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Abstract 

Objectives: The objectives of this study were to develop model dental 

composites incorporating fluorapatite (FA) as secondary filler and to 

characterise their physical and mechanical properties and fluoride ion 

release. 

Methods: Experimental composites were formulated containing 

BisGMA/TEGDMA/BisEMA and barium aluminium silicate glass as the 

primary filler. FA rod-like crystals and bundles were synthesised using a 

hydrothermal method and incorporated at 0 (0FA), 10 (10FA), 20 (20FA), 

30 (30FA) and 40% (40FA) by mass into the previously identified optimum 

experimental composite, maintaining an overall filler content of 80%wt. 0FA 

and TetricEvoCeram (TC) were used for comparison as the experimental 

and the commercial controls, respectively. Two-body wear, Vickers 

Hardness (HV), Degree of Conversion (DC), Flexural strength (FS), 

Flexural modulus (FM), Fracture Toughness (K1C) and fluoride ion release 

were measured for each composition. Quantitative analysis of wear volume 

was carried out using a noncontact profilometer. Qualitative imaging of 

wear and fracture surfaces was undertaken using Scanning Electron 

Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). 

Statistical analysis was conducted using SPSS version 21. 

Results: All experimental composites showed similar wear resistance 

(p > 0.05) and enhanced microhardness compared to TC (p < 0.05). DC for 

all composites ranged between 56-60% at 20s polymerisation (p > 0.05). 

FA composites showed higher FM (p < 0.05) and similar FS (p > 0.05) to 

TC but lower FM and FS when compared to 0FA. 30FA and 40FA showed 

similar K1C to TC and 0FA (p > 0.05), whereas 10FA and 20FA showed 

lower K1C when compared to the other groups (p < 0.05). Under neutral pH, 

no fluoride release was detected from FA containing composites. However, 

under acidic conditions (pH 4), FA containing composites released fluoride 

when compared to the controls (p < 0.05), the amount of which was 

proportional to the amount of FA incorporated within the samples, i.e.  

40FA> 30FA > 20FA > 10FA (p < 0.05).  

Conclusions: Experimental dental composites were successfully produced 

incorporating FA as secondary filler. The addition of FA did not affect the 

key physical and mechanical properties when compared to the commercial 

control. FA composites showed short and long term fluoride release under 

acidic conditions showing a promising step towards a potential “smart” 

fluoride releasing dental composite. 
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Chapter 1: Introduction 

1.1 General introduction 

Resin composites have acquired a prominent place amongst direct 

restorative materials as a posterior restorative exceeding amalgam use in 

several countries (Burke, 2004, Mitchell et al., 2007, Vidnes-Kopperud et 

al., 2009, Burke et al., 2017). Around 800 million composite resin 

restorations were placed worldwide in 2015; ~80% were placed in the 

posterior region and 20% in the anterior region (Jäggi F, 2015). In the UK, 

resin composite is used in ~48% of cases when restoring Class II cavities 

in permanent molars and ~66% in premolars. The popularity of resin 

composites is driven by their superior aesthetic properties and conservative 

nature, in addition to their reasonable clinical performance (Beazoglou et 

al., 2007, Lynch et al., 2007, Lynch et al., 2011). More recently the 

introduction of the Minimata convention and the calls for a phase down in 

the use of mercury containing products has placed composite as the most 

suitable alternative to amalgam as a direct restorative material (Lynch and 

Wilson, 2013a). Current composite formulations exhibit enhanced 

mechanical and physical properties allowing them to be used as a posterior 

restorative (Manhart et al., 2009, Da Rosa Rodolpho et al., 2011, Demarco 

et al., 2012a, Opdam et al., 2014, da Veiga et al., 2016). However, the 

average life span of composite restorations remains just under 10 years 

after which clinical intervention may be required (Ástvaldsdóttir et al., 2015). 

Recurrent caries and restoration fracture remain as the primary reasons of 

clinical failures of composite restorations (Bernardo et al., 2007, Soncini et 

al., 2007, Sunnegardh-Gronberg et al., 2009, Demarco et al., 2012a, Beck 

et al., 2015a). Recent systematic reviews reported that restoration fracture 

is the most common reason of failure when composite resin is used as a 

posterior restorative (Opdam et al., 2014, Ástvaldsdóttir et al., 2015, 

Heintze et al., 2015). Therefore, concerns still exist when composite is used 

in high load bearing areas, especially in patients with parafunctional habits 

(van de Sande et al., 2013). Recurrent caries remains as a primary issue 

leading to restoration failure due to the lack of effective antimicrobial 
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properties in current composite formulations (Wiegand et al., 2007, Cury et 

al., 2016). Therefore, it is essential to develop new innovative composite 

formulations with novel chemistries to further enhance their physical and 

mechanical properties and more importantly exhibit effective bioactive 

properties against recurrent caries. The idea of a “smart” resin composite 

that reacts with its surrounding environment remains the focus of many 

researchers in the field of resin composites. 

1.2 Composition of resin based composites 

Fundamentally, dental composite consists of an inorganic filler, organic 

matrix and coupling agent. The incorporation of fillers is the main strategy 

used to enhance the poor mechanical and physical properties of the unfilled 

resin. Therefore the ratio of resin/filler content directly affects the material’s 

properties. Increasing the filler content results in enhanced wear resistance, 

strength and reduced shrinkage properties (Kim et al., 2002, Turssi et al., 

2005, Randolph et al., 2016). A surface coupling agent is required to 

enhance the bond between the filler and the resin matrix and an initiator is 

also required to initiate the polymerisation process when an external energy 

source is applied. To prolong the monomer shelf life and improve its 

ambient light stability, an inhibitor may also be added. Furthermore, 

pigments may also be incorporated to improve the optical properties and 

shade match of resin composites. 

1.2.1 Resin matrix 

Resin composites are typically prepared from a compound of bisphenol A 

and two molecules of glycidyl methacrylate called 2,2-bis[4(2-hydroxy-3 

methacryloyloxy-propyloxy)-phenyl] propane (BisGMA), (Bowen RL, 1962), 

Figure 1. BisGMA is the first resin that was successfully incorporated into 

resin based composites and remains the primary resin used in 

contemporary dental composites to date. It is a relatively large methacrylate 

molecule which has two aromatic rings and hydroxyl groups that contribute 

to its weight and stiffness. Consequently, it is a very viscous material which 

has low reactivity and degree of conversion (Pfeifer et al., 2009b). 
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Furthermore, the viscosity of the material compromises the composite 

handling properties and makes more difficult the incorporation of enough 

reinforcing filler for sufficient physical and mechanical properties to be 

achieved. Therefore, di-functional monomers with low molecular weight and 

reduced viscosity are usually added and act as diluents for the resin matrix 

(Silikas and Watts, 1999). 

 

Figure 1: The chemical structure of the base monomer Bisphenol A 

glycidyl methacrylate (BisGMA) 

The use of diluting monomers facilitates the incorporation of large amounts 

of filler particles to improve the mechanical properties of the material. In 

addition, these monomers contain reactive (C=C) bonds at each end which 

can undergo addition polymerisation and therefore increased reactivity and 

degree of conversion. Various diluting monomers are available such as 

TEGDMA, UDMA and BisEMA. The commonly used diluent 

triethyleneglycol dimethacrylate (TEGDMA) has a reduced viscosity due to 

its low molecular weight, Figure 2, which also aids in increased reactivity 

and degree of conversion. However the presence of ether groups (C-O-C) 

and the lack of aromatic rings along its structure reduce its mechanical 

properties in comparison to BisGMA. Furthermore, the increased reactivity 

and conversion results in increased polymerization shrinkage which is a 

highly undesirable property (Asmussen, 1982, Braga et al., 2005). Another 

disadvantage is the reduced hydrophobicity of TEGDMA which results in 

increased susceptibility to staining and leaching of the monomer in the oral 

environment (Sideridou and Achilias, 2005). 
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Figure 2: The chemical structure of Triethyleneglycol dimethacrylate 

(TEGDMA) 

Other methacrylate-based monomers such as urethane dimethacrylate 

(UDMA) may also be used to either completely substitute for BisGMA or be 

used in combination with BisGMA. UDMA contains a urethane group which 

provide greater functionality to the monomer, Figure 3. This functionality 

adds toughness and flexibility to the monomer back bone. Although the 

molecular weight of UDMA is similar to BisGMA, the lack of aromatic rings 

results in reduced viscosity and consequently enhanced conversion and 

handling properties. 

 

Figure 3: The chemical structure of urethane dimethacrylate (UDMA) 

Another monomer system which can be used as either a base monomer or 

a diluting monomer is ethoxylated bisphenol A dimethacrylate (BisEMA). 

BisEMA structure is similar to BisGMA as it has a stiff central phenyl ring 

core but differs from BisGMA due to the absence of the pendant hydroxyl 

groups which are mainly responsible of the increased viscosity of BisGMA, 

Figure 4. Therefore, BisEMA maintain a high molecular weight (496 g/mol) 

comparable to BisGMA but it has a significantly lower viscosity (Cook, 1992, 

Sankarapandian et al., 1997) which significantly improves the handling 

properties. 
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Figure 4: The chemical structure of ethoxylated bisphenol A 

dimethacrylate (BisEMA) 

1.2.2 The filler content 

The fillers are the inorganic component of resin composites which are 

incorporated to enhance the mechanical properties and reduce 

polymerisation shrinkage of resin composites. It was recognised that the 

size and the amount of filler content are critical in determining the materials’ 

mechanical and physical properties. Generally increasing the filler content 

results in increased wear resistance, surface microhardness and strength 

and reduced polymerisation shrinkage of resin based composites (Jun et 

al., 2013a, Shah and Stansbury, 2014, Randolph et al., 2016). It was 

identified that a filler content of 60%vol is necessary to achieve the 

aforementioned properties (Lohbauer et al., 2006, Randolph et al., 2016). 

Therefore researchers continued to focus on refining the filler particles to 

produce materials with enhanced mechanical and physical properties. 

However, the relatively small filler particle size limits the amount of filler 

volume fraction that can be incorporated. Therefore pre-polymerised fillers 

(PPF) were introduced which are larger in size to improve the filler volume 

fraction. PPFs are processed using ground cured composite containing a 

variety of submicron particles. The addition of PPFs also aids in reducing 

the polymerisation shrinkage and provides improved polishability when 

compared to conventionally filled resin composites (Senawongse and 

Pongprueksa, 2007, Ferracane et al., 2014). However, PPF lack the active 

binding sites for surface coupling which results in reduced bonding to the 

resin matrix and consequently compromised mechanical properties (Kim et 

al., 2002, Ilie et al., 2013b, Randolph et al., 2016). The type of filler particle 

is also crucial in determining the materials’ optical and physical properties. 
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Initially quartz filler particles were used as they provide excellent optical 

match to the resin matrix. However, it has several drawbacks such as 

abrasiveness to the opposing enamel, reduced polishability and radiopacity 

which limits its aesthetic properties. Therefore amorphous silica (i.e. glass) 

particles were developed to address these issues and most modern 

composites currently contain radiopaque silicate particles based on barium, 

strontium, zinc, aluminium, or zirconium. The filler morphology also affects 

the filler loading rate which consequently affects the materials’ physical and 

mechanical properties (Kim et al., 2002, Leprince et al., 2010, Ilie et al., 

2013b, Jun et al., 2013a, Randolph et al., 2016). Most modern materials 

contain fillers with various morphologies including spherical and irregularly 

shaped particles and pre-polymerised fillers (Randolph et al., 2016). It was 

shown that composites containing pre-polymerised fillers had the lowest 

filler content whereas composites incorporated with round filler particles 

had the highest filler content (Kim et al., 2002). 

1.2.3  Photoinitators 

The photo-polymerisation process involves the use of an external light 

source to produce free radicals to start the polymerisation process; this 

allows command set of the material once the light is applied. Therefore, the 

use of photo-polymerisation rather than chemical curing allows greater 

flexibility in controlling the clinical working time. The most common 

photoinitiator system used in dentistry consists of two components; 

photoinitiator and co-initiator. Camphorquinone (CQ) is the most widely 

used photoinitiator in resin composites. It absorbs visible blue light in the 

wavelength range of 400-500nm (λmax = 470 nm). The co-initiator is 

conventionally a tertiary aliphatic amine reducing agent, which reacts with 

CQ in its excited state to generate free radicals. Dimethylaminoethyl 

dimethacrylate (DMAEMA) is the most commonly used reducing agent in 

resin composites. Appropriate photoinitiator chemistry is essential for 

optimum polymerisation and hence satisfactory physical and mechanical 

properties (Ogunyinka et al., 2007). Optimising the correlation between the 

photoinitiator and co-initiator type and concentration allows maximum 

photon absorbance and consequently increased depth of cure (Chen et al., 
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2007, Dos Santos et al., 2008). However, the concentration of the 

photoinitiator system should be limited to achieve optimum polymerisation 

and monomer conversion while limiting the amounts of unreacted 

photoinitiator and monomers that may cause cytotoxicity (Pagoria et al., 

2005). Furthermore, increasing the concentration of CQ beyond a certain 

level affects the aesthetics properties of resin composites due to the yellow 

nature of CQ, in which any unreacted molecules would turn back to their 

original state causing polymer discolouration (Ogunyinka et al., 2007). More 

recently, alternative photoinitiators were introduced such as phenyl 

proanedione (PPD), Benzil (BZ) and Norrish Type I photoinitiator systems 

such as mono- (Lucirin TPO) and bi-(Irgacure 819) acylphosphine oxides 

(Neumann et al., 2005, Neumann et al., 2006, Ogunyinka et al., 2007). Most 

of these materials are not pigmented and therefore are used in bleached 

shades of resin composites, Figure 5. They can be used as a standalone 

photoinitiator or in combination with CQ which may provide improved 

polymerisation kinetics, mechanical properties and aesthetics (Weinmann 

et al., 2005, Neumann et al., 2006). However, a crucial difference to CQ is 

the different absorbance characteristics of these photoinitiators which are 

mostly in the range of 370-393 λmax (nm), Table 1. Therefore most of the 

new photoinitiators require light curing units that could emit light at wide 

range of spectral emission; halogen lights (380-550 nm) would be a suitable 

option in this case however their use in dentistry is almost obsolete. 

Alternative polywave lights have recently been introduced emitting light at 

two intensity maxima, one in the visible region and one covering the shorter 

wavelength region. However, polywave lights exhibit local differences in 

irradiance distribution and spectral inhomogeneity (Shortall et al., 2015), 

which in turn affect the extent and quality of curing of resin composites 

(Arikawa et al., 2008, Palin et al., 2008, Vandewalle et al., 2008, Alshaafi 

et al., 2016). Therefore the clinical acceptance of these photoinitators is still 

questionable. 
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Figure 5: The colour differences between the photoinitiators used in 

resin based composites showing CQ (left), PPD (middle) and TPO 

(right), (Bluephase LED user guide, Ivoclar Vivadent) 

Table 1: The absorption characteristics of photoinitiators used in 

resin based composites 

Photoinitiator 

Absorption 

Range (nm) λmax (nm) 

Molar extinction 

coefficient at λmax 

(L.mol-1.cm-1) 

Camphorquinone 400-550 470 ~35 

Lucirin TPO 300-430 381 ~550 

Irgacure 300-440 370 ~300 

PPD 300-480 393 ~150 

Benzil 300-460 385 ~50 

1.2.4   Inhibitors 

Inhibitors are commonly used to prevent spontaneous polymerisation and 

to increase the shelf life of resin composites. The most commonly used 

photo-inhibitor is hydroquinone or butyl hydroxytoluene (BHT). Inhibitors 

react with the free radicals and therefore reduce the rate of initiation and 

increase the rate of termination (Moad and Solomon, 1995). Consequently 

the rate of polymerisation is reduced. The conversion of monomer to 

polymer proceeds at a reduced rate until the inhibitor is fully consumed. 

Therefore, the inhibitor may also increase the “pre-gel” phase allowing 

shrinkage forces to be dissipated (Braga and Ferracane, 2002). Inhibition 

of the polymerisation process may also occur when large amount of oxygen 
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is present which may prevent optimal restoration curing and therefore 

compromised properties (Gauthier et al., 2005).  

1.3 Development and classification of resin composites 

The composition of dental composites has significantly evolved since they 

were first introduced more than 50 years ago. The development of resin 

composite materials remains heavily researched in academia and industry 

aiming to enhance their clinical longevity by addressing their perceived 

shortcomings such as mechanical strength (Ilie and Hickel, 2009a, Ilie and 

Hickel, 2009b, Jun et al., 2013a), polymerisation stress (Eick et al., 2007, 

Gonçalves et al., 2010), inadequate depth of cure (Leprince et al., 2012), 

handling (Lee et al., 2006) and aesthetic properties (Mikhail et al., 2013). 

Until recently the most important changes have been related to the filler 

type, morphology and size (Ferracane, 2011, Randolph et al., 2016). 

Researchers continued to focus on refining the filler particles. With the 

advancement of processing techniques such as jet-milling, the size of filler 

particles have decreased from tens of microns to a sub-micron level, with a 

consequent enhancement in wear resistance and polishing properties. 

Nano-fillers were also introduced to enhance the aesthetic properties of 

resin composites and have been used both as agglomerated nano-clusters 

and as discrete particles to enhance the mechanical performance (Curtis et 

al., 2009). The use of discrete nano-particles could also offer a significantly 

increased depth of cure due to their reduced refraction and scattering when 

exposed to visible blue light (Fujita et al., 2011).  More recently, “Bulk-fill” 

dental composites have been introduced and they are claimed to enable 

restoration build-up in thick increments of up to 4-6 mm. This new class 

includes flowable and higher viscosity sculptable materials. The use of bulk-

fill composites has become a popular trend amongst dentists due to their 

ease of use and reduced clinical time. The main advancement of bulk-fill 

materials in the increased depth of cure which is mostly attributed to their 

increased translucency (El-Safty et al., 2012), in addition to that, their 

reduced shrinkage stress is related to modifications in the filler content 

and/or the organic matrix. However these perceived improvements are not 

indicative of the mechanical performance of these materials. Some 
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concerns were raised regarding the low surface hardness, flexural strength 

and flexural modulus properties of bulk-fill materials when compared to 

conventional resin composites (Garoushi et al., 2013, Ilie et al., 2013a, 

Leprince et al., 2014). The classification of dental composites continued to 

evolve following the evolution of the material composition. Generally the 

classification is focused on the filler size distribution and filler content. 

“Micro-filled” and “nano-filled” composites contain only micro and 

nanofillers respectively. However most modern dental composites fall 

under the category of “hybrid” materials, and are typically marketed as 

“nano-hybrids”. This terminology refers to composites containing a portion 

of nanoparticles (<100 nm) and of sub-micron particles (≤1 µm, mostly 

averaging 0.5–1.0 µm). Nano-hybrids usually contain a larger fraction of 

nanoparticles when compared to micro-hybrids (Ferracane, 2011), Figure 

6.  

 

Figure 6: Schematic description of filler distribution of resin 

composites. Hybrid resin composites include a combination of micro 

and nanoparticles (left figure). Continuous distribution is shown (1 

and 2) with spherical (1) or irregular particles (2) and a bimodal 

distribution (3) of micro particles, (Randolph et al., 2016) 

However, this classification has been recently criticised as it does not 

completely reflect the filler composition, morphology or filler specifications 

(Randolph et al., 2016). Many commercial dental composites which are 

claimed to be “nano-hybrid” in fact have a significant proportion of large 
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filler particles (>1 µm), (Kim et al., 2002, Scougall-Vilchis et al., 2009), 

therefore it is questionable whether all nano-hybrids composites would 

have the same properties. Comparisons of the mechanical and physical 

properties of dental composites are well documented in the literature; these 

properties vary between different materials or testing centres. Resin 

composite properties are interrelated and predominantly dependent on filler 

characteristics (geometry, composition, size distribution) and filler content 

(filler mass and volume content) (Kim et al., 2002, Leprince et al., 2010, Ilie 

et al., 2013b, Jun et al., 2013a, Randolph et al., 2016). Therefore the 

current classification which is solely based on filler particle size may not be 

appropriate for accurate representation of the material’s performance. A 

recent study evaluating the mechanical properties and filler characteristics 

of a wide range of contemporary dental composites showed significant 

variations amongst modern materials (Randolph et al., 2016). However, it 

was not possible to accurately illustrate these variations using the current 

classification. Since direct correlations were found between the filler 

content and the materials’ mechanical and physical properties, a simpler 

classification based on the materials’ filler volume content was suggested 

instead. This classification is based on the filler content at two levels: 50% 

and 74%vol, the terms “Ultra low-fill”, “Low-fill” and “Compact” would apply 

to materials with filler contents lower or higher than 50% or higher than 

74vol%, respectively, schematic diagram is shown in Figure 7. 

 

Figure 7: New classification based on the inorganic filler volume 

content of composite containing nano and micron-sized particles. The 

filler content also reflecting the elastic modulus. (Randolph et al., 

2016) 
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1.4 Longevity and shortcomings of resin composites 

Based on meta-analyses on posterior resin restorations it has been shown 

that at least ~5% of such restorations will fail due to fracture of the material 

and ~12% will show noticeable wear within an observation period of 10 

years (Heintze and Rousson, 2012, Beck et al., 2015a). In other words, 

based on the data presented in Section 1.1, at least ~32 million posterior 

resin restorations placed in 2015 will be replaced or will need repair work 

due to fracture by 2025. Therefore there is an increasing demand to 

continue enhancing resin composite properties in terms of strength, fracture 

resistance and reducing the polymerization shrinkage of the material 

(Ferracane, 2011, Randolph et al., 2016). The lack of effective antimicrobial 

properties in the current composite materials places them in a compromised 

position in tackling the recurrent caries issue (Wiegand et al., 2007, Cury et 

al., 2016). Based on the recent observations, ~4.5% of posterior 

composites would fail due to recurrent caries over 10 years’ time; therefore 

around 28.8 million of the posterior restorations placed in 2015 would also 

require clinical intervention by 2025 (Beck et al., 2015b). Therefore, 

research is also focused on developing new materials that can 

resist/prevent recurrent caries development by including antibacterial 

components capable of enhancing the material’s remineralising potential 

and responsiveness to the changing oral environment (Beyth et al., 2014). 

The idea of “smart” restorative that react to the surrounding environment 

remains very attractive amongst researchers (McCabe et al., 2011, Davis 

et al., 2014, Hyun et al., 2015). Therefore, due to the continuous material 

development among researchers and manufactures, it is essential that new 

materials are subjected to various testing modalities to characterise their 

properties and compare them to already existent successful formulations 

(Ferracane, 2013a). Ideally clinical trials should be conducted to evaluate 

the performance of new dental composites, however due to their expensive 

and time consuming nature, well designed laboratory studies remain 

necessary in trying to predict the performance of new materials. 

Furthermore, it is also essential to correlate the laboratory tests to the 

clinical performance of resin composites to ensure accurate predictions of 
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clinical behaviour. Based on the main reasons of failure of resin 

composites; strong/moderate correlations were found between the 

material’s fracture toughness and clinical fractures and the flexural strength 

properties and the clinical wear (Ferracane, 2013a, Heintze et al., 2017). 

Therefore assessment of new materials should include clinically relevant 

tests to provide a better insight into the materials performance.      

1.5 Wear resistance of dental composites 

Wear of resin composites remains an important limiting property of large 

posterior composite restorations especially when used in patients with 

heavy occlusal loads and parafunctional habits (van Dijken, 2000, 

Soderholm et al., 2001). Earlier studies suggested that excessive wear of 

posterior composite restorations is caused by several factors related to filler 

composition, filler size and filler-resin matrix bonding. The new formulations 

of dental composites are composed of smaller filler particles which allow 

higher filler loading with improved mechanical properties which ultimately 

increase the survival rates. The general consensus is that the wear 

resistance of resin composite is dominated by the filler constituent which 

can be tailored by adjusting the filler volume fraction, diameter or density 

(Lim et al., 2002, Hu et al., 2003, Pick et al., 2011, Hahnel et al., 2012, 

Finlay et al., 2013). Hanel et al conducted a two-body wear test on fourteen 

dental restorative materials with variable filler size; they concluded that 

microfilled composites had lower wear compared to hybrid and macrofilled 

composites and that the highest wear was in composites containing larger 

filler particles (>1 µm)(Hahnel et al., 2011). Palaniappan et al compared the 

clinical wear performance of nanohybrid, microfilled and conventional 

hybrid composite in a 5 year clinical trial; they reported that nanohybrid 

composite showed significant lower material volume loss compared to the 

other two, which showed comparable volume loss (Palaniappan et al., 

2012). The filler-matrix bonding could also play a major role in the wear 

resistance of dental composites. The silane coupling agent forms a bond 

between the inorganic and the organic components of dental composite. It 

also protects the filler surface from fracture and hydrolytic degradation 

(Mohsen and Craig, 1995). In general the efficiency of silane coupling agent 
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is determined by the degrees of reaction of the silane with the glass fillers 

and with the polymer matrix. The oxygen bond (silicon-oxygen-silicon) that 

forms between the silane agent and the mineral filler is vulnerable to 

hydrolysis because of its significant ionic character. By contrast, the carbon-

carbon bond that forms between silane and the polymer matrix is more 

stable to hydrolytic attack (Antonucci et al., 2005). In an attempt to improve 

the quality and the durability of the filler-matrix interface, the use of more 

hydrophobic silane coupling agents was suggested. Nihei et al (2008) 

evaluated the wear resistance of resin composite materials containing fillers 

with novel hydrophobic silane coupling agent containing hydrophobic 

phenyl group (3-methoxy-4-methacryloyloxy-phenyl) and they concluded 

that composites containing the hydrophobic coupling agent showed higher 

wear resistance compared to composite materials without hydrophobic 

group in the coupling agent (3-methacryloyloxypropyl-trimethoxysilane) 

(Nihei et al., 2008). Although the wear resistance of resin composite is 

mainly dominated by the filler constituent, wear is described as a “complex 

process” and not all resin formulations behave similarly (Finlay et al., 2013, 

Altaie et al., 2017). The complexity of the wear process is attributed to the 

four fundamental wear mechanisms (abrasion, adhesion, fatigue or 

corrosion) involved in the wear process (Mair et al., 1996).  A combination 

of wear mechanisms is mostly involved during the wear process of resin 

composites. However, a predominant wear process is usually present 

which is determined by the resin composite chemical composition (Altaie, 

2012). Recent findings showed that certain commercial composite 

formulations presented exacerbated wear due to the presence of 

secondary adhesive wear mechanisms resulting from material transfer from 

the composite to the opposing antagonist (Altaie et al., 2017). Therefore 

due to the increase of use of resin composites as a posterior restorative 

and the different wear behaviour of recent composite formulations it was 

concluded that ‘wear should continue to be a screening tool for new 

composites prescribed for posterior teeth’ (Ferracane, 2013a). 
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1.5.1 In-vitro wear testing of dental composites 

The wear performance of resin composites has been heavily researched in 

the literature. A variety of in-vitro wear testing devices have been used to 

replicate the in-vivo wear process (Lambrechts et al., 2006). However, to 

date there has been no single in-vitro wear simulator that can mimic the 

complex masticatory process in the oral environment. Most devices provide 

the relative ranking of new composite formulations and compare to already 

successful formulations (Finlay et al., 2013, Benetti et al., 2016). However, 

the most robust laboratory studies are conducted on a wide range of 

commercial materials in the form of round-robin tests (Heintze et al., 2005a, 

Heintze et al., 2011, Heintze et al., 2012).  Determining the wear parameter 

and the accurate measurement of wear is also essential in accurate 

prediction of wear in-vivo. Too frequently in dentistry, the wear depth or 

wear area are reported, however the wear in the mouth is dependent upon 

occlusal factors which constantly change with time and wear progression. 

Therefore, the parameter of choice for reporting wear should be the volume 

loss rather than wear depth (DeLong, 2006, Fleming et al., 2016). 

Furthermore, interruption of wear should consider the complex wear 

process and the tribology of wear to provide a greater insight into the 

material’s behaviour. Therefore a combination of analytical techniques 

should be employed when wear is evaluated including surface analysis or 

the wear facets on the material and the opposing antagonist. However 

regardless of the technique employed, the accuracy and precision of these 

measurement techniques should also be reported (DeLong, 2006). Three 

dimensional (3D) scanning is the preferred method for measuring wear 

which is accurate and able to provide a quantitative 3D database which can 

be stored and compared to other data.  Contact and non-contact scanners 

are available which are able to measure the material loss (depth/volume), 

surface topography and roughness. 3D profilometric scanners are widely 

used in measuring the wear of resin composites (Palaniappan et al., 2010, 

Theocharopoulos et al., 2010, Benetti et al., 2016, Altaie et al., 2017). 

Contact profilometers consist of a diamond stylus of varying radius (5-

20 µm). The stylus moves along the surface of the specimen in vertical and 
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lateral directions for a specified distance at a predetermined reference 

point. It moves under a constant force and speed recording the vertical 

surface variations as a function of position ranging from 10 nm to 1 mm. 

The vertical position of the stylus generates an analogue signal which is 

converted into a digital signal for analysis. The advantages of the contact 

scanners are the low costs and their effectiveness regardless of the 

materials’ colour or transparency (DeLong, 2006). However, the accuracy 

of the measured volume loss using a stylus scanner is limited when 

spherical abraders were scanned, in addition to discrepancies in the 

readings due to wear of the tip of the stylus (Wassell, McCabe and Walls 

1994b). The non-contact or laser profilometer overcame the issues of 

contact scanners. Non-contact scanners project a light beam from a semi-

conductor laser source focused on the specimen as a focal spot. It is 

controlled by a moveable lens in the sensor to ensure that the focal spot is 

always in a constant contact with the object surface. The sensor records 

any displacement on the specimen surface in the direction of the light beam 

which provides the desired surface displacement measurement, surface 

contour and roughness parameters. However, regardless of the techniques 

used, the key factor is employing accurate and precise measurement 

techniques that are relevant to clinical wear (DeLong, 2006). In addition of 

qualitative analysis, evaluating the pattern of wear facets on the material 

and the opposing antagonist provide a better understanding of the materials 

behaviour. Scanning Electron Microscopy (SEM) has been widely used to 

determine wear patterns of dental composites and to evaluate the different 

wear mechanisms involved (Hu et al., 2002, Yap et al., 2002b). More 

recently elemental mapping of the wear facets on the opposing antagonists 

using energy dispersive X-ray spectroscopy (EDX) showed characteristics 

of predominatly adhesive wear mechanisms in certain composite 

formulations (Altaie et al., 2017). Therefore it is suggested that employing 

a variety of analytical techniques when evaluating the wear performance of 

resin composites provide a better insight into the materials behaviour rather 

than relying on simple ranking. 
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A wide range of wear testing machines had been developed and are 

available today with varying complexity and sophistication trying to simulate 

the oral cavity during mastication. One of the earliest chewing machines 

was described in the nineteen fifties by Cornell et al. In this machine the 

upper teeth were mounted on a movable arm while the lower teeth were 

mounted on a rigid arm (Cornell et al., 1957). Harrison and Lewis (1975) 

developed a wear testing machine using the same pin and plate principle 

but they simulated the masticatory cycle by using a pin which moved in the 

vertical and the horizontal axes allowing impact and slide motion. The 

machine was later modified allowing the use of various antagonist materials 

such as steatite balls to be placed on the vertical pins which is opposed by 

samples placed in a custom plate with individual compartments (Mian, 

2011). The wear machine was then revalidated by conducting several 

preliminary investigations on composite controls to calibrate and estimate 

the test parameters. In the study the number of cycles required to create a 

wear track of at least 10 µm depth were determined against steatite 

antagonist balls of 8 mm in diameter. During the pilot study measurements 

were made at 2000, 3000, 4000 and 5000 cycles. The study showed that a 

linear wear rate was evident following 2000 cycles (r2=0.99), data also 

showed that after 5000 cycles the mean depth of the wear track was 

approximately 50 µm (Mian, 2011). Several different devices are also 

available using different principles but those with the highest citation in the 

literature are detailed in Table 2, (Heintze, 2006). 
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Table 2: Available wear testing devices used to evaluate composite 

resin wear.  

Wear machine Principle used 

The Alabama wear simulator Impact and sliding 

The Academisch Centrum 

Tandheelkunde Amsterdam (ACTA) 

wear machine 

Two metal rotating wheels 

The Oregon Health sciences 

University Oral wear simulator 

(OHSU) 

Vertical contact with 30º 

rotation 

Zurich Computer-controlled 

masticator 

Palatal cusps mounted on 

rubber cup impacting  at 45º 

Minnesota: MTS wear simulator Impact and sliding  

 

As all simulators and wear methods follow different approaches, the results 

cannot be compared. However regardless of the simulator used; the key 

factors are the use of the right mix of controllable variables and precise 

analytical techniques for a wear study to be predictive of the materials of 

clinical performance (DeLong, 2006, Heintze, 2006, Fleming et al., 2016). 

It is suggested that a device that is used to test dental materials for wear 

should ideally have the following features, (Ilie et al., 2017): 

 Force and force impulses should be reproducible. 

 A lateral stylus movement should be integrated in the system. 

 Constant water exchange should be integrated between the stylus 

and the specimen. 

 Movements should be adjustable. 
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1.6 Fracture toughness 

Fracture toughness is described as the intrinsic property of a material to 

resist fracture or the amount of stress required to propagate a pre-existing 

flaw (Beer F, 2008). Fracture toughness has been identified as one the 

most important factors to determine the clinical performance of composite 

resin. Since all restorations are likely to contain internal flaws, fracture 

toughness may be the most critical factor in determining the fracture 

resistance in-vivo which could be presented as chipping or bulk fracture of 

the restoration (Ferracane, 2013a, Heintze et al., 2017).  During 

mastication, the ability of a composite restoration to withstand fracture is 

critically dependant on the nucleation and growth of micro and macro voids, 

mechanisms of dislocation, propagation of micro cracks, and the geometry 

of the material. According to the Griffith energy-balance approach, while a 

crack is growing through a material, strain energy is released through the 

surroundings and absorbed by the growth of the crack (Beer F, 2008, 

Wachtman JB, 2009). Therefore a restorative material can withstand a 

crack stress up to a critical value. Failure of the material starts when the 

strain energy release rate attains a peak value at a critical crack length, 

beyond which the crack becomes self-propagating. Several studies were 

conducted to investigate impeding crack propagation by increasing the filler 

content in dental composites (Stgermain et al., 1985, Rodrigues Junior et 

al., 2008b). The presence of filler particles distributes the propagating force 

into many components causing the crack front to dissipate between 

particles and eventually it becomes energetically unfavourable for a crack 

to grow. Theoretically increasing the filler content and decreasing the filler 

particle size and inter-particle spacing would increase the fatigue limit. This 

is due to the increase of obstacles for crack growth and limiting of stresses 

at the crack tip around a plastic zone to finite values below the maximum 

stresses allowed. Therefore with new composite filler advancements going 

from a macro to a micro and to a nano- scale, restoration defects become 

progressively smaller and are eliminated, which leads to increased material 

strength (Beer F, 2008, Rodrigues Junior et al., 2008b, Wachtman JB, 

2009). However studies on dental composites showed that the critical strain 
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energy release rate can be increased by incorporation of a specific filler 

volume fraction, beyond which it decreases. Thus, there may be a more 

favourable filler volume fraction and particle size that could produce an 

optimal critical stress-intensity factor (Kim et al., 2002, Masouras et al., 

2008b). This was supported by Lien et al (2010), who reported no significant 

difference in the fracture toughness between moderately filled composite, 

nanocomposites and highly filled composite (in contrast to compomers with 

the lowest percentage of filler by volume fraction) (Lien and Vandewalle, 

2010). 

1.6.1 Fracture toughness testing 

Fracture toughness of dental composite has been presented in the literature 

with a wide dispersion of values. This variation is attributed to the different 

composite formulations and testing methods employed. The single edge 

notched beam method following the ASTM (E399-12-e2) is the most widely 

used methodology in determining the fracture toughness of resin 

composites (Heintze et al., 2017). Fracture toughness measurements using 

this method are usually conducted by means of three or four point bending 

apparatus. The sharp crack requirement is replaced by a narrow notch 

which could be transformed into a very sharp notch by various methods. 

However the results of this test are very sensitive to the notch depth and 

width (Schneider, 1991). The narrow notch can be introduced by various 

techniques, most commonly using a razor blade built-in in a custom made 

mold where the notch can be introduced during composite preparation and 

curing  (Fujishima and Ferracane, 1996, Toparli and Aksoy, 1998, Kim et 

al., 2002, Thomaidis et al., 2013). Other techniques include using diamond 

saw, diamond disc and razor blade which can be introduced into the 

composite sample following polymerisation (Balkenhol et al., 2009, Ilie et 

al., 2012). Some researchers also used knife edge spilt molds to prepare 

the samples for fracture testing (Lien and Vandewalle, 2010, Zakir et al., 

2013). Other fracture toughness evaluation techniques include compact 

tension specimen where fracture resistance is evaluated by the fracture 

resistance crack approach (R-curve) (Fujishima and Ferracane, 1996, 

Shah et al., 2009a). The R-curves describe the fracture resistance of the 
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material toughened by extrinsic mechanisms such as crack bridging. 

Therefore further crack extension requires higher driving forces until a 

plateau is reached. A short rod fracture toughness test was also used in 

testing dental composites; in this test, stable crack growth occurs initially, 

and assessment of the crack growth is based on the load to cause crack 

growth instability (Pilliar et al., 1986). Other tests including the double 

torsion (Fujishima and Ferracane, 1996) and the Chevron notched Brazilian 

disk test were also used (Scherrer et al., 2000, Watanabe et al., 2008). 

Nevertheless fracture toughness is an intrinsic property of the material 

therefore different testing methods should provide the same values without 

significant differences. However, fracture toughness has been shown to be 

dependent on many variables including the sample geometry and the crack 

tip sharpness (Fujishima and Ferracane, 1996). Nevertheless, the single 

edge notched beam test remains to be the most popular method reported 

in the literature in determining the fracture toughness of resin composites 

(Soderholm, 2010, Heintze et al., 2017). 

1.7 Flexural strength and Flexural modulus 

Strength assessments seem to be an important property to evaluate since 

all composite restorations are likely to have internal flaws. Therefore, based 

on the main reasons of failure of dental composites, flexural strength (FS) 

and flexural modulus (FM) have been identified as important mechanical 

properties in predicting the clinical performance of dental composites 

(Ferracane, 2013a, Heintze et al., 2017). Flexural testing is the standard 

means for strength testing of dental composites as per (ISO 4049). 

Significant correlations were found between FS and the wear resistance of 

dental composites (Peutzfeldt and Asmussen, 1992, Ferracane et al., 

1997a, Heintze et al., 2017). Therefore it remains one of the key mechanical 

parameters necessary to assess in new composite formulations.  The 

ISO4049 classifies two types of light cured direct resin composites 

according to their flexural strength; Type 1: indicated for occlusal 

restorations (flexural strength values ≥ 80 MPa) and Type 2: classified as 

filling for other indications (flexural strength ≥ 50 MPa). Therefore these 

values could be used as a baseline when evaluating new composite 
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formulations. Dental composite flexural strength has been previously 

related to the filler volume, a general trend for enhanced mechanical 

properties was observed when a filler volume of 60% was reached (Ilie and 

Hickel, 2009a). However it was shown that increasing the filler content 

beyond 80% by weight results in a significantly lower tensile strength (Htang 

et al., 1995). Consequently increasing the filler content does not necessarily 

increase the flexural strength of dental composites.  Kim et al (2002) 

investigated the effect of filler  loading and morphology on the flexural 

properties of resin composites; it was concluded that round fillers enabled 

higher filler loading which resulted in high flexural strength, whereas 

irregular and per-polymerised filler allowed intermediate filler loading which 

reflected on the flexural properties of the materials (Kim et al., 2002). More 

recently, Randolph et al (2016) evaluated the FS of various commercial 

dental composites; however no general trend was found between the filler 

size or content and the materials’ flexural strength (Randolph et al., 2016). 

The lack of general trend was attributed to the differences in filler content 

at similar size distribution, the different matrix compositions and strength 

measurement sensitivity in relation to sample surface preparations 

(Randolph et al., 2016).  

1.8 Degree of conversion 

The degree of polymerisation is one of the key factors that affect the 

mechanical and clinical performance of resin composites (Ferracane and 

Greener, 1986b). Conversion occurs as carbon double bonds of monomers 

are converted to extended networks of carbon single bonds. It has been 

shown that the degree of conversion (DC) directly affects the strength, 

modulus and the hardness (Ferracane, 1985), wear resistance (Ferracane 

et al., 1997c), volumetric shrinkage (Dewaele et al., 2006) and monomer 

elution (Ferracane, 1994, Hofmann et al., 2002). The materials’ DC is 

dependent on several intrinsic factors such as the chemical structure of the 

dimethacrylate monomer and the photo-initiator and extrinsic factors such 

as the polymerisation conditions (Leprince et al., 2013). Many studies also 

evaluated the effect of filler loading, size and geometry on the DC of resin 

composites (Turssi et al., 2005, Baroudi et al., 2007, Amirouche-Korichi et 
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al., 2009). It was shown that the DC decreases by increasing the opaque 

filler content and by decreasing the filler particle size. The use of particle 

size that approaches the output wavelength of the curing unit (470 nm) 

results in a significant decrease in the DC; this could be explained by the 

scattering effect of the small fillers on the penetrating light during 

photoactivation. However the filler geometry was not shown to affect the 

DC of experimental composites. Resin matrix polymerisation results in a 

change in the materials optical properties and an increase in the refractive 

index due to the increasing viscosity and the density of the cross-linked 

polymer. As the refractive index of the resin approaches to that of the filler, 

the scattering at the interfacial/resin reduces which results in higher light 

transmission. Polymerisation rate increases with time, however a time 

delay in reaching maximum light transmission could result in lower 

maximum rates of polymerisation despite a possibly higher ultimate DC 

(Lovell et al., 1999, Shortall et al., 2008).  

The most common method used to determine the degree of conversion is 

by spectroscopic methods which infer the quantity of remaining double 

bonds, the techniques used are either mid-infrared Fourier transform (FT) 

(Ferracane and Greener, 1984) or Raman spectroscopy (Pianelli et al., 

1999). FT mid-IR is based on the reflection of the infrared radiation and has 

been widely used for many years to measure the DC by comparing the peak 

height of 1640cm-1 which corresponds to –CH=CH2 stretching vibration 

before and after polymerisation (Ferracane and Greener, 1984). Another 

peak corresponding to the aromatic ring at 1608cm-1 is used as a reference 

as its intensity does not change with curing. The Raman spectroscopy 

measurements is based on the dispersion of the light by the polymer using 

similar measurement peaks as mid-IR spectroscopy (Pianelli et al., 1999). 

FT mid-IR techniques uses microscopic attachments and Raman 

spectroscopy uses a focused beam to enable the measurements of the DC 

at specific time points by mapping the sample surface under high 

magnification, this is evidently useful when considering polymerisation in 

depth. However, the disadvantage of the mid-IR remains to be the high 

absorption in this wavelength range, therefore this might lead to a decrease 
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in the signal/noise ratio and consequently an increase the variability of the 

results. More recently near-infrared FT spectroscopy (FT-NIR) was 

introduced (Stansbury and Dickens, 2001), it is based on transmission 

which was shown to be more efficient and more reliable in measuring the 

DC in real time. Accurate measurements are based on transmission and 

monitoring the decrease of the vinyl peak at 6164cm-1. It also allows 

detecting small differences in the DC and analysis of thick samples. 

Nevertheless it was shown that FT-NIR spectroscopy provides equivalent 

methacrylate conversion values to those obtained by traditional FT mid-IR 

techniques (Stansbury and Dickens, 2001).  

The DC of Bis-GMA based resin composites has been widely evaluated 

using the infrared techniques, DC reported values ranges between 52-75% 

with most materials in the range of 55-60% (Ruyter and Svendsen, 1978, 

Asmussen, 1982). However the DC required for adequate clinical 

performance has not been established yet. Nevertheless a negative 

correlation has been established between the in-vivo abrasive wear and the 

DC, accordingly the DC values below 55% is not recommended for occlusal 

restorative materials (Ferracane et al., 1997c, Silikas et al., 2000). 

The depth of cure of resin composite is also an important property 

especially when used as a posterior restorative in deep cavities. Insufficient 

curing of resin composites at depth results in reduced mechanical 

properties and biocompatibility. The depth of cure is usually referring to the 

thickness of resin composite that is “adequately” cured. It is limited by light 

absorption and scatter within the material, which are influenced by several 

factors, including the amount, size and type of fillers (Shortall et al., 2008), 

composite shade (Moore et al., 2008), photoiniator system used (Leprince 

et al., 2011), refractive index mismatch (Shortall et al., 2008) and the light 

curing source (Lindberg et al., 2005). The limited depth of cure of resin 

composites requires clinicians to place composite restorations in thin layers 

(~2mm) to ensure adequate curing. However, incremental techniques are 

associated with various disadvantages such voids incorporation composite 

layers, failures in bonding between layers, placement difficulty due to 

limited access and extended procedure time (Abbas et al., 2003). 
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Therefore, different approaches have been employed to increase the depth 

of cure of resin composites including increasing light transmission through 

filler particle modifications (Shortall et al., 2008) increasing light intensity 

(Lindberg et al., 2005). In addition to that, higher depth of cure was 

suggested through using alternative photoinitatior systems such as Lucirin-

TPO at low concentration in conjunction with CQ which also requires higher 

intensity light source emitting specifically around 400 nm (Leprince et al., 

2011). More recently, dental manufacturers introduced “Bulk-fill” dental 

composites which are claimed to enable restoration build-up in thick 

increments of up to 4-6 mm. The increased depth of cure of bulk-fill 

composites is mostly attributed to their increased translucency and reduced 

filler content (El-Safty et al., 2012). However these perceived improvements 

are not indicative of the mechanical performance of these materials. Some 

concerns were raised regarding the low surface hardness, flexural strength 

and flexural modulus properties of bulk-fill materials when compared 

conventional resin composites (Garoushi et al., 2013, Ilie et al., 2013a, 

Leprince et al., 2014). 

 

  



26 
 

 
 

1.9 Other Physical Properties 

There are several other physical properties that could potentially influence 

the longevity of dental composite restorations. The most important physical 

property to evaluate dental composite is polymerization shrinkage, 

shrinkage stress and the adhesion of the restoration to the tooth surface. 

Shrinkage of resin composite causes internal stresses which may 

potentially distribute to the adhesive material. This may damage the bonded 

interface, the tooth or the restoration. Clinically this may manifest as tooth 

cusp deflection, enamel microcracks, microleakage, marginal discoloration 

and recurrent caries (Hilton, 2002, Alvarez-Gayosso et al., 2004, Baroudi 

et al., 2007). It is therefore useful to assess the internal stresses generated 

during curing to evaluate the material’s clinical performance. Different 

approaches have been proposed to reduce polymerisation shrinkage and 

to reduce the stresses of resin based restorative materials. This included 

incremental placement techniques (Lutz et al., 1986), the development of 

soft start polymerization (Kanca and Suh, 1999), the development of 

alternative chemical formulations  of dimethacrylate based resins (Condon 

and Ferracane, 2002) and more recently the introduction of the silorane 

based composite which showed reduced volumetric shrinkage and reduced 

cuspal deflection compared to conventional dimethacrylate based 

composites (Weinmann et al., 2005, Bouillaguet et al., 2006, Ilie et al., 

2007, Gregor et al., 2013). Other properties such as the depth of cure, 

solubility and sorption properties are also important. Biocompatibility 

concerns arise over leaching of residual monomer and the long term 

stability of the composite due to degradation from the uptake of the solvent 

and the wash-out of poorly cured material. In general the solubility of the 

composite material is strongly influenced by the degree of conversion of the 

monomers (Tanoue et al., 2003, Kopperud et al., 2013). The mechanical 

properties of dental composite are also affected by the extent of cure. 

Improvement of the mechanical properties of dental composite has been 

correlated with the increase of the degree of conversion (Ferracane et al., 

1997b, Rencz et al., 2012). 
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1.10  Antimicrobial properties 

Resin based composites have been continuously developed and improved 

to enhance the longevity and increase their clinical service (Ferracane, 

2011). However numerous studies indicate that secondary caries remains 

one of the main reasons of failure of composite restorations (Burke et al., 

1999, Mjor et al., 2000, Bernardo et al., 2007, Demarco et al., 2012c, 

Opdam et al., 2014). Evidence suggests that composite restorations 

accumulate more dental biofilm when compared to enamel and other 

restorations on the long run (Beyth et al., 2010b). The presence of the 

biofilm and the lack of inhibitory effect against cariogenic bacteria lead to 

chemical and mechanical degradation of dental composites (Skjorland, 

1973, Beyth et al., 2010b). The adhered bacteria also affect the 

neighbouring enamel and dentine which consequently may result in 

recurrent caries. Therefore several strategies have been adopted by 

researchers to introduce antimicrobial dental composites by modifications 

to the resin matrix, the filler components and the use of novel antibacterial 

polymers (Beyth et al., 2014). Antimicrobial components used have  

included fluoride (Wiegand et al., 2007, Xu et al., 2010a, Xu et al., 2010b), 

chlorhexidine (Leung et al., 2005), zinc oxide (Aydin Sevinc and Hanley, 

2010), silver ions (Tanagawa et al., 1999, Yoshida et al., 1999) and 

quaternary ammonium compounds (Beyth et al., 2010a). 

1.10.1 Filler particles modifications 

Modifications to the filler components were made by incorporating soluble 

and non-soluble antimicrobial agents. Soluble agents are able to diffuse 

into an aqueous environment. Fluoride is a widely documented 

anticariogenic agent which is effective through various mechanisms such 

as reduction of the demineralization process, enhancement of the 

remineralization, interference with pellicle and biofilm formation, and the 

inhibition of microbial growth and metabolism (Fejerskov O, 1996, Rølla G, 

1996, ten Cate JM, 1996) . Thus, it has been reported that fluoride releasing 

filler systems, such as strontium fluoride (SrF2), ytterbium trifluoride (YbF3) 

or leachable glass fillers have an antibacterial effect (Yap et al., 1999, 
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Kawashita et al., 2000, Xu and Burgess, 2003b). Fillers release fluoride by 

an exchange reaction due to water diffusion into the resin composite which 

is followed by a diffusion gradient driven movement into the environmental 

solution (water and saliva). However, one of the major disadvantages is the 

formation of voids within the resin matrix as fluoride leaches out from the 

material. In addition to that, most of the fluoride is released during the 

setting reaction followed by smaller amount in the long term. Other factors 

that also affect the amount of fluoride release is the fluoridated filler type 

and particle size, type of resin used, silane treatment and material porosity 

(Dijkman et al., 1993, Arends et al., 1995, Xu and Burgess, 2003a). It was 

also reported that the use of hydrophilic and acidic polymers increase the 

fluoride release from resin composites (Arends et al., 1995). Other 

antibacterial components added to the filler include silver and zinc oxide 

agents. It was reported that pure silver ions added into SiO2 filler particles 

exhibit antimicrobial effect against oral streptococci (Yamamoto et al., 

1996). Other studies also reported that composite resin loaded with high 

concentrations of silver containing fillers showed antibacterial activity due 

to the anti-adherence activity of the silver supported substratum (Yoshida 

et al., 1999). More recently bioactive glasses (BAG) have been used in 

experimental resin composites (Hyun et al., 2015, Alania et al., 2016). BAG 

has been suggested as a promising bioactive material that can interact with 

the surrounding environment (Hench, 2006). BAGs are represented by 

amorphous calcium, sodium phosphosilicate materials which are able to 

precipitate biologically active hydroxycarbonate layer on their surfaces 

when they are exposed to bodily fluids. Fluorapatite (FA) has also been 

suggested as a potential suitable filler for experimental bioactive dental 

restoratives (Chen et al., 2006b). FA is the fluorine substituted form of HA, 

in which the (OH-) in HA is substituted with (F-). Various clinical applications 

of apatites have been suggested; including coating of dental implants to 

improve the bioactivity and osteointegration (Carradò et al., 2017), direct 

application to exposed dentine to manage dentine hypersensitivity (EARL, 

2007), dental prophylactic agents (Kensche et al., 2017) and the 

development of experimental bioactive dental restoratives (Arcıś et al., 

2002, Taheri et al., 2015). Fluorapatite is hexagonally shaped with a highly 
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symmetrical crystallographic structure. It is chemically stable but known to 

release fluoride in an acidic environment. The unique morphology of FA 

crystals may also aid in maintaining good mechanical properties in addition 

to fluoride ion release. 

1.10.2 Resin matrix modifications 

Released and non-released antibacterial agents have been used to 

incorporate antibacterial properties within the resin matrix. Non-released 

agents are more readily available within the resin matrix when compared to 

the filler modifications. Soluble fluoride has been used to obtain 

antibacterial properties, e.g. organic fluoride components such as acrylic-

amine- HF salts, methacryloyl acid fluoride and acrylic-amine-BF3. However 

lower concentrations of fluoride leached from these materials when 

compared to glass ionomer materials (Hicks et al., 2003). Chlorohexidine 

was also used which was shown to inhibit bacterial growth by 50% within 

14 days (Leung et al., 2005). Quaternary ammonium compound 

benzalkonium chloride was also used and was shown to enhance the 

antimicrobial properties without significantly changing the material’s 

physical properties (Sehgal et al., 2007). Non-released insoluble agents 

can inhibit bacterial growth by inactivating target microorganisms. This 

mechanism has the advantage of being non-volatile and chemically stable, 

e.g. Triclosan, which has been shown to inhibit bacterial growth by acting 

on the bacterial cell wall (Wicht et al., 2005). 

1.10.3 Antibacterial polymers 

Cationic or positively charged polymers can act as a disinfectant when in 

contact with the negatively charged cell wall. Cationic polymers bearing 

quaternary ammonium groups were found to be particularly potent. 

Therefore a number of polymers have been developed including soluble 

and insoluble pyridinium-type polymers which exhibit antibacterial 

properties (Tiller et al., 2002). Several reports have described incorporation 

of a methacryloyloxydodecyl pyridinium bromide (MDPB) monomer in 

composite resins that showed no release of the incorporated monomer but 
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still exhibited antibacterial properties (Imazato et al., 1995). Insoluble 

crosslinked quaternary ammonium polyethylenimine (PEI) nanoparticles 

were also incorporated in composite resin materials which showed strong 

antibacterial activity up to 1 month without leach-out of the nanoparticles 

and without compromising its mechanical properties (Beyth et al., 2006). 

1.11  Fluoride effect 

Fluoride interferes with the caries process by reducing demineralisation and 

enhancing remineralisation of enamel and dentin (Cury and Tenuta, 2009). 

As the pH falls below a critical level, the tooth tissues start to dissolve and 

lose calcium and phosphate ions. However, in the presence of fluoride the 

amount of dissolving minerals decreases and returns back to the tooth as 

fluorapatite. When the pH rises again, fluoride enhances the natural 

phenomenon of tooth remineralisation. Consequently the progression of 

caries lesions is slowed down (Fejerskov O et al., 2015). Fluoride is widely 

used in dentistry in various forms including toothpastes, vanishes and 

mouthwashes. Tooth brushing using a fluoridated tooth paste is by far the 

most effective caries prevention tool (Marinho et al., 2004). Therefore, 

fluoride releasing restoratives are very attractive to maintain constant 

fluoride in the mouth. A fluoride releasing restorative would provide fluoride 

at the right place (biofilm/tooth tissue), amount and time to interfere with the 

caries process. In addition to that, having a fluoride releasing restorative 

would overcome patients’ compliance and interrupted uses of fluoridated 

dentifrices. Although fluoride is by far the most widely incorporated 

antimicrobial agent, the effectiveness of fluoride releasing restorative 

materials has been critically reviewed (Wiegand et al., 2007, Cury et al., 

2016). To date, there has been no consensus on the amount of fluoride 

required for a restorative material to be effective against recurrent caries; 

however it is generally suggested that the effect of fluoride releasing 

restoratives is mostly attributed to the localised fluoridation adjacent to the 

demineralisation zones rather than elevating of fluoride levels in saliva. It 

has been reported that localised small amounts of fluoride are sufficient to 

shift the equilibrium from demineralisation to re-mineralisation (Rawls, 

1995, Wiegand et al., 2007). 
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1.12  Fluoride releasing restorative materials 

Fluoride-releasing dental materials present the necessary properties to be 

effective against caries progression, however their effectiveness have been 

critically reviewed (Wiegand et al., 2007, Cury et al., 2016). Various fluoride 

releasing restoratives are currently available such as glass ionomer 

cements (GIC), resin modified glass ionomers (RMGIC), compomers and 

fluoride containing composites. The amount of daily and accumulative 

fluoride release from these restoratives varies in the literature and is 

dependent on the type of storage medium (Wiegand et al., 2007). 

Generally, the highest amount of fluoride release is shown to be in acidic 

environments and lowest in artificial saliva (Karantakis et al., 2000, Imazato 

et al., 2001, Moszner and Salz, 2001). However, the kinetics and pattern of 

fluoride release is similar amongst all restoratives. Most materials initially 

release high amounts of fluoride (within 24-48 hours), however this initial 

burst rapidly diminishes with time and long term release continues at much 

lower rates (Karantakis et al., 2000, Yap et al., 2002a, Attar and Turgut, 

2003). Composites have been shown to release the lowest amounts of 

fluoride in the long term when compared to GIC, RMGIC and compomers 

(Karantakis et al., 2000, Vermeersch et al., 2001, Wiegand et al., 2007). 

Studies on different composite brands reported initial fluoride release with 

range of 0.04-2.7 ppm into deionized water within the first 24 hours, but the 

amount released soon decreases to 0.02-2 ppm within 30-60 days (Attar 

and Onen, 2002, Attar and Turgut, 2003). Other studies reported a 

decrease of fluoride release from 3-4 ppm to 1-2 ppm within few weeks 

(Cooley et al., 1988). Cumulative fluoride release studies reported values 

less than 0.5 µg/mm2 during a period of 90-120 days (Karantakis et al., 

2000, Vermeersch et al., 2001). Studies show that commercial and 

experimental fluoride releasing dental composites continue to release 

fluoride for up to five years (Tantbirojn et al., 1992, Dijkman et al., 1993, 

Furtos et al., 2005). Experimental composites containing BAG fillers were 

shown to have cumulative fluoride release ranging between 1.40–1.47 ppm 

(22 hours) and around 3.5-4 ppm by day 18 in deionised water (Davis et 

al., 2014). Highly fluoridated experimental composite (Ariston pHc) was 
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shown to release much higher amounts of fluoride (140 µg/cm2 cumulative 

release over one year) when compared to conventional fluoridated 

composites (Dijkman et al., 1993, Attar and Turgut, 2003). Unlike other 

available composites the fluoride release from this material was linear in 

proportion to time. The high fluoride release was due to the high fluoride 

content (F-Al-silicate and YbF3) in combination of the high water solubility 

of the filler and the high water uptake and diffusion of the polymer matrix. 

However evident clinical failures were soon identified due to the latter two 

reasons (Braun et al., 2001). Regardless of the antibacterial agent used, it 

was concluded that agents have various releasing rates with mostly short 

term effectiveness. The release into the surrounding environment could 

also affect the mechanical properties of the carrier over an extended period 

of time. However it is suggested that polymeric antibacterial agents with low 

molecular weight have an improved integration within the composite resin 

due to their chemical stability and non-volatile nature (Beyth et al., 2006).  

1.13 Fluoride release testing 

The fluoride release of restorative materials has been thoroughly 

investigated in the literature. However, no standard protocol is currently 

followed for fluoride release measurement. Researchers have used 

different sample size and geometry under different storage media including 

distilled water, deionised water, lactic acid and acidic buffer solutions 

(Williams et al., 1999, Karantakis et al., 2000, Dhondt et al., 2001). It was 

found that the storage media affected the amount of fluoride release; saliva 

for example reduces the fluoride release in comparison to distilled water 

(Bell et al., 1999). This can be explained by the reduced diffusion gradient 

between the restorative material and ion-enriched saliva. In addition to that, 

saliva compounds may form a pellicle on the specimen surface which 

interferes with the ion release (Williams et al., 2001). Increasing amount of 

fluoride release was reported in acidic media which is explained by the 

dissolution of the material under acidic conditions (Karantakis et al., 2000, 

Imazato et al., 2001, Nicholson and Czarnecka, 2004). Furthermore, 

increasing the temperature from 4°C to 37°C was also shown to increase 

the amount of fluoride released (Yan et al., 2007, Madhyastha et al., 2013).  
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Different methods have been used to measure the amount of fluoride 

release by materials, including ion selective electrode (ISE) and ion 

chromatography (IC).The ion selective electrode method (ISE) has been 

widely used by researchers to measure the total fluoride ions (free and 

complex fluoride ions) released from dental restoratives. Following this 

methodology acetic buffer solution (TISAB) is usually added to release free 

fluoride ions from the complex fluoride species (Itota et al., 2004a, Itota et 

al., 2004b, Durner et al., 2012). The popularity of this method is related to 

its high reliability, great selectivity and specificity for fluoride ions and 

generally being easy to use. 

1.14 Summary 

The literature shows that dental composites have evolved from their 

beginning in the early 1950s to the present generation of nano-featured 

hybrid composites. Nowadays, they have acquired a prominent place 

amongst modern filling materials as a so-called ‘universal restorative’. The 

increase of popularity of composite resin among patients is most likely 

because it is tooth coloured with excellent aesthetic properties, also it is 

preferred by practitioners as a more conservative restorative option, in 

addition to the governmental legislation on the use of mercury. Following 

the recently agreed Miniamata Convention leading to a worldwide reduction 

and cessation in the use of mercury containing products including 

amalgam, this will therefore lead to a phase down in the use of dental 

amalgam. In this case the most suitable alternative to directly restore 

posterior teeth would be dental composites. This will have a great impact 

on dental training as well as increasing the demand for a better 

performance of these restorations (Lynch and Wilson, 2013a, Lynch and 

Wilson, 2013b). Therefore research should focus on enhancing the 

performance of posterior composites in clinical service. The basis of failures 

of the current dental composites should be used as a baseline to improve 

the properties of these materials for enhanced and prolonged clinical 

service. Recurrent caries and restoration fracture remain the primary 

reasons of failure of resin composites. Therefore the idea of “smart” 

restorative materials capable of responding to their environment by 
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releasing antimicrobial agents and/or having a remineralising effect 

remains an attractive focal point in dental materials research. In addition, 

research focusing on developing new filler/resin formulations to further 

enhance the mechanical properties for use in high load bearing areas 

should be encouraged.  

Several studies evaluated the clinical performance of dental composites. 

However it is still not possible to identify the precise level of the required 

properties to ensure clinical success of the new formulations. Therefore it 

is crucial to analyse the primary reasons for clinical failure or success of 

dental composite followed by different testing methods to evaluate the 

material’s performance. Based on the main reasons of clinical failure of 

dental composites; assessment of the strength parameters of dental 

composite should involve clinically relevant tests including fracture 

toughness, flexural strength and wear (Ferracane, 2013a, Heintze et al., 

2017, Ilie et al., 2017).  
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Chapter 2: Aims, Objectives and program of work 

2.1 Aims 

1- To develop highly filled model resin composites incorporating 

fluorapatite (FA) as secondary filler. 

2- To measure the degree of conversion of the experimental FA 

containing resin composites. 

3- To characterise the mechanical properties including wear 

resistance, vickers microhardness, flexural strength, flexural 

modulus and fracture toughness. 

4- To measure fluoride ion release under acidic (pH 4) and neutral 

(fresh distilled water) conditions. 

2.2 Objectives 

1- To prepare model resin composites suitable for FA incorporation as 

secondary filler. 

2- To synthesise fluorapatite crystals and incorporate them as a 

secondary filler in resin composites. 

3- To establish the effect of FA incorporation on the degree of 

conversion of the experimental materials. 

4- To establish the effect of FA incorporation on the mechanical 

properties of resin composites including wear resistance, vickers 

microhardness, flexural strength, flexural modulus and fracture 

toughness.  

5- To establish the relationship between the FA concentration and the 

amount of fluoride ion release under neutral and acidic conditions. 
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2.3 Program of work 

 

  
Model dental composites preparation 

Filler/matrix distribution 
homogeneity   

Degree of conversion  Mechanical testing  

Fluorapatite (FA) synthesis 

and characterisation 

Morphological characterisation  

(SEM) 

Chemical characterisation 

(EDX and XRD) 

Preparation of FA containing 

resin composites 

Filler/matrix distribution 
homogeneity   

 

Degree of conversion  

Mechanical testing  Fluoride ion release  
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Chapter 3: Preparation and characterisation of 

model experimental dental composites 

3.1 Introduction 

The main aim of this project is to develop and characterise experimental 

dental composites with fluorapatite (FA) crystals incorporated as secondary 

filler. Selecting an appropriate model dental composite to act as a vehicle 

for the secondary FA filler is essential. Therefore the purpose of this part of 

the study was to prepare model highly filled dental composites and to 

characterise their physical and mechanical properties. Having an insight 

into the performance of different composite formulations is highly valuable 

to enable the selection of an appropriate model dental composite 

formulation suitable for the next part of this project. The selected model 

composite formulation would also act as a control (0FA) once FA containing 

composites had been prepared. Having a contemporary commercial control 

is also essential to evaluate the experimental materials properties in relation 

to the available commercial composites. Tetric Evo Ceram (TC) (Ivoclar-

Vivadent, Liechtenstein) was selected as representative commercial control 

since it is highly filled (83%wt, 63%vol) with barium glass as a primary filler 

and BisGMA as a base monomer. The composition of the experimental 

composites was based on careful evaluation of the literature and the range 

of commercially available dental composites. The filler content has been 

widely reported to influence the mechanical and the physical properties of 

dental composites. Generally it was concluded that the surface hardness, 

modulus and wear resistance increase and the volumetric shrinkage 

decreases by increasing the filler content (Jun et al., 2013a, Shah and 

Stansbury, 2014). A threshold of 60% filler volume fraction has been 

identified as the necessary level required for an acceptable performance 

(Lohbauer et al., 2006, Randolph et al., 2016). The degree of conversion 

(DC) is a key factor influencing the materials mechanical, physical and 

optical properties in addition to their solubility (Ferracane, 1985, Ferracane 

and Greener, 1986a, Hofmann et al., 2002, Durner et al., 2012). Therefore 
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it was essential to evaluate the DC of the prepared experimental materials 

and compare it to the commercial control. Fourier transform infrared 

spectroscopy (FTIR) was used in this study which has been widely reported 

by several researchers measuring the DC of dental composites (Imazato et 

al., 2001, Ilie and Hickel, 2007, Durner et al., 2012, Walters et al., 2016). In 

addition to that, two-body wear and surface microhardness tests were also 

conducted to further evaluate the mechanical performance of the different 

composite formulations. This chapter will describe the preparation of the 

model experimental composites and the characterisation of their physical 

and mechanical properties.   

3.2 Aims 

1- To develop model experimental dental composites with different 

resin formulations and to characterise their mechanical and physical 

properties.  

2- To select a suitable monomer mixture for incorporation of 

fluorapatite as secondary filler. 

3.3 Hypotheses 

The null hypotheses are below: 

1- There are no significant differences in the degree of conversion, 

wear resistance and microhardness between the different 

experimental dental composite formulations and the commercial 

control (TC). 

2- There are no significant differences in the degree of conversion, 

wear resistance and microhardness between the different 

experimental composite formulations regardless of the resin mixture 

used. 
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3.4 Materials and methods 

3.4.1 Model dental composite preparation  

Different composite formulations were prepared with monomer: filler ratio 

of 20:80% by weight (%wt). Four monomer groups were prepared by mixing 

different ratios of BisGMA/TEGDMA/UDMA/BisEMA (ESSTECH Inc, 

Essington, PA, US) and using CQ (camphorquinone, Sigma-Aldrich) as an 

initiator and DMAEMA (dimethylamino ethyl methacrylate, Sigma-Aldrich) 

as an activator. Silanised barium aluminium silicate glass with D50=0.7 µm 

(First Scientific Dental GmbH, Elmshorn, Germany) was then added to each 

monomer mix to maintain a glass filler content of 80%wt. Details of the 

materials used and the monomer ratios are detailed in Table 3 and Table 

4. The commercial control composite composition is also shown in Table 4. 

Table 3: List of materials and their manufacturers used for 

preparations of experimental materials 

Materials Description Manufacturer 

BisGMA Bisphenol A diglycidal ether 

dimethacrylate 

ESSTECH inc., USA 

TEGDMA Tri ethylene glycol dimethacrylate ESSTECH inc., USA 

BisEMA Bisphenol A polyethylene glycol 

diether dimethacrylate 

ESSTECH inc., USA 

UDMA Urethane dimethacrylate ESSTECH inc., USA 

CQ 97% Camphorquinone Sigma-Aldrich 

Company Ltd., UK 

DMAEMA 98% 2- (Dimethylamino)ethyl 

methacrylate 

Sigma-Aldrich 

Company Ltd., UK 

Glass  6% Silanised barium aluminium 

silicate glass with D50=0.7 µm 

First Scientific Dental 

GmbH, Germany 
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Table 4: Compositions of the experimental dental composites by 

weight (wt%). 

Group BisGMA 

(%wt) 

TEGDMA 

(%wt) 

UDMA 

(%wt) 

BisEMA 

(%wt) 

A 70 30 - - 

B 70 20 - 10 

C 70 10 - 20 

D 70 - - 30 

E 70 - 30 - 

F 70 20 10 - 

G 70 10 10 10 

 

Table 5: Composition of Tetric Evo Ceram composite 

Tetric Evo Ceram (Ivoclar Vivadent) 

Resin matrix 
Dimethacrylates (17–18%wt); (Bis-GMA) 5–10%; 

Urethane dimethacrylate (UDMA) 5–10%wt. 

Filler content 

Barium glass, ytterbium trifluoride, mixed oxide, 

prepolymer, 82–83%wt inorganic fillers, particle size of 

inorganic fillers 40–3000 nm, with mean 550 nm. 

3.4.1.1  Monomer preparation 

BisGMA was placed in a glass container and pre-heated to 50º C for 60 

minutes to enable easier handling of the material. The different monomers 

were then added depending on the ratio required, see Table 4, and placed 

in amber glass bottles (500 ml, Sigma-Aldrich) to prevent accidental 

activation of the photoinitiator. 0.5%wt CQ and 0.5%wt DMAEMA were then 

added to the monomer mix and mixed for 60 minutes using a magnetic 

stirrer (VELP, Scientifica, Italy). Each prepared mixed monomer ‘master 

batch’ was then stored in amber bottles and wrapped in the aluminium foil 
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until use. All components were weighted using a digital scale (0.01 g 

readability) (PERCISION Advanced, OHAUS, USA). 

3.4.1.2  Mixing glass filler with the monomer 

Different composite formulations were prepared in batches of 20 grams for 

each group with a content of 80%wt filler and 20%wt monomer mix. The 

selected monomer mix was pre-weighed (4 grams) and placed in a plastic 

mixing container and added to an overall glass filler weight of 16 grams, the 

glass filler was divided into four equal increments (wt) which were then 

sequentially added to the monomer. The container was then placed in a 

centrifugal mixer (SpeedMixerTM DAC 150.1 FVZ, Hauschild Engineering 

and Co. KG, Hamm, Germany) ready for mixing. All formulations were 

mixed four times following a specific protocol to achieve a homogenous mix. 

The below protocol was followed:  

1- First mix: Add the overall monomer weight + first glass increment 

then mix for 30000 cycles x 3 minutes. 

2- Second mix: First mix+ second glass increment then mix for 30000 

cycles x 3 minutes. 

3- Third mix: Second mix+ third glass increment then mix for 30000 

cycles x 3 minutes. 

4- Fourth mix: Third mix+ fourth glass increment then mix for 15000 

cycles x 3 minutes. 

The above protocol was established after several attempts to prepare a 

homogenous mix, similar techniques were previously used by researchers 

to prepare experimental dental composites (Schneider et al., 2009b, Palin 

et al., 2014, Ismail, 2016). Once mixing was complete, the containers were 

sealed with Parafilm (Parafilm®M, Bemis company, Inc., UK) and wrapped 

in aluminium foil to prevent accidental light exposure and then stored at 4°C 

until use. 
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3.4.2 Model experimental materials characterisation 

3.4.2.1  Scanning Electron Microscope (SEM) 

To evaluate the homogeneity of the mixed composite formulations 

qualitative analysis was conducted using the SEM (Hitachi-S-3400N, 

variable pressure SEM, Japan). Experimental composite specimens were 

compared to a contemporary commercial dental composite, Tetric Evo 

Ceram (TC) (Ivoclar Vivadent, Schaan, Liechtenstein) (for composition see 

box overleaf) which was used as a control. Disc shaped composite 

specimens were prepared for each group with dimensions of 6 × 2 mm 

using a custom made steel mould (n=3). Specimens were prepared 

following the ISO 4049 standard. Composite was packed incrementally and 

covered by a cellulose acetate separating strip and a glass microscope 

slide onto which was placed a 1 kg mass for 20 s in order to compress and 

level the material. The microscope slide was then removed and each 

specimen was photo-polymerised for 40 s using a light emitting diode (LED) 

light curing unit with 8 mm diameter tip (Demi Plus, Kerr, Orange Co., CA, 

USA), irradiance of 1200mW/cm2, at 23 ± 1ºC. The irradiance was checked 

prior to use by employing a checkMARK (Bluelight Analytics Inc., Halifax, 

Canada). Composites were polished using 400 grit silicon carbide (SiC) 

abrasive papers (Struers, Copenhagen, Denmark).   Prepared specimens 

were then mounted on aluminium stubs and sputter coated with 

approximately 5 nm of gold using an argon sputter coating unit (Agar 

Scientific, Stanstead, UK) for SEM imaging. Samples were mounted at a 5 

mm distance and scanned under low vacuum with an accelerating voltage 

of 20Kv. 
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3.4.2.2  Degree of Conversion 

The degree of conversion (DC) of experimental and commercial 

composites was measured using FTIR-ATR (Spectrum 100, PerkinElmer, 

Bucks, UK). Five specimens were prepared for each group by placing the 

material into stainless steel washers (4 mm internal diameter and 0.8 mm 

thick), (A2 stainless steel plain washer metric BS4320). Materials were light 

cured using a light emitting diode (LED) light curing unit (LCU) (Demi Plus, 

Kerr, Orange Co., CA, USA) at ambient room temperature (23 ± 1ºC) with 

a spectral range of 450 - 470 nm and an irradiance of 1200 mW/cm2. The 

irradiance was checked prior to use by employing a checkMARK (Bluelight 

Analytics Inc., Halifax, Canada). The FTIR spectra were recorded for 

samples irradiated for 5, 10, 20, 30, 40 and 60s. For each material five 

spectra were measured in the unpolymerised state, materials were placed 

in the washers directly on the ATR sensor. The upper surface of the 

specimen was covered with a Mylar strip and a glass slide of 1 mm 

thickness and slightly pressed against the ATR to ensure good contact of 

the specimen and to prevent formation of the oxygen inhibited layer. The 

diameter of the measured surface of each specimen was 800μm, the wave 

number range of the spectrum was 4000–650 cm −1 and the FTIR spectra 

were recorded with 32 co-additions at a resolution of 4 cm −1 using 

dedicated software (Spectrum, PerkinElmer). To calculate the DC the 

standard baseline method to assess the peak heights were followed 

(Rueggeberg et al., 1990a). The percentage of uncured double carbon 

bond (C=C) at any time was determined from the ratio of absorbance 

intensities of the aliphatic peak at 1640cm-1 and the aromatic peak at 

1607cm-1 (as the internal standard) (Atai and Watts, 2006, Rodrigues Junior 

et al., 2008a, Amirouche-Korichi et al., 2009, Kopperud et al., 2013). The 

following equations were used:  

Equation 1 

(%𝐶 = 𝐶) =  
[𝐴𝑏𝑠 (1640 𝑐𝑚−1)/(𝐴𝑏𝑠(1607 𝑐𝑚−1)]𝑝𝑜𝑙𝑦𝑚𝑒𝑟

[𝐴𝑏𝑠 (1640 𝑐𝑚−1)/(𝐴𝑏𝑠(1607 𝑐𝑚−1)]𝑚𝑜𝑛𝑜𝑚𝑒𝑟
× 1                     

Equation 2 

𝐷𝐶% = 100 − %𝐶 = 𝐶                                                                   
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3.4.3 In-vitro wear testing 

3.4.3.1  Two-body wear simulator 

Wear testing was conducted using a newly modified pin-on-plate wear 

testing apparatus originally developed by Harrison and colleagues 

(Harrison and Lewis, 1975, Harrison and Draughn, 1976). The original 

device allowed five pairs of pin and plate to be tested simultaneously 

against each other; the sample material was placed on the end of the pin 

and in contact with the antagonist which was attached to the plate. Weights 

were used to maintain an independent contact force between each pair of 

pin and plate and the contact time could also be regulated independently 

for each pair. Modifications were made by introducing custom made 

antagonist holders which could be attached to the vertical rods holding the 

abrader using a locking screw. This modification allowed the choice of 

variable antagonists to be selected. Figure 8 shows a schematic diagram 

illustrating a cross section cut through one of the ten stations, the 

antagonists were fixed in a holder in the lower end of the vertical pins and 

the specimens where imbedded in the previously described custom made 

tray in line with the antagonists. Differences between the original and the 

modified pin-on-plate wear testing apparatus are detailed in Table 6. 



45 
 

 
 

 

Figure 8: Schematic diagram showing the wear machine components, 

(Altaie et al, 2017) 
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Table 6: Comparisons between the old and the new versions of the 

wear testing apparatus 

Variable Old version New version 

Abrader Individual silicon carbide 

paper held on the table  

Steatite balls 8 mm 

in diameter, can be 

modified to fit any 

diameter 

Sample 4.5 mm diameter cylinders  

cemented into the pin ends 

20×10×3 mm 

rectangular slabs 

placed  in Perspex 

templates, held in 

the table using 

locking screws 

Number of test samples  10 10 

Pin/Plate contact frequency 70 per minutes 100 per minutes 

Pin/Plate contact time 0.2 seconds, can be 

adjusted for each sample 

0.2 seconds, can 

be adjusted for 

each sample 

Pin/Plate vertical lift 4 mm 4 mm 

Pin/Plate contact distance 1 mm 1 mm 

Stroke frequency 2.10Hz 2.14 Hz 

Environment Liquid or slurry solution Liquid or slurry  

Measurement of wear Vertical height loss of 

specimen using a specially 

designed bench micrometer 

Maximum depth in 

µm and volume 

loss in mm3 , using 

noncontact 

profilometer 

Load used  50-1000 grams 50-1000 grams 
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The “wear cycle” is defined as the “synchronised horizontal and vertical 

movement of the lower and upper cross arms respectively maintaining 

conformal contact between the abrader and specimen, during which the 

lower cross arm travels 32 mm to and from the start position and the 

abrader strikes 100 contacts along this course at frequency of 2.1 Hz to 

create a wear track of 16 mm length” (Altaie, 2012), Figure 9. 

 

Figure 9: Schematic diagram showing a 16 mm wear track created 

during the testing cycle. 

The wear machine used in this study was previously re-validated following 

the modifications conducted by Mian 2011. Based on the findings of the 

study, a linear wear rate was evident following 2000 cycles (r2=0.99), data 

also showed that after 5000 cycles the mean depth of the wear track was 

approximately 50 µm. The initial run of 2000 cycles was not taken into 

consideration to allow the wear process to stabilise and attain an 

equilibrium state. This was also observed as high wear rates were reported 

in the initial phase below 2000 cycles and it was considered as a ‘running-

in phase’ of the specimen and the abrader. Therefore for this study, it was 
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decided that all composite samples should be abraded for 4000 cycles 

before measurements, this is equivalent to three months simulation wear in 

the oral cavity (Altaie et al., 2017).  

3.4.3.2  Specimen preparation 

Rectangular bar-shaped composite specimens (20 x 10 x 3 mm) were 

prepared using a custom made Perspex template (n=10), Figure 10. 

Composite was incrementally placed into the mould and covered with a 

cellulose acetate strip and a glass microscope slide and a weight of 1 kg 

was applied for 20 s to ensure consistent and reproducible packing of the 

specimens. The weight and microscope slide were removed and the 

specimen was light irradiated using a light emitting diode (LED) light curing 

unit (LCU) (Demi Plus, Kerr, Orange Co., CA, USA) at ambient room 

temperature (23 ± 1ºC) with a spectral range of 450 - 470 nm and an 

irradiance of 1200 mW/cm2. The irradiance was checked prior to use by 

employing a checkMARK (Bluelight Analytics Inc., Halifax, Canada). The 

entire length of each specimen was light irradiated using the ISO 4049 

specimen manufacture protocol by placing the tip of the light guide in direct 

contact with the cellulose acetate strip in the centre of the specimen 

(ISO4049, 2009). Both the top and the lower surface of the specimens were 

light irradiated by moving the tip of the light guide to the section next to the 

centre, overlapping the previous section by half the diameter of the tip 

(4 mm), and irradiating for the appropriate time; the section on the other 

side of the centre was then irradiated in the same way, Figure 11. This 

process continued until the entire length of the specimen had been 

irradiated. Following light irradiation, the cellulose acetate strip was 

discarded and specimen checked for surface imperfections. The specimens 

were wet ground by hand lapping using P400, P600, P800, P1000 and 

P1200 grit silicon carbide (SiC) abrasive papers (Struers, Copenhagen, 

Denmark) under copious water irrigation to remove the oxygen inhibited, 

resin rich layer and produce a planar surface with a consistent surface 

topography. The specimens were stored in a light-proof container and 

placed in distilled water-bath maintained at 37 ± 1ºC for seven days prior to 
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testing and analysis. Most studies evaluating the mechanical properties of 

resin composite use a certain storage time for the specimens before testing. 

 

 

Figure 10: Custom made Perspex template 

 

Figure 11: Specimen light curing process using overlaying curing 

cycles 

Composite specimens were confined within their Perspex template and 

attached to a horizontal plate moving at a frequency of 2.14 Hz. Steatite 

antagonist spheres (8 mm diameter) were fixed to the vertically moving pins 

at a loading force of 4.5 N. The choice of steatite was based on the 

numerous studies which confirmed the suitability of steatite as an 

antagonist material for in-vitro wear testing (Wassell et al., 1994b, Wassell 

et al., 1994a, Shortall et al., 2002, Ghazal et al., 2008). A spherically shaped 

antagonist was selected to simulate a human molar cusp which has a 

greater contact area with the material than a sharp pointed antagonist thus 

producing less fatigue stress on the material (Lutz et al., 1992). The loading 

force used was also based on previous studies which reported that the 

human masticatory force in tooth to tooth contact ranges from 3 – 36 N 
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(Harrison and Lewis, 1975). During the test, specimens were maintained in 

a neutral buffer solution (pH 7) to simulate the in-vivo oral environment 

(human saliva pH~6.7) (Yap et al., 2002b, Correr et al., 2006, Antunes and 

Ramalho, 2009).  

Fresh buffer solution was made for each test run. Solutions were made 

using pH 7 buffer tablets (VDR, Belgium) which were dissolved in distilled 

water following manufacturer’s instructions. The pH values were confirmed 

using a pH meter (ORION-920A model Orion Research, Sussex, UK) which 

was calibrated before each test. 

3.4.3.3  Profilometry 

Wear tracks were scanned using a non-contacting laser profilometer 

(Proscan 2000, Scantron, Taunton, Somerset, UK) with a scan speed of 

2 mm/s. Longitudinal traces were taken at 40 μm intervals with step size of 

0.01 μm (x-direction) across the wear facet with a measurement recorded 

at every 60 μm interval with 0.02 μm step size (y-direction). S5/03 sensor 

was used to scan all the samples with resolution of 0.01 µm and a spot size 

of 4 µm. The stylus probe used was sensitive to record a minimum of 

0.01 µm and a maximum of 150 µm. Three-dimensional profiles (3D) were 

then generated using Proscan analysis software (Proform 2000 by 

Scantron version, 2011), Figure 12 . The unworn areas around the wear 

track were used as the baseline from which it was possible to calculate both 

the mean maximum wear depth (µm) and the mean volume loss (mm3) for 

each material tested (Finlay et al., Benetti et al., 2016, Fleming et al., 2016). 

The volume loss (mm3) was calculated across three selected areas in the 

scanned wear track using the Proscan software. The mean of the three 

readings was then recorded for each sample, Figure 13. 
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Figure 12: Profilometric scan of Tetric Evo Ceram composite sample 

showing cross-sectional and 3D views of the land area (**) and the 

wear track (*). 

 

Figure 13: An example of mean volume loss estimation at a selected 

point of Tetric Evo Ceram composite sample.  
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3.4.3.4  Scanning Electron Microscopy (SEM) 

Qualitative analysis of the wear tracks was conducted using SEM (Hitachi-

S-3400N, variable pressure SEM, Japan) to determine the different wear 

mechanisms and the wear patterns involved. The wear-tested composite 

specimens and their corresponding steatite antagonists were mounted on 

aluminium stubs and sputter coated with approximately 5 nm of gold using 

an argon sputter coating unit (Agar Scientific, Stanstead, UK). Samples 

were mounted at a 5 mm distance and scanned under low vacuum. 

3.4.3.5  Energy dispersive X-ray spectroscopy (EDX) 

EDX was additionally used to analyse the wear facets on the steatite 

antagonist by generating elemental spectral maps for each specimen using 

a BRUKER–X-Flash detector-5010-129 (Bruker, Inc, Berlin, Germany) 

attached to the SEM. 

3.4.4 Vickers Microhandess (HV) 

3.4.4.1  Specimen preparation 

Disc shaped composite specimens were prepared for each group with 

dimensions of 6 × 2 mm using a custom made steel mould (n=5). 

Specimens were prepared following the ISO 4049 standard using the same 

technique reported in section (3.4.3.2 ). Composites were then photo-

polymerised in one cycle for 40 s. Composites were polished using 400 grit 

silicon carbide (SiC) abrasive papers (Struers, Copenhagen, Denmark). 

The specimens were then stored in distilled water in an incubator 

maintained at 37 ± 1ºC for seven days before testing. 

3.4.4.2  Vickers microhardness (HV) testing 

HV measurements were carried out using a Duramin 5 microhardness 

tester (Struers, Copenhagen, Denmark) equipped with a diamond 

pyramidal micro-indentor to apply a load of 100 g for 15 s. A series of five 

measurements were recorded for each specimen and mean value was then 

recorded. 



53 
 

 
 

3.5 Results 

Composite mixtures containing UDMA monomer (Group E-G) showed 

visible air blows within the mix regardless of the mixing protocol used. 

Therefore, it was decided to exclude the monomer mixtures containing 

UDMA to avoid preparation of composite samples with voids inclusion. 

3.5.1 Scanning Electron Microscope (SEM) 

Analysed SEM images showed even distribution of the glass filler within the 

resin matrix of experimental dental composites. This was comparable to the 

glass distribution within the commercial control (TC). Therefore the 

homogeneity of the mixed composites was confirmed. Figure 14 shows 

representative examples of the experimental and commercial composites. 

 

Figure 14: SEM images showing the glass filler distribution within the 

matrix in experimental composites; [70 BisGMA: 30 TEGDMA] with 

80%wt filler (A,B) and Tetric Evo Ceram samples (C,D). 
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3.5.2  In-vitro wear resistance 

3.5.2.1  Data distribution 

Statistical analysis was conducted using SPSS version 21.  The Shapiro-

Wilk test was conducted to evaluate the data distribution. Data is 

considered to follow a normal distribution when p ≥ 0.05. The results 

showed that all groups were normally distributed in (Table 7), therefore 

parametric multi comparison tests One-way ANOVA and the Post Hoc 

Tukey were carried out.  

Table 7: Normality test for experimental and commercial dental 

composites wear data. 

Tests of Normality 

Group 

 

Shapiro-Wilk 

Statistic Sig. 

TC 0.903 0.429 

A (30%TEG) 0.883 0.325 

B (20%TEG) 0.786 0.062 

C (10%TEG) 0.891 0.363 

D (0%TEG) 0.881 0.314 

3.5.2.2  Descriptive and statistical analysis 

The mean volume loss was variable between the groups as shown in 

Table 7 and Figure 15. The One-way ANOVA test showed that the 

differences were statistically significant with p < 0.05, Appendix A. The Post 

Hoc Tukey test showed that Group A had a significantly higher wear loss 

compared to all the tested groups (p < 0.05). Group D also showed 

significantly higher wear loss when compared to group C and B (p < 0.05), 

while group B,C and D showed no statistically significant difference to TC 

(p > 0.05), Appendix B. 
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Table 8: Group comparisons of the measured volume wear loss (mm3), 

groups presented according to the content of TEGDMA (%TEG). 

Group Mean Median Std. Deviation 

TC 0.023 0.021 0.004 

A (30%TEG) 0.060 0.060 0.007 

B (20%TEG) 0.019 0.020 0.004 

C (10%TEG) 0.021 0.020 0.004 

D (0%TEG) 0.031 0.030 0.003 

 

 

Figure 15: Composite groups mean volume loss (mm3) with their 

standard deviation, groups presented according to the content of 

TEGDMA (%TEG). 

3.5.2.3  Profilometric analysis 

Figure 16 shows the generated 3D profiles for all tested groups, tested 

specimens showed characteristic shallow wear tracks with exception of 

Group A which showed a deeper track in comparison to the other groups. 

The unworn areas around the wear track were used as a datum to calculate 

the mean volume loss (mm3). 
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Figure 16:  Profilometric scans showing representative wear tracks 

from the tested composite groups. 
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3.5.2.4  SEM analysis 

Analysis of the wear tracks showed shallow wear tracks with predominant 

micro grooves running in the direction of the wear, and occasionally pull out 

of the large filler particles. Figure 17 shows the wear track (TC) and the 

wear facet in the abrading antagonist and Figure 18 show representative 

examples of the wear tracks of the experimental composite groups. The 

abrading steatite antagonist surfaces showed distinct wear facets 

corresponding to the opposing wear tracks (Figure 19).  

 

Figure 17: SEM images showing the wear track and the corresponding 

steatite antagonist of a TC sample. Evident micro-grooves running in 

the direction of the wear track (red arrows) and voids corresponding 

to pulled-out filler particles (yellow arrow). Distinctive round wear 

facet is shown on the abrading antagonist. 
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Figure 18: SEM images of experimental dental composites (A-D) 

showing micro grooves within the wear tracks. 

 

Figure 19: SEM images of the steatite antagonists showing the wear 

facets which correspond to the wear tracks of (A-D) composites. 
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3.5.3  Vickers Microhardness 

3.5.3.1  Data distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that all groups were normally distributed, Table 9. Therefore 

parametric multi comparison tests One-way ANOVA and the Post Hoc 

Tukey were carried out. 

Table 9: Normality test for experimental and commercial dental 

composites microhardness values. 

Tests of Normality 

Group 
Shapiro-Wilk 

Statistic Sig. 

TC 
0.904 0.430 

A (30%TEG) 0.962 0.819 

B (20%TEG) 0.867 0.254 

C (10%TEG) 0.867 0.254 

D (0%TEG) 0.908 0.457 

3.5.3.2  Descriptive and statistical analysis 

The mean microhardness values were variable between the groups as 

shown in Table 9 and Figure 20. The One-way ANOVA test showed that 

the differences were statistically significant with p < 0.05, Appendix C. The 

Post Hoc Tukey test showed that TC has a significantly lower HV compared 

to all the experimental composite groups (p < 0.05). Group D also showed 

a significantly lower HV value when compared to group B and C (p < 0.05), 

Appendix D. 
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Table 10: Group comparison of HV values between experimental 

composites and TC. 

Group Mean Median Std. Deviation 

TC 53.4 54.3 3.5 

30%TEG 89.7 88.6 4.0 

20%TEG 93.2 91.9 2.8 

10%TEG 94.8 95.0 2.0 

0%TEG 89.0 89.4 3.3 

 

 

Figure 20: Group comparisons of HV values with their standard 

deviation (error bars) between experimental composites and TC. 

Experimental groups presented according to the content of TEGDMA 

(%TEG). 

  



61 
 

 
 

3.5.4 Degree of Conversion 

Figure 21 and Figure 22 show representative FTIR spectra of experimental 

and commercial composite groups focusing on two key peaks at each time 

point. The absorption aliphatic (C=C) peak at 1640 cm -1 changes with 

polymerisation, while the absorption aromatic peak (C=C) at 1604 cm -1 

does not change at polymerisation and therefore was chosen as the internal 

standard. The graph shows that the aliphatic (C=C) peak decreased with 

the light exposure whereas the aromatic (C=C) peak remains relatively 

stable during polymerisation. 

 

Figure 21: A representative FTIR spectra in region of 1550-1700 cm -1 

from experimental composite specimen group B (20%TEG). 

 

Figure 22: A representative FTIR spectra in region of 1550-1700 cm -1 

from commercial composite specimen (TC). 
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3.5.4.1  Data distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that all groups were normally distributed as shown in 

Appendix E, therefore a parametric multi comparison tests One-way 

ANOVA and the Post Hoc Tukey were carried out. 

3.5.4.2  Descriptive and statistical analysis 

The mean percentages of the degree of conversion (DC) are shown in 

Table 10 and Figure 23. Experimental dental composites showed mean DC 

of 52-62%. Statistical analysis carried out using the one-way ANOVA and 

the post hoc Tukey tests (Appendix F and Appendix G) showed that all 

experimental composite groups had significantly higher DC compared to 

TC at all curing times (p < 0.05). However there were no significant 

differences between the different experimental composite groups at all 

curing times (p > 0.05). The results showed that the DC for all composite 

groups started to plateau at 20 s and with no significant increase in relation 

to extending the curing times up to 60 s (p > 0.05), Figure 24. 
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Table 11: Group comparisons showing the mean Degree of Conversion with their standard deviation (SD) for experimental 

and commercial composites 

Time 

TC 30%TEG 20%TEG 10%TEG 0%TEG 

Mean SD Mean SD Mean SD Mean SD Mean SD 

5 s 
41.3 7.5 52.2 1.1 57.7 1.2 53.9 1.8 53.0 3.3 

10 s 
41.4 1.3 54.0 1.4 58.4 2.6 58.0 4.2 54.4 2.9 

20 s 
47.3 0.8 55.5 2.4 59.0 2.9 56.5 4.1 58.0 1.3 

30 s 
49.2 1.1 60.5 0.6 60.9 4.7 58.1 3.9 60.1 2.3 

40 s 
51.8 0.5 59.9 2.4 59.8 3.5 61.0 4.6 61.9 1.9 

50 s 
53.0 4.1 60.4 2.6 58.6 3.3 62.1 5.1 61.7 1.9 

60 s 
55.0 3.9 62.7 1.5 62.0 0.9 62.9 3.6 61.8 2.0 
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Figure 23: The mean DC with the standard deviation (error bars) for 

the experimental and the commercial composite groups at different 

curing times (5-60 s). 

 

 

Figure 24: The mean DC with the standard deviation (error bars) for 

the experimental and the commercial composite groups between 20-

40 s curing times. 
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3.6 Discussion  

3.6.1 Selection and preparation of the materials 

Conventional monomer systems were selected in this study to prepare 

model dental composites and to select a suitable monomer mixture for FA 

incorporation. BisGMA was selected as the main base monomer which was 

diluted with co-monomers at various ratios. BisGMA is the most commonly 

used base monomer in experimental and commercial dental composite. It 

has a large molecule with two aromatic rings and hydroxyl ring which 

increase its molecular weight (512.5 g/mol) and stiffness. This allows good 

handling properties and lower shrinkage due to its high viscosity. Adversely 

the reactivity and the degree of conversion remain low for this material 

(Pfeifer et al., 2009b). Furthermore, the high viscosity of the material limits 

the amount of reinforcing filler that can be incorporated to achieve sufficient 

mechanical and physical properties. Therefore, TEGDMA and BisEMA 

were selected as the co-monomers to dilute the main BisGMA monomer. 

UDMA was also initially included as a diluting monomer, however it was 

found that composite mixtures containing UDMA monomer showed visible 

air blows within the mix regardless of the mixing protocol used. Therefore it 

was decided to exclude the monomer mixtures containing UDMA to avoid 

preparation of composite samples with voids inclusion. TEGDMA is a low 

molecular weight monomer (286.2 g/mol) with low viscosity; it allows easier 

handling and incorporation of a larger amount of inorganic fillers to enhance 

the material’s mechanical properties. It also contains reactive double 

carbon double bonds at each end which allows additional polymerisation 

and therefore increased reactivity and degree of conversion. However due 

to the presence of the ether groups (C-O-C) and the lack of aromatic rings 

in its structure, its mechanical properties are inferior to BisGMA. 

Furthermore, the lower molecular weight and the high concentration of C=C 

bonds results in higher conversion rates and polymerisation shrinkage 

(Asmussen, 1984, Braga et al., 2005). BisEMA structure is similar to 

BisGMA which has a stiff central phenyl ring core with the absence of the 

pendant hydroxyl groups which are mainly responsible of the high viscosity 
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of BisGMA. Therefore, BisEMA maintains a high molecular weight 

(496 g/mol) comparable to BisGMA but it has a significantly lower viscosity 

(Cook, 1992, Sankarapandian et al., 1997). In this study monomer mixtures 

were prepared with 70/30 molar ratio (base monomer/co-monomers), 

mimicking most of the conventional commercial and experimental 

composites resin mixtures (Manojlovic et al., 2016, Fonseca et al., 2017, 

Manojlovic et al., 2017). Camphorquinone (CQ) photoinitiator mixed 

DMAEMA co-initiator was used which is considered the mostly widely used 

photoinitiator system in commercial dental composites.  Silanated barium 

aluminium silicate glass filler (D50 0.7 µm) was used as the primary filler in 

this study and it was incorporated at 80 wt% (67 vol%). It has been widely 

reported that the mechanical and the physical properties of dental 

composites are directly dependant on the filler content and its various 

characteristics (geometry, composition, surface, size distribution). 

Generally it was concluded that the surface hardness, modulus and wear 

resistance increase and the volumetric shrinkage decreases by increasing 

the filler content (Jun et al., 2013a, Shah and Stansbury, 2014). A filler 

content of 60 vol% is necessary to achieve the aforementioned properties 

(Lohbauer et al., 2006, Randolph et al., 2016). To produce a homogenous 

composite mix, experimental materials were prepared using a centrifuge 

mixture (Speedmixer, DAC 150, Hauschild and Co. KG,Hamm, Germany). 

This technique has been widely used by many researchers preparing 

experimental dental composites (Schneider et al., 2009a, Palin et al., 2014, 

Alania et al., 2016). The aim was to produce highly filled dental composites; 

the use of the Speedmixer aided in producing homogeneously mixed 

composites. Composite specimens were analysed using the SEM to 

evaluate the mixture and compare it to the commercial control. SEM images 

showed even distribution of the glass filler within the resin matrix of 

experimental dental composites. This was comparable to the glass 

distribution within the commercial control (TC), representative examples 

are shown in Figure 14. Therefore the homogeneity of the mixed 

experimental composites was confirmed and efficiency of the mixing 

protocol was confirmed. 
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3.6.2 Degree of conversion  

One of the aims of this study was to characterise the physical properties of 

the experimental materials by measuring their degree of conversion.  

The degree of conversion is a crucial determining factor of the material’s 

mechanical, physical and optical properties in addition to their solubility 

(Ferracane, 1985, Ferracane and Greener, 1986a, Hofmann et al., 2002, 

Durner et al., 2012). Generally the degree of conversion of dental 

composites vary widely ranging between 35-77% (Schmalz, 2009). 

Although the DC required for adequate clinical performance has not yet 

been established, a negative correlation has been established between the 

in-vivo abrasive wear and the DC. Therefore, it was suggested that 

materials with DC values below 55% are not recommended for occlusal 

restorations (Ferracane et al., 1997c, Silikas et al., 2000). 

The results showed that experimental composites with different monomer 

mixtures showed mean DC ranging between 52-62%, (Table 4). There were 

no significant differences between the experimental groups at all curing 

times regardless of the monomer mixture used (p > 0.05).Group A and D 

contained only one of the diluting monomers at 30%wt (TEGDMA and 

BisEMA respectively), whereas group B and C contained both diluting 

monomers at different ratios (Detailed description is shown in Table 4). TC 

composite which was the commercial control showed a lower degree of 

conversion when compared to all experimental groups at all tested time 

intervals (p < 0.05).  The maximum DC measured for TC was 55.0% at 60 

seconds curing. It was also noted that the DC of all tested composite groups 

started to plateau at 20 s without a significant increase in the DC when the 

curing times were extended. Therefore the null hypothesis was rejected 

when comparing the experimental composites to the commercial control. 

Durner et al (2012) reported that TC degree of conversion increased from 

38±2.0% after 5 s polymerisation to 47±2.1% after 40 s polymerisation time. 

It was also found that there was a significant inverse correlation between 

the DC and the amount of eluted monomers from TC. TC specimens cured 

for 5-10 s showed higher amount of elutable BisGMA when compared 

specimens polymerised at extended curing times (20-40 s), (Durner et al., 
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2012). TC also contains pre-polymerised filler particles used as a 

secondary filler, therefore any remaining unreacted or pendant double 

carbon bonds (C=C) could also increase the final amount of leachable 

monomers. Furthermore, the absence of TEGDMA may also lead to 

insufficient polymerisation resulting in increased amounts of leachable 

monomer (Sideridou et al., 2002).  

Fourier transform infrared spectroscopy (FTIR) was used in this study which 

is a well-established methodology for measuring the degree of conversion 

of the experimental composite materials (Imazato et al., 2001, Ilie and 

Hickel, 2007, Durner et al., 2012, Walters et al., 2016). Most dental 

composites are methacrylate based materials containing monomers such 

as BisGMA, TEGDMA, BisEMA with at least two C=C bond that are able to 

form a three-dimensional network. The degree of conversion was 

calculated by comparing the aliphatic and the aromatic bands around 

1607cm-1 which was taken as the internal standard (Rueggeberg et al., 

1990b). Spectra were taken with 32 co-addition scans to increase the signal 

to noise ratio (SNR). It was previously suggested that SNR ratio is 10 times 

better in 100 co-additions when compared to a single scan. Specimens 

were prepolymerised at different time intervals (5, 10, 20, 30, 40, 50 and 60 

s), the short curing time of 5 second was included to identify potential 

differences between the materials, however there was a potential delay 

between the light exposure and the analysis which could have led to post-

curing effect (Burtscher, 1993, Par et al., 2014). Therefore extended curing 

times were included to avoid the post curing potential. 

The nature and the amount of monomer used in dental composites primarily 

influence their degree of conversion (Amirouche-Korichi et al., 2009). 

BisGMA is predominantly used as the base monomer in most dental 

composites; it is a highly viscous monomer due to its large molecular size 

and rigid structure which provide lower polymerisation shrinkage. However, 

its lower mobility does not allow high degree of conversion. Therefore, 

BisGMA is traditionally mixed with diluting low viscosity monomers such as 

TEGDMA, UDMA and BisEMA in order to achieve higher degree of 

polymerisation (Lemon et al., 2007, Stansbury, 2012, Ferracane et al., 
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2014). UDMA and BisEMA can also be used as base monomers (Floyd and 

Dickens, 2006, Moraes et al., 2010). The use of BisEMA as a base 

monomer mixed with the co-monomer TEGDMA was shown to have higher 

degree of conversion when compared to BisGMA based co-monomer 

mixture (Fonseca et al., 2017). The amount of filler incorporated also 

affected the degree of conversion, higher filler content lead to increased 

materials viscosity and increased light scattering during polymerisation 

which consequently results in lower degree of conversion (Ferracane et al., 

1998, Hadis et al., 2011).  

The type and the concentration of the photo-initiator system used is a key 

factor affecting the polymerisation efficiency. It was reported that increasing 

the concentration of the photo-initiator increases the DC and the surface 

hardness of dental composites due to the increase in the maximum rate of 

polymerisation (Musanje et al., 2009, Pfeifer et al., 2009a). However, 

increasing the photo-initiator concentration above a certain optimal co-

initiator level does not translate into an increased polymerisation efficiency 

(Pfeifer et al., 2009a). In addition to that, an increase in the shrinkage stress 

might also occur when the concentration is increased (Furuse et al., 2011). 

To date, CQ-tertiary amine is considered the most widely used photo-

initiator system, however the optimal ratio of photoinitator to co-initiator is 

still not specified due to the large existent differences within the various 

resin-based composite components (Leprince et al., 2013). CQ with 

DMAEMA co-initiator system was used in this study with ratios comparable 

to most commercial and experimental dental composites (Aljabo et al., 

2015, Alania et al., 2016). 

Polymerising the resin matrix changes the materials optical properties and 

increases the refractive index due to the fast increase in the crosslinking 

and the viscosity. Light transmission increases as the refractive index of the 

resin approaches  that of the filler particles which results in a decrease in 

the interfacial resin/filler scattering effect (Shortall et al., 2008). Therefore it 

is recommended to optimise the filler/resin refractive index mismatch to 

provide increased curing depth and assist in shade matching. The refractive 

indices of the materials used in this study are as follows: barium glass 



70 
 

 
 

(1.53), BisGMA (1.55), TEGDMA (1.46), BisEMA (1.51) and the reported 

BisGMA: TEGDMA (70:30%) is around 1.52 (Shortall et al., 2008). The filler 

and monomer mixtures used in this study had closely matched refractive 

indices containing BisGMA as the base monomer, therefore this may also 

explain the lack of significant differences in the DC between the different 

composite mixtures. Based on the results of this part of the study, it was 

concluded that using BisGMA as a base monomer with TEGDMA and 

BisEMA as co-monomers at different ratios did not affect the DC of the 

experimental composite materials, the DC was within the recommended 

required values for adequate mechanical properties and reduced shrinkage 

necessary for occlusal restorations (Ferracane et al., 1997c, Silikas et al., 

2000). 

3.6.3 In-vitro wear resistance 

The wear resistance of dental composites has been identified as one of the 

key mechanical properties to predict the materials clinical performance 

(Ferracane, 2013b). The wear behaviour remains as an important property 

for dental composites specially when used in large restorations with heavy 

occlusal contacts and for patients with parafunctional habits (eg. bruxism). 

Therefore it is recommended that wear should continue as a screen tool for 

new dental composites designed for posterior use (Ferracane, 2013b). The 

current knowledge suggests that the mechanical properties including the 

wear resistance of resin based composites are mainly dependent of the 

filler content rather than the resin matrix (Musanje et al., 2001, Ilie and 

Hickel, 2009a, Hahnel et al., 2012). Over the past decade, significant 

improvements have been made due to the reduction in the filler size and 

the increase in the amount of reinforcing filler incorporated, consequently 

dental composites are currently showing superior mechanical properties 

and reduction in wear (Ferracane, 2011). Increasing the filler volume 

loading enhances the mechanical properties (Braem et al., 1989, Condon 

and Ferracane, 1997, Ilie and Hickel, 2009a), however reducing the filler 

particle size limits the allowable amount of filler volume fraction but 

increases the wear resistance (Suzuki et al., 1995, Venhoven et al., 1996, 

Turssi et al., 2005). 
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The wear data showed that there was generally very minimal wear across 

the experimental groups and the commercial control; the mean volume loss 

ranged between (0.02-0.06 mm3), (SD=0.003-0.007). However Group A 

showed a significantly lower wear resistance when compared to all tested 

groups including the commercial control, (p < 0.05). Group D also showed 

lower wear resistance when compared to B and C, (p < 0.05), whereas 

there were no statistical differences between group B, C and TC (p > 0.05). 

Generally the in-vitro wear is dominated by the filler content, therefore since 

all experimental materials contained the same amount and type of filler 

particles (80 wt%, 67 vol%), high wear resistance was expected. TC also 

showed minimal wear which again mostly related to its high filler content 

(83 wt%, 63 vol%). Ilie et al (2009) identified that a filler volume fraction of 

60% is necessary for adequate mechanical performance of resin 

composites (Ilie and Hickel, 2009a). Although composite wear behaviour is 

mainly affected by the filler content, the wear remains as a complex process 

and not all monomer mixtures would be expected to behave in a similar 

manner. Data showed that group A (70 BisGMA: 30 TEGMA) had the 

lowest wear resistance and followed by group D (70 BisGMA: 30 BisEMA). 

Although short term wear was shown not to be able to differentiate between 

the different composite formulations when compared to long term testing, it 

provided researchers with significant insights into the materials in-vitro wear 

performance (Finlay et al., 2013, Altaie et al., 2017). Therefore, extended 

wear testing is proposed to gain further insight into the wear behaviour of 

different composite formulations. Group A and D showed slightly deeper 

wear tracks when compared to the other groups which was consistent with 

the mean volume loss measurements. The pattern of wear was similar 

amongst the experimental groups with microcracks running through the 

matrix as shown from the SEM images in (Figure 18). TC also showed 

microcracks running through the matrix but also showed voids within the 

matrix corresponding to possible pull out of the larger pre-polymerised filler 

(PPF) particles that are present in TC composite, Figure 17. PPF are 

difficult to silanize due to the lack of active binding sites, therefore they 

poorly integrate within the resin matrix which may result in easier 

disintegration when mechanically challenged (Blackham et al., 2009, 
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Randolph et al., 2016). Analysis of the abrading steatite antagonist was also 

conducted using the SEM. Scanned samples showed distinct round wear 

facets corresponding to the opposing wear tracks as shown in Figure 19. 

A variety of in-vitro wear testing devices has been used to replicate the in-

vivo masticatory process, however to date no single in-vitro wear simulator 

can simulate the masticatory cycle in the oral environment (Heintze et al., 

2012). At best, most wear simulators can provide an indication of the 

relative ranking of new dental composite formulations and compare them 

to other commercially available successful formulations (Finlay et al., 2013, 

Benetti et al., 2016). The wear simulator device used in this study was a 

variant of the original device used by Harrison and Lewis (Harrison and 

Lewis, 1975), detailed description is shown in section (3.4.3.1 . It simulates 

the intermittent sliding action of ‘tooth to tooth’ contact which remains a  

major step forward when comparing it to conventional to pin-on disc devices 

(Lambrechts et al., 2006). Spherical steatite (8 mm in diameter) was used 

in this study as the abrading antagonist, it has been widely used by several 

researchers evaluating the wear behaviour of dental composites (Heintze 

et al., 2005b, Finlay et al., 2013, Altaie et al., 2017). Steatite is a suitable 

substitute to enamel; it is a synthetic material that is mainly composed of 

magnesium silicate. It has a comparable surface microhardness and 

coefficient of friction to enamel (Wassell et al., 1994a, Shortall et al., 2002). 

Alternative wide range of materials is also available such as human and 

bovine enamel, stainless steel, porcelain and hydroxyapatite. Although 

human enamel may be the ideal choice, standardisation of the enamel 

specimens remains problematic. The loading force used during the test was 

4.5 N (Harrison and Lewis, 1975) in a neutral freshly prepared buffer 

solution (pH 7) to simulate the in-vivo oral environment (Antunes and 

Ramalho, 2009). Samples were also stored for 7 days in distilled water prior 

to wear testing. Most studies use distilled and deionised water at 37ºC for 

24 hours-7 days as storage media prior to mechanical testing to permit post 

curing polymerisation of the composite specimens and to allow water 

absorption into the resin matrix which could enhance the mechanical 

properties through the plasticizing effect. However, over time, the leaching 
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of the components and the swelling and degradation of the cross-linked 

matrix in the resin composite and hydrolysis of the filler/matrix interfaces 

eventually lead to a decrease in the mechanical properties (Ferracane et 

al., 1998). 

Combinations of analytical techniques were employed in this study to 

evaluate the in-vitro wear performance of the materials. Quantitative 

analysis of the wear tracks was conducted using white light profilometry and 

the mean volume loss (mm3) was calculated (Finlay et al., 2013, 

Arsecularatne et al., 2016, Benetti et al., 2016). To date, confusion still exist 

on whether the wear depth or volume loss should be reported when 

evaluating composites wear performance (DeLong, 2006). However, 

researchers have shown that measuring the volume loss provide a more 

accurate description of a material’s performance and it should be the 

parameter of choice when reporting in-vitro wear (Fleming et al., 2016). 

Though, regardless of the parameter reported (wear depth or volume loss), 

the wear in-vivo is still dependent on the occlusal factors which continuously 

change with time and the progression of wear (DeLong, 2006). Therefore, 

it is suggested that the wear performance of dental composites should be 

evaluated by using a combination of measurement and analytical 

techniques to quantify the wear but also to understand the underlying wear 

mechanism by analysing the wear facets (Altaie et al., 2017). This could 

provide further insight regarding the material behaviour and the tribology of 

wear rather than relying on simple ranking. The results showed that 

prepared experimental composites behaved similarly to the commercial 

control with minimal wear over 128,000 contacts which is equivalent to 3 

months clinical wear using the employed methodology, (Harrison and 

Lewis, 1975). The null hypothesis was rejected as significant differences 

were found between group A and D when compared to B, C and TC. 
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3.6.4 Vickers microhardness 

The materials’ hardness is a relative measure to its resistance to 

indentation when a constant load is applied. Therefore by definition, the 

hardness is a measure of the material’s resistance to scratching and 

abrasion and could indicate the finishing and polishing properties (McCabe, 

1990). The surface hardness intuitively seems to be an important property 

especially in predicting wear resistance of dental composites. However, 

due to the complexity of the wear process, in-vitro studies have been 

equivocal in showing the correlation between wear and microhardness, 

(Ferracane, 2011). It has been widely reported that the surface 

microhardness value is directly proportional to the composite filler content 

(Ferracane et al., 1998, Kim et al., 2002, Jun et al., 2013b, Randolph et al., 

2016). Due to the variation of composite formulations the reported 

microhardness values of commercial composites ranges between 23-108  

(Randolph et al., 2016). Vickers and Knoop microhardness tests are the 

most widely used methods in evaluating the surface microhardness of 

dental composites. Vickers microhardness test was conducted in this study 

when a load of 100 g was applied for 15 s. Data analysis showed that the 

microhardness values of the experimental composite groups were 

significantly higher when compared to TC. Experimental composite values 

ranged between 89-94 (SD=2-4) whereas TC value was 53.5 (SD=3.5). 

There were no significant differences in the microhardness values between 

the experimental composites regardless of the resin mixture formulations. 

Since all experimental groups contained the same amount of filler content 

(80%wt, 64%vol), the lack of variation in the values is expected. Other 

researchers also reported a relatively low Vickers hardness value of TC 

(40.7, SD=1.3) (Randolph et al., 2016). Experimental composites showed 

high microhardness values which are comparable to the commercially 

available highly filled dental composites (Randolph et al., 2016). Since FA 

composites showed significantly higher HV when compared to TC, the null 

hypothesis was rejected. 
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3.7 Summary 

Model experimental composite formulations were successfully produced 

with 80%wt (63%vol) filler content. The homogeneity of the composite 

mixture was comparable to the commercial control. The physical and 

mechanical properties were acceptable and comparable/higher to the 

commercial material, Table 12. There were no differences in the DC, and 

microhardness values between the different experimental composite 

formulations regardless of the monomer mixture used. However, 

differences were found when the in-vitro wear resistance were evaluated. 

Composite containing (70BisGMA: 30TEGDMA) and (70BisGMA: 

30BisEMA) showed the least wear resistance when compared to other two 

experimental groups. Therefore, it was concluded that either group B 

(70BisGMA: 20TEGDMA: 10BisEMA) or C (70BisGMA: 10TEGDMA: 

20BisEMA) would be a suitable model dental composite to carry forward for 

the next part of this. TEGDMA is conventionally associated with higher 

polymerisation shrinkage (Asmussen, 1984, Braga et al., 2005). Therefore, 

Group C which contains higher amount of BisEMA was selected as the 

model composite for the next part of this project. 

Table 12: Experimental composites and Tetric Evo ceram (TC) mean 

degree of conversion (DC) at 40 s curing time, wear resistance 

(volume loss mm3) and Vickers microhardness (HV). 

Group DC, (SD) Wear (mm3),(SD) HV,(SD) 

TC 51.8 (0.5) 0.023 (0.004) 53.4 (3.5) 

30%TEG 59.9 (2.4) 0.060 (0.007) 89.7 (4.0) 

20%TEG 59.8 (3.5) 0.019 (0.004) 93.2 (2.8) 

10%TEG 61.0 (4.6) 0.021 (0.004) 94.8 (2.0) 

0%TEG 61.9 (1.9) 0.031 (0.003) 89.0 (3.3) 
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Chapter 4: Preparation and characterisation of 

synthesised Fluorapatite (FA) particles 

4.1 Introduction  

Dental enamel is the hardest mineralised tissue in the human body; its 

unique structure provides protection against caries development especially 

in the presence of fluoride. It consists of hydroxyapatite crystals (HA) 

arranged into a well organised micro-architectural structure called enamel 

prisms.  Therefore HA is considered a very attractive biomimetic biomaterial 

for applications in dentistry. Fluorapatite, Ca5(PO4)3F, (FA) is the fluorine 

substituted form of HA, it which the (OH-) in HA is substituted with (F-). 

Various clinical applications of apatites have been suggested; including 

coating of dental implants to improve the bioactivity and osteointegration 

(Carradò et al., 2017), direct application to exposed dentine to manage 

dentine hypersensitivity (EARL, 2007), dental prophylactic agents 

(Kensche et al., 2017) and the development of experimental bioactive 

dental restoratives (Arcıś et al., 2002, Taheri et al., 2015). Fluorapatite is 

hexagonally shaped with a highly symmetrical crystallographic structure. It 

is chemically stable but known to release fluoride in an acidic environment. 

Fluoride interferes with the caries process by reducing demineralisation and 

enhancing the remineralisation of enamel and dentine (Cate, 1999). The 

presence of fluoride in an acidic oral environment results in a physico-

chemical interaction between the dissolving hydroxyapatite and the fluoride 

ions. The calcium and phosphate lost from the hydroxyapatite interacts with 

the fluoride and returns back to the tooth as fluorapatite (reducing 

demineralisation). Fluoride also enhances the remineralisation process 

through enhancing the precipitation of calcium phosphate and 

consequently reduces caries progression. In addition to that, it has been 

shown that fluoride has an antibacterial effect towards Streptococcus 

mutans which is the most cariogenic bacteria (Seppa et al., 1993, Loyola-

Rodriguez and Garcia-Godoy, 1996, Pandit et al., 2011). To mimic this 

natural caries resistance of teeth, it was suggested that synthesised 

fluorapatite crystals could be a suitable and effective chemically stable anti-
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caries material (Chen et al., 2006b). In addition to that, the synthesised FA 

crystals have a unique hexagonal structure in the form of crystals and 

bundles of crystals which can act as reinforcing filler within the resin matrix 

of dental composites. Therefore in principle, a dental resin containing FA 

would be a favourable restorative material for human tooth tissue. Many 

techniques have been investigated to synthesise apatite including solid 

state reaction (Rao et al., 1997), ultrasonic pyrolysis (Aizawa et al., 1999), 

plasma techniques (Yoganand et al., 2010), precipitation (Mobasherpour et 

al., 2007), solution gelation (Bilton et al., 2010) and the hydrothermal 

reaction (Chen et al., 2006b). By far, the most widely used methods are 

either solution precipitation or the hydrothermal reaction (Nayak, 2010).  

This chapter will discuss the synthesis of fluorapatite crystals using the 

hydrothermal synthesis methodology and the characterisation of the 

produced powder using various analytical techniques to ascertain the 

crystals morphology and chemical composition, prior to its incorporation as 

filler in the experimental dental composite. 

4.2 Aims 

The aim is to develop and characterise fluorapatite particles to be used as 

secondary filler for preparation of experimental dental composites. 

4.3 The null hypothesis 

The synthesised fluorapatite in this study will have no morphological and 

chemical characteristic differences to natural fluorapatite. 

  



78 
 

 
 

4.4 Materials and methods 

4.4.1 Fluorapatite (FA) particle synthesis 

Fluorapatite crystals were synthesised using a hydrothermal method 

(NaH2PO4.H2O, NaF2 and EDTA-Ca-Na2 reaction) which was previously 

described by (Chen et al., 2006b); this method was also employed by 

several other researchers to synthesise FA particles for various research 

applications (Liu et al., Czajka-Jakubowska et al., 2009). 9.36 g of 

ethylenediamine tetraacetic acid calcium disodium salt (EDTA-Ca-Na2) and 

2.07 g of NaH2PO4·H2O were mixed with 90 ml of distilled water. This 

suspension was then stirred continuously until the powder was fully 

dissolved. The pH was adjusted to 6.0 using NaOH. 0.21 g of NaF was 

dissolved in 10 ml water (pH 7.0) and stirred continuously and then added 

to the 90 ml of the first solution. FA crystal growth was achieved by 

autoclaving the newly prepared EDT-Ca-Na2/NaH2PO4/NaF mixture at 

121°C at a pressure of 2.4×105 Pa for 10 hours. The resulting solution 

containing the FA precipitate was then left to cool and the excess liquid was 

then discarded. The powder was then washed five times by adding 100 ml 

of distilled water and manually stirring for 2 minutes, followed by drying. 

After the fifth wash, the suspension was poured onto a flat glass surface 

and left to dry. Once dried, the powder was collected and manually ground 

using a mortar and pestle and stored in an airtight vial at room temperature. 

4.4.2 Fluorapatite morphological and compositional 

analyses 

4.4.2.1  Scanning Electron Microscope (SEM) 

Morphological analysis of the synthesised FA was conducted using SEM. 

Three FA samples were placed on carbon sample stubs; loose particles 

were then removed by spraying with compressed air. The samples were 

then coated with approximately 5 nm of gold using an argon sputter coating 

unit (Agar Scientific, Stanstead, UK). Samples were then mounted at a 

10 mm distance and scanned under low vacuum with an accelerating 
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voltage of 20Kv. SEM images were then processed using post imaging 

analysis software to determine particle size distribution (Image J). 20 

images were taken at x1000 magnification with 10 mm working distance. 

10 measurements were taken from each image (5 for diameter and 5 for 

the length in µm) and the average was recorded.   

4.4.2.2   Energy Dispersive X-Ray Spectroscopy (EDX) 

The synthesised FA nanoparticles were further characterised using energy 

dispersive X-ray spectroscopy (Bruker 129 eV) to obtain their elemental 

composition. Analysis was carried out using the same samples (n = 3) 

prepared for SEM imaging. A section of the sample stub was analysed to 

incorporate as many particles as possible to allow a representative average 

to be obtained. Images were taken at x1000 and x2000 magnification with 

10 mm working distance. 

4.4.2.3   X-ray-Diffraction (XRD) analysis 

To determine the crystallographic structure of the synthesised FA crystals, 

XRD analysis was conducted using an X-ray diffractometer (PHILIPS 

X’PERT, Cambridge, UK). The powder was packed into the sample holder 

and the diffractometer was run over a 2θ range covering 10-60 °. Generated 

XRD traces were then compared to a reference pattern (15-0876) for 

stoichiometric FA obtained from the International Centre for Diffraction Data 

(ICDD) database. 

4.5 Results 

4.5.1 Scanning Electron Microscope (SEM) 

The synthesised FA exhibited individual hexagonal rod like crystals and 

bundles, Figure 25 shows the different crystal morphologies identified. 

Particle size analysis showed that the average crystal diameter ranged 

between 2-4 (µm) wide and 12-20 (µm) long, Figure 26, to give an aspect 

ratio of ~1:6. 
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Figure 25: SEM images of the synthesised FA powder. (A) Shows 

hexagonally shaped rod like crystals. (B) Shows bundles of FA rods 

(red arrows) and individual FA rods. (C) Shows the top surface of FA 

rods grown on the surface of the beaker. (D) Shows individual FA 

crystals precipitated at the bottom of the beaker. (E) Shows as 

individual bundle with hexagonally shaped centre. (F) Shows an 

individual hexagonally shaped FA crystal. 
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Figure 26: SEM of the FA crystals showing representative range of the 

average particle size diameter and length (µm). 

4.5.2 Energy Dispersive X-Ray Spectroscopy (EDX) 

Further characterisation of the synthesised FA particles was conducted 

using EDX to obtain their elemental composition. EDX spectra showed that 

the elemental composition of the synthesised FA particles was as expected, 

Figure 27. Elemental analysis also showed that the Ca:P ratio was in 

excess of that of stoichiometric  FA (calcium rich apatite at 1.77:1 compared 

to theoretical 1.67:1) and the F content slightly in excess compared to 

stoichiometric  FA, Table 13. Elemental maps were also generated from the 

SEM images of the FA samples showing P, Ca and F evenly distributed in 

the crystals, Figure 28.  
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Figure 27: EDX spectrum showing the elemental composition of 

synthesised FA. 

 

Table 13: Elemental composition of FA in terms of atomic weight% as 

determined by EDX 

Element Atomic weight% 

Ca 22.49±1.3 

P 12.64±0.6 

F 5.04±0.4 

Ca:P 1.77:1 

Ca:F 4.46:1 
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Figure 28: Elemental maps of the FA crystals with P, Ca and F 

elements shown overlaid on the corresponding SEM image (A) and 

alone (b). 

4.5.3  X-ray-Diffraction (XRD) analysis 

XRD traces showed that synthesised FA particles have similar peak 

positions and relative intensities when compared to the reference trace with 

the absence of unmatched peaks, Figure 29. The synthesised FA traces 

showed narrow peaks indicative of a highly crystalline material.  

 

Figure 29: XRD traces of synthesized FA compared to a stoichiometric 

FA obtained from the International Centre for Diffraction Data (ICDD). 
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4.6 Discussion 

Fluorapatite (FA) crystals were synthesised following the hydrothermal 

synthesis methodology described by Brian Clarkson’s group (Chen et al., 

2006b). Various analytical techniques were employed to characterise the 

morphology and the chemical structure of the synthesised FA including 

SEM, EDX and XRD. SEM images showed typical hexagonally shaped rod 

like crystals and bundles of crystals (Figure 25) corresponding to a 

distinctive FA morphology. Elemental analysis using the EDX showed Ca, 

P and F peaks which are typical of FA with similar Ca:P  and Ca:F ratios to 

that of stoichiometric FA (Table 13), however the FA was slightly calcium 

and fluoride rich. The XRD trace (Figure 29) also showed good correlation 

with that of the ICDD FA reference diffraction pattern. Based on those 

analytical techniques, strong agreements were found between the 

synthesised FA to the one produced by Chen et al (2006b). Analysis of the 

particle size distribution showed that FA crystals’ average diameter ranged 

between 2-4 µm and length 12-20 µm as shown in (Figure 26), similar to 

the dimensions of 1-3 µm in cross section and 10-30 µm in length reported 

by Chen et al (2006b). Filler particle size distribution varies widely in 

commercial composites materials. Randolph et al (2016) conducted a 

comprehensive analysis of the filler particles size, geometry and content of 

various commercial dental composites, it was shown that most composite 

materials have two filler size peaks; with one centred either around 1-2 µm 

or 10 µm in some materials and the second one around 5-30 µm 

corresponding to larger filler particles (Randolph et al., 2016). The proposed 

composition of FA containing composites planned in this study is to 

incorporate barium glass (D50= 0.7 µm) as a primary filler and FA (2-4 µm 

diameter and 10-20 µm long) as a secondary filler. Therefore the majority 

of the experimental FA containing composites will contain submicron filler 

particles mimicking the majority of the commercially available dental 

composites. Commercial composites contain fillers with various 

morphologies from spherical to rough and irregular fillers. Several 

researchers investigated the effect of various filler morphologies on the 

mechanical performance of dental composites. To date, there has been no 
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consensus correlating the size and the shape of filler particles to the 

mechanical properties of dental composites (Rueggeberg et al., 1993, 

Turssi et al., 2005, Masouras et al., 2008b, Leprince et al., 2010). Whereas 

it has been suggested that filler load is the main factor affecting the 

mechanical properties while the filler size and morphology is considered as 

a secondary factor that may alter the materials properties (Masouras et al., 

2008a, Randolph et al., 2016). The unique morphology of the FA crystals 

and bundles of crystals could act as reinforcing filler within the resin matrix. 

Experimental composites containing hydroxyapatite filler showed higher 

flexural strength in comparison to the control material (Arcıś et al., 2002), 

similar observation were reported by Taheri et al (2015). However when the 

amount of hydroxyapatite incorporated was above a certain level the 

mechanical properties were negatively affected (Taheri et al., 2015). 

The SEM, EDX and XRD data strongly suggested that the FA powder 

produced exhibited similar chemical composition and morphological 

features to that produced by Chen et al (2006b) whose method was 

adopted in the study. The FA crystal size was in the range of most 

conventional fillers used in commercial dental composites; therefore it was 

felt that the FA powder produced would be a suitable filler to be used in 

experimental dental composites. 

4.7 Summary 

Fluorapatite crystals were successfully produced using a reproducible 

methodology. The morphological and geometrical characteristics of the FA 

crystals showed favourable properties to be used in resin composites. The 

FA produced in this chapter will be incorporated as secondary filler in 

experimental dental composites. 
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Chapter 5: Development of Fluorapatite containing 

dental composites  

5.1 Introduction 

The use of dental composites as a universal restorative has significantly 

increased over the last few years exceeding amalgam in some countries. 

This trend is expected to continue due to the Minimata convention and the 

phase down in the use of mercury containing products (Lynch and Wilson, 

2013b). Despite the continuous evolution of dental composites; their long 

term longevity remains to be problematic. Numerous studies have identified 

secondary caries and fracture as the two main reasons of failure of dental 

composites (Burke et al., 1999, Mjor et al., 2000, Bernardo et al., 2007, 

Demarco et al., 2012b). Therefore, the development of resin composites 

remains as focal point of research in academia and industry aiming to 

enhance their properties and clinical service by addressing their perceived 

shortcomings (Ferracane, 2011, Randolph et al., 2016). A possible 

approach to prevent secondary caries formation is the addition of agents 

that inhibit bacterial growth and aid tooth tissue remineralisation. Synthetic 

fluorapatite resembles the natural dental enamel in colour, chemical 

composition, surface morphology and structure. It is chemically stable but 

known to release fluoride in an acidic environment. Therefore, it was 

suggested that synthesised fluorapatite crystals could be a suitable and 

effective chemically stable anti-caries material (Chen et al., 2006b). In 

addition to that, the unique morphology of FA crystals in the form of crystals 

and bundles of crystals can act as reinforcing filler within the resin matrix of 

dental composites maintaining the mechanical strength. Therefore the aim 

of this study is to develop experimental dental composites with FA 

incorporated as secondary filler to improve the mechanical and the 

biological properties of resin composites. Characterisation of new materials 

is essential to predict their performance and clinical success. Therefore 

experimental materials will be subjected to series of tests to characterise 

their physical and mechanical properties and fluoride ion release.  Wear 

resistance, fracture toughness and flexural strength have been identified as 
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the key laboratory mechanical parameters with direct relations to fractures 

and wear in-vivo (Ferracane, 2013a, Heintze et al., 2017). Therefore the 

mechanical performance of the experimental materials will be evaluated 

based on these parameters and will be compared to a commercial control 

(Tetric Evo Ceram). 

This chapter will describe the development of FA containing dental 

composites with various FA concentrations and the characterisation of their 

properties in relation to commercial dental composites. 

5.2  Aims 

1- To develop experimental dental composites with fluorapatite 

incorporated as secondary filler. 

2- To characterise the mechanical and physical properties of dental 

composite formulations FA containing. 

3- To measure the fluoride ion release. 

5.3 Hypotheses 

The null hypotheses are below: 

1- There is no significant difference in the degree of conversion of FA 

containing composites when compared to the commercial control. 

2- There are no significant differences in wear resistance, 

microhardness, fracture toughness, flexural strength and flexural 

modulus between FA containing composites and to the commercial 

control. 

3- The addition of FA will not significantly affect the experimental 

materials degree of conversion regardless of the FA concentration 

used. 

4- The addition of FA will not significantly reduce the mechanical 

properties of the experimental materials regardless of the FA 

concentration used. 
5- FA containing composites will release fluoride under acidic and 

neutral conditions and no fluoride will be released from the control 

groups. 
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5.4 Materials and methods 

5.4.1 Preparation of dental composite formulations 

Based on the previous physical and mechanical characterisation conducted 

on the model experimental dental composites, it was decided to select the 

formulation containing (70: BisGMA, 10: TEGDMA, 20: BisEMA) as the 

monomer mix of choice to carry forward in this study. Experimental 

composites were formulated containing BisGMA/TEGMA/BisEMA and 

barium aluminium silicate glass as the primary filler Table 3. Synthesized 

fluorapatite (FA) rod-like particles were incorporated at 0 (FA0), 20 (FA20), 

30 (FA30) and 40%wt (FA40), replacing the primary glass filler and to 

maintain an overall filler content of 80wt%. 

Five composite formulations were produced following the same protocol 

previously described (in Chapter 3:  section 3.4.1). FA powder was also 

added sequentially in four increments as detailed earlier. Mixed composites 

were kept in their containers and sealed with Parafilm (Parafilm®, Bemis 

company, Inc., UK) and wrapped in aluminium foil and stored at 4°C until 

use. 

5.4.2 Characterisation of FA containing dental composites 

5.4.2.1  Scanning Electron Microscopy and Energy 

Dispersive X-Ray Spectroscopy 

EDX attached to the SEM was used to generate elemental maps to 

evaluate the homogeneity of the composite mixture and the incorporation 

of FA crystals and bundles within the resin matrix. Composite specimens 

were prepared as described (in Chapter 3: 3.4.2.1  

5.4.3 Degree of Conversion 

The degree of conversion (DC) of experimental FA containing dental 

composites was measured using FTIR-ATR (Spectrum 100, PerkinElmer, 

UK). Measurements were compared to the DC of 0FA containing 

composites and Teric Evo Ceram (Ivoclar-Vivadent, Lichtenstein). The 
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same methodology was followed as previously described (Chapter 3: 

section 3.4.2.2 ). 

5.4.4 In-vitro two body wear 

Wear testing (n = 10) and analysis was conducted following the same 

methodology described (in Chapter 3: section 3.4.3). 

5.4.5 Vickers Microhandess (HV) 

Vickers microhardness (n = 5) and analysis was conducted following the 

same methodology described (in Chapter 3: section 3.4.4). 

5.4.6 Flexural Modulus and Flexural Strength 

5.4.6.1  Specimens preparation 

Flexural modulus and flexural strength were determined using a universal 

testing machine (Instron 3365, MA, USA) equipped with a three-point 

bending apparatus (n=10) following the ISO 4049 protocol (ISO4049, 

2009).Ten composite specimens were prepared for each group with 

dimensions of 25 × 2 × 2 mm using a custom made split steel mould. 

Composite was packed incrementally and covered by a cellulose acetate 

separating strip and a glass microscope slide onto which was placed a 1 kg 

mass for 20 s in order to compress and level the material. The microscope 

slide was then removed and each specimen was photo-polymerised for 

20 s per side overlapping each section using a light emitting diode (LED) 

light curing unit with 8 mm diameter tip (Demi Plus, Kerr, Orange Co., CA, 

USA), irradiance of >1000mW/cm2, at 23 ± 1ºC. The irradiance was 

checked prior to use by employing a checkMARK (Bluelight Analytics Inc., 

Halifax, Canada). Following that, the cellulose acetate strip was removed 

and each specimen was checked for surface imperfections and polished 

using silicon carbide (SiC) abrasive papers grid 400 (Struers,Copenhagen, 

Denmark). The specimens were then stored in distilled water in an 

incubator maintained at 37 ± 1ºC for seven days before testing. 
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5.4.6.2  Flexural modulus and flexural strength testing 

Specimen thickness and width were measured before testing using digital 

callipers (±0.01mm) and samples were then loaded on a 20 mm support 

span with knife edge geometry at 0.75 mm/min cross head speed. The 

maximum load exerted on the specimen at the point of fracture was 

recorded and flexural modulus (E) and flexural strength were calculated 

using Equation (1) and (2) respectively. 

Equation 3 

𝐸(𝐺𝑃𝑎) =
𝑙3 ∗ 𝛿

4 ∗ 𝑏 ∗ ℎ3 ∗ 1000
 

Equation 4 

𝜎 (𝑀𝑃𝑎) =  
3𝐹𝑙

2𝑏ℎ2
 

Where  

F is the maximum load (N) exerted on the specimen 

l is the distance (mm) between the supports 

b is the width (mm) at the centre of the specimen 

h is the height (mm) at the centre of the specimen 

δ is the slope of a force/deformation curve in the elastic region (N/mm) 

5.4.7 Fracture Toughness  

5.4.7.1  Specimen preparation 

The sharp single edge notch beam (SENB) method was used to determine 

the materials’ fracture toughness (K1C) following the ASTM (E399-83) 

standards . This methodology has also been widely employed in the dental 

composite literature (Fujishima and Ferracane, 1996, Bonilla et al., 2003, 

Musanje and Ferracane, 2004, Rodrigues Junior et al., 2008a, Soderholm, 

2010). Bar shaped composite specimens were made using custom made 

split mould (n = 10) with dimensions of 25 x 6 x 3 mm. The mould and 

specimen configuration are shown in Figure 30 and Figure 31. Composites 
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were incrementally packed and light cured following the ISO 4049 

standards following the same technique detailed in (section 3.4.3.2 ). 

Samples were then removed from the mould and a sharp notch 

(3.0±0.1 mm length x 0.3±0.1 mm width) was cut into each specimen using 

a diamond disc attached to straight hand piece. The hand piece and the 

diamond disc were mounted on a custom made jig to precisely cut a 

2.8±0.1 mm long notch into the middle of the sample as per the ASTM 

(E399-83), Figure 32. A razor blade mounted on a custom made Perspex 

jig was then passed through the notch to create a very sharp notch 

(0.2±0.01 mm length), Figure 33. A new razor blade was used for each 

composite group to create the notches. Specimens were then polished 

using 400 grit silicon carbide (SiC) abrasive papers (Struers,Copenhagen, 

Denmark) and stored in distilled water in an incubator maintained at 

37 ± 1ºC for seven days before testing. SEM images of a representative 

cracked sample ready for testing is shown in Figure 34. 

 

 

 

Figure 30: Schematic diagram showing the custom made split mould 

to produce samples for fracture toughness testing. 

 (Drawn by Collin Sullivan, LDI) 
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Figure 31: Specimen configuration for fracture toughness 

determination by the SENB testing method. Specimen geometry 

(a = 3.0±0.1 mm length x 0.3±0.1 mm width, w = 6 mm and t = 2 mm) 

(Drawn by Collin Sullivan, LDI) 

 

Figure 32: Custom made jig with a diamond disc attached to a 

securely mounted headpiece to insert the initial crack into the 

composite specimen. 



93 
 

 
 

 

Figure 33: Custom made jig with a changeable razor blade attached to 

insert the final crack into the composite sample before testing. 

 

 

Figure 34: SEM images showing a representative cracked composite 

sample before testing. (A) The initial crack is created using a diamond 

disc with dimensions of (2.8±0.01 X 0.3±0.1) and (B) the final crack 

created after the insertion of the razor blade (0.2±0.01 X 0.02 mm).  

5.4.7.2  Fracture toughness testing (SENB) 

The notched composite specimens were tested in a three-point bending 

test with a crosshead speed of 0.5 mm/min in a universal testing machine 

(Instron 3365, MA, USA), Figure 35. Specimen dimensions were measured 

prior to testing in three equally spaced positions along the sample and the 

mean reading was recorded. Calculations of the fracture toughness values 

were determined using the following equations: 
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Figure 35: Notched composite specimen mounted on a three-point 

testing apparatus attached to the Instron machine. 

Equation 5 

𝐾1𝑐 = (
3𝑃𝑆𝑎1/2

2𝑡𝑤2
) × 𝑓(

𝑎

𝑤
) 

Where  

Equation 6 

𝑓 (
𝑎

𝑤
) =  1.93 −  3.07 (

𝑎

𝑤
) +  14.53 (

𝑎

𝑤
)

2

 − 25.11 (
𝑎

𝑤
)

3

+  25.80 (
𝑎

𝑤
)

4

 

P is the maximum load (N) exerted on the specimen 

S is the distance (mm) between the supports 

w is the width (mm) at the centre of the specimen 

t is the thickness (mm) at the centre of the specimen 
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5.4.8 Fluoride Release 

5.4.8.1  Specimen preparation 

Disc shaped composite specimens were prepared for each group with 

dimensions of 6 × 2 mm using a custom made steel mould (n=6). 

Specimens were prepared following the ISO 4049 standards. Composites 

were then photo-polymerised in one cycle for 40 s. Following that 

composites were polished using 400 grit silicon carbide (SiC) abrasive 

papers (Struers, Copenhagen, Denmark). Fluoride release was conducted 

in neutral and acidic conditions using distilled water and an acidic buffer 

solution (pH 4).  Fresh buffer solution was made for each test using pH 4 

buffer tablets (VDR, Belgium) which was dissolved in distilled water 

following manufacturer’s instructions. The pH values were confirmed using 

a pH meter (ORION-920A model, Orion Research, UK) which was 

calibrated before each test. Specimens were then placed in 5 ml of the 

immersion solution in a sterile polystyrene container with an integral spoon 

within the cap to aid in sample mounting (30 ml, Elkay Laboratory Products, 

UK, Ltd). Samples were fixed to the spoon with red dental wax (Metrodent, 

UK) to allow full immersion of the specimens in the storage medium and to 

maintain no contacts with walls, Figure 36. The media were changed in each 

container on daily basis in the first week, then every 7 days up to 1 month and 

then monthly thereafter. 

 

Figure 36: Composite sample fixed on a spoon holder and immersed 

in the solution in a sample container. 
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5.4.8.2  Fluoride release testing 

The ion-selective method was used to measure the fluoride ion release 

using an ion-selective electrode (Orion Research, Thermo Scientific, 

Waltham, MA, USA) connected to an ion analyser. Measurements were 

taken over 24 hours on daily basis for 7 days, then weekly up to 28 days, 

then at day 56, 112 and 196. At time of media replacement, each specimen 

was removed with its integral spoon from the container and the storage 

solution was stored for analysis. The specimens were then washed with 

deionised water and dried with a paper towel then they were placed in fresh 

containers containing 5 ml of the immersing solution for the next 

measurement. 5 ml of TISAB III (TISAB III concentrate with CDTA, Thermo 

Fisher science) was added to each storage sample solution and then mixed 

for 20 s using vortex genie 2 (Scientific industries, USA) prior to 

measurement. The electrode was then immersed into the solution and 

concentration reading was recorded. 

The instrument was calibrated prior to each testing using five standard 

sodium fluoride solutions containing 0.01, 0.1, 0.5, 1, 10 and 100 ppm 

fluoride and a calibration curve was plotted prior to each testing. The 

concentration reading was recorded in milliVolts (mV) for each sample 

solution. A logarithmic equation was then used to convert the mV values to 

ppm following the below equations: 

Equation 7 

𝑚𝑉1 − 𝑚𝑉2

𝑙𝑜𝑔𝐶1 − 𝑙𝑜𝑔𝐶2
=

𝑚𝑉𝑠 − 𝑚𝑉2

𝑙𝑜𝑔𝐶𝑠 − 𝑙𝑜𝑔𝐶2
 

Equation 8 

𝑙𝑜𝑔𝐶𝑠 − 𝑙𝑜𝑔𝐶2

𝑙𝑜𝑔𝐶1 − 𝑙𝑜𝑔𝐶2
=

𝑚𝑉𝑠 − 𝑚𝑉2

𝑚𝑉1 − 𝑚𝑉2
 

Equation 9 

𝑙𝑜𝑔𝐶𝑠 − 𝑙𝑜𝑔𝐶2 = (
𝑚𝑉𝑠 − 𝑚𝑉2

𝑚𝑉1 − 𝑚𝑉2
) × (𝑙𝑜𝑔𝐶1 − 𝑙𝑜𝑔𝐶2) 
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Equation 10 

𝑙𝑜𝑔𝐶𝑠 = (
𝑚𝑉𝑠 − 𝑚𝑉2

𝑚𝑉1 − 𝑚𝑉2
) 𝑙𝑜𝑔𝐶1 − (

𝑚𝑉𝑠 − 𝑚𝑉2

𝑚𝑉1 − 𝑚𝑉2
) 𝑙𝑜𝑔𝐶2 + 𝑙𝑜𝑔𝐶2 

Equation 11 

𝐶𝑠 = 10𝑙𝑜𝑔𝐶𝑠 

Where  

mV1 and mV2 represent mV of standard solutions, C1 and C2 represent 

concentration of standard solutions, mVs represents mV of testing sample, Cs 

represents concentration of testing sample, LogCs represents the 

concentration of testing sample in ppm, mV represents the milliVolts from the 

analyser reading, ppm represents the parts per million. 

5.4.8.3  SEM analysis of fluoride releasing composite 

specimens 

Aged and freshly prepared composite specimens were prepared for each 

fluoridated composite group (n = 3) and evaluated under the SEM. 

Specimens were prepared using the same protocol used in preparation for 

fluoride release experiment. Aged specimens were analysed following 

immersion in acidic medium (pH = 4) for 112 days with daily medium 

change in the first week and weekly change for the following three weeks. 

Collected samples were then mounted on an aluminium stub and coated 

with approximately 5 nm of gold using an argon sputter coating unit (Agar 

Scientific, Stanstead, UK). Samples were mounted at a 5 mm distance and 

scanned under low vacuum. 

5.5 Results 

5.5.1 Scanning Electron Microscopy and Elemental 

Mapping 

SEM images generated showed typical crystalline structure of FA particles 

homogeneously incorporated within the resin mixture, Figure 37. Further 
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EDX analysis also showed typical FA elemental compositions 

corresponding to the incorporated FA crystals, Figure 38.  

 

Figure 37: SEM image showing 40FA composite specimen with FA 

crystals and bundles widely distributed within the resin matrix. 

 

Figure 38: EDX image showing Ca and P corresponding to the FA 

crystals and Si corresponding to the primary filler. 
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5.5.2 Degree of Conversion 

Figure 39 shows representative FTIR spectra of FA containing composite 

specimen (30%FA) with typical aromatic and aliphatic key peaks at each 

time point. The absorption aliphatic (C=C) peak at 1640 cm-1 changed with 

polymerisation whereas the aromatic peak (C=C) at 1607 cm-1 remained 

stable and therefore chosen as the internal standard. The graph also shows 

that the aliphatic (C=C) peak decreases with the light exposure whereas 

the aromatic (C=C) peak remains relatively stable during polymerisation. 

 

 

Figure 39: A representative FTIR spectra in region of 1550-1700cm-1 

from fluorapatite containing composite specimen (30FA). 
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5.5.2.1  Data distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that all groups were normally distributed as shown in 

Appendix H, therefore a parametric multi comparison tests One-way 

ANOVA and the Post Hoc Tukey were carried out.  

5.5.2.2  Descriptive and statistical analysis 

The mean percentages of the Degree of conversion (DC) are shown in 

Table 14. FA containing composites showed mean DC of 44-60% at 

different time intervals. Statistical analysis carried out using the One-way 

ANOVA showed that there were statistically significant differences between 

the experimental and the commercial composite groups at different time 

intervals (p < 0.05). Group comparisons were conducted using the post Hoc 

Tukey test which showed the differences between the groups at different 

time intervals (Appendix I and Appendix J). 
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Table 14: Group comparisons showing the mean Degree of Conversion with their standard deviation (SD) for FA containing 

and commercial composites tested. 

Time 

TC 0FA 10FA 20FA 30FA 40FA 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

5 s 
41.3 7.5 53.9 1.8 53.5 1.5 46.4 2.6 51.6 2.2 45.1 2.9 

10 s 
41.4 1.3 58.0 4.2 50.6 2.3 53.2 0.5 50.9 4.7 45.3 3.7 

20 s 
47.3 0.8 56.5 4.1 56.9 1.7 54.8 4.2 56.2 2.0 50.9 2.4 

30 s 
49.2 1.1 58.1 3.9 53.7 5.5 53.0 6.3 54.6 4.7 50.7 1.9 

40 s 
51.8 0.5 61.0 4.6 57.8 1.8 54.8 7.2 54.0 5.4 56.6 4.4 

50 s 
53.0 4.1 62.1 5.1 59.1 3.4 54.8 7.2 61.5 2.8 53.3 4.1 

60 s 
55.0 3.9 62.9 3.6 56.1 4.8 59.8 4.0 60.4 4.4 55.9 3.9 
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Commercial and experimental composites comparisons 

TC has a significantly lower DC compared to composite groups 0FA, 10FA, 

20FA and 30FA at short curing times from 5-20 s (p < 0.05). However the 

DC of TC increases further after curing for extended times (30, 40 and 60 

s) with no significant differences compared to all FA containing composite 

groups (p > 0.05), Figure 40. Due to the continuous increase in the DC of 

30FA at 50 s, the DC of TC remains significantly lower when compared to 

30FA (p > 0.05). 

 

 

Figure 40: The mean DC with the standard deviation (error bars) for 

FA containing composites and commercial composite (TC) groups 

between 30-60 s curing times. 

Comparisons between the groups with different FA concentrations 

40FA and 20FA composite group showed significantly lower DC when 

compared to 0FA and 10FA at 5 s curing time (p < 0.05). 40FA DC 

remained significantly lower when compared to 0FA, 10FA, 20FA and 30FA 

at 10 s curing time (p < 0.05). However there were no significant differences 

between all experimental groups at extended curing times from 20-60 s 

curing times (p > 0.05), Figure 41. 
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Figure 41: The mean DC with the standard deviation (error bars) for 

FA containing composites and the control groups (0FA and TC) 

between 20-60 s curing times. 

5.5.3 In-vitro wear resistance 

5.5.3.1  Data Distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that all groups were not normally distributed as shown in 

Appendix K, therefore a non-parametric test Kruskal-Wallis was carried out. 

5.5.3.2  Descriptive and statistical analysis 

The wear results showed that there were no statistically significant 

differences between the FA composites and TC (p > 0.05). There were also 

no significant differences between the FA containing composites regardless 

of the percentage of the FA content (p > 0.05), Appendix L. The wear values 

by volume loss (mm3) are shown in Table 15 and Figure 42. 
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Table 15: Group comparisons of the volume loss values (mm3) 

between FA containing composites and TC 

Group Mean Median Std. Deviation 

TC 0.023 0.021 0.004 

0FA 0.019 0.020 0.004 

10FA 0.027 0.023 0.005 

20FA 0.026 0.030 0.005 

30FA 0.028 0.024 0.008 

40FA 0.026 0.020 0.009 

 

 

Figure 42: Group comparisons of the mean wear values by volume 

loss (mm3) with their standard deviation (error bars) between FA 

containing composites and TC. 

5.5.3.3  Profilometry 

The wear tracks of all FA containing groups were shallow as shown in 

Figure 43. Wear loss measurement were also taken by using the unworn 

area as a datum for volume loss (mm3) measurements. 
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Figure 43: Profilometric scans showing representative wear tracks 

from the tested FA containing composite groups. 

5.5.3.4  SEM and Elemental Mapping 

Analysis of the wear tracks of FA containing composites also showed micro 

grooves within the resin matrix running in the direction of the wear track; 

damaged and pulled out individual FA crystals were also seen leaving 

hexagonal voids within the resin matrix. However, larger FA bundles 

remained imbedded with the resin matrix. Figure 44 shows representative 

examples of the scanned wear tracks. The steatite abrading antagonists 

were also analysed, Figure 46 show round shaped wear facets 

corresponding to the shape of the wear tracks. Magnification of the wear 

facets showed material deposition on the surface, Figure 48. EDX analysis 

was conducted to identify the elemental composition of the deposited 

material, scanned images showed Ca and P elements corresponding to FA 

and Mg which is one of the main component of steatite, Figure 49. 
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Figure 44: SEM images of the wear tracks of FA containing dental 

composites. Typical wear track showed vertical micro grooves 

running through the matrix (red arrows) and pull out and damage to 

the FA crystals (yellow arrows). Larger FA bundles were still 

imbedded within the resin matrix (white arrows). 

 

Figure 45: SEM images showing the wear track and the corresponding 

steatite antagonist of a TC sample. Evident micro-grooves running in 

the direction of the wear track (red arrows) and voids corresponding 

to pulled-out filler particles (yellow arrow). Distinctive round wear 

facet is shown on the abrading antagonist. 
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Figure 46: SEM images of the steatite abrading antagonists 

corresponding to the wear tracks of FA containing composites. 

 

Figure 47: SEM and elemental map of TC antagonist. The SEM shows 

the wear facet with material deposited on the surface (red arrows). The 

elemental map shows yttrium element deposition on the surface 

corresponding to the TC composite filler. 
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Figure 48: SEM images showing magnifications of the steatite wear 

facet surfaces corresponding to FA composites. Evident material 

deposition on the surface is shown (red arrows). 
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Figure 49: EDX analysis of the steatite wear facet surfaces. Elemental 

analysis shows Ca and P elements corresponding to the deposited 

material and Mg which is one of the main components of steatite. 
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5.5.4 Vickers Microhardness 

5.5.4.1  Data Distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that all groups were normally distributed as shown in 

Appendix M, therefore a parametric multi comparison tests One-way 

ANOVA and the Post Hoc Tukey were carried out. 

5.5.4.2  Descriptive and statistical analysis 

Table 16 and Figure 50 show the microhardness results group 

comparisons. The results showed that TC has a significantly lower HV 

compared to all the experimental FA composite groups (p < 0.05). Whereas 

there were no statistically significant differences between the FA containing 

groups regardless of the FA concentration (p > 0.05). (Appendix S and 

Appendix T). 

 

Table 16: Group comparison of HV values between FA containing 

composites and TC. 

Group Mean Median Std. Deviation 

TC 53.4 54.3 3.5 

0FA 93.2 91.9 2.8 

10FA 95.2 94.8 1.6 

20FA 94.7 95.1 1.7 

30FA 93.9 94.3 2.3 

40FA 94.3 94.6 1.9 
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Figure 50: Group comparisons of HV values with their standard 

deviation (error bars) between FA containing composites and TC. 

5.5.5 Flexural strength and flexural modulus 

5.5.5.1  Data Distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that the data was not normally distributed as shown in 

Appendix N, therefore the non-parametric Kruskal-Wallis and the Post Hoc 

Bonferroni tests were carried out, Appendix O and Appendix P 

5.5.5.2  Descriptive and statistical analysis 

The flexural strength (MPa) and flexural modulus (GPa) results are shown 

in Table 17, with group comparisons shown in Figure 51 and Figure 52. 

0FA showed the highest flexural strength which was statistically significant 

when compared to all tested groups (p < 0.05). However there were no 

statistically significant differences in the flexural strength of 10-40FA when 

compared to TC (p > 0.05). The increase in the FA concentration lead to a 
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decrease in the flexural strength values but this decrease was not 

statistically significant (p > 0.05). 

Flexural modulus data also showed that 0FA had the highest flexural 

modulus value which was statistically significant when compared to all other 

tested groups (p < 0.05). However TC showed the lowest flexural modulus 

value which was also statistically significant when compared to all FA 

containing composites (p < 0.05). All FA composites showed similar flexural 

modulus regardless of the amount of FA added (p > 0.05). 

 

Table 17: The Flexural strength (MPa) and Flexural modulus (GPa) 

mean, median and standard deviation (SD) values of the experimental 

and the commercial dental composites. 

DC 
Flexural Strength (MPa) Flexural Modulus (GPa) 

Mean Median SD Mean Median SD 

TC 88.64 90.39 17.45 10.22 10.56 0.77 

0FA 113.12 99.83 30.10 14.63 13.74 1.27 

10FA 80.21 73.91 15.76 12.05 11.65 1.89 

20FA 80.56 77.93 10.01 12.19 12.30 0.92 

30FA 74.54 71.04 12.49 12.08 11.51 1.73 

40FA 68.38 67.05 9.40 12.05 12.05 0.01 
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Figure 51: Group comparisons of the flexural strength values (MPa) 

with their standard deviation (error bars). 

 

Figure 52: Group comparisons of the flexural modulus values (GPa) 

with their standard deviation (error bars) 
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5.5.5.3  SEM observations 

Analysis of the fractured surfaces showed micro cracks running through the 

resin matrix and disintegration of the filler particles leaving a rough fractured 

surface. Larger pre-polymerised filler particles present in TC were found 

protruding through the matrix on one fractured surface leaving a 

corresponding space on the opposing surface, Figure 53 (A and B). 0FA 

fractured specimen showed a smooth fracture surface with minimal surface 

irregularity, Figure 53 (C and D). FA containing groups showed very similar 

fractured surfaces with micro cracks running through the matrix and 

deflecting around larger FA bundles, scanned surfaces also showed 

detached smaller FA crystals leaving hexagonal spaces corresponding to 

their original shape within the matrix, Figure 54. 

 

Figure 53: SEM of the fractured surfaces after flexural strength 

testing. (A,B) Show two opposing fractured surfaces of TC composite 

specimen with micro cracks running through an irregular matrix, it 

also shows a large filler particle which has been pull-out leaving a void 

within the matrix (red arrow); the opposing fractured surface shows 

the pulled-out filler deposited on the surface (yellow arrow). (C,D) 

Show the fractured surfaces of 0FA composite specimen with smooth 

distinct fractured surfaces. 
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Figure 54: SEM images of the fractured surfaces of FA containing 

composite specimens post flexural strength testing. Fractured 

surfaces showed micro cracks (white arrows) and pull-out of FA 

crystals (yellow arrows) leaving voids corresponding to the lost FA 

crystals within the matrix (red arrows). 
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5.5.6 Fracture Toughness (K1C) 

5.5.6.1  Data Distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that the data was normally distributed as shown in Appendix 

N, therefore a parametric multi comparison tests One-way ANOVA and the 

Post Hoc Tukey were carried out, Appendix Q and Appendix R. 

5.5.6.2  Descriptive and statistical analysis 

Table 18 and Figure 55 show the fracture toughness values (MPa.m(1/2)) for 

the experimental and the commercial composite groups.10FA and 20FA 

groups showed the lowest fracture toughness values when compared to 

TC, 30FA and 40FA (p < 0.05). The concentration of FA used did not affect 

the fracture toughness values as the results showed no significant 

differences between TC, 0FA, 30FA and 40FA (p > 0.05). 

Table 18: Fracture toughness (MPa.m(1/2)) mean, median and standard 

deviation (SD) of experimental and commercial dental composites. 

DC Mean Median SD 

TC 1.37 1.38 0.10 

0FA 1.29 1.28 0.23 

10FA 0.87 0.92 0.14 

20FA 0.87 0.87 0.10 

30FA 1.46 1.40 0.42 

40FA 1.21 1.18 0.06 
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Figure 55: Group comparisons of the fracture toughness values 

(MPa.m(1/2)) with their standard deviation (error bars). 

5.5.6.3  SEM observations 

Fracture specimens were analysed to evaluate the origin of the fracture line 

in relation to the pre-cracked area. Figure 56 show representative examples 

of the fracture lines extending from the pre-inserted notch. Clear cracks 

were seen extending from the pre-inserted notch with distinctive two 

fractured surfaces in TC and 0FA composites, however FA containing 

composites showed clear cracks with FA bundles and rods bridging 

between the two fractured surfaces as seen in 40FA composite sample 

shown in Figure 57. 
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Figure 56: SEM images showing the crack extension from the pre-

cracked area and magnifications of the crack line within the samples. 

TC and 0FA show clear cut crack running through the sample. 40FA 

shows FA crystals and bundles bridging between the two fractured 

surfaces.  
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Figure 57: SEM images showing magnifications of the crack line in 

40FA composite specimen FA crystals and bundles positioned in the 

crack line and bridging between the two fractured surfaces. 

SEM analysis of the fractured specimens showed three distinct zones: (1) 

The pre-cracked area shows a flat compact surface with the filler particles 

tightly embedded within the resin matrix, (2) the transitional zone with an 

irregular surface and displaced filler/matrix and (3) the fractured surface 
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with visible crack lines and detached fillers leaving spaces within the resin 

matrix. Typical example of the fracture zones is shown in Figure 58 (A and 

B). To identify the fracture mechanisms involved, the two fractured surfaces 

of each specimen were scanned. SEM observations showed two distinct 

fracture phenomena: (1) The presecne of major and micro crack lines 

running through the matrix and (2) The detachment of fillers from the resin 

matrix leaving spaces corresponding to their shape. The detachment of filler 

particles was particularly evident in TC which showed detached PPFs 

deposited on the fractured surfaces leaving spaces within the matrix on the 

opposing surfaces, representative examples are shown in Figure 58 (C and 

D) and Figure 59. 

 

Figure 58: SEM images of a fractured TC specimen. (A) Shows three 

zones within the specimen: The pre-cracked surface (red arrow), the 

transitional zone (yellow arrows) and the fractured surface (white 

arrow). (B) Show magnifications of the transitional zone with pull-out 

offiller/matrix amongst an irregular surface. (C) Shows the fractured 

surface with detached filler particles (red arrows) and (D) shows a 

micro-crack (while arrow) running through the matrix with spaces 

corresponding to lost fillers (yellow arrows). 
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Figure 59: SEM images of two matching fractured surfaces of TC 

specimen. (A) Shows the fractured zone with evident detached PPF 

particles deposited on the surface, (B) shows the corresponding 

fractured surface with evident lost filler particles leaving spaces 

within the matrix. (C) Shows another detached large PPF on the 

fractured surface which corresponds to a matching space on the 

opposing surface shown in (D). 

SEM observations of FA containing composites also showed similar 

transition between the pre-cracked surface and the fractured surface 

dividing the sample into three distinct zones. Figure 60 (A and B) shows an 

example of 10FA composite sample with major vertical crack line running 

through the matrix in the transitional zone, it also shows an intact FA cluster 

which is imbeded within the matrix at the edge of the  fracture zone. Figure 

60 (C and D) and Figure 61 show magnifications of the fractured surfaces 

of 10FA and 20FA composites with similar fracture phenomena to TC, the 

fractured surfaces showed major and micro crack lines running through the 

matrix and detached FA crystals from the resin matrix leaving hexagonal 

spaces corresponding the shape of FA crystals. 
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Figure 60: SEM images of 10FA fractured composite specimen. (A) 

Shows a major crack line running along the transitional zone 

interface. (B) Shows a cluster of FA (yellow arrow) securely imbedded 

within the matrix at the edge of the fractured zone. (C,D) show the 

fractured surface with cracks running through the matrix, detached 

FA crystals deposited on the surface (yellow arrows) and hexagonal 

spaces within the matrix corresponding to lost FA crystals (red 

arrows). 
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Figure 61: SEM images of 20FA fractured composite specimen. (A) 

and (B) shows major crack lines running through the matrix (white 

arrows), detached FA crystals deposited on the surface (yellow 

arrows) and hexagonal spaces within the resin matrix (red arrows). 
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Unlike TC and FA composites, 0FA showed compact clear fractured 

surface with mainly microcracks running through the matrix, representative 

example is shown in Figure 62. 

 

Figure 62: SEM of fractured 0FA composite specimen. (A) Shows the 

pre-crack zone (red arrow) and the fractured zone (white arrow). (B) 

shows clear fractured surface with microracks running through the 

matrix. 
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30FA and 40FA fractured surfaces also showed similar fracture features to 

TC, 10FA and 20FA composites. The three fracture zones were evident 

with fractured surfaces showing interfacial cracking and filler detachment 

from the resin matrix leaving a rough fractured surface, Figure 63. 

 

Figure 63: SEM images of fractured 30FA (A,B) and 40FA (C,D) 

composite specimens. (A,C) Show the three fracture zones with 

detached FA crystals (yellow arrows) deposited at the edge of the 

fractured zone and spaces within the matrix corresponding to lost 

fillers (red arrows). (B,D) Show magnified fractured zone with micro 

cracks, detached FA fillers (yellow arrow) leaving spaces within the 

matrix (red arrows). 

30FA and 40FA composites specimens also showed distinctive fracture 

toughening phenomena such as crack deflection and crack bridging near 

the tip of crack extension. These features were present when the tip of the 

crack encounters large FA crystals or bundles of crystals, representative 

examples are shown in Figure 64. 



126 
 

 
 

 

 

Figure 64: SEM of 30FA and 40FA fractured specimens showing 

typical fracture toughening mechanisms. (A-C) Show crack deflection 

and crack bridging (red arrows) when FA bundles are encountered 

and (D) Shows clear crack deflection when encountering an FA bundle 

which was broken through the middle (yellow arrows). 
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5.5.7 Fluoride release 

The detection threshold of the ion selected electrode used in this study is > 

0.03 µg/cm2. Therefore, values ≤ 0.03 µg/cm2 were considered as false 

negative. Under neutral conditions, the measured fluoride ions from all FA 

composites and the control groups were below the electrode threshold 

value (Table 19), therefore it was decided not to continue the 

measurements under neutral conditions. However under acidic conditions, 

all FA composites showed detectable fluoride ions (> 0.03 µg/cm2), 

therefore a detailed descriptive and statistical analysis were conducted and 

will be described in the following sections. 

Table 19: Measured fluoride ion release (µg/cm2) in distilled water.  

Group 24 hours 48 hours 

TC 0.32  0.15  

0FA 0.22  0.16  

10FA 0.20  0.15  

20FA 0.29 0.12 

30FA 0.27 0.15 

40FA 0.32 0.16 

5.5.8 Data distribution 

The Shapiro-Wilk test was conducted to evaluate the data distribution. The 

results showed that all groups were not normally distributed as shown in 

Appendix U. Therefore non-parametric multi comparison tests Kruskal-

Wallis and the Post Hoc Bonferroni were carried out. 

5.5.8.1  Descriptive and statistical analysis 

The mean cumulative fluoride values (µg/cm2) for the experimental 

composites and TC are shown Table 20 and Figure 65. The results showed 

that there was a significant difference in the fluoride release between the 

groups at all measured interval times, Appendix V. TC and 0FA groups had 

negligible amount of fluoride release starting from Day 1 up to Day 196. 
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5.5.8.2  Fluoride release profile 

The pattern of fluoride release was similar amongst all FA containing 

composites with initial high release on Day 1 followed by a rapid decrease 

in the amount up to Day 7. 

10FA and 20FA composites continued to release small amounts of fluoride 

at a consistent rate, however there were no significant differences in the 

cumulative fluoride released at extended time intervals (p > 0.05), 

(Appendix X and Appendix Y). 

30FA and 40FA showed consistent increase in the fluoride release over 

extended period of times, this increase was shown to be significant at Day 

196 when compared to Day 112 (p < 0.05), (Appendix Z and Appendix AA). 

 

Figure 65: Cumulative fluoride release (µg/cm2) with their standard 

deviation (error bars) of experimental and commercial dental 

composites in pH4 medium. 
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5.5.8.3  Cumulative fluoride release group comparisons 

FA containing composites showed significantly higher cumulative fluoride 

release over the entire testing period when compared to TC and 0FA 

(p < 0.05). With regard to the cumulative fluoride release in relation to the 

concentration of FA used, 20FA, 30FA and 40FA showed significantly 

higher values when compared to 10FA over the entire tested period 

(p < 0.05). However there were no significant differences between 20FA, 

30FA and 40 FA in the initial testing period up to Day 7, (p > 0.05). 

Significant differences start to be evident over extended period of times, 

40FA showed higher release compared to 20FA and 30 FA at Day 14 and 

Day 21 (p < 0.05). From Day 28 up to Day 196 there were significant 

differences between all FA containing groups with 40FA showing the 

highest release (40FA> 30FA > 20FA > 10FA), (p < 0.05). Statistical results 

detailed in Appendix W. 



130 
 

 
 

Table 20: The mean fluoride release values (µg/cm2) with the standard deviation (SD) in pH 4 medium 

Day 
TC 0FA 10FA 20FA 30FA 40FA 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1 0.305 0.05 0.37 0.29 15.69 4.73 25.84 3.26 26.98 1.70 25.18 1.93 

2 0.49 0.05 0.44 0.29 17.63 4.89 36.16 5.28 35.08 2.89 33.01 2.66 

3 0.682 0.08 0.66 0.32 18.56 5.07 41.05 4.46 40.06 3.34 39.04 4.02 

4 0.823 0.11 0.76 0.32 19.27 5.13 44.00 4.61 43.83 3.89 44.92 4.90 

5 0.93 0.15 0.84 0.31 19.67 5.17 45.94 4.54 46.65 3.86 50.2 4.89 

6 0.982 0.16 0.92 0.30 19.90 5.20 46.78 4.45 47.84 4.00 52.67 4.99 

7 1.055 0.17 1.03 0.29 20.09 5.24 47.60 4.42 49.02 3.88 54.98 5.61 

14 1.202 0.17 1.10 0.29 21.06 5.32 52.3 4.20 56.12 4.78 71.22 7.21 

21 1.383 0.18 1.16 0.29 21.91 5.44 56.57 3.77 63.54 6.29 88.25 10.03 

28 1.507 0.18 1.2 0.29 22.5 5.56 59.66 3.56 69.3 6.92 103.28 13.13 

56 1.733 0.13 1.25 0.28 23.17 5.67 62.76 3.52 77.96 8.88 121.41 14.68 

112 1.952 0.13 1.45 0.30 24.11 5.85 67.03 3.89 87.63 9.91 138.01 14.56 

196 2.253 0.13 1.62 0.32 25.92 6.23 74.41 4.61 104.91 12.47 163.48 18.31 
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5.5.8.4  SEM observations 

Analysis of the fluoride releasing specimens after immersion in pH 4 buffer 

solution showed evident dissolution of the FA crystals. Figure 66 and Figure 

67 show representative examples of FA crystals before and after immersion 

in the acidic medium. Surface dissolution of the FA crystals is visible within 

24 hours, which then become more evident by Day 28. Most of the FA 

crystals deposited on the surface would completely dissolve by day 112 

leaving voids corresponding to their shapes within the resin matrix. 

 

Figure 66: SEM images of 20FA composite specimen before and after 

immersion in pH 4 solution. AT Day 0: FA crystals are shown to be 

embedded within the resin matrix, within 24 hours of immersion, FA 

crystals starts to dissolve at the top surface and continues to dissolve 

on Day 28 until complete dissolution by Day 112. 
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Figure 67: SEM images of 40FA composite specimens before and after 

immersion in pH 4 buffer solution. Intact FA crystals present at Day 0, 

partially dissolved FA crystals within 24 hours, more evident 

dissolution of the FA at Day 28 and complete dissolution at Day 112 

leaving voids within the resin matrix. 

5.5.8.5  Elemental mapping 

Elemental mapping was conducted to analyse the dissolved FA crystals. 

Figure 68 show representative examples of FA containing composites 

before immersion in the acidic medium. Ca and P correspond to the FA 

crystals while Si correspond to the primary filler (barium aluminium silicate 

glass). After immersion in pH 4 buffer solution, the amount of Ca and P 

deplete leaving abundant Si particles around the dissolved FA crystals, 

Figure 69.  
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Figure 68: EDX maps of 20FA composite specimens before immersion 

in the acidic medium. (A,B) SEM with elemental mapping showing Ca 

and P corresponding to the FA crystals surrounded by Si particles 

which correspond to the primary filler. (C,D) show the corresponding 

elemental maps with Ca, P and Si. 
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Figure 69: SEM and EDX images of aged composite specimens in pH 4 

buffer solution for 28 days. (A,B) show dissolved FA crystals in a 40FA 

specimen with lack of P and Ca and abundant Si particles. (C,D) 

dissolved FA bundle in a 20FA composite specimen with no detected 

Ca or P.  
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5.6 Discussion 

5.6.1  FA composite preparation and characterisation 

Experimental FA containing composites were prepared following the same 

methodology described in (Chapter 3). The model dental monomer mixture 

(70BisGMA: 10TEGDMA: 20BisEMA) was selected as the experimental 

resin control and base mix based on the data reported in (Chapter 3). The 

synthesised FA powder produced in (Chapter 4) was incorporated at 10,20, 

30 and 40wt% in addition to barium silicate glass to produce highly filled 

dental composites with overall filler content of 80%wt (63-67%vol). The 

homogeneity of the composite mixtures was characterised using SEM and 

elemental mapping. SEM analysis showed that the FA crystals and the 

primary glass fillers were widely distributed within the resin mixture which 

was similar to the commercial control filler/resin distribution pattern. 

Although the FA produced was not silane coupled, the unique morphology 

of the FA crystals and bundles of crystals may have aided in their 

embedding within the resin matrix, (Figure 37). The elemental maps also 

confirmed the main components of FA (Ca,P and F) corresponding to the 

embedded FA crystals (Figure 38). Therefore, it was concluded that the 

methodology employed in this study was suitable to produce homogenous 

FA containing dental composites. However, to chemically induce the 

filler/resin interaction, conventional fillers utilised in dental composites are 

usually coupled with bifunctional agent such as silane (Ferracane, 2011). 

Consequently incorporating silanated glass fillers provide superior 

mechanical performance (Ferracane et al., 1998, Drummond, 2008, 

Marovic et al., 2014). Experimental composites produced in this study 

contain silanated primary glass filler and un-silanated FA crystals. FA 

crystals were used without the intention to silane couple them in order to 

evaluate their behaviour and potential fluoride release which could be 

prevented if the surface was coupled. However it was recognised that the 

lack of coupling may result in reduced mechanical properties. Most 

experimental dental composites with proposed bioactivity were initially 

produced by incorporating novel fillers such as calcium phosphate particles 
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and bioactive glass (BAG) without the intention to silane couple them due 

to the same aforementioned reason (Davis et al., 2014, Aljabo et al., 2015, 

Alania et al., 2016). Experimental dental containing composites were 

successfully produced with FA incorporated at 10-40%wt while maintaining 

overall filler content of 80%wt (63-67%vol). The materials were then 

subjected to series tests to further characterise their properties and 

compare them to the commercial control. 

5.6.2 Degree of conversion (DC) 

The DC of TC recorded was in the range of 41.3-55.0% and 45.1-61.5% for 

FA containing composites. Group comparisons between at short curing 

times (5-20 s) showed that the DC of TC is significantly lower when 

compared to 10FA, 20FA and 30FA composite groups (p < 0.05). However 

the DC of TC increases further after curing for extended times (30, 40 and 

60 s) with no significant differences compared to all FA containing 

composite groups (p > 0.05). Though the only exception was around 50 s 

curing time, as the DC of TC remains significantly lower when compared to 

30FA (p > 0.05), this is due to the continuous increase in the DC of 30FA 

group when cured for 50 s, (Figure 40, section 5.4.3). Therefore the null 

hypothesis rejected when FA composites were compared to TC. 

Comparisons were also made to evaluate the effect of FA concentration on 

the DC of the experimental groups. At short curing times, differences were 

found between the FA containing groups. The data showed that at short 

curing times (5 s) 40FA and 20FA groups showed lower DC when 

compared to 0FA and 10FA groups. The DC of 40FA group continue to 

remain significantly lower when compared to 0FA,10FA, 20FA and 30FA 

groups. The variation in the degree of conversion at 5 s could be due to the 

post-polymerisation curing effect due to the potential delay between the 

light exposure and the analysis which could have led to some post-curing 

effect of the specimens (Burtscher, 1993, Par et al., 2014). However 40FA 

continues to show lower DC at 10 s when compared to the other 

experimental groups. The polymerisation process is affected by several 

factors including the material’s composition, photoinitiator chemistry, curing 
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protocol, specimen geometry, surrounding temperature and the presence 

of oxygen. Light transmission through the material is a key factor in 

determining the extent of polymerisation. Insufficient light transmission is 

associated with surface reflection (Burtscher, 1993, Ilie and Hickel, 2007), 

scattering effect of the filler particles (Par et al., 2014), absorption (Chen et 

al., 2007)  and the interfacial resin/filler refraction (Shortall et al., 2008). The 

Refractive index of FA is around 1.63 whereas barium glass index is around 

1.53, and the reported BisGMA: TEGDMA (70:30%) is around 1.52 (Shortall 

et al., 2008). 

Resin matrix polymerisation results in a change in the materials optical 

properties and an increase in the refractive index due to the increasing 

viscosity and the density of the cross-linked polymer. As the refractive index 

of the resin approaches to that of the filler, the scattering at the interfacial 

filler/resin reduces which results in higher light transmission. Polymerisation 

rate increases with time, however a time delay in reaching maximum light 

transmission could result in lower maximum rates of polymerisation despite 

a possibly higher ultimate DC (Lovell et al., 1999, Shortall et al., 2008). 

Therefore due to the higher FA content in 40FA group a possible delay in 

the light transmission could result in lower polymerisation rate and 

ultimately lower DC at short curing times. DC at extended curing times (20-

60 s) ranged between 50.9-61.5% with no significant differences between 

all the FA containing groups regardless of the FA concentration, (Figure 41, 

section 5.4.3). Therefore the null hypothesis was rejected.  

Several researchers also investigated the DC of novel experimental dental 

composites. Aljabo et al (2015) developed experimental highly filled dental 

composites (overall 80%wt) with reactive calcium phosphate (CaP) 

secondary filler incorporated at up to 40%wt, experimental materials 

showed DC values around 70% on the top surface of the specimens, 

however a significant increase in the DC was evident at lower levels within 

the sample (3-4 mm) which was proportional to the CaP content. The 

reduction in DC was attributed to the scattering effect of the increased 

secondary filler content, (Aljabo et al., 2015). Experimental dental 

composites containing dicalcium phosphate dihydrate (DCPD) 
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nanoparticles showed no significant difference in the DC when compared 

to the control regardless of the amount of DCPD content, (Alania et al., 

2016). The effect of using alternative photoinitiators on the DC of dental 

composites was also investigated. Palin et al (2014) evaluated the DC of 

monoacylphosphine oxide (MAPO) containing experimental composites 

using different curing protocols, MAPO materials showed a significantly 

higher DC when compared to CQ based materials regardless of the curing 

protocol used (Palin et al., 2014). Generally experimental FA containing 

dental composites produced in this study showed acceptable DC when 

compared to the available commercial materials and the different 

experimental materials with novel filler technologies. The addition of FA did 

not negatively affect the DC regardless of the concentration used. However 

due to the potential scattering effect of the FA filler at deeper sections within 

the restoration, future work should include an evaluation of the DC at 

deeper levels within the composite specimen. 

5.6.3 In-vitro wear resistance 

Experimental composites were subjected to two body wear test under pH 7 

medium following the same methodology described in (Chapter 3: section 

3.4.3). Composite specimens were subjected to 4000 cycles (400000 

contacts) which is equivalent to 3 months clinical wear (Harrison and Lewis, 

1975). Data showed that the wear resistance of FA containing composites 

was not significantly different when compared to the experimental and the 

commercial controls (p > 0.05). Very minimal wear was detected which 

ranged between 0.026-0.028 mm3 (SD= 0.005-0.009). The amount of FA 

incorporated did not affect the wear resistance of the experimental groups 

regardless of the FA concentration (p > 0.05). It is widely accepted that the 

in-vitro wear resistance is mainly affected by the filler content, and a filler 

volume fraction of 60% was identified to be the necessary level required for 

adequate mechanical performance of resin composites (Ilie and Hickel, 

2009a). Therefore the high wear resistance of the FA containing 

composites is mostly attributed to their high filler content (80%wt, 63-

67%vol). Although composite wear behaviour is mainly affected by the filler 

content, the wear remains to be a complex process and not all monomer 
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mixtures would be expected to behave in a similar manner. However, since 

the monomer mixture was the same for all experimental groups, the lack of 

differences was also expected. Nevertheless, extending the wear test may 

reveal significant differences between the materials with different FA 

concentrations. SEM and EDX analytical techniques were used to evaluate 

the mechanisms of wear and the effect of FA incorporation. SEM images 

showed similar patterns of wear across the experimental groups with two 

dominant features; (1) cracks running through the matrix in the direction of 

wear and (2) pull out of individual FA crystals, Figure 44. This pattern was 

similar to TC in which larger per-polymerised fillers (PPF) were pulled out 

leaving voids within the resin matrix, Figure 45. The pull-out of FA crystals 

could be attributed to the lack of coupling of the FA crystals. However, the 

bundles of crystals remained embedded within the resin matrix which could 

be due to their unique morphology allowing resin infiltration between the 

individual crystals within the bundle. However, extending the wear test may 

also result in disintegration of these bundles. Similarly, the lack of active 

binding sites in the PPF required for the surface coupling results in poor 

integration of the PPF within the resin matrix which may result in easier 

disintegration when mechanically challenged (Blackham et al., 2009, 

Randolph et al., 2016). In addition to that, the removal of FA crystals and 

PPFs might have been due to their relatively large size with less favourable 

area to volume ratio leading to a smaller interface area between filler and 

polymer per unit volume (Miyasaka, 1996). SEM analysis was also 

conducted to evaluate the wear facets. Antagonists showed typical round 

wear facets corresponding to the wear tracks, Figure 46. However 

magnified images showed material deposition on the surface typical of 

adhesive wear pattern as shown in Figure 48. To investigate the material 

deposition; elemental analysis and mapping was conducted using the EDX 

which confirmed material deposition corresponding to FA elements on the 

antagonist surface, Figure 49. TC antagonist also showed material 

deposition corresponding to yttrium which is one of the elements used in 

the filler components of TC, Figure 47. Adhesive wear results in the 

transferral of material from the resin composite onto the abrading 

antagonist by cold welding through friction (Mair, 1992, Mair et al., 1996). 
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Similar patterns were previously reported in commercial resin composites 

(Altaie et al., 2017). Steatite is mainly composed on Mg and Si, however 

since the composite materials used in this study contain Si as part of the 

filler, Mg was selected for the elemental mapping to differentiate between 

the material deposition and the steatite surface. This approach provided 

further insight into the behaviour of FA composites and TC and 

distinguished the wear mechanisms especially adhesive wear patterns. It 

was proposed that using a combination of measurement and analytical 

techniques to quantify the wear provides further insight on the wear 

mechanisms and the tribology of wear as opposed to simply ranking by 

amount of resin composite wear (Altaie et al., 2017). However, regardless 

of the analytical techniques used, it is  key to employ accurate and precise 

measurement techniques that are relevant to clinical wear (DeLong, 2006). 

The profilometric analyses used in this study were performed across an 

area of 8 mm length and a 4 mm width with data points recorded every 

20 µm interval in the y-direction and every 4 µm in the x-direction, resulting 

in 150,951 data points for each wear facet which increases the confidence 

in the mean total wear volume data (Benetti et al., 2016, Fleming et al., 

2016) compared with analogue measurements routinely used in dentistry 

(Heintze et al., 2005b, Heintze et al., 2011, Heintze et al., 2012). 

Furthermore, the accuracy and precision volumetric loss measurement 

data was confirmed by identifying the accuracy and precision of data 

recorded for a 1.0 mm step size which was 1.51 and 0.54 µm, respectively. 

Experimental composites containing FA showed favourable wear 

resistance comparable to the controls and addition of FA did not affect the 

materials’ wear resistance. 

5.6.4 Vickers Microhardness (HV) 

The surface microhardness of FA composites was evaluated following the 

same methodology described in (Chapter 3: 3.4.4). FA composites showed 

significantly higher microhardness values (p < 0.05) when compared to TC. 

FA composites HV ranged between 93.9 and 95.2 (SD=1.6-2.3) while TC 

HV was 53.4 (SD=3.5). The addition of FA did not affect the surface 

microhardness regardless of the FA content (p > 0.05). A direct correlation 
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has been established between the amount of filler content and the surface 

microhardness of dental composites (Ferracane et al., 1998, Kim et al., 

2002, Jun et al., 2013b, Randolph et al., 2016). However, due to the 

variation of composite formulations, commercial composites exhibit wide 

range of surface microhardness (23-108 ) (Randolph et al., 2016). The high 

microhardness values of FA composites could be attributed to their high 

filler content (80%wt, 63-67%vol). In addition to that, FA is a naturally hard 

material; therefore regardless of the amount of FA incorporated the surface 

microhardness of the experimental composites remained relatively high. 

The addition of novel bioactive fillers to resin composites and their effect on 

the surface microhardness has been evaluated by several researchers. It 

was reported that experimental composites containing bioactive glass filler 

(BAG) exhibited microhardness values ranging between 30-70 HV. 

However the microhardness decreased when the concentration of BAG 

increased (Hyun et al., 2015). Zang et al (2012) reported increased surface 

microhardness of resin composites when silanated hydroxyapatite whiskers 

were incorporated within the resin mixture (Zhang and Darvell, 2012). 

Generally the experimental composites prepared in this study showed high 

microhardness values which are comparable to most highly filled 

commercial composites, the addition of FA did not negatively affect the 

surface microhardness regardless of the amount of FA added. However, 

since experimental composites showed higher HV compared to TC, the null 

hypothesis was rejected. 

5.6.5 Flexural strength (FS) and flexural modulus (FM) 

Strength assessments seem to be an important property to evaluate since 

all composite restorations are likely to have internal flaws. Therefore, based 

on the main reasons of failure of dental composites, flexural strength (FS) 

and flexural modulus (FM) have been identified as important mechanical 

properties in predicting the clinical performance of dental composites 

(Ferracane, 2013a). Flexural testing is the standard means for strength 

testing of dental composites as per (ISO 4049). Some studies also reported 

a correction between FS and the wear resistance of dental composites 

(Peutzfeldt and Asmussen, 1992, Ferracane et al., 1997a, Heintze et al., 
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2017). Experimental FA containing composites flexural strength and 

flexural modulus were evaluated following the ISO4049 as previously 

described in section (5.4.6). The flexural strength values of FA composites 

ranged between 68.3-80.2 MPa compared with 0FA (112 MPa) and TC 

(88 MPa), Table 21. 

Table 21: The flexural strength (mean, median, standard deviation 

(SD)) of the experimental and commercial dental composites 

DC 
Flexural Strength (MPa) 

Mean Median SD 

TC 88.64 90.39 17.45 

0FA 113.12 99.83 30.10 

10FA 80.21 73.91 15.76 

20FA 80.56 77.93 10.01 

30FA 74.54 71.04 12.49 

40FA 68.38 67.05 9.40 

 

The experimental control (0FA) showed the highest flexural strength which 

was statistically significant when compared to all tested groups (p < 0.05). 

However there were no statistically significant differences in the flexural 

strength of 10-40FA when compared to TC (p > 0.05). The increase in the 

FA concentration lead to a decrease in the flexural strength values but this 

decrease was not statistically significant (p > 0.05). Generally the reported 

flexural strength values for commercial dental composites range between 

50-160 MPa (Ilie and Hickel, 2009a, Ilie et al., 2013b, Randolph et al., 

2016). Dental composite flexural strength has been previously related to 

the filler volume, a general trend for enhanced mechanical properties was 

observed when a filler volume of 60% was reached (Ilie and Hickel, 2009a). 

However it was shown that increasing the filler content beyond 80% by 

weight results in a significantly lower tensile strength (Htang et al., 1995). 

Consequently increasing the filler content does not necessarily increase the 

flexural strength of dental composites.  Kim et al (2002) investigated the 

effect of filler  loading and morphology on the flexural properties of resin 
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composites; it was concluded that round fillers enabled higher filler loading 

which resulted in high flexural strength, whereas irregular and per-

polymerised filler allowed intermediate filler loading which reflected on the 

flexural properties of the materials (Kim et al., 2002). More recently, 

Randolph et al (2016) evaluated the FS of various commercial dental 

composites; however no general trend was found between the filler size or 

content and the materials’ flexural strength (Randolph et al., 2016). The 

lack of general trend was attributed to the differences in filler content at 

similar size distribution, the different matrix compositions and strength 

measurement sensitivity in relation to sample surface preparations 

(Randolph et al., 2016). The ISO4049 classifies two types of light cured 

direct resin composites according to their flexural strength; Type 1: 

indicated for occlusal restorations (flexural strength values ≥ 80 MPa) and 

Type 2: classified as filling for other indications (flexural strength ≥ 50 MPa). 

Aljabo et al (2015) evaluated the FS of experimental dental composites 

containing CaP fillers with different concentrations, the FS values ranged 

between 100-144 MPa which was then reduced after aging for 1 month in 

water. They concluded that increasing the concentration of CaP fillers result 

in a reduction in the flexural strength of dental composites. This reduction 

was attributed to the lack of coupling agent between the fillers and the resin 

matrix (Aljabo et al., 2015). Similar observations were reported when 

dicalciumphosphate dihydrate (DCPD) nanoparticles were incorporated as 

fillers into experimental dental composites; materials showed FS values 

ranging between (76-133MPa) in which the FS was reduced by increasing 

the DCPD concentration (Alania et al., 2016). The reduction of strength was 

due to different reasons; firstly the DCPD particles have lower cohesive 

strength when compared to glass, therefore they are much less effective as 

toughening agents. Also, the DCPD particles were considered as inclusions 

increasing the risk of crack initiation at low stress levels due to the lack of 

surface coupling (Alania et al., 2016). The FS of experimental composites 

containing hydroxyapatite (HA) rods ranged between 70-100 MPa. The 

addition of 0.2%wt HA increased the FS values when compared to the 

control (unfilled resin); however by increasing the HA filler concentration, 

the FS steeply decreased thereafter (Taheri et al., 2015). BAGs containing 
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resin composites with 72%wt filler content showed FS values ranging 

between 116.9 - 123.5 MPa; increasing the BAG concentrations also 

resulted in a numerical decrease in the FS values but this decrease was 

not statistically significant (Khvostenko et al., 2013). Based on the data 

generated in this study, experimental composites containing FA showed 

acceptable FS values which were comparable to the commercial control 

(TC); the values were also within the acceptable range of FS value 

recommended by ISO4049 for Type 1 materials which are suitable for 

occlusal restorations. Generally, the addition of FA resulted in a significant 

decrease in composites FS when compared to the experimental control 

(0FA). Increasing the FA concentration resulted in a numerical decrease in 

the FS values, however it was not statistically significant. The reduction of 

FS values could be attributed to the lack of coupling of FA fillers which 

compromises the integration within the resin matrix; the FA fillers in this 

case may have behaved as large inclusions increasing the risk of crack 

initiation. 

To encourage even stress distribution at the tooth-restoration interface; the 

flexural modulus of resin based composites should be closely related to that 

of natural tooth tissues (20-25 GPa) (Kinney et al., 2003). However, 

restorations also need to exhibit similar toughness to tooth tissue (1.5-

2.7 MPa.m(1/2)) otherwise they are at risk of being too brittle (Nalla et al., 

2003). A positive correction has been established between composite resin 

flexural modulus and the amount of filler content (Jun et al., 2013a, Shah 

and Stansbury, 2014, Randolph et al., 2016). The flexural modulus of 

commercial dental composites measured in-vitro range between 3-16 GPa 

(Leprince et al., 2010, Ilie et al., 2013b, Jun et al., 2013a, Randolph et al., 

2016). Experimental FA containing composites showed FM value around 

12 GPa whereas 0FA (14.6 GPa) and TC (10.22 GPa), details shown in 

Table 22. 
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Table 22: The flexural modulus (mean, median, standard deviation 

(SD)) of the experimental and commercial dental composites 

DC 
Flexural Modulus (GPa) 

Mean Median SD 

TC 10.22 10.56 0.77 

0FA 14.63 13.74 1.27 

10FA 12.05 11.65 1.89 

20FA 12.19 12.30 0.92 

30FA 12.08 11.51 1.73 

40FA 12.05 12.05 0.01 

 

Flexural modulus data showed that the experimental control (0FA) had the 

highest flexural modulus value when compared to all other tested groups 

(p < 0.05). However TC (commercial control) showed the lowest flexural 

modulus value which was also statistically significant when compared to all 

FA containing composites (p < 0.05). All FA composites showed similar 

flexural modulus which was not affected by increasing the FA concentration 

(p > 0.05). Based on the data, the addition of FA resulted in a decrease in 

the FM values of resin composites; however this did not correlate to the 

amount of FA added. The lack of correlation could be attributed to the high 

filler content of all FA composites (63-67%vol) (Ilie and Hickel, 2009a, 

Randolph et al., 2016). However when compared to 0FA, a general 

reduction was evident across all FA composites; the most likely explanation 

is related to lack of surface coupling of FA fillers allowing easier crack 

extension around the FA fillers. However it would be of an interest to 

increase the FA concentration further where possible differences might be 

more evident and a critical level of FA concentration might be established. 

Generally, all FA composites maintained relatively acceptable FM values 

which are comparable to most highly filled commercial dental composites, 

and in this study were significantly higher than TC. The reduced flexural 

modulus of TC is mostly attributed to the lower modulus of PPF compared 

to glass; similar findings were also previously reported (Kim et al., 2002, Ilie 
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et al., 2013b, Randolph et al., 2016). Experimental composites containing 

CaP fillers showed a relatively low flexural modulus (2.1-4.0 GPa) which 

was reduced by increasing the CaP filler content (Aljabo et al., 2015). 

Similarly resin monomer mixtures containing hydroxyapatite filler showed 

FM values ranging between 1.7-2.5 GPa (Taheri et al., 2015). 

Fractographic analysis was also conducted using the SEM where the 

fracture surfaces were scanned and analysed to establish a better 

understanding of the fracture mechanisms involved. SEM images of FA 

composites showed micro cracks and exposed FA crystals suggesting that 

the fracture occurred at the matrix/filler interface. Images of the opposing 

fractured surfaces showed several FA crystals protruding from the matrix 

on one surface leaving spaces within the matrix of the corresponding 

fractured surface which suggest that FA crystals detached from the matrix 

upon fracture, representative examples shown in Figure 54. Similar 

observations were found in TC fractured surfaces where large PPF fillers 

were protruding through the matrix in one surface leaving a space 

corresponding to the detached filler on the opposing fractured surface, 

example shown in Figure 53. Unlike FA composites and TC, 0FA 

specimens showed smooth fractured surfaces due to the uniform filler type 

and size distribution, Figure 53. 
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5.6.6 Fracture toughness (K1c) 

Fractured toughness has been identified as one of the most important 

mechanical properties necessary in predicating the material’s clinical 

performance. Since all restorations are likely to contain internal flaws, 

fracture toughness may be the most critical factor in determining the 

fracture resistance in-vivo which could be presented as chipping or bulk 

fracture of the restoration (Ferracane, 2013a, Heintze et al., 2017). The 

single edge notched beam method following the ASTM (E399-12-e2) is the 

most widely used methodology in determining the fracture toughness of 

resin composites (Heintze et al., 2017). Therefore, the same methodology 

was used in this study which is described in details in section (5.4.7). The 

most reported fracture toughness values of dental composites range 

between 1-2.5 MPa.m(1/2) (Ilie et al., 2012, Jun et al., 2013a). Studies have 

been equivocal on whether there is a correlation between resin composites 

fracture toughness and the amount of filler loading. Several studies were in 

agreement that there is a correlation between the filler volume fraction and 

the fracture toughness of resin composites (Kovarik and Fairhurst, 1993, 

Kim et al., 1994, Ferracane et al., 1998, Ilie et al., 2012). However, a critical 

filler volume fraction of 57% has been identified after which the fracture 

toughness of the material starts to plateau until reaching 65% filler volume. 

Adversely, increasing the filler volume further exceeding 65%vol resulted in 

a slight reduction in the fracture toughness. This reduction is attributed to 

increasing the flaws (voids, porosities, filler agglomerates) incorporated due 

to increased material viscosity (Ilie et al., 2012). However, several other 

studies suggested that the fracture toughness of resin based materials are 

highly dependent on the morphology of the composite microstructure rather 

than filler volume fraction or filler size (Kim et al., 2002, Shah et al., 2009a, 

Shah et al., 2009b, Elbishari et al., 2012, Ornaghi et al., 2012). Previous 

studies suggested that the microstructure of resin based composites that 

maintain good matrix/particle adhesion while endorsing important 

toughening mechanisms such as crack bridging and crack deflection 

provide superior fracture and fatigue properties (Manhart et al., 2000, Shah 

et al., 2009b, Shah et al., 2009a, Elbishari et al., 2012, Ornaghi et al., 2012).    
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In this study, the fracture toughness values of the tested composites groups 

were variable with FA composites ranging between 0.8-1.4 MPa.m(1/2), 0FA 

(1.2  MPa.m(1/2)) and TC (1.3 MPa.m(1/2)), details shown in Table 23. 

Table 23: The fracture toughness (mean, median, standard deviation 

(SD)) of the experimental and commercial dental composites 

Fracture toughness (MPa.m(1/2)) 

DC Mean Median SD 

TC 1.37 1.38 0.10 

0FA 1.29 1.28 0.23 

10FA 0.87 0.92 0.14 

20FA 0.87 0.87 0.10 

30FA 1.46 1.40 0.42 

40FA 1.21 1.18 0.06 

 

10FA and 20FA groups showed the lowest fracture toughness values when 

compared to TC, 30FA and 40FA (p < 0.05). However 30FA and 40FA 

showed higher fracture toughness values which were comparable to the 

controls (p > 0.05). The addition of higher concentration of FA resulted in 

enhanced fracture toughness of the experimental dental composites. 

Fractographic analysis was conducted using the SEM to evaluate the 

fractured surfaces and the mechanism of failure in relation to the 

experimental materials composition. Crack extension analysis of the 

matching cracked surfaces showed that cracks extended from the pre-

inserted notch which then propagated through the resin/matrix interface. 

Detached FA crystals were detected between the two fractured surfaces of 

FA composites, crack extension examples shown in Figure 56. Analysed 

fractured specimens showed three distinct fracture zones; (1) the pre-

cracked area which has a flat compact surface with the filler particles tightly 

imbedded within the resin matrix, (2) the transitional zone with an irregular 

surface and displaced filler/matrix and (3) the fractured surface with visible 

crack lines and detached fillers leaving spaces within the resin matrix. 

Example of the fracture zones are shown in Figure 58 (A and B). The main 

mechanism of failure identified for all FA containing composites and TC 
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were (1) crack propagation between the filler particles either near or at the 

filler/resin interface and (2) filler particles debonding from the resin matrix 

leaving spaces corresponding to their shape on one surface and protruding 

through the matrix on the opposite surface, Figure 59. In contrast 0FA 

specimens showed smooth fractured surfaces with predominantly 

microcracks running through the matrix, Figure 62. 10FA and 20FA showed 

both failure mechanisms; cracks were initiated  from the pre-cracked area 

which then continued to extend through the filler/resin interface and 

detached individual FA crystals protruding on one surface and leaving 

hexagonal spaces on the opposing surface, Figure 60 and Figure 61. Due 

to the lack of surface coupling; FA crystals may have behaved as internal 

flaws allowing crack propagation as they were easily detached from the 

resin matrix leading to interfacial debonding. The present  observations 

generally agree with other researchers who identified interfacial debonding 

as one of the main reasons of reduced fracture properties of dental 

composites (Chan et al., 2007, Shah et al., 2009b, Khvostenko et al., 2013). 

Similar observations were found in TC fractured surfaces in which PPFs 

were cleanly detached from the resin matrix leaving spaces corresponding 

to their original shape on the opposing surface, typical examples shown in 

Figure 58 (C and D) and Figure 59. As mentioned earlier, PPFs lack the 

active binding sites for effective surface coupling which compromises their 

interaction with the resin matrix and consequently results in easier 

detachment under loading. 30FA and 40FA fractured specimens also 

showed the typical failure mechanisms explained earlier (Figure 63), 

however distinctive fracture toughening mechanisms were also observed 

including crack deflection and bridging around the larger FA crystals and 

bundles of crystals, Figure 64. The unique morphology of FA crystals 

allowed microscopic crack deflection and crack bridging which sustained a 

portion of the applied load that otherwise would have gone towards crack 

extension. Similar observations were reported when bioactive glass (BAG) 

fillers were used increasing the fracture toughness of experimental dental 

composites (Khvostenko et al., 2013). Crack deflection and bridging are the 

two toughening mechanisms that often act together in which crack 

deflection leads to crack bridging (Shah et al., 2009a, Shah et al., 2009b), 
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similar to natural tooth tissues by which the enamel and dentine are 

toughened (Imbeni et al., 2005, Bajaj and Arola, 2009, Bechtle et al., 2010). 

Those toughening mechanisms were more evident when higher 

concentrations of FA were used, this might have attributed to the increased 

fracture toughness of 30FA and 40FA when compared to 10FA and 20FA. 

Generally FA composites showed acceptable fracture toughness values 

which are comparable to commercial dental composites especially in 30FA 

and 40FA composites. Although interfacial debonding was evident across 

all FA composites, the addition of higher amounts of FA aided in material 

toughening due to crack deflection and bridging around the FA fillers. 

Therefore the null hypothesis was rejected when comparisons were made 

between the FA composites as composite fracture toughness increased by 

increasing the FA concentration.     

5.6.7 Fluoride ion release 

Fluoride has been identified as an effective agent in slowing caries 

progression through enhancing the remineralisation and reducing the 

demineralisation of enamel and dentine (Cate, 1999). Therefore, the idea 

of fluoride releasing restoratives is very attractive to maintain constant 

fluoride release in the mouth and in close proximity to demineralising tooth 

tissue. Fluoride-releasing dental materials present the necessary properties 

to be effective against caries progression, however their effectiveness have 

been critically reviewed (Wiegand et al., 2007, Cury et al., 2016). Various 

fluoride releasing restoratives are currently available such as glass ionomer 

cements (GIC), resin modified glass ionomers (RMGIC), compomers and 

fluoride containing composites. The amount of daily and ccumulative 

fluoride release from these restoratives varies in the literature and is 

dependent on the type of storage medium (Wiegand et al., 2007). 

Generally, the highest amount of fluoride release is shown to be in acidic 

environments and lowest in artificial saliva (Karantakis et al., 2000, Imazato 

et al., 2001, Moszner and Salz, 2001). However, the kinetics and pattern of 

fluoride release is similar amongst all restoratives. Most materials initially 

release high amounts of fluoride (within 24-48 hours), however this initial 

burst rapidly diminishes with time and long term release continues at much 
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lower rates (Karantakis et al., 2000, Yap et al., 2002a, Attar and Turgut, 

2003). Composites have been shown to release the lowest amounts of 

fluoride in the long term when compared to GIC, RMGIC and compomers 

(Karantakis et al., 2000, Vermeersch et al., 2001, Wiegand et al., 2007). 

The ion selective electrode method (ISE) has been widely used by 

researchers to measure the total fluoride ions (free and complex fluoride 

ions) released from dental restoratives. Following this methodology acetic 

buffer solution (TISAB) is usually added to release free fluoride ions from 

the complex fluoride ions (Itota et al., 2004a, Itota et al., 2004b, Durner et 

al., 2012). The ion selective method was used in this study to measure the 

fluoride ion release under neutral and acidic conditions. The protocol used 

in this study was daily fluoride measurements for the first week, followed by 

weekly measurements for the first month and monthly measurements up to 

196 days. Fluoride was measured for extended periods to have a better 

insight into the long term fluoride releasing ability of the experimental 

materials. This protocol was used to avoid fluoride saturation by continued 

fluoride release; therefore the media was changed on daily bases, then 

weekly then monthly for each specimen. Fresh distilled water (pH = 7.0±0.2) 

was used as the neutral medium and freshly prepared acidic medium using 

pH 4 buffer tablets (VDR, Belgium) in distilled water. The pH value was 

confirmed for each prepared solution after calibrating the pH meter 

(ORION-920A model, Orion Research, Sussex, UK). Similar protocol was 

followed by several researchers evaluating the fluoride release of various 

restorative materials (Bell et al., 1999, Preston et al., 1999, Karantakis et 

al., 2000, Attar and Onen, 2002). The ion selective method is the most 

widely used technique for fluoride ion release. This is due to its high 

reliability, great selectivity and specificity for fluoride ions and generally 

easy to use. The instrument was calibrated every 2 hours during fluoride 

measurements using standard solutions to account for any temperature 

change which might have an effect on the fluoride measurements (Itota et 

al., 2004b). TISAB was added to the standard and the sample solutions to 

de-complex the fluoride ions and to prevent the interference of hydroxide 

ions (OH-) which have similar ionic charge and ion radius to fluoride ions 

(F-), TISAB also aid in pH regulation for solutions with pH ranging between 
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5-7 (McNeill et al., 2001, McCabe et al., 2002, Itota et al., 2004b). Under 

neutral conditions, no fluoride release was detected from the FA 

composites and the control groups; therefore it was decided not to continue 

the experiment under neutral condition as none of the groups released 

fluoride over the first 48 hours (Table 19). However, under acidic conditions, 

all FA composites released significant amounts of fluoride when compared 

to the control groups (p < 0.05). All FA composites showed similar pattern 

and amount of fluoride release which was at its highest in the first day. TC 

and 0FA did not release fluoride over the entire tested period. The detection 

threshold of the ion selective electrode used in this study is > 0.03 µg/cm2. 

Therefore some fluoride maybe detected from the control materials which 

could be a false positive measurement due to the level of sensitivity of the 

electrode or due to the accumulation of fluoride ions around the electrode 

membrane. However, to minimise the chances of this accumulation; the 

electrode was cleaned with fluoride free-tooth paste and thoroughly washed 

with deionised water in-between measurements taken from each composite 

group. Following the initial release, the fluoride release started to decrease 

from day two up to day 7. 10FA and 20FA composites continued to release 

small amounts of fluoride at a consistent rate, however there were no 

significant differences in the cumulative fluoride released at extended time 

intervals (p > 0.05). 30FA and 40FA showed consistent increase in the 

fluoride release over extended period of times, this increase was shown to 

be significant at Day 196 when compared to Day 112 (p < 0.05). FA 

containing composites showed significantly higher cumulative fluoride 

release over the entire testing period when compared to TC and 0FA 

(p < 0.05). Generally the amount of fluoride released was proportional to 

the concentration of FA used (cumulative release profile shown in Figure 

65). The cumulative release of FA composites ranged between (20.0-

54.9 µg/cm2) in the first week which increased to (25.9-163.4 µg/cm2) by 

day 196, Table 20. Data showed that 20FA, 30FA and 40FA showed 

significantly higher values when compared to 10FA over the entire tested 

period (p < 0.05). However there were no significant differences between 

20FA, 30FA and 40 FA in the initial testing period up to Day 7, (p > 0.05). 

Significant differences started to become evident over extended period of 
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times, 40FA showed higher release when compared to 20FA and 30 FA at 

Day 14 and Day 21 (p < 0.05). From Day 28 up to Day 196 significant 

differences were present between all FA containing groups with 40FA 

showing the highest release (40FA> 30FA > 20FA > 10FA), (p < 0.05). 

SEM and elemental mapping were also conducted to evaluate the 

mechanism of fluoride release. Scans of fluoride releasing specimens 

showed evident dissolution of the FA crystals after immersion in pH 4 

medium. Figure 66 and Figure 67 show representative examples of FA 

crystals before and after immersion in the acidic medium. Surface 

dissolution of the FA crystals is visible within 24 hours, which then become 

more evident by Day 28. Most of the FA crystals on the surface completely 

dissolved by day 112 leaving voids corresponding to their shapes within the 

resin matrix. Elemental maps also confirmed that FA crystals were 

dissolving as the amount of detected calcium and phosphate start to 

deplete after immersion in the acidic medium leaving abundant silica 

particles around the dissolved FA crystals (Figure 68 and Figure 69). 

Fluorapatite is a chemically stable material but known to release fluoride 

under acidic conditions (Chen et al., 2006a). The results of this study 

showed that FA maintained the same behaviour when added to resin 

composites, as all FA composites released fluoride when they were 

subjected to pH 4 medium due to the dissolution of FA crystals. However, 

the FA crystals remained stable under neutral conditions. Since enamel 

demineralisation starts when the pH drops below 5.5, FA composites could 

be a suitable restorative material to minimise demineralisation and 

progression of recurrent caries around resin composites. FA composites 

could potentially be a “smart” restorative that releases fluoride only when it 

is required as the pH drops in the oral cavity. To date, there has been no 

consensus on the amount of fluoride required for a restorative material to 

be effective against recurrent caries; however it is generally suggested that 

the effect of fluoride releasing restoratives is mostly due to the localised 

fluoridation adjacent to the demineralisation zones rather than elevation of 

fluoride levels in saliva. It has been reported that localised small amounts 

of fluoride approximately in the ranges of 0.03-0.08 ppm and 0.63-1.3 µg F-
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/cm2/day is sufficient to shift the equilibrium from demineralisation to re-

mineralisation (Rawls, 1995, Wiegand et al., 2007). Therefore all FA 

composites showed fluoride release within the range considered to be 

effective in preventing demineralisation. In addition to that, the amount of 

fluoride is considerably higher when compared to the commercially 

available fluoride releasing dental composites (Karantakis et al., 2000, 

Vermeersch et al., 2001).      

5.7 Summary 

Fluoride was released from all FA composites only under acidic conditions 

which was proportional to the amount of added FA. Fluoride was released 

due to the dissolution of FA crystals when the pH dropped.  The null 

hypothesis was rejected as fluoride release was only detected under acidic 

conditions. 
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Chapter 6: General Discussion and summary 

Over the last decades the state of art of resin composites has changed 

dramatically. Researchers have focused on enhancing the materials’ 

longevity to increase their clinical service by reducing their perceived 

shortcomings such as polymerisation stress (Gonçalves et al., 2010), 

handling (Lee et al., 2006), depth of cure (Sevkusic et al., 2014), aesthetics 

(Mikhail et al., 2013) and most importantly strength (Kim et al., 2002). 

Substantial progress has been achieved which placed resin composites in 

a prominent place amongst restorative materials as a “universal restorative” 

suitable for anterior and posterior use (Burke, 2004, Mitchell et al., 2007, 

Vidnes-Kopperud et al., 2009, Burke et al., 2017). Most important changes 

have evolved around the reinforcing filler which was purposely reduced in 

size from macro to a nano level which produced materials that are more 

easily and effectively polished and demonstrate greater wear resistance 

(Ferracane, 2011). The use of nano particles significantly improved the 

aesthetic properties and strength (Curtis et al., 2009) in addition to 

increasing the depth of cure since refraction and scattering are reduced 

(Fujita et al., 2011). Developments also focused on the polymer matrix to 

reduce polymerisation shrinkage and more importantly polymerisation 

stress within the material, such as thiol-ene monomers (Carioscia et al., 

2005, Cramer et al., 2010) and epoxy resin chemistry (Ernst et al., 2004, 

Weinmann et al., 2005). In addition to that, pre-polymerised filler particles 

were also developed to reduce polymerisation stress and provide superior 

polishing properties (Senawongse and Pongprueksa, 2007, Ferracane et 

al., 2014).  

Despite the significant developments of resin based composites, most 

recent systematic reviews showed that recurrent caries and clinical 

fractures of composite restorations remain to be the most common reasons 

of failure (Bernardo et al., 2007, Soncini et al., 2007, Sunnegardh-Gronberg 

et al., 2009, Demarco et al., 2012a, Beck et al., 2015a). The latter is 

especially important when composite resin is used in posterior teeth (van 

de Sande et al., 2013). The development of an effective antimicrobial resin 

composite has been progressing at a slower rate. Several strategies have 
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been adopted by researchers to introduce antimicrobial dental composites 

by modifications to the resin matrix, the filler components and the use of 

novel antibacterial polymers (Beyth et al., 2014). Fluoride has been the 

most widely used anti-caries agent, however the effectiveness of fluoride 

containing restoratives has been critically reviewed (Wiegand et al., 2007, 

Cury et al., 2016). More recently bioactive glass fillers (BAG) have been 

used as alternative/secondary filler for experimental resin based 

composites (Hyun et al., 2015, Alania et al., 2016). BAGs are represented 

by amorphous calcium, sodium phosphosilicate materials which are able to 

precipitate a biologically active hydroxycarbonate layer on their surfaces 

when they are exposed to bodily fluids. Therefore, they exhibit promising 

bioactive properties that can interact with the surrounding environment. 

However, their use and effectiveness in resin composites is still under 

investigation. Therefore, researchers continue to focus their efforts to 

develop new composite formulations with superior physical, mechanical 

properties and additional antimicrobial properties to produce materials with 

enhanced performance and extended clinical service.  

The aim of this study was to develop novel fluorapatite containing resin 

composites with potential antimicrobial properties while maintaining good 

mechanical and physical properties. Successful composite formulations 

were produced incorporating FA as secondary filler at up to 40%wt filler 

content while maintaining overall filler content of 80%wt.  

The addition of FA did not affect the degree of conversion of the 

experimental materials regardless of the amount of FA incorporated. The 

degree of conversion ranged between 50.9-61.5% which lies within the 

range of most commercial resin composites and the recommended degree 

of conversion suitable for occlusal restorations (Ferracane et al., 1997c, 

Silikas et al., 2000). However there was a difference in the refractive index 

of FA when compared to the resin mixture used. Therefore, optimizing 

filler/resin refractive index mismatch could also provide increased curing 

depth and assist in shade-matching (Shortall et al., 2008). Therefore it is 

worth considering using different resin formulations with refractive index 

similar to FA to further enhance their depth of cure and shade matching.  
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The mechanical performance of FA composites was similar/better than the 

commercial control. The wear resistance was similar to TC and 0FA and 

the addition of FA did not reduce the wear resistance. The high wear 

resistance of all FA composites is mostly attributed to the high filler content 

(80%wt, 63-67%vol) exceeding the filler volume fraction (60%vol) claimed 

to be necessary for resin composites to maintain adequate mechanical 

strength and wear resistance (Ilie and Hickel, 2009a). However, the wear 

process remains complex and the mechanism of wear was different 

between FA composites, TC and 0FA. SEM images showed similar 

patterns of wear across the experimental groups with two dominant 

features; (1) cracks running through the matrix in the direction of wear and 

(2) pull out of individual FA crystals. A similar pattern was observed in TC 

where larger pre-polymerised fillers (PPF) were pulled out leaving voids 

within the resin matrix.  The absence of surface coupling of FA crystals and 

the  lack of active binding sites in the PPF required for the surface coupling 

results in poor integration of these fillers within the resin matrix which may 

result in easier disintegration when mechanically challenged (Blackham et 

al., 2009, Aljabo et al., 2015, Randolph et al., 2016). Therefore it is worth 

investigating the effect of surface coupling of the FA crystals on the wear 

behaviour of FA composites. In addition to that, the removal of FA crystals 

and PPFs could also be attributed to their relatively large size with less 

favourable area to volume ratio leading to a smaller interface area between 

filler and polymer per unit volume (Miyasaka, 1996). Generally 

combinations of wear mechanisms were present across all composite 

groups, however FA composites showed a secondary adhesive wear 

mechanism where the FA crystals were transferred onto the abrading 

antagonist by cold welding through friction (Mair, 1992, Mair et al., 1996). 

TC also showed similar behaviour where material deposition corresponding 

to yttrium was evident on the abrading steatite antagonist. The use of the 

combination of analytical techniques such as SEM and EDX allowed further 

insight into the material behaviour and the unique wear processes involved. 

Similar findings were previously reported including commercial resin 

composites such as Filtek supreme XTE (3M ESPE, USA) and Kalore (GC 

America, USA) (Altaie et al., 2017). Whilst short-term wear testing 
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(equivalent of 6 month in-vivo) was shown to not discern as well between 

resin composite formulations compared to extended wear testing 

(equivalent of 18 and 36 months in-vivo) (Finlay et al., 2013), it did provide 

significant insights into the in-vitro wear behaviour of the different composite 

formulations (Finlay et al., 2013, Altaie et al., 2017). Therefore it is proposed 

that further insights into the wear behaviour of FA composites with different 

FA concentration could be obtained following an extended wear test. 

Nevertheless, FA composites showed favourable wear resistance 

comparable to the controls regardless of the concentration of FA used.  

Generally, FA composites showed high microhardness values which were 

comparable to most highly filled commercial composites; the addition of FA 

also did not negatively affect the surface microhardness regardless of the 

amount incorporated. FA composite HV ranged between 93.9 to 95.2 

(SD=1.6-2.3) while TC HV was 53.4 (SD=3.5). A direct correlation has been 

established between the amount of filler content and the surface 

microhardness of dental composites (Ferracane et al., 1998, Kim et al., 

2002, Jun et al., 2013b, Randolph et al., 2016). Therefore, the high 

microhardness values of FA composites are mostly attributed to their high 

filler content. Experimental FA composites also showed superior 

microhardness properties when compared to other experimental 

composites such as BAG containing composites. It was reported that 

experimental composites containing BAG exhibited microhardness values 

ranging between 30-70 HV. However the microhardness decreased when 

the concentration of BAG increased (Hyun et al., 2015). The surface 

microhardness was also shown to increase when silanated hydroxyapatite 

whiskers were incorporated within experimental resin composites mixtures 

(Zhang and Darvell, 2012).  

Evaluation of the experimental materials’ strength was also a crucial part of 

this study to characterise their mechanical performance and the effect of 

FA incorporation. Strength assessments were based on the important 

mechanical properties identified to be most effective in predicting the 

clinical performance of dental composites (Ferracane, 2013a, Heintze et 

al., 2017), this included fracture toughness (K1C), flexural strength (FS) and 
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flexural modulus (FM) testing. The most recent systematic review showed 

that there were significant moderate/strong correlations between fracture 

toughness and clinical fractures and flexural strength with clinical wear 

(Heintze et al., 2017).  

The flexural strength values of FA composites ranged between 68.3-

80.2 MPa compared to higher values for 0FA (112 MPa) and TC 

(88 MPa),Table 24. The experimental control (0FA) showed the highest 

flexural strength which was statistically significant when compared to all 

tested groups (p < 0.05). However there were no statistically significant 

differences in the flexural strength of 10-40FA when compared to TC 

(p > 0.05). The increase in the FA concentration lead to an apparent 

decrease in the flexural strength but this decrease was not statistically 

significant (p > 0.05). The reduction of FS values could also be attributed to 

the lack of coupling of FA fillers which compromises the integration within 

the resin matrix; the FA fillers in this case may have behaved as large 

inclusions increasing the risk of crack initiation. Similar observations were 

reported by Aljabo et al (2015) for CaP fillers with different concentrations; 

the FS values ranged between 100-144 MPa which was then reduced after 

aging for 1 month in water. They concluded that increasing the 

concentration of CaP fillers resulted in a reduction in the flexural strength 

of dental composites. This reduction was attributed to the lack of coupling 

agent between the fillers and the resin matrix (Aljabo et al., 2015). Similar 

observations were reported when unsilanated filler particles were 

incorporated into resin composites such as dicalciumphosphate dihydrate 

(DCPD) nanoparticles; materials showed FS values ranging between (76-

133MPa) in which the FS was reduced by increasing the DCPD 

concentration (Alania et al., 2016). As with the FA particles in this study, 

DCPD particles were considered as inclusions increasing the risk of crack 

initiation at low stress levels due to the lack of surface coupling (Alania et 

al., 2016). Hydroxyapatite (HA) containing experimental composites 

showed FS values ranging between 70-100 MPa, the addition of 0.2%wt 

HA increased the FS values when compared to the control (unfilled resin), 

however the FS values steeply decreased when the HA filler concentration 
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was increased (Taheri et al., 2015). BAGs containing resin composites with 

72%wt filler content showed FS values ranging between 116.9 - 123.5 MPa, 

increasing the BAG concentrations also resulted in a numerical decrease 

in the FS values but this decrease was not statistically significant 

(Khvostenko et al., 2013). It was also reported that the use of silanated BAG 

fillers increased the flexural strength of experimental resin composites from 

70.3 MPa (un-silanized) to 106.6 MPa (silanized) (Oral et al., 2014). 

Nevertheless, experimental composites containing FA showed acceptable 

FS values which were comparable to the commercial control (TC); the 

values were also within the acceptable range of FS value recommended by 

ISO4049 for Type 1 materials which are suitable for occlusal restorations 

(Flexural strength values ≥ 80 MPa).  

Generally, all FA composites maintained relatively acceptable FM values 

which are comparable to most highly filled commercial dental composites, 

and in this study were significantly higher than TC. Experimental FA 

containing composites showed FM value around 12 GPa compared with 

0FA (14.6 GPa) and TC (10.22 GPa), Table 24. Generally the addition of 

FA resulted in a decrease in the FM values when compared to 0FA. This 

reduction is mostly attributed to the lack of surface coupling of FA crystals 

which compromises the resin/filler interaction and the particles are less 

effectively contributing to the overall stiffness of the material. However, all 

FA composites showed similar flexural modulus values which were not 

affected by increasing the FA concentration (10-40%FA), (p > 0.05). The 

lack of correlation could be attributed to the high filler content of all FA 

composites (63-67%vol) (Ilie and Hickel, 2009a, Randolph et al., 2016). 

However it would be of an interest to investigate the effect of increasing the 

FA concentration further to establish the critical level of FA after which the 

FM values may significantly be reduced. FA composites showed superior 

FM properties when compared to other experimental composites. It was 

reported that composites containing CaP fillers showed a relatively low 

flexural modulus (2.1-4.0 GPa) which was reduced by increasing the CaP 

filler content (Aljabo et al., 2015). Similarly resin monomer mixtures 
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containing hydroxyapatite filler showed FM values ranging between 1.7-

2.5 GPa (Taheri et al., 2015).  

The fracture toughness values of the tested composites groups were 

variable with FA composites ranging between 0.8-1.4 MPa.m(1/2), 0FA 

(1.2  MPa.m(1/2)) and TC (1.3 MPa.m(1/2)), Table 24.10FA and 20FA groups 

showed the lowest fracture toughness values when compared to TC, 30FA 

and 40FA (p < 0.05). However 30FA and 40FA showed higher fracture 

toughness values which were comparable to the controls (p > 0.05). 

Interestingly, the addition of higher concentration of FA resulted in 

enhanced fracture toughness of the experimental dental composites. The 

most reported fracture toughness values of dental composites range 

between 1-2.5 MPa.m(1/2) (Ilie et al., 2012, Jun et al., 2013a). The literature 

has been equivocal on whether there is a correlation between resin 

composites fracture toughness and the amount of filler loading. Several 

studies reported correlations between the filler volume fraction and the 

fracture toughness of resin composites (Kovarik and Fairhurst, 1993, Kim 

et al., 1994, Ferracane et al., 1998, Ilie et al., 2012). However, several other 

studies suggested that the fracture toughness of resin based materials are 

highly dependent on the morphology of the composite microstructure rather 

than filler volume fraction or filler size (Kim et al., 2002, Shah et al., 2009a, 

Shah et al., 2009b, Elbishari et al., 2012, Ornaghi et al., 2012). It was 

suggested that the microstructure of resin based composites that maintain 

good matrix/particle adhesion while endorsing important toughening 

mechanisms such as crack bridging and crack deflection provide superior 

fracture and fatigue properties (Manhart et al., 2000, Shah et al., 2009b, 

Shah et al., 2009a, Elbishari et al., 2012, Ornaghi et al., 2012). Applying 

these mechanisms could explain the increased fracture toughness values 

of resin composites when higher amounts of FA are incorporated. The lack 

of silane coupling of the FA fillers results in poorer integration of the fillers 

within the resin matrix, therefore they are considered as internal flaws 

allowing crack propagation as they are easily detached from the resin 

matrix leading to interfacial debonding. Generally these  observations were 

evident from the SEM images of the fractured surfaces which agree with 
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other researchers who identified interfacial debonding as one of the main 

reasons of reduced fracture properties of dental composites (Chan et al., 

2007, Shah et al., 2009b, Khvostenko et al., 2013). However, the unique 

morphology of FA crystals especially the bundles of crystals also allowed 

microscopic crack deflection and crack bridging which sustained a portion 

of the applied load that otherwise would have gone towards crack 

extension. Crack deflection and bridging are the two toughening 

mechanisms that often act together in which crack defection lead to crack 

bridging (Shah et al., 2009a, Shah et al., 2009b), similar to natural tooth 

tissues by which the enamel and dentine are toughened (Imbeni et al., 

2005, Bajaj and Arola, 2009, Bechtle et al., 2010). Those toughening 

mechanisms were more evident when higher concentrations of FA were 

used, Figure 64. Therefore, the increased fracture toughness of 30FA and 

40FA when compared to 10FA and 20FA could be explained by to those 

toughening mechanisms due to wider availability of the FA bundles 

overcoming the lack of surface coupling issue. This study therefore 

highlights the importance of filler morphology as well as amount of filler in 

affecting key mechanical properties. Kostenko et al (2013) reported similar 

observations of fracture toughening mechanisms when bioactive glass 

(BAG) fillers were used which resulted in acceptable fracture toughness of 

experimental dental composites. Generally all FA composites exhibited 

adequate mechanical performance when compared to the commercial 

control; 

All FA composites showed similar wear resistance to 0FA and TC 

regardless of the FA concentration 

1- All FA composites showed superior microhardness (HV) when 

compared to TC, performing at a similar level of most highly filled 

commercial composites.  

2- All FA composites showed similar flexural strength to TC; however 

the addition of FA resulted in a decrease in the FS values when 

compared to 0FA. 
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3- All FA composites showed similar flexural modulus to TC; however 

the addition of FA resulted in reduced FS values when compared to 

0FA. 

4- 30FA and 40FA showed similar fracture toughness values when 

compared to TC and 0FA. 

Although all FA composites behaved similarity to the commercial control, 

the lack of surface coupling of the FA crystals was the primary reason for 

the reduced flexural strength, flexural modulus and fracture toughness of 

FA composites when compared to 0FA. However, interesting observations 

were found when higher concentrations of FA were incorporated which lead 

to endorsed toughening mechanisms increasing the fracture toughness of 

the most highly filled FA composites. The importance of filler surface 

coupling was recognised to enhance the filler/resin interaction and 

consequently a lack of coupling may result in compromised mechanical 

properties (Kim et al., 2002, Ilie et al., 2013b, Randolph et al., 2016). 

However, experimental composites produced in this study contained 

silanated primary glass filler and un-silanated FA crystals. FA crystals were 

used without the intention to silane couple them in order to evaluate their 

behaviour and potential fluoride release which could be prevented if the 

surface was coupled. A similar approach is usually adopted by most 

researchers developing experimental dental composites with proposed 

bioactivity, most materials were initially produced by incorporating novel 

fillers such as calcium phosphate particles and bioactive glass (BAG) 

without the intention to silane couple them due to the same aforementioned 

reason (Davis et al., 2014, Aljabo et al., 2015, Alania et al., 2016). 
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Table 24: Flexural strength (FS), Flexural modulus (FM) and Fracture 

toughness (K1c) data of FA composites and the control groups 

DC FS (MPa)(SD) FM (GPa)(SD) K1c (MPa.m(1/2))(SD) 

TC 88.6 (17.4) 10.2 (0.7) 1.3 (0.1) 

0FA 113.1 (30.1) 14.6 (1.2) 1.2 (0.2) 

10FA 80.2 (15.7) 12.0 (1.8) 0.8 (0.1) 

20FA 80.5 (10.0) 12.1 (0.9) 0.8 (0.1) 

30FA 74.5 (12.4) 12.0 (1.7) 1.4 (0.4) 

40FA 68.3 (9.4) 12.0 (0.01) 1.2 (0.06) 

 

Selected correlation analysis was also conducted to investigate the 

relationship between the different composite formulations and their 

mechanical behaviour. Pearson’s correlation tests were conducted 

between Vickers hardness (HV) wear, flexural strength (FS), flexural 

modulus (FM) and fracture toughness. The correlation coefficient “r value” 

closer ±1 is considered as a perfect correlation while r values ranging 

between; 

 00-0.19 “very weak”  

 0.20-0.39 “weak”  

 0.40-0.59 “moderate”  

 0.60-0.79 “strong”  

 0.80-1.0 “very strong” 

Results showed direct positive moderate linear correlations between FM 

and FS (r = 0.549, p = 0.000), as shown in the corresponding scatter plot 

Figure 70. However, no other correlations were found amongst other tests, 

Table 25 and Figure 71. The relationship between FM and FS has been 

widely reported in the literature where a high linear correlation was found 

amongst most resin composites studied. The correlation between wear and 

microhardness of resin composites has been investigated by several 

researchers, however the complexity of the wear process caused 

conflicting reports in the literature (Manhart et al., 2000, Mandikos et al., 
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2001, Ferracane, 2013a). This study showed no correlation between HV 

and the wear resistance of the materials tested. Fracture toughness also 

did not correlate to any of the other mechanical properties tested in this 

study, although a moderately strong correlation was previously reported 

between FS and fracture toughness (Manhart et al., 2000, Kim et al., 2002, 

Takahashi et al., 2011, Jun et al., 2013a). However, the relationship 

between FS and fracture toughness requires further investigation as the 

pre-cracking approach and testing variables were shown to significantly 

affect the fracture toughness value of resin composites (Ferracane et al., 

1987, Zhao et al., 1997, Tantbirojn et al., 2003).  
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Table 25: Pearson’s correlations between the mechanical tests 

conducted. 

Tests correlations r p-value 

Wear  Vickers hardness -0.160 0.446 

Flexural strength -0.099 0.603 

Flexural modulus -0.034 0.859 

Fracture Toughness 0.074 0.698 

Flexural strength wear -0.099 0.603 

Flexural modulus 0.549** 0.000 

Fracture Toughness 0.108 0.412 

Flexural modulus wear -0.034 0.859 

Flexural strength 0.549** 0.000 

Fracture Toughness 0.039 0.765 

Fracture Toughness wear 0.074 0.698 

Flexural strength 0.108 0.412 

Flexural modulus 0.039 0.765 
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Figure 70: Scatter plot showing the correlation between flexural 

strength (MPa) and flexural modulus (GPa). 
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Figure 71: Scatter plots showing correlations between the mechanical 

properties tested including wear (mean volume loss mm3), vickers 

hardness (HV), flexural strength (MPa), flexural modulus (GPa) and 

fracture toughness (MPa.m(1/2)). 
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Calcium and fluoride ions are widely known to be effective in 

strengthening the tooth tissue through enhancement of the 

remineralisation process (Cury and Tenuta, 2009, Fejerskov O et al., 

2015) . Therefore a restorative material that is capable of releasing 

these ions adjacent to the demineralised tooth tissue would be expected 

to enhance the formation of caries resistant fluoroapatite on the tooth 

and consequently results in reduced caries progression. Studies have 

shown that the fluoride concentrations in plaque adjacent to fluoride 

releasing restorations is significantly higher than fluoride levels in 

plaque following the use of fluoride containing mouthwashes, 7–21 µgF− 

and 1–5 µgF− per gram of plaque respectively (Duckworth et al., 1987, 

Benelli et al., 1993, Forss et al., 1995). Given the large number of 

composites restorations placed nowadays, composites that contain 

available sources of these ions may have substantial advantages 

compared to those that do not release these ions. Various fluoride 

releasing restoratives are currently available such as glass ionomer 

cements (GIC), resin modified glass ionomers (RMGIC), compomers 

and fluoride containing composites. Composites have been shown to 

release the lowest amounts of fluoride in the long term when compared 

to GIC, RMGIC and compomers (Karantakis et al., 2000, Vermeersch 

et al., 2001, Wiegand et al., 2007). Most commercial composites 

formulations contain soluble source of fluoride incorporated into the filler 

system such as strontium fluoride (SrF2) and ytterbium trifluoride (YbF3). 

More recently experimental materials with alternative novel filler 

systems such as bioactive glass fillers (BAGs) were developed and are 

still under investigation; when used in resin composites they may 

possess potential bioactive properties that could inhibit caries 

progression (Hyun et al., 2015, Alania et al., 2016). An alternative 

approach was employed in this study by using an alternative filler 

system through the incorporation of synthesised fluorapatite crystals as 

secondary filler. To mimic the natural caries resistance  of teeth, it was 

suggested that synthesised fluorapatite crystals could be a suitable and 

effective chemically stable anti-caries material (Chen et al., 2006b). 
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Furthermore, synthesised FA crystals have a unique hexagonal 

structure in the form of crystals and bundles of crystals which can act as 

reinforcing filler within the resin matrix of dental composites. 

Experimental composites prepared in this study contained 10-40% FA. 

Composites specimens were immersed in neutral and acidic media for 

evaluation of fluoride ion release using the ion selective electrode 

methodology. The protocol used in this study was daily fluoride 

measurements for the first week, followed by weekly measurements for 

the first month and monthly measurements up to 196 days. Under 

neutral conditions, no fluoride release was detected from the FA 

composites and the control groups suggesting a lack of loosely bound 

or surface bound fluoride; therefore it was decided not to continue the 

experiment under neutral condition as none of the groups released 

fluoride over the first 48 hours, (Table 19). However, under acidic 

conditions, all FA composites released statistically significant amounts 

of fluoride when compared to the control groups (p < 0.05). The lack of 

fluoride ion release under neutral medium present a favourable property 

of these materials as fluoride would only be required when the pH drops 

causing tooth tissue demineralisation. All FA composites showed similar 

pattern and amount of fluoride release which was at its highest in the 

first day. Following the initial release, the amount of fluoride release 

started to slow down from day two up to day 7. 10FA and 20FA 

composites continued to release small amounts of fluoride at a 

consistent rate, however there were no significant differences in the 

cumulative fluoride released at extended time intervals (p > 0.05). 30FA 

and 40FA showed consistent increase in the fluoride release over 

extended period of times; this increase was shown to be significant at 

Day 196 when compared to Day 112 (p < 0.05). FA containing 

composites showed significantly higher cumulative fluoride release over 

the entire testing period when compared to TC and 0FA (p < 0.05). 

Generally the amount of fluoride released was proportional to the 

concentration of FA used (cumulative release profile shown in Figure 

65). The cumulative release of FA composites ranged between (20.0-

54.9 µg/cm2) in the first week which increased to (25.9-163.4 µg/cm2) 
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by day 196, Table 20. These values are shown to be higher than the 

cumulative fluoride release from commercial resin composites which 

was reported to be less than 0.5 µg/mm2 during a period of 90-120 days 

(Karantakis et al., 2000, Vermeersch et al., 2001). To date, there has 

been no consensus on the amount of fluoride required for a restorative 

material to be effective against recurrent caries; however it is generally 

suggested that the effect of fluoride releasing restoratives is mostly due 

to the localised fluoridation adjacent to the demineralisation zones 

rather than elevation of fluoride levels in saliva. It has been reported that 

localised small amounts of fluoride approximately in the ranges of 0.03-

0.08 ppm and 0.63-1.3 µg F-/cm2/day is sufficient to shift the equilibrium 

from demineralisation to re-mineralisation (Rawls, 1995, Wiegand et al., 

2007). Therefore all FA composites showed fluoride release within the 

range considered to be effective in preventing demineralisation. In 

addition to that, the amount of fluoride is considerably higher when 

compared to the commercially available fluoride releasing dental 

composites (Karantakis et al., 2000, Vermeersch et al., 2001). The 

mechanism by which fluoride was released from the FA composites was 

due to the dissolution of the FA crystals when subjected to acidic 

environmental which was evident from the SEM images. The initial high 

daily release followed by a reduced but sustained release may simply 

be due to the fact that at extended time points, there was little FA 

remaining. SEM showed that the FA rods could be completely dissolved 

at these time points, leaving holes where crystals had once been. It is 

important to reflect that this was an accelerated degradation study and 

that a patient’s exposure to acid in the oral cavity is infrequent and 

episodic in nature and that saliva effectively buffers the acid challenges 

a patient experiences due to eating/drinking (Walters et al., 2016, 

Fonseca et al., 2017). Nevertheless, it would be worth measuring 

mechanical properties of these degraded materials to see if there was 

a reduction in mechanical properties as a consequence of the presence 

of voids. The dissolution of the FA crystals also suggests calcium and 

phosphate ions release. Therefore it is certainly worth investigating the 

calcium and phosphate ion release from the FA composites using the 
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same protocol used for fluoride ion release. In addition to that, it is worth 

investigating the materials’ behaviour using pH cycling models to mimic 

the demineralisation and remineralisation processes and to use in-

situ/biofilm models. This may provide further insight into the behaviour 

of FA composites which might be a suitable “smart” composite that react 

with the surrounding environment and may prevent recurrent caries 

progression. 

Limitations of this study are also acknowledged such as the lack of 

surface coupling of fluorapatite fillers. Surface coupling may further 

enhance the mechanical properties of FA composites; conversely the 

fluoride releasing properties may be affected. Therefore, further 

research is suggested to investigate the possibility of surface coupling 

of FA followed by re-evaluation of the materials properties. In addition 

to that, clinical translation of these composite formulations would require 

further extensive research evaluating the effectiveness of ion release on 

caries formation and progression around FA composites. Further work 

is therefore suggested and detailed in the next chapter. 

In summary, this project suggests an alternative approach to introduce 

bioactive properties to resin composites by incorporating synthesised 

fluorapatite as secondary filler. Successful novel fluorapatite containing 

resin composites were produced which exhibited adequate key physical 

and mechanical properties comparable to most contemporary 

commercial resin composites. Additionally these novel formulations 

have the advantage of short and long term fluoride release under acidic 

conditions showing promising step toward “smart” fluoride releasing 

dental composite. Fluorapatite was shown to be a suitable filler to be 

used in resin composites while maintaining adequate key physical and 

mechanical properties. 
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6.1 Limitations of the study 

 The lack of surface coupling of the FA fillers is acknowledged 

which may have attributed to the reduced mechanical properties 

when compared to the commercial control. 

 Tetric Evo ceram was the only commercial composite control 

used in this study. Therefore it is worth investigating the 

performance of FA composites when compared to a wider range 

of commercial dental composites 

 In-vitro wear testing was conducted for an equivalent of ~3 month 

clinical wear, however long term wear testing may provide further 

insight into the materials’ behaviour 

 Degree of conversion was conducted in real time however further 

insight could be gained by investigating the depth of cure of FA 

composites. 

 

  



174 
 

 
 

6.2 Conclusions 

 Highly filled experimental composites were successfully produced 

incorporating FA as secondary filler. 

 The addition of FA did not affect the key physical and mechanical 

properties of FA composites when compared to the commercial 

control. 

 A direct positive moderate linear correlation was found between 

flexural modulus and flexural strength of the tested composites in 

this study. 

 The unique morphology of FA crystals endorsed fracture toughening 

mechanisms of FA composites leading to increased fracture 

toughness when higher concentration of FA was used.  

 FA composites showed short and long term fluoride release under 

acidic conditions showing a promising step towards a potential 

“smart” fluoride releasing dental composite. 
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Chapter 7: Future work 

Experimental FA composites would require further development and 

characterisation to include the below: 

 To measure the calcium and phosphate ion release from the FA 

resin composites.  

 Evaluate the effect of surface coupling of the FA crystals on the 

mechanical properties of FA resin composites. 

 Evaluate the effect of surface coupling on the fluoride, calcium and 

phosphate ion release. 

 To evaluate the effect of aging on the mechanical properties of FA 

composites. 

 Incorporation of FA filler with different resin formulations with similar 

refractive index to enhance the depth of cure properties 

 To evaluate the optical properties including translucency and opacity 

for optimum shade matching. 

 To evaluate the polishability and the surface roughness of FA resin 

composites. 

 To evaluate the effect of fluoride ion release using pH cycling models 

mimicking the demineralisation and remineralisation processes. 

  To evaluate the effect of fluoride ion release using in-situ/biofilm 

models. 

 To translate the experimental materials for clinical use and conduct 

a clinical trial evaluating the clinical performance of the experimental 

FA resin composites compared to conventional composites in-vivo. 
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Chapter 9: Appendices  

Appendix A: One- Way ANOVA volume loss (TC,A,B,C,D) 

ANOVA 

Volume_loss (TC,A,B,C,D)   

 Sum of Squares df Mean Square F Sig. 

Between Groups .01 4.00 .00 68.42 .00 

Within Groups .00 20.00 .00   

Total .01 24.00    

 

Appendix B: Post Hoc Tukey volume loss (TC,A,B,C,D) 

Multiple Comparisons 

Dependent Variable:   Volume_loss  (TC,A,B,C,D) 

Tukey HSD   

(I) DC (J) DC Mean 

Difference (I-

J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

TC 

A  -.04* .00 .00 -.05 -.03 

B -.01 .00 .08 -.02 .00 

C .00 .00 .73 -.01 .01 

D .00 .00 .96 -.01 .01 

A 

TC .04* .00 .00 .03 .05 

B .03* .00 .00 .02 .04 

C .04* .00 .00 .03 .05 

D .04* .00 .00 .03 .05 

B 

TC .00 .00 .73 -.01 .01 

A  -.04* .00 .00 -.05 -.03 

C -.01* .00 .01 -.02 .00 

D .00 .00 .98 -.01 .01 

C TC .00 .00 .96 -.01 .01 
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A -.04* .00 .00 -.05 -.03 

B -.01* .00 .02 -.02 .00 

D .00 .00 .98 -.01 .01 

D 

TC .01 .00 .08 .00 .02 

A  -.03* .00 .00 -.04 -.02 

B .01* .00 .01 .00 .02 

C .01* .00 .02 .00 .02 

*. The mean difference is significant at the 0.05 level. If less than 0.05 data is not normally distributed. 

 

Appendix C: One- Way ANOVA HV (TC,A,B,C,D) 

 

ANOVA 

HV   
 Sum of Squares df Mean Square F Sig. 

Between Groups 5974.33 4.00 1493.58 148.24 .00 

Within Groups 201.51 20.00 10.08   

Total 6175.84 24.00    
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Appendix D: Post Hoc Tukey HV (TC,A,B,C,D) 

Multiple Comparisons 

Dependent Variable:   HV   

Tukey HSD   

(I) DC (J) DC Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

TC 

A  -36.30* 2.01 .00 -42.31 -30.29 

B -35.58* 2.01 .00 -41.59 -29.57 

C -39.82* 2.01 .00 -45.83 -33.81 

D -41.38* 2.01 .00 -47.39 -35.37 

A 

TC 36.30* 2.01 .00 30.29 42.31 

B .72 2.01 1.00 -5.29 6.73 

C -3.52 2.01 .43 -9.53 2.49 

D -5.08 2.01 .12 -11.09 .93 

B 

TC 39.82* 2.01 .00 33.81 45.83 

A  3.52 2.01 .43 -2.49 9.53 

C 4.24 2.01 .25 -1.77 10.25 

D -1.56 2.01 .93 -7.57 4.45 

C 

A  41.38* 2.01 .00 35.37 47.39 

B 5.08 2.01 .12 -.93 11.09 

C 5.80 2.01 .06 -.21 11.81 

D 1.56 2.01 .93 -4.45 7.57 

D 

TC 35.58* 2.01 .00 29.57 41.59 

B -.72 2.01 1.00 -6.73 5.29 

C -4.24 2.01 .25 -10.25 1.77 

D -5.80 2.01 .06 -11.81 .21 

*. The mean difference is significant at the 0.05 level. 
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Appendix E: Normality test results DC (TC,A,B,C,D) 

 Tests of Normality-DC (TC,A,B,C,D) 

Group Time 
Shapiro-Wilk 

Statistic df Sig. 

TC 

DC_5s .887 5 .344 

DC_10s .840 5 .166 

DC_20s .907 5 .448 

DC_30s .970 5 .873 

DC_40s .882 5 .317 

DC_50s .865 5 .247 

DC_60s .949 5 .728 

A 

DC_5s .970 5 .876 

DC_10s .989 5 .975 

DC_20s .958 5 .791 

DC_30s .810 5 .098 

DC_40s .855 5 .211 

DC_50s .948 5 .720 

DC_60s .968 5 .860 

B 

DC_5s .974 5 .899 

DC_10s .844 5 .177 

DC_20s .939 5 .659 

DC_30s .858 5 .222 

DC_40s .805 5 .089 

DC_50s .868 5 .258 

DC_60s .942 5 .678 

C 

DC_5s .875 5 .287 

DC_10s .846 5 .182 

DC_20s .876 5 .292 

DC_30s .869 5 .263 

DC_40s .865 5 .246 

DC_50s .821 5 .119 

DC_60s .800 5 .081 

D 

DC_5s .950 5 .736 

DC_10s .948 5 .719 

DC_20s .899 5 .402 

DC_30s .898 5 .398 

DC_40s .931 5 .602 

DC_50s .855 5 .210 

DC_60s .777 5 .052 

 *. This is a lower bound of the true significance. 
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Appendix F: One- Way ANOVA DC (TC,A,B,C,D) 

ANOVA-Degree of Conversion TC,A,B,C,D 

 Sum of 

Squares 

df Mean Square F Sig. 

DC_5s 

Between Groups 754.29 4.00 188.57 12.59 .00 

Within Groups 299.58 20.00 14.98   

Total 1053.87 24.00    

DC_10s 

Between Groups 954.97 4.00 238.74 31.97 .00 

Within Groups 149.35 20.00 7.47   

Total 1104.31 24.00    

DC_20s 

Between Groups 429.07 4.00 107.27 15.49 .00 

Within Groups 138.53 20.00 6.93   

Total 567.60 24.00    

DC_30s 

Between Groups 483.34 4.00 120.83 13.43 .00 

Within Groups 179.92 20.00 9.00   

Total 663.26 24.00    

DC_40s 

Between Groups 328.65 4.00 82.16 9.40 .00 

Within Groups 174.86 20.00 8.74   

Total 503.51 24.00    

DC_50s 

Between Groups 414.63 4.00 103.66 7.75 .00 

Within Groups 267.57 20.00 13.38   

Total 682.20 24.00    

DC_60s 

Between Groups 322.64 4.00 80.66 18.87 .00 

Within Groups 85.50 20.00 4.27   

Total 408.14 24.00    
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Appendix G: Post Hoc Tukey DC (TC,A,B,C,D) 

Multiple Comparisons- Degree of Conversion TC,A,B,C,D 

Tukey HSD   

Dependent 

Variable 

(I) 

DC 

(J) 

DC 

Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

DC_5s 

TC 

A -10.904* 2.448 .002 -18.229 -3.579 

B -11.759* 2.448 .001 -19.084 -4.435 

C -16.385* 2.448 .000 -23.709 -9.060 

D -12.592* 2.448 .000 -19.917 -5.268 

A 

TC 10.904* 2.448 .002 3.579 18.229 

B -.856 2.448 .997 -8.180 6.469 

C -5.481 2.448 .206 -12.805 1.844 

D -1.689 2.448 .956 -9.013 5.636 

B 

TC 11.759* 2.448 .001 4.435 19.084 

A .856 2.448 .997 -6.469 8.180 

C -4.625 2.448 .354 -11.950 2.700 

D -.833 2.448 .997 -8.158 6.492 

C 

TC 16.385* 2.448 .000 9.060 23.709 

A 5.481 2.448 .206 -1.844 12.805 

B 4.625 2.448 .354 -2.700 11.950 

D 3.792 2.448 .545 -3.533 11.117 

D 

TC 12.592* 2.448 .000 5.268 19.917 

A 1.689 2.448 .956 -5.636 9.013 

B .833 2.448 .997 -6.492 8.158 

C -3.792 2.448 .545 -11.117 3.533 

DC_10s 

TC 

A -12.595* 1.728 .000 -17.767 -7.424 

B -12.968* 1.728 .000 -18.139 -7.796 

C -17.016* 1.728 .000 -22.187 -11.844 

D -16.550* 1.728 .000 -21.721 -11.378 

A 

TC 12.595* 1.728 .000 7.424 17.767 

B -.372 1.728 .999 -5.544 4.800 

C -4.420 1.728 .117 -9.592 .752 

D -3.954 1.728 .190 -9.126 1.217 

B 

TC 12.968* 1.728 .000 7.796 18.139 

A .372 1.728 .999 -4.800 5.544 

C -4.048 1.728 .173 -9.220 1.124 

D -3.582 1.728 .270 -8.754 1.589 

C 

TC 17.016* 1.728 .000 11.844 22.187 

A 4.420 1.728 .117 -.752 9.592 

B 4.048 1.728 .173 -1.124 9.220 

D .466 1.728 .999 -4.706 5.637 
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D 

TC 16.550* 1.728 .000 11.378 21.721 

A 3.954 1.728 .190 -1.217 9.126 

B 3.582 1.728 .270 -1.589 8.754 

C -.466 1.728 .999 -5.637 4.706 

DC_20s 

TC 

A -8.158* 1.665 .001 -13.139 -3.177 

B -10.654* 1.665 .000 -15.635 -5.673 

C -11.663* 1.665 .000 -16.644 -6.682 

D -9.163* 1.665 .000 -14.144 -4.182 

A 

TC 8.158* 1.665 .001 3.177 13.139 

B -2.496 1.665 .575 -7.477 2.485 

C -3.505 1.665 .256 -8.486 1.476 

D -1.005 1.665 .973 -5.986 3.976 

B 

TC 10.654* 1.665 .000 5.673 15.635 

A 2.496 1.665 .575 -2.485 7.477 

C -1.010 1.665 .972 -5.990 3.971 

D 1.491 1.665 .895 -3.490 6.472 

C 

TC 11.663* 1.665 .000 6.682 16.644 

A 3.505 1.665 .256 -1.476 8.486 

B 1.010 1.665 .972 -3.971 5.990 

D 2.500 1.665 .573 -2.481 7.481 

D 

TC 9.163* 1.665 .000 4.182 14.144 

A 1.005 1.665 .973 -3.976 5.986 

B -1.491 1.665 .895 -6.472 3.490 

C -2.500 1.665 .573 -7.481 2.481 

DC_30s 

TC 

A -11.326* 1.897 .000 -17.002 -5.649 

B -10.891* 1.897 .000 -16.568 -5.215 

C -11.747* 1.897 .000 -17.424 -6.071 

D -8.953* 1.897 .001 -14.630 -3.277 

A 

TC 11.326* 1.897 .000 5.649 17.002 

B .434 1.897 .999 -5.242 6.111 

C -.422 1.897 .999 -6.098 5.255 

D 2.373 1.897 .723 -3.304 8.049 

B 

TC 10.891* 1.897 .000 5.215 16.568 

A -.434 1.897 .999 -6.111 5.242 

C -.856 1.897 .991 -6.532 4.820 

D 1.938 1.897 .842 -3.738 7.615 

C 

TC 11.747* 1.897 .000 6.071 17.424 

A .422 1.897 .999 -5.255 6.098 

B .856 1.897 .991 -4.820 6.532 

D 2.794 1.897 .591 -2.882 8.471 

D 
TC 8.953* 1.897 .001 3.277 14.630 

A -2.373 1.897 .723 -8.049 3.304 
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B -1.938 1.897 .842 -7.615 3.738 

C -2.794 1.897 .591 -8.471 2.882 

DC_40s 

TC 

A -8.070* 1.870 .003 -13.666 -2.474 

B -10.156* 1.870 .000 -15.752 -4.560 

C -7.970* 1.870 .003 -13.566 -2.374 

D -9.171* 1.870 .001 -14.767 -3.575 

A 

TC 8.070* 1.870 .003 2.474 13.666 

B -2.085 1.870 .797 -7.681 3.511 

C .101 1.870 1.000 -5.495 5.697 

D -1.101 1.870 .975 -6.697 4.495 

B 

TC 10.156* 1.870 .000 4.560 15.752 

A 2.085 1.870 .797 -3.511 7.681 

C 2.186 1.870 .768 -3.410 7.782 

D .984 1.870 .984 -4.612 6.580 

C 

TC 7.970* 1.870 .003 2.374 13.566 

A -.101 1.870 1.000 -5.697 5.495 

B -2.186 1.870 .768 -7.782 3.410 

D -1.201 1.870 .966 -6.797 4.395 

D 

TC 9.171* 1.870 .001 3.575 14.767 

A 1.101 1.870 .975 -4.495 6.697 

B -.984 1.870 .984 -6.580 4.612 

C 1.201 1.870 .966 -4.395 6.797 

DC_50s 

TC 

A -9.469* 2.313 .005 -16.392 -2.547 

B -10.709* 2.313 .001 -17.632 -3.787 

C -7.593* 2.313 .027 -14.515 -.670 

D -11.086* 2.313 .001 -18.008 -4.163 

A 

TC 9.469* 2.313 .005 2.547 16.392 

B -1.240 2.313 .982 -8.162 5.682 

C 1.877 2.313 .924 -5.046 8.799 

D -1.616 2.313 .954 -8.539 5.306 

B 

TC 10.709* 2.313 .001 3.787 17.632 

A 1.240 2.313 .982 -5.682 8.162 

C 3.117 2.313 .666 -3.806 10.039 

D -.376 2.313 1.000 -7.298 6.546 

C 

TC 7.593* 2.313 .027 .670 14.515 

A -1.877 2.313 .924 -8.799 5.046 

B -3.117 2.313 .666 -10.039 3.806 

D -3.493 2.313 .568 -10.415 3.429 

D 

TC 11.086* 2.313 .001 4.163 18.008 

A 1.616 2.313 .954 -5.306 8.539 

B .376 2.313 1.000 -6.546 7.298 

C 3.493 2.313 .568 -3.429 10.415 
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DC_60s 

TC 

A -9.245* 1.308 .000 -13.158 -5.332 

B -8.407* 1.308 .000 -12.320 -4.495 

C -8.600* 1.308 .000 -12.513 -4.687 

D -9.460* 1.308 .000 -13.373 -5.547 

A 

TC 9.245* 1.308 .000 5.332 13.158 

B .837 1.308 .966 -3.076 4.750 

C .645 1.308 .987 -3.268 4.558 

D -.215 1.308 1.000 -4.128 3.698 

B 

TC 8.407* 1.308 .000 4.495 12.320 

A -.837 1.308 .966 -4.750 3.076 

C -.192 1.308 1.000 -4.105 3.721 

D -1.052 1.308 .926 -4.965 2.861 

C 

TC 8.600* 1.308 .000 4.687 12.513 

A -.645 1.308 .987 -4.558 3.268 

B .192 1.308 1.000 -3.721 4.105 

D -.860 1.308 .963 -4.773 3.053 

D 

TC 9.460* 1.308 .000 5.547 13.373 

A .215 1.308 1.000 -3.698 4.128 

B 1.052 1.308 .926 -2.861 4.965 

C .860 1.308 .963 -3.053 4.773 

*. The mean difference is significant at the 0.05 level. 
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Appendix H: Normality test results DC (FA composites) 

 Tests of Normality-DC (FA composites) 

Group Time 
Shapiro-Wilk 

Statistic df Sig. 

TC 

DC_5s .887 5 .344 

DC_10s .840 5 .166 

DC_20s .907 5 .448 

DC_30s .970 5 .873 

DC_40s .882 5 .317 

DC_50s .865 5 .247 

DC_60s .949 5 .728 

0FA 

DC_5s .861 5 .233 

DC_10s .928 5 .580 

DC_20s .898 5 .400 

DC_30s .888 5 .349 

DC_40s .922 5 .546 

DC_50s .915 5 .500 

DC_60s .943 5 .689 

10FA 

DC_5s .932 5 .610 

DC_10s .891 5 .364 

DC_20s .910 5 .470 

DC_30s .798 5 .079 

DC_40s .959 5 .798 

DC_50s .885 5 .332 

DC_60s .862 5 .235 

20FA 

DC_5s .901 5 .417 

DC_10s .931 5 .603 

DC_20s .812 5 .101 

DC_30s .806 5 .091 

DC_40s .821 5 .119 

DC_50s .821 5 .119 

DC_60s .785 5 .061 
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30FA 

DC_5s .873 5 .277 

DC_10s .931 5 .603 

DC_20s .968 5 .861 

DC_30s .939 5 .657 

DC_40s .871 5 .271 

DC_50s .906 5 .446 

DC_60s .908 5 .457 

40FA 

DC_5s .882 5 .320 

DC_10s .928 5 .580 

DC_20s .898 5 .400 

DC_30s .888 5 .349 

DC_40s .922 5 .546 

DC_50s .915 5 .500 

DC_60s .943 5 .689 

*. This is a lower bound of the true significance. 
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Appendix I: One- Way ANOVA DC (FA composites) 

ANOVA 

 Sum of 

Squares 

df Mean Square F Sig. 

DoC_5s 

Between Groups 551.822 5 110.364 7.604 .000 

Within Groups 348.328 24 14.514   

Total 900.151 29    

DoC_10s 

Between Groups 1054.557 5 210.911 31.562 .000 

Within Groups 160.378 24 6.682   

Total 1214.936 29    

DoC_20s 

Between Groups 344.611 5 68.922 6.088 .001 

Within Groups 271.718 24 11.322   

Total 616.329 29    

DoC_30s 

Between Groups 240.189 5 48.038 2.391 .068 

Within Groups 482.120 24 20.088   

Total 722.309 29    

DoC_40s 

Between Groups 261.912 5 52.382 2.637 .049 

Within Groups 476.673 24 19.861   

Total 738.585 29    

DoC_50s 

Between Groups 526.534 5 105.307 4.706 .004 

Within Groups 537.010 24 22.375   

Total 1063.545 29    

DoC_60s 

Between Groups 309.885 5 61.977 3.393 .019 

Within Groups 438.410 24 18.267   

Total 748.295 29    
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Appendix J: Post Hoc Tukey DC (FA composites) 

Multiple Comparisons 

Tukey HSD   

Dependent 

Variable 

(I) DC (J) DC Mean 

Difference (I-

J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

DoC_5s 

TC 

0FA -12.59* 2.36 .00 -19.90 -5.29 

10FA -12.18* 2.36 .00 -19.49 -4.88 

20FA -5.17 2.36 .28 -12.47 2.14 

30FA -10.28* 2.36 .00 -17.59 -2.98 

40FA -3.74 2.36 .62 -11.04 3.57 

0FA 

TC 12.59* 2.36 .00 5.29 19.90 

10FA .41 2.36 1.00 -6.90 7.71 

20FA 7.43* 2.36 .04 .12 14.73 

30FA 2.31 2.36 .92 -5.00 9.61 

40FA 8.86* 2.36 .01 1.55 16.16 

10FA 

TC 12.18* 2.36 .00 4.88 19.49 

0FA -.41 2.36 1.00 -7.71 6.90 

20FA 7.02 2.36 .06 -.29 14.32 

30FA 1.90 2.36 .96 -5.40 9.21 

40FA 8.45* 2.36 .02 1.14 15.75 

20FA 

TC 5.17 2.36 .28 -2.14 12.47 

0FA -7.43* 2.36 .04 -14.73 -.12 

10FA -7.02 2.36 .06 -14.32 .29 

30FA -5.12 2.36 .29 -12.42 2.19 

40FA 1.43 2.36 .99 -5.88 8.73 

30FA 

TC 10.28* 2.36 .00 2.98 17.59 

0FA -2.31 2.36 .92 -9.61 5.00 

10FA -1.90 2.36 .96 -9.21 5.40 

20FA 5.12 2.36 .29 -2.19 12.42 

40FA 6.55 2.36 .10 -.76 13.85 

40FA 

TC 3.74 2.36 .62 -3.57 11.04 

0FA -8.86* 2.36 .01 -16.16 -1.55 

10FA -8.45* 2.36 .02 -15.75 -1.14 

20FA -1.43 2.36 .99 -8.73 5.88 

30FA -6.55 2.36 .10 -13.85 .76 

DoC_10s TC 

0FA -16.55 1.63 .00 -21.60 -11.49 

10FA -12.03 1.63 .00 -17.08 -6.97 

20FA -11.80 1.63 .00 -16.86 -6.75 

30FA -14.75 1.63 .00 -19.81 -9.70 



215 
 

 
 

40FA -3.82 1.63 .22 -8.87 1.24 

0FA 

TC 16.55 1.63 .00 11.49 21.60 

10FA 4.52 1.63 .10 -.54 9.58 

20FA 4.74 1.63 .07 -.31 9.80 

30FA 1.80 1.63 .88 -3.26 6.85 

40FA 12.73 1.63 .00 7.68 17.79 

10FA 

TC 12.03 1.63 .00 6.97 17.08 

0FA -4.52 1.63 .10 -9.58 .54 

20FA .22 1.63 1.00 -4.83 5.28 

30FA -2.72 1.63 .57 -7.78 2.33 

40FA 8.21 1.63 .00 3.16 13.27 

20FA 

TC 11.80 1.63 .00 6.75 16.86 

0FA -4.74 1.63 .07 -9.80 .31 

10FA -.22 1.63 1.00 -5.28 4.83 

30FA -2.95 1.63 .48 -8.00 2.11 

40FA 7.99 1.63 .00 2.93 13.04 

30FA 

TC 14.75 1.63 .00 9.70 19.81 

0FA -1.80 1.63 .88 -6.85 3.26 

10FA 2.72 1.63 .57 -2.33 7.78 

20FA 2.95 1.63 .48 -2.11 8.00 

40FA 10.94 1.63 .00 5.88 15.99 

40FA 

TC 3.82 1.63 .22 -1.24 8.87 

0FA -12.73 1.63 .00 -17.79 -7.68 

10FA -8.21 1.63 .00 -13.27 -3.16 

20FA -7.99 1.63 .00 -13.04 -2.93 

30FA -10.94 1.63 .00 -15.99 -5.88 

DoC_20s 

TC 

0FA -9.16* 2.13 .00 -15.74 -2.58 

10FA -9.61* 2.13 .00 -16.19 -3.03 

20FA -7.49* 2.13 .02 -14.07 -.92 

30FA -7.26* 2.13 .02 -13.84 -.68 

40FA -3.50 2.13 .58 -10.08 3.08 

0FA 
TC 9.16* 2.13 .00 2.58 15.74 

10FA -.44 2.13 1.00 -7.02 6.14 
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20FA 1.67 2.13 .97 -4.91 8.25 

30FA 1.90 2.13 .94 -4.68 8.48 

40FA 5.67 2.13 .12 -.91 12.24 

10FA 

TC 9.61* 2.13 .00 3.03 16.19 

0FA .44 2.13 1.00 -6.14 7.02 

20FA 2.11 2.13 .92 -4.47 8.69 

30FA 2.35 2.13 .88 -4.23 8.93 

40FA 6.11 2.13 .08 -.47 12.69 

20FA 

TC 7.49* 2.13 .02 .92 14.07 

0FA -1.67 2.13 .97 -8.25 4.91 

10FA -2.11 2.13 .92 -8.69 4.47 

30FA .23 2.13 1.00 -6.35 6.81 

40FA 4.00 2.13 .44 -2.58 10.58 

30FA 

TC 7.26* 2.13 .02 .68 13.84 

0FA -1.90 2.13 .94 -8.48 4.68 

10FA -2.35 2.13 .88 -8.93 4.23 

20FA -.23 2.13 1.00 -6.81 6.35 

40FA 3.76 2.13 .50 -2.82 10.34 

40FA 

TC 3.50 2.13 .58 -3.08 10.08 

0FA -5.67 2.13 .12 -12.24 .91 

10FA -6.11 2.13 .08 -12.69 .47 

20FA -4.00 2.13 .44 -10.58 2.58 

30FA -3.76 2.13 .50 -10.34 2.82 

DoC_30s 

TC 

0FA -8.95* 2.83 .04 -17.72 -.19 

10FA -4.56 2.83 .60 -13.32 4.21 

20FA -3.84 2.83 .75 -12.60 4.93 

30FA -4.82 2.83 .54 -13.59 3.94 

40FA -1.45 2.83 1.00 -10.21 7.32 

0FA 

TC 8.95* 2.83 .04 .19 17.72 

10FA 4.40 2.83 .64 -4.37 13.16 

20FA 5.11 2.83 .48 -3.65 13.88 

30FA 4.13 2.83 .69 -4.64 12.89 

40FA 7.51 2.83 .12 -1.26 16.27 

10FA 

TC 4.56 2.83 .60 -4.21 13.32 

0FA -4.40 2.83 .64 -13.16 4.37 

20FA .72 2.83 1.00 -8.05 9.48 

30FA -.27 2.83 1.00 -9.03 8.50 

40FA 3.11 2.83 .88 -5.66 11.87 

20FA 

TC 3.84 2.83 .75 -4.93 12.60 

0FA -5.11 2.83 .48 -13.88 3.65 

10FA -.72 2.83 1.00 -9.48 8.05 

30FA -.99 2.83 1.00 -9.75 7.78 
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40FA 2.39 2.83 .96 -6.37 11.16 

30FA 

TC 4.82 2.83 .54 -3.94 13.59 

0FA -4.13 2.83 .69 -12.89 4.64 

10FA .27 2.83 1.00 -8.50 9.03 

20FA .99 2.83 1.00 -7.78 9.75 

40FA 3.38 2.83 .84 -5.39 12.14 

40FA 

TC 1.45 2.83 1.00 -7.32 10.21 

0FA -7.51 2.83 .12 -16.27 1.26 

10FA -3.11 2.83 .88 -11.87 5.66 

20FA -2.39 2.83 .96 -11.16 6.37 

30FA -3.38 2.83 .84 -12.14 5.39 

DoC_40s 

TC 

0FA -9.17* 2.82 .04 -17.89 -.46 

10FA -6.05 2.82 .30 -14.77 2.66 

20FA -3.02 2.82 .89 -11.74 5.69 

30FA -7.22 2.82 .15 -15.94 1.49 

40FA -4.81 2.82 .54 -13.52 3.91 

0FA 

TC 9.17* 2.82 .04 .46 17.89 

10FA 3.12 2.82 .87 -5.60 11.83 

20FA 6.15 2.82 .28 -2.57 14.86 

30FA 1.95 2.82 .98 -6.77 10.66 

40FA 4.36 2.82 .64 -4.35 13.08 

10FA 

TC 6.05 2.82 .30 -2.66 14.77 

0FA -3.12 2.82 .87 -11.83 5.60 

20FA 3.03 2.82 .89 -5.68 11.75 

30FA -1.17 2.82 1.00 -9.89 7.54 

40FA 1.24 2.82 1.00 -7.47 9.96 

20FA 

TC 3.02 2.82 .89 -5.69 11.74 

0FA -6.15 2.82 .28 -14.86 2.57 

10FA -3.03 2.82 .89 -11.75 5.68 

30FA -4.20 2.82 .67 -12.92 4.51 

40FA -1.79 2.82 .99 -10.50 6.93 

30FA 

TC 7.22 2.82 .15 -1.49 15.94 

0FA -1.95 2.82 .98 -10.66 6.77 

10FA 1.17 2.82 1.00 -7.54 9.89 

20FA 4.20 2.82 .67 -4.51 12.92 

40FA 2.41 2.82 .95 -6.30 11.13 

40FA 

TC 4.81 2.82 .54 -3.91 13.52 

0FA -4.36 2.82 .64 -13.08 4.35 

10FA -1.24 2.82 1.00 -9.96 7.47 

20FA 1.79 2.82 .99 -6.93 10.50 

30FA -2.41 2.82 .95 -11.13 6.30 

DoC_50s TC 0FA -11.09* 2.99 .01 -20.34 -1.84 
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10FA -8.12 2.99 .11 -17.37 1.13 

20FA -3.84 2.99 .79 -13.09 5.41 

30FA -10.49* 2.99 .02 -19.74 -1.24 

40FA -2.24 2.99 .97 -11.49 7.01 

0FA 

TC 11.09* 2.99 .01 1.84 20.34 

10FA 2.97 2.99 .92 -6.28 12.22 

20FA 7.25 2.99 .19 -2.00 16.50 

30FA .59 2.99 1.00 -8.66 9.84 

40FA 8.84 2.99 .07 -.41 18.09 

10FA 

TC 8.12 2.99 .11 -1.13 17.37 

0FA -2.97 2.99 .92 -12.22 6.28 

20FA 4.28 2.99 .71 -4.97 13.53 

30FA -2.38 2.99 .97 -11.63 6.87 

40FA 5.87 2.99 .39 -3.38 15.12 

20FA 

TC 3.84 2.99 .79 -5.41 13.09 

0FA -7.25 2.99 .19 -16.50 2.00 

10FA -4.28 2.99 .71 -13.53 4.97 

30FA -6.65 2.99 .26 -15.90 2.60 

40FA 1.60 2.99 .99 -7.65 10.85 

30FA 

TC 10.49* 2.99 .02 1.24 19.74 

0FA -.59 2.99 1.00 -9.84 8.66 

10FA 2.38 2.99 .97 -6.87 11.63 

20FA 6.65 2.99 .26 -2.60 15.90 

40FA 8.25 2.99 .10 -1.00 17.50 

40FA 

TC 2.24 2.99 .97 -7.01 11.49 

0FA -8.84 2.99 .07 -18.09 .41 

10FA -5.87 2.99 .39 -15.12 3.38 

20FA -1.60 2.99 .99 -10.85 7.65 

30FA -8.25 2.99 .10 -17.50 1.00 

DoC_60s 

TC 

0FA -9.46* 2.70 .02 -17.82 -1.10 

10FA -2.65 2.70 .92 -11.01 5.70 

20FA -6.41 2.70 .21 -14.76 1.95 

30FA -6.94 2.70 .14 -15.30 1.42 

40FA -2.44 2.70 .94 -10.79 5.92 

0FA 

TC 9.46* 2.70 .02 1.10 17.82 

10FA 6.81 2.70 .16 -1.55 15.16 

20FA 3.05 2.70 .86 -5.31 11.41 

30FA 2.52 2.70 .93 -5.84 10.88 

40FA 7.02 2.70 .14 -1.33 15.38 

10FA 

TC 2.65 2.70 .92 -5.70 11.01 

0FA -6.81 2.70 .16 -15.16 1.55 

20FA -3.75 2.70 .73 -12.11 4.60 
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30FA -4.29 2.70 .62 -12.64 4.07 

40FA .22 2.70 1.00 -8.14 8.58 

20FA 

TC 6.41 2.70 .21 -1.95 14.76 

0FA -3.05 2.70 .86 -11.41 5.31 

10FA 3.75 2.70 .73 -4.60 12.11 

30FA -.53 2.70 1.00 -8.89 7.83 

40FA 3.97 2.70 .69 -4.39 12.33 

30FA 

TC 6.94 2.70 .14 -1.42 15.30 

0FA -2.52 2.70 .93 -10.88 5.84 

10FA 4.29 2.70 .62 -4.07 12.64 

20FA .53 2.70 1.00 -7.83 8.89 

40FA 4.50 2.70 .57 -3.85 12.86 

40FA 

TC 2.44 2.70 .94 -5.92 10.79 

0FA -7.02 2.70 .14 -15.38 1.33 

10FA -.22 2.70 1.00 -8.58 8.14 

20FA -3.97 2.70 .69 -12.33 4.39 

30FA -4.50 2.70 .57 -12.86 3.85 

*. The mean difference is significant at the 0.05 level. 
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Appendix K: Normality test results wear (TC,0FA-40FA) 

Tests of Normality-Volume loss (TC,0FA-40FA) 

DC-Volume loss Shapiro-Wilk 

Statistic df Sig. 

TC .903 5 .429 

0FA .786 5 .062 

10FA .684 5 .006 

20FA .684 5 .006 

30FA .845 5 .180 

40FA .771 5 .046 

*. This is a lower bound of the true significance. 

Appendix L: Kruskal-Wallis test wear (TC,0FA-40FA) 

Test Statisticsa,b 

 
Volume_loss 

Chi-Square 8.96 

df 5.00 

Asymp. Sig. 0.11 

a. Kruskal Wallis Test 

b. Grouping Variable: DC 

Appendix M: Normality test results HV (TC,0FA-40FA) 

        Tests of Normality-TC,0FA-40FA 

HV 
Shapiro-Wilk 

Statistic df Sig. 

TC .904 5 .430 

0FA .904 5 .432 

10FA .881 5 .314 

20FA .886 5 .336 

30FA .946 5 .708 

40FA .966 5 .851 
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Appendix N: Normality test results FS,FM and K1C (TC,0FA-40FA) 

Tests of Normality- Shapiro-Wilk 

 
Flexural Modulus Flexural Strength Fracture Toughness 

Statistic df Sig. Statistic df Sig. Statistic df Sig. 

TC .520 10 .000 .965 10 .838 .937 10 .517 

0FA .749 10 .003 .890 10 .168 .959 10 .774 

10FA .894 10 .187 .926 10 .407 .895 10 .193 

20FA .904 10 .241 .800 10 .014 .942 10 .580 

30FA .875 10 .113 .837 10 .041 .872 10 .104 

40FA .953 10 .706 .954 10 .712 .842 10 .047 

 

Appendix O: Kruskal Wallis test FS and FM 

Test Statisticsa,b 

 Flexural_Modulus Flexural_Strength 

Chi-Square 30.224 22.541 

df 5 5 

Asymp. Sig. .000 .000 

a. Kruskal Wallis Test 

b. Grouping Variable: DC 
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Appendix P: Post Hoc Bonferroni FS and FM 

Multiple Comparisons 

Bonferroni   

Dependent 

Variable 

(I) 

DC 

(J) 

DC 

Mean 

Difference 

(I-J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Flexural_Modulu

s 

TC 

0FA -4.41* .57 .00 -6.15 -2.68 

10FA -1.83* .57 .03 -3.56 -.09 

20FA -1.97* .57 .01 -3.71 -.24 

30FA -1.86* .57 .03 -3.60 -.13 

40FA -1.83* .57 .03 -3.57 -.09 

0FA 

TC 4.41* .57 .00 2.68 6.15 

10FA 2.59* .57 .00 .85 4.32 

20FA 2.44* .57 .00 .70 4.18 

30FA 2.55* .57 .00 .81 4.29 

40FA 2.58* .57 .00 .85 4.32 

10FA 

TC 1.83* .57 .03 .09 3.56 

0FA -2.59* .57 .00 -4.32 -.85 

20FA -.15 .57 1.00 -1.88 1.59 

30FA -.04 .57 1.00 -1.77 1.70 

40FA .00 .57 1.00 -1.74 1.74 

20FA 

TC 1.97* .57 .01 .24 3.71 

0FA -2.44* .57 .00 -4.18 -.70 

10FA .15 .57 1.00 -1.59 1.88 

30FA .11 .57 1.00 -1.63 1.85 

40FA .14 .57 1.00 -1.59 1.88 

30FA 

TC 1.86* .57 .03 .13 3.60 

0FA -2.55* .57 .00 -4.29 -.81 

10FA .04 .57 1.00 -1.70 1.77 

20FA -.11 .57 1.00 -1.85 1.63 

40FA .03 .57 1.00 -1.70 1.77 

40FA 

TC 1.83* .57 .03 .09 3.57 

0FA -2.58* .57 .00 -4.32 -.85 

10FA .00 .57 1.00 -1.74 1.74 

20FA -.14 .57 1.00 -1.88 1.59 

30FA -.03 .57 1.00 -1.77 1.70 

Flexural_Strengt

h 

TC 

0FA -24.48* 7.75 .04 -48.30 -.67 

10FA 8.43 7.75 1.00 -15.38 32.24 

20FA 8.08 7.75 1.00 -15.73 31.89 

30FA 14.09 7.75 1.00 -9.72 37.90 

40FA 20.26 7.75 .17 -3.55 44.07 

0FA TC 24.48* 7.75 .04 .67 48.30 
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10FA 32.91* 7.75 .00 9.10 56.73 

20FA 32.56* 7.75 .00 8.75 56.37 

30FA 38.58* 7.75 .00 14.76 62.39 

40FA 44.74* 7.75 .00 20.93 68.55 

10FA 

TC -8.43 7.75 1.00 -32.24 15.38 

0FA -32.91* 7.75 .00 -56.73 -9.10 

20FA -.35 7.75 1.00 -24.16 23.46 

30FA 5.66 7.75 1.00 -18.15 29.47 

40FA 11.83 7.75 1.00 -11.98 35.64 

20FA 

TC -8.08 7.75 1.00 -31.89 15.73 

0FA -32.56* 7.75 .00 -56.37 -8.75 

10FA .35 7.75 1.00 -23.46 24.16 

30FA 6.02 7.75 1.00 -17.80 29.83 

40FA 12.18 7.75 1.00 -11.63 35.99 

30FA 

TC -14.09 7.75 1.00 -37.90 9.72 

0FA -38.58* 7.75 .00 -62.39 -14.76 

10FA -5.66 7.75 1.00 -29.47 18.15 

20FA -6.02 7.75 1.00 -29.83 17.80 

40FA 6.17 7.75 1.00 -17.65 29.98 

40FA 

TC -20.26 7.75 .17 -44.07 3.55 

0FA -44.74* 7.75 .00 -68.55 -20.93 

10FA -11.83 7.75 1.00 -35.64 11.98 

20FA -12.18 7.75 1.00 -35.99 11.63 

30FA -6.17 7.75 1.00 -29.98 17.65 

*. The mean difference is significant at the 0.05 level. 
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Appendix Q: One way ANOVA Fracture Toughness (TC,0FA-40FA) 

ANOVA 

Fracture_Toughness   
 Sum of Squares df Mean Square F Sig. 

Between Groups 3.142 5 .628 13.986 .000 

Within Groups 2.426 54 .045   

Total 5.569 59    

 

Appendix R: Post Hoc Tukey test Fracture Toughness (TC,0FA-40FA) 

Multiple Comparisons 

Dependent Variable:   Fracture_Toughness   

Tukey HSD   

(I) DC (J) DC Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

TC 

0FA .08 .09 .97 -.20 .36 

10FA .50* .09 .00 .22 .78 

20FA .49* .09 .00 .21 .78 

30FA -.09 .09 .94 -.37 .19 

40FA .16 .09 .54 -.12 .44 

0FA 

TC -.08 .09 .97 -.36 .20 

10FA .42* .09 .00 .14 .70 

20FA .42* .09 .00 .14 .70 

30FA -.16 .09 .53 -.44 .12 

40FA .08 .09 .95 -.20 .37 

10FA 

TC -.50* .09 .00 -.78 -.22 

0FA -.42* .09 .00 -.70 -.14 

20FA .00 .09 1.00 -.28 .28 

30FA -.58* .09 .00 -.86 -.30 

40FA -.34* .09 .01 -.62 -.06 

20FA 

TC -.49* .09 .00 -.78 -.21 

0FA -.42* .09 .00 -.70 -.14 

10FA .00 .09 1.00 -.28 .28 

30FA -.58* .09 .00 -.86 -.30 

40FA -.33* .09 .01 -.61 -.05 

30FA 

TC .09 .09 .94 -.19 .37 

0FA .16 .09 .53 -.12 .44 

10FA .58* .09 .00 .30 .86 

20FA .58* .09 .00 .30 .86 

40FA .25 .09 .11 -.03 .53 
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40FA 

TC -.16 .09 .54 -.44 .12 

0FA -.08 .09 .95 -.37 .20 

10FA .34* .09 .01 .06 .62 

20FA .33* .09 .01 .05 .61 

30FA -.25 .09 .11 -.53 .03 

*. The mean difference is significant at the 0.05 level. 

 

Appendix S: One- Way ANOVA DC (FA composites) 

ANOVA-HV (TC,0FA-40FA) 

HV  

 Sum of Squares df Mean Square F Sig. 

Between Groups 6957.69 5.00 1391.54 241.10 .00 

Within Groups 138.52 24.00 5.77   

Total 7096.21 29.00    

 

Appendix T: Post Hoc Tukey DC (FA composites) 

Multiple Comparisons 

Dependent Variable:   HV   

Tukey HSD   

(I) DC (J) DC Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

TC 

0FA -39.82* 1.52 .00 -44.52 -35.12 

10FA -41.76* 1.52 .00 -46.46 -37.06 

20FA -41.24* 1.52 .00 -45.94 -36.54 

30FA -40.50* 1.52 .00 -45.20 -35.80 

40FA -40.84* 1.52 .00 -45.54 -36.14 

0FA 

TC 39.82* 1.52 .00 35.12 44.52 

10FA -1.94 1.52 .79 -6.64 2.76 

20FA -1.42 1.52 .93 -6.12 3.28 

30FA -.68 1.52 1.00 -5.38 4.02 

40FA -1.02 1.52 .98 -5.72 3.68 
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10FA 

TC 41.76* 1.52 .00 37.06 46.46 

0FA 1.94 1.52 .79 -2.76 6.64 

20FA .52 1.52 1.00 -4.18 5.22 

30FA 1.26 1.52 .96 -3.44 5.96 

40FA .92 1.52 .99 -3.78 5.62 

20FA 

TC 41.24* 1.52 .00 36.54 45.94 

0FA 1.42 1.52 .93 -3.28 6.12 

10FA -.52 1.52 1.00 -5.22 4.18 

30FA .74 1.52 1.00 -3.96 5.44 

40FA .40 1.52 1.00 -4.30 5.10 

30FA 

TC 40.50* 1.52 .00 35.80 45.20 

0FA .68 1.52 1.00 -4.02 5.38 

10FA -1.26 1.52 .96 -5.96 3.44 

20FA -.74 1.52 1.00 -5.44 3.96 

40FA -.34 1.52 1.00 -5.04 4.36 

40FA 

TC 40.84* 1.52 .00 36.14 45.54 

0FA 1.02 1.52 .98 -3.68 5.72 

10FA -.92 1.52 .99 -5.62 3.78 

20FA -.40 1.52 1.00 -5.10 4.30 

30FA .34 1.52 1.00 -4.36 5.04 

*. The mean difference is significant at the 0.05 level. 
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Appendix U: Normality test results (F release ppm) 

Test of Normality (F release microgram) 

Group Day 
Shapiro-Wilk 

Statistic df Sig. 

TC 

Day 1-ppm .991 6 .990 

Day 2-ppm .969 6 .889 

Day 3-ppm .953 6 .761 

Day 4-ppm .919 6 .498 

Day 5-ppm .900 6 .374 

Day6-ppm .896 6 .352 

Day7-ppm .907 6 .418 

Day14-ppm .895 6 .343 

Day21-ppm .889 6 .312 

Day28-ppm .846 6 .145 

Day56-ppm .873 6 .240 

Day112-ppm .792 6 .049 

Day196-ppm .862 6 .197 

0FA 

Day 1-ppm .786 6 .044 

Day 2-ppm .802 6 .061 

Day 3-ppm .921 6 .511 

Day 4-ppm .945 6 .698 

Day 5-ppm .958 6 .803 

Day6-ppm .965 6 .854 

Day7-ppm .960 6 .822 

Day14-ppm .968 6 .879 

Day21-ppm .973 6 .913 

Day28-ppm .972 6 .905 

Day56-ppm .965 6 .854 

Day112-ppm .975 6 .923 

Day196-ppm .986 6 .978 

10FA 
Day 1-ppm .860 6 .189 

Day 2-ppm .892 6 .330 
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Day 3-ppm .891 6 .322 

Day 4-ppm .895 6 .343 

Day 5-ppm .902 6 .386 

Day6-ppm .907 6 .415 

Day7-ppm .905 6 .405 

Day14-ppm .933 6 .604 

Day21-ppm .942 6 .677 

Day28-ppm .944 6 .694 

Day56-ppm .944 6 .689 

Day112-ppm .950 6 .739 

Day196-ppm .920 6 .502 

20FA 

Day 1-ppm .873 6 .238 

Day 2-ppm .836 6 .121 

Day 3-ppm .860 6 .188 

Day 4-ppm .849 6 .155 

Day 5-ppm .854 6 .171 

Day6-ppm .856 6 .175 

Day7-ppm .857 6 .179 

Day14-ppm .873 6 .238 

Day21-ppm .884 6 .286 

Day28-ppm .918 6 .489 

Day56-ppm .968 6 .876 

Day112-ppm .917 6 .482 

Day196-ppm .877 6 .257 

30FA 

Day 1-ppm .849 6 .154 

Day 2-ppm .941 6 .664 

Day 3-ppm .954 6 .773 

Day 4-ppm .916 6 .478 

Day 5-ppm .926 6 .549 

Day6-ppm .902 6 .388 

Day7-ppm .884 6 .287 
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Day14-ppm .839 6 .128 

Day21-ppm .732 6 .013 

Day28-ppm .781 6 .039 

Day56-ppm .718 6 .010 

Day112-ppm .893 6 .332 

Day196-ppm .948 6 .726 

40FA 

Day 1-ppm .879 6 .264 

Day 2-ppm .987 6 .981 

Day 3-ppm .939 6 .649 

Day 4-ppm .875 6 .245 

Day 5-ppm .846 6 .145 

Day6-ppm .870 6 .227 

Day7-ppm .859 6 .187 

Day14-ppm .855 6 .174 

Day21-ppm .867 6 .214 

Day28-ppm .927 6 .557 

Day56-ppm .947 6 .712 

Day112-ppm .972 6 .906 

Day196-ppm .920 6 .508 
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Appendix V: Kruskal-Wallis test F release microgram 

Test Statisticsa,b 

 Chi-Square df Asymp. Sig. 

Day 1-ppm 29.920 5 .000 

Day 2-ppm 29.742 5 .000 

Day 3-ppm 29.538 5 .000 

Day 4-ppm 29.335 5 .000 

Day 5-ppm 30.142 5 .000 

Day6-ppm 30.379 5 .000 

Day7-ppm 30.668 5 .000 

Day14-ppm 32.209 5 .000 

Day21-ppm 32.835 5 .000 

Day28-ppm 33.483 5 .000 

Day56-ppm 33.757 5 .000 

Day112-ppm 33.907 5 .000 

Day196-ppm 34.054 5 .000 

a. Kruskal Wallis Test 

b. Grouping Variable: DC 
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Appendix W: Post Hoc Bonferroni group comparisons F release 

(microgram) 

Multiple Comparisons 

Bonferroni   

Dependent 

Variable 

(I) DC (J) DC Mean 

Difference (I-

J) 

Std. 

Error 

Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Day 1-ppm 

TC 

0FA -.07 1.48 1.00 -4.80 4.66 

10FA -15.38* 1.48 .00 -20.11 -10.65 

20FA -25.54* 1.48 .00 -30.27 -20.80 

30FA -26.67* 1.48 .00 -31.40 -21.94 

40FA -24.87* 1.48 .00 -29.60 -20.14 

0FA 

TC .07 1.48 1.00 -4.66 4.80 

10FA -15.31* 1.48 .00 -20.04 -10.58 

20FA -25.47* 1.48 .00 -30.20 -20.74 

30FA -26.60* 1.48 .00 -31.34 -21.87 

40FA -24.80* 1.48 .00 -29.54 -20.07 

10FA 

TC 15.38* 1.48 .00 10.65 20.11 

0FA 15.31* 1.48 .00 10.58 20.04 

20FA -10.16* 1.48 .00 -14.89 -5.42 

30FA -11.29* 1.48 .00 -16.02 -6.56 

40FA -9.49* 1.48 .00 -14.22 -4.76 

20FA 

TC 25.54* 1.48 .00 20.80 30.27 

0FA 25.47* 1.48 .00 20.74 30.20 

10FA 10.16* 1.48 .00 5.42 14.89 

30FA -1.14 1.48 1.00 -5.87 3.60 

40FA .67 1.48 1.00 -4.07 5.40 

30FA 

TC 26.67* 1.48 .00 21.94 31.40 

0FA 26.60* 1.48 .00 21.87 31.34 

10FA 11.29* 1.48 .00 6.56 16.02 

20FA 1.14 1.48 1.00 -3.60 5.87 

40FA 1.80 1.48 1.00 -2.93 6.53 

40FA 

TC 24.87* 1.48 .00 20.14 29.60 

0FA 24.80* 1.48 .00 20.07 29.54 

10FA 9.49* 1.48 .00 4.76 14.22 

20FA -.67 1.48 1.00 -5.40 4.07 

30FA -1.80 1.48 1.00 -6.53 2.93 

Day 2-ppm TC 

0FA .05 1.93 1.00 -6.11 6.21 

10FA -17.14* 1.93 .00 -23.30 -10.97 

20FA -35.67* 1.93 .00 -41.83 -29.51 

30FA -34.59* 1.93 .00 -40.75 -28.42 
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40FA -32.52* 1.93 .00 -38.68 -26.35 

0FA 

TC -.05 1.93 1.00 -6.21 6.11 

10FA -17.19* 1.93 .00 -23.35 -11.02 

20FA -35.72* 1.93 .00 -41.88 -29.56 

30FA -34.64* 1.93 .00 -40.80 -28.47 

40FA -32.57* 1.93 .00 -38.73 -26.40 

10FA 

TC 17.14* 1.93 .00 10.97 23.30 

0FA 17.19* 1.93 .00 11.02 23.35 

20FA -18.53* 1.93 .00 -24.69 -12.37 

30FA -17.45* 1.93 .00 -23.61 -11.29 

40FA -15.38* 1.93 .00 -21.54 -9.22 

20FA 

TC 35.67* 1.93 .00 29.51 41.83 

0FA 35.72* 1.93 .00 29.56 41.88 

10FA 18.53* 1.93 .00 12.37 24.69 

30FA 1.08 1.93 1.00 -5.08 7.24 

40FA 3.15 1.93 1.00 -3.01 9.31 

30FA 

TC 34.59* 1.93 .00 28.42 40.75 

0FA 34.64* 1.93 .00 28.47 40.80 

10FA 17.45* 1.93 .00 11.29 23.61 

20FA -1.08 1.93 1.00 -7.24 5.08 

40FA 2.07 1.93 1.00 -4.09 8.23 

40FA 

TC 32.52* 1.93 .00 26.35 38.68 

0FA 32.57* 1.93 .00 26.40 38.73 

10FA 15.38* 1.93 .00 9.22 21.54 

20FA -3.15 1.93 1.00 -9.31 3.01 

30FA -2.07 1.93 1.00 -8.23 4.09 

Day 3-ppm 

TC 

0FA .02 2.01 1.00 -6.40 6.44 

10FA -17.88* 2.01 .00 -24.30 -11.46 

20FA -40.36* 2.01 .00 -46.78 -33.95 

30FA -39.38* 2.01 .00 -45.80 -32.96 

40FA -38.35* 2.01 .00 -44.77 -31.94 

0FA 

TC -.02 2.01 1.00 -6.44 6.40 

10FA -17.90* 2.01 .00 -24.32 -11.48 

20FA -40.38* 2.01 .00 -46.80 -33.97 

30FA -39.40* 2.01 .00 -45.82 -32.98 

40FA -38.37* 2.01 .00 -44.79 -31.96 

10FA 

TC 17.88* 2.01 .00 11.46 24.30 

0FA 17.90* 2.01 .00 11.48 24.32 

20FA -22.49* 2.01 .00 -28.90 -16.07 

30FA -21.50* 2.01 .00 -27.92 -15.08 

40FA -20.48* 2.01 .00 -26.89 -14.06 

20FA TC 40.36* 2.01 .00 33.95 46.78 
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0FA 40.38* 2.01 .00 33.97 46.80 

10FA 22.49* 2.01 .00 16.07 28.90 

30FA .99 2.01 1.00 -5.43 7.40 

40FA 2.01 2.01 1.00 -4.41 8.43 

30FA 

TC 39.38* 2.01 .00 32.96 45.80 

0FA 39.40* 2.01 .00 32.98 45.82 

10FA 21.50* 2.01 .00 15.08 27.92 

20FA -.99 2.01 1.00 -7.40 5.43 

40FA 1.03 2.01 1.00 -5.39 7.44 

40FA 

TC 38.35* 2.01 .00 31.94 44.77 

0FA 38.37* 2.01 .00 31.96 44.79 

10FA 20.48* 2.01 .00 14.06 26.89 

20FA -2.01 2.01 1.00 -8.43 4.41 

30FA -1.03 2.01 1.00 -7.44 5.39 

Day 4-ppm 

TC 

0FA .07 2.20 1.00 -6.94 7.07 

10FA -18.45* 2.20 .00 -25.46 -11.44 

20FA -43.18* 2.20 .00 -50.18 -36.17 

30FA -43.01* 2.20 .00 -50.01 -36.00 

40FA -44.10* 2.20 .00 -51.11 -37.09 

0FA 

TC -.07 2.20 1.00 -7.07 6.94 

10FA -18.52* 2.20 .00 -25.52 -11.51 

20FA -43.24* 2.20 .00 -50.25 -36.23 

30FA -43.07* 2.20 .00 -50.08 -36.07 

40FA -44.17* 2.20 .00 -51.17 -37.16 

10FA 

TC 18.45* 2.20 .00 11.44 25.46 

0FA 18.52* 2.20 .00 11.51 25.52 

20FA -24.73* 2.20 .00 -31.73 -17.72 

30FA -24.56* 2.20 .00 -31.56 -17.55 

40FA -25.65* 2.20 .00 -32.66 -18.64 

20FA 

TC 43.18* 2.20 .00 36.17 50.18 

0FA 43.24* 2.20 .00 36.23 50.25 

10FA 24.73* 2.20 .00 17.72 31.73 

30FA .17 2.20 1.00 -6.84 7.17 

40FA -.93 2.20 1.00 -7.93 6.08 

30FA 

TC 43.01* 2.20 .00 36.00 50.01 

0FA 43.07* 2.20 .00 36.07 50.08 

10FA 24.56* 2.20 .00 17.55 31.56 

20FA -.17 2.20 1.00 -7.17 6.84 

40FA -1.09 2.20 1.00 -8.10 5.91 

40FA 

TC 44.10* 2.20 .00 37.09 51.11 

0FA 44.17* 2.20 .00 37.16 51.17 

10FA 25.65* 2.20 .00 18.64 32.66 
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20FA .93 2.20 1.00 -6.08 7.93 

30FA 1.09 2.20 1.00 -5.91 8.10 

Day 5-ppm 

TC 

0FA .09 2.19 1.00 -6.89 7.07 

10FA -18.74* 2.19 .00 -25.72 -11.76 

20FA -45.01* 2.19 .00 -51.98 -38.03 

30FA -45.72* 2.19 .00 -52.70 -38.74 

40FA -49.27* 2.19 .00 -56.25 -42.29 

0FA 

TC -.09 2.19 1.00 -7.07 6.89 

10FA -18.83* 2.19 .00 -25.81 -11.85 

20FA -45.10* 2.19 .00 -52.08 -38.12 

30FA -45.81* 2.19 .00 -52.79 -38.83 

40FA -49.36* 2.19 .00 -56.34 -42.38 

10FA 

TC 18.74* 2.19 .00 11.76 25.72 

0FA 18.83* 2.19 .00 11.85 25.81 

20FA -26.26* 2.19 .00 -33.24 -19.28 

30FA -26.98* 2.19 .00 -33.96 -20.00 

40FA -30.53* 2.19 .00 -37.50 -23.55 

20FA 

TC 45.01* 2.19 .00 38.03 51.98 

0FA 45.10* 2.19 .00 38.12 52.08 

10FA 26.26* 2.19 .00 19.28 33.24 

30FA -.72 2.19 1.00 -7.70 6.26 

40FA -4.26 2.19 .91 -11.24 2.72 

30FA 

TC 45.72* 2.19 .00 38.74 52.70 

0FA 45.81* 2.19 .00 38.83 52.79 

10FA 26.98* 2.19 .00 20.00 33.96 

20FA .72 2.19 1.00 -6.26 7.70 

40FA -3.55 2.19 1.00 -10.52 3.43 

40FA 

TC 49.27* 2.19 .00 42.29 56.25 

0FA 49.36* 2.19 .00 42.38 56.34 

10FA 30.53* 2.19 .00 23.55 37.50 

20FA 4.26 2.19 .91 -2.72 11.24 

30FA 3.55 2.19 1.00 -3.43 10.52 

Day6-ppm 

TC 

0FA .07 2.21 1.00 -6.98 7.11 

10FA -18.92* 2.21 .00 -25.96 -11.87 

20FA -45.80* 2.21 .00 -52.85 -38.75 

30FA -46.86* 2.21 .00 -53.91 -39.82 

40FA -51.69* 2.21 .00 -58.73 -44.64 

0FA 

TC -.07 2.21 1.00 -7.11 6.98 

10FA -18.98* 2.21 .00 -26.03 -11.93 

20FA -45.87* 2.21 .00 -52.91 -38.82 

30FA -46.93* 2.21 .00 -53.97 -39.88 

40FA -51.75* 2.21 .00 -58.80 -44.70 
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10FA 

TC 18.92* 2.21 .00 11.87 25.96 

0FA 18.98* 2.21 .00 11.93 26.03 

20FA -26.89* 2.21 .00 -33.93 -19.84 

30FA -27.95* 2.21 .00 -34.99 -20.90 

40FA -32.77* 2.21 .00 -39.82 -25.72 

20FA 

TC 45.80* 2.21 .00 38.75 52.85 

0FA 45.87* 2.21 .00 38.82 52.91 

10FA 26.89* 2.21 .00 19.84 33.93 

30FA -1.06 2.21 1.00 -8.11 5.98 

40FA -5.89 2.21 .18 -12.93 1.16 

30FA 

TC 46.86* 2.21 .00 39.82 53.91 

0FA 46.93* 2.21 .00 39.88 53.97 

10FA 27.95* 2.21 .00 20.90 34.99 

20FA 1.06 2.21 1.00 -5.98 8.11 

40FA -4.82 2.21 .56 -11.87 2.22 

40FA 

TC 51.69* 2.21 .00 44.64 58.73 

0FA 51.75* 2.21 .00 44.70 58.80 

10FA 32.77* 2.21 .00 25.72 39.82 

20FA 5.89 2.21 .18 -1.16 12.93 

30FA 4.82 2.21 .56 -2.22 11.87 

Day7-ppm 

TC 

0FA .03 2.28 1.00 -7.25 7.30 

10FA -19.04* 2.28 .00 -26.31 -11.76 

20FA -46.55* 2.28 .00 -53.82 -39.27 

30FA -47.97* 2.28 .00 -55.24 -40.69 

40FA -53.93* 2.28 .00 -61.20 -46.65 

0FA 

TC -.03 2.28 1.00 -7.30 7.25 

10FA -19.07* 2.28 .00 -26.34 -11.79 

20FA -46.57* 2.28 .00 -53.85 -39.30 

30FA -48.00* 2.28 .00 -55.27 -40.72 

40FA -53.96* 2.28 .00 -61.23 -46.68 

10FA 

TC 19.04* 2.28 .00 11.76 26.31 

0FA 19.07* 2.28 .00 11.79 26.34 

20FA -27.51* 2.28 .00 -34.78 -20.23 

30FA -28.93* 2.28 .00 -36.21 -21.66 

40FA -34.89* 2.28 .00 -42.17 -27.61 

20FA 

TC 46.55* 2.28 .00 39.27 53.82 

0FA 46.57* 2.28 .00 39.30 53.85 

10FA 27.51* 2.28 .00 20.23 34.78 

30FA -1.42 2.28 1.00 -8.70 5.85 

40FA -7.38* 2.28 .04 -14.66 -.11 

30FA 
TC 47.97* 2.28 .00 40.69 55.24 

0FA 48.00* 2.28 .00 40.72 55.27 
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10FA 28.93* 2.28 .00 21.66 36.21 

20FA 1.42 2.28 1.00 -5.85 8.70 

40FA -5.96 2.28 .21 -13.23 1.32 

40FA 

TC 53.93* 2.28 .00 46.65 61.20 

0FA 53.96* 2.28 .00 46.68 61.23 

10FA 34.89* 2.28 .00 27.61 42.17 

20FA 7.38* 2.28 .04 .11 14.66 

30FA 5.96 2.28 .21 -1.32 13.23 

Day14-ppm 

TC 

0FA .10 2.59 1.00 -8.16 8.36 

10FA -19.86* 2.59 .00 -28.12 -11.60 

20FA -51.10* 2.59 .00 -59.37 -42.84 

30FA -54.92* 2.59 .00 -63.19 -46.66 

40FA -70.01* 2.59 .00 -78.28 -61.75 

0FA 

TC -.10 2.59 1.00 -8.36 8.16 

10FA -19.96* 2.59 .00 -28.22 -11.70 

20FA -51.20* 2.59 .00 -59.47 -42.94 

30FA -55.02* 2.59 .00 -63.29 -46.76 

40FA -70.11* 2.59 .00 -78.38 -61.85 

10FA 

TC 19.86* 2.59 .00 11.60 28.12 

0FA 19.96* 2.59 .00 11.70 28.22 

20FA -31.24* 2.59 .00 -39.51 -22.98 

30FA -35.06* 2.59 .00 -43.33 -26.80 

40FA -50.15* 2.59 .00 -58.42 -41.89 

20FA 

TC 51.10* 2.59 .00 42.84 59.37 

0FA 51.20* 2.59 .00 42.94 59.47 

10FA 31.24* 2.59 .00 22.98 39.51 

30FA -3.82 2.59 1.00 -12.08 4.44 

40FA -18.91* 2.59 .00 -27.18 -10.65 

30FA 

TC 54.92* 2.59 .00 46.66 63.19 

0FA 55.02* 2.59 .00 46.76 63.29 

10FA 35.06* 2.59 .00 26.80 43.33 

20FA 3.82 2.59 1.00 -4.44 12.08 

40FA -15.09* 2.59 .00 -23.36 -6.83 

40FA 

TC 70.01* 2.59 .00 61.75 78.28 

0FA 70.11* 2.59 .00 61.85 78.38 

10FA 50.15* 2.59 .00 41.89 58.42 

20FA 18.91* 2.59 .00 10.65 27.18 

30FA 15.09* 2.59 .00 6.83 23.36 

Day21-ppm TC 

0FA .22 3.20 1.00 -9.98 10.42 

10FA -20.53* 3.20 .00 -30.73 -10.33 

20FA -55.19* 3.20 .00 -65.39 -44.99 

30FA -62.15* 3.20 .00 -72.35 -51.96 
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40FA -86.87* 3.20 .00 -97.06 -76.67 

0FA 

TC -.22 3.20 1.00 -10.42 9.98 

10FA -20.75* 3.20 .00 -30.95 -10.55 

20FA -55.41* 3.20 .00 -65.61 -45.21 

30FA -62.38* 3.20 .00 -72.57 -52.18 

40FA -87.09* 3.20 .00 -97.29 -76.89 

10FA 

TC 20.53* 3.20 .00 10.33 30.73 

0FA 20.75* 3.20 .00 10.55 30.95 

20FA -34.66* 3.20 .00 -44.86 -24.46 

30FA -41.62* 3.20 .00 -51.82 -31.43 

40FA -66.34* 3.20 .00 -76.53 -56.14 

20FA 

TC 55.19* 3.20 .00 44.99 65.39 

0FA 55.41* 3.20 .00 45.21 65.61 

10FA 34.66* 3.20 .00 24.46 44.86 

30FA -6.96 3.20 .56 -17.16 3.23 

40FA -31.68* 3.20 .00 -41.87 -21.48 

30FA 

TC 62.15* 3.20 .00 51.96 72.35 

0FA 62.38* 3.20 .00 52.18 72.57 

10FA 41.62* 3.20 .00 31.43 51.82 

20FA 6.96 3.20 .56 -3.23 17.16 

40FA -24.71* 3.20 .00 -34.91 -14.52 

40FA 

TC 86.87* 3.20 .00 76.67 97.06 

0FA 87.09* 3.20 .00 76.89 97.29 

10FA 66.34* 3.20 .00 56.14 76.53 

20FA 31.68* 3.20 .00 21.48 41.87 

30FA 24.71* 3.20 .00 14.52 34.91 

Day28-ppm 

TC 

0FA .31 3.83 1.00 -11.90 12.52 

10FA -20.99* 3.83 .00 -33.20 -8.78 

20FA -58.16* 3.83 .00 -70.37 -45.94 

30FA -67.80* 3.83 .00 -80.01 -55.59 

40FA -101.77* 3.83 .00 -113.98 -89.56 

0FA 

TC -.31 3.83 1.00 -12.52 11.90 

10FA -21.30* 3.83 .00 -33.51 -9.09 

20FA -58.46* 3.83 .00 -70.67 -46.25 

30FA -68.11* 3.83 .00 -80.32 -55.89 

40FA -102.08* 3.83 .00 -114.29 -89.87 

10FA 

TC 20.99* 3.83 .00 8.78 33.20 

0FA 21.30* 3.83 .00 9.09 33.51 

20FA -37.17* 3.83 .00 -49.38 -24.96 

30FA -46.81* 3.83 .00 -59.02 -34.60 

40FA -80.78* 3.83 .00 -92.99 -68.57 

20FA TC 58.16* 3.83 .00 45.94 70.37 
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0FA 58.46* 3.83 .00 46.25 70.67 

10FA 37.17* 3.83 .00 24.96 49.38 

30FA -9.64 3.83 .26 -21.85 2.57 

40FA -43.62* 3.83 .00 -55.83 -31.41 

30FA 

TC 67.80* 3.83 .00 55.59 80.01 

0FA 68.11* 3.83 .00 55.89 80.32 

10FA 46.81* 3.83 .00 34.60 59.02 

20FA 9.64 3.83 .26 -2.57 21.85 

40FA -33.98* 3.83 .00 -46.19 -21.76 

40FA 

TC 101.77* 3.83 .00 89.56 113.98 

0FA 102.08* 3.83 .00 89.87 114.29 

10FA 80.78* 3.83 .00 68.57 92.99 

20FA 43.62* 3.83 .00 31.41 55.83 

30FA 33.98* 3.83 .00 21.76 46.19 

Day56-ppm 

TC 

0FA .48 4.34 1.00 -13.36 14.32 

10FA -21.44* 4.34 .00 -35.27 -7.60 

20FA -61.03* 4.34 .00 -74.87 -47.19 

30FA -76.23* 4.34 .00 -90.07 -62.39 

40FA -119.67* 4.34 .00 -133.51 -105.83 

0FA 

TC -.48 4.34 1.00 -14.32 13.36 

10FA -21.92* 4.34 .00 -35.76 -8.08 

20FA -61.51* 4.34 .00 -75.35 -47.67 

30FA -76.71* 4.34 .00 -90.55 -62.87 

40FA -120.15* 4.34 .00 -133.99 -106.31 

10FA 

TC 21.44* 4.34 .00 7.60 35.27 

0FA 21.92* 4.34 .00 8.08 35.76 

20FA -39.59* 4.34 .00 -53.43 -25.75 

30FA -54.80* 4.34 .00 -68.63 -40.96 

40FA -98.24* 4.34 .00 -112.08 -84.40 

20FA 

TC 61.03* 4.34 .00 47.19 74.87 

0FA 61.51* 4.34 .00 47.67 75.35 

10FA 39.59* 4.34 .00 25.75 53.43 

30FA -15.20* 4.34 .02 -29.04 -1.36 

40FA -58.64* 4.34 .00 -72.48 -44.80 

30FA 

TC 76.23* 4.34 .00 62.39 90.07 

0FA 76.71* 4.34 .00 62.87 90.55 

10FA 54.80* 4.34 .00 40.96 68.63 

20FA 15.20* 4.34 .02 1.36 29.04 

40FA -43.44* 4.34 .00 -57.28 -29.60 

40FA 

TC 119.67* 4.34 .00 105.83 133.51 

0FA 120.15* 4.34 .00 106.31 133.99 

10FA 98.24* 4.34 .00 84.40 112.08 
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20FA 58.64* 4.34 .00 44.80 72.48 

30FA 43.44* 4.34 .00 29.60 57.28 

Day112-ppm 

TC 

0FA .50 4.47 1.00 -13.75 14.76 

10FA -22.15* 4.47 .00 -36.41 -7.90 

20FA -65.07* 4.47 .00 -79.33 -50.82 

30FA -85.68* 4.47 .00 -99.93 -71.42 

40FA -136.06* 4.47 .00 -150.32 -121.80 

0FA 

TC -.50 4.47 1.00 -14.76 13.75 

10FA -22.66* 4.47 .00 -36.91 -8.40 

20FA -65.58* 4.47 .00 -79.83 -51.32 

30FA -86.18* 4.47 .00 -100.44 -71.92 

40FA -136.56* 4.47 .00 -150.82 -122.31 

10FA 

TC 22.15* 4.47 .00 7.90 36.41 

0FA 22.66* 4.47 .00 8.40 36.91 

20FA -42.92* 4.47 .00 -57.18 -28.66 

30FA -63.52* 4.47 .00 -77.78 -49.26 

40FA -113.91* 4.47 .00 -128.16 -99.65 

20FA 

TC 65.07* 4.47 .00 50.82 79.33 

0FA 65.58* 4.47 .00 51.32 79.83 

10FA 42.92* 4.47 .00 28.66 57.18 

30FA -20.60* 4.47 .00 -34.86 -6.34 

40FA -70.99* 4.47 .00 -85.24 -56.73 

30FA 

TC 85.68* 4.47 .00 71.42 99.93 

0FA 86.18* 4.47 .00 71.92 100.44 

10FA 63.52* 4.47 .00 49.26 77.78 

20FA 20.60* 4.47 .00 6.34 34.86 

40FA -50.39* 4.47 .00 -64.64 -36.13 

40FA 

TC 136.06* 4.47 .00 121.80 150.32 

0FA 136.56* 4.47 .00 122.31 150.82 

10FA 113.91* 4.47 .00 99.65 128.16 

20FA 70.99* 4.47 .00 56.73 85.24 

30FA 50.39* 4.47 .00 36.13 64.64 

Day196-ppm 

TC 

0FA .63 5.53 1.00 -17.01 18.27 

10FA -23.66* 5.53 .00 -41.30 -6.02 

20FA -72.15* 5.53 .00 -89.79 -54.51 

30FA -102.65* 5.53 .00 -120.29 -85.01 

40FA -161.23* 5.53 .00 -178.87 -143.59 

0FA 

TC -.63 5.53 1.00 -18.27 17.01 

10FA -24.30* 5.53 .00 -41.93 -6.66 

20FA -72.79* 5.53 .00 -90.42 -55.15 

30FA -103.29* 5.53 .00 -120.92 -85.65 

40FA -161.86* 5.53 .00 -179.50 -144.22 
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10FA 

TC 23.66* 5.53 .00 6.02 41.30 

0FA 24.30* 5.53 .00 6.66 41.93 

20FA -48.49* 5.53 .00 -66.13 -30.85 

30FA -78.99* 5.53 .00 -96.63 -61.35 

40FA -137.57* 5.53 .00 -155.21 -119.93 

20FA 

TC 72.15* 5.53 .00 54.51 89.79 

0FA 72.79* 5.53 .00 55.15 90.42 

10FA 48.49* 5.53 .00 30.85 66.13 

30FA -30.50* 5.53 .00 -48.14 -12.86 

40FA -89.08* 5.53 .00 -106.72 -71.44 

30FA 

TC 102.65* 5.53 .00 85.01 120.29 

0FA 103.29* 5.53 .00 85.65 120.92 

10FA 78.99* 5.53 .00 61.35 96.63 

20FA 30.50* 5.53 .00 12.86 48.14 

40FA -58.58* 5.53 .00 -76.22 -40.94 

40FA 

TC 161.23* 5.53 .00 143.59 178.87 

0FA 161.86* 5.53 .00 144.22 179.50 

10FA 137.57* 5.53 .00 119.93 155.21 

20FA 89.08* 5.53 .00 71.44 106.72 

30FA 58.58* 5.53 .00 40.94 76.22 

*. The mean difference is significant at the 0.05 level. 
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Appendix X: Post Hoc Bonferroni 10FA cumulative release 

(micrograms)  

Multiple Comparisons-cumulative (micrograms) 

Dependent Variable:   10%FA-Acidic   

Bonferroni   

(I) Day (J) Day Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Day 1 

Day 2 -1.94 3.09 1.00 -13.04 9.16 

Day 3 -2.88 3.09 1.00 -13.98 8.23 

Day 4 -3.59 3.09 1.00 -14.69 7.51 

Day 5 -3.99 3.09 1.00 -15.09 7.11 

Day 6 -4.21 3.09 1.00 -15.31 6.89 

Day 7 -4.41 3.09 1.00 -15.51 6.69 

Day 14 -5.38 3.09 1.00 -16.48 5.72 

Day 21 -6.23 3.09 1.00 -17.33 4.87 

Day 28 -6.81 3.09 1.00 -17.91 4.29 

Day 56 -7.48 3.09 1.00 -18.58 3.62 

Day 112 -8.42 3.09 .65 -19.52 2.68 

Day 196 -10.23 3.09 .12 -21.33 .87 

Day 2 

Day 1 1.94 3.09 1.00 -9.16 13.04 

Day 3 -.93 3.09 1.00 -12.03 10.17 

Day 4 -1.65 3.09 1.00 -12.75 9.45 

Day 5 -2.05 3.09 1.00 -13.15 9.06 

Day 6 -2.27 3.09 1.00 -13.37 8.83 

Day 7 -2.47 3.09 1.00 -13.57 8.64 

Day 14 -3.44 3.09 1.00 -14.54 7.67 

Day 21 -4.29 3.09 1.00 -15.39 6.81 

Day 28 -4.87 3.09 1.00 -15.97 6.23 

Day 56 -5.54 3.09 1.00 -16.64 5.56 

Day 112 -6.48 3.09 1.00 -17.58 4.62 

Day 196 -8.29 3.09 .73 -19.39 2.81 

Day 3 

Day 1 2.88 3.09 1.00 -8.23 13.98 

Day 2 .93 3.09 1.00 -10.17 12.03 

Day 4 -.71 3.09 1.00 -11.81 10.39 

Day 5 -1.11 3.09 1.00 -12.21 9.99 

Day 6 -1.34 3.09 1.00 -12.44 9.76 

Day 7 -1.53 3.09 1.00 -12.63 9.57 

Day 14 -2.50 3.09 1.00 -13.60 8.60 

Day 21 -3.35 3.09 1.00 -14.45 7.75 

Day 28 -3.94 3.09 1.00 -15.04 7.17 

Day 56 -4.61 3.09 1.00 -15.71 6.49 
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Day 112 -5.55 3.09 1.00 -16.65 5.56 

Day 196 -7.36 3.09 1.00 -18.46 3.74 

Day 4 

Day 1 3.59 3.09 1.00 -7.51 14.69 

Day 2 1.65 3.09 1.00 -9.45 12.75 

Day 3 .71 3.09 1.00 -10.39 11.81 

Day 5 -.40 3.09 1.00 -11.50 10.70 

Day 6 -.62 3.09 1.00 -11.72 10.48 

Day 7 -.82 3.09 1.00 -11.92 10.28 

Day 14 -1.79 3.09 1.00 -12.89 9.31 

Day 21 -2.64 3.09 1.00 -13.74 8.46 

Day 28 -3.22 3.09 1.00 -14.32 7.88 

Day 56 -3.90 3.09 1.00 -15.00 7.21 

Day 112 -4.83 3.09 1.00 -15.93 6.27 

Day 196 -6.64 3.09 1.00 -17.74 4.46 

Day 5 

Day 1 3.99 3.09 1.00 -7.11 15.09 

Day 2 2.05 3.09 1.00 -9.06 13.15 

Day 3 1.11 3.09 1.00 -9.99 12.21 

Day 4 .40 3.09 1.00 -10.70 11.50 

Day 6 -.23 3.09 1.00 -11.33 10.88 

Day 7 -.42 3.09 1.00 -11.52 10.68 

Day 14 -1.39 3.09 1.00 -12.49 9.71 

Day 21 -2.24 3.09 1.00 -13.34 8.86 

Day 28 -2.82 3.09 1.00 -13.92 8.28 

Day 56 -3.50 3.09 1.00 -14.60 7.60 

Day 112 -4.43 3.09 1.00 -15.53 6.67 

Day 196 -6.25 3.09 1.00 -17.35 4.86 

Day 6 

Day 1 4.21 3.09 1.00 -6.89 15.31 

Day 2 2.27 3.09 1.00 -8.83 13.37 

Day 3 1.34 3.09 1.00 -9.76 12.44 

Day 4 .62 3.09 1.00 -10.48 11.72 

Day 5 .23 3.09 1.00 -10.88 11.33 

Day 7 -.20 3.09 1.00 -11.30 10.91 

Day 14 -1.17 3.09 1.00 -12.27 9.94 

Day 21 -2.02 3.09 1.00 -13.12 9.08 

Day 28 -2.60 3.09 1.00 -13.70 8.50 

Day 56 -3.27 3.09 1.00 -14.37 7.83 

Day 112 -4.21 3.09 1.00 -15.31 6.89 

Day 196 -6.02 3.09 1.00 -17.12 5.08 

Day 7 

Day 1 4.41 3.09 1.00 -6.69 15.51 

Day 2 2.47 3.09 1.00 -8.64 13.57 

Day 3 1.53 3.09 1.00 -9.57 12.63 

Day 4 .82 3.09 1.00 -10.28 11.92 
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Day 5 .42 3.09 1.00 -10.68 11.52 

Day 6 .20 3.09 1.00 -10.91 11.30 

Day 14 -.97 3.09 1.00 -12.07 10.13 

Day 21 -1.82 3.09 1.00 -12.92 9.28 

Day 28 -2.40 3.09 1.00 -13.50 8.70 

Day 56 -3.08 3.09 1.00 -14.18 8.02 

Day 112 -4.01 3.09 1.00 -15.11 7.09 

Day 196 -5.83 3.09 1.00 -16.93 5.28 

Day 14 

Day 1 5.38 3.09 1.00 -5.72 16.48 

Day 2 3.44 3.09 1.00 -7.67 14.54 

Day 3 2.50 3.09 1.00 -8.60 13.60 

Day 4 1.79 3.09 1.00 -9.31 12.89 

Day 5 1.39 3.09 1.00 -9.71 12.49 

Day 6 1.17 3.09 1.00 -9.94 12.27 

Day 7 .97 3.09 1.00 -10.13 12.07 

Day 21 -.85 3.09 1.00 -11.95 10.25 

Day 28 -1.43 3.09 1.00 -12.53 9.67 

Day 56 -2.11 3.09 1.00 -13.21 8.99 

Day 112 -3.04 3.09 1.00 -14.14 8.06 

Day 196 -4.86 3.09 1.00 -15.96 6.25 

Day 21 

Day 1 6.23 3.09 1.00 -4.87 17.33 

Day 2 4.29 3.09 1.00 -6.81 15.39 

Day 3 3.35 3.09 1.00 -7.75 14.45 

Day 4 2.64 3.09 1.00 -8.46 13.74 

Day 5 2.24 3.09 1.00 -8.86 13.34 

Day 6 2.02 3.09 1.00 -9.08 13.12 

Day 7 1.82 3.09 1.00 -9.28 12.92 

Day 14 .85 3.09 1.00 -10.25 11.95 

Day 28 -.58 3.09 1.00 -11.68 10.52 

Day 56 -1.26 3.09 1.00 -12.36 9.85 

Day 112 -2.19 3.09 1.00 -13.29 8.91 

Day 196 -4.00 3.09 1.00 -15.10 7.10 

Day 28 

Day 1 6.81 3.09 1.00 -4.29 17.91 

Day 2 4.87 3.09 1.00 -6.23 15.97 

Day 3 3.94 3.09 1.00 -7.17 15.04 

Day 4 3.22 3.09 1.00 -7.88 14.32 

Day 5 2.82 3.09 1.00 -8.28 13.92 

Day 6 2.60 3.09 1.00 -8.50 13.70 

Day 7 2.40 3.09 1.00 -8.70 13.50 

Day 14 1.43 3.09 1.00 -9.67 12.53 

Day 21 .58 3.09 1.00 -10.52 11.68 

Day 56 -.67 3.09 1.00 -11.77 10.43 
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Day 112 -1.61 3.09 1.00 -12.71 9.49 

Day 196 -3.42 3.09 1.00 -14.52 7.68 

Day 56 

Day 1 7.48 3.09 1.00 -3.62 18.58 

Day 2 5.54 3.09 1.00 -5.56 16.64 

Day 3 4.61 3.09 1.00 -6.49 15.71 

Day 4 3.90 3.09 1.00 -7.21 15.00 

Day 5 3.50 3.09 1.00 -7.60 14.60 

Day 6 3.27 3.09 1.00 -7.83 14.37 

Day 7 3.08 3.09 1.00 -8.02 14.18 

Day 14 2.11 3.09 1.00 -8.99 13.21 

Day 21 1.26 3.09 1.00 -9.85 12.36 

Day 28 .67 3.09 1.00 -10.43 11.77 

Day 112 -.94 3.09 1.00 -12.04 10.16 

Day 196 -2.75 3.09 1.00 -13.85 8.35 

Day 112 

Day 1 8.42 3.09 .65 -2.68 19.52 

Day 2 6.48 3.09 1.00 -4.62 17.58 

Day 3 5.55 3.09 1.00 -5.56 16.65 

Day 4 4.83 3.09 1.00 -6.27 15.93 

Day 5 4.43 3.09 1.00 -6.67 15.53 

Day 6 4.21 3.09 1.00 -6.89 15.31 

Day 7 4.01 3.09 1.00 -7.09 15.11 

Day 14 3.04 3.09 1.00 -8.06 14.14 

Day 21 2.19 3.09 1.00 -8.91 13.29 

Day 28 1.61 3.09 1.00 -9.49 12.71 

Day 56 .94 3.09 1.00 -10.16 12.04 

Day 196 -1.81 3.09 1.00 -12.91 9.29 

Day 196 

Day 1 10.23 3.09 .12 -.87 21.33 

Day 2 8.29 3.09 .73 -2.81 19.39 

Day 3 7.36 3.09 1.00 -3.74 18.46 

Day 4 6.64 3.09 1.00 -4.46 17.74 

Day 5 6.25 3.09 1.00 -4.86 17.35 

Day 6 6.02 3.09 1.00 -5.08 17.12 

Day 7 5.83 3.09 1.00 -5.28 16.93 

Day 14 4.86 3.09 1.00 -6.25 15.96 

Day 21 4.00 3.09 1.00 -7.10 15.10 

Day 28 3.42 3.09 1.00 -7.68 14.52 

Day 56 2.75 3.09 1.00 -8.35 13.85 

Day 112 1.81 3.09 1.00 -9.29 12.91 
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Appendix Y: Post Hoc Bonferroni 20FA cumulative release 

(micrograms) 

Multiple Comparisons-cumulative (micrograms) 

Dependent Variable:   20%FA-Acidic   

Bonferroni   

(I) Day (J) Day Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Day 1 

Day 2 -10.32* 2.44 .01 -19.08 -1.55 

Day 3 -15.20* 2.44 .00 -23.97 -6.44 

Day 4 -18.16* 2.44 .00 -26.92 -9.39 

Day 5 -20.09* 2.44 .00 -28.86 -11.33 

Day 6 -20.94* 2.44 .00 -29.71 -12.17 

Day 7 -21.76* 2.44 .00 -30.53 -12.99 

Day 14 -26.46* 2.44 .00 -35.23 -17.69 

Day 21 -30.73* 2.44 .00 -39.50 -21.96 

Day 28 -33.82* 2.44 .00 -42.59 -25.05 

Day 56 -36.92* 2.44 .00 -45.69 -28.15 

Day 112 -41.18* 2.44 .00 -49.95 -32.42 

Day 196 -48.57* 2.44 .00 -57.33 -39.80 

Day 2 

Day 1 10.32* 2.44 .01 1.55 19.08 

Day 3 -4.89 2.44 1.00 -13.65 3.88 

Day 4 -7.84 2.44 .16 -16.61 .93 

Day 5 -9.78* 2.44 .01 -18.54 -1.01 

Day 6 -10.62* 2.44 .00 -19.39 -1.86 

Day 7 -11.44* 2.44 .00 -20.21 -2.67 

Day 14 -16.15* 2.44 .00 -24.91 -7.38 

Day 21 -20.42* 2.44 .00 -29.18 -11.65 

Day 28 -23.50* 2.44 .00 -32.27 -14.74 

Day 56 -26.60* 2.44 .00 -35.37 -17.84 

Day 112 -30.87* 2.44 .00 -39.63 -22.10 

Day 196 -38.25* 2.44 .00 -47.02 -29.48 

Day 3 

Day 1 15.20* 2.44 .00 6.44 23.97 

Day 2 4.89 2.44 1.00 -3.88 13.65 

Day 4 -2.95 2.44 1.00 -11.72 5.81 

Day 5 -4.89 2.44 1.00 -13.66 3.88 

Day 6 -5.74 2.44 1.00 -14.50 3.03 

Day 7 -6.56 2.44 .72 -15.32 2.21 

Day 14 -11.26* 2.44 .00 -20.03 -2.49 

Day 21 -15.53* 2.44 .00 -24.30 -6.76 

Day 28 -18.62* 2.44 .00 -27.38 -9.85 

Day 56 -21.72* 2.44 .00 -30.48 -12.95 
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Day 112 -25.98* 2.44 .00 -34.75 -17.21 

Day 196 -33.36* 2.44 .00 -42.13 -24.59 

Day 4 

Day 1 18.16* 2.44 .00 9.39 26.92 

Day 2 7.84 2.44 .16 -.93 16.61 

Day 3 2.95 2.44 1.00 -5.81 11.72 

Day 5 -1.94 2.44 1.00 -10.70 6.83 

Day 6 -2.78 2.44 1.00 -11.55 5.98 

Day 7 -3.60 2.44 1.00 -12.37 5.17 

Day 14 -8.31 2.44 .09 -17.07 .46 

Day 21 -12.58* 2.44 .00 -21.34 -3.81 

Day 28 -15.66* 2.44 .00 -24.43 -6.90 

Day 56 -18.76* 2.44 .00 -27.53 -10.00 

Day 112 -23.03* 2.44 .00 -31.79 -14.26 

Day 196 -30.41* 2.44 .00 -39.18 -21.64 

Day 5 

Day 1 20.09* 2.44 .00 11.33 28.86 

Day 2 9.78* 2.44 .01 1.01 18.54 

Day 3 4.89 2.44 1.00 -3.88 13.66 

Day 4 1.94 2.44 1.00 -6.83 10.70 

Day 6 -.85 2.44 1.00 -9.61 7.92 

Day 7 -1.67 2.44 1.00 -10.43 7.10 

Day 14 -6.37 2.44 .89 -15.14 2.40 

Day 21 -10.64* 2.44 .00 -19.41 -1.87 

Day 28 -13.73* 2.44 .00 -22.49 -4.96 

Day 56 -16.83* 2.44 .00 -25.59 -8.06 

Day 112 -21.09* 2.44 .00 -29.86 -12.32 

Day 196 -28.47* 2.44 .00 -37.24 -19.70 

Day 6 

Day 1 20.94* 2.44 .00 12.17 29.71 

Day 2 10.62* 2.44 .00 1.86 19.39 

Day 3 5.74 2.44 1.00 -3.03 14.50 

Day 4 2.78 2.44 1.00 -5.98 11.55 

Day 5 .85 2.44 1.00 -7.92 9.61 

Day 7 -.82 2.44 1.00 -9.59 7.95 

Day 14 -5.52 2.44 1.00 -14.29 3.25 

Day 21 -9.79* 2.44 .01 -18.56 -1.02 

Day 28 -12.88* 2.44 .00 -21.65 -4.11 

Day 56 -15.98* 2.44 .00 -24.75 -7.21 

Day 112 -20.24* 2.44 .00 -29.01 -11.48 

Day 196 -27.63* 2.44 .00 -36.39 -18.86 

Day 7 

Day 1 21.76* 2.44 .00 12.99 30.53 

Day 2 11.44* 2.44 .00 2.67 20.21 

Day 3 6.56 2.44 .72 -2.21 15.32 

Day 4 3.60 2.44 1.00 -5.17 12.37 
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Day 5 1.67 2.44 1.00 -7.10 10.43 

Day 6 .82 2.44 1.00 -7.95 9.59 

Day 14 -4.70 2.44 1.00 -13.47 4.06 

Day 21 -8.97* 2.44 .04 -17.74 -.21 

Day 28 -12.06* 2.44 .00 -20.83 -3.29 

Day 56 -15.16* 2.44 .00 -23.93 -6.39 

Day 112 -19.43* 2.44 .00 -28.19 -10.66 

Day 196 -26.81* 2.44 .00 -35.57 -18.04 

Day 14 

Day 1 26.46* 2.44 .00 17.69 35.23 

Day 2 16.15* 2.44 .00 7.38 24.91 

Day 3 11.26* 2.44 .00 2.49 20.03 

Day 4 8.31 2.44 .09 -.46 17.07 

Day 5 6.37 2.44 .89 -2.40 15.14 

Day 6 5.52 2.44 1.00 -3.25 14.29 

Day 7 4.70 2.44 1.00 -4.06 13.47 

Day 21 -4.27 2.44 1.00 -13.04 4.50 

Day 28 -7.36 2.44 .29 -16.13 1.41 

Day 56 -10.46* 2.44 .00 -19.23 -1.69 

Day 112 -14.72* 2.44 .00 -23.49 -5.95 

Day 196 -22.10* 2.44 .00 -30.87 -13.34 

Day 21 

Day 1 30.73* 2.44 .00 21.96 39.50 

Day 2 20.42* 2.44 .00 11.65 29.18 

Day 3 15.53* 2.44 .00 6.76 24.30 

Day 4 12.58* 2.44 .00 3.81 21.34 

Day 5 10.64* 2.44 .00 1.87 19.41 

Day 6 9.79* 2.44 .01 1.02 18.56 

Day 7 8.97* 2.44 .04 .21 17.74 

Day 14 4.27 2.44 1.00 -4.50 13.04 

Day 28 -3.09 2.44 1.00 -11.86 5.68 

Day 56 -6.19 2.44 1.00 -14.96 2.58 

Day 112 -10.45* 2.44 .00 -19.22 -1.68 

Day 196 -17.83* 2.44 .00 -26.60 -9.07 

Day 28 

Day 1 33.82* 2.44 .00 25.05 42.59 

Day 2 23.50* 2.44 .00 14.74 32.27 

Day 3 18.62* 2.44 .00 9.85 27.38 

Day 4 15.66* 2.44 .00 6.90 24.43 

Day 5 13.73* 2.44 .00 4.96 22.49 

Day 6 12.88* 2.44 .00 4.11 21.65 

Day 7 12.06* 2.44 .00 3.29 20.83 

Day 14 7.36 2.44 .29 -1.41 16.13 

Day 21 3.09 2.44 1.00 -5.68 11.86 

Day 56 -3.10 2.44 1.00 -11.87 5.67 
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Day 112 -7.36 2.44 .29 -16.13 1.40 

Day 196 -14.75* 2.44 .00 -23.51 -5.98 

Day 56 

Day 1 36.92* 2.44 .00 28.15 45.69 

Day 2 26.60* 2.44 .00 17.84 35.37 

Day 3 21.72* 2.44 .00 12.95 30.48 

Day 4 18.76* 2.44 .00 10.00 27.53 

Day 5 16.83* 2.44 .00 8.06 25.59 

Day 6 15.98* 2.44 .00 7.21 24.75 

Day 7 15.16* 2.44 .00 6.39 23.93 

Day 14 10.46* 2.44 .00 1.69 19.23 

Day 21 6.19 2.44 1.00 -2.58 14.96 

Day 28 3.10 2.44 1.00 -5.67 11.87 

Day 112 -4.26 2.44 1.00 -13.03 4.50 

Day 196 -11.65* 2.44 .00 -20.41 -2.88 

Day 112 

Day 1 41.18* 2.44 .00 32.42 49.95 

Day 2 30.87* 2.44 .00 22.10 39.63 

Day 3 25.98* 2.44 .00 17.21 34.75 

Day 4 23.03* 2.44 .00 14.26 31.79 

Day 5 21.09* 2.44 .00 12.32 29.86 

Day 6 20.24* 2.44 .00 11.48 29.01 

Day 7 19.43* 2.44 .00 10.66 28.19 

Day 14 14.72* 2.44 .00 5.95 23.49 

Day 21 10.45* 2.44 .00 1.68 19.22 

Day 28 7.36 2.44 .29 -1.40 16.13 

Day 56 4.26 2.44 1.00 -4.50 13.03 

Day 196 -7.38 2.44 .28 -16.15 1.39 

Day 196 

Day 1 48.57* 2.44 .00 39.80 57.33 

Day 2 38.25* 2.44 .00 29.48 47.02 

Day 3 33.36* 2.44 .00 24.59 42.13 

Day 4 30.41* 2.44 .00 21.64 39.18 

Day 5 28.47* 2.44 .00 19.70 37.24 

Day 6 27.63* 2.44 .00 18.86 36.39 

Day 7 26.81* 2.44 .00 18.04 35.57 

Day 14 22.10* 2.44 .00 13.34 30.87 

Day 21 17.83* 2.44 .00 9.07 26.60 

Day 28 14.75* 2.44 .00 5.98 23.51 

Day 56 11.65* 2.44 .00 2.88 20.41 

Day 112 7.38 2.44 .28 -1.39 16.15 

*. The mean difference is significant at the 0.05 level. 
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Appendix Z: Post Hoc Bonferroni 30FA cumulative release 

(micrograms) 

Multiple Comparisons-cumulative F release micrograms 

Dependent Variable:   30%FA-Acidic   

Bonferroni   

(I) Day (J) Day Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Day 1 

Day 2 -8.10 3.67 1.00 -21.28 5.08 

Day 3 -13.08 3.67 .05 -26.26 .09 

Day 4 -16.85* 3.67 .00 -30.03 -3.68 

Day 5 -19.68* 3.67 .00 -32.85 -6.50 

Day 6 -20.87* 3.67 .00 -34.04 -7.69 

Day 7 -22.05* 3.67 .00 -35.22 -8.87 

Day 14 -29.15* 3.67 .00 -42.32 -15.97 

Day 21 -36.56* 3.67 .00 -49.74 -23.38 

Day 28 -42.33* 3.67 .00 -55.50 -29.15 

Day 56 -50.99* 3.67 .00 -64.16 -37.81 

Day 112 -60.65* 3.67 .00 -73.83 -47.47 

Day 196 -77.93* 3.67 .00 -91.11 -64.75 

Day 2 

Day 1 8.10 3.67 1.00 -5.08 21.28 

Day 3 -4.98 3.67 1.00 -18.16 8.19 

Day 4 -8.75 3.67 1.00 -21.93 4.42 

Day 5 -11.58 3.67 .19 -24.75 1.60 

Day 6 -12.77 3.67 .07 -25.94 .41 

Day 7 -13.95* 3.67 .03 -27.12 -.77 

Day 14 -21.05* 3.67 .00 -34.22 -7.87 

Day 21 -28.46* 3.67 .00 -41.64 -15.28 

Day 28 -34.23* 3.67 .00 -47.40 -21.05 

Day 56 -42.89* 3.67 .00 -56.06 -29.71 

Day 112 -52.55* 3.67 .00 -65.73 -39.37 

Day 196 -69.83* 3.67 .00 -83.01 -56.65 

Day 3 

Day 1 13.08 3.67 .05 -.09 26.26 

Day 2 4.98 3.67 1.00 -8.19 18.16 

Day 4 -3.77 3.67 1.00 -16.95 9.41 

Day 5 -6.59 3.67 1.00 -19.77 6.58 

Day 6 -7.78 3.67 1.00 -20.96 5.39 

Day 7 -8.96 3.67 1.00 -22.14 4.21 

Day 14 -16.06* 3.67 .00 -29.24 -2.89 

Day 21 -23.48* 3.67 .00 -36.65 -10.30 

Day 28 -29.24* 3.67 .00 -42.42 -16.07 

Day 56 -37.90* 3.67 .00 -51.08 -24.73 
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Day 112 -47.57* 3.67 .00 -60.74 -34.39 

Day 196 -64.85* 3.67 .00 -78.02 -51.67 

Day 4 

Day 1 16.85* 3.67 .00 3.68 30.03 

Day 2 8.75 3.67 1.00 -4.42 21.93 

Day 3 3.77 3.67 1.00 -9.41 16.95 

Day 5 -2.82 3.67 1.00 -16.00 10.35 

Day 6 -4.01 3.67 1.00 -17.19 9.16 

Day 7 -5.19 3.67 1.00 -18.37 7.98 

Day 14 -12.29 3.67 .11 -25.47 .88 

Day 21 -19.71* 3.67 .00 -32.88 -6.53 

Day 28 -25.47* 3.67 .00 -38.65 -12.30 

Day 56 -34.13* 3.67 .00 -47.31 -20.96 

Day 112 -43.80* 3.67 .00 -56.97 -30.62 

Day 196 -61.08* 3.67 .00 -74.25 -47.90 

Day 5 

Day 1 19.68* 3.67 .00 6.50 32.85 

Day 2 11.58 3.67 .19 -1.60 24.75 

Day 3 6.59 3.67 1.00 -6.58 19.77 

Day 4 2.82 3.67 1.00 -10.35 16.00 

Day 6 -1.19 3.67 1.00 -14.37 11.98 

Day 7 -2.37 3.67 1.00 -15.55 10.80 

Day 14 -9.47 3.67 .95 -22.65 3.70 

Day 21 -16.89* 3.67 .00 -30.06 -3.71 

Day 28 -22.65* 3.67 .00 -35.83 -9.48 

Day 56 -31.31* 3.67 .00 -44.49 -18.14 

Day 112 -40.98* 3.67 .00 -54.15 -27.80 

Day 196 -58.26* 3.67 .00 -71.43 -45.08 

Day 6 

Day 1 20.87* 3.67 .00 7.69 34.04 

Day 2 12.77 3.67 .07 -.41 25.94 

Day 3 7.78 3.67 1.00 -5.39 20.96 

Day 4 4.01 3.67 1.00 -9.16 17.19 

Day 5 1.19 3.67 1.00 -11.98 14.37 

Day 7 -1.18 3.67 1.00 -14.36 12.00 

Day 14 -8.28 3.67 1.00 -21.46 4.90 

Day 21 -15.69* 3.67 .01 -28.87 -2.52 

Day 28 -21.46* 3.67 .00 -34.64 -8.28 

Day 56 -30.12* 3.67 .00 -43.30 -16.94 

Day 112 -39.78* 3.67 .00 -52.96 -26.61 

Day 196 -57.06* 3.67 .00 -70.24 -43.89 

Day 7 

Day 1 22.05* 3.67 .00 8.87 35.22 

Day 2 13.95* 3.67 .03 .77 27.12 

Day 3 8.96 3.67 1.00 -4.21 22.14 

Day 4 5.19 3.67 1.00 -7.98 18.37 
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Day 5 2.37 3.67 1.00 -10.80 15.55 

Day 6 1.18 3.67 1.00 -12.00 14.36 

Day 14 -7.10 3.67 1.00 -20.28 6.08 

Day 21 -14.51* 3.67 .02 -27.69 -1.34 

Day 28 -20.28* 3.67 .00 -33.46 -7.10 

Day 56 -28.94* 3.67 .00 -42.12 -15.76 

Day 112 -38.60* 3.67 .00 -51.78 -25.43 

Day 196 -55.88* 3.67 .00 -69.06 -42.71 

Day 14 

Day 1 29.15* 3.67 .00 15.97 42.32 

Day 2 21.05* 3.67 .00 7.87 34.22 

Day 3 16.06* 3.67 .00 2.89 29.24 

Day 4 12.29 3.67 .11 -.88 25.47 

Day 5 9.47 3.67 .95 -3.70 22.65 

Day 6 8.28 3.67 1.00 -4.90 21.46 

Day 7 7.10 3.67 1.00 -6.08 20.28 

Day 21 -7.41 3.67 1.00 -20.59 5.76 

Day 28 -13.18* 3.67 .05 -26.36 .00 

Day 56 -21.84* 3.67 .00 -35.02 -8.66 

Day 112 -31.50* 3.67 .00 -44.68 -18.33 

Day 196 -48.78* 3.67 .00 -61.96 -35.61 

Day 21 

Day 1 36.56* 3.67 .00 23.38 49.74 

Day 2 28.46* 3.67 .00 15.28 41.64 

Day 3 23.48* 3.67 .00 10.30 36.65 

Day 4 19.71* 3.67 .00 6.53 32.88 

Day 5 16.89* 3.67 .00 3.71 30.06 

Day 6 15.69* 3.67 .01 2.52 28.87 

Day 7 14.51* 3.67 .02 1.34 27.69 

Day 14 7.41 3.67 1.00 -5.76 20.59 

Day 28 -5.77 3.67 1.00 -18.94 7.41 

Day 56 -14.43* 3.67 .02 -27.60 -1.25 

Day 112 -24.09* 3.67 .00 -37.27 -10.91 

Day 196 -41.37* 3.67 .00 -54.55 -28.19 

Day 28 

Day 1 42.33* 3.67 .00 29.15 55.50 

Day 2 34.23* 3.67 .00 21.05 47.40 

Day 3 29.24* 3.67 .00 16.07 42.42 

Day 4 25.47* 3.67 .00 12.30 38.65 

Day 5 22.65* 3.67 .00 9.48 35.83 

Day 6 21.46* 3.67 .00 8.28 34.64 

Day 7 20.28* 3.67 .00 7.10 33.46 

Day 14 13.18* 3.67 .05 .00 26.36 

Day 21 5.77 3.67 1.00 -7.41 18.94 

Day 56 -8.66 3.67 1.00 -21.84 4.52 
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Day 112 -18.32* 3.67 .00 -31.50 -5.15 

Day 196 -35.60* 3.67 .00 -48.78 -22.43 

Day 56 

Day 1 50.99* 3.67 .00 37.81 64.16 

Day 2 42.89* 3.67 .00 29.71 56.06 

Day 3 37.90* 3.67 .00 24.73 51.08 

Day 4 34.13* 3.67 .00 20.96 47.31 

Day 5 31.31* 3.67 .00 18.14 44.49 

Day 6 30.12* 3.67 .00 16.94 43.30 

Day 7 28.94* 3.67 .00 15.76 42.12 

Day 14 21.84* 3.67 .00 8.66 35.02 

Day 21 14.43* 3.67 .02 1.25 27.60 

Day 28 8.66 3.67 1.00 -4.52 21.84 

Day 112 -9.66 3.67 .83 -22.84 3.51 

Day 196 -26.94* 3.67 .00 -40.12 -13.77 

Day 112 

Day 1 60.65* 3.67 .00 47.47 73.83 

Day 2 52.55* 3.67 .00 39.37 65.73 

Day 3 47.57* 3.67 .00 34.39 60.74 

Day 4 43.80* 3.67 .00 30.62 56.97 

Day 5 40.98* 3.67 .00 27.80 54.15 

Day 6 39.78* 3.67 .00 26.61 52.96 

Day 7 38.60* 3.67 .00 25.43 51.78 

Day 14 31.50* 3.67 .00 18.33 44.68 

Day 21 24.09* 3.67 .00 10.91 37.27 

Day 28 18.32* 3.67 .00 5.15 31.50 

Day 56 9.66 3.67 .83 -3.51 22.84 

Day 196 -17.28* 3.67 .00 -30.46 -4.10 

Day 196 

Day 1 77.93* 3.67 .00 64.75 91.11 

Day 2 69.83* 3.67 .00 56.65 83.01 

Day 3 64.85* 3.67 .00 51.67 78.02 

Day 4 61.08* 3.67 .00 47.90 74.25 

Day 5 58.26* 3.67 .00 45.08 71.43 

Day 6 57.06* 3.67 .00 43.89 70.24 

Day 7 55.88* 3.67 .00 42.71 69.06 

Day 14 48.78* 3.67 .00 35.61 61.96 

Day 21 41.37* 3.67 .00 28.19 54.55 

Day 28 35.60* 3.67 .00 22.43 48.78 

Day 56 26.94* 3.67 .00 13.77 40.12 

Day 112 17.28* 3.67 .00 4.10 30.46 

*. The mean difference is significant at the 0.05 level. 
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Appendix AA: Post Hoc Bonferroni 40FA cumulative release 

(micrograms) 

Multiple Comparisons-cumulative micrograms 

Dependent Variable:   40%FA-Acidic   

Bonferroni   

(I) Day (J) Day Mean Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Day 1 

Day 2 -7.83 5.59 1.00 -27.89 12.23 

Day 3 -13.86 5.59 1.00 -33.91 6.20 

Day 4 -19.75 5.59 .06 -39.80 .31 

Day 5 -25.02* 5.59 .00 -45.08 -4.96 

Day 6 -27.49* 5.59 .00 -47.55 -7.43 

Day 7 -29.81* 5.59 .00 -49.86 -9.75 

Day 14 -46.04* 5.59 .00 -66.09 -25.98 

Day 21 -63.07* 5.59 .00 -83.13 -43.02 

Day 28 -78.10* 5.59 .00 -98.16 -58.05 

Day 56 -96.23* 5.59 .00 -116.28 -76.17 

Day 112 -112.84* 5.59 .00 -132.89 -92.78 

Day 196 -138.31* 5.59 .00 -158.36 -118.25 

Day 2 

Day 1 7.83 5.59 1.00 -12.23 27.89 

Day 3 -6.03 5.59 1.00 -26.08 14.03 

Day 4 -11.92 5.59 1.00 -31.97 8.14 

Day 5 -17.19 5.59 .24 -37.25 2.87 

Day 6 -19.66 5.59 .06 -39.72 .40 

Day 7 -21.98* 5.59 .02 -42.03 -1.92 

Day 14 -38.21* 5.59 .00 -58.26 -18.15 

Day 21 -55.24* 5.59 .00 -75.30 -35.19 

Day 28 -70.27* 5.59 .00 -90.33 -50.22 

Day 56 -88.40* 5.59 .00 -108.45 -68.34 

Day 112 -105.01* 5.59 .00 -125.06 -84.95 

Day 196 -130.48* 5.59 .00 -150.53 -110.42 

Day 3 

Day 1 13.86 5.59 1.00 -6.20 33.91 

Day 2 6.03 5.59 1.00 -14.03 26.08 

Day 4 -5.89 5.59 1.00 -25.94 14.17 

Day 5 -11.16 5.59 1.00 -31.22 8.89 

Day 6 -13.63 5.59 1.00 -33.69 6.42 

Day 7 -15.95 5.59 .45 -36.00 4.11 

Day 14 -32.18* 5.59 .00 -52.24 -12.12 

Day 21 -49.22* 5.59 .00 -69.27 -29.16 

Day 28 -64.24* 5.59 .00 -84.30 -44.19 

Day 56 -82.37* 5.59 .00 -102.43 -62.31 
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Day 112 -98.98* 5.59 .00 -119.03 -78.92 

Day 196 -124.45* 5.59 .00 -144.50 -104.39 

Day 4 

Day 1 19.75 5.59 .06 -.31 39.80 

Day 2 11.92 5.59 1.00 -8.14 31.97 

Day 3 5.89 5.59 1.00 -14.17 25.94 

Day 5 -5.27 5.59 1.00 -25.33 14.78 

Day 6 -7.74 5.59 1.00 -27.80 12.31 

Day 7 -10.06 5.59 1.00 -30.11 10.00 

Day 14 -26.29* 5.59 .00 -46.35 -6.24 

Day 21 -43.33* 5.59 .00 -63.38 -23.27 

Day 28 -58.36* 5.59 .00 -78.41 -38.30 

Day 56 -76.48* 5.59 .00 -96.54 -56.43 

Day 112 -93.09* 5.59 .00 -113.14 -73.03 

Day 196 -118.56* 5.59 .00 -138.62 -98.50 

Day 5 

Day 1 25.02* 5.59 .00 4.96 45.08 

Day 2 17.19 5.59 .24 -2.87 37.25 

Day 3 11.16 5.59 1.00 -8.89 31.22 

Day 4 5.27 5.59 1.00 -14.78 25.33 

Day 6 -2.47 5.59 1.00 -22.53 17.59 

Day 7 -4.79 5.59 1.00 -24.84 15.27 

Day 14 -21.02* 5.59 .03 -41.07 -.96 

Day 21 -38.05* 5.59 .00 -58.11 -18.00 

Day 28 -53.08* 5.59 .00 -73.14 -33.03 

Day 56 -71.21* 5.59 .00 -91.26 -51.15 

Day 112 -87.82* 5.59 .00 -107.87 -67.76 

Day 196 -113.29* 5.59 .00 -133.34 -93.23 

Day 6 

Day 1 27.49* 5.59 .00 7.43 47.55 

Day 2 19.66 5.59 .06 -.40 39.72 

Day 3 13.63 5.59 1.00 -6.42 33.69 

Day 4 7.74 5.59 1.00 -12.31 27.80 

Day 5 2.47 5.59 1.00 -17.59 22.53 

Day 7 -2.32 5.59 1.00 -22.37 17.74 

Day 14 -18.55 5.59 .12 -38.60 1.51 

Day 21 -35.58* 5.59 .00 -55.64 -15.53 

Day 28 -50.61* 5.59 .00 -70.67 -30.56 

Day 56 -68.74* 5.59 .00 -88.79 -48.68 

Day 112 -85.35* 5.59 .00 -105.40 -65.29 

Day 196 -110.82* 5.59 .00 -130.87 -90.76 

Day 7 

Day 1 29.81* 5.59 .00 9.75 49.86 

Day 2 21.98* 5.59 .02 1.92 42.03 

Day 3 15.95 5.59 .45 -4.11 36.00 

Day 4 10.06 5.59 1.00 -10.00 30.11 
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Day 5 4.79 5.59 1.00 -15.27 24.84 

Day 6 2.32 5.59 1.00 -17.74 22.37 

Day 14 -16.23 5.59 .39 -36.29 3.82 

Day 21 -33.27* 5.59 .00 -53.32 -13.21 

Day 28 -48.30* 5.59 .00 -68.35 -28.24 

Day 56 -66.42* 5.59 .00 -86.48 -46.37 

Day 112 -83.03* 5.59 .00 -103.09 -62.97 

Day 196 -108.50* 5.59 .00 -128.56 -88.45 

Day 14 

Day 1 46.04* 5.59 .00 25.98 66.09 

Day 2 38.21* 5.59 .00 18.15 58.26 

Day 3 32.18* 5.59 .00 12.12 52.24 

Day 4 26.29* 5.59 .00 6.24 46.35 

Day 5 21.02* 5.59 .03 .96 41.07 

Day 6 18.55 5.59 .12 -1.51 38.60 

Day 7 16.23 5.59 .39 -3.82 36.29 

Day 21 -17.04 5.59 .26 -37.09 3.02 

Day 28 -32.06* 5.59 .00 -52.12 -12.01 

Day 56 -50.19* 5.59 .00 -70.25 -30.13 

Day 112 -66.80* 5.59 .00 -86.85 -46.74 

Day 196 -92.27* 5.59 .00 -112.32 -72.21 

Day 21 

Day 1 63.07* 5.59 .00 43.02 83.13 

Day 2 55.24* 5.59 .00 35.19 75.30 

Day 3 49.22* 5.59 .00 29.16 69.27 

Day 4 43.33* 5.59 .00 23.27 63.38 

Day 5 38.05* 5.59 .00 18.00 58.11 

Day 6 35.58* 5.59 .00 15.53 55.64 

Day 7 33.27* 5.59 .00 13.21 53.32 

Day 14 17.04 5.59 .26 -3.02 37.09 

Day 28 -15.03 5.59 .71 -35.08 5.03 

Day 56 -33.16* 5.59 .00 -53.21 -13.10 

Day 112 -49.76* 5.59 .00 -69.82 -29.71 

Day 196 -75.23* 5.59 .00 -95.29 -55.18 

Day 28 

Day 1 78.10* 5.59 .00 58.05 98.16 

Day 2 70.27* 5.59 .00 50.22 90.33 

Day 3 64.24* 5.59 .00 44.19 84.30 

Day 4 58.36* 5.59 .00 38.30 78.41 

Day 5 53.08* 5.59 .00 33.03 73.14 

Day 6 50.61* 5.59 .00 30.56 70.67 

Day 7 48.30* 5.59 .00 28.24 68.35 

Day 14 32.06* 5.59 .00 12.01 52.12 

Day 21 15.03 5.59 .71 -5.03 35.08 

Day 56 -18.13 5.59 .15 -38.18 1.93 
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Day 112 -34.73* 5.59 .00 -54.79 -14.68 

Day 196 -60.21* 5.59 .00 -80.26 -40.15 

Day 56 

Day 1 96.23* 5.59 .00 76.17 116.28 

Day 2 88.40* 5.59 .00 68.34 108.45 

Day 3 82.37* 5.59 .00 62.31 102.43 

Day 4 76.48* 5.59 .00 56.43 96.54 

Day 5 71.21* 5.59 .00 51.15 91.26 

Day 6 68.74* 5.59 .00 48.68 88.79 

Day 7 66.42* 5.59 .00 46.37 86.48 

Day 14 50.19* 5.59 .00 30.13 70.25 

Day 21 33.16* 5.59 .00 13.10 53.21 

Day 28 18.13 5.59 .15 -1.93 38.18 

Day 112 -16.61 5.59 .32 -36.66 3.45 

Day 196 -42.08* 5.59 .00 -62.13 -22.02 

Day 112 

Day 1 112.84* 5.59 .00 92.78 132.89 

Day 2 105.01* 5.59 .00 84.95 125.06 

Day 3 98.98* 5.59 .00 78.92 119.03 

Day 4 93.09* 5.59 .00 73.03 113.14 

Day 5 87.82* 5.59 .00 67.76 107.87 

Day 6 85.35* 5.59 .00 65.29 105.40 

Day 7 83.03* 5.59 .00 62.97 103.09 

Day 14 66.80* 5.59 .00 46.74 86.85 

Day 21 49.76* 5.59 .00 29.71 69.82 

Day 28 34.73* 5.59 .00 14.68 54.79 

Day 56 16.61 5.59 .32 -3.45 36.66 

Day 196 -25.47* 5.59 .00 -45.53 -5.42 

Day 196 

Day 1 138.31* 5.59 .00 118.25 158.36 

Day 2 130.48* 5.59 .00 110.42 150.53 

Day 3 124.45* 5.59 .00 104.39 144.50 

Day 4 118.56* 5.59 .00 98.50 138.62 

Day 5 113.29* 5.59 .00 93.23 133.34 

Day 6 110.82* 5.59 .00 90.76 130.87 

Day 7 108.50* 5.59 .00 88.45 128.56 

Day 14 92.27* 5.59 .00 72.21 112.32 

Day 21 75.23* 5.59 .00 55.18 95.29 

Day 28 60.21* 5.59 .00 40.15 80.26 

Day 56 42.08* 5.59 .00 22.02 62.13 

Day 112 25.47* 5.59 .00 5.42 45.53 

*. The mean difference is significant at the 0.05 level. 

 


