Abstract

Parametric image classification methods are usually complex because they require intensive
training. Therefore, non-parametric Nearest Neighbour (NN) classifiers are preferred in many
cases. Naive Bayes Nearest Neighbour (NBNN) and its modified version, local NBNN, are
recently proposed classifiers that present decent performance with reduced complexity. They
compute image-to-class (12C) distance instead of image-to-image (121) distance. As a result,
local image features will not be quantised and the effectiveness of classifiers thereby stays in
a relatively good level. In this thesis, NBNN and local NBNN are further improved. With the
idea of fully taking advantage of contextual information, we use saliency detectors to classify
local features of reference images into foreground and background. We base our 12C distance
computation on foreground and background separately. The suggestions from these distances
can make label estimation more reliable. Though the times of 12C distance computation have
been increased for each query image, we accelerate our classification procedure based on the
evidence that the performances of NBNN and local NBNN are hardly affected when enough
anchor points, which are produced by clustering, are put into use to replace the large number
of referring features in each class. On the basis of the novel works stated above, the proposed
context-aware methods outperform NBNN or local NBNN in both accuracy and efficiency.

The comparisons have been made on three databases: Pami-09, Caltech-5, and 15-Scene.
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