. TD-gammon

used an artificial neural network as a position evaluator for a Backgammon game. The

output of the artificial network was an evaluation of the game position (based on an en-

coding of the game position), which was fed to the network as an input vector. However,

the artificial network did not consider the possibility of doubling; that was handled by a

separate heuristic code. After each forward pass step, the weight connection of the ar-

tificial network was updated with a back-propagation algorithm after computing the TD

error of the output. The reinforcement learning system was trained by self-play, without

explicit exploration [Szita 2012].

The artificial neural network was used to approximate the state value function V (s)

only, rather than the action-value function Q(s, a). Also, it used a direct policy research

(i.e. actor only) to learn the policy of action from the self-play games [Mnih et al.

74

Section 3.4 RL with Artificial Neural Network: a Survey 75

2013]. By contrast, our approach applies reinforcement learning system requirements to

perform multiple continuous actions at the same time, with each action conflicting with

all other actions.

3.4.2 Neural Fitted Q Iteration (NFQ)

Neural fitted Q (NFQ) iteration is an algorithm for efficient and effective training of

a Q − value function, represented by a multiple layer perceptron [Riedmiller 2005].

The NFQ is a batch reinforcement learning method [Lange et al. 2012]. This approach

overcomes the problem of needing many training samples, collected and stored as a

sequence of samples from the environment, for every learning iteration in order to re-use

them to update the value function simultaneously at all transitions. This method affects

the other state value function examined so far.

However, NFQ uses a batch update that has a computational cost per iteration, which

corresponds in size to the size of the dataset [Mnih et al. 2013]. Moreover, NFQ assumes

that the action space is finite or restricted within a limited interval. Also, it was designed

to perform one action at a time.

3.4.3 Deep Reinforcement Learning

Deep reinforcement learning combines deep neural networks with reinforcement learn-

ing. Perhaps the first work that showed impressive results with this approach was that of

[Mnih et al. 2013] and more recently [Mnih et al. 2015]; both studies were performed by

a team of DeepMind Technologies – which became Google DeepMind in 2014. Their

work was focused on learning control policies (actions) from the heigh-dimensional

sensor, using a combination of a Q-learning algorithm with a deep neural network. Their

approach is distinguished from NFQ by its use of stochastic gradient updates, which are

not considered in NFQ. The advantage of using stochastic gradient updates is they have

a low constant cost per iteration and can scale to large datasets [Mnih et al. 2013] . The

researchers then used this approach to train two artificial neural networks, one for policy

and anther for value function, to allow the reinforcement learning system to learn a GO

game, which they called AlphaGO [Silver et al. 2016]. However, this approach suffers

75

76 Machine Learning: Background Chapter 3

Table 3.1: Comparison among approaches to implementing artificial neural networks
with reinforcement learning

Number of environments State space Action space

Framework

Single Multiple Discrete Continuous Discrete Continuous

Action policy Number of actions to be performed at once

NFQ [Tesauro 1992] X x X X X – π = argmax(Q(s, a)) 1

Playing Atari [Mnih et al. 2013] X x X X X X π = argmax(Q(s, a)) 1

AlphaGO [Silver et al. 2016] X x X X X X π = p(a|s) 1

Our Approach x X X X x X π = (V (s)k)t∑
∀V (s)(V (s)) multiple

from substantial overestimations in some games in the Atari 2600 domain [Van Has-

selt et al. 2016]. To overcome this problem, [Van Hasselt et al. 2016] introduced the

Double Q-learning algorithm, which can be generalised to work with large-scale func-

tion approximation. Although the deep reinforcement learning approach is fairly similar

to our approach and it can work with continuous state and action spaces, our approach is

designed to deal with multiple continuous actions spaces.

3.5 Summary

Machine learning algorithms are suitable for solving problems in a complex and chan-

ging environment, such as cloud computing. This chapter provided an overview of ma-

chine learning algorithms, including two main branches: supervised learning and rein-

forcement learning. In addition, this chapter reviewed the use of machine learning to

predict an access pattern as it relates to this work. In the next chapter, a survey of dif-

ferent results using machine learning algorithms to solve problems in a cloud computing

environment is presented.

76

Section 3.5 Summary 77

Reinforcement
Learning

Framework

State Space

Discrete

Continuous

Complex

Dimension-
ality

Transition
Determ-
inistic

Action Space

Continuous

Discrete

Branching
Factor

Reward
Function

Distribution

Magnitude

Deterministic

StochasticStationarity

Action-
selectionPolicy

Value
function

On-Policy

Sarsa
TD

Off-Policy

Q-
Learning

Policy
Approx-
imation

Actor–Critic

Actor–Only

ε− greedy

Figure 3.10: A mind-map of a reinforcement learning framework. Reinforcement
learning has four main components that interact with each other to solve sequential
decision problems: environment, action space, reward function, and action selection
policy.

77

78

CHAPTER 4

Machine Learning Applications in Cloud Computing

The second chapter in this thesis discussed cloud computing services, including the be-

nefits and risks of using these services. That chapter was focused on cloud storage ser-

vices and provided a detailed discussion about the issues of storing data using a single

cloud storage service. The chapter then provided a review of research that has aimed to

overcome the problems related to single cloud storage services.

Due to the complexity and dynamism of the cloud computing environment, machine

learning algorithms offer a solution for many optimisation problems in the cloud. The

previous chapter discussed machine learning algorithms, in particular the supervised

learning and reinforcement learning methods.

This chapter surveys the researcher’s proposed method to solve problems in the cloud

computing environment. Since cloud computing emerged in the market, researchers have

been addressing problems related mainly to resource management and energy efficiency.

The main goal of this chapter is to provide insight into various problems for which the

literature proposes solutions, based on machine learning algorithms, and to distinguish

this work from other research.

79

80 Machine Learning Applications in Cloud Computing Chapter 4

4.1 Resource Allocation Management

‘Computational resources’ refers to all hardware, whether physical or virtual, and soft-

ware connected to a computer system. This is different from the objective of this work,

which focuses on allocating files to remote storage based on file access patterns.

Cloud providers, especially those that provide IaaS, use virtualisation technologies to

partition physical computational resources into autonomous virtual resources. The phys-

ical resources include for example servers, central processing units (CPUs), memories,

storage, and network band-width. The autonomous virtual resources are often called

virtual machines (VMs). This technology enables cloud applications to scale resources

dynamically. Management of virtual resources in a large environment – such as the

cloud – presents challenges for resource planning and application management. These

challenges are associated with co-located virtual machines. Considerable effort has been

made by researchers to develop solutions to tackle these issues and control the scaling

of virtual resources. Since this research only considers solutions that include machine

learning techniques, other solutions used to allocate computational resources are not dis-

cussed. The following list present works the provided solutions for resource allocation

management based on machine learning algorithms.

- Choi et al. [2008] • addressed the problem of imbalance in the migration of VMs

across all physical machines, which sometimes causes an overload in machines. To solve

this problem, the authors presented a learning framework that autonomously adapts to

changes in VM migration and therefore uses resources effectively and efficiently. How-

ever, they did not mention precisely what type of learning algorithm was used.

- Rao et al. [2009] presented a reinforcement learning based algorithm, namely VCONF.

This algorithm is capable of auto-configuration of VMs to adapt to changes in demand

for applications. In general, the solution aims only to control performance without con-

sidering the influences on the cloud cost.

- Dutreilh et al. [2011] proposed a reinforcement learning approach to automatically

add and remove resources, based on the variable workload model. The aim of this work

80

Section 4.1 Resource Allocation Management 81

was to self-adapt several resources allocated to applications in cloud environments. The

rewards were formed from the cost and the penalties imposed when the target perform-

ance was violated. However, there was no balance between cost and performance in this

work. Furthermore, the authors did not consider the growth of cost over the billing time.

In addition, the cost function was based on the use of VMs, without thinking about net-

work bandwidth.

- Bu et al. [2011] proposed a coordinated auto-configuration framework called CoTuner,

to automatically adjust virtual resource allocation and application parameters to optimise

application performance. The heart of this framework is a combination of Simplex and

reinforcement learning methods. The Simplex method was used to reduce the search

space and avoid performance degradation caused by random exploration. The aim of

this framework is to adjust the configurations of the VMs dynamically, in response to

changes in workload. The authors claimed the proposed framework does not require

pre-learned performance models, and is suitable for highly complex and dynamic sys-

tems. The reward function in the reinforcement learning system is designed to reflect

the overall system performance of VM applications. More specifically, the reward is

constructed from the throughput, the response time, and the penalty for a service level

agreement (SLA 1) violation. However, like many others, this work lacks embedding of

cloud cost optimisation.

- [Kundu et al. 2012] studied the impact of configurations of VM resource allocations

on the application performance. The authors identified the three main parameters that

exert the most influence on the performance of virtual applications. Based on the results,

they introduced a solution that relies on an artificial neural network and support VM,

to model the performance of a VM-hosted application to improve resource allocation

management. They claimed this solution helps both users and cloud service providers.

However, the study and the proposed solution focus mainly on performance and do not

consider the effect of the solution on the cloud cost.

- [Vasić et al. 2012] proposed a framework called DejaVu, which uses supervised learn-
1SLA is an agreement or contract between a service provider (here cloud provider) and the cloud con-

sumer that defines the level of service expected from the cloud provider.

81

82 Machine Learning Applications in Cloud Computing Chapter 4

ing techniques to learn from experience how to automatically react to workload changes

in virtual resource allocation. The authors used an off-the-shelf classifiers technique

that operates on workload clusters, which are determined after an initial learning phase.

They claimed that this technique achieved a positive result in reducing the overall re-

source management effort and overheads.

- [Xu et al. 2012] introduced a unified reinforcement learning (URL) approach to auto-

configure VM processes and appliances running on virtual machines. The approach

comprised two reinforcement-learning learner machines. The first machine, App-Agent,

tuned the application parameter settings; the second machine, VM-Agent, adjusted the

VM configurations online. This work focused only on enhancing the response time of

applications in the cloud, without paying any attention to the cloud cost.

- [Chen & Bahsoon 2013] developed a self-adaptive and sensitivity-aware Quality of

Service (QoS) modelling approach. The approach consists of symmetric uncertainty,

with two machine learning techniques: auto-regressive moving average with eXogenous

inputs model (ARMAX), and a neural network. The approach yielded two formulations

of the QoS model. Mainly, the aims for this approach were to identify the primitives

correlated with QoS at run-time to capture the dynamics of QoS sensitivity.

- [Barrett et al. 2013] - introduced a parallel reinforcement learning agent approach

to optimise resource allocation in a cloud environment. Each agent observes an insular

environment state space (from the entire environment), learns an individually optimal

policy, performs a different action, and obtains a different reward. The agents then com-

municate with each other and exchange information regarding their observations while

operating in the environment. Each agent can choose an action from a discrete action

space (add, remove or maintain the numbers of VMs allocated to the application). Re-

wards are determined based on a combination of the cost of resources and any associated

penalties that might apply as a result of violating the specified SLA, which is related to

the response time (measured in milliseconds). Although this approach minimised cost

and response time, the researchers did not consider some of the factors that affect the

cost, such as network bandwidth. Furthermore, the cost of cloud computing is a cu-

82

Section 4.2 Energy Efficiency 83

mulative number within the billing period; this means that the cost value of the reward

function increases each time the user uses the same VM. Moreover, this work implicitly

assumes that the reward parameters (the cost of acquiring a resource and the response

time) have equal importance at all times. This means there is no trade-off between cost

and response time based on differences in demands or tasks.

- [Jamshidi et al. 2015] developed an online learning mechanism called FQL4KE, which

is a combination of fuzzy control and Fuzzy Q-Learning algorithms. Fuzzy control facil-

itates logic at a higher level of abstraction (human logic), and the Q-learning allows the

application to be adjusted according to demand by automatically scaling the computer re-

sources at run-time. The objective of this combination is to connect human expertise to a

continuous evolution mechanism. The reward function for Q-learning was defined based

on SLA violations, the amount of resource acquired (VMs), and throughput. Although

the reward parameters have corresponding weights that determine their relative import-

ance in the reward function, it requires a user to determine the value of these weights

based on their goal. Additionally, the authors implicitly assumed that the pricing scheme

was fixed, because their solution was designed for only one cloud service.

4.2 Energy Efficiency

Many interconnected factors at different levels of a computing system influence energy

consumption in a data centre. These factors include hardware efficiency, the resource

management system, the effectiveness of the application running on the system, power

distribution, and thermal load and cooling systems.[Beloglazov et al. 2011] [Chen et al.

2011].

Cloud computing resources are generally driven by demand application of cloud

users, whose numbers are rapidly growing. This growth has led to an overwhelming in-

crease in the energy bill and carbon dioxide footprint [Beloglazov et al. 2011] [Salimian

& Safi 2013]. However, limiting the energy use may affect users in term of service per-

formance and quality of service (QoS). These issues have received considerable research

attention and many solutions have been proposed to optimise the consumption of energy

83

84 Machine Learning Applications in Cloud Computing Chapter 4

within the cloud computing infrastructure [Demirci 2015]. Cloud computing sometimes

uses machine learning, and this topic is discussed next. The literature in this field is

reviewed below.

- [Cioara et al. 2011] addressed the problem of dynamic server consolidation in

virtual service centres, such as cloud infrastructures, by presenting an energy aware run-

time consolidation algorithm based on reinforcement learning. The aim of that research

was to minimise energy consumption in such an environment. However, the researchers

did not consider the effect of the research on the performance of services.

- [Prevost et al. 2011] introduced a framework for the prediction of future load demand

in cloud resources. The aim of this framework was to optimise cloud resources to reduce

energy consumption without adversely affecting all existing SLAs. In other words, this

work did not consider any enhancement of the performance of services.

- Dabbagh et al. [2014] introduced a method to control energy consumption. The au-

thors developed a framework that used stochastic theory to predict future VM requests,

and an unsupervised learning algorithm to cluster the VM requests into categories. Based

on this, the framework could decide when to switch the physical machines into sleep

mode to save energy. However, the researchers did not study the effect of their frame-

work on the performance of services.

4.3 Summary

This chapter summarised the considerable research in the field of machine learning al-

gorithms in the cloud computing environment. Most solutions that have been proposed

to solve various problems with cloud infrastructure have focused on the VM layer, either

to improve performance or to minimise costs and reduce energy consumption. However,

none of the studies reviewed in this chapter have incorporated file usage predictions (file

access patterns). Moreover, all have dealt only with a single cloud environment that

has a sole pricing scheme. To our knowledge, no studies have used machine learning

algorithms to distribute data across both single and multiple cloud storage. Therefore,

84

Section 4.3 Summary 85

this study might be the first to introduce machine learning techniques to overcome issues

related to distributing data across multiple clouds.

85

86

CHAPTER 5

System Architecture and Emulator

The previous chapters provided an overview of cloud computing and addressed concerns

about storing data in a single cloud storage service. A review of the literature related

to these concerns was provided, as was an overview of machine learning paradigms

and the application of machine learning to cloud computing. This chapter describes the

architecture of the framework for file distribution proposed in this thesis. A description

of the cloud storage emulator used to evaluate this framework is also provided.

5.1 OFDAMCSS Framework Architecture

The aim of this work is to use the power of machine learning algorithms to distribute

and optimise files across multiple cloud services. This chapter and those that follow

propose a novel framework, named Optimisation of File Distribution Across Multiple

Cloud Storage Services (OFDAMCSS). The framework allows for distribution of data

across multiple cloud storage services from the consumer side, based on file access pat-

terns. The main objective of the framework is to optimise both cost and performance

factors. The total cost, as considered in this research, includes storage, network band-

87

88 System Architecture and Emulator Chapter 5

APPM

File

RL Learning System

Distributor
& Mointor

C2 CkC1

File Attributes

Predicted Access

pattern attributes

Distribution Parameters

file fragment
file fragment

file fragment

Reward (cost and latency)

Figure 5.1: A high-level view of the Distribution Framework Structure, where
APPM estimates how many times each file will be accessed in the future and its
expected lifetime; the reinforcement learning system tunes the distribution para-
meters (i.e., the proportion of each file that will be located in each cloud); the
distributor manages distribution, taking distribution policy from the reinforcement
learning system ; C1,C2, and CK cloud storage services where k ∈ N.

width, and operations. The performance factor relates to transferring files between the

cloud consumer side and the cloud provider side (latency time). The distribution of data

across multiple cloud storage services will improve data availability and service continu-

ity, while avoiding the risk of vendor lock-in. The OFDAMCSS, illustrated in Figure 5.1,

comprises two machine learning methods:

1. Supervised learning Supervised learning, which predicts the access pattern for

each file, is here called the access pattern prediction model (APPM). It uses linear

regression to predict the access pattern for each file and is discussed in detail in

Chapter 6.

2. Reinforcement learning 1. which decides how to distribute files across multiple

clouds. This decision is based on the variance in cloud storage services’ pricing

schemes and performance, as well as file access patterns. The reinforcement learn-

ing system was trained with an artificial neural network to optimise cost and per-

88

Section 5.2 Cloud Storage Emulator 89

formance of cloud storage services over the long term. This learning system has

a new method to transfer the value of each state into an action. The method was

specifically designed for this research and is suitable for distribution tasks only.

Further details are provided in Chapter 7.

The APPM reads the file attributes and predicts the file access behaviour as well

as the file’s lifetime. The APPM then passes the file access pattern attributes to the

reinforcement learning system, which uses an artificial neural network to manage the

distribution policies based on the principles of RAID technology (Section 2.5). The

distributor uses the outputs of reinforcement learning to distribute each file (each file has

different size) over multiple cloud storage services. Here, the distributor aims to locate

a different proportion of each file on each cloud storage service.

Because of the high cost and time that would have been required to examine this

framework on real cloud storage services, a cloud storage emulator was built to evaluate

the framework. In the next section, the emulator is discussed in detail.

5.2 Cloud Storage Emulator

The emulator was built in JAVA and was designed to emulate the performance and costs

of cloud storage services. It was a block box emulator that received the file size and

returned the latency time. The latency time is the time required to upload (write) and

download (read) the file to or from each cloud service. In addition, the emulator calcu-

lated the total cost of using the storage and the network bandwidth of each cloud service.

It was flexible and capable of emulating any number of cloud storage services simul-

taneously. The performance of the providers in this research was set up to simulate the

real performance of Google Cloud Storage, Amazon S3, Microsoft Azure Storage and

RackSpace Cloud File; these services were measured using the performance analysis

services of cloudharmony.com. For each cloud storage service, the fastest and slowest

performance speeds were measured. The mean value was calculated and was assigned

to the cloud in the emulator. Table 5.1 shows the highest and lowest values measured for

each cloud storage service by cloudharmony.com.

89

90 System Architecture and Emulator Chapter 5

Figure 5.2: Cloud storage emulator: the architecture of classes. The operation class
is responsible for writing and reading from the storage. After each operation, the
emulator calculates the latency time based on the speed of each cloud provider and
the total cost based on each cloud provider’s pricing scheme. The builder class
is responsible for building the storage services based on the configuration file that
contains all storage attributes

As shown in Figure 5.2, the cloud storage emulator consists of five classes: cloud

storage containers, cloud builder, operation, cloud storage pricing calculator, and cloud

monitor. First, the cloud builder class loads the cloud parameters from a configuration-

file, which consists of numbers of cloud storage services required to be built and the

minimum and maximum transfer speed for download and upload into each cloud. The

operations (read, write and delete) are managed by the operation class. The operation

class receives the order of upload (write), download (read), or delete from the distributor

system and then computes the time needed to complete the operation. The cloud monitor

class will observe the speed and cost for each cloud and send the average result to the

reinforcement learning system (agent).

90

Section 5.3 Summary 91

Table 5.1: Performance range of cloud storage services (measurements by cloudhar-
mony.com)

Cloud Provider Fastest speed MB/s Slowest speed
MB/s

Average MB/s

Google Cloud Stor-
age

20.59 17.55 19.07

Amazon S3 25.29 6.56 15.92

MS Azure Storage 21.08 16.04 18.56

RackSpace Cloud
File

19.55 13.62 16.58

5.3 Summary

This chapter focused on the architecture of the framework and how it works. It also

included a description of the emulator system used to perform experiments to evaluate

the framework. The following chapters cover these components in detail, as well as their

methodologies and how they work and cooperate in the framework.

91

92

CHAPTER 6

File Access Pattern Prediction

File access pattern attributes (read, write, lifespan) are the main factors that influence the

cost of cloud storage services. In Chapter 2 it was explained that the cost of cloud storage

is calculated using three factors: (1) storage cost, which is affected by the lifespan of the

file; (2) network cost, which is affected by the read and write behaviours of each file; and

(3) the number of operations (e.g. read, write, delete), which are influenced by access

behaviours. Therefore, if the access pattern can be predicted, the cost in the future can

also be predicted.

This chapter begins with a brief review of the use of machine learning to predict

access patterns. This is followed by details of how the training data were built and

how the prediction model was built. Finally, an evaluation of the prediction model is

presented.

6.1 Prediction of File Access Pattern: A Review

This research is based on the pattern of file access. The literature on using machine

learning to predict file access patterns is reviewed here; however, few works have been

93

94 File Access Pattern Prediction Chapter 6

published in this field. Only a few researchers have used machine learning algorithms to

predict files access patterns. For instance, [Vengerov 2008] presented a reinforcement-

learning-based framework for redistributing files over multi-tier storage systems, based

on their recent classification of access pattern. They classified file access patterns into

two groups: (1) hot, when the file is accessed frequently; and (2) the opposite group

called cold. In other research, [Mesnier et al. 2004] used decision trees to predict the

access pattern and lifespan of new files and classified them into read-only and write-

only. Based on that classification the system can automatically assign storage policies

for each individual file, instead of assigning one policy for all files. For instance, read-

only files will be aggressively replicated onto several hard disks to provide opportunities

for load spreading. By contrast, write-only files will be stored in an LFS partition. The

goal of the work was to adapt to the overall workload and performance changes in the

storage system in one data centre. Moreover, demonstrated a strong association between

a file’s access pattern and its names and attributes, such as date created, file’s owner, and

file extension type.

Generally, the above studies were based on the classification of access patterns.

However, this kind of classification is not suitable for cloud computing storage services,

because the price of such services depends on the extent of file access. Hence, this work

employs a numerical prediction of how many times each file will be read and written to

(updated) during its lifespan.

6.2 Trace History Files: Collections and Structure

This section provides details of how the dataset used to evaluate the approach taken in

this research was obtained. Initially, several organisations such as the University of York,

the Saudi Fund for Development (SFD), RackSpace, IBM, Microsoft, and Lepide were

contacted to request real-world data on file access logs. Unfortunately, none of those

organisations had activated file trace systems because of the load that would create on

the file-store system. Several researchers were also contacted about the data used in their

research, including [Mesnier et al. 2004], [Liu et al. 2013] and [Agrawal et al. 2007]. I

94

Section 6.2 Trace History Files: Collections and Structure 95

found some datasets, but it was for a short period (2 to 5 days) and was used for studying

the behaviour of each user for different files. However, what this research required was

data on the behaviour of all users for each single file. In addition, the data did not contain

clear information about the number of reads, updates, and lifetimes.

Due to the lack of available real-world log files, an access file log generator was cre-

ated to generate a synthetic dataset of access pattern log files, based on a workflow of real

systems in SFD. In fact, in this research, generating data synthetically proved to be more

useful than real-world data for several reasons. For example, because the parameters that

control the generation process were controlled, it was possible to generate a wide range

of datasets to demonstrate the generality of the system. Furthermore, synthetic data can

be a playground for the parameter space to meet some special condition that cannot be

found in real data. (More information about the benefits of using synthetic data, espe-

cially with machine learning algorithms, is available in [Nonnemaker 2008] and [Eggert

et al. 2015]). In addition, our synthetic data were realistic because they were based on

the workflows of real systems. Examples of these systems included vacation, payroll,

research, and annual budget systems. This research focused only on how long the file

would be active and how many times it would be accessed (number of reads and writes).

This section provides use-case diagrams for all systems mentioned above, to give an

overview of how these systems work and how the access pattern logs were generated.

Below is a selection of examples of the workflows for these systems.

• Vacation Application System: This system is one of the core elements in any

human resources (HR) system. Figure 6.1 shows a general use-case diagram of

this system, including users and their tasks, which affected the access pattern de-

termined in this research. There are several types of vacation, but all of them have

the same workflow:

1. User: creates a vacation application, then submits it to the section manager.

2. Section manager: receives applications from the team, then annotates them

before sending them to the department manager.

95

96 File Access Pattern Prediction Chapter 6

Vacation Application System
Vacation Application System

�extend�

�include�

Creates a
vacation

Form File

Submits it

Annotates the file

Signs or Rejects

Saves the file

Processes the application

User Section manager

Department manager

HR staff

Figure 6.1: Usually in SFD, the user creates a vacation file, fills it, then sends it
to the section manager. The manager annotates it and passes it to the department
manager to sign. Finally, the file is passed to HR staff to process and save

3. Department manager: He or she decides about the application and either

approves and signs it or rejects it. If the application has been approved, it is

sent directly to the HR department.

4. HR staff: They check the regulations and the process for the application

before saving the file.

Here, the vacation system is not only related to annual leave but refers to all types

of leave, such as sick leave, study leave, and exceptional leave. In general, the

time taken to process an application is two to four days. The file size is usually

between 50 KB and 70 KB.

• Payroll system workflow: This is the process by which the organisation prints

sheets of employees’ salaries, with each department on a different sheet, to be

96

Section 6.2 Trace History Files: Collections and Structure 97

Payroll System
Payroll System

Generate
payroll sheets

Review sheets

Sign sheets

Review sheets

Sign Sheet

Review sheets

Sign Sheet

1st HR staff

2nd HR staff

HR Manager

1st financial staff

2nd financial staff

Financial Manager

1st Auditor staff

2nd Auditor staffAuditor Manager

Figure 6.2: The payment roll system is used to generate sheets of employees’ salar-
ies. Usually, sheets are generated as drafts at the start of a month. They then pass
through various processes, administered by users in different departments, before
being sent to the bank.

sent to the bank. As illustrated in 6.2, the process of generating payrolls is fairly

lengthy because it involves three departments, each of which has different review-

ers. The following is an outline of this system’s workflow:

1. At the beginning of each month, first HR staff create a payroll sheet (first HR

staff refers to any employee in HR who has access to this system).

2. The second HR staff review the sheets and sign them (second HR staff refers

to any HR employee).

3. HR department manager: He or she signs the sheets before sending them to

the finance department.

4. In finance department: Two staff members review the sheets and check if

the total amount of all salaries is available in the account, before sending the

97

98 File Access Pattern Prediction Chapter 6

Annual Budget
Annual Budget

�extend�

Generate
Budget
Report

Review the report

Send it

Review the report

Review & sign

Sign

1st financial staff

2st financial staff

Financial Manager

1st Auditor staff

2nd Auditor staff

Auditor Manager

CEO

Figure 6.3: The annual budget system is used to create an annual report on expenses
in the past year and expectations of expenses in the coming year

sheets to the auditing department.

5. In auditing department: Two reviews take place before the manager of the

department signs the sheets and sends them to the bank; the bank then trans-

fers the salaries to employees’ accounts.

Monthly, a different sheet for each department is generated, containing all em-

ployees’ names and salaries. The process of this system starts at the beginning of

each month and usually ends on the 15th of each month. The file size of each sheet

is about 105 KB to 145 KB.

• Annual budget system workflow:Based on this system, staff from the finance

department generate an annual report of all expenses in the past year, including

salaries. This means all payroll sheets for the last 12 months will be re-opened.

Figure 6.3 gives an overview of the use-case diagram that shows a number of users

98

Section 6.2 Trace History Files: Collections and Structure 99

of this system and their effect on the documents. This system’s workflow can be

outlined as follows.

1. At the end of each year, first financial staff create a comprehensive report

on all expenses. (First financial staff refers to any employee in the finance

department who has access to this system).

2. Second financial staff: This person reviews the sheet and signs it. (Second

financial staff refers to any employee in the finance department.

3. Finance department manager: This manager also reviews the sheet and signs

it, then sends it to the auditing department.

4. At the auditing department, two staff must review the report before the man-

ager of the auditing department reviews it and signs it. The report will then

be sent to the CEO for approval.

The file size of this report is about 85 KB to 90 KB, and the process takes about

six to nine days from being generated until the CEO approves it.

• Research department system workflow: This system helps in creating research

documents about developing countries, to be used for studies. It is a small but

active system. Figure 6.4 gives an overview of the use-case diagram for the pro-

cess of creating and submitting research files. The following is the outline of this

system’s workflow:

1. At any time of the year, a researcher creates a report about a certain country.

2. The research manager reviews the report and sends it to the board of direct-

ors.

3. The board of directors may read this report several times.

The file size of this report is about 455 KB to 490 KB, and the lifetime of each file

is between five and 17 days.

99

100 File Access Pattern Prediction Chapter 6

Research Department System
Research Department System

�extend�

�extend�

Create a File

Submit it

Approve it

Send it

Read it

Researcher

Research Manager

Board of Directors

Figure 6.4: Research department system for generating research reports

6.3 Synthetic Data Generator

The generator system was written in JAVA to generate the datasets that emulate the be-

haviour of users on each file (e.g. read, update). A class was created for each of the

above systems to generate several file attributes: file size, number of times read, number

of times written to, the user, the creator of the file (file owner), date created, user depart-

ment, and user level (ordinary user, head of section, manager of department, or general

manager). Each class generated random variables for each attribute, uniformly distrib-

uted over the intervals shown in Table 6.2. For example, the payroll class generated one

sheet for each department monthly for one year. The size of each sheet (file size) was

randomly generated – with uniform distribution – from the range for each sheet, based on

how many employees work in each department. The departments were IT, HR, finance,

auditing, communications, engineering, and research. Similarly, the other attributes of

the file (number of reads and writes and its lifetime) were uniformly distributed in a

100

Section 6.3 Synthetic Data Generator 101

Table 6.1: Attributes of the synthetic datasets

Num. of In-
stances

Min. file size Max. file size Toltal size in
GB

WS-dataset 1 947 42 KB 490 KB 267.43

WS-dataset 2 2092 35 KB 490 KB 193.21

WS-dataset 3 2075 36 KB 490 KB 221.33

R-dataset 1 2116 16 KB 515 KB 172554

range [vmin,vmax], as shown in Table6.2. All other system files were generated in the

same manner. For the annual budget and payroll systems, the generator allowed users to

add a cover page, created as separate file with a size of between 35 KB and 50 KB.

Three synthetic datasets were generated based on the workflow systems mentioned

in the preceding section (denoted here as WS-dataset). One synthetic dataset (denoted

here as R-dataset) was generated randomly for unspecified workflow systems, based on

the random system row in Table 6.2;this dataset was used to test the generality of the

data. Table 6.1 shows the number of instances in each dataset. The total files in all

datasets was more than 9154 files, with a total size of more than 854 GB.

101

102
File

A
ccessPattern

Prediction
C

hapter
6

Table 6.2: Attribute variables from which the generator could select values

SYSTEMS # File range File Size range NR range NW range Lifetime range File Types Owner Department Owner Position level

Vacation applications [300,450] [50,70] KB NW + [1,2] 3 [2,4] days ”docx” HR O.user , H.section , D.manager

Research Documents [3,15] [485,490] kb NW + [5,7] [1,3] [5,17] days ”docx” Research O.user , H.section , D.manager

Annual Budget 1 [120,145] KB NW + [5,7] [6,9] [10,20] days ”xslx” Financial O.user , H.section , D.manager

PayRoll sheets 111 [220,500] kb NW+[2,4] 9 [6,10] days ”pdf” HR O.user , H.section , D.manager

Random System [500,2500] [15,600] kb NW+[1,10] [1,10] [1,20] days ”pdf” HR O.user , H.section , D.manager

* # File range, number of files to be generated; NR range, number of access readings; NW, number of access writings; owner department, department of user who created the file; owner position level, pay grade of user
who created file (O.user = ordinary user; H.Section = head of section; D.manager = department manager or director)

102

Section 6.4 Access Pattern Predictive Model 103

6.4 Access Pattern Predictive Model

The file access pattern describes the file’s behaviour throughout its lifetime. More spe-

cifically, the pattern describes how many times the file will be read or updated throughout

its lifespan. Understanding the behaviour of a file is vital for optimising the cost in cloud

storage services.

Unfortunately, few researchers use machine learning algorithms to predict file access

patterns. As summarised in Section 6.1, [Vengerov 2008] used a reinforcement learning

algorithm for redistributing files over a multi-tier storage system, based on the recent

classification of the access pattern (i.e. hot or cold files). [Mesnier et al. 2004] used

decision trees to predict the access pattern and lifespan of new files and to classify them

into read-only or write-only. However, using a classification mechanism to predict the

access pattern of files in cloud computing storage is infeasible. As discussed in Section

2.4, the cost of storage services for most cloud computing is calculated based on (1) the

amount of data stored, (2) the amount of network bandwidth used, and (3) the number

of operations (e.g. read, update, delete). Therefore, optimising the cost of cloud storage

services necessitates a prediction of ‘numerical’ access patterns of files, together with

their lifetime.

The goal of the access pattern predictive model (APPM) is to find correlations between

the proprieties of a file and its access pattern values. The values are as follows:

1. Lifetime: refers to the number of days the file is kept active. Although the general

meaning of lifetime or lifespan is the period between creating and deleting a file,

in this work only the active-lifetime of each file was of interest.

2. Number of read: refers to the number of times the file will be read throughout its

lifetime.

3. Number of write: refers to the number of times the file will be updated during its

lifetime.

The APPM was trained on the synthetic datasets for several department systems in a

103

104 File Access Pattern Prediction Chapter 6

large organisation (SFD, www.sfd.gov.sa). The datasets were generated based on the file

workflow of vacation, payroll, financial reporting, research and budgeting systems, as

described in the preceding section. The log file consisted of the following file attributes:

the departmental owner of the file, the file owner’s position, the date on which the file

was created, the file size, the file extension (docx, xlsx, or pdf), and the file category

(general letter, finance, vacation etc.).

6.5 Prediction Model Evaluation

To evaluate the quality of the APPM predictions, three utility functions were employed

to measure the regression performance. These functions were:

• Correlation coefficient, denoted by r (Pearson’s r).

• Root mean squared error, denoted by RMSE.

• Mean absolute error, denoted by MAE.

Tables 6.3, 6.4 and 6.5 show the evaluation results for WS-Dataset1, WS-Dataset2

and WS-Dataset3 respectively. The datasets in all tables display a correlation coefficient

close to +1, which indicates a very strong linear pattern in the datasets. In addition, the

results for MAE and RMSE imply a high accuracy of future prediction.

The other two datasets (R-Dataset1 and R-Dataset2) did not differ substantially from

the above three datasets. The results for these two datasets for the undefined workflow

system are shown in 6.6 and 6.7. Correlation coefficients values within the two datasets

were all above 0.85, which again indicates strong linear relationship. were higher than

the means of the WS-datasets. The differences between the R-datasets and WS-datasets

might be explained by the fact that the R-datasets were built randomly and not on certain

and clear patterns.

6.6 APPM System Overheads

The APPM experiments were conducted on MacBook Pro with processor 2.4 GHz Intel

Core i7, memory 8 GB, and 1600 MHz DDR3. The generation code of the synthetic

104

Section 6.6 APPM System Overheads 105

Table 6.3: APPM, measurement evaluation for WS-dataset 1

Lifetime Number of read Number of write

r 0.9761 0.9228 0.9889

MAE 0.9621 0.5648 0.0418

RMSE 1.3025 1.143 0.2119

Table 6.4: APPM, measurement evaluation for WS-dataset 2

Lifetime Number of read Number of write

r 0.9758 0.9085 0.9787

MAE 0.9843 0.6107 0.0774

RMSE 1.335 1.2154 0.3024

Table 6.5: APPM, measurement evaluation for WS-dataset 3

Lifetime Number of read Number of write

r 0.9752 0.9155 0.9852

MAE 1.0133 0.6323 0.0617

RMSE 1.3674 1.2245 0.2526

Table 6.6: APPM, measurement evaluation for R-dataset 1

Lifetime Number of read Number of write

r 0.8517 0.8726 0.8644

MAE 2.0049 0.9689 0.5084

RMSE 2.7346 1.8352 1.3956

Table 6.7: APPM, measurement evaluation for R-dataset 2

Lifetime Number of read Number of write

r 0.8728 0.8726 0.8525

MAE 1.9521 0.966 0.4082

RMSE 2.6531 1.835 1.3479

105

106 File Access Pattern Prediction Chapter 6

datasets was written in Java using IntelliJ IDEA CE. The generation of the datasets took

a few minutes. Thereafter, the datasets were fed to the WEKA system, which is a col-

lection of machine learning algorithms for data mining tasks. The task for WEKA was

to generate three regression models: one for reading, one for writing, and one for the

lifetime. The WEKA system took a few minutes to complete this task.

6.7 Summary

This work has shown that linear regression models are an accurate and adaptable mech-

anism for capturing associations between file attributes and file access pattern values.

The access pattern values can be used by a reinforcement learning system (accompanied

by a variation in cloud performance) to learn how to optimise cost and latency time in

different cloud storage services. Before discussing how reinforcement learning works,

the role of artificial neural networks in reinforcement learning system is explained. This

is a complex topic that requires introduction; in addition, this research provides a new al-

gorithm based on an artificial neural network. The following chapter therefore provides

details about how reinforcement learning systems learn to distribute data and optimise

cost and latency time. The next chapter also provides details about the hypothesis rep-

resentation (artificial neural networks).

106

CHAPTER 7

Intelligent Framework for Optimising File Distribution Across

Multiple Cloud Storage Services

The core of this research entailed learning how to balance differences in performance and

cost across multiple cloud storage services, based on predictions of file access patterns.

Learning in this context relies on the reinforcement learning paradigm. The reason for

choosing this paradigm to optimise the cost and performance of cloud storage was its

ability to maximise the expected long-term utilities in a large and dynamic environment,

such as cloud computing. Furthermore, reinforcement learning is a powerful approach

to deal with sequential decision tasks. This feature was apt for solving the problem

of optimising costs and latency times over the long term on several cloud services. In

addition, the best way to collect information about the behaviour of the cloud and its real

cost was by interacting with it.

The framework for optimising file distribution across multiple cloud storage services,

summarised as OFDAMCSS, has two learning components. These are supervised learn-

ing, described in Chapter 6 and reinforcement learning, which is covered in this chapter.

In this study reinforcement learning involved the use of an artificial neural network as

107

108
Intelligent Framework for Optimising File Distribution Across Multiple Cloud

Storage Services Chapter 7

a function approximator. This chapter starts by providing technical tips and discuss-

ing some of the issues in implementing the artificial neural network with the refinement

learning algorithm. A description of how reinforcement learning works in this frame-

work, including a novel idea for transferring the value state of each cloud to an action, is

then described.

7.1 Characteristics of the Reinforcement Learning System

The reinforcement learning framework, as described in Section 3.3.3, interacts with its

environment through (1) sensing the state of the environment, (2) performing an action,

and receiving a reward for that action. In this section of the thesis, the state space, action

space and reward function used to implement the reinforcement learning system within

the proposed framework are defined.

• State space: in this work, the state space consisted of four continuous features.

These features represented the attributes of the access pattern for each file. The

attributes were: (1) size of the file, (2) number of times the file was predicted to be

accessed in the future for reading only, (3) number of times the file was predicted

to be accessed in the future for writing only, and (4) the file’s lifespan. These

features were fed to the artificial neural network as the input vector.

• Action space: this feature was also continuous. It represented the proportion of

each file that would be allocated to each cloud storage service (i.e. a number

between 0 and 100 for each cloud).

• Reward function: this feature was constructed based on the latency time and total

cost, as described 4.

The system had one feed-forward artificial neural network, which used the state fea-

tures as input and then produced several actions. The number of actions was equal to the

number of clouds available at each time point. The feed-forward network in this study

consisted of three layers of nodes (input, hidden and output), with the input layer having

four nodes and the hidden layer 16. The output layer nodes were designed to expand and

108

Section 7.2 Artificial Neural Network with Reinforcement Learning 109

shrink according to how many cloud storage services were available to the framework at

each time step.

Using an artificial neural network with reinforcement learning requires certain en-

gineering processes to build the network. Thus, it is worth discussing some tips and

techniques that would usefully apply to any artificial neural network with any reinforce-

ment learning application. The following section presents tips and steps that are helpful

in building an artificial neural network as a function approximation for a reinforcement

learning algorithm.

7.2 Artificial Neural Network with Reinforcement Learning

In any reinforcement learning application, the use of an artificial neural network with

back-propagation to approximate the true value for each state can be a complicated pro-

cess [Sutton 2004]. Unlike supervised learning, reinforcement learning has several para-

meters that require careful setting. Choosing one parameter value inaccurately can affect

the quality of learning or cause a computer error. Unfortunately, little work has been

published on the setting of parameters for artificial neural networks in reinforcement

learning applications. The few examples include [Gatti & Embrechts 2013] and [Konen

& Bartz-Beielstein 2008]. This section provides hints for training the artificial neural

network using reinforcement learning algorithms to avoid any major issues.

As shown in Section 3.3.3.3, the reward value plays a crucial role in allowing the

reinforcement learning system to learn, by guiding the state values towards their op-

timal values. There are two scenarios in which rewards are provided to the learning

system. The first occurs at the end of a learning episode or when the agent reaches the

desired goals. Examples include the games of chess and Tic-tac-toe and the car mountain

benchmark. For this scenario, [Gatti & Embrechts 2013] provides basic techniques for

implementing the artificial neural network in the reinforcement learning problem. The

second scenario occurs when the reward is offered at each time step throughout each

episode; an example of this scenario is the current work.

This section describes techniques and provides tips to build an efficient artificial

109

110
Intelligent Framework for Optimising File Distribution Across Multiple Cloud

Storage Services Chapter 7

neural network for the reinforcement learning application in which a reward is provided

at the end of each step. A rule of thumb is to determine the reward dimensions, as

discussed in Section 3.3.3.3. Thereafter, the selection of the transfer function, at the

output layer, must correspond to the diversity of the reward value. For example, if the

reward range is [0,1], the transfer function at the output layer should operate over 0 and

1, including sigmoid function. Another example shows if the reward range is [-1,1], the

hyperbolic tangent function or similar is a good choice, as it produces values between

-1 and 1. The procedure is more delicate if the reward range space is infinite or large

(continuous reward), which was the case in this work. Generally, the linear transfer

function suits a continuous reward space. However, the main problem with continuous

reward applications is that if the differences between the network output values and the

reward values are vast, the training process might take a long time or might fail. In

this research, this was indeed a problem. The best solution was to normalise the reward

value to lie between two small values (upper and lower bounds), then choose the transfer

function compatible with it.

On the other side of the network, for the hidden layer, the choice of the transfer

function is less important than the transfer function at the output layer. However, [Gatti &

Embrechts 2013] recommend using a hyperbolic tangent function or a modified version,

such as f(x) = 1.7159× tanh(23x). I did not find any significant effect of the choice of

transfer function for this layer, as shown in the following chapter (Section 8.3.5). Thus,

the recommendations of [Gatti & Embrechts 2013] were followed in this study.

Another important step is the choice of learning-rate values in each connection layer.

Many studies indicate that network learning is improved if there are different learn-

ing rates for each connection layer[Nikolaev & Iba 2006] [Gatti & Embrechts 2013].

The main reason is that when a single learning rate exists for all layers, the connection

weights between the hidden and output layers can change substantially, whereas those of

the earlier connection layers might change very little, leading to inefficient training [Gatti

& Embrechts 2013]. The learning rate has a considerable effect on the updating of the

connection weight values, and affects the convergence and performance of the network.

110

Section 7.3 Reinforcement Learning Model 111

Moreover, it can cause extremely small or large values of nodes or connection weights,

which can result in an error on the computer. There are no constant rules for choosing

to learn rate values. The best method might entail tuning the learning rate parameters

after each training time until the best result is achieved. However, it is worth mentioning

that two approaches were presented by [Embrechts et al. 2010] and [Gatti & Embrechts

2013] for tuning learning rate parameters on each of the connection layers, to avoid such

issues in artificial neural networks. Due to time limitations these two approaches were

not tried in this work; instead, the earlier approach was used (which is based on adjust-

ing the learning rate randomly until the best result is reached). The best value was found

relatively quickly.

In addition to the above settings, the temporal discount factor λ has an effect on

connection weight updates. If the λ is zero or close to zero, the influence on the weight

update is small. By contrast, if the λ is close to 1 (but λ 6= 1) the impact on the weight

update is large, Finally, if λ = 1 is considered to follow Monte Carlo behaviour, but in

a superior manner that can apply to continuous tasks and works incrementally instead

of waiting until the end of the episode. [Gatti & Embrechts 2013] suggest choosing a

λ ≈ 0.7 which was found to be suitable starting value for this work.

7.3 Reinforcement Learning Model

In most reinforcement learning applications that use an artificial neural network as the

function approximator, the artificial neural network is fed with the state vector s as input.

The network produces multiple outputs, each of which represents Q(s, a), as shown

in Section 3.3.3.4. Thereafter the action can be chosen as either critic-only or actor-

critic (Section 3.3.3.4). Critic-only is limited to a discrete action space, whereas actor-

critic is suitable for continuous state and action spaces. Recent and popular examples

of these two methods are provided by [Mnih et al. 2013] [Mnih et al. 2015] and [Silver

et al. 2016]. These methods, especially the critic-only approach, usually require a fixed

output neurone node, which did not suit the requirements of this work. [Silver et al.

2016] used two separate artificial neural networks, one for evaluation of the state of

111

112
Intelligent Framework for Optimising File Distribution Across Multiple Cloud

Storage Services Chapter 7

x2 Σ ϕ Σ ϕ y2 a2 = y2∑
∀y(y)

c2

x1

Input layer
(i ∈ R>0)

Σ

Hidden Layer
(j ∈ R>0)

ϕ

Transfer
function

Σ

Output Layer
(k ∈ R>0)

ϕ

Transfer
function

y1

V(s)

a1 = y1∑
∀y(y)

Action
Values

c1

xi

.

.

.

.
Σ

.

.

.

ϕ Σ

.

.

.

ϕ yk a3 = y3∑
∀y(y)

ck

.

.

.
TE2

TE1

TEk

v11

Weights
v[i, j]

v12
v1j

v21

v2j

v22

v11

v32

vij

w11

Weights
w[j, k]

w12

w1k

w22

w21

w23

wj2

wj1

wjk

r2

r1

rk

BP function

BP function

BP function

State
Features

X

Figure 7.1: Demonstration of how the reinforcement learning system works in the
OFDAMCSS framework. At each discrete time t, the learning system receives file
access pattern attributes (from APPM) that represent the state featuresX , which will
be passed through an artificial neural network to produce different outputs. Each
output will be transformed to an action ak, which is the proportion of file size that
will be located in each cloud. These actions will be given to the Distributor system
to perform. The agent then receives rewards from each cloud rk, which will be used
by the TD-error (TDK) to evaluate each action separately. The back-propagation
function (BP) will then be triggered to tune the connection weights (wjk, wij).

the environment, and the other to choose an action that had the highest probability of

winning. The difference between these approaches and that of this work is that the

machine learning system in this work interacted with multiple cloud storage services

(multiple environments). Each cloud storage service was susceptible to suffering from

outages at any time. Thus, a relatively flexible method that could adapt to changes in the

number of cloud storage services was needed for this study .

This work proposes a new approach for an artificial neural network with reinforce-

ment learning that fulfils the target of this work, as illustrated in Figure 7.1. The goal

of this new approach is to allow reinforcement learning to interact with each cloud in-

dependently to produce multiple output values, each of which represents the value of

the state in different environments (i.e. different cloud services). For example, suppose

112

Section 7.3 Reinforcement Learning Model 113

there are three cloud storage services, each of which has its own state space S. The

artificial neural network takes all the state features from the APPM as the input vector

and produces three output values, each of which corresponds to a single cloud. Each

one of these values can be interpreted as Q(s, a) for the state of the file on that cloud.

Thereafter, as shown in Figure 7.1, each output value is transformed to a single numer-

ical action, considering the value of other actions. The procedure is shown in Equation

7.1 below. That is, each action is the percentage of the value of node k (yK) to the total

value of all nodes value (
∑
∀y(y))).

(ak)t =
(yk)t∑
∀y(y)

(7.1)

where k represents the index number of each cloud provider, and y refers to the state

value of cloud provider number k.

This method allows the reinforcement learning system to allocate a larger portion

of each file to the cloud that has the largest state value. After executing all actions, the

reinforcement learning system receives a different reward from each environment. These

rewards are used to compute the multiple TD-error functions, then the ~W is adjusted

using the back-propagation (BP) function.

One of the most difficult problems in this research was the process of computing the

reward function. The process is outlined in Algorithm 4. The reward value relies on

two unbounded values: cost and latency. To optimise the latency time, the ratio of the

current latency time to the maximum latency time (observed by the framework during

the interaction with all environments) was computed. The maximum latency time is

susceptible to change when the system finds a new maximum. Thereafter, the amount

obtained was multiplied by -1 to reduce the latency time.

However, the process used with latency time cannot work with cost value. The cost

of cloud storage services is cumulative, which means it rises over time within the billing

period. Hence, optimising the cost of cloud storage after each action is rather challen-

ging. Therefore, to optimise the cost, first the cost was computed with respect to the

113

114
Intelligent Framework for Optimising File Distribution Across Multiple Cloud

Storage Services Chapter 7

Algorithm 3 Distribution framework outline
Require: : Initialise artificial neural network weight wij and wjk

1: for <episode =1,M> do
2: for <t=1,N> do
3: c num← check how many cloud storage services are available
4: adjusts numbers of nodes in the output layer to be equal to c num
5: Get file size and file access pattern attributes and pass them to the artificial

neural network.
6: for <k=1,c num> do
7: (yk)t ← output value of node k
8: end for
9: for <k=1,c num> do

10: generate action (ak)t = (yk)t∑
∀y(y)

11: end for
12: Execute all actions (a)t
13: Observe rewards (r)t from all clouds . based on Algorithm.4
14: Compute TD-error for all clouds
15: Update network weight
16: . according to Eq. 3.13 and Eq. 3.15
17: end for
18: end for

amount of data used, as expressed below:

cost =

n∑
i=1

(
Scosti
Susedi

+
Ncosti
Nusedi

+
OTcosti
OTusedi

) (7.2)

where Scost is the total cost of total storage of data into cloud i , Sused is the

amount of data that has been stored so far in cloud storage i, Ncost is the total network

cost, Nused is the amount of transferring data to and from the cloud storage services,

OTcost is the total cost of performing all operations in cloud i, (OTused) is the total

number of operations that have been performed on the cloud provider i, and n denotes

the number of cloud providers available. The aim beyond this equation is to compute the

change of price with respect to the amount used.

Typically, the above equation yields a value less than 1. Computing the ratio of

the cost in a similar way to that of the latency time did not work in this study. Thus,

114

Section 7.3 Reinforcement Learning Model 115

a slightly different method was used. The convergence of learning was improved by

adding the following condition: any value of the above equation that exceeded 1 would

be used to compute the ratio of all subsequent steps, until a new value exceeded 1; then

the system overrides this value with the new value. This technique enabled the system

to learn how to optimise the cost perfectly and rapidly. Finally, to make the framework

operate more efficiently to optimise both latency and cost concurrently, different weights

for cost and latency were added to the reward function. The weights were based on the

importance of the file, which was extracted from the file access pattern attributes. If

the file was estimated to be very active in the future, the framework would reduce the

importance of cost and focus on improving latency time. The same was true in reverse:

for inactive files, the importance of latency time was reduced and cost was optimised.

The entire reward function is outlined in Algorithm 4.

In short, by giving the network the predicted attributes of each file (Section 6.4) along

with the file size, the network could produce multiple output values that corresponded to

the number of cloud storage services available at a time t. The output values represent the

value of storing the file on each cloud. Based on these results, the reinforcement learning

agent decided what proportion of the file size would be sent to each cloud. The decisions

were then evaluated and tuned using the TD-error and back-propagation functions.

One of the strengths and novel methods of the framework is that the number of

outputs of the network is changeable, corresponding to the number of cloud storage

providers available at each time step t. This feature gives the framework the ability to

overcome the issue of service availability and continuity. For example, if one of the

cloud providers is not available for any reason, or the data owner has added new cloud

storage, the number of output nodes can be changed accordingly and automatically –

without human intervention or the need to reset the network. Specifically, when a cloud

storage service cannot be reached for any reason, whether permanently or temporarily,

the system eliminates from the output layer the node that holds the value of that cloud’s

state. In so doing, the relevant connection weights are also removed. Similarly, when

a new cloud storage service appears or an old one comes back into service again, the

115

116
Intelligent Framework for Optimising File Distribution Across Multiple Cloud

Storage Services Chapter 7

Algorithm 4 Reward function based on latency time and total cost of distributing each
file across multiple cloud storage

Require: : Initialise number of cloud storage services available numCloud
Require: : Initialise variables for the most important file , and maximum latency and

cost for each cloud (maxWeight,maxLatencyArry[], maxCostArry[])
Require: : Initialise three variables (latencyReward[],costReward[],cost[]) in order to

compute the total reward
1: w ← calculate the important of the file from the prediction of access pattern

(numReard+ numWrite+ lifeT ime).
2:

3: if w > maxWeight then
4: maxWeight← w; . find the most important file
5: end if
6: w = w/maxWeight . compute the ratio of the current latency time to the

maximum weight yet.
7:

8: for <i =1,numCloud> do
9: if fileLatencyT ime[i] > maxLatencyArry[i] then

10: maxLatencyArry[i]← fileLatencyT ime[i] . find the slowest file
11: end if
12: latencyReward[i]← −1 ∗ (fileLatencyT ime[i]/maxLatencyArry[i]), .

compute ratio of the current latency time to the slowest file latency yet, for each
cloud.

13: compute cost[i] according to Eq 7.2
14: if cost[i] > 1 then
15: maxCostArry[i]← cost[i]
16: end if
17: costReward[i]← −1 ∗ (cost[i]/maxCostArry[i]) . ratio of the current cost

to the maximum cost yet, for each cloud
18: totalReward[i]← (1− w) ∗ costReward[i] + w ∗ latencyReward[i] .

compute the total reward for distributing one file
19: end for
20: return totalReward

system establishes a new node in the output layer and creates all its connection weights.

This process of learning is outlined in Algorithm 3 for a given number of episodes M ;

‘episode’ here means a single learning step in reinforcement learning. .

116

Section 7.4 Summary 117

7.4 Summary

In this chapter, the main components of this research were described. The research

presents a reinforcement learning model that uses an artificial neural network. In addi-

tion, this chapter presented one a novel algorithm that transfers the value of a state into

an action for each cloud storage service. The following chapters present material on the

experiments that were conducted to evaluate the proposed framework (OFDAMCSS).

117

118

CHAPTER 8

System Evaluation

In the previous chapter, the architecture and design of the OFDAMCSS framework com-

ponents were defined and described. These components were designed to distribute files

across multiple cloud storage services. In this chapter, the experiments conducted to

evaluate the framework are discussed. The evaluation was aimed at ensuring the system

could effectively optimise the cost and latency time over multiple cloud storage services,

based on the prediction of file access patterns. The chapter starts with a description of

the experimental methodology. The next section provides the results of the evaluation.

The method of testing the generative ability of the framework through experiments with

several cloud storage services is also described. This is followed by an analysis of all the

experimental results, and a discussion of the effects of experimental parameters on the

framework. The chapter concludes with a summary.

8.1 Experiment Settings

The experiments were conducted using the cloud storage emulator (Section 5.2). The

emulator was used to emulate the performance (latency time) of several cloud storage

119

120 System Evaluation Chapter 8

services and to calculate the total cost of using the services in each cloud, based on stor-

age, bandwidth, and operations. As mentioned in Chapter 5 5, the performance of the

providers in these experiments was set up to resemble Google Cloud Storage, Amazon

S3, Microsoft Azure Storage, and RackSpace Cloud File. The performance of these pro-

viders was measured by the performance analysis service offered by cloudharmony.com.

As described in Section 6.4the first step in running the framework is to predicate the

access patterns for each file using APPM. The file size accompanied by access pattern

attributes is then fed to the reinforcement learning system, which is trained with the ar-

tificial neural network. The implementation of the learning algorithm and the artificial

neural network requires setting several parameters. These parameters are likely to influ-

ence the ability of the framework to learn. Initially, the parameters were set according to

the recommendations of other researchers, including [Gatti 2015], [Gatti & Embrechts

2013] and [Tesauro 2002]. The settings are shown in Table 8.1 and Table 8.2.

Table 8.1: Reinforcement learning parameter settings

parameters values

learning rate α = 0.001

Temporal discount factor λ = 0.7

Next state decay parameter γ = 0.75

Number of training times (episode) 200000

The initial settings of the artificial neural network consisted of a fully connected

three-layer network with four input nodes, 16 hidden nodes, and a flexible number of

output nodes. As described above, the number of output nodes was based on the available

cloud storage services at each time step. The input and hidden layer had a bias node with

a constant value of +1. All hidden nodes used a hyperbolic tangent transfer function and

the output node used a sigmoid transfer function. The learning algorithm parameters

were initially set as follows: ε = 0.1; λ = 0.7 ;γ = 0.9.

Subsequently, individual experiments were performed to assess the effect of chan-

ging parameters and settings on the quality of learning. Further descriptions of these

120

Section 8.1 Experiment Settings 121

experiments are presented found in Section 8.3.5.

Table 8.2: Artificial neural network parameters settings

parameters values

input nodes 4

hidden nodes 16

output nodes = # cloud storage services

Weight init. method randomly [−0.2, 0.2]

Transfer function f(x) = 1
1+e−x

Network learning rate β = 0.0007

Network Momentum η = 0.5

The framework was evaluated using four datasets with a total of more than 9154 files

and a total size of more than 854 GB. The files were distributed over four cloud storage

services. The reason for choosing four cloud storage services was that RAID Level 5

requires at least three storage spaces to distribute files. However, if there were only three

cloud stores and one suffered from outages for any reason, the whole system would not

work; hence, four cloud storage services was the best choice.

At the start of the experiment, the latency time and the total cost for each cloud pro-

vider were measured individually by sending whole files to each provider (i.e. without

splitting the distribution). These measurements provided the baseline. The latency and

total cost were then measured again after distributing the same files uniformly among

the cloud providers, using the principle of RAID with a standard configuration.

Finally, to evaluate and test the flexibility of the OFDAMCSS framework, three scen-

arios were defined. (‘Flexibility’ here means the manner in which reinforcement learning

adapts to a change in the number of cloud services.) The three scenarios were as follows:

• Scenario 1: the number of cloud providers is fixed and does not change during

the learning process.

• Scenario 2: one of the cloud providers is removed from the cloud storage array in

121

122 System Evaluation Chapter 8

the middle of the learning process.

• Scenario 3: a new cloud provider is added to the storage array in the middle of

the learning process.

The goal of these scenarios was to test the robustness of the proposed framework,

especially regarding the continuity and availability issues mentioned in Chapter 2.

8.2 Evaluation Methods

Three methods were used in this work as a benchmark to evaluate the proposed frame-

work. In short, the first method was to send all files into each single cloud storage service

without any distribution; this was the ‘mirroring method’ (details in Section 8.2.1. The

second method was to distribute all files into all available cloud stores, using standard

RAID distribution (SRD) (details in Section 8.2.2). The third method was to distribute

all files into all available cloud stores using a heuristic distribution code (details in Sec-

tion 8.2.2). The datasets described in Section 6.3 were used to evaluate the proposed

system by comparing it with these three methods.

8.2.1 Mirroring Approach

This method required testing each cloud provider independently, without any split dis-

tribution of data. Table ?? shows the results of uploading the four datasets to each cloud

services without distribution. The results are given as the average total cost per year,

which was $210 for Google (standard deviation (SD) = 35.1; 95% confidence intervals

(CI=1.1)); $172 for Amazon S3 (SD = 28.8; the CI=0.9) ;$104 for MS Azure storage

(SD = 17.46 ; CI=0.54); and $223 for RackSpace (SD = 37.56; CI=1.18) . The results

also show that the average latency times was 39.2 seconds to read, and about 9.8 seconds

to write in Google ; in Amazon, 40.9 seconds to read and 10.6 seconds to write; in MS

Azure , 40.2 seconds to read and 10.6 seconds to write; and in Rackspace 44.98 seconds

to read, and 11.25 seconds to write. Table ?? shows the complete analysis of these results

for each dataset using this benchmark method .

122

Section 8.2 Evaluation Methods 123

8.2.2 Principle of Standard RAID Distribution Approach

This benchmark method uses the principle of the standard RAID distribution (SRD)

method; more specifically, RAID level 5 was used only because it is the most popular

method. Using this method, all datasets were distributed individually across all the cloud

providers uniformly. Figure 8.2a and Figure 8.2b show the total cost and average latency

time of distributing files uniformly by SRD. The average costs of distributing the four

datasets into all clouds was about $209 per year (SD=35; CI=1.09) per year. The average

latency time was 15.3 seconds for reading (SD=1.6; CI=0.052) and about 3.8 seconds

for writing (SD=0.42; CI=0.01). Table 8.6 shows a summary statistics for the datasets

after distributing using the SRD method.

Table 8.4: Summary statistics for uploading all datasets into all cloud storage using the
SRD method. Latency r, latency of reading; latency w, latency of writing.

8.2.3 Heuristic Distribution Approach

This method extends the evaluation of the proposed framework by comparing it with

a basic heuristic approach. The parameters used were related to total cost and aver-

age latency times for reading and writing. Algorithm 5 shows the pseudo-code of the

heuristic approach. Basically, this approach searches in portion parameter space for the

best tuning parameters to optimise the cost and latency time on multiple cloud stor-

age services. As shown in Algorithm 5 , each cloud’s portion parameters were set to
1

numberofcloud
. For example, if four cloud storage services were used, the portion

parameter setting was 0.25 for each cloud. The portion settings were used as the first

threshold, and based on that the algorithm searched in the parameter space for the best

123

124 System Evaluation Chapter 8

portion parameter settings. After each iteration the algorithm compared the latency time

and the cost that resulted from distributing a file using the current portion parameter

with the previous result (using the previous portion parameters). If any improvement

was noted in either the latency or cost, a new threshold was set and the algorithm would

continuously search for better distribution parameters. For example, after setting a por-

tion parameter of 0.25 for each cloud (if there were only four clouds), the tuning process

started by choosing the first cloud portion parameter and increasing it by 0.01; the second

cloud would be decreased by 0.01. If this new setting did not improve either the cost or

latency, the algorithm would increase the portion for one cloud and would decrease the

portion in another cloud. .

Algorithm 5 Pseudo-code of Heuristic Distribution Approach

Require: : Initialise : oldT otalCost , minimumLW , minimumLR, bestCost

Require: : Initialise portion parameters, each cloud has
1

numberofcloud
portion

1: while dataset file not finished do
2: perform a portion parameters and distribute files based on number of cloud avail-

able
3: LR← compute the latency time for READING from all clouds
4: LW ← compute the latency time for WRITING from all clouds
5: totalCost← compute the total cost from all clouds
6: changedCost← oldT otalCost− totalCost . compare the old total cost a

new cost
7: if LR < minimumLRorLW < minimumLWor(changedCost >

0andchangedCost < bestCost) then
8: minimumLR← LR
9: minimumLW ← LW

10: bestCost← totalCost
11:

12: else . search for new portion parameters
13: increase one portion that assigned to a cloud by 0.01, and decreases another

portion by 0.01 (i.e tuning portion parameters).
14: end if
15: end while

Table 8.5 shows the summary statistics for uploading all datasets into all cloud stor-

age services, using the heuristic code described above. These results were used as a

benchmark together with the SRD results to evaluate the proposed framework..

124

Section 8.3 OFDAMCSS: Experiments and Analysis 125

Table 8.5: Summary statistics for uploading all datasets into all cloud storage using the
heuristic method. Latency r, latency of reading; latency w, latency of writing

8.3 OFDAMCSS: Experiments and Analysis

This section provides details for the experiments using the OFDAMCSS framework to

distribute all datasets (Section 6.3). The results for all experiments were evaluated with

the three benchmarks discussed in the previous section.

8.3.1 Overall result

As described earlier, the latency times were tested and the total cost for each cloud

provider was calculated individually. This procedure was followed for emulations of

Google Cloud Storage, Amazon S3, MS Azure, and RackSpace File cloud, using three

approaches as a benchmark to evaluate the proposed framework.

The bar chart in Figure 8.1 illustrates the differences in average total cost and average

latency times across four different cloud providers, using the mirroring approach. The

main purpose of mirroring data across all clouds (without any split distribution) was to

gain insight into the real cost and latency time of using a single cloud storage, and the

disparity among different cloud service providers.

125

126 System Evaluation Chapter 8

Google Amazon S3 MS Azure RackSpace

0

50

100

150

200

250

197.38

161.47

209.47

97.68

39.21
46.96 40.29 45.02

9.8 11.74 10.07 11.27

Cloud Storage Providers

Avg. Total Cost $
Avg. Write Latency in seconds
Avg. Read Latency in seconds

Figure 8.1: Average total cost and average latency time to send the entire data from
all datasets into one cloud storage service

Table 8.6: Summary statistics for uploading all datasets into all cloud storage using the
proposed OFDAMCSS framework. Latency r, latency of reading; latency w, latency of
writing

Thereafter, the same datasets were distributed using the OFDAMCSS framework

over the same cloud storage services. As shown in Figure 8.2 and Figure 8.3a, provided

a better result than either the SRD or the heuristic approach, with an average total cost

of $119.86 (SD = 19.85; CI = 0.62). These results showed that the proposed model

126

Section 8.3 OFDAMCSS: Experiments and Analysis 127

SRD OFDAMCSS
0

30
60
90

120
150
180
210
240

Distribution Type

To
ta

lC
os

t$

(a) (a) The difference in average cost after distributing all files
by SRD and OFDAMCSS.

Read Write

0
3
6
9

12
15
18 15.3

3.83.55
0.8

Read and Write Latency

A
ve

ra
ge

L
at

en
cy

tim
e

in
se

co
nd

s

SRD
OFDAMCSS

(b) (b) The difference in latency time (read and write) after dis-
tributing all files by SRD and OFDAMCSS.

Figure 8.2: Distributing all files from all datasets across multi-cloud using standard
RAID distribution SRD and OFDAMCSS

outperformed SRD by about 42% and the heuristic approach by about 24%. The av-

erage latency times for reading and writing were significantly reduced, by more than

76% compared with SRD and by about 56% compared with the heuristic approach. The

latency time for reading, using the OFDAMCSS framework, was 3.55 seconds (SD=0.5;

CI=0.015); and the latency time for writing was 0.88 seconds(SD=0.12; CI=0.004).

127

128 System Evaluation Chapter 8

Heuristic OFDAMCSS
40
60
80

100
120
140

Distribution Type

To
ta

lC
os

t$

(a) The difference in average cost after distributing all files by
the heuristic approach and OFDAMCSS.

Read Write

0
1
2
3
4
5
6
7
8
9

10
8.11

2.02
3.55

0.8

Read and Write Latency

A
ve

ra
ge

L
at

en
cy

tim
e

in
se

co
nd

s

Heuristic
OFDAMCSS

(b) The difference in latency time (read and write) after distrib-
uting all files by heuristic approach and OFDAMCSS.

Figure 8.3: Distributing all files from all datasets across multi-clouds, using the
heuristic approach and OFDAMCSS

These results show that distributing data based on file access patterns, together with

the use of reinforcement learning, offers a promising solution and can save money and

time for enterprises.

128

Section 8.3 OFDAMCSS: Experiments and Analysis 129

Google Amazon S3 MS Azure RackSpace

30

60

90
77.12

23.4

73.9

34.42

12.92
15.5 13.34 14.9

3.23 3.87 3.33 3.73

Cloud Storage Providers

Avg Total Cost $
Avg. Write Latency in seconds
Avg. Read Latency in seconds

Figure 8.4: Total cost and average latency time for each cloud provider using SRD

8.3.2 Analysis of Results

An overall reduction in total cost and average latency times does not indicate that the cost

and average latency were reduced for all cloud providers. The OFDAMCSS framework

did reduce file sizes for some cloud providers, whereas others received an augmentation

in file sizes, which resulted in increased cost and average latency time.

Figure 8.6 illustrates the changes in cost and average latency time when using OF-

DAMCSS framework, compared with SRD (Fig 8.4) and Heuristic approach (Fig 8.5).

Figure 8.1 latency time and cost refer to the average values for each cloud storage ser-

vices after uploading all four datasets without any split distribution (mirroring). This

differs from the latency time and cost shown in Figures 8.4, 8.5, and 8.6, which relate

to individual cloud storage services with split distribution. Figure 8.4,8.5, and 8.6 show

that the average cost for Google was reduced from $77.12 (SRD) and $74.8 (heuristic)

to $35.54 when the OFDAMCSS was used (SD=10.7; CI=0.33). This result translates

to -54% of the SRD values and -52% of the heuristic approach values. The average

latency time dropped by -55% compared with SRD and by about -54% compared with

129

130 System Evaluation Chapter 8

Google Amazon S3 MS Azure RackSpace

30

60

90

74.84

18.44

25.06

40.3

12.35 12.1 9.6 8.11
3.13 3.04 2.41 2.03

Cloud Storage Providers

Avg Total Cost $
Avg. Write Latency in seconds
Avg. Read Latency in seconds

Figure 8.5: Total cost and average latency time for each cloud provider using the
heuristic approach

the heuristic approach. For the OFDAMCSS model, the latency time for reading was

5.69 seconds (SD=1.0; CI=0.03) and 1.42 seconds for writing (SD=0.2; CI=0.0079)

(Figure 8.6). The average cost and average latency time went down for RackSpace to

$9.0 (SD=4.4 and CI=0.13) for the cost. This result translates to -67% compared with

SRD and -55% compared with Heuristic approach. The latency time for RackSpace

was reduced to 3.8 seconds (SD=1.6 ; CI=0.05) for average reading and to less than 1

second (SD=0.3 ; CI=0.012) for writing. This result translates to -67% compared with

using SRD approach and -55% compared with Heuristic approach.

However, distributing files using OFDAMCSS framework increased the average cost

and average latency time for Amazon S3 by around 18% compared with SRD and 5%

only compared with Heuristic approach(to $27.67 (SD=4.9; CI=0.15)). In addition the

average latency time for Amazon S3 went up by more than 16% compared to SRD and

47% compared to Heuristic approach (to 18.0 seconds (SD=2.1; CI=0.06) for reading,

and to 4.5 seconds (SD=0.5; CI=0.01) for writing. The average cost in MS Azure stor-

age increased,also, by about 55% compared to SRD and 62% compared to Heuristic

130

Section 8.3 OFDAMCSS: Experiments and Analysis 131

Google Amazon S3 MS Azure RackSpace

30

60

90

35.54

27.67

84.4

9
5.69

18 15.2

3.791.42
4.5 4

0.93

Cloud Storage Providers

Avg Total Cost $
Avg. Write Latency in seconds
Avg. Read Latency in seconds

Figure 8.6: Total cost and average latency time for each cloud provider using OF-
DAMCSS framework

approach. The average cost rose to to $84.4 (SD=11.1; CI=0.34). The average latency

time also rose by more than 56% compared to SRD and 62% compared to Heuristic ap-

proach. This results translates to 15.2 seconds (SD=1.7;CI=0.05) for reading, and to 4.0

seconds (SD=0.67; CI=0.02) for writing. Table 8.7 shows a graph of the statistical res-

ults for the differences between distributing all datasets using SRD, heuristic approaches

and the proposed framework in this thesis, OFDAMCSS.

The graph in Figure 8.7a shows how the total cost (a combination of network, storage

and operational costs) became smaller over the learning time. Similarly, Figure 8.7b

shows how the average latency time was reduced over the learning episodes.

Finally, the ability to adapt to changes in cloud provider availability and continuity

was tested in the OFDAMCSS framework by performing several experiments, based

on the scenarios mentioned in Section 8.1. The aim of the experiment was to examine

changing the number of cloud providers during the learning time, by adding or removing

a cloud provider on the list. The experiments showed that the proposed framework was

flexible and adaptable when the number of cloud services changed. Figures 8.8a and

131

132 System Evaluation Chapter 8

0 50 100 150 200 250 300 350 400

150

200

250

Episode

C
os

t$

Total Cost $

(a) Scenario # 1, cost decreases with learning

0 50 100 150 200 250 300 350 400
−3

0
3
6
9

12
15
18
21
24
27
30

Episode

Se
co

nd
s

Read Latency Time
Write Latency Time

(b) Scenario # 1, latency time decreases with learning

Figure 8.7: The reduction in total cost (in figure (a)) and latency time of reading and
writing (in figure (b)) reduces over time , using OFDAMCSS

8.8b illustrate how the OFDAMCSS framework adapted to change when the number of

available cloud providers was reduced from four to three. Additionally, the OFDAMCSS

framework learned any new cloud storage behaviour quickly and adapted to the new

situation. Figures 8.9a and 8.9b show the framework’s adaptation when a new cloud

provider was added during the learning time.

132

Section 8.3 OFDAMCSS: Experiments and Analysis 133

0 50 100 150 200 250 300 350 400
120

140

160

180

200

220

240

Episode

C
os

t$

Total Cost $

(a) Scenario # 2, Cost increased when a cloud stores was removed and the load of distribution
on storage became less

0 50 100 150 200 250 300 350 400
−3

0
3
6
9

12
15
18
21
24
27
30

Episode

Se
co

nd
s

Read Latency Time
Write Latency Time

(b) Scenario # 2, Latency time increased when a cloud stores was removed and the load of
distribution on storage became less

Figure 8.8: Change in the total cost (in figure (a)) and latency time of reading and
writing (in figure (b)) change when a cloud stores was discontinued, (using OF-
DAMCSS)

8.3.3 Developmental of the System

This thesis has so far examined the proposed framework, based on real settings for the

four main providers of cloud storage services (Google Cloud Storage, Amazon S3, MS

Azure, and RackSpace File Cloud). In this section, the generative parameters of the

133

134 System Evaluation Chapter 8

0 50 100 150 200 250 300 350 400
120

140

160

180

200

220

240

Episode

C
os

t$

Total Cost $

(a) Scenario # 3, cost rises as a cloud is added, then starts going down again

0 50 100 150 200 250 300 350 400
−3

0
3
6
9

12
15
18
21
24
27
30
33
36
39

Episode

Se
co

nd
s

Read Latency Time
Write Latency Time

(b) Scenario # 3, latency increases as a cloud is added, then falls rapidly because the load is
distributed

Figure 8.9: Change in the cost (in figure (a)) and latency time of reading and writing
(in figure (b)) change when a new cloud stores was added to the system , using
OFDAMCSS layer

OFDAMCSS framework is assessed. First, the range [minimum – maximum] of latency

times is defined,based on CloudHarmony.com tests and various prices, for all services

available (Table 8.8).

The next batch of experiments generated arbitrary settings and prices for arbitrary

cloud storage services. In each experiment, several cloud storage services were created

134

Section 8.3 OFDAMCSS: Experiments and Analysis 135

each of which with different settings within the ranges shown in Table 8.8.

Figures 8.10a and 8.10b show that the OFDAMCSS framework can successfully

optimise both cost and latency time at once, for any number of group cloud storage

services. Several experiments were performed on a different group of cloud storage

services. For each group, the emulator generated several cloud storage services, each

of which had different latency times and different price schemes. Comparing with the

SRD approach, the cost dropped among all experiments by about 31% for groups of

three cloud stores, 34% for groups of four cloud stores, about 30% for groups of five

cloud stores, and by about 46% for six cloud storage services. In addition, the results

showed enhanced performance across all experimental groups, with the latency time

being reduced by about 47% for the group of three cloud stores, 51% for four cloud

stores, 55% for five cloud stores, and about 63% for six cloud storage services.

Table 8.8: Test of parameters settings for generative parameters of OFDAMCSS

– Range units of measure

Latency Time [6,25] Mb/s

Storage Cost [0.01,0.1] $/GB

Network Cost [0.09,0.2] $/GB

Operation Cost [0.001,0.002] $/1000 operations

8.3.4 Impact of Access Pattern on Distribution Decisions

All the results from all the experiments discussed in the preceding section showed the

robustness of the OFDAMCSS framework. To illustrate in depth how this framework

works, this section provides an analysis of the changes in data used, as well as the

changes in cost and latency times for each cloud provider. This part of the analysis

focuses on the access pattern attributes.

First, files were divided into two separate groups. The first group was based on the

number of writing attributes and the second group was based on the number of read-

ing attributes. Each group was divided further into subgroups, based on the number of

read and write attributes. The writing group was divided into eight subgroups and the

reading group into 15 subgroups. The reason for this division was to observe how the

135

136 System Evaluation Chapter 8

0 200 400 600 800 1,000

400

600

800

1,000

1,200

Episode

C
os

ti
n

$

Number of cloud =3
Number of cloud =5
Number of cloud =6

(a) Optimising cost in different groups of cloud storage services

0 200 400 600 800 1,000
0

5

10

15

Episode

R
ea

d
L

at
en

cy
Ti

m
e

in
Se

co
nd

s Number of cloud =3
Number of cloud =5
Number of cloud =6

(b) Optimising latency time in different groups of cloud storage services

Figure 8.10: Generative features of OFDAMCSS framework by testing the ability
of the framework to optimise cost and latency time at the same time were tested for
different groups of cloud storage services

OFDAMCSS framework distributed each subgroup and how this affected the cost and

latency time for each subgroup. Moreover, to evaluate the framework accurately, the

cost of the network for each file was multiplied by the number of reading and writing

attributes, to estimate the real cost for each file throughout its lifetime. Tables 8.9 and

8.13 show that the distribution by OFDAMCSS, among all writing groups, decreased

the cost of storage on Google Cloud Storage and RackSpace. However, the cost of MS

136

Section 8.3 OFDAMCSS: Experiments and Analysis 137

Azure and Amazon S3 increased with the proposed framework. Similarly, the average

time required to transfer files to Google Cloud Storage and RackSpace was reduced, but

it increased for Amazon S3 and MS Azure (Table 8.17). The reading subgroups showed

similar results, as shown in Tables 8.11 and 8.15.

The above results show that the proposed framework was unable to minimise the cost

and improve the performance of every cloud storage service. However, the framework

considers the total cost and average latency time of all cloud storage services.

137

138 System Evaluation Chapter 8

Table
8.7:

A
full

statistical
analysis

of
distributing

all
data

sets
using

SR
D

,
H

euristic
code

and
O

FD
A

M
C

SS
fram

ew
orks.

W
here

latency
ris

latency
ofread

and
latency

w
is

latency
ofw

rite

138

Section
8.3

O
FD

A
M

C
SS:E

xperim
entsand

A
nalysis

139

Table 8.9: Percentage change in the storage cost for the writing group

#write=1 #write=2 #write=3 #write=4 #write=6 #write=7 #write=8 #write=9

Google -41.98% -44.32% -44.68% -47.93% -47.93% -47.93% -48.84% -47.09%

Amazon S3 80.65% 76.47% 80.56% 80.00% 80.00% 80.00% 77.27% 78.79%

MS Azure 32.97% 32.00% 33.02% 41.36% 41.36% 41.36% 39.18% 40.72%

RackSpace -64.52% -67.65% -66.67% -72.31% -72.31% -72.31% -72.73% -72.73%

Table 8.10: Percentage change in network cost for each file

#write=1 #write=2 #write=3 #write=4 #write=6 #write=7 #write=8 #write=9

Google -3.47% -3.13% -2.79% -1.60% -1.59% -1.58% -1.58% -1.56%

Amazon S3 5.94% 5.43% 5.08% 2.62% 2.66% 2.65% 2.65% 2.61%

MS Azure 2.23% 2.32% 2.10% 1.34% 1.37% 1.38% 1.37% 1.36%

RackSpace -5.20% -4.80% -4.18% -2.42% -2.40% -2.40% -2.39% -2.41%

139

140
System

E
valuation

C
hapter

8

Table 8.11: Percentage change in the storage cost for the reading group

#read=1 #read=2 #read=3 #read=4 #read=5 #read=6 #read=7 #read=8 #read=9 #read=10 #read=11 #read=12 #read=13 #read=14 #read=16

Google -40.00% 0.00% -43.37% -44.32% -46.15% -45.54% -44.95% -48.00% -47.10% -47.30% -48.45% -47.93% -48.84% -48.84% -48.84%

Amazon S3 50.00% 100.00% 65.63% 61.76% 65.71% 64.10% 66.67% 66.67% 67.92% 70.18% 69.35% 70.77% 68.18% 68.18% 68.18%

MS Azure 50.00% 50.00% 53.19% 50.00% 51.46% 48.70% 50.41% 50.35% 50.64% 52.38% 51.65% 52.36% 51.55% 51.55% 51.55%

RackSpace -50.00% -50.00% -65.63% -67.65% -65.71% -69.23% -69.05% -70.83% -71.70% -71.93% -72.58% -72.31% -72.73% -72.73% -72.73%

Table 8.12: Percentage change in the network cost for the reading group

#read=1 #read=2 #read=3 #read=4 #read=5 #read=6 #read=7 #read=8 #read=9 #read=10 #read=11 #read=12 #read=13 #read=14 #read=16

Google -11.11% -9.09% -3.67% -3.38% -3.34% -2.84% -2.67% -2.32% -2.04% -1.91% -1.74% -1.65% -1.64% -1.58% -1.62%

Amazon S3 9.37% 17.95% 4.89% 4.76% 4.59% 4.15% 3.74% 165.45% 2.93% 2.67% 2.44% 2.37% 2.36% 2.34% 2.28%

MS Azure 0.00% 8.47% 3.91% 3.85% 3.57% 3.33% 2.81% 2.41% 2.19% 1.98% 1.80% 1.75% 1.75% 1.78% 1.72%

RackSpace -11.11% -9.09% -5.38% -5.18% -5.01% -4.34% -3.88% -3.43% -3.02% -2.80% -2.61% -2.42% -2.41% -2.39% -2.43%

140

Section
8.3

O
FD

A
M

C
SS:E

xperim
entsand

A
nalysis

141

Table 8.13: Percentage change in the storage used for the writing group

#write=1 #write=2 #write=3 #write=4 #write=6 #write=7 #write=8 #write=9

Google -44.04% -44.49% -44.94% -47.85% -47.85% -47.85% -47.85% -47.83%

Amazon S3 80.01% 80.26% 80.25% 79.45% 79.43% 79.44% 79.40% 79.37%

MS Azure 31.35% 32.40% 33.46% 40.95% 40.98% 41.00% 40.99% 41.06%

RackSpace -67.38% -68.14% -68.72% -72.56% -72.56% -72.57% -72.57% -72.58%

Table 8.14: Percentage change in the network used for the writing group

#write=1 #write=2 #write=3 #write=4 #write=6 #write=7 #write=8 #write=9

Google -3.36% -3.09% -2.79% -1.59% -1.59% -1.59% -1.58% -1.57%

Amazon S3 6.12% 5.58% 4.99% 2.65% 2.64% 2.63% 2.63% 2.61%

MS Azure 2.40% 2.25% 2.08% 1.36% 1.36% 1.36% 1.36% 1.35%

RackSpace -5.15% -4.74% -4.27% -2.42% -2.41% -2.41% -2.40% -2.38%

141

142
System

E
valuation

C
hapter

8

Table 8.15: Percentage change in the storage used for the reading group

#read=1 #read=2 #read=3 #read=4 #read=5 #read=6 #read=7 #read=8 #read=9 #read=10 #read=11 #read=12 #read=13 #read=14 #read=16

Google -44.24% -44.56% -45.45% -45.69% -45.93% -46.44% -46.93% -47.53% -48.01% -48.35% -48.62% -48.81% -48.82% -48.84% -48.84%

Amazon S3 73.33% 73.06% 62.87% 63.42% 64.08% 65.31% 66.34% 67.63% 68.47% 69.05% 69.58% 69.91% 69.90% 69.91% 69.90%

MS Azure 43.03% 43.01% 50.27% 50.34% 50.32% 50.39% 50.59% 50.99% 51.39% 51.68% 52.02% 52.24% 52.26% 52.31% 52.34%

RackSpace -72.73% -72.54% -67.72% -68.14% -68.43% -69.21% -70.00% -71.12% -71.87% -72.41% -72.97% -73.35% -73.37% -73.39% -73.40%

Table 8.16: Percentage change in the network used for the reading group

#read=1 #read=2 #read=3 #read=4 #read=5 #read=6 #read=7 #read=8 #read=9 #read=10 #read=11 #read=12 #read=13 #read=14 #read=16

Google -8.74 % -8.00% -3.56% -3.45% -3.35% -2.96% -2.63% -2.27% -2.05% -1.88% -1.73% -1.63% -1.63% -1.62% -1.62%

Amazon S3 14.68% 13.12% 4.93% 4.79% 4.67% 4.17% 3.71% 3.23% 2.92% 2.68% 2.48% 2.34% 2.33% 2.32% 2.31%

MS Azure 8.74% 7.72% 3.94% 3.80% 3.67% 3.21% 2.83% 2.44% 2.19% 2.01% 1.85% 1.75% 1.74% 1.74% 1.73%

RackSpace -14.44% -13.02% -5.31% -5.14% -4.99% -4.42% -3.92% -3.40% -3.07% -2.81% -2.60% -2.46% -2.45% -2.43% -2.43%

142

Section
8.3

O
FD

A
M

C
SS:E

xperim
entsand

A
nalysis

143

Table 8.17: Percentage change in the latency time for the writing group

#write=1 #write=2 #write=3 #write=4 #write=6 #write=7 #write=8 #write=9

Google -93.44% -92.33% -108.27% -78.55% -78.40% -108.85% -78.40% -77.86%

Amazon S3 46.99% 44.45% 44.46% 44.43% 41.83% 41.77% 40.40% 40.51%

MS Azure 24.38% 30.53% 34.20% 26.48% 32.45% 35.98% 34.20% 35.83%

RackSpace -257.89% -316.71% -400.68% -257.58% -312.90% -316.92% -312.90% -396.30%

Table 8.18: Percentage change in the latency time for the reading group

#read=1 #read=2 #read=3 #read=4 #read=5 #read=6 #read=7 #read=8 #read=9 #read=10 #read=11 #read=12 #read=13 #read=14 #read=16

Google -78.55% -78.79% -91.84% -92.65% -108.21% -108.24% -108.55% -108.27% -127.18% -127.18% -127.55% -127.55% -108.85% -126.21% -127.27%

Amazon S3 43.19% 41.98% 44.33% 41.85% 44.41% 43.16% 43.20% 44.46% 43.20% 43.20% 40.40% 40.40% 41.77% 40.51% 39.05%

MS Azure 30.59% 30.86% 30.71% 34.15% 32.36% 34.18% 35.82% 34.20% 35.88% 35.88% 40.52% 40.52% 37.63% 40.45% 41.71%

RackSpace -316.47% -257.89% -319.23% -319.44% -316.96% -315.31% -400.00% -400.68% -316.71% -316.71% -401.96% -401.96% -401.85% -396.30% -398.08%

143

144 System Evaluation Chapter 8

8.3.5 Parameter Effects in the OFDAMCSS Framework

As shown in Figure 8.11,in the reinforcement learning experiments different configur-

able parameter values were used in the learning algorithm and representation function,

which were roughly estimated. Configuring the value of these parameters is a serious

practical challenge in experiments on reinforcement learning. A common approach is to

take a random selection of these parameters and then adjust them throughout the learning

time.

This section reports on the effect of changing individual parameters in the learning

algorithm and function representation. The effects of these changes on the convergence

and performance of learning in this study were assessed. Six parameters were examined,

with three (η, α, and β) being related to the artificial neural network and three (γ, λ

and ε) to the learning algorithm. A descriptive account of the results of the parameter

experiments is provided below.

• Hidden nodes: the changing number of hidden nodes seemed to have a minor

impact on the learning ability of the network, as shown in Figure 8.12. First, the

hidden nodes were set to 16 nodes, followed by an evaluation of 48 nodes and 96

nodes. The only effect of changing the number of hidden nodes was the speed of

learning. With a high number of hidden nodes, the system learnt very slowly

• First Learning rate (α): the experiments showed that a low value of the learning

rate α for the hidden output layer allowed the artificial neural network to converge

faster than a high value. The results are shown in Figure 8.13.

• Second Learning rate (β): the experiments on the learning rate β for input-

hidden layer showed that the network was unable to learn β >= 0.1. The experi-

mental results also showed that the network converged slightly more effectively if

the value of learning rate β was equal or less than the learning rate α value.

• -Temporal discount factor (λ): the experiments showed that the effect of using

144

Section 8.3 OFDAMCSS: Experiments and Analysis 145

0.0
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.0
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.0
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.0 0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.0 0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.0 0.05
0.10

0.15

0.20

0.25

0.30

0.35

0.40
0.450.500.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
0.95

λ

ε

γ

β
α

η

Figure 8.11: Nested meters for three artificial neural network parameters and three
learning algorithms for reinforcement learning

different λ was not profound (Figure 8.15). However, the network was unable to

converge and learn when λ = 1. In addition, for cost optimisation, the experi-

mental results showed that a high λ value was somewhat better than a low value.

• Decay parameter (γ): studying the effect of γ on system learning showed that

medium and low values allowed the network to learn more effectively compared

to when the values were high. The results are shown in Figure 8.16.

• Momentum (η): similar to λ, when η = 1 the network was unable to learn (Figure

8.17). However, there was no great impact on any other value of the momentum

with a range of [0.0,0.9].

• Epsilon (ε): as shown in Figure 8.18, experimenting with different values of ε

145

146 System Evaluation Chapter 8

seemed not to have any strong effect on learning.

0 50 100

150

200

250

Episode

C
os

t$

Number of Hidden Nodes =16
Number of Hidden Nodes =48
Number of Hidden Nodes =96

(a) The effect of changing the number of hidden nodes on the cost

0 50 100

10

20

30

Episode

L
at

en
cy

Ti
m

e
in

Se
co

nd
s

Number of Hidden Nodes =16
Number of Hidden Nodes =48
Number of Hidden Nodes =96

(b) The effect of changing the number of nodes on the latency time

Figure 8.12: Evaluate the impact of changing the number of hidden nodes on the
hidden layer

8.4 OFDAMCSS Framework Overheads

The experiments on the OFDAMCSS framework were conducted on MacBook Pro (pro-

cessor 2.4 GHz Intel Core i7; memory 8 GB, 1600 MHz DDR3). The experimental code

was written in JAVA using IntelliJ IDEA CE. All algorithms of the framework – namely

the artificial neural network, back-propagation, all reinforcement learning algorithms,

146

Section 8.4 OFDAMCSS Framework Overheads 147

−20 0 20 40 60 80 100 120 140 160 180 200 220

150

200

Episode

C
os

t$

α =1.0
α =0.1
α =0.01
α =0.001
α =0.0001

(a) The effect of α on cost optimisation

−20 0 20 40 60 80 100 120 140 160 180 200 220

10

20

30

Episode

L
at

en
cy

Ti
m

e
in

se
co

nd
s

α =1.0
α =0.1
α =0.01
α =0.001
α =0.0001

(b) The effect of α on latency optimisation

Figure 8.13: The impact of α on the performance of learning in the OFDAMCSS

and the cloud emulator and cloud monitor – were written from scratch in JAVA for this

work. The study lasted about four months, including testing time. The experiment on

the learning process was run several times, each time for a different dataset. Each ex-

periment required roughly 3000 learning steps and 1000 episodes, which meant that the

total for all learning steps was about 3 million steps.

147

148 System Evaluation Chapter 8

0 20 40 60 80 100 120 140 160 180 200

150

200

250

Episode

C
os

t$

β =1.0
β =0.9
β =0.1
β =0.01
β =0.001
β =0.0001
β =0.0007

(a) The effect of β on cost optimisation

0 20 40 60 80 100 120 140 160 180 200

20

40

Episode

L
at

en
cy

Ti
m

e
in

se
co

nd
s

β =1.0
β =0.9
β =0.1
β =0.01
β =0.001
β =0.0001
β =0.0007

(b) The effect of β on latency optimisation

Figure 8.14: The impact of β on the performance of learning in the OFDAMCSS

8.5 Summary

This chapter has provided evidence that the proposed OFDAMCSS framework is capable

of optimising cost and latency time for multiple cloud storage services. The experiments

in this research showed that the cost of distributing files on multiple cloud storage ser-

vices was reduced by up to 42% for certain clouds, compared with data distribution

using the standard RAID (SRD) approach. Similarly, the proposed model outperformed

the heuristic approach by about 24% for certain cloud services. When data were distrib-

148

Section 8.5 Summary 149

0 20 40 60 80 100 120 140 160 180 200

150

200

250

Episode

C
os

t$

λ =1.0
λ =0.9
λ =0.5
λ =0.1

(a) The effect of λ on cost optimisation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Episode

L
at

en
cy

Ti
m

e
in

Se
co

nd
s

λ =1.0
λ =0.9
λ =0.5
λ =0.1

(b) The effect of λ on latency optimisation

Figure 8.15: The impact of λ on the performance of learning in the OFDAMCSS

uted across four cloud storage services, the latency time decreased by about 76% when

using OFDAMCSS compared with SRD, and by about 56% compared with the heuristic

approach. The generative qualities of the framework were tested on multiple random

cloud storage services. The results showed that the proposed framework could optimise

cost and latency time on multiple cloud storage services.

Furthermore, this chapter reported on the effect of changing the learning parameters,

namely the number of hidden nodes in the artificial neural network (α, β, λ, γ, η and ε)

on the optimisation of cost and latency time. In brief, changing the number of hidden

149

150 System Evaluation Chapter 8

0 20 40 60 80 100 120 140 160 180 200

150

200

250

Episode

C
os

t$

γ =1.0
γ =0.5
γ =0.1

(a) The effect of γ on cost optimisation

0 20 40 60 80 100 120 140 160 180 200

10

20

30

Episode

L
at

en
cy

Ti
m

e
in

se
co

nd
s

γ =1.0
γ =0.5
γ =0.1

(b) The effect of γ on latency optimisation

Figure 8.16: The impact of γ on the performance of learning in the OFDAMCSS

node did not affect the quality of learning in the learning system, but it did affect the

speed of learning. A small number of nodes was most effective; A small value of α

was most effective; β should be less than or equal to α; γ should be between [0.0,0.7];

Changing the values of the remaining parameters did not have a notable effect on the

performance of the machine learning system.

150

Section 8.5 Summary 151

0 20 40 60 80 100 120 140 160 180 200

150

200

250

Episode

C
os

t$

η =0.0
η =0.1
η =0.5
η =0.9
η =1.0

(a) The effect of η on cost optimisation

0 20 40 60 80 100 120 140 160 180 200

20

40

Episode

L
at

en
cy

Ti
m

e
in

se
co

nd
s η =0.0
η =0.1
η =0.5
η =0.9
η =1.0

(b) The effect of η on latency optimisation

Figure 8.17: The impact of η on the performance of learning in the OFDAMCSS

151

152 System Evaluation Chapter 8

0 20 40 60 80 100 120 140 160 180 200

160

180

200

220

Episode

C
os

t$

ε =0.0
ε =0.1
ε =0.2
ε =0.3

(a) The effect of ε on cost optimisation

0 20 40 60 80 100 120 140 160 180 200

10

20

Episode

L
at

en
cy

Ti
m

e
in

se
co

nd
s

ε =0.0
ε =0.1
ε =0.2
ε =0.3

(b) The effect of ε on latency optimisation

Figure 8.18: The impact of ε on the performance of learning in the OFDAMCSS

152

CHAPTER 9

Conclusion and Future Work

This is the final chapter of the thesis, which addresses the application of machine learn-

ing algorithms in a dynamic environment. The research was focused on optimising two

values that were continuous and non-stationary (cost and latency time). This work should

be considered a start towards the goal of better optimisation of multiple factors in a dy-

namic environment such as cloud computing. This chapter gives an outline of the prob-

lem addressed in this research and how it was solved, including a synopsis of the thesis

contribution. Finally, limitations of the research are outlined and recommendations for

future work are provided.

9.1 Summary of the Thesis

This thesis presents an intelligent framework for automatically tuning distribution para-

meters over multiple cloud storage services to optimise long-term cost and latency time.

The work started by providing an overview of cloud storage services, distinguishing

these from what is sometimes called ‘drive’, as explained in Chapter 2. Moreover,

Chapter 2 provided insight into the issue of storing data on a single cloud storage service.

153

154 Conclusion and Future Work Chapter 9

In addition, it provided a review and discussion of the limitations of different solutions

and introduced a proposed solution to solve those issues..

Chapter 3 provided an overview of the machine learning field. The framework used

in this research was the product of combining two machine learning paradigms: super-

vised learning, to predict the access patterns for each file; and reinforcement learning,

for tuning the distribution parameters based on the predicted access patterns.

Chapter 4 provided a survey of the use of machine learning algorithms in different

cloud computing storage problems. Chapters 5,6,7, and 8provided empirical evidence

of the benefits of the proposed framework. The results of experiments involving a cloud

storage emulator were presented in Chapter 8. The main challenges in this research

were how to interact with multiple environments by executing a non-fixed number of

actions simultaneously, and how to deal with numerous ‘non-stationary’ reward signals.

Therefore, the learning algorithm in reinforcement learning was designed in a novel way

to satisfy the research goal. The results show the proposed framework is capable of

significantly reducing both the cost and average latency time over multiple cloud storage

services.

The generative parameters of the proposed framework was assessed through several

experiments based on a random setting of cloud performance and pricing scheme, to test

the durability of the framework. In these experiments, the settings of the cloud emulator

were generated randomly between the maximum and minimum performances that were

collected from CloundHarmony.com. The pricing schemes were generated based on the

highest and lowest prices of Google Cloud Storage, Amazon S3, MS Azure Storage,

and RackSpace Cloud File. The reason behind the arbitrary settings was that the market

did not have an abundance of cloud storage services when this research was conducted.

The generalisation test results showed that the framework optimises the cost and latency

time in various clouds, with a minimum of three clouds; the maximum tested was six

clouds. Finally, several experiments were conducted to explore the effect of parameter

reinforcement learning and an artificial neural network on the learning behaviour in the

framework. In this study, cost was calculated based on several small amount of syn-

154

Section 9.2 Novel Contributions of this Work 155

thetic datasets; real-world organisations have much larger amounts of data to store in

cloud services. For that reason, the cost and potential savings for organisations would be

considerably higher than the amounts of data and cost calculated in this work.

There are many points to consider as limitations when assessing this research. Some

of these points are discussed in the following section.

9.2 Novel Contributions of this Work

This work suggests several innovations in the fields of both cloud computing and rein-

forcement learning. Below is a list of the innovations offered in this work and whether

each contribution is related to cloud computing (CC), reinforcement learning (RL), or

supervised learning (SL).

• Novel intelligent framework for distribution of files (CC): 1. To our knowledge,

this work is the first to apply machine learning algorithms to optimise cost and

performance (latency time) for cloud storage services.

The distinguishing characteristics of specific cloud providers, in terms of pricing

schemes and service performance, make optimisation of both cost and perform-

ance at once – across multiple cloud storage services – a challenging matter. Each

cloud provider has its own data centre architecture, access policies, and storing

methodologies; this diversity affects performance when files are distributed across

several cloud services. Furthermore, cost and latency are measured in different

ways: cost in money, and latency in time. However, the researcher found a method

to address these differences and difficulties, to provide a framework capable of ad-

apting to multiple cloud storage services. The proposed framework can optimise

both performance and cost together.

• A new reinforcement learning approach to produce actions from state val-

ues (RL) : 1. This work presents a new action policy to produce multiple ac-

tions sim-ultaneously in multiple environments, where the number of actions and

number of environments at each time step are neither deterministic nor stationary.

155

156 Conclusion and Future Work Chapter 9

Furthermore, each action has a continuous value. This new approach allows the

reinforcement learning system to do the following:

1. Perform several continuous actions simultaneously. The proposed approach

allowed the learning system to interact with several cloud storage services

and allowed the neural network to produce unknown actions. This work in-

troduced experiments in reinforcement learning based on a non-fixed num-

ber of output nodes in an artificial neural network. The results show that

reinforcement learning systems can learn without any negative effect from

changing the number of output nodes during the learning time.

2. Produce the action value from the state value. The system turned each state

value into an action.

• Provided a list of hints and tips (RL) to help researchers understand how an

artificial neural network can be used as a function approximator within a rein-

forcement learning system. .

• Provided a synthetic dataset of file log trace (SL). This work generated a syn-

thetic dataset that emulated the access behaviour of each file. This dataset was

used to train a supervised learning algorithm to allow the framework to predict

numerical attributes of the access pattern, based on a realistic business model. The

attributes included the file’s active lifespan, the number of reads, and the number

of writes.

• Numerical prediction of file access pattern attributes (SL). To our knowledge,

this research is the first to introduce a prediction of the numerical value of file

access patterns.

9.3 Limitations and Future Work

As mentioned above, this work is about distributing files across various cloud storage

services, with each cloud imposing a unique performance and having a unique pricing

156

Section 9.3 Limitations and Future Work 157

scheme. Furthermore, this research is the first to use machine learning to optimise cost

and latency time across multiple cloud services, from the client’s side. Although this

thesis offers many novelties and contributions, there are several points to consider when

reading it, listed below.

• Reward time delay. One of the important points to be considered is the time delay

between each action and its respective reward. More specifically, in the real world

when a file is distributed across multiple online storage services, it takes time to

completely store all the file fragments and then compute the reward function. Dur-

ing this time, it is possible for many files to be queued ready for distribution. Thus,

the time delay might affect the speed of learning – or worse, the quality of distribu-

tion. This issue is unrelated to the proposed framework specifically. However, in

real-world reinforcement learning applications, rewards might be delayed in time.

Such a delay can have different causes, including unpredictable network latency

or poor quality of some sensors. [Campbell 2014] highlighted this problem in de-

tail, with some real-world applications. This problem as it relates to OFDAMCSS

requires further study .

• RAID. As described in Section 2.5, RAID is a technology that has several meth-

ods (or levels) for distributing files over several hard disks. Some of these levels,

including levels 5 and 6, work by striping files uniformly over all the disks with

parity distribution. In addition, RAID Level 10 has different methodology from

RAID levels 5 and 6; in Level 10, the disks are divided into two groups at least and

then the whole file size is sent to each group. Inside each group, the file is frag-

mented uniformly and then each fragment is stored on a different disk. However,

the proposed framework used a varied distribution of file fragments to each cloud

storage service. This means there is a need for an investigation of how to modify

standard RAID methods to write different sizes of the file to each cloud.

• Learning parameters effect. Further experiments are needed to understand why

the parameters of reinforcement learning and artificial neural networks result in

157

158 Conclusion and Future Work Chapter 9

certain effects. As shown in this study, the parameters do affect learning behaviour

in different ways. A suggestion for future research is to explore the impact of

changing the parameters, as well as studying the dependence of parameters on

each other.

• Multi-objective optimisation. This work is based on the trade-off between differ-

ent objectives so that they do not conflict with each other. That is, one objective

value can be optimised or improved but without degrading another objective value.

The research approached this challenge by combining all objectives into a scalar

single objective. However, further studies could examine different multi-objective

optimisation techniques, including Pareto fronts and multi-agent multi-objective

optimisation. Some potential exists for minor conflict between the objective val-

ues.

– Pareto optimality, also known as ‘Pareto efficiency’, is a method that solves

a multi-objective optimisation problem. This method received great acclaim

in the field of machine learning due to its success in optimising multiple ob-

jectives using evolutionary algorithms and other population-based stochastic

search methods [Jin & Sendhoff 2008]. In studies such as the current re-

search, Pareto optimality can be examined to optimise the total cost of us-

ing multiple cloud storage services, without adversely affecting the perform-

ance (latency time). More information about applying Pareto optimal solu-

tions to machine learning systems to optimise multiple objectives appears in

[Van Moffaert & Nowé 2014],[Mukhopadhyay et al. 2014], [Zuluaga et al.

2016], and Fan et al. [2016].

– Multiple machine learning systems solution. This work addressed the prob-

lem of interacting with multiple environments and optimising multiple ob-

jectives in each environment. This approach is also known as ‘multi-agent

systems’. It can be examined to solve the problem of file distribution across

multiple cloud storage services. In this approach, each machine learning

158

Section 9.3 Limitations and Future Work 159

system can have individual MDPs, each of which corresponds to individual

cloud storage. Here, all machine learning systems require a level of cooper-

ation to ensure the sum of file portions is equal to 100% of the file’s ori-

ginal size. More details about this approach appear in [Panait & Luke 2005],

[Nguyen et al. 2010], and [Abouheaf et al. 2012].

159

160

References

Springer (2005). Function approximation via tile coding: Automating parameter choice.

Springer, Springer.

(2017). Definition of latency in english. https://en.oxforddictionaries.com/thesaurus/

worsen. Accessed: 2017-06-08.

(2017). Latency. http://whatis.techtarget.com/definition/latency. Accessed: 2017-06-08.

Abouheaf, M., Dissertations, P., resource collection), T. E., & of Texas at Arlington. Col-

lege of Engineering, U. (2012). Optimization and Reinforcement Learning Techniques

in Multi-agent Graphical Games and Economic Dispatch.

Abu-Libdeh, H., Princehouse, L., & Weatherspoon, H. (2010). RACS: A case for cloud

storage diversity. In Proceedings of the 1st ACM Symposium on Cloud Computing,

SoCC ’10, (pp. 229–240)., New York, NY, USA. ACM.

Aggarwal, C. C. (2015). Data classification: algorithms and applications. CRC Press.

Agrawal, N., Bolosky, W. J., Douceur, J. R., & Lorch, J. R. (2007). A five-year study of

file-system metadata. Trans. Storage, 3(3).

Alzain, M. A., Soh, B., & Pardede, E. (2011). MCDB: Using multi-clouds to ensure se-

curity in cloud computing. In Dependable, Autonomic and Secure Computing (DASC),

2011 IEEE Ninth International Conference on, (pp. 784–791).

161

https://en.oxforddictionaries.com/thesaurus/worsen
https://en.oxforddictionaries.com/thesaurus/worsen
http://whatis.techtarget.com/definition/latency

162 REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Pat-

terson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2010). A view of cloud computing.

Commun. ACM, 53, 50–58.

Barrett, E., Howley, E., & Duggan, J. (2013). Applying reinforcement learning towards

automating resource allocation and application scalability in the cloud. Concurrency

and Computation: Practice and Experience, 25(12), 1656–1674.

Bell, J. (2015). Machine Learning: Hands-On for Developers and Technical Profession-

als (1st ed.). Indianapolis, IN, USA: John Wiley & Sons.

Beloglazov, A., Buyya, R., Lee, Y. C., Zomaya, A., et al. (2011). A taxonomy and

survey of energy-efficient data centers and cloud computing systems, volume 82, (pp.

47–111). Academic Press.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Bessani, A., Correia, M., Quaresma, B., Andr, F., & Sousa, P. (2011). Depsky: Depend-

able and secure storage in a cloud-of-clouds. In Proceedings of the Sixth Conference

on Computer Systems, EuroSys ’11, (pp. 31–46)., New York, NY, USA.

Birkes, D. & Dodge, Y. (2011). Alternative methods of regression, volume 190. John

Wiley & Sons.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Bort, J. (2016). Google apologizes for cloud outage that one person describes as a

comedy of errors. Online; accessed 15-05-2016.

Bowers, K. D., Juels, A., & Oprea, A. (2009). Hail: A high-availability and integrity

layer for cloud storage. In Proceedings of the 16th ACM Conference on Computer and

Communications Security, CCS ’09, (pp. 187–198)., New York, NY, USA. ACM.

Brinkmann, M. (2016). Copy cloud storage service’s life ends on May 1,

2016. http://www.ghacks.net/2016/02/02/copy-cloud-storage-services-life-ends-on-

may-1-201. Online; accessed 19-10-2016.

Bu, X., Rao, J., & Xu, C.-Z. (2011). A model-free learning approach for coordinated

162

REFERENCES 163

configuration of virtual machines and appliances. In 2011 IEEE 19th Annual Interna-

tional Symposium on Modelling, Analysis, and Simulation of Computer and Telecom-

munication Systems, (pp. 12–21). IEEE.

Buyya, R., Cortes, T., & Jin, H. (2001). A Case for Redundant Arrays of Inexpensive

Disks (RAID), (pp. 2–14). Wiley-IEEE Press.

Campbell, J. S. (2014). Multiple Model Reinforcement Learning for Environments with

Poissonian Time Delays. PhD thesis, Carleton University Ottawa.

Chen, H., Kesavan, M., Schwan, K., Gavrilovska, A., Kumar, P., & Joshi, Y. (2011).

Spatially-aware optimization of energy consumption in consolidated data center sys-

tems. In ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging

and Integration of Electronic and Photonic Systems, (pp. 461–470). American Society

of Mechanical Engineers.

Chen, T. & Bahsoon, R. (2013). Self-adaptive and sensitivity-aware QoS modeling for

the cloud. In Proceedings of the 8th International Symposium on Software Engin-

eering for Adaptive and Self-Managing Systems, (pp. 43–52)., Piscataway, NJ, USA.

IEEE Press.

Choi, H. W., Kwak, H., Sohn, A., & Chung, K. (2008). Autonomous learning for efficient

resource utilization of dynamic vm migration. In Proceedings of the 22nd Annual

International Conference on Supercomputing, (pp. 185–194)., New York, NY, USA.

ACM.

Cioara, T., Anghel, I., Salomie, I., Copil, G., Moldovan, D., & Kipp, A. (2011). Energy

aware dynamic resource consolidation algorithm for virtualized service centers based

on reinforcement learning. In 2011 10th International Symposium on Parallel and

Distributed Computing, (pp. 163–169). IEEE.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/-

correlation analysis for the behavioral sciences. Routledge.

Crites, R. H. & Barto, A. G. (1994). An actor/critic algorithm that is equivalent to q-

learning. In Advances in Neural Information Processing Systems 7, [NIPS Conference,

Denver, Colorado, USA, 1994], (pp. 401–408).

163

164 REFERENCES

Dabbagh, M., Hamdaoui, B., Guizani, M., & Rayes, A. (2014). Energy-efficient cloud

resource management. In INFOCOM Workshops, (pp. 386–391). IEEE.

Demirci, M. (2015). A survey of machine learning applications for energy-efficient

resource management in cloud computing environments. In 2015 IEEE 14th Interna-

tional Conference on Machine Learning and Applications (ICMLA), (pp. 1185–1190).

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern Classification (2nd ed.). Wiley-

Interscience.

Dutreilh, X., Kirgizov, S., Melekhova, O., Malenfant, J., Rivierre, N., & Truck, I. (2011).

Using reinforcement learning for autonomic resource allocation in clouds: towards a

fully automated workflow. In ICAS 2011, The Seventh International Conference on

Autonomic and Autonomous Systems, (pp. 67–74).

Eggert, C., Winschel, A., & Lienhart, R. (2015). On the benefit of synthetic data for

company logo detection. In Proceedings of the 23rd ACM International Conference

on Multimedia, (pp. 1283–1286)., New York, NY, USA. ACM.

Embrechts, M. J., Hargis, B. J., & Linton, J. D. (2010). Augmented efficient backprop

for backpropagation learning in deep autoassociative neural networks. In The 2010

International Joint Conference on Neural Networks (IJCNN), (pp. 1–6).

Erl, T., Mahmood, Z., & Puttini, R. (2013). Cloud Computing: Concepts, Technology &

Architecture. USA, Upper Saddle River, New Jersey: Prentice Hall.

Fan, J. & Gijbels, I. (1996). Local polynomial modelling and its applications: mono-

graphs on statistics and applied probability 66, volume 66. CRC Press.

Fan, Z., Hu, K., Li, F., Rong, Y., Li, W., & Lin, H. (2016). Multi-objective evolutionary

algorithms embedded with machine learning—a survey. In Evolutionary Computation

(CEC), 2016 IEEE Congress on, (pp. 1262–1266). IEEE.

Flach, P. (2012). Machine Learning: The Art and Science of Algorithms That Make

Sense of Data. UK: Cambridge University Press.

Frnkranz, J., Gamberger, D., & Lavrac, N. (2012). Foundations of Rule Learning.

Springer Publishing Company, Incorporated.

Furht, B. (2010). ”Cloud Computing Fundamentals”, (pp. 3–20). Berlin,Germany:

164

REFERENCES 165

Springer.

Gatti, C. (2015). Design of experiments for reinforcement learning. Heidelberg New

York Dordrecht London: Springer.

Gatti, C. J. & Embrechts, M. J. (2013). Reinforcement Learning with Neural Networks:

Tricks of the Trade, (pp. 275–310). Berlin, Heidelberg: Springer Berlin Heidelberg.

Grondman, I. (2015). Online Model Learning Algorithms for Actor-Critic Control. Ivo

Grondman.

Grondman, I., Busoniu, L., Lopes, G. A. D., & Babuska, R. (2012). A survey of actor-

critic reinforcement learning: Standard and natural policy gradients. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42,

1291–1307.

Hans, C. (2011). Elastic net regression modeling with the orthant normal prior. Journal

of the American Statistical Association, 106(496), 1383–1393.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning

(2nd ed.). Springer series in statistics Springer, Berlin.

Haykin, S. (2007). Neural Networks: A Comprehensive Foundation (3rd ed.). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc.

Heidrich-Meisner, V., Lauer, M., Igel, C., & Riedmiller, M. A. (2007). Reinforcement

learning in a nutshell. In ESANN 2007, 15th European Symposium on Artificial Neural

Networks, Bruges, Belgium, April 25-27, 2007, Proceedings, (pp. 277–288).

Hosmer Jr, D. W. & Lemeshow, S. (2004). Applied logistic regression. John Wiley &

Sons.

Jamshidi, P., Sharifloo, A. M., Pahl, C., Metzger, A., & Estrada, G. (2015). Self-learning

cloud controllers: Fuzzy q-learning for knowledge evolution. In Cloud and Autonomic

Computing (ICCAC), 2015 International Conference on, (pp. 208–211).

Jclouds, A. (2016). The Java multi-cloud toolkit. http://jclouds.apache.org. Online;

accessed 08-07-2014.

Jin, Y. & Sendhoff, B. (2008). Pareto-based multiobjective machine learning: An over-

view and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C

165

166 REFERENCES

(Applications and Reviews), 38(3), 397–415.

Johnson, A. (2009). Data Storage - peripheral view (2nd ed.). alan@johnson.org: Self-

publishing.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A

survey. J. Artif. Int. Res., 4(1), 237–285.

Kajiura, Y., Kanai, A., Tanimoto, S., & Sato, H. (2013). A file-distribution approach to

achieve high availability and confidentiality for data storage on multi-cloud. In 2013

IEEE 37th Annual Computer Software and Applications Conference Workshops, (pp.

212–217).

Kajiura, Y., Ueno, S., Kanai, A., Tanimoto, S., & Sato, H. (2015). An approach to

selecting cloud services for data storage in heterogneous-multicloud environment with

high availability and confidentiality. In 2015 IEEE Twelfth International Symposium

on Autonomous Decentralized Systems, (pp. 205–210).

Kanai, A., Kikuchi, N., Tanimoto, S. S., & Sato, H. (2014). Data management approach

for multiple clouds using secret sharing scheme. In 2014 17th International Confer-

ence on Network-Based Information Systems, (pp. 432–437).

Karpathy, A. (2014). Reinforcejs. Online; accessed 03-12-2016.

Khanna, R. & Awad, M. (2015). Efficient learning machines: theories, concepts, and

applications for engineers and system designers. Apress.

Konda, V. R. & Tsitsiklis, J. N. (1999). Actor-critic algorithms. In Advances in

Neural Information Processing Systems 12, [NIPS Conference, Denver, Colorado,

USA, November 29 - December 4, 1999], (pp. 1008–1014).

Konen, W. & Bartz-Beielstein, T. (2008). Reinforcement Learning: Insights from Inter-

esting Failures in Parameter Selection, (pp. 478–487). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Kramer, O. (2013). Dimensionality Reduction with Unsupervised Nearest Neighbors.

Berlin, Germany: Springer-Verlag Berlin Heidelberg.

Kundu, S., Rangaswami, R., Gulati, A., Zhao, M., & Dutta, K. (2012). Modeling virtual-

ized applications using machine learning techniques. In Proceedings of the 8th ACM

166

REFERENCES 167

SIGPLAN/SIGOPS Conference on Virtual Execution Environments, (pp. 3–14)., New

York, NY, USA. ACM.

Lange, S., Gabel, T., & Riedmiller, M. (2012). ”Batch Reinforcement Learning”,

chapter 2, (pp. 46–73). Berlin, Heidelberg: Springer Berlin Heidelberg.

LeMay, R. (2013). Telstra’s cloud computing suffers 24 hour outage. Online; accessed

03-12-2016.

Lewis, G. (2013). Standards in cloud computing interoperability. ht-

tps://insights.sei.cmu.edu/sei blog/2013/03/standards-in-cloud-computing-

interoperability.html. Online; accessed 08-12-2016.

Li, F., Yang, Y., & Xing, E. P. (2005). From lasso regression to feature vector machine.

In Advances in Neural Information Processing Systems, (pp. 779–786).

Liang, Y. (2016). Towards a Standardized Quality Assessment Framework for OCCI-

Controlled Cloud Infrastructures, (pp. 58–73). Cham: Springer International Publish-

ing.

Libclouds, A. (2016). One interface to rule them all. https://libcloud.apache.org. Online;

accessed 08-07-2014.

Linden, J. (2012). ”TwinStrata Publishes A Snapshot into Cloud Storage Adoption from

2012 Cloud Computing Expo”. TwinStrata.

Liu, S., Huang, X., Fu, H., & Yang, G. (2013). Understanding data characteristics and

access patterns in a cloud storage system. In 2013 13th IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing, (pp. 327–334).

Marshall, D. (2013). Cloud storage provider nirvanix is closing its doors.

http://www.infoworld.com/article/2612299/cloud-storage/cloud- storage-provider-

nirvanix-is-closing-its-doors.html. Online; accessed 19-10-2016.

Marsland, S. (2015). Machine Learning: An Algorithmic Perspective (2nd ed.). Chap-

man & Hall/CRC.

Matiisen, T. (2015). Guest post (part i): Demystifying deep reinforcement learning.

Online; accessed 03-12-2016.

McCarthy, J. & Feigenbaum, E. (1990). In memoriam—arthur samuel

167

168 REFERENCES

(1901–1990). AI Mag., 11(3), 10–11.

McClendon, L. & Meghanathan, N. (2015). Using machine learning algorithms to

analyze crime data. Machine Learning and Applications: An International Journal

(MLAIJ), 2(1).

Mell, P. M. & Grance, T. (2011). Sp 800-145. the nist definition of cloud computing.

Technical report, National Institute of Standards & Technology, Gaithersburg, MD,

United States.

Mesnier, M., Thereska, E., Ganger, G. R., Ellard, D., & Seltzer, M. (2004). File classific-

ation in self-* storage systems. In Proceedings of the First International Conference

on Autonomic Computing (ICAC-04), (pp. 44–51). IEEE.

Mitchell, T. M. (1997). Machine Learning (1st ed.). New York, NY, USA: McGraw-Hill,

Inc.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &

Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning. Computing

Research Repository.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. Nature, 518(7540), 529–533.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Fundation of Machine Learning

(1st ed.). London, UK: Massachusetts Institute of Technology Press.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2015). Introduction to linear regres-

sion analysis (5th ed.). John Wiley & Sons.

Mu, S., Chen, K., Gao, P., Ye, F., Wu, Y., & Zheng, W. (2012). µlibcloud: Providing

high available and uniform accessing to multiple cloud storages. In Grid Computing

(GRID), 2012 ACM/IEEE 13th International Conference on, (pp. 201–208)., Beijing.

IEEE.

Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., & Coello, C. A. C. (2014). A

survey of multiobjective evolutionary algorithms for data mining: Part i. IEEE Trans-

actions on Evolutionary Computation, 18(1), 4–19.

168

REFERENCES 169

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Naqa, I. E. & Murphy, M. J. (2015). ”What Is Machine Learning”, (pp. 3–12). Switzer-

land,Cham: Springer International Publishing.

Ng, A. Y., Parr, R., & Koller, D. (1999). Policy search via density estimation. In Ad-

vances in Neural Information Processing Systems 12, [NIPS Conference, Denver, Col-

orado, USA, November 29 - December 4, 1999], (pp. 1022–1028).

Nguyen, N.-T., Howlett, R. J., & Jain, L. C. (2010). Agent and multi-agent systems:

technologies and applications. Springer.

Nikolaev, N. & Iba, H. (2006). Adaptive Learning of Polynomial Networks. New York,

NY, USA: Springer-Verlag New York, Inc.

Nonnemaker, J. E. (2008). The Safe Use of Synthetic Data in Classification. PhD thesis,

Computer Science & Engineering, Bethlehem, PA, USA. AAI3358110.

Panait, L. & Luke, S. (2005). Cooperative multi-agent learning: The state of the art.

Autonomous agents and multi-agent systems, 11(3), 387–434.

Papaioannou, T. G., Bonvin, N., & Aberer, K. (2012). Scalia: An adaptive scheme for

efficient multi-cloud storage. In High Performance Computing, Networking, Storage

and Analysis (SC), 2012 International Conference for, (pp. 1–10).

Paraiso, F., Merle, P., & Seinturier, L. (2016). socloud: a service-oriented component-

based paas for managing portability, provisioning, elasticity, and high availability

across multiple clouds. Computing, 98(5), 539–565.

Patterson, D. A., Gibson, G., & Katz, R. H. (1988). A case for redundant arrays of

inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’88, (pp. 109–116)., New York, NY,

USA. ACM.

Pettey, C. & Goasduff, L. (2008). ”Gartner Highlights Five Attributes of Cloud Com-

puting”. Gartner, Inc. Online ; accessed 11-06-2016).

Pettey, C. & van der Meulen, R. (2008). ”Gartner Says Contrasting Views on Cloud

Computing Are Creating Confusion”. Gartner, Inc. Online ; accessed 11-06-2016).

Prevost, J. J., Nagothu, K., Kelley, B., & Jamshidi, M. (2011). Prediction of cloud

169

170 REFERENCES

data center networks loads using stochastic and neural models. In System of Systems

Engineering (SoSE), 2011 6th International Conference on, (pp. 276–281).

Rao, J., Bu, X., Xu, C.-Z., Wang, L., & Yin, G. (2009). Vconf: a reinforcement learning

approach to virtual machines auto-configuration. In Proceedings of the 6th interna-

tional conference on Autonomic computing, (pp. 137–146). ACM.

Raschka, S. (2015). Python Machine Learning. Birmingham , UK: Packt Publishing

Ltd.

Rebello, J. (2012). Subscriptions to cloud storage services to reach half-billion level this

year.

Riedmiller, M. (2005). Neural fitted q iteration–first experiences with a data efficient

neural reinforcement learning method. In European Conference on Machine Learning,

(pp. 317–328). Springer.

Rokach, L. & Maimon, O. (2014). Data Mining With Decision Trees: Theory and Ap-

plications (2nd ed.). River Edge, NJ, USA: World Scientific Publishing Co., Inc.

Salimian, L. & Safi, F. (2013). Survey of energy efficient data centers in cloud comput-

ing. In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility

and Cloud Computing, (pp. 369–374)., Washington, DC, USA. IEEE Computer Soci-

ety.

Sammut, C. & Webb, G. I. (2011). Encyclopedia of Machine Learning (1st ed.). Springer

Publishing Company, Incorporated.

Shamir, A. (1979). How to share a secret. Commun. ACM, 22, 612–613.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mas-

tering the game of go with deep neural networks and tree search. Nature, 529(7587),

484–489.

Smart, W. D. & Kaelbling, L. P. (2000). Practical reinforcement learning in continuous

spaces. In ICML, (pp. 903–910).

Smith, C. (2012). Amazon ec2 outage takes down netflix, instagram and pinterest. On-

line; accessed 03-12-2016.

170

REFERENCES 171

Solomon, M. G., Kim, D., & Carrell, J. L. (2014). Fundamentals Of Communications

And Networking (2nd ed.). USA: Jones and Bartlett Publishers, Inc.

Staten, J. (2009). ”Cloud Is Defined, Now Stop the Cloudwashing”. Forrester, Inc.

Online ; accessed 11-06-2016.

Staten, J., Yates, S., Gillett, F. E., & Saleh, W. (2008). ”Is Cloud Computing Ready For

The Enterprise?”. Forrester, Inc. Online ; accessed 11-07-2016).

Stone, M. (1993). Hefty storage in a budeget. PC Mag, 12(17), 247–250.

Sugiyama, M. (2016). Introduction to Statistical Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Sutton, R. (2004). Reinforcement learning faq: Frequently asked questions about rein-

forcement learning. Online ; accessed 30-10-2016.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT

Press.

Sutton, R. S. & Barto, A. G. (2012). Reinforcement learning: An introduction. unpub-

lished book.

Szita, I. (2012). Reinforcement Learning in Games, chapter 7, (pp. 539–577). Berlin,

Heidelberg: Springer Berlin Heidelberg.

Tanimoto, S., Murai, C., Seki, Y., Iwashita, M., Matsui, S., Sato, H., & Kanai, A. (2013).

A Study of Risk Management in Hybrid Cloud Configuration, (pp. 247–257). Heidel-

berg: Springer International Publishing.

Tanimoto, S., Sakurada, Y., Seki, Y., Iwashita, M., Matsui, S., Sato, H., & Kanai, A.

(2013). A study of data management in hybrid cloud configuration. In 2013 14th ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing, (pp. 381–386).

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine learning,

8(3-4), 257–277.

Tesauro, G. (2002). Programming backgammon using self-teaching neural nets. Artif.

Intell., 134(1-2), 181–199.

Thakur, N. & Lead, Q. (2010). Performance testing in cloud: A pragmatic approach.

171

172 REFERENCES

Technical report, diaspark.

Tsidulko, J. (2015). Overnight aws outage reminds world how important aws stability

really is. CRN. Online; accessed 01-06-2016.

van Haaelt, H. (2012). ”Reinforcement Learning in Continuous State and Action space”,

chapter 7, (pp. 207–251). Berlin, Heidelberg: Springer Berlin Heidelberg.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double

Q-Learning. In AAAI, (pp. 2094–2100).

van Hasselt, H. & Wiering, M. A. (2007). Reinforcement learning in continuous action

spaces. In 2007 IEEE International Symposium on Approximate Dynamic Program-

ming and Reinforcement Learning, (pp. 272–279).

Van Moffaert, K. & Nowé, A. (2014). Multi-objective reinforcement learning using sets

of pareto dominating policies. Journal of Machine Learning Research, 15(1), 3483–

3512.

van Otterlo, M. & Wiering, M. (2012). ”Reinforcement Learning and Markvo Decision

Processes”, chapter 1, (pp. 207–251). Berlin, Heidelberg: Springer Berlin Heidelberg.

Vasić, N., Novaković, D., Miučin, S., Kostić, D., & Bianchini, R. (2012). DejaVu: Ac-

celerating resource allocation in virtualized environments. In Proceedings of the Sev-

enteenth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, (pp. 423–436)., New York, NY, USA. ACM.

Vengerov, D. (2008). A reinforcement learning framework for online data migration in

hierarchical storage systems. The Journal of Supercomputing, 43(1), 1–19.

Voas, J. & Zhang, J. (2009). Cloud computing: New wine or just a new bottle? IT

Professional, 11, 15–17.

Whiteson, S. (2012). ”Evolutionary Computation for Reinforcement Learning”,

chapter 10, (pp. 325–355). Berlin, Heidelberg: Springer Berlin Heidelberg.

Wiering, M. A. & van Hasselt, H. (2007). Two novel on-policy reinforcement learn-

ing algorithms based on td(λ)-methods. In 2007 IEEE International Symposium on

Approximate Dynamic Programming and Reinforcement Learning, (pp. 280–287).

Witten, I. H. & Frank, E. (2011). Data Mining: Practical Machine Learning Tools and

172

REFERENCES 173

Techniques (3rd ed.). Burlington, USA: Morgan Kaufmann Publishers Inc.

Wooldridge, M. & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The

knowledge engineering review, 10(02), 115–152.

Xu, C.-Z., Rao, J., & Bu, X. (2012). Url: A unified reinforcement learning approach for

autonomic cloud management. Journal of Parallel and Distributed Computing, 72(2),

95–105.

Yang, K. & Jia, X. (2014). Security for cloud storage systems. Germany, Springer-Verlag

Berlin Heidelberg: Springer.

Zhou, A. C., He, B., Cheng, X., & Lau, C. T. (2015). A declarative optimization en-

gine for resource provisioning of scientific workflows in iaas clouds. In Proceedings

of the 24th International Symposium on High-Performance Parallel and Distributed

Computing, HPDC ’15, (pp. 223–234)., New York, NY, USA. ACM.

Zuluaga, M., Krause, A., & Püschel, M. (2016). ε-pal: An active learning approach to

the multi-objective optimization problem. Journal of Machine Learning Research, 17,

1–32.

173

174

List of Symbols

α (Alpha) Learning rate used to control the degree to which

representation parameters are changed at each step.

β (Beta) Another Learning rate, usually used with inner layer

connection weights of an artificial neural network.

λ (Lambda) Temporal discount factor; it scales the influ-

ences of the previous state value on the current state during

learning time.

γ (Gamma) Discount factor; it determines the importance of

future value states.

η (Momentum) Used to prevent artificial neural networks

from converging to a local minimum during the learning

process.

175

176 List of Symbols

ε (epsilon or ε-greedy) A method by which the learner-

machine selects random actions with uniform distribution

from a set of the available actions.

π (pi) Action selection policy.

r Correlation coefficient.

MAE Mean absolute error.

RMSE Root mean squared error.

176

Acronyms

LOMCSS Learning to Optimise Multiple Cloud Storage Services

VMs Virtual machines

IaaS Infrastructure as a service

PaaS Platform as a service

SaaS Software as a service

NIST National Institute of Standards and Technology

API Application programming interface

RAID Redundant array of inexpensive disks, or redundant array

of independent disks

MDP Markov decision processes

177

178 Acronyms

APPM Access Pattern Prediction Model

BP Back-propagation function

SRD Standard RAID distribution policy

TD Temporal difference (algorithm)

HR Human resources

178

Glossary

Cloud computing Computing resources delivered as services to cloud

consumers through the Internet, in a pay-per-use

model

Cloud consumers Organisations or humans who use cloud services

provided by a cloud provider.

Cloud provider A company that provides one or more of the cloud

services to the cloud consumers, either directly or

through a broker.

Cloud performance refers to the time that cloud servers require to pro-

cess a task. In this thesis, the term refers to network

latency, which is the time required to completely

transfer a file from the client side to a cloud storage

service.

Cloud carrier A network which a cloud consumer uses to access

cloud services; in general it refers to the Internet.

179

180 Glossary

Virtual machines A simulation of computer hardware to provide the

functionality of a physical computer. The VM runs

by means of an actual computer.

Vendor lock-in A situation in which a customer depends on a vendor

for products and services and cannot switch to an-

other vendor without incurring substantial costs.

Computing resources Any physical or virtual components of available

computer hardware or software.

Data centre A centralised repository containing a large group

of networked computer servers and associated com-

ponents. The centre is used for storing and pro-

cessing large amounts of data.

Machine learning A large set of algorithms that are used by computer

software to learn from a specific dataset how to per-

form specific tasks.

Machine learning system Computer software that is capable of learning from

data or interacting with a specific environment, to

perform future predictions or actions.

Hypothesis In this work, a set of coefficient parameters that are

defined by some underlying representation functions

(e.g., linear functions or artificial neural networks).

Representation A parametrised function that can learn a pattern of

specific data.

180

Glossary 181

Environment the system in which the machine learning system in-

teracts.

Supervised learning A type of machine learning by which the machine

learning system learns from labelled data.

Reinforcement learning A type of machine learning in which the machine

learning system interacts with its environment in a

sequential decision-making scenario.

Artificial neural network A mathematical model of a fully interconnected

group of nodes, which is able to represent complex

linear and non-linear functions.

Linear function A mathematical model that represents a linear rela-

tionship between a dependent variable and one or

more independent variables.

Episode set of learning steps or states that a reinforcement

learning system visits throughout its interaction with

an environment. Each episode may terminate when

the machine learning system reaches its goal, com-

pletes a terminal state or runs the maximum number

of time steps.

Critic In reinforcement learning, the critic is a synonym for

the state value function.

State value The value of a state is an estimation of the value of

being in a given state. Basically, this value is the

total reward value that can be accumulated in the fu-

ture, starting from that state.

181

182 Glossary

Actor In reinforcement learning an actor is a synonym for

action selection policy.

Action selection policy The methodology that a reinforcement learning sys-

tem uses to select its action. Usually action selection

policy is based on the value of the state.

Actor-critcs A method that separates the action selection policy

from the state value function. That is, the action se-

lection policy is independent of the state value func-

tion).

Reward Feedback that can be received from the environment

after visiting a certain state or performing an action

in a certain state.

State A set of different situations within an environment.

Synthetic data Artificial data that are produced to resemble real

data.

182

Index– INDEX

Index

cloud storage services, 34

action, 65

action-selection policy, 65

actor-critic, 73

actor-only, 72

Amazon S3, 34

API, 18, 27, 33, 34

applications, 17

APPM, 120

architecture, 91

artificial neural network, 51, 53–55, 57, 59,

60, 70–72, 109, 111

availability, 1

back propagation, 57, 59

backward pass, 51, 60

backwards pass, 55, 56

bandwidth, 34

bias, 52

black-box, 45, 46, 52, 53

Broad network access , 28

business drivers, 31

characteristics, 32, 48

classification, 62

cloud auditor, 30

cloud broker, 30

cloud carrier, 30

cloud computing, 17, 25–27, 30, 32, 40,

79, 87

cloud consumer, 29, 30, 34

Cloud consumers, 34

cloud performance, 18

cloud provider, 18, 30, 33, 34

cloud providers, 17, 80

cloud services, 18, 25

Cloud storage, 18

cloud storage, 19

183

INDEX– INDEX

cloud storage emulator, 87, 119

cloud storage service, 1, 17, 34

cloud storage services, 1, 25

CloundHarmony.com, 154

clustering, 61

Community Cloud, 29

computational resources, 17, 31

computer networks, 17

continuity, 1, 33

continuous, 66

cost, 19

cost-effective, 17

CPU, 80

critic, 72

critic-only, 72

data mirroring, 36

Data storage, 35

data storage, 32

data stripping, 36

decision tree, 46

Deep reinforcement learning, 75

deterministic, 67

dimension reduction, 62

dimensionality reduction, 62

discrete, 66

Elastic Net Regression, 57

elasticity, 17

environment, 30, 40, 48, 65, 79, 82

feature, 51, 53, 66

Feature continuity, 48

Feature space dimensionality, 48

Feature type, 48

features, 49

file access pattern, 44, 103

file access patterns, 87

flexibility, 34

Forrester Inc., 27

forward pass, 51, 56

framework, 1, 41, 65, 87, 91, 119

Fuzzy control, 83

gaussian function, 54

Google Cloud Storage, 34

hard disk, 35

hardware, 80

heuristic, 44

hidden layer, 53

Hybrid Cloud, 29

hyperbolic tangent function, 54

hyperbolic tangent function, 110

hypotheses, 46, 57

hypothesis, 45, 56

Hypothesis representation, 46

hypothesis representation, 50

IaaS, 17, 29

infrastructure, 28, 31, 34

input layer, 53

184

INDEX– INDEX

intercept, 52

Internet, 17, 27, 29

Internet browser, 34

IT, 31

Jcloud, 18

Lasso Regression, 57

latency, 18

latency time, 39, 121

learning algorithms, 79

Least Mean Squares, 58

Libcloud, 18

Linear Regression, 57

linear function, 54

linear model, 51, 52, 57

linear regression, 58

LMS, 58

Logistic Regression, 57

look-up table, 51, 70

machine learnin, 48, 62

Machine Learning, 45

Machine learning, 44

machine learning, 41, 44, 46, 51, 52, 57,

76, 79, 82, 84, 87

machine learning system, 47, 70

Markov decision process, 65

MDP, 65

MDPs, 159

Measured service, 28

Microsoft Azure Storage, 34

multi-agent systems, 158

multi-tenant model, 28

multiple cloud storage, 155

Multiple machine learning systems, 158

multiple objectives, 158

nearest neighbour, 46

network cost, 40

network latency time, 18

network throughput, 18

network usage, 19

NFQ, 75

NIST, 27, 30, 34

node, 53

nonparametric, 46

nsupervised learning, 49

OFDAMCSS, 87, 117, 119, 121, 129

On-demand self-service, 28

on-line storage, 34

operational cost, 40

operational costs, 17

optimisation algorithm, 52, 56, 57

Optimisation algorithms, 46

optimisation algorithms, 56

optimisation method, 51

output layer, 53

over-provisioning, 31

PaaS, 17, 30

185

INDEX– INDEX

packet, 18

Pareto optimality, 158

parity, 36

pay-per-use mechanism, 34

performance, 1, 40, 65

policy-search, 72

Polynomial Regression, 57

pool of resources, 27

prediction, 50

Private Cloud, 28

Public Cloud, 29

Q-Learning, 83

QoS, 82

RackSpace, 34

RAID, 35, 37, 157

ramp function, 54

Rapid elasticity, 28

regression, 59, 62, 63

regression analysis, 52, 57

reinforcement learning, 44, 46, 51, 57, 61,

63, 65, 80, 88, 109, 111, 155, 157

reliability, 35

remote storage, 17

residual, 57–59

Resource pooling, 28

reward, 63, 64, 67

Reward time delay, 157

Ridge Regression, 57

rule learning, 46

SaaS, 17, 30

scalability, 17, 34

scale down, 27

scale up, 27

security, 1

servers, 17

Service Availability, 19

Service continuity, 19

service models, 25

sigmoid function, 54, 110

simultaneously, 156

SLA, 81–84

SLED, 35

state, 63–65

state features, 63

stationary, 68

step function, 54

Stepwise Regression, 57

stochastic, 67

storage, 17

storage cost, 40

supervised learning, 44, 46, 49, 61–63, 88

synthetic dataset, 156

tabular representation, 51

TD-Gammon, 74

transfer function, 54, 60

under-provisioning, 31

186

INDEX– INDEX

unsupervised learning, 44, 61

usage metrics, 27, 28

value approximation, 72

vendor lock-in, 1, 18

virtual, 33

virtual machine, 29

virtual machines, 80

virtualisation, 80

VM, 29, 81–84

VMs, 80, 82, 83

white-box, 45

XOR, 36

187

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction and Motivation
	Introduction
	Thesis Structure

	Cloud Computing: Background and Review of the Field
	Definitions of Cloud Computing
	Business Drivers and Cloud Benefits
	Risks and Challenges
	Cloud Storage Services
	Data Storage Strategies
	Multiple Cloud Storage Solutions
	Summary

	Machine Learning: Background
	Definitions of Machine Learning
	Machine Learning Components
	Environment and Data Representation
	Hypothesis Representation
	Linear Model
	Artificial Neural Network Model

	Optimisation Algorithms
	Regression Analysis
	Back Propagation

	Learning Paradigms
	Unsupervised Learning
	Supervised Learning
	Reinforcement Learning
	State Space Dimensions
	Action Space Dimensions
	Reward Properties
	Building Action Selection Policy

	RL with Artificial Neural Network: a Survey
	TD-Gammon
	Neural Fitted Q Iteration (NFQ)
	Deep Reinforcement Learning

	Summary

	Machine Learning Applications in Cloud Computing
	Resource Allocation Management
	Energy Efficiency
	Summary

	System Architecture and Emulator
	OFDAMCSS Framework Architecture
	Cloud Storage Emulator
	Summary

	File Access Pattern Prediction
	Prediction of File Access Pattern: A Review
	Trace History Files: Collections and Structure
	 Synthetic Data Generator
	Access Pattern Predictive Model
	Prediction Model Evaluation
	APPM System Overheads
	Summary

	Intelligent Framework for Optimising File Distribution Across Multiple Cloud Storage Services
	Characteristics of the Reinforcement Learning System
	Artificial Neural Network with Reinforcement Learning
	Reinforcement Learning Model
	Summary

	System Evaluation
	Experiment Settings
	Evaluation Methods
	Mirroring Approach
	Principle of Standard RAID Distribution Approach
	Heuristic Distribution Approach

	OFDAMCSS: Experiments and Analysis
	Overall result
	Analysis of Results
	Developmental of the System
	Impact of Access Pattern on Distribution Decisions
	Parameter Effects in the OFDAMCSS Framework

	OFDAMCSS Framework Overheads
	Summary

	Conclusion and Future Work
	Summary of the Thesis
	Novel Contributions of this Work
	Limitations and Future Work

	References
	List of Symbols
	Acronyms
	Glossary
	Index

