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“A good hockey player plays where the puck is. A great hockey player plays where the puck is going to be”
· Wayne Gretzky
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In many sports such as tennis, football, and basketball, the ability to anticipate the actions of an opponent is a key component of expert performance. Behavioural research has shown that expert athletes are able to identify and comprehend anticipatory cues present in the kinematics of an opposing player and use them to anticipate the end goal of an action. The aim of the work reported here was to investigate the neural basis of this anticipation skill in athletes. Specifically, the thesis focuses on the role of the sensorimotor system in facilitating this ability, based on evidence showing that the sensorimotor system is involved in the understanding of other people’s actions. 
First, two behavioural experiments are presented showing the development of an anticipation test that is able to distinguish expert and novice participants based upon their response accuracy. Then the role of sensorimotor activity in facilitating anticipation skill is investigated using EEG. Event-related power changes in cortical sensorimotor oscillations in the mu (8-13Hz) and beta (15-25Hz) frequency bands are used as indices of sensorimotor activity, based on the findings of previous work. It was found that earlier and greater event-related desynchronisation (ERD) occurred in the expert group, compared to the novices, in both the mu and beta frequency bands. This suggests greater use of the sensorimotor system during action anticipation in athletes, whilst viewing domain specific actions. However, traditional channel-based analyses of this measure are flawed in that volume conduction effects mean mu and non-mu alpha activity can become mixed. This means it is unclear the extent to which mu activity specifically indexes the sensorimotor system, as opposed to other processes such as attentional demand.
As a potential solution to this issue, the data was re-analysed using independent component analysis (ICA) to separate out the underlying brain processes ongoing during the anticipation task. Expertise-related differences in mu and beta ERD were then analysed on independent component (IC) activity. The ICA analysis largely replicated the channel analysis, with earlier and greater ERD in expert athletes in ICs relating the sensorimotor activity. No group differences were found in ICs relating to non-mu, alpha activity. This suggests group differences were specific to sensorimotor activity, providing evidence that sensorimotor activity is key in distinguishing expert from novice athletes on an action anticipation task.  
In Chapter 5, a novel analysis method was used. Mu and beta ERD in the two groups were contrasted between trials that were subsequently anticipated correctly versus trials that were subsequently anticipated incorrectly. In the experienced group only, it was found that there was greater beta ERD for correctly anticipated trials compared to incorrectly anticipated trials. There were no differences in mu ERD between correct and incorrect trials. Furthermore, overall mu and beta ERD significantly negatively correlated with anticipation accuracy in the experienced group, suggesting a higher accuracy is associated with greater sensorimotor ERD during prior observation. Finally, in Chapter 6 the results are summarised and their implications within the wider literature considered, as well as a discussion of limitations and future directions.
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1.1. [bookmark: _Toc486260826]Frameworks for studying expertise
Research into the nature of expertise in a given domain can typically be divided into two broad approaches. The cognitive components approach attempts to look for basic cognitive processes that underpin expertise. On the other hand, the expert performance approach seeks to study experts directly within their domain of expertise, and attempt to isolate the mechanisms that distinguish their performance on a domain specific task from non-experts.
[bookmark: _Toc486260827]1.1.1.	Cognitive components approach
The cognitive components approach assumes that expertise in a given domain should be underpinned by measurable changes in the underlying, basic cognitive processes that presumably are required for the given skill (Nougier, Stein, & Bonnel, 1991). Whether experts and novices show differences in domain general, basic cognitive abilities is still unclear. To date the evidence for any differences are mixed, and appears to vary based upon the domain of expertise being studied. For instance, expert action video game players have been shown to perform better on a number of laboratory tasks tapping cognitive abilities such as selective attention (Green & Bavelier, 2003), working memory (Blacker & Curby, 2013; Colzato, van den Wildenberg, Zmigrod, & Hommel, 2013), and motor skills (Kennedy, Boyle, Traynor, Walsh, & Hill, 2011). Other studies however fail to find differences (Unsworth et al., 2015; van Ravenzwaaij, Boekel, Forstmann, Ratcliff, & Wagenmakers, 2014). A recent meta-analysis suggested that the overall effects on cognitive components were small (Powers, Brooks, Aldrich, Palladino, & Alfieri, 2013). 
Similarly, research assessing expertise differences among expert and novice athletes on basic cognitive ability yields mixed results. In a meta-analysis of 20 studies, it was found that many individual studies found small, non-significant differences (Voss, Kramer, Basak, Prakash, & Roberts, 2009). When studies were combined in a meta-analysis it was revealed that expert athletes performed better on measures of processing speed, and on some specific tasks of selective attention (Voss et al., 2009). These effects were clearer for athletes competing in interceptive sports (e.g. football and basketball) compared to other sports types. However, the size of these effects appear to be, at best, small (Hedge’s g = .37, p < .05). 
Whilst it appears that expert and novice athletes show very little difference in their basic cognitive skills, some research suggests that neural activations occurring during the task appear to differ. This suggests differences in the cognitive processing engaged in. For example, a functional magnetic resonance imaging (fMRI) study of expert and novice archers found no behavioural differences in a visuospatial working memory task, but did find greater activations in the dorsolateral pre-frontal cortex (DLPFC) and supplementary motor area (SMA) in the experts, compared to the novices (Seo et al., 2012). The authors suggest this finding shows that expert archers engage in a different cognitive strategy to novices that may reflect their domain-specific expertise (Seo et al., 2012). Importantly, this study did not explore any differences in regional activations during an archery-related task. 
Another study of professional motor-racing drivers found no expertise related behavioural differences on either visuo-spatial attention or motor processing speed, but did find a stronger connectivity between task-related areas (for the visuo-spatial task, this network consisted of bilateral dorsal premotor cortex, bilateral middle temporal cortex, right precuneus, left insula, cerebellum, and thalamus; for the motor-processing task, a network was comprised of the SMA, bilateral insula, bilateral inferior occipital cortex, and cerebellum) in the expert group, compared to novice controls (Bernardi et al., 2013). Finally, in a study of visuospatial processing in rugby players, greater activations were found in the right superior parietal lobe (rSPL), and the lateral occipital cortex in the expert group compared with the novice group. Again, there were no behavioural differences on the visuospatial processing task (Sekiguchi et al., 2011). As the studies of archery and motor-racing experts, no group differences in domain specific tasks were investigated. 
The results of these studies suggest that expert sports-players do not have any behavioural advantages on laboratory tasks tapping into basic cognitive skills, however the differences in neural activity when performing basic cognitive tasks do appear to be different. These differences in neural activity may reflect changes in the brain’s architecture that have come about as a result of intense, domain-specific training over a long period of time. However, longitudinal evidence is needed to substantiate that claim.
[bookmark: _Toc486260828]1.1.2.	Expert performance approach
A problem with the cognitive components approach is that experts train within a very specific domain. Many sports do require a fast processing speed and enhanced attentional skills, however athletes learn these skills within their given domain. In other words, experts don’t explicitly train their speed of processing to try to improve their sports ability. They instead likely acquire an improved, domain-specific processing speed, as a result of engaging in deliberate practice to improve skill in a given domain. 
The expert performance approach to studying expertise suggests that expertise must be studied within a domain-specific context (Williams & Ericsson, 2005). The first stage is to designing an experiment that successfully captures expert performance. This may either be field-based, or in a controlled laboratory environment. Laboratory testing of expert performance typically employs video-based experiments, though virtual-reality methods are likely to become more popular in future work (Dessing, Peper, & Beek, 2010). In these experiments participants view domain-relevant actions (e.g. in an experiment investigating expert tennis performance, participants may view videos of tennis shots). A challenge is in designing experiments that are representative of a real-life situation, and that allows the component skills involved in the task be performed as they would be in the real-world equivalent. 
The second stage is then isolating and studying the mechanisms that account for expert performance. This could involve techniques such as measuring eye movements (section 1.4.1), manipulation of information available to participants (section 1.4.2), biomechanical motion capture (section 1.4.2), psychophysiological measures (Filho et al., 2015), and neuroscience methodologies (section 1.7). In order to be informative on any processes that underlie expertise, the task must clearly be able to distinguish expert and novice performance. This means that expert players must show superiority in the outcome measure (e.g. decision making time, accuracy) in order to legitimately claim that the mechanism under study may contribute to expert performance (Ericsson & Smith, 1991; Williams & Ericsson, 2005). 
The expert performance approach has proved extremely successful in understanding the cognitive and perceptual factors that make up expert performance. Experts have been shown to possess extensive procedural and declarative memory stores and also more efficient attention allocation and cue utilization. These abilities allow experts to not only be superior tactical decision makers in their domain than novices, but a strong body of work shows that the ability to anticipate future events is a key component of expert performance (Mann, Williams, Ward, & Janelle, 2007).
[bookmark: _Toc486260829]1.2.	Anticipation as a skill
In a wide range of domains, skilled anticipation is a vital component of expertise. Anticipation can be defined as the extrapolation of sensory information in the current environment, to predict what might subsequently happen (Crundall et al., 2012). 
In sports, skilled motor movement is required, and in many, this movement is required in very short time frames. This restriction means there is little time for planning and decision-making. Because of this, being able to anticipate is a crucial skill. Correctly predicting an opponent’s actions gives a player extra time in which to prepare a suitable response. Anticipation is not a skill unique to sports either. For instance, when driving a car, being able to anticipate the future actions of other road users will help in reducing collisions. 
Anticipation shows an expertise effect across a wide range of sports such as football (Savelsbergh, Williams, Van der Kamp, & Ward, 2002), rugby (Jackson, Warren, & Abernethy, 2006), ice hockey (Salmela & Fiorito, 1979), tennis (Rowe & McKenna, 2001), squash (Abernethy, 1990), and badminton (Abernethy & Zawi, 2007). As mentioned above, anticipation is important in domains such as driving as well. Expertise related differences in anticipation skill have been found in studies of hazard perception when driving (Borowsky & Oron-Gilad, 2013; McKenna, Horswill, & Alexander, 2006; Wetton, Hill, & Horswill, 2011). 
These opening sections have provided an overview of the major frameworks for studying the dimensions of expertise. The concept of anticipation has been introduced, and it has been highlighted that it is an important skill that needs to be developed in order to attain expert status in domains such as sports and driving. The following section will present a theoretical model of anticipation, applied to specific examples in sports. This will be followed by a discussion of the empirical evidence supporting the roles of a number of different perceptual and cognitive mechanisms that underpin anticipatory skill in athletes.
[bookmark: _Toc486260830]1.3.	Cognitive models of anticipation
The concept of situation awareness (SA), developed mainly in the field of ergonomics, provides a useful theoretical framework for understanding expert anticipation in sports. The most influential theory of SA defines it as “the perception of elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future” (Endsley, 1995, 2000). This theory outlines three levels of understanding, moving from the correct identification of relevant perceptual cues in the environment, to predicting how the state of the environment will change in the future i.e. anticipation. 
Level 1 SA is the perception of cues in the environment. This requires the status, attributes, and dynamics of the relevant elements to be understood. The first stage to successfully anticipating tennis shot direction would be correctly identifying all of the available perceptual cues present in the actions of the opponent prior to them hitting the ball. As shown in section 1.4.1, level 1 SA may be achieved through an efficient visual search strategy. 
Level 2 SA is the comprehension of the current situation. To achieve this level of SA, it is necessary to go beyond identifying objects in the environment (level 1 SA), and gain an understanding of their significance relevant to a particular goal. In the tennis example, level 2 SA would be achieved by the player integrating all of the relevant cues identified during level 1 SA, in order to gain a full comprehension of the action that is going to be executed by the opposing player. Processes such as kinematic cue comprehension, and the use of probability and expectation, may facilitate level 2 SA (see sections 1.4.2 and 1.4.3). 
Finally, level 3 SA is the projection of future states, thus representing the ability to anticipate. Being able to anticipate future scenarios requires recognition of the status and dynamics of the elements (level 1) and then comprehend the situation as a whole (level 2). In the tennis example, level 3 SA would be achieved by first perceiving cues in the opposing player, understanding the intention of the opponent that the cues represent, and then being able to anticipate based on the information present in the cues. 
SA provides a useful theoretical model of anticipation as it describes the processes required for anticipation, and also suggests potential mechanisms underlying expert anticipation in sport. Furthermore, the SA framework also provides insights into how anticipation may fail, and is useful in understanding how anticipation skill may be trained. For example, incorrect anticipation may occur due to a player not being able to successfully identify all of the relevant cues (level 1 failure), or incorrectly misattributing the information imbedded in a certain cue (level 2 failure). 
One proposed cognitive model on which to understand SA and anticipation is provided by long-term working memory theory (Ericsson & Kintsch, 1995). This model proposes that experts develop an array of complex task-specific encoding and retrieval skills in long-term memory. These retrieval structures allow experts to index and store information during encoding in a way that features or collections of features can allow for a superior representation of current scenarios which in turn facilities the recognition (level 1 SA), comprehension (level 2 SA), and anticipation (level 3 SA) of events. It is proposed that these long-term memory structures are accessible through short-term memory cues. Long-term working memory helps experts develop efficient encoding of a situation, which in turn, facilities monitoring, the formulation of planning actions, and continual evaluation of both the present situation and planned actions (Ericsson & Kintsch, 1995). 
Applied to a sports-specific situation, long-term working memory could aid in successful anticipation. An initial anticipatory cue in the opponent’s action could trigger rapid retrieval of a stored memory representation of a similar situation which can be used to help recognise and comprehend the current situation. Based on stored situation representations, the player could then make an anticipation on what the opponent intends to do based on knowledge acquired from past situations.
A related model is the interactive encoding model (Dittrich, 1999). This model suggests that individuals combine both low level and high level cognitive processes when making recognition based judgements. When viewing an action, initially an individual extracts low level relational and temporal relationships between features, before engaging in a higher-level processing where this information is extracted and judged in the context of stored memory structures. One possibility is the presented stimuli is matched with an internal semantic template. In experts, this bank of semantic templates is extensive, having been developed through years of extensive training. On the other hand, less experienced individuals have fewer templates and so processing is based primarily on low-level features.  
Relating this idea to anticipation in sports, when watching an opponent’s action, the expert player is able to anticipate by extracting low level features in the player’s movement (level 1 SA). This enables the player to judge the meaning of these features with relation to stored semantic representations, therefore allowing for the comprehension (level 2 SA) of the low-level features and so also successful anticipation. On the other hand, the novice player is unable to move past the processing of low-level features and as such cannot move past level 1 SA. Evidence that expert players are able to use anticipatory cues present within a player’s body movements is presented in section 1.4.2. Long-term working memory and interactive encoding both provide cognitive models in which anticipation could be facilitated. 
[bookmark: _Toc486260831]1.4.	Perceptual and cognitive mechanisms underlying expert anticipation skill
[bookmark: _Toc486260832]1.4.1	Visual search strategies
Given that expert sports players are able to extract anticipatory cues from various sources, it would be expected that expert players would exhibit different visual search strategies compared to novice players. Visual search strategy refers to the way in which the eyes are used to search a scene for relevant information to guide action (Henderson, 2003). Visual search strategy is typically assessed by using an eye-tracker and measures the orientation of the fovea and the nature of eye movements between each individual fixation (Williams, Janelle, & Davids, 2004). Considering the fact that the first stage of making a successful anticipation is identifying the individual elements in the environment, coupled with the very fast timescale to make the anticipation, it would be expected that expert players would exhibit a more efficient visual search strategies than novices (Williams, 2002). 
In one study of football goalkeepers, experts were more accurate than novices in anticipating penalty shot direction (Savelsbergh et al., 2002). The expert group used a more efficient visual search strategy which involved fewer overall fixations of longer duration to fewer areas of the display. Whilst novices spent longer fixating on the trunk, arms and hips, experts spent longer fixating on both the kicking and non-kicking leg and ball areas. This was particularly true the closer the scene got to foot-ball contact (Savelsbergh et al., 2002). 
In a follow-up study, differences in visual search behaviour between correct and incorrect anticipation within expert players were investigated (Savelsbergh, Van der Kamp, Williams, & Ward, 2005). Although no differences in general visual search characteristics such as duration of fixation, total number of fixations, or number of fixation locations were found, there was a difference with respect to the particular body regions fixated upon. Unsuccessful anticipations tended to show more fixations on the head, whereas successful anticipations were associated with longer fixations on the non-kicking leg (Savelsbergh et al., 2005). These results show that unsuccessful anticipation was due not to a lack of information, but the type of information picked up. The fact that unsuccessful anticipations were associated with more fixations on the head suggests a failure to achieve level 1 SA, as the relevant cues in the environment were not identified (Endsley, 1995, 2000). 
Both of these studies used penalty kicks as stimuli. This however only represents one of many different situations faced during a football match. Specifically, these findings are only relevant to a 1 on 1 situation, whereas team sports inherently feature many situations with multiple players. To address this, researchers recorded visual search behaviour across varying types of offensive play in soccer (Vaeyens, Lenoir, Williams, Mazyn, & Philippaerts, 2007). Participants watched videos of a number of different types of offensive play, which varied in the number of players present in the scene: 2 vs. 1 (i.e. two attackers versus one defender), 3 vs. 1, 3 vs 2, 4 vs. 3, and 5 vs. 3. A goalkeeper was present in each condition. In each scene, a target player was identified by wearing a yellow jersey. Participants were required to anticipate the most appropriate decision that the target player should make in each scene. They found the visual search strategies employed varied across the different conditions, and was mainly affected by the number of players present in the scene. A smaller number of fixations, longer mean fixation duration, and lower interfixation rate was employed in the 2 vs. 1 and 3 vs. 1 conditions compared to the others. In contrast, in trials involving 3 vs.2, 4 vs. 3, and 5 vs. 3 players, there were a higher number of fixations, shorter mean duration, and shorter interfixation rate. The results suggest that as the number of players and potential response alternatives increased, players employed a higher search rate in order to extract information from more disparate information sources (Vaeyens et al., 2007). 
Expert players were faster and more accurate in selecting a decision than the novice players, however there were fewer group differences in visual search behaviours than expected (Vaeyens et al., 2007). Differences were found in relation to fixation order and fixation location, with expert players alternating their fixation between the player in possession of the ball and other areas of the display more frequently than other players. This finding supports the argument that experts are more adept in adapting their visual search strategy according to the constraints of the task than novices, a difference also found in other domains such as driving (Crundall, Chapman, Phelps, & Underwood, 2003), and provides more evidence that experts have a more efficient search strategy. 
A meta-analysis of 42 studies using a wide range of sports and experimental designs found systematic differences in visual search behaviour, with experts using fewer fixations of longer duration, compared with novices (Mann et al., 2007). Specific differences emerged based upon sport type, paradigm used etc.; suggesting the type of search strategy exhibited by experts in sport will be dependent upon constraints such as the task, the environment, and the individual player (Williams et al., 2004). 
A number of considerations need to be made when viewing the research on visual search. Firstly, the role of peripheral vision in expert anticipation may be underestimated, as eye tracking equipment only detects foveal vision. Secondly, whilst eye tracking can tell us where the players are looking, it doesn’t tell us what information is being picked up. This has been referred to previously as the difference between looking, and seeing (Zelinsky, Rao, Hayhoe, & Ballard, 1997). Whilst cue usage can be inferred from eye fixation data, in some situations experts may fixate on a target centrally and gather informative cues from the periphery (Williams & Davids, 1998; Williams & Elliot, 1999). Studies of visual search in real-world environments show a greater reliance on peripheral vision than laboratory tasks, suggesting that task constraints affect the type of visual search strategy engaged in, with more foveal vision fixations in laboratory studies compared to in-situ settings (Dicks, Button, & Davids, 2010). 
This section has shown that experts generally show a more efficient visual search strategy than novices, which has been tied to faster and more accurate anticipation. In the context of the SA framework, the expert player’s visual search allows them to perceive all the relevant elements in the environment, i.e. level 1 SA. However, eye movement data doesn’t indicate the information in the visual scene is being extracted. In other words, it does not give a good understanding of how comprehension of the elements (level 2 SA) is achieved. The following sections will explore some of the cognitive-perceptual mechanisms employed by expert players in comprehension of the relevant cues needed for successful anticipation.
[bookmark: _Toc486260833]1.4.2.	Use of kinematic cues
A player would be at an advantage if they were able to anticipate an opponent’s next move based upon the opponent’s body movements, or kinematics. This could be accomplished by being able to understand the relevance of kinematic information in the player’s action, and being able to use that knowledge to predict the outcome of a certain action. There is now a large body of research focusing on the use of body kinematics to anticipate. This research has focused in particular on ‘striking’ sports such as tennis, badminton, cricket etc. where players make contact with a ball or similar object as an integral part of the game. In sports such as these, the time between a player making contact with the ball and an opponent having to react to it (returning a shot in tennis, catching a ball in cricket) is very short. As such, it would be useful for players to use cues in their opponent’s kinematics to anticipate where the ball was going to go (e.g. its velocity, direction, spin etc). 
Experts have been found to anticipate outcomes based upon opponent kinematics and perform better than novices. The effective pick-up of relative motion is essential – i.e. experts anticipate the outcome of a situation based upon their perception of relative motion between specific bodily features rather via an isolated or superficial cue (Müller & Abernethy, 2012). 
Two common methodologies used to study the use of kinematic information in anticipation are the temporal and spatial occlusion paradigms (Müller, Abernethy, & Farrow, 2006; Williams & Davids, 1998). In these tasks an opponent is filmed from a first-person perspective performing a given action (e.g. tennis shots), which are then displayed to participants. In temporal occlusion studies, the videos are occluded at varying time-points relative to a critical event (e.g. racket-ball contact). In spatial occlusion studies, part of the scene is removed whilst presenting the remainder of the video (e.g. removing the opponent’s arm or racket). 
Using temporal occlusion, expert cricket batsmen were found to use information from before the moment the bowler released the ball to accurately anticipate the trajectory of the ball (Müller et al., 2006). Specifically, it was found that the expert batsmen made use of the motion of the bowler’s arm relative to the bowling hand, primarily between the time of front foot impact and that that of ball release. Specific timing information can be obtained by including multiple levels of occlusion. In a study of badminton players, five different occlusion levels were used (Abernethy & Russell, 1987b). The earlier the occlusion was relevant to racket-shuttle contact, the less kinematic information participants had available to them, and thus anticipation should be harder. The hardest level of occlusion was -167ms before the critical event, with each subsequent occlusion level providing 83ms more information that could be used to anticipate. This allowed comparison of anticipation accuracy across adjacent conditions giving a measure of information pick-up within the time window bounded by adjacent conditions. In this study, it was found that experts could pick up anticipatory cues from the opponent’s kinematics much earlier (at -167ms) than novices, whose information pick-up started much closer to racket-shuttle contact. This suggests experts are attuned to earlier information regarding an opponent’s action. It also suggests they are more attuned to information from spatially distinct regions (the arm holding the racket underwent its greatest movement -167 to -83ms, whilst the racket itself underwent its greatest movement -83 to 0ms). Improvements were shown in both groups between 0ms and 83ms, due to the availability of shuttle flight information (Abernethy & Russell, 1987b). 
Temporal occlusion studies have consistently found that when a sports-related action is occluded prior to a critical moment, experts can anticipate the intentions of their opponent earlier in the movement sequence than novices. This finding is consistent across multiple sports such as football (Williams & Davids, 1998), basketball (Wu et al., 2013), tennis (Rowe & McKenna, 2001), squash (Abernethy, 1990), and badminton (Abernethy & Russell, 1987b). 
Spatial occlusion studies have been used to further understand the specific cues that are used by experts to successfully anticipate. In a spatial occlusion study of badminton, serves were shown to participants with different regions of the scene being masked so that participants couldn’t use that information to anticipate (Abernethy & Russell, 1987a). In each trial, either the arm and racket, only the racket, the head, the lower body, or background areas were masked with a black spot so that they could not be seen by participants. This approach showed that novices gained most of their anticipatory information from racket movement. Expert players however used mostly arm and racket movement, but also head posture, lower body posture, and lower body motion. These results showed that expert players can use a range of kinematic cues to anticipate, information not available to novices. Spatial occlusion studies in football (Williams & Davids, 1998), cricket (Müller et al., 2006), squash (Abernethy, 1990), tennis (Jackson & Mogan, 2007; Shim, Carlton, & Kwon, 2006), and fencing (Hagemann, Schorer, Canal-Bruland, Lotz, & Strauss, 2010) have yielded comparable results. 
The pick-up of relative motion is an essential component of anticipation in fast ball sports (Abernethy, Gill, Parks, & Packer, 2001; Ward, Williams, & Bennett, 2002). Rather than simply extracting information from an isolated area (as is tested in the spatial occlusion paradigm), expert players anticipate the actions of an opponent based on their perception of relative motion between specific kinematic features. Several studies have looked at expert anticipation skill when the action is presented as purely kinematic information, via a point-light display. This sort of stimuli is created by recording a player performing an action using a motion capture system. All superficial information is then removed, with just the motion information remaining. When using point-light displays, expert players maintain an advantage in terms of anticipation accuracy compared with novices (Ward et al., 2002). 
In a series of studies focusing on tennis, point-light display stimuli were used in conjunction with techniques from the spatial occlusion paradigm. They manipulated the kinematics of the action by occluding or neutralising biological motion at a certain body region, or interchanging them with kinematics of shots played from the opposite side of the court. Generally, it was found that whilst racket-arm movement is sufficient to accurately anticipate tennis shot direction, expert players are also able to extract anticipatory cues from other body areas such as the shoulders, trunk, and legs (Cañal-Bruland & Williams, 2010; Huys et al., 2009; Williams, Huys, Cañal-Bruland, & Hagemann, 2009). 
As kinematic cues in a player’s action can be successfully used by an opponent to anticipate, it would be expected that in competitive situations players will make deliberate efforts to disguise their intentions and/or actively deceive opponents. This may potentially lead to failure of level 1 SA, because the anticipating player will be unable to detect the available kinematic cues. Studies of the effect of disguise on anticipation generally show that experts are still able to anticipate disguised shots more accurately than novices, and there is mixed evidence that experts are less accurate at anticipating disguised shots compared to undisguised ones. One of the earlies studies of disguise in hockey penalty shot taking found no evidence that disguise influenced performance of goalkeepers’ ability to anticipate shot direction (Lyle & Cook, 1984). In another study, skilled and unskilled football goalkeepers had to anticipate penalty kick direction in players whose uniforms had been designed to disguise kinematic cues (Causer & Williams, 2015). They showed that whilst the skilled goalkeepers were more accurate than the unskilled goalkeepers, only the skilled players showed decreased accuracy in trials with the disguised uniforms compared to undisguised, suggesting that disguising the kinematic cues of an action can reduce anticipation accuracy, presumably due to a failure of level 1 SA, as the cues necessary to anticipate cannot be identified. 
In a study of disguise in tennis using 5 occlusion points, expert player’s anticipation performance was disrupted by disguise in trials -40ms before racket-ball contact, but not in trials -80ms before racket-ball contact. This may suggest that earlier cues are harder to disguise than later ones. Despite this disruption, expert players maintained superior performance over novices in all conditions (Rowe, Horswill, Kronvall-Parkinson, Poulter, & McKenna, 2009). 
A of deliberate deception in rugby found that only in novices was performance was diminished during deceptive trials. Experts showed similar anticipation performance in both deception and non-deception trials (Jackson et al., 2006). These lack of differences were explained based on an expert player’s ‘global’ perceptual strategy, which has within it a degree of flexibility. Being able to use multiple cues means that if one potential source displays a deliberately deceptive move, other cues can be focused upon instead. 
A large body of evidence exists that shows the comprehension of kinematic cues present in an opposing player is critical in expert action anticipation. This has been shown in designs such as temporal and spatial occlusion, where information available to participants is restricted. Furthermore, evidence shows that the disguise of cues can disrupt anticipation performance This provides further evidence that expert players readily use kinematic cue information. Finally, expert players are still able to anticipate successfully based on pure biological motion information, suggesting again that kinematic cues are crucial in action anticipation.
[bookmark: _Toc486260834]1.4.3.	Use of probabilities and expectations
Throughout the career of an athlete, they will likely face similar match-play situations hundreds or thousands of times. There is evidence that expert athletes are able to call upon this wealth of experience and anticipate the outcome of a scenario based upon their understanding of the relative probabilities of different possible outcomes occurring. This ideas fits with theories that the brain predicts upcoming events based on both the statistical distribution of likely event probabilities combined with incoming sensory information (Genewein & Braun, 2012; Genewein, Hez, Razzaghpanah, & Braun, 2015; Körding & Wolpert, 2004). 
In a study of football players, participants were shown film sequences of various match plays. At the end of each trial the final frame of the film was frozen, and participants were asked to rank in order of likelihood a number of possible outcomes (Ward & Williams, 2003). Expert players were better at judging the correct option, as determined by a panel of expert coaches. In a similar study in cricket, participants were shown either a random selection of bowls or an entire over (i.e. six consecutive deliveries) with each bowl in correct, consecutive order. Anticipation accuracy was higher in expert batsmen in the condition with the additional contextual cues (when the who over was seen in correct order), compared to the random viewing condition (McRobert, Ward, Eccles, & Williams, 2011). The expert players were able to develop better expectations of the type of delivery a bowler is likely to perform when contextual information about prior bowls is taken into consideration. The importance of contextual information in expert anticipation has also been demonstrated in baseball (McPherson & MacMahon, 2008) and tennis (Crognier & Féry, 2005). 
It is also likely that an athlete will face the same opponent(s) many times throughout their career, and as such will develop knowledge about specific preferences that opponents may have. For instance, in the 2006 FIFA World Cup quarter final between Germany and Argentina, German goalkeeper Jens Lehmann prepared for the penalty shoot-out by reading notes regarding the preferred shot direction by each member of the Argentinian squad (BBC Sport, 2006). This was an attempt to build expectations about the likely shot direction based on each individual player’s shot preference. 
In a study investigating this in handball, two groups of skilled goalkeepers anticipated penalty shot direction performed by an opponent before and after a training period designed to provide situational probability information regarding the player’s shot direction preference (Mann, Schaefers, & Cañal-Bruland, 2014). One group received training on players that had a direction preference, whilst the other group received training on players that did not have a direction preference. They found that the group who received training regarding direction preference did show an improvement in anticipation ability, however showed poorer performance on trials where the player did the opposite of their generally preferred action. This suggests that using prior expectation can be beneficial, but relying on this knowledge can actually be detrimental to anticipation accuracy.
[bookmark: _Toc486260835]1.4.4.	Interaction between mechanisms during anticipation
Research has typically examined mechanisms underlying expert anticipation performance in an isolated context, and little research has examined how different mechanisms of anticipation skill interact with each other. One of the first studies to look at this showed football players and novices offensive football play sequences from the perspective of a defender (Roca, Ford, McRobert, & Williams, 2013). The sequences either started with the ball being located in the opposition’s half of the pitch (i.e., far trials), or in the participant’s half of the pitch (i.e., near trials). The sequences were occluded at a key moment in the scene, and participants were required to anticipate the opponent’s actions and choose the best strategic decision that the opposing player could make. 
By coding verbal responses from participants, the type of anticipatory mechanism used in each trial was inferred. They found that in both conditions, references to kinematic cues were most common, however significantly more references were made to kinematic information in the opponent’s movements in near trials compared to far trials. References to situational probabilities were also higher in near trials compared to far trials. In far trials, they found that the usage of pattern recognition was more common, compared to the near condition (Roca et al., 2013). A second follow-up study replicated these results (North, Hope, & Williams, 2016). 
These studies show that expert players will rely on different strategies to anticipate in different situations. When the opposing team are a long way off, a defending player will use the relative positions of the attacking team to anticipate how play shall advance. However, when the opposing team are closer to the defender, the player will switch strategy and refer more to the player’s body kinematics to anticipate the attacker’s next action.
[bookmark: _Toc486260836]1.4.5.	External constraints on anticipation accuracy
It is possible that external constraints such as anxiety and fatigue could affect anticipation skill. For example, being anxious has been shown to have a negative effect on a wide range of perceptual-motor skills (Nieuwenhuys & Oudejans, 2012), such as perception of task-relevant information (Behan & Wilson, 2008), selection of appropriate actions (Pijpers, Oudejans, Bakker, & Beek, 2006), and movement execution (Coombes, Higgins, Gamble, Cauraugh, & Janelle, 2009). In a sports setting, when anxious, expert athletes have been found to show a reduced visual search rate and narrowed focus of attention (Williams & Elliot, 1999). Similar effects on perceptual systems have been found in athletes when they are fatigued (Moore, Romine, O’Connor, & Tomporowski, 2012; Vickers & Williams, 2007). 
Given that perceptual-cognitive mechanisms are greatly influenced by these factors that are believed to be involved in anticipation, it might be expected that such factors would affect athlete’s ability to anticipate. For instance, a reduced visual search rate would likely lead to a poorer ability to identify relevant anticipatory cues.
[bookmark: _Toc486260837]1.4.6.	Transfer of anticipation skill between domains
Given that expert anticipation skill develops from intense domain-specific training, some recent research has looked at how domain-specific anticipation skill is, by investigating whether anticipation ability can transfer across domains. For example, it has been shown that athletes are able to successfully anticipate based off pure biological motion information, via point-light display studies. Testing whether an expert who can anticipate an opponent in one sport can also anticipate an opponent in another sport is examining the degree to which transfer is dependent on either the commonality between domains or instead dependent on underlying fundamental principles. 
Expert, intermediate, and novice baseball batters were tested on a temporal occlusion task anticipating baseball pitching type, and then also on batting type in cricket (Moore & Müller, 2014). They showed that whilst both expert and intermediate level baseball players were more accurate than novices on the baseball task, the expert group were also more accurate than the other two groups on the cricket task (though accuracy rate was lower than on the baseball task). Another study found similar results by showing expert and intermediate karate players could better anticipate taekwondo actions than novices, and also that karate experts could also anticipate actions from an Australian rules football player above chance level (Rosalie & Müller, 2014). This has been further shown through work looking at expert performance at perceiving non-sport specific biological motion (Romeas & Faubert, 2015). This study presented point-light displays of a soccer kick, with participants required to indicate ball direction, and also point-light displays of walking figures, with the task being required to indicate walking direction. They found not only were the experts faster and more accurate in the domain-specific task, but experts were also superior at perceiving the direction in the domain-general task. The results of these studies seem to suggest that experts do acquire some general understanding of kinematic relationships through their extensive training, or are able to identify elements of domain-specific actions in which they possess expertise within more general actions, and can use that knowledge and apply it to help understand kinematic information from a different domain.
[bookmark: _Toc486260838]1.5.	Interim summary
Anticipation is a key skill in expert performance in sports. This section has reviewed the literature on the perceptual and cognitive mechanisms that underlie expert anticipation skill. Through a situational awareness framework, anticipation ability can be broken down into three stages. First, the observer must identify the relevant anticipatory cues present in the environment. Eye tracking studies have shown experts to have a more efficient visual search strategy than novices, typically showing fewer fixations of longer duration (Mann et al., 2007). 
Having identified the relevant environmental cues, the next stage in a successful anticipation is the comprehension of the relationship between all the cues previously identified, and the information conveyed in these relationships.  First, expert players are able to use an opponent’s kinematics to anticipate the outcome of a given action. This is achieved by a comprehension of the information contained in the relative motion between specific kinematic cues (Abernethy et al., 2001). Recent research on transfer effects has shown that this ability is a somewhat domain general ability, suggesting that experts develop a general understanding of fundamental relationships between kinematics and action outcomes from their domain specific training and experience (Romeas & Faubert, 2015). 
As well as using these mechanisms, expert players can also rely on situational probabilities and contextual information to help predict possible outcomes (McRobert et al., 2011). Through these strategies, an expert player is able to comprehend all the cues present in the environment, allowing them to make an accurate anticipatory judgement about how the environment will change in the future, or what the outcome of a perceived action will be.
[bookmark: _Toc486260839]1.6.	Action understanding in the brain
Through years of deliberate practice and intense training, the brain of an expert athlete is likely to undergo a number of changes as a result of the intense training required to become an expert. It has already been shown that expert athletes show differences in terms of brain activations and connectivity during laboratory tasks compared to novices (Bernardi et al., 2013; Seo et al., 2012). Furthermore, evidence from experts in a variety of different sports have found differences in terms of brain structure, when compared to novices. These differences have largely been found in terms of differences in grey matter volume in cerebellum (Park et al., 2009, 2012), and increased integrity of white matter connections in both the cerebellum and motor cortex (Roberts, Bain, Day, & Husain, 2013). Structural differences in other motor areas such as the premotor cortex (PMC), and supplementary motor area (SMA) have also been reported (Hänggi, Koeneke, Bezzola, & Jäncke, 2010). It has been suggested these differences are due the extensive practice and performance of specific motor skills that are required by expert athletes (Park et al., 2009). It should be noted however that because studies were cross sectional, it is not possible to say whether these structural differences reflect innate characteristics in athletes, or whether changes occur specifically as a result of a rigorous training regime. 
There do appear to be both structural and functional differences in the brains of athletes compared to those of non-athletes. As such, differences in brain function should underpin the differences in behavioural performance in anticipation tasks discussed in section 1.4. The following sections shall overview potential neural mechanisms that may facilitate expert action anticipation. Then the current literature on the neural basis of expert anticipation in sports shall be discussed.
[bookmark: _Toc486260840]1.6.1.	The action observation network
In humans, the action observation network (AON) is a network of brain structures that activates to the observation of biological motion (Caspers, Zilles, Laird, & Eickhoff, 2010). The functional roles of the AON are to facilitate the processing of biological motion, the development of motor representations, and understanding intention from observed actions (Thompson & Parasuraman, 2012). The early processing of biological motion, and the development of motor representations, are believed to occur in posterior regions of the AON such as the extrastriate body area (EBA) and the superior temporal sulcus (STS) respectively (Grossman & Blake, 2002; Grossman, Jardine, & Pyles, 2010; Jastorff & Orban, 2009). For more details see Thompson & Parasuraman (2012). 
The regions of the AON involved in action understanding, and therefore likely to be most important in action anticipation, are the fronto-parietal areas of the network, comprising primarily the ventral pre-motor cortex (vPMC), inferior frontal gyrus (IFG), and the IPL (Thompson & Parasuraman, 2012). The primary functional role of this part of the AON is to use the processed biological motion information to understand the intentions of another individual’s actions. For instance, activations in the IPL are related to understanding the end goal of the action being performed, rather than the specific effectors being used to perform the action (Jastorff, Begliomini, Fabbri-Destro, Rizzolatti, & Orban, 2010). In frontal areas, the IFG shows a similar role in coding for the goal of the observed action, whilst the vPMC appears to be organised according to the effector being observed (Wheaton, Thompson, Syngeniotis, Abbott, & Puce, 2004). For example, observing mouth, leg, and hand actions activates vPMC regions specific for each of those actions. 
In a meta-analysis of 125 human fMRI studies, degree of overlap in terms of regional activations were compared in studies featuring both an action execution condition, and an action observation condition (Molenberghs, Cunnington, & Mattingley, 2012). It was found that the vPMC, IFG, and IPL were all consistently activated during both the execution and observation of goal-directed actions, and suggests possible overlap between regions involved in action execution and action understanding (Molenberghs et al., 2012). 
[bookmark: _Toc486260841]1.6.2.	Expertise modulation of the action observation network	
In a study investigating expert ballet dancers, expert capoeira dancers, and non-dancers, significant increases in fronto-parietal AON regions were found when the dance groups were observing actions from their own dance style, in comparison to observing actions from the other style, in which they had no motor expertise (Calvo-Merino, Glaser, Grèzes, Passingham, & Haggard, 2005). The authors suggested that fronto-parietal AON activations during the observation of the dance style experts were trained in compared to the one they were untrained in reflects a simulation process during action observation, whereby experts simulate the actions that are in their own motor repertoire. They argued that participants would be unable to do this when observing a different dance style, as they lack the relevant motor representations. 
However, it is also possible that increased fronto-parietal AON activity when observing expert’s own dance style may be due to the expert’s strong visual familiarity with dance moves that they are trained in. A follow-up study tried to disentangle the differing contributions of visual and motor familiarity on fronto-parietal AON activity during action observation, by getting expert dancers to view either ballet movements that were gender specific i.e. so a male participant would have both visual familiarity and motor expertise in a male-specific movement, but only visual familiarity with a female-specific movement, performed by both males and females (Calvo-Merino, Grèzes, Glaser, Passingham, & Haggard, 2006). The found greater fronto-parietal AON activations when observing actions that participants had motor expertise in, as opposed to only visual familiarity. 
	A similar study recorded brain activity weekly as expert dancers learned and rehearsed novel, complex whole-body dance sequences. During each fMRI scan, participants observed the sequences being rehearsed, and imagined rehearsing the sequences themselves. They also observed and imagined performing unpractised movements as a control condition (Cross, Hamilton, & Grafton, 2006). The results showed that after five weeks of training, the participant’s ability to execute observed dance moves was related to increased fronto-parietal AON activity during action observation.
[bookmark: _Toc486260842]1.6.3.	The role of the motor system in understanding actions
Despite evidence showing that regions of the motor system are activated during the observation of actions, the functional significance of this activation remains unclear. Theories can be broadly split into two categories. Motor theories of action understanding suggest this ability depends on the recruitment of the same structures that are involved during execution of the same action that is being observed (Rizzolatti & Sinigaglia, 2010). Alternatively, non-motor theories of action understanding argue that the activation of the motor system during action observation might be triggered by the outcome of action understanding, and that the underlying ability to understand an action takes place in structures outside of the motor system (Giese & Poggio, 2003). Both of these standpoints will be reviewed below.
1.6.3.1.   Motor theories of action understanding
Theories of action understanding that suggest a reactivation of the structures involved in action execution typically rest on the discovery of mirror neurons (Heyes, 2010a). These are a class of neuron, originally identified in area F5 (pre-motor cortex) of the macaque monkey, that show activation during both the execution and observation of goal-directed actions (di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). Since their initial discovery, mirror neurons have also been reported to exist in other areas of the macaque brain such as the inferior parietal lobule (IPL) (Bonini et al., 2010; Fogassi et al., 2005), and primary motor cortex (Dushanova & Donoghue, 2010; Tkach, Reimer, & Hatsopoulos, 2007; Vigneswaran, Philipp, Lemon, & Kraskov, 2013).  The major implication of the discovery of mirror neurons is that when an action is observed, the observer’s motor system appears to also activate, suggesting that their own motor skills are useful in understanding the actions of others (Kilner & Lemon, 2013). 
It was originally proposed that mirror neurons facilitated action understanding through a ‘feedforward’ model, and represented a direct simulation of the action being observed in the observer’s own motor system. However, such a model has been criticised because a single action can have multiple intentions, and also the same intention can be realised through multiple different actions (Hickok, 2009; Kilner, 2011).  
More recently, it has been suggested that mirror neurons can be understood according to a predictive coding framework. Predictive coding is based on minimising prediction error through recurrent or reciprocal interactions among levels of a cortical hierarchy. At each level, a generative model is employed to predict representations in the level below. The generative model then uses backward connections to convey the prediction to the level where it is compared to a representation in this lower level which produces a prediction error. The prediction error is then sent back to the higher level, via forward connections, where the initial prediction is updated. This exchange of signals between levels of the hierarchy continues until the prediction error has been minimised and the most likely causes of the input is generated (Friston, 2003).  
Relating this to mirror neurons and action understanding, an action can be said to be understood on multiple, hierarchical levels (Kilner, 2011). At the highest level is action intention, i.e. the overall reason for executing the action. Below that is the goal level, meaning the immediate purpose of the action. The third level is the motor level, which is the processing and pattern of muscle activity that is required to produce action. The lowest level is the kinematic level, meaning the trajectory and velocity profile of the action. Under the predictive coding framework, mirror neurons activate during action observation because the motor system provides the best model of the observed action. The generative model starts with a prior prediction of the goal/intention of the action being observed. Given this prior, a prediction of what the sensory consequences would be of the most likely action that needed to be executed to achieve that goal or intention is generated. This is the kinematics of the action. By comparing the predicted sensory information with the actual sensory information, the system can assess the likelihood of the prior goal or intention. If the prediction is correct, we are able to infer the goal and intention of the observed action. 
Experimental evidence from a series of experiments supports this view (Chambon et al., 2011; Kokal & Keysers, 2010; Neal & Kilner, 2010; Schippers & Keysers, 2011). In a series of studies, it was shown that there exists an interaction between the amount of kinematic information available to participants and their prior expectations in judging the intention of an observed action, finding that as the amount of kinematic information was reduced, a greater reliance was placed on prior expectation. This relationship was modulated by the type of intention that participants focused on. Intentions were either basic i.e. goals that can be realised by basic action such as reaching for an object, or complex where the goal was more abstract and required several steps to achieve that goal. When the type of intention became more abstract, participant’s prior expectations exerted an increasing influence on their responses. 
These results fit into the predictive coding account of action understanding. A basic intention can be predicted from observation of the current motor act, assuming the observed kinematic information is sufficient to be compared against the expected kinematics and reduce the prediction error in the model. When the amount of kinematic information was low, this comparison cannot be made and as such cannot be compared to the expected kinematics needed to minimise prediction error. In this case it was shown that participants consistently applied their prior beliefs and knowledge to understand the intention. 
In contrast, when understanding complex actions participants made far greater use of prior knowledge, even when the amount of kinematic information was high. The greater dependence on prior knowledge in this condition is explained by the authors as being due to the fact that in complex actions, many competing intentions are congruent with the visual information conveyed by the observed kinematics. Therefore, minimising prediction error between expected and observed kinematics alone is not sufficient to unambiguously determine the intention of an action, and also requires some level of prior belief to aid in successful action understanding (Chambon et al., 2011; Kokal & Keysers, 2010; Neal & Kilner, 2010; Schippers & Keysers, 2011).  
This understanding of mirror neurons could also be used to understand how expert athletes are able to anticipate an opponent. In an example of tennis, as their opponent moves to strike the ball, the player forms a prediction of the opponent’s intention (to win the point) and also a more immediate goal, to hit the ball back across the court. The player can make use of situational probability and expectation information to form this initial prediction. Given this, the player generates a model of the most likely kinematics required to achieve that goal, thereby activating their own motor system. A prediction error would then be generated by comparing the actual kinematic information and the expected kinematics based on the player’s own motor repertoire. When this prediction error is minimised, the player will have understood the opposing player’s actions. This process needs to occur very quickly in the case of an expert athlete, because the prediction error needs to be minimised quickly enough so that the player can actively anticipate the end goal ahead of the full action being performed. Furthermore, the generative model of the expected kinematics is likely to be highly accurate in an expert athlete, because of their own well developed internal motor models. The accuracy of this model, and the speed at which the action is understood could distinguish between correctly anticipating an action compared to incorrectly anticipating. If the prediction error is minimised before the opposing player strikes the ball, a player will have successfully anticipated the action. If the player’s motor system is unable to generate a model of expected kinematics, or the mismatch between expected and actual kinematics is not resolved in time, then the player will be unable to understanding the intention of their opponent ahead of time, and as such be unable to anticipate successfully.   
Whilst the use of internal motor models that are reactivated during action observation appear to be a strong candidate mechanism for how action anticipation is facilitated in expert athletes, direct evidence of mirror neurons in humans is currently limited. One study that recorded single neuron responses in human epilepsy patients undergoing surgery did however find evidence of mirror-neuron like cells that activated during both action execution and action observation (Mukamel, Ekstrom, Kaplan, Iacoboni, & Fried, 2010). Whilst the researchers were restricted in the brain areas they could make recordings from, they found evidence of mirror neuron like cells in the SMA and also the hippocampus. The highly invasive procedures required to directly recorded the activity of neurons generally prohibits such studies being conducted on humans, and almost universally take place in epilepsy patients requiring surgical treatment. However, a large body of evidence using non-invasive neuroimaging techniques suggests that a mirror neuron system does appear to exist in humans (hMNS) (Molenberghs et al., 2012). 
Whilst a mirror system account appears to have strong explanatory power for sports-related action understanding and anticipation, the theory remains controversial and has a number of weaknesses. One problem is that many of the properties of mirror neurons observed in the macaque brain have been generalized to human research without consistent experimental verification (Hickok, 2009). For example, in a meta-analysis of putative hMNS regions there was considerable overlap (36%) between regions that are supposedly part of the mirror neuron system and regions that activate during the observation of non-goal-directed actions (Morin & Grezes, 2008). Furthermore, there is evidence that action understanding in humans can be dissociated from the human mirror neuron system, suggesting it to not be directly involved in action understanding (see section 1.6.3.2 for more detail). This has been shown in studies that have examined functional brain activations during the observation of biting action performed by different species such as humans, monkeys, and dogs (Buccino et al., 2004).  Independent of the species performing the action, the observation of biting actions produced activations in hMNS areas. Viewing communicative gestures from the three species however only activated the hMNS to human and monkey gestures, and not to dog ones. This is despite the fact that the participants still understood that the observed action from the dog (barking) was associated with barking. These findings suggest that people can still understand actions even when the hMNS is not activated (Buccino et al., 2004).
There is also evidence that action understanding and action execution are dissociable. In a study of patients with limb apraxia (a motor disorder due to brain damage), 7 of 21 patients showed no deficit on a gesture recognition task, despite being unable to perform the gesture in an action production task (Pazzaglia, Smania, Corato, & Aglioti, 2008). This suggests in some patients at least, understanding an action can arise without the ability to produce it. In a separate study of patients with left hemisphere damage, there was no correlation between the ability to recognise an action associated with object use and the ability to perform the same action (Tessari, Canessa, Ukmar, & Rumiati, 2007). This is a particularly interesting study as it was specifically investigating goal-directed actions, the action type that mirror neurons are believed to be most closely associated with.
1.6.3.2.   Non-motor theories of action understanding
These weaknesses of the hMNS account of action understanding have led others to suggest alternative explanations as to why the motor system activates during the observation of actions. The association hypothesis proposes that motor neurons are active during action observation because of associative learning (Heyes, 2010a, 2010b). The theory suggests that, before learning, sensory neurons that code to high level visual properties of an observed action are only weakly connected to motor neurons in the pre-motor and parietal cortices that code for high level motor properties during action execution. For example, a sensory neuron that fires during the observation of a precision grip is weakly connected to neurons in the pre-motor cortex, which fire during the execution of precision grips. The motor neuron starts to fire alongside the corresponding sensory neuron when there is correlated activation of both types of neurons that are both responsive to similar actions. Connection strengthening occurs if an individual gains experience in which observation and execution of similar actions are correlated i.e. when they occur relatively close together in time, and one predicts the other. These kinds of experiences that forge strong sensory and motor connections between neurons coding similar actions can arise in a number of situations such as taking part in sports training (Heyes, 2010b).
	Evidence for this theory comes from studies showing that motor responses can be modulated by changes in sensory input. In a study using transcranial magnetic stimulation (TMS) to evoke motor evoked potentials, participants watched videos of an actor moving an index finger. When participants watched the videos, the motor evoked potential (MEP) was greatest in the participant’s own index finger. However when they observed the little finger being moved, MEPs were greater in the participant’s own little finger (Catmur, Walsh, & Heyes, 2007). This supports the typical mirroring account. However, the researchers then trained the participants to move their fingers incongruently to the video stimuli (i.e. move an index finger when the actor moves their little finger, and vice versa). After this training, when the TMS was applied again, MEPs were greater in the index finger when the little finger movements were observed (Catmur et al., 2007). This finding shows that ‘mirroring’ effects can be trained by learning new sensory associations, and argues against the idea that when an action is observed a motor representation of that action is activated in the motor system. If this were the case, even after the training, MEPs would still be expected to be bigger to the congruent action observation.
	It is easy to imagine how sensory-motor associations could develop in the context of sports training to lead to increased motor system activity in expert athletes during action observation and anticipation. During training, athletes are exposed to a large amount of action observation, through viewing opponent’s actions. They also develop strong motor representations through action execution training. Clearly, in match situations there is close correlation between the observation of an opponent playing a shot, and executing a tennis shot. This close activation then leads to a strengthening of neural associations between sensory networks involved in observing an action, and motor neurons involved in executing an action. Through this strengthening of associations, the motor system starts activating when an action is observed.
	The association hypothesis suggests there is not a role of the motor system in action understanding, rather activation of the motor system during action observation is a by-product of strengthening sensory-motor associations. This leaves open the question of where action understanding does take place, if it is not directly in the motor system.
	It has been proposed that action understanding is achieved through different pathways, with the motor system involved in coding the lower level features of an observed action, with higher-level understanding of the intention of an action occurring outside of the motor system (Kilner, 2011). Recent theories action control propose that the ventral IFG is organised along the rostral-caudal axis to represent different levels of abstraction with anterior regions encoding the most abstract semantic representations and the most posterior regions encoding concrete representations. As an example, related to action execution in sports, one could consider the actions involved in striking a tennis ball. The overall intention would be to hit the ball over the net with the racket. Whilst there are many ways a person could swing the racket to hit the ball, some of the possible actions would not achieve the overall intention – to hit the ball over the net. Therefore, to achieve this intention, it is necessary to select the most appropriate swing action from all the possible swing actions.
	The process of retrieving and selecting action semantically related to the object have been associated with activations of the anterior IFG and connecting regions of the middle temporal gyrus (MTG) (Badre & D’Esposito, 2009; Binder, Desai, Graves, & Conant, 2009). Then, the selection of the most appropriate action given the overall intention appears to be related to activity in the middle of the IFG (Badre & D’Esposito, 2009). Finally, once the most appropriate action is selected the motor parameters needed to perform the action are encoded in the posterior IFG (Badre & D’Esposito, 2009). This model provides a gradient of action representation from the overall intention through to the concrete execution of the most appropriate action.
	This framework can be applied to action observation (Kilner, 2011). If the same system is being used, understanding the overall intention of the observed action would occur in the anterior IFG and MTG. A more concrete representation of the action kinematics may then be encoded more posteriorly, possibly involving the motor system. Whether the motor system is activated in a way that directly mirrors the observed action, such as in the predictive coding account of the hMNS described in the previous section, or due to strong sensory-motor associations, is still unclear and more research is needed Whilst these non-motor accounts of action understanding suggest that the motor system is not directly involved in action understanding, it still suggests that motor system activity during sports anticipation may be useful in distinguishing experts from novices. As it is uncertain what the exact role of the motor system is during action observation, from this place forward all findings shall be related to broad sensorimotor activations/sensorimotor system rather than evoking a hMNS interpretation. An hMNS account of motor system activation during action observation and anticipation is common in this field (Smith, 2015), however based on the alternative accounts discussed here, there is currently insufficient evidence to ascribe this theory to reported findings.
[bookmark: _Toc486260843]1.7.	The role of the sensorimotor system in expert action anticipation
A number of TMS studies have investigated the role of the motor system in expert action anticipation, by testing the degree of ‘motor resonance’ in athletes compared to non-athletes during action anticipation. It has been shown that during action observation, selective increases of MEP amplitudes occur from the muscles that would be active if the observed actions were being performed (Avenanti, Candidi, & Urgesi, 2013). This is achieved by using single-pulse TMS to induce an MEP in the muscle group being stimulated. The MEP is recorded via an electromyography (EMG) electrode placed on the muscle group of interest, following the TMS pulse usually administered over the motor cortex. The resulting MEP amplitude can be used as an index of cortico-spinal excitability. Using this method it has been shown that during action observation, MEP amplitudes recorded over the same muscle groups that are performing the observed actions are higher than during a passive condition without action observation (Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995; Romani, Cesari, Urgesi, Facchini, & Aglioti, 2005), though see Catmur et al (2009) for an alternative finding.
Using this methodology to study anticipation, a stronger motor resonance in expert level players has been shown, compared to expert ‘watchers’ (a group with an expert level of visual experience with basketball, but a lack of motor knowledge) and naïve non-players (Aglioti, Cesari, Romani, & Urgesi, 2008). Specifically, it was shown that in trials when expert players correctly anticipated that a basketball freethrow would miss the basket, there was an increase in MEP amplitude at the point the ball left the player’s hand, seen only in muscles that are used to perform a basketball freethrow. This finding was only seen in the expert player group. A similar study in football players found higher MEP amplitudes in expert players in trials where the observed player’s body kinematics were congruent with ball trajectory, compared to trials when they were incongruent (Tomeo, Cesari, Aglioti, & Urgesi, 2013).
Another TMS study found that only expert players use their motor system to aid in anticipating the actions of another player. Using repetitive TMS (rTMS) to temporally disrupt processing in either the PMC or the STS, it was shown that only PMC disruption led to detriments in anticipation performance in expert athletes (Makris & Urgesi, 2015). The fact that rTMS over the PMC did not affect the anticipation performance of novice participants suggests that the PMC was not involved in aiding their anticipatory judgements. 
Complementing these findings are a series of fMRI studies that have investigated the neural correlates of action anticipation. These studies have generally focused on the AON, and have consistently shown that fronto-parietal regions of the network show greater activation during an action anticipation task, compared to a passive action observation task (Balser, Lorey, Pilgramm, Stark, et al., 2014; Bishop, Wright, Jackson, & Abernethy, 2013; Wright, Bishop, Jackson, & Abernethy, 2010, 2011; Wright & Jackson, 2007). This was true across both expert and novice participants, and could be due to an anticipation task being more cognitively demanding than passively observing the action.
A number of studies have examined differences in brain activations between expert and novice athletes during action anticipation. As discussed in section 1.4.2, these studies all used temporal occlusion paradigms to create an action anticipation condition. Furthermore, all of the studies discussed found significant expertise effects in terms of anticipation accuracy. Studies in basketball (Wu et al., 2013), football (Bishop et al., 2013; Wright, Bishop, Jackson, & Abernethy, 2013), badminton (Wright et al., 2010), tennis (Balser, Lorey, Pilgramm, Naumann, et al., 2014; Balser, Lorey, Pilgramm, Stark, et al., 2014; Cacioppo et al., 2014), field hockey (Wimshurst, Sowden, & Wright, 2015), ice hockey (Olsson & Lundström, 2013), and volleyball (Balser, Lorey, Pilgramm, Naumann, et al., 2014) have all shown increased activation in fronto-parietal regions of the AON in expert participants in the observation period preceding anticipation, as compared with less-skilled or novice participants. In particular, experts have shown increased activations in the PMC (Wright et al., 2010, 2011, 2013) and the superior and inferior parietal lobules (SPL/IPL) (Balser, Lorey, Pilgramm, Naumann, et al., 2014; Balser, Lorey, Pilgramm, Stark, et al., 2014; Bishop et al., 2013; Wright et al., 2010, 2011; Wu et al., 2013).
An exception to these findings comes from a study of basketball players, which failed to find any expertise differences in fronto-parietal AON activity during anticipation (Abreu et al., 2012). Rather, they found increased EBA/MT activations in experts, compared to novices. It is worth noting here that this study used a difference baseline measure compared to other studies. This study played anticipation clips in reverse during control trials, with the task being to indicate when the ball changed colour. This differs from other studies, which typically required passive action observation from participants, e.g. watching a tennis player bouncing a ball on the ground (Balser, Lorey, Pilgramm, Stark, et al., 2014). 
As well as evidence of expertise-related differences in AON activity, there is also evidence that fronto-parietal AON activity is greater in the action observation period preceding a correct anticipation, compared to an unsuccessful anticipation. Looking at expert ice hockey players, successful anticipation was associated with greater fronto-parietal AON activity in the preceding trial compared to incorrect trials (Olsson & Lundström, 2013). Specifically, these increased activations were found in the PMC, postcentral gyrus, and all regions of the temporal gyrus. Another study taking the same approach in expert basketball players also found increased activity in the postcentral and temporal gyri during correct trials (Abreu et al., 2012). Other studies have shown that both the SPL and the IFG (regions of the fronto-parietal AON) show increased activity during trials that were anticipated correctly compared to trials where it was not (Balser, Lorey, Pilgramm, Naumann, et al., 2014; Balser, Lorey, Pilgramm, Stark, et al., 2014; Wu et al., 2013). 
Another study focusing on tennis compared anticipation accuracy on initially intended serves, and non-initially intended serves (Cacioppo et al., 2014). On initially intended serve trials, the player watched by participants planned the intended location of the serve before performing the shot. On non-initially intended serves, the player was told the direction of the serve at the point the player had thrown the ball into the air. They found that during initially intended serve trials, experts showed increased activity in the fronto-parietal AON, a pattern of results not found in the reverse contrast. A limitation of this study however was that participants with varying levels of tennis expertise were recruited for the study, and were assigned to groups post-hoc based upon their anticipation accuracy performance. 
Most of the studies to date looking at brain activity during action anticipation, use action outcome as the response measure. This may be in the form of anticipating tennis serve direction, or whether a basketball shot will be in or out. Some research has looked at differences in anticipating action outcome, and anticipating the correct motor response to produce (Balser, Lorey, Pilgramm, Stark, et al., 2014). It was found that overall, anticipating the correct motor response activated a broader range of AON regions than anticipating shot direction did. Few differences in brain activity in the expert group were found in the two conditions, whereas the novice group showed greater AON activity in the motor anticipation task. This finding indicates similar neural activations occur in expert players both when predicting the direction of a shot, and in planning an appropriate response. On the other hand, novices show different activations for these two tasks. 
These studies suggest that the AON, and in particular fronto-parietal regions, is modulated by expertise during an anticipation task. This suggests it plays a role in facilitating expert anticipation skill. This research suggests that when observing an opponent’s actions, expert players show stronger activations in brain regions believed to be important in the understanding of other people’s actions (Caspers et al., 2010). It is possible that expert players can anticipate based on visual familiarity, as well as motor familiarity. Some research has suggested motor familiarity to be particularly important. For instance, expert players are able to successfully anticipate actions displayed via point-light displays. These set-ups remove all visual information from a scene, leaving behind only pure biological motion information. Using point-light display stimuli, expert players still show greater fronto-parietal AON activity than novice players, and remain significantly more accurate (Wright et al., 2011). Cacioppo et al (2014) showed that if the observed player is unable to plan the direction of their serve in advance, expert tennis players were less accurate at anticipating the serves direction. This lower accuracy to non-initially intended serves was associated with lower fronto-parietal AON activations. Poorer anticipation ability during non-initially intended serves may be due to the fact that in these trials, the outcome of the serve was incongruous with the kinematic information presented to participants, meaning that the construction of an internal model of that serve was less accurate, or indeed more difficult overall, potentially due to a lack of any clear kinematic cues. Finally, expert player’s AON activations have been shown not to differ when anticipating the outcome of a shot, and when anticipating the correct motor response to produce. This shows that there is a close coupling in the brain of an expert athlete between anticipating the outcome of an action, and the preparation of a motor response (Balser, Lorey, Pilgramm, Stark, et al., 2014). 
Whilst these studies have made important insights into the neural correlates of action anticipation in athletes, there are a number of limitations to this research. Firstly, a number of the studies used uncorrected significance tests when inferring regional activation differences between groups (Abreu et al., 2012; Olsson & Lundström, 2013; Wright et al., 2010, 2011). This is problematic because of the risk of Type I errors i.e. false positives occurring in the data (Lieberman & Cunningham, 2009). 
A second limitation was discussed in a review of the literature by Smith (2015). They were critical of the fact that many studies make conclusions that go beyond the observed data, and many studies were not adequately driven by theory (Smith, 2015). For instance, although the AON was consistently implicated in expert action anticipation, a whole range of other brain areas were also implicated, including frontal, temporal, occipital, and sub-cortical regions. Furthermore, Smith’s review found that no single brain structure was identified to be related to expert action anticipation across more than half of the studies. Many studies employed whole-brain analyses without adequate hypotheses regarding the expected differences in the regions involved (Smith, 2015). 
These methodological limitations may have contributed to some contradictory findings being reported. For instance, pre-frontal regions were found to show stronger activations in experts in some studies (Wright et al., 2010, 2011, 2013), whilst other studies show stronger activations in novices (Abreu et al., 2012; Olsson & Lundström, 2013). Similar findings were reported with respect to the visual cortex (Bishop et al., 2013; Diersch et al., 2013; Olsson & Lundström, 2013). Claims about the meanings of these results are also not consistent between studies. For example, in one study that found greater activation in the visual cortex in experts, this finding was explained as being due to expert player’s superior reading of the observed kinematics (Abreu et al., 2012). However, in another study that found reduced visual cortex activity in experts, it was suggested as being due to the experts not having to rely on a visual search strategy (Olsson & Lundström, 2013). The exploratory nature of many of these studies, i.e. using whole brain analyses often without clear hypotheses, could be contributing to this issue (Smith, 2015). 
As well as these limitations, Smith’s (2015) review revealed that very little research into expert anticipation has been conducted using electroencephalography (EEG). However, EEG represents an alternative method to studying brain function that offers a number of advantages over fMRI in studying the neural basis of action anticipation.
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EEG records the potentials that arise from the temporal and spatial summation of post-synaptic potentials from large populations of cortical pyramidal neurons. These potential differences can be measured via electrodes placed on the scalp. This differs from fMRI which measures neural activity indirectly via changes in blood oxygenation. Because of this, fMRI has a poor temporal resolution; in the magnitude of seconds, whereas EEG can detect changes in brain activity in the order of milliseconds. This is important for the study of action anticipation in sports, because the anticipatory window available for athletes in which they must understand the intention of an opponent based on their kinematics is very short, around 1-1.5 seconds. Therefore, to understand the temporal dynamics of brain activity ongoing during this crucial period of rapid action understanding, EEG provides a clear enough temporal resolution to achieve this, giving it an inherent advantage over fMRI in this particular research topic. 
A second relative advantage of EEG over fMRI is that EEG is lightweight and portable, and has the potential to be used as a mobile brain recording device, something not possible with fMRI. It has been suggested that EEG may potentially be used as a device to record brain activity during sporting tasks (Park, Fairweather, & Donaldson, 2015). The importance of this is that it makes the application of laboratory based EEG studies to real-world tasks and skills easier, and in the future it will be possible to test theories developed through experimental work in more realistic settings (Walsh, 2014). 
To date, only two EEG studies have investigated expert action anticipation, and neither have looked at the possible role of the motor system in this skill. In one study, it was shown that expert badminton players show a larger and earlier P300 event-related potential (ERP) component, meaning a positive deflection occurring approximately 300ms after stimulus, compared to novices during an anticipation task (Jin et al., 2011). The P300 is believed to reflect stimulus evaluation with the latency associated with time required for processes such as pattern recognition, classification, and memory template matching to occur (Kok, 1997). P300 amplitude has also been associated with event categorisation (Kok, 2001). As such, faster and larger P300 ERPs in expert players during an anticipation task was attributed to experts directing attention to specific memory representations, which in turn facilitates their judgment of opponent actions. A limitation of this study was that the stimulus provided to players was recorded from a spectator perspective, and as such is not representative of the information available to players during real-match situations. 
In a second study also using an ERP approach, expertise and anticipation in tango dancing was investigated. In the experimental task, participants watched scenes of tango dancers. At a key scene, participants were asked to select the next correct action in the dance sequence, from a choice of two alternatives. The anticipation period was defined as being from -250ms until the point of choosing the correct next step (Amoruso et al., 2014). The results showed a greater negatively in the ERP for expert tango dancers compared to novice controls during the anticipatory period. Source localisation suggested expertise-related differences in the right motor cortex, the left middle occipital cortex, the left EBA, and the anterior right orbitofrontal cortex. A path analysis model suggested that this anticipatory activity predicted later semantic integration as indexed by P300, and also N400 and slow-wave (SW) ERP components. In other words, the anticipatory period provides an opportunity for early cue utilisation (through kinematics) that then enables expert players to match current information to existing memory representations of similar situations, that can then be used to anticipate.
These studies support fMRI findings that clear expertise-related differences occur in neural activity during action observation and anticipation. However, EEG studies to date have typically focused on group differences in regards to domain-specific memory structures and semantic integration, whilst fMRI studies have provided evidence that group differences arise in action observation system. No research to date has directly assessed the role of these networks using EEG, despite the advantages offered by EEG as described above. 
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EEG provides reliable indicators of motor system, via event-related changes in cortical ‘sensorimotor’ oscillations. Specifically, mu (8-13Hz) and beta (15-25Hz) oscillations recorded typically from central EEG scalp electrode sites (Pineda, 2005). The mu rhythm was originally considered to represent an ‘idling’ state in the brain (Chase & Harper, 1971; Pfurtscheller, Stancak Jr, & Neuper, 1996), however more recently it has been suggested to play an important functional role in linking perception and action (Pineda, 2005).
Mu rhythm activity is typically assessed via event-related (de)synchronisation (ERD/ERS) analysis (Pfurtscheller & Lopes da Silva, 1999). In this approach, the power of a signal at a frequency of interest during an event period is compared to the power of the signal during a baseline condition. An increase in power relative to the baseline represents event-related synchronisation (ERS) and indicates deactivation in the cortical region generating the oscillation, whilst a reduction in power relative to the baseline represents event-related desynchronisation (ERD) and indicates cortical activation at the generator of the signal.
The mu rhythm has been shown to share many properties of the fronto-parietal regions of the AON. For example, a meta-analysis found that mu ERD reliably occurs during both the execution and observation of goal-directed actions, reflecting fronto-parietal AON activity (Fox et al., 2016). Combined EEG and fMRI recordings have shown a negative relationship between mu ERD and the blood oxygen level dependent (BOLD) signal in fronto-parietal AON regions during action observation (Arnstein, Cui, Keysers, Maurits, & Gazzola, 2011; Ritter, Moosmann, & Villringer, 2009). 
The neural generator of the mu rhythm is believed to be in the sensorimotor cortex (Hari et al., 1998). A study using electrocorticography (ECoG) examined cortical oscillations in somatosensory, motor, pre-motor and pre-frontal areas during both movement execution and observation (Babiloni et al., 2015). ECoG involves placing electrodes directly onto the surface of the cortex, usually in drug-resistant epileptic patients who are undergoing brain surgery, and as such provides the excellent spatial resolution needed to demonstrate the cortical generator of oscillatory activity. This study showed mu ERD to both action execution and action observation, with a stronger ERD to execution compared to observation, a finding replicated with EEG data. Crucially, this study showed that the mu ERD was generated from cortical areas encompassing the fronto-parietal AON. This supports previous ECoG research which has shown the mu rhythm to be generated in the sensorimotor cortex (Crone et al., 1998; Miller et al., 2007).
Mu activity can be divided into functionally specific subtypes. During the execution of different movement types, low frequency mu (8-10Hz) shows a widespread movement-type non-specific activity pattern, which is suggested to be indicative of a somatotopically non-specific activation, and related to more general attentional processes (Pfurtscheller, Neuper, & Krausz, 2000). Higher frequency mu (11-13Hz) on the other hand shows a focused, movement-type specific pattern suggesting activation of somatotopically specific cortical networks during goal directed movements (Fumuro et al., 2015; Pfurtscheller et al., 2000). Thus far, researchers have only focused on action execution, however an important question is whether this same distinction is observed during observation tasks. 
Sensorimotor beta (~15-25Hz) oscillations have been shown to have similar properties to the mu rhythm (McFarland, Miner, Vaughan, & Wolpaw, 2000). Greater beta ERD is found during goal-directed actions compared to non-goal directed actions (Järveläinen, Schürmann, & Hari, 2004). Beta activity is also generated in central motor areas, and in non-motor pre-frontal areas (Babiloni et al., 2015; Meirovitch, Harris, Dayan, Arieli, & Flash, 2015). Some studies have reported differences in functioning between the mu and beta rhythm activity. One study using a motor imagery task found that mu activity was modulated by task demand, with relative ERS as task demand increased (Brinkman, Stolk, Dijkerman, de Lange, & Toni, 2014). This did not occur for beta activity, and suggests that mu activity is related more to resource allocation by a disengagement of task-irrelevant cortical regions, whilst beta activity is related to the computation of movement parameters. These differences however haven’t been investigated in action observation tasks.
There has been little research to date into differences between low and high beta band frequencies. A recent study however has linked upper beta band (20-30Hz) ERD to PMC activity reflecting the outcome of a comparison between possible outcomes prior to producing an appropriate motor command (Herding, Spitzer, & Blankenburg, 2016). Whilst some differences may be present, currently it appears that both mu and beta oscillations can be used as EEG measures of motor system activity during action observation and anticipation tasks.
1.8.1.1.   Expertise modulation of mu and beta oscillations
As argued previously, if the motor system is involved in aiding action understanding, this activity should be modulated by the amount of expertise one has in the observed action. Mu and beta activity do appear to be modulated by motor expertise during action observation. In one study, expert performers were trained to perform a novel action to pick up a toy. A second group comprised of expert watchers, who had experience in observing the action being performed, but had no actual motor experience. A third group of novices had no prior experience with the action (Cannon et al., 2014). It was found that during action observation, mu ERD was greatest in the group who had had prior motor experience with the action, compared with the group of expert watchers and controls. Interestingly, there were no significant group differences in the beta band. The authors suggested this could be due to the simplicity of the actions being observed, and that the beta band responds to more complex kinematic stimuli (Cannon et al., 2014). In this study, a group of motor experts were developed by brief training periods before the experimental action observation session. For example, the expert performer group had 150 practice trials prior to the action observation experiment. As such, this study didn’t show how mu ERD during action observation is modulated by the long-term motor expertise that athletes have developed through years of intensive training.
	In a study of dancers, experts with at least 4 years’ experience, and non-dancer controls, observed dance sequences (Orgs, Dombrowski, Heil, & Jansen-Osmann, 2008). They found that during action observation, there was significantly greater ERD in both the mu and beta bands in the expert dancer group, compared to the novices. The fact that greater ERD was found in both frequency bands lends support to the suggestion that beta band activity is related to processing of complex kinematic stimuli (Cannon et al., 2014). Relatedly, other work has examined 8-10Hz mu ERD during the observation of table tennis shots in participants of varying levels of expertise (Wolf et al., 2014). Participants watched trials of an expert player performing a table tennis serve. Each trial lasted approximately 7 seconds, and consisted of a preparatory period where the player threw the ball in the air, and a movement phase where they struck the ball with their racket. Professional, junior academy, and novice players observed these actions. They found significantly greater 8-10Hz mu ERD between the expert and novice group, primarily late in the movement phase. There were no significant differences found between professionals and junior academy players, nor between the junior academy and novice players. As a control analysis, the authors also looked at occipital alpha ERD, finding no differences between the groups (Wolf et al., 2014). This study only investigated the low-mu frequency band, so it is unclear if significant group differences occurred in the high-mu band, or the beta band. This is important based on suggestions from action execution studies which have shown that low-mu activity is related to non-specific movements (Fumuro et al., 2015; Pfurtscheller et al., 2000). It might be expected that a better differentiation between expert and novice participants would be found in the high mu frequency band, as it is meant to index the activation of cortical networks for specific movements (Fumuro et al., 2015; Pfurtscheller et al., 2000).
	A general limitation of EEG studies investigating expertise modulation of sensorimotor oscillations is that ERD was calculated over large epochs. This is either across the entire observation period (Cannon et al., 2014) or over 1-second intervals (Orgs et al., 2008; Wolf et al., 2014). This approach means that fine-grained statistical analysis of group difference over time is not possible, as such the question of exactly when group differences arise has not been addressed to date. Nevertheless, these studies do show that mu and beta oscillations are modulated by the degree of expertise an individual has in the action being observed.
	These sections have demonstrated that activity of the motor system can be measured using EEG oscillations, and these indices are modulated by motor expertise. For these reasons, mu and beta activity, as recorded by EEG, represent suitable measures for investigating the role of the motor system in the anticipation of actions by athletes. The next section outlines the aims and objectives of this thesis in light of the literature reviewed in this Chapter.
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The aim of this thesis is to investigate the ongoing neural activity during action observation prior to making an anticipatory judgment, specifically looking at the role of sensorimotor oscillations recording by EEG. The work addresses a number of limitations in the current literature. Behavioural studies highlight the importance of kinematic understanding in the anticipation of actions, suggesting the rapid understanding of an opponent’s intentions based on their kinematic patterns is key to successful anticipation. A large body of work now suggests the motor system to play a role in action understanding (though the precise role is unclear), however neuroimaging studies of action anticipation have failed to consistently show a specific expertise modulation of motor system activity during action observation prior to anticipation. Therefore, it is still unclear whether motor system activity clearly distinguishes expert athletes from novices on an action anticipation task. This thesis aims to address this question using a novel methodological approach.
	In Chapter 2, the creation and validation of a video-based test of anticipation specific to the domain of tennis is addressed. One of the critical requirements of the expert performance approach is that the task is representative of real-life situations (Williams & Ericsson, 2005). Therefore, an argument in favour of using video-based tests of anticipation is presented. As well as designing a test that can distinguish experts from novices based upon their anticipation performance, methodological requirements regarding creating a test that can reliability elucidate the mu rhythm are also discussed. As the focus of this thesis is primarily on the role of an individual’s motor expertise with an action, a secondary hypothesis in this Chapter was to explore whether changes in visual familiarity (induced by mirroring the player’s kinematics to create a perceived change of handedness) affected anticipation accuracy when the action kinematics remained unchanged.  
	After showing that the behavioural test is an effective measure of anticipation performance in experienced tennis players, Chapter 3 presents an EEG study of action anticipation. The primary focus of this study was in changes in mu and beta activity during the action observation period prior to making an anticipation. As well as trying to replicate the findings of other work regarding expertise differences in ERD in mu and beta activity (Orgs et al., 2008; Wolf et al., 2014), this study extends these results by addressing two gaps in the current literature. Firstly, a time/frequency analysis based analysis was used in order to overcome current limitations regarding the temporal precision of expertise differences in neural activity. Secondly, this Chapter also investigated the low (8-10Hz) and high (11-13Hz) mu bands separately in order to investigate whether the expertise effect differs between these two frequency bands. This is believed to be the first work to directly address this question in an action observation/anticipation paradigm. 
It is well known that the spatial resolution of EEG is poor, making it difficult to understand where cortical activity is being generated. As well as being a general limitation of EEG research, this presents a specific issue for researching the sensorimotor system using EEG. This is because putative mu activity reflecting the sensorimotor system can be contaminated by posterior alpha activity, which occupies the same frequency band (8-13Hz), and reflects modulations in attentional demand. Therefore, channel-based analyses of sensorimotor oscillations may in fact be measuring differences in attention instead. A solution for this issue is presented in Chapter 4, which uses independent component analysis (ICA) as a way to separate sensorimotor mu activity from posterior alpha activity.
Chapter 5 takes a novel analysis strategy of comparing sensorimotor activity during trials that were subsequently anticipated correctly (i.e. the action was understood) to activity during trials that were subsequently anticipated incorrectly (i.e. the action was not understood). This comparison will provide more informative information regarding the role of mu and beta power in action understanding processes. Relationships between individual ERD and accuracy scores are also presented. These issues are not believed to have been looked at in the EEG action observation/anticipation literature before.
Finally, in Chapter 6 an overall discussion of the findings will be presented. The specific findings shall be related back to the wider literature, showing how this thesis has advanced our understanding of expert action observation and anticipation. Some general limitations will be discussed, as well as wider implications of this work and future directions. These discussions will be focused around the usefulness of this research in training anticipation skill, and designing more real-world tasks to test the hypotheses generated from this work in a more ecologically valid setting.


[bookmark: _Toc486260847]Chapter 2 – Development of a video-based test of anticipation skill suitable for EEG
[bookmark: _Toc486260848]2.1.	Introduction
[bookmark: _Toc486260849]2.1.1.	The utility of video-based anticipation tests
A great deal of our understanding of the mechanisms used by athletes in order to anticipate an opponent comes from laboratory studies using paradigms such as temporal occlusion (see section 1.4.2). This research has shown that experienced athletes are able to utilise kinematic cues present in an opponent’s action to anticipate the intentions of the player. One of the crucial components to studying expertise is that the task is representative of the real-world skill that is being studied (Williams & Ericsson, 2005). Video-based tests of anticipation have been shown to reliably distinguish expert from novice participants, as such satisfying the criteria of the expert performance approach that in order for task performance to informative on the perceptual and cognitive processes underlying expertise, experts need to be distinguishable from novices based upon task performance (Williams & Ericsson, 2005).

	Further support for the validity of video-based tests come from studies that have examined anticipatory skill in more real-world designs. These studies generally reach similar conclusions to those of video-based tests, and so suggest that video-based designs are tapping into similar cognitive processes that occur in real-world action anticipation. In an early study, high speed video was used to record anticipation behaviours during squash matches (Howarth, Walsh, & Abernethy, 1984). They found that experienced squash players initiated movements approximately 87ms before their opponent struck the ball, assuming a visuo-motor delay of approximately 150-200ms (Thorpe, Fize, & Marlot, 1996). On the other hand, less experienced players did not initiate movement until 163ms after racket-ball contact. Other studies have reached similar conclusions (Abernethy et al., 2001; James & Bradley, 2004). These results support the findings of video-based tests of anticipation in that expert players are able to utilise cues present before racket-ball contact to anticipate the action of an opponent. 

	The findings from in-situ studies of anticipation performance seem to complement findings from laboratory studies, in that players are able to accurately predict the outcomes of an opponent’s actions ahead of some critical period (e.g. racket-ball contact). The work has also further illuminated how different anticipatory mechanisms may be used in different circumstances. Research looking into anticipatory behaviours in tennis has suggested that different anticipatory strategies are used at different points in the action sequence (Triolet, Benguigui, Le Runigo, & Williams, 2013). It was suggested that anticipatory behaviours occurring very early e.g. 400ms before racket-ball contact are likely made based upon tactical aspects of the game, suggesting contextual cues are being used. On the other hand, the authors propose that anticipations that occur closer to racket-ball contact (around 100ms) are likely based on kinematic cues. A limitation of this study was that it was impossible to identify the player’s thoughts preceding each shot. A player likely makes an early anticipatory estimate to most shots, but only acts on these anticipations in certain situations where it is beneficial over waiting for further information (Van der Kamp, Rivas, van Doorn, & Savelsbergh, 2008). These results suggest that very early anticipations are based upon contextual information about the specific game, with later anticipation relying more on kinematic information. It is encouraging that the findings from laboratory and real-world settings find similar results, and suggests that video-based experiments often utilised in laboratory studies are tapping into the underlying cognitive mechanisms supporting expert anticipation.

[bookmark: _Toc486260850]2.1.2.	Designing a paradigm to elicit mu and beta sensorimotor oscillations
For this thesis, a video-based test of anticipation shall be utilised. This decision is justified based upon the work reviewed above, that showed that anticipation behaviours appear to occur in real-world match situations and findings from previous laboratory studies have been replicated. The reason for choosing a video-based laboratory design for this work was due to the problem of movement artefacts that are inherent in EEG recordings, and that for a clean signal the participant is required to remain as still as possible (Luck, 2005). Furthermore, by using video it ensures that all participants view the exact same set of trials, and it can be designed so that each individual trial is the same length. 
As well as designing a task that accurately measures anticipation performance in line with the requirements of the expert performance approach, specific considerations regarding the EEG effect of interest also need to be considered. Sensorimotor activity is assessed with EEG using mu and beta ERD analysis. This analysis is event-related, and measures the amount of (de)synchronisation in the mu/beta signal during action observation, relevant to a baseline (Pfurtscheller & Lopes da Silva, 1999). Therefore, choosing an appropriate baseline is important.
In other EEG work investigating the hMNS, a wide range of different baselines have been used. Some studies have used quiet sitting without stimulation as a baseline (Oberman et al., 2005; Oberman, Ramachandran, & Pineda, 2008). However this approach has been criticised because the baseline is less engaging and cognitively demanding than the observation condition, meaning that attentional processes could be driving observed ERD effects (Hobson & Bishop, 2016).
Another potential choice of baseline is a non-motion baseline. For example, Cannon et al (2014) presented a static geometric shape as a baseline prior to each action observation trial. Whilst focusing on a static image is likely to be more cognitively engaging than sitting quietly, an issue with this design is the large difference in the visual properties of the baseline compared with the action observation trial. These differences, such as colour, contrast, and luminance changes could affect the signal recorded during action observation, such as inducing a large visual evoked potential in the EEG data as a result of a large visual change between baseline and event. 
In order to minimise changes between baseline and event, one solution is to present the first frame of the observed action as a static image. The advantage of this approach is that the only change between baseline and event is the onset of motion. Therefore, mu ERD reflects the relative change during the presence of biological motion, compared to no biological motion. In all other ways, the stimuli remain identical during baseline and event. However, there is still the potential confound that the event period is more attentionally demanding than the baseline, due to the presence of movement (Hobson & Bishop, 2016). This issue of attentional demand recording sensorimotor activity using EEG is addressed in Chapter 4. 
One study investigated the effect of using different baselines on mu ERD (Tangwiriyasakul, Verhagen, van Putten, & Rutten, 2013). This study compared bouncing balls, slowly moving flowers, static hand images, and white stripes on a black screen and found that the observed mu ERD did not differ as a result of the specific baseline used. However they did report that different baselines engaged the participants’ attention differently, with the slowly moving flowers and white stripe conditions being reported as particularly hard to maintain attention towards (Tangwiriyasakul et al., 2013). Another study however did find the baseline chosen to significantly affect the pattern of mu ERD, with a static stimulus preceding each trial being the most effective baseline in terms of recording mu ERD during action observation (Hobson & Bishop, 2016). In a meta-analysis of mu ERD during action observation, the choice of baseline used (static (both biological and non-biological), dynamic (both biological and non-biological), and no stimulus) was not found to moderate the mu ERD effect during action observation (Fox et al., 2016). 
Based on these results, it would appear that the specific baseline used does not greatly influence the reported ERD during action observation. However, based on Hobson et al’s (2016) finding, and in order to keep the baseline and event as congruous as possible, a static baseline displaying the first frame of the upcoming trial was adopted. This ensured that the only change occurring during the event was the onset of biological motion. Therefore, event-related EEG analyses would reflect EEG changes during biological motion compared to baseline that is identical other than the absence of motion.  

	With these considerations in mind, the primary aim of this Chapter was to develop a task that could be used to measure the sensorimotor system as indexed by mu and beta ERD during action observation prior to making an anticipatory judgement. To be informative on the processes that underlie expert performance a task must be able to distinguish skilled and unskilled participants (Ericsson & Smith, 1991). Therefore, the first aim of this study was to design a task that could achieve this. For experiment 1, participants were shown full tennis groundstrokes, and predicted that experienced players would be faster and more accurate in their anticipatory judgements than less experienced novices. An occlusion paradigm was not used, as by showing participants the full stroke, the task would be more representative of a real-world situation (Williams & Ericsson, 2005).
[bookmark: _Toc486260851]2.1.3.	The effect of opponent handedness on anticipation accuracy
In addition to addressing the development of test stimuli, this Chapter also examined a substantive research question. It is believed that the predicted anticipatory advantage in favour of the experienced players is due to their superior ability in performing the action themselves, thereby allowing them to form a more accurate prediction as to the opponent’s intention (Aglioti et al., 2008) and also through having seen situations multiple times before and learning the probabilities of certain outcomes (Mann et al., 2014). These theories suggest that the motor expertise of the player, and a clear grasp of situational probabilities, facilitates the anticipatory advantage in experienced players. Some evidence from studies of tennis (Hagemann, 2009) and volleyball (Loffing, Hagemann, Schorer, & Baker, 2015; Loffing, Schorer, Hagemann, & Baker, 2012), have suggested that left-handed players are harder to anticipate than right-handed players, regardless of the handedness of the observer. In these studies, video footage of natural right-handed players has been horizontally mirrored in order to create a left-handed shot. This approach meant that the kinematic trace was identical in both the left- and right-handed shots and only orientation differed. 
These findings do not fit the theory that it is the underlying kinematics that are crucial in making anticipatory judgements (see section 1.4.2), because differences have been found between conditions where the kinematics remain unchanged. The authors of these studies suggest that the effect of a change in visual orientation on anticipation accuracy is due to a negative perceptual frequency effect. This idea argues that left-handed shots are harder to anticipate because left-handed players are far less common than right-handed players are, so there is reduced visual exposure. This reduced visual familiarity leads to a reduction in anticipation performance. It is not clear whether this negative perceptual frequency effect is modulated by expertise. Some studies have shown that expert anticipation performance is disrupted more by mirroring than novices (Loffing et al., 2015), other work has not found a significant interaction between expertise level and mirroring (Loffing et al., 2012).  
In this Chapter, the primary aim was to develop a video-based test of anticipation skill in tennis that could distinguish skilled from unskilled participants based upon their task performance. A secondary aim was to investigate whether a change in visual familiarity, whilst keeping the underlying kinematics unchanged, disrupted anticipation performance. Based on the large body of research suggesting that it is movement kinematics that are important for successful anticipation, it would be predicted that the effect of mirroring would not disrupt anticipation performance. 
[bookmark: _Toc486260852]2.2.	Experiment 1 – Method
[bookmark: _Toc486260853]2.2.1.	Participants
Thirty-two participants (38% female) took part in the experiment, either in exchange for course credit or payment. Sixteen players, who were recruited from the University of Sheffield tennis team, were classed as experienced players. They played regular tennis (practising weekly) and completed at least at university/club level (Table 1). Under the framework of Swann et al (2015), these participants would be considered semi-elite. Fifteen of these participants self-reported as being right-handed. Sixteen participants (75% female), who were recruited from the pool of psychology undergraduate students at the University of Sheffield, were classified as less experienced participants. They reported some experience of recreational tennis but had not played tennis competitively (Table 1). Fifteen of these participants self-reported as being right-handed.
[bookmark: _Toc486260917]Table 1. Tennis experience in the groups for experiment 1
	Group
	Age
	Years of regular experience
	Hours played per week
	Years of formal training

	
	Mean (SD)
	Mean (SD)
	Mean (SD)
	Mean (SD)

	Experienced
	21.67 (7.78)
	11.88 (3.16)
	6.25 (2.62)
	9.50 (4.27)

	Less experienced
	18.73 (0.88)
	1.50 (2.00)
	1.63 (2.09)
	0.25 (1.00)

	Note. SD = Standard deviation



[bookmark: _Toc486260854]2.2.2.	Materials
The anticipation test was filmed using a tripod mounted Panasonic HC-X920 camcorder. Each video was initially recorded at 1920 X 1080 pixels, which was reduced to 854 X 480 pixels due to computational limitations. The video was recorded at 25 fps with a 16:9 ‘widescreen’ aspect ratio. The camera was positioned on the T where the centre service line meets the service line (Figure 1). The video footage was edited using iMovie 11. Two skilled left-handed players featured in the video. Player A was a qualified LTA level 4 ‘senior performance’ coach, defined as being able to coach national level players. Player B was a qualified LTA level 2 coaching assistant, defined as being able to coach adult beginner players (http://www.lta.org.uk/coach-teach/coach-development/coaching-[image: EEG%20channel%20results/EPS%20files/Figure%201.png]pathway/). 
[bookmark: _Toc488400750]Figure 1. Set-up for the recording of the anticipation test 
A – The starting position of the player being filmed. B – The position of the camera during the recording session. C - The position of the player feeding the shots.

For the recording, one of the players stood positioned on the back line of the court and was fed balls by the second player, who was out of sight of the camera (Figure 1). The position of the camera meant that shots were filmed approximately from the point-of-view of an opponent player positioned on the service line (Figure 2). The player being filmed performed both forehand and background groundstrokes whilst remaining at the back of the court. They were instructed to perform prototypical shots clearly aimed to the left or right side of the court. Each shot was played from an individual feed. Each player was recorded hitting 200 shots. This led to a total of 400 shots, containing a mixture of forehand [image: EEG%20channel%20results/EPS%20files/Figure%202.png]and backhand groundstrokes.

[bookmark: _Toc488400751]Figure 2. An example of a single trial in experiment 1
A – The start of the trial, before the player behind the camera has fed the shot. B – The fame in which the player’s racket makes contact with the ball. C – The frame in which the ball leaves the camera’s field of view. Note this this Figure represents a continuous video stimulus.

The video was segmented into individual shots. Each clip started when the player feeding balls started their shot, and ended at the frame in which the ball disappears from view after the shot had been played. Two of the original blocks of fifty shots were removed due to balls hitting the tripod during filming, causing discrepancies within these blocks regarding the camera angle. Shots that hit the net were removed, as were shots where the ball landed in the tramlines (which had been noted by an observer during filming). Finally, each remaining clip was judged as to the final position of the ball. Any shots that went down the middle of the court, left the camera’s field-of-view notably early, or were otherwise difficult to determine shot direction were removed. Through this process, 100 acceptable shots were selected. These clips broke down evenly into: 50 shots from each player, and within each player, 25 shots went left, and 25 went right. The 100 shots selected were then mirrored horizontally to give the impression of a change of handedness.  This gave a total of 200 trials in the experiment. 
The trials were presented on a 19-inch PC monitor at a resolution 854 x 480 pixels with the sound turned off. The experiment was controlled from a computer using a custom MATLAB script designed using PsychToolbox 3 (Kleiner, Brainard, & Pelli, 2007). For each trial, participants were required to indicate with an appropriate key press when they knew the direction that the ball was going. This response was then logged along with the time (in ms) of the keypress, relative to the start of the trial.
[bookmark: _Toc486260855]2.2.3.	Procedure
The experiment was approved by the University of Sheffield Department of Psychology Ethics Committee. The participants conducted the task individually in a quiet room in a single session. After signing a consent form participants were presented with an instruction screen outlining the format of the experiment. The instructions told participants that they were going to be viewing a series of individual tennis strokes performed by an expert player, and that their task was to anticipate as quickly and as accurately as possible the direction that the player was going to hit the ball by pressing the appropriate button. 
Following that, participants were presented with 10 practice trials (using shots not presented in the experimental trials). The 200 test trials were split into two blocks of 100 trials, with a break between the two blocks. The order of trial presentation was randomised for each participant. The experimental session took approximately 20 minutes to complete. Once the experimental session had finished, participants completed a questionnaire regarding their tennis experience (see Appendix A1 and A2).
[bookmark: _Toc486260856]2.3.	Experiment 1 – Results
Overall a scale calculated from accuracy of all items showed excellent internal reliability reliability (α = .94). Using reaction time, similarly excellent reliability was found (α = .98). There was no evidence that removing any items would substantially improve scale reliability. 
There were no effects of gender on anticipation accuracy, t (30) = -1.08, p = .29, d = 0.10, or reaction time, t (30) = -1.49, p = .15, d = 0.53. There was also no significant association between age and either anticipation accuracy, r = -.04, p = .85, or reaction time, r = .04, p = .83. 
There was no difference in anticipation accuracy between forehand and backhand strokes, t (31) = 0.74, p = .46, d = 0.14, or between shots which landed on the left side of the court and shots which landed on the right side of the court, t (31) = -0.49, p = .63., d = 0.09. There was a significant difference in anticipation accuracy between the two players observed by participants, t (31) = 12.44, p < .001, d = 2.48. Player A was easier to anticipate (mean accuracy = 67.91%) than player B (mean accuracy = 49.18%). 
Chance level performance was set at 50% accuracy. Descriptive statistics on task performance by both groups are shown in Table 2. Across all trials, experienced participants performed significantly above chance and were significantly more accurate (M = 66.56%, 95% CI = 61.07% - 72.05%) than less experienced participants (M = 50.53%, 95% CI = 48.91% - 52.15%), t (30) = -5.49, p < .001, d = 1.94. Experienced participants were significantly slower to respond (M = 1857.28ms, 95% CI = 1720.44ms – 1994.14ms) than less experienced participants (M = 1437.44ms, 95% CI = 1338.48ms – 1536.40ms), t (30) = -4.87, p < .001, d = 1.72. Despite being more accurate, the experienced group advantage could be explained by the significantly slower reaction times, meaning it was not possible to clearly distinguish skilled from unskilled participants. Therefore, it was considered inappropriate to test any effects of mirroring.
	
	Unmirrored shots
	Mirrored shots

	
	Anticipation accuracy
	Mean RT (ms)
	Anticipation accuracy
	Mean RT (ms)

	
	Mean         (SD)
	Mean (SD)
	Mean         (SD)
	Mean (SD)

	Experienced
	66.63%  (11.57)
	1841 (253)
	66.50%  (11.39)
	1821 (261)

	Less experienced
	50.13%    (4.62)
	1448 (204)
	50.94%    (5.67)
	1426 (201)


[bookmark: _Toc486260918]Table 2. Descriptive statistics of task performance in the experienced and less experienced groups for experiment 1
Note. RT = recaction time, ms = milliseconds, SD = standard deviation

[bookmark: _Toc486260857]2.4.	Experiment 1 – Discussion
In this experiment participants watched full tennis groundstrokes and were required to anticipate shot direction as quickly and as accurately as possible. The test did not show the expected expertise effects. Whilst the experienced group showed better anticipation accuracy, they responded slower meaning that the advantage in terms of accuracy could be explained by a speed-accuracy trade off. It was not clear that the test was tapping the cognitive factors that distinguish experienced from less experienced participants and therefore may not be providing an effective examination of the role of mirroring in skilled anticipation. 
One reason for this effect may be due to the experimental task being too easy. As other studies have shown, players will not anticipate a simple action (James & Bradley, 2004), especially when not under pressure (Triolet et al., 2013). This is because the cost of unsuccessfully anticipating is high, so is only necessary when the potential benefits outweigh that cost. In this task, there was no punishment for not anticipating. As such, the easiest strategy was simply to wait until ball direction was clear. 
Therefore, in order to force participants to make a judgement solely on kinematic cues, an occlusion paradigm was used for experiment 2. By yielding a single accuracy, it was possible to compare group differences on a trial-by-trial basis, and therefore isolate the trials that best discriminate experienced players from novices. The hypotheses for experiment 2 were that experienced players should show better anticipation accuracy than less experienced participants, and that the skilled group would be more accurate in anticipating right-handed (mirrored) trials compared to left-handed trials.
[bookmark: _Toc486260858]2.5.	Experiment 2 – Method
[bookmark: _Toc486260859]2.5.1.	Participants
Thirty-three participants took part in the study, either in exchange for course credit or payment. Sixteen experienced tennis players (25% female) were recruited from the University of Sheffield tennis club (N = 10) and a national tournament (N = 6). They reported playing regular tennis at a competitive level, and would be considered semi-elite according to Swann et al (2015). Fifteen were right-handed. The means and SDs of the two groups tennis playing experience is displayed in Table 3. 
Seventeen University of Sheffield undergraduate students (88% female) were recruited as less experienced participants. No one in this group reported having played tennis competitively (Table 3). All of the participants were right-handed. None of the participants in either group had taken part in experiment 1.
[bookmark: _Toc486260919]Table 3. Tennis experience in the groups for experiment 2
	Group
	Age
	Years of regular experience
	Hours played per week
	Years of formal training

	
	Mean (SD)
	Mean (SD)
	Mean (SD)
	Mean (SD)

	Experienced
	21.38 (2.68)
	11.75 (2.96)
	6.38 (2.50)
	8.63 (2.09)

	Less experienced
	18.52 (0.62)
	1.82 (2.21)
	0.94 (1.47)
	0.53 (1.46


Note. SD = standard deviation.

[bookmark: _Toc486260860]2.5.2.	Materials
The same video clips that were used in experiment 1 were used for experiment 2. Each clip was edited by occluding the shot 40ms (1 frame) before racket-ball contact (Figure 3). This occlusion point was selected based on previous work showing this occlusion point elicits the largest group difference in similar stimuli (Rowe et al., 2009). The trials were presented on a PC monitor with the sound turned off. The experiment was controlled from a second computer using a custom MATLAB script designed using PsychToolbox 3. For each trial, participants were required to watch the clip, and then following the point of occlusion were required to press an appropriate key on the PC keyboard to indicate the direction that they thought the ball was going.
[image: EEG%20channel%20results/EPS%20files/Figure%203.png]
[bookmark: _Toc488400752]Figure 3. An example of a single trial in experiment 2
A – The start of the trial, before the player behind the camera has fed the shot. B – The point of occlusion, one frame (40ms) before the player’s racket makes contact with the ball. C – The screen asking for a response following the final frame of the video. Note this Figure represents a continuous video stimulus.

[bookmark: _Toc486260861]2.5.3.	Procedure
The procedure was the same as experiment 1.
[bookmark: _Toc486260862]2.6.	Experiment 2 – Results
Overall the scale showed excellent internal reliability (α = .93), and there was no evidence that removal of any trials could improve the scale reliability. There were no gender differences in anticipation accuracy; t (31) = 1.96, p = .06, d = 0.48 and no association between anticipation accuracy and age; r = .07, p = .68. 
Comparing between trial types, there was no difference in anticipation accuracy between forehand and backhand strokes, t (32) = -0.32, p = .75, d = 0.06, or between strokes that went left and strokes that went right, t (32) = 0.86, p = .40, d = 0.15. As in experiment 1, player A (mean accuracy = 54.70%) was anticipated more accurately than player B (mean accuracy = 42.97%), t (32) = 10.29, p < .001, d = 1.80 (see Table 4). 
[bookmark: _Toc486260920]Table 4. Differences in anticipation accuracy between the two observed players
	Group
	Player 1
	Player 2

	
	Mean (SD)
	Mean (SD)

	Experienced
	52.55% (5.63)
	40.64% (3.78)

	Less experienced
	56.59% (4.02)
	44.00% (5.01)


Note. SD = standard deviation.

Over the whole test, there was not a significant difference in anticipation accuracy between the experienced (48.09% correct, SD = 3.76) and less (50.29%, SD 3.17) groups, t (32) = 1.82, p = .07, d = 0.63). It is possible that only some of the trials are good at distinguishing experienced from less experienced participants but this is not shown in a whole test analysis. Therefore, the test materials were refined using a split-half method. 
The split-half method assesses the internal consistency of a set of results, by ‘splitting’ the data into two halves and comparing the results of one half of the data with the results of the second half of the data. If the two halves of the data show similar results, this suggests that the test has internal reliability. The split-half method was used to detect trials that consistently show an expertise effect i.e. an expertise effect is observed in both halves of the dataset. 
Using this method, 16 experienced and 16 less experienced players were randomly assigned to one ‘half’, and the other 16 experienced and 17 less experiencd participants were randomly assigned to the other. Randomisation was performed using the Blockrand package in R (Snow, 2013). In the first half of the data, a subset of items that showed a significant expertise effect were identified by examining clips on a trial by trial basis. Eighty-three of the 200 trials showed a significant positive expertise effect, i.e. experienced participants were more accurate than less experienced participants in the first half of the data. Anticipation accuracy scores are displayed in Table 5. 
In order to establish that these 83 trials consistently showed a positive expertise effect, the same trials were analysed in the second half of the dataset. Of the trials showing an expertise effect in the first half of the dataset, 69.88% continued to show an expertise effect in the second half. A  2 test of association showed a significant association between expertise effects on trials across both halves of the dataset,  2 (4) = 56.67, p < .001. Constructing a scale score using only trials showing an expertise effect in half 1 of the dataset provided a strong expertise effect in the second half of the dataset in the expected direction; t (16) = 4.54, p < .001, d = 2.34. As shown in Table 5, experienced participants were significantly more accurate in predicting shot direction in the second half of the data, which was entirely independent from the first half of the data in which the effective trials were identified. 
[bookmark: _Toc486260921]Table 5. Anticipation accuracy in the subset of trials showing a significant expertise effect
	
	Anticipation accuracy (% correct)

	
	Half 1
	Half 2

	Experienced
	65.66% (9.90)
	62.78% (9.81)

	Less experienced
	42.92% (4.69)
	44.44% (5.95)



Having refined the test materials to create a set of trials that could reliably distinguish experienced from less experienced participants based on their anticipation accuracy, we looked at differences in anticipation accuracy between mirrored and unmirrored trials. With chance level set at 50% accuracy, a two-way mixed ANOVA showed there to be a significant main effect of expertise, F (1, 31) = 26.94, p < .001, ηp2 = 0.47, with experienced participants being significantly more accurate (mean = 61.29%, 95% CI = 56.99% - 65.59%) than less experienced participants (mean = 46.04%, 95% CI = 41.87% - 50.21%). There was no main effect of mirroring; F (1, 31) = 0.02, p = .89, ηp2 < 0.01 nor was there a significant group X mirroring interaction; F (1, 31) = 0.77, p = .39, ηp2 = 0.02. Note that the analysis was also run on just the second half of the dataset, producing the same results. This shows that the results of mirroring were consistent across both halves of the dataset, suggesting internal consistency with regards to the effect of mirroring.
[bookmark: _Toc486260863]2.7.	Experiment 2 – Discussion
Experiment 2 used a temporal occlusion paradigm to test anticipation skill in a group of experienced tennis players and less experienced novices, with the occlusion point set 40ms before racket-ball contact. In contrast with other research (Hagemann, 2009; Loffing et al., 2015, 2012), no effect of mirroring on anticipation accuracy of tennis groundstrokes was found for either group. 
The less experienced group performed at chance level, suggesting they were unable to extract any meaningful information from the video with which to anticipate. Therefore, it is not surprising that mirroring did not disrupt their anticipation performance. It is less clear why there was no effect of mirroring in the experienced participants. 
A few methodological differences between this study and others should be noted. Firstly, in studying volleyball, where mirroring has been shown to affect experienced players, the authors presented arguably more complex stimuli than presented here (Loffing et al., 2015). Participants viewed stimuli from the point of view of an opposing defender at the back of the court, and the video consisted of two attacking players, and two other defending players. Due to the multiple players present on court in the volleyball study, experts may have been recognizing patterns in the layout of the other players to anticipate, which is likely to be reliant on the perceptual frequency of such layouts (North, Williams, Hodges, Ward, & Ericsson, 2009). 
However, using simpler stimuli, the mirroring effect in skilled volleyball players remains (Loffing et al., 2012). In experienced players, the greatest difference in accuracy between mirrored and unmirrored shots was at the earliest occlusion point (-160ms). This work used a later occlusion point (-40ms). Whilst it is difficult to compare occlusion points across sports, it may be the case that mirroring only affects expert anticipation at early occlusion levels. 
One study of handedness in tennis anticipation tested the effects of mirroring both a natural right handed player and a natural left handed player (Hagemann, 2009). They found a smaller difference in anticipation accuracy between natural left-handed shots and mirrored right-handed shots than between natural right-handed shots and mirrored left-handed shots. Specifically, a naturally presented right-handed player was easier to anticipate than a left-handed player mirrored to create the appearance of a right-handed player. They also found variation in anticipation performance between the four players being observed, suggesting individual differences in the player’s kinematics can affect anticipation accuracy. 
Because two natural left-handed players were observed in the present study, an effect of handedness may be smaller than if two natural right-handed players were used. This would suggest different characteristics in the kinematics of left- and right-handed players, rather than the two being essentially mirror images of each other. To address this issue, kinematic analysis on a large sample of left- and right-handed players would need to be performed. 
It should be noted that the expertise of the experienced group in this study may not be as high as in other studies. The majority of experienced participants in this study were recruited from university teams, whilst other work has been able to recruit players from national level leagues who had slightly longer tennis playing experience, in terms of years of play (Hagemann, 2009; Loffing et al., 2015, 2012). It could be that perceptual frequency effects only affect players at a very high level of expertise, which the players in the current sample had not achieved. It should be noted though that 6 of the experienced players in this study were recruited from a national level tournament, and showed no differences from the university players (analysis not reported). Secondly, the sample size used in this study was relatively small, although it is comparable to other studies looking at the effect of mirroring (Loffing et al., 2012). 
A limitation of the mirroring approach to study the effect of handedness is that it does not preserve any kinematic differences that may exist in the stroke play of genuinely left and right handed players. It is also possible that anticipation based on strategic situations may differ for left-handers and right-handers. These issues will need to be addressed in studies that take samples of left-handers and right-handers to form their video stimuli. 
Because there were no changes in the kinematic trace between the natural and mirrored trials, and there were no changes in anticipation accuracy between the two conditions, the results of this experiment suggest that experienced players were able to access early kinematic cues in the opponent’s body movements to anticipate, and this ability as no affected by the visual change induced by mirroring. The implication of this is that experienced players may be able to process both the mirrored and the unmirrored shots in the same way as in both cases the goal of the action being anticipated is the same. This is supported by TMS evidence that shows the activation of the motor system during action observation is effector independent (Sartori, Begliomini, & Castiello, 2013). This study showed that during action observation of hand actions, participant’s activated motor representations of their dominant hand, regardless of the hand used by the observed model. This is likely because participants have a better representation of how to perform the action with their dominant hand.  
Only a subset of the trials showed the expected expertise effect. The reasons why not all of the trials showed an expertise effect is unclear. One possible explanation is that the required kinematic cues needed to anticipate a tennis groundstroke were not present in all of the trials. As shown from the in situ studies, anticipation does not occur on every shot (Triolet et al., 2013). If there were no useful cues available to the players on some of the trials, no expertise effect would be expected, because the mechanism required for successful anticipation is unavailable. This work is believed to be the first experiment using a temporal occlusion paradigm to analyse accuracy rates on a trial-by-trial basis. Therefore, it is unclear if such issues exist in other studies using this methodology, or if it is unique to this dataset.
	A number of limitations with the experimental design should be considered. First, the gender distribution of the two groups was uneven, with more female participants in the less experienced group and more male participants in the experienced group. This arose due to different demographic make-ups of the groups during recruitment. Furthermore, both players that participants had to anticipate were male, so there is potential for significant differences to arise due to gender differences, rather than expertise differences. Some research has found no differences between unskilled male and female participants in the anticipation of soccer moves made by male players (Wright et al., 2013), suggesting results of the less experienced group would not have been different if more males participants were used. 
	Despite this, there is still an issue of kinematic differences between male and female athletes (Barfield, Kirkendall, & Yu, 2002; Katis, Amiridis, Kellis, & Lees, 2014). It is possible that female participants may have had more difficulty anticipating shots based on the kinematics of the observed player due to inherent differences between the way males and females perform shots in tennis. In one study, the kinematics of world-class level male and female tennis players were compared (Fleisig, Nicholls, Elliott, & Escamilla, 2003). They looked at a range of kinematic features such as trunk tilt, upper torso rotation, pelvis rotation, elbow extension, wrist flexion, and shoulder internal rotation. They found no differences between male and female players in many of their measures, but noted that the amount of internal shoulder rotation was greater for males than females. This finding was replicated in a similar study, who also showed the majority of kinematic variables did not differ between male and female players (Elliott, Whiteside, Lay, & Reid, 2013). These findings suggest that kinematic differences between male and female tennis players do not differ substantially, reducing the likelihood that the results can be explained by females being less familiar with the observed kinematics of a male player. 
	Due to practical limitations, the monitor size and screen resolution were smaller than are often used in anticipation research, and may limit the study’s ecological validity. For example, presenting trials on a smaller screen may make it difficult for participants to view the player’s actions clearly, which would make anticipation harder than normal because the necessary kinematic cues cannot be clearly observed. It is worth noting however that the fact expertise effects were observed suggests there was sufficient ecological validity to tap into the experienced player’s domain specific expertise.
It is also worth considering potential reasons why the two models differed in how easy they were to anticipate. One reason could be due to the instructions given to the players at the time of filming, and how they may have interpreted those instructions. It is possible that by being instructed to “perform prototypical shots clearly aimed to the left or right hand side of the court” will result in ‘telegraphed’ shots that are relatively easy to judge. Alternatively, a player might clearly aim to one side of the court but hit shots to the other side thereby being inadvertently deceptive. As such, player A (the easier player to anticipate) may have used the former interpretation of the instructions, whilst player B (the harder player to anticipate) may have used the latter interpretation. Alternatively, the two players could have both interpreted the instructions clearly. The differences could result from one of the players being better able to produce simple demonstration shots as required (which are easier to anticipate) whereas the other player played shots with a more competitive mindset, which would naturally contain more disguise.  
A final potential limitation is in the selection of experimental shots. Whilst only shots where the ball had a clear left or right final landing point were used, this judgement was made only by one individual. This means it was not possible to establish any inter-rater reliability, and may have led to bias with regards to the criteria for shot selection. However, both groups saw the same clips and a group difference was observed. Therefore, this limitation does not confound the effect of expertise.
With these in mind, a split-half methodology established the reliability of the trials that showed an expertise effect. Therefore, a test made up of trials shown to elucidate an expertise effect, with experienced players significantly and reliably more accurate than novices, the criteria of the expert performance approach that to be informative on the processes underlying expert performance, a task must be able to distinguish experienced from unexperienced novices has been met. Therefore, the main aim of these experiments has been achieved. This means it is now possible to use this test in an EEG study in order to investigate the role of the sensorimotor system in experienced and less experienced tennis players during an action observation and anticipation task.


[bookmark: _Toc486260864]Chapter 3 – The role of cortical sensorimotor oscillations in action anticipation
[bookmark: _Toc486260865]3.1.	Introduction
The sensorimotor system believed to play an important role in the understanding of other people’s actions (see section 1.6 for more detail). There is some evidence that the sensorimotor system may help in facilitating action anticipation in experienced athletes, though the specificity is unclear (e.g. Balser, Lorey, Pilgramm, Naumann, et al., 2014; Balser, Lorey, Pilgramm, Stark, et al., 2014; Wright et al., 2010, 2011, 2013). Using EEG, it is possible to measure sensorimotor system activity by recording event-related power changes in the mu (8-13Hz) and beta (15-25Hz) frequency bands, with overall event-related desynchronisation (ERD) indicative of sensorimotor engagement (see section 1.8).
	Using this approach, a number of studies have found the sensorimotor system to be modulated by the degree of motor expertise an individual has in the action being observed (Cannon et al., 2014), including two studies that found greater use of the sensorimotor system during action observation in samples of expert dancers (Orgs et al., 2008) and table-tennis players (Wolf et al., 2014), compared to novice participants. Whilst interesting, a couple of limitations exist in these studies. First, ERD is measured across long time periods in all of these studies. For instance, Cannon et al (2014) obtained a single ERD value for the entire action observation period, whereas the other two studies analysed ERD across 1 second bins (Orgs et al., 2008; Wolf et al., 2014). The problem with this approach is that it negates the inherent advantage of using EEG in terms of its excellent temporal resolution, and makes it impossible to ascertain when during action observation the sensorimotor system is engaged. As such, it is unclear whether the timing of sensorimotor activation is different between groups of differing expertise. This is an important consideration for understanding how the sensorimotor network can facilitate action anticipation, as in order for anticipation to be useful it needs to occur early enough for a player to prepare their own response.  
A second limitation is that these studies have not investigated possible differences between different sub-bands of mu activity. As shown in section 1.8.1, studies on action execution have shown that mu can be split into two functionally specific sub-types, with low mu (8-10Hz) reflecting activation of a movement general cortical network, and high mu (11-13Hz) indicating movement-specific activations (Fumuro et al., 2015; Pfurtscheller et al., 2000). To date, no studies using an action observation-type paradigm have explored whether similar distinctions can be made. It might be expected that in a study comparing groups with differing levels of motor expertise, ERD in the high mu band would only occur in experts. As high mu appears to reflect activation of action-specific representations, during observation when the motor system is activated to possibly aid in action understanding, only experts would have the action-specific representation available to them to aid in action understanding. 
The aim of the Chapter was to address these two current limitations, in order to further refine our knowledge of expertise differences in sensorimotor oscillatory activity during action observation. It was hypothesised that during action observation prior to anticipation, experienced and less experienced players would engage in different cognitive strategies. The experienced players would activate their own motor system during observation, and this would aid them in gaining an understanding of the intentions of the opponent. By contrast, the unexperienced group would not show this activation. This difference in processing would be reflected by earlier and greater mu and beta ERD in the experienced group, compared to the less experienced group. A secondary hypothesis was that group differences would arise differently in the low and high mu frequency band. As low mu is related to general movement activity and allocating attentional resources to motion, both the skilled and unskilled groups would show ERD. In the high mu band, only the skilled group would show ERD because this activity is related to the access of movement-specific knowledge.
[bookmark: _Toc486260866]3.2.	Experiment 3 – Method
[bookmark: _Toc486260867]3.2.1.	Participants
Thirty-nine participants took part in the study, either in exchange for course credit or payment. Eighteen experienced tennis players (35% female, Mage = 21.12, SD = 3.16) were recruited from local university tennis teams. They reported an average of 12.94 (SD = 4.34) years of tennis experience, playing on average 7.65 (SD = 4.08) hours per week, and had received formal instruction for an average of 8.06 (SD = 2.95) years. All experienced players self-reported as being right handed. The expertise level of this group was semi-elite (Swann, Moran, & Piggott, 2015). Twenty-one University of Sheffield psychology undergraduate students (65% female, Mage = 22.60, SD = 6.63) were recruited as less experienced participants. This group reported an average of 1.70 (SD = 3.05) years of tennis experiences, playing on average 0.90 (SD = 1.29) hours per week, with an average of 0.90 (2.31) years of formal instruction. All of the less experienced participants self-reported as being right-handed. Data from two participants (one experienced and one less experienced) were unable to be used in the EEG analysis, due to high levels of noise during the recording period. Therefore, for the EEG analysis, the total sample size was 37 (17 experienced players, 20 less experienced novices).
[bookmark: _Toc486260868]3.2.2.	Materials
The test developed in Chapter 2 was used for this study.
[bookmark: _Toc486260869]3.2.3.	Procedure
Participants conducted the task individually in a quiet, darkened room in a single session. Participants gave informed consent and were instructed on how to perform the task. They were also requested to try and remain as still as possible during the experiment, and use the breaks provided to change their posture. 
After confirming they understood the task, participants were presented with 10 practice trials (using shots not presented in the experimental trials). The 176 experimental trials were split into 4 blocks of 44 trials each, with a break between each block. The experimental session took approximately 30 minutes to complete. Once the experimental session had finished, participants completed a questionnaire regarding their handedness and tennis experience.
[bookmark: _Toc486260870]3.2.4.	EEG data acquisition
EEG was recorded in an electrically shielded room using an ActiveTwo headcap and a Biosemi ActiveTwo system (Biosemi, Amsterdam, The Netherlands). Signals were recorded from 128 channels using active Ag-Agcl tipped electrodes. Two additional electrodes, common mode sense (CMS), and driven right leg (DRL) were used as reference and ground electrodes during recording. Signals were amplified with a sampling rate of 2048Hz and stored using ActiView software (Biosemi, Amsterdam, The Netherlands).
[bookmark: _Toc486260871]3.2.5.	EEG pre-processing
Initially data were downsampled to 512Hz using Decimator software (Biosemi, Amsterdam, The Netherlands). All pre-processing was performed in EEGLAB (Delorme & Makeig, 2004), an open source toolbox for EEG data analysis in the MATLAB environment. 
Data were imported and referenced to the vertex electrode, and a 1Hz high-pass filter was applied in order to remove low-frequency drifts. Bad channels (exhibiting flatlining, evidence of electrode bridging, or excessive high-frequency noise), and non-eye blink (non-stereotyped high frequency noise) artefacts were removed manually from the continuous EEG data, with break event markers placed in the cleaned data to indicate where data had been rejected. Eye blinks were removed using independent component analysis (ICA), performed using the infomax algorithm. As eye blinks are a highly stereotyped artefact, ICA can reliably detect them (Jung et al., 1998; Jung, Makeig, Humphries, et al., 2000). The use of an ICA approach for removing eye blinks meant the amount the data removed due to artefacts was reduced. 
The cleaned data were re-referenced to an average electrode. Epochs were created with the start of the stimulus at 0ms. The epoch ended 1500ms post-stimulus onset. Any epochs containing break event markers were rejected. There was no difference between the experienced (M = 150, SD = 15.90, percentage rejected = 15%) and less experienced (M = 154, SD = 12.38, percentage rejected = 13%) groups in terms of total number of accepted epochs; t (35) = 1.03, p = .31, d = 0.28. The event period of the epoch captured the observation period whilst participants were watching the shot. The baseline period started at -1000ms, and featured the still image of the first frame of the upcoming trial. An [image: Formatted%20figures/Example%20trial.png]example epoch is displayed in Figure 4.
[bookmark: _Toc488400753]Figure 4. An example epoch
A – Baseline period of 4000ms showing a still image of the first frame of the trial video. B – Trial begins by video playing, each trial lasting approximately 1500ms. C – Trial ends on the frame prior to racket-ball contact. D – Participants anticipate shot direction. Epochs were time-locked to the video start, and lasted 1500ms. The baseline period was 1000ms prior to stimulus onset. Note this Figure represents a continuous video stimulus.

[bookmark: _Toc486260872]3.2.6.	EEG data analysis
Main analyses were conducted on channel electrode D19 and B22, corresponding to locations C3 and C4 according to the 10-20 international system (Figure 5) and commonly used sites for measuring sensorimotor activity (Cannon et al., 2014; Wolf et al., 2014). The event related spectral perturbation (ERSP) is a measure of average dynamic changes in amplitude of the broad band EEG frequency spectrum as a function of time relative to an experimental event (Makeig, 1993). ERSP in the 4-50Hz frequency range was computed in EEGLAB using Morlet wavelet decomposition, applied over 200 overlapping windows, starting with a 3 cycle wavelet at the lowest frequency (Delorme & Makeig, 2004). The window size was 1115.23ms wide, overlapped by 1105.815ms, giving a time resolution of 9.415ms. ERSP values were transformed into log-units and converted to decibel units (dB), by multiplying the log ratio with the factor 10 (Grandchamp & Delorme, 2011). Therefore, ERSP expresses the relative change in power during the event period in dB compared with the baseline (which in this case is the still video). Reduction in power relative to the baseline is displayed in blue, with increases in power relative to the baseline displayed in red (see Figures 6 & 7). Control analyses were also performed at frontal, parietal, and occipital sites (Figure 5). These analyses were performed to show whether any group [image: ]differences were unique to central sites.
[bookmark: _Toc488400754]Figure 5. BioSemi 128 electrode cap layout, with electrodes of interest highlighted
Electrodes D19 and B22 (marked in blue) correspond to positions C3 and C4 of the 10-20 system. Electrodes marked in grey were used for control analyses. C32 and C10 correspond to F3 and F4 respectively. A7 and B4 correspond to P3 and P4, and A10 and B7 correspond to O3 and O4. 

[bookmark: _Toc486260873]3.2.7.	Statistical analysis
To assess for significant differences in ERSP time/frequency data between the experienced and less experienced groups, bootstrapped significance tests were performed. The potential for spurious significant findings being generated by multiple comparisons was controlled using the false discovery rate (FDR). The results of these tests are visualised on a time-frequency plot indicating points where significant differences at the p < .01 level arose. 

ERSP values averaged across both frequency band and time were also calculated. This process created a single baseline ERSP value, and a single event ERSP value. The overall ERSP value was derived by subtracting the event ERSP from the baseline ERSP (Pfurtscheller & Lopes da Silva, 1999). A negative ERSP value indicates overall power reduction (ERD) across the whole event compared to baseline, and a positive ERSP value indicates overall power increase (ERS). Group differences in ERSP values were calculated using two-way mixed ANOVAs, with group (experienced and less experienced) as a between-participants factor, and hemisphere (left and right) as a within-participants factor. The aims of this approach was to aid visualisation and to enable direct comparison with other published reports using the same procedure (Orgs et al., 2008; Wolf et al., 2014). For control analyses, frequency and time averaged ERSP values were calculated as above for the 8-13Hz frequency band at frontal, parietal, and occipital sites were conducted. 

[bookmark: _Toc486260874]3.3.	Experiment 3 – Results
[bookmark: _Toc486260875]3.3.1.	Behavioural results
Over all trials, there was a significant effect of experience level on anticipation accuracy, with the experienced players (M = 60.94%, 95%CI = 58.18% – 63.70%) responding significantly more accurately than the less experienced players (M = 48.52%, 95%CI = 45.97% – 51.07%), t (37) = 6.15, p < .001, d = 2.01. There were no gender (p = .31) or age (p = .55) differences in accuracy.
[bookmark: _Toc486260876]3.3.2.	EEG results
3.3.2.1.    Group differences during action observation
Figure 6 and Figure 7 display group differences in mu and beta activity during the action observation period prior to anticipation. Across the whole epoch, there was a significant main effect of group on mu ERD; F (1, 35) = 21.49, p < .001, np2 = .38, with greater ERD in the experienced (C3; M = -.0.86dB, 95%CI = -1.08dB – -0.64dB, C4; M = -0.67dB, 95%CI = -0.91dB – -0.44dB) group compared to the less experienced group (C3; M = 0.10dB, 95%CI = -0.07db – 0.28dB, C4; M = -0.02dB, 95%CI = -0.27dB – 0.31dB). There was no significant main effect of electrode; F (1, 35) = 0.13, p = .72, np2 = .38, nor was there a significant group X electrode interaction; F (1, 35) = 3.05, p = .09, np2 = .08. Compared to baseline, the experienced group showed a significant reduction in mu power during the action observation period at both electrode C3; t (16) = 6.26, p = < .001, and C4; t (16) = 4.86, p < .001. For the less experienced group, there was no evidence of a significant change in mu power during the action observation period compared to baseline at either electrode C3; t (20) = 1.06, p = .30, d = 0.32, or C4; t (20) = 0.06, p = .95. 
In the beta band, there was a significant main effect of group; F (1, 35) = 12.29, p < .01, np2 = .26, with greater ERD in the experienced group (C3; M = -0.85dB, 95%CI = -1.02dB – -0.68dB, C4; M=-0.65dB, 95%CI = -0.81dB – -0.49dB) compared to the less experienced group (C3; M = -0.35dB, 95%CI = -0.45dB – -0.25dB, C4; M = -0.34dB, 95%CI = -0.48dB – -0.20dB). Again, there was no significant main effect of electrode; F (1, 35) = 3.07, p = .09, np2 = .08, and also no significant group X electrode interaction; F (1, 35) = 2.55, p = .12, np2 .07. Compared to baseline, both the experienced (C3; t (16) = 8.03, p < .001, C4; t (16) = 6.70, p < .001), and less experienced (C3; t (20) = 5.57, p < .001, C4; t (20) = 3.82, p = .002) groups showed a significant reduction in power during action observation compared to baseline. 
Bootstrapped significance testing on the full ERSP showed that group differences arose relatively early in the epoch. In the mu range, significant differences occurred 200-360ms after the onset of the trial, with differences in beta activity occurring approximately 450ms after stimulus onset. Results were broadly similar across both electrodes, though group differences did not appear as strong in the C4 electrode compared to C3.
[image: ../Dropbox/EEG%20channel%20results/Formatted%20figures/C3%20electrode.png]
[bookmark: _Toc488400755]Figure 6. Group differences in mu and beta activity at electrode C3
A-B ERSP time/frequency plots for experienced (A) and less experienced (B) groups. C Significant differences between experienced and less experienced group time/frequency plots at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled for with false discovery rate (FDR). D-E Relative power changes in the mu (8-13Hz) frequency range (D) and the central beta (15-25Hz) frequency range (E). Shaded areas represent 95% confidence intervals. F-G Relative power changes over the whole event period relative to baseline in the mu (8-13Hz) frequency range (F) and the central beta (15-25Hz) frequency range (G). Error bars represent 95% confidence intervals. *** = p < .001. μ = mu, β = beta.
[image: ../Dropbox/EEG%20channel%20results/Formatted%20figures/C4%20electrode.png]

[bookmark: _Toc488400756]Figure 7. Group differences in mu and beta activity at electrode C4
[bookmark: OLE_LINK8][bookmark: OLE_LINK7]A-B ERSP time/frequency plots for experienced (A) and less experienced (B) groups. C Significant differences between experienced and less experienced group time/frequency plots at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled for with false discovery rate (FDR). D-E Relative power changes in the mu (8-13Hz) frequency range (D) and the central beta (15-25Hz) frequency range (E). Shaded areas represent 95% confidence intervals. F-G Relative power changes over the whole event period relative to baseline in the mu (8-13Hz) frequency range (F) and the central beta (15-25Hz) frequency range (G). Error bars represent 95% confidence intervals. ** = p < .01, * = p < .05. μ = mu, β = beta.

3.3.2.2.    Differential activity in low and high mu frequency bands
Visual inspection of the ERSP time/frequency plots suggested there to be differences in activity in the low mu frequency range (8-10Hz) and the high mu frequency range (11-13Hz) (Figure 6A-B and Figure 7A-B). These differences are shown in Figure 8.
	In the low mu band, there was a significant main effect of group on overall ERD; F (1, 35) = 13.78, p < .01, np2 = .28, with greater ERD in the experienced group (C3; M = -1.36dB, 95%CI = -1.80dB – -0.92dB, C4; M = -1.21dB, 95%CI = -1.60dB – -0.80dB) compared with the less experienced group (C3; M = -0.13dB, 95%CI = -0.32dB – -0.06dB, C4; M = -0.31dB, 95%CI = -0.59dB – -0.03dB). There was no significant main effect of electrode; F (1, 35) = 0.02, p = .90, np2 = .28, and there was no significant group X electrode interaction, F (1, 35) = 2.32, p = .14, np2 = .06. Differences in low mu ERD appeared to occur approximately 300ms after stimulus onset. Compared to baseline, only the experienced group showed a significant reduction in power in the 8-10Hz range during the observation period compared to the baseline, C3; t (16) = 5.08, p < .001, C4; t (16) = 5.19, p < .001. The less experienced group did not show a significant change from baseline at either electrode (C3; t (20) = 0.89, p = .39, C4; t (20) = 1.56, p = .14).  
[image: EEG%20channel%20results/Formatted%20figures/LowHigh%20Mu.png]
[bookmark: _Toc488400757]Figure 8. Group differences in low (8-10Hz) and high (11-13Hz) mu activity at electrode sites C3 and C4
[bookmark: OLE_LINK10][bookmark: OLE_LINK9]A-D Differences at electrode C3. Relative power changes in the low mu frequency range (A) and the high mu frequency range (B). Shaded areas represent 95% confidence intervals. Relative power changes over the whole event period relative to baseline in the low mu frequency range (C) and the high mu frequency range (D). Error bars represent 95% confidence intervals. E-H represents the same information but for electrode C4. *** = p < .001, ** = p < .01, * = p < .05.


For high mu, there was a significant main effect of group; F (1, 35) = 15.70, p < .001, np2 = .31 on ERD, with greater ERD in the experienced group (C3; M = -0.57dB, 95%CI = -0.76dB – -0.38dB, C4; M = -0.35dB, 95%CI = -0.56dB – -0.14dB). The less experienced group showed some evidence of overall power increase (ERS) across the epoch (C3; M = 0.26dB, 95%CI = 0.06dB – 0.46dB, C4; M = 0.19dB, 95%CI = -0.11dB – 0.49dB). There was neither a significant main effect of electrode; F (1, 35) = 0.65, p = .43, np2 = .02, or group X electrode interaction; F (1, 35) = 2.35, p = .14, np2 = .06. Differences in high mu ERD occurred around 450ms, after which the experienced group showed a continued trend of power decrease, whilst the less experienced group showed continued increases in 11-13Hz power. Compared to baseline, the experienced group showed a significant reduction in 11-13Hz power (C3; t (16) = 4.73, p < .001, C4; t (16) = 2.77, p = .01). In the unexperienced group, 11-13Hz power changed significantly from baseline during action observation at electrode C3; t (20) = -2.09, p = .04, but not at electrode C4; t (20) = -1.11, p = .29.
3.3.2.3.    Control analyses
ERSP values averaged over both the 8-13Hz frequency band and across time were calculated for frontal (F3, F4), parietal (P3, P4), and occipital (O3, O4) electrode sites (Figure 2). Relative power changes at each site are displayed in Figure 9. There were no significant effects at any electrode site, with the main effect of group at parietal sites being the closest to significance; F (1, 35) = 3.85, p = .14, np2 = .12. There were no sex differences in any of the analyses performed.
[image: EEG%20channel%20results/Formatted%20figures/Control%20sites.png]
[bookmark: _Toc488400758]Figure 9. Control analyses at frontal, parietal, and occipital sites
Relative power changes over the whole event period relative to baseline in the alpha (8-13Hz) frequency range at frontal, parietal, and occipital sites. Yellow bars represent the experienced group; purple bars represent unexperienced group. Error bars display the 95% confidence intervals. 

[bookmark: _Toc486260877]3.4.	Discussion
The aim of this Chapter was to examine expertise-related differences in cortical sensorimotor oscillatory activity during sports-related action observation prior to making an anticipatory judgement. Behavioural results showed a large group difference on anticipation accuracy, satisfying criteria for this test being informative on the processes that underlie skilled anticipation performance (Ericsson et al., 1993; Williams & Ericsson, 2005). As such, it was possible to investigate differences in neural activity between groups during the action observation period. The experienced group showed significantly greater ERD in both the mu and beta frequency bands during action observation, compared to the less experienced group. These results are in line with previous research (Aglioti et al., 2008; Balser, Lorey, Pilgramm, Stark, et al., 2014; Wright et al., 2010, 2011, 2013), and suggests a stronger sensorimotor activity in experienced tennis players during action observation. This may facilitate superior anticipation ability. 
Only the experienced group showed overall ERD in the high mu band (11-13Hz) at both electrode sites, with no ERD in the unskilled group and a significant increase in power (ERS) at electrode C3. Other research provides evidence showing that high mu activity indicates activation of somatotopically specific cortical networks, relevant to specific goal-directed actions being performed (Fumuro et al., 2015; Pfurtscheller et al., 2000). By extending those previous findings into action observation in the present work, this finding could imply that experienced players were able to access domain-specific representations for the shot being observed, and use this to understand the information present in the kinematics. 
In the low mu band (8-10Hz), there was significantly greater magnitude in the experienced group, with low mu power not changing from baseline in the less experienced group. During action execution, low mu is believed to reflect general attentional processes and non-specific motor behaviour (Fumuro et al., 2015; Pfurtscheller et al., 2000). Relating this to action observation, ERD in the unexperienced group would be expected as they are still able to process biological motion for an action without having specific motor expertise, however results found that low mu power during the observation did not differ significantly from baseline. It is possible that low mu ERD in the unexperienced group reflects general attention, and that this did not differ between viewing a static baseline image and viewing biological motion in which they have no experience with. 
In the beta band, both groups showed ERD across the epoch, though the magnitude was greater in the experienced group. This differs from mu activity, where overall only the experienced group showed ERD. One interpretation of this finding could be that beta activity indexes the degree of uncertainty in participant’s understanding. Some work has suggested the beta band activity plays a role in the execution of internal motor models (Palmer, Zapparoli, & Kilner, 2016). For instance, studies looking at motor preparation found the amount of uncertainty of an action’s goal affected the degree of beta power changes, with greater ERD associated with greater response certainty (Tzagarakis, Ince, Leuthold, & Pellizzer, 2010; Tzagarakis, West, & Pellizzer, 2015). Applying this to the results of the current study, greater beta ERD in the experienced group may reflect their greater certainty as to the outcome of the action being observed, due to their superior motor expertise. This hypothesis could also explain why beta ERD differences between groups were relatively small. As the anticipation task required a choice between two responses, there was always a 50% chance of guessing correctly. Therefore, greater group differences between experienced and less experienced participants may become apparent in a task where a greater number of response options are available. It would be expected that experienced participants should still show a higher degree of certainty as to the outcome due to their superior ability of understanding an opponent’s intention. Less experienced participants would however become less certain as the chances of guessing correctly are reduced.  
The inability to fully dissociate motor from visual expertise is an issue when studying action observation and understanding in humans, particularly when studying experts. As a function of their expertise, the tennis players recruited for this study will have developed highly defined motor plans required for playing tennis at a high level. They also will have a high degree of visual familiarity of observing tennis shots. Other studies have shown the mu and beta activity during action observation aren’t modulated by the amount of visual familiarity one has (Cannon et al., 2014). Furthermore, studies comparing experienced players with experienced ‘watchers’ (such as spectators, referees, and coaches) have shown that only players are able to use motor-specific knowledge to anticipate, and show higher accuracy than skilled watchers (Aglioti et al., 2008; Williams & Davids, 1995). These findings make it unlikely that our results are due to purely differences in visual expertise between the two groups. 
Volume conduction effects are an inherent problem in EEG data which limits its spatial resolution. This means that it cannot be assumed that EEG activity recorded at the scalp level electrode is originating in the cortical area directly under the position of the electrode. Therefore, despite the positioning of the C3 and C4 electrodes over the sensorimotor cortices it is not guaranteed that the activity being recorded at those electrodes was generated in sensorimotor areas. Whilst this issue is prevalent for all EEG analyses, it is particularly problematic for recording sensorimotor activity.  This is because the mu frequency band (8-13Hz) is the same as posterior alpha activity (also 8-13Hz), and it has been shown that putative mu activity can become contaminated with non-mu alpha activity (Braadbaart, Williams, & Waiter, 2013; Perry & Bentin, 2009). Importantly, these non-mu alpha oscillations are not considered to constitute activity of the sensorimotor system but instead are believed to be modulated by attentional processes. Some research has found that during action observation tasks, ERD is seen in both central and occipital electrode sites, suggesting that differences may be due to attentional demand, rather than differences in sensorimotor activations (Lepage, Saint-Amour, & Theoret, 2008; Perry, Troje, & Bentin, 2010). Other studies however have found significant group differences only at central sites (Bernier, Aaronson, & McPartland, 2013; Bernier, Dawson, Webb, & Murias, 2007; Oberman et al., 2005, 2008), a finding replicated in the current study. However even if differences are observed only at central sites, it is possible that attention modulated posterior alpha activity is being recorded at the central electrode sites. The implication of this for the findings of this study is that the group differences occurring during action observation may not be due solely to differences in sensorimotor activity, but instead could be explained in terms of the experienced players simply paying more attention to the stimuli than the less experienced participants.  
Because the EEG channel data is potential mix of many different sources, it makes it difficult to assert that the sensorimotor system was the system that was modulated by expertise during action observation. A potential solution to this issue is to use independent component analysis (ICA) to unmix the signal in the EEG channel data and decompose it into distinct independent components (IC) (Makeig, Bell, Jung, & Sejnowski, 1996; Makeig, Debener, Onton, & Delorme, 2004; Onton, Westerfield, Townsend, & Makeig, 2006). These ICs can then be localised to better determine the generator source of the activity. Therefore, ICA holds the potential to separate sensorimotor mu activity, occurring in a sensorimotor source, from posterior alpha activity, occurring in parietal/occipital sources. Chapter 4 applies ICA to the data in order to gain a clearer picture of the independent brain processes that are ongoing during action observation and anticipation.

[bookmark: _Toc486260878]Chapter 4 – Using independent component analysis to assess the ongoing brain dynamics during action observation and anticipation
[bookmark: _Toc486260879]4.1.	Introduction
EEG data analysis methods typically focus on analysing recordings directly from the EEG channels, by assessing potential differences between an electrode on the scalp and a reference. The problem with this approach is that EEG channel electrodes are positioned relatively far from the brain itself, and so also the cortical generators of the EEG activity. Due to the effects of volume conduction, any EEG source activity generated in the brain that creates far-field potentials that can be measured at the scalp, these potentials will be distributed widely across the whole scalp surface (Luck, 2005; Onton & Makeig, 2006). As such, recorded EEG data is the sum of activities from all EEG source locations, along with artefacts produced by muscles, eyes, electrodes, and the external environment (e.g. line noise). A further issue lies in the fact that inter-individual differences in the number and configuration of cortical sulci may lead to large differences in the orientations of spatially equivalent source activity in different individual brains (Onton & Makeig, 2006). This may then in turn result in differences in scalp potential distribution produced by functionally equivalent brain sources. 
The wide-spread projection of source activations across the whole surface of the scalp means that the EEG inverse problem of locating brain sources from the recorded data is mathematically ill-posed, and is unsolvable without additional assumptions. As the position of the EEG electrodes on the scalp cannot be assumed to reflect the area of cortical activity bring recorded, EEG is generally considered to have low spatial resolution. These additional assumptions inherently limit many traditional source localisation approaches to EEG data (Luck, 2005; Mahjoory et al., 2017). Recent developments in blind source separation techniques however provide an interesting alternative to unmixing the sources of EEG activity. 
Independent component analysis (ICA) has emerged as a promising alternative approach to modelling and analysing the underlying cortical sources of activity that are mixed in the EEG channel data. The concept of ICA was originally proposed as a mathematical technique to solve the problem of blind source separation (Comon, 1994) with the aim being to separate individual source signals from the multi-dimensional data in which they are mixed. Applied to EEG data, ICA is able to decompose EEG signals into maximally independent activity patterns that are compatible with activity in a single active cortical area (Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012; Onton & Makeig, 2006; Onton et al., 2006). A number of ICA algorithms have been proposed, with the Infomax algorithm (Bell & Sejnowski, 1995; Lee, Girolami, & Sejnowski, 1999) being particularly well adopted for use with EEG data, though many other algorithms have been shown to produce comparable results (Jung et al., 2001; Delorme et al., 2012; Onton et al., 2006). 
ICA identifies signals in the recorded multi-channel EEG data that are temporally maximally independent of one another, and as such contribute maximally distinct information to the recorded channel data (Delorme et al., 2012). Each independent component (IC) is then characterised by a fixed scalp map, showing the spatial projection of the component to each scalp EEG channel. Therefore, for each IC, a time course of activation and a scalp map are produced (Delorme et al., 2012; Makeig et al., 2002). ICs have been shown to be dipolar, and as such many EEG components have scalp maps that closely match the projection of a single equivalent dipole in the brain (Debener, Ullsperger, et al., 2005; Delorme et al., 2012; Onton et al., 2006). The location of this dipole can then be estimated within a standard head model such as that of the Montreal Neurological Institute (MNI), giving a better spatial estimate of where source activity is being generated than would be possible with channel-based analyses (Acar & Makeig, 2010). 
As described by Onton et al., (2006),  ICA works be being fed a matrix of the recorded EEG scalp data organised by n channels (rows) by t time-points (columns). No electrode location information is used in the analysis. ICA then performs the blind separation of this data matrix (X) based on the criteria that the resulting time courses (U) are maximally independent of one another. This process produces an ‘unmixing’ matrix (W) that when multiplied by the original data yields a matrix of the independent component time courses:

Here, X and U are both n x t matrices, and W is an n x n matrix. By using matrix algebra, it is implied that:

In this equation, W-1 (the inverse of W) is the n x n component mixing matrix where the columns contain the relative weights with which each component projects to each of the scalp channels, i.e. the IC scalp map. The portion of the original data (X) that forms the ith IC (Xi) is the product of two vectors, the ith column of W and the ith row of U:

The whole data (X) are the sum of the back-projected ICs (Xi):

Mapping the relative projection weights to the corresponding electrodes on a head model then allows for visualisation of the scalp projection or a scalp map for each source component. 
The ICA model makes two main assumptions about the nature of scalp EEG data. First, it is assumed that EEG sources sum linearly at the scalp electrodes (Onton & Makeig, 2006). Biophysics suggests that EEG sources will project near-instantly to and then sum linearly at the level of the scalp electrode (Nunez & Srinivasen, 2005). Furthermore, the relatively sparse interconnection of cortical EEG source areas suggests that their activities may, across a significantly large amount of data, be near independent sources. As such, it seems plausible that EEG data can be modelled as a linear mixture of the activities of multiple brain and non-brain sources with near independent time courses (Onton et al., 2006). 
A second assumption is that the EEG sources remain spatially fixed for the duration of the input data (Onton & Makeig, 2006). It has been shown through invasive direct electrical recordings show that at a sub-millimetre scale electrical potential gradients show travelling wave patterns (Arieli, Sterkin, Grinvald, & Aertsen, 1996; Neuper & Klimesch, 2006). However, the cortical ‘patch’ that produces the synchronous far-field EEG source signal at the centimetre scale, whilst showing expanding traveling wave activity within the source domain, will produce a scalp signal that appears spatially constant on the scalp (Freeman, 2004). As such, ICA is adequate at resolving signals from most centimetre-scale source domains (Neuper & Klimesch, 2006). It should be noted however than certain macroscopic EEG phenomena, such as epileptic seizures and sleep spindles, exhibit large-scale travelling wave properties, which can only be modelled with ICA as a set of components each accounting for a spatial and/or temporal phase of the moving activity pattern (Onton et al., 2006), though more complex ICA models may be better suited for these types of activity (Anemuller, Sejnowski, & Makeig, 2003)  
It is now commonplace to see ICA used as a method of detecting and removing artefacts from EEG data (Jung, Makeig, Humphries, et al., 2000; Jung, Makeig, Westerfield, et al., 2000; Makeig et al., 1996). In particular, ICA is reliable at detecting highly stereotyped artefacts such as eye blinks and movement, where it has been shown to out-perform other methods of artefact detection (Hoffmann & Falkenstein, 2008). However, it is unable to deal with non-stereotyped artefacts such as large head or electrode movements, which confound ICA decomposition (Delorme, Sejnowski, & Makeig, 2007). The use of ICA for detecting and rejecting artefacts because component activations relating to a certain artefact, such as an eye blink, is that the component activation can be subtracted from the raw EEG data, meaning that less overall data has to be rejected to remove the artefact (Delorme et al., 2007). 
More recently, ICA has become increasingly popular as a way to study ongoing brain processes during a task (e.g. Bowers, Saltuklaroglu, Harkrider, & Cuellar, 2013; Delorme et al., 2007; Gramann et al., 2010; Makeig et al., 2002, 2004; Onton, Delorme, & Makeig, 2005; Wang, Wang, & Jung, 2012). The advantage of using such an approach is that it allows for a clearer analysis of the distinct brain processes that occur during task performance. Applied to the research questions of this thesis, ICA can potentially be used to separate sensorimotor mu and posterior alpha into distinct components (Makeig, Delorme, et al., 2004) as they are generated from distinct, independent brain sources. Further analysis of component ERD could then be performed on the component corresponding to sensorimotor mu activity that will be free of contamination from activity originating in other cortical regions, allowing a more precise estimate of sensorimotor activity. Therefore, the aim of this Chapter was to use ICA to reanalyse the EEG data recorded in Chapter 3, in order to get a clearer understanding of the exact role of the sensorimotor system, compared to attentional processes, in action observation and anticipation in experienced and less experienced athletes. 
In Chapter 3, it was shown that mu and beta ERD were greater in the experienced players compared to less experienced novices in the observation period prior to anticipation. It was hypothesised that when the data were analysed using ICs derived from the raw EEG data that similar results would emerge. Specifically, in the observation period prior to anticipation, experienced players would show greater ERD in the mu and beta frequency bands in ICs reflecting sensorimotor activity, compared to less experienced players. As it is believed that differences in sensorimotor activity are key in distinguishing experienced from less experienced participants, group differences in these frequency bands would only be seen in sensorimotor components, and not in ICs reflecting activity from other sources. As in Chapter 3, a second hypothesis was that group differences would arise differently in the low and high mu frequency band. As low mu is related to a general movement activity and allocating attentional resources to motion, both the experienced and less experienced groups were predicted to show ERD. In the high mu band, only the experienced group was predicted to show ERD because this activity is related to the access of movement-specific knowledge (Fumuro et al., 2015) which will be available to the experienced group but not to the novices. Finally, the use of ICA made it possible to investigate whether any other sources of brain activity differ between players and novices. As it has been suggested that the sensorimotor system players an important role in action understanding, it was hypothesised that group differences would only be seen in ICs relating to sensorimotor sources. 
[bookmark: _Toc486260880]4.2.	Method
The data obtained in Chapter 3 was used for the analysis of this chapter.
[bookmark: _Toc486260881]4.2.1.	Independent component analysis
The EEG data were decomposed into statistically maximally independent components (ICs) using the infomax algorithm in EEGLAB. The initial learning rate was set to 10E-4, and training was stopped when the learning rate fell below 10E-6. Following decomposition, an equivalent current dipole model was computed for each IC by using the DIPFIT Autofit routine in EEGLAB. Dipoles were localized within a three-shell boundary element model (BEM) of the Montreal Neurological Institute (MNI) standard brain. ICs that had a dipole with a residual variance smaller than 15% were selected for further analysis. This procedure led to an average of 18 components being selected per participant, and the groups did not differ in terms of number of ICs being selected; t (35) = 0.51, p = .61, d = 0.17. (Skilled; M = 17.24, SD = 6.89; less experienced; M = 18.31, SD = 5.56). 
In order to facilitate group level analyses, all selected ICs were clustered based on their scalp map, dipole location, power spectrum, and event related spectral perturbation (ERSP). Clustering was performed within EEGLAB using the K-means algorithm, which produced clusters with the greatest possible distinction by minimizing variability within and maximising variability between clusters. ICs with a distance larger than three standard deviations from the mean of any cluster centroid were removed from the analysis. A total of 10 clusters were created. The motivation for choosing 10 clusters was based on other studies that have investigated sensorimotor-related ICs (Makeig, Delorme, et al., 2004). Each cluster was then inspected regarding the total number of participants contributing to a cluster, and the number of individual components that each participant contributed to a cluster. In cases where a participant contributed multiple ICs to one cluster, the IC whose dipole showed the lowest residual variance was selected. 
[bookmark: _Toc486260882]4.2.2.	EEG data analysis
The main analyses were conducted on IC clusters. ERSP was used as the measure of relative event-related power changes. Details can be found in section 3.2.6.
[bookmark: _Toc486260883]4.2.3.	Statistical analysis
See section 3.2.7.
[bookmark: _Toc486260884]4.3.	Results
[bookmark: _Toc486260885]4.3.1.	Component clustering
From the 10 clusters computed, six were identified as reflecting clear brain processes, based upon the cluster properties (dipole location, scalp map, power spectrum, and ERSP). These clusters are displayed in Figure 10. Component dipole locations are summarised in Table 6. Sensorimotor clusters were identified based upon characteristic peaks in the power spectrum at ~10 and ~20 Hz. A distinct left and right sensorimotor cluster was found, and were distinguished by scalp maps showing projections to left and right central areas respectively. Four other clusters reflecting brain processes were found, with three components reflecting posterior/occipital alpha activity, identified by a clear ~10Hz peak in the power spectrum. The final cluster showed a frontal projection, with peaks in the power spectrum at ~4Hz and ~20Hz. 
Of the four clusters not selected for further analysis, two reflected non-brain artefacts. These artefacts were judged based on the smoothly decreasing power spectrum and far frontal projection of the scalp map. The final two clusters showed scalp maps resembling sensorimotor activity, however the dipole locations did not support a sensorimotor source. As it was unclear what brain process these clusters were related to, they were not analysed further.
[bookmark: _Toc463276206][image: ../../Desktop/ICA%20analysis%20figures/Cluster%20locations.png]
[bookmark: _Toc488400759] Figure 10. Dipole centroid location estimate for each independent component (IC) cluster within a three-shell boundary element model (BEM) of the Montreal Neurological Institute (MNI) standard brain
A - The projection of the dipole’s electric field onto the scalp is shown in each scalp map. For each IC cluster, the number of participants (Ss) contributing to the cluster, and the mean residual variance (res. var.) are displayed above each scalp map. B – Scalp maps for the four IC clusters not selected for further analysis.
[bookmark: _Toc486260922]Table 6. Talariach co-ordinates and Brodmann area estimates for dipole centroid location for each component cluster analysed
	
	Talariach co-ordinates
	

	Component cluster
	X
	Y
	Z
	Brodmann area

	Left sensorimotor
	-19
	-13
	53
	6

	Right sensorimotor
	34
	0
	47
	6

	Posterior alpha
	5
	-61
	27
	31

	Left occipital alpha
	-26
	-78
	-11
	19

	Right occipital alpha
	26
	-79
	-10
	18

	Frontal
	-12
	30
	38
	8



[bookmark: _Toc486260886]4.3.2.	EEG results
4.3.2.1.    Group differences during action observation in the left and right sensorimotor clusters
It was hypothesised that during action observation, greater ERD in sensorimotor areas would be found in the experienced group, compared to the less experienced group. Group differences in the two sensorimotor component clusters during action observation prior to anticipation were found. In the left sensorimotor cluster, bootstrapped significance tests showed that group differences arise relatively early in the epoch, with differences occurring approximately 100ms post-stimulus onset (Figure 11). In the right sensorimotor cluster, similar results were found, though group differences appeared to occur slightly later in the epoch (Figure 12).
[bookmark: OLE_LINK1]Across the whole epoch, mu ERD was greater in the experienced group. A two-way mixed ANOVA showed a significant main effect of group on mu ERD; F (1, 30) = 17.07, p < .001, np2 = .36. ERD was greater in the experienced group (Left hemisphere; M = -2.46dB, 95% CI = -3.07dB – -1.85dB; right hemisphere; M = -1.11dB, 95%CI = -1.54dB – -0.68dB), compared to the less experienced group (Left hemisphere; M = -0.68 dB, 95%CI = -1.55dB – 0.19 dB; right hemisphere; M = 0.21 dB, 95%CI = -0.53dB – 0.13dB). There was also a significant main effect of hemisphere; F (1, 30) = 8.62, p < .01, np2 = .22, with greater ERD found in the left (M = -1.67dB, 95%CI = -2.48dB – -1.29dB), compared to the right hemisphere (M = -0.49dB, 95%CI = -0.83dB – -0.15dB). The group x hemisphere interaction was not significant; F (1, 30) = 0.85, p = .37, np2 = .03. Compared to baseline, the experienced group showed a significant reduction in total mu power during the action observation period, left hemisphere; t (16) = 4.98, p < .001, right hemisphere; t (16) = 4.27, p = .001. In the less experienced group, mu power did not change significantly from baseline during action observation in either the left hemisphere; t (16) = 1.94, p = .07, or the right hemisphere; t (15) = 2.04, p = .06. 
In the beta band, there was a significant main effect of group on beta ERD; F (1, 30) = 23.56, p < .001, np2 = .44, with greater ERD in the experienced group (Left hemisphere; M = -1.57 dB, 95%CI = -1.90dB – -1.24dB; right hemisphere; M = -1.01dB, 95%CI = -1.24dB – -0.78dB), compared to the less experienced group (Left hemisphere; M = -0.71dB, 95%CI = -1.08dB – -0.34dB; right hemisphere; M = -0.18dB, 95%CI = -0.38dB – -0.02dB). The main effect of hemisphere was significant; F (1, 30) = 9.48, p < .01, np2 = .24, with greater ERD in the left hemisphere (M = -1.20 dB, 95%CI = -1.53 dB – -0.86dB) compared to the right (M = -0.60 dB, 95%CI = -0.80 dB – -0.39dB). There was no significant interaction effect; F (1, 30) = 0.14, p = .72, np2 = .01. The experienced group showed a significant reduction in total beta power during action observation compared to baseline in both the left hemisphere; t (16) = 6.97, p < .001, and the right hemisphere; t (16) = 6.31, p < .001). The less experienced group showed a significant power reduction during action observation compared to baseline in the left hemisphere; t (16) =3.01, p = .009, but not the right hemisphere, t (15) = 0.65, p = .53.
[image: ../../Desktop/ICA%20analysis%20figures/Left%20mu%20component.png]
[bookmark: _Toc488400760]Figure 11. Group differences in the left sensorimotor component cluster
A – Cluster scalp map. B – Dipole locations for each participant contributing to the cluster, with the centroid location displayed in red. C – Component cluster power spectrum (4-50Hz). D-E – ERSP time/frequency plots for experienced (D) and less experienced (E) groups. F – Significant differences between experienced and less experienced group time/frequency plots at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled for with the false discovery rate (FDR). μ = mu, β = beta. 
[image: ../../Desktop/ICA%20analysis%20figures/Right%20mu%20component.png]

[bookmark: _Toc488400761]Figure 12. Group differences in the right sensorimotor component cluster
A – Cluster scalp map. B – Dipole locations for each participant contributing to the cluster, with the centroid location displayed in red. C – Component cluster power spectrum (4-50Hz). D-E – ERSP time/frequency plots for experienced (D) and less experienced (E) groups. F – Significant differences between experienced and less experienced group time/frequency plots at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled for with the false discovery rate (FDR). μ = mu, β = beta.

4.3.2.2.    Differential activity in low and high mu frequency bands for the left and right sensorimotor component cluster  
Expertise-related differences in ERD of low and high mu activity were hypothesised. Visual inspection of the ERSP time/frequency plots (Figure 11D-E and Figure 12D-E) suggested there to be differences in activity in the low (8-10Hz) and high (11-13Hz) mu frequency range. These differences are shown in Figure 13 (left sensorimotor cluster) and Figure 14 (right sensorimotor cluster).
[bookmark: OLE_LINK3][bookmark: OLE_LINK2]In the low mu band, the magnitude of ERD was greater in the experienced group. A two-way mixed ANOVA showed a significant main effect of group on low mu ERD across the whole epoch; F (1, 30) = 17.82, p < .001, np2 = .37, with greater ERD in the experienced group (Left hemisphere; M = -3.57 dB, 95% CI = -4.49 dB – -2.65 dB; right hemisphere; M = -1.70 dB, 95%CI = -2.35 dB – -1.05 dB), compared to the less experienced group (Left hemisphere; M = -1.03 dB, 95%CI = 2.03 dB – -0.03 dB; right hemisphere; M = -0.04 dB, 95%CI = -0.44 dB – 0.36 dB). There was also a significant main effect of hemisphere; F (1, 30) = 10.29, p < .01, np2 = .26, with greater ERD found in the left (M = -2.46 dB, 95%CI = -3.37 dB – -1.54 dB) compared to the right hemisphere (M = -0.92 dB, 95%CI = -1.38 dB – -0.45 dB). The group x hemisphere interaction was not significant; F (1, 30) = 1.81, p = .19, np2 = .06. The experienced group showed a significant power reduction during action observation compared to baseline in both the left hemisphere; t (16) = 5.05, p < .001, and the right hemisphere; t (16) = 4.39, p = .001 This was only seen in the left hemisphere of the less experienced group; t (16) = 2.32, p = .03 (right hemisphere; t (15) = 0.87, p = .40). 
In the high mu (11-13Hz) band, a two-way mixed ANOVA showed there was a significant main effect of group; F (1, 30) = 9.98, p < .01, np2 = .25, with greater ERD in the experienced group (Left hemisphere; M = -1.17 dB, 95%CI = -1.52 dB – -0.82 dB; right hemisphere; M = -0.43 dB, 95%CI = -0.69 dB – -0.17 dB), compared to the less experienced group who showed no evidence of ERD occurring (Left hemisphere; M = -0.27 dB, 95%CI =-1.00 dB – 0.46 dB; right hemisphere; M = 0.50 dB, 95%CI = 0.18 dB – 0.82 dB). The main effect of hemisphere was significant; F (1, 30) = 4.90, p < .05, np2 = .14, with greater ERD in the left hemisphere (M = -0.74 dB, 95%CI = -1.32 dB – -0.16 dB) compared to the right (M = 0.01 dB, 95%CI = -0.27 dB – 0.28 dB). There was no significant interaction effect; F (1, 30) = 0.02, p = .90, np2 < .01. The experienced group showed significant power reduction in the 11-13Hz range in the observation period compared to baseline in both hemispheres (left; t (16) = 3.91, p = .001, right; t (16) = 3.07, p = .008). In the less experienced group, there was a significant change in power during action observation compared to baseline in the right hemisphere; t (15) = 2.67, p = .02 (left hemisphere; t (16) = 1.38, p = .19).
[image: ../Desktop/ICA%20analysis%20figures/Left%20mu%20averaged%20plots.png]
[bookmark: _Toc488400762]Figure 13. Relative power changes in mu and beta bands in the left sensorimotor component cluster
A-B – Relative power changes in the mu (8-13Hz) (A) and beta (15-25Hz) (B) frequency bands. Shaded areas represent 95% confidence intervals. C-D Relative power changes over the whole event period relative to baseline in the mu (8-13Hz) (C) and beta (15-25Hz) (D) frequency bands. Error bars represent 95% confidence intervals. E-F – Relative power changes in the low mu (8-10Hz) (E) and high mu (11-13Hz) (F) frequency bands. Shaded areas represent 95% confidence intervals. G-H – Relative power changes over the whole event period relative to baseline in the low mu (8-10Hz) (G) and high mu (11-13Hz) (H) frequency bands. Error bars represent 95% confidence intervals. ** = p<.01, * = p<.05.
[image: ../Desktop/ICA%20analysis%20figures/Right%20mu%20averaged%20plots.png]

[bookmark: _Toc488400763]Figure 14. Relative power changes in mu and beta bands in the right sensorimotor component cluster
A-B – Relative power changes in the mu (8-13Hz) (A) and beta (15-25Hz) (B) frequency bands. Shaded areas represent 95% confidence intervals. C-D – Relative power changes over the whole event period relative to baseline in the mu (8-13Hz) (C) and beta (15-25Hz) (D) frequency bands. Error bars represent 95% confidence intervals. E-F – Relative power changes in the low mu (8-10Hz) (E) and high mu (11-13Hz) (F) frequency bands. Shaded areas represent 95% confidence intervals. G-H – Relative power changes over the whole event period relative to baseline in the low mu (8-10Hz) (G) and high mu (11-13Hz) (H) frequency bands. Error bars represent 95% confidence intervals.*** = p<.001, ** = p<.01.

4.3.2.3.    Group differences in other component clusters
ERSP plots for both the experienced and unexperienced groups in other component clusters are displayed in Figure 15. Bootstrapped significance testing did not reveal any significant group differences in ERSP between 4-50Hz in any of the component clusters (all not significant at p > .05).

[image: ../Desktop/ICA%20analysis%20figures/Cluster%20summary.png]
[bookmark: _Toc488400764]Figure 15. Group differences in frontal, posterior, and occipital clusters
Scalp map, dipole location, power spectrum, and ERSP for experienced and less experienced group for A – frontal IC, B – posterior alpha IC, C – left occipital alpha IC, and D – right occipital alpha IC. 

[bookmark: _Toc486260887]4.4.	Discussion
Chapter 3 showed that mu and beta ERD recorded from central electrode sites were greater in experienced tennis players compared to less experienced novices. In this Chapter, ICA was used has a data analysis method to separate brain processes arising from sensorimotor sources from other regions, particularly non-mu posterior alpha sources (believed to reflect attentional processes). It was hypothesised that athletes would show greater sensorimotor activation when observing an action prior to action anticipation. As such, group differences were expected to arise only in ICs reflecting sensorimotor processes.  
Group differences were observed only in sensorimotor component clusters, and not in clusters that reflected parietal alpha or visual activity in the occipital cortex. This finding suggests that expertise related differences in neural activity during this task were unique to sensorimotor areas. This also suggests that the results are not solely due to differences in attention between the two groups. If this were the case, it would be expected that significant group differences would occur in other clusters showing a clear alpha component, as posterior alpha is modulated by attentional demand (Klimesch, 1999; Sauseng & Klimesch, 2008). Therefore, results show that mu and beta activity from sensorimotor locations are key in distinguishing experienced from less experienced participants during action observation. 
This finding represents an important advance in our knowledge of expertise modulation of the sensorimotor system. This is because other EEG work in this area has used EEG channel methods to record sensorimotor activity (similar to the methods used in Chapter 3). As discussed in section 3.4, it is possible that these differences attributed to sensorimotor activity may have been contaminated by activity from other brain sources making it possible that observed differences in the EEG data were due to differences in attention between the two groups (Cannon et al., 2014; Orgs et al., 2008; Wolf et al., 2014). The results of this Chapter provide stronger evidence that it is the sensorimotor system that is being modulated by expertise during the task, as ICA was able to separate mu and non-mu alpha activity, and show group differences were unique to mu-generating sensorimotor sites. 
The results of the ICA analysis are generally consistent with the channel analyses reported in Chapter 3. The ICA results showed that in sensorimotor components, there was significantly greater ERD in the experienced players compared to the less experienced novices in both the mu and beta frequency bands. In the ICA analysis, only the experienced group showed overall mu activity during the observation period, compared with the less experienced group.
Whilst this task did not find any evidence for a role of alpha ERD in action anticipation, it is plausible that group differences could emerge in a more challenging task. For example, increasing task difficulty may lead to greater alpha ERD in less experienced participants as they begin to find the task more demanding. On the other hand, experienced players would be able to cope with the increased demands, due to their domain specific expertise, and so would show less alpha ERD (Del Percio et al., 2009). 
Group differences in the beta band appeared clearer in the analysis on ICs compared to the channel analysis (see Chapter 3). One possible explanation for this is the improved localisation possible when analysing ICA components compared to EEG channels. In the channel data, volume conduction makes it possible that beta activity recorded at the central electrodes could have multiple different generators. If group differences only occur in sensorimotor areas these differences may be smeared out somewhat by beta activity generated in different sources, which do not differ between groups. When using the ICs for analysis, it assures that only beta activity generated from a sensorimotor site is analysed. Therefore, a cleaner measure of sensorimotor generated beta activity is analysed, meaning that group differences become clearer. The idea that analysis of ICs can provide a clearer measure of neural activity compared with EEG channels has been shown in other research (e.g. Debener et al., 2005a).  
The major benefit of applying ICA to this particular research question was its ability to the separate the EEG data into distinct, independent sources. As such, this allowed for a cleaner measure of sensorimotor activity than previous studies have achieved. Despite this advantage, the use of ICA to study cortical processes is still relatively uncommon. As such, a number of open questions remain in the literature that need to be considered. These issues are primarily related to the optimal way of clustering equivalent ICs across multiple participants, in order to facilitate group level analyses. 
Firstly, none of the clusters identified in the analysis for this Chapter contained an IC from all participants, with between 3-5 participants not contributing to each clustered component. Visual inspection of individual data suggests that 2 participants consistently did not contribute an IC to a given cluster. There are a number of possible reasons for this. Firstly, it is possible that the clustering algorithm did not successfully place these participant’s ICs into their respective clusters. For example, two components that appeared to have a sensorimotor source based on scalp map did not show that source when looking at the dipole locations, and were not used for further analyses. However, inspection of those ICs again show that participant’s not contributing to the component clusters shown in Figure 10A, also did not contribute to these clusters (Figure 10B). 
A second possibility is that the ICA decomposition was not optimal, and failed to return the respective components. This may have happened due to insufficiently cleaned data for these participants (Onton & Makeig, 2006). However, it should be noted that all EEG data was mainly cleaned by eye, and visual inspection did not suggest that these participants had particularly messy data. Furthermore, there was no evidence that these participants had significantly higher numbers of epochs rejected than other participants, again suggesting their data was no noisier than other participants. 
A final possibility is that these participants did not show activity in the sources that were found to be consistent across most participants. It is noteworthy that in the two sensorimotor clusters i.e. where expertise differences were expected to arise, all of the participants who did not contribute a single IC to the cluster were from the less experienced group. On the other hand, all of the experienced participants contributed an IC to at least one of the sensorimotor clusters. As such, for these clusters at least, it is plausible that during the tasks these participants did not show activity in sensorimotor areas (i.e. no engagement at all from the sensorimotor system). 
Another outstanding issue is dealing with the fact that in many cases, a single participant can contribute multiple ICs to a component cluster. Some studies have opted to include all ICs from each participant that contribute to a component cluster (Gramann et al., 2010), whilst others have suggested selecting just one component per participant, either by averaging together all of the ICs that a participant is contributing (Campos Viola et al., 2009), or by selecting the IC whose dipole shows the lowest residual variance (Grandchamp, Braboszcz, Makeig, & Delorme, 2012). For this analysis, the component whose dipole had the lowest residual variance was used to select which component from a participant was kept in the cluster. The reason for this approach was because a key part of the research question involved separating activity from two distinct sources (sensorimotor vs posterior). Therefore, it was important that the accuracy of the dipole model was high in each component. 
An optimal strategy for selecting how many clusters to compute is also an unanswered question. This study chose the number of clusters based on previous research that has found sensorimotor activity using ICA (Makeig, Delorme, et al., 2004). However, this may lead to the number of clusters selected not optimal. Recent work in ICA clustering analysis has been focused on developing automated, data driven solutions to the identify the number of clusters that should be computed (Bigdely-Shamlo, Mullen, Kreutz-Delgado, & Makeig, 2013). It is likely that these approaches will be utilised more in the future. 
A final issue regarding IC clustering is the reproducibility of the clustering results. In other words, if a future study were to replicate the analysis strategy presented here it is important that the IC clustering reliably returns a similar set of clusters. There is evidence that ICA decomposition and clustering is stable across multiple studies. For instance, in a mind wandering experiment EEG data was recorded across 11 sessions over a 5-week period. It found that when using Infomax ICA decomposition and K-Means component clustering (as was used in the results of this Chapter), components reflecting alpha, beta, and mu activity were identified consistently across multiple sessions and were reliably clustered in each of the sessions (Grandchamp et al., 2012). As such, there is evidence that ICA decomposition and clustering is reliable and consistent across testing sessions. 
Despite the use of ICA, source localisation with EEG is not precise, and only provides an estimate as to the generator of the activity. Furthermore, the use of a standard head template and a standard electrode location file for each participant makes precise estimation problematic. Nevertheless, precision was high enough to clearly distinguish and separate sensorimotor sources from posterior/occipital sources. This is what was required for this Chapter. Furthermore, location estimates for the sensorimotor clusters analysed here do correspond to the findings of fMRI studies that have shown sensorimotor areas to exhibit greater activations in experienced athletes (Balser, Lorey, Pilgramm, Naumann, et al., 2014; Balser, Lorey, Pilgramm, Stark, et al., 2014; Wright et al., 2010, 2011, 2013). It is important that future studies work to further improve the accuracy of the localisation of mu and sensorimotor beta activity. Developments in individual electrode location templates, the use of more precise head models (including the use of structural MRI images), and also simultaneous EEG-fMRI are all ways this can be achieved in future research (Acar & Makeig, 2010; Huster, Debener, Eichele, & Herrmann, 2012). 
With these issues in mind, this Chapter has provided evidence that the sensorimotor system plays a role in expert action observation prior to making an anticipation. By using ICA, the existing literature has been extended, to show for the first time that these expertise differences are unique to sensorimotor sources, and that no expertise-related differences exist in attention modulated, posterior alpha sources. As such, this study provides a much cleaner measure of the sensorimotor ststem during action observation, and its modulation by motor expertise, than has been possible in previous work. Whilst tennis was the specific domain studies here, it is predicted that similar processes underlie skilled anticipation both in other similar sports and other dynamic real-world contexts.

[bookmark: _Toc486260888]Chapter 5 – Contrasting correctly vs incorrectly anticipated trials and an individual level analyses of expertise modulated sensorimotor activity during action anticipation
[bookmark: _Toc486260889]5.1.	Introduction
Chapter 3 and Chapter 4 showed group-level differences in expertise modulation of the sensorimotor system during action anticipation. The novel use of an ICA analysis in Chapter 4 also showed that expertise differences in ongoing neural activity during action observation prior to anticipation are unique to sensorimotor sources. These results take forward previous work that had not been able to identify the specificity of enhanced sensorimotor activity in expert athletes during action anticipation (Smith, 2015).
	Despite experienced players showing significantly higher anticipation accuracy than novices at the group level, the experienced group only anticipated correctly 60% of trials on average. This means that on 40% of shots, they were incorrect in their anticipation. The implication of this based on previous research is that on the trials that players got wrong, they were unable to extract the required kinematic cues in order to help them understand the intention of the observed player. As the sensorimotor system may aid in successful action understanding, it would be expected that activation of this system prior to making a correct anticipation would be greater for correctly anticipated actions compared to incorrectly anticipated actions (Balser, Lorey, Pilgramm, Stark, et al., 2014; Olsson & Lundström, 2013). 
	No research to date using EEG has examined what the strength of association is between sensorimotor activity and individual anticipation performance. In the fMRI literature, some studies of action anticipation have shown greater fronto-parietal AON activation for correctly anticipated trials, compared to incorrectly anticipated ones in athletes (Abreu et al, 2012; Balser, Lorey, Pilgramm, Naumann, et al., 2014; Balser, Lorey, Pilgramm, Stark, et al., 2014; Olsson & Lundström, 2013; Wu et al., 2013). To date, no studies have investigated whether differences in cortical sensorimotor oscillatory activity exists when contrasting correct and incorrect trials. This is an important question to address, as by comparing correct and incorrect trials within-groups, there is greater possibility to examine the brain activity associated with an observed action that has been successfully understood (as indicated by the correct anticipation) and actions that have not been understood (as indicated by incorrect anticipation).
 Furthermore, at the group level it has been shown that experienced players exhibit greater sensorimotor activity than less experienced players (see Chapters 3 and 4). However, within the experienced group, it is unclear whether there is an association between individual performance (percentage accuracy) and sensorimotor activity (mu and beta ERD values).
	The aim of this chapter was to investigate these issues to further to understand the relationship between sensorimotor activity, expertise, and action anticipation skill. It was hypothesised that in the action observation period prior to anticipation, there would be significantly greater mu and beta ERD to subsequently correctly anticipated trials, compared to subsequently incorrectly anticipated trials. Second, correlations between sensorimotor activity, anticipation accuracy, and tennis experience were performed. It was hypothesised that that there would be a significant negative correlation between mu and beta ERD and individual anticipation accuracy. A similar correlation was also expected between mu and beta ERD and tennis experience. Due to the relative advantage of ICA over channel data, these questions were examined within the context of the ICA components described in Chapter 4 only.
[bookmark: _Toc486260890]5.2.	Method
See Chapter 4 for details.
[bookmark: _Toc486260891]5.2.1.	EEG analysis
ERSP (details in section 3.2.6.) in the 4-50Hz frequency range was calculated. This was calculated for each component cluster identified as reflecting a clear brain source as described in section 4.3.1.
[bookmark: _Toc486260892]5.2.2.	Statistical analysis
To identify differences in ERSP time/frequency data between correctly and incorrectly anticipated trials, bootstrapped significance tests were performed. The potential for spurious significant findings being generated by multiple comparisons was controlled using the false discovery rate (FDR). The results of these tests are visualised on a time-frequency plot indicating points where significant differences at the p < .01 level arose. 
ERSP values averaged across both frequency band and time were also calculated. This process created a single baseline ERSP value, and a single event ERSP value. The overall ERSP value was derived by subtracting the event ERSP from the baseline ERSP (Pfurtscheller & Lopes da Silva, 1999). A negative ERSP value indicates overall power reduction (ERD) across the whole event compared to baseline, and a positive ERSP value indicates overall power increase (ERS). Group differences in ERSP values were calculated using two-way mixed ANOVAs, with group (experienced and less experienced) as a between-participants factor, and accuracy (correct and incorrect) as a within-participants factor.
	Correlations between individual anticipation accuracy and overall mu/beta ERD to all trials were calculated within each group separately. Three measures of tennis experience were also correlated with overall ERD. These were: years of tennis experience, average number of weeks of tennis played each week, and years of formal tennis instruction. 
[bookmark: _Toc486260893]5.3.	Results
[bookmark: _Toc486260894]5.3.1.	Behavioural results
Tennis experience levels of the two groups can be found in section 3.2.1. As a preliminary step to examine behavioural associations between experience and anticipation accuracy, correlations were performed between tennis experience and percentage accuracy. In the experienced group, anticipation accuracy was significantly positively correlated with years of formal tennis tuition (r = .66, p = .001), but not with years of tennis experience (r = .39, p = .08) or hours of play per week (r = .01, p = .98). In the less experienced group, none of the measures of tennis experience were correlated with anticipation accuracy (years of tennis experience, r -.07, p .78; hours of play per week, r = -.13, p = .64; and years of formal tennis tuition, r = -.35, p = .19). 
[bookmark: _Toc486260895]5.3.2.	EEG results

5.3.2.1.    Differences in sensorimotor activity during correctly anticipated trials compared to incorrectly anticipated trials
It was hypothesised that in the action observation period preceding a correct anticipation, there would be greater ERD in sensorimotor clusters compared to ERD during the action observation period preceding an incorrect anticipation. Figures 16 & 17 display differences between correctly anticipated and incorrectly anticipated trials for both the experienced and less experienced groups at the left and right sensorimotor clusters respectively. Figure 18 shows mu and beta event-related power changes to both correct and incorrect trials in both groups for the left sensorimotor cluster. Figure 19 shows the same data for the right cluster.
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[bookmark: _Toc488400765]Figure 16. Comparison of correct versus incorrect trials in the left sensorimotor cluster
A – experienced group. ERSP time/frequency plots for (a) correctly anticipated trials, (b) incorrectly anticipated trials, and (c) significant differences between correct and incorrect trials at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled using the false discovery rate (FDR). B – Less experienced group. Plots (d-f) reflect same data as plots (a-c), but for the less experienced group. Significant differences between the experienced and less experienced group for correct trials are displayed in (g). Significant differences between experienced and less experienced groups for incorrect trials are displayed in (h), and the interaction results are displayed in (i).
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[bookmark: _Toc488400766]Figure 17. Comparison of correct versus incorrect trials in the right sensorimotor cluster
A – experienced group. ERSP time/frequency plots for (a) correctly anticipated trials, (b) incorrectly anticipated trials, and (c) significant differences between correct and incorrect trials at the p < .01 level, based on bootstrapped statistics with multiple comparisons controlled using the false discovery rate (FDR). B – Less experienced group. Plots (d-f) reflect same data as plots (a-c), but for the less experienced group. Significant differences between the experienced and less experienced group for correct trials are displayed in (g). Significant differences between experienced and less experienced groups for incorrect trials are displayed in (h), and the interaction results are displayed in (i).
In the left sensorimotor component cluster, there was a significant main effect of outcome on mu ERD, F (1, 32) = 7.96, p = .009, np2 = .24, with correctly anticipated trials (M = -1.89 dB, 95% CI = -2.72 dB – -1.06 dB) showing significantly greater mu ERD than incorrect trials (M = -0.62 dB, 95% CI = -1.08 dB – -0.15 dB). There was a borderline main effect of expertise, F (1, 32) = 3.29, p = .06, np2 = .16, with greater ERD in expert group (M = -1.68 dB, 95% CI = -2.33 dB – -1.03 dB) compared to the less experienced group (M = -0.82 dB, 95% CI = -1.55 dB – -0.10 dB). The outcome x expertise interaction was not significant, F (1, 32) = 0.24, p = .63, np2 = .01. 
Compared to baseline, the experienced group showed a significant reduction in mu ERD during the action observation period for both correct (t (16) = 7.26, p < .001) and incorrect (t (16) = 2.76, p = .02) trials. The less experienced group did not show an event-related change in mu power compared to baseline for either correctly (t (16) = 1.15, p = .26) or incorrectly (t (16) = 1.06, p = .31) anticipated trials.
	In the beta band, there was a significant main effect of outcome on ERD, F (1, 32) = 7.00, p = .01, np2 = .22, with correctly anticipated trials showing significantly greater beta ERD (M = -1.14, 95% CI = -1.48 – -0.81) than incorrectly anticipated trials (M = -0.59 dB, 95% CI = -0.82 dB – -0.36 dB). There was a significant main effect of expertise, F (1, 32) = 17.66, p < .001, np2 = .41. Beta ERD was significantly lower in the experienced group (M = -1.25 dB, 95% CI = -1.48 dB – -0.81 dB) compared to the less experienced group, M = 0.58 dB, 95% CI = -0.82 dB – -0.36 dB. There was a significant outcome x expertise interaction, F (1, 32) = 4.48, p = .04, np2 = .13. Follow-up t-tests revealed that in the experienced group, there was significantly greater ERD in correctly anticipated trials compared to incorrectly anticipated trials, t (16) = 2.82, p = .01 (correct: M = -1.62 dB, 95% CI = -2.06 dB – -1.27 dB; incorrect: M = -0.88 dB, 95% CI = -1.19 dB – -0.57 dB). There was no difference in ERD for the less experienced group, t (16) = -1.12, p = .28 (correct: M = -0.67 dB, 95% CI = -1.17 dB – -0.17; incorrect: M = -0.29 dB, 95% CI = -0.63 dB – 0.05 dB).
	There were significant changes from baseline in terms of beta ERD during the action observation period for the experienced group during both correct (t (16) = 9.31, p < .001) and incorrect (t (16) = 5.77, p < .001) trials. This was also the case for the less experienced group (correct trials: t (16) = 2.35, p = .03, incorrect trials: t (16) = 2.62, p = .02). 
	In the right sensorimotor cluster, similar results were found.  For mu ERD, there was a significant main effect of expertise, F (1, 31) = 42.72, p < .001, np2 = .58. There was significantly greater mu ERD in the experienced group (M = -1.13 dB, 95% CI = -1.49 dB – -0.75 dB) compared to the less experienced group (M = 0.49 dB, 95% CI = 0.15 dB – 0.84 dB). There was no main effect of outcome, F (1, 31) = 1.17, p = .29, np2 = .04, and the outcome x expertise interaction was also not significant, F (1, 31) = 0.69, p = .42, np2 = .03.
	The experienced group showed a significant decrease in mu power during the action observation period compared to baseline for both correctly (t (16) = 5.08, p < .001) and incorrectly (t (16) = 3.12, p = .007) anticipated trials. For the less experienced group, there was a significant increase in mu power (ERS) during correctly anticipated trials compared to baseline (t (15) = 2.99, p = .008). There was no significant change from baseline for incorrect trials (t (15) = 1.68, p = .11). 
	For beta ERD in the right sensorimotor cluster, there was a significant main effect of expertise, F (1, 31) = 27.24, p < .001, np2 = .48, with correct trials showing significantly greater beta ERD than incorrect trails (correct: M = -0.89 dB, 95% CI = -1.09 dB – -0.69 dB; incorrect: M = -0.30 dB, 95% CI = -0.26 dB – 0.08 dB). There was a significant main effect of expertise, F (1, 31) = 67.58, p < .001, np2 = .69. Beta ERD was significantly greater in the experienced group (M = -1.11 dB, 95% CI = -1.29 dB – -0.92 dB), compared to the less experienced group (M = -0.09 dB, 95% CI = -0.26 dB – 0.08 dB). The outcome x expertise interaction was also significant, F (1, 31) = 8.56, p = .006, np2 = .22. Follow-up t-tests revealed that in the experienced group, there was significantly greater ERD in correctly anticipated trials compared to incorrectly anticipated trials, t (16) = 4.60, p < .001 (correct: M = -1.57 dB, 95% CI = -1.87 dB – -1.28 dB; incorrect: M = -0.64 dB, 95% CI = -0.84 dB – -0.45 dB). There was no difference in ERD for the less experienced group, t (15) = -1.89, p = .08 (correct: M = -0.22 dB, 95% CI = -49 dB – 0.06; incorrect: M = 0.04 dB, 95% CI = -0.14 dB – 0.22 dB). 
	Beta ERD during action observation differed significantly from baseline in the experienced group for both correct (t (16) = 9.28, p < .001) and incorrect trials (t (16) = 7.25, p < .001). There were no significant changes from baseline in the less experienced group for either correct (t (15) = 1.89, p = .08) or incorrect trials (t (15) = 0.43, p = .67). 
Differences between correctly and incorrectly anticipated trials in other component clusters were also investigated. There were no differences at any of the clusters (all p > .12). 
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[bookmark: _Toc488400767]Figure 18. Differences between mu (8-13Hz) and beta (15-25Hz) power during successful and unsuccessful anticipation in the experienced and less experienced group in the left sensorimotor cluster
A & C – Differences in mu (8-13Hz) frequency band during successful and unsuccessful anticipation in the experienced group. B & D – Differences in mu (8-13Hz) frequency band during successful and unsuccessful anticipation in the less experienced group. E & G - Differences in beta (15-25Hz) frequency band during successful and unsuccessful anticipation in the experienced group. F & H - Differences in beta (15-25Hz) frequency band during successful and unsuccessful anticipation in the experienced group. Error bars represent 95% confidence intervals. * = p < .05.
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[bookmark: _Toc488400768]Figure 19. Differences between mu (8-13Hz) and beta (15-25Hz) power during successful and unsuccessful anticipation in the experienced and less experienced group in the right sensorimotor cluster
A & C – Differences in mu (8-13Hz) frequency band during successful and unsuccessful anticipation in the experienced group. B & D – Differences in mu (8-13Hz) frequency band during successful and unsuccessful anticipation in the less experienced group. E & G - Differences in beta (15-25Hz) frequency band during successful and unsuccessful anticipation in the experienced group. F & H - Differences in beta (15-25Hz) frequency band during successful and unsuccessful anticipation in the experienced group. Error bars represent 95% confidence intervals. *** = p < .001.

5.3.2.2.    Individual level analysis investigating associations between sensorimotor skill, anticipation performance, and tennis experience
Correlations between mu and beta power and individual participant anticipation accuracy are displayed in Figure 20. In the left component cluster, there was a significant negative correlation in the experienced group between anticipation accuracy and both mu (r = -.57, p = .01) and beta (r = -.56, p = .01) ERD. In the right component cluster, there was a significant negative correlation between anticipation accuracy and mu ERD (r = -.48, p = .04) but not beta ERD (r = -.28, p = .29). There were no significant correlations between anticipation accuracy and ERD in the less experienced group (closest p = .17).
	Associations between mu and beta power and measures of tennis playing experience are shown in Figure 21 (left component) and Figure 22 (right component). There were no significant correlations between mu/beta ERD and any of the measures of tennis experience (years of experience, hours played per week, years of formal instruction) in either group.
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[bookmark: _Toc488400769]Figure 20. Correlations between relative power change in sensorimotor activity and individual anticipation accuracy
Correlations between individual anticipation accuracy and (A-B) mu (8-13 Hz) and (C-D) beta (15-25Hz) overall relative power change for the experienced and less experienced groups. 
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[bookmark: _Toc488400770]Figure 21.  Correlations between relative power change in sensorimotor activity in the left cluster and tennis experience
Correlations between relative changes in mu (8-13Hz) power and (A) years of tennis experience, (B) hours of tennis played per week, and (C) years of formal tuition. Correlations between relative changes in beta (15-25Hz) power and (D) years of tennis experience, (E) hours of tennis played per week, and (F) years of formal tuition. 
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[bookmark: _Toc488400771] Figure 22. Correlations between relative power change in sensorimotor activity in the right cluster and tennis experience
Correlations between relative changes in mu (8-13Hz) power and (A) years of tennis experience, (B) hours of tennis played per week, and (C) years of formal tuition. Correlations between relative changes in beta (15-25Hz) power and (D) years of tennis experience, (E) hours of tennis played per week, and (F) years of formal tuition
[bookmark: _Toc486260896]5.4.	Discussion
This chapter built on the findings of Chapters 3 and 4 by investigating differences in sensorimotor activity to trials that were subsequently anticipated correctly compared with trials that were subsequently anticipated incorrectly. The main finding was that, in experienced tennis players, there was significantly greater beta ERD during trials that were correctly anticipated compared with trials that were anticipated incorrectly. This was not found in the mu band, with differences in mu ERD observed between correct and incorrect anticipation.  
	As discussed previously, there is evidence suggesting that sensorimotor beta ERD may be related to action outcome uncertainty (Tzagarakis et al., 2010, 2015). Other studies have found that beta ERD is reduced when the outcome of an action is uncertain, compared to occasions where the action outcome is known. These findings suggest a possible interpretation of the findings reported in this Chapter. The greater beta band ERD observed in the experienced group during correct anticipation could reflect greater certainty about the outcome of trials that were subsequently anticipated correctly. When trials were not accurately anticipated, it would be expected that participants were less sure about the outcome of the presented shots. 
	The experienced group showed no differences in mu band ERD during correct and incorrect anticipation. This implies that the degree of mu ERD during action observation does not indicate whether that action will be successfully anticipated or not, and as such, may not be a good measure of action understanding. While it was shown in Chapters 3 and 4 that mu ERD is effective at distinguishing experienced from less experienced participants, the current results indicate it is not effective at distinguishing correct from incorrect anticipations. This suggests that mu power may not be as useful index of successful action anticipation as beta ERD. Interestingly, both beta and mu ERD was correlated with individual scores in the experienced group, suggesting those with the highest levels of accuracy show the greatest sensorimotor engagement during action observation. A caveat of this finding is the small sample size of the groups. Because of this, the results of all correlational analyses should be interpreted with caution. When directly contrasting correct and incorrect trials across all participants however, only the beta band distinguishes correct anticipation.
	Whilst further research is warranted to continue to uncover functional differences between sensorimotor activity in the mu and beta frequency ranges, the results reported here suggest that activity in the beta band is key in distinguishing correct from incorrect anticipation, and thus successful from unsuccessful action understanding. The lack of differences in the mu band may suggest that it does not play a role in action understanding. The finding that there are clear group differences when all trials are considered together in this frequency band (see Chapter 4) does however suggest it reflects differing levels of anticipatory skill. It is possible then that mu ERD primarily reflects associations between sensory and motor areas that have arisen through associative learning i.e. the associative account of motor system function during action observation (Heyes, 2010b). This theory suggests that motor activity occurs during action observation due to a strengthening of associations between sensory and motor areas that arises through experience. As the experienced group have greater exposure to both performing and observing tennis actions, they would be predicted to have stronger associations between sensory and motor neurons related to tennis actions. As the associative hypothesis does not suggest a direct role for the motor system in action understanding, it would be hypothesised that there would be no differences between whether an action is successfully understood (anticipated) or not. This is compatible with the findings regarding mu frequency band reported in this Chapter.
	There were no associations between sensorimotor activation and amount of tennis experience. This suggests that those who play more tennis do not show greater activation of the sensorimotor system during action anticipation. However, the sensitivity of the measure of tennis experience needs to be considered. For instance, only one measure of tennis experience, years of formal tuition, significantly correlated with the behavioural measures (anticipation accuracy). The lack of behavioural associations may then explain why the EEG measures were not correlated with years of tennis experience or hours of play per week. 
It may be that the measures of tennis experience taken (years of experience, hours of practice per week, years of formal tuition) are not the most optimal way to measure tennis ability. An alternative could be to measure success in tournaments (such as how many times has a player reached a final of a national competition). A second consideration is that all the tennis players were recruited from the same level of competition (university level). More meaningful comparisons between sensorimotor activity during action anticipation and tennis experience may be made by contrasting players of different levels of competition (e.g. recreational players vs national level players vs international elites). Recruiting groups of different levels of expertise as according to systematic frameworks could be one possibility (Swann et al., 2015).
[bookmark: _Toc486260897]Chapter 6 – The neural basis of action anticipation in real-world skills: General discussion
[bookmark: _Toc486260898]6.1.	Summary of findings
The major aim of this thesis was to investigate the neural activity underpinning expertise-related differences in action anticipation skill. The domain focused upon here was tennis, one of many sports where players are able to quickly and accurately anticipate the actions of their opponents. Behavioural evidence shows that tennis players are able to observe and understand their opponent’s actions using kinematic cues present in their movement patterns in order to successfully anticipate the end goal/outcome of the action. (Huys et al., 2009; Rowe et al., 2009; Rowe & McKenna, 2001; Williams et al., 2009). This thesis aimed to investigate the neural basis of this skill.
	A large body of evidence suggests that the sensorimotor motor system may play a role in action understanding. Due to this proposed role, and the need for rapid action understanding to facilitate action anticipation, a series of experiments and analyses were designed to test the role of the sensorimotor system in action anticipation in tennis. 
In Chapter 2, two behavioural experiments aided in the design of a suitable test of anticipation skill in tennis, by creating a set of stimuli that were able to accurately and reliably distinguish tennis players from novices based upon their anticipation accuracy. This meant the test satisfied the criteria of the expert performance approach, which states that to be informative on the processes underlying expert performance, the tasks must clearly distinguish experts from novices (Williams & Ericsson, 2005). With a task that satisfied this criteria, it was then possible to investigate the role of the sensorimotor system in facilitating this expert advantage.
In Chapter 3, the role of the sensorimotor system in expert action anticipation was investigated using an EEG paradigm. Event-related power changes in the mu (8-13Hz) and beta (15-25Hz) frequency bands at central electrode sites were investigated, as they are both EEG indices of sensorimotor activity (Pineda, 2005). Results showed that event-related desynchronisation (ERD) was greater in both frequency bands in a group of experienced tennis players, compared to less experienced participants, in the observation period prior to making an anticipatory judgment. This difference in the EEG activity was accompanied by significantly greater anticipation accuracy in the tennis player group. This result suggests that there was greater sensorimotor activity in the experienced tennis players in the observation window prior to anticipation compared to the less experienced group, and this may facilitate their higher anticipation accuracy. 
Further evidence for greater sensorimotor engagement in tennis players was found in that only the tennis player group showed ERD in the high-mu (11-13Hz) frequency band. Other research has shown that the high-mu frequency band is related to specific, goal-directed action execution (Fumuro et al., 2015; Pfurtscheller et al., 2000). Applied to an action observation paradigm, the finding suggests that only experienced tennis players are able to activate specific representations when observing another tennis player performing a shot. 
One of the limitations of channel-based EEG analyses is that due to volume conduction, it is impossible to know the generator of the EEG activity being recorded at the scalp. This is particularly problematic when studying mu activity, as it is possible that sensorimotor mu activity, can become contaminated by non-mu alpha activity generated posteriorly, that occupies the same frequency band, but represents more general attentional demand (Hobson & Bishop, 2016; Perry & Bentin, 2009). Therefore, in Chapter 4, the data was reanalysed using ICA as a way of better separating the raw EEG data into distinct components, and estimating the effective source location of the component. Using this method, it was found that group differences only occurred in sensorimotor-located ICs, with no group differences occurring in ICs reflecting posterior alpha activity. This provides clearer evidence that activity in the sensorimotor system is key in distinguishing experienced from less experienced participants on the action anticipation task. Furthermore, similar results were found regarding high mu (11-13Hz) activity when analysing ICs, as was found when using EEG channel data.
Finally, in Chapter 5 item and individual differences in anticipation performance were investigated. These analyses showed that in experienced tennis players, subsequent correct anticipation following action observation was associated with significantly greater sensorimotor activity in the beta frequency range than trials that were incorrectly correct. Furthermore, there were significant correlations between individual sensorimotor activity and anticipation accuracy. Together these results suggest that whether a participant will anticipate correctly or not can be distinguished based off sensorimotor activity in the preceding observation period.
[bookmark: _Toc486260899]6.2.	Implications for our understanding of skilled anticipation
The findings of this thesis offers new insights into how experts are able to anticipate the actions of others. The large body of evidence from behavioural studies, reviewed in Chapter 1, show that experts are able to extract relevant cues from the kinematics of an opponent prior to a critical event e.g. in tennis, the moment the player’s racket hits the ball, and accurately anticipate in advance what the outcome of the observed action will be. The results from the EEG work presented here suggest that during the observation of an action, an expert player engages their own sensorimotor system which may help facilitate accurate anticipation. 
The situation awareness (SA) model of anticipation (Endsley, 1995, 2000) provides a good framework in which to view these results. This model describes three stages in situation understanding. Level 1 is the perception of all relevant cues in the environment. Level 2 is the comprehension of these cues, and level 3 is the projection of future states e.g. anticipation. The sensorimotor system most likely supports the transition from level 2 to level 3 SA, by aiding in the comprehension of the observed action making it possible to predict the future state i.e. anticipate the action outcome. 
Some evidence that skilled players engaged action-specific representations during the observation phase is that there was ERD present in the high-mu (11-13Hz) band, and that this did not occur in the less experienced group. Action execution studies have shown that high mu ERD occurs only during specific, goal-directed actions, with different activity patterns occurring for different types of actions (Fumuro et al., 2015; Pfurtscheller et al., 2000). This is the first work to investigate low mu and high mu separately in an action observation paradigm, and is also the first work to show expertise-related differences in these two sub-bands, with participants with experience in the actions being observed showing ERD in both bands, whilst less experienced participants not showing differences from baseline. These results suggest then that during the observation of an action prior to anticipation, experienced players activate action specific representations that are used to understand the intention of the opposing player, and as such is a potential mechanism to facilitate anticipation. Interestingly however, when correct and incorrect trials were compared, differences were only found in the beta band, with no differences in mu activity. This suggests that sensorimotor activity in the beta band may be the best at discriminating between successful and unsuccessful anticipation.
This finding lends some support to cognitive models of anticipation such as the interactive encoding model (Dittrich, 1999), which states that experts are able to integrate low-level perceptual cues in the environment with higher order representations of past situations stored as templates that can then be used for situation understanding and anticipation. Results of behavioural studies show that athletes are able to extract low-level perceptual cues from their opponent’s kinematics. The results of this thesis suggest that during the observation period, experienced players access to specific representations to help aid in the understanding of the observed action. This process is analogous to template matching process described in the interactive encoding model. It should be noted however that some accounts of action understanding argue that the use of prior information is important in making an initial judgement as to action intention. In athletes, this prior could be based on situational probabilities and contextual information, which may in turn by facilitated by the use of long-term working memory structures (Ericsson & Kintsch, 1995; Williams, Ford, Eccles, & Ward, 2011). In this thesis, the use of kinematic cues was the mechanism of anticipation focused on, and future work should look to assess the interactions between kinematic cue usage, and situational probability/contextual information. This is discussed more in section 5.4.3. 
Theories of action understanding are still unclear on the exact role of the sensorimotor system. Whilst the findings do fit with an hMNS account of action understanding, such a conclusion is unwarranted on the basis of a lack of an action execution condition in any of the experiments performed (Bowman et al., 2017). Whilst it has been shown the sensorimotor system is engaged during action observation, without a comparison action execution condition it is not possible to say that there was any neural ‘mirroring’ occurring in the observation period. The results that mu ERD did differentiate between experienced and less experienced participants (Chapters 3 & 4) but did not differ between correct and incorrect anticipations (Chapter 5) may be due to the fact that mu ERD reflects the strength of associations between sensory and motor associations, as proposed by the associative hypothesis (Heyes, 2010b). This theory suggests that motor activity during action observation does not aid in action understanding, which could explain why the mu ERD did not differ between trials where the participant understood the observed action (as indexed by the fact that they anticipated correctly), and trials where the participant did not understand the action.
One of the reasons for using EEG as the methodology to assess sensorimotor activity rather than fMRI, as has been used in the action anticipation literature to date, is the precise temporal resolution that EEG offers. If the sensorimotor system is involved in facilitating anticipation, it needs to be engaged early enough in the action sequence in order to aid in predicting overall action outcome. fMRI is not able to show exactly when neural activity occurs. Previous EEG studies of expertise-related sensorimotor activity typically have used long action observation periods without an anticipation requirement. Therefore, the particularly short time window for observation, and the focus on anticipation represents a novel aspect of this work. It was shown that sensorimotor engagement occurred earlier in the experienced group, with group differences emerging between 100-500ms after the start of the action. This 400ms range represents a relatively large time period in EEG. It is possible this is due to individual variability in the onset of motor system activity. In the experienced group, it also appears that mu ERD gets greater as the action develops, with the greatest amount of ERD at the end of the epoch. Whilst more research needs to be conducted to better understand what this indicates, it could reflect the accumulation of incoming kinematic information that is needed to gain an understanding of the forthcoming action. The fact this increasing ERD throughout the epoch appears far greater in the experienced group lends some support to this idea, but designs more specifically targeting this question will need to be conducted to understand this fully. 
[bookmark: _Toc486260900]6.3.	Application to sports performance
As anticipation skill is a key component of expert performance in many sports, there have been some efforts to train anticipation skill, with the aim of improving accuracy and decision-making time. A common methodology in training anticipation skill has been in providing feedback during the training period as to the relevant kinematic cues to be focused on by participants (Williams, Ward, & Chapman, 2003). Studies in field hockey (Williams et al., 2003), and tennis (Smeeton, Williams, Hodges, & Ward, 2005; Williams, Ward, Knowles, & Smeeton, 2002) have shown that explicit training on the recognition of specific cues and how they relate to outcome have been shown to improve decision-making time. 
Studies also assessed the effectiveness of guided discovery, whereby participants are directed to the correct cues, but are not given explicit instructions on how they relate to shot outcome. Guided discovery training shows similar outcomes to explicit training (Williams et al., 2002), but improved decision making time in a match situation where the player is feeling anxious (Smeeton et al., 2005). In a study using implicit training, where participants were asked to anticipate serve speed without any explicit instructions, there was improved anticipation accuracy compared to explicit training (Farrow & Abernethy, 2002). However, any improvements were lost 32 days later, likely due to the participants failing to keep up with training. 
This thesis suggests that activity in the sensorimotor system is important in facilitating anticipation skill, and as such any paradigm designed for training anticipation skill should look to improve the engagement of this system during action observation. This may be achieved by improving the accuracy of the kinematic model generated whilst observing the action. Another possibility is that it may strengthen sensory and motor connections. In their study of implicit training methods, the authors suggest their method encouraged participants to closely monitor the kinematics of the serve, and that implicitly the participants would learn the kinematic relationships (Farrow & Abernethy, 2002). It is possible that this sort of learning paradigm encouraged participants to comprehend the various information sources, as opposed to merely identifying them, hence the (temporary) improvement in anticipation accuracy. 
Another consideration is whether it is possible to use EEG data to find specific biomarkers of expert performance that can be used in the selection of emerging talent, and also as a way of identifying weaknesses in an individual player’s performance, right up to the highest levels of the sport (Cheron, 2015; Cheron et al., 2016). The results of this thesis suggest that players who are better at anticipating an opponent show greater activity in the sensorimotor system. Whether or not this is an accurate or useful biomarker of expert performance should be further addressed in future research. An initial step could be to employ multivariate pattern analysis (MVPA) methods to EEG data in order to ‘decode’ the information present in the EEG (King & Dehaene, 2014). 
Such an approach could be used in two ways to investigate the precision of sensorimotor measures as an EEG biomarker of sports performance. First, it could be used to investigate whether sensorimotor activity during action observation preceding anticipation can be used to predict whether an athlete will correctly anticipate on that trial. In other words, an MVPA approach could show whether there is enough information contained in mu and beta oscillations prior to making an anticipation to predict whether the player will subsequently anticipate correctly. Based on the results of Chapter 5, it would be expected that beta activity may be a better predictor of correct anticipation than mu.
A second approach would be to see how useful recording sensorimotor activity during action anticipation is in identifying group membership. The work of this thesis has shown clear group differences do exist in sensorimotor function during this period. The usefulness of taking an MVPA approach would be in investigating whether it is possible to classify a player as an expert or a novice solely on information contained in the participant’s EEG activity during an action anticipation study.
[bookmark: _Toc486260901]6.4.	Limitations and future directions
[bookmark: _Toc486260902]6.4.1.	Issues associated with test development and experimental stimuli
As outlined in section 2.7, there were limitations in the design of the anticipation test that should be considered when interpreting the work of this thesis. Throughout all experiments, there was a higher percentage of males compared to females in the experienced group, and vice versa in the unexperienced group. This leads to the possibility that group differences may have reflected gender differences rather than expertise differences. However, in all of the experiments performed, there were no significant gender differences with regards to anticipation accuracy. This makes it likely that accuracy differences were due to genuine differences in participant expertise. 
	Similarly, throughout the thesis one of the players was significantly harder to anticipate than the other, regardless of participant expertise. One possibility raised in section 2.7 was the idea that the two players interpreted the instructions differently, leading to the easier to anticipate player playing intentionally easy to read shots, with the harder to anticipate player playing deceptive shots. Whilst this may be due to fundamental differences in the observed kinematics of the two players being observed, further research is needed on differences in sensorimotor processing during action observation that contains large variation in the kinematic material being observed. 
	Such studies would be interesting in further understanding the specificity of sensorimotor oscillations during action observation, which have been called into question by some researchers (Coll, Press, Hobson, Catmur, & Bird, 2017). For example, fairly common individual differences such as body mass index (BMI) have been shown to lead to variations in the kinematics of tennis actions (Wong et al., 2014). A study in which participants observe and anticipate actions made by a large variety of individuals (with measurable kinematic differences) would elucidate the specificity of sensorimotor oscillations in the observation of different individuals.
	Given the limitations of the stimuli used in the thesis, the following recommendations are made regarding future investigations. Firstly, gender should be more carefully controlled between groups. Two possible strategies could be used here. Either there should be an even split between males and females in all of the experimental groups. In this situation, it may be advisable to present an equal number of male and female models so as account for any (likely small) kinematic differences between males and females when performing sporting actions (Fleisig et al., 2003). Alternatively, all participants should be of the same gender, and should match the gender of the player(s) whose actions they are anticipating. 
	Second, close attention should be paid to the precise instructions given to the models during the filming of stimuli. In order to reduce differences in the interpretation of instructions, one approach would be to not instruct players to hit the ball to any particular region and then during later shot selection choose only those that naturally went either left or right. Finally, and in relation to shot selection, future studies should employ multiple raters when assigning shot direction.
[bookmark: _Toc486260903]6.4.2.	Motor response preparation during the action observation period
It is possible that sensorimotor activity seen during the action observation period was due to the preparation of a motor response to the upcoming button press, rather than being directly related to the stimuli. Whilst both of the groups had to prepare for a motor response, the experienced group were likely more certain of their response so may have started to make this response earlier than the unexperienced group. However, a number of other studies have directly contrasted sensorimotor activity during action anticipation (an observation period followed by a button press) and a passive observation (the observation period without any subsequent motor response). If expert-novice differences in action anticipation were solely down to differences in motor preparation responses, no expertise differences would be found in an identical condition that was lacking the motor preparation component. Multiple studies however have found the same pattern of results across the two tasks (Balser, Lorey, Pilgramm, Stark, et al., 2014; Bishop et al., 2013; Wright et al., 2010, 2011; Wright & Jackson, 2007).
The active anticipation task employed here had the advantage that it was possible to gain a performance marker of the degree to which participants gain an understanding of the actions being observed. As such it was possible to show a behavioural difference between groups of differing expertise in terms of how well they were able to use the kinematic information presented to them to make a judgment about the player’s main intention and to relate this information to differences in neural activity. This would not have been possible in a passive observation paradigm, as that approach does not index the degree of action understanding in participants at the behavioural level. Nevertheless, the lack of a passive observation condition to assess the possible contribution of motor response preparation contamination is a limitation of the work presented here and should be considered when interpreting the results.
	With these considerations in mind, future research into action anticipation should consider more thoroughly the possibility of motor response preparation as a confound. It is recommended that all studies should contain both an active anticipation and a passive observation condition, with the expectation that expertise differences would show up in both conditions. Another possibility could be to try and correct for the preparatory motor response artefact by ICA. Preparing a motor response is known to elicit a reliable ERP in the period preceding the action. Identifying an ICA component that resembles this activity may be possible, and removing that component from subsequent analysis may make it possible to correct for the artefact, in a way that eye blink components are commonly removed using ICA. In this thesis, two sensorimotor components without a clear source were identified (Figure 10). It is possible these components may reflect a different process to the sensorimotor components that showed clear activation during the observation period, with motor response preparation being one possible process. This is a purely speculatory observation. Whether it is possible to dissociate action observation from motor preparation using ICA methods is still unclear, and is an important area for future research.
[bookmark: _Toc486260904]6.4.3.	Longitudinal designs into the development of anticipation skill
This thesis has highlighted the importance of the sensorimotor system in facilitating anticipation skill in athletes. However, the design of the research was cross-sectional, and carried out on a sample of already experienced players. As such, it is not clear from this work how action anticipation skill develops in players through training. More generally, very little work has investigated sensorimotor activity during the training of a new action (Cross et al., 2006). A longitudinal study could assess both anticipation performance and sensorimotor activity at multiple points throughout an athlete’s development. 
Such a study could directly test a hypothesis central to theoretical accounts of hMNS theories of action understanding, which is that individuals employ their own motor skills and representations to understand the actions of others. In this thesis, it has been shown that sensorimotor activity is greater in participants with more motor expertise in the actions being observed, however there was no assessment of each individual player’s proficiency at executing the types of actions (tennis groundstrokes) they were observing. In a longitudinal design an athlete’s ability to execute an action, and anticipate the same actions, could be assessed at multiple points of development. Based on the hMNS account of action understanding, it would be predicted that as the ability to execute actions increases, so too will anticipation ability of the same actions. This improvement would be accompanied by increased hMNS activity, possibly reflected in increased high-mu ERD.   
This can be studied alongside the long-term effectiveness of anticipation training, and whether such training has any effects on sensorimotor activity during action observation. The results of Farrow & Abernethy’s (2002) work suggests that implicit training methods are effective in improving the accuracy of anticipatory judgments, at least over a short-term period. If this training facilitates genuine improvements in skilled anticipation, then it would be predicted that this accuracy improvement would also be related to increased sensorimotor activity during action observation post-training.
[bookmark: _Toc486260905]6.4.4.	Expertise of the experienced sample
According to the criteria set out by Swann et al (2015), the expert groups used in this thesis would be considered semi-elite, meaning their highest level of performance in the sport is below the top standard possible (Swann et al., 2015). Whilst the players recruited here were sufficiently more experienced than the novice samples to investigate expertise related differences (Williams & Ericsson, 2005), and allowed for a larger sample than if a top elite group had been targeted, whether the results would have been different if a higher performing group of players had been used is important to consider. It might be expected that the observed group differences in mu and beta ERD would be more marked, indicating an even greater reliance on the sensorimotor system during action observation, which would have been linked to a higher anticipation accuracy score. It was shown that when sensorimotor ERD was correlated with years of experience, hours played per week, and years of formal instruction that there was no association. However, this may have been due to the limited sample, and should be investigated in samples with a greater diversity of experience levels. 
A few studies using fMRI have assessed expert-novice differences that have included at least two groups of experienced players (e.g., expert and intermediate groups) have reported mixed results in terms of being able to distinguish between groups of players of differing experience levels. In one study of badminton players, significantly greater activations in the sensorimotor system were found in national/international level players compared to club/county level players (Wright et al., 2010). However, another study of badminton players by the same research team did not find any differences in brain activations between national/international level players and club/county level players, though this study was limited by having a small sample size (8 participants per group) (Wright et al., 2011). 
From the current literature, it is unclear whether differences in sensorimotor activity can be identified between groups of experienced players varying in expertise levels. As discussed above, it would be expected that as action execution ability increases, so does action anticipation ability, along with increased sensorimotor activity. If two experienced samples were used, one corresponding to a semi-elite group of university players, and another corresponding to world-class elite, the latter would be predicted to show significantly greater skill at executing domain-specific actions. They would also likely have observed more tennis actions, and as such expected to be more accurate at anticipating. The mixed findings regarding whether an expert group shows greater sensorimotor activity than an intermediate group could be due to the small sample sizes employed in studies show far. It could also reflect a ceiling effect in terms of sensorimotor activation, where increasing activity only occurs up until a certain level of action expertise. Future studies should aim to employ multiple groups of experienced players of differing expertise levels with larger sample sizes, to address this question. Again, longitudinal designs could be useful to chart the degree of sensorimotor activity (indexed by mu ERD) across the development of a player.  
[bookmark: _Toc486260906]6.4.5.	The effect of task-related changes on neural activity during action anticipation
The temporal occlusion paradigm used here to assess anticipation accuracy was a simple two-choice forced reaction time task, where participants were required to anticipate ball direction as either left or right. As already mentioned in Chapter 3, future studies employing a more complex research design will further untangle the individual roles of mu and beta ERD during action observation i.e. through increasing the number of response options available to participants to better distinguish mu from beta activity (see Chapter 3 for details). 
The aim of this work was specifically to investigate the role of kinematic cues in successful anticipation. In the experiments performed, each trial consisted of a shot taken from an individual ball feed. The importance of this is that each trial wasn’t part of a sequential sequence, meaning that participants could not take advantage of situational probabilities and expectations when anticipating. It is known that expert athletes show better anticipation performance when trials are presented in a sequential order, when the preceding trial provides expectancy cues as to the outcome of the following one (see section 1.6.3.). 
Furthermore, prior knowledge regarding action outcome is a crucial step of the predictive coding account of the hMNS, and it has been suggested that this prior is generated independently of the hMNS in the middle temporal gyrus and anterior IFG (Kilner, 2011). Future studies should try to take into account both the use of kinematic cues and prior expectations by having two conditions. One where trials are presented in a natural sequential order, and experts are able to use this expectancy information to anticipate, alongside kinematic cues. The second condition would present trials in a random order, thereby removing the ability to rely on expectations. Such a design would be more ecologically valid; as multiple different anticipation strategies will interact (Roca & Williams, 2016). Second, it would allow for a better understanding of the relationship between brain areas related to the formation of a prior regarding action outcome, and kinematic cue understanding facilitated by the sensorimotor system.
[bookmark: _Toc486260907]6.4.6.	Action anticipation in a dynamic environment
One challenge facing cognitive neuroscience, and in particular cognitive neuroscience relevant to sports, is how easily work from a laboratory environment can be translated into the real-world (Makris, 2014; Walsh, 2014). Due to limitations regarding movement artefacts in most neuroimaging and EEG techniques, experiments need to be conducted in a static environment in order to achieve adequately clean data. However, this is notably not the environment in which athletes anticipate in real-life match situations. Specifically related to the work conducted here, it should be noted that whilst the sensorimotor system was examined during action observation, there was no action execution condition. It may be that the neural activity during action observation would differ if subsequent action execution is required to respond to the action (Mann, Dicks, Cañal-Bruland, & van der Kamp, 2013). 
Whilst it should be acknowledged that studying action observation and anticipation in a static setting may be a limitation in applying the results to more real-world tasks, a couple of points should be noted. Firstly, as discussed in Chapter 2, video-based anticipation tasks have been shown to clearly separate expert and novice performance, and results are generally compatible with findings from in-situ anticipation tests. Secondly, fMRI work has attempted to change the task requirements to get closer to a design involving both action observation and execution (Balser, Lorey, Pilgramm, Stark, et al., 2014). This study showed that sensorimotor activity in expert tennis players was similar both when participants were asked to anticipate the outcome of an action e.g. shot direction, and then asked to anticipate the most appropriate action to make in response e.g. forehand or backhand stroke.  
Finally, one of the advantages of EEG as a methodology to study brain function is that there is great potential to use EEG in a mobile, dynamic environment (Park et al., 2015). Recently, the development of mobile brain/body imaging (MoBI) devices allow for the simultaneous recording of EEG and motion capture, and it has been shown that typically EEG analysis methods e.g. time/frequency analysis and ERPs can be successfully performed using data collected in a mobile environment (Gramann et al., 2014; Makeig, 2009). Comparisons of EEG data collected in a mobile environment to similar data recorded in a traditional experimental set-up suggests that many results obtained in a laboratory environment are replicated in a mobile setting (Gramann et al., 2014). However, it has been shown that new sources of activity discovered in the mobile recording does have an impact on the nature of the activity in the EEG sources that are active in both experimental designs (Gramann et al., 2010, 2014). Whilst these techniques are still in their infancy, there is great potential for future research on the neural basis of skilled anticipation to be conducted in a real-world environment. With regards to this, the current thesis provides important groundwork upon which such a study could develop hypotheses regarding neural activity ongoing during action observation and anticipation.
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[bookmark: _Toc486260909]Appendix A1 – Questionnaire used to assess level of tennis experience
Sports experience questionnaire
These questions will assess your experience with competing in and watching sports. Please try to answer the questions as accurately as possible. 
	Q1
	Are you?

	
	Female
	
	Male

	Q2
	What is your age?

	

	Q3
	What is your highest educational attainment? (e.g. A-level, Bachelor, Masters etc)
	

	
These questions refer to your tennis playing experience. If you have NEVER played tennis, please go to Q16.


	Q4
	What was your age when you first started playing tennis?
	

	Q5
	Have you been playing regularly (i.e. approximately every week) since?
	
	Yes
	
	No

	If YES go to Q7, if NO go to Q6

	Q6
	How many years did you play regular tennis for?

	

	Q7
	In the years you’ve played regularly, approximately how many hours do (did) you play tennis per week?
	

	Q8
	Have you ever received formal instruction?

	
	Yes
	
	No

	If YES go to Q9, if NO go to Q11

	Q9
	How many years have you received / did you receive formal instruction?
	

	Q10
	In the years you received formal instruction, approximately how many hours coaching did you receive per week?
	
	Yes
	
	No

	Q11
	Have you given instruction to other players?

	
	Yes
	
	No

	Q12
	Have you ever played in competitive competitions?
	
	Yes
	
	No


	If YES go to Q13, if NO go to Q14

	Q13
	What is the highest level of competition you have ever competed in? e.g. inter-school, club, county, university
	

	Q14
	Do you currently hold an LTA rating? If so, specify
	


	Q15
	Which hand do you play tennis with?

	
	Left
	
	Right









[bookmark: _Toc486260910]Appendix A2 – Questionnaire used to assess participant handedness
Handedness questionnaire
For each of the activities below, please indicate which hand you prefer for that activity, and do you ever use the other hand for the activity.

Which hand do you prefer to use when:

	
	Left
	No preference
	Right
	Do you ever use the other hand?

	Writing
	
	
	
	

	Drawing
	
	
	
	

	Throwing
	
	
	
	

	Using scissors
	
	
	
	

	Using a toothbrush
	
	
	
	

	Using a knife (without a fork)
	
	
	
	

	Using a spoon
	
	
	
	

	Using a broom (upper hand)
	
	
	
	

	Striking a match
	
	
	
	

	Opening a box (holding the lid)
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[bookmark: _Toc486260911]Appendix B1 -  Individual participant ERSP plots for electrode D19
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[bookmark: _Toc463276039][bookmark: _Toc488400772][bookmark: OLE_LINK25]Figure 23. Individual ERSP plots (4-50Hz) for each participant in the experienced group at electrode D19.
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[bookmark: _Toc463276040][bookmark: _Toc488400773]Figure 24. Individual ERSP plots (4-50Hz) for each participant in the unexperienced  group at electrode D19.
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[bookmark: _Toc463276226][bookmark: _Toc486260912]Appendix B2 -  Individual participant ERSP plots for electrode B22 
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[bookmark: _Toc463276041][bookmark: _Toc488400774][bookmark: OLE_LINK20][bookmark: OLE_LINK21][bookmark: OLE_LINK24]Figure 25. Individual ERSP plots (4-50Hz) for each participant in the experienced group at electrode B22.
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[bookmark: _Toc463276042][bookmark: _Toc488400775]Figure 26. Individual ERSP plots (4-50Hz) for each participant in the experienced group at electrode B22.

[bookmark: _Toc463276227][bookmark: _Toc486260913][bookmark: OLE_LINK16][bookmark: OLE_LINK17]Appendix C1 – Individual participant ERSP plots for the left sensorimotor cluster
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[bookmark: _Toc463276043][bookmark: OLE_LINK14][bookmark: OLE_LINK15][bookmark: OLE_LINK19]
[bookmark: _Toc488400776]Figure 27. Individual ERSP plots (4-50Hz) for each participant in the experienced group within the left sensorimotor component cluster.  
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[bookmark: _Toc463276044][bookmark: _Toc488400777]Figure 28. Individual ERSP plots (4-50Hz) for each participant in the unexperienced group within the left sensorimotor component cluster.  

[bookmark: _Toc463276230][bookmark: _Toc486260914]Appendix C2 – Individual participant ERSP plots for the right sensorimotor cluster
[bookmark: _Toc463276231][image: Appendix/Right%20mu%20cluster%20-%20experienced.png]
[bookmark: _Toc463276045][bookmark: _Toc488400778][bookmark: OLE_LINK26][bookmark: OLE_LINK27]Figure 29. Individual ERSP plots (4-50Hz) for each participant in the experienced group within the right sensorimotor component cluster. 
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[bookmark: _Toc463276046][bookmark: _Toc488400779][bookmark: OLE_LINK28][bookmark: OLE_LINK29][bookmark: _Toc463276232][bookmark: OLE_LINK30][bookmark: OLE_LINK31]Figure 30. Individual ERSP plots (4-50Hz) for each participant in the experienced group within the right sensorimotor component cluster. 
[bookmark: _Toc486260915]Appendix C3 – Individual participant scalp maps for the left sensorimotor cluster[image: Appendix/Left%20mu_scalp.png]
[bookmark: _Toc463276047][bookmark: _Toc488400780]Figure 31. Individual participant scalp maps for the left sensorimotor cluster 







[bookmark: _Toc463276233][bookmark: _Toc486260916]Appendix C4 – Individual participant scalp maps for the right sensorimotor cluster
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[bookmark: _Toc463276048][bookmark: _Toc488400781]Figure 32. Individual participant scalp maps for the right sensorimotor cluster 
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